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About This Book

The MIPS® Architecture For Programmers Volume I-B: Introduction to the microMIPS32™ Architecture comes as 
part of a multi-volume set.

• Volume I-A describes conventions used throughout the document set, and provides an introduction to the 
MIPS32® Architecture

• Volume I-B describes conventions used throughout the document set, and provides an introduction to the 
microMIPS32™ Architecture

• Volume II-A provides detailed descriptions of each instruction in the MIPS32® instruction set

• Volume II-B provides detailed descriptions of each instruction in the microMIPS32™ instruction set

• Volume III describes the MIPS32® and microMIPS32™ Privileged Resource Architecture which defines and 
governs the behavior of the privileged resources included in a MIPS® processor implementation

• Volume IV-a describes the MIPS16e™ Application-Specific Extension to the MIPS32® Architecture. Beginning 
with Release 3 of the Architecture, microMIPS is the preferred solution for smaller code size. Release 6 removes 
MIPS16e: MIPS16e cannot be implemented with Release 6.

• Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS64® Architecture and 
microMIPS64™. It is not applicable to the MIPS32® document set nor the microMIPS32™ document set. With 
Release 5 of the Architecture, MDMX is deprecated. MDMX and MSA can not be implemented at the same 
time. Release 6 removes MDMX: MDMX cannot be implemented with Release 6.

• Volume IV-c describes the MIPS-3D® Application-Specific Extension to the MIPS® Architecture. Release 6 
removes MIPS-3D: MIPS-3D cannot be implemented with Release 6.

• Volume IV-d describes the SmartMIPS®Application-Specific Extension to the MIPS32® Architecture and the 
microMIPS32™ Architecture . Release 6 removes SmartMIPS: SmartMIPS cannot be implemented with 
Release 6.

• Volume IV-e describes the MIPS® DSP Module to the MIPS® Architecture.

• Volume IV-f describes the MIPS® MT Module to the MIPS® Architecture.

• Volume IV-h describes the MIPS® MCU Application-Specific Extension to the MIPS® Architecture.

• Volume IV-i describes the MIPS® Virtualization Module to the MIPS® Architecture.

• Volume IV-j describes the MIPS® SIMD Architecture Module to the MIPS® Architecture.
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1.1 Typographical Conventions

This section describes the use of italic, bold and courier fonts in this book.

1.1.1 Italic Text

• is used for emphasis.

• is used for bits, fields, and registers that are important from a software perspective (for instance, address bits 
used by software and programmable fields and registers), and various floating-point instruction formats, such as 
S and D.

• is used for the memory access types, such as cached and uncached.

1.1.2 Bold Text

• represents a term that is being defined.

• is used for bits and fields that are important from a hardware perspective (for instance, register bits, which are 
not programmable but accessible only to hardware).

• is used for ranges of numbers; the range is indicated by an ellipsis. For instance, 5..1 indicates numbers
5 through 1.

• is used to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction 
pseudocode.

1.1.4 Colored Text

RegisterGreen color and italic font are used for CP0 registers and CP0 register bits and fields. RegisterGreen 
color andi italicsubscript fonts are used for CP0 register bits and fields when appended to the register name. 

1.2 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the pro-
cessor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions in 
a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register). Unpriv-
ileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and unprivileged 
software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction, 
and as a function of time on the same implementation or instruction. Software can never depend on results that are 
UNPREDICTABLE. 
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UNPREDICTABLE operations may cause a result to be generated or not. If a result is generated, it is UNPRE-
DICTABLE. Operations that are UNPREDICTABLE may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

• Implementations of operations generating UNPREDICTABLE results must not depend on any data source 
(memory or internal state) which is inaccessible in the current processor mode

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which 
is inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in user 
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in 
another process

• UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to 
instruction, and as a function of time on the same implementation or instruction. UNDEFINED operations or behav-
ior may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED 
operations or behavior may cause data loss.

UNDEFINED operations or behavior have tao implementation restrictions:

• UNDEFINED operations or behavior must not cause the processor to hang (that is, to enter a state from which 
there is no exit other than powering down the processor). The assertion of any of the reset signals must restore 
the processor to an operational state.

• UNDEFINED behavior in privileged modes such as Kernel mode becomes UNPREDICTABLE behavior when 
virtualized and executed in Guest Kernel mode, as described in Volume IV-i, the MIPS® Virtualization Module 
to the MIPS® Architecture.

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike 
UNPREDICTABLE values, software may depend on the fact that a sampling of an UNSTABLE value results in a 
legal transient value that was correct at some point in time prior to the sampling.

UNSTABLE values have one implementation restriction:

• Implementations of operations generating UNSTABLE results must not depend on any data source (memory or 
internal state) which is inaccessible in the current processor mode
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1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described using a high-level language pseudocode resem-
bling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol  Meaning

 Assignment

,  Tests for equality and inequality

 Bit string concatenation

xy A y-bit string formed by y copies of the single-bit value x

b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the 
binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#" 
prefix is omitted, the default base is 10.

0bn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).

0xn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).

xy..z Selection of bits y through z of bit string x. Little-endian bit notation (rightmost bit is 0) is used. If y is less 
than z, this expression is an empty (zero length) bit string.

,  2’s complement or floating point arithmetic: addition, subtraction

*,  2’s complement or floating point multiplication (both used for either)

div 2’s complement integer division

mod 2’s complement modulo

 Floating point division

 2’s complement less-than comparison

 2’s complement greater-than comparison

 2’s complement less-than or equal comparison

 2’s complement greater-than or equal comparison

nor Bitwise logical NOR

xor Bitwise logical XOR

and Bitwise logical AND

or Bitwise logical OR

not Bitwise inversion

&& Logical (non-Bitwise) AND

<< Logical Shift left (shift in zeros at right-hand-side)

>> Logical Shift right (shift in zeros at left-hand-side)

GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers

GPR[x] CPU general-purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture, 
GPR[x] is a short-hand notation for SGPR[ SRSCtlCSS, x].

SGPR[s,x] In Release 2 of the Architecture and subsequent releases, multiple copies of the CPU general-purpose regis-
ters may be implemented. SGPR[s,x] refers to GPR set s, register x.

FPR[x] Floating Point operand register x 
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FCC[CC] Floating Point condition code CC. FCC[0] has the same value as COC[1].
Release 6 removes the floating point condition codes.

FPR[x] Floating Point (Coprocessor unit 1), general register x

CPR[z,x,s] Coprocessor unit z, general register x, select s

CP2CPR[x] Coprocessor unit 2, general register x

CCR[z,x] Coprocessor unit z, control register x

CP2CCR[x] Coprocessor unit 2, control register x

COC[z] Coprocessor unit z condition signal

Xlat[x] Translation of the MIPS16e GPR number x into the corresponding 32-bit GPR number

x.bit[y] Bit y of bitstring x. Alternative to the traditional MIPS notation xy. 

x.bits[y..z] Selection of bits y through z of bit string x. Alternative to the traditional MIPS notation xy..z.

x.byte[y] Byte y of bitstring x. Equivalent to the traditional MIPS notation x8*y+7..8*y.  

x.bytes[y..z] Selection of bytes y through z of bit string x. Alternative to the traditional MIPS notation x8*y+7..8*z.

x.halfword[y]
x.word[i]

x.doubleword[i]

Similar extraction of particular bitfields (used in e.g., MSA packed SIMD vectors).

x.bit31, x.byte0, etc. Examples of abbreviated form of x.bit[y], etc. notation, when y is a constant.

x.fieldy Selection of a named subfield of bitstring x, typically a register or instruction encoding.
More formally described as “Field y of register x”.
For example, FIRD = “the D bit of the Coprocessor 1 Floating-point Implementation Register (FIR)”.

BigEndianMem Endian mode as configured at chip reset (0 Little-Endian, 1  Big-Endian). Specifies the endianness of 
the memory interface (see LoadMemory and StoreMemory pseudocode function descriptions) and the endi-
anness of Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0  Little-Endian, 1  Big-Endian). In User mode, this 
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only, 
and is implemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as 
(SRRE and User mode). 

LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is 
set when a linked load occurs and is tested by the conditional store. It is cleared, during other CPU operation, 
when a store to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol  Meaning
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I:,
I+n:,
I-n:

This occurs as a prefix to Operation description lines and functions as a label. It indicates the instruction 
time during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current 
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a 
time label of I. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the 
instruction time of another instruction. When this happens, the instruction operation is written in sections 
labeled with the instruction time, relative to the current instruction I, in which the effect of that pseudocode 
appears to occur. For example, an instruction may have a result that is not available until after the next 
instruction. Such an instruction has the portion of the instruction operation description that writes the result 
register in a section labeled I+1.
The effect of pseudocode statements for the current instruction labeled I+1 appears to occur “at the same 
time” as the effect of pseudocode statements labeled I for the following instruction. Within one pseudocode 
sequence, the effects of the statements take place in order. However, between sequences of statements for 
different instructions that occur “at the same time,” there is no defined order. Programs must not depend on a 
particular order of evaluation between such sections.

PC The Program Counter value. During the instruction time of an instruction, this is the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction time is determined by assign-
ing a value to PC during an instruction time. If no value is assigned to PC during an instruction time by any 
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the 
instruction time of the instruction in the branch delay slot.
In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the restart 
address into a GPR on a jump-and-link or branch-and-link instruction, or into a Coprocessor 0 register on an 
exception. Release 6 adds PC-relative address computation and load instructions. The PC value contains a 
full 32-bit address, all of which are significant during a memory reference.

ISA Mode In processors that implement the MIPS16e Application Specific Extension or the microMIPS base architec-
tures, the ISA Mode is a single-bit register that determines in which mode the processor is executing, as fol-
lows:

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a 
combined value of the upper bits of PC and the ISA Mode into a GPR on a jump-and-link or branch-and-link 
instruction, or into a Coprocessor 0 register on an exception.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 phys-

ical address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes.

FP32RegistersMode Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). It is optional if the FPU has 32 
64-bit FPRs in which 64-bit data types are stored in any FPR.

microMIPS64 implementations have a compatibility mode in which the processor references the FPRs as if it 
were a microMIPS32 implementation. In such a case FP32RegisterMode is computed from the FR bit in the 
Status register. If this bit is a 0, the processor operates as if it had 32, 32-bit FPRs. If this bit is a 1, the proces-
sor operates with 32 64-bit FPRs.

The value of FP32RegistersMode is computed from the FR bit in the Status register.

InstructionInBranchDe-
laySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch 
or jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the value is 
false if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which 
is not executed in the delay slot of a branch or jump.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol  Meaning

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions

1 The processor is executing MIIPS16e or microMIPS 
instructions
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1.4 Notation for Register Field Accessibility

In this document, the read/write properties of register fields use the notations shown in Table 1.2.  

SignalException(excep-
tion, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the argument 
parameter as an exception-specific argument). Control does not return from this pseudocode function—the 
exception is signaled at the point of the call.

Table 1.2 Read/Write Register Field Notation 

Read/Write 
Notation Hardware Interpretation Software Interpretation

R/W A field in which all bits are readable and writable by software and, potentially, by hardware.
Hardware updates of this field are visible by software read. Software updates of this field are visible by 
hardware read.
If the Reset State of this field is ‘‘Undefined’’, either software or hardware must initialize the value before 
the first read will return a predictable value. This should not be confused with the formal definition of 
UNDEFINED behavior.

R A field which is either static or is updated only by 
hardware.
If the Reset State of this field is either ‘‘0’’, ‘‘Pre-
set’’, or ‘‘Externally Set’’, hardware initializes this 
field to zero or to the appropriate state, respectively, 
on power-up. The term ‘‘Preset’’ is used to suggest 
that the processor establishes the appropriate state, 
whereas the term ‘‘Externally Set’’ is used to sug-
gest that the state is established via an external 
source (e.g., personality pins or initialization bit 
stream). These terms are suggestions only, and are 
not intended to act as a requirement on the imple-
mentation.
If the Reset State of this field is ‘‘Undefined’’, hard-
ware updates this field only under those conditions 
specified in the description of the field.

A field to which the value written by software is 
ignored by hardware. Software may write any value 
to this field without affecting hardware behavior. 
Software reads of this field return the last value 
updated by hardware.
If the Reset State of this field is ‘‘Undefined’’, soft-
ware reads of this field result in an UNPREDICT-
ABLE value except after a hardware update done 
under the conditions specified in the description of 
the field.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol  Meaning
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R0 Reserved, read as zero, ignore writes by software.

Hardware ignores software writes to an R0 field. 
Neither the occurrence of such writes, nor the val-
ues written, affects hardware behavior.

Hardware always returns 0 to software reads of R0 
fields.

The Reset State of an R0 field must always be 0.

If software performs an mtc0 instruction which 
writes a non-zero value to an R0 field, the write to 
the R0 field will be ignored, but permitted writes to 
other fields in the register will not be affected.

Architectural Compatibility: R0 fields are reserved, 
and may be used for not-yet-defined purposes in 
future revisions of the architecture. 

When writing an R0 field, current software should 
only write either all 0s, or, preferably, write back the 
same value that was read from the field. 

Current software should not assume that the value 
read from R0 fields is zero, because this may not be 
true on future hardware.

Future revisions of the architecture may redefine an 
R0 field, but must do so in such a way that software 
which is unaware of the new definition and either 
writes zeros or writes back the value it has read from 
the field will continue to work correctly.

Writing back the same value that was read is guaran-
teed to have no unexpected effects on current or 
future hardware behavior. (Except for non-atomicity 
of such read-writes.)

Writing zeros to an R0 field may not be preferred 
because in the future this may interfere with the oper-
ation of other software which has been updated for 
the new field definition.

0 Release 6
Release 6 legacy “0” behaves like R0 - read as zero, nonzero writes ignored.

Legacy “0” should not be defined for any new control register fields; R0 should be used instead.

HW returns 0 when read.
HW ignores writes.

Only zero should be written, or, value read from reg-
ister.

pre-Release 6
pre-Release 6 legacy “0”  - read as zero, nonzero writes are UNDEFINED.

A field which hardware does not update, and for 
which hardware can assume a zero value.

A field to which the value written by software must 
be zero. Software writes of non-zero values to this 
field may result in UNDEFINED behavior of the 
hardware. Software reads of this field return zero as 
long as all previous software writes are zero.

If the Reset State of this field is ‘‘Undefined’’, soft-
ware must write this field with zero before it is guar-
anteed to read as zero.

Table 1.2 Read/Write Register Field Notation  (Continued)

Read/Write 
Notation Hardware Interpretation Software Interpretation
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1.5 For More Information

MIPS processor manuals and additional information about MIPS products can be found at http://www.imgtec.com.

For comments or questions about the MIPS32® Architecture or this document, send Email to IMGBA-DocFeed-
back@imgtec.com.

R/W0 Like R/W, except that writes of non-zero to a R/W0 field are ignored (e.g., write to StatusNMI).

Hardware may set or clear an R/W0 bit.

Hardware ignores software writes of nonzero to an 
R/W0 field. Neither the occurrence of such writes, 
nor the values written, affects hardware behavior.

Software writes of 0 to an R/W0 field may have an 
effect.

Hardware may return 0 or nonzero to software 
reads of an R/W0 bit.

If software performs an mtc0 instruction which 
writes a non-zero value to an R/W0 field, the write 
to the R/W0 field will be ignored, but permitted 
writes to other fields in the register will not be 
affected.

Software can only clear an R/W0 bit.

Software writes 0 to an R/W0 field to clear the field.

Software writes nonzero to an R/W0 bit in order to 
guarantee that the bit is not affected by the write.

W0 Like R/W0, except that the field cannot be read directly, but only through a level of indirection. An example 
is the UNFR COP1 register. Writes of non-zero to a W0 field are ignored. 

Hardware may clear a W0 bit.

Hardware ignores software writes of nonzero to a 
W0 field. Neither the occurrence of such writes, nor 
the values written, affects hardware behavior.

Software can only clear a W0 bit.

Software writes 0 to a W0 field to clear the field.

Software writes nonzero to an W0 bit in order to guar-
antee that the bit is not affected by the write.

Table 1.2 Read/Write Register Field Notation  (Continued)

Read/Write 
Notation Hardware Interpretation Software Interpretation

http://www.mips.com/
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Overview of the MIPS® Architecture

Imagination's microMIPS32® and microMIPS64® architectures are high performance, industry-standard architec-
tures that provide a robust and streamlined instruction set, with scalability from 32-bits to 64-bits, and are supported 
by a broad array of hardware and software development tools, including compilers, debuggers, in-circuit emulators, 
middleware, application platforms, and reference designs. 

The MIPS architecture is based on a fixed-length, regularly encoded instruction set and uses a load/store data model, 
in which all operations are performed on operands in processor registers, and main memory is accessed only by load 
and store instructions. The load/store model reduces the number of memory accesses, thus easing memory bandwidth 
requirements, simplifies the instruction set, and makes it easier for compilers to optimize register allocation.

2.1 Historical Perspective

The MIPS Architecture has evolved over time from the original MIPS I™, through the MIPS V™, to the current 
MIPS32, MIPS64, and microMIPS™ architectures. Throughout the evolution of the architecture, each new ISA has 
been backward-compatible with previous ISAs . In the MIPS III™ ISA, 64-bit integers and addresses were added to 
the instruction set. The MIPS IV™ and MIPS V™ ISAs added improved floating-point operations and a new set of 
instructions that improved the efficiency of generated code and of data movement. Because of the strict backward-
compatible requirement of ISAs, such changes were unavailable to 32-bit implementations of the ISA that were, by 
definition, MIPS I™ or MIPS II™ implementations. The MIPS32 Release 6 ISA maintains backward-compatibility, 
with the exception of a few rarely used instructions, though the use of trap-and-emulate or trap-and-patch; all pre-
Release 6 binaries can execute under binary translation. 

While the user-mode ISA was always backward-compatible, the PRA and the privileged-mode ISA were allowed to 
change on a per-implementation basis. As a result, the R3000® privileged environment was different from the 
R4000® privileged environment, and subsequent implementations, while similar to the R4000 privileged environ-
ment, included subtle differences. Because the privileged environment was never part of the MIPS ISA, an imple-
mentation had the flexibility to make changes to suit that particular implementation. Unfortunately, this required 
kernel software changes to every operating system or kernel environment on which that implementation was intended 
to run.

Many of the original MIPS implementations were targeted at computer-like applications such as workstations and 
servers. In recent years MIPS implementations have had significant success in embedded applications. Today, most of 
the MIPS parts that are shipped go into some sort of embedded application. Such applications tend to have different 
trade-offs than computer-like applications including a focus on cost of implementation, and performance as a func-
tion of cost and power.

The MIPS32 and MIPS64 Architectures are intended to address the need for a high-performance but cost-sensitive 
MIPS instruction set. The MIPS32 Architecture is based on the MIPS II ISA, adding selected instructions from MIPS 
III, MIPS IV, and MIPS V to improve the efficiency of generated code and of data movement. The MIPS64 Architec-
ture is based on the MIPS V ISA and is backward compatible with the MIPS32 Architecture. Both the MIPS32 and 
MIPS64 Architectures bring the privileged environment into the Architecture definition to address the needs of oper-
ating systems and other kernel software. Both also include provision for adding optional components—Modules of 
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the base architecture, MIPS Application Specific Extensions (ASEs), User Defined Instructions (UDIs), and custom 
coprocessors to address the specific needs of particular markets.

The MIPS32 and MIPS64 Architectures provide a substantial cost/performance advantage over microprocessor 
implementations based on traditional architectures. This advantage is a result of improvements made in several con-
tiguous disciplines: VLSI process technology, CPU organization, system-level architecture, and operating system and 
compiler design.

The microMIPS32 and microMIPS64 Architectures provide the same functionality as MIPS32 and MIPS64, with the 
additional benefit of smaller code size. The microMIPS architectures are supersets of MIPS32/MIPS64 architectures, 
with almost the same sets of 32-bit sized instructions and additional 16-bit instructions that reduce code size. Unlike 
the earlier versions of the architecture, microMIPS provides assembler-source code compatibility with its predeces-
sors instead of binary compatibility.

2.2 Components of the MIPS® Architecture

2.2.1 MIPS Instruction Set Architecture (ISA)

The microMIPS32 and microMIPS64 Instruction Set Architectures define a compatible family of instructions that 
handle 32-bit data and 64-bit data (respectively) within the framework of the overall MIPS Architecture. Included in 
the ISA are all instructions, both privileged and unprivileged, by which the programmer interfaces with the processor. 
The ISA guarantees object-code compatibility for unprivileged programs executing on any microMIPS32 or 
microMIPS64 processor; all instructions in the microMIPS64 ISA are backward compatible with those instructions in 
the microMIPS32 ISA. In many cases, privileged programs are also object-code compatible—using conditional com-
pilation or assembly language macros, it is often possible to write privileged programs that run on both MIPS32 and 
MIPS64 implementations.

In Release 6 implementations, object-code compatibility is not guaranteed when directly executing pre-Release 6 
code, because certain pre-Release 6 instruction encodings are allocated to completely different instructions on 
Release 6. Nevertheless, there is a useful subset of instructions that have the same encodings in both Release 6 and 
pre-Release 6, and an even larger subset that can be trapped and emulated. Furthermore, using conditional compila-
tion or assembly language macros, it is often possible to write software that runs on both Release 6 and pre-Release 6 
implementations. Binary compatibility can be obtained by binary translation; Release 6 is designed so that simple 
instruction replacement can accomplish all such binary translation, minimizing remapping of instruction addresses.

For example, to binary translate/patch a pre-Release 6 binary, the Release 6 compact branch instructions, with no 
delay slots, mean that any instruction can be replaced by a BALC single instruction call to an emulation function - 
assuming that the emulation function can be reached by the branch target with its 26 bit / 256MB span, and that the 
link register can be overwritten - which a binary translator can usually arrange. A single BC instruction avoids using 
the link register, at the cost of more emulation entry points. JC/JIALC can also be used, although their smaller 16-bit 
offset probably requires the binary translator to use an extra register.

Release 6 and subsequent releases will be backward compatible going forward, i.e., Release 6 code will run on all 
subsequent releases. 

2.2.2 MIPS Privileged Resource Architecture (PRA)

The microMIPS32 and microMIPS64 Privileged Resource Architectures define a set of environments and capabilities 
on which the ISA operates. The effects of some components of the PRA are visible to unprivileged programs; for 
instance, the virtual memory layout. Many other components are visible only to privileged programs and the operat-
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ing system. The PRA provides the mechanisms necessary to manage the resources of the processor: virtual memory, 
caches, exceptions, user contexts, etc. 

2.2.3 MIPS Modules and Application Specific Extensions (ASEs)

The microMIPS32 and microMIPS64 Architectures provide support for optional components - known as either Mod-
ules or application specific extensions. As optional extensions to the base architecture, the Modules/ASEs do not bur-
den every implementation of the architecture with instructions or capability that are not needed in a particular market. 
An ASE/Module can be used with the appropriate ISA and PRA to meet the needs of a specific application or an 
entire class of applications.

2.2.4 MIPS User Defined Instructions (UDIs)

In addition to support for ASEs and Modules as described above, the MIPS32 and MIPS64 Architectures define spe-
cific instructions for use by each implementation. The Special2 and/or COP2 major opcodes and Coprocessor 2 are 
reserved for capabilities defined by each implementation. In Release 6, use of the Special2 opcode is not permitted. 

2.3 Evolution of the Architecture

The evolution of an architecture is a dynamic process that takes into account both the need to provide a stable plat-
form for implementations, as well as new market and application areas that demand new capabilities. Enhancements 
to an architecture are appropriate when they:

• are applicable to a wide market

• provide long-term benefit

• maintain architectural scalability

• are standardized to prevent fragmentation

• are a superset of the existing architecture

Taking into account these criteria, architects at MIPS Technologies constantly evaluate suggestions for architectural 
changes and enhancements, and new releases of the architecture, while infrequent, have been made at appropriate 
points: 

• Release 1, the original version of the MIPS32 Architecture, released in 1985

• Release 2, added in 2002

• Release 3 (MIPSr3TM), added in 2010

• Release 4, added in 2012. For internal use only.

• Release 5, added in 2013

• Release 6 added in 2014

The evolution of the MIPS architecture is summarized in Figure 2.1
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Figure 2.1 MIPS Architecture Evolution
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• The MIPS IV ISA added a restriction to the load and store instructions which have natural alignment require-
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offset be aligned, but the implication is that the base register is also aligned, and this is more consistent with the 
indexed load/store instructions which have no offset field. The restriction that the base register be naturally-
aligned is eliminated in the MIPS32 Architecture, leaving the restriction that the effective address be naturally-
aligned.

• Early MIPS implementations required two instructions separating a MFLO or MFHI from the next integer multi-
ply or divide operation. This hazard was eliminated in the MIPS IV ISA, although the MIPS RISC Architecture 
Specification does not clearly explain this fact. The MIPS32 Architecture explicitly eliminates this hazard and 
requires that the hi and lo registers be fully interlocked in hardware for all integer multiply and divide instruc-
tions (including, but not limited to, the MADD, MADDU, MSUB, MSUBU, and MUL instructions introduced in 
this specification). 

• The Implementation and Programming Notes included in the instruction descriptions for the MADD, MADDU, 
MSUB, MSUBU, and MUL instructions should be applied to all integer multiply and divide instructions in the 
MIPS RISC Architecture Specification.

2.3.2 MIPS32 Architecture Release 2

Enhancements in Release 2 of the MIPS32 Architecture are:

• Vectored interrupts: This enhancement provides the ability to vector interrupts directly to a handler for that inter-
rupt. Vectored interrupts are an option in Release 2 implementations and the presence of that option is denoted by 
the Config3VInt bit.

• Support for an external interrupt controller: This enhancement reconfigures the on-core interrupt logic to take 
full advantage of an external interrupt controller. This support is an option in Release 2 implementations and the 
presence of that option is denoted by the Config3EIC bit.

• Programmable exception vector base: This enhancement allows the base address of the exception vectors to be 
moved for exceptions that occur when StatusBEV is 0. Doing so allows multi-processor systems to have separate 

exception vectors for each processor, and allows any system to place the exception vectors in memory that is 
appropriate to the system environment. This enhancement is required in a Release 2 implementation.

• Atomic interrupt enable/disable: Two instructions have been added to atomically enable or disable interrupts, and 
return the previous value of the Status register. These instructions are required in a Release 2 implementation.

• The ability to disable the Count register for highly power-sensitive applications. This enhancement is required in 
a Release 2 implementation.

• GPR shadow registers: This addition provides the addition of GPR shadow registers and the ability to bind these 
registers to a vectored interrupt or exception. Shadow registers are an option in Release 2 implementations and 
the presence of that option is denoted by a non-zero value in SRSCtlHSS. While shadow registers are most useful 

when either vectored interrupts or support for an external interrupt controller is also implemented, neither is 
required.

• Field, Rotate and Shuffle instructions: These instructions add additional capability in processing bit fields in reg-
isters. These instructions are required in a Release 2 implementation.

• Explicit hazard management: This enhancement provides a set of instructions to explicitly manage hazards, in 
place of the cycle-based SSNOP method of dealing with hazards. These instructions are required in a Release 2 
implementation.
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• Access to a new class of hardware registers and state from an unprivileged mode. This enhancement is required 
in a Release 2 implementation.

• Coprocessor 0 Register changes: These changes add or modify CP0 registers to indicate the existence of new and 
optional state, provide L2 and L3 cache identification, add trigger bits to the Watch registers, and add support 
for 64-bit performance counter count registers. This enhancement is required in a Release 2 implementation.

• Support for 64-bit coprocessors with 32-bit CPUs: These changes allow a 64-bit coprocessor (including an FPU) 
to be attached to a 32-bit CPU. This enhancement is optional in a Release 2 implementation.

• New Support for Virtual Memory: These changes provide support for a 1KByte page size. This change is 
optional in Release 2 implementations, and support is denoted by Config3SP.

2.3.3 MIPS32 Architecture Releases 2.5+

Some optional features were added after Revision 2.5: 

• Support for a MMU with more than 64 TLB entries. This feature aids in reducing the frequency of TLB misses.

• Scratch registers within Coprocessor0 for kernel mode software. This feature aids in quicker exception handling 
by not requiring the saving of usermode registers onto the stack before kernelmode software uses those registers. 

• A MMU configuration which supports both larger set-associative TLBs and variable page-sizes. This feature 
aids in reducing the frequency of TLB misses.

• The CDMM memory scheme for the placement of small I/O devices into the physical address space. This 
scheme allows for efficient placement of such I/O devices into a small memory region. 

• An EIC interrupt mode where the EIC controller supplies a 16-bit interrupt vector. This allows different inter-
rupts to share code. 

• The PAUSE instruction to deallocate a (virtual) processor when arbitration for a lock doesn’t succeed. This 
allows for lower power consumption as well as lower snoop traffic when multiple (virtual) processors are arbi-
trating for a lock.

• More flavors of memory barriers that are available through stype field of the SYNC instruction. The newer mem-
ory barriers attempt to minimize the amount of pipeline stalls while doing memory synchronization operations.

2.3.4 MIPS32 Release 3 Architecture (MIPSr3™)

MIPSr3™ is a family of architectures that includes Release 3.0 of the MIPS32 Architecture and the first release of the 
microMIPS32 architecture. 

Enhancements in the MIPS Release 3 Architecture are:

• microMIPS instruction set. 

• This instruction set contains both 16-bit and 32-bit sized instructions. 

• The microMIPS32 ISA has all of the functionality of MIPS32 with smaller code sizes. 

• microMIPS32 is assembler source code compatible with MIPS32.
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• microMIPS32 replaces the MIPS16e ASE. 

• microMIPS32 is an additional base instruction set architecture that is supported along with MIPS32.

• A device can implement either the base ISA or both. The ISA field of the Config3 register denotes which 
ISA is implemented. 

• A device can implement any other Module/ASE with either base architecture.

• microMIPS32 shares the same privileged resource architecture with MIPS32.

• Branch Likely instructions are not supported in the microMIPS hardware architecture. The microMIPS tool-
chain replaces these instructions with equivalent code sequences.

• A more flexible version of the Context Register that can point to any power-of-two sized data structure. This 
optional feature is denoted by the CTXTC field of Config3.

• Additional protection bits in the TLB entries that allow for non-executable and write-only virtual pages. This 
optional feature is denoted by the RXI field of Config3.

• A more programmable virtual address space map without fixed cacheability and mapability attributes is intro-
duced as an optional feature. This allows implementations to decide how large/small uncached/unmapped seg-
ments need to be. These capabilities are implemented through the Segmentation Control registers. This optional 
feature is denoted by the SC field of Config3.

• Along with a programmable virtual address map, it is possible to create separate user-mode & kernel-mode 
views of segments. This allows a larger kernel virtual address space to be defined. To access both this larger ker-
nel address space and the overlapping user-space, additional load/store instructions are introduced. These new 
optional instructions are denoted by the EVA field of Config5.

• Support for certain IEEE-754-2008 FPU behaviors (as opposed to behaviors of the older IEEE-754-1985 stan-
dard) is now defined. These behaviors are indicated by the Has2008 field of the FIR register in the FPU and bits 
ABS2008 or NAN2008 in the FCSR register. 

• Optional TLB invalidate instructions are introduced. These are required for Segmentation Control that allows 
creation of a virtual address map without unmapped segments. 

2.3.5 MIPS32 Architecture Release 5

Release 5 is a family of architectures (MIPS32, MIPS64, microMIPS32, and microMIPS64) that adds the following 
capabilities: 

• The Multi-threading module is now an optional component of all of the base architectures. Previously the MT 
ASE was licensed as a separate architecture product. 

• The DSP module is now an optional component of all the base architectures. Previously, the DSP ASE was 
licensed as a separate architecture product. 

• The Virtualization module is now an optional component of all the base architectures. 

• The MIPS SIMD Architecture (MSA) module is now an optional component of all the base architectures. 

Release 5 has the following changes: 
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• The MDMX ASE is formally deprecated. The equivalent functionality is provided by the MSA module. 

• The 64-bit versions of the DSP ASE are formally deprecated. The equivalent functionality is provided by the 
MSA module.

• If an FPU is present, it must be a 64-bit FPU. 

• The MIPS32 and MIPS64 Release 5 architectures provide no features that support IEEE-754-2008 fused multi-
ply-add without intermediate rounding. (In Release 6, unfused multiply-adds are removed, and fused multiply-
adds are added.)

2.3.6 MIPS32 Architecture Release 6

Release 6 is a family of architectures (MIPS32, MIPS64, microMIPS32, and microMIPS64) that adds the following 
capabilities: 

• The instruction set has been simplified by removing infrequently used instructions and rearranging instruction 
encodings so as to free a significant part of the opcode map for future expansion. 

• CPU Enhancements

• Some 3-source instructions (conditional moves) are removed.

• Branch Likely instructions are removed (they were deprecated in earlier releases).

• A powerful family of compact branches with no delay slot, including: unconditional branch (BC) and 
branch-and-link (BALC) with a very large 26-bit offset (+/- 128 MB span); conditional branch on zero/non-
zero with a large 21-bit offset (+/- 4MB span); a full set of signed and unsigned conditional branches that 
compare two registers (e.g., BGTUC), or which compare a register against zero (e.g., BGTZC); and a full set 
of branch and link instructions that compare a register against zero (e.g., BGTZALC).

• Integer overflow: Some trapping instructions are removed, specifically those with 16-bit immediate fields 
(e.g., ADDI (trap on integer overflow), TGEI (compare and trap)), mitigated by compact branches on over-
flow / no- overflow, which is easier to use by software.

• Compact Indexed Jump instructions with no delay slot: Designed to support large absolute addresses.

• Instructions to generate large constants, loading (adding) constants to bits 16-31, 32-47, and 48-63.

• PC-relative instructions: In addition to branches and jumps, loads of 32- and 64-bit data and address genera-
tion with large relative offsets. Release 6 has true PC+offset relative-addressing control-transfer instructions 
that can span up to 26 bits (256MB), without the alignment restriction of the Jump (J) instruction (which can 
still be used in Release 6).

• Integer accumulator instructions and the HI/LO registers are removed from the Release 6 base instruction set 
and moved to the DSP Module. 

• Bit-reversal and byte-alignment instructions migrated from DSP to Release 6 base instruction set.

• Multiply and Divide instructions are redefined to produce a single GPR result.

• The unaligned memory instructions are removed (e.g., LWL/LWR) and replaced by requiring misaligned 
memory access for most ordinary load/store instructions (possibly via trap-and-emulate).
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• New instruction BALIGN can be used to emulate a misaligned load without using LWL/LWR, following a 
pair of ordinary load words.

• CPU truth values changed from single-bit to multi-bit: pre-Release 6 instructions that only looked at bit 0 of 
the register containing a truth value are replaced by Release 6 instructions that generate truth values of all 
zeroes or all ones (suitable for logical operations involving masks) and interpret all zeroes or any non-zero 
bit as true or false, which is compatible with programming languages such as C. There are also related 
changes to branches and conditional move instructions.

• Indexed addressing is removed for FPU loads and stores (e.g., LWXC1), mitigated by left shift add instruc-
tions (e.g., LSA rd:=rs<<scale+rt).

• Changes to 32-bit addressing in MIPS64: pre-Release 6 StatusUX sign extension of addresses from bit 31 is 

only applied to user-mode data memory references. Release 6 extends this to instruction fetch and to privi-
leged memory references (e.g., kernel).

• Instructions re-encoded to save opcode space: for example, Coprocessor 2, SPECIAL2, atomic (e.g., LL/
SC), cache, and prefetch JR and JALR.

• Changes to SPECIAL2 instructions and UDIs: Release 6 reserves the SPECIAL2 instruction encodings; 
COP2 instructions remain available to customers.

• FPU Enhancements

• The FR=0 FPU register model, in which 64-bit datatypes (D/L) are stored in even-odd pairs of 32-bit regis-
ters, is eliminated. The FPU must be 64-bit. If a 32-bit FPU is supported, FIRD/L must be zero.

• Use of single-precision formats only is now permitted: Implementations with single-precision (S and W), 
but without double-precision (D and L), are allowed. 

• Added features that support trap-and-emulation of double-precision and MSA instructions, and hardware 
implementations with less than full 64-bit register widths.

• FPU and MSA instructions that use 64-bit and 128-bit registers, respectively, overlaid on 32-bit registers 
leave the upper bits UNPREDICTABLE. This behavior facilitates trap-and-emulate.

• Floating-point condition codes are removed; New instructions (CMP.condn.fmt) generate masks of all 0s 
and all 1s that are stored in FPRs. New instructions test bit 0, the least-significant bit, of an FPR, for both 
branches (BC1EQZ/BC1NEZ) and branchless selections (SEL.fmt, SELEQZ.fmt, SELNEZ.fmt). Old 
instructions that use the FCCs are removed.

• IEEE 2008: NaN behavior is required. IEEE 2008 instruction-set support, such as minimum and maximum, 
is required. FCSRHas2008=FIRABS2008=FIRNAN2008=1 are hardwired read-only. Fused multiply-add instruc-

tions (MADDF.fmt, MSUBF.fmt) are required; non-fused multiply-add instructions that were available in 
previous versions of the MIPS ISA are removed.

• Paired single (PS) and MIPS-3D are not allowed.

• Indexed addressing removed: Modes adding two registers are removed, mitigated by instructions that gener-
ate such addresses.
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2.4 Compliance and Subsetting

To be compliant with the microMIPS32 Architecture, designs must implement a set of required features, as described 
in this document set. To allow flexibility in implementations, the microMIPS32 Architecture provides subsetting 
rules. An implementation that follows these rules is compliant with the microMIPS32 Architecture as long as it 
adheres strictly to the rules and fully implements the remaining instructions. 

Supersetting of the microMIPS32 Architecture is only allowed by adding functions to the SPECIAL2 and/or COP2 
opcodes, by adding control for co-processors via the COP2, LWC2, SWC2, LDC2, and/or SDC2, or by the addition of 
approved Application Specific Extensions or Modules.  

However, Release 6 removes all instructions under the SPECIAL2 major opcode, either by removing them or moving 
them to the COP2 major opcode. Similarly, all Coprocessor 2 support instructions (e.g., LWC2) have been moved to 
the COP2 major opcode. Supersetting of the Release 6 architecture is only allowed in the COP2 major opcode, or by 
the addition of approved Application Specific Extensions or Modules. SPECIAL2 is reserved for MIPS.

Note: The use of COP3 as a customizable coprocessor has been removed in Release 2 of the MIPS32 architecture. 
The use of the COP3 is now reserved for future extensions of the architecture. Implementations using Release1 of the 
MIPS32 architecture are strongly discouraged from using the COP3 opcode for a user-available coprocessor as doing 
so will limit the potential for an upgrade path to a 64-bit floating point unit.

New features provided by a release of the architecture, both optional and required, must be consistent within a given 
implementation. When a new feature is implemented, all other features must be implemented in a manner consistent 
with that release.

2.4.1 Subsetting of Non-Privileged Architecture

• All non-privileged CPU instructions must be implemented. No subsetting of these instructions is permitted, as 
per the MIPS Instruction Set Architecture release supported.

• For any instruction that is subsetted out, in compliance with the rules below, an attempt to execute that instruc-
tion must cause the appropriate exception (typically Reserved Instruction or Coprocessor Unusable).

• The FPU and related support instructions, such as CPU conditional branches on FPU conditions (e.g., pre-
Release 6 BC1T/BC1F, Release 6 BC1NEQZ) and CPU conditional moves on FPU conditions (e.g., pre-Release 
6 MOVT/MOVF), may be omitted. Software can determine if an FPU is implemented by checking the state of 
the FP bit in the Config1 CP0 register. Software can determine which FPU data types are implemented by 
checking the appropriate bits in the FIR CP1 register. The following allowable FPU subsets are compliant with 
the MIPS32 architecture:

• No FPU

Config1FP=0

• FPU with S and W formats and all supporting instructions

This 32-bit subset is permitted in Release 6, but prohibited in releases prior to Release 6.

Config1FP=1, StatusFR=0, FIRS=FIRL=1, FIRD=FIRL=FIRPS=0
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• FPU with S, D, W, and L formats and all supporting instructions

Config1FP=1, StatusFR=(see below), FIRS=FIRL=FIRD=FIRL=1, FIRPS=0

pre-Release 5 permits this 64-bit configuration and allows both FPU register modes. StatusFR=0 support is 

required but StatusFR=1 support is optional.

Release 5 permits this 64-bit configuration and requires both FPU register modes, i.e., both StatusFR=0 and 

StatusFR=1 support are required.

Release 6 permits this 64-bit configuration but requires StatusFR=1 and FIRF64=1. Release 6 prohibits 

StatusFR=0 if FIRD=1 or FIRL=1.

• FPU with S, D, PS, W, and L formats and all supporting instructions

Config1FP=1, StatusFR=0/1, FIRS=FIRL=FIRD=FIRL=FIRPS=1

Release 6 prohibits this mode, and any mode with FIRPS=1 paired-single support.

• Coprocessor 2 is optional and may be omitted. Software can determine if Coprocessor 2 is implemented by 
checking the state of the C2 bit in the Config1 CP0 register. If Coprocessor 2 is implemented, the Coprocessor 2 
interface instructions (BC2, CFC2, COP2, CTC2, LDC2, LWC2, MFC2, MTC2, SDC2, and SWC2) may be 
omitted on an instruction-by-instruction basis.

• The caches are optional. The Config1DL and Config1IL fields denote whether the first-level caches are present or 

not.

• Instruction, CP0 Register, and CP1 Control Register fields that are marked “Reserved” or shown as “0” in the 
description of that field are reserved for future use by the architecture and are not available to implementations. 
Implementations may only use those fields that are explicitly reserved for implementation-dependent use.

• Supported Modules and ASEs are optional and may be subsetted out. If most cases, software can determine if a 
supported Module or ASE is implemented by checking the appropriate bit in the Config1, Config3, or Config4 
CP0 register. If they are implemented, they must implement the entire ISA applicable to the component, or 
implement subsets that are approved by the Module and ASE specifications.

• EJTAG is optional and may be subsetted out. If it is implemented, it must implement only those subsets that are 
approved by the EJTAG specification. If EJTAG is not implemented, the EJTAG instructions (SDBBP and 
DERET) can be subsetted out. 

• In Release 3, there are two architecture branches (MIPS32/64 and microMIPS32/64). A single device is allowed 
to implement both architecture branches. The Privileged Resource Architecture (COP0) registers do not mode-
switch in width (32-bit vs. 64-bit), and for this reason, if a device implements both architecture branches, the 
address and data widths must be consistent. If a device implements MIPS64 and also implements microMIPS, it 
must implement microMIPS64, not just microMIPS32. Similarly, if a device implements microMIPS64 and also 
implements MIPS32 or MIPS64, it must implement MIPS64, not just MIPS32.

• The JALX instruction is required if and only if ISA mode-switching is supported. If both architecture branches 
are implemented (MIPS32/64 and microMIPS32/64) or if MIPS16e is implemented, then the JALX instructions 
are required. If only one branch of the architecture family is implemented, and MIPS16e is not implemented, 
then the JALX instruction is not implemented. Release 6 removes the JALX instruction.
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2.4.2 Subsetting of Privileged Architecture

Some of the non-privileged subsetting rules described in the preceding section also apply to the privileged architec-
ture:

• Coprocessor 2 is optional.

• Caches are optional.

• Reserved and “0” bit indications in instructions and control register fields.

• EJTAG is optional.

• Multiple instruction set support: architecture branches (MIPS32/64 and microMIPS32/64), MIPS16e, regis-
ter widths and the JALX instruction.

• Co-dependence of architecture features.

Subsetting rules for features less visible to the non-privileged code include:

• The standard TLB-based memory management unit may be replaced with:

• a simpler MMU (e.g., a Fixed Mapping MMU or a Block Address Translation MMU or a Base-Bounds 
MMU). 

• the Dual TLB MMU (e.g., the FTLB and VTLB MMU described in the Alternative MMU Organizations 
Appendix of Volume III)

If this is done, the rest of the interface to the Privileged Resource Architecture must be preserved. Software can 
determine the type of the MMU by checking the MT field in the Config CP0 register.

• The EVA load/store instructions (LWE, LHE, L000BE, LBUE, LHUE, SWE, SHE, SBE) are optional.

• Supervisor Mode is optional. If Supervisor Mode is not implemented, bit 3 of the Status register must be ignored 
on write and read as zero.

• The Privileged Resource Architecture includes several implementation options and may be subsetted in accor-
dance with those options. Some of those options are: 

• Interrupt Modes

• Shadow Register Sets

• Common Device Memory Map

• Parity/ECC support

• UserLocal register (required in Release 6)

• ContextConfig register

• PageGrain register

• Config1-4 registers

• Performance Counter, WatchPoint, and Trace Registers
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• Cache control/diagnostic registers

• Kernel-mode scratch registers (required in Release 6)
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Modules and Application Specific Extensions

This section gives an overview of the Modules and Architecture Specific Extensions that are supported by the MIPS 
Architecture Family. 

3.1 Description of Optional Components

As the MIPS architecture is adopted into a wider variety of markets, the need to extend this architecture in different 
directions becomes more and more apparent. Therefore various optional components are provided for use with the 
base ISAs (MIPS32/MIPS64 and microMIPS32/microMIPS64MIPS32 and MIPS64microMIPS3 and /
microMIPS64). 

These optional components are licensed to MIPS architecture licensees in two ways: 

1. Modules - these optional components are part of the Base Architecture (Revision 5 and newer). If a company has 
licensed one of the base architectures from MIPS Technologies, then that company has also rights to implement 
any of the associated modules of that base architecture.

2. Application Specific Extensions - these optional components are sold as separate architecture products from 
MIPS Technologies. 

The Modules and ASEs are optional, so the architecture is not permanently bound to support them, and the ASEs are 
used only as needed.

Extensions to the ISA are driven by the requirements of the computer segment, or by customers whose focus is pri-
marily on performance. A Module or ASE can be used with the appropriate ISA to meet the needs of a specific appli-
cation or an entire class of applications.

Figure 3.1 shows the relationship of the ASEs to the MIPS32 and MIPS64 ISAs. 
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Figure 3.1 MIPS ISAs, ASEs, and Modules

 

Figure 3.2 microMIPS ISAs and ASEs

 microMIPS32 Architecture is a strict subset of the microMIPS64 Architecture. MIPS32 Release 6 is a strict subset of 
MIPS64 Release 6. ASEs are applicable to one or both of the base architectures as dictated by market need and the 
requirements placed on the base architecture by the ASE definition.
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3.2 Application Specific Instructions

As of the published date of this document, the following Application Specific Extensions are supported by the archi-
tecture.

3.2.1 MDMX™ Application Specific Extension 

The MIPS Digital Media Extension (MDMX) provides video, audio, and graphics pixel processing through vectors of 
small integers. Although not a part of the MIPS ISA, this extension is included for informational purposes.The 
MDMX ASE is not supported in Release 6; the same functionality is provided by the SIMD Module.  Because the 
MDMX ASE requires a 64-bit Architecture, it is not discussed in this document set.Volume IV-b of this document set 
describes the MDMX ASE.

3.2.2 MIPS-3D® Application Specific Extension 

The MIPS-3D ASE provides enhanced performance of geometry processing calculations by building on the paired-
single floating point data type, and adding specific instructions to accelerate computations on these data types.Vol-
ume IV-c of this document set describes the MIPS-3D ASE. Because the MIPS-3D ASE requires a 64-bit floating 
point unit, it is only available with  processor that includes a 64-bit FPU. The MIPS-3D ASE is not available with 
Release 6.

3.2.3 SmartMIPS® Application Specific Extension 

The SmartMIPS ASE extends the microMIPS32 Architectures with a set of new and modified instruction designed to 
improve the performance and reduce the memory consumption of MIPS-based smart card or smart object systems. 
Volume IV-d of this document set describes the SmartMIPS ASE. Because the SmartMIPS ASE requires the MIPS32 
Architecture, it is not discussed in the MIPS64 document set. SmartMIPS, however, is not supported in Release 6.

3.2.4 MIPS® DSP Module 

The MIPS DSP Module provides enhanced performance of signal-processing applications by providing computa-
tional support for fractional data types, SIMD, saturation, and other elements that are commonly used in such applica-
tions. Volume IV-e of this document set describes the MIPS DSP Module.

Component Module or ASE
Supported

Base Architectures Use

MIPS-3D® ASE microMIPS32 and microMIPS64 Geometry Processing

SmartMIPS® ASE microMIPS32 Smart Cards and Smart Objects

MIPS® DSP Module microMIPS32 and microMIPS641

1. MSA is recommended substitute. DSP is not allowed if MSA is implemented. 

Signal Processing

MIPS® MT Module microMIPS32 and microMIPS64 Multi-Threading

MCU ASE microMIPS32 and microMIPS64 Fast Interrupt Response and I/O register 
programming

VZE Module microMIPS32 and microMIPS64 Hardware Support for Virtualization

MSA Module microMIPS32 and microMIPS64 SIMD support 
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3.2.5 MIPS® MT Module 

The MIPS MT Module provides the architecture to support multi-threaded implementations of the Architecture. This 
includes support for both virtual processors and lightweight thread contexts. Volume IV-f of this document set 
describes the MIPS MT Module. Release 6 Multi-threading specification supersedes Volume IV-f. 

3.2.6 MIPS® MCU Application Specific Extension 

The MIPS MCU ASE provides enhanced handling of memory-mapped I/O registers and lower interrupt latencies. 
Volume IV-g of this document set describes the MIPS MCU ASE.

3.2.7 MIPS® Virtualization Module 

The MIPS Virtualization Module provides hardware acceleration of virtualization of Operating Systems. Volume IV-
i of this document set describes the MIPS VZ Module.

3.2.8 MIPS® SIMD Architecture Module 

The MIPS SIMD Architecture Module provides high performance parallel processing of vector operations through 
the use of 128-bit wide vector registers. Volume IV-j of this document set describes the MIPS MSA Module.
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CPU Programming Model

This chapter describes the following aspects of the MIPS32 CPU programming model:

• CPU Data Formats

• Coprocessors (CP0-CP3)

• CPU Registers 

• Byte Ordering and Endianness

• Memory Access Types

• Implementation-Specific Access Types

• Cacheability and Coherency Attributes and Access Types

• Mixing Access Types

• Instruction Fetch

Other aspects of the Programming Model such as modes of operation, virtual memory, and the handling of interrupts 
and exceptions, are described in Volume III. The instruction set is described in Chapter 5, “CPU Instruction Set” on 
page 51 and in detail in Volume II. 

4.1 CPU Data Formats

The CPU defines the following data formats:

• Bit (b)

• Byte (8 bits, B)

• Halfword (16 bits, H)

• Word (32 bits, W)

• Doubleword (64 bits, D)1

4.2 Coprocessors (CP0-CP3)

The MIPS Architecture defines four coprocessors, designated CP0, CP1, CP2, and CP3:

• Coprocessor 0 (CP0) is incorporated on the CPU chip and supports the virtual memory system and exception 
handling. CP0 is also referred to as the System Control Coprocessor.

1. The CPU doubleword and FPU floating point paired-single and Long fixed-point data formats are available in  implementa-
tions that include a 64-bit floating point unit, whether MIPS32, MIPS64, microMIPS32, or microMIPS64.
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• Coprocessor 1 (CP1) is reserved for the floating-point coprocessor, the FPU.

• Coprocessor 2 (CP2) is available for specific implementations.

• Coprocessor 3 (CP3) is reserved for the floating-point unit .

CP0 translates virtual addresses into physical addresses, manages exceptions, and handles switches between kernel, 
supervisor, and user modes. CP0 also controls the cache subsystem and provides diagnostic control and error recov-
ery facilities. The architectural features of CP0 are defined in Volume III.

4.3 CPU Registers

The microMIPS32 Architecture defines the following CPU registers:

• 32, 32-bit general-purpose registers (GPRs)

• a special-purpose program counter (PC) that is affected only indirectly by certain instructions and is not architec-
turally-visible.

• a pair of special-purpose registers to hold the results of integer multiply, divide, and multiply-accumulate opera-
tions (HI and LO). 

4.3.1 CPU General-Purpose Registers

Two of the CPU general-purpose registers have assigned functions:

• r0 is hard-wired to a value of zero. It can be used as the target register for any instruction whose result is to be 
discarded and can be used as a source when a zero value is needed.

• r31 is the destination register used by procedure call branch/jump and link instructions (e.g., JAL and Release 6 
JALC) without being explicitly specified in the instruction word. Otherwise, r31 is used as a normal register.

The remaining registers are available for general-purpose use.

The microMIPS architecture includes 16-bit instructions, most of which use 3-bit register specifier fields instead of 
the 5-bit register specifier fields used by most 32-bit instructions. Due to these smaller register specifier fields, such 
instructions can only access 8 of the 32 GPRs. The accessible sets of registers are described in Volume II-B: The 
microMIPS Instruction Set. There are also 16-bit move and add instructions that can directly access all 32 GPRs. In 
addition, specific instructions implicitly reference r29 (conventionally used as the stack pointer), r28 (conventionally 
used as the global pointer), and the program counter. 

4.3.2 CPU Special-Purpose Registers

Prior to Release 6, the CPU contained three special-purpose registers. 

• PC—Program Counter register

• HI—Multiply and Divide register higher result (removed in Release 6)

• LO—Multiply and Divide register lower result (removed in Release 6)

• During a multiply operation, the HI and LO registers store the product of integer multiply.
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• During a multiply-add or multiply-subtract operation, the HI and LO registers store the result of the integer 
multiply-add or multiply-subtract.

• During a division, the HI and LO registers store the quotient (in LO) and remainder (in HI) of integer divide.

• During a multiply-accumulate, the HI and LO registers store the accumulated result of the operation.

As of Release 6, the HI and LO registers and related instructions are removed from the base instruction set architec-
ture and only exist in the DSP Module.

Figure 4.1 shows the layout of the CPU registers for MIPS32. The HI and LO registers, removed in Release 6, are 
shown as shaded.
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Figure 4.1 CPU Registers for MIPS32
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4.4 Byte Ordering and Endianness

Bytes within larger CPU data formats—halfword, word, and doubleword—can be configured in either big-endian or 
little-endian order. Endianness defines the location of byte 0 within a larger data structure (in this book, bits are 
always numbered with 0 on the right). Figures 4.2 and 4.3 show the ordering of bytes within words and the ordering 
of words within multiple-word structures for both big-endian and little-endian configurations. 

4.4.1 Big-Endian Order

When configured in big-endian order, byte 0 is the most-significant (left-hand) byte. Figure 4.2 shows this configu-
ration.

Figure 4.2 Big-Endian Byte Ordering

4.4.2 Little-Endian Order

When configured in little-endian order, byte 0 is always the least-significant (right-hand) byte. Figure 4.3 shows this 
configuration.

Figure 4.3 Little-Endian Byte Ordering

4.4.3 MIPS Bit Endianness

In this book, bit 0 is always the least-significant (right-hand) bit. Although no instructions explicitly designate bit 
positions within words, MIPS bit designations are always little-endian. Big and Little Endian byte ordering for double 
words is shown in Figure 4.4 and Figure 4.5.

Bit #
Higher 

Address
Word 

Address

Lower 
Address
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8

4

0

12 13 14 15

111098
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3210 1 word = 4 bytes

31 24 23 16 15 8 7 0

Bit #Higher 
Address

Word 
Address

Lower 
Address

12

8

4

0

15 14 13 12

891011

4567

0123

31 24 23 16 15 8 7 0
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Figure 4.4 Big-Endian Data in Doubleword Format

Figure 4.5 Little-Endian Data in Doubleword Format

4.5 Memory Alignment

Releases of the architecture prior to Release 5 required “natural” alignment of memory operands for memory opera-
tions, as described in section 4.5.1 “Addressing Alignment Constraints” below. Instructions such as LWL and LWR, 
described in section 4.5.2 “Unaligned Load and Store Instructions (Removed in Release 6)”, were provided so that 
unaligned accesses could be performed by instruction sequences.

In Release 5 of the Architecture, the MSA (MIPS SIMD Architecture) supports 128-bit memory accesses and does 
NOT require these accesses to be naturally aligned. 

Release 6 requires misaligned memory accesses to be supported by all Release 6-compliant implementations for all 
ordinary memory instructions and removes the unaligned load and store instructions. The Release 6 requirement to 
support misaligned memory accesses using trap and emulate is system-level, not necessarily hardware-level. Because 
misaligned memory accesses may be slow, it is recommended that software use naturally aligned memory accesses 
whenever possible.

The behavior, semantics, and architecture specifications of such misaligned accesses are described in Appendix B, 
“Misaligned Memory Accesses” on page 118.

4.5.1 Addressing Alignment Constraints

In MIPS architectures prior to Release 6, the following natural alignment constraints apply to the byte addresses for 
halfword, word, and doubleword accesses:

Bit #

Halfword

Word

Byte #
63 40

4
1556 55 48 47 3239

765
16

32
7831 24 23

67

0

Byte

Most-significant byte Least-significant byte

Bits in a byte

Bit #

1
0

5 4 3 2 1 0

Bit #

Halfword

Word

Byte #
63 40

3
1556 55 48 47 3239

012
16

45
7831 24 23

67

7

Byte

Most-significant byte Least-significant byte

Bits in a byte

Bit #

6
0

5 4 3 2 1 0
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• Halfword accesses must be aligned on an even byte boundary (0, 2, 4...).

• Word accesses must be aligned on a byte boundary divisible by four (0, 4, 8...).

• Doubleword accesses must be aligned on a byte boundary divisible by eight (0, 8, 16...).

This natural alignment extends to larger data accesses, such as 128-bit MSA vectors.

In Release 6, misaligned accesses are permitted, though the natural alignment constraints listed above are recom-
mended for best performance.

4.5.2 Unaligned Load and Store Instructions (Removed in Release 6)

In architectures prior to Release 6, the instructions listed in Table 4.1 are used to load and store words that are not 
aligned on word or doubleword boundaries. These instructions are removed in Release 6.

Figure 4.6 shows a big-endian access of a misaligned word that has byte address 3, and Figure 4.7 shows a little-
endian access of a misaligned word that has byte address 1. Both figures show left-side misalignment. 

Figure 4.6 Big-Endian Misaligned Word Addressing

Figure 4.7 Little-Endian Misaligned Word Addressing

4.6 Memory Access Types

MIPS systems provide several memory access types. These are characteristic ways to use physical memory and 
caches to perform a memory access.

Table 4.1 Unaligned Load and Store Instructions

Alignment Instructions Instruction Set

Word LWL, LWR, SWL, SWR microMIPS32 ISA

Doubleword LDL, LDR, SDL, SDR microMIPS64 ISA

Bit #
Higher 

Address

Lower 
Address

823 16 15 731 024
4 5 6

3

Higher
Address

Lower
Address

Bit #

823 16 15 731 024
4

123



 CPU Programming Model

45 MIPS® Architecture For Programmers Volume I-B: Introduction to the microMIPS32™ Architecture, Revision 6.00

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

The memory access type is identified by the Cacheability and Coherency Attribute (CCA) bits in the TLB entry for 
each mapped virtual page. The access type used for a location is associated with the virtual address, not the physical 
address or the instruction making the reference. Memory access types are available for both uniprocessor and multi-
processor (MP) implementations.

All implementations must provide the following memory access types:

• Uncached 

• Cached

Implementations may include this optional memory access type: 

• Uncached Accelerated

4.6.1 Uncached Memory Access

In an uncached access, physical memory resolves the access. Each reference causes a read or write to physical mem-
ory. Caches are neither examined nor modified.

4.6.2 Cached Memory Access

In a cached access, physical memory and all caches in the system containing a copy of the physical location are used 
to resolve the access. A copy of a location is coherent if the copy was placed in the cache by a cached coherent 
access; a copy of a location is noncoherent if the copy was placed in the cache by a cached noncoherent access. 
(Coherency is dictated by the system architecture, not the processor implementation.)

Caches containing a coherent copy of the location are examined and/or modified to keep the contents of the location 
coherent. It is not possible to predict whether caches holding a noncoherent copy of the location will be examined 
and/or modified during a cached coherent access.

Prefetches for data and instructions are allowed. Speculative prefetching of data that may never be used or instruc-
tions that may never be executed is allowed. 

4.6.3 Uncached Accelerated Memory Access 

In revisions of this specification prior to 3.50, the behavior of the Uncached Accelerated Memory Access type was 
not architecturally defined, but rather was implementation-specific. Beginning with the 3.50 revision, the behavior of 
the Uncached Accelerated access type is defined, and the access type is optional. 

In an uncached accelerated access, physical memory resolves the access. Each reference causes a read or write to 
physical memory. Caches are neither examined nor modified.

In uncached access, each store instruction causes a separate, unique request to physical memory. 

In MIPS CPUs, writes are allowed to be buffered within the CPU. Write buffers are usually of cache-line in size. Usu-
ally, if there is sufficient data within the write buffer, the data is sent in one burst transaction for higher efficiency. 

In uncached accelerated access, the data from multiple store instructions can be sent together to the physical memory 
in one burst transaction. This is achieved by using write buffers to gather the data from multiple store instructions 
before sending out the memory request.

Data from store instructions using uncached accelerated access are kept in the buffer according to the following rules: 



4.7 Implementation-Specific Access Types

MIPS® Architecture For Programmers Volume I-B: Introduction to the microMIPS32™ Architecture, Revision 6.00 46

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

• Buffering can start on any byte address.

• Data is placed into the buffer obeying full byte addressing. 

• Data is placed into the buffer for any request size - byte, halfword, word, doubleword, and the 3, 5-7 byte sizes 
allowed by unaligned or misaligned memory accesses.

• A byte can be overwritten with new data before the buffer data is flushed out of the core. 

• Multiple buffers (each holding data from multiple store instructions) can be active at one time. 

The uncached accelerated data within the write-buffer is sent to physical memory according to the following rules: 

• As a consequence of the execution of a SYNC instruction. All uncached accelerated data within all write buffers 
is sent to physical memory in this situation. 

• If a write-buffer is entirely full with uncached accelerated data. Typically, an entire cache line of UCA data is 
emptied to physical memory.

• If the target address of any load instruction matches the address of any uncached accelerated data within the write 
buffer.

• If the target address of any store instruction using any other type of access type matches the address of any 
uncached accelerated data within the write buffer.

• As a consequence of the execution of a non-coherent SYNCI instruction. All uncached accelerated data within 
all write buffers is sent to physical memory in this situation.

• If the target address of a PREF Nudge operation matches the address of any uncached accelerated data within the 
write buffer.

• All write buffers capable of holding uncached accelerated data are already active, and another store instruction 
using uncached accelerated access is executed whose target address does not match any of these write-buffers. In 
this case, at least one of the write buffers must be emptied to physical memory to make space for the new store 
data. 

4.7 Implementation-Specific Access Types

An implementation may provide memory access types other than uncached or cached. Implementation-specific doc-
umentation accompanies each processor, and defines the properties of the new access types and their effect on all 
memory-related operations.

4.8 Cacheability and Coherency Attributes and Access Types

Memory access types are specified by architecturally-defined and implementation-specific Cacheability and Coher-
ency Attribute bits (CCAs) generated by the MMU for the access.

Slightly different cacheability and coherency attributes such as “cached coherent, update on write” and “cached 
coherent, exclusive on write” can map to the same memory access type; in this case they both map to cached coher-
ent. In order to map to the same access type, the fundamental mechanisms of both CCAs must be the same. 
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When the operation of the instruction is affected, the instructions are described in terms of memory access types. The 
load and store operations in a processor proceed according to the specific CCA of the reference, however, and the 
pseudocode for load and store common functions uses the CCA value rather than the corresponding memory access 
type.

4.9 Mixing Access Types

It is possible to have more than one virtual location mapped to the same physical location (known as aliasing). The 
memory access type used for the virtual mappings may be different, but it is not generally possible to use mappings 
with different access types at the same time.

For all accesses to virtual locations with the same memory access type, a processor executing load and store instruc-
tions on a physical location must ensure that the instructions occur in proper program order.

A processor can execute a load or store to a physical location using one access type, but any subsequent load or store 
to the same location using a different memory access type is UNPREDICTABLE, unless a privileged instruction 
sequence to change the access type is executed between the two accesses. Each implementation has a privileged 
implementation-specific mechanism to change access types.

The memory access type of a location affects the behavior of instruction-fetch, load, store, and prefetch operations to 
that location. In addition, memory access types affect some instruction descriptions; Load Linked (LL, LLD) and 
Store Conditional (SC, SCD) have defined operation only for locations with cached memory access type.

4.10 Instruction Fetch

4.10.1 Instruction Fields 

For MIPS instructions, the layout of the bit fields in instructions is little-endian, regardless of the endianness mode in 
which the processor is executing. Bit 0 of an instruction is always the right-most bit in the instruction, while bit 31 is 
always the left-most bit in the instruction. The major opcode is always the left-most 6 bits in the instruction. 

4.10.2 microMIPS32 and microMIPS64 Instruction Placement and Endianness

For the microMIPS32 and microMIPS64 architectures, instructions are either 16 or 32 bits. All instructions are 
aligned to 2-byte boundaries in memory (address bits 0 are 0b0). Instructions of 32-bit size can cross 4-byte boundar-
ies. 

Instruction words are always placed in memory according to the endianness. 

Figure 4.8 shows an example where the width of external memory is 64-bits (two words) and the processor is execut-
ing in little-endian mode and the instructions are placed in memory for little-endian execution. In this case, the less 
significant address is the right-most word of the dword while the more significant address is the left-most word within 
the dword. This example shows a 32-bit instruction crossing a 4-byte (word) boundary.
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Figure 4.8 Three Instructions Placed in a 64-bit Wide, Little-endian Memory

Figure 4.9 shows the equivalent Big-Endian example where the less significant address refers to the left-most word 
within the dword and the more significant address refers to the right-most word within the dword. In both BE and LE 
examples, the bit locations within the instruction words has not changed. The location of the major opcode is always 
at the left-most bits within the word. This example shows a 32-bit instruction which is aligned to a 4-byte (word) 
boundary. 

Figure 4.9 Three Instructions Placed in a 64-bit Wide, Big-endian Memory

4.10.3 Instruction Fetch Using Uncached Access Without Side-effects

Memory regions having no access side-effects can be read an infinite number of times without changing the value 
received. For such regions accessed with uncached instruction fetches, the following behaviors are allowed: 

The fetch transfer size for uncached memory access may be larger than one instruction word. In this case, it is 
implementation-specific whether there are multiple instruction fetches to the same memory location. It is not 
required that the processor has a register to buffer the unused instructions of the transfer for subsequent execu-
tion. 
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Speculative instruction fetches are allowed. Types of speculative instruction fetches are listed in Table 4.2.

In Release 5, CP0 MAAR and MAARI allow software to specify which address regions are speculatable, in com-
bination with the CCA (Cacheability and Coherency Attribute) of the access.

Table 4.2 Speculative Instruction Fetches

4.10.4 Instruction Fetch Using Uncached Access With Side-effects

Side-effects of accesses for a memory region might include FIFO behavior, stack behavior, or location-specific 
behavior (where one memory location defines the behavior of another memory location). For such regions accessed 
with uncached instruction fetches, these are the architectural requirements: 

The transfer size can only be one instruction word per instruction fetch. 

Speculative instruction fetches are not allowed. 

The EJTAG Debug Memory space (dmseg) is defined by the architecture as having memory access side-effects. 
Refer to MIPS® EJTAG Specification, MIPS Document MD00047. 

Beyond this defined segment, the system programmer/designer is reminded that it is possible to memory map an IO 
device with access side-effects to any uncached memory location, even within segments that the architecture does not 
define to have access side-effects. For that reason, any implementation that allows behaviors listed in 
4.10.3 “Instruction Fetch Using Uncached Access Without Side-effects” should restrict software from executing 
code within any memory region with side-effects. 

In Release 5, CP0 MAAR and MAARI allow software to specify which address regions are speculatable, in combina-
tion with the CCA (Cacheability and Coherency Attribute) of the access.

4.10.5 Instruction Fetch Using Cacheable Access 

The minimum transfer size for cacheable access is one cacheline. The transfer size may be multiple whole cachelines. 

Speculative accesses to cacheable memory spaces are allowed as cacheable memory spaces are defined to have no 
access side-effects. Table 4.2 list some types of speculative instruction fetches.

In Release 5, CP0 MAAR and MAARI allow software to specify which address regions are speculatable, in combina-
tion with the CCA (Cacheability and Coherency Attribute) of the access.

Sequential instructions located after branch/jump fetched, before the branch/jump taken/not-taken 
decision has been determined.

Predicted branch/jump target addresses fetched before branch/jump taken/not-taken decision has 
been determined or before the target address has been calculated.

Predicted jump target register values before target register has been read.

Predicted return addresses before return register has been read.

Any other type of prefetching ahead of execution.
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4.10.6 Instruction Fetches and Exceptions

4.10.6.1 Precise Exception Model for Instruction Fetches

The MIPS architecture uses the precise exception model for instruction fetches. A precise exception means that for an 
instruction-sourced exception, the cause of an exception is reported on the exact instruction which the processor has 
attempted to execute and has caused the exception. 

It is not allowed to report an exception for an instruction which could not be executed due to program control flow. 
For example, if a branch/jump is taken and the instruction after the branch is not to be executed, the address checks 
(alignment, MMU match/validity, access privilege) for that not-to-be-executed instruction may not generate any 
exception.

4.10.6.2 Instruction Fetch Exceptions on Branch Delay Slots and Forbidden Slots

For instructions occupying a branch delay slot, any exceptions including those generated by the fetch of that instruc-
tion, should report the exception results so that the branch can be correctly replayed upon return from the exception 
handler. 

This consideration does NOT necessarily apply to implementations of branch forbidden slots. An exception on a 
branch forbidden slot is not reported if the branch is taken. If the branch is not taken, implementations have the option 
of reporting the exception on the branch forbidden slot with the restart PC of the forbidden slot or of the branch. Soft-
ware should allow for either implementation.

4.10.7 Self-modified Code

When the processor writes memory with new instructions at run-time, there are some software steps that must be 
taken to ensure that the new instructions are fetched properly. 

1. The path of instruction fetches to external memory may not be the same as the path of data loads/stores to exter-
nal memory (this feature is known as a Harvard architecture). The new instructions must be flushed out to the 
first level of the memory hierarchy that is shared by both the instruction fetches and the data load/stores. 

2. The processor must wait until all of the new instructions have actually been written to this shared level of the 
memory hierarchy. 

3. If there are caches that hold instructions between that first shared level of memory hierarchy and the processor 
pipeline, any stale instructions within those caches must be first invalidated before executing the new instruc-
tions. 

4. Some processors might implement some type of instruction prefetching. Precautions must be used to ensure that 
the prefetching does not interfere with the previous steps. 
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CPU Instruction Set

This chapter provides an overview of the CPU instruction set. The instructions are organized into the following func-
tional groups:

• Load and store

• Computational

• Jump and branch

• Miscellaneous

• Coprocessor

CPU instructions are listed and described by type in Table 5.1 through Table 5.29. The instruction tables specify the 
MIPS architecture ISA(s) in which the instruction is defined—for example, "MIPS32" indicates that the operation is 
present in all revisions of MIPS32, "MIPS64, MIPS32 Release 2” indicates that the operation is present in all ver-
sions of MIPS64 and is present in MIPS32 Release 2 and all later versions of MIPS32, unless otherwise noted; 
"Release 6" indicates that the operation is present in Release 6 and not in previous revisions; "Removed in Release 6” 
means that implementations of Release 6 are required to signal the Reserved Instruction exception when there is no 
higher priority exception, and when the instruction encoding has not been reused for a different instruction.

5.1 CPU Load and Store Instructions

MIPS processors use a load/store architecture; all operations are performed on operands in processor registers and 
main memory is accessed only through load and store instructions.

5.1.1 Types of Loads and Stores

There are several types of load and store instructions, each designed for a different purpose:

• Transferring variously-sized fields (for example, LB, SW)

• Trading transferred data as signed or unsigned integers (for example, LHU)

• Accessing unaligned fields (for example, LWR, SWL)1

• Selecting the addressing mode (for example, SDXC1, in the FPU)

• Atomic memory update (read-modify-write: for instance, LL/SC)

• PC-relative loads (e.g., LWPC) (Release 6 only)

1. Release 6 removes the unaligned memory access instructions (e.g., LWL/LWR), requiring support for misaligned 
memory accesses for all ordinary memory operations.
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Regardless of the byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the lowest 
byte address among the bytes forming the object:

• For big-endian ordering, this is the most-significant byte.

• For a little-endian ordering, this is the least-significant byte.

Refer to “Byte Ordering and Endianness” on page 42 for more information on big-endian and little-endian data order-
ing.

5.1.2 Load and Store Access Types

Table 5.1 lists Table 5.1lists the data sizes that can be accessed by CPU load and store operations. 

5.1.3 CPU Load and Store Instructions

The following data sizes (as defined in the AccessLength instruction field) are transferred by CPU load and store 
instructions: 

• Byte

Table 5.1 Load and Store Operations 

Data Size

CPU  Coprocessors 1 and 2

Load
Signed

Load
Unsigned Store Load Store

Register + Offset Addressing Mode

Byte microMIPS32 microMIPS32 microMIPS32

Halfword microMIPS32 microMIPS32 microMIPS32

Word microMIPS32 microMIPS64 microMIPS32 microMIPS32 microMIPS32

Doubleword (FPU) microMIPS32 microMIPS32

Unaligned word (e.g., LWL/
LWR)

microMIPS32
Removed in Release 6

microMIPS32
Removed in 
Release 6

Linked word (atomic modify) microMIPS32 microMIPS32

PC-relative Addressing Mode

PC-relative word Release 6

FPU Load and Store Operations Using Register + Register Addressing Mode

Word (LWXC1, SWXC1) microMIPS32
Removed in Release 6

Doubleword (LDXC1, SDXC1)

Unaligned Doubleword Indexed 
(LUXC1, SUXC1)
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• Halfword

• Word

Signed and unsigned integers of different sizes are supported by loads that either sign-extend or zero-extend the data 
loaded into the register. 

Table 5.2 lists CPU load and store instructions that required natural alignment prior to MIPS Release 6 (refer to 
Section 4.5.1 “Addressing Alignment Constraints”) Note that in Release 6, natural alignment for these instructions is 
is no longer required. 

Table 5.2 Naturally Aligned CPU Load/Store Instructions

Mnemonic Instruction Defined in MIPS ISA

LB Load Byte microMIPS32

LBE Load Byte EVA microMIPS32

LBU Load Byte Unsigned microMIPS32

LBUE Load Byte Unsigned EVA microMIPS32

LBU16 Load Byte Unsigned (16-bit Instruction Size) microMIPS32

LDM Load Double Multiple microMIPS64

LDP Load Double Pair microMIPS32

LH Load Halfword microMIPS32

LHE Load Halfword EVA microMIPS32

LHU Load Halfword Unsigned microMIPS32

LHUE Load Halfword Unsigned EVA microMIPS32

LHU16 Load Halfword Unsigned (16-bit Instruction Size) microMIPS32

LW Load Word microMIPS32

LWE Load Word EVA microMIPS32

LW16 Load Word (16-bit Instruction Size) microMIPS32

LWM32 Load Word Multiple (32-bit Instruction Size) microMIPS32

LWM16 Load Word Multiple (16-bit Instruction Size) microMIPS32

LWP Load Word Pair microMIPS32

LWGP Load Word Global Pointer (16-bit Instruction Size) microMIPS32

LWSP Load Word Stack Pointer (16-bit Instruction Size) microMIPS32

SB Store Byte microMIPS32

SBE Store Byte EVA microMIPS32

SB16 Store Byte (16-bit Instruction Size) microMIPS32

SDM Store Double Multiple microMIPS32

SDP Store Double Pair microMIPS32

SH Store Halfword microMIPS32

SHE Store Halfword EVA microMIPS32

SH16 Store Half (16-bit Instruction Size) microMIPS32

SW Store Word microMIPS32
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In architectures prior to Release 6, unaligned words and doublewords can be loaded or stored using a pair of the spe-
cial instructions listed in Table 5.3. The load instructions read the left-side or right-side bytes (left or right side of reg-
ister) from an aligned word and merge them into the correct bytes of the destination register. These instructions are 
removed in Release 6. 

5.1.3.1 PC-relative Loads (Release 6)

The Release 6 ISA provides the following PC-relative loads with a span of +/- 1 Megabytes:

• LWPC: Loads a 32-bit word from a PC-relative address, formed by adding the word-aligned PC to a sign- 
extended 19-bit immediate shifted left by 2 bits, giving a 21-bit span.

• LWUPC: Loads a 32-bit unsigned word from a PC-relative address, formed by adding the word-aligned PC to a 
sign-extended 19-bit immediate shifted left by 3 bits, giving a 21-bit span.

• LDPC: Loads a 64-bit doubleword from a PC-relative address, formed by adding the PC, aligned to 8 bytes by 
masking off the low 3 bits, to a sign-extended 18-bit immediate, shifted left by 3 bits, giving a 21-bit span.

SWE Store Word EVA microMIPS32

SW16 Store Word (16-bit Instruction Size) microMIPS32

SWSP Store Word Stack Pointer (16-bit Instruction Size) microMIPS32

SWM32 Store Word Multiple (32-bit Instruction Size) microMIPS32

SWM16 Store Word Multiple (16-bit Instruction Size) microMIPS32

SWP Store Word Pair microMIPS32

Table 5.3 Unaligned CPU Load and Store Instructions

Mnemonic Instruction Defined in MIPS ISA

LWL Load Word Left microMIPS32
Removed in Release 6

LWLE Load Word Left EVA microMIPS32
Removed in Release 6

LWR Load Word Right microMIPS32
Removed in Release 6

LWRE Load Word Right EVA microMIPS32
Removed in Release 6

SWL Store Word Left microMIPS32
Removed in Release 6

SWLE Store Word Left EVA microMIPS32
Removed in Release 6

SWR Store Word Right microMIPS32
Removed in Release 6

SWRE Store Word Right EVA microMIPS32
Removed in Release 6

Table 5.2 Naturally Aligned CPU Load/Store Instructions (Continued)

Mnemonic Instruction Defined in MIPS ISA
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Note that PC-relative load instructions can only generate aligned memory addresses.  

5.1.4 Loads and Stores Used for Atomic Updates

The paired instructions, Load Linked and Store Conditional, can be used to perform an atomic read-modify-write of 
word or doubleword cached memory locations. These instructions are used in carefully coded sequences to provide 
one of several synchronization primitives, including test-and-set, bit-level locks, semaphores, and sequencers and 
event counts. LL/SC family instructions require alignment, even in Release 6, where ordinary instructions do not. 

5.1.5 Coprocessor Loads and Stores

If a particular coprocessor is not enabled, loads and stores to that processor cannot execute, and the attempted load or 
store causes a Coprocessor Unusable exception. Enabling a coprocessor is a privileged operation provided by the 
System Control Coprocessor (CP0). 

Table 5.6 lists the coprocessor load and store instructions. In Release 6, Coprocessor 1 (FPU) instructions are the 
same as in previous releases, with a 16-bit offset, but the coprocessor 2 instructions LWC2/SWC2 and LDC2/SDC2 
change encodings, and have only an 11-bit offset. 

Table 5.4 PC-relative Loads 

Mnemonic Instruction Defined in MIPS ISA

LWPC Load Word, PC-relative microMIPS32 Release 6

Table 5.5 Atomic Update CPU Load and Store Instructions

Mnemonic Instruction Defined in MIPS ISA

LL Load Linked Word microMIPS32

SC Store Conditional Word microMIPS32

Table 5.6 Coprocessor Load and Store Instructions

Mnemonic Instruction Defined in MIPS ISA

LDCz Load Doubleword to Coprocessor-z, z = 1 or 2 microMIPS32

LWCz Load Word to Coprocessor-z, z = 1 or 2 microMIPS32

SDCz Store Doubleword from Coprocessor-z, z = 1 or 2 microMIPS32

SWCz Store Word from Coprocessor-z, z = 1 or 2 microMIPS32



5.2 Computational Instructions

MIPS® Architecture For Programmers Volume I-B: Introduction to the microMIPS32™ Architecture, Revision 6.00 56

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Table 5.7 lists the FPU indexed load and store instructions.2  

5.2 Computational Instructions

This section describes the following types of instructions:

• ALU Immediate and Three-Operand Instructions

• ALU Two-Operand Instructions

• Shift Instructions

• Width Doubling Multiply and Divide Instructions (Removed in Release 6)

2’s complement arithmetic is performed on integers represented in 2’s complement notation. These are signed ver-
sions of the following operations:

• Add

• Subtract

• Multiply

• Divide

The add and subtract operations labeled “unsigned” are actually modulo arithmetic without overflow detection. The 
“signed” add and subtract instructions detect overflow beyond the limits of a signed 2’s complement integer.

There are also unsigned versions of multiply and divide, as well as a full complement of shift and logical operations. 
Logical operations are not sensitive to the width of the register.

5.2.1 ALU Immediate and Three-Operand Instructions

Table 5.8 lists those arithmetic and logical instructions that operate on one operand from a register and the other from 
a 16-bit immediate value supplied by the instruction word.The immediate operand is treated as a signed value for the 
arithmetic and compare instructions, and treated as a logical value (zero-extended to register length) for the logical 
instructions.

Release 6 removes the add instructions with a large immediate field that trap on signed overflow (ADDI, DADDI), 
but retains the register-register forms (ADD, DADD).

Table 5.7 FPU Load and Store Instructions Using Register + Register Addressing

Mnemonic Instruction Defined in MIPS ISA

LWXC1 Load Word Indexed to Floating Point microMIPS32
Removed in Release 6SWXC1 Store Word Indexed from Floating Point

LDXC1 Load Doubleword Indexed to Floating Point

SDXC1 Store Doubleword Indexed from Floating Point

LUXC1 Load Doubleword Indexed Unaligned to Floating Point

SUXC1 Store Doubleword Indexed Unaligned from Floating Point

2. For convenience, FPU indexed loads and stores are listed here with the other coprocessor loads and stores.
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Release 6 includes additional instructions with large constants, as described in Section 5.4 “Address Computation 
and Large Constant Instructions (Release 6)”.

Table 5.9 describes those arithmetic and logical instructions with an immediate value whose size is not 16 bits.

Table 5.10 describes ALU instructions that use three operands.

Table 5.8 ALU Instructions With a 16-bit Immediate Operand

Mnemonic Instruction Defined in MIPS ISA

ADDI Add Immediate Word microMIPS32, 
Removed in Release 6

ADDIU1

1. The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not trap on 
overflow. 

Add Immediate Unsigned Word microMIPS32

ANDI And Immediate microMIPS32

LUI Load Upper Immediate microMIPS32

ORI Or Immediate microMIPS32

SLTI Set on Less Than Immediate microMIPS32

SLTIU Set on Less Than Immediate Unsigned microMIPS32

XORI Exclusive Or Immediate microMIPS32

Table 5.9 Other ALU Instructions With Immediate Operand

Mnemonic Instruction Defined in MIPS ISA

ADDIUPC Add Immediate Unsigned Word PC-relative microMIPS321

1. Release 6 introduces a similar ADDIUPC instruction.

ADDIUR1SP Add Immediate Unsigned Word Register with Stack Pointer (16-bit 
Instruction Size)

microMIPS32

ADDIUR2 Add Immediate Unsigned Word Two Registers (16-bit Instruction 
Size)

microMIPS32

ADDIUSP Add Immediate Unsigned to Stack Pointer (16-bit Instruction Size) microMIPS32

ADDIUS5 Add Immediate Unsigned Word 5-bit Register Select (16-bit 
Instruction Size)

microMIPS32

ANDI16 Add Unsigned (16-bit Instruction Size) microMIPS32

LI16 Load Immediate (16-bit Instruction Size) microMIPS32

Table 5.10 Three-Operand ALU Instructions

Mnemonic Instruction Defined in MIPS ISA

ADD Add Word microMIPS32

ADDU1 Add Unsigned Word microMIPS32

ADDU16 Add Unsigned Word (16-bit Instruction Size) microMIPS32

AND And microMIPS32

MOVEP Move Pair of Registers (16-bit Instruction Size) microMIPS32
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5.2.2 ALU Two-Operand Instructions

Table 5.11 describes ALU instructions that use two operands.

5.2.3 Shift Instructions

The ISA defines three types of shift instructions:

• Those that take a fixed shift amount from a 5-bit field in the instruction word (for example, SLL, SRL)

• Those that take a shift amount from the low-order bits of a general register (for example, SRAV, SRLV)

• Those that take as shift amount from an encoded 3-bit field in the instruction word (SLL16, SRL16)

The Release 6 ISA defines the BITSWAP instruction, which reverses the bits in every byte of its operand.  Release 6 
BITSWAP corresponds to MIPS DSP Module BITREV.

The Release 6 ISA defines the ALIGN instruction that concatenates its two operands and the same-width contiguous 
subset from the concatenation at byte granularity. ALIGN is useful for extracted data at a misaligned memory address 
from two aligned memory load results. Release 6 ALIGN corresponds to MIPS DSP Module BALIGN.

NOR Nor microMIPS32

OR Or microMIPS32

SLT Set on Less Than microMIPS32

SLTU Set on Less Than Unsigned microMIPS32

SUB Subtract Word microMIPS32

SUBU1 Subtract Unsigned Word microMIPS32

SUBU16 Subtract Unsigned Word (16-bit Instruction Size) microMIPS32

XOR Exclusive Or microMIPS32

1. The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not trap 
on overflow. 

Table 5.11 Two-Operand ALU Instructions

Mnemonic Instruction Defined in MIPS ISA

AND16 AND (16-bit Instruction Size) microMIPS32

CLO Count Leading Ones in Word microMIPS32

CLZ Count Leading Zeros in Word microMIPS32

MOVE16 MOVE Register (16-bit Instruction Size) microMIPS32

NOT16 Invert (16-bit Instruction Size) microMIPS32

OR16 OR (16-bit Instruction Size) microMIPS32

XOR16 XOR (16-bit Instruction Size) microMIPS32

Table 5.10 Three-Operand ALU Instructions (Continued)

Mnemonic Instruction Defined in MIPS ISA
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Shift instructions are listed in Table 5.12.  

5.2.4 Width Doubling Multiply and Divide Instructions (Removed in Release 6)

• The width doubling multiply and divide instructions produce twice as many result bits as is typical with other 
processors. With one exception, they deliver their results into the HI and LO special registers. The MUL instruc-
tion delivers the lower half of the result directly to a GPR. In Release 6, these instructions are moved to the DSP 
Module. Multiply produces a full-width product twice the width of the input operands; the low half is loaded 
into LO and the high half is loaded into HI.

• Multiply-Add and Multiply-Subtract produce a full-width product twice the width of the input operations and 
adds or subtracts the product from the concatenated value of HI and LO. The low half of the addition is loaded 
into LO and the high half is loaded into HI.

• Divide produces a quotient that is loaded into LO and a remainder that is loaded into HI. 

The results are accessed by instructions that transfer data between HI/LO and the general registers.

Table 5.13 lists the multiply, divide, and HI/LO move instructions. 

Table 5.12 Shift Instructions

Mnemonic Instruction Defined in MIPS ISA

ALIGN Extract byte-aligned word from concatenation of two words microMIPS32 Release 6

BITSWAP Swap bits in every byte of word operand microMIPS32 Release 6

ROTR Rotate Word Right microMIPS32

ROTRV Rotate Word Right Variable microMIPS32

SLL Shift Word Left Logical microMIPS32

SLL16 Shift Word Left Logical (16-bit Instruction Size) microMIPS32

SLLV Shift Word Left Logical Variable microMIPS32

SRA Shift Word Right Arithmetic microMIPS32

SRAV Shift Word Right Arithmetic Variable microMIPS32

SRL Shift Word Right Logical microMIPS32

SRL16 Shift Word Right Logical (16-bit Instruction Size) microMIPS32

SRLV Shift Word Right Logical Variable microMIPS32

Table 5.13 Multiply/Divide Instructions 

Mnemonic Instruction Defined in MIPS ISA

DIV Divide Word microMIPS32 Removed in Release 6

DIVU Divide Unsigned Word microMIPS32 Removed in Release 6

MADD Multiply and Add Word microMIPS32 Removed in Release 6

MADDU Multiply and Add Word Unsigned microMIPS32 Removed in Release 6

MFHI Move From HI microMIPS32 Removed in Release 6

MFHI16 Move From HI (16-bit Instruction Size) microMIPS32 Removed in Release 6

MFLO Move From LO microMIPS32 Removed in Release 6
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5.2.5 Same-Width Multiply and Divide Instructions (Release 6)

The Release 6 multiply and divide instructions produce results that are the same width as their operands, using ordi-
nary GPRs as both input and output. They are available in 32-bit and 64-bit, signed and unsigned arithmetic.

• Multiply-low instructions (MUL, MULU, DMUL, DMULU) produce the low 32-bits or 64-bit of the product.

• Multiply-high instructions (MUH, MUHU, DMUH, DMUHU) produce the high 32-bits or 64-bit of the product.

Note that the low half of a product is the same for signed and unsigned 2’s-complement multiplication, but the upper 
half differs, for example, MUL and MULU produce the same result, but MUH and MUHU produce different results.

• Divide instruction produce a quotient that is loaded into a single GPR destination (DIV, DIVU, DDIV, DDIVU)

• Modulus instructions produce a remainder that is loaded into a single GPR destination (MOD, MODU, DMOD, 
DMODU)

If the full double-width product is desired for a multiplication, or both quotient and remainder are desired for a divi-
sion, the appropriate same-width instructions should be used in close proximity to permit hardware optimizations. For 
example, the multiply-low instruction MULU may retain its result, to be provided to the following multiply-high 
MUHU instruction.

Table 5.14 lists the same-width multiply and divide instructions. 

MFLO16 Move From LO(16-bit Instruction Size) microMIPS32 Removed in Release 6

MSUB Multiply and Subtract Word microMIPS32 Removed in Release 6

MSUBU Multiply and Subtract Word Unsigned microMIPS32 Removed in Release 6

MTHI Move To HI microMIPS32 Removed in Release 6

MTLO Move To LO microMIPS32 Removed in Release 6

MUL Multiply Word to Register microMIPS32 Removed in Release 6

MULT Multiply Word microMIPS32 Removed in Release 6

MULTU Multiply Unsigned Word microMIPS32 Removed in Release 6

Table 5.14 Same-width Multiply/Divide Instructions (Release 6)

Mnemonic Instruction Defined in MIPS ISA

MUL Multiply word, Low part, signed microMIPS32 Release 6

MUH Multiply word, High part, signed microMIPS32 Release 6

MULU Multiply word, How part, Unsigned microMIPS32 Release 6

MUHU Multiply word, High part, Unsigned microMIPS32 Release 6

DMUL Multiply doubleword, Low part, signed microMIPS64 Release 6

DMUH Multiply doubleword, High part, signed microMIPS64 Release 6

DMULU Multiply doubleword, How part, Unsigned microMIPS64 Release 6

DMUHU Multiply double word, High part, Unsigned microMIPS64 Release 6

Table 5.13 Multiply/Divide Instructions  (Continued)

Mnemonic Instruction Defined in MIPS ISA
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5.3 Jump and Branch Instructions

This section describes the following:

• Types of Jump and Branch Instructions

• Branch Delay Slots and Branch Likely versus Compact Branches and Forbidden Slots

• Jump and Branch Instructions

5.3.1 Types of Jump and Branch Instructions

The architecture defines the following jump and branch instructions:

• PC-relative conditional branch

• PC-region unconditional jump 

• PC-relative unconditional branch 

• Release 6 introduces unconditional branches with 26-bit offsets.

• Absolute (register) unconditional jumps

• Register-indirect jumps 

• Register indexed jumps (Release 6)

• Procedures

• A set of procedure calls that record a return link address in a general register.

• Procedure return is performed by register indirect jumps that use the contents of the link register, r31, as the 
branch target. This provides a hint to the hardware to adjust the call/return predictor appropriately.

DIV Divide words, signed microMIPS32 Release 6

MOD Modulus remainder word division, signed microMIPS32 Release 6

DIVU Divide words, Unsigned microMIPS32 Release 6

MODU Modulus remainder word division, Unsigned microMIPS32 Release 6

DDIV Divide doublewords, signed microMIPS64 Release 6

DMOD Modulus remainder doubleword division, signed microMIPS64 Release 6

DDIVU Divide doublewords, Unsigned microMIPS64 Release 6

DMODU Modulus remainder doubleword division, Unsigned microMIPS64 Release 6

Table 5.14 Same-width Multiply/Divide Instructions (Release 6)

Mnemonic Instruction Defined in MIPS ISA
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5.3.2 Branch Delay Slots and Branch Likely versus Compact Branches and
Forbidden Slots

The original MIPS architecture supports, indeed requires, delayed branches: the instruction after the branch may be 
executed before the branch is taken (since typically the instruction after the branch has already been fetched). Code 
optimization can place instructions into this branch delay slot for improved performance. Typical delayed branches 
execute the delay-slot instruction, whether or not the branch was taken.

Branch-likely instructions execute the delay-slot instruction if and only if the branch is taken. If the branch is not 
taken, the delay-slot instruction is not executed. While Branch Likely was deprecated prior to Release 6, Release 6 
removes Branch Likelies. 

microMIPS introduced Compact Branches and Compact Jumps that do not have a delay slot. These branches are 
available in the microMIPS architectures. 

Release 6 introduces conditional compact branches and compact jumps that do not have a delay slot; they have 
instead a forbidden slot. Release 6 unconditional compact branches have neither a delay slot nor a forbidden slot.

5.3.2.1 Control Transfer Instructions in Delay Slots and Forbidden Slots

In MIPS architectures prior to Release 6. if a control transfer instruction (CTI) is placed in a branch delay slot, the 
operation of both instructions is UNPREDICTABLE. In Release 6, if a CTI is placed in a branch delay slot or a com-
pact branch forbidden slot, implementations are required to signal a Reserved Instruction exception.

microMIPS compact branches have no forbidden slot. Control Transfer Instructions (CTIs) can be executed back-to-
back. However, doing so may incur a performance penalty.

The following instructions are forbidden in branch delay slots and forbidden slots: any CTI, including branches and 
jumps, ERET, ERETNC, DERET, WAIT, and PAUSE. Their occurrence is required to signal a Reserved Instruction 
exception.

5.3.2.2 Exceptions and Delay and Forbidden Slots

If an exception or interrupt prevents the completion of an instruction in a delay slot or forbidden slot, the hardware 
reports an Exception PC (CP0 EPC) of the branch, with a status bit set (StatusBD) to indicate that the exception was 

for the instruction in the delay slot of the branch. 

By convention, if an exception or interrupt prevents the completion of an instruction in a branch delay or forbidden 
slot, the branch instruction is re-executed and branch instructions must be restartable to permit this. In particular, pro-
cedure calls must be restartable. To insure that a procedure call is restartable, procedure calls that have a delay slot or 
forbidden slot (branch/jump-and-link instructions) should not use the register in which the return link is stored (usu-
ally GPR 31) as a source register. This applies to all branch/jump-and-link instructions that have both a slot (delay or 
forbidden) and source registers, both for conditions (e.g., BGEZAL or BGEZALC) or for jump targets (JALR). This 
does not apply to branch/jump-and-link instructions that do not have source registers (e.g., BAL, JAL, BALC). Nor 
does it apply to the Release 6 unconditional compact jump-and-link (JIALC) instruction, which has a source register 
but has neither a delay slot nor a forbidden slot.

5.3.2.3 Delay Slots and Forbidden Slots Performance Considerations

Delay slots and forbidden slots are dynamic, not static; that is, a branch instruction immediately following another 
branch instruction is not necessarily in a delay or forbidden slot. Nevertheless, although adjacent control transfer 
instructions are allowed in some situations, the hardware implementation often imposes a performance penalty on 
them. 
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To optimize code, software should avoid generating code with adjacent CTIs, at least in the specific cases known to 
cause performance problems, namely, two adjacent CTIs within the same 64-bit aligned block of instruction mem-

ory.3 Also, compilers should avoid placing data (that may look like a CTI if speculatively decoded as an instruction) 
in the same 64-bit aligned block of instruction memory as an actual CTI. This constraint applies to processors with 
hardware branch prediction that assumes the presence of only 1 CTI in a 64-bit aligned block of memory to minimize 
storage requirements. 

Keep in mind that implementations may have performance constraints that expand on the simple rules mentioned 
here. For example, an implementation may have a performance problem if there are two frequently executed taken 
branches within the same 16-byte aligned block of instruction memory. However, these problems are beyond the 
scope of this document.

5.3.2.4 Examples of Delay Slots and Forbidden Slots

The examples in this section describe legacy and new Release 6 compact branch and jump handling. The reader may 
interchange branch and jump in the examples, where applicable. 

5.3.2.4.1 Statically Adjacent Branches (Generic Handling)

Address A: Branch1
Address A+4: Branch2
...
Address AA: Branch3 to A+4

In this example, Branch2 is statically adjacent to and below Branch1. However, Branch2 is not necessarily in 
Branch1’s delay or forbidden slot. If Branch2 is reached by a non-adjacent branch from Branch3, this has defined 
behavior, and a Reserved Instruction exception must not be signalled. Branch2 is only in Branch1’s delay or forbid-
den slot if Branch1 is actually executed, and the semantics of Branch1 are such that the delay/forbidden slot 
(Branch2), must be executed before the instruction at the target of Branch1. The Release 6 Reserved Instruction 
exception for CTIs in forbidden slots must only be signalled if actually executed.

5.3.2.4.2 Statically Adjacent Delay Slot Branches (Legacy Handling)

0000F000: BGEZ r1,target1
0000F004: BLTZ r2,target2

In this example, the branch at address F004 is not necessarily in a delay slot. But if the branch at address F000 is exe-
cuted, the branch at address F004 is in the delay slot whether or not the earlier branch is taken or not, and a Release 6 
implementation must signal a Reserved Instruction exception. This is because the semantics of BGEZ require that the 
instruction in the delay slot be executed regardless of whether BGEZ is taken or not.

The example code may be a performance problem even if not a correctness problem, since there are two adjacent 
CTIs in the same aligned block of memory.

5.3.2.4.3 No Forbidden Slot - Statically Adjacent Compact Branches (Release 6 Compact Branches) 

0000F000: BC target1
0000F004: BLTZC r2,target2

In this example, the branch at address F0004 is never in a forbidden slot, because the statically preceding branch F000 
is an unconditional compact branch that has no forbidden slot.

3. Note: This rule is not the same as “no adjacent branches”, or “no branches in delay slots”.
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The example code may be a performance problem, even if not a correctness problem, since there are two adjacent 
CTIs in the same aligned block of memory.

5.3.2.4.4 Forbidden Slot Only if Not Taken - Statically Adjacent Compact Branches (Release 6 Com-
pact Branches) 

0000F000: BGEZC r1,target1
0000F004: BLTZC r2,target2

In this example, the branch at address F004 is not necessarily in a forbidden slot. Even if the branch at address F000 
is executed, but is always taken, the branch at address F004 is never in a forbidden slot, and a Reserved Instruction 
exception must not be signalled. A Reserved Instruction exception must be signalled only if the branch at F000 is 
executed and not taken.

The example code may be a performance problem, even if not a correctness problem, because there are two adjacent 
CTIs in the same aligned block of memory.

5.3.2.5 Deprecation of Branch Likely Instructions

Branch likely instructions do not execute the instruction in the delay slot if the branch is not taken (they are said to 
nullify the instruction in the delay slot).

Branch Likely instructions have been deprecated since before Release 1 of the MIPS32 architecture. Programmers
have been strongly encouraged to avoid the use of the Branch Likely instructions, and were warned that these instruc-
tions would be removed from future revisions of the MIPS Architecture. The Branch Likely instructions are removed
as of microMIPS and Release 6. 

5.3.3 Jump and Branch Instructions

5.3.3.1 Release 6 Compact Branch and Jump Instructions

Most branches and jumps have 16-bit offsets. Branch offsets are scaled by 4, for a span of +/- 128KB. Jump offsets 
are not scaled, for a span of +/-32KB. Indexed Jumps add the unscaled sign-extended offset to their register argument. 
Not scaling allows tag bits to be eliminated from pointers, as are used in some dynamically typed languages.

The ISA provides a small set of control transfer instructions with larger spans. Unconditional branch (BC) and call 
(BALC) have 26-bit scaled spans, +/- 128MB. BEQZC and BNEZC operate on C-style truth values, and have 21 bit 
spans, +/- 4MB.

In addition to BEQZC and BNEZC, Release 6 defines a complete set of compare-and-branch comparisons of 16-bit 
span, +/- 128KB: compares between registers, both signed and unsigned, as well as comparisons against zero. The 
latter are needed because Release 6’s encodings for the register-to-register compare and branch instructions are very 
tight, and do not allow GPR[0] to be specified as a register operand in many cases.

Release 6 also defines BOVC and BNVC, which branch according to whether the sum of their 32-bit signed inputs 
overflows (BOVC) or does not overflow (BNVC).
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Table 5.15 Release 6 Compact Branch and Jump Instructions (Release 6) 

Offset Span Mnemonic Instruction Defined in MIPS ISA

Unconditional Branch and Call

26
+/- 

128MB
BC Compact Branch microMIPS32 Release 6

BALC Compact Branch And Link microMIPS32 Release 6

Indexed Jumps (register + unscaled offset)

16 +/-32K
JIC Compact Jump Indexed microMIPS32 Release 6

JIALC Compact Jump Indexed And Link microMIPS32 Release 6

Compare to Zero

21 +/- 4MB
BEQZC Compact Branch if Equal to Zero microMIPS32 Release 6

BNEZC Compact Branch if Not Equal to Zero microMIPS32 Release 6

16
+/- 

128KB

BLEZC Compact Branch if Less Than or Equal to Zero microMIPS32 Release 6

BGEZC Compact Branch if Greater Than or Equal to Zero microMIPS32 Release 6

BGTZC Compact Branch if Greater Than Zero microMIPS32 Release 6

BLTZC Compact Branch if Less Than Zero microMIPS32 Release 6

Conditional calls, compare against zero

16
+/- 

128KB

BEQZALC Compact Branch if Equal to Zero, And Link microMIPS32 Release 6

BNEZALC Compact Branch if Not Equal to Zero, And Link microMIPS32 Release 6

BLEZALC Compact Branch if Less Than or Equal to Zero, And Link microMIPS32 Release 6

BGEZALC Compact Branch if Greater Than or Equal to Zero, And Link microMIPS32 Release 6

BGTZALC Compact Branch if Greater Than Zero, And Link microMIPS32 Release 6

BLTZALC Compact Branch if Less Than Zero, And Link microMIPS32 Release 6

Compare equality reg-reg

16
+/- 

128KB
BEQC Compact Branch if Equal microMIPS32 Release 6

BNEC Compact Branch if Not Equal microMIPS32 Release 6

Compare signed reg-reg

16
+/- 

128KB
BGEC Compact Branch if Greater than or Equal microMIPS32 Release 6

BLTC Compact Branch if Less Than microMIPS32 Release 6

Compare Unsigned reg-reg

16
+/-

128KB
BGEUC Compact Branch if Greater than or Equal, Unsigned microMIPS32 Release 6

BLTUC Compact Branch if Less Than, Unsigned microMIPS32 Release 6

Aliases Obtained by Reversing Operands

16
+/- 

128KB

BLEC Compact Branch if Less Than or Equal microMIPS32 Release 6

BGTC Compact Branch if Greater Than microMIPS32 Release 6

BLEUC Compact Branch if Less than or Equal, Unsigned microMIPS32 Release 6

BGTUC Compact Branch if Greater Than, Unsigned microMIPS32 Release 6

Branch if Overflow

16
+/-

128KB
BOVC Compact Branch if Overflow (word) microMIPS32 Release 6

BNVC Compact Branch if No overflow, word microMIPS32 Release 6
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5.3.3.2 Delayed Branch instructions

Table 5.16 lists unconditional jump instructions that jump to a procedure call within the current 256MB-aligned 
region. 

Table 5.17 lists instructions that jump to an absolute address held in a register.

Table 5.18 lists branch instructions that compare two registers before conditionally executing a PC-relative branch.

Table 5.19 lists branch instructions that test a register—compare with zero—before conditionally executing a PC-rel-
ative branch. 

     

Table 5.16 Unconditional Jump Within a 256-Megabyte Region

Mnemonic Instruction Defined in MIPS ISA

J Jump microMIPS32

JAL Jump and Link microMIPS32

JALS Jump and Link, Short Delay-Slot microMIPS32

JALX Jump and Link Exchange microMIPS32 Removed in 
Release 6

Table 5.17 Unconditional Jump using Absolute Address

Mnemonic Instruction Defined in MIPS ISA

JALR Jump and Link Register microMIPS32

JALRS Jump and Link Register, Short Delay-Slot microMIPS32

JALR16 Jump and Link Register (16-bit Instruction Size) microMIPS32

JALR16S Jump and Link Register, Short Delay-Slot (16-bit Instruction Size) microMIPS32

JALR.HB Jump and Link Register with Hazard Barrier microMIPS32

JALRS.HB Jump and Link Register with Hazard Barrier, Short Delay-Slot microMIPS32

JR Jump Register microMIPS32 Removed in 

Release 61

JR16 Jump Register (16-bit Instruction Size) microMIPS32

JRADDIUSP Jump Register, Adjust Stack Pointer (16-bit Instruction Size) microMIPS32

JRC Jump Register, Compact (16-bit Instruction Size) microMIPS32

JR.HB Jump Register with Hazard Barrier microMIPS32

Removed in Release 61

1. Release 6 removes JR.{HB} as a separate instruction, making it a special case of JALR.{HB} with source register 
GPR[0] operand.

Table 5.18 PC-Relative Conditional Branch Instructions Comparing Two Registers

Mnemonic Instruction
Defined in MIPS 

ISA

BEQ Branch on Equal microMIPS32
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5.4 Address Computation and Large Constant Instructions (Release 6)

The Release 6 ISA provides the instructions shown in Table 5.21 that are especially suited to address computations 
and the creation of large constants. Large constants can be formed efficiently using the upper bits with the 16-bit 
immediates available in most memory access and arithmetic instructions. 

BNE Branch on Not Equal microMIPS32

Table 5.19 PC-Relative Conditional Branch Instructions Comparing With Zero

Mnemonic Instruction
Defined in MIPS 

ISA

BEQZ16 Branch on Equal to Zero (16-bit Instruction Size) microMIPS32

BEQZC Branch of Equal to Zero, Compact (16-bit Instruction Size) microMIPS32

BGEZ Branch on Greater Than or Equal to Zero microMIPS32

BGEZAL Branch on Greater Than or Equal to Zero and Link microMIPS32

Removed in Release 61

BGEZALS Branch on Greater Than or Equal to Zero and Link, Short Delay-Slot microMIPS32

BGTZ Branch on Greater Than Zero microMIPS32

BLEZ Branch on Less Than or Equal to Zero microMIPS32

BLTZ Branch on Less Than Zero microMIPS32

BLTZAL Branch on Less Than Zero and Link microMIPS32

Removed in Release 61

BLTZALS Branch on Less Than Zero and Link, Short Delay-Slot microMIPS32

BNEZ16 Branch on Not Equal to Zero (16-bit Instruction Size) microMIPS32

BNEZC Branch of Not Equal to Zero, Compact (16-bit Instruction Size) microMIPS32

1. Release 6 removes BGEZAL and BLTZAL and they are required to signal a Reserved Instruction exception. 

Table 5.20 PC-relative Unconditional Branch

Mnemonic Instruction Defined in MIPS ISA

B16 Unconditional Branch (16-bit Instruction Size) microMIPS32

Table 5.21 Address Computation and Large Constant Instructions 

Mnemonic Instruction Defined in MIPS ISA

LSA Left Shift Add (Word) microMIPS32 Release 6

DLSA Left Shift Add (Doubleword) microMIPS64 Release 6

AUI Add Upper Immediate (Word) microMIPS32 Release 6

DAUI Add Upper Immediate (Doubleword) microMIPS64 Release 6

DAHI Add High Immediate (Doubleword) microMIPS64 Release 6

DATI Add Top Immediate (Doubleword) microMIPS64 Release 6

Table 5.18 PC-Relative Conditional Branch Instructions Comparing Two Registers

Mnemonic Instruction
Defined in MIPS 

ISA
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• Left Shift Add: LSA and DLSA add two registers, one of which is optionally shifted by a scaling factor from 1 to 
4, corresponding to a scaling multiplication, e.g., by element size in an array, by 1, 2, 4, 8, or 16.

• Add Upper Immediate family: Adds an immediate value to a register. The immediate value is sign-extended and 
shifted by 16 bits (AUI/DAUI), 32 bits (DAHI), and 48 bits (DATI).

• PC-relative address computation: Adds an immediate value to the PC. ADDIUPC adds an immediate to the 
lower bits of the PC, AUIPC adds the immediate to the upper bits 16-31 of the PC. and ALUIPC adds the imme-
diate to the upper bits of the PC, zeroing the low 16 bits of the PC.

Note: These instructions sign-extend the 16-bit immediate. The “unsigned” in the name “Add Immediate 
Unsigned to PC” refers to not performing signed 32-bit overflow detection. Compare to ADD/ADDU.

See section 5.1.3.1 “PC-relative Loads (Release 6)” on page 54, for the related PC-relative load instructions.

5.5 Miscellaneous Instructions

Miscellaneous instructions include:

• Instruction Serialization (SYNC and SYNCI)

• Exception Instructions 

• Conditional Move Instructions

• Prefetch Instructions

• NOP Instructions

5.5.1 Instruction Serialization (SYNC and SYNCI)

In normal operation, the order in which load and store memory accesses appear to a viewer outside the executing pro-
cessor (for instance, in a multiprocessor system) is not specified by the architecture. 

The SYNC instruction can be used to create a point in the executing instruction stream at which the relative order of 
some loads and stores can be determined: loads and stores executed before the SYNC are completed before loads and 
stores after the SYNC can start.

The SYNCI instruction synchronizes the processor caches with previous writes or other modifications to the instruc-
tion stream.

ADDIUPC Add Immediate Unsigned to PC microMIPS32 Release 6

AUIPC Add Upper Immediate to PC microMIPS64 Release 6

ALUIPC Add Upper Immediate to Aligned PC microMIPS64 Release 6

Table 5.21 Address Computation and Large Constant Instructions  (Continued)

Mnemonic Instruction Defined in MIPS ISA
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Table 5.22 lists the synchronization instructions. 

5.5.2 Exception Instructions

Exception instructions transfer control to a kernel-mode software exception handler. There are two types of excep-
tions, conditional and unconditional. They are caused by the following instructions:

• System call and breakpoint instructions, which cause unconditional exceptions (Table 5.23).

• Trap instructions, which cause conditional exceptions based on the result of a comparison (Table 5.24).

• Trap instructions which cause conditional exceptions based on the result of a comparison of a register value with 
an immediate value (Table 5.25). These instructions are removed in Release 6.

 .

Table 5.22 Serialization Instruction

Mnemonic Instruction Defined in MIPS ISA

SYNC Synchronize Shared Memory microMIPS32

SYNCI Synchronize Caches to Make Instruction Writes Effective microMIPS32

Table 5.23 System Call and Breakpoint Instructions

Mnemonic Instruction Defined in MIPS ISA

BREAK Breakpoint microMIPS32

BREAK16 Breakpoint (16-bit Instruction Size) microMIPS32

SYSCALL System Call microMIPS32

Table 5.24 Trap-on-Condition Instructions Comparing Two Registers

Mnemonic Instruction Defined in MIPS ISA

TEQ Trap if Equal microMIPS32

TGE Trap if Greater Than or Equal microMIPS32

TGEU Trap if Greater Than or Equal Unsigned microMIPS32

TLT Trap if Less Than microMIPS32

TLTU Trap if Less Than Unsigned microMIPS32

TNE Trap if Not Equal microMIPS32

Table 5.25 Trap-on-Condition Instructions Comparing an Immediate Value 

Mnemonic Instruction Defined in MIPS ISA

TEQI Trap if Equal Immediate microMIPS32
Removed in Release 6

TGEI Trap if Greater Than or Equal Immediate microMIPS32
Removed in Release 6
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5.5.3 Conditional Move Instructions

MIPS32 includes instructions to conditionally move one CPU general register to another, based on testing bit 0 of the 
value in a third general register. They are listed in Table 5.26. 

Release 6 removes these instructions, replacing them by conditional select instructions that test
C- compatible zero/nonzero value of a GPR and select a GPR or 0. These instructions are compatible with the truth 
values in the C language, and they have only two register inputs (the third input, 0, is implicit). They are listed in 
Table 5.27.

For the Release 6 floating-point conditional selects refer to Chapter 7, “FPU Instruction Set” on page 103.)

.

5.5.4 Prefetch Instructions

The PREF and PREFX instructions, shown in Table 5.28, are used to indicate that memory is likely to be used in a 
particular way in the near future and should be prefetched into the cache. A hint field may indicate prefetch policies, 
such as which cache they are fetched into and whether reading or writing is intended. The PREF instruction uses

TGEIU Trap if Greater Than or Equal Immediate Unsigned microMIPS32
Removed in Release 6

TLTI Trap if Less Than Immediate microMIPS32
Removed in Release 6

TLTIU Trap if Less Than Immediate Unsigned microMIPS32
Removed in Release 6

TNEI Trap if Not Equal Immediate microMIPS32
Removed in Release 6

Table 5.26 CPU Conditional Move Instructions (Removed in Release 6)

Mnemonic Instruction Defined in MIPS ISA

MOVF Move Conditional on Floating Point False microMIPS32
Removed in Release 6

MOVN Move Conditional on Not Zero microMIPS32
Removed in Release 6

MOVT Move Conditional on Floating Point True microMIPS32
Removed in Release 6

MOVZ Move Conditional on Zero microMIPS32
Removed in Release 6

Table 5.27 CPU Conditional Select Instructions (Release 6)

Mnemonic Instruction Defined in MIPS ISA

SELEQZ Select GPR rs if GPR rt is Equal to Zero, else select 0 microMIPS32 Release 6

SELNEZ Select GPR rs if GPR rt is Not Equal to Zero, else select 0 microMIPS32 Release 6

Table 5.25 Trap-on-Condition Instructions Comparing an Immediate Value  (Continued)

Mnemonic Instruction Defined in MIPS ISA
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register+offset addressing, and the PREFX uses register+register addressing. The PREFX instruction is removed in 
Release 6. 

5.5.5 NOP Instructions

The NOP instruction is actually encoded as an all-zero instruction. MIPS processors special-case this encoding as 
performing no operation, and optimize execution of the instruction. 

In addition, the SSNOP instruction takes up one issue cycle on any processor, including super-scalar implementations 
of the architecture. Release 6 removes the timing- and microarchitecture-dependent semantics of SSNOP, treating 
SSNOP like an ordinary NOP.

5.6 Coprocessor Instructions

This section contains information about the following:

• What Coprocessors Do

• System Control Coprocessor 0 (CP0)

• Floating Point Coprocessor 1 (CP1)

• Coprocessor Load and Store Instructions

5.6.1 What Coprocessors Do

Coprocessors are alternate execution units, with register files separate from the CPU. In abstraction, the MIPS archi-
tecture provides for up to four coprocessor units, numbered 0 to 3. Each level of the ISA defines a number of these 
coprocessors, as listed in Table 5.30.

Table 5.28 Prefetch Instructions

Mnemonic Instruction Addressing Mode Defined in MIPS ISA

PREF Prefetch Register+Offset microMIPS32

PREFX Prefetch Indexed Register+Register microMIPS32
Removed in Release 6

Table 5.29 NOP Instructions

Mnemonic Instruction Defined in MIPS ISA

NOP1

1. A NOP of instruction size 16-bits is realized through the macro of “MOVE16 $0,$0” 

No Operation microMIPS32

SSNOP Superscalar Inhibit NOPmicroMIPS32
Release 6 requires SSNOP to be implemented as a NOP with no special 
behavior.

microMIPS32

Table 5.30 Coprocessor Definition and Use in the MIPS Architecture 

Coprocessor microMIPS32 microMIPS64

CP0 System Control System Control
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Coprocessor 0 is always used for system control, and coprocessor 1 and 3 are used for the floating point unit. Copro-
cessor 2 is reserved for implementation-specific use.

A coprocessor may have two different register sets:

• Coprocessor general registers

• Coprocessor control registers

Each set contains up to 32 registers. Coprocessor computational instructions may use the registers in either set.

5.6.2 System Control Coprocessor 0 (CP0)

The system controller for all MIPS processors is implemented as coprocessor 0 (CP04), the System Control Copro-
cessor. It provides the processor control, memory management, and exception handling functions. 

5.6.3 Floating Point Coprocessor 1 (CP1)

If a system includes a Floating Point Unit, it is implemented as coprocessor 1 (CP1). 

Coprocessor instructions are divided into two main groups:

• Load and store instructions (move to and from coprocessor), which are reserved in the main opcode space

• Coprocessor-specific operations, which are defined entirely by the coprocessor

5.6.3.1 Coprocessor Load and Store Instructions

Explicit load and store instructions are not defined for CP0; for CP0 only, the move to and from coprocessor instruc-
tions must be used to write and read the CP0 registers. The loads and stores for the remaining coprocessors are sum-
marized in “Coprocessor Loads and Stores” on page 55. 

CP1 FPU FPU

CP2 Implementation-specific

CP3 FPU (COP1X)1 FPU (COP1X)

1. In Release 1 of the MIPS32 Architecture, Coprocessor 3 was an implementa-
tion-specific coprocessor. In the MIPS64 Architecture, and in Release 2 of the 
MIPS32 Architecture (and subsequent releases), it is used exclusively for the 
floating point unit and is not available for implementation-specific use. Release 
1 MIPS32 implementations are therefore encouraged not to use Coprocessor 3 
as an implementation-specific coprocessor.

4. CP0 instructions use the COP0 opcode, and as such are differentiated from the CP0 designation in this book.

Table 5.30 Coprocessor Definition and Use in the MIPS Architecture  (Continued)

Coprocessor microMIPS32 microMIPS64
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5.6.4 Advanced Instruction Encodings (Release 6)

MIPS Release 6 uses more advanced instruction encodings than previous releases. Release 6 uses the greater variety 
of field widths—shorter 9-bit offset for less frequently used instructions, and larger, 18, 19, 21, and 26 bits—to pro-
vide larger spans for certain important instructions. In addition, Release 6 uses instruction encoding techniques such 
as placing constraints on register operands, in cases such as BEQC r1,r2, target, where reversing the operands would 
be equivalent, and hence a waste of instruction encoding space. These advanced instruction encodings mean that the 
traditional tables of instruction formats are insufficient and unwieldy. The figures below have been updated with the 
most important Release 6 instruction formats. Full details can be obtained from the instruction descriptions in Volume 
II of this document set.

5.6.5 CPU Instruction Field Formats

The CPU instruction formats are shown in the figures below.

Figures 5.1, 5.3, and 5.8 are the only formats applicable to releases of the architecture prior to Release 6. Figure 5.2 
expands on additional formats used by Release 6, with the Imm16 type shown as reference.

MIPS base ISA instructions have three, 5-bit fields suitable for specifying register numbers (rd, rs, rt) or a 5-bit shift 
amount (sa). Their bit positions are shown in Figure 5.1.

Figure 5.1 Register (R-Type) CPU Instruction Format

Several different Immediate (I-Type) instruction formats are shown in Figure 5.2. The 16-bit immediate constant 
inside the first instruction format can be used for both computation and memory/branch offset; the immediates in the 
other formats are mainly used as memory offset or branch displacement. 

Figure 5.2 Immediate (I-Type) CPU Instruction Formats (Release 6) 

The most common MIPS Immediate (I-Type) instruction format is the Imm16 format shown in Figure 5.3. The 16-bit 
signed immediate is used for logical operands, arithmetic signed operands, load/store address byte offsets, and PC-
relative branch signed instruction displacements.

31 26 25 21 20 16 15 11 10 6 5 0

opcode rs rt rd sa function

6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

opcode rs rt immediate

opcode rd offset

opcode offset

opcode rs rt rd offset

opcode base rt offset function
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Figure 5.3 Immediate (I-Type) Imm16 CPU Instruction Format

MIPS Release 6 introduces the Immediate (I-Type) Off21 CPU instruction format is used by instructions that com-
pare a register against zero and branch (e.g., BLTZC), with larger than the usual 16-bit span.

Certain PC-relative instructions use offsets 18- and 19-bits wide, using low bits of the 21-bit immediate as extra 
opcode bits.

Figure 5.4 Immediate (I-Type) Off21 CPU Instruction Format (Release 6)

MIPS Release 6 introduces the Immediate (I-Type) Off26 CPU instruction format for PC- relative branches with very 
large displacements, BC and BALC. The 26-bit immediate, shifted left by 2 bits yields a span of 28-bits, or +/- 128 
megabytes of instructions. Prior to MIPS Release 6 only the J-type instruction format (see Figure 5.8 below) provided 
a similar 26-bit instr_index.

Figure 5.5 Immediate (I-Type) Off26 CPU Instruction Format (Release 6)

MIPS Release 6 introduces the Immediate (I-Type) Off11 CPU instruction format for new encodings of Coprocessor 
2 load and store instructions (LWC2, SWC2, LDC2, SWC2). This format concatenates the function and sa fields to 
form an 11-bit immediate.

Figure 5.6 Immediate (I-Type) Off11 CPU Instruction Format (Release 6)

The Immediate (I-Type) Off9 CPU Instruction Format format provides a 9-bit memory offset. It was used prior to 
MIPS Release 6 for SPECIAL3 instructions such as EVA memory accesses (e.g., LBE). MIPS Release 6 makes 
extensive use of the Off9 format for instruction encodings that have been moved, such as LL and SC.

Figure 5.7 Immediate (I-Type) Off9 CPU Instruction Format (Release 6)

The Jump (J-Type) CPU instruction format is shown in Figure 5.8. Prior to Release 6 of the Architecture, instr_index 
was the only example of a 26-bit immediate, used in the instructions J (jump), JAL (jump-and-link), and JALX (jump 

31 26 25 21 20 16 15 0

opcode rs rt immediate

6 5 5 16

31 26 25 21 20 0

opcode rd offset

6 5 21

31 26 25 0

opcode offset

6 26

31 26 25 21 20 16 15 11 10 0

opcode rs rt rd offset

6 5 5 5 11

31 26 25 21 20 16 15 7 6 5 0

opcode base rt offset 0 function

6 5 5 9 6
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and link-exchange), where the instr_index bits replaced corresponding bits in the PC. Release 6 uses the similar 
Off26 format for PC-relative branches.

Figure 5.8 Jump (J-Type) CPU Instruction Format

31 26 25 0

opcode instr_index

6 26
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FPU Programming Model

This chapter describes the MIPS32 Architecture FPU programming model. In the MIPS architecture, the FPU is 

implemented via Coprocessor 1, an optional processor implementing IEEE Standard 7541 floating-point operations. 
The FPU also provides a few additional operations not defined by the IEEE standard.

This chapter includes the following sections:

• “Enabling the Floating Point Coprocessor” on page 76

• “IEEE Standard 754” on page 76

• “FPU Data Types” on page 77

• “Floating Point Registers” on page 83

• “Floating Point Control Registers (FCRs)” on page 86

• “Formats of Values Used in FP Registers” on page 96

• “Sizes of Floating Point Data” on page 97

• “FPU Exceptions” on page 97

6.1 Enabling the Floating Point Coprocessor

The Floating Point Coprocessor is enabled by enabling Coprocessor 1 and is a privileged operation provided by the 
System Control Coprocessor (CP0)). If Coprocessor 1 is not enabled, any attempt to execute a floating-point instruc-
tion causes a Coprocessor Unusable exception. Every system environment either enables the FPU automatically or 
provides a means for an application to request that it is enabled.

6.2 IEEE Standard 754

IEEE Standard 754 defines the following:

• Floating-point data types

• The basic arithmetic, comparison, and conversion operations

1. In this chapter, references to “IEEE standard” and “IEEE Standard 754” refer to IEEE Standard 754-1985, “IEEE Standard 
for Binary Floating Point Arithmetic.” For more information about this standard, see the IEEE web page at http://
grouper.ieee.org/groups/754/.

http://grouper.ieee.org/groups/754/
http://grouper.ieee.org/groups/754/
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• A computational model

The IEEE standard does not define specific processing resources, nor does it define an instruction set. 

The MIPS architecture includes non-IEEE FPU control and arithmetic operations (multiply-add, reciprocal, and 
reciprocal square root) which may not supply results that match the IEEE precision rules.

6.3 FPU Data Types

The FPU provides both floating-point and fixed-point data types:

• The single- and double-precision floating-point data types are those specified by the IEEE standard.

• The fixed-point types are signed integers provided by the CPU architecture.

6.3.1 Floating Point Formats

The following  floating point formats are provided by the FPU:

• 32-bit single-precision floating point (type S, shown in Figure 6.1)

• 64-bit double-precision floating point (type D, shown in Figure 6.2)

• 64-bit paired-single floating point, combining two single-precision data types (Type PS, shown in Figure 6.3)

• The paired-single (PS) data type is removed in Release 6.

The floating-point data types represent numeric values as well as other special entities, such as the following:

• Two infinities,  and -

• Signaling non-numbers (SNaNs)

• Quiet non-numbers (QNaNs)s

• Numbers of the form: (-1)s 2E b0.b1 b2..bp-1, where

• s=0 or 1

• E=any integer between E_min and E_max, inclusive

• bi=0 or 1 (the high bit, b0, is to the left of the binary point)

• p is the signed-magnitude precision 

Table 6.1 Parameters of Floating Point Data Types 

Parameter
Single (or Each Half 

of Paired-Single) Double

Bits of mantissa precision, p 24 53

Maximum exponent, E_max +127 +1023
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The single and double floating-point data types are composed of three fields—sign, exponent, fraction—whose sizes 
are listed in Table 6.1. 

Layouts of these fields are shown in Figure 6.1, 6.2, and 6.3 below. The fields are

• 1-bit sign, s 

• Biased exponent, e=E + bias 

• Binary fraction, f=.b1 b2..bp-1     (the b0 bit is not recorded)

Minimum exponent, E_min -126 -1022

Exponent bias +127 +1023

Bits in exponent field, e 8 11

Representation of b0 integer bit hidden hidden

Bits in fraction field, f 23 52

Total format width in bits 32 64

Table 6.1 Parameters of Floating Point Data Types  (Continued)

Parameter
Single (or Each Half 

of Paired-Single) Double
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Figure 6.1 Single-Precision Floating Point Format (S)

Figure 6.2 Double-Precision Floating Point Format (D)

Figure 6.3 Paired-Single Floating Point Format (PS)

Values are encoded in the specified format by using unbiased exponent, fraction, and sign values listed in Table 6.2. 
The high-order bit of the Fraction field, identified as b1, is also important for NaNs.

3
1

3
0
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3
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2 0

S Exponent Fraction

1 8 23
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3
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3
1
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2 0

S Exponent fraction S Exponent Fraction

1 8 23 1 8 23

Table 6.2 Value of Single or Double Floating Point Data Type Encoding

Unbiased E f s b1 Value V Type of Value

Typical Single 

Bit Pattern1 Typical Double Bit Pattern1

E_max + 1  0 1 SNaN Signaling NaN 
(FIRHas2008=0 or 

FCSRNAN2008=0)

Not applicable to Release 6

0x7fffffff 0x7fffffff ffffffff

0 QNaN Quiet NaN 
(FIRHas2008=0 or 

FCSRNAN2008=0)

Not applicable to Release 6

0x7fbfffff 0x7ff7ffff ffffffff

E_max + 1  0 0 SNaN Signaling NaN
(FCSRNAN2008=1)

0x7fbfffff 0x7ff7ffff ffffffff

1 QNaN Quiet NaN
(FCSRNAN2008=1)

0x7fffffff 0x7fffffff ffffffff

E_max +1 0 1 - � minus infinity 0xff800000 0xfff00000 00000000

0 + � plus infinity 0x7f800000 0x7ff00000 00000000

E_max
    to 

E_min

1 - (2E)(1.f) negative normalized number 0x80800000
  through
0xff7fffff

0x80100000 00000000
       through
0xffefffff ffffffff

0 + (2E)(1.f) positive normalized number 0x00800000
  through
0x7f7fffff

0x00100000 00000000
       through
0x7fefffff ffffffff

E_min -1  0 1 - (2E_min)(0.f) negative denormalized number 0x807fffff 0x800fffff ffffffff

0 + (2E_min)(0.f) positive denormalized number 0x007fffff 0x000fffff ffffffff
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6.3.1.1 Normalized and Denormalized Numbers

For single and double data types, each representable nonzero numerical value has just one encoding; numbers are 
kept in normalized form. The high-order bit of the p-bit mantissa, which lies to the left of the binary point, is “hid-
den,” and not recorded in the Fraction field. The encoding rules permit the value of this bit to be determined by look-
ing at the value of the exponent. When the unbiased exponent is in the range E_min to E_max, inclusive, the number 
is normalized and the hidden bit must be 1. If the numeric value cannot be normalized because the exponent would be 
less than E_min, then the representation is denormalized and the encoded number has an exponent of E_min-1 and the 
hidden bit has the value 0. Plus and minus zero are special cases that are not regarded as denormalized values.

6.3.1.2 Reserved Operand Values—Infinity and NaN

A floating-point operation can signal IEEE exception conditions, such as those caused by uninitialized variables, vio-
lations of mathematical rules, or results that cannot be represented. If a program does not choose to trap IEEE excep-
tion conditions, a computation that encounters these conditions proceeds without trapping but generates a result 
indicating that an exceptional condition arose during the computation. To permit this, each floating-point format 
defines representations, listed in Table 6.2, for plus infinity (+�), minus infinity (-�), quiet non-numbers (QNaN), 
and signaling non-numbers (SNaN).

6.3.1.3 Infinity and Beyond

Infinity represents a number with magnitude too large to be represented in the format and exists to represent a magni-
tude overflow during a computation. A correctly signed � is generated as the default result in division by zero and 
some cases of overflow (refer to the IEEE exception condition described in 6.7.2 “Exception Conditions” on 
page 98).

Once created as a default result,� can become an operand in a subsequent operation. The infinities are interpreted 
such that -� < (every finite number) < +�. Arithmetic with � is the limiting case of real arithmetic with operands of 
arbitrarily large magnitude, when such limits exist. In these cases, arithmetic on � is regarded as exact and exception 
conditions do not arise. The out-of-range indication represented by � is propagated through subsequent computations. 
For some cases, there is no meaningful limiting case in real arithmetic for operands of �, and these cases raise the 
Invalid Operation exception condition (see “Invalid Operation Exception” on page 99).

6.3.1.4 Signalling Non-Number (SNaN)

SNaN operands cause the Invalid Operation exception for arithmetic operations. SNaNs are useful values to put in 
uninitialized variables. An SNaN is never produced as a result value.

IEEE Standard 754 states that “Whether copying a signaling NaN without a change of format signals the Invalid 
Operation exception is the implementor’s option.” In the MIPS architecture, the FPU unconditional move (MOV.fmt) 
and branchless conditional operations (MOVT.fmt, MOVF.fmt, MOVN.fmt, MOVZ.fmt, SEL.fmt, SELEQZ.fmt, 
SELNEZ.fmt) are non-arithmetic and do not signal IEEE 754 exceptions. 

E_min -1 0 1 - 0 negative zero 0x80000000 0x80000000 00000000

0 + 0 positive zero 0x00000000 0x00000000 00000000

1. The "typical" nature of the bit patterns for the NaN and denormalized values reflects the fact that the sign may have either value (NaN) 
and the fact that the fraction field may have any non-zero value (both). As such, the bit patterns shown are one value in a class of poten-
tial values that represent these special values.

Table 6.2 Value of Single or Double Floating Point Data Type Encoding (Continued)

Unbiased E f s b1 Value V Type of Value

Typical Single 

Bit Pattern1 Typical Double Bit Pattern1
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6.3.1.5 Quiet Non-Number (QNaN)

QNaNs are intended to afford retrospective diagnostic information inherited from invalid or unavailable data and 
results. Propagation of the diagnostic information requires information contained in a QNaN to be preserved through 
arithmetic operations and floating-point format conversions.

QNaN operands do not cause arithmetic operations to signal an exception. When a floating-point result is to be deliv-
ered, a QNaN operand causes an arithmetic operation to supply a QNaN result. When possible, this QNaN result is 
one of the operand QNaN values. QNaNs do have effects similar to SNaNs on operations that do not deliver a float-
ing-point result—specifically, comparisons. (For more information, see the detailed description of the floating-point 
compare instruction, C.cond.fmt.)

When certain invalid operations not involving QNaN operands are performed but do not trap (because the trap is not 
enabled), a new QNaN value is created. Table 6.3 shows the QNaN value generated when no input operand QNaN 
value can be copied. The values listed for the fixed-point formats are the values supplied to satisfy the IEEE standard 
when a QNaN or infinite floating-point value is converted to fixed point. There is no other feature of the architecture 
that detects or makes use of these “integer QNaN” values. The FCSRNAN2008=1 “integer QNAN” values were cho-

sen to match the requirements of the Java and Fortran programming languages. 

If a CPU implements passing an input NAN operand to the output of an instruction in hardware (instead of taking an 
Unimplemented FP exception) and FCSRNAN2008=1, the mantissa portion of the input NAN operand is preserved as 

much as possible: 

• If the chosen input is a QNAN, the entire mantissa is passed to the output without change. 

Table 6.3 Value Supplied When a New Quiet NaN Is Created

Format

New QNaN value (FIRHas2008 

= 0 or FCSRNAN2008 = 0) 
New QNaN value 

(FCSRNAN2008 = 1)

Single floating-point 0x7fbf ffff 0x7fc0 0000

Double floating-point 0x7ff7 ffff ffff ffff 0x7ff8 0000 0000 0000

Word fixed point
(result from converting any FP number 
too big to represent as a 32-bit positive 
integer)

0x7fff ffff 0x7fff ffff

Word fixed point
(result from converting any FP NAN)

0x7fff ffff 0x0000 0000

Word fixed point
(result from converting any FP number 
too small to represent as a 32-bit nega-
tive integer)

0x7fff ffff 0x8000 0000

Longword fixed point
(result from converting any FP number 
too big to represent as a 64-bit positive 
integer)

0x7fff ffff ffff ffff 0x7fff ffff ffff ffff

Longword fixed point
(result from converting any FP NAN)

0x7fff ffff ffff ffff 0x0000 0000 0000 0000

Longword fixed point (result from con-
verting any FP number too small to rep-
resent as a 64-bit negative integer)

0x7fff ffff ffff ffff 0x8000 0000 0000 0000
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• If the chosen input is a SNAN, the only change is to set the leftmost/most-significant mantissa bit. 

6.3.1.6 Paired-Single Exceptions 

Exception conditions that arise while executing the two halves of a floating-point vector operation are ORed together, 
and the instruction is treated as having caused all the exceptional conditions arising from both operations. The hard-
ware makes no effort to determine which of the two operations encountered the exceptional condition. 

Paired-single exceptions are removed in Release 6.

6.3.1.7 Paired-Single Condition Codes 

The C.cond.PS instruction compares the upper and lower halves of FPR fs and FPR ft independently and writes the 
results into condition codes CC +1 and CC respectively. The CC number must be even. If the number is not even the 
operation of the instruction is UNPREDICTABLE.

Paired-single condition codes are removed in Release 6.

6.3.2 Fixed Point Formats

The FPU provides two fixed-point data types:

• 32-bit Word fixed-point (type W), shown in Figure 6.4

• 64-bit Longword fixed-point (type L), shown in Figure 6.5

The fixed-point values are held in the 2’s complement format used for signed integers in the CPU. Unsigned fixed-
point data types are not provided by the architecture; application software may synthesize computations for unsigned 
integers from the existing instructions and data types.

Figure 6.4 Word Fixed Point Format (W)

Figure 6.5 Longword Fixed Point Format (L)

3
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S Integer

1 31
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1 63
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6.4 Floating Point Registers

This section describes the organization and use of the two types of FPU register sets:

• Floating Point General Purpose Registers (FPRs) are 32 or 64 bits wide. These registers transfer binary data 
between the FPU and the system, and are also used to hold formatted FPU operand values. A 32-bit FPU con-
tains 32, 32-bit FPRs, each of which is capable of storing a 32-bit data type. A 64-bit floating point unit contains 
32, 64-bit FPRs, each of which is capable of storing any data type. The data types that each 64-bit register is 
capable of storing are dependent on CP0 StatusFR (see Section 6.4.1 “FPU Register Models”).

• Floating Point Control Registers (FCRs) are 32 bits wide and are used to control and provide status for all float-
ing-point operations. 

6.4.1 FPU Register Models

The MIPS architecture supports two FPU register models

• 32-bit FPU register model: 32, 32-bit registers 

• 32-bit data types stored in any register

• pre-Release 6: 64-bit data types stored in even-odd pairs of registers. 

In Release 6 the 32-bit register model does not support 64-bit data types (stored in even-odd pairs of regis-
ters), and 64-bit operations are required to signal the Reserved Instruction exception.

• 64-bit FPU register model: 32, 64-bit registers, with all formats supported in a register.

In Release 1 of the Architecture, MIPS32 supported only the 32-bit FPU register model (with even-odd register pairs 
for 64-bit data), while MIPS64 supported only the 64-bit FPU register model.

As of Release 2 and thereafter, both MIPS32 and MIPS64 support both FPU register models. If the CP0 StatusFR bit 

is writable, it allows selection of the register model, whereas if this bit is read-only, it indicates which model is sup-
ported. In Release 2 and Release 3, the 32-bit FPU register model is required, while the 64-bit FPU register model is 
optional. In Release 5, the 64-bit FPU register model is required.

Release 6 supports both FPU register models. However, with a 64-bit FPU (FIRF64=1), Release 6 requires the 64-bit 

FPU register model and does not support the 32-bit FPU register model, i.e., StatusFR=1 is required. With a 32-bit 

FPU (FIRF64=0, 32-bit FPRs), Release 6 does not support 64-bit data types and requires instructions manipulating 

such data types to signal a Reserved Instruction exception. In particular, Release 6 does not support even-odd register 
pairs.

Table 6.1 below summarizes the availability and compliance requirements of FPU register widths, register models, 
and data types.
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Table 6.4 FPU Register Models Availability and Compliance 

ISA MIPS32 MIPS64

FPU Type 32-bit FPU
FIRF64=0

64-bit FPU
FIRF64=1

32-bit FPU
FIRF64=0

64-bit FPU
FIRF64=1

FPU Register 
Width

32 64 32 64

32-bit Data For-
mats S/W

32-bit data formats S and W required1 whenever FPU is present:
FIRS=1 and FIRW=1

1. “Required” means “required if an FPU of specified type is present”. “Available” means that the feature is available to implement, i.e., is 
optional. “Not available” means that the feature cannot be implemented.

Support for 64-bit 
Data Types D/L

See below FIRD=1 and 

FIRL=1

See below FIRD=1 and 

FIRL=1

FPU Register 
Model

32-bit 32-bit
StatusFR=0

64-bit
StatusFR=1

32-bit 32-bit
StatusFR=0

64-bit
StatusFR=1

64-bit Data

Storage2 

2. [true 64-bit FPRs] (if FIRF64=1 and StatusFR=1), [even/odd register pairs] (if FIRF64=0 or StatusFR=0, and FIRD=FIRL=1), and 

[strictly 32-bit] (if FIRF64=FIRD=FIRL=0).

See below [even/odd
register pairs]

[true 64-bit 
FPRs]

See below [even/odd 
register pairs]

[true 64-bit 
FPRs]

Release 13

3. Release 1 required S, D, and W data formats, but did not require L, which was optional. Release 2, Release 3, and Release 5 required S, 
D, W and L data formats. Release 6 on a 64-bit FPU requires S, D, W, and L data formats; on a 32-bit FPU Release 6 requires S and W 
formats but 64-bit data formats D and L are not permitted.

[even-odd regis-
ter pairs] 

64-bit data for-
mats D/L use 

even/odd pairs:
FIRD=1 and

FIRL=1

required 

Not Available Not Available Required Required 

Release 2 Required Optional

Release 3

Release 5 Required

Release 6 [strictly 32-bit]4 

64-bit data
formats D/L

not available:
FIRD=0

FIRL=0

4. The [strictly 32-bit] FPU mode was defined and made available as of Release 6.

Not Available Available

[strictly 32-bit]4 

Not Available
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6.4.2 Binary Data Transfers (32-Bit and 64-Bit)

The data transfer instructions move words and doublewords between the FPRs and the remainder of the system. The 
operations of the word and doubleword load and move-to instructions are shown in Figure 6.6 and Figure 6.7. 

The store and move-from instructions operate in reverse, reading data from the location where the corresponding load 
or move-to instruction wrote.

Figure 6.6 FPU Word Load and Move-to Operations2 

Figure 6.7 FPU Doubleword Load and Move-to Operations3

2. Figure 6.6 has not been updated for Release 6 (StatusFR=0 is not allowed with Release 6).

3. Figure 6.7 has not been updated for Release 6 (StatusFR=0 is not allowed with Release 6).
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6.4.3 FPRs and Formatted Operand Layout

FPU instructions that operate on formatted operand values specify the FPR that contains the value. Operands that are 
only 32 bits wide (W and S formats), use only half of a 64-bit FPR. Operand storage of the operand types is shown in 
Figure 6.8, 6.9, and 6.10.

Figure 6.8 Single Floating Point or Word Fixed Point Operand in an FPR 

Figure 6.9 Double Floating Point or Longword Fixed Point Operand in an FPR

Figure 6.10 Paired-Single Floating Point Operand in an FPR (Removed in Release 6)

6.5 Floating Point Control Registers (FCRs)

The microMIPS32 Architecture supports the following Floating Point Control Registers (FCRs):

• FIR: FP Implementation and Revision register

• FCSR: FP Control/Status register (used to be known as FCR31).

• FEXR: FP Exceptions register

• FENR: FP Enables register

• FCCR: FP Condition Codes register (removed in Release 6)

Access to the Floating Point Control Registers is not privileged; they can be accessed by any program that can exe-
cute floating-point instructions. The FCRs can be accessed via the CTC1 and CFC1 instructions. FEXR, FENR, and 
FCCR are “aliases” that allow access to the FCSR using CTC1 and CFC1 instructions. Release 6 removes the 
FCCR, because the FP condition codes (FCCs) have been removed.

Release 5 of the MIPS Architecture adds two additional “aliases”, UFR and UNFR, for user-mode access to 
StatusFR. See descriptions of the CTC1 and CFC1 in Volume II for Release 5 changes to FCSR. These two registers 

are removed in Release 6, because StatusFR has been removed.

6.5.1 Floating Point Implementation Register (FIR, CP1 Control Register 0)

Compliance Level: Required if floating point is implemented

63 32 31 0

Reg 0 Undefined/Unused Data word

63 0

Reg 0 Data doubleword/Longword

63 0
Reg 0 Paired-Single

32 31
Paired-Single
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The Floating Point Implementation Register (FIR) is a 32-bit read-only register that contains information identifying 
the capabilities of the floating point unit, the floating point processor identification, and the revision level of the float-
ing point unit. Figure 6.11 shows the format of the FIR register; Table 6.5 describes the FIR register fields. 

Figure 6.11 FIR Register Format 

31 30 29 28 27 24 23 22 21 20 19 18 17 16 15 8 7 0

0 FREP UFRP Impl
Has
2008

F64 L W 3D PS D S ProcessorID Revision

Table 6.5 FIR Register Field Descriptions

Fields

Description Read/Write Reset State ComplianceName Bits

0 31:30 Reserved R 0 0

FREP 29 User-mode access of FRE is supported. 

If FREP=1, then Config5UFE and Config5FRE are avail-

able along with CFC1/CTC1 to allow user access to FRE.
This emulation facility is only available if an FPU is pres-
ent (Config1FP=1) and the FPU is 64-bit (FIRF64=1).

R Preset by hardware Optional
(Release 5)

UFRP 28 Indicates user-mode FR switching is supported. See 
Release 5 definition of CFC1 and CTC1.

R
(Release 6)

R0
(Release 6) 

Preset by hardware
(Release 6)

0 
(Release 6)

Optional
(Release 5)

Reserved
(Release 6)

Impl 27:24 These bits are implementation-dependent and are not 
defined by the architecture, other than the fact that they 
are read-only. These bits are explicitly not intended to be 
used for mode-control functions.

R Preset Optional

Has2008 23 Indicates that one or more IEEE-754-2008 features are 
implemented. If this bit is set, the ABS2008 and NAN2008 
fields within the FCSR register also exist. 

R Preset by hardware
(Release 5)

1
(Release 6)

Optional
(Release 3)

Required 
(Release 6)

Encoding Meaning

0 Support for emulation of StatusFR=0 

handling on a 64-bit FPU with 
StatusFR=1 only is not available.

1 Support for emulation of StatusFR=0 

handling on a 64-bit FPU with 
StatusFR=1 only is available.

Encoding Meaning

0 User-mode FR switching instructions 
not supported.

1 User-mode FR switching instructions 
supported
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F64 22 Indicates that the floating point unit has registers and data 
paths that are 64-bits wide.StatusFRStatusFR.

R Preset by hardware Required 

L 21 Indicates that the longword fixed-point (L) data type and 
instructions are implemented:

R Preset by hardware Required 

W 20 Indicates that the word fixed-point (W) data type and 
instructions are implemented:

R Preset by hardware Required 

PS 18 This bit indicates that the paired-single floating point data 
type is implemented:

R Preset by hardware Required

D 17 Indicates that the double-precision (D) floating point data 
type and instructions are implemented:

R Preset by hardware Required

S 16 Indicates that the single-precision (S) floating point data 
type and instructions are implemented:

R Preset by hardware Required

ProcessorID 15:8 Identifies the floating point processor. R Preset by hardware Required

Table 6.5 FIR Register Field Descriptions (Continued)

Fields

Description Read/Write Reset State ComplianceName Bits

Encoding Meaning

0 FPU is 32 bits

1 FPU is 64 bits

Encoding Meaning

0 L fixed point not implemented

1 L fixed point implemented

Encoding Meaning

0 W fixed point not implemented

1 W fixed point implemented

Encoding Meaning

0 PS floating point not implemented

1 PS floating point implemented

Encoding Meaning

0 D floating point not implemented

1 D floating point implemented

Encoding Meaning

0 S floating point not implemented

1 S floating point implemented
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6.5.2 User Floating Point Register Mode Control (UFR, CP1 Control Register 1)
(Release 5 Only)

Compliance Level: Required in MIPS32 Release 5 if floating point is implemented and user-mode FR switching is 
supported. Removed by Release 6.

The UFR register allows user-mode to clear StatusFR by executing a CTC1 to UFR with GPR[0] as input, and read 

StatusFR. by executing a CFC1 to UFR CTC1 to UFR with any other input register is required to produce a Reserved 

Instruction exception. User-mode software can determine presence of this feature from FIRUFRP. 

Per the definition of the CTC1 instruction, writing any value other than 0 obtained from integer GPR[0] to UFR using 
the CTC1 instruction is UNPREDICTABLE. To set UFRFR / StatusFR, use CTC1 to the UNFR FCR alias.

Figure 6.12 UFR Register Format (pre-Release 6)  

6.5.3 User Negated FP Register Mode Control (UNFR, CP1 Control Register 4)
(Removed in Release 6) 

Compliance Level: Required in MIPS32 Release 5 if floating point is implemented and user-mode FR switching is 
supported. Removed in Release 6.

The UNFR register allows user-mode to set StatusFR by executing a CTC1 to UNFR with GPR[0] as input. CTC1 to 

UNFR with any other input register is required to produce a Reserved Instruction exception. User-mode software can 
determine presence of this feature from FIRUFRP. 

Revision 7:0 Specifies the revision number of the floating point unit. 
This field allows software to distinguish between one 
revision and another of the same floating point processor 
type. If this field is not implemented, it must read as zero.

R Preset by hardware Optional

31 1 0

0 FR

Table 6.6 UFR Register Field Descriptions (pre-Release 6)

Fields

Description
Read/
Write Reset State ComplianceName Bits

0 31:1 Must be written as zero; returns zero on read 0 0 Reserved

FR 0 User-mode access to StatusFR. R/W01

(Release 5)

R0
(Release 6)

1. UFR can read as 0 or 1, but can only be written with the zero from GPR[0], which clears StatusFR. Using CTC1 to write UFR with 

any value or GPR other than GPR[0] is UNPREDICTABLE.

Undefined

See reset state 
of StatusFR

Required 
(Release 5) R0

(Release 6)

Table 6.5 FIR Register Field Descriptions (Continued)

Fields

Description Read/Write Reset State ComplianceName Bits
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Figure 6.13 UNFR Register Format (pre-Release 6) 

The UNFR pseudo-control-register alias is a convenience, allowing CTC1 $0, UNFR to be used to set UFR/
StatusFR without requiring a GPR to hold the value such as 1 to be written. Because reading UNFR would be redun-

dant with reading UFR, UNFR is write-only; attempting to read UNFR via CFC1 is UNPREDICTABLE, per the 
definition of the CFC1 instruction. Writing any value other than 0 obtained from integer GPR $0 to UNFR using the 
CTC1 instruction is similarly UNPREDICTABLE from software’s point of view, and is required to produce a 
Reserved Instruction exception in Release 5 implementations.

6.5.4 Floating Point Control and Status Register (FCSR, CP1 Control Register 31)

Compliance Level: Required if floating point is implemented.

The Floating Point Control and Status Register (FCSR) is a 32-bit register that controls the operation of the float-
ing point unit, and shows the following status information:

• selects the default rounding mode for FPU arithmetic operations

• selectively enables traps of FPU exception conditions

• controls some denormalized number handling options

• reports any IEEE exceptions that arose during the most recently executed instruction

• reports IEEE exceptions that arose, cumulatively, in completed instructions

• pre-Release 6: indicates the condition code result of FP compare instructions

• Release 6 removes the FP condition codes.

Access to FCSR is not privileged; it can be read or written by any program that has access to the floating point unit 
(via the coprocessor enables in the Status register). Figure 6.14 shows the format of the FCSR register; Table 6.8 
describes the FCSR register fields.

31 1 0

0 NFR

Table 6.7 UNFR Register Field Descriptions (pre-Release 6)

Fields

Description
Read/
Write Reset State ComplianceName Bits

0 31:1 Must be written as zero. 0 Undefined Reserved

NFR 0 User-mode inverted write to StatusFR. W01

R0
(Release 6)

1. UNFR can only be written with the zero from GPR[0], which sets StatusFR. Using CFC1 to read UNFR, or using CTC1 to write 

UNFR with any value or GPR other than GPR[0] is UNPREDICTABLE. UNFR’s “state” can be inferred by reading StatusFR, e.g., 

via UFR. 

Undefined Required 
(Release 5)

R0
(Release 6)
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Figure 6.14 FCSR Register Format 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FCC1

1. Release 6 removes the FCCs.

FS
FCC

1 Impl
0
0

ABS
2008

NAN
2008 Cause Enables Flags RM

7 6 5 4 3 2 1 0 E V Z O U I V Z O U I V Z O U I

Table 6.8 FCSR Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

FCC

(pre-Release 6)

31:25, 23 Floating point condition codes. These bits record the result 
of floating point compares and are tested for floating point 
conditional branches and conditional moves. The FCC bit 
to use is specified in the compare, branch, or conditional 
move instruction. For backward compatibility with previ-
ous MIPS ISAs, the FCC bits are separated into two, non-
contiguous fields.

R/W Undefined Required

FCC
(Release 6)

31:25, 23 Floating point condition codes. pre-Release 6 feature, 
removed by Release 6.

R0 0 Reserved 

FS 24 Flush to Zero (Flush Subnormals).
See sections 6.7.2.3 “Underflow Exception” on 
page 100 and 6.7.2.4 “Alternate Flush to Zero 
Underflow Handling” on page 100.

R/W Undefined Required

Impl 22:21 Available to control implementation-dependent features of 
the floating point unit. If these bits are not implemented, 
they must be ignored on write and read as zero.

R/W Undefined Optional

Encoding Meaning

0 Input subnormal values and tiny non-
zero results are not altered. Unimple-
mented Operation exception may be 
signaled as needed. 

1 When FS is one, subnormal results are 
flushed to zero. The Unimplemented 
Operation exception is NOT signalled 
for this reason. 

Every tiny non-zero result is replaced 
with zero of the same sign.

Prior to Release 5, it is implementa-
tion- dependent whether subnormal 
operand values are flushed to zero 
before the operation is carried out.

As of Release 5, every input subnor-
mal value is replaced with zero of the 
same sign.
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0 20 Reserved for future use; reads as zero. R Preset by hardware Reserved

ABS2008 19 ABS.fmt and NEG.fmt instructions compliant with IEEE 
Standard 754-2008.
The IEEE 754-2008 standard requires that the ABS and 
NEG functions are non-arithmetic and accept NAN inputs 
without trapping.

This fields exists if FIRHas2008 is set. 

R Preset by hardware
(pre-Release 6)

1
(Release 6)

Optional as of 
Release 3.50

Required as of 
Release 5

NAN2008 18 Quiet and signaling NaN encodings recommended by the 
IEEE Standard 754-2008, i.e., a quiet NaN is encoded 
with the first bit of the fraction being 1 and a signaling 
NaN is encoded with the first bit of the fraction field being 
0.
MIPS legacy FPU encodes NaN values with the opposite 
polarity, i.e., a quiet NaN is encoded with the first bit of 
the fraction being 0 and a signaling NaN is encoded with 
the first bit of the fraction field being 1. 
Refer to Table 6.3 for the quiet NaN encoding values.

This fields exists if FIRHas2008 is set. 

R Preset by hardware

1
(Release 6)

Optional as of 
Release 3.50

Required as of 
Release 5

Cause 17:12 Cause bits. These bits indicate the exception conditions 
that arise during execution of an FPU arithmetic instruc-
tion. A bit is set to 1 if the corresponding exception condi-
tion arises during the execution of an instruction and is set 
to 0 otherwise. By reading the registers, the exception con-
dition caused by the preceding FPU arithmetic instruction 
can be determined.
Refer to Table 6.9 for the meaning of each bit.

R/W Undefined Required

Table 6.8 FCSR Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset State ComplianceName Bits

Encoding Meaning

0 ABS and NEG instructions are arith-
metic and trap for NAN input. MIPS 
legacy behavior. 

1 ABS and NEG instructions are non-
arithmetic and accept NAN input with-
out trapping. IEEE 754-2008 behavior

Encoding Meaning

0 MIPS legacy NaN encoding

1 IEEE 754-2008 NaN encoding
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Several registers are “aliases” for particular fields in FCSR in order to make it easier to modify them in a single write 
rather than having to perform a read modify write. These FP control register aliases include:

• FEXR - access to Cause and Flags fields of FCSR

• FENR - access to Enables, FS, and RM fields of FCSR

• pre-Release 6: FCCR - access to the Floating Point Condition Codes (FCCs) of FCSR

• Release 6 removes the FCCs and FCCR.

The aliased fields in the FEXR, FENR, pre-Release 6 FCCR, and FCSR registers always display the correct state. 
That is, if a field is written via FCSR, the new value may be read via one of the alternate registers. Similarly, if a 
value is written via one of the alternate registers, the new value may be read via FCSR.  

Enables 11:7 Enable bits. These bits control whether or not a exception 
is taken when an IEEE exception condition occurs for any 
of the five conditions. The exception occurs when both an 
Enables bit and the corresponding Cause bit are set either 
during an FPU arithmetic operation or by moving a value 
to FCSR or one of its alternative representations. Note that 
Cause bit E has no corresponding Enables bit; the non-
IEEE Unimplemented Operation exception is defined by 
MIPS as always enabled.
Refer to Table 6.9 for the meaning of each bit.

R/W Undefined Required

Flags 6:2 Flag bits. This field shows any exception conditions that 
have occurred for completed instructions since the flag 
was last reset by software. 
When a FPU arithmetic operation raises an IEEE excep-
tion condition that does not result in a Floating Point 
exception (i.e., the Enables bit was off), the corresponding 
bit(s) in the Flags field are set, while the others remain 
unchanged. Arithmetic operations that result in a Floating 
Point exception (i.e., the Enables bit was on) do not 
update the Flag bits.
This field is never reset by hardware and must be explic-
itly reset by software.
Refer to Table 6.9 for the meaning of each bit.

R/W Undefined Required

RM 1:0 Rounding mode. This field indicates the rounding mode 
used for most floating point operations (some operations 
use a specific rounding mode).
Refer to Table 6.10 for the meaning of the encodings of 
this field.

R/W Undefined Required

Table 6.9 Cause, Enable, and Flag Bit Definitions

Bit Name Bit Meaning

E Unimplemented Operation (this bit exists only in the 
Cause field)

Table 6.8 FCSR Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset State ComplianceName Bits
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V Invalid Operation

Z Divide by Zero

O Overflow

U Underflow

I Inexact

Table 6.10 Rounding Mode Definitions

RM Field 
Encoding Meaning

0 RN - Round to Nearest
Rounds the result to the nearest representable value. When two representable values are equally 
near, the result is rounded to the value whose least significant bit is zero (that is, even)

1 RZ - Round Toward Zero
Rounds the result to the value closest to but not greater than in magnitude than the result.

2 RP - Round Towards Plus Infinity
Rounds the result to the value closest to but not less than the result.

3 RM - Round Towards Minus Infinity
Rounds the result to the value closest to but not greater than the result.

Table 6.9 Cause, Enable, and Flag Bit Definitions

Bit Name Bit Meaning
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6.5.5 Floating Point Condition Codes Register (FCCR, CP1 Control Register 25)
(pre-Release 6)

Compliance Level: pre-Release 6: Required if floating point is implemented. 
Release 6 removes the FCCs and FCCR: this register is reserved in Release 6.

The Floating Point Condition Codes Register (FCCR) is an alternative way to read and write the floating point con-
dition code values that also appear in FCSR. Unlike FCSR, all eight FCC bits are contiguous in FCCR. Figure 6.15 
shows the format of the FCCR register; Table 6.11 describes the FCCR register fields.

Figure 6.15 FCCR Register Format  

6.5.6 Floating Point Exceptions Register (FEXR, CP1 Control Register 26)

Compliance Level: Required if floating point is implemented.

The Floating Point Exceptions Register (FEXR) is an alternative way to read and write the Cause and Flags fields 
that also appear in FCSR. Figure 6.16 shows the format of the FEXR register; Table 6.12 describes the FEXR regis-
ter fields.

Figure 6.16 FEXR Register Format

31 8 7 0

0
0000 0000 0000 0000 0000 0000

FCC

7 6 5 4 3 2 1 0

Table 6.11 FCCR Register Field Descriptions

Fields

Description Read/Write Reset State ComplianceName Bits

0 31:8 Must be written as zero; returns zero on read 0 0 Reserved

FCC 7:0 Floating point condition code. Refer to the description of 
this field in the FCSR register.

R/W
(pre-Release 6) 

R0
(Release 6)

Undefined
(pre-Release 6) 

0
(Release 6)

Required

31 18 17 16 15 14 13 12 11 7 6 5 4 3 2 1 0

0
0000 0000 0000 00

Cause
0

00 000
Flags

0
00

E V Z O U I V Z O U I



6.6 Formats and Sizes of Floating Point Data

MIPS® Architecture For Programmers Volume I-B: Introduction to the microMIPS32™ Architecture, Revision 6.00 96

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

 

6.5.7 Floating Point Enables Register (FENR, CP1 Control Register 28)

Compliance Level: Required if floating point is implemented.

The Floating Point Enables Register (FENR) is an alternative way to read and write the Enables, FS, and RM fields 
that also appear in FCSR. Figure 6.17 shows the format of the FENR register; Table 6.13 describes the FENR regis-
ter fields.

Figure 6.17 FENR Register Format  

6.6 Formats and Sizes of Floating Point Data

6.6.1 Formats of Values Used in FP Registers 

Unlike the CPU, the FPU does not interpret the binary encoding of source operands nor produce a binary encoding of 
results for every operation. The value held in a floating point register (FPR) is either uninterpreted, or one of the valid 
numeric formats: single, double, paired-single floating-point, word and long fixed point. 

The value in a FPR is set to one of these formats when the register is written: 

Table 6.12 FEXR Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

0 31:18, 
11:7, 1:0

Must be written as zero; returns zero on read 0 0 Reserved

Cause 17:12 Cause bits. Refer to the description of this field in the 
FCSR register.

R/W Undefined Required

Flags 6:2 Flags bits. Refer to the description of this field in the 
FCSR register.

R/W Undefined Optional

31 12 11 10 9 8 7 6 3 2 1 0

0
0000 0000 0000 0000 0000

Enables
0

000 0
FS RM

V Z O U I

Table 6.13 FENR Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

0 31:12, 6:3 Must be written as zero; returns zero on read 0 0 Reserved

Enables 11:7 Enable bits. Refer to the description of this field in the 
FCSR register.

R/W Undefined Required

FS 2 Flush to Zero bit. Refer to the description of this field in 
the FCSR register.

R/W Undefined Required

RM 1:0 Rounding mode. Refer to the description of this field in 
the FCSR register.

R/W Undefined Required
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• When a data transfer instruction writes binary data into a FPR (LWC1, LDC1, MTC1, MTHC1, pre-Release 6: 
LWXC1, LDXC1, LUXC1), then the binary value of the register is uninterpreted. 

• A FP computational or FP register move (MOV*.fmt) instruction which produces a result of type fmt puts a value 
of type fmt into the result register. 

• The format of the value of a FPR is unchanged when it is read by data transfer instruction (SWC1, SDC1, MFC1, 
MFHC1, pre-Release 6: SWXC1, SDXC1, SUXC1). 

When an FPR with an uninterpreted value is used as a source operand by an instruction that requires a value of format 
fmt, the binary contents are interpreted as a value of format fmt. A FP arithmetic instruction produces a value of the 
expected numeric format into the destination register.

If an FPR contains a value of numeric format fmt and an instruction uses the FPR as source operand of different 
numeric format, the result of the instruction is UNPREDICTABLE. 

6.6.2 Sizes of Floating Point Data

Any FPU instruction that writes a 32-bit result (S or W format) to the low 32-bits of a 64-bit FPR leaves the upper 
bits of the FPR UNPREDICTABLE. This includes the 32-bit FPU 32-bit load LWC1, the data transfer instruction 
MTC1, as well as any instruction that computes a 32 bit result, e.g., ADD.S, CMP.condn.S, CLASS.S.

The MIPS SIMD Architecture (MSA) is an architecture module that operates on 128-bit vector registers, which are 
overlaid upon the FPU register file: FPR[0] occupies the low 32-bits or 64-bits of the 128-bit MSA vector register 
W[0], and so on. Any FPU instruction that writes an FPR writes a 32-bit or 64-bit value, and leaves the upper bits of 
the corresponding MSA register UNPREDICTABLE, i.e., a 32-bit FPU instruction leaves bits 32-127 of the MSA 
register unpredictable, while a 64-bit FPU instruction leaves bits 64-127 UNPREDICTABLE.

6.7 FPU Exceptions

This section provides the following information FPU exceptions:

• Precise exception mode

• Descriptions of the exceptions

• Non-Arithmetic Instructions

FPU exceptions are implemented in the MIPS FPU architecture with the Cause, Enable, and Flag fields of the 
Control/Status register. The Flag bits implement IEEE exception status flags, and the Cause and Enable bits con-
trol exception trapping. Each field has a bit for each of the five IEEE exception conditions and the Cause field has an 
additional exception bit, Unimplemented Operation, used to trap for software emulation assistance.

6.7.1 Precise Exception Mode

In precise exception mode, a trap occurs before the instruction that causes the trap, or any following instruction, can 
complete and write its results. If desired, the software trap handler can resume execution of the interrupted instruction 
stream after handling the exception.
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The Cause field reports per-bit instruction exception conditions. The Cause bits are written during each floating 
point arithmetic operation to show any exception conditions that arise during the operation. The bit is set to 1 if the 
corresponding exception condition arises; otherwise it is set to 0.

A floating point trap is generated any time both a Cause bit and its corresponding Enable bit are set. This occurs 
either during the execution of a floating point operation or by moving a value into the FCSR. There is no Enable for 
Unimplemented Operation; this exception always generates a trap.

In a trap handler, exception conditions that arise during any trapped floating point operations are reported in the 
Cause field. Before returning from a floating point interrupt or exception, or before setting Cause bits with a move 
to the FCSR, software must first clear the enabled Cause bits by executing a move to FCSR to prevent the trap 
from being erroneously retaken.

User-mode programs cannot observe enabled Cause bits being set. If this information is required in a User-mode 
handler, it must be available someplace other than through the Status register.

If a floating point operation sets only non-enabled Cause bits, no trap occurs and the default result defined by the 
IEEE standard is stored (see Table 6.14). When a floating point operation does not trap, the program can monitor the 
exception conditions by reading the Cause field.

The Flag field is a cumulative report of IEEE exception conditions that arise as instructions complete; instructions 
that trap do not update the Flag bits. The Flag bits are set to 1 if the corresponding IEEE exception is raised, other-
wise the bits are unchanged. There is no Flag bit for the MIPS Unimplemented Operation exception. The Flag bits 
are never cleared as a side effect of floating point operations, but may be set or cleared by moving a new value into 
the FCSR.

Addressing exceptions are precise.

6.7.2 Exception Conditions

The following five exception conditions defined by the IEEE standard are described in this section: 

• Invalid Operation Exception

• Division By Zero Exception

• Underflow Exception

• Overflow Exception

• Inexact Exception

This section also describes a MIPS-specific exception condition, Unimplemented Operation, that is used to signal a 
need for software emulation of an instruction. Normally an IEEE arithmetic operation can cause only one exception 
condition; the only case in which two exceptions can occur at the same time are Inexact With Overflow and Inexact 
With Underflow.

At the program’s direction, an IEEE exception condition can either cause a trap or not cause a trap. The IEEE stan-
dard specifies the result to be delivered in case the exception is not enabled and no trap is taken. The MIPS architec-
ture supplies these results whenever the exception condition does not result in a precise trap (that is, no trap or an 
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imprecise trap). The default action taken depends on the type of exception condition, and in the case of the Overflow, 
the current rounding mode. The default results are summarized in Table 6.14.

6.7.2.1 Invalid Operation Exception 

The Invalid Operation exception is signaled if one or both of the operands are invalid for the operation to be per-
formed. The result, when the exception condition occurs without a precise trap, is a quiet NaN. 

These are invalid operations:

• One or both operands are a signaling NaN (except for non-arithmetic FPU instructions such as MOV.fmt).

• Addition or subtraction: magnitude subtraction of infinities, such as (+�) + (-�) or (-�) - (-�).

• Multiplication: 0  �, with any signs.

• Division: 0/0 or �/�, with any signs.

• Square root: An operand of less than 0 (-0 is a valid operand value).

• Conversion of a floating point number to a fixed-point format when either an overflow or an operand value of 
infinity or NaN precludes a faithful representation in that format.

• Some comparison operations in which one or both of the operands is a QNaN value. (The detailed definition of 
the compare instruction, C.cond.fmt, in Volume II has tables showing the comparisons that do and do not signal 
the exception.)

6.7.2.2 Division By Zero Exception

An implemented divide operation signals a Division By Zero exception if the divisor is zero and the dividend is a 
finite nonzero number. The result, when no precise trap occurs, is a correctly signed infinity. Divisions (0/0) and (�/0) 
do not cause the Division By Zero exception. The result of (0/0) is an Invalid Operation exception. The result of (�/0) 
is a correctly signed infinity.

Table 6.14 Default Result for IEEE Exceptions Not Trapped Precisely

Bit Description Default Action

V Invalid Operation Supplies a quiet NaN.

Z Divide by zero Supplies a properly signed infinity.

U Underflow Supplies a rounded result.

I Inexact Supplies a rounded result. If caused by an overflow without the overflow trap enabled, sup-
plies the overflowed result.

O Overflow Depends on the rounding mode, as shown below.

0 (RN) Supplies an infinity with the sign of the intermediate result.

1 (RZ) Supplies the format’s largest finite number with the sign of the intermediate result.

2 (RP) For positive overflow values, supplies positive infinity. For negative overflow values, sup-
plies the format’s most negative finite number.

3 (RM) For positive overflow values, supplies the format’s largest finite number. For negative over-
flow values, supplies minus infinity.



6.7 FPU Exceptions

MIPS® Architecture For Programmers Volume I-B: Introduction to the microMIPS32™ Architecture, Revision 6.00 100

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

6.7.2.3 Underflow Exception

This section describes IEEE standard compliant underflow exception handling, desired when FCSRFS=0. Some 

implementations may require software assistance to accomplish this, via the Unimplemented Operation exception 
handler. See the next section, 6.7.2.4, for Alternate Flush to Zero Underflow Handling, obtained by setting 
FCSRFS=1, which may be faster on some implementations.

Two related events contribute to underflow:

• Tininess: the creation of a tiny nonzero result between 2E_min which, because it is tiny, may cause some other 
exception later such as overflow on division

• Loss of accuracy: the extraordinary loss of accuracy during the approximation of such tiny numbers by denor-
malized numbers

Tininess: The IEEE standard allows choices in detecting these events, but requires that they be detected in the same 
manner for all operations. The IEEE standard specifies that “tininess” may be detected at either of these times: 

• After rounding, when a nonzero result computed as though the exponent range were unbounded would lie strictly 

between 2E_min

• Before rounding, when a nonzero result computed as though both the exponent range and the precision were 

unbounded would lie strictly between 2E_min

The MIPS architecture specifies that tininess be detected after rounding.

Loss of Accuracy: The IEEE standard specifies that loss of accuracy may be detected as a result of either of these 
conditions:

• Denormalization loss, when the delivered result differs from what would have been computed if the exponent 
range were unbounded

• Inexact result, when the delivered result differs from what would have been computed if both the exponent range 
and precision were unbounded

The MIPS architecture specifies that loss of accuracy is detected as inexact result.

Signalling an Underflow: When an underflow trap is not enabled, underflow is signaled only when both tininess and 

loss of accuracy have been detected. The delivered result might be zero, denormalized, or 2E_min. 

When an underflow trap is enabled (through the FCSR Enable field bit), underflow is signaled when tininess is 
detected regardless of loss of accuracy.

6.7.2.4 Alternate Flush to Zero Underflow Handling

Previous section 6.7.2.3 “Underflow Exception” describes IEEE standard compliant underflow exception handling, 
desired when FCSRFS=0. The current section describes Alternate Flush to Zero Underflow Handling, obtained by 

setting FCSRFS=1,which never requires the Unimplemented Operation exception handler to handle subnormal 

results, and which may be faster on some implementations even if software exception handler assistance is not 
required.
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When the FCSRFS is set:

Results: Every tiny non-zero result is replaced with zero of the same sign. 

Inputs: Prior to Release 5, it is implementation-dependent whether subnormal operand values are flushed to zero 
before the operation is carried out. As of Release 5, every input subnormal value is replaced with zero of the same 
sign.

Exceptions: Because the FCSRFS bit flushes subnormal results to zero, the Unimplemented Operation exception will 

never be produced for this reason. All the other floating point exceptions are signaled according to the new values of 
the operands or the results. In addition, when the FCSRFS bit is set:

• Tiny non-zero results are detected before rounding4. Flushing of tiny non-zero results causes Inexact and Under-
flow exceptions to be signaled.

• Flushing of subnormal input operands in all instructions except comparisons causes Inexact exception to be sig-
naled.

• For floating-point comparisons, the Inexact exception is not signaled when subnormal input operands are 
flushed.

• Inputs to non-arithmetic floating-point instructions are never flushed.

Should the alternate exception handling attributes of the IEEE Standard for Floating-Point Arithmetic 754-2008, Sec-
tion 8, be desired, the FCSRFS bit should be zero, the Underflow exception should be enabled. and a trap handler 

should be provided to carry out the execution of the alternate exception-handling attributes.

6.7.2.5 Overflow Exception 

An Overflow exception is signaled when the magnitude of a rounded floating point result, were the exponent range 
unbounded, is larger than the destination format’s largest finite number.

When no precise trap occurs, the result is determined by the rounding mode and the sign of the intermediate result.

6.7.2.6 Inexact Exception 

An Inexact exception is signaled if one of the following occurs:

• The rounded result of an operation is not exact

• The rounded result of an operation overflows without an overflow trap

6.7.2.7 Unimplemented Operation Exception

The Unimplemented Operation exception is a MIPS-defined exception that provides support for software emulation. 
This exception is not IEEE-compliant.

The MIPS architecture is designed so that a combination of hardware and software may be used to implement the 
architecture. Operations that are not fully supported in hardware cause an Unimplemented Operation exception so 
that software may perform the operation. 

4. Tiny non-zero results that would have been normal after rounding are flushed to zero.
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There is no Enable bit for this condition—it always causes a trap. After the appropriate emulation or other operation 
is done in a software exception handler, the original instruction stream can be continued.

Note: the Unimplemented Operation may be signalled when the FPU state involved exists, but where hardware can-
not complete the operation. In particular, the Unimplemented Operation may be signalled when hardware can com-
plete the operation for some, but not all, inputs. The Unimplemented Operation is not signalled when hardware does 

not implement the FPU state involved in the operation5. For example, the Unimplemented Operation is not signalled 
when a 32-bit SP-only FPU executes a 64-bit instruction, FIRS=FIRW=1, FIRD=FIRL=0. Instead, a Reserved Instruc-

tion exception is signalled.

5. With the possible exception of minor control bits.
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FPU Instruction Set

This chapter describes the microMIPS32instruction set architecture for the floating point unit (FPU) in the following 
sections: 

• “Binary Compatibility” on page 103

• “FPU Instructions” on page 103

• “Valid Operands for FPU Instructions” on page 112

• “FPU Instruction Formats” on page 114

7.1 Binary Compatibility

In addition to an Instruction Set Architecture, the MIPS architecture definition includes processing resources such as 
the set of Coprocessor general registers. 

 32-bit CPU may include a full 64-bit coprocessor, including a floating point unit that implements the same mode bit 
to select a 32-bit or 64-bit FPU register model. As of Release 5 of the Architecture, if floating point is implemented, 
then FR=1 is required, i.e., the 64-bit FPU, with the FR=1 64-bit FPU register model, is required. As of Release 6, 
64-bit FPUs (FIRF64=1) no longer support the 32-bit FPU register model, that is, StatusFR=0 is not supported, and 

StatusFR=1 is required and cannot be changed; whereas on a 32-bit FPU (FIRF64=0), 64-bit data formats D and L 

cannot be supported (FIRD=FIRL=0).

Release 6 does not provide the even-odd register pair implementation of 64-bit double-precision on a 32-bit register 
file. Release 6 provides only the flat, unpaired, 64-bit register model (as if StatusFR=1); or flat, unpaired, 32-bit 

floating point registers, on a 32-bit FPU that implements 32-bit single-precision (S) and word (W) operations. but not 
64-bit double-precision (D) or longword (L) operations, which trap (and can therefore be emulated).

In all architectures prior to Release 6, any processor implementing microMIPS64 can also run microMIPS32 binary 
programs, built for the same, or a lower release of the Architecture, without change. For Release 6, any processor 
implementing MIPS64 Release 6 can also run MIPS32 Release 6 binary programs without change, so long as the 
same instruction-set subsets are provided.

7.2 FPU Instructions

The FPU instructions comprise the following functional groups:

• Data Transfer Instructions

• Arithmetic Instructions

• Conversion Instructions
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• Formatted Operand-Value Move Instructions

• FPU Conditional Branch Instructions.

• Miscellaneous Instructions (Removed in Release 6)

FPU instructions are listed and described by type in Tables 7.2 through 7.18Table 7.2 Table 7.18. The instruction 
tables specify the MIPS architecture ISA(s) in which the instruction is defined. "MIPS32" indicates that the operation 
is present in all revisions of MIPS32, "MIPS64, MIPS32 Release 2” indicates that the operation is present in all ver-
sions of MIPS64 and is present in MIPS32 Release 2 and all later versions of MIPS32, unless otherwise noted; 
"Release 6" indicates that the operation is present in Release 6 and not in previous revisions; "Removed in Release 6” 
means that implementations of Release 6 are required to signal the Reserved Instruction exception when there is no 
higher priority exception, and when the instruction encoding has not been reused for a different instruction

7.2.1 Data Transfer Instructions

The FPU has two separate register sets: coprocessor general registers and coprocessor control registers. The FPU has 
a load/store architecture; all computations are done on data held in coprocessor general registers. The control regis-
ters are used to control FPU operation. Data is transferred between registers and the rest of the system with dedicated 
load, store, and move instructions. The transferred data is treated as unformatted binary data; no format conversions 
are performed, and therefore no IEEE floating point exceptions can occur.

The supported transfer operations are listed in Table 7.1.

7.2.1.1 Data Alignment in Loads, Stores, and Moves

pre-Release 6: All coprocessor loads and stores operate on naturally-aligned data items. An attempt to load or store to 
an address that is not naturally aligned for the data item causes an Address Error exception. 

Release 6 requires that a Release 6 compliant system support misaligned memory accesses (possibly by trapping and 
emulating) for all ordinary memory access instructions, including coprocessor loads and stores. Nevertheless, it is 
recommended that software naturally align FPU data in memory, for improved performance.

Regardless of byte-ordering (the endianness), the address of a word or doubleword is the smallest byte address in the 
object. For a big-endian machine, this is the most-significant byte; for a little-endian machine, this is the least-signif-
icant byte (endianness is described in “Byte Ordering and Endianness” on page 42).

7.2.1.2 Addressing Used in Data Transfer Instructions

The FPU has loads and stores using the same register+offset addressing as that used by the CPU. Moreover, for the 
FPU only, there are load and store instructions using register+register addressing. 

Release 6 removes loads and stores that have the Pre-Release 6 register+register addressing mode. Release 6 pro-
vides instructions such as LSA (Load Scaled Address) that perform the register+register*scale computation com-
monly involved in accessing data structures such as arrays, separate from the memory access.

Table 7.1 FPU Data Transfer Instructions

Transfer Direction Data Transferred

FPU general reg  Memory Word/doubleword load/store

FPU general reg  CPU general reg Word move

FPU control reg  CPU general reg Word move
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Tables 7.2 through 7.4 list the FPU data transfer instructions.  

7.2.2 Arithmetic Instructions

Arithmetic instructions operate on formatted data values. The results of most floating point arithmetic operations 
meet the IEEE standard specification for accuracy—a result is identical to an infinite-precision result that has been 
rounded to the specified format, using the current rounding mode. The rounded result differs from the exact result by 
less than one unit in the least-significant place (ULP).

7.2.2.1 FPU IEEE Arithmetic Instructions

FPU IEEE-approximate arithmetic operations are listed in Table 7.5.

Table 7.2 FPU Loads and Stores Using Register+Offset Address Mode

Mnemonic Instruction Defined in MIPS ISA

LDC1 Load Doubleword to Floating Point microMIPS32

LWC1 Load Word to Floating Point microMIPS32

SDC1 Store Doubleword to Floating Point microMIPS32

SWC1 Store Word to Floating Point microMIPS32

Table 7.3 FPU Loads and Using Register+Register Address Mode (Removed in Release 6)

Mnemonic Instruction Defined in MIPS ISA

LDXC1 Load Doubleword Indexed to Floating Point  microMIPS32

LUXC1 Load Doubleword Indexed Unaligned to Floating Point  microMIPS32

LWXC1 Load Word Indexed to Floating Point  microMIPS32

SDXC1 Store Doubleword Indexed to Floating Point  microMIPS32

SUXC1 Store Doubleword Indexed Unaligned to Floating Point  microMIPS32

SWXC1 Store Word Indexed to Floating Point  
microMIPS32

Table 7.4 FPU Move To and From Instructions

Mnemonic Instruction Defined in MIPS ISA

CFC1 Move Control Word From Floating Point microMIPS32

CTC1 Move Control Word To Floating Point microMIPS32

MFC1 Move Word From Floating Point microMIPS32

MFHC1 Move Word from High Half of Floating Point Register microMIPS32

MTC1 Move Word To Floating Point microMIPS32

MTHC1 Move Word to High Half of Floating Point Register microMIPS32

Table 7.5 FPU IEEE Arithmetic Operations

Mnemonic Instruction Defined in MIPS ISA

ABS.fmt Floating Point Absolute Value
(Arithmetic if FIRHas2008=0 or FCSRABS2008=0) 

microMIPS32
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7.2.2.2 FPU non-IEEE-approximate Arithmetic Instructions

Two operations, Reciprocal Approximation (RECIP) and Reciprocal Square Root Approximation (RSQRT), may be 
less accurate than the IEEE specification:

• The result of RECIP differs from the exact reciprocal by no more than one ULP. 

• The result of RSQRT differs from the exact reciprocal square root by no more than two ULPs. 

Within these error limits, the results of these instructions are implementation-specific.

A list of FPU-approximate arithmetic operations is given in Table 7.6. 

ABS.fmt (PS) Floating Point Absolute Value (Paired Single)
(Arithmetic if FIRHas2008=0 or FCSRABS2008=0)

microMIPS32
Removed in Release 6

ADD.fmt Floating Point Add microMIPS32

ADD.fmt (PS) Floating Point Add (Paired Single) microMIPS32
Removed in Release 6

C.cond.fmt Floating Point Compare (setting FCC) microMIPS32
Removed in Release 6

C.cond.fmt (PS) Floating Point Compare (Paired Single) (setting FCC) microMIPS32
Removed in Release 6

CMP.cond.fmt Floating Point Compare (setting FPR) Release 6

DIV.fmt Floating Point Divide microMIPS32

MUL.fmt Floating Point Multiply microMIPS32

MUL.fmt (PS) Floating Point Multiply (Paired Single) microMIPS32
Removed in Release 6

NEG.fmt Floating Point Negate 
(Arithmetic if FIRHas2008=0 or FCSRABS2008=0)

microMIPS32

NEG.fmt (PS) Floating Point Negate (Paired Single)
(Arithmetic if FIRHas2008=0 or FCSRABS2008=0)

microMIPS32
Removed in Release 6

SQRT.fmt Floating Point Square Root microMIPS32

SUB.fmt Floating Point Subtract microMIPS32

SUB.fmt (PS) Floating Point Subtract (Paired Single) microMIPS32
Removed in Release 6

Table 7.6 FPU-Approximate Arithmetic Operations 

Mnemonic Instruction Defined in MIPS ISA

RECIP.fmt Floating Point Reciprocal Approximation microMIPS32

RSQRT.fmt Floating Point Reciprocal Square Root Approximation microMIPS32

Table 7.5 FPU IEEE Arithmetic Operations (Continued)

Mnemonic Instruction Defined in MIPS ISA
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7.2.2.3 FPU Multiply-add Instructions 

Four compound-operation instructions perform variations of multiply-accumulate—that is, multiply two operands, 
accumulate the result to a third operand, and produce a result. These instructions are listed in Table 7.7.

Release 6 removes these instructions and replaces them by fused multiply-add instructions, listed in Table 7.8.

Arithmetic and rounding behavior: The product is rounded according to the current rounding mode prior to the 
accumulation. The accumulated result is also rounded. This model meets the IEEE-754-1985 accuracy specification; 
the result is numerically identical to an equivalent computation using a sequence of multiply, add/subtract, or negate 
instructions. Similarly, exceptions and flags behave as if the operation was implemented with a sequence of multiply, 
add/subtract and negate instructions. This behavior is often known as “Non-Fused”.

Table 7.7 lists the FPU non-fused Multiply-Accumulate arithmetic operations. 

7.2.2.4 FPU Fused Multiply-Accumulate instructions (Release 6)

Release 6 provides IEEE 2008 compliant fused multiply-accumulate add (MADDF.fmt) and subtract (MSUBF.fmt) 
instructions. These instructions are listed in Table 7.8.

Arithmetic and rounding behavior: The product is calculated to mimic infinite precision. The accumulated result is 
rounded according to the current rounding mode. This model meets the IEEE-754-2008 specification. This behavior 
is often known as “Fused”.

Table 7.8 lists the FPU Fused Multiply-Accumulate arithmetic operations. 

Table 7.7 FPU Multiply-Accumulate Arithmetic Operations (Removed in Release 6)  

Mnemonic Instruction Defined in MIPS ISA

MADD.fmt Floating Point Multiply Add microMIPS32
Removed in Release 6

MADD.fmt (PS) Floating Point Multiply Add (Paired Single) microMIPS32
Removed in Release 6

MSUB.fmt Floating Point Multiply Subtract microMIPS32
Removed in Release 6

MSUB.fmt (PS) Floating Point Multiply Subtract (Paired Single) microMIPS32
Removed in Release 6

NMADD.fmt Floating Point Negative Multiply Add microMIPS32
Removed in Release 6

NMADD.fmt (PS) Floating Point Negative Multiply Add (Paired Single) microMIPS32
Removed in Release 6

NMSUB.fmt Floating Point Negative Multiply Subtract microMIPS32
Removed in Release 6

NMSUB.fmt (PS) Floating Point Negative Multiply Subtract (Paired Single) microMIPS32
Removed in Release 6

Table 7.8 FPU Fused Multiply-Accumulate Arithmetic Operations (Release 6)

Mnemonic Instruction Defined in MIPS ISA

MADDF.fmt Fused Floating Point Multiply Add microMIPS32 Release 6

MSUBF.fmt Fused Floating Point Multiply Subtract microMIPS32 Release 6
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7.2.2.5 Floating Point Comparison Instructions

Floating point comparison instructions are listed in Table 7.9.

Prior to Release 6, the C.cond.fmt instruction compares two floating point values, writing the condition to one of the 
floating point condition codes. Release 6 removes the FCCs and related instructions.

Release 6 adds the CMP.cond.fmt instruction that compares two floating point values and writes a bit mask of all 0s 
or all 1s the width of the fmt specified. Bits beyond the format are UNPREDICTABLE. This mask can be used in log-
ical operations such as MSA vector operations, or the least-significant bit, bit 0, can be tested by FPU branches such 
as BC1EQZ/BC1NEZ, or by floating point select instructions SEL.fmt, SELEQZ.fmt, SELNEZ.fmt. This instruction 
adds several comparisons that the C.cond.fmt instruction does not provide. It can produce both polarities for all com-
parisons.

Release 6 adds the CLASS.fmt instruction, which corresponds to the class operation of the IEEE Standard for Float-
ing-Point Arithmetic 754TM-2008. It produces a bitmask whose set bits indicate important properties of its argu-
ment: SNaN, QNaN, +/- infinity, normal, subnormal, zero. CLASS.fmt does not cause an exception if its operand is a 
NaN, not even for an SNaN.

Release 6 adds the MAX/MIN/MAXA/MINA.fmt family of instructions that correspond to IEEE 2008 maxNum, 
minNum, maxNumArg, and MinNumArg. They are NaN suppressing, returning a numeric value even if one of the 
arguments is a NaN. MAXA and MINA return the value that has the largest magnitude without changing the sign.

Table 7.9 Floating Point Comparison Instructions 

7.2.3 Conversion Instructions

These instructions perform conversions between floating-point and fixed-point data types. Each instruction converts 
values from a number of operand formats to a particular result format. Some conversion instructions use the rounding 
mode specified in the Floating Control/Status register (FCSR), while others specify the rounding mode directly.

CVT.W.fmt and CVT.L.fmt convert from fmt to W and L respectively - 2’s complement binary integers stored in the 
floating point registers. 

Release 6 adds the RINT.fmt instruction that changes a floating-point value to an integer—the result is an integer 
value, but represented in floating-point format.

Mnemonic Instruction Defined in MIPS ISA

C.cond.fmt Floating Point Compare (setting FCC) microMIPS32
Removed in Release 6

C.cond.fmt (PS) Floating Point Compare (Paired Single) (setting FCC) microMIPS32
Removed in Release 6

CLASS.fmt Scalar Floating-Point Class Mask microMIPS32 Release 6

CMP.cond.fmt Floating Point Compare (setting FPR) microMIPS32 Release 6

MAX.fmt Floating Point Maximum microMIPS32 Release 6

MAXA.fmt Floating Point Value with Maximum Absolute Value microMIPS32 Release 6

MIN.fmt Floating Point Minimum microMIPS32 Release 6

MINA.fmt Floating Point Value with Minimum Absolute Value microMIPS32 Release 6
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Tables 7.10 and 7.11 list the FPU conversion instructions according to their rounding mode.  

7.2.4 Formatted Operand-Value Move Instructions

These instructions move formatted operand values among FPU general registers. A particular operand type must be 
moved by the instruction that handles that type. There are four kinds of move instructions:

• Unconditional move

• Instructions which modify the sign bit (ABS.fmt and NEG.fmt when FCSRABS2008=1)

• FPU conditional move instructions (removed in Release 6)

• Conditional move that tests an FPU true/false condition code

• Conditional move that tests a CPU general-purpose register against zero

• FPU conditional select instructions, based on testing bit 0 of an FPT (Release 6)

• Full conditional select between two FPRs (SEL.fmt)

Table 7.10 FPU Conversion Operations Using the FCSR Rounding Mode 

Mnemonic

Instruction

Defined in MIPS ISA

CVT.D.fmt Floating Point Convert to Double Floating Point microMIPS32

CVT.L.fmt Floating Point Convert to Long Fixed Point microMIPS32

CVT.PS.S Floating Point Convert Pair to Paired Single microMIPS32
Removed in Release 6

CVT.S.fmt Floating Point Convert to Single Floating Point microMIPS32

CVT.S.fmt (PL, PU) Floating Point Convert to Single Floating Point
(Paired Lower, Paired Upper)

microMIPS32
Removed in Release 6

CVT.W.fmt Floating Point Convert to Word Fixed Point microMIPS32

RINT.fmt Scalar floating-point round to integer microMIPS32 Release 6

Table 7.11 FPU Conversion Operations Using a Directed Rounding Mode 

Mnemonic Instruction Defined in MIPS ISA

CEIL.L.fmt Floating Point Ceiling to Long Fixed Point microMIPS32

CEIL.W.fmt Floating Point Ceiling to Word Fixed Point microMIPS32

FLOOR.L.fmt Floating Point Floor to Long Fixed Point microMIPS32

FLOOR.W.fmt Floating Point Floor to Word Fixed Point microMIPS32

ROUND.L.fmt Floating Point Round to Long Fixed Point microMIPS32

ROUND.W.fmt Floating Point Round to Word Fixed Point microMIPS32

TRUNC.L.fmt Floating Point Truncate to Long Fixed Point microMIPS32

TRUNC.W.fmt Floating Point Truncate to Word Fixed Point microMIPS32
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• Conditional select that selects between an FPR and zero (SELRQZ.fmt, SELNEZ.fmt)

Conditional move instructions operate in a way that may be unexpected. They always force the value in the destina-
tion register to become a value of the format specified in the instruction. If the destination register does not contain an 
operand of the specified format before the conditional move is executed, the contents become UNPREDICTABLE. 
(For more information, see the individual descriptions of the conditional move instructions in Volume II.)

The FPU unconditional move, absolute value, and negate instructions are listed in Table 7.12.

The FPU conditional move instructions are listed in Table 7.13 andTable 7.14

Table 7.12 FPU Formatted Unconditional Operand Move Instructions

Mnemonic Instruction Defined in MIPS ISA

ABS.fmt Floating Point Absolute Value
(Non-Arithmetic if FCSRABS2008=1) 

microMIPS32

ABS.fmt (PS) Floating Point Absolute Value (Paired Single)
(Non-Arithmetic if FCSRABS2008=1)

microMIPS32
Removed in Release 6

MOV.fmt Floating Point Move microMIPS32

MOV.fmt (PS) Floating Point Move (Paired Single) microMIPS32
Removed in Release 6

NEG.fmt Floating Point Negate 
(Non-Arithmetic if FCSRABS2008=1)

microMIPS32

NEG.fmt (PS) Floating Point Negate (Paired Single)
(Non-Arithmetic if FCSRABS2008=1)

microMIPS32
Removed in Release 6

Table 7.13 FPU Conditional Move on True/False Instructions (Removed in Release 6)

Mnemonic Instruction Defined in MIPS ISA

MOVF.fmt Floating Point Move Conditional on FP False microMIPS32
Removed in Release 6

MOVF.fmt (PS) Floating Point Move Conditional on FP False 
(Paired Single)

microMIPS32
Removed in Release 6

MOVT.fmt Floating Point Move Conditional on FP True microMIPS32
Removed in Release 6

MOVT.fmt (PS) Floating Point Move Conditional on FP True
(Paired Single)

microMIPS32
Removed in Release 6

Table 7.14 FPU Conditional Move on Zero/Nonzero Instructions (Removed in Release 6)

Mnemonic Instruction Defined in MIPS ISA

MOVN.fmt Floating Point Move Conditional on Nonzero microMIPS32
Removed in Release 6

MOVN.fmt (PS) Floating Point Move Conditional on Nonzero 
(Paired Single)

microMIPS32
Removed in Release 6

MOVZ.fmt Floating Point Move Conditional on Zero microMIPS32
Removed in Release 6

MOVZ.fmt (PS) Floating Point Move Conditional on Zero 
(Paired Single)

microMIPS32
Removed in Release 6
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The Release 6 FPU conditional select instructions are listed in Table 7.15

7.2.5 FPU Conditional Branch Instructions.

In releases prior to Release 6, the FPU has PC-relative conditional branch instructions that test condition codes set by 
FPU compare instructions (C.cond.fmt), and eight condition codes are defined for use in compare and branch instruc-
tions. For backward compatibility with previous revisions of the ISA, condition code bit 0 and condition code bits 1 
through 7 are in discontiguous fields in FCSR. 

Release 6 removes the FPU condition codes and related instructions, such as C.cond.fmt.

Release 6 provides PC-relative conditional branch operations that test the least significant bit, bit 0, of an FPR 
(BC1EQZ, BC1NEZ). This FPU truth value is produced by a Release 6 compare instruction (CMP.cond.fmt) that sets 
a mask of all 0s or all 1s in an FPR destination register, the width of the operands; or by similar integer compare oper-
ations.

All branches (before the introduction of compact branches in microMIPS and Release 6) have an architectural delay 
of one instruction. When a branch is taken, the instruction immediately following the branch instruction is said to be 
in the branch delay slot, and it is executed before the branch to the target instruction takes place. 

In releases prior to Release 6, conditional branches come in two versions, depending upon how they handle an 
instruction in the delay slot when the branch is not taken and execution falls through:

• Branch instructions execute the instruction in the delay slot.

• pre-Release 6: Branch likely instructions do not execute the instruction in the delay slot if the branch is not 
taken (they are said to nullify the instruction in the delay slot). Branch likely instructions are removed in Release 
6 and microMIPS.

Table 7.16 lists the FPU conditional branch instructions;    

Table 7.15 FPU Conditional Select Instructions (Release 6)

Mnemonic Instruction Defined in MIPS ISA

SEL.fmt Floating Point Select microMIPS32 Release 6

SELEQZ.fmt Floating Point Select if condition Equal to Zero, Else 0.0 microMIPS32 Release 6

SELNEZ.fmt Floating Point Select if condition is Not Equal to Zero, Else 0.0 microMIPS32 Release 6

Table 7.16 FPU Conditional Branch Instructions (Removed in Release6)

Mnemonic Instruction Defined in MIPS ISA

BC1F Branch on FP False microMIPS
Removed in Release 6

BC1T Branch on FP True microMIPS
Removed in Release 6
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Table 7.17 lists the Release 6 FPU conditional branch instructions, which branch according to an FP condition in bit 
0 of an operand register. 

7.2.6 Miscellaneous Instructions (Removed in Release 6)

TBD: add Release 6 miscellaneous FPU instructions? But at the moment, this section is empty for Release 6.

The MIPS ISA defines various miscellaneous instructions that conditionally move one CPU general register to 
another, based on an FPU condition code. It also defines an instruction to align a misaligned pair of paired-single val-
ues (ALNV.PS) and a quartet of instructions that merge a pair of paired-single values (PLL.PS, PLU.PS, PUL.PS, 
PUU.PS). All these instructions are removed in Release 6.

Table 7.18 lists the conditional move instructions. 

7.3 Valid Operands for FPU Instructions

The FPU arithmetic, conversion, and operand move instructions operate on formatted values with different precision 
and range limits and produce formatted values for results. Each representable value in each format has a binary 
encoding that is read from or stored to memory. The binary encodings of the operand formats are described in Volume 
II-B: The microMIPS Instruction Set. A conversion instruction specifies the result type in the function field; the result 
of other operations is given in the same format as the operands. 

In Release 6, certain instructions (CMP.condn.fmt) use the W and L integer formats to indicate the S and D floating-
point formats, respectively. Release 6 removes the PS format.

Table 7.17 FPU Conditional Branch Instructions (Release 6)

Mnemonic Instruction Defined in MIPS ISA

BC1EQZ Branch on FP condition Equal to Zero microMIPS32 Release 6

BC1NEZ Branch on FP condition Not Equal to Zero microMIPS32 Release 6

Table 7.18 Miscellaneous Instructions (Removed in Release 6)

Mnemonic Instruction Defined in MIPS ISA

ALNV.PS FP Align Variable microMIPS32
Removed in Release 6

MOVN.fmt Move Conditional on FP False microMIPS32
Removed in Release 6

MOVZ.fmt Move Conditional on FP True microMIPS32
Removed in Release 6

PLL.PS Pair Lower Lower microMIPS32
Removed in Release 6

PLU.PS Pair Lower Upper microMIPS32
Removed in Release 6

PUL.PS Pair Upper Lower microMIPS32
Removed in Release 6

PUU.PS Pair Upper Upper microMIPS32
Removed in Release 6
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The encodings of the fmt and fmt3 field are shown in Table 7.19.

The result of an instruction using operand formats marked U in Table 7.20 is not currently specified by the architec-
ture and causes a Reserved Instruction exception.

Table 7.19 FPU Operand Formats

Instruction 
Mnemonic

Size

Data TypeName Bits

S single 32 Floating point

D double 64 Floating point

W word 32 Fixed point

L long 64 Fixed point

PS paired single 64 (2x32) Floating point

Table 7.20 Valid Formats for FPU Operations 

Mnemonic Operation

Operand Fmt

Float Fixed

S D PS1 W L

ABS Absolute value   

ADD Add   

C.cond Floating Point Compare (FCC result)   

CEIL.L, 
(CEIL.W)

Convert to longword (word) fixed point, round 
toward �

 

CVT.D Convert to double floating point   

CVT.L Convert to longword fixed point  

CVT.S Convert to single floating point   

CVT. PU, PL Convert to single floating point (paired upper, 
paired lower)



CVT.W Convert to 32-bit fixed point  

DIV Divide  

FLOOR.L, 
(FLOOR.W)

Convert to longword (word) fixed point, round 
toward �

 

MADD.S Multiply-Add Single 

MADD.D Multiply-Add Double 

MADD.PS Multiply-Add Paired-Single 

MOV Move Register   

MOVC FP Move conditional on condition   

MOVN FP Move conditional on GPRzero   

MOVZ FP Move conditional on GPRzero   

MSUB.S Multiply-Subtract Single 

MSUB.D Multiply-Subtract Double 
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7.4 FPU Instruction Formats

An FPU instruction is a single 32-bit word. Instruction Formats are shown in Volume II-B: The microMIPS instruc-
tion set.

MSUB.PS Multiply-Subtract Paired-Single 

MUL Multiply   

NEG Negate   

NMADD.S Negative Multiply-Add Single 

NMADD.D Negative Multiply-Add Double 

NMADD.PS Negative Multiply-Add Paired-Single 

NMSUB.S Negative Multiply-Subtract Single 

NMSUB.D Negative Multiply-Subtract Double 

NMSUB.PS Negative Multiply-Subtract Paired-Single 

PLL, PLU, PUL, 
PUU

Pair (Lower Lower, Lower Upper, Upper 
Lower, Upper Upper)



RECIP Reciprocal Approximation  

ROUND.L, 
(ROUND.W)

Convert to longword (word) fixed point, round 
to nearest/even

 

RSQRT Reciprocal square root approximation  

SQRT Square Root  

SUB Subtract   

TRUNC.L, 
(TRUNC.W)

Convert to longword (word) fixed point, round 
toward zero

 

Key: ValidBlank - not represented in format encoding

1. PS is deprecated by Release 6. 

Table 7.20 Valid Formats for FPU Operations 

Mnemonic Operation

Operand Fmt

Float Fixed

S D PS1 W L
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Pipeline Architecture

This Appendix describes the basic pipeline architecture, along with two types of improvements: superpipelines and 
superscalar pipelines. (Pipelining and multiple issuing are not defined by the ISA, but are implementation-depen-
dent.)

A.1 Pipeline Stages and Execution Rates

MIPS processors all use some variation of a pipeline in their architecture. A pipeline is divided into the following dis-
crete parts, or stages, shown in Figure A.1:

• Fetch

• Arithmetic operation

• Memory access

• Write back

Figure A.1 One-Deep Single-Completion Instruction Pipeline

In the example shown in Figure A.1, each stage takes one processor clock cycle to complete. Thus it takes four clock 
cycles (ignoring delays or stalls) for the instruction to complete. In this example, the execution rate of the pipeline is 
one instruction every four clock cycles. Conversely, because only a single execution can be fetched before comple-
tion, only one stage is active at any time.

A.2 Parallel Pipeline

Figure A.2 illustrates a remedy for the latency (the time it takes to execute an instruction) inherent in the pipeline 
shown in Figure A.1. 

Instruction 1

Fetch ALU Memory Write

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Stage 1 Stage 2 Stage 3 Stage 4

Execution Rate

Cycle 5 Cycle 6 Cycle 7 Cycle 8

Cycle 3

Instruction 2

Stage 1 Stage 2 Stage 3 Stage 4

Fetch ALU Memory Write
Instruction completion



A.3 Superpipeline

MIPS® Architecture For Programmers Volume I-B: Introduction to the microMIPS32™ Architecture, Revision 6.00 116

Copyright © 2015 Imagination Technologies LTD. and/or its Affiliated Group Companies. All rights reserved.

Instead of waiting for an instruction to be completed before the next instruction can be fetched (four clock cycles), a 
new instruction is fetched each clock cycle. There are four stages to the pipeline so the four instructions can be exe-
cuted simultaneously, one at each stage of the pipeline. It still takes four clock cycles for the first instruction to be 
completed; however, in this theoretical example, a new instruction is completed every clock cycle thereafter. Instruc-
tions in Figure A.2 are executed at a rate four times that of the pipeline shown in Figure A.2.

Figure A.2 Four-Deep Single-Completion Pipeline

A.3 Superpipeline

Figure A.3 shows a superpipelined architecture. Each stage is designed to take only a fraction of an external clock 
cycle—in this case, half a clock. Effectively, each stage is divided into more than one substage. Therefore more than 
one instruction can be completed each cycle.

Figure A.3 Four-Deep Superpipeline

A.4 Superscalar Pipeline

A superscalar architecture also allows more than one instruction to be completed each clock cycle. Figure A.4 shows 
a four-way, five-stage superscalar pipeline.

Cycle 1

Instruction 1

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

Instruction 2

Instruction 3

Instruction 4

Fetch ALU Memory Write

Fetch ALU Memory Write

Fetch ALU Memory Write

Fetch ALU Memory Write

Clock

Phase

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

Fetch ALU Mem Write

Fetch ALU Mem Write

Fetch ALU Mem Write

Fetch ALU Mem Write

Fetch ALU Mem Write

Fetch ALU Mem Write

Fetch ALU Mem Write

Fetch ALU Mem Write
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Figure A.4 Four-Way Superscalar Pipeline
Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction 8

Five-stage

Four-way

IF = instruction fetch
ID = instruction decode and dependency
IS = instruction issue
EX = execution
WB = write back

IF ID IS EX WB

IF ID IS EX WB

IF ID IS EX WB

IF ID IS EX WB

IF ID IS EX WB

IF ID IS EX WB

IF ID IS EX WB

IF ID IS EX WB
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Misaligned Memory Accesses

Prior to Release 5 of the MIPS architectures, “natural” alignment was required of memory operands for most memory 
operations. Other than the Load Store Left (LSInstructions such as LWL and LWR. all memory operands were 
required to be were provided so that unaligned accesses can be performed by instruction sequences. To accomodaate 
umaligned memory access, the LWS and LSL instructions perform unaligned memory access using a sequence of 
instrucitons. In Release 5, the 128-bit vector memory accesses in load and store instructions (included in the MIPS 
SIMD Architecture) are not required to be naturally aligned.

Release 6 requires misaligned memory access support for all ordinary memory access instructions (for example, LW/
SW, LWC1/SWC1). However, misaligned support is not provided for certain special memory accesses such as atom-
ics (for example, LL/SC). Each instruction description in Volume II of the MIPS Architecture document set indicates 
whether misalignment support is provided. 

Release 6 removes the unaligned memory access instructions (for example, LWL/LWR, LDL/LDR); these instruc-
tions are required to signal the Reserved Instruction exception. Release 6 also introduces the ALIGN instruction, 
which can be used following a pair of LW instructions that the programmer has ensured are aligned, in order to emu-
late a misaligned load without using LWL/LWR and without the possible performance penalty of a misaligned access.

The behavior, semantics, and architecture specifications of misaligned memory accesses are described in this appen-
dix.

B.1 Terminology

This document uses the following terminology:

• “Unaligned” and “misaligned” generically refer to any memory value or reference not naturally aligned, but they 
may be used, for brevity, to refer to certain classes of memory access instructions as described below.

• The term “split” is used to refer to operations which cross important boundaries, whether architectural (for exam-
ple, “page split” or “segment split”) or microarchitectural (for example, “cache line split”). 

• Unaligned Load and Store Instructions

• The MIPS Architecture specification has contained, since its beginning, special so-called Unaligned Load 
and Store instructions such as LWL/LWR and SWL/SWR (Load Word Left/Right, etc.)

• When necessary, we will call these “explicit unaligned memory access instructions”, as distinct from 
“instructions that permit implicit misaligned memory accesses”, such as MSA vector loads and stores. How-
ever, where it is obvious from the context what we are talking about, we may say simply “unaligned” rather 
than the longer “explicit unaligned memory access instructions”, and “misaligned” rather than “instructions 
that permit implicit misaligned memory accesses”.

• Misaligned memory access instructions
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• More precisely, these are instructions that permit, and are required to support, implicit misaligned memory 
accesses.

• Release 5 of the MIPS Architecture defines instructions, the MSA vector loads and stores, which may be 
aligned (for example, 128-bits on a 128 bit boundary), partially aligned (for example, “element aligned”, see 
below), or misaligned.

• Release 6 makes almost all memory access instructions into “instructions that permit implicit misaligned 
memory accesses” (with exceptions such as LL/SC).

• Aligned memory access instructions

• More precisely, these are instructions that do not permit, and which may be required to produce an excep-
tion, for misaligned addresses.

• Prior to Release 6, all MIPS memory access instructions, for example, LW/SW, LL/SC, etc., required “natu-
ral alignment”, except for the “Unaligned Load and Store Instructions”, LWL/LWR and SWL/SWR.

• Release 6 still requires alignment for a smaller set of memory access instructions, such as LL/SC. 

• Misalignment is dynamic, known only when the address is computed (rather than static, explicit in the instruc-
tion as it is for LWL/LWR, etc.). We distinguish accesses for which the alignment is not yet known (“potentially 
misaligned”), from those whose alignment is known to be misaligned (“actually misaligned”), and from those for 
which the alignment is known to be naturally aligned (“actually aligned”). For example, LL/SC instructions are 
never potentially misaligned, i.e., are always actually aligned (if they do not trap). MSA vector loads and stores 
are potentially misaligned, although the programmer or compiler may prevent actual misalignment.

B.2 Hardware Versus Software Support for Misaligned Memory Accesses

Processors that implement versions of the MIPS Architectures prior to Release 5 require “natural” alignment of mem-
ory operands for most memory operations: apart from unaligned load and store instructions such as LWL/LWR and 
SWL/SWR, all memory accesses that are not naturally aligned are required to signal an Address Error exception.

Systems that implement Release 5 or higher of the MIPS Architectures require support for misaligned memory oper-
ands for MSA (MIPS SIMD Architecture) vector loads and stores (128-bit quantities). In Release 5, all misaligned 
memory accesses other than MSA continue to produce the Address Error exception.

Systems that implement Release 6 or higher of the MIPS Architectures (Release 6) require support for misaligned 
memory operands for almost all memory access instructions, including:

• Byte loads and stores of course cannot be misaligned: LB, LBE, LBU, LBUE. Nor can cache PREF instruc-
tions, etc.

• CPU loads and stores: LH/SH, LHU/SHU, LW/SW, LWU/SWU, and MIPS64 LD/SD

• The EVA versions of the above: LHE, LWE, MIPS64 LDE

• FPU loads and stores: LWC1/SWC1, LDC1/SDC1, LWXC1/SWXC1, LDXC1/SDXC1, LUXC1/SUXC1

• Coprocessor loads and stores: LWC2/SDC2, LDC2/SDC2

These are collectively called the “Ordinary Memory Accesses”.
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In particular, misalignment support is NOT provided for the load-linked/store conditional instructions, namely, 
MIPS32 LL/SC, MIPS64 LLD/SCD, and EVA versions LLE/SCE. All such instructions continue to produce the 
Address Error exception if misaligned.

Note the phrasing “Systems that implement Release 5 or higher”. Processor hardware may provide varying degrees of 
support for misaligned accesses, producing the Address Error exception in certain cases. The software Address Error 
exception handler may then emulate the required misaligned memory access support in software. The term “systems 
that implement Release 5 or higher” includes such systems that combine hardware and software support. The proces-
sor in such a system by itself may not be fully Release 5 compliant because it does not support all misaligned memory 
references, but the combination of hardware and exception handler software may be.

Here are some examples of processor hardware providing varying degrees of support for misaligned accesses. The 
examples are named so that the different implementations can be discussed.

Full Misalignment Support: Some processors may implement all the required misaligned memory access support in 
hardware.

Trap (and Emulate) All Misaligneds: For example, it is permitted for a processor implementation to produce the 
Address Error exception for all misaligned accesses, with the appropriate exception handler software, 

Trap (and Emulate) All Splits:
Intra-Cache-Line Misaligneds Support:
more accurately: Misaligneds within aligned 64B regions Support: For example, it is permitted for an implementa-
tion to perform misaligned accesses that fall entirely within a cache line in hardware, but to produce the Address 
Error exception for all cache line splits and page splits.

Trap (and Emulate Page) Splits:
Intra-Page Misaligneds Support:
more accurately: Misaligneds within aligned 4KB regions Support: For example, it is permitted for a processor 
implementation to perform cache line splits in hardware, but to produce the Address Error exception for page splits.

Distinct misaligned handling by memory type: For example, an implementation may perform misaligned accesses 
as described above for WB (Writeback) memory, but may produce the Address Error exception for all misaligned 
accesses involving the UC memory type.

Other mixes of hardware and software support are possible.

It is expected that Full Misaligned Support and Trap and Emulate Page Splits will be the most common implementa-
tions.

In general, actually misaligned memory accesses may be significantly slower than actually aligned memory accesses, 
even if an implementation provides Full Misaligned Support in hardware. Programmers and compilers should avoid 
actually misaligned memory accesses. Potentially but not actually misaligned memory accesses should suffer no per-
formance penalty.
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B.3 Detecting Misaligned Support

For Release 5 MSA misalignment support, it is sufficient to check that MSA is present, as defined by the appropriate 

reference manual1: i.e., support for misaligned MSA vector load and store instructions is required if the Config3 
MSAP bit is set (CP0 Register 16, Select 3, bit 28).

For Release 6 misalignment support, it is sufficient to check the architecture revision level (CP0 ConfigAR), as 

defined by the Privileged Resource Architecture.2

The need for software to emulate misaligned support as described in the previous section must be detected by an 
implementation specific manner, and is not defined by the Architecture.

B.4 Misaligned Semantics

B.4.1 Misaligned Fundamental Rules: Single-Thread Atomic, but not Multi-thread

The following principles are fundamental for the other architecture rules relating to misaligned support. 

Architecture Rule B-1: Misaligned memory accesses are atomic with respect to a single thread (with limited 
exceptions noted in other rules).

(Indeed, this is true for all memory access instructions, and for all instructions in general.)

For example, all interrupts and exceptions are delivered either completely before or completely after a misaligned 
(split) memory access. Such an exception handler is not entered with part of a misaligned load destination register 
written and part unwritten. Similarly, it is not entered with part of a misaligned store memory destination written, and 
part unwritten.

As a counter example, uncorrectable ECC errors that occur halfway through a split store may violate single-thread 
atomicity.

Hardware page table walking is not considered to covered by single-thread atomicity.

Architecture Rule B-2: Memory accesses that are actually misaligned are not guaranteed to be atomic as observed 
from other threads, processors, and I/O devices.

B.4.2 Permissions and Misaligned Memory Accesses

Architecture Rule B-3: It must be permitted to access every byte specified by a memory access.

Architecture Rule B-4: It is NOT required that permissions, etc., be uniform across all bytes.

This applies to all memory accesses, but in particular applies to misaligned split accesses, which can cross page 
boundaries and/or other boundaries that have different permissions. It *IS* permitted for a misaligned, in particular a 

1. For example, MIPS® Architecture for Programmers, Volume IV-j: The MIPS32® SIMD Architecture Module, Document 
Number MD00866; or the corresponding documents for other MIPS Architectures such as MIPS64®.

2. For example, MIPS® Architecture Reference Manual, Volume III: The MIPS32® and microMIPSTM Privileged Resource 
Architecture, Document Number MD00088; or the corresponding documents for other MIPS Architectures such as 
MIPS64®.
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page split memory access, to cross permission boundaries, as long as the access is permitted by permissions on both 
sides of the boundary. Namely, it is not required that the permissions be identical for all parts, just that all parts are 
permitted.

Architecture Rule B-5: If any part of the misaligned memory access is not permitted, then the entire access must take 
the appropriate exception.

Architecture Rule B-6: If multiple exceptions arise for a given part of a misaligned memory access, then the same 
prioritization rules apply as for a non-misaligned memory access. For example, it is not acceptable for an exception to 
be reported with part of the access performed, e.g., part of a misaligned store written in memory, or part of a register 
written for a misaligned load.

Architecture Rule B-7: If different exceptions are mandated for different parts of a split misaligned access, it is 
UNPREDICTABLE which takes priority and is actually delivered. But at least one of them must be delivered.

Although it is permitted for misaligned accesses to be performed a byte at a time, in any order, this applies only to 
multiprocessor memory ordering issues, not to exception reporting. 

Architecture Rule B-8: When an exception is delivered for a split misaligned address, EPC points to either the 
instruction that performed the split misaligned access, or to the branch in whose delay slot or forbidden slot the former 
instruction lies, in the usual manner.

Architecture Rule B-9: The address reported by BadVaddr on address error, for example, for a misaligned access that 
is not directly supported by hardware, but which will be emulated by a trap handler, must be the lowest byte virtual 
address associated with the misaligned access.

Architecture Rule B-10: The address reported by BadVaddr on page permission or TLB miss exceptions must be a 
byte address in the misaligned access for a page on which the exception is reported, but may be any such byte address. 
It is not required to be the lowest.

Architecture Rule B-11: If both parts of a page split misaligned access produce the same exception, it is 
UNPREDICTABLE which takes priority. BadVaddr is either the smallest byte virtual address in the first part, i.e., the 
start of the misaligned access, or the smallest byte address in the second part, i.e., the start of the second page.

This permits page fault handlers to be oblivious to misalignment: they just remedy the page fault reported by Bad-
Vaddr, and return. There is no architectural mechanism to guarantee forward progress; the system implementation, 
both hardware and software, must arrange for forward progress. For example, on a single-threaded CPU, the TLB 
associativity must be such that all TLB entries relevant to page splits can be resident. If this is impossible, for exam-
ple, on a multithreaded CPU without partitioned TLBs, it may be necessary for the exception handlers to emulate the 
instruction for which inability to make forward progress is detected.

For example, if an access is split across two pages, the first part of the split is permitted, but the second part is not per-
mitted, then the BadVaddr reported must be for the smallest byte address in the second part. For example, if a mis-
aligned load is a page split, and one part of the load is to a page marked read-only, while the other is to a page marked 
invalid, the entire access must take the TLB Invalid exception. The destination register will NOT be partially written. 
BadVaddr will contain the lowest byte address 

For example, if a misaligned store is a page split, and one part of the store is to a page marked writable, while the 
other part is to a page marked read-only, the entire store must take the TLB Modified exception. It is NOT permitted 
to write part of the access to memory, but not the other part.
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For example, if a misaligned memory access is a page split, and part is in the TLB and the other part is not - if soft-
ware TLB miss handling is enabled then none of the access shall be performed before the TLB Refill exception is 
entered.

For example, if a misaligned load is a page split, and one part of the load is to a page marked read-only, while the 
other is to a page marked read-write, the entire access is permitted. Namely, a hardware implementation MUST per-
form the entire access. A hardware/software implementation may perform the access or take an Address Error excep-
tion, but if it takes an Address Error exception trap no part of the access may have been performed on arrival to the 
trap handler.

B.4.3 Misaligned Memory Accesses Past the End of Memory

Architecture Rule B-12: Misaligned memory accesses past the end of virtual memory are permitted, and behave as 
if a first partial access was done from the starting address to the virtual address limit, and a second partial access was 
done from the low virtual address for the remaining bytes.

For example, an N byte misaligned memory access (N=16 for 128-bit MSA) starting M bytes below the end of the 
virtual address space “VMax” will access M bytes in the range [VMax-M+1,VMax], and in addition will access N-M 
bytes starting at the lowest virtual address “VMin”, the range [VMin, VMin+N-M-1].

For example, for 32-bit virtual addresses, VMin=0 and VMax = 232-1, and an N byte access beginning M bytes below 
the top of the virtual address space expands to two separate accesses as follows: 

For example, for 64 bit virtual addresses, VMin=0 and VMax = 264-1, and an N byte access beginning M bytes below 
the top of the virtual address space expands to two separate accesses as follows: 

Similarly, both 32 and 64 bit accesses can cross the corresponding signed boundaries, for example, from, 
0x7FFF_FFFF to 0x8000_0000 or from 0x7FFF_FFFF_FFFF_FFFF to 0x8000_0000_0000_0000.

Architecture Rule B-13: Beyond the wrapping at 32 or 64 bits mentioned, above, there is no special handling of 
accesses that cross MIPS segment boundaries, or which exceed SEGBITS within a MIPS segment. 

For example, a 16 byte MSA access may begin in xuseg with a single byte at address 0x3FFF_FFFF_FFFF_FFFF 
and cross to xsseg, for example, 15 bytes starting from 0x4000_000_0000_0000 - assuming consistent permissions 
and CCAs.

Architecture Rule B-14: Misaligned memory accesses must signal Address Error exception if any part of the access 
would lie outside the physical address space.

For example, if in an unmapped segment such as kseg0, and the start of the misaligned is below the PABITS limit, but 
the access size crosses the PABITS limit.

B.4.4 TLBs and Misaligned Memory Accesses

A specific case of rules stated above:

Architecture Rule B-15: if any part of a misaligned memory access involves a TLB miss, then none of the access 
shall be performed before the TLB miss handling exception is entered.

232 M– 232-M 232 1–[ , ] 0 0 N M–+ 

264 M– 264-M 264 1–[ , ] 0 0 N M–+ 
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Here “performed” means the actual store that changes memory or cache data values, or the actual load that writes a 
destination register, or side effects of loads related to memory mapped I/O. It does not refer to microarchitectural side 
effects such as changing the state of a cache line from M in another processor to S locally or to TLB state.

Note: this rules does NOT disallow emulating misaligned memory accesses via a trap handler that performs the 
access a byte at a time, even though a TLB miss may occur for a later byte after an earlier byte has been written. Such 
a trap handler is emulating the entire misaligned. A TLB miss in the emulation code will return to the emulation code, 
not to the original misaligned memory instruction.

However, this rule DOES disallow handling permissions errors in this manner. Write permission must be checked in 
advance for all parts of a page split store.

Architecture Rule B-16: Misaligned memory accesses are not atomic with respect to hardware page table walking 
for TLB miss handling (as is added in MIPS Release 5). 

Overall, TLBs, in particular hardware page table walking, are not considered to be part of “single-thread atomicity”, 
and hardware page table walks are not ordered with the memory accesses of the loads and stores that trigger them.

For example, the different parts of a split may occur at different times, and speculatively. If another processor is mod-
ifying the page tables without performing a TLB shutdown, the TLB entries found for a split may not have both been 
present in the TLBs at the same time. On a system with hardware page table walking, the page table entries for a split 
may not have both been present in the page tables in memory at the same time.

For example, on an exception triggered by a misaligned access, it is UNPREDICTABLE which TLB entries for a 
page split are in the TLB: both, one but not the other, or none.

Implementations must provide mechanisms to accommodate all parts of a misaligned load or store in order to guaran-
tee forward progress. For example, a certain minimum number of TLB entries may be required for the split parts of a 
misaligned memory access, and/or associated software TLB miss handlers or hardware TLB miss page table walkers. 
Other such mechanisms may not require extra TLB entries.

Architecture Rule B-17: Misaligned memory accesses are not atomic with respect to setting of PTE access and dirty 
bits. 

For example, if a hardware page table walker sets PTE dirty bit for both parts of a page split misaligned store, then it 
may be possible to observe one bit being set while the other is still not set.

Architecture Rule B-18: Misaligned memory accesses that affect any part of the page tables in memory that are used 
in performing the virtual to physical address translation of any part of the split access are UNPREDICTABLE.

For example, a split store that writes one of its own PTEs - whether the hardware page table walker PTE, or whatever 
data structure a software PTE miss handler uses. (This means that a simple Address Error exception handler can 
implement misaligneds without having to check page table addresses.)

B.4.5 Memory Types and Misaligned Memory Accesses

Architecture Rule B-19: Misaligned memory accesses are defined and are expected to be used for the following 
CCAs: WB (Writeback) and UCA (Uncached Accelerated), i.e., write combining.

Architecture Rule B-20: Misaligned memory accesses are defined for UC. Instructions that are potentially 
misaligned, but which are not actually misaligned, may safely be used with UC memory including MMIO. But 
instructions which are actually misaligned should not be used with MMIO - their results may be UNPREDICTABLE 
or worse.
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Misaligned memory accesses are defined for the UC (Uncached) memory type, but their use is recommended only for 
ordinary uncached memory, DRAM or SRAM. The use of misaligned memory accesses is discouraged for uncached 
memory mapped I/O (MMIO) where accesses have side effects, because the specification of misaligned memory 
accesses does not specify the order or the atomicity in which the parts of the misaligned access are performed, which 
it makes it very difficult to use these accesses to control memory-mapped I/O devices with side effects.

Architecture Rule B-21: Misaligned memory accesses that cross two different CCA memory types are 
UNPREDICTABLE. (Reasons for this may include crossing of page boundaries, segment boundaries, etc.)

Architecture Rule B-22: Misaligned memory accesses that cross page boundaries, but with the same memory type 
in both pages, are permitted.

Architecture Rule B-23: Misaligned memory accesses that cross segment boundaries are well defined, so long as the 
memory types in both segments are the same and are otherwise permitted. 

B.4.6 Misaligneds, Memory Ordering, and Coherence

This section discusses single and multithread atomicity and multithread memory ordering for misaligned memory 
accesses. However, it does not address issues for potentially misaligned memory references. Documents such as the 

MIPS Coherence Protocol Specification define this behavior.3

B.4.6.1 Misaligneds are Single-Thread Atomic

Recall the first fundamental rule of misaligned support concerning single-thread atomicity:

Architecture Rule B-1: “Misaligned memory accesses are atomic with respect to a single thread (with limited 
exceptions noted in other rules).” on page 121.

For example, all interrupts and exceptions are delivered either completely before or completely after a misaligned 
(split) memory access. Such an exception handler is not entered with part of a misaligned load destination register 
written, and part unwritten. Similarly, it is not entered with part of a misaligned store memory destination written, and 
part unwritten.

Architecture Rule B-24: However, an implementation may not be able to enforce single-thread atomicity for certain 
error conditions.

Architecture Rule B-25: For example, single-thread atomicity for a misaligned, cache line or page split store, MAY 
be violated when an uncorrectable ECC error detected when performing a later part of a misaligned, when an part has 
already been performed, updating memory or cache.

Architecture Rule B-26: Nevertheless, implementations should avoid violating single-thread atomicity whenever 
possible, even for error conditions. 

Here are some exceptional or error conditions for which violating single-thread atomicity for misaligneds is NOT 
acceptable: any event involving instruction access rather than data access, Debug data breakpoints, Watch address 
match, Address Error, TLB Refill, TLB Invalid, TLB Modified, Cache Error on load or LL, Bus Error on load or LL.

Machine Check exceptions (a) are implementation-dependent, (b) could potentially include a wide number of 
processor internal inconsistencies. However, at the time of writing the only Machine Check Exceptions that are defined 

3. For example, MIPS Coherence Protocol Specification (AFP Version), Document Number MD00605. Updates and 
revisions of this document are pending.
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are (a) detection of multiple matching entries in the TLB, and (b) inconsistencies in memory data structures 
encountered by the hardware page walker page table. Neither of these should cause a violation of single-thread 
atomicity for misaligneds. In general, no errors related to virtual memory addresses should cause violations of single-
thread atomicity.

Architecture Rule B-27: Reset (Cold Reset) and Soft Reset are not required to respect single-thread atomicity for 
misaligned memory accesses. For example, Reset may be delivered when a store is only partly performed.

However, implementations are encouraged to make Reset and, in particular, Soft Reset, single instruction atomic 
whenever possible. For example, a Soft Reset may be delivered to a processor that is not hung, when a misaligned 
store is only partially performed. If possible, the rest of the misaligned store should be performed. However, if the 
processor is stays hung with the misaligned store only partially performed, then the hang should time out and reset 
handling be completed.

Non-Maskable Interrupt (NMI) is required to respect single-thread atomicity for misaligned memory accesses, since 
NMIs are defined to only be delivered at instruction boundaries.

B.4.6.2 Misaligneds are not Multiprocessor/Multithread Atomic

Recall the second fundamental rule of misaligneds - lack of multiprocessor atomicity:

Architecture Rule B-2: “Memory accesses that are actually misaligned are not guaranteed to be atomic as observed 
from other threads, processors, and I/O devices.” on page 121.

The rules in this section provide further detail.

Architecture Rule B-28: Instructions that are potentially misaligned memory accesses but which are not actually 
misaligned may be atomic, as observed from other threads, processors, or I/O devices. 

The overall Misaligned Memory Accesses specification does not address issues for potentially but not actually mis-
aligned memory references. Documents such as the MIPS Coherence Protocol Specification define such behavior

Architecture Rule B-29: Actually misaligned memory accesses may be performed in more than one part. The order 
of these parts is not defined.

Architecture Rule B-30: It is UNPREDICTABLE and implementation-dependent how many parts may be used to 
implement an actually misaligned memory access.

For example, a page split store may be performed as two separate accesses, one for the low part, and one for the high 
part.

For example, a misaligned access that is not split may be performed as a single access.

For example, or a misaligned access - any misaligned access, not necessarily a split - may be performed a byte at a 
time.

Although most of this section has been emphasizing behavior that software cannot rely on, we can make the follow-
ing guarantees:

Architecture Rule B-31: every byte written in a misaligned store will be written once and only once.

Architecture Rule B-32: a misaligned store will not be observed to write any bytes that are not specified: in 
particular, it will not do a read of memory that includes part of a split, merge, and then write the old and new data back.
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Note the term “observed” in the rule above. For example, memory and cache systems using word or line oriented 
ECC may perform read-modify-write in order to write a subword such as a byte. However, such ECC RMWs are 
atomic from the point of view of other processors, and do not affect bytes not written. 

See section B.6 “Misalignment and MSA Vector Memory Accesses” on page 131, for a discussion of element atom-
icity as applies to misaligned MSA vector memory accesses.

B.4.6.3 Misaligneds and Multiprocessor Memory Ordering

Preceding sections have defined misaligned memory accesses as having single-thread atomicity but not multithread 
atomicity. Furthermore, there are issues related to memory ordering overall:

Architecture Rule B-33: Instructions that are potentially but not actually misaligned memory accesses comply with 
the MIPS Architecture rules for memory consistency, memory ordering, and synchronization.

This section Misaligned Memory Accesses does not address issues for potentially but not actually misaligned mem-
ory references. Documents such as the MIPS Coherence Protocol Specification define such behavior.

Architecture Rule B-34: The split parts of actually misaligned memory accesses obey the memory ordering rules of 
the MIPS architecture.

Although actually misaligned memory references may be split into several smaller references, as described in previ-
ous sections, these smaller references behave as described for any memory references in documents such as the MIPS 
Coherence Protocol Specification. In particular, misaligned subcomponent references respect the ordering and com-
pletion types of the SYNC instruction, legal and illegal sequences described in that document.

B.5 Pseudocode

Pseudocode can be convenient for describing the operation of instructions. Pseudocode is not necessarily a full speci-
fication, since it may not express all error conditions, all parallelism, or all non-determinism - all behavior left up to 
the implementation. Also, pseudocode may over-specify an operation, and appear to make guarantees that software 
should not rely on.

The first stage pseudocode provides functions LoadPossiblyMisaligned and StorePossiblyMisaligned 
that interface with other pseudocode via virtual address vAddr, the memory request size nbytes (=16 for 128b 
MSA), and arrays of byte data inbytes[nbytes] and inbytes[nbytes].

The byte data is assumed to be permuted as required by the Big and Little endian byte ordering modes as required by 
the different instructions - thus permitting the pseudocode for misalignment support to be separated from the endian-
ness considerations. Namely, outbytes[0] contains the value that a misaligned store will write to address 
vAddr+0, and so on.

The simplest thing that could possibly work would be to operate as follows:

for i in 0 .. nbytes-1
(pAddr, CCA)  AddressTranslation (vAddr+i, DATA, LOAD)
inbytes[i]  LoadRawMemory (CCA, nbytes, pAddr, vAddr+i, DATA)

endfor 

for i in 0 .. nbytes-1
(pAddr, CCA)  AddressTranslation (vAddr+i, DATA, STORE)
StoreRawMemory (CCA, 1, outbytes[i], pAddr, vAddr+i, DATA)

endfor
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but this simplest possible pseudocode does not express the atomicity constraints and certain checks. 

B.5.1 Pseudocode Distinguishing Actually Aligned from Actually Misaligned

The top-level pseudocode functions LoadPossiblyMisaligned/StorePossiblyMisaligned take differ-
ent paths depending on whether actually aligned or actually misaligned. This reflects the fact that aligned and mis-
aligned have different semantics, different atomicity properties, etc.

Figure B.1 LoadPossiblyMisaligned/StorePossiblyMisaligned Pseudocode

inbytes[nbytes]  LoadPossiblyMisaligned(vaddr, nbytes)
if naturally_aligned(vaddr,nbytes) 

return LoadAligned(vaddr,nbytes)
else

return LoadMisaligned(caddr,nbytes)
endfunction LoadPossiblyMisaligned

StorePossiblyMisaligned(vaddr, outbytes[nbytes])
if naturally_aligned(vaddr,nbytes) 

StoreAligned(vaddr,nbytes)
else

StoreMisaligned(caddr,nbytes)
endfunction StorePossiblyMisaligned

B.5.2 Actually Aligned

The aligned cases are very simple, and are defined to be a single standard operation from the existing pseudocode 
repertoire (except for byte swapping), reflecting the fact that actually aligned memory operations may have certain 
atomicity properties in both single and multithread situations.

Figure B.2 LoadAligned / StoreAligned Pseudocode

inbytes[nbytes]  LoadAligned(vaddr, nbytes)
assert naturally_aligned(vaddr,nbytes)
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
return inbytes[]  LoadRawMemory (CCA, nbytes, pAddr, vAddr, DATA)

endfunction LoadAligned

StoreAligned(vaddr, outbytes[nbytes])
assert naturally_aligned(vaddr,nbytes)
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
StoreRawMemory (CCA, nbytes, outbytes, pAddr, vAddr, DATA)

endfunction StoreAligned

B.5.3 Byte Swapping

The existing pseudocode uses functions LoadMemory and StoreMemory to access memory, which are declared but 
not defined. These functions implicitly perform any byte swapping needed by the Big and Little endian modes of the 
MIPS processor, which is acceptable for naturally aligned scalar data memory load and store operations. However, 
with vector operations and misaligned support, it is necessary to assemble the bytes from a memory load instruction, 
and only then to byte swap them—i.e., byte swapping must be exposed in the pseudocode, and conversely for stores.
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Figure B.3 LoadRawMemory Pseudocode Function

MemElem  LoadRawMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* like the original pseudocode LoadMemory, except no byteswapping */

/* MemElem: A vector of AccessLength bytes, in memory order. */
/* CCA: Cacheability&CoherencyAttribute=method used to access caches */
/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */
/* pAddr: physical address */
/* vAddr:  virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadRawMemory

Figure B.4 StoreRawMemory Pseudocode Function

StoreRawMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

/* like the original pseudocode StoreMemory, except no byteswapping */

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* AccessLength: Length, in bytes, of access */
/* MemElem: A vector of AccessLength bytes, in memory order. */
/* pAddr: physical address */
/* vAddr:  virtual address */

endfunction StoreRawMemory

Helper functions for byte swapping according to endianness:

Figure B.5 Byte Swapping Pseudocode Functions

outbytes[nbytes]  ByteReverse(inbytes[nbytes], nbytes)
for i in 0 .. nbytes-1

outbytes[nbytes-i]  inbytes[i]
endfor
return outbytes[]

endfunction ByteReverse

outbytes[nbytes]  ByteSwapIfNeeded(inbytes[nbytes], nbytes)
if BigEndianCPU then

return ByteReverse(inbytes)
else

return inbytes
endfunction ByteSwapIfNeeded

B.5.4 Pseudocode Expressing Most General Misaligned Semantics

The misaligned cases have fewer constraints and more implementation freedom. The very general pseudocode below 
makes explicit some of the architectural rules that software can rely on, as well as many things that software should 
NOT rely on: lack of atomicity both between and within splits, etc. However, we emphasize that only the behavior 
guaranteed by the architecture rules should be relied on.
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Figure B.6 LoadMisaligned most general pseudocode

inbytes[nbytes]  LoadMisaligned(vaddr, nbytes)
if any part of [vaddr,vaddr+nbytes) lies outside valid virtual address range

then SignalException(...)
for i in 0 .. nbytes-1

 (pAddr[i], CCA[i])  AddressTranslation (vAddr+i, DATA, LOAD)
if any pAddr[i] is invalid or not permitted then SignalException(...)
if any CCA[i] != CCA[j], where i, j are in [0,nbytes) then UNPREDICTABLE
loop // in any order, and possibly in parallel

pick an arbitrary subset S of [0,nbytes) that has not yet been loaded
load inbytes[S] from memory with the corresponding CCA[i], pAddr[i], vAddr+i
remove S from consideration

until set of byte numbers remaining unloaded is empty.
return inbytes[]

endfunction LoadMisaligned
// ...similarly for StoreMisaligned...

B.5.5 Example Pseudocode for Possible Implementations

This section provides alternative implementations of LoadMisaligned and StoreMisaligned that emphasize 
some of the permitted behaviors.

It is emphasized that these are not specifications, just examples. Examples to emphasize that particular implementa-
tions of misaligneds may be permitted. But these examples should not be relied on. Only the guarantees of the archi-
tecture rules should be relied on. The most general pseudocode seeks to express these in the most general possible 
form.

B.5.5.1 Example Byte-by-byte Pseudocode

The simplest implementation is to operate byte-by-byte. Here presented more formally than above, because the sepa-
rate byte loads and stores expresses the desired lack of guaranteed atomicity (whereas for 
{Load,Store}PossiblyMisaligned the separate byte loads and stores would not express possible guarantees of 
atomicity). Similarly, the pseudocode translates the addresses twice, a first pass to check if there are any permissions 
errors, a second pass to actually use ordinary stores. UNPREDICTABLE behavior if the translations change between 
the two passes.

This pseudocode tries to indicate that it is permissible to use such a two-phase approach in an exception handler to 
emulate misaligneds in software. It is not acceptable to use a single pass of byte-by-byte stores, unless split stores that 
are half completed can be withdrawn, transactionally. However, it is not required to save the translations of the first 
pass to reuse in the second pass (which would be extremely slow); if virtual address translations or permissions 
change between the first and second pass, it is acceptable to produce a partially written memory result.

Figure B.7 Byte-by-byte Pseudocode for LoadMisaligned / StoreMisaligned

inbytes[nbytes]  LoadMisaligned(vaddr, nbytes)
for i in 0 .. nbytes-1

 (ph1.pAddr[i], ph1.CCA[i])  AddressTranslation (vAddr+i, DATA, LOAD)
/* ... checks ... */
for i in 0 .. nbytes-1

(ph2.pAddr[i], ph2.CCA[i])  AddressTranslation (vAddr+i, DATA, LOAD)
if ph1.pAddr[i] != ph2.addr or ph1.CCA[i] != ph2.CCA[i] then UNPREDICTABLE
inbytes[i]  LoadRawMemory(ph2.CCA[i], nbytes, ph2.pAddr[i], vAddr+i, DATA)

return inbytes[]
endfunction LoadMisaligned
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StoreMisaligned(vaddr, outbytes[nbytes])
for i in 0 .. nbytes-1

 (ph1.pAddr[i], ph1.CCA[i])  AddressTranslation (vAddr+i, DATA, LOAD)
/* ... checks ... */
for i in 0 .. nbytes-1

(ph2.pAddr[i], ph2[i].CCA)  AddressTranslation (vAddr+i, DATA, LOAD)
if ph1.pAddr[i] != ph2.addr or ph1.CCA[i] != ph2.CCA[i] then UNPREDICTABLE
StoreRawMemory(ph2[i].CCA, nbytes, outbytes[i], ph2.pAddr[i], vAddr+i, DATA)

endfunction StoreMisaligned 

B.5.5.2 Example Pseudocode Handling Splits and non-Splits Separately

A more aggressive implementation, which is probably the preferred implementation on typical hardware:

• If a misaligned request is not split, it is performed as a single operation

• If a misaligned request is split, it is performed as two separate operations, with cache line and page splits handled 
separately.

B.6 Misalignment and MSA Vector Memory Accesses

B.6.1 Semantics

Misalignment support is defined by Release 5 of the MIPS Architecture for MSA (MIPS SIMD Architecture)4 vector 
load and store instructions, including Vector Load (LD.df), Vector Load Indexed (LDX.df), Vector Store (ST.df) and 
Vector Store Indexed (STX.df). Each vector load and store has associated with it a data format, “.df”, which can be 
byte/halfword/word/doubleword (B/H/W/D) (8/16/32/64 bits). The data format defines the vector element size.

The data format is used to determine Big-endian versus Little-endian byte swapping, and also influences multiproces-
sor atomicity as described here.

Architecture Rule B-35: Vector memory reference instructions are single-thread atomic, as defined above.

Architecture Rule B-36: Vector memory reference instructions have element atomicity. 

If the vector is aligned on the element boundary, i.e., if the vector address is =0 modulo 2, 4, 8 for H/W/D respec-
tively, then for the purposes of multiprocessor memory ordering the vector memory reference instruction can be con-
sidered a set of vector element memory operations. The vector element memory operations may be performed in any 
order, but each vector element operation, since naturally aligned, has the atomicity of the corresponding scalar.

In MIPS32 Release 5, all 16- and 32-bit scalar accesses are defined to be atomic; for example, each of the 32-bit ele-
ments of a word vector loaded using LD.W would be atomic. However, in MIPS32 Release 5, 64-bit accesses are not 
defined to be atomic, so LD.D would not have element atomicity.

In MIPS64 Release 6, all 16-, 32-, and 64-bit scalar accesses are atomic. So vector LD.H, LD.W, LD.D, and the cor-
responding stores would be element atomic.

4. MIPS® Architecture Reference Manual, Volume IV-j: The MIPS32® SIMD Architecture Module, MIPS Document Number 
MD00867.
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All of the rules in sections B.4.2 “Permissions and Misaligned Memory Accesses”, B.4.4 “TLBs and Misaligned 
Memory Accesses”, B.4.5 “Memory Types and Misaligned Memory Accesses”, and B.4.6.1 “Misaligneds are 
Single-Thread Atomic” apply to the vector load or store instructions as a whole.

For example, a misaligned vector load instruction will never leave its vector destination register half written, if part of 
a page split succeeds and the other part takes an exception. It is either all done, or not at all.

For example, misaligned vector memory references that partly fall outside the virtual address space are UNPRE-
DICTABLE.

However, the multiprocessor and multithread oriented rules of section B.4.6.2 “Misaligneds are not Multiprocessor/
Multithread Atomic” and B.4.6.3 “Misaligneds and Multiprocessor Memory Ordering” do NOT apply to the vector 
memory reference instruction as a whole. These rules only apply to vector element accesses.

In fact, all of the rules of B.4 “Misaligned Semantics” apply to all vector element accesses - except where “overrid-
den” for the vector as a whole.

For example, a misaligned vector memory reference that crosses a memory type boundary, for example, which is 
page split between WB and UCA CCAs, is UNPREDICTABLE. Even though, if the vector as whole is vector ele-
ment aligned, no vector element crosses such a boundary, so that if the vector element memory accesses were consid-
ered individually, each would be predictable.

These instructions specify an element type, for example, ST.B, ST.H, ST.W, ST.D for Vector Store Byte/Halfword/
Word/Doubleword respectively. If the memory address is naturally aligned for the element type, then atomicity is 
guaranteed for each element: for example, any element stored is entirely seen or entirely not seen, but one will never 
see half an such an element written, and half unwritten. One may, however, see some elements of the vector written, 
and some not written, even if the overall vector is naturally aligned. If the misaligned address is not naturally aligned 
for the element type, then the atomicity rules for ordinary memory accesses apply to the vector elements.

Note that Architecture Rule B-36 implies that smaller element accesses such as ST.B should not be used for larger 
accesses such as ST.D. Endianness considerations also imply that this is inadvisable.

B.6.2 Pseudocode for MSA Memory Operations with Misalignment

The MSA specification uses the pseudocode functions shown in Figure B.8 to access memory.

Figure B.8 LoadTYPEVector / StoreTYPEVector used by MSA specification

function LoadTYPEVector(ts, a, n)
/* Implementation defined 

load ts, a vector of n TYPE elements 
from virtual address a. 

*/
endfunction LoadTYPEVector

function StoreTYPEVector(tt, a, n)
/* Implementation defined 

store tt, a vector of n TYPE elements
to virtual address a. 

*/
endfunction StoreTYPEVector

where TYPE = Byte, Halfword, Word, Doubleword
For example, LoadByteVector, LoadHalfwordVector, etc.
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These can be expressed in terms of the misaligned pseudocode operations as shown in Figure B.9 and Figure B.10 by 
passing the TYPE (Byte, Halfword, Word, DoubleWord) as a parameter:

Figure B.9 Pseudocode for LoadVector

function LoadVector(vregdest, vAddr, nelem, TYPE)
vector_wide_assertions(vAddr, nelem, TYPE)
for all i in 0 to nelem-1 do /* in any order, any combination */

rawtmp[i]  LoadPossiblyMisaligned( vAddr + i*sizeof(TYPE), sizeof(TYPE) )
bstmp[i]  ByteSwapIfNeeded( rawtmp[i], sizeof(TYPE) )
/* vregdest.TYPE[i]  bstmp[i] */
vregdestnbits(TYPE)*i+nbits(TYPE)-1..nbits(TYPE)*i = bstmp[i]

endfor
endfunction LoadVector

Figure B.10 Pseudocode for StoreVector

function StoreVector(vregsrc, vAddr, nelem, TYPE)
vector_wide_assertions(vAddr, nelem, TYPE)
for i in 0 .. nelem-1 /* in any order, any combination */

bstmp[i]  vregsrcnbits(TYPE)*i+nbits(TYPE)-1..nbits(TYPE)*i
rawtmp[i]  ByteSwapIfNeeded( rawtmp[i], sizeof(TYPE) )
StorePossiblyMisaligned( vAddr + i*sizeof(TYPE), sizeof(TYPE) )

endfor
endfunction StoreVector
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Revision History

Revision Date Description

0.95 March 12, 2001 External review copy of reorganized and updated architecture documentation.

1.00 August 29, 2002 Update based on all feedback received:
• Fix bit numbering in FEXR diagram
• Clarify the description of the width of FPRs in 32-bit implementations
• Correct tag on FIR diagram.
• Update the compatibility and subsetting rules to capture the current require-

ments.
• Remove the requirement that a licensee must consult with MIPS Technolo-

gies when assigning SPECIAL2 function fields.

1.90 September 1, 2002 Update the specification with the changes due to Release 2 of the Architecture. 
Changes included in this revision are:
• The Coprocessor 1 FIR register was updated with new fields and interpreta-

tions.
• Update architecture and ASE summaries with the new instructions and 

information introduced by Release 2 of the Architecture.

2.00 June 8, 2003 Continue the update of the specification for Release 2 of the Architecture. 
Changes included in this revision are:
• Correct the revision history year for Revision 1.00 (above). It should be 

2002, not 2001.
• Remove NOR, OR, and XOR from the 2-operand ALU instruction table.

2.50 July 1, 2005 Changes in this revision:
• Correct the wording of the hidden modes section (see Section 2.4, 

"Compliance and Subsetting").
• Update all files to FrameMaker 7.1.
• Allow shadow sets to be implemented without vectored interrupts or sup-

port for an external interrupt controller. In such an implementation, they are 
software-managed.

2.60 June 25, 2008 • COP3 no longer extendable by customer.
• Section on Instruction fetches added - 1. fetches & endianness 2. fetches & 

CCA 3. self-modified code

2.61 December 5, 2009 • Fixed paragraph numbering between chapters. 
• FPU chapter didn’t make it clear that MADD/MSUB were non-fused. 

3.00 March 25, 2010 • Changes for microMIPS.
• List changes in Release 2.5+ and non-microMIPS changes in Release 3.
• List PRA implementation options. 

3.01 December 10, 2010 • Change Security Classification for microMIPS AFP versions.

3.02 March 06, 2011 • There is no persistent interpretation of FPR values between instructions. 
The interpretation comes from the instruction being executed. 

• Clarification that the PS format availability is solely defined by the FIR.PS 
bit. 
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3.50 September 20,2012 • Mention EVA load, store instructions 
• Define Architecture version of UCA. 
• IEEE2008, MAC2008, ABS2008, NAN2008 status bits for FPU.
• Mention SegCtl, TLBInv*, EVA in Intro. 

5.00 December 14, 2012 • R5 changes - mention MSA and VZ modules
• R5 change - DSP and MT are now modules 
• Generated QNAN values - changed to use more common bit patterns 

5.01 December 15, 2012 • No technical content change:
• Updated cover for logos 
• Updated copyright text. 

5.02 April 12, 2013 • R5 changes: FR=1 64-bit FPU register model required is required, if float-
ing point is supported. Section 2.1.2.4 MIPSr5 Architecture. Section 2.2 
Compliance and Subsetting. Section 2.8.5 FPU Registers. Chapter 5 Over-
view of the FPU Instruction Set: Section 5.1 Binary Compatibility. Section 
5.5 Floating Point register Types. Section 5.5.1 FPU Register Models.

• R5 change: if any R5 feature, other features must be R5. E.g. if VZ or MSA 
is implemented, then if floating point is implemented then FR=1 must be 
implemented. Section 2.2 Compliance and Subsetting. 

• R5 change retroactive to R3: removed FCSRMCA2008 bit: no architectural 

support for fused multiply add with no intermediate rounding. Section 
2.1.2.3 MIPSr3 Architecture. Table 5.4 FIR Register Field Descriptions, 
HAS2008 bit. Figure 5-12 FCSR register Format: MAC2008 bit removed. 
Section 5.9.2 Arithmetic Instructions: paragraph titled “Arithmetic and 
rounding behavior”. 

• R5 change: UFR (User mode FR changing): UFR, UNFR, FIR.UFRP, 
CTC1 and CFC1 changes. Section 5.6 Floating Point Control Registers 
(FCRs) - UFR and UNFR FCR numbers; Figure 5-11 FIR Register Format, 
Table 5.6 FIR Register Field Descriptions - UFRP bit; Section 5.6.2 UFR 
Register and Section 5.6.3 UNFR Register.

Revision Date Description
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5.03 August 21, 2013 • Resolved inconsistencies with regards to the availability of instructions in 
MIPS32r2: MADD.fmt family (MADD.S, MADD.D, NMADD.S, 
NMADD.D, MSUB.S, MSUB.D, NMSUB,S, NMSUB.D), RECIP.fmt fam-
ily (RECIP.S, RECIP.D, RSQRT.S, RSQRT.D), and indexed FP loads and 
stores (LWXC1, LDXC1, SWXC1, SDXC1). The appendix section A.2 
“Instruction Bit Encoding Tables”, shared between Volume I and Volume II 
of the ARM, was updated, in particular the new upright delta mark is 
added to Table A.2 “Symbols Used in the Instruction Encoding Tables”, 
replacing the inverse delta marking  for these instructions. Similar updates 
made to microMIPS’s corresponding sections. Instruction set descriptions 
and pseudocode in Volume II, Basic Instruction Set Architecture, updated. 
These instructions are required in MIPS32r2 if an FPU is implemented. .

• Misaligned memory access support for MSA: see Volume II, Appendix B 
“Misaligned Memory Accesses”.  

• Has2008 is required as of release 5 - Table 5.4, “FIR Register Descriptions”.
• ABS2008 and NAN2008 fields of Table 5.7 “FCSR Register Field Descrip-

tions” were optional in release 3 and could be R/W, but as of release 5 are 
required, read-only, and preset by hardware.

• FPU FCSRFS Flush Subnormals / Flush to Zero behavior is made consistent 

with MSA behavior, in MSACSRFS: Table 5.7, “FCSR Register Field 

Descriptions”, updated. New section 5.8.1.4 “Alternate Flush to Zero 
Underflow Handling”.

• Volume I, Section 2.2 “Compliance ad Subsetting” noted that the L format 
is required in MIPS FPUs, to be consistent with Table 5.4 “FIR Register 
Field Definitions” .

• Noted that UFR and UNFR can only be written with the value 0 from 
GPR[0]. See section 5.6.5 “User accessible FPU Register model con-
trol (UFR, CP1 Control Register 1)” and section 5.6.5 “User acces-
sible Negated FPU Register model control (UNFR, CP1 Control 
Register 4)”

5.04 November 20, 2013 • No change to technical content.

Revision Date Description
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6.00 November 8, 2015 • New notations x.bit[y], x.bits[y..z], x.byte[y], x.bytes[y..z], x.field, etc., 
added to section entitled Special Symbols in Pseudocode Notation, in Table 
Symbols Used in Instruction Operation Statements.

• Combined tables entitled “Load and Store Operations Using Register + Off-
set Addressing Mode” and “FPU Load and Store Operations Using Register 
+ Register Addressing Mode” into a single table; also includes PC-relative 
Addressing Mode.

Updating Volume I for MIPS Revision 6:
• Updated tables of instructions in Chapters 4 and 5, CPU and FPU Overview. 

All removed instructions and all new instructions are designated as such. 
• Reorganized discussion of Delay Slots and Forbidden Slots
• MIPS Release 6 reserves SPECIAL2 opcode for use by MIPS. Previously it 

was available to customers for UDIs.
• Statements about MIPS Release 6 not supported DSP and SmartMIPS 

removed.
• Edits are mainly cleanup from Revision 6.00, resolving consistency issues 

with Release 6. 
• Added FIR.FREP (new) Status.FR=0 emulation.
• Added Table 6.1 FPU Register Models Availability and Compliance (new). 

Related lines throughout Vol I, modified to reflect removal of Status.FR=0 
mode in R6 and availability of strictly 32-bit FPU in R6. 

• Table 1.2, Read/Write Register Field Notation: Added row for W0
• Chapter 5: Made tables consistent with R6 availability (removal/addition) of 

instructions. Some BC2* instructions are missing that will be added in next 
version.
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