
Document Number: MD00838
Revision 1.03

September 9, 2013

MIPS® Architecture for Programmers
Volume IV-h: The MCU Application

Specific Extension to the microMIPS32™
Architecture



MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 2



3 MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03



MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 1

Table of Contents

Chapter 1: About This Book .................................................................................................................. 7
1.1: Typographical Conventions ......................................................................................................................... 7

1.1.1: Italic Text............................................................................................................................................ 8
1.1.2: Bold Text ............................................................................................................................................ 8
1.1.3: Courier Text ....................................................................................................................................... 8

1.2: UNPREDICTABLE and UNDEFINED ......................................................................................................... 8
1.2.1: UNPREDICTABLE............................................................................................................................. 8
1.2.2: UNDEFINED ...................................................................................................................................... 9
1.2.3: UNSTABLE ........................................................................................................................................ 9

1.3: Special Symbols in Pseudocode Notation................................................................................................... 9
1.4: For More Information ................................................................................................................................. 12

Chapter 2: Guide to the Instruction Set .............................................................................................. 13
2.1: Understanding the Instruction Fields ......................................................................................................... 13

2.1.1: Instruction Fields .............................................................................................................................. 14
2.1.2: Instruction Descriptive Name and Mnemonic................................................................................... 15
2.1.3: Format Field ..................................................................................................................................... 15
2.1.4: Purpose Field ................................................................................................................................... 16
2.1.5: Description Field .............................................................................................................................. 16
2.1.6: Restrictions Field.............................................................................................................................. 16
2.1.7: Operation Field................................................................................................................................. 17
2.1.8: Exceptions Field............................................................................................................................... 17
2.1.9: Programming Notes and Implementation Notes Fields.................................................................... 18

2.2: Operation Section Notation and Functions................................................................................................ 18
2.2.1: Instruction Execution Ordering......................................................................................................... 18
2.2.2: Pseudocode Functions..................................................................................................................... 18

2.2.2.1: Coprocessor General Register Access Functions.................................................................. 18
2.2.2.2: Memory Operation Functions ................................................................................................. 20
2.2.2.3: Floating Point Functions ......................................................................................................... 23
2.2.2.4: Miscellaneous Functions ........................................................................................................ 26

2.3: Op and Function Subfield Notation............................................................................................................ 27
2.4: FPU Instructions ........................................................................................................................................ 27

Chapter 3: The MCU Application-Specific Extension to the MIPS32® and
microMIPS32TMArchitecture............................................................................................................... 29

3.1: Base Architecture Requirements............................................................................................................... 29
3.2: Software Detection of the ASE .................................................................................................................. 29
3.3: Compliance and Subsetting....................................................................................................................... 29
3.4: Overview of the MCU ASE ........................................................................................................................ 29

3.4.1: Interrupt Delivery.............................................................................................................................. 29
3.4.2: Interrupt Latency Reduction ............................................................................................................. 29

3.4.2.1: Interrupt Vector Prefetching.................................................................................................... 30
3.4.2.2: Automated Interrupt Prologue ................................................................................................ 30
3.4.2.3: Automated Interrupt Epilogue................................................................................................. 30
3.4.2.4: Interrupt Chaining ................................................................................................................... 30

3.4.3: I/O Device Programming.................................................................................................................. 30



2 MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

Chapter 4: The MCU Instruction Set ................................................................................................... 31
4.1: IRET .......................................................................................................................................................... 31
4.2: ASET ......................................................................................................................................................... 31
4.3: ACLR ......................................................................................................................................................... 31

Chapter 5: The MCU Privileged Resource Architecture.................................................................... 41
5.1: Introduction................................................................................................................................................ 41
5.2: The MCU System Coprocessor................................................................................................................. 41
5.3: Interrupt Delivery ....................................................................................................................................... 41

5.3.1: Number of Hardware Interrupts........................................................................................................ 41
5.3.1.1: Changes to Vectored Interrupt Mode ..................................................................................... 41
5.3.1.2: Changes to External Interrupt Controller Mode ...................................................................... 41

5.4: Interrupt Handling ...................................................................................................................................... 42
5.4.1: Interrupt Vector Prefetching ............................................................................................................. 42

5.4.1.1: Historical Behavior of Pipelines with In-Order Completion ..................................................... 42
5.4.1.2: Historical Behavior of Pipelines with Out-of-Order Completion .............................................. 42
5.4.1.3: New Feature - Speculative Prefetching .................................................................................. 43

5.4.2: Interrupt Automated Prologue (IAP)................................................................................................. 44
5.4.2.1: IAP Conditions........................................................................................................................ 44
5.4.2.2: IAP Operation ......................................................................................................................... 45
5.4.2.3: Exceptions during IAP ............................................................................................................ 46

5.4.3: Interrupt Automated Epilogue (IAE) ................................................................................................. 46
5.4.3.1: IAE Conditions........................................................................................................................ 46
5.4.3.2: IAE Operation ......................................................................................................................... 46
5.4.3.3: Exceptions during IAE ............................................................................................................ 47

5.4.4: Interrupt Chaining............................................................................................................................. 47
5.4.4.1: Interrupt Chaining Conditions ................................................................................................. 48

5.5: Modified CP0 Registers............................................................................................................................. 48
5.5.1: CP0 Register Summary ................................................................................................................... 48
5.5.2: Status Register (CP Register 12, Select 0)...................................................................................... 48
5.5.3: IntCtl (CP0 Registers 12, Select 1) .................................................................................................. 55
5.5.4: View_IPL Register (CP0 Register 12, Select 4)............................................................................... 60
5.5.5: SRSMap2 Register (CP0 Register 12, Select 5).............................................................................. 60
5.5.6: Cause Register (CP0 Register 13, Select 0).................................................................................... 61
5.5.7: View_RIPL Register (CP0 Register 13, Select 4) ............................................................................ 66
5.5.8: Config Register 3 (CP0 Register 16, Select 3)................................................................................. 67

Appendix A: Revision History ............................................................................................................. 73



MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 3

List of Figures

Figure 2.1: Example of Instruction Description ....................................................................................................... 14
Figure 2.2: Example of Instruction Fields................................................................................................................ 15
Figure 2.3: Example of Instruction Descriptive Name and Mnemonic .................................................................... 15
Figure 2.4: Example of Instruction Format .............................................................................................................. 15
Figure 2.5: Example of Instruction Purpose............................................................................................................ 16
Figure 2.6: Example of Instruction Description ....................................................................................................... 16
Figure 2.7: Example of Instruction Restrictions....................................................................................................... 17
Figure 2.8: Example of Instruction Operation.......................................................................................................... 17
Figure 2.9: Example of Instruction Exception.......................................................................................................... 17
Figure 2.10: Example of Instruction Programming Notes ....................................................................................... 18
Figure 2.11: COP_LW Pseudocode Function......................................................................................................... 19
Figure 2.12: COP_LD Pseudocode Function.......................................................................................................... 19
Figure 2.13: COP_SW Pseudocode Function......................................................................................................... 19
Figure 2.14: COP_SD Pseudocode Function ......................................................................................................... 20
Figure 2.15: CoprocessorOperation Pseudocode Function.................................................................................... 20
Figure 2.16: AddressTranslation Pseudocode Function ......................................................................................... 20
Figure 2.17: LoadMemory Pseudocode Function ................................................................................................... 21
Figure 2.18: StoreMemory Pseudocode Function................................................................................................... 21
Figure 2.19: Prefetch Pseudocode Function........................................................................................................... 22
Figure 2.20: SyncOperation Pseudocode Function ................................................................................................ 23
Figure 2.21: ValueFPR Pseudocode Function........................................................................................................ 23
Figure 2.22: StoreFPR Pseudocode Function ........................................................................................................ 24
Figure 2.23: CheckFPException Pseudocode Function.......................................................................................... 25
Figure 2.24: FPConditionCode Pseudocode Function............................................................................................ 25
Figure 2.25: SetFPConditionCode Pseudocode Function ...................................................................................... 25
Figure 2.26: SignalException Pseudocode Function .............................................................................................. 26
Figure 2.27: SignalDebugBreakpointException Pseudocode Function................................................................... 26
Figure 2.28: SignalDebugModeBreakpointException Pseudocode Function.......................................................... 26
Figure 2.29: NullifyCurrentInstruction PseudoCode Function ................................................................................. 27
Figure 2.30: JumpDelaySlot Pseudocode Function................................................................................................ 27
Figure 2.31: PolyMult Pseudocode Function .......................................................................................................... 27
Figure 5-1: Status Register Format......................................................................................................................... 49
Figure 5-2: IntCtl Register Format........................................................................................................................... 55
Figure 5-3: View_IPL Register Format.................................................................................................................... 60
Figure 5-4: SRSMap Register Format..................................................................................................................... 61
Figure 5-5: Cause Register Format......................................................................................................................... 61
Figure 5-6: View_RIPL Register Format ................................................................................................................. 66
Figure 5-7: Config3 Register Format....................................................................................................................... 67



4 MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03



MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 5

List of Tables

Table 1.1: Symbols Used in Instruction Operation Statements................................................................................. 9
Table 2.1: AccessLength Specifications for Loads/Stores...................................................................................... 22
Table 5.1: Typical Interrupt Handling Flow in Pipelined Implementation with Out-of-Order Completion ................ 43
Table 5.2: Interrupt Handling Flow with Speculative Prefetching............................................................................ 44
Table 5.3: MCU Changes to Coprocessor 0 Registers in Numerical Order............................................................ 48
Table 5.4: Status Register Field Descriptions......................................................................................................... 49
Table 5.5: IntCtl Register Field Descriptions........................................................................................................... 56
Table 5.6: View_IPL Register Field Descriptions.................................................................................................... 60
Table 5.7: SRSMap Register Field Descriptions..................................................................................................... 61
Table 5.8: Cause Register Field Descriptions......................................................................................................... 61
Table 5.9: Cause Register ExcCode Field .............................................................................................................. 65
Table 5.10: View_RIPL Register Field Descriptions ............................................................................................... 66
Table 5.11: Config3 Register Field Descriptions..................................................................................................... 67



6 MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03



Chapter 1

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 7

About This Book

The MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the
microMIPS32™ Architecture comes as part of a multi-volume set.

• Volume I-A describes conventions used throughout the document set, and provides an introduction to the
MIPS32® Architecture

• Volume I-B describes conventions used throughout the document set, and provides an introduction to the
microMIPS32™ Architecture

• Volume II-A provides detailed descriptions of each instruction in the MIPS32® instruction set

• Volume II-B provides detailed descriptions of each instruction in the microMIPS32™ instruction set

• Volume III describes the MIPS32® and microMIPS32™ Privileged Resource Architecture which defines and
governs the behavior of the privileged resources included in a MIPS® processor implementation

• Volume IV-a describes the MIPS16e™ Application-Specific Extension to the MIPS32® Architecture. Beginning
with Release 3 of the Architecture, microMIPS is the preferred solution for smaller code size.

• Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS64® Architecture and
microMIPS64™. It is not applicable to the MIPS32® document set nor the microMIPS32™ document set. With
Release 5 of the Architecture, MDMX is deprecated. MDMX and MSA can not be implemented at the same
time.

• Volume IV-c describes the MIPS-3D® Application-Specific Extension to the MIPS® Architecture

• Volume IV-d describes the SmartMIPS®Application-Specific Extension to the MIPS32® Architecture and the
microMIPS32™ Architecture .

• Volume IV-e describes the MIPS® DSP Module to the MIPS® Architecture

• Volume IV-f describes the MIPS® MT Module to the MIPS® Architecture

• Volume IV-h describes the MIPS® MCU Application-Specific Extension to the MIPS® Architecture

• Volume IV-i describes the MIPS® Virtualization Module to the MIPS® Architecture

• Volume IV-j describes the MIPS® SIMD Architecture Module to the MIPS® Architecture

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fonts in this book.



 About This Book

8 MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

1.1.1 Italic Text

• is used for emphasis

• is used for bits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmable fields and registers), and various floating point instruction formats, such as S, D,
and PS

• is used for the memory access types, such as cached and uncached

1.1.2 Bold Text

• represents a term that is being defined

• is used for bits and fields that are important from a hardware perspective (for instance, register bits, which are
not programmable but accessible only to hardware)

• is used for ranges of numbers; the range is indicated by an ellipsis. For instance, 5..1 indicates numbers 5 through
1

• is used to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the pro-
cessor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions in
a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register). Unpriv-
ileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and unprivileged
software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause a result to be generated or not. If a result is gener-
ated, it is UNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

• Implementations of operations generating UNPREDICTABLE results must not depend on any data source
(memory or internal state) which is inaccessible in the current processor mode

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
is inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process



1.3 Special Symbols in Pseudocode Notation

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 9

• UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

• UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which
there is no exit other than powering down the processor). The assertion of any of the reset signals must restore the
processor to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDICTABLE values, software may depend on the fact that a sampling of an UNSTABLE value results in a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABLE values have one implementation restriction:

• Implementations of operations generating UNSTABLE results must not depend on any data source (memory or
internal state) which is inaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol  Meaning

← Assignment

=, ≠ Tests for equality and inequality

|| Bit string concatenation

xy A y-bit string formed by y copies of the single-bit value x

b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the
binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default base is 10.

0bn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).

0xn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).

xy z Selection of bits y through z of bit string x. Little-endian bit notation (rightmost bit is 0) is used. If y is less
than z, this expression is an empty (zero length) bit string.

+, − 2’s complement or floating point arithmetic: addition, subtraction



 About This Book

10MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

*, × 2’s complement or floating point multiplication (both used for either)

div 2’s complement integer division

mod 2’s complement modulo

/ Floating point division

< 2’s complement less-than comparison

> 2’s complement greater-than comparison

≤ 2’s complement less-than or equal comparison

≥ 2’s complement greater-than or equal comparison

nor Bitwise logical NOR

xor Bitwise logical XOR

and Bitwise logical AND

or Bitwise logical OR

not Bitwise inversion

&& Logical (non-Bitwise) AND

<< Logical Shift left (shift in zeros at right-hand-side)

>> Logical Shift right (shift in zeros at left-hand-side)

GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers

GPR[x] CPU general-purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR[x] is a short-hand notation for SGPR[ SRSCtlCSS, x].

SGPR[s,x] In Release 2 of the Architecture and subsequent releases, multiple copies of the CPU general-purpose regis-
ters may be implemented. SGPR[s,x] refers to GPR set s, register x.

FPR[x] Floating Point operand register x

FCC[CC] Floating Point condition code CC. FCC[0] has the same value as COC[1].

FPR[x] Floating Point (Coprocessor unit 1), general register x

CPR[z,x,s] Coprocessor unit z, general register x, select s

CP2CPR[x] Coprocessor unit 2, general register x

CCR[z,x] Coprocessor unit z, control register x

CP2CCR[x] Coprocessor unit 2, control register x

COC[z] Coprocessor unit z condition signal

Xlat[x] Translation of the MIPS16e GPR number x into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (0 →Little-Endian, 1 → Big-Endian). Specifies the endianness of
the memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endi-
anness of Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0 → Little-Endian, 1 → Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and is implemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRRE and User mode).

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol  Meaning



1.3 Special Symbols in Pseudocode Notation

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 11

LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when a linked load occurs and is tested by the conditional store. It is cleared, during other CPU operation,
when a store to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

I:,
I+n:,
I-n:

This occurs as a prefix to Operation description lines and functions as a label. It indicates the instruction time
during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
time label of I. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections
labeled with the instruction time, relative to the current instruction I, in which the effect of that pseudocode
appears to occur. For example, an instruction may have a result that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in a section labeled I+1.
The effect of pseudocode statements for the current instruction labelled I+1 appears to occur “at the same
time” as the effect of pseudocode statements labeled I for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for dif-
ferent instructions that occur “at the same time,” there is no defined order. Programs must not depend on a
particular order of evaluation between such sections.

PC The Program Counter value. During the instruction time of an instruction, this is the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction time is determined by assign-
ing a value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.
In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the restart
address into a GPR on a jump-and-link or branch-and-link instruction, or into a Coprocessor 0 register on an
exception. The PC value contains a full 32-bit address all of which are significant during a memory refer-
ence.

ISA Mode In processors that implement the MIPS16e Application Specific Extension or the microMIPS base architec-
tures, the ISA Mode is a single-bit register that determines in which mode the processor is executing, as fol-
lows:

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on a jump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 phys-

ical address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes.

FP32RegistersMode Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs).  It is optional if the FPU has
32 64-bit FPRs in which 64-bit data types are stored in any FPR.

microMIPS64 implementations have a compatibility mode in which the processor references the FPRs as if
it were a microMIPS32 implementation. In such a case FP32RegisterMode is computed from the FR bit in
the Status register. If this bit is a 0, the processor operates as if it had 32 32-bit FPRs. If this bit is a 1, the pro-
cessor operates with 32 64-bit FPRs.
The value of FP32RegistersMode is computed from the FR bit in the Status register.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol  Meaning

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions

1 The processor is executing MIIPS16e or microMIPS
instructions



 About This Book

12MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

1.4 For More Information

Various MIPS RISC processor manuals and additional information about MIPS products can be found at the MIPS
URL: http://www mips.com

For comments or questions on the MIPS32® Architecture or this document, send Email to support@mips.com.

InstructionInBranchDe-
laySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch
or jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the value is
false if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which
is not executed in the delay slot of a branch or jump.

SignalException(excep-
tion, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
parameter as an exception-specific argument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol  Meaning



Chapter 2

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 13

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical
order in the tables at the beginning of the next chapter.

2.1 Understanding the Instruction Fields

Figure 2.1 shows an example instruction. Following the figure are descriptions of the fields listed below:

• “Instruction Fields” on page 14

• “Instruction Descriptive Name and Mnemonic” on page 15

• “Format Field” on page 15

• “Purpose Field” on page 16

• “Description Field” on page 16

• “Restrictions Field” on page 16

• “Operation Field” on page 17

• “Exceptions Field” on page 17

• “Programming Notes and Implementation Notes Fields” on page 18



 Guide to the Instruction Set

14MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

Figure 2.1 Example of Instruction Description

2.1.1 Instruction Fields

EXAMPLE
31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0 rt rd
0

00000
EXAMPLE

000000

6 5 5 5 5 6

Format: EXAMPLE fd,rs,rt MIPS32

Purpose: Example Instruction Name

To execute an EXAMPLE op.

Description: GPR[rd] ← GPR[r]s exampleop GPR[rt]

This section describes the operation of the instruction in text, tables, and illustrations. It
includes information that would be difficult to encode in the Operation section.

Restrictions:

This section lists any restrictions for the instruction. This can include values of the instruc-
tion encoding fields such as register specifiers, operand values, operand formats, address
alignment, instruction scheduling hazards, and type of memory access for addressed loca-
tions.

Operation:

/* This section describes the operation of an instruction in */
/* a high-level pseudo-language. It is precise in ways that */
/* the Description section is not, but is also missing */
/* information that is hard to express in pseudocode. */
temp ← GPR[rs] exampleop GPR[rt]
GPR[rd] ← temp

Exceptions:

A list of exceptions taken by the instruction

Programming Notes:

Information useful to programmers, but not necessary to describe the operation of the
instruction

Implementation Notes:

Like Programming Notes, except for processor implementors

Example Instruction Name EXAMPLEInstruction Mnemonic and
Descriptive Name

Instruction encoding
constant and variable field
names and values

Architecture level at which
instruction was defined/redefined

Assembler format(s) for each
definition

Short description

Symbolic description

Full description of
instruction operation

Restrictions on instruction
and operands

High-level language
description of instruction
operation

Exceptions that
instruction can cause

Notes for programmers

Notes for implementors



2.1 Understanding the Instruction Fields

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 15

Fields encoding the instruction word are shown in register form at the top of the instruction description. The follow-
ing rules are followed:

• The values of constant fields and the opcode names are listed in uppercase (SPECIAL and ADD in Figure 2.2).
Constant values in a field are shown in binary below the symbolic or hexadecimal value.

• All variable fields are listed with the lowercase names used in the instruction description (rs, rt, and rd in Figure
2.2).

• Fields that contain zeros but are not named are unused fields that are required to be zero (bits 10:6 in Figure 2.2).
If such fields are set to non-zero values, the operation of the processor is UNPREDICTABLE.

Figure 2.2 Example of Instruction Fields

2.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown in Figure
2.3.

Figure 2.3 Example of Instruction Descriptive Name and Mnemonic

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
given in the Format field. If the instruction definition was later extended, the architecture levels at which it was
extended and the assembler formats for the extended definition are shown in their order of extension (for an example,
see C.cond fmt). The MIPS architecture levels are inclusive; higher architecture levels include all instructions in pre-
vious levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the
extended architecture.

Figure 2.4 Example of Instruction Format

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields. The architectural level at
which the instruction was first defined, for example “MIPS32” is shown at the right side of the page.

There can be more than one assembler format for each architecture level. Floating point operations on formatted data
show an assembly format with the actual assembler mnemonic for each valid value of the fmt field. For example, the
ADD fmt instruction lists both ADD.S and ADD.D.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
ADD

100000

6 5 5 5 5 6

Add Word ADD

Format: ADD fd,rs,rt MIPS32



 Guide to the Instruction Set

16MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

The assembler format lines sometimes include parenthetical comments to help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

The term decoded_immediate is used if the immediate field is encoded within the binary format but the assembler for-
mat uses the decoded value. The term left_shifted_offset is used if the offset field is encoded within the binary format
but the assembler format uses value after the appropriate amount of left shifting.

2.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Figure 2.5 Example of Instruction Purpose

2.1.5 Description Field

If a one-line symbolic description of the instruction is feasible, it appears immediately to the right of the Description
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation.

Figure 2.6 Example of Instruction Description

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU general-purpose register specified by the
instruction field rt. “FPR fs” is the floating point operand register specified by the instruction field fs. “CP1 register
fd” is the coprocessor 1 general register specified by the instruction field fd. “FCSR” is the floating point Control /
Status register.

2.1.6 Restrictions Field

The Restrictions field documents any possible restrictions that may affect the instruction. Most restrictions fall into
one of the following six categories:

• Valid values for instruction fields (for example, see floating point ADD fmt)

• ALIGNMENT requirements for memory addresses (for example, see LW)

• Valid values of operands (for example, see ALNV.PS)

Purpose: Add Word

To add 32-bit integers. If an overflow occurs, then trap.

Description: GPR[rd] ← GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit
result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination
register is not modified and an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is placed into GPR rd.



2.1 Understanding the Instruction Fields

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 17

• Valid operand formats (for example, see floating point ADD fmt)

• Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards
for which some processors do not have hardware interlocks (for example, see MUL).

• Valid memory access types (for example, see LL/SC)

Figure 2.7 Example of Instruction Restrictions

2.1.7 Operation Field

The Operation field describes the operation of the instruction as pseudocode in a high-level language notation resem-
bling Pascal. This formal description complements the Description section; it is not complete in itself because many
of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Figure 2.8 Example of Instruction Operation

See 2.2 “Operation Section Notation and Functions” on page 18 for more information on the formal notation used
here.

2.1.8 Exceptions Field

The Exceptions field lists the exceptions that can be caused by Operation of the instruction. It omits exceptions that
can be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by asyn-
chronous external events such as an Interrupt. Although a Bus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship
between load and store instructions and external error indications, like Bus Error, are dependent upon the implemen-
tation.

Figure 2.9 Example of Instruction Exception

An instruction may cause implementation-dependent exceptions that are not present in the Exceptions section.

Restrictions:

None

Operation:

temp ← (GPR[rs]31||GPR[rs]31..0) + (GPR[rt]31||GPR[rt]31..0)
if temp32 ≠ temp31 then

SignalException(IntegerOverflow)
else

GPR[rd] ← temp
endif

Exceptions:

Integer Overflow



 Guide to the Instruction Set

18MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

2.1.9 Programming Notes and Implementation Notes Fields

The Notes sections contain material that is useful for programmers and implementors, respectively, but that is not nec-
essary to describe the instruction and does not belong in the description sections.

Figure 2.10 Example of Instruction Programming Notes

2.2 Operation Section Notation and Functions

In an instruction description, the Operation section uses a high-level language notation to describe the operation per-
formed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described below.

This section presents information about the following topics:

• “Instruction Execution Ordering” on page 18

• “Pseudocode Functions” on page 18

2.2.1 Instruction Execution Ordering

Each of the high-level language statements in the Operations section are executed sequentially (except as constrained
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and
include the following:

• “Coprocessor General Register Access Functions” on page 18

• “Memory Operation Functions” on page 20

• “Floating Point Functions” on page 23

• “Miscellaneous Functions” on page 26

2.2.2.1 Coprocessor General Register Access Functions

Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between coprocessor
general registers and the rest of the system. What a coprocessor does with a word or doubleword supplied to it and
how a coprocessor supplies a word or doubleword is defined by the coprocessor itself. This behavior is abstracted into
the functions described in this section.

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.



2.2 Operation Section Notation and Functions

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 19

COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with a word from memory during a
load word operation. The action is coprocessor-specific. The typical action would be to store the contents of mem-
word in coprocessor general register rt.

Figure 2.11 COP_LW Pseudocode Function

COP_LW (z, rt, memword)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */

endfunction COP_LW

COP_LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory
during a load doubleword operation. The action is coprocessor-specific. The typical action would be to store the con-
tents of memdouble in coprocessor general register rt.

Figure 2.12 COP_LD Pseudocode Function

COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memdouble:  64-bit doubleword value supplied to the coprocessor.

/* Coprocessor-dependent action */

endfunction COP_LD

COP_SW

The COP_SW function defines the action taken by coprocessor z to supply a word of data during a store word opera-
tion. The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in
coprocessor general register rt.

Figure 2.13 COP_SW Pseudocode Function

dataword ← COP_SW (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
dataword: 32-bit word value

/* Coprocessor-dependent action */

endfunction COP_SW

COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store dou-
bleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the low-
order doubleword in coprocessor general register rt.



 Guide to the Instruction Set

20MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

Figure 2.14 COP_SD Pseudocode Function

datadouble ← COP_SD (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
datadouble: 64-bit doubleword value

/* Coprocessor-dependent action */

endfunction COP_SD

CoprocessorOperation

The CoprocessorOperation function performs the specified Coprocessor operation.

Figure 2.15 CoprocessorOperation Pseudocode Function

CoprocessorOperation (z, cop_fun)

/* z: Coprocessor unit number */
/* cop_fun: Coprocessor function from function field of instruction */

/* Transmit the cop_fun value to coprocessor z */

endfunction CoprocessorOperation

2.2.2.2 Memory Operation Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for a little-endian
ordering this is the least-significant byte.

In the Operation pseudocode for load and store operations, the following functions summarize the handling of virtual
addresses and the access of physical memory. The size of the data item to be loaded or stored is passed in the
AccessLength field. The valid constant names and values are shown in Table 2.1. The bytes within the addressed unit
of memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined directly
from the AccessLength and the two or three low-order bits of the address.

AddressTranslation

The AddressTranslation function translates a virtual address to a physical address and its cacheability and coherency
attribute, describing the mechanism used to resolve the memory reference.

Given the virtual address vAddr, and whether the reference is to Instructions or Data (IorD), find the corresponding
physical address (pAddr) and the cacheability and coherency attribute (CCA) used to resolve the reference. If the vir-
tual address is in one of the unmapped address spaces, the physical address and CCA are determined directly by the
virtual address. If the virtual address is in one of the mapped address spaces then the TLB or fixed mapping MMU
determines the physical address and access type; if the required translation is not present in the TLB or the desired
access is not permitted, the function fails and an exception is taken.

Figure 2.16 AddressTranslation Pseudocode Function

(pAddr, CCA) ← AddressTranslation (vAddr, IorD, LorS)

/* pAddr: physical address */
/* CCA: Cacheability&Coherency Attribute,the method used to access caches*/



2.2 Operation Section Notation and Functions

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 21

/* and memory and resolve the reference */

/* vAddr: virtual address */
/* IorD: Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

LoadMemory

The LoadMemory function loads a value from memory.

This action uses cache and main memory as specified in both the Cacheability and Coherency Attribute (CCA) and
the access (IorD) to find the contents of AccessLength memory bytes, starting at physical location pAddr. The data is
returned in a fixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address
and the AccessLength indicate which of the bytes within MemElem need to be passed to the processor. If the memory
access type of the reference is uncached, only the referenced bytes are read from memory and marked as valid within
the memory element. If the access type is cached but the data is not present in cache, an implementation-specific size
and alignment block of memory is read and loaded into the cache to satisfy a load reference. At a minimum, this
block is the entire memory element.

Figure 2.17 LoadMemory Pseudocode Function

MemElem ← LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */
/* width is the same size as the CPU general-purpose register, */
/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */
/* respectively. */
/* CCA: Cacheability&CoherencyAttribute=method used to access caches */
/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */
/* pAddr: physical address */
/* vAddr: virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadMemory

StoreMemory

The StoreMemory function stores a value to memory.

The specified data is stored into the physical location pAddr using the memory hierarchy (data caches and main mem-
ory) as specified by the Cacheability and Coherency Attribute (CCA). The MemElem contains the data for an aligned,
fixed-width memory element (a word for 32-bit processors, a doubleword for 64-bit processors), though only the
bytes that are actually stored to memory need be valid. The low-order two (or three) bits of pAddr and the AccessLen-
gth field indicate which of the bytes within the MemElem data should be stored; only these bytes in memory will actu-
ally be changed.

Figure 2.18 StoreMemory Pseudocode Function

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)



 Guide to the Instruction Set

22MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* AccessLength: Length, in bytes, of access */
/* MemElem: Data in the width and alignment of a memory element. */
/* The width is the same size as the CPU general */
/* purpose register, either 4 or 8 bytes, */
/* aligned on a 4- or 8-byte boundary. For a */
/* partial-memory-element store, only the bytes that will be*/
/* stored must be valid.*/
/* pAddr: physical address */
/* vAddr: virtual address */

endfunction StoreMemory

Prefetch

The Prefetch function prefetches data from memory.

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may
increase performance but must not change the meaning of the program or alter architecturally visible state.

Figure 2.19 Prefetch Pseudocode Function

Prefetch (CCA, pAddr, vAddr, DATA, hint)

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* pAddr: physical address */
/* vAddr: virtual address */
/* DATA: Indicates that access is for DATA */
/* hint: hint that indicates the possible use of the data */

endfunction Prefetch

Table 2.1 lists the data access lengths and their labels for loads and stores.

SyncOperation

The SyncOperation function orders loads and stores to synchronize shared memory.

Table 2.1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning

DOUBLEWORD 7 8 bytes (64 bits)

SEPTIBYTE 6 7 bytes (56 bits)

SEXTIBYTE 5 6 bytes (48 bits)

QUINTIBYTE 4 5 bytes (40 bits)

WORD 3 4 bytes (32 bits)

TRIPLEBYTE 2 3 bytes (24 bits)

HALFWORD 1 2 bytes (16 bits)

BYTE 0 1 byte (8 bits)



2.2 Operation Section Notation and Functions

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 23

This action makes the effects of the synchronizable loads and stores indicated by stype occur in the same order for all
processors.

Figure 2.20 SyncOperation Pseudocode Function

SyncOperation(stype)

/* stype: Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

2.2.2.3 Floating Point Functions

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are inter-
preted to form a formatted value. If an FPR contains a value in some format, rather than unformatted contents from a
load (uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).

ValueFPR

The ValueFPR function returns a formatted value from the floating point registers.

Figure 2.21 ValueFPR Pseudocode Function

value ← ValueFPR(fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in SWC1 and SDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

valueFPR ← FPR[fpr]

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)

if (fpr0 ≠ 0) then
valueFPR ← UNPREDICTABLE

else
valueFPR ← FPR[fpr+1]31..0 || FPR[fpr]31..0

endif
else

valueFPR ← FPR[fpr]
endif

L, PS:
if (FP32RegistersMode = 0) then

valueFPR ← UNPREDICTABLE



 Guide to the Instruction Set

24MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

else
valueFPR ← FPR[fpr]

endif

DEFAULT:
valueFPR ← UNPREDICTABLE

endcase
endfunction ValueFPR

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored into CP1
registers by a computational or move operation. This binary representation is visible to store or move-from instruc-
tions. Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a
different format.

StoreFPR

Figure 2.22 StoreFPR Pseudocode Function

StoreFPR (fpr, fmt, value)

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* value: The formattted value to be stored into the FPR */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in LWC1 and LDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

FPR[fpr] ← value

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)

if (fpr0 ≠ 0) then
UNPREDICTABLE

else
FPR[fpr] ← UNPREDICTABLE32 || value31..0
FPR[fpr+1] ← UNPREDICTABLE32 || value63..32

endif
else

FPR[fpr] ← value
endif

L, PS:
if (FP32RegistersMode = 0) then

UNPREDICTABLE
else

FPR[fpr] ← value
endif

endcase



2.2 Operation Section Notation and Functions

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 25

endfunction StoreFPR

The pseudocode shown below checks for an enabled floating point exception and conditionally signals the exception.

CheckFPException

Figure 2.23 CheckFPException Pseudocode Function

CheckFPException()

/* A floating point exception is signaled if the E bit of the Cause field is a 1 */
/* (Unimplemented Operations have no enable) or if any bit in the Cause field */
/* and the corresponding bit in the Enable field are both 1 */

if ( (FCSR17 = 1) or
((FCSR16..12 and FCSR11..7) ≠ 0)) ) then

SignalException(FloatingPointException)
endif

endfunction CheckFPException

FPConditionCode

The FPConditionCode function returns the value of a specific floating point condition code.

Figure 2.24 FPConditionCode Pseudocode Function

tf ←FPConditionCode(cc)

/* tf: The value of the specified condition code */

/* cc: The Condition code number in the range 0..7 */

if cc = 0 then
FPConditionCode ← FCSR23

else
FPConditionCode ← FCSR24+cc

endif

endfunction FPConditionCode

SetFPConditionCode

The SetFPConditionCode function writes a new value to a specific floating point condition code.

Figure 2.25 SetFPConditionCode Pseudocode Function

SetFPConditionCode(cc, tf)
if cc = 0 then

FCSR ← FCSR31..24 || tf || FCSR22..0
else

FCSR ← FCSR31..25+cc || tf || FCSR23+cc..0
endif

endfunction SetFPConditionCode



 Guide to the Instruction Set

26MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

2.2.2.4 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

SignalException

The SignalException function signals an exception condition.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.26 SignalException Pseudocode Function

SignalException(Exception, argument)

/* Exception: The exception condition that exists. */
/* argument: A exception-dependent argument, if any */

endfunction SignalException

SignalDebugBreakpointException

The SignalDebugBreakpointException function signals a condition that causes entry into Debug Mode from non-
Debug Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.27 SignalDebugBreakpointException Pseudocode Function

SignalDebugBreakpointException()

endfunction SignalDebugBreakpointException

SignalDebugModeBreakpointException

The SignalDebugModeBreakpointException function signals a condition that causes entry into Debug Mode from
Debug Mode (i.e., an exception generated while already running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.28 SignalDebugModeBreakpointException Pseudocode Function

SignalDebugModeBreakpointException()

endfunction SignalDebugModeBreakpointException

NullifyCurrentInstruction

The NullifyCurrentInstruction function nullifies the current instruction.

The instruction is aborted, inhibiting not only the functional effect of the instruction, but also inhibiting all exceptions
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullification
kills the instruction in the delay slot of the branch likely instruction.



2.3 Op and Function Subfield Notation

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 27

Figure 2.29 NullifyCurrentInstruction PseudoCode Function

NullifyCurrentInstruction()

endfunction NullifyCurrentInstruction

JumpDelaySlot

The JumpDelaySlot function is used in the pseudocode for the PC-relative instructions in the MIPS16e ASE. The
function returns TRUE if the instruction at vAddr is executed in a jump delay slot. A jump delay slot always immedi-
ately follows a JR, JAL, JALR, or JALX instruction.

Figure 2.30 JumpDelaySlot Pseudocode Function

JumpDelaySlot(vAddr)

/* vAddr:Virtual address */

endfunction JumpDelaySlot

PolyMult

The PolyMult function multiplies two binary polynomial coefficients.

Figure 2.31 PolyMult Pseudocode Function

PolyMult(x, y)
temp ← 0
for i in 0 .. 31

if xi = 1 then
temp ← temp xor (y(31-i)..0 || 0

i)
endif

endfor

PolyMult ← temp

endfunction PolyMult

2.3 Op and Function Subfield Notation

In some instructions, the instruction subfields op and function can have constant 5- or 6-bit values. When reference is
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction,
op=COP1 and function=ADD. In other cases, a single field has both fixed and variable subfields, so the name con-
tains both upper- and lowercase characters.

2.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfields in an instruction format (such as fs, ft, imme-
diate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in upper-
case.

For the sake of clarity, an alias is sometimes used for a variable subfield in the formats of specific instructions. For
example, rs=base in the format for load and store instructions. Such an alias is always lowercase since it refers to a
variable subfield.



 Guide to the Instruction Set

28MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

Bit encodings for mnemonics are given in Volume I, in the chapters describing the CPU, FPU, MDMX, and MIPS16e
instructions.

See “Op and Function Subfield Notation” on page 27 for a description of the op and function subfields.



Chapter 3

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 29

The MCU Application-Specific Extension to the MIPS32®

and microMIPS32TMArchitecture

3.1 Base Architecture Requirements

The MCU® ASE requires at least one of the following base architecture supports:

• The microMIPS Architecture: The MCU ASE requires a compliant implementation of the microMIPS Archi-
tecture.

• The MIPS32 Architecture: The MCU ASE requires a compliant implementation of the MIPS32Architecture.

3.2 Software Detection of the ASE

Software may determine if the MCU ASE is implemented by checking the state of the MCU bit in the Config3 CP0
register.

3.3 Compliance and Subsetting

There are no instruction subsets of the MCU ASE to the microMIPS/MIPS32 Architecture—all MCU instructions
must be implemented.

3.4 Overview of the MCU ASE

The MCU ASE extends the microMIPS32/MIPS32 Architecture with a set of new features designed for the micro-
controller market. The MCU ASE contains enhancements in several distinct areas: interrupt delivery, interrupt
latency, and I/O peripheral programming.

3.4.1 Interrupt Delivery

The MCU ASE extends the number of hardware interrupt sources from 6 to 8. For legacy and vectored-interrupt
mode, this represents 8 external interrupt sources. For EIC mode, the widened IPL and RIPL fields can now represent
256 external interrupt sources.

3.4.2 Interrupt Latency Reduction

The MCU ASE includes a package of extensions to microMIPS/MIPS32 that decrease the latency of the processor’s
response to a signalled interrupt.



 The MCU Application-Specific Extension to the MIPS32® and microMIPS32TMArchitecture

30MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

3.4.2.1 Interrupt Vector Prefetching

Normally on MIPS architecture processors, when an interrupt or exception is signalled, execution pipelines must be
flushed before the interrupt/exception handler is fetched. This is necessary to avoid mixing the contexts of the inter-
rupted/faulting program and the exception handler. The MCU ASE introduces a hardware mechanism in which the
interrupt exception vector is prefetched whenever the interrupt input signals change. The prefetch memory transac-
tion occurs in parallel with the pipeline flush and exception prioritization. This decreases the overall latency of the
execution of the interrupt handler’s first instruction.

3.4.2.2 Automated Interrupt Prologue

The use of Shadow Register Sets avoids the software steps of having to save general-purpose registers before han-
dling an interrupt.

The MCU ASE adds additional hardware logic that automatically saves some of the COP0 state in the stack and auto-
matically updates some of the COP0 registers in preparation for interrupt handling.

3.4.2.3 Automated Interrupt Epilogue

A mirror to the Automated Prologue, this feature automates the restoration of some of the COP0 registers from the
stack and the preparation of some of the COP0 registers for returning to non-exception mode. This feature is imple-
mented within the IRET instruction, which is introduced in this ASE.

3.4.2.4 Interrupt Chaining

An optional feature of the Automated Interrupt Epilogue, this feature allows handling a second interrupt after a pri-
mary interrupt is handled, without returning to non-exception mode (and the related pipeline flushes that would nor-
mally be necessary).

3.4.3 I/O Device Programming

The ASE includes some instructions that simplify writing the control registers of I/O devices. Specifically, new
instructions are made available to avoid read-modify-write hazards, without resorting to busy-wait loops or system
calls. Read-modify-write hazards exist when one thread reads a control register, and that thread is interrupted before
it modifies the control register.



Chapter 4

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 31

The MCU Instruction Set

The MCU ASE includes three new instructions that are particularly useful in microcontroller applications.

4.1 IRET

This instruction can be used as a replacement for the ERET instruction when returning from an interrupt. This
instruction implements the Automated Interrupt Epilogue feature, which automates restoring some of the COP0 reg-
isters from the stack and updating the C0_Status register in preparation for returning to non-exception mode. This
instruction also implements the optional Interrupt Chaining feature, which allows a subsequent interrupt to be han-
dled without returning to non-exception mode.

4.2 ASET

This instruction allows a bit within an uncached I/O control register to be atomically set; that is, the read-modify byte
write sequence performed by this instruction cannot be interrupted.

4.3 ACLR

This instruction allows a bit within an uncached I/O control register to be atomically cleared; that is, the read-modify
byte write sequence performed by this instruction cannot be interrupted.



 The MCU Instruction Set

32MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03



Interrupt Return with automated interrupt epilogue handling IIRET

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 33

Format: IRET microMIPS and MCU ASE

Purpose: Interrupt Return with automated interrupt epilogue handling

Optionally jump directly to another interrupt vector without returning to original return address.

Description:

IRET automates some of the operations that are required when returning from an interrupt handler and can be used in
place of the ERET instruction at the end of interrupt handlers. IRET is only appropriate when using Shadow Register
Sets and the EIC Interrupt mode. The automated operations of this instruction can be used to reverse the effects of the
automated operations of the Auto-Prologue feature.

If the EIC interrupt mode and the Interrupt Chaining feature are used, the IRET instruction can be used to shorten the
time between returning from the current interrupt handler and handling the next requested interrupt.

If the Automated Prologue feature is disabled, then IRET behaves exactly like ERET.

If either the StatusERL or StatusBEV bits are set, then IRET behaves exactly like ERET.

If Interrupt Chaining is disabled:

Interrupts are disabled. COP0 Status, SRSCtl, and EPC registers are restored from the stack. GPR 29 is incre-
mented for the stack frame size. IRET then clears execution and instruction hazards, conditionally restores
SRSCtlCSS from SRSCtlPSS, and returns at the completion of interrupt processing to the interrupted instruction
pointed to by the EPC register.

If Interrupt Chaining is enabled:

Interrupts are disabled. COP0 Status register is restored from the stack. The priority output of the External Inter-
rupt Controller is compared with the IPL field of the Status register.

If StatusIPL has a higher priority than or equal to the External Interrupt Controller value:

COP0 SRSCtl and EPC registers are restored from the stack. GPR 29 is incremented for the stack frame size.
IRET then clears execution and instruction hazards, conditionally restores SRSCtlCSS from SRSCtlPSS, and
returns to the interrupted instruction pointed to by the EPC register at the completion of interrupt processing.

If StatusIPL has a lower priority than the External Interrupt Controller value:

The value of GPR 29 is first saved to a temporary register then GPR 29 is incremented for the stack frame
size. The EIC is signalled that the next pending interrupt has been accepted. This signalling will update the
CauseRIPL and SRSCtlEICSS fields from the EIC output values. The SRSCtlEICSS field is copied to the
SRSCtlCSS field, while the CauseRIPL field is copied to the StatusIPL field. The saved temporary register is
copied to the GPR 29 of the current SRS. The KSU and EXL fields of the Status register are optionally set to
zero. No barrier for execution hazards or instruction hazards is created. IRET finishes by jumping to the
interrupt vector driven by the EIC.

IRET does not execute the next instruction (i.e., it has no delay slot).

31 26 25 6 5 0

POOL32A
000000

000 0000 0011 0100 1101
POOL32AXf

111100

6 20 6



Interrupt Return with automated interrupt epilogue handling IRET

34MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

Restrictions:

The operation of the processor is UNDEFINED if IRET is executed in the delay slot of a branch or jump instruction.

The operation of the processor is UNDEFINED if IRET is executed when either Shadow Register Sets are not
enabled, or when the EIC interrupt mode is not enabled.

An IRET placed between an LL and SC instruction will always cause the SC to fail.

The effective addresses used for stack transactions must be naturally-aligned. If either of the two least-significant bits
of the address is non-zero, an Address Error exception occurs.

IRET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0 state
changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier begin with the instruction
fetch and decode of the instruction at the PC to which the IRET returns.

In a Release 2 implementation, IRET does not restore SRSCtlCSS from SRSCtlPSS if StatusBEV = 1 or StatusERL = 1,
because any exception that sets StatusERL to 1 (Reset, Soft Reset, NMI, or cache error) does not save SRSCtlCSS in
SRSCtlPSS. If software sets StatusERL to 1, it must be aware of the operation of an IRET that may be subsequently
executed.

The stack memory transactions behave as individual LW operations with respect to exception reporting. BadVAddr
would report the faulting address for an unaligned access, and the faulting word address for unprivileged access, TLB
Refill, and TLB Invalid exceptions. For TLB exceptions, the faulting word address would be reflected in the Context
and EntryHi registers. The CacheError register would reflect the faulting word address for Cache Errors.

Operation:

if (( IntCtlAPE == 0) | (StatusERL == 1) | (StatusBEV== 1))
Act as ERET // read Operation section of ERET description

else
temp ← 0x4 + GPR[29]
tempStatus ← LoadStackWord(temp)
ClearHazards()
if ( (IntCtlICE == 0) |  ((IntCtlICE == 1) &
(tempStatusIPL ≥ EICRIPL)) )

temp ← 0x8 + GPR[29]
tempSRSCtl ← LoadStackWord(temp)
temp ← 0x0 + GPR[29]
tempEPC ← LoadStackWord(temp)

endif
Status ← tempStatus
if ( (IntCtlICE == 0) | ((IntCtlICE == 1) &

(tempStatusIPL ≥ EICRIPL)) )
GPR[29] ← GPR[29] + DecodedValue(IntCtlStkDec)
SRSCtlPSS ← tempSRSCtlPSS
SRSCtlESS ← tempSRSCtlESS
EPC ← tempEPC
temp ← EPC
StatusEXL ← 0
if (ArchitectureRevision ≥ 2) and (SRSCtlHSS > 0) and (StatusBEV = 0) then

SRSCtlCSS ← SRSCtlPSS
endif
if IsMicroMIPSImplemented() then

PC ← temp31..1 || 0
ISAMode ← temp0

else
PC ← temp



Interrupt Return with automated interrupt epilogue handling IIRET

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 35

endif
LLbit ← 0
CauseIC ← 0
ClearHazards()

else
CauseRIPL ← EICRIPL
SRSCtlEICSS ← EICSS
temp29 ← GPR[29]
GPR[29] ← GPR[29] + DecodedValue(IntCtlStkDec)
StatusIPL ← CauseRIPL
SRSCtlCSS ← SRSCtlEICSS
NewShadowSet ← SRSCtlEICSS
GPR[29] ← temp29
if (IntCtlClrEXL == 1)

StatusEXL ← 0
StatusKSU ← 0

endif
LLbit ← 0
CauseIC ← 1
ClearHazards()
PC ← CalcIntrptAddress()

endif
endif

function LoadStackWord(vaddr)
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
LoadStackWord ← memword

endfunction LoadStackWord

function CalcIntrptAddress()
if StatusBEV == 1

vectorBase ← 0xBFC0.0200
else

if ( ArchitectureRevision ≥ 2)
vectorBase ← EBase31..12 || 011)

else
vectorBase ← 0x8000.0000

endif
endif
if (CauseIV == 0)

vectorOffset ← 0x180
else

if (StatusBEV = 1) or (IntCtlVS = 0)
vectorOffset ← 0x200

else
if ( Config3VEIC == 1 and EIC_Option == 1)

VectorNum ← CauseRIPL
elseif (Config3VEIC == 1 and EIC_Option == 2)

VectorNum ← EIC_VectorNum
elseif (Config3VEIC == 0 )

VectorNum ← VIntPriorityEncoder()



Interrupt Return with automated interrupt epilogue handling IRET

36MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

endif
if (Config3VEIC == 1 and EIC_Option == 3)

vectorOffset ← EIC_VectorOffset
else

vectorOffset ← 0x200 + (VectorNum x (IntCtlVS || 05))
endif

endif
endif
CalcIntrptAddress ← vectorBase | vectorOffset
if (Config3ISAOnExec)

CalcIntrptAddress ← CalcIntrptAddress31..1 || 1
endif

endfunction CalcIntrptAddress

Exceptions:
Coprocessor Unusable Exception, TLB Refill, TLB Invalid, Address Error, Watch, Cache Error, Bus Error
Exceptions



Atomically Set Bit within Byte ASET

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 37

Format: ASET bit, offset(base) microMIPS AND MCU ASE

Purpose: Atomically Set Bit within Byte

Description: Disable interrupts;temp ← memory[GPR[base] + offset]; temp ← (temp or (1 <<
bit)) ; memory[GPR[base] + offset] ← temp; Enable Interrupts

The contents of the byte at the memory location specified by the effective address are fetched. The specified bit
within the byte is set to one. The modified byte is stored in memory at the location specified by the effective address.
The 12-bit signed offset is added to the contents of GPR base to form the effective address. The read-modify-write
sequence cannot be interrupted.

Transactions with locking semantics occur in some memory interconnects/busses. It is implementation-specific
whether this instruction uses such locking transactions.

Restrictions:

The operation of the processor is UNPREDICTABLE if an ASET instruction is executed in the delay slot of a
branch or jump instruction.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
TempIE ← StatusIE
StatusIE ← 0
memword ← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor BigEndianCPU2

temp ← memword7+8*byte..8*byte
temp ← temp or ( 1 || 0bit)
dataword ← temp || 08*byte

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)
StatusIE ← TempIE

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

Upon a TLB miss, a TLBS exception is signalled in the ExcCode field of the Cause register. For address error, a
ADES exception is signalled in the ExcCode field of the Cause register. For other data-stream related exceptions such
as Debug Data Break exceptions and Watch exceptions, it is implementation-specific whether this instruction is
treated as a load or as a store.

31 26 25 24 23 21 20 16 15 12 11 0

POOL32B
001000

A0
0

bit base
ASET
0011 offset

6 2 3 5 4 12



Atomically Set Bit within Byte ASET

38MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03



Atomically Clear Bit within Byte ACLR

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 39

Format: ACLR bit, offset(base) microMIPS and MCU ASE

Purpose: Atomically Clear Bit within Byte

Description: Disable interrupts; temp ← memory[GPR[base] + offset]; temp ← (temp and ~(1
<< bit)) ; memory[GPR[base] + offset] ← temp; Enable Interrupts

The contents of the byte at the memory location specified by the effective address are fetched. The specified bit
within the byte is cleared to zero. The modified byte is stored in memory at the location specified by the effective
address. The 12-bit signed offset is added to the contents of GPR base to form the effective address. The read-modify-
write sequence cannot be interrupted.

Transactions with locking semantics occur in some memory interconnects/busses. It is implementation-specific
whether this instruction uses such locking transactions.

Restrictions:

The operation of the processor is UNPREDICTABLE if an ACLR instruction is executed in the delay slot of a
branch or jump instruction.

Operation:

vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
TempIE ← StatusIE
StatusIE ← 0
memword ← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor BigEndianCPU2

temp ← memword7+8*byte..8*byte
temp ← temp and (( 1 || 0bit) xor 0xFF))
dataword ← temp || 08*byte

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)
StatusIE ← TempIE

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

Upon a TLB miss, a TLBS exception is signalled in the ExcCode field of the Cause register. For address error, a
ADES exception is signalled in the ExcCode field of the Cause register. For other data-stream related exceptions such
as Debug Data Break exceptions and Watch exceptions, it is implementation-specific whether this instruction is
treated as a load or as a store.

31 26 25 24 23 21 20 16 15 12 11 0

POOL32B
001000

A0
0

bit base
ACLR
1011 offset

6 2 3 5 4 12



Atomically Clear Bit within Byte ACLR

40MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03



Chapter 5

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 41

The MCU Privileged Resource Architecture

5.1 Introduction

The MIPS32 Privileged Resource Architecture (PRA) defines a set of environments and capabilities on which the
Instruction Set Architecture operates. This includes definitions of the programming interface and operation of the
system coprocessor, CP0. MCU defines extensions to the MIPS32 PRA that are desirable in a microcontroller envi-
ronment. This document describes these extensions. It is not intended to be a stand-alone PRA specification and must
be read in the context of the MIPS32 Architecture specification.

5.2 The MCU System Coprocessor

The MCU system coprocessor interface and functionality is identical to MIPS32. except as defined below.

5.3 Interrupt Delivery

5.3.1 Number of Hardware Interrupts

The MCU ASE increases the number of Hardware Interrupts to 8. To accommodate this, the privileged architecture
has the following changes:

• Bits 18 and 16 of the Status Register are used to extend the IM/IPL fields.

• Bits 17 and 16 of the Cause Register are used to extend the IP/RIPL fields. Cause17 corresponds to Status18,
and Cause16 corresponds to Status16.

• An additional COP0 register (SRSMAP2), located at CP0 Register 12, Select 5, is used to map the Shadow
Register Set for the two new Vector Numbers available in Vectored Interrupt Mode.

5.3.1.1 Changes to Vectored Interrupt Mode

The highest priority interrupt source is now represented by Cause17 and Status18. The Shadow Register Set for this
interrupt source is specified by the SSV9 field in SRSMAP2 (bits 7:4).

The second highest priority interrupt source is now represented by Cause16 and Status16. The Shadow Register Set
for this interrupt source is specified by the SSV8 field in SRSMAP2 (bits 3:0).

5.3.1.2 Changes to External Interrupt Controller Mode

The StatusIPL and CauseRIPL fields are now 8 bits in width, which allows these fields to represent 256 external inter-
rupt sources.



 The MCU Privileged Resource Architecture

42MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

5.4 Interrupt Handling

5.4.1 Interrupt Vector Prefetching

5.4.1.1 Historical Behavior of Pipelines with In-Order Completion

Even on a processor that completes instructions in program order, traditionally there is some latency from when the
interrupt is recognized by the pipeline and when the first instruction of the interrupt handler is executed. Because
interrupts must be reported on a valid instruction, the interrupt is normally recognized by the pipeline in one of the
later pipeline stages. Subsequent instructions in the pipeline would be annulled for the context switch to exception
mode. The instruction fetch for the interrupt handler could be started after the interrupt is recognized by the pipeline
as the highest priority exception, but the annulled instructions would still have to drain from the pipeline.

5.4.1.2 Historical Behavior of Pipelines with Out-of-Order Completion

Historically many MIPS architecture implementations would flush the pipeline before processing any exception,
especially in implementations with non-blocking caches. This was done to avoid mixing context from the interrupted

Typical Interrupt Handling Flow in Pipelined Implementation with In-Order Completion

Time
Interrupt

Pins Pipeline Control Logic Instruction Fetch Logic Exception Logic

Earlier Executing Thread A Fetching along Thread A

Interrupt Pin
Asserted

Interrupt recognized, exception
signalled to pipeline

Stop issuing new instructions,
annul subsequent instructions

Previous fetch discarded

Interrupt recognized as highest
priority exception

Fetch interrupt vector

Annulled instructions drained
from pipeline

Pipeline restart

Later Execute interrupt handler



5.4 Interrupt Handling

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 43

process and the exception handler. This allows the exception handler to immediately save registers onto the stack
without the fear of missing pending register updates from yet to be completed instructions.

If the instructions at the exception vector were executed before all of the instructions of the interrupted process were
completed, the possibility of imprecise exceptions would be introduced.

An exception is imprecise when EPC/ErrorEPC/DEPC does not point to the instruction that caused the exception.
For example, if a load instruction misses in all of the caches for the requested data, and the cache hierarchy is
non-blocking, execution may proceed pass the load. An interrupt may be recognized and accepted on an instruction
subsequent to the load. While the interrupt handler is being executed, the response of the load returns and the
response signals a Bus Error. In that case, a nested exception would occur, but the EPC for the bus error would not
hold the address of the faulting load instruction. If the EXL bit is set at the time the Bus Error exception is recog-
nized, the EPC would not be updated: for this case, the EPC would point to an instruction within the interrupt handler.
A similar case can occur for late-arriving Floating-Point exceptions. In order to avoid these situations, some imple-
mentations flush the pipeline and wait until all outstanding instructions are completed before proceeding with the
exception handler.

5.4.1.3 New Feature - Speculative Prefetching

This new feature allows for the fetching of the interrupt vector address when any interrupt is signalled to the proces-
sor core. The fetching is done before the pipeline has been flushed and even before the exception priority logic has
determined if the interrupt is the highest priority exception that should be serviced. The purpose of this feature is to
allow the memory transaction to occur in parallel with the pipeline flush and exception prioritization.

Table 5.1 Typical Interrupt Handling Flow in Pipelined Implementation with Out-of-Order Completion

Time
Interrupt

Pins Pipeline Control Logic Instruction Fetch Logic Exception Logic

Earlier Executing Thread A Fetching along Thread A

Interrupt
Pin
Asserted

Interrupt Recognized, Exception
signalled to pipeline

Stop Issuing new instructions,
Annul subsequent instructions,
Wait for previous instructions to
complete

Previous fetch squashed

Idle

Annulled subsequent instructions
drained from pipeline

Idle

Idle

All previous instructions com-
pleted

Idle

Idle Interrupt Recognized as highest
priority exception.

Pipeline restart Fetch Interrupt Vector

Later Execute Interrupt Handler



 The MCU Privileged Resource Architecture

44MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

This feature is supported for all 3 interrupt modes: Release 1 Interrupt compatibility mode, Vectored Interrupt Mode,
and External Interrupt Controller/EIC mode. This feature is enabled by the IntCtl.PF bit.

Strictly speaking, this feature is not architecturally visible (that is, visible to software). However, to maintain the
same precise exception model that has been traditionally used, the prefetched instructions must be treated as specula-
tive. This means that any exception that might occur for the interrupt vector address prefetch—BusError, Parity
Error, non-Correctable ECC—must be held until all of the instructions of the interrupted process have completed and
the program counter has advanced to point to the interrupt vector address. A similar case occurs when the interrupt
vector address is prefetched, but the exception priority logic subsequently decides that another higher priority excep-
tion (not an Interrupt) is to be serviced first. This other exception would use a different vector address, and the
prefetch memory transaction must be dropped.

5.4.2 Interrupt Automated Prologue (IAP)

The use of Shadow Register Sets already decreases the overhead of saving usermode state before executing an inter-
rupt service routine. The Interrupt Automated Prologue (IAP) feature automates some of the software steps which
would be needed to save COP0 state before executing an interrupt service routine. Decreased latency to executing the
first useful instruction of an interrupt service routine can be achieved by executing some of the steps using parallel
hardware instead of serial execution of instructions.

5.4.2.1 IAP Conditions

This feature is only available when:

Table 5.2 Interrupt Handling Flow with Speculative Prefetching

Time
Interrupt

Pins Pipeline Control Logic Instruction Fetch Logic Exception Logic

Earlier Executing Thread A Fetching along Thread A

Interrupt Pin
Asserted

Interrupt Recognized, Excep-
tion signalled to pipeline

Stop Issuing new instruc-
tions, Wait for previous
instructions to complete

Previous fetch squashed

Prefetch Interrupt Vector

Hold results from prefetch

All previous instructions
completed

Interrupt recognized as high-
est priority exception

Pipeline restart If Interrupt not highest prior-
ity exception, squash prefetch
and fetch correct exception
vector

Later Execute Interrupt Handler



5.4 Interrupt Handling

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 45

• Shadow Register Sets are implemented (SRSCtlHSS != 0)

• External Interrupt Controller Mode is enabled (Config3VEIC=1, IntCtlVS != 0, CauseIV=1, and StatusBEV=0)

• IntCtlAPE=1

This feature only takes effect when an interrupt is signalled to the processor core and the exception priority logic has
resolved the interrupt to be the highest priority exception to be handled. If an exception other than an interrupt is sig-
nalled, this feature does not take effect.

5.4.2.2 IAP Operation

IAP Operation with one stack pointer.

These are the steps that are automated by this feature:

1. If (IntCtlUseKStk is zero) or (IntCtlUseKStk is one and interrupted instruction was executing in kernel mode) , then
TempStackPointer is updated with the value from GPR 29 of the Previous Shadow Register Set. Else, go to Step
A) (in the next section).

2. TempStackPointer is decremented by the value specified by the IntCtlStkDec register field.

3. The value in COP0 EPC register is stored to external memory using virtual address [TempStackPointer] + 0x0

4. The value in COP0 Status register is stored to external memory using virtual address [TempStackPointer]+0x4.

5. The value in COP0 SRSCtl register is stored to external memory using virtual address [TempStackPointer]+0x8.

6. GPR 29 of the Current Shadow Register Set is written with the value of TempStackPointer.

7. StatusIPL register field is updated with the value in CauseRIPL.

8. If IntCtlClrEXL is set, then KSU, ERL and EXL fields of the Status register are cleared to zero.

TempStackPointer is an internal register within the processor and is not visible to software. It is used so that the mod-
ification of GPR 29 does not happen until there is no longer any possibility of memory exceptions occurring during
IAP. This allows the TLB handler to be used without modification for a TLB exception that happens during IAP.

IAP Operation with multiple stack pointers.

The previous sequence is for simple software environments where there is only one stack. In more complicated envi-
ronments with both user-mode and kernel-mode stacks, the IntCtlUseKStk control bit can be used to select another
stack pointer for the interrupt handling. In this case, GPR 29 of the Shadow Register Set 1 is always used to hold the
kernel stack pointer. GPR 29 of Shadow Register Set 1 has been pre-initialized to hold the appropriate kernel stack
pointer value. The following steps illustrate how IAP works when the pre-initialized stack pointer is used (IntCtlUseK-

Stk is one).

A) If (IntCtlUseKStk is one) and (interrupted instruction was not executing in kernel mode) then TempStackPointer =
GPR 29 of Shadow Register 1 else TempStackPointer = GPR 29 of Shadow Register Set used at the time of the inter-
rupted instruction.

B) Go to Step 2 (in previous section).



 The MCU Privileged Resource Architecture

46MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

For Step A, if the interrupted instruction was already in kernel mode, then it would have been using the a stack
pointer value that was previously derived from the kernel stack pointer held in GPR 29 of Shadow Register 1.

5.4.2.3 Exceptions during IAP

The memory store operations which occur during Auto-Prologue may result in Address Error, TLB refill, TLB
invalid, TLB modify, Cache Error, Bus Error exceptions. If such memory exceptions occur during Auto-Prologue:

• The CauseExcCode register field reports the exception type

• CauseAP register bit is set

• EPC is unchanged; points to the instruction which was originally interrupted.

• All of the other exception reporting COP0 registers (BadVaddr, EntryHi, EntryLo*, Context, CacheError) are
updated as appropriate for the exception type. These registers reflect the effective word address which caused the
exception, e.g., as if an individual SW instruction had caused the exception.

• If the memory store operation uses a mapped address and there is no matching address in the TLB, the TLB refill
exception handler (offset 0x0) is used. The other TLB related exceptions (invalid, modify) use the general excep-
tion handler (offset 0x180).

• The Shadow Register Set designated by the SRSCtlESS register field is used for the memory exception.

• The memory exception handler returns to the original code PC location, which is held in C0_EPC.

• Since the interrupt is still asserted, the interrupt is signalled again and IAP is repeated. This time, it completes as
the faulting condition had previously been fixed.

The IAP feature will run to completion unless one of these memory exceptions takes place. The IAP feature is not
interruptable, that is, IAP is atomic from the point of view of another pending interrupt.

5.4.3 Interrupt Automated Epilogue (IAE)

This feature is the mirror of Interrupt Automated Prologue. In preparation for returning to non-exception mode, this
feature automates restoring COP0 Status, SRSCtl and EPC registers from the stack.

5.4.3.1 IAE Conditions

This feature is made available through the IRET instruction. The IRET instruction should only be used when:

• Shadow Register Sets are implemented (SRSCtlHSS != 0)

• External Interrupt Controller Mode is enabled (Config3VEIC=1, IntCtlVS != 0, CauseIV=1 StatusBEV=0).

The IRET instruction is meant to reverse the effects of the Interrupt Automated Prologue feature. So the IRET
instruction should only be used when the COP0 registers are saved onto the stack in the manner specified by the IAP
feature.

5.4.3.2 IAE Operation

Refer to the IRET instruction description.



5.4 Interrupt Handling

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 47

5.4.3.3 Exceptions during IAE

The memory store operations which occur during Auto-Epilogue may result in Address Error, TLB refill, TLB
invalid, TLB modify, Cache Error, Bus Error exceptions. If such memory exceptions occur during Auto-Epilogue:

• The CauseExcCode register field reports the exception type.

• EPC is updated to the IRET instruction location.

• All of the other exception-reporting COP0 registers (BadVaddr, EntryHi, EntryLo*, Context, CacheError) are
updated as appropriate for the exception type. These registers reflect the effective word address which caused the
exception, e.g., as if an individual LW instruction caused the exception.

• If the memory store operation uses a mapped address and there is no matching address in the TLB, the TLB refill
exception handler (offset 0x0) is used. The other TLB related exceptions (invalid, modify) use the general excep-
tion handler (offset 0x180).

• The Shadow Register Set designated by the SRSCtlESS register field is used for the memory exception.

• The memory exception handler returns to the IRET instruction, which is held in C0_EPC.

• The IRET instruction now completes since the faulting condition was previously fixed. The IRET returns to the
original code PC location, which is un-wound from the stack.

The IRET instruction will run to completion unless one of these memory exceptions takes place. The IRET instruc-
tion is not interruptable, that is, IRET is atomic from the point of view of another pending interrupt.

5.4.4 Interrupt Chaining

This feature reduces the number of cycles needed to respond to a subsequent higher priority interrupt when the pro-
cessor is returning from exception mode and has disabled interrupts.

Normally, software has to disable interrupts during the critical section when restoring registers from a stack when fin-
ishing handling an exception. During that time, another interrupt could be signalled. The new interrupt is ignored
until the ERET instruction clears the EXL bit and has started execution at the return address pointed by EPC. During
this time, the pipeline is flushed to complete the exception handling. When the subsequent interrupt is finally recog-
nized by the exception logic, a second pipeline flush is necessary as the processor was about start executing the
instructions at the return address.

The Interrupt Chaining feature avoids these pipeline flushes by allowing the EIC unit to update its interrupts signals
sent to the processor core before the IRET instruction completes. If these signals represent an interrupt which is
higher priority than the current priority (in StatusIPL), the IRET instruction will update the COP0 registers as if just
entering exception mode. The IRET instruction will then jump directly to the new interrupt vector - avoiding these
steps:

1. Flushing the pipeline in return to non-exception mode

2. Clearing the StatusEXL bit

3. Returning to the EPC address

4. Flushing the pipeline a second time to enter exception mode.



 The MCU Privileged Resource Architecture

48MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

5.4.4.1 Interrupt Chaining Conditions

This feature is made available through the IRET instruction. Interrupt Chaining is only available when:

• Shadow Register Sets are implemented (SRSCtlHSS != 0)

• External Interrupt Controller Mode is enabled (Config3VEIC=1, IntCtlVS != 0, CauseIV=1 StatusBEV=0)

• IntCtlICE = 1

5.5 Modified CP0 Registers

The CP0 registers provide the interface between the ISA and the PRA. Those CP0 registers that are extended or rede-
fined for the MCU ASE relative to the MIPS32 Architecture reference are discussed below, with the registers pre-
sented in numerical order, first by register number, then by select field number.

5.5.1 CP0 Register Summary

Table 5.3 lists the CP0 registers affected by the MCU specification in numerical order. The individual registers are
described later in this document. Otherwise the definition reverts to the MISP32 specification. The Sel column indi-
cates the value to be used in the field of the same name in the MFC0 and MTC0 instructions.

5.5.2 Status Register (CP Register 12, Select 0)

The Status register is a read/write register that contains the operating mode, interrupt enabling, and the diagnostic
states of the processor. Fields of this register combine to create operating modes for the processor.

Table 5.3 MCU Changes to Coprocessor 0 Registers in Numerical Order

Register
Number Sel Register Name Modification Reference

Compliance
Level

12 0 Status IM/IPL field extended by 2 bits Section 5.5.2 Required for
MCU ASE

12 1 IntCtl PF, ICE, StkDec, ClrEXL, APE, UseKStk fields
added

Section 5.5.3 Required for
MCU ASE

12 4 View_IPL New Register Section 5.5.4 Required for
MCU ASE

12 5 SRSMAP2 New Register Section 5.5.5 Required for
MCU ASE

13 0 Cause IC, AP fields added. IP/RIPL field extended by 2
bits.

Section 5.5.6 Required for
MCU ASE

13 4 View_RIPL New Register Section 5.5.7 Required for
MCU ASE

16 3 Config3 IPLW, MCU fields added. Section 5.5.8 Required for
MCU ASE



5.5 Modified CP0 Registers

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 49

Figure 5-1 shows the format of the Status register; Table 5.4 describes the Status register fields.

Figure 5-1 Status Register Format
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 10 9 8 7 6 5 4 3 2 1 0

CU3..CU0 RP FR RE MX PX BEV TS SR NMI IM9
Im
pl

IM8..IM2 IM1..IM0 KX SX UX UM R0 ERL EXL IE

IPL IPL KSU

Table 5.4 Status Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

CU (CU3..
CU0)

31..28 Controls access to coprocessors 3, 2, 1, and 0, respec-
tively:

Coprocessor 0 is always usable when the processor is run-
ning in Kernel Mode or Debug Mode, independent of the
state of the CU0 bit.

In Release 2 of the Architecture, and for 64-bit implemen-
tations of Release 1 of the Architecture, execution of all
floating point instructions, including those encoded with
the COP1X opcode, is controlled by the CU1 enable. CU3
is no longer used and is reserved for future use by the
Architecture.
If there is no provision for connecting a coprocessor, the
corresponding CU bit must be ignored on writes and
return zero on reads.

R/W Undefined Required for all
implemented
coprocessors

RP 27 Enables reduced power mode on some implementations.
The specific operation of this bit is implementation-depen-
dent.
If this bit is not implemented, it must be ignored on writes
and return zero on reads. If this bit is implemented, the
reset state must be zero so that the processor starts at full
performance.

R/W 0 Optional

Encoding Meaning

0 Access not allowed

1 Access allowed



 The MCU Privileged Resource Architecture

50MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

FR 26 In Release 1 of the Architecture, only MIPS64 processors
could implement a 64-bit floating point unit. In Release 2
of the Architecture, both MIPS32 and MIPS64 processors
can implement a 64-bit floating point unit. This bit is used
to control the floating point register mode for 64-bit float-
ing point units:

This bit must be ignored on writes and return zero on reads
under the following conditions:
• No floating point unit is implemented
• In a MIPS32 implementation of Release 1 of the Archi-

tecture
• In an implementation of Release 2 of the Architecture in

which a 64-bit floating point unit is not implemented
Certain combinations of the FR bit and other state or oper-
ations can cause UNPREDICTABLE behavior.

R/W Undefined Required

RE 25 Used to enable reverse-endian memory references while
the processor is running in user mode:

Neither Debug Mode nor Kernel Mode nor Supervisor
Mode references are affected by the state of this bit.
If this bit is not implemented, it must be ignored on writes
and return zero on reads.

R/W Undefined Optional

MX 24 Enables access to MDMX and MIPS DSP resources on
processors implementing one of these ASEs. If neither the
MDMX nor the MIPS DSP ASE is implemented, this bit
must be ignored on writes and return zero on reads.

R if the pro-
cessor imple-
ments neither
the MDMX
nor the MIPS
DSP ASEs;
otherwise
R/W

0 if the pro-
cessor imple-
ments
neither the
MDMX nor
the MIPS
DSP ASEs;
otherwise
Undefined

Optional

PX 23 Enables access to 64-bit operations on MIPS64 proces-
sors. Not used by MIPS32 processors. This bit must be
ignored on writes and return zero on reads.

R 0 Required

Table 5.4 Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Floating point registers can contain
any 32-bit data type. 64-bit data types
are stored in even-odd pairs of regis-
ters.

1 Floating point registers can contain
any datatype

Encoding Meaning

0 User mode uses configured endian-
ness

1 User mode uses reversed endianness

Encoding Meaning

0 Access not allowed

1 Access allowed



5.5 Modified CP0 Registers

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 51

BEV 22 Controls the location of exception vectors:

See “Exception Vector Locations” on page 80 for details.

R/W 1 Required

TS1 21 Indicates that the TLB has detected a match on multiple
entries. It is implementation-dependent whether this
detection occurs at all, on a write to the TLB, or an access
to the TLB. In Release 2 of the Architecture, multiple
TLB matches may only be reported on a TLB write.
When such a detection occurs, the processor initiates a
machine check exception and sets this bit. It is implemen-
tation-dependent whether this condition can be corrected
by software. If the condition can be corrected, this bit
should be cleared by software before resuming normal
operation.
See “TLB Initialization” on page 44 for a discussion of
software TLB initialization used to avoid a machine check
exception during processor initialization.
If this bit is not implemented, it must be ignored on writes
and return zero on reads.
Software should not write a 1 to this bit when its value is a
0, thereby causing a 0-to-1 transition. If such a transition is
caused by software, it is UNPREDICTABLE whether
hardware ignores the write, accepts the write with no side
effects, or accepts the write and initiates a machine check
exception.

R/W 0 Required if the
processor detects
and reports a
match on multi-
ple TLB entries

SR 20 Indicates that the entry through the reset exception vector
was due to a Soft Reset:

If this bit is not implemented, it must be ignored on writes
and return zero on reads.
Software should not write a 1 to this bit when its value is a
0, thereby causing a 0-to-1 transition. If such a transition is
caused by software, it is UNPREDICTABLE whether
hardware ignores or accepts the write.

R/W 1 for Soft
Reset; 0 oth-

erwise

Required if Soft
Reset is imple-
mented

Table 5.4 Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Normal

1 Bootstrap

Encoding Meaning

0 Not Soft Reset (NMI or Reset)

1 Soft Reset



 The MCU Privileged Resource Architecture

52MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

NMI 19 Indicates that the entry through the reset exception vector
was due to an NMI exception:

If this bit is not implemented, it must be ignored on writes
and return zero on reads.
Software should not write a 1 to this bit when its value is a
0, thereby causing a 0-to-1 transition. If such a transition is
caused by software, it is UNPREDICTABLE whether
hardware ignores or accepts the write.

R/W 1 for NMI; 0
otherwise

Required if NMI
is implemented

0 18 Must be written as zero; returns zero on read. 0 0 Reserved

Impl 17 These bits are implementation-dependent and are not
defined by the architecture. If they are not implemented,
they must be ignored on writes and return zero on reads.

Undefined Optional

IM9..IM2 18,
16..10

Interrupt Mask: Controls the enabling of each of the hard-
ware interrupts. Refer to “Interrupts” on page 65 for a
complete discussion of enabled interrupts.

In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Config3VEIC = 1),

these bits take on a different meaning and are interpreted
as the IPL field, described below.

R/W Undefined
for IM7:IM2

0 for
IM9:IM8

Required

IPL 18,
16..10

Interrupt Priority Level.
In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Config3VEIC = 1),

this field is the encoded (0..63) value of the current IPL.
An interrupt will be signaled only if the requested IPL is
higher than this value.
If EIC interrupt mode is not enabled (Config3VEIC = 0),

these bits take on a different meaning and are interpreted
as the IM7..IM2 bits, described above.

R/W Undefined
for

IPL15:IPL10

0 for
IPL18:IPL17

Optional (Release
2 and EIC inter-
rupt mode only)

Table 5.4 Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Not NMI (Soft Reset or Reset)

1 NMI

Encoding Meaning

0 Interrupt request disabled

1 Interrupt request enabled



5.5 Modified CP0 Registers

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 53

IM1..IM0 9..8 Interrupt Mask: Controls the enabling of each of the soft-
ware interrupts. Refer to “Interrupts” on page 65 for a
complete discussion of enabled interrupts.

In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Config3VEIC = 1),

these bits are writable, but have no effect on the interrupt
system.

R/W Undefined Required

KX 7 Enables access to 64-bit kernel address space on 64-bit
MIPS processors. Not used by MIPS32 processors. This
bit must be ignored on writes and return zero on reads.

R 0 Reserved

SX 6 Enables access to 64-bit supervisor address space on
64-bit MIPS processors. Not used by MIPS32 processors.
This bit must be ignored on writes and return zero on
reads.

R 0 Reserved

UX 5 Enables access to 64-bit user address space on 64-bit
MIPS processors Not used by MIPS32 processors. This bit
must be ignored on writes and return zero on reads.

R 0 Reserved

KSU 4..3 If Supervisor Mode is implemented, the encoding of this
field denotes the base operating mode of the processor.
See “MIPS3264 and microMIPS3264 Operating Modes”
on page 19 for a full discussion of operating modes. The
encoding of this field is:

Note: This field overlaps the UM and R0 fields, described
below.

R/W Undefined Required if
Supervisor Mode
is implemented;
Optional other-
wise

Table 5.4 Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Interrupt request disabled

1 Interrupt request enabled

Encoding Meaning

0b00 Base mode is Kernel Mode

0b01 Base mode is Supervisor Mode

0b10 Base mode is User Mode

0b11 Reserved. The operation of the pro-
cessor is UNDEFINED if this value is
written to the KSU field



 The MCU Privileged Resource Architecture

54MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

UM 4 If Supervisor Mode is not implemented, this bit denotes
the base operating mode of the processor. See “MIPS3264
and microMIPS3264 Operating Modes” on page 19 for a
full discussion of operating modes. The encoding of this
bit is:

Note: This bit overlaps the KSU field, described above.

R/W Undefined Required

R0 3 If Supervisor Mode is not implemented, this bit is
reserved. This bit must be ignored on writes and return
zero on reads.
Note: This bit overlaps the KSU field, described above.

R 0 Reserved

ERL 2 Error Level; Set by the processor when a Reset, Soft
Reset, NMI or Cache Error exception are taken.

When ERL is set:
• The processor is running in kernel mode
• Hardware and software interrupts are disabled
• The ERET instruction will use the return address held in

ErrorEPC instead of EPC
• Segment kuseg is treated as an unmapped and uncached

region. See “Address Translation for the kuseg Segment
when StatusERL = 1” on page 41. This allows main

memory to be accessed in the presence of cache errors.
The operation of the processor is UNDEFINED if the
ERL bit is set while the processor is executing instruc-
tions from kuseg.

R/W 1 Required

EXL 1 Exception Level; Set by the processor when any exception
other than Reset, Soft Reset, NMI or Cache Error excep-
tion are taken.

 When EXL is set:
• The processor is running in Kernel Mode
• Hardware and software interrupts are disabled.
• TLB Refill exceptions use the general exception vector

instead of the TLB Refill vector.
• EPC, CauseBD and SRSCtl (implementations of Release

2 of the Architecture only) will not be updated if
another exception is taken

R/W Undefined Required

Table 5.4 Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Base mode is Kernel Mode

1 Base mode is User Mode

Encoding Meaning

0 Normal level

1 Error level

Encoding Meaning

0 Normal level

1 Exception level



5.5 Modified CP0 Registers

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 55

Programming Note:

In Release 2 of the Architecture, the EHB instruction can be used to make interrupt state changes visible when the IM,
IPL, ERL, EXL, or IE fields of the Status register are written.

5.5.3 IntCtl (CP0 Registers 12, Select 1)

Figure 5-2 shows the format of the IntCtl register; Table 5.5 describes the IntCtl register fields.

IE 0 Interrupt Enable: Acts as the master enable for software
and hardware interrupts:

In Release 2 of the Architecture, this bit may be modified
separately via the DI and EI instructions.

R/W Undefined Required

1. The TS bit originally indicated a “TLB Shutdown” condition in which circuits detected multiple TLB matches and shutdown the TLB
to prevent physical damage. In newer designs, multiple TLB matches do not cause physical damage to the TLB structure, so the TS bit
retains its name, but is simply an indicator to the machine check exception handler that multiple TLB matches were detected and
reported by the processor.

Figure 5-2 IntCtl Register Format
31 29 28 26 25 23 22 21 20 16 15 14 13 12 10 9 5 4 0

IPTI IPPCI IPFDC PF ICE StkDec
Clr-
EXL

APE
Use
KStk 000 VS 0

Table 5.4 Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Interrupts are disabled

1 Interrupts are enabled



 The MCU Privileged Resource Architecture

56MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

Table 5.5 IntCtl Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

IPTI 31..29 For Interrupt Compatibility and Vectored Interrupt modes,
this field specifies the IP number to which the Timer Inter-
rupt request is merged, and allows software to determine
whether to consider CauseTI for a potential interrupt.

The value of this field is UNPREDICTABLE if External
Interrupt Controller Mode is both implemented and
enabled. The external interrupt controller is expected to
provide this information for that interrupt mode.

R Preset by
hardware or
Externally
Set

Required

IPPCI 28..26 For Interrupt Compatibility and Vectored Interrupt modes,
this field specifies the IP number to which the Perfor-
mance Counter Interrupt request is merged, and allows
software to determine whether to consider CausePCI for a

potential interrupt.

The value of this field is UNPREDICTABLE if External
Interrupt Controller Mode is both implemented and
enabled. The external interrupt controller is expected to
provide this information for that interrupt mode.
If performance counters are not implemented (Config1PC

= 0), this field returns zero on read.

R Preset by
hardware or
Externally
Set

Optional (Per-
formance
Counters
Implemented)

Encoding IP bit
Hardware

Interrupt Source

2 2 HW0

3 3 HW1

4 4 HW2

5 5 HW3

6 6 HW4

7 7 HW5

Encoding IP bit
Hardware

Interrupt Source

2 2 HW0

3 3 HW1

4 4 HW2

5 5 HW3

6 6 HW4

7 7 HW5



5.5 Modified CP0 Registers

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 57

IPFDC 25..23 For Interrupt Compatibility and Vectored Interrupt modes,
this field specifies the IP number to which the Fast Debug
Channel Interrupt request is merged, and allows software
to determine whether to consider CauseFDC for a potential

interrupt.

The value of this field is UNPREDICTABLE if External
Interrupt Controller Mode is both implemented and
enabled. The external interrupt controller is expected to
provide this information for that interrupt mode.
If EJTAG FDC is not implemented, this field returns zero
on read.

R Preset by
hardware or
Externally
Set

Optional
(EJTAG Fast
Debug Chan-
nel Imple-
mented)

PF 22 Enables Vector Prefetching Feature. RW 0 Required if
MCU ASE is
implemented

ICE 21 For IRET instruction. Enables Interrupt Chaining. RW 0 Required if
MCU ASE is
implemented

Table 5.5 IntCtl Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding IP bit
Hardware

Interrupt Source

2 2 HW0

3 3 HW1

4 4 HW2

5 5 HW3

6 6 HW4

7 7 HW5

Encoding Meaning

0 Vector Prefetching disabled

1 Vector Prefetching enabled

Encoding Meaning

0 Interrupt Chaining disabled

1 Interrupt Chaining enabled



 The MCU Privileged Resource Architecture

58MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

StkDec 20..16 For Auto-Prologue feature. This is the number of 4-byte
words that is decremented from the value of GPR29

RW 0x3 Required if
MCU ASE is
implemented

ClrEXL 15 For Auto-Prologue feature and IRET instruction.
If set, during Auto-Prologue and IRET interrupt chaining,
the KSU/ERL/EXL fields are cleared.

RW 0 Required if
MCU ASE is
implemented

APE 14 Enables Auto-Prologue feature. RW 0 Required if
MCU ASE is
implemented

Table 5.5 IntCtl Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding

Decrement
Amount in

words

Decrement
Amount in

bytes

0-3 3 12

Others As encoded,
e.g. 0x5
means 5
words

4 * encoded
value

e.g. 0x5
means 20

bytes

Encoding Meaning

0 Fields are not cleared by these opera-
tions

1 Fields are cleared by these operations

Encoding Meaning

0 Auto-Prologue disabled

1 Auto-Prologue enabled



5.5 Modified CP0 Registers

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 59

UseKStk 13 Chooses which Stack to use during Interrupt Automated
Prologue.

RW 0 Required if
MCU ASE is
implemented

0 13..10 Must be written as zero; returns zero on read. 0 0 Reserved

VS 9..5 Vector Spacing. If vectored interrupts are implemented (as
denoted by Config3VInt or Config3VEIC), this field speci-

fies the spacing between vectored interrupts.

All other values are reserved. The operation of the proces-
sor is UNDEFINED if a reserved value is written to this
field.
If neither EIC interrupt mode nor VI mode are imple-
mented (Config3VEIC = 0 and Config3VINT = 0), this field

is ignored on write and reads as zero.

R/W 0 Optional

0 4..0 Must be written as zero; returns zero on read. 0 0 Reserved

Table 5.5 IntCtl Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Copy $29 of the Previous SRS to the
Current SRS at the beginning of IAP.

This is used for Bare-Iron environ-
ments with only one stack.

1 Use $29 of the Current SRS at the
beginning of IAP.

This is used for environments where
there are separate User-mode and Ker-
nel mode stacks. In this case, $29 of
the SRS used during IAP must be
pre-initialized by software to hold the
Kernel mode stack pointer.

Encoding

Spacing Between Vectors

(hex) (decimal)

0x00 0x000 0

0x01 0x020 32

0x02 0x040 64

0x04 0x080 128

0x08 0x100 256

0x10 0x200 512



 The MCU Privileged Resource Architecture

60MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

5.5.4 View_IPL Register (CP0 Register 12, Select 4)

This register gives read and write access to the IM or IPL field that is also available in the Status Register. The use of
this register allows the Interrupt Mask or the Priority Level to be read/written without extracting/inserting that bit
field from/to the Status Register.

The IPL field might be located in non-contiguous bits within the Status Register. All of the IPL bits are presented as a
contiguous field within this register.

5.5.5 SRSMap2 Register (CP0 Register 12, Select 5)

The SRSMap2 register contains 2 4-bit fields that provide the mapping from an vector number to the shadow set num-
ber to use when servicing such an interrupt. The values from this register are not used for a non-interrupt exception,
or a non-vectored interrupt (CauseIV = 0 or IntCtlVS = 0). In such cases, the shadow set number comes from
SRSCtlESS.

If SRSCtlHSS is zero, the results of a software read or write of this register are UNPREDICTABLE.

The operation of the processor is UNDEFINED if a value is written to any field in this register that is greater than the
value of SRSCtlHSS.

The SRSMap2 register contains the shadow register set numbers for vector numbers 9..8. The same shadow set num-
ber can be established for multiple interrupt vectors, creating a many-to-one mapping from a vector to a single
shadow register set number.

Figure 5-4 shows the format of the SRSMap2 register; Table 5.7 describes the SRSMap2 register fields.

Figure 5-3 View_IPL Register Format
31 10 9 2 1 0

0 IM

IPL

Table 5.6 View_IPL Register Field Descriptions

Fields

Description
Read /
Write Reset State ComplianceName Bits

IM 9:0 Interrupt Mask.
If EIC interrupt mode is not enabled, controls which inter-
rupts are enabled.

R/W Undefined for
IM7:IM2

0 for IM9:IM8

Required

IPL 9..2 Interrupt Priority Level.
If EIC interrupt mode is enabled, this field is the encoded
value of the current IPL.

R/W Undefined Required

0 31..10,1..0 Must be written as zero; returns zero on read. 0 0 Reserved





 The MCU Privileged Resource Architecture

62MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

TI 30 Timer Interrupt. In an implementation of Release 2 of the
Architecture, this bit denotes whether a timer interrupt is
pending (analogous to the IP bits for other interrupt types):

In an implementation of Release 1 of the Architecture, this
bit must be written as zero and returns zero on read.

R Undefined Required(Release
2)

CE 29..28 Coprocessor unit number referenced when a Coprocessor
Unusable exception is taken. This field is loaded by hard-
ware on every exception, but is UNPREDICTABLE for
all exceptions except for Coprocessor Unusable.

R Undefined Required

DC 27 Disable Count register. In some power-sensitive applica-
tions, the Count register is not used but may still be the
source of some noticeable power dissipation. This bit
allows the Count register to be stopped in such situations.

In an implementation of Release 1 of the Architecture, this
bit must be written as zero, and returns zero on read.

R/W 0 Required(Release
2)

PCI 26 Performance Counter Interrupt. In an implementation of
Release 2 of the Architecture, this bit denotes whether a
performance counter interrupt is pending (analogous to the
IP bits for other interrupt types):

In an implementation of Release 1 of the Architecture, or
if performance counters are not implemented (Config1PC

= 0), this bit must be written as zero and returns zero on
read.

R Undefined Required(Release
2 and perfor-

mance counters
implemented)

Table 5.8 Cause Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 No timer interrupt is pending

1 Timer interrupt is pending

Encoding Meaning

0 Enable counting of Count register

1 Disable counting of Count register

Encoding Meaning

0 No performance counter interrupt is
pending

1 Performance counter interrupt is
pending



5.5 Modified CP0 Registers

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 63

IC 25 Indicates if Interrupt Chaining occurred on the last IRET
instruction.

R Undefined Required if MCU
ASE is imple-

mented

AP 24 Indicates whether an exception occurred during Interrupt
Auto-Prologue.

R Undefined Required if MCU
ASE is imple-

mented

IV 23 Indicates whether an interrupt exception uses the general
exception vector or a special interrupt vector:

In implementations of Release 2 of the architecture, if the
CauseIV is 1 and StatusBEV is 0, the special interrupt vec-

tor represents the base of the vectored interrupt table.

R/W Undefined Required

WP 22 Indicates that a watch exception was deferred because Sta-
tusEXL or StatusERL were a one at the time the watch

exception was detected. This bit both indicates that the
watch exception was deferred, and causes the exception to
be initiated once StatusEXL and StatusERL are both zero.

As such, software must clear this bit as part of the watch
exception handler to prevent a watch exception loop.
Software should not write a 1 to this bit when its value is a
0, thereby causing a 0-to-1 transition. If such a transition is
caused by software, it is UNPREDICTABLE whether
hardware ignores the write, accepts the write with no side
effects, or accepts the write and initiates a watch exception
once StatusEXL and StatusERL are both zero.

If watch registers are not implemented, this bit must be
ignored on writes and return zero on reads.

R/W Undefined Required if watch
registers are
implemented

Table 5.8 Cause Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Interrupt Chaining did not happen on
last IRET

1 Interrupt Chaining occurred during
last IRET

Encoding Meaning

0 Exception did not occur during
Auto-Prologue operation.

1 Exception occurred during Auto-Pro-
logue operation.

Encoding Meaning

0 Use the general exception vector
(0x180)

1 Use the special interrupt vector
(0x200)



 The MCU Privileged Resource Architecture

64MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

FDCI 21 Fast Debug Channel Interrupt. This bit denotes whether a
FDC Interrupt is pending (analogous to the IP bits for
other interrupt types):

R Undefined Required if
EJTAG Fast

Debug Channel is
implemented.

IP9..IP2 17..10 Indicates an interrupt is pending:

In implementations of Release 1 of the Architecture, timer
and performance counter interrupts are combined in an
implementation-dependent way with hardware interrupt 5.
In implementations of Release 2 of the Architecture in
which EIC interrupt mode is not enabled (Config3VEIC =

0), timer and performance counter interrupts are combined
in an implementation-dependent way with any hardware
interrupt. If EIC interrupt mode is enabled (Config3VEIC =

1), these bits take on a different meaning and are inter-
preted as the RIPL field, described below.

R Undefined
for IP7:IP2

0 for IP9:IP8

Required

RIPL 17..10 Requested Interrupt Priority Level.
In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Config3VEIC = 1),

this field is the encoded (0..255) value of the requested
interrupt. A value of zero indicates that no interrupt is
requested.
If EIC interrupt mode is not enabled (Config3VEIC = 0),

these bits take on a different meaning and are interpreted
as the IP7..IP2 bits, described above.

R Undefined
for bits 15:10

0 for bits
17:16

Optional (Release
2 and EIC inter-
rupt mode only)

Table 5.8 Cause Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 No Fast Debug Channel interrupt is
pending

1 Fast Debug Channel interrupt is pend-
ing

Bit Name Meaning

17 IP9 Hardware Interrupt 7

16 IP8 Hardware Interrupt 6

15 IP7 Hardware interrupt 5

14 IP6 Hardware interrupt 4

13 IP5 Hardware interrupt 3

12 IP4 Hardware interrupt 2

11 IP3 Hardware interrupt 1

10 IP2 Hardware interrupt 0



5.5 Modified CP0 Registers

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 65

IP1..IP0 9..8 Controls the request for software interrupts:

An implementation of Release 2 of the Architecture which
also implements EIC interrupt mode exports these bits to
the external interrupt controller for prioritization with
other interrupt sources.

R/W Undefined Required

ExcCode 6..2 Exception code - see Table 5.9. R Undefined Required

0  20..18, 7,
1..0

Must be written as zero; returns zero on read. 0 0 Reserved

Table 5.9 Cause Register ExcCode Field

Exception Code Value

Mnemonic DescriptionDecimal Hexadecimal

0 0x00 Int Interrupt

1 0x01 Mod TLB modification exception

2 0x02 TLBL TLB exception (load or instruction fetch)

3 0x03 TLBS TLB exception (store)

4 0x04 AdEL Address error exception (load or instruction fetch)

5 0x05 AdES Address error exception (store)

6 0x06 IBE Bus error exception (instruction fetch)

7 0x07 DBE Bus error exception (data reference: load or store)

8 0x08 Sys Syscall exception

9 0x09 Bp Breakpoint exception. If EJTAG is implemented and an SDBBP
instruction is executed while the processor is running in EJTAG
Debug Mode, this value is written to the DebugDExcCode field to

denote an SDBBP in Debug Mode.

10 0x0a RI Reserved instruction exception

11 0x0b CpU Coprocessor Unusable exception

12 0x0c Ov Arithmetic Overflow exception

13 0x0d Tr Trap exception

14 0x0e - Reserved

15 0x0f FPE Floating point exception

16-17 0x10-0x11 - Available for implementation-dependent use

18 0x12 C2E Reserved for precise Coprocessor 2 exceptions

Table 5.8 Cause Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Bit Name Meaning

9 IP1 Request software interrupt 1

8 IP0 Request software interrupt 0



 The MCU Privileged Resource Architecture

66MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

Programming Note:

In Release 2 of the Architecture, the EHB instruction can be used to make interrupt state changes visible when the
IP1..0 field of the Cause register is written.

5.5.7 View_RIPL Register (CP0 Register 13, Select 4)

19-21 0x13-0x15 - Reserved

22 0x16 MDMX MDMX Unusable Exception (MDMX ASE)

23 0x17 WATCH Reference to WatchHi/WatchLo address

24 0x18 MCheck Machine check

25 0x19 Thread Thread Allocation, Deallocation, or Scheduling Exceptions (MIPS®
MT ASE)

26-29 0x20-0x1d - Reserved

30 0x1e CacheErr Cache error. In normal mode, a cache error exception has a dedi-
cated vector and the Cause register is not updated. If EJTAG is
implemented and a cache error occurs while in Debug Mode, this
code is written to the DebugDExcCode field to indicate that re-entry to

Debug Mode was caused by a cache error.

31 0x1f - Reserved

Figure 5-6 View_RIPL Register Format
31 10 9 2 1 0

0 IP9..IP2
IP1..
IP0

RIPL

Table 5.10 View_RIPL Register Field Descriptions

Fields

Description
Read /
Write Reset State ComplianceName Bits

IP1..IP0 1:0 SW Interrupt Pending.
If EIC interrupt mode is not enabled, controls which SW
interrupts are pending.

R/W Undefined Required

IP9..IP2 9:2 HW Interrupt Pending.
If EIC interrupt mode is not enabled, indicates which HW
interrupts are pending.

R Undefined for
IP7:IP2

0 for IP9:IP8

Required

Table 5.9 Cause Register ExcCode Field

Exception Code Value

Mnemonic DescriptionDecimal Hexadecimal



5.5 Modified CP0 Registers

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 67

This register gives read access to the IP or RIPL field that is also available in the Cause Register. The use of this reg-
ister allows the Interrupt Pending or the Requested Priority Level to be read without extracting that bit field from the
Cause Register.

5.5.8 Config Register 3 (CP0 Register 16, Select 3)

Compliance Level: Required for a MCU MMU.

Figure 5-7 shows the format of the Config3 register; Table 5.11 describes the Config3 register fields.

RIPL 9..2 Interrupt Priority Level.
If EIC interrupt mode is enabled, this field indicates the
Requested Priority Level of the pending interrupt.

R Undefined Required

0 31..10,1..0 Must be written as zero; returns zero on read. 0 0 Reserved

Figure 5-7 Config3 Register Format
31 30 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M
0

00000000 IPLW MMAR

M
u
C
o
n

ISA
On
E
xc

ISA

U
L
R
I

0

D
S
P
2
P

D
S
P
P

0
I
T
L

L
P
A

V
E
I
C

V
I
n
t

SP
CD
M
M

M
T

SM TL

Table 5.11 Config3 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

M 31 This bit is reserved to indicate that a Config4 register is
present. With the current architectural definition, this bit
should always read as a 0.

R Preset by
hardware

Required

0 30:23,.
12, 9

Must be written as zeros; returns zeros on read 0 0 Reserved

Table 5.10 View_RIPL Register Field Descriptions

Fields

Description
Read /
Write Reset State ComplianceName Bits



 The MCU Privileged Resource Architecture

68MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

IPLW 22:21 Width of the StatusIPL and CauseRIPL fields:

If the IPL field is 8-bits in width, bits 18 and 16 of Status
are used as the most significant bit and second most signif-
icant bit, respectively, of that field.

If the RIPL field is 8-bits in width, bits 17 and 16 of Cause
are used as the most significant bit and second most signif-
icant bit, respectively, of that field.

R Preset by
hardware

Required if
MCU ASE is
implemented

MMAR 20:18 microMIPS Architecture revision level: R Preset by
hardware

Required if
microMIPS is
implemented

MCU 17 MIPS MCU ASE implemented. R Preset by
hardware

Required if
MCU ASE is
implemented

ISAOn-
Exc

16 Reflects the Instruction Set Architecture used when vec-
toring to an exception. Affects exceptions whose vectors
are offsets from EBASE.

RW Preset by
hardware,
driven by
signal exter-
nal to CPU
core

Required if
both micro-
MIPS and
MIPS32are
implemented

Table 5.11 Config3 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 IPL and RIPL fields are 6-bits in
width.

1 IPL and RIPL fields are 8-bits in
width.

Others Reserved.

Encoding Meaning

0 Release 1

1-7 Reserved

Encoding Meaning

0 MCU ASE is not implemented.

1 MCU ASE is implemented

Encoding Meaning

0 MIPS32ISA is used on entrance to an
exception vector.

1 microMIPS ISA is used on entrance to
an exception vector.



5.5 Modified CP0 Registers

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 69

ISA 15:14 Indicates Instruction Set Availability. R Preset by
hardware,
driven by
signal exter-
nal to CPU
core

Required if
both micro-
MIPS and
MIPS32are
implemented.

ULRI 13 UserLocal register implemented. This bit indicates
whether the UserLocal coprocessor 0 register is imple-
mented.

R Preset by
hardware

Required

DSP2P 11 MIPS® DSP ASE Revision 2 implemented. This bit indi-
cates whether Revision 2 of the MIPS DSP ASE is imple-
mented.

R Preset by
hardware

Required

DSPP 10 MIPS® DSP ASE implemented. This bit indicates
whether the MIPS DSP ASE is implemented.

R Preset by
hardware

Required

ITL 8 MIPS® IFlowTraceTM mechanism implemented. This bit
indicates whether the MIPS IFlowTrace is implemented.

R Preset by
hardware

Required
(Release 2.1

Only)

Table 5.11 Config3 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Only MIPS32 is implemented.

1 Only microMIPS is implemented.

2 Both MIPS32and MicroMIPS ISAs
are implemented. MIPS32 ISA used
when coming out of reset.

3 Both MIPS32 and MicroMIPS ISAs
are implemented. MicroMIPS ISA
used when coming out of reset.

Encoding Meaning

0 UserLocal register is not implemented

1 UserLocal register is implemented

Encoding Meaning

0 Revision 2 of the MIPS DSP ASE is
not implemented

1 Revision 2 of the MIPS DSP ASE is
implemented

Encoding Meaning

0 MIPS DSP ASE is not implemented

1 MIPS DSP ASE is implemented

Encoding Meaning

0 MIPS IFlowTrace is not implemented

1 MIPS IFlowTrace is implemented



 The MCU Privileged Resource Architecture

70MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

LPA 7 Denotes the presence of support for large physical
addresses on MIPS64 processors. Not used by MIPS32
processors and returns zero on read.
For implementations of Release 1 of the Architecture, this
bit returns zero on read.

R Preset by
hardware

Required
(Release 2

Only)

VEIC 6 Support for an external interrupt controller is imple-
mented.

For implementations of Release 1 of the Architecture, this
bit returns zero on read.
This bit indicates not only that the processor contains sup-
port for an external interrupt controller, but that such a
controller is attached.

R Preset by
hardware

Required
(Release 2

Only)

VInt 5 Vectored interrupts implemented. This bit indicates
whether vectored interrupts are implemented.

For implementations of Release 1 of the Architecture, this
bit returns zero on read.

R Preset by
hardware

Required
(Release 2

Only)

SP 4 Small (1KByte) page support is implemented, and the
PageGrain register exists

For implementations of Release 1 of the Architecture, this
bit returns zero on read.

R Preset by
hardware

Required
(Release 2

Only)

CDMM 3 Common Device Memory Map implemented. This bit
indicates whether the CDMM is implemented.

R Preset by
hardware

Required

Table 5.11 Config3 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 Support for EIC interrupt mode is not
implemented

1 Support for EIC interrupt mode is
implemented

Encoding Meaning

0 Vector interrupts are not implemented

1 Vectored interrupts are implemented

Encoding Meaning

0 Small page support is not imple-
mented

1 Small page support is implemented

Encoding Meaning

0 CDMM is not implemented

1 CDMM is implemented



5.5 Modified CP0 Registers

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 71

MT 2 MIPS MT ASE implemented. This bit indicates whether
the MIPS MT ASE is implemented.

R Preset by
hardware

Required

SM 1 SmartMIPS ASE implemented. This bit indicates whether
the SmartMIPS ASE is implemented.

R Preset by
hardware

Required

TL 0 Trace Logic implemented. This bit indicates whether PC
or data trace is implemented.

R Preset by
hardware

Required

Table 5.11 Config3 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Encoding Meaning

0 MIPS MT ASE is not implemented

1 MIPS MT ASE is implemented

Encoding Meaning

0 SmartMIPS ASE is not implemented

1 SmartMIPS ASE is implemented

Encoding Meaning

0 Trace logic is not implemented

1 Trace logic is implemented



 The MCU Privileged Resource Architecture

72MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03



Appendix A

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 73

Revision History

.

Version Date Comments

0.80 December 1, 2009 • Cleanup for external distribution - make Title more sensible.

0.81 January 15, 2010 • Re-phased the conditions for UseKStk=0/1 conditions in IAP section.
• Clean-up of IRET description
• 1. IRET always clears LLBit
• 2. IRET acts as if EXL is always clear for its memory TLB exceptions.
• 3. IRET only modifies the SW write-able fields of the SRSCtl register.
• 4. IRET checks ISAMode bit when chaining is done.

1.00 March 20, 2010 • Item 4 was incorrect in 0.81 revision, IRET should check Config3ISAOnDebug

• Clear Change-bars
• For M14K* GA release.

1.01 March 21,2011 • AFP version - change security classification

1.02 December 16, 2012 • Update Cover logos
• Update copyright text.
• About this Book chapter updated for R5 (MT, DSP, VZ, MSA modules)
• Update pdf filename for family designation - microMIPS

1.03 September 9, 2013 • Update Cover logos and copyright text

Copyright © Wave Computing, Inc. All rights reserved. 
www.wavecomp.ai




