MIIFP S

MIPS® Architecture for Programmers
Volume IV-h: The MCU Application
Specific Extension to the microMIPS32™
Architecture

Document Number: M D00838
Revision 1.03
September 9, 2013

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 2

3 MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

Table of Contents

(Of g o1 (=T o AN o Yo T U A I 1S = 0 1 7
1.1: TypographiCal CONVENTIONSc.iuiiiiiiiiiiit ettt e et e e ekt e e e et b et e e e e nbe e e e e e annnes 7
I § =Yoo O PP PPPPPPPPPPPPPINY 8
A = To] o B =4 S OO UPPPPPPPPRPPPPON 8
I S o U =T B 1= AU PP PPPPPPPPRPPPPINY 8
1.2: UNPREDICTABLE and UNDEFINEDcccoiiiiiieiiiiie ettt e ettt e e e e s entae e e e e sstaa e e e e ensaeeeeeensneas 8
L1.2.2: UNPREDICTABLEotiiiie ettt ettt e ettt e e e et e e e e e ettt e e e e st it e e e e e asta e e e e e et beeeeeesntseeaeessnnaeeeaanes 8
L1220 UNDEFINEDtiiiiiei ittt ettt e e ettt e e e e e st e e e e ettt e e e e astb e e e e e e asta e e e e e esssaeeeeantseaaeesssnaeeeeanes 9
L2, 3 UNSTABLE ..ottt e ettt e e e bttt e e e et e e e e e ettt e e e e e sst bt e e e e e astaeeeeeasbeeeeesantaeeaeessrnaeeeeanes 9
1.3: Special Symbols in PSEUAOCOTE NOTATIONuviieiiiiiii ettt 9
1.4: FOr MOre INfOMMALION ..ottt ettt e e e e e e e e e e e e eeeaeeeeeeeeeeeesessseassanaannnas 12
Chapter 2: Guide t0 the INSTIUCTION SE.........uiiiiiiiiiiii e 13
2.1: Understanding the INSrUCtiON FIEIASeiiieiii e e e e e e e e s reeeee s 13
P2 O e | 1S B ot o T [[RSP 14
2.1.2: Instruction Descriptive Name and MNEMONIC........cueeeirsiiiiiniiiiierieeeeeeesesseinreeeerereeeeeesssssnneenneeereeees 15

P e T o 1 4= L 1= (o PO PRP 15
0 I S g o Y= i = o PP 16

0 IS B 1= Yo o] (o g T T o SO 16
P ST (=S a1 ESR =Y o RSP 16

0 I @ o 1= = 111 T o I i = (o 1SS 17
A I S (o7 =T) 1T LS 1= o SRS 17
2.1.9: Programming Notes and Implementation NOtes Fields...........uuuuiiiieeieiiiiiiiiire e 18
2.2: Operation Section Notation and FUNCHONScccuiiiiiiiiieee e e e e e s e e e e e e e e s e s snenareeeeeeeeas 18
2.2.1: INStruction EXECULION OFGEIING .. .viiiieeeisiieiiiiiiiieee e e ee e e e e e s st e e e e e ae e e e s e s st eaeeaeeaeeeasssnnsrnannereeeees 18
2.2.2: PSEUAOCOUE FUNCHIONS. ... eeiiieiiiiiite ettt ettt ettt e s sttt e e s sttt e e s et e e s st neee s annnneeas 18
2.2.2.1: Coprocessor General Register ACCESS FUNCLONSuviviieeiiiiiiiiiieie e ee e e e e e eessereneereeeaaee e 18
2.2.2.2: Memory Operation FUNCHONSc.uuuiiiiiiiiiieee e s sessitte e e e e e e e e e st en e e e e e e e e e s e nnnnnrsaaneeneeees 20
2.2.2.3: FIoating POINT FUNCLONSccoiiiicciiiiiee ettt e e e e e e s e st e e e e e e e e e e s e s b ananeeaaeaesanan 23
2.2.2.4: MIiSCElIaN@OUS FUNCHIONSuviiiiiiiiiiee ittt e et e e e et e e e e e nbaee e e e nees 26

2.3: Op and Function SUBfield NOALION.uiiiieeeii e e e e e s e e e e e e e e e e e s e esnnanrrenreeeaeas 27
P e O [S F ot 1o o £ PP UOTPPRPTRPPR 27

Chapter 3: The MCU Application-Specific Extension to the MIPS32® and

MICTOMIPS32TMAT CNITECIUIE ...ttt e 29
3.1: Base ArChiteCture REOUITEIMENTS i ittt e ettt et e e e e e e s et b e bt e e e e e e e e e e s e annbbnbeeeeeaeaeas 29
3.2: Software DetecCtion Of TNE ASEu it e et e e e s e e 29
3.3: ComplianCe aNd SUDSEIING.......oiiiieiiiiiii e e ettt e e e e e e s e e e bbb be e e e e aaaaeaeesaannnnbbeneeeeaaas 29
3.4: OVEIVIEW OF tNE IMCU ASEottt e bt e et bt e e e e bt e e e st e e e e e abbr e e e e 29

R I [a1 (T (T oA B L= 11V o PR TR PPPPP 29
3.4.2: Interrupt LatenCy REUUCTIONiiiiiaeii ittt ettt e e e e e e ettt e e e e e e e e e e e e e annnbeaeeeeaaaeens 29
3.4.2.1: Interrupt Vector PrefetChing............veeiiiiiaeeee et a e e e e 30
3.4.2.2: Automated INterrupt ProlOQUEueeieiiiiiiieeee ettt e e eeaaeas 30
3.4.2.3: Automated INterrupt EPIlOQUEuueiieiiieiiieee ettt e e 30
3.4.2.4: INEEITUPT CRAINMING -ttt ettt et e e e e e e s e s e bbbttt e e e e e e e e e e s e e nnnbbsaeeeaaaaaaaaaan 30
3.4.3: 1/O DEVICE PrOGIaAMIMINGuteutetetteiaaeaaeiaiaiitttteeeeaaaaaaeaaaaastnbeeseeeaaaaaaeaaaaannbsbssseeaeaaaaaassaaansbnnneeeeaaaans 30

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 1

Chapter 4: The MCU INSTrUCTION SEL ... e e e e e e e e e 31

R 1 =] = OO PSS PRRPOPPRPO 31
R N LSOO PRSP OPPRPO 31
.3 ACLR .o — e et e— e e b e e e e e e et ae e e ate e e e e e e ataeeareas 31
Chapter 5: The MCU Privileged ResSource ArChiteCTUIE.......ccooiiiiiiiiiiiiee et 41
I O 1 i o o U7 1o o O POUPPRPTPPPR 41
5.2: ThE MCU SYSIEM COPIOCESSON . .uuuuttitiieiteteeeesesiistesteeaeeeteeeaaasaasastastaeereetaaeessaaaassrsererrrteeaeessnaasssnrreereeeeees 41
IR T [01 (T € (0T oL D= 11 =Y o PO 41
5.3.1: NUmMber Of HardWare INtEITUDLS.ccei ittt e e e s et e e e e e e e s e et e e e e e e e e e e e e s e nnsrnaneaeeeaeens 41
5.3.1.1: Changes to Vectored INterrupt MOAEccoiiiiiiiiiiiiiiicee e e e e e e e e e e e e e e 41
5.3.1.2: Changes to External Interrupt Controller MOUEuvviieeeeeiiiiiieee e e e e 41

0 S [a1 (=Y € (0T o1 = g T |1 o PO 42
5.4.1: Interrupt VEeCtor PrefetChiNg ittt e e e e e e e e s e e eeeeaees 42
5.4.1.1: Historical Behavior of Pipelines with In-Order Completionccccevvvieeeeii i 42
5.4.1.2: Historical Behavior of Pipelines with Out-of-Order Completionccccceeeeviiiiiiiiieeneeee e 42

5.4.1.3: New Feature - Speculative PrefetChingcccccviiiiiiiiiii e a e 43

5.4.2: Interrupt Automated Prologue (IAP) ...ttt s e a e e e e e e e e e e e ees 44
I R VY e o To 11T L OSSP 44

L VN @ o 1= - 1o o USRS 45

5.4.2.3: EXCEPLIONS AUING TAP ..ottt ettt e e e e e e st e e e e e e e e e e s s s aenreeaaeeesanan 46

5.4.3: Interrupt Automated EPIlOgUE (IAE)cii ittt e e e e e e e e e e e eeeaees 46
e T 1Y = e Lo 11T LSS PRPR 46

LI Y @ o 1= - 4o o PRSP 46

5.4.3.3: EXCEPLIONS AUINNG TAE ...ooiii ittt ettt e e e e e e e e s et e e e e e e e e e e s e s st nannreeaaeaesanan 47

I S [a1 (=Y (T o1 A O g =11 11 o SO 47
5.4.4.1: Interrupt Chaining CoNIIONSuuviiiiiiiieie e e e e e s e e e e e e e e e e e e e nnnrnrarerreeees 48

T /[To 1= To B @ o O =T 1] (T £SO 48
5.5.1: CPO REQISIEr SUMMIATY ...uuuitiiteiiiieieeeeeeieeititstereeeeeeeeesssaassssteeaeeaeaeaeaeasesassassaerereeeeaeeessasannsssnnneereeees 48
5.5.2: Status Register (CP RegiSter 12, SEIECE 0)...uuuiiiiiiiieeiis it e e e e s r e e e e e e e s e s eeeeeees 48
5.5.3: INtCtl (CPO REQISIErS 12, SEIECT 1) 1oeeiiiiiiiiiiiiieii et e ettt e e e e e e e e e e e e e e e e e e e s e s nnnananneeeeaeeas 55
5.5.4: View_IPL Register (CPO RegiSter 12, SEIECE 4)......cccoiiiiiiiiiiiieiieee e e e e e e aeeeee s 60
5.5.5: SRSMap?2 Register (CPO Register 12, SEIECT 5)...ciiiiiiiiiiiiiiiiiiiee e e e e aee e e 60
5.5.6: Cause Register (CP0 Register 13, SEIECE 0)...uuuuiiiiieeiieiiiiiiiiiii e e e e e e e e ssre e e e e e e e e e e e s s snrnaaeeeeeaees 61
5.5.7: View_RIPL Register (CPO Register 13, SEIECE 4)cccoiiiiiiiiiiiiieee e e e 66
5.5.8: Config Register 3 (CPO RegiSter 16, SEIECTE 3)..uuiiiiiiiiiiiiiiiiiiiii e ee e e e e e e e e e aeeeeee s 67
APPENIX A: REVISION HISTOTMY .uuiiiiiiiiiiiiiiiitiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeaeseeaeeesseseseeeseessessereseeeeaereeereaettreeeeees 73

2 MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

List of Figures

Figure 2.1: Example of INStruCtion DESCIIPTIONeeiiiiiiiiiiie ettt e e e e e e e e e e e e e e e e b e beeeeaeaaeas 14
Figure 2.2: Example of INStrUCHON FIEIASeeiiiiieiie e e e e e e e eaeaaeas 15
Figure 2.3: Example of Instruction Descriptive Name and MNEMONICuuuiiiiiiiiaaiiiiiiiiiiiie e 15
Figure 2.4: Example of INStrUCHION FOMMIAL........eiiiiiiiiii ittt r e e e e e e e e e eeaeaaeas 15
Figure 2.5: Example of INSrUCHION PUIMPOSEciiiiiiiiiiiiie ettt e e e e e e e e e e bt eeeaaeaeas 16
Figure 2.6: Example of INStruCtion DESCIIPTIONeoiiiiiiiiiiie ettt e e e e e e e e e e e e e e e ennrbebeeeeaeaaeas 16
Figure 2.7: Example of INStruCtioN RESIICHIONS.cciiiiiiiiiiie ittt e e e e e e e e e e s et eeeeeeeas 17
Figure 2.8: Example of INStrUCHION OPEIAtiON.coiiiiiiiiiiiiii ettt e e e e e e et e e e e e e e e e e s e nnnbeeeeeeeeeas 17
Figure 2.9: Example of INStrUCHION EXCEPIION.ciiiiiiiiiiiitie ettt e e e et e e e e e e e e e e s e nns b e eeeeeeeeas 17
Figure 2.10: Example of Instruction Programming NOTESuiiiiiaiiiiiiiiiiiiiiiii et e e eeaeaeeas 18
Figure 2.11: COP_LW PSeUdOCOUE FUNCLIONcciiiiiiiiiiite ettt e e e ettt e e e e e e e e e e e s annbbebeeeeaeaaeas 19
Figure 2.12: COP_LD PSEUAOCOUE FUNCHIONccitiiiiiiiiiiitiite ettt ettt e e e e e e e e et e e e e e e e e e e e e annbbebeeeeaaaaeas 19
Figure 2.13: COP_SW PSeUAOCOAE FUNCHION.iiiiiiiiiiiiiiie ettt e e e e et e e e e e e e e e e e e aannbbebeeeeaaaaeas 19
Figure 2.14: COP_SD PSeUAOCOAE FUNCLIONcciiiiiiiiiiiiiiiie ettt e ettt e e e e e e e e s et e e e e e e e e e e e s e s annbbsbeeeeaeaaeas 20
Figure 2.15: CoprocessorOperation PSeudoCode FUNCONiiiiiiiiiiiiiiiiiiii e 20
Figure 2.16: AddressTranslation PSEUAOCOAE FUNCHIONuueiiiiiiiiaiiiiiiiiiie ettt e e eeaeae s 20
Figure 2.17: LoadMemory PSeudocode FUNCLION ...ttt e e e e e e e eaaaa s 21
Figure 2.18: StoreMemory PSeudoCOde FUNCHION. ...ttt e e e e e e e e e e eeeeeeeeas 21
Figure 2.19: Prefetch PSEUAOCOUE FUNCHION.......oiiii ittt e e e e e et e e e e e e e e e e e e snnbbebeeeeaeaaeas 22
Figure 2.20: SyncOperation PSEUAOCOTE FUNCHIONuiiiiiiiiiiiie et e e e e e e eeaaeeeas 23
Figure 2.21: ValueFPR PSEUAOCOUE FUNCHON........ciiiiiiiiiiiteiit ettt e e e e et et e e e e e e e e e snnb b et e eeeaaaaeas 23
Figure 2.22: StoreFPR PSEUAOCOAE FUNCHIONciiiiiiiiiiiiiiiee ittt e e e e et e e e e e e e e e e s e annbbe b e e eeaeaaeas 24
Figure 2.23: CheckFPEXception PSEUAOCOUE FUNCHION.uuiiiiiiiiaaiiiiieitiiie et e e e e e e eeeeeas 25
Figure 2.24: FPConditionCode PseudoCode FUNCLION...........uiiiiiiiiiaiiiiiiie it ee e e e 25
Figure 2.25: SetFPConditionCode PSeudoCode FUNCLIONciiiiiiiiiiiiiiiiiiiiie et e e e 25
Figure 2.26: SignalException PSeudocOde FUNCHONuuiiiiiiiiiiaiii et ea e e as 26
Figure 2.27: SignalDebugBreakpointException PSeudocode FUNCHON.eeiiiiiiiiiiiiiiiiiiiee e 26
Figure 2.28: SignalDebugModeBreakpointException Pseudocode FUNCLON.............ooiiiiiiiiiiiiiieiee e 26
Figure 2.29: NullifyCurrentinstruction PSeUdOCode FUNCLONooiiiiiiiiiiiiiie e 27
Figure 2.30: JumpDelaySIot PSEUAOCOUE FUNCHIONuiiiiiiiiiiiie ettt e e e e e e e eeaaaaeas 27
Figure 2.31: PolyMult PSEUAOCOAE FUNCLIONcoiiiiiiiiiiiiiie ettt e e e et e e e e e e e e e e e e bebeeeeaeaaeas 27
Figure 5-1: Status ReQISIEr FOIMIAL. ... ittt e et et e e e e e e e e e s e bbb b e et e e e e e e e e e e s e anntbsbeeeeaaaaeas 49
Figure 5-2: INtCtl REQISTEI FOIMAL.......oii ettt e e e e e e e e e s bbbt r e e e e e e e e e e e e s nnbbebeeeeaaaaeas 55
Figure 5-3: VIEW _IPL REQISIEI FOIMIAL........ueiiiiiiiiiiee ettt e e e e e e e e e e bbb et e e e e e e e e e e s e anntbsbeeeeaeaaeas 60
Figure 5-4: SRSMap REQISTEr FOIMAL.........uuiiiiiiiiiiaei it e ettt e e e e e e e e s bbbt e e e e e e e e e e e s e annbbebeeeeaaaaeas 61
Figure 5-5: CauSe REQISIEI FOIMMAL. ...ttt e e e e ettt et e e e e e e e e e s e bbbt b e e e e et e e aeaeeaaannbbsbeeeeaaaaeas 61
Figure 5-6: VIieW_RIPL REQISIEI FOIMMALueiiiiiiiiiiii ittt e e e e e e e ettt e e e e e e e e e e e annrbebeeeeaeaaeas 66
Figure 5-7: Config3 REQISTEr FOIMMAL..........uuuiiiiiiiiiiae et e et e e e e e e e e e s bbbt e e e e e eeeeaeaasaaannrbsbeeeeaaaaeas 67
MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,

Revision 1.03

3

4 MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

List of Tables

Table 1.1:
Table 2.1:
Table 5.1:
Table 5.2:
Table 5.3:
Table 5.4:
Table 5.5:
Table 5.6:
Table 5.7:
Table 5.8:

Symbols Used in Instruction Operation StatEMENTS.........ooiuiiiiiiiiii e aaa e e 9
AccesslLength Specifications fOr LOAUS/STOrESoooiiiiiiiiiiiii e a e e 22
Typical Interrupt Handling Flow in Pipelined Implementation with Out-of-Order Completion 43
Interrupt Handling Flow with Speculative PrefetChing....... ... 44
MCU Changes to Coprocessor 0 Registers in Numerical Order...........cocuviiiiiiiiiieeeieiiiiiiieeeee e 48
Status Register Field DEeSCIIPIIONSuii ittt e e e et e e e e e e e e e e e e nbe e e eeeaaaeas 49
INtCtl Register Field DESCIPLIONSuiiiiiiiiiie ettt e et e et e e e e e e e e e et eeaeaaaeaeaeaannnnnneees 56
View_IPL Register Field DESCIPIONSuitiiiiiiiieaaiee ittt e ettt e e e e e e e e e s nabbe e e eaaaaaeeaaaanns 60
SRSMap Register Field DeSCIPIONS.oi ittt e et e e e e e e e e e e e e beeeeeaaeeas 61
Cause Register FIield DESCHPIONS........i ittt ettt e e e e e e e st e e e e e e e e e s e e annnbebeeeeaaaaeas 61

Table 5.9: Cause Register EXCCOUE FIIUooi ittt e e e e e e e e e e e e e e e nns 65
Table 5.10: View_RIPL Register Field DEeSCHPLIONScutiiiiaiiiiiiiiiiiiee it e ettt e e e e e e e e e s s sereeaaaaeeeaaaanns 66
Table 5.11: Config3 Register Field DeSCIIPIIONSuuuiiiiiiiiee ettt e e e e e e e e e e e e s e e eanbbe e e e aaaaeeeaaaanns 67

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 5

6 MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

Chapter 1

About This Book

The MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the
microM1PS32™ Architecture comes as part of a multi-volume set.

Volume I-A describes conventions used throughout the document set, and provides an introduction to the
MIPS32® Architecture

Volume I-B describes conventions used throughout the document set, and provides an introduction to the
microMIPS32™ Architecture

Volume I1-A provides detailed descriptions of each instruction in the MIPS32® instruction set
Volume 11-B provides detailed descriptions of each instruction in the microMIPS32™ instruction set

Volume |11 describes the MIPS32® and microMIPS32™ Privileged Resource Architecture which defines and
governs the behavior of the privileged resources included in a MIPS® processor implementation

Volume I V-a describes the MIPS16e™ A pplication-Specific Extension to the MIPS32® Architecture. Beginning
with Release 3 of the Architecture, microMIPS is the preferred solution for smaller code size.

Volume 1V-b describes the MDM X ™ A pplication-Specific Extension to the M1 Architecture and
microM1PS64™. It is not applicable to the MIPS32® document set nor the microMIPS32™ document set. With
Release 5 of the Architecture, MDMX is deprecated. MDMX and MSA can not be implemented at the same
time.

Volume 1V-c describes the MIPS-3D® A pplication-Specific Extension to the MIPS® Architecture

Volume 1V-d describes the SmartM I PS®A ppli cation-Specific Extension to the MIPS32® Architecture and the
microMIPS32™ Architecture .

Volume 1V-e describes the MIPS® DSP Module to the MIPS® Architecture

Volume IV-f describes the MIPS® MT Module to the MIPS® Architecture

Volume 1V-h describes the MIPS® MCU Application-Specific Extension to the MIPS® Architecture
Volume IV-i describes the MIPS® Virtualization Module to the MIPS® Architecture

Volume 1V-j describes the MIPS® SIMD Architecture Module to the MIPS® Architecture

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fontsin this book.

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 7

About This Book

1.1.1 Italic Text

e isusedfor emphasis
e isused for bits, fields, registers, that are important from a software perspective (for instance, address bits used by

software, and programmabl e fields and registers), and various floating point instruction formats, suchas S, D,
and PS

e isused for the memory access types, such as cached and uncached

1.1.2 Bold Text

* representsaterm that is being defined

» isused for bitsand fields that are important from a hardware perspective (for instance, register bits, which are
not programmabl e but accessible only to hardware)

» isusedfor ranges of numbers; therangeisindicated by an ellipsis. For instance, 5..1 indicates numbers 5 through
1

* isused to emphasize UNPREDICTABL E and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

Theterms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the pro-
cessor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructionsin
aprivileged mode (i.e., in Kernel Mode or Debug Mode, or with the CPO usable hit set in the Status register). Unpriv-
ileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and unprivileged
software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDI CTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as afunction of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause aresult to be generated or not. If aresult is gener-
ated, itisUNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDI CTABLE results or operations have several implementation restrictions:

* Implementations of operations generating UNPREDICTABL E results must not depend on any data source
(memory or internal state) which is inaccessible in the current processor mode

UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
isinaccessible in the current processor mode. For example, UNPREDICTABL E operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

8 MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

1.3 Special Symbols in Pseudocode Notation

* UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as afunction of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

« UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which

thereisno exit other than powering down the processor). The assertion of any of the reset signals must restore the
processor to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as afunction of time on the same implementation or instruction. Unlike
UNPREDI CTABLE values, software may depend on the fact that a sampling of an UNSTABLE value resultsin a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABL E values have one implementation restriction:

* Implementations of operations generating UNSTABL E results must not depend on any data source (memory or
internal state) which isinaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning
«— Assignment
= # Tests for equality and inequality
I Bit string concatenation
xY A y-bit string formed by y copies of the single-bit value x
b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the

binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default baseis 10.

Obn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).
Ooxn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).
Xy 7 Selection of hitsy through z of bit string x. Little-endian bit notation (rightmost bit is0) isused. If yisless

than z, this expression is an empty (zero length) bit string.

+, — 2's complement or floating point arithmetic: addition, subtraction

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 9

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
* X 2's complement or floating point multiplication (both used for either)
div 2's complement integer division
mod 2's complement modulo
/ Floating point division
< 2's complement less-than comparison
> 2's complement greater-than comparison
< 2's complement less-than or equal comparison
> 2's complement greater-than or equal comparison
nor Bitwise logical NOR
xor Bitwise logical XOR
and Bitwise logical AND
or Bitwiselogical OR
not Bitwise inversion
&& Logical (non-Bitwise) AND
<< Logical Shift left (shift in zeros at right-hand-side)
>> Logical Shift right (shift in zeros at left-hand-side)
GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers
GPR[X] CPU general -purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR([x] is ashort-hand notation for SGPR[SRSCtlcgs, X].
SGPR[sX] In Release 2 of the Architecture and subsequent rel eases, multiple copies of the CPU general-purpose regis-
ters may be implemented. SGPR[s,X] refersto GPR set s, register x.
FPR[X] Floating Point operand register x
FCC[C(C] Floating Point condition code CC. FCC[0] has the same value as COCJ[1].
FPR[X] Floating Point (Coprocessor unit 1), general register x
CPR[zx,9] Coprocessor unit z, general register x, select s
CP2CPR[X] Coprocessor unit 2, general register x
CCR[zX] Coprocessor unit z, control register x
CP2CCR[X] Coprocessor unit 2, control register x
COC[Z] Coprocessor unit z condition signal
Xlat[x] Translation of the MIPS16e GPR number X into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (O —Little-Endian, 1 — Big-Endian). Specifies the endianness of
the memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endi-
anness of Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0 — Little-Endian, 1 — Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and isimplemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRge and User mode).

10MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

1.3 Special Symbols in Pseudocode Notation

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol

Meaning

LLbit

Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when alinked load occurs and istested by the conditional store. It is cleared, during other CPU operation,
when astore to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

1+n:,
I-n:

This occurs as aprefix to Operation description lines and functions as alabel. It indicates the instruction time
during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
timelabel of |. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections
labeled with the instruction time, relative to the current instruction I, in which the effect of that pseudocode
appears to occur. For example, an instruction may have aresult that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in asection labeled | +1.

The effect of pseudocode statements for the current instruction labelled | +1 appears to occur “at the same
time” asthe effect of pseudocode statements labeled | for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for dif-
ferent instructions that occur “at the sametime,” there is no defined order. Programs must not depend on a
particular order of evaluation between such sections.

The Program Counter value. During the instruction time of an instruction, this is the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction timeis determined by assign-
ing avaue to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.

In the MIPS Architecture, the PC valueisonly visible indirectly, such aswhen the processor storesthe restart
address into a GPR on ajump-and-link or branch-and-link instruction, or into a Coprocessor O register on an
exception. The PC value contains afull 32-hit address all of which are significant during a memory refer-
ence.

ISA Mode

In processors that implement the MIPS16e Application Specific Extension or the microMIPS base architec-
tures, the ISA Mode isasingle-bit register that determines in which mode the processor is executing, asfol-
lows:

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions

1 The processor is executing M11PS16e or microMIPS
instructions

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the |SA Modeinto a GPR on ajump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS

The number of physical address bitsimplemented is represented by the symbol PABITS. Assuch, if 36 phys-
ical address bits were implemented, the size of the physical address space would be 2PABITS = 236 pytes,

FP32RegistersMode

Indicates whether the FPU has 32-hit or 64-hit floating point registers (FPRs). It isoptional if the FPU has
32 64-bit FPRs in which 64-hit data types are stored in any FPR.

microM | PS64 implementations have a compatibility mode in which the processor references the FPRs as if
it were a microM1PS32 implementation. In such a case FP32Register M ode is computed from the FR bit in
the Satusregister. If thisbitisa0, the processor operates asif it had 32 32-bit FPRs. If thishitisal, the pro-
cessor operates with 32 64-bit FPRs.

The value of FP32Register sM ode is computed from the FR bit in the Satus register.

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,

Revision 1.03

11

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
InstructioninBranchDe- | Indicates whether the instruction at the Program Counter address was executed in the delay slot of abranch
laySlot or jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the valueis

falseif abranch or jump occursto an instruction whose PC immediately follows a branch or jump, but which
is not executed in the delay slot of abranch or jump.

Signal Exception(excep- | Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
tion, argument) parameter as an exception-specific argument). Control does not return from this pseudocode function—the

exception is signaled at the point of the call.

1.4 For More Information

Various MIPS RISC processor manuals and additional information about M1PS products can be found at the MIPS
URL.: http://www mips.com

For comments or questions on the MIPS32® Architecture or this document, send Email to support@mips.com.

12MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

Chapter 2

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical
order in the tables at the beginning of the next chapter.

2.1 Understanding the Instruction Fields

Figure 2.1 shows an example instruction. Following the figure are descriptions of the fields listed below:
* “Instruction Fields’ on page 14

e “Instruction Descriptive Name and Mnemonic” on page 15

e “Format Field” on page 15

e “Purpose Field” on page 16

» “Description Field” on page 16

* “Restrictions Field” on page 16

* “Operation Field” on page 17

* “ExceptionsField” on page 17

e “Programming Notes and Implementation Notes Fields’ on page 18

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 13

Guide to the Instruction Set

Figure 2.1 Example of Instruction Description

Instruction Mnemonic and .
Descriptive Name ————> Example Instruction Name EXAMPLE
EXAMPLE
Instruction encoding 31 26 25 21 20 16 15 11 10 6 5 0
s 7€ 0) ” 0 [exavme
000000 00000 000000
6 5 5 5 5 6

Architecture level at which

instruction was defined/redefined \Q

Format: EXAMPLE fd,rs,rt MIPS32
Assembler format(s) for each /7
definition .
/D Purpose: Example Instruction Name
Short description
To execute an EXAMPLE op.

Symbolic description ——J> Description: GPR[rd] < GPR[r]s exampleop GPR[rt]

Full description of ————————=> This section describes the operation of the instruction in text, tables, and illustrations. It
instruction operation includes information that would be difficult to encode in the Operation section.

Restrictions on instruction I~ Restrictions:

and operands
This section lists any restrictions for the instruction. This can include values of theinstruc-
tion encoding fields such as register specifiers, operand values, operand formats, address
alignment, instruction scheduling hazards, and type of memory access for addressed loca
tions.

High-level language. ———J> Operation:

description of instruction

operation /* This section describes the operation of an instruction in */
/* a high-level pseudo-language. It is precise in ways that */
/* the Description section is not, but is also missing */
/* information that is hard to express in pseudocode. */
temp < GPR[rs] exampleop GPR[rt]

GPR[rd] <« temp

Exceptions that = Exceptions:
instruction can cause

A list of exceptions taken by theinstruction
Notes for programmers — I~ Programming Notes:

Information useful to programmers, but not necessary to describe the operation of the
instruction

Notes for implementors ————J~ Implementation Notes:

Like Programming Notes, except for processor implementors

2.1.1 Instruction Fields

14MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

2.1 Understanding the Instruction Fields
Fields encoding the instruction word are shown in register form at the top of the instruction description. The follow-
ing rules are followed:

» Thevalues of constant fields and the opcode names are listed in uppercase (SPECIAL and ADD in Figure 2.2).
Constant values in afield are shown in binary below the symbolic or hexadecimal value.

* All variable fields are listed with the lowercase names used in the instruction description (rs, rt, and rd in Figure
2.2).

» Fieldsthat contain zeros but are not named are unused fields that are required to be zero (bits 10:6 in Figure 2.2).
If such fields are set to non-zero values, the operation of the processor is UNPREDICTABLE.

Figure 2.2 Example of Instruction Fields

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL 0 ADD
rs rt rd
000000 00000 100000
6 5 5 5 5 6

2.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown in Figure
2.3.

Figure 2.3 Example of Instruction Descriptive Name and Mnemonic

Add Word ADD

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
given in the Format field. If the instruction definition was later extended, the architecture levels at which it was
extended and the assembl er formats for the extended definition are shown in their order of extension (for an example,
see C.cond fmt). The MIPS architecture levels are inclusive; higher architecture levelsinclude all instructionsin pre-
vious levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the
extended architecture.

Figure 2.4 Example of Instruction Format

Format: ADD fd,rs,rt MIPS32

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields. The architectura level at
which the instruction was first defined, for example “MIPS32” is shown at the right side of the page.

There can be more than one assembler format for each architecture level. Floating point operations on formatted data
show an assembly format with the actual assembler mnemonic for each valid value of the fmt field. For example, the
ADD fmt instruction lists both ADD.S and ADD.D.

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 15

Guide to the Instruction Set
The assembler format lines sometimes include parenthetical commentsto help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.
The term decoded_immediate is used if theimmediate field is encoded within the binary format but the assembler for-
mat uses the decoded value. Theterm left_shifted offset isused if the offset field is encoded within the binary format

but the assembler format uses value after the appropriate amount of left shifting.

2.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Figure 2.5 Example of Instruction Purpose

Purpose: Add Word

To add 32-bit integers. If an overflow occurs, then trap.

2.1.5 Description Field

If aone-line symbolic description of the instruction isfeasible, it appearsimmediately to the right of the Description
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation.

Figure 2.6 Example of Instruction Description

Description: GPR[rd] < GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rsto produce a 32-bit
result.

» |f theaddition resultsin 32-bit 2's complement arithmetic overflow, the destination
register is not modified and an Integer Overflow exception occurs.

» |f the addition does not overflow, the 32-bit result is placed into GPR rd.

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU general-purpose register specified by the
instruction field rt. “FPR fs” is the floating point operand register specified by the instruction field fs. “ CP1 register
fd” isthe coprocessor 1 general register specified by the instruction field fd. “FCSR” is the floating point Control /
Status register.

2.1.6 Restrictions Field

The Restrictions field documents any possible restrictions that may affect the instruction. Most restrictions fall into
one of the following six categories:

» Valid valuesfor instruction fields (for example, see floating point ADD fmt)
* ALIGNMENT requirements for memory addresses (for example, see LW)

» Validvalues of operands (for example, see ALNV.PS)

16MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

2.1 Understanding the Instruction Fields

» Valid operand formats (for example, see floating point ADD fmt)

» Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards
for which some processors do not have hardware interlocks (for example, see MUL).

» Vaid memory access types (for example, see LL/SC)

Figure 2.7 Example of Instruction Restrictions

Restrictions:
None

2.1.7 Operation Field

The Operation field describes the operation of the instruction as pseudocode in a high-level language notation resem-
bling Pascal. Thisformal description complements the Description section; it is not complete in itself because many
of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Figure 2.8 Example of Instruction Operation

Operation:

temp < (GPR[rsli;||GPRI[rslz; o) + (GPR[rtlsi||GPR[rtlss o)
if temp;, # temps; then
SignalException (IntegerOverflow)
else
GPR[rd] « temp
endif

See 2.2 “Operation Section Notation and Functions’ on page 18 for more information on the formal notation used
here.

2.1.8 Exceptions Field

The Exceptions field lists the exceptions that can be caused by Operation of the instruction. It omits exceptions that
can be caused by the instruction fetch, for instance, TLB Refill, and al so omits exceptions that can be caused by asyn-
chronous external events such as an Interrupt. Although a Bus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship
between load and store instructions and external error indications, like Bus Error, are dependent upon the implemen-
tation.

Figure 2.9 Example of Instruction Exception

Exceptions:

Integer Overflow

An instruction may cause implementation-dependent exceptions that are not present in the Exceptions section.

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 17

Guide to the Instruction Set

2.1.9 Programming Notes and Implementation Notes Fields

The Notes sections contain material that is useful for programmers and implementors, respectively, but that is not nec-
essary to describe the instruction and does not belong in the description sections.

Figure 2.10 Example of Instruction Programming Notes
Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

2.2 Operation Section Notation and Functions

In an instruction description, the Operation section uses a high-level language notation to describe the operation per-
formed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described bel ow.

This section presents information about the following topics:

» “Instruction Execution Ordering” on page 18

* “Pseudocode Functions’ on page 18

2.2.1 Instruction Execution Ordering

Each of the high-level language statementsin the Operations section are executed sequentially (except as constrained
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and
include the following:
» “Coprocessor General Register Access Functions” on page 18
e “Memory Operation Functions’” on page 20
* “Floating Point Functions” on page 23
e “Miscellaneous Functions’ on page 26

2.2.2.1 Coprocessor General Register Access Functions
Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between coprocessor
genera registers and the rest of the system. What a coprocessor does with aword or doubleword supplied to it and

how a coprocessor supplies aword or doubleword is defined by the coprocessor itself. Thisbehavior isabstracted into
the functions described in this section.

18MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

2.2 Operation Section Notation and Functions

COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with aword from memory during a
load word operation. The action is coprocessor-specific. The typical action would be to store the contents of mem-

word in coprocessor general register rt.

Figure 2.11 COP_LW Pseudocode Function

COP_LW (z, rt, memword)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */
endfunction COP_LW
COP LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory
during aload doubleword operation. The action is coprocessor-specific. The typical action would be to store the con-

tents of memdouble in coprocessor general register rt.
Figure 2.12 COP_LD Pseudocode Function

COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memdouble: 64-bit doubleword value supplied to the coprocessor.

/* Coprocessor-dependent action */
endfunction COP_LD
COP_SW

The COP_SW function defines the action taken by coprocessor z to supply aword of data during a store word opera-
tion. The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in

coprocessor general register rt.
Figure 2.13 COP_SW Pseudocode Function

dataword <« COP_SW (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
dataword: 32-bit word value

/* Coprocessor-dependent action */
endfunction COP_SW
COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store dou-
bleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the low-

order doubleword in coprocessor general register rt.

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 19

Guide to the Instruction Set

Figure 2.14 COP_SD Pseudocode Function
datadouble « COP_SD (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
datadouble: 64-bit doubleword value
/* Coprocessor-dependent action */

endfunction COP_SD

CoprocessorOperation
The CoprocessorOperation function performs the specified Coprocessor operation.

Figure 2.15 CoprocessorOperation Pseudocode Function
CoprocessorOperation (z, cop_fun)

/* zZ: Coprocessor unit number */
/* cop_fun: Coprocessor function from function field of instruction */

/* Transmit the cop_fun value to coprocessor z */
endfunction CoprocessorOperation

2.2.2.2 Memory Operation Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword isthe smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for alittle-endian
ordering thisis the least-significant byte.

In the Operation pseudocode for load and store operations, the foll owing functions summarize the handling of virtual
addresses and the access of physical memory. The size of the dataitem to be loaded or stored is passed in the
AccessLength field. The valid constant names and values are shown in Table 2.1. The bytes within the addressed unit
of memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined directly
from the AccessLength and the two or three low-order bits of the address.

AddressTranslation

The AddressTranslation function transates a virtual address to a physical address and its cacheability and coherency
attribute, describing the mechanism used to resolve the memory reference.

Given the virtual address vAddr, and whether the referenceisto Instructions or Data (lorD), find the corresponding
physical address (pAddr) and the cacheability and coherency attribute (CCA) used to resolve the reference. If the vir-
tual addressisin one of the unmapped address spaces, the physical address and CCA are determined directly by the
virtual address. If the virtual addressisin one of the mapped address spaces then the TLB or fixed mapping MMU
determines the physical address and accesstype; if the required translation is not present in the TLB or the desired
access is not permitted, the function fails and an exception is taken.

Figure 2.16 AddressTranslation Pseudocode Function
(pAddr, CCA) <« AddressTranslation (vAddr, IorD, LorS)

/* pAddr: physical address */
/* CCA: Cacheability&Coherency Attribute, the method used to access caches*/

20MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

2.2 Operation Section Notation and Functions

/* and memory and resolve the reference */

/* vAddr: virtual address */
/* TorD: Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

LoadMemory
The LoadMemory function loads a value from memory.

This action uses cache and main memory as specified in both the Cacheability and Coherency Attribute (CCA) and
the access (lorD) to find the contents of AccessLength memory bytes, starting at physical location pAddr. The datais
returned in a fixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address
and the AccessLength indicate which of the bytes within MemElem need to be passed to the processor. If the memory
accesstype of the reference is uncached, only the referenced bytes are read from memory and marked as valid within
the memory element. If the accesstypeis cached but the dataiis not present in cache, an implementation-specific size
and alignment block of memory is read and loaded into the cache to satisfy aload reference. At a minimum, this
block is the entire memory element.

Figure 2.17 LoadMemory Pseudocode Function

MemElem ¢« LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */
/* width is the same size as the CPU general-purpose register, */

/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */

/* respectively. */

/* CCA: Cacheability&CoherencyAttribute=method used to access caches */

/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */

/* pAddr: physical address */
/* vAddr: virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadMemory

StoreMemory
The StoreMemory function stores a value to memory.

The specified datais stored into the physical location pAddr using the memory hierarchy (data caches and main mem-
ory) as specified by the Cacheability and Coherency Attribute (CCA). The MemElem contains the data for an aligned,
fixed-width memory element (aword for 32-bit processors, a doubleword for 64-bit processors), though only the
bytesthat are actually stored to memory need be valid. The low-order two (or three) bits of pAddr and the AccessLen-
gth field indicate which of the bytes within the MemElem data should be stored; only these bytes in memory will actu-
ally be changed.

Figure 2.18 StoreMemory Pseudocode Function

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 21

Guide to the Instruction Set

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */

/* AccessLength: Length, in bytes, of access */

/* MemElem: Data in the width and alignment of a memory element. */

/* The width is the same size as the CPU general */

/* purpose register, either 4 or 8 bytes, */

/* aligned on a 4- or 8-byte boundary. For a */

/* partial-memory-element store, only the bytes that will be*/
/* stored must be valid.*/

/* pAddr: physical address */

/* VAddr: virtual address */

endfunction StoreMemory

Prefetch
The Prefetch function prefetches data from memory.

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may
increase performance but must not change the meaning of the program or ater architecturaly visible state.

Figure 2.19 Prefetch Pseudocode Function
Prefetch (CCA, pAddr, vAddr, DATA, hint)
/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* pAddr: physical address */
/* vAddr: virtual address */
/* DATA: 1Indicates that access is for DATA */
/* hint: hint that indicates the possible use of the data */

endfunction Prefetch

Table 2.1 lists the data access lengths and their labels for loads and stores.

Table 2.1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning
DOUBLEWORD 7 8 bytes (64 bits)
SEPTIBYTE 6 7 bytes (56 hits)
SEXTIBYTE 5 6 bytes (48 bits)
QUINTIBYTE 4 5 bytes (40 bits)
WORD 3 4 bytes (32 bits)
TRIPLEBYTE 2 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 bits)
BYTE 0 1 byte (8 bits)

SyncOperation

The SyncOperation function orders |oads and stores to synchronize shared memory.

22MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

2.2 Operation Section Notation and Functions

This action makes the effects of the synchronizable |oads and storesindicated by stype occur in the same order for all
processors.

Figure 2.20 SyncOperation Pseudocode Function
SyncOperation (stype)
/* stype: Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

2.2.2.3 Floating Point Functions

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are inter-
preted to form aformatted value. If an FPR contains a value in some format, rather than unformatted contents from a
load (uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).

ValueFPR
The ValueFPR function returns a formatted val ue from the floating point registers.

Figure 2.21 ValueFPR Pseudocode Function

value ¢« ValueFPR (fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */

/* fmt: The format of the data, one of: */
/* s, D, w, L, PSS, */

/* OB, QH, */

/* UNINTERPRETED_WORD, */

/* UNINTERPRETED_DOUBLEWORD */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in SWC1 and SDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:
valueFPR « FPR[fpr]

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)
if (fpry # 0) then
valueFPR ¢« UNPREDICTABLE
else
valueFPR « FPR[fpr+lls; o || FPRIfprls; o
endif
else
valueFPR « FPR[fpr]
endif

L, PS:
if (FP32RegistersMode = 0) then
valueFPR ¢« UNPREDICTABLE

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 23

Guide to the Instruction Set

else
valueFPR « FPR[fpr]
endif

DEFAULT:
valueFPR <« UNPREDICTABLE

endcase
endfunction ValueFPR

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored into CP1
registers by a computational or move operation. This binary representation is visible to store or move-from instruc-
tions. Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a
different format.

StoreFPR

Figure 2.22 StoreFPR Pseudocode Function

StoreFPR (fpr, fmt, value)

/* fpr: The FPR number */

/* fmt: The format of the data, one of: */
/* s, D, W, L, PS, */

/* OB, QH, */

/* UNINTERPRETED_WORD, */

/* UNINTERPRETED_DOUBLEWORD */

/* value: The formattted value to be stored into the FPR */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in LWC1 and LDC1l */

case fmt of
S, W, UNINTERPRETED_WORD:
FPR[fpr] <« value

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)
if (fprg # 0) then
UNPREDICTABLE
else
FPR[fpr] <« UNPREDICTABLE>’ || values;
FPR[fpr+l] < UNPREDICTABLE’? || valueg; 3,
endif
else
FPR[fpr] <« wvalue
endif

L, PS:
if (FP32RegistersMode = 0) then
UNPREDICTABLE
else
FPR[fpr] <« value
endif

endcase

24MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

2.2 Operation Section Notation and Functions

endfunction StoreFPR

The pseudocode shown below checks for an enabled floating point exception and conditionally signals the exception.
CheckFPException
Figure 2.23 CheckFPException Pseudocode Function
CheckFPException ()
/* A floating point exception is signaled if the E bit of the Cause field is a 1 */

/* (Unimplemented Operations have no enable) or if any bit in the Cause field */
/* and the corresponding bit in the Enable field are both 1 */

if | (FCSRy7 = 1) or
((FCSRq14. .15 and FCSRqq1_ . 7) # 0))) then
SignalException(FloatingPointException)
endif

endfunction CheckFPException

FPConditionCode
The FPConditionCode function returns the value of a specific floating point condition code.
Figure 2.24 FPConditionCode Pseudocode Function
tf «<FPConditionCode (cc)
/* tf: The value of the specified condition code */
/* cc: The Condition code number in the range 0..7 */
if cc = 0 then
FPConditionCode ¢ FCSRy;
else
FPConditionCode ¢ FCSRjgicc

endif
endfunction FPConditionCode
SetFPConditionCode
The SetFPConditionCode function writes a new value to a specific floating point condition code.

Figure 2.25 SetFPConditionCode Pseudocode Function

SetFPConditionCode(cc, tf)
if cc = 0 then

FCSR ¢« FCSR31 44 || tf || FCSRyy.
else
FCSR ¢ FCSR31. 254cc || tf || FCSR334cc. .0

endif

endfunction SetFPConditionCode

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 25

Guide to the Instruction Set

2.2.2.4 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

SignalException
The Signal Exception function signals an exception condition.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.26 SignalException Pseudocode Function
SignalException (Exception, argument)

/* Exception: The exception condition that exists. */
/* argument: A exception-dependent argument, if any */

endfunction SignalException

SighalDebugBreakpointException

The Signal DebugBreakpointException function signals a condition that causes entry into Debug Mode from non-
Debug Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.27 SignalDebugBreakpointException Pseudocode Function
SignalDebugBreakpointException ()
endfunction SignalDebugBreakpointException

SignhalDebugModeBreakpointException

The Signal DebugM odeBreakpointException function signals a condition that causes entry into Debug Mode from
Debug Mode (i.e., an exception generated while already running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.28 SignalDebugModeBreakpointException Pseudocode Function
SignalDebugModeBreakpointException ()
endfunction SignalDebugModeBreakpointException
NullifyCurrentinstruction

The NullifyCurrentlnstruction function nullifies the current instruction.

Theinstruction is aborted, inhibiting not only the functional effect of the instruction, but also inhibiting all exceptions
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullification
killsthe instruction in the delay slot of the branch likely instruction.

26MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

2.3 Op and Function Subfield Notation

Figure 2.29 NullifyCurrentinstruction PseudoCode Function
NullifyCurrentInstruction ()
endfunction NullifyCurrentInstruction
JumpDelaySlot

The JumpDelaySlot function is used in the pseudocode for the PC-relative instructions in the M1PS16e ASE. The
function returns TRUE if the instruction at vAddr is executed in ajump delay slot. A jump delay slot always immedi-
ately followsaJr, JAL, JALR, or JALX instruction.

Figure 2.30 JumpDelaySlot Pseudocode Function
JumpDelaySlot (vAddr)
/* VAddr:Virtual address */
endfunction JumpDelaySlot
PolyMult
The PolyMult function multiplies two binary polynomial coefficients.
Figure 2.31 PolyMult Pseudocode Function

PolyMult (x, V)

temp < O
for i in 0 .. 31
if x; = 1 then
temp ¢« temp xor (y(3z1-i)..0 || 0%)
endif
endfor

PolyMult <« temp

endfunction PolyMult

2.3 Op and Function Subfield Notation

In some instructions, the instruction subfields op and function can have constant 5- or 6-bit values. When referenceis
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction,
op=COP1 and function=ADD. In other cases, asingle field has both fixed and variable subfields, so the name con-

tains both upper- and lowercase characters.

2.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfieldsin an instruction format (such asfs, ft, imme-
diate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in upper-

case.

For the sake of clarity, an diasis sometimes used for a variable subfield in the formats of specific instructions. For
example, rs=base in the format for load and store instructions. Such an aliasis always lowercase sinceit refersto a

variable subfield.

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 27

Guide to the Instruction Set

Bit encodings for mnemonics are given in Volume I, in the chapters describing the CPU, FPU, MDMX, and MIPS16e
instructions.

See “Op and Function Subfield Notation” on page 27 for a description of the op and function subfields.

28MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

Chapter 3

The MCU Application-Specific Extension to the MIPS32®
and microMIPS32™Architecture

3.1 Base Architecture Requirements

The MCU® ASE requires at |east one of the following base architecture supports:

* ThemicroMIPS Architecture: The MCU ASE requires a compliant implementation of the microMIPS Archi-
tecture.

 TheMIPS32 Architecture: The MCU ASE requires acompliant implementation of the MIPS32Architecture.
3.2 Software Detection of the ASE

Software may determine if the MCU ASE isimplemented by checking the state of the MCU bit in the Config3 CPO
register.

3.3 Compliance and Subsetting

There are no instruction subsets of the MCU ASE to the microMIPS/MIPS32 Architecture—all MCU instructions
must be implemented.

3.4 Overview of the MCU ASE

The MCU ASE extends the microM1PS32/M I PS32 Architecture with a set of new features designed for the micro-
controller market. The MCU ASE contains enhancements in several distinct areas:. interrupt delivery, interrupt
latency, and 1/O peripheral programming.

3.4.1 Interrupt Delivery

The MCU ASE extends the number of hardware interrupt sources from 6 to 8. For legacy and vectored-interrupt
mode, this represents 8 external interrupt sources. For EIC mode, the widened IPL and RIPL fields can now represent
256 external interrupt sources.

3.4.2 Interrupt Latency Reduction

The MCU ASE includes a package of extensions to microMIPS/MIPS32 that decrease the latency of the processor’'s
response to asignalled interrupt.

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 29

The MCU Application-Specific Extension to the MIPS32® and microMIPS32TMArchitecture

3.4.2.1 Interrupt Vector Prefetching

Normally on MIPS architecture processors, when an interrupt or exception is signalled, execution pipelines must be
flushed before the interrupt/exception handler is fetched. Thisis necessary to avoid mixing the contexts of the inter-
rupted/faulting program and the exception handler. The MCU A SE introduces a hardware mechanism in which the
interrupt exception vector is prefetched whenever the interrupt input signals change. The prefetch memory transac-
tion occursin parallel with the pipeline flush and exception prioritization. This decreases the overall latency of the
execution of the interrupt handler’s first instruction.

3.4.2.2 Automated Interrupt Prologue

The use of Shadow Register Sets avoids the software steps of having to save general -purpose registers before han-
dling an interrupt.

The MCU ASE adds additional hardware logic that automatically saves some of the COPO state in the stack and auto-
matically updates some of the COPO registers in preparation for interrupt handling.

3.4.2.3 Automated Interrupt Epilogue

A mirror to the Automated Prologue, this feature automates the restoration of some of the COPO registers from the
stack and the preparation of some of the COPO registers for returning to non-exception mode. This featureisimple-
mented within the IRET instruction, which isintroduced in this ASE.

3.4.2.4 Interrupt Chaining

An optional feature of the Automated Interrupt Epilogue, this feature allows handling a second interrupt after a pri-
mary interrupt is handled, without returning to non-exception mode (and the related pipeline flushes that would nor-
mally be necessary).

3.4.3 1/0 Device Programming

The ASE includes some instructions that simplify writing the control registers of 1/O devices. Specifically, new
instructions are made available to avoid read-modify-write hazards, without resorting to busy-wait loops or system
calls. Read-modify-write hazards exist when one thread reads a control register, and that thread is interrupted before
it modifies the control register.

30MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

Chapter 4

The MCU Instruction Set

The MCU ASE includes three new instructions that are particularly useful in microcontroller applications.

4.1 IRET

Thisinstruction can be used as a replacement for the ERET instruction when returning from an interrupt. This
instruction implements the Automated Interrupt Epilogue feature, which automates restoring some of the COPO reg-
isters from the stack and updating the CO_Status register in preparation for returning to non-exception mode. This
instruction also implements the optional Interrupt Chaining feature, which allows a subsequent interrupt to be han-
dled without returning to non-exception mode.

4.2 ASET

Thisinstruction alows abit within an uncached 1/O control register to be atomically set; that is, the read-modify byte
write sequence performed by thisinstruction cannot be interrupted.

4.3 ACLR

Thisinstruction allows a bit within an uncached 1/0 control register to be atomically cleared; that is, the read-modify
byte write sequence performed by this instruction cannot be interrupted.

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 31

The MCU Instruction Set

32MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

Interrupt Return with automated interrupt epilogue handling IRET

31 26 25 6 5 0
POOL32A POOL 32AXf
000000 000 0000 0011 0100 1101 111100
6 20 6
Format: IRET microMIPSand MCU ASE

Purpose: Interrupt Return with automated interrupt epilogue handling

Optionally jump directly to another interrupt vector without returning to original return address.

Description:

IRET automates some of the operations that are required when returning from an interrupt handler and can be used in
place of the ERET instruction at the end of interrupt handlers. IRET is only appropriate when using Shadow Register
Sets and the EIC Interrupt mode. The automated operations of this instruction can be used to reverse the effects of the
automated operations of the Auto-Prologue feature.

If the EIC interrupt mode and the Interrupt Chaining feature are used, the IRET instruction can be used to shorten the
time between returning from the current interrupt handler and handling the next requested interrupt.

If the Automated Prologue feature is disabled, then IRET behaves exactly like ERET.
If either the Statusgg, or Statusggy bits are set, then IRET behaves exactly like ERET.

If Interrupt Chaining is disabled:

Interrupts are disabled. COPO Status, SRSCtl, and EPC registers are restored from the stack. GPR 29 isincre-
mented for the stack frame size. IRET then clears execution and instruction hazards, conditionally restores
SRCtl g5 from SRSCltlpsgs, and returns at the completion of interrupt processing to the interrupted instruction

pointed to by the EPC register.
If Interrupt Chaining is enabled:

Interrupts are disabled. COPO Status register is restored from the stack. The priority output of the External Inter-
rupt Controller is compared with the IPL field of the Status register.

If Status;p. has a higher priority than or equal to the External Interrupt Controller value:

COPO SRCtl and EPC registers are restored from the stack. GPR 29 isincremented for the stack frame size.
IRET then clears execution and instruction hazards, conditionally restores SRSCtl ~gg from SRCtl pgg, and

returnsto the interrupted instruction pointed to by the EPC register at the completion of interrupt processing.

If Status;p. has alower priority than the External Interrupt Controller value:

The value of GPR 29 isfirst saved to atemporary register then GPR 29 is incremented for the stack frame
size. The EIC is signalled that the next pending interrupt has been accepted. This signalling will update the
Causegp. and SRSCtlg, g5 fields from the EIC output values. The SRSCtlg g field is copied to the
SRCtl g field, while the Causer,p_ field is copied to the Status,p field. The saved temporary register is
copied to the GPR 29 of the current SRS. The KSU and EXL fields of the Satus register are optionally set to
zero. No barrier for execution hazards or instruction hazards is created. IRET finishes by jumping to the
interrupt vector driven by the EIC.

IRET does not execute the next instruction (i.e., it has no delay slot).

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 33

Interrupt Return with automated interrupt epilogue handling IRET

Restrictions:
The operation of the processor isUNDEFINED if IRET is executed in the delay slot of a branch or jump instruction.

The operation of the processor is UNDEFINED if IRET is executed when either Shadow Register Sets are not
enabled, or when the EIC interrupt mode is not enabled.

An IRET placed between an LL and SC instruction will always cause the SC to fail.

The effective addresses used for stack transactions must be naturally-aligned. If either of the two least-significant bits
of the address is non-zero, an Address Error exception occurs.

IRET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor O state
changes (for Release 2 implementations, refer to the SYNCI instruction for additional information on resolving
instruction hazards created by writing the instruction stream). The effects of this barrier begin with the instruction
fetch and decode of the instruction at the PC to which the IRET returns.

In a Release 2 implementation, IRET does not restore SRSCtl g5 from SRCtlpgg if Statusggy = 1 or Satusgg, = 1,
because any exception that sets Statusgg, to 1 (Reset, Soft Reset, NMI, or cache error) does not save SRCtl-gg in

SRXCtlpgs. If software sets Statusgr, to 1, it must be aware of the operation of an IRET that may be subsequently
executed.

The stack memory transactions behave as individual LW operations with respect to exception reporting. BadVAddr
would report the faulting address for an unaligned access, and the faulting word address for unprivileged access, TLB
Refill, and TLB Invalid exceptions. For TLB exceptions, the faulting word address would be reflected in the Context
and EntryHi registers. The CacheError register would reflect the faulting word address for Cache Errors.

Operation:
if ((IntCtlppgy == 0) | (Statusgg, == 1) | (Statusggy== 1))
Act as ERET // read Operation section of ERET description
else

temp ¢« 0x4 + GPR[29]
tempStatus ¢ LoadStackWord (temp)
ClearHazards ()
if ((IntCtlieg == 0) | ((IntCtlieg == 1) &
(tempStatuszipy, 2 EICr1pn)))

temp ¢ 0x8 + GPR[29]

tempSRSCtl ¢« LoadStackWord (temp)

temp ¢« 0x0 + GPR[29]

tempEPC ¢« LoadStackWord (temp)

endif
Status « tempStatus
if ((IntCtlieg == 0) | ((IntCtlieg == 1) &

(tempStatuszipy, 2 EICR1pL)))

GPR[29] <« GPR[29] + DecodedValue(IntCtlgiypec)

SRSCtlpgg ¢ tempSRSCtlpgg

SRSCtlpgg ¢ tempSRSCtlgpgg

EPC ¢« tempEPC

temp « EPC

Statusgyp, < O

if (ArchitectureRevision 2 2) and (SRSCtlygg > 0) and (Statusggy = 0) then
SRSCtlcgg ¢ SRSCtlpgg

endif

if IsMicroMIPSImplemented() then
PC « temps; 1 || O
ISAMode < tempg

else

PC « temp

34MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

Interrupt Return with automated interrupt epilogue handling

endif

LLbit « 0
Cause;c < 0
ClearHazards ()

else

Causegtp;, ¢ EICg71pr,
SRSCtlgycgg ¢ EICgg
temp29 <« GPR[29]

GPR

[29] < GPR[29] + DecodedValue (IntCtlgikpec)

Statusqp;, ¢ Causegypr,
SRSCtlcgg ¢ SRSCtlgrcgg
NewShadowSet ¢« SRSCtlgicgg

GPR
if

[29] « temp29
(IntCtleyppxr == 1)
Statusgy;, < O
Statusggy < O

endif

LLbit « 0

Causerq < 1
ClearHazards ()

PC « CalcIntrptAddress()

endif

endif

function LoadStackWord (vaddr)

if vAddr, , # 0° then
SignalException (AddressError)

endif
(pAddr,

CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)

memword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
LoadStackWord ¢ memword
endfunction LoadStackWord

function CalcIntrptAddress|()

if StatusBEV == 1
vectorBase < 0xBFC0.0200

else
if

(ArchitectureRevision = 2)
vectorBase « EBases; 1, || 0%%)

else

vectorBase <« 0x8000.0000

endif

endif

if (Causery == 0)
vectorOffset « 0x180

else
if

(Statusggy = 1) or (IntCtlyg = 0)
vectorOffset <« 0x200

else

if (Config3ygrc == 1 and EIC_Option == 1)
VectorNum < Causegpy,

elseif (Config3ygre == 1 and EIC_Option == 2)
VectorNum ¢ EIC_VectorNum

elseif (Config3ygre == 0)
VectorNum ¢« VIntPriorityEncoder ()

IRET

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,

Revision 1.03

35

endif
if (Config3ygic == 1 and EIC_Option == 3)
vectorOffset ¢« EIC_VectorOffset
else
vectorOffset ¢« 0x200 + (VectorNum x (IntCtlyg || 0°))
endif
endif

endif
CalcIntrptAddress < vectorBase | vectorOffset
if (Config3rgaonmxec)
CalcIntrptAddress <« CalcIntrptAddresss; 4 || 1
endif
endfunction CalcIntrptAddress

Exceptions:
Coprocessor Unusable Exception, TLB Refill, TLB Invalid, Address Error, Watch, Cache Error, Bus Error
Exceptions

36MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

Atomically Set Bit within Byte ASET

31 26 25 24 23 21 20 16 15 12 11 0
POOL32B AO . ASET
001000 0 bt base 0011 offset
6 2 3 5 4 12
Format: ASET bit, offset (base) microMIPSAND MCU ASE

Purpose: Atomically Set Bit within Byte

DeSCFiptiOI’lZ Disable interrupts;temp ¢ memory[GPR[base] + offset]; temp « (temp or (1 <<
bit)) ; memory[GPR[base] + offset] ¢« temp; Enable Interrupts

The contents of the byte at the memory location specified by the effective address are fetched. The specified bit
within the byte is set to one. The modified byte is stored in memory at the location specified by the effective address.
The 12-bit signed offset is added to the contents of GPR base to form the effective address. The read-modify-write
seguence cannot be interrupted.

Transactions with locking semantics occur in some memory interconnects/busses. It is implementation-specific
whether thisinstruction uses such locking transactions.

Restrictions:

The operation of the processor is UNPREDICTABLE if an ASET instruction is executed in the delay slot of a
branch or jump instruction.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
pPAddr ¢« pAddrpgrzp-1. 2 || (pAdAdr; , xor ReverseEndian?)
TempIE <« Statusig

Statusig < 0

memword ¢ LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor BigEndianCPU?

temp <« memwords;,gspyte..8*byte

temp « temp or (1 || 0P

dataword ¢« temp || 08'bvte

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)
Statusqyp ¢ TempIE

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

Upon a TLB miss, a TLBS exception is signalled in the ExcCode field of the Cause register. For address error, a
ADES exception is signalled in the ExcCode field of the Cause register. For other data-stream related exceptions such
as Debug Data Break exceptions and Watch exceptions, it is implementation-specific whether this instruction is
treated as aload or as a store.

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 37

38MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

Atomically Clear Bit within Byte ACLR

31 26 25 24 23 21 20 16 15 12 11 0
POOL32B AO . ACLR
001000 0 bt base 1011 offset
6 2 3 5 4 12
Format: ACLR bit, offset (base) microMIPSand MCU ASE

Purpose: Atomically Clear Bit within Byte

DeSCFiptiOI’lZ Disable interrupts; temp < memory[GPR[base] + offset]; temp « (temp and ~(1
<< bit)) ; memory[GPR[base] + offset] ¢« temp; Enable Interrupts

The contents of the byte at the memory location specified by the effective address are fetched. The specified bit
within the byte is cleared to zero. The modified byte is stored in memory at the location specified by the effective
address. The 12-bit signed offset is added to the contents of GPR base to form the effective address. The read-modify-
write sequence cannot be interrupted.

Transactions with locking semantics occur in some memory interconnects/busses. It is implementation-specific
whether thisinstruction uses such locking transactions.

Restrictions:

The operation of the processor is UNPREDICTABLE if an ACLR instruction is executed in the delay slot of a
branch or jump instruction.

Operation:

vAddr ¢« sign_extend(offset) + GPR[base]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
pPAddr ¢« pAddrpgrzp-1. 2 || (pAdAdr; , xor ReverseEndian?)
TempIE <« Statusig

Statusig < 0

memword ¢ LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor BigEndianCPU?

temp <« memword;,gspyte..8%byte

temp <« temp and ((1 || 0P'%) xor 0xFF))

dataword ¢« temp || 08'bvte

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)
Statusqyp ¢ TempIE

Exceptions:
TLB R€fill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

Upon a TLB miss, a TLBS exception is signalled in the ExcCode field of the Cause register. For address error, a
ADES exception is signalled in the ExcCode field of the Cause register. For other data-stream related exceptions such
as Debug Data Break exceptions and Watch exceptions, it is implementation-specific whether this instruction is
treated as aload or as a store.

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 39

40MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

Chapter 5

The MCU Privileged Resource Architecture

5.1 Introduction

The MIPS32 Privileged Resource Architecture (PRA) defines a set of environments and capabilities on which the
Instruction Set Architecture operates. This includes definitions of the programming interface and operation of the
system coprocessor, CPO. MCU defines extensions to the M1PS32 PRA that are desirable in amicrocontroller envi-
ronment. This document describes these extensions. It is not intended to be a stand-alone PRA specification and must
be read in the context of the MIPS32 Architecture specification.

5.2 The MCU System Coprocessor
The MCU system coprocessor interface and functionality isidentical to MIPS32. except as defined below.

5.3 Interrupt Delivery

5.3.1 Number of Hardware Interrupts

The MCU ASE increases the number of Hardware Interrupts to 8. To accommodate this, the privileged architecture
has the following changes:

» Bits 18 and 16 of the Status Register are used to extend the IM/IPL fields.

+ Bits17 and 16 of the Cause Register are used to extend the IP/RIPL fields. Cause;7 corresponds to Status; g,
and Cause; g corresponds to Status, .

e Anadditional COPO register (SRSMAP2), located at CPO Register 12, Select 5, is used to map the Shadow
Register Set for the two new Vector Numbers available in Vectored Interrupt Mode.

5.3.1.1 Changes to Vectored Interrupt Mode

The highest priority interrupt source is now represented by Cause;7 and Status;g. The Shadow Register Set for this
interrupt source is specified by the SSV9 field in SRSMAP2 (bits 7:4).

The second highest priority interrupt sourceis now represented by Cause;g and Status;g. The Shadow Register Set
for thisinterrupt source is specified by the SSV8 field in SRSVIAP2 (bits 3:0).

5.3.1.2 Changes to External Interrupt Controller Mode

The Status;p. and Causeg,p_ fields are now 8 bits in width, which allows these fields to represent 256 external inter-
rupt sources.

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 41

The MCU Privileged Resource Architecture

5.4 Interrupt Handling

5.4.1 Interrupt Vector Prefetching

5.4.1.1 Historical Behavior of Pipelines with In-Order Completion

Even on a processor that completes instructions in program order, traditionally there is some latency from when the
interrupt is recognized by the pipeline and when the first instruction of the interrupt handler is executed. Because
interrupts must be reported on avalid instruction, the interrupt is normally recognized by the pipeline in one of the
later pipeline stages. Subsequent instructions in the pipeline would be annulled for the context switch to exception
mode. The instruction fetch for the interrupt handler could be started after the interrupt is recognized by the pipeline
as the highest priority exception, but the annulled instructions would still have to drain from the pipeline.

Typical Interrupt Handling Flow in Pipelined Implementation with In-Order Completion

Interrupt
Time Pins Pipeline Control Logic Instruction Fetch Logic Exception Logic
Earlier Executing Thread A Fetching along Thread A
Interrupt Pin
Asserted

Interrupt recognized, exception
signalled to pipeline

Stop issuing new instructions, | Previous fetch discarded
annul subsequent instructions

Interrupt recognized as highest
priority exception

Fetch interrupt vector

Annulled instructions drained
from pipeline

Pipeline restart

Later Execute interrupt handler

5.4.1.2 Historical Behavior of Pipelines with Out-of-Order Completion

Historically many MIPS architecture implementations would flush the pipeline before processing any exception,
especialy in implementations with non-blocking caches. This was done to avoid mixing context from the interrupted

42MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

5.4 Interrupt Handling

process and the exception handler. This allows the exception handler to immediately save registers onto the stack
without the fear of missing pending register updates from yet to be completed instructions.

Table 5.1 Typical Interrupt Handling Flow in Pipelined Implementation with Out-of-Order Completion

Interrupt
Time Pins Pipeline Control Logic Instruction Fetch Logic Exception Logic
Earlier Executing Thread A Fetching along Thread A
Interrupt
Pin
Asserted
Interrupt Recognized, Exception
signalled to pipeline
Stop Issuing new instructions, Previous fetch squashed
Annul subsequent instructions,
Wait for previous instructions to
complete
Idle
Annulled subsequent instructions | Idle
drained from pipeline
Idle
All previous instructions com- Idle
pleted
Idle Interrupt Recognized as highest
priority exception.
Pipeline restart Fetch Interrupt Vector
Later Execute Interrupt Handler

If the instructions at the exception vector were executed before all of the instructions of the interrupted process were
completed, the possibility of imprecise exceptions would be introduced.

An exception isimprecise when EPC/ErrorEPC/DEPC does not point to the instruction that caused the exception.
For example, if aload instruction missesin all of the caches for the requested data, and the cache hierarchy is
non-blocking, execution may proceed pass the load. An interrupt may be recognized and accepted on an instruction
subsequent to the load. While the interrupt handler is being executed, the response of the load returns and the
response signals a Bus Error. In that case, anested exception would occur, but the EPC for the bus error would not
hold the address of the faulting load instruction. If the EXL bit is set at the time the Bus Error exception is recog-
nized, the EPC would not be updated: for this case, the EPC would point to an instruction within the interrupt handler.
A similar case can occur for late-arriving Floating-Point exceptions. In order to avoid these situations, some imple-
mentations flush the pipeline and wait until all outstanding instructions are compl eted before proceeding with the
exception handler.

5.4.1.3 New Feature - Speculative Prefetching

This new feature allows for the fetching of the interrupt vector address when any interrupt is signalled to the proces-
sor core. The fetching is done before the pipeline has been flushed and even before the exception priority logic has
determined if the interrupt is the highest priority exception that should be serviced. The purpose of thisfeatureisto
allow the memory transaction to occur in parallel with the pipeline flush and exception prioritization.

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 43

The MCU Privileged Resource Architecture

Table 5.2 Interrupt Handling Flow with Speculative Prefetching

Interrupt
Time Pins Pipeline Control Logic Instruction Fetch Logic Exception Logic
Earlier Executing Thread A Fetching along Thread A
Interrupt Pin
Asserted
Interrupt Recognized, Excep-
tion signalled to pipeline
Stop Issuing new instruc- Previous fetch squashed
tions, Wait for previous
instructions to complete
Prefetch Interrupt Vector
Hold results from prefetch
All previous instructions
completed
Interrupt recognized as high-
est priority exception
Pipeline restart If Interrupt not highest prior-
ity exception, squash prefetch
and fetch correct exception
vector
Later Execute Interrupt Handler

Thisfeature is supported for all 3 interrupt modes: Release 1 Interrupt compatibility mode, Vectored Interrupt Mode,
and External Interrupt Controller/EIC mode. This feature is enabled by the IntCtl.PF bit.

Strictly speaking, thisfeatureis not architecturally visible (that is, visible to software). However, to maintain the
same precise exception model that has been traditionally used, the prefetched instructions must be treated as specula
tive. This means that any exception that might occur for the interrupt vector address prefetch—BusError, Parity
Error, non-Correctable ECC—must be held until all of the instructions of the interrupted process have completed and
the program counter has advanced to point to the interrupt vector address. A similar case occurs when the interrupt
vector address is prefetched, but the exception priority logic subsequently decides that another higher priority excep-
tion (not an Interrupt) isto be serviced first. This other exception would use a different vector address, and the
prefetch memory transaction must be dropped.

5.4.2 Interrupt Automated Prologue (IAP)

The use of Shadow Register Sets already decreases the overhead of saving usermode state before executing an inter-
rupt service routine. The Interrupt Automated Prologue (IAP) feature automates some of the software steps which
would be needed to save COPO state before executing an interrupt service routine. Decreased |atency to executing the
first useful instruction of an interrupt service routine can be achieved by executing some of the steps using parallel
hardware instead of serial execution of instructions.

5.4.2.1 IAP Conditions

Thisfeature is only available when:

44MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

5.4 Interrupt Handling

* Shadow Register Sets areimplemented (SRSCtlsg = 0)
+ Externa Interrupt Controller Mode is enabled (Config3yg =1, IntCtly, g != 0, Causey=1, and Statusgg,,=0)
d | ntCtIAPE:].

This feature only takes effect when an interrupt is signalled to the processor core and the exception priority logic has
resolved the interrupt to be the highest priority exception to be handled. If an exception other than an interrupt is sig-
nalled, this feature does not take effect.

5.4.2.2 I1AP Operation
IAP Operation with one stack pointer.

These are the steps that are automated by this feature:

1. If (IntCtlygek st 1S Z€ro) or (INtCtlygei st 1S ONE and interrupted instruction was executing in kernel mode) , then

TempStackPointer is updated with the value from GPR 29 of the Previous Shadow Register Set. Else, go to Step
A) (in the next section).

2. TempStackPointer is decremented by the value specified by the IntCtl gy pec register field.

3. Thevaluein COPO EPC register is stored to external memory using virtual address [TempStackPointer] + 0x0
4. Thevauein COPO Status register is stored to external memory using virtual address [TempStackPointer]+0x4.
5. Thevaluein COPO SRSCtl register is stored to external memory using virtual address [TempStackPointer]+0x8.
6. GPR 29 of the Current Shadow Register Set iswritten with the value of TempStackPointer.

7. Satusp_ register field is updated with the value in Causegp, -
8. If IntCitlqyexp isSet, then KSU, ERL and EXL fields of the Status register are cleared to zero.

TempStackPointer is an internal register within the processor and is not visible to software. It is used so that the mod-
ification of GPR 29 does not happen until there is no longer any possibility of memory exceptions occurring during
IAP. Thisallows the TLB handler to be used without modification for a TLB exception that happens during AP,

IAP Operation with multiple stack pointers.

The previous sequence is for simple software environments where there is only one stack. In more complicated envi-
ronments with both user-mode and kernel-mode stacks, the IntCtl g« i control bit can be used to select another

stack pointer for the interrupt handling. In this case, GPR 29 of the Shadow Register Set 1 is always used to hold the
kernel stack pointer. GPR 29 of Shadow Register Set 1 has been pre-initialized to hold the appropriate kernel stack
pointer value. The following stepsillustrate how | AP works when the pre-initialized stack pointer is used (INtCtl e

Sik 1S 0Ne).

A) If (IntCtl sk st 1S ONE) and (interrupted instruction was not executing in kernel mode) then TempStackPointer =

GPR 29 of Shadow Register 1 else TempStackPointer = GPR 29 of Shadow Register Set used at the time of the inter-
rupted instruction.

B) Go to Step 2 (in previous section).

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 45

The MCU Privileged Resource Architecture

For Step A, if the interrupted instruction was already in kernel mode, then it would have been using the a stack
pointer value that was previously derived from the kernel stack pointer held in GPR 29 of Shadow Register 1.

5.4.2.3 Exceptions during IAP

The memory store operations which occur during Auto-Prologue may result in Address Error, TLB refill, TLB
invalid, TLB modify, Cache Error, Bus Error exceptions. If such memory exceptions occur during Auto-Prologue:

* The Causer,ccode register field reports the exception type

» Causepp register bit is set

» EPC isunchanged; points to the instruction which was originally interrupted.

» All of the other exception reporting COPO registers (Badvaddr, EntryHi, Entrylo*, Context, CacheError) are
updated as appropriate for the exception type. These registersreflect the effective word address which caused the
exception, e.g., asif anindividual SW instruction had caused the exception.

» |f the memory store operation uses a mapped address and there is no matching addressin the TLB, the TLB refill
exception handler (offset 0x0) is used. The other TLB related exceptions (invalid, modify) use the general excep-
tion handler (offset 0x180).

* The Shadow Register Set designated by the SRSCtl g5 register field is used for the memory exception.

e The memory exception handler returns to the original code PC location, which isheld in CO_EPC.

e Sincetheinterrupt is still asserted, the interrupt is signalled again and |AP isrepeated. Thistime, it completes as
the faulting condition had previously been fixed.

The |AP feature will run to completion unless one of these memory exceptions takes place. The IAP feature is not
interruptable, that is, IAP is atomic from the point of view of another pending interrupt.

5.4.3 Interrupt Automated Epilogue (IAE)

This feature isthe mirror of Interrupt Automated Prologue. In preparation for returning to non-exception mode, this
feature automates restoring COPO Satus, SRSCtl and EPC registers from the stack.

5.4.3.1 IAE Conditions
This feature is made available through the IRET instruction. The IRET instruction should only be used when:
* Shadow Register Sets areimplemented (SRSCtlsg = 0)
» Externa Interrupt Controller Mode is enabled (Config3y g c=1, IntCtly g != 0, Causey,=1 Satusgg,,=0).

The IRET instruction is meant to reverse the effects of the Interrupt Automated Prologue feature. So the IRET
instruction should only be used when the COPO registers are saved onto the stack in the manner specified by the IAP
feature.

5.4.3.2 IAE Operation

Refer to the IRET instruction description.

46MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

5.4 Interrupt Handling

5.4.3.3 Exceptions during IAE

The memory store operations which occur during Auto-Epilogue may result in Address Error, TLB refill, TLB
invalid, TLB modify, Cache Error, Bus Error exceptions. If such memory exceptions occur during Auto-Epilogue:

* The Causeg,code register field reports the exception type.

e EPCisupdated to the IRET instruction location.

» All of the other exception-reporting COPO registers (BadVaddr, EntryHi, EntryLo*, Context, CacheError) are
updated as appropriate for the exception type. These registers reflect the effective word address which caused the
exception, e.g., asif an individual LW instruction caused the exception.

e |f the memory store operation uses amapped address and there is no matching addressin the TLB, the TLB refill
exception handler (offset 0x0) is used. The other TLB related exceptions (invalid, modify) use the general excep-
tion handler (offset 0x180).

* The Shadow Register Set designated by the SRSCtl o5 register field is used for the memory exception.

* Thememory exception handler returns to the IRET instruction, which is held in CO_EPC.

* ThelRET instruction now completes since the faulting condition was previously fixed. The IRET returnsto the
original code PC location, which is un-wound from the stack.

The IRET instruction will run to completion unless one of these memory exceptions takes place. The IRET instruc-
tion is not interruptable, that is, IRET is atomic from the point of view of another pending interrupt.

5.4.4 Interrupt Chaining

This feature reduces the number of cycles needed to respond to a subsequent higher priority interrupt when the pro-
cessor is returning from exception mode and has disabled interrupts.

Normally, software hasto disable interrupts during the critical section when restoring registers from a stack when fin-
ishing handling an exception. During that time, another interrupt could be signalled. The new interrupt is ignored
until the ERET instruction clears the EXL bit and has started execution at the return address pointed by EPC. During
thistime, the pipeline is flushed to complete the exception handling. When the subsequent interrupt is finally recog-
nized by the exception logic, a second pipeline flush is necessary as the processor was about start executing the
instructions at the return address.

The Interrupt Chaining feature avoids these pipeline flushes by allowing the EIC unit to update its interrupts signals

sent to the processor core before the IRET instruction completes. If these signals represent an interrupt which is
higher priority than the current priority (in Status,p|), the IRET instruction will update the COPO registers as if just

entering exception mode. The IRET instruction will then jump directly to the new interrupt vector - avoiding these
steps:

1. Fushing the pipelinein return to non-exception mode
2. Clearing the Statusgy bit
3. Returning to the EPC address

4. Fushing the pipeline a second time to enter exception mode.

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 47

The MCU Privileged Resource Architecture

5.4.4.1 Interrupt Chaining Conditions
This feature is made available through the IRET instruction. Interrupt Chaining is only available when:
* Shadow Register Sets areimplemented (SRSCtlysg = 0)
+ External Interrupt Controller Mode is enabled (Config3y g c=1, IntCtly g != 0, Causg=1 Satusgg,=0)

i |ntCt||CE:l
5.5 Modified CPO Registers

The CPO registers provide the interface between the ISA and the PRA. Those CPO registersthat are extended or rede-
fined for the MCU ASE relative to the MIPS32 Architecture reference are discussed below, with the registers pre-
sented in numerical order, first by register number, then by select field number.

5.5.1 CPO Register Summary

Table 5.3 lists the CPO registers affected by the MCU specification in numerical order. Theindividual registers are
described later in this document. Otherwise the definition reverts to the M1 SP32 specification. The Sal column indi-
cates the value to be used in the field of the same name in the MFCO and MTCO instructions.

Table 5.3 MCU Changes to Coprocessor 0 Registers in Numerical Order

Register Compliance
Number Sel | Register Name Modification Reference Level

12 0 [Satus IM/IPL field extended by 2 bits Section 5.5.2 Required for
MCU ASE

12 1 |IntCtl PF, ICE, StkDec, CIrEXL, APE, UseK Stk fields Section 5.5.3 Required for
added MCU ASE

12 4 |View IPL New Register Section 5.5.4 Required for
MCU ASE

12 5 | SRSMAP2 New Register Section 5.5.5 Required for
MCU ASE

13 0 |Cause IC, APfields added. IP/RIPL field extended by 2 Section 5.5.6 Required for
bits. MCU ASE

13 4 |View RIPL New Register Section 5.5.7 Required for
MCU ASE

16 3 |Config3 IPLW, MCU fields added. Section 5.5.8 Required for
MCU ASE

5.5.2 Status Register (CP Register 12, Select 0)

The Status register is aread/write register that contains the operating mode, interrupt enabling, and the diagnostic
states of the processor. Fields of this register combine to create operating modes for the processor.

48MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

5.5 Modified CPO Registers
Figure 5-1 shows the format of the Status register; Table 5.4 describes the Status register fields.

Figure 5-1 Status Register Format
31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 100 9 8 7 6 5 4 3 2 1 0

R% FR

Im

CU3..CU0 RE| MX| PX |BEV|TS| SRINMI|{IM9 IM8..IM2 IMl..IM%KX

SX|UX|UM| RO|ERL|EXL| IE

pl

IPL IPL KSU

Table 5.4 Status Register Field Descriptions

Fields
Read / Reset

Name Bits Description Write State Compliance

CU (Cus.. 31..28 | Controls access to coprocessors 3, 2, 1, and O, respec- R/W Undefined | Required for all
CU0) tively: implemented
COpProcessors

Encoding Meaning

0 Access not allowed
1 Access alowed

Coprocessor 0 is aways usable when the processor is run-
ning in Kernel Mode or Debug Mode, independent of the
state of the CUq bit.

In Release 2 of the Architecture, and for 64-bit implemen-
tations of Release 1 of the Architecture, execution of all
floating point instructions, including those encoded with
the COP1X opcode, is controlled by the CU1 enable. CU3
isno longer used and is reserved for future use by the
Architecture.

If thereis no provision for connecting a coprocessor, the
corresponding CU bit must be ignored on writes and
return zero on reads.

RP 27 Enables reduced power mode on some implementations. R/W 0 Optional
The specific operation of this bit isimplementation-depen-
dent.

If thisbit is not implemented, it must be ignored on writes
and return zero on reads. If this bit isimplemented, the
reset state must be zero so that the processor starts at full
performance.

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 49

The MCU Privileged Resource Architecture

Table 5.4 Status Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read /
Write

Reset
State

Compliance

FR

26

In Release 1 of the Architecture, only MI1PS64 processors
could implement a 64-bit floating point unit. In Release 2
of the Architecture, both MIPS32 and MIPS64 processors
can implement a 64-bit floating point unit. Thisbit is used
to control the floating point register mode for 64-bit float-
ing point units:

Encoding Meaning

0 Floating point registers can contain
any 32-bit datatype. 64-bit data types
are stored in even-odd pairs of regis-
ters.

1 Floating point registers can contain
any datatype

Thisbit must be ignored on writes and return zero on reads

under the following conditions:

* No floating point unit isimplemented

¢ InaMIPS32 implementation of Release 1 of the Archi-
tecture

« Inanimplementation of Release 2 of the Architecturein
which a 64-hit floating point unit is not implemented

Certain combinations of the FR bit and other state or oper-

ations can cause UNPREDICTABLE behavior.

R/W

Undefined

Required

RE

25

Used to enable reverse-endian memory references while
the processor is running in user mode:

Encoding Meaning

0 User mode uses configured endian-
ness

1 User mode uses reversed endianness

Neither Debug Mode nor Kernel Mode nor Supervisor
Mode references are affected by the state of this bit.

If thisbit is not implemented, it must be ignored on writes
and return zero on reads.

Undefined

Optional

MX

24

Enables accessto MDMX and MIPS DSP resources on
processors implementing one of these ASEs. If neither the
MDMX nor the MIPS DSP ASE isimplemented, this bit
must be ignored on writes and return zero on reads.

Encoding Meaning

0 Access not allowed
1 Access alowed

R if the pro-
cessor imple-
ments neither
the MDM X
nor the MIPS
DSP ASEs,
otherwise
R/W

0if the pro-
cessor imple-
ments
neither the
MDMX nor
the MIPS
DSP ASEs;
otherwise
Undefined

Optional

PX

23

Enables access to 64-bit operations on M1PS64 proces-
sors. Not used by MIPS32 processors. This bit must be
ignored on writes and return zero on reads.

0

Required

50MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-

ture, Revision 1.03

5.5 Modified CPO Registers

Table 5.4 Status Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read /
Write

Reset
State

Compliance

BEV

22

Controls the location of exception vectors:

Encoding Meaning

0 Normal

1 Bootstrap

See “Exception Vector Locations” on page 80 for details.

R/W

1

Required

TSt

21

Indicates that the TLB has detected a match on multiple
entries. It isimplementation-dependent whether this
detection occurs at all, on awrite to the TLB, or an access
tothe TLB. In Release 2 of the Architecture, multiple
TLB matches may only be reported on a TLB write.
When such a detection occurs, the processor initiates a
machine check exception and sets this bit. It isimplemen-
tation-dependent whether this condition can be corrected
by software. If the condition can be corrected, this bit
should be cleared by software before resuming normal
operation.

See“TLB Initiaization” on page 44 for a discussion of
software TLB initialization used to avoid a machine check
exception during processor initialization.

If this bit is not implemented, it must be ignored on writes
and return zero on reads.

Software should not writea 1 to thisbit when itsvalueisa
0, thereby causing a0-to-1 transition. If such atransitionis
caused by software, it is UNPREDICTABLE whether
hardware ignores the write, accepts the write with no side
effects, or accepts the write and initiates a machine check
exception.

Required if the
processor detects
and reports a
match on multi-
ple TLB entries

20

Indicates that the entry through the reset exception vector
was due to a Soft Reset:

Encoding Meaning

0 Not Soft Reset (NMI or Reset)
1 Soft Reset

If thisbit is not implemented, it must beignored on writes
and return zero on reads.

Software should not write a1 to thisbit whenitsvaueisa
0, thereby causing a0-to-1 transition. If such atransitionis
caused by software, it is UNPREDICTABLE whether
hardware ignores or accepts the write.

R/W

1 for Soft
Reset; 0 oth-
erwise

Required if Soft
Reset isimple-
mented

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,

Revision 1.03

51

The MCU Privileged Resource Architecture

Table 5.4 Status Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
NMI 19 Indicates that the entry through the reset exception vector R/W 1for NMI; O [Required if NMI
was due to an NMI exception: otherwise |isimplemented
Encoding Meaning
0 Not NMI (Soft Reset or Reset)
1 NMI
If thisbit is not implemented, it must be ignored on writes
and return zero on reads.
Software should not write a1 to thisbit whenitsvalueisa
0, thereby causing a0-to-1 transition. If such atransitionis
caused by software, it is UNPREDICTABL E whether
hardware ignores or accepts the write.
0 18 Must be written as zero; returns zero on read. 0 0 Reserved
Impl 17 These bits are implementati on-dependent and are not Undefined Optional
defined by the architecture. If they are not implemented,
they must be ignored on writes and return zero on reads.
IM9..IM2 18, Interrupt Mask: Controls the enabling of each of the hard- R/W Undefined Required
16..10 |wareinterrupts. Refer to “Interrupts’ on page 65 for a for IM7:IM2
compl ete discussion of enabled interrupts.
- - Ofor
Encoding Meaning IM9:IM8
0 Interrupt request disabled
1 Interrupt request enabled
In implementations of Release 2 of the Architecturein
which EIC interrupt mode is enabled (Config3y/gc = 1),
these bits take on a different meaning and are interpreted
asthe |PL field, described below.
IPL 18, Interrupt Priority Level. R/W Undefined | Optional (Release
16..10 [Inimplementations of Release 2 of the Architecturein for 2 and EIC inter-
which EIC interrupt mode is enabled (Config3y,gc = 1), IPL15:1PL10 | rupt mode only)
thisfield is the encoded (0..63) value of the current IPL.
An interrupt will be signaled only if the requested IPL is 0 for
higher than this value. IPL18:IPL17
If EIC interrupt mode is not enabled (Config3y g c = 0),
these bits take on a different meaning and are interpreted
asthe IM7..IM2 bits, described above.

52MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-

ture, Revision 1.03

5.5 Modified CPO Registers

Table 5.4 Status Register Field Descriptions (Continued)

Fields

Name Bits

Description

Read /
Write

Reset
State

Compliance

IM1..IMO 9.8

Interrupt Mask: Controls the enabling of each of the soft-
wareinterrupts. Refer to “Interrupts’ on page 65 for a
complete discussion of enabled interrupts.

Encoding Meaning

0 Interrupt request disabled

1 Interrupt request enabled

In implementations of Release 2 of the Architecturein
which EIC interrupt mode is enabled (Config3, g c = 1),
these bits are writable, but have no effect on the interrupt
system.

R/W

Undefined

Required

KX 7

Enables access to 64-bit kernel address space on 64-bit
MIPS processors. Not used by MIPS32 processors. This
bit must be ignored on writes and return zero on reads.

Reserved

SX 6

Enables access to 64-bit supervisor address space on
64-bit MIPS processors. Not used by MIPS32 processors.
This bit must be ignored on writes and return zero on
reads.

Reserved

UXx 5

Enables access to 64-bit user address space on 64-bit
MIPS processors Not used by MIPS32 processors. Thisbit
must be ignored on writes and return zero on reads.

Reserved

KSU 4.3

If Supervisor Mode isimplemented, the encoding of this
field denotes the base operating mode of the processor.
See “MIPS3264 and microM|1PS3264 Operating Modes”
on page 19 for afull discussion of operating modes. The
encoding of thisfield is:

Encoding Meaning

0b00 Base mode is Kernel Mode

0b01 Base mode is Supervisor Mode
0b10 Base modeis User Mode

Ob11 Reserved. The operation of the pro-
cessor isSUNDEFINED if thisvalueis
written to the KSU field

Note: Thisfield overlaps the UM and RO fields, described
below.

R/W

Undefined

Required if
Supervisor Mode
isimplemented;
Optional other-
wise

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,

Revision 1.03

53

The MCU Privileged Resource Architecture

Table 5.4 Status Register Field Descriptions (Continued)

Fields

Name Bits

Description

Read /
Write

Reset
State

Compliance

UM 4

If Supervisor Mode is not implemented, this bit denotes
the base operating mode of the processor. See “ MIPS3264
and microM|PS3264 Operating Modes’ on page 19 for a
full discussion of operating modes. The encoding of this
bit is:

Encoding Meaning

0 Base mode is Kernel Mode

1 Base mode is User Mode

Note: This bit overlaps the KSU field, described above.

R/W

Undefined

Required

RO 3

If Supervisor Mode is not implemented, this bit is
reserved. This bit must be ignored on writes and return
zero on reads.

Note: This bit overlapsthe KSU field, described above.

Reserved

ERL 2

Error Level; Set by the processor when a Reset, Soft
Reset, NMI or Cache Error exception are taken.

Encoding Meaning

0 Normal level
1 Error level

When ERL is set:

* The processor is running in kernel mode

» Hardware and software interrupts are disabled

* TheERET instruction will usethereturn addressheld in
ErrorEPC instead of EPC

* Segment kuseg istreated as an unmapped and uncached
region. See“ Address Tranglation for the kuseg Segment
when Statusgg, = 1" on page 41. Thisallows main
memory to be accessed in the presence of cache errors.
The operation of the processor is UNDEFINED if the
ERL hit is set while the processor is executing instruc-
tions from kuseg.

Required

EXL 1

Exception Level; Set by the processor when any exception
other than Reset, Soft Reset, NM| or Cache Error excep-
tion are taken.

Encoding Meaning

0 Normal level

1 Exception level

When EXL is set:

e The processor isrunning in Kernel Mode

¢ Hardware and software interrupts are disabled.

« TLB Refill exceptions use the general exception vector
instead of the TLB Refill vector.

» EPC, Causegp and SRSCil (implementations of Release
2 of the Architecture only) will not be updated if
another exception is taken

Undefined

Required

54MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-

ture, Revision 1.03

5.5 Modified CPO Registers

Table 5.4 Status Register Field Descriptions (Continued)

Fields

Read / Reset
Name Bits Description Write State Compliance
IE 0 Interrupt Enable: Acts as the master enable for software R/W Undefined Required
and hardware interrupts:
Encoding Meaning
0 Interrupts are disabled
1 Interrupts are enabled

In Release 2 of the Architecture, this bit may be modified
separately viathe DI and El instructions.

1. The TShit originally indicated a“TLB Shutdown” condition in which circuits detected multiple TLB matches and shutdown the TLB
to prevent physical damage. In newer designs, multiple TLB matches do not cause physical damage to the TLB structure, so the TS bit
retainsits name, but is simply an indicator to the machine check exception handler that multiple TLB matches were detected and
reported by the processor.

Programming Note:

In Release 2 of the Architecture, the EHB instruction can be used to make interrupt state changes visible when the IM,
IPL, ERL, EXL, or IE fields of the Satus register are written.

5.5.3 IntCtl (CPO Registers 12, Select 1)

Figure 5-2 shows the format of the IntCtl register; Table 5.5 describes the IntCtl register fields.

Figure 5-2 IntCtl Register Format

31 29 28 26 25 23 22 21 20 16 15 14 13 12 10 9 5 4 0
IPTI | IPPCI | IPFDC |PF| ICE StkDec Cr- | Apg | U VS 0
EXL Kstk | 000

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 55

The MCU Privileged Resource Architecture

Table 5.5 IntCtl Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
IPTI 31..29 For Interrupt Compatibility and Vectored Interrupt modes, R Preset by Required
this field specifies the | P number to which the Timer Inter- hardware or
rupt request is merged, and allows software to determine Externally
whether to consider Causer, for a potential interrupt. Set
Hardware
Encoding IP bit Interrupt Source
2 2 HWO
3 3 HW1
4 4 HW2
5 5 HW3
6 6 HWA4
7 7 HW5
The value of thisfieldisUNPREDICTABLE if Externa
Interrupt Controller Mode is both implemented and
enabled. The externa interrupt controller is expected to
provide this information for that interrupt mode.

IPPCI 28..26 For Interrupt Compatibility and Vectored Interrupt modes, R Preset by Optional (Per-
thisfield specifies the |P number to which the Perfor- hardware or | formance
mance Counter Interrupt request is merged, and alows Externally Counters
software to determine whether to consider Causepc for a Set Implemented)
potential interrupt.

Hardware
Encoding IP bit Interrupt Source
2 2 HWO
3 3 HW1
4 4 HW2
5 5 HW3
6 6 HW4
7 7 HW5

The value of thisfieldis UNPREDICTABLE if External
Interrupt Controller Mode is both implemented and
enabled. The external interrupt controller is expected to
provide this information for that interrupt mode.

If performance counters are not implemented (Configlpc

=0), thisfield returns zero on read.

56MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

5.5 Modified CPO Registers

Table 5.5 IntCtl Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
IPFDC 25.23 For Interrupt Compatibility and Vectored Interrupt modes, R Preset by Optional
thisfield specifies the |P number to which the Fast Debug hardware or | (EJTAG Fast
Channel Interrupt request is merged, and alows software Externally Debug Chan-
to determine whether to consider Causerp for apotential Set nel Imple-
interrupt. mented)
Hardware
Encoding IP bit Interrupt Source
2 2 HWO
3 3 HW1
4 4 HW2
5 5 HW3
6 6 HW4
7 7 HW5
The value of thisfieldis UNPREDICTABLE if External
Interrupt Controller Mode is both implemented and
enabled. The external interrupt controller is expected to
provide thisinformation for that interrupt mode.
If EJTAG FDC is not implemented, this field returns zero
on read.
PF 22 Enables Vector Prefetching Feature. RwW 0 Required if
Encodi Meani MCU ASE is
ncoding eaning implemented
0 Vector Prefetching disabled
1 Vector Prefetching enabled
ICE 21 For IRET instruction. Enables Interrupt Chaining. RwW 0 Required if
Encodi Mean MCU ASE is
ncoding eaning implemented
0 Interrupt Chaining disabled
1 Interrupt Chaining enabled

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,

Revision 1.03

57

The MCU Privileged Resource Architecture

Table 5.5 IntCtl Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
StkDec 20..16 For Auto-Prologue feature. Thisis the number of 4-byte RW 0x3 Required if
words that is decremented from the value of GPR29 MCU ASE is
Decrement | Decrement implemented
Amountin | Amountin
Encoding words bytes
0-3 3 12
Others Asencoded, | 4* encoded
e.g. 0x5 vaue
means 5 e.g. 0x5
words means 20
bytes
CIrEXL 15 For Auto-Prologue feature and IRET instruction. RW 0 Required if
If set, during Auto-Prologue and IRET interrupt chaining, MCU ASE is
the KSU/ERL/EXL fields are cleared. implemented
Encoding Meaning
0 Fields are not cleared by these opera-
tions
1 Fields are cleared by these operations
APE 14 Enables Auto-Prologue feature. RwW 0 Required if
Encodi Meani MCU ASEis
ncoding eaning implemented
0 Auto-Prologue disabled
1 Auto-Prologue enabled

58MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-

ture, Revision 1.03

5.5 Modified CPO Registers

Table 5.5 IntCtl Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
UseK Stk 13 Chooses which Stack to use during Interrupt Automated RW 0 Required if
Prologue. MCU ASE is
implemented
Encoding Meaning P
0 Copy $29 of the Previous SRS to the
Current SRS at the beginning of IAP.
Thisisused for Bare-Iron environ-
ments with only one stack.
1 Use $29 of the Current SRS at the
beginning of IAP.
Thisisused for environments where
there are separate User-mode and Ker-
nel mode stacks. In this case, $29 of
the SRS used during |AP must be
pre-initialized by software to hold the
Kernel mode stack pointer.
0 13..10 Must be written as zero; returns zero on read. 0 Reserved
VS 9.5 Vector Spacing. If vectored interrupts areimplemented (as R/W Optional
denoted by Config3,/, or Config3y g c), thisfield speci-
fies the spacing between vectored interrupts.
Spacing Between Vectors
Encoding (hex) (decimal)
0x00 0x000 0
0x01 0x020 32
0x02 0x040 64
0x04 0x080 128
0x08 0x100 256
0x10 0x200 512
All other values are reserved. The operation of the proces-
sor isUNDEFINED if areserved value iswritten to this
field.
If neither EIC interrupt mode nor VI mode are imple-
mented (Config3y g c = 0 and Config3\t = 0), thisfield
isignored on write and reads as zero.
0 4.0 Must be written as zero; returns zero on read. 0 0 Reserved

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,

Revision 1.03

59

The MCU Privileged Resource Architecture

5.5.4 View_IPL Register (CPO Register 12, Select 4)

Figure 5-3 View_IPL Register Format
10 9 2 1 0

IPL

Table 5.6 View_IPL Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State | Compliance

IM 9:0 Interrupt Mask. R/W Undefined for Required
If EIC interrupt mode is not enabled, controls which inter- IM7:1IM2
rupts are enabled.

Ofor IM9:IM8

IPL 9.2 Interrupt Priority Level. R/W Undefined Required
If EIC interrupt mode is enabled, thisfield is the encoded
value of the current IPL.

31..10,1..0 | Must be written as zero; returns zero on read. 0 0 Reserved

Thisregister gives read and write access to the IM or IPL field that is aso available in the Satus Register. The use of
thisregister allows the Interrupt Mask or the Priority Level to be read/written without extracting/inserting that bit
field from/to the Satus Register.

TheIPL field might be located in non-contiguous bits within the Satus Register. All of the IPL bitsare presented asa
contiguous field within this register.

5.5.5 SRSMap?2 Register (CPO Register 12, Select 5)

The SRIMap?2 register contains 2 4-bit fields that provide the mapping from an vector number to the shadow set num-
ber to use when servicing such an interrupt. The values from this register are not used for a non-interrupt exception,
or anon-vectored interrupt (Causey, = 0 or IntCtly, g = 0). In such cases, the shadow set number comes from

SRCtl s
If SRCil s is zero, the results of a software read or write of this register are UNPREDICTABLE.

The operation of the processor is UNDEFINED if avalueiswritten to any field in thisregister that is greater than the
value of SRCtlss.

The SRSMIap2 register contains the shadow register set numbers for vector numbers 9..8. The same shadow set num-
ber can be established for multiple interrupt vectors, creating a many-to-one mapping from avector to asingle
shadow register set number.

Figure 5-4 shows the format of the SRSMap2 register; Table 5.7 describes the SRSMap? register fields.

60MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

5.5 Modified CP0 Registers

Figure 5-4 SRSMap Register Format
31 8 7 4 3 0

0 SSV9 SSV8

Table 5.7 SRSMap Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
0 31..8 Must be written as zero; returns zero on read. R 0 RESERVED
SSV9 7.4 Shadow register set number for Vector Number 9 R'W 0 Required
SSV8 3.0 Shadow register set number for Vector Number 8 R'W 0 Required

5.5.6 Cause Register (CP0O Register 13, Select 0)

Compliance Level: Confext register modifications are Required for a MCU MMU.

Figure 5-5 shows the format of the Cause register; Table 5.8 describes the Cause register fields.

Figure 5-5 Cause Register Format

31 30 29 28 27 26 25 24 23 22 21 20 18 17 16 15 10 9 8 7 6 2 1 0
AP FD
BD|T] CE [Dclpcyic w(wel,| O 1P9..IP2 IP1..1P0| 0 Exc Code 0
RIPL

Table 5.8 Cause Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
BD 31 Indicates whether the last exception taken occurred in a R Undefined Required
branch delay slot:
Encoding Meaning
0 Not in delay slot
1 In delay slot

The processor updates BD only if Statusgyy was zero

when the exception occurred.

MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 61

The MCU Privileged Resource Architecture

Table 5.8 Cause Register Field Descriptions

Fields

Name

Bits

Description

Read /
Write

Reset
State

Compliance

TI

30

Timer Interrupt. In an implementation of Release 2 of the
Architecture, this bit denotes whether atimer interrupt is
pending (analogousto the | P bitsfor other interrupt types):

Encoding Meaning

0 No timer interrupt is pending

1 Timer interrupt is pending

In animplementation of Release 1 of the Architecture, this
bit must be written as zero and returns zero on read.

R

Undefined

Required (Release
2)

CE

29..28

Coprocessor unit number referenced when a Coprocessor
Unusable exception is taken. Thisfield isloaded by hard-
ware on every exception, butis UNPREDICTABLE for
all exceptions except for Coprocessor Unusable.

Undefined

Required

DC

27

Disable Count register. In some power-sensitive applica-
tions, the Count register is not used but may still be the
source of some noticeable power dissipation. This bit
allows the Count register to be stopped in such situations.

Encoding Meaning

0 Enable counting of Count register

1 Disable counting of Count register

In animplementation of Release 1 of the Architecture, this
bit must be written as zero, and returns zero on read.

R/W

Required (Release
2)

26

Performance Counter Interrupt. In an implementation of
Release 2 of the Architecture, this bit denotes whether a
performance counter interrupt is pending (analogousto the
IP bits for other interrupt types):

Encoding M eaning

0 No performance counter interrupt is
pending

1 Performance counter interrupt is
pending

In an implementation of Release 1 of the Architecture, or
if performance counters are not implemented (Configlpc
= 0), this bit must be written as zero and returns zero on
read.

Undefined

Required (Release
2 and perfor-
mance counters
implemented)

62MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-

ture, Revision 1.03

Table 5.8 Cause Register Field Descriptions

5.5 Modified CPO Registers

Fields

Name

Bits

Description

Read /
Write

Reset

State Compliance

IC

25

Indicates if Interrupt Chaining occurred on the last IRET
instruction.

Encoding Meaning

0 Interrupt Chaining did not happen on
last IRET

1 Interrupt Chaining occurred during
last IRET

R

Undefined | Requiredif MCU
ASE isimple-

mented

AP

24

Indicates whether an exception occurred during Interrupt
Auto-Prologue.

Encoding Meaning

0 Exception did not occur during
Auto-Prologue operation.

1 Exception occurred during Auto-Pro-
logue operation.

Undefined | Requiredif MCU
ASE isimple-

mented

23

Indicates whether an interrupt exception uses the general
exception vector or a special interrupt vector:

Encoding Meaning

0 Use the general exception vector
(0x180)

1 Use the special interrupt vector
(0x200)

In implementations of Release 2 of the architecture, if the
Causg)y is 1 and Satusggy is 0, the special interrupt vec-
tor represents the base of the vectored interrupt table.

RIW

Undefined Required

WP

22

Indicates that a watch exception was deferred because Sa-
tusgy Or Statusgg, Were aone at the time the watch
exception was detected. This bit both indicates that the
watch exception was deferred, and causes the exception to
be initiated once Statusgy and Statusgr, are both zero.
As such, software must clear this bit as part of the watch
exception handler to prevent awatch exception loop.
Software should not write a1 to this bit when itsvalueisa
0, thereby causing a0-to-1 transition. If such atransitionis
caused by software, it is UNPREDICTABLE whether
hardware ignores the write, accepts the write with no side
effects, or acceptsthe write and initiates awatch exception
once Satusgy and Statusgg are both zero.

If watch registers are not implemented, this bit must be
ignored on writes and return zero on reads.

RIW

Undefined | Requiredif watch
registers are

implemented

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,

Revision 1.03

63

The MCU Privileged Resource Architecture

Table 5.8 Cause Register Field Descriptions

Fields

Name

Bits

Description

Read /
Write

Reset
State

Compliance

FDCI

21

Fast Debug Channel Interrupt. This bit denotes whether a
FDC Interrupt is pending (analogous to the I P bits for
other interrupt types):

Encoding Meaning

0 No Fast Debug Channel interrupt is
pending

1 Fast Debug Channel interrupt is pend-
ing

R

Undefined

Required if
EJTAG Fast
Debug Channel is
implemented.

I1P9..IP2

17..10

Indicates an interrupt is pending:

Bit Name
17 1P9
16 1P8
15 IP7
14 1P6
13 IP5
12 1P4
11 1P3
10 1P2

Meaning

Hardware Interrupt 7

Hardware Interrupt 6

Hardware interrupt 5

Hardware interrupt 4

Hardware interrupt 3

Hardware interrupt 2

Hardware interrupt 1

Hardware interrupt O

Inimplementations of Release 1 of the Architecture, timer
and performance counter interrupts are combined in an
implementation-dependent way with hardware interrupt 5.
In implementations of Release 2 of the Architecturein
which EIC interrupt mode is not enabled (Config3yg c =
0), timer and performance counter interrupts are combined
in an implementation-dependent way with any hardware
interrupt. If EIC interrupt modeis enabled (Config3y g c =
1), these bits take on a different meaning and are inter-
preted as the RIPL field, described below.

Undefined
for IP7:1P2

0 for 1P9:1P8

Required

RIPL

17..10

Requested Interrupt Priority Level.

In implementations of Release 2 of the Architecturein
which EIC interrupt mode is enabled (Config3y g ,c = 1),
thisfield is the encoded (0..255) value of the requested
interrupt. A value of zero indicates that no interrupt is
requested.

If EIC interrupt mode is not enabled (Config3ygc = 0),
these bits take on a different meaning and are interpreted
asthe |P7..IP2 bits, described above.

Undefined
for bits 15:10

0 for bits
17:16

Optional (Release
2 and EIC inter-
rupt mode only)

64MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

5.5 Modified CPO Registers

Table 5.8 Cause Register Field Descriptions

Fields Read / Reset
Name Bits Description Write State Compliance
IP1..1IPO 9.8 Controls the request for software interrupts: R/W Undefined Required
Bit Name Meaning
9 IP1 Request software interrupt 1
8 IPO Request software interrupt 0
Animplementation of Release 2 of the Architecture which
also implements EIC interrupt mode exports these bits to
the external interrupt controller for prioritization with
other interrupt sources.
ExcCode 6..2 Exception code - see Table 5.9. R Undefined Required
0 20..18, 7, | Must be written as zero; returns zero on read. 0 0 Reserved
1.0
Table 5.9 Cause Register ExcCode Field
Exception Code Value
Decimal Hexadecimal Mnemonic Description
0 0x00 Int Interrupt
1 0x01 Mod TLB modification exception
2 0x02 TLBL TLB exception (load or instruction fetch)
3 0x03 TLBS TLB exception (store)
4 0x04 AdEL Address error exception (load or instruction fetch)
5 0x05 AdES Address error exception (store)
6 0x06 IBE Bus error exception (instruction fetch)
7 0x07 DBE Bus error exception (data reference: load or store)
8 0x08 Sys Syscall exception
9 0x09 Bp Breakpoint exception. If EJTAG isimplemented and an SDBBP
instruction is executed while the processor isrunning in EJTAG
Debug Mode, this value is written to the Debugpgyccode field to
denote an SDBBP in Debug Mode.
10 0x0a RI Reserved instruction exception
11 0x0b CpU Coprocessor Unusable exception
12 0x0c Ov Arithmetic Overflow exception
13 oxod Tr Trap exception
14 0x0e - Reserved
15 OxOf FPE Floating point exception
16-17 0x10-0x11 - Available for implementation-dependent use
18 0x12 C2E Reserved for precise Coprocessor 2 exceptions

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,

Revision 1.03

65

The MCU Privileged Resource Architecture

Table 5.9 Cause Register ExcCode Field

Exception Code Value
Decimal Hexadecimal Mnemonic Description
19-21 0x13-0x15 - Reserved
22 0x16 MDMX MDMX Unusable Exception (MDMX ASE)
23 0x17 WATCH Reference to WatchHi/WatchL o address
24 0x18 M Check Machine check
25 0x19 Thread Thread Allocation, Deallocation, or Scheduling Exceptions (MIPS®
MT ASE)
26-29 0x20-0x1d - Reserved
30 Oxle CacheErr Cache error. In normal mode, a cache error exception has a dedi-
cated vector and the Cause register is not updated. If EJTAG is
implemented and a cache error occurs while in Debug Mode, this
code iswritten to the Debugpgyccode fi€ld to indicate that re-entry to
Debug Mode was caused by a cache error.
31 Ox1f - Reserved

Programming Note:

In Release 2 of the Architecture, the EHB instruction can be used to make interrupt state changes visible when the
IPy o field of the Cause register is written.

5.5.7 View_RIPL Register (CPO Register 13, Select 4)

Figure 5-6 View_RIPL Register Format
31 10 9 2 1 0

IPL..
0 IP9..IP2 IPO

RIPL

Table 5.10 View_RIPL Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State | Compliance
IP1..1PO 1.0 SW Interrupt Pending. R/W Undefined Required
If EIC interrupt mode is not enabled, controls which SW
interrupts are pending.
1P9..1IP2 9:2 HW Interrupt Pending. R Undefined for Required
If EIC interrupt mode is not enabled, indicates which HW IP7:1P2
interrupts are pending.
Ofor IP9:1P8

66MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

5.5 Modified CPO Registers

Table 5.10 View_RIPL Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State | Compliance
RIPL 9.2 Interrupt Priority Level. R Undefined Required
If EIC interrupt mode is enabled, thisfield indicates the
Requested Priority Level of the pending interrupt.
0 31..10,1..0 [Must be written as zero; returns zero on read. 0 0 Reserved

Thisregister gives read accessto the IP or RIPL field that is also available in the Cause Register. The use of thisreg-
ister allows the Interrupt Pending or the Requested Priority Level to be read without extracting that bit field from the
Cause Register.

5.5.8 Config Register 3 (CPO Register 16, Select 3)

Compliance L evel: Required foraMCU MMU.

Figure 5-7 shows the format of the Config3 register; Table 5.11 describes the Config3 register fields.

Figure 5-7 Config3 Register Format

31 30 24 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
T ISA ul |Plb VARY;
M 0 C|On LO§SO'|I';E|SPC;/IDMSMTL
00000000 IPLW| MMAR | o | E| ISA | R p I n T
2 LA M
n | xc | P P C|t

Table 5.11 Config3 Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance

M 31 This bit isreserved to indicate that a Config4 register is R Preset by Required
present. With the current architectural definition, this bit hardware
should always read as a 0.

0 30:23,. | Must be written as zeros; returns zeros on read 0 0 Reserved

12,9

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03 67

The MCU Privileged Resource Architecture

Table 5.11 Config3 Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
IPLW 22:21 | Width of the Satus;p, and Causeg,p_fields: R Preset by | Required if
- - hardware |MCU ASEis
Encoding Meaning implemented
0 IPL and RIPL fields are 6-bitsin
width.
1 IPL and RIPL fields are 8-bitsin
width.
Others Reserved.
If the IPL field is 8-bitsin width, bits 18 and 16 of Satus
are used as the most significant bit and second most signif-
icant bit, respectively, of that field.
If theRIPL field is8-bitsinwidth, bits 17 and 16 of Cause
are used as the most significant bit and second most signif-
icant bit, respectively, of that field.
MMAR 20:18 | microMIPS Architecture revision level: R Preset by | Required if
- - hardware | microMIPSis
Encoding Meaning implemented
0 Release 1
1-7 Reserved
MCU 17 MIPS MCU ASE implemented. R Preset by | Required if
- - hardware |MCU ASE is
Encoding Meaning implemented
0 MCU ASE is not implemented.
1 MCU ASE isimplemented
ISAON- 16 Reflects the Instruction Set Architecture used when vec- RwW Preset by Required if
Exc toring to an exception. Affects exceptions whose vectors hardware, both micro-
are offsets from EBASE. driven by MIPS and
Encod Meani signal exter- | MIPS32are
ncoding eaning na toCPU | implemented
0 MIPS32ISA is used on entrance to an core
exception vector.
1 microMIPS | SA isused on entranceto
an exception vector.

68MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-

ture, Revision 1.03

Table 5.11 Config3 Register Field Descriptions

5.5 Modified CPO Registers

Fields
Read / Reset
Name Bits Description Write State Compliance
ISA 15:14 | Indicates Instruction Set Availability. R Preset by Required if
Encodi Meani hardware, both micro-
ncoding eaning drivenby | MIPS and
0 Only MIPS32 isimplemented. signal exter- | MIPS32are
- — nal to CPU | implemented.
1 Only microMIPS isimplemented. core
2 Both MIPS32and MicroMIPS |SAs
are implemented. MIPS32 | SA used
when coming out of reset.
3 Both MIPS32 and MicroMIPS |SAs
are implemented. MicroMIPS |SA
used when coming out of reset.
ULRI 13 UserLocal register implemented. This bit indicates R Preset by Required
whether the UserLocal coprocessor O register isimple- hardware
mented.
Encoding Meaning
0 UserLocal register is not implemented
1 UserLocal register isimplemented
DSP2P 11 MIPS® DSP ASE Revision 2 implemented. This bit indi- R Preset by Required
cates whether Revision 2 of the MIPSDSP ASE isimple- hardware
mented.
Encoding Meaning
0 Revision 2 of the MIPSDSP ASE is
not implemented
1 Revision 2 of the MIPSDSP ASE is
implemented
DSPP 10 MIPS® DSP ASE implemented. This bit indicates R Preset by Required
whether the MIPS DSP ASE isimplemented. hardware
Encoding Meaning
0 MIPS DSP ASE is not implemented
1 MIPS DSP ASE isimplemented
ITL 8 MIPS® IFlowTrace™ mechanism implemented. This bit R Preset by Required
indicates whether the MIPS IFlowTrace is implemented. hardware (Release 2.1
Only)
Encoding Meaning
0 MIPS IFlowTrace is not implemented
1 MIPS IFlowTrace is implemented

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,

Revision 1.03

69

The MCU Privileged Resource Architecture

Table 5.11 Config3 Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
LPA 7 Denotes the presence of support for large physical R Preset by Required
addresses on MIPS64 processors. Not used by MIPS32 hardware (Release 2
processors and returns zero on read. Only)
For implementations of Release 1 of the Architecture, this
bit returns zero on read.
VEIC 6 Support for an externa interrupt controller isimple- R Preset by Required
mented. hardware (Release 2
Onl
Encoding Meaning y)
0 Support for EIC interrupt mode is not
implemented
1 Support for EIC interrupt mode is
implemented
For implementations of Release 1 of the Architecture, this
bit returns zero on read.
This bit indicates not only that the processor contains sup-
port for an external interrupt controller, but that such a
controller is attached.
Vint 5 Vectored interrupts implemented. This bit indicates R Preset by Required
whether vectored interrupts are implemented. hardware (Release 2
Onl
Encoding Meaning)
0 Vector interrupts are not implemented
1 Vectored interrupts are implemented
For implementations of Release 1 of the Architecture, this
bit returns zero on read.
SP 4 Small (1KByte) page support isimplemented, and the R Preset by Required
PageGrain register exists hardware (Release 2
Only)
Encoding Meaning
0 Small page support is not imple-
mented
1 Small page support isimplemented
For implementations of Release 1 of the Architecture, this
bit returns zero on read.
CDMM 3 Common Device Memory Map implemented. This bit R Preset by Required
indicates whether the CDMM isimplemented. hardware
Encoding Meaning
0 CDMM is not implemented
1 CDMM isimplemented

70MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

Table 5.11 Config3 Register Field Descriptions

5.5 Modified CPO Registers

Fields
Read / Reset
Name Bits Description Write State Compliance
MT 2 MIPS MT ASE implemented. This bit indicates whether R Preset by Required
the MIPSMT ASE isimplemented. hardware
Encoding Meaning
0 MIPSMT ASE is not implemented
1 MIPSMT ASE isimplemented
SM 1 SmartMIPS ASE implemented. This bit indicates whether R Preset by Required
the SmartMIPS ASE isimplemented. hardware
Encoding Meaning
0 SmartMIPS ASE is not implemented
1 SmartMIPS ASE is implemented
TL 0 Trace Logic implemented. This bit indicates whether PC R Preset by Required
or datatrace isimplemented. hardware
Encoding Meaning
0 Tracelogic is hot implemented
1 Trace logic isimplemented

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,
Revision 1.03

71

The MCU Privileged Resource Architecture

72MIPS® Architecture for Programmers Volume IV-h: The MCU Application Specific Extension to the microMIPS32™ Architec-
ture, Revision 1.03

Appendix A

Revision History

Version

Date

Comments

0.80

December 1, 2009

Cleanup for external distribution - make Title more sensible.

0.81

January 15, 2010

Re-phased the conditions for UseK Stk=0/1 conditionsin | AP section.
Clean-up of IRET description

1. IRET always clears LLBiIt

2. IRET actsasif EXL isaways clear for its memory TLB exceptions.
3. IRET only modifies the SW write-able fields of the SRSCtI register.
4. IRET checks ISAMode bit when chaining is done.

1.00

March 20, 2010

Item 4 wasincorrect in 0.81 revision, IRET should check Config3saonpebug

Clear Change-bars
For M14K* GA release.

101

March 21,2011

AFP version - change security classification

1.02

December 16, 2012

Update Cover logos

Update copyright text.

About this Book chapter updated for R5 (MT, DSP, VZ, MSA modules)
Update pdf filename for family designation - microMIPS

1.03

September 9, 2013

Update Cover logos and copyright text

MIPS® Architecture for Programmers Volume 1V-h: The MCU Application Specific Extension to the microMIPS32™ Architecture,

Revision 1.03

Copyright © Wave Computing, Inc. All rights reserved.

www.wavecomp.ai

73

