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About This Book

The MIPS® Architecture For Programmers Volume I-B: Introduction to the microMIPS64® Architecture comes as
part of a multi-volume set.

• Volume I-A describes conventions used throughout the document set, and provides an introduction to the
MIPS64® Architecture

• Volume I-B describes conventions used throughout the document set, and provides an introduction to the
microMIPS64™ Architecture

• Volume II-A provides detailed descriptions of each instruction in the MIPS64® instruction set

• Volume II-B provides detailed descriptions of each instruction in the microMIPS64™ instruction set

• Volume III describes the MIPS64® and microMIPS64™ Privileged Resource Architecture which defines and
governs the behavior of the privileged resources included in a MIPS® processor implementation

• Volume IV-a describes the MIPS16e™ Application-Specific Extension to the MIPS64® Architecture. Beginning
with Release 3 of the Architecture, microMIPS is the preferred solution for smaller code size.

• Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS64® Architecture and
microMIPS64™. With Release 5 of the Architecture, MDMX is deprecated. MDMX and MSA can not be imple-
mented at the same time.

• Volume IV-c describes the MIPS-3D® Application-Specific Extension to the MIPS® Architecture

• Volume IV-d describes the SmartMIPS®Application-Specific Extension to the MIPS32® Architecture and the
microMIPS32™ Architecture and is not applicable to the MIPS64® document set nor the microMIPS64™ docu-
ment set.

• Volume IV-e describes the MIPS® DSP Module to the MIPS® Architecture

• Volume IV-f describes the MIPS® MT Module to the MIPS® Architecture

• Volume IV-h describes the MIPS® MCU Application-Specific Extension to the MIPS® Architecture

• Volume IV-i describes the MIPS® Virtualization Module to the MIPS® Architecture

• Volume IV-j describes the MIPS® SIMD Architecture Module to the MIPS® Architecture

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fonts in this book.
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1.1.1 Italic Text

• is used for emphasis

• is used for bits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmable fields and registers), and various floating point instruction formats, such as S, D,
and PS

• is used for the memory access types, such as cached and uncached

1.1.2 Bold Text

• represents a term that is being defined

• is used for bits and fields that are important from a hardware perspective (for instance, register bits, which are
not programmable but accessible only to hardware)

• is used for ranges of numbers; the range is indicated by an ellipsis. For instance, 5..1 indicates numbers 5 through
1

• is used to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the pro-
cessor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions in
a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register). Unpriv-
ileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and unprivileged
software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause a result to be generated or not. If a result is gener-
ated, it is UNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

• Implementations of operations generating UNPREDICTABLE results must not depend on any data source
(memory or internal state) which is inaccessible in the current processor mode

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
is inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process
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• UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

• UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which
there is no exit other than powering down the processor). The assertion of any of the reset signals must restore the
processor to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDICTABLE values, software may depend on the fact that a sampling of an UNSTABLE value results in a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABLE values have one implementation restriction:

• Implementations of operations generating UNSTABLE results must not depend on any data source (memory or
internal state) which is inaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol  Meaning

← Assignment

=, ≠ Tests for equality and inequality

|| Bit string concatenation

xy A y-bit string formed by y copies of the single-bit value x

b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the
binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default base is 10.

0bn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).

0xn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).

xy z Selection of bits y through z of bit string x. Little-endian bit notation (rightmost bit is 0) is used. If y is less
than z, this expression is an empty (zero length) bit string.

+, − 2’s complement or floating point arithmetic: addition, subtraction
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*, × 2’s complement or floating point multiplication (both used for either)

div 2’s complement integer division

mod 2’s complement modulo

/ Floating point division

< 2’s complement less-than comparison

> 2’s complement greater-than comparison

≤ 2’s complement less-than or equal comparison

≥ 2’s complement greater-than or equal comparison

nor Bitwise logical NOR

xor Bitwise logical XOR

and Bitwise logical AND

or Bitwise logical OR

not Bitwise inversion

&& Logical (non-Bitwise) AND

<< Logical Shift left (shift in zeros at right-hand-side)

>> Logical Shift right (shift in zeros at left-hand-side)

GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers

GPR[x] CPU general-purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR[x] is a short-hand notation for SGPR[ SRSCtlCSS, x].

SGPR[s,x] In Release 2 of the Architecture and subsequent releases, multiple copies of the CPU general-purpose regis-
ters may be implemented. SGPR[s,x] refers to GPR set s, register x.

FPR[x] Floating Point operand register x

FCC[CC] Floating Point condition code CC. FCC[0] has the same value as COC[1].

FPR[x] Floating Point (Coprocessor unit 1), general register x

CPR[z,x,s] Coprocessor unit z, general register x, select s

CP2CPR[x] Coprocessor unit 2, general register x

CCR[z,x] Coprocessor unit z, control register x

CP2CCR[x] Coprocessor unit 2, control register x

COC[z] Coprocessor unit z condition signal

Xlat[x] Translation of the MIPS16e GPR number x into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (0 →Little-Endian, 1 → Big-Endian). Specifies the endianness of
the memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endi-
anness of Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0 → Little-Endian, 1 → Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and is implemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRRE and User mode).

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol  Meaning
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LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when a linked load occurs and is tested by the conditional store. It is cleared, during other CPU operation,
when a store to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

I:,
I+n:,
I-n:

This occurs as a prefix to Operation description lines and functions as a label. It indicates the instruction time
during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
time label of I. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections
labeled with the instruction time, relative to the current instruction I, in which the effect of that pseudocode
appears to occur. For example, an instruction may have a result that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in a section labeled I+1.
The effect of pseudocode statements for the current instruction labelled I+1 appears to occur “at the same
time” as the effect of pseudocode statements labeled I for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for dif-
ferent instructions that occur “at the same time,” there is no defined order. Programs must not depend on a
particular order of evaluation between such sections.

PC The Program Counter value. During the instruction time of an instruction, this is the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction time is determined by assign-
ing a value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.
In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the restart
address into a GPR on a jump-and-link or branch-and-link instruction, or into a Coprocessor 0 register on an
exception. The PC value contains a full 64-bit address all of which are significant during a memory refer-
ence.

ISA Mode In processors that implement the MIPS16e Application Specific Extension or the microMIPS base architec-
tures, the ISA Mode is a single-bit register that determines in which mode the processor is executing, as fol-
lows:

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on a jump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 phys-

ical address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes.

SEGBITS The number of virtual address bits implemented in a segment of the address space is represented by the sym-
bol SEGBITS. As such, if 40 virtual address bits are implemented in a segment, the size of the segment is

2SEGBITS = 240 bytes.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol  Meaning

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions

1 The processor is executing MIIPS16e or microMIPS
instructions
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1.4 For More Information

Various MIPS RISC processor manuals and additional information about MIPS products can be found at the MIPS
URL: http://www mips.com

For comments or questions on the MIPS64® Architecture or this document, send Email to support@mips.com.

FP32RegistersMode Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs).  It is optional if the FPU has
32 64-bit FPRs in which 64-bit data types are stored in any FPR.

microMIPS64 implementations have a compatibility mode in which the processor references the FPRs as if
it were a microMIPS32 implementation. In such a case FP32RegisterMode is computed from the FR bit in
the Status register. If this bit is a 0, the processor operates as if it had 32 32-bit FPRs. If this bit is a 1, the pro-
cessor operates with 32 64-bit FPRs.
The value of FP32RegistersMode is computed from the FR bit in the Status register.

InstructionInBranchDe-
laySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch
or jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the value is
false if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which
is not executed in the delay slot of a branch or jump.

SignalException(excep-
tion, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
parameter as an exception-specific argument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol  Meaning
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The MIPS Architecture: An Introduction

2.1 MIPS Instruction Set Overview

2.1.1 Historical Perspective

The MIPS® Instruction Set Architecture (ISA) has evolved over time from the original MIPS I™ ISA, through the
MIPS V™ ISA, to the current MIPS32®, MIPS64® and microMIPS™ Architectures. As the ISA evolved, all exten-
sions have been backward compatible with previous versions of the ISA. In the MIPS III™ level of the ISA, 64-bit
integers and addresses were added to the instruction set. The MIPS IV™ and MIPS V™ levels of the ISA added
improved floating point operations, as well as a set of instructions intended to improve the efficiency of generated
code and of data movement. Because of the strict backward-compatible requirement of the ISA, such changes were
unavailable to 32-bit implementations of the ISA which were, by definition, MIPS I™ or MIPS II™ implementations.

While the user-mode ISA was always backward compatible, the privileged environment was allowed to change on a
per-implementation basis. As a result, the R3000® privileged environment was different from the R4000® privileged
environment, and subsequent implementations, while similar to the R4000 privileged environment, included subtle
differences. Because the privileged environment was never part of the MIPS ISA, an implementation had the flexibil-
ity to make changes to suit that particular implementation. Unfortunately, this required kernel software changes to
every operating system or kernel environment on which that implementation was intended to run.

Many of the original MIPS implementations were targeted at computer-like applications such as workstations and
servers. In recent years MIPS implementations have had significant success in embedded applications. Today, most of
the MIPS parts that are shipped go into some sort of embedded application. Such applications tend to have different
trade-offs than computer-like applications including a focus on cost of implementation, and performance as a func-
tion of cost and power.

The MIPS32 and MIPS64 Architectures are intended to address the need for a high-performance but cost-sensitive
MIPS instruction set. The MIPS32 Architecture is based on the MIPS II ISA, adding selected instructions from MIPS
III, MIPS IV, and MIPS V to improve the efficiency of generated code and of data movement. The MIPS64 Architec-
ture is based on the MIPS V ISA and is backward compatible with the MIPS32 Architecture. Both the MIPS32 and
MIPS64 Architectures bring the privileged environment into the Architecture definition to address the needs of oper-
ating systems and other kernel software. Both also include provision for adding optional components - Modules of the
base architecture, MIPS Application Specific Extensions (ASEs), User Defined Instructions (UDIs), and custom
coprocessors to address the specific needs of particular markets.

The MIPS32 and MIPS64 Architectures provide a substantial cost/performance advantage over microprocessor
implementations based on traditional architectures. This advantage is a result of improvements made in several con-
tiguous disciplines: VLSI process technology, CPU organization, system-level architecture, and operating system and
compiler design.

The microMIPS32 and microMIPS64 Architectures deliver the same functionality of MIPS32 and MIPS64 with the
additional benefit of smaller codesizes. The microMIPS architectures are supersets of MIPS32/MIPS64 architectures,
with almost the same sets of 32-bit sized instructions and additional 16-bit instructions to help with codesize. micro-
MIPS is especially compelling for systems in which the cost of memory dominate the entire bill of materials cost.
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Unlike the earlier versions of the architectures, microMIPS supplies assembler-source code compatibility with its pre-
decessors instead of binary compatibility.

Figure 2.1 MIPS Architectures

2.1.2 Architectural Evolution

The evolution of an architecture is a dynamic process that takes into account both the need to provide a stable plat-
form for implementations, as well as new market and application areas that demand new capabilities. Enhancements
to an architecture are appropriate when they:

• are applicable to a wide market

• provide long-term benefit

• maintain architectural scalability
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• are standardized to prevent fragmentation

• are a superset of the existing architecture

The MIPS Architecture community constantly evaluates suggestions for architectural changes and enhancements
against these criteria. New releases of the architecture, while infrequent, are made at appropriate points, following
these criteria. At present, there are three releases of the MIPS Architecture: Release 1 (the original version of the
MIPS64 Architecture) ; Release 2 which was added in 2002 and Release 3 (called MIPSr3TM) which was added in
2010.

2.1.2.1 Release 2 of the MIPS64 Architecture

Enhancements included in Release 2 of the MIPS64 Architecture are:

• Vectored interrupts: This enhancement provides the ability to vector interrupts directly to a handler for that inter-
rupt. Vectored interrupts are an option in Release 2 implementations and the presence of that option is denoted by
the Config3VInt bit.

• Support for an external interrupt controller: This enhancement reconfigures the on-core interrupt logic to take
full advantage of an external interrupt controller. This support is an option in Release 2 implementations and the
presence of that option is denoted by the Config3EIC bit.

• Programmable exception vector base: This enhancement allows the base address of the exception vectors to be
moved for exceptions that occur when StatusBEV is 0. Doing so allows multi-processor systems to have separate
exception vectors for each processor, and allows any system to place the exception vectors in memory that is
appropriate to the system environment. This enhancement is required in a Release 2 implementation.

• Atomic interrupt enable/disable: Two instructions have been added to atomically enable or disable interrupts, and
return the previous value of the Status register. These instructions are required in a Release 2 implementation.

• The ability to disable the Count register for highly power-sensitive applications. This enhancement is required in
a Release 2 implementation.

• GPR shadow registers: This addition provides the addition of GPR shadow registers and the ability to bind these
registers to a vectored interrupt or exception. Shadow registers are an option in Release 2 implementations and
the presence of that option is denoted by a non-zero value in SRSCtlHSS. While shadow registers are most useful
when either vectored interrupts or support for an external interrupt controller is also implemented, neither is
required.

• Field, Rotate and Shuffle instructions: These instructions add additional capability in processing bit fields in reg-
isters. These instructions are required in a Release 2 implementation.

• Explicit hazard management: This enhancement provides a set of instructions to explicitly manage hazards, in
place of the cycle-based SSNOP method of dealing with hazards. These instructions are required in a Release 2
implementation.

• Access to a new class of hardware registers and state from an unprivileged mode. This enhancement is required
in a Release 2 implementation.

• Coprocessor 0 Register changes: These changes add or modify CP0 registers to indicate the existence of new and
optional state, provide L2 and L3 cache identification, add trigger bits to the Watch registers, and add support for
64-bit performance counter count registers. This enhancement is required in a Release 2 implementation.
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• Support for 64-bit coprocessors with 32-bit CPUs: These changes allow a 64-bit coprocessor (including an FPU)
to be attached to a 32-bit CPU. This enhancement is optional in a Release 2 implementation.

• New Support for Virtual and Physical Memory: These changes provide support for a 1KByte page size, and the
ability to support physical addresses larger than 36 bits. Both changes are optional in Release 2 implementations,
and support is denoted by Config3SP (for 1KB page support) and Config3LPA (for larger physical address sup-
port).

2.1.2.2 Releases 2.5+ of the MIPS64 Architecture

Some optional features were added after Revision 2.5:

• TLB pages larger than 256MB are supported. This feature allows large regions to be mapped with fewer TLB
entries, especially within devices with very large memory systems.

• Support for a MMU with more than 64 TLB entries. This feature aids in reducing the frequency of TLB misses.

• Scratch registers within Coprocessor0 for kernel mode software. This feature aids in quicker exception handling
by not requiring the saving of usermode registers onto the stack before kernelmode software uses those registers.

• A MMU configuration which supports both larger set-associative TLBs and variable page-sizes. This feature aids
in reducing the frequency of TLB misses.

• The CDMM memory scheme for the placement of small I/O devices into the physical address space. This
scheme allows for efficient placement of such I/O devices into a small memory region.

• An EIC interrupt mode where the EIC controller supplies a 16-bit interrupt vector. This allows different inter-
rupts to share code.

• The PAUSE instruction to deallocate a (virtual) processor when arbitration for a lock doesn’t succeed. This
allows for lower power consumption as well as lower snoop traffic when multiple (virtual) processors are arbi-
trating for a lock.

• More flavors of memory barriers that are available through stype field of the SYNC instruction. The newer mem-
ory barriers attempt to minimize the amount of pipeline stalls while doing memory synchronization operations.

2.1.2.3 MIPSr3TM Architecture

MIPSr3™ is a family of architectures which includes Release 3.0 of the MIPS64 Architecture as well as the first
release of the microMIPS64 architecture.

Enhancements included in MIPSr3™ Architecture are:

• The microMIPSTM instruction set.

• This instruction set contains both 16-bit and 32-bit sized instructions.

• This mixed size ISA has all of the functionality of MIPS64 while also delivering smaller code sizes.

• microMIPS is assembler source code compatible with MIPS64.

• microMIPS replaces the MIPS16eTM ASE.
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• microMIPS is an additional base instruction set architecture that is supported along with MIPS64.

• A device can implement either base ISA or both. The ISA field of Config3 denotes which ISA is imple-
mented.

• A device can implement any other Module/ASE with either base architecture.1

• microMIPS shares the same privileged resource architecture with MIPS64.

• Branch Likely instructions are not supported in the microMIPS hardware architecture. Instead the micro-
MIPS toolchain replaces these instructions with equivalent code sequences.

• A more flexible version of the Context Register that can point to any power-of-two sized data structure. This
optional feature is denoted by CTXTC field of Config3.

• Additional protection bits in the TLB entries that allow for non-executable and write-only virtual pages. This
optional feature is denoted by RXI field of Config3.

• A more programmable virtual address space map without fixed cache-ability and map-ability attributesis intro-
duced as an optional feature. This allows the implementations to decide how large/small uncached/unmapped
segments need to be. These capabilities are implemented through the Segmentation Control registers. This
optional feature is denoted by SC field of Config3.

• Along with programmable virtual address map, it is possible to create separate user-mode & kernel-mode views
of segments. This allows a larger kernel virtual address space to be defined. To access both this larger kernel
address space and the overlapping user-space, additional load/store instructions are introduced. These new
optional instructions are denoted by EVA field of Config5.

• Support for certain IEEE-754-2008 FPU behaviors (as opposed to behaviors of the older IEEE-754-1985 stan-
dard) is now defined. These behaviors are indicated by the Has2008 field of the FIR register within the FPU and

FCSR bits ABS2008 or NAN2008.2

• Optional TLB invalidate instructions are introduced. These are necessary with Segmentation Control as it is now
possible to create a virtual address map without unmapped segments.

2.1.2.4 MIPSr5TM Architecture

MIPSr5™ is a family of architectures (MIPS32, MIPS64, microMIPS32 and microMIPS64) and adds these capabili-
ties:

• The Multi-threading module is now an optional component of all of these base architectures. Previously the MT
ASE was sold as a separate architecture product.

• The DSP module is now an optional component of all of these base architectures. Previously the DSP ASE was
sold as a separate architecture product.

• The Virtualization module is introduced for all of these base architectures.

1. Except for MIPS16e.
2. At this time the MIPS32 and MIPS64 architectures provide no feature supporting IEEE-754-2008 fused multiply add without

intermediate rounding.
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• The MIPS SIMD Architecture (MSA) module is introduced for all of these base architectures.

In addition, these changes are made:

• The MDMX ASE is formally deprecated. The equivalent functionality is covered by the MSA module.

• The 64- bit versions of the DSP ASE are formally deprecated. The equivalent functionality is covered by the
MSA module.

• As of Release 5 of the Architecture, if floating point is implemented then FR=1 is required. I.e. the 64-bit FPU,
with the FR=1 64-bit FPU register model, is required. The FR=0 32-bit FPU register model continues to be

required.3

2.1.3 Architectural Changes Relative to the MIPS I through MIPS V Architectures

In addition to the MIPS Architecture described in this document set, the following changes were made to the architec-
ture relative to the earlier MIPS RISC Architecture Specification, which describes the MIPS I through MIPS V Archi-
tectures.

• The MIPS IV ISA added a restriction to the load and store instructions which have natural alignment require-
ments (all but load and store byte and load and store left and right) in which the base register used by the instruc-
tion must also be naturally aligned (the restriction expressed in the MIPS RISC Architecture Specification is that
the offset be aligned, but the implication is that the base register is also aligned, and this is more consistent with
the indexed load/store instructions which have no offset field). The restriction that the base register be naturally-
aligned is eliminated by the MIPS64 Architecture, leaving the restriction that the effective address be naturally-
aligned.

• Early MIPS implementations required two instructions separating a MFLO or MFHI from the next integer multi-
ply or divide operation. This hazard was eliminated in the MIPS IV ISA, although the MIPS RISC Architecture
Specification does not clearly explain this fact. The MIPS64 Architecture explicitly eliminates this hazard and
requires that the hi and lo registers be fully interlocked in hardware for all integer multiply and divide instruc-
tions (including, but not limited to, the MADD, MADDU, MSUB, MSUBU, and MUL instructions introduced in
this specification).

• The Implementation and Programming Notes included in the instruction descriptions for the madd, maddu,
msub, msubu, and mul instructions should also be applied to all integer multiply and divide instructions in the
MIPS RISC Architecture Specification.

2.2 Compliance and Subsetting

To be compliant with the microMIPS64 Architecture, designs must implement a set of required features, as described
in this document set. To allow flexibility in implementations, the microMIPS64 Architecture does provide subsetting
rules. An implementation that follows these rules is compliant with the microMIPS64 Architecture as long as it
adheres strictly to the rules, and fully implements the remaining instructions. Supersetting of the microMIPS64
Architecture is only allowed by adding functions to the SPECIAL2 opcode, by adding control for co-processors via
the COP2, LWC2, SWC2, LDC2, and/or SDC2, or via the addition of approved Application Specific Extensions.

3. Release 5 of the Architecture makes the FPU requirements consistent between MIPS32 and MIPS64. Prior to Release 5
MIPS64 requires FR=0 and FR=1, whereas MIPS32 requires FR=0 but FR=1 is optional. Release 5 requires FR=0 and FR=1
in all implementations of floating point, although floating point overall remains optional.
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Note: The use of COP3 as a customizable coprocessor has been removed in the Release 2 of the MIPS64 architecture.
The use of the COP3 is now reserved for the future extension of the architecture.

The instruction set subsetting rules are as follows:

• All non-privileged (do not need access to Coprocessor 0) CPU (non-FPU) instructions must be implemented - no
subsetting of these are allowed.

• The FPU and related support instructions, including the MOVF and MOVT CPU instructions, may be omitted.
Software may determine if an FPU is implemented by checking the state of the FP bit in the Config1 CP0 regis-
ter.  If the FPU is implemented, the paired single (PS) format is optional. Software may determine which FPU
data types are implemented by checking the appropriate bit in the FIR CP1 register. The following allowable
FPU subsets are compliant with the MIPS64 architecture:

• No FPU

• FPU with S, D, W, and L formats and all supporting instructions

• FPU with S, D, PS, W, and L formats and all supporting instructions

• As of Release 5 of the Architecture, if floating point is implemented then FR=1 is required. I.e. the 64-bit
FPU, with the FR=1 64-bit FPU register model, is required. The FR=0 32-bit FPU register model continues
to be required.

• Coprocessor 2 is optional and may be omitted. Software may determine if Coprocessor 2 is implemented by
checking the state of the C2 bit in the Config1 CP0 register. If Coprocessor 2 is implemented, the Coprocessor 2
interface instructions (BC2, CFC2, COP2, CTC2, DMFC2, DMTC2, LDC2, LWC2, MFC2, MTC2, SDC2, and
SWC2) may be omitted on an instruction-by-instruction basis.

• Implementation of the full 64-bit address space is optional. The processor may implement 64-bit data and opera-
tions with a 32-bit only address space. In this case, the MMU acts as if 64-bit addressing is always disabled. Soft-
ware may determine if the processor implements a 32-bit or 64-bit address space by checking the AT field in the
Config CP0 register.

• The EVA load/store instructions (LWE, LHE, LBE, LBUE, LHUE, SWE, SHE, SBE) are optional.

• Supervisor Mode is optional. If Supervisor Mode is not implemented, bit 3 of the Status register must be
ignored on write and read as zero.

• The standard TLB-based memory management unit may be replaced with:

• a simpler MMU (e.g., a Fixed Mapping MMU or a Block Address Translation MMU or a Base-Bounds
MMU).

• The Dual TLB MMU - (e.g. FTLB and VTLB MMU described in the Alternative MMU Organizations
Appendix of Volume III)

If this is done, the rest of the interface to the Privileged Resource Architecture must be preserved. Software may
determine the type of the MMU by checking the MT field in the Config CP0 register.

• The Caches are optional. The Config1DL and Config1IL fields denote whether the first level caches are present
or not.
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• The Privileged Resource Architecture includes several implementation options and may be subsetted in accor-
dance with those options. An incomplete list of these options include:

• Interrupt Modes

• Shadow Register Sets

• Common Device Memory Map

• Parity/ECC support

• UserLocal register

• ContextConfig register

• PageGrain register

• Config1-4 registers

• Performance Counter, WatchPoint and Trace Registers

• Cache control/diagnostic registers

• Kernelmode scratch registers

• Instruction, CP0 Register, and CP1 Control Register fields that are marked “Reserved” or shown as “0” in the
description of that field are reserved for future use by the architecture and are not available to implementations.
Implementations may only use those fields that are explicitly reserved for implementation dependent use.

• Supported Modules/ASEs are optional and may be subsetted out. If most cases, software may determine if a sup-
ported Module/ASE is implemented by checking the appropriate bit in the Config1 or Config3 or Config4 CP0
register. If they are implemented, they must implement the entire ISA applicable to the component, or implement
subsets that are approved by the Module/ASE specifications.

• EJTAG is optional and may be subsetted out. If it is implemented, it must implement only those subsets that are
approved by the EJTAG specification.

• If any instruction is subsetted out based on the rules above, an attempt to execute that instruction must cause the
appropriate exception (typically Reserved Instruction or Coprocessor Unusable).

• In MIPSr3 (also called Release 3), there are two architecture branches (MIPS32/64 and microMIPS32/64). A sin-
gle device is allowed to implement both architecture branches. The Privileged Resource Architecture (COP0)
registers do not mode-switch in width (32-bit vs. 64-bit). For this reason, if a device implements both architecture
branches, the address/data widths must be consistent. If a device implements MIPS64 and also implements
microMIPS, it must implement microMIPS64 not just microMIPS32. Simiarly, If a device implements
microMIPS64 and also implements MIPS32/64, it must implement MIPS64 not just MIPS32.

• If both of the architecture branches are implemented (MIPS32/64 and microMIPS32/64) or if MIPS16e is imple-
mented then the JALX instructions are required. If only one branch of the architecture family and MIPS16e is not
implemented then the JALX instruction is not implemented. That is, the JALX instruction is required if and only
if when ISA mode-switching is possible.
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• MIPSr5™ (also called Release 5) includes a number of features. Some are optional; some are required. Release 5
features, whether optional or required, must be consistent. If any feature that is introduced by Release 5 is imple-
mented, i.e. which is described as part of Release 5 and not any earlier release, then all other features must be
implemented in a manner consistent with Release 5. For example: the VZ and MSA features are introduced by
Release 5 but are optional, whereas the FR=1 64-bit FPU register model was optional when introduced earlier,
but is now required by Release 5 if any FPU is implemented. If any or all of VZ or MSA are implemented, then
Release 5 is implied, and then if an FPU is implemented, it must implement the FR=1 64-bit FPU register model.

2.3 Components of the MIPS Architecture

2.3.1 MIPS Instruction Set Architecture (ISA)

The microMIPS32 and microMIPS64 Instruction Set Architectures define a compatible family of instructions dealing
with 32-bit data and 64-bit data (respectively) within the framework of the overall MIPS Architectures. Included in
the ISA are all instructions, both privileged and unprivileged, by which the programmer interfaces with the processor.
The ISA guarantees object code compatibility for unprivileged and, often, privileged programs executing on any
microMIPS32 or microMIPS64 processor; all instructions in the microMIPS64 ISA are backward compatible with
those instructions in the microMIPS32 ISA. Using conditional compilation or assembly language macros, it is often
possible to write privileged programs that run on both MIPS32 and MIPS64 implementations.

2.3.2 MIPS Privileged Resource Architecture (PRA)

The microMIPS32 and microMIPS64 Privileged Resource Architecture defines a set of environments and capabilities
on which the ISA operates. The effects of some components of the PRA are visible to unprivileged programs; for
instance, the virtual memory layout. Many other components are visible only to privileged programs and the operat-
ing system. The PRA provides the mechanisms necessary to manage the resources of the processor: virtual memory,
caches, exceptions, user contexts, etc.

2.3.3 MIPS Modules and Application Specific Extensions (ASEs)

The microMIPS32 and microMIPS64 Architectures provide support for optional components - known as either Mod-
ules or application specific extensions. As optional extensions to the base architecture, the Modules/ASEs do not bur-
den every implementation of the architecture with instructions or capability that are not needed in a particular market.
An ASE/Module can be used with the appropriate ISA and PRA to meet the needs of a specific application or an
entire class of applications.

2.3.4 MIPS User Defined Instructions (UDIs)

In addition to support for Modules/ASEs as described above, the MIPS32 and MIPS64 Architectures define specific
instructions for the use of each implementation. The Special2 instruction function fields and Coprocessor 2 are
reserved for capability defined by each implementation.

2.4 Architecture Versus Implementation

When describing the characteristics of MIPS processors, architecture must be distinguished from the hardware imple-
mentation of that architecture.

• Architecture refers to the instruction set, registers and other state, the exception model, memory management,
virtual and physical address layout, and other features that all hardware executes.
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• Implementation refers to the way in which specific processors apply the architecture.

Here are two examples:

1. A floating point unit (FPU) is an optional part of the microMIPS64 Architecture. A compatible implementation
of the FPU may have different pipeline lengths, different hardware algorithms for performing multiplication or
division, etc.

2. Most MIPS processors have caches; however, these caches are not implemented in the same manner in all MIPS
processors. Some processors implement physically-indexed, physically tagged caches. Other implement virtu-
ally-indexed, physically-tagged caches. Still other processor implement more than one level of cache.

The microMIPS64 architecture is decoupled from specific hardware implementations, leaving microprocessor
designers free to create their own hardware designs within the framework of the architectural definition.

2.5 Relationship between the MIPSr3 Architectures

The MIPS Architectures evolved as a compromise between software and hardware resources. The MIPS has a family
of related architectures. Within each “branch of the family”, the architecture guarantees object-code compatibility for
User-Mode programs executed on any MIPS processor.

MIPS32 and MIPS64 form one branch of the architecture family. In User Mode MIPS64 processors are backward-
compatible with their MIPS32 predecessors. As such, the MIPS32 Architecture is a strict subset of the MIPS64
Architecture.

Similarly, microMIPS32 and microMIPS64 form another branch of the architecture family. In User Mode
microMIPS64 processors are backward-compatible with their microMIPS predecessors. As such, the microMIPS
Architecture is a strict subset of the MIPS64 Architecture.

The relationship between the binary representations of the architectures is shown in Figure 2.2.
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• Reducing the number of memory accesses, easing memory bandwidth requirements

• Simplifying the instruction set

• Making it easier for compilers to optimize register allocation

2.8 Programming Model

This section describes the following aspects of the programming model:

• CPU Data Formats

• Coprocessors (CP0-CP3)

• CPU Registers

• FPU Data Formats

• Byte Ordering and Endianness

• Memory Access Types

2.8.1 CPU Data Formats

The CPU defines the following data formats:

• Bit (b)

• Byte (8 bits, B)

• Halfword (16 bits, H)

• Word (32 bits, W)

• Doubleword (64 bits, D)4

2.8.2 FPU Data Formats

The FPU defines the following data formats:

• 32-bit single-precision floating point (.fmt type S)

• 32-bit single-precision floating point paired-single ( fmt type PS)4

• 64-bit double-precision floating point ( fmt type D)

• 32-bit Word fixed point ( fmt type W)

4. The CPU Doubleword and FPU floating point paired-single and Long fixed point data formats are available in an implemen-
tation that includes a 64-bit floating point unit, whether MIPS32, MIPS64, microMIPS32, or microMIPS64.
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• 64-bit Long fixed point ( fmt type L)4

2.8.3 Coprocessors (CP0-CP3)

The MIPS Architecture defines four coprocessors (designated CP0, CP1, CP2, and CP3):

• Coprocessor 0 (CP0) is incorporated on the CPU chip and supports the virtual memory system and exception
handling. CP0 is also referred to as the System Control Coprocessor.

• Coprocessor 1 (CP1) is reserved for the floating point coprocessor, the FPU.

• Coprocessor 2 (CP2) is available for specific implementations.

• Coprocessor 3 (CP3) is reserved for the floating point unit .

CP0 translates virtual addresses into physical addresses, manages exceptions, and handles switches between kernel,
supervisor, and user states. CP0 also controls the cache subsystem, as well as providing diagnostic control and error
recovery facilities. The architectural features of CP0 are defined in Volume III.

2.8.4 CPU Registers

The microMIPS64 Architecture defines the following CPU registers:

• 32 64-bit general purpose registers (GPRs)

• a pair of special-purpose registers to hold the results of integer multiply, divide, and multiply-accumulate opera-
tions (HI and LO)

• a special-purpose program counter (PC), which is affected only indirectly by certain instructions - it is not an
architecturally-visible register.

A MIPS64 processor always produces a 64-bit result, even for those instructions which are architecturally defined to
operate on 32 bits. Such instructions typically sign-extend their 32-bit result into 64 bits. In so doing, 32-bit programs
work as expected, even though the registers are actually 64 bits wide rather than 32.

2.8.4.1 CPU General-Purpose Registers

Two of the CPU general-purpose registers have assigned functions:

• r0 is hard-wired to a value of zero, and can be used as the target register for any instruction whose result is to be
discarded. r0 can also be used as a source when a zero value is needed.

• r31 is the destination register used by JAL, BLTZAL, BLTZALL, BGEZAL, and BGEZALL without being
explicitly specified in the instruction word. Otherwise r31 is used as a normal register.

The remaining registers are available for general-purpose use.

The microMIPS architectures include 16-bit sized instructions. Most of these 16-bit instructions use 3-bit register
specifier fields instead of the 5-bit register specifier fields used by most of the 32-bit instructions. Due to these
smaller register specifier fields, such instructions can only access 8 of the 32 GPRs. The accessible sets of registers
are described in VolumeII-B: The microMIPS Instruction Set. There are also 16-bit move and add instructions which
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can directly access all 32 GPRs. In addition, specific instructions implicitly reference r29 (conventionally used as the
stack pointer), r28 (conventionally used as the global pointer), and the program counter.

2.8.4.2 CPU Special-Purpose Registers

The CPU contains three special-purpose registers:

• PC—Program Counter register

• HI—Multiply and Divide register higher result

• LO—Multiply and Divide register lower result

• During a multiply operation, the HI and LO registers store the product of integer multiply.

• During a multiply-add or multiply-subtract operation, the HI and LO registers store the result of the integer
multiply-add or multiply-subtract.

• During a division, the HI and LO registers store the quotient (in LO) and remainder (in HI) of integer divide.

• During a multiply-accumulate, the HI and LO registers store the accumulated result of the operation.

Figure 2.8 shows the layout of the CPU registers.
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Figure 2.8 CPU Registers
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• 32 floating point registers (FPRs). These registers are 32 bits wide in a 32-bit FPU and 64 bits wide on a 64-bit
FPU.

• Five FPU control registers are used to identify and control the FPU.

• Eight floating point condition codes that are part of the FCSR register

 A 64-bit floating point unit is optional on implementations of both the microMIPS32 and microMIPS64 Architec-
tures. As of Release 5 of the Architecture, if floating point is implemented then FR=1 is required. I.e. the 64-bit FPU,
with the FR=1 64-bit FPU register model, is required. The FR=0 32-bit FPU register model continues to be required.

A 32-bit floating point unit contains 32 32-bit FPRs, each of which is capable of storing a 32-bit data type. Double-
precision (type D) data types are stored in even-odd pairs of FPRs, and the long-integer (type L) and paired single
(type PS) data types are not supported. Figure 2.9 shows the layout of these registers.

A 64-bit floating point unit contains 32 64-bit FPRs, each of which is capable of storing any data type. For compati-
bility with 32-bit FPUs, the FR bit in the CP0 Status register is used processor that supports a 64-bit FPU to config-
ure the FPU in a mode in which the FPRs are treated as 32 32-bit registers, each of which is capable of storing only
32-bit data types. In this mode, the double-precision floating point (type D) data type is stored in even-odd pairs of
FPRs, and the long-integer (type L) and paired single (type PS) data types are not supported.

Figure 2.10 shows the layout of the FPU Registers when the FR bit in the CP0 Status register is 1; Figure 2.11 shows
the layout of the FPU Registers when the FR bit in the CP0 Status register is 0.
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Figure 2.9 FPU Registers for a 32-bit FPU
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Figure 2.10 FPU Registers for a 64-bit FPU if StatusFR is 1
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Figure 2.11 FPU Registers for a 64-bit FPU if StatusFR is 0
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• Cached

Implementations may include this optional memory access type:

• Uncached Accelerated

These memory access types are described in the following sections:

• Uncached Memory Access

• Cached Memory Access

• Uncached Accelerated Memory Access

2.8.8.1 Uncached Memory Access

In an uncached access, physical memory resolves the access. Each reference causes a read or write to physical mem-
ory. Caches are neither examined nor modified.

2.8.8.2 Cached Memory Access

In a cached access, physical memory and all caches in the system containing a copy of the physical location are used
to resolve the access. A copy of a location is coherent if the copy was placed in the cache by a cached coherent
access; a copy of a location is noncoherent if the copy was placed in the cache by a cached noncoherent access.
(Coherency is dictated by the system architecture, not the processor implementation.)

Caches containing a coherent copy of the location are examined and/or modified to keep the contents of the location
coherent. It is not possible to predict whether caches holding a noncoherent copy of the location will be examined
and/or modified during a cached coherent access.

Prefetches for data and instructions are allowed. Speculative prefetching of data that may never be used or instruc-
tions which may never be executed are allowed.

2.8.8.3 Uncached Accelerated Memory Access

Previous to the 3.5 version of this specification, the behavior of Uncached Accelerated Memory Access type was not
architecturally defined, but rather was implementation-specific behavior. In the 3.5 version of this specification, the
behavior of the Uncached Accelerated is now architecturally defined. This access type is optional.

In an uncached accelerated access, physical memory resolves the access. Each reference causes a read or write to
physical memory. Caches are neither examined nor modified.

In uncached access, each store instruction causes a separate, unique request to physical memory.

In MIPS CPUs, writes are allowed to be buffered within the CPU. Write buffers are usually of cache-line in size. Usu-
ally, if there is sufficient data within the write buffer, the data is sent in one burst transaction for higher efficiency.

In uncached accelerated access, the data from multiple store instructions can be sent together to the physical memory
in one burst transaction. This is achieved by using write buffers to gather the data from multiple store instructions
before sending out the memory request.

Data from store instructions using uncached accelerated access are kept in the buffer under these rules:
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• Buffering can start on any byte address.

• Data is placed into the buffer obeying full byte addressing.

• Data is placed into the buffer for any request size - byte, half-word, word, double-word and the 3, 5-7 byte sizes
allowed by SWR/SWL/SDR/SDL instructions.

• A byte can be over-written with new data before the buffer data is flushed out of the core.

• Multiple buffers (each holding data from multiple store instructions) can be active at one time.

The uncached accelerated data within the write-buffer is sent to physical memory under these rules:

• As a consequence of a SYNC instruction being executed. All uncached accelerated data within all write buffers
is sent to physical memory in this situation.

• If a write-buffer is entirely full with uncached accelerated data. Normally, this means an entire cache-line of
uncached accelerated data is held within the buffer.

• If the target address of any load instruction matches the address of any uncached accelerated data within the
write buffer.

• If the target address of any store instruction using any other type of access type matches the address of any
uncached accelerated data within the write buffer.

• As a consequence of a non-coherent SYNCI instruction being executed. All uncached accelerated data within all
write buffers is sent to physical memory in this situation.

• If the target address of a PREF Nudge operation matches the address of any uncached accelerated data within the
write buffer.

• All write-buffers capable of holding uncached accelerated data are already active and another store instruction
using uncached accelerated access is executed and whose target address does not match any of these write-buff-
ers. In this case, at least one of the write-buffers must be emptied to physical memory to make space for the new
store data.

2.8.9 Implementation-Specific Access Types

An implementation may provide memory access types other than uncached or cached. Implementation-specific docu-
mentation accompanies each processor, and defines the properties of the new access types and their effect on all
memory-related operations.

2.8.10 Cacheability and Coherency Attributes and Access Types

Memory access types are specified by architecturally-defined and implementation-specific Cacheability and Coher-
ency Attribute bits (CCAs) kept in TLB entries.

Slightly different cacheability and coherency attributes such as “cached coherent, update on write” and “cached
coherent, exclusive on write” can map to the same memory access type; in this case they both map to cached coher-
ent. In order to map to the same access type, the fundamental mechanisms of both CCAs must be the same.
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When the operation of the instruction is affected, the instructions are described in terms of memory access types. The
load and store operations in a processor proceed according to the specific CCA of the reference, however, and the
pseudocode for load and store common functions uses the CCA value rather than the corresponding memory access
type.

2.8.11 Mixing Access Types

It is possible to have more than one virtual location mapped to the same physical location (known as aliasing). The
memory access type used for the virtual mappings may be different, but it is not generally possible to use mappings
with different access types at the same time.

For all accesses to virtual locations with the same memory access type, a processor executing load and store instruc-
tions on a physical location must ensure that the instructions occur in proper program order.

A processor can execute a load or store to a physical location using one access type, but any subsequent load or store
to the same location using a different memory access type is UNPREDICTABLE, unless a privileged instruction
sequence to change the access type is executed between the two accesses. Each implementation has a privileged
implementation-specific mechanism to change access types.

The memory access type of a location affects the behavior of I-fetch, load, store, and prefetch operations to that loca-
tion. In addition, memory access types affect some instruction descriptions. Load Linked (LL, LLD) and Store Condi-
tional (SC, SCD) have defined operation only for locations with cached memory access type.

2.8.12 Instruction Fetches

2.8.12.1 Instruction fields layout

For MIPS instructions, the layout of the bit fields within the instructions stays the same regardless of the endianness
mode in which the processor is executing. The MIPS architecture only uses Little-Endian bit orderings. Bit 0 of an
instruction is always the right-most bit within the instruction while bit 31 is always the left-most bit within a 32-bit
instruction. The major opcode is always the left-most 6 bits within the instruction.

2.8.12.2 microMIPS32 and microMIPS64 Instruction placement and endianness

For the microMIPS32 and microMIPS64 architectures, instructions are either 16 or 32 bits. All instructions are
aligned to 2-byte boundaries in memory (address bits 0 are 0b0). Instructions of 32-bit size can cross 4-byte bound-
aries.

Instruction words are always placed in memory according to the endianness.

Figure 2.18 shows an example where the width of external memory is 64-bits (two words) and the processor is exe-
cuting in little-endian mode and the instructions are placed in memory for little-endian execution. In this case, the less
significant address is the the right-most word of the dword while the more significant address is the left-most word
within the dword. This example shows a 32-bit instruction crossing a 4-byte (word) boundary.
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Instruction fetch exceptions on branch delay-slots

For instructions occupying a branch delay-slot, any exceptions, including those generated by the fetch of that instruc-
tion, should report the exception results so that the branch can be correctly replayed upon return from the exception
handler.

2.8.12.7 Self-Modified Code

When the processor writes memory with new instructions at run-time, there are some software steps that must be
taken to ensure that the new instructions are fetched properly.

1. The path of instruction fetches to external memory may not be the same as the path of data loads/stores to exter-
nal memory (this feature is known as a Harvard architecture). The new instructions must be flushed out to the
first level of the memory hierarchy which is shared by both the instruction fetchs and the data load/stores.

2. The processor must wait until all of the new instructions have actually been written to this shared level of the
memory hierarchy.

3. If there are caches which hold instructions between that first shared level of memory hierarchy and the processor
pipeline, any stale instructions within those caches must be first invalidated before executing the new instruc-
tions.

4. Some processors might implement some type of instruction prefetching. Precautions must be used to ensure that
the prefetching does not interfere with the previous steps.
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Modules and Application Specific Extensions

This section gives an overview of the Modules and Architecture Specific Extensions that are supported by the MIPS
Architecture Family.

3.1 Description of Optional Components

As the MIPS architecture is adopted into a wider variety of markets, the need to extend this architecture in different
directions becomes more and more apparent. Therefore various optional components are provided for use with the
base ISAs (MIPS32/MIPS64 and microMIPS32/microMIPS64).

These optional components are licensed to MIPS architecture licensees in two different ways:

1. Modules - these optional components are part of the Base Architecture (Revision 5 and newer). If a company has
licensed one of the base architectures from MIPS Technologies, then that company has also rights to implement
any of the assocatied modules of that base architecture.

2. Application Specific Extensions - these optional components are sold as separate architecture products from
MIPS Technologies.

The Modules and ASEs are both optional, so the architecture is not permanently bound to support them and the ASEs
are used only as needed.

Extensions to the ISA are driven by the requirements of the computer segment, or by customers whose focus is prima-
rily on performance. A Module or ASE can be used with the appropriate ISA to meet the needs of a specific applica-
tion or an entire class of applications.

Figure 3.1 shows how ASEs interrelate with the microMIPS32 and microMIPS64 ISAs.
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3.2.2 The MIPS-3D® Application Specific Extension to the microMIPS Architecture

The MIPS-3D ASE provides enhanced performance of geometry processing calculations by building on the paired
single floating point data type, and adding specific instructions to accelerate computations on these data types. Vol-
ume IV-c of this document set describes the MIPS-3D ASE. Because the MIPS-3D ASE requires a 64-bit floating
point unit, it is only available with  processor that includes a 64-bit FPU.

3.2.3 The SmartMIPS® Application Specific Extension to the microMIPS32 Architec-
ture

The SmartMIPS ASE extends the microMIPS32 Architectures with a set of new and modified instruction designed to
improve the performance and reduce the memory consumption of MIPS-based smart card or smart object systems.
Because the SmartMIPS ASE requires the MIPS32 Architecture, it is not discussed in this document set.

3.2.4 The MIPS® DSP Module to the MIPS Architecture

The MIPS DSP Module provides enhanced performance of signal-processing applications by providing computa-
tional support for fractional data types, SIMD, saturation, and other elements that are commonly used in such applica-
tions. Volume IV-e of this document set describes the MIPS DSP Module.

3.2.5 The MIPS® MT Module to the MIPS Architecture

The MIPS MT Module provides the architecture to support multi-threaded implementations of the Architecture. This
includes support for both virtual processors and lightweight thread contexts. Volume IV-f of this document set
describes the MIPS MT Module.

3.2.6 The MIPS® MCU Application Specific Extension to the MIPS Architecture

The MIPS MCU ASE provides enhanced handling of memory-mapped I/O registers and lower interrupt latencies.
Volume IV-g of this document set describes the MIPS MCU ASE.

3.2.7 The MIPS® Virtualization Module to the MIPS Architecture

The MIPS Virtualization Module provides hardware acceleration of virtuaization of Operating Systems. Volume IV-i
of this document set describes the MIPS VZ Module.

3.2.8 The MIPS® SIMD Architecture Module to the MIPS Architecture

The MIPS SIMD Architecture Module provides high performance parallel processing of vector operations through
the use of 128-bit wide vector registers. Volume IV-j of this document set describes the MIPS MSA Module.
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Overview of the CPU Instruction Set

This chapter gives an overview of the CPU instructions, including a description of CPU instruction formats. An over-
view of the FPU instructions is given in Chapter 5, “Overview of the FPU Instruction Set” on page 68.

4.1 CPU Instructions, Grouped By Function

CPU instructions are organized into the following functional groups:

• Load and store

• Computational

• Jump and branch

• Miscellaneous

• Coprocessor

Each instruction is either 16- bits or 32-bits long.

4.1.1 CPU Load and Store Instructions

MIPS processors use a load/store architecture; all operations are performed on operands held in processor registers
and main memory is accessed only through load and store instructions.

4.1.1.1 Types of Loads and Stores

There are several different types of load and store instructions, each designed for a different purpose:

• Transferring variously-sized fields (for example, LB, SW)

• Trading transferred data as signed or unsigned integers (for example, LHU)

• Accessing unaligned fields (for example, LWR, SWL)

• Selecting the addressing mode (for example, SDXC1, in the FPU)

• Atomic memory update (read-modify-write: for instance, LL/SC)

Regardless of the byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the lowest
byte address among the bytes forming the object:

• For big-endian ordering, this is the most-significant byte.
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• For a little-endian ordering, this is the least-significant byte.

Refer to “Byte Ordering and Endianness” on page 37 for more information on big-endian and little-endian data order-
ing.

4.1.1.2 Load and Store Access Types

Tables 4.1 and 4.2 list the data sizes that can be accessed through CPU load and store operations. These tables also
indicate the particular ISA within which each operation is defined.

4.1.1.3 List of CPU Load and Store Instructions

The following data sizes (as defined in the AccessLength field) are transferred by CPU load and store instructions:

• Byte

• Halfword

• Word

• Doubleword

Table 4.1 Load and Store Operations Using Register + Offset Addressing Mode

Data Size

CPU  Coprocessors 1 and 2

Load
Signed

Load
Unsigned Store Load Store

Byte microMIPS32 microMIPS32 microMIPS32

Halfword microMIPS32 microMIPS32 microMIPS32

Word microMIPS32 microMIPS64 microMIPS32 microMIPS32 microMIPS32

Doubleword (CPU) microMIPS64 microMIPS64

Doubleword (FPU) microMIPS32 microMIPS32

Unaligned word microMIPS32 microMIPS32

Unaligned doubleword microMIPS64 microMIPS64

Linked word (atomic modify) microMIPS32 microMIPS32

Linked doubleword (atomic mod-
ify)

microMIPS64 microMIPS64

Table 4.2 FPU Load and Store Operations Using Register + Register Addressing Mode

Floating Point Coprocessor Only

Data Size Load Store

Word microMIPS32 microMIPS32

Doubleword microMIPS32 microMIPS32

Unaligned Doubleword Indexed microMIPS32 microMIPS32
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Signed and unsigned integers of different sizes are supported by loads that either sign-extend or zero-extend the data
loaded into the register.

Table 4.3 lists aligned CPU load and store instructions, while unaligned loads and stores are listed in Table 4.4. Each
table also lists the MIPS ISA within which an instruction is defined.

Table 4.3 Aligned CPU Load/Store Instructions

Mnemonic Instruction Defined in MIPS ISA

LB Load Byte microMIPS32

LBE Load Byte EVA microMIPS32

LBU Load Byte Unsigned microMIPS32

LBUE Load Byte Unsigned EVA microMIPS32

LBU16 Load Byte Unsigned (16-bit Instruction Size) microMIPS32

LD Load Doubleword microMIPS64

LDM Load Double Multiple microMIPS64

LDP Load Double Pair microMIPS32

LH Load Halfword microMIPS32

LHE Load Halfword EVA microMIPS32

LHU Load Halfword Unsigned microMIPS32

LHUE Load Halfword Unsigned EVA microMIPS32

LHU16 Load Halfword Unsigned (16-bit Instruction Size) microMIPS32

LW Load Word microMIPS32

LWE Load Word EVA microMIPS32

LW16 Load Word (16-bit Instruction Size) microMIPS32

LWM32 Load Word Multiple (32-bit Instruction Size) microMIPS32

LWM16 Load Word Multiple (16-bit Instruction Size) microMIPS32

LWP Load Word Pair microMIPS32

LWGP Load Word Global Pointer (16-bit Instruction Size) microMIPS32

LWSP Load Word Stack Pointer (16-bit Instruction Size) microMIPS32

LWU Load Word Unsigned microMIPS64

SB Store Byte microMIPS32

SBE Store Byte EVA microMIPS32

SB16 Store Byte (16-bit Instruction Size) microMIPS32

SD Store Doubleword microMIPS64

SDM Store Double Multiple microMIPS32

SDP Store Double Pair microMIPS32

SH Store Halfword microMIPS32

SHE Store Halfword EVA microMIPS32

SH16 Store Half (16-bit Instruction Size) microMIPS32

SW Store Word microMIPS32

SWE Store Word EVA microMIPS32
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Unaligned words and doublewords can be loaded or stored in just two instructions by using a pair of the special
instructions listed in Table 4.4. The load instructions read the left-side or right-side bytes (left or right side of register)
from an aligned word and merge them into the correct bytes of the destination register.

Unaligned CPU load and store instructions are listed in Table 4.4, along with the MIPS ISA within which an instruc-
tion is defined.

4.1.1.4 Loads and Stores Used for Atomic Updates

The paired instructions, Load Linked and Store Conditional, can be used to perform an atomic read-modify-write of
word or doubleword cached memory locations. These instructions are used in carefully coded sequences to provide
one of several synchronization primitives, including test-and-set, bit-level locks, semaphores, and sequencers and
event counts. Table 4.5 lists the LL and SC instructions, along with the MIPS ISA within which an instruction is
defined.

SW16 Store Word (16-bit Instruction Size) microMIPS32

SWSP Store Word Stack Pointer (16-bit Instruction Size) microMIPS32

SWM32 Store Word Multiple (32-bit Instruction Size) microMIPS32

SWM16 Store Word Multiple (16-bit Instruction Size) microMIPS32

SWP Store Word Pair microMIPS32

Table 4.4 Unaligned CPU Load and Store Instructions

Mnemonic Instruction Defined in MIPS ISA

LDL Load Doubleword Left microMIPS64

LDR Load Doubleword Right microMIPS64

LWL Load Word Left microMIPS32

LWR Load Word Right microMIPS32

SDL Store Doubleword Left microMIPS64

SDR Store Doubleword Right microMIPS64

SWL Store Word Left microMIPS32

SWR Store Word Right microMIPS32

Table 4.5 Atomic Update CPU Load and Store Instructions

Mnemonic Instruction Defined in MIPS ISA

LL Load Linked Word microMIPS32

LLD Load Linked Doubleword microMIPS64

SC Store Conditional Word microMIPS32

SCD Store Conditional Doubleword microMIPS64

Table 4.3 Aligned CPU Load/Store Instructions (Continued)

Mnemonic Instruction Defined in MIPS ISA
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4.1.1.5 CPU Loads and Stores Using Register + Register Addressing

Figure 4.6 lists the CPU Load/Store instructions which use register + register addressing.

4.1.1.6 Coprocessor Loads and Stores

If a particular coprocessor is not enabled, loads and stores to that processor cannot execute and the attempted load or
store causes a Coprocessor Unusable exception. Enabling a coprocessor is a privileged operation provided by the Sys-
tem Control Coprocessor, CP0.

Table 4.7 lists the coprocessor load and store instructions.

Table 4.8 lists the specific FPU load and store instructions;1 it also lists the MIPS ISA within which an instruction
was first defined.

4.1.2 Computational Instructions

This section describes the following:

• ALU Immediate and Three-Operand Instructions

• ALU Two-Operand Instructions

• Shift Instructions

Table 4.6  CPU Load and Store Instructions Using Register + Register Addressing

Mnemonic Instruction Defined in MIPS ISA

LWXS Load Word Indexed-Scaled microMIPS32

Table 4.7 Coprocessor Load and Store Instructions

Mnemonic Instruction Defined in MIPS ISA

LDCz Load Doubleword to Coprocessor-z, z = 1 or 2 microMIPS32

LWCz Load Word to Coprocessor-z, z = 1 or 2 microMIPS32

SDCz Store Doubleword from Coprocessor-z, z = 1 or 2 microMIPS32

SWCz Store Word from Coprocessor-z, z = 1 or 2 microMIPS32

1. FPU loads and stores are listed here with the other coprocessor loads and stores for convenience.

Table 4.8 FPU Load and Store Instructions Using Register + Register Addressing

Mnemonic Instruction Defined in MIPS ISA

LWXC1 Load Word Indexed to Floating Point microMIPS32

SWXC1 Store Word Indexed from Floating Point microMIPS32

LDXC1 Load Doubleword Indexed to Floating Point microMIPS32

SDXC1 Store Doubleword Indexed from Floating Point microMIPS32

LUXC1 Load Doubleword Indexed Unaligned to Floating Point microMIPS32

SUXC1 Store Doubleword Indexed Unaligned from Floating Point microMIPS32
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• Multiply and Divide Instructions

2’s complement arithmetic is performed on integers represented in 2’s complement notation. These are signed ver-
sions of the following operations:

• Add

• Subtract

• Multiply

• Divide

The add and subtract operations labelled “unsigned” are actually modulo arithmetic without overflow detection.

There are also unsigned versions of multiply and divide, as well as a full complement of shift and logical operations.
Logical operations are not sensitive to the width of the register.

microMIPS32 provided 32-bit integers and 32-bit arithmetic. MIPS64 adds 64-bit integers and provides separate
arithmetic and shift instructions for 64-bit operands.

4.1.2.1 ALU Immediate and Three-Operand Instructions

Table 4.9 lists those arithmetic and logical instructions that operate on one operand from a register and the other from
a 16-bit immediate value supplied by the instruction word. This table also lists the MIPS ISA within which an instruc-
tion is defined.

The immediate operand is treated as a signed value for the arithmetic and compare instructions, and treated as a logi-
cal value (zero-extended to register length) for the logical instructions.

Table 4.9 ALU Instructions With a 16-bit Immediate Operand

Mnemonic Instruction Defined in MIPS ISA

ADDI Add Immediate Word microMIPS32

ADDIU1

1. The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not trap
on overflow.

Add Immediate Unsigned Word microMIPS32

ANDI And Immediate microMIPS32

DADDI Doubleword Add Immediate microMIPS64

DADDIU1 Doubleword Add Immediate Unsigned microMIPS64

LUI Load Upper Immediate microMIPS32

ORI Or Immediate microMIPS32

SLTI Set on Less Than Immediate microMIPS32

SLTIU Set on Less Than Immediate Unsigned microMIPS32

XORI Exclusive Or Immediate microMIPS32
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Table 4.10 describes those arithmetic and logical instructions with an immediate value whose size is not 16-bits.

Table 4.11 describes ALU instructions that use three operands, along with the MIPS ISA within which an instruction
is defined.

Table 4.10 Other ALU Instructions With a Immediate Operand

Mnemonic Instruction Defined in MIPS ISA

ADDIUPC Add Immediate Unsigned Word PC-relative microMIPS32

ADDIUR1SP Add Immediate Unsigned Word Register with Stack Pointer (16-bit
Instruction Size)

microMIPS32

ADDIUR2 Add Immediate Unsigned Word Two Registers (16-bit Instruction
Size)

microMIPS32

ADDIUSP Add Immediate Unsigned to Stack Pointer (16-bit Instruction Size) microMIPS32

ADDIUS5 Add Immediate Unsigned Word 5-bit Register Select (16-bit
Instruction Size)

microMIPS32

ANDI16 Add Unsigned (16-bit Instruction Size) microMIPS32

LI16 Load Immediate (16-bit Instruction Size) microMIPS32

Table 4.11 Three-Operand ALU Instructions

Mnemonic Instruction Defined in MIPS ISA

ADD Add Word microMIPS32

ADDU1

1. The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not trap
on overflow.

Add Unsigned Word microMIPS32

ADDU16 Add Unsigned Word (16-bit Instruction Size) microMIPS32

AND And microMIPS32

DADD Doubleword Add microMIPS64

DADDU1 Doubleword Add Unsigned microMIPS64

DSUB Doubleword Subtract microMIPS64

DSUBU1 Doubleword Subtract Unsigned microMIPS64

MOVEP Move Pair of Registers (16-bit Instruction Size) microMIPS32

NOR Nor microMIPS32

OR Or microMIPS32

SLT Set on Less Than microMIPS32

SLTU Set on Less Than Unsigned microMIPS32

SUB Subtract Word microMIPS32

SUBU1 Subtract Unsigned Word microMIPS32

SUBU16 Subtract Unsigned Word (16-bit Instruction Size) microMIPS

XOR Exclusive Or microMIPS32
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4.1.2.2 ALU Two-Operand Instructions

Table 4.11 describes ALU instructions that use two operands, along with the MIPS ISA within which an instruction is
defined.

4.1.2.3 Shift Instructions

The ISA defines three types of shift instructions:

• Those that take a fixed shift amount from a 5-bit field in the instruction word (for instance, SLL, SRL)

• Those that take a shift amount from the low-order bits of a general register (for instance, SRAV, SRLV)

• Those that take as shift amount from an encoded 3-bit field in the instruction word (SLL16, SRL16)

The instructions with a fixed shift amount are limited to a 5-bit shift count, so there are separate instructions for dou-
bleword shifts of 0-31 bits (for instance, DSLL) and 32-63 bits (for instance, DSLL32).

Shift instructions are listed in Table 4.13, along with the MIPS ISA within which an instruction is defined.

Table 4.12 Two-Operand ALU Instructions

Mnemonic Instruction Defined in MIPS ISA

AND16 AND (16-bit Instruction Size) microMIPS32

CLO Count Leading Ones in Word microMIPS32

CLZ Count Leading Zeros in Word microMIPS32

DCLO Count Leading Ones in Doubleword microMIPS64

DCLZ Count Leading Zeros in Doubleword microMIPS64

MOVE16 MOVE Register (16-bit Instruction Size) microMIPS32

NOT16 Invert (16-bit Instruction Size) microMIPS32

OR16 OR (16-bit Instruction Size) microMIPS32

XOR16 XOR (16-bit Instruction Size) microMIPS32

Table 4.13 Shift Instructions

Mnemonic Instruction Defined in MIPS ISA

DROTR Doubleword Rotate Right microMIPS64

DROTR32 Doubleword Rotate Right Plus 32 microMIPS64

DROTRV Doubleword Rotate Right Variable microMIPS64

DSLL Doubleword Shift Left Logical microMIPS64

DSLL32 Doubleword Shift Left Logical + 32 microMIPS64

DSLLV Doubleword Shift Left Logical Variable microMIPS64

DSRA Doubleword Shift Right Arithmetic microMIPS64

DSRA32 Doubleword Shift Right Arithmetic + 32 microMIPS64

DSRAV Doubleword Shift Right Arithmetic Variable microMIPS64

DSRL Doubleword Shift Right Logical microMIPS64

DSRL32 Doubleword Shift Right Logical + 32 microMIPS64
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4.1.2.4 Multiply and Divide Instructions

The multiply and divide instructions produce twice as many result bits as is typical with other processors. With one
exception, they deliver their results into the HI and LO special registers. The MUL instruction delivers the lower half
of the result directly to a GPR.

• Multiply produces a full-width product twice the width of the input operands; the low half is loaded into LO and
the high half is loaded into HI.

• Multiply-Add and Multiply-Subtract produce a full-width product twice the width of the input operations and
adds or subtracts the product from the concatenated value of HI and LO. The low half of the addition is loaded
into LO and the high half is loaded into HI.

• Divide produces a quotient that is loaded into LO and a remainder that is loaded into HI.

The results are accessed by instructions that transfer data between HI/LO and the general registers.

Table 4.14 lists the multiply, divide, and HI/LO move instructions, along with the MIPS ISA within which an instruc-
tion is defined.

DSRLV Doubleword Shift Right Logical Variable microMIPS64

ROTR Rotate Word Right microMIPS32

ROTRV Rotate Word Right Variable microMIPS32

SLL Shift Word Left Logical microMIPS32

SLL16 Shift Word Left Logical (16-bit Instruction Size) microMIPS32

SLLV Shift Word Left Logical Variable microMIPS32

SRA Shift Word Right Arithmetic microMIPS32

SRAV Shift Word Right Arithmetic Variable microMIPS32

SRL Shift Word Right Logical microMIPS32

SRL16 Shift Word Right Logical (16-bit Instruction Size) microMIPS32

SRLV Shift Word Right Logical Variable microMIPS32

Table 4.14 Multiply/Divide Instructions

Mnemonic Instruction Defined in MIPS ISA

DDIV Doubleword Divide microMIPS64

DDIVU Doubleword Divide Unsigned microMIPS64

DIV Divide Word microMIPS32

DIVU Divide Unsigned Word microMIPS32

DMULT Doubleword Multiply microMIPS64

DMULTU Doubleword Multiply Unsigned microMIPS64

MADD Multiply and Add Word microMIPS32

MADDU Multiply and Add Word Unsigned microMIPS32

MFHI Move From HI microMIPS32

Table 4.13 Shift Instructions (Continued)

Mnemonic Instruction Defined in MIPS ISA
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4.1.3 Jump and Branch Instructions

This section describes the following:

• Types of Jump and Branch Instructions Defined by the ISA

• Branch Delays and the Branch Delay Slot

• Delay Slot Behavior

• List of Jump and Branch Instructions

4.1.3.1 Types of Jump and Branch Instructions Defined by the ISA

The architecture defines the following jump and branch instructions:

• PC-relative conditional branch

• PC-region unconditional jump

• Absolute (register) unconditional jump

• A set of procedure calls that record a return link address in a general register.

4.1.3.2 Branch Delays and the Branch Delay Slot

All branches have an architectural delay of one instruction. The instruction immediately following a branch is said to
be in the branch delay slot. If a branch or jump instruction is placed in the branch delay slot, the operation of both
instructions is UNPREDICTABLE.

By convention, if an exception or interrupt prevents the completion of an instruction in the branch delay slot, the
instruction stream is continued by re-executing the branch instruction. To permit this, branches must be restartable;
procedure calls may not use the register in which the return link is stored (usually GPR 31) to determine the branch
target address.

MFHI16 Move From HI (16-bit Instruction Size) microMIPS32

MFLO Move From LO microMIPS32

MFLO16 Move From LO(16-bit Instruction Size) microMIPS32

MSUB Multiply and Subtract Word microMIPS32

MSUBU Multiply and Subtract Word Unsigned microMIPS32

MTHI Move To HI microMIPS32

MTLO Move To LO microMIPS32

MUL Multiply Word to Register microMIPS32

MULT Multiply Word microMIPS32

MULTU Multiply Unsigned Word microMIPS32

Table 4.14 Multiply/Divide Instructions (Continued)

Mnemonic Instruction Defined in MIPS ISA
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4.1.3.3 Delay Slot Behavior

There are three versions of branches and jumps; they differ in the manner in which they handle the instruction in the
delay slot when the branch is not taken and execution falls through.

• Branch and Jump instructions execute the instruction in the delay slot.

• Branch likely instructions do not execute the instruction in the delay slot if the branch is not taken (they are said
to nullify the instruction in the delay slot). The microMIPS architectures do not include any branch likely instruc-
tions. They are listed here only for historical background.

• Compact Branches and Compact Jumps which do not execute the instruction in the delay slot. These branches
are available in the microMIPS architectures.

4.1.3.4 List of Jump and Branch Instructions

Table 4.15 lists instructions that jump to a procedure call within the current 256 MB-aligned region.

Table 4.16 lists instructions that jump to an absolute address held in a register.

Table 4.15 lists the unconditional jump instructions within a given 256 MByte region. Table 4.17 lists branch instruc-
tions that compare two registers before conditionally executing a PC-relative branch. Table 4.18 lists branch instruc-
tions that test a register—compare with zero—before conditionally executing a PC-relative branch.

Each table also lists the MIPS ISA within which an instruction is defined.

Table 4.15 Unconditional Jump Within a 256 Megabyte Region

Mnemonic Instruction Defined in MIPS ISA

J Jump microMIPS32

JAL Jump and Link microMIPS32

JALS Jump and Link, Short Delay-Slot microMIPS32

JALX Jump and Link Exchange microMIPS32

Table 4.16 Unconditional Jump using Absolute Address

Mnemonic Instruction Defined in MIPS ISA

JALR Jump and Link Register microMIPS32

JALRS Jump and Link Register, Short Delay-Slot microMIPS32

JALR16 Jump and Link Register (16-bit Instruction Size) microMIPS32

JALR16S Jump and Link Register, Short Delay-Slot (16-bit Instruction Size) microMIPS32

JALR.HB Jump and Link Register with Hazard Barrier microMIPS32

JALRS.HB Jump and Link Register with Hazard Barrier, Short Delay-Slot microMIPS32

JR Jump Register microMIPS32

JR16 Jump Register (16-bit Instruction Size) microMIPS32
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4.1.4 Miscellaneous Instructions

Miscellaneous instructions include:

• Instruction Serialization (SYNC and SYNCI)

• Exception Instructions

• Conditional Move Instructions

• Prefetch Instructions

JRADDIUSP Jump Register, Adjust Stack Pointer (16-bit Instruction Size) microMIPS32

JRC Jump Register, Compact (16-bit Instruction Size) microMIPS32

JR.HB Jump Register with Hazard Barrier microMIPS32

Table 4.17 PC-Relative Conditional Branch Instructions Comparing Two Registers

Mnemonic Instruction
Defined in MIPS

ISA

BEQ Branch on Equal microMIPS32

BNE Branch on Not Equal microMIPS32

Table 4.18 PC-Relative Conditional Branch Instructions Comparing With Zero

Mnemonic Instruction
Defined in MIPS

ISA

BEQZ16 Branch on Equal to Zero (16-bit Instruction Size) microMIPS32

BEQZC Branch of Equal to Zero, Compact (16-bit Instruction Size) microMIPS32

BGEZ Branch on Greater Than or Equal to Zero microMIPS32

BGEZAL Branch on Greater Than or Equal to Zero and Link microMIPS32

BGEZALS Branch on Greater Than or Equal to Zero and Link, Short Delay-Slot microMIPS32

BGTZ Branch on Greater Than Zero microMIPS32

BLEZ Branch on Less Than or Equal to Zero microMIPS32

BLTZ Branch on Less Than Zero microMIPS32

BLTZAL Branch on Less Than Zero and Link microMIPS32

BLTZALS Branch on Less Than Zero and Link, Short Delay-Slot microMIPS32

BNEZ16 Branch on Not Equal to Zero (16-bit Instruction Size) microMIPS32

BNEZC Branch of Not Equal to Zero, Compact (16-bit Instruction Size) microMIPS32

Table 4.19 PC-relative Unconditional Branch

Mnemonic Instruction Defined in MIPS ISA

B16 Unconditional Branch (16-bit Instruction Size) microMIPS32

Table 4.16 Unconditional Jump using Absolute Address

Mnemonic Instruction Defined in MIPS ISA
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• NOP Instructions

4.1.4.1 Instruction Serialization (SYNC and SYNCI)

In normal operation, the order in which load and store memory accesses appear to a viewer outside the executing pro-
cessor (for instance, in a multiprocessor system) is not specified by the architecture.

The SYNC instruction can be used to create a point in the executing instruction stream at which the relative order of
some loads and stores can be determined: loads and stores executed before the SYNC are completed before loads and
stores after the SYNC can start.

The SYNCI instruction synchronizes the processor caches with previous writes or other modifications to the instruc-
tion stream.

Table 4.20 lists the synchronization instructions, along with the MIPS ISA within which it is defined.

4.1.4.2 Exception Instructions

Exception instructions transfer control to a software exception handler in the kernel. There are two types of excep-
tions, conditional and unconditional. These are caused by the following instructions:

Trap instructions, which cause conditional exceptions based upon the result of a comparison

System call and breakpoint instructions, which cause unconditional exceptions

Table 4.21 lists the system call and breakpoint instructions. Table 4.22 lists the trap instructions that compare two
registers. Table 4.23 lists trap instructions, which compare a register value with an immediate value.

Each table also lists the MIPS ISA within which an instruction is defined.

Table 4.20 Serialization Instruction

Mnemonic Instruction Defined in MIPS ISA

SYNC Synchronize Shared Memory microMIPS32

SYNCI Synchronize Caches to Make Instruction Writes Effective microMIPS32

Table 4.21 System Call and Breakpoint Instructions

Mnemonic Instruction Defined in MIPS ISA

BREAK Breakpoint microMIPS32

BREAK16 Breakpoint (16-bit Instruction Size) microMIPS32

SYSCALL System Call microMIPS32

Table 4.22 Trap-on-Condition Instructions Comparing Two Registers

Mnemonic Instruction Defined in MIPS ISA

TEQ Trap if Equal microMIPS32

TGE Trap if Greater Than or Equal microMIPS32

TGEU Trap if Greater Than or Equal Unsigned microMIPS32
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4.1.4.3 Conditional Move Instructions

MIPS32 includes instructions to conditionally move one CPU general register to another, based on the value in a third
general register. For floating point conditional moves, refer to Chapter 4.

Table 4.24 lists conditional move instructions, along with the MIPS ISA within which an instruction is defined.

4.1.4.4 Prefetch Instructions

There are two prefetch advisory instructions:

• One with register+offset addressing (PREF)

• One with register+register addressing (PREFX)

These instructions advise that memory is likely to be used in a particular way in the near future and should be
prefetched into the cache. The PREFX instruction is encoded in the FPU opcode space, along with the other opera-
tions using register+register addressing

TLT Trap if Less Than microMIPS32

TLTU Trap if Less Than Unsigned microMIPS32

TNE Trap if Not Equal microMIPS32

Table 4.23 Trap-on-Condition Instructions Comparing an Immediate Value

Mnemonic Instruction Defined in MIPS ISA

TEQI Trap if Equal Immediate microMIPS32

TGEI Trap if Greater Than or Equal Immediate microMIPS32

TGEIU Trap if Greater Than or Equal Immediate Unsigned microMIPS32

TLTI Trap if Less Than Immediate microMIPS32

TLTIU Trap if Less Than Immediate Unsigned microMIPS32

TNEI Trap if Not Equal Immediate microMIPS32

Table 4.24 CPU Conditional Move Instructions

Mnemonic Instruction Defined in MIPS ISA

MOVF Move Conditional on Floating Point False microMIPS32

MOVN Move Conditional on Not Zero microMIPS32

MOVT Move Conditional on Floating Point True microMIPS32

MOVZ Move Conditional on Zero microMIPS32

Table 4.25 Prefetch Instructions

Mnemonic Instruction Addressing Mode Defined in MIPS ISA

PREF Prefetch Register+Offset microMIPS32

PREFX Prefetch Indexed Register+Register microMIPS32

Table 4.22 Trap-on-Condition Instructions Comparing Two Registers

Mnemonic Instruction Defined in MIPS ISA
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4.1.4.5 NOP Instructions

The NOP instruction is actually encoded as an all-zero instruction. MIPS processors special-case this encoding as
performing no operation, and optimize execution of the instruction. In addition, SSNOP instruction, takes up one
issue cycle on any processor, including super-scalar implementations of the architecture.

Table 4.26 lists conditional move instructions, along with the MIPS ISA within which an instruction is defined.

4.1.5 Coprocessor Instructions

This section contains information about the following:

• What Coprocessors Do

• System Control Coprocessor 0 (CP0)

• Floating Point Coprocessor 1 (CP1)

• Coprocessor Load and Store Instructions

4.1.5.1 What Coprocessors Do

Coprocessors are alternate execution units, with register files separate from the CPU. In abstraction, the MIPS archi-
tecture provides for up to four coprocessor units, numbered 0 to 3. Each level of the ISA defines a number of these
coprocessors, as listed in Table 4.27.

Table 4.26 NOP Instructions

Mnemonic Instruction Defined in MIPS ISA

NOP1

1. A NOP of instruction size 16-bits is realized through the macro of “MOVE16 $0,$0”

No Operation microMIPS32

SSNOP Superscalar Inhibit NOP microMIPS32

Table 4.27 Coprocessor Definition and Use in the MIPS Architecture

Coprocessor microMIPS32 microMIPS64

CP0 Sys Control Sys Control

CP1 FPU FPU

CP2 implementation specific

CP3 See Footnote1

MIPS32r1: imp. spec.
MIPS32r2: FPU (COP1X)

1. In Release 1 of the MIPS32 Architecture, Coprocessor 3 was an implementa-
tion-specific coprocessor. In the MIPS64 Architecture, and in Release 2 of the
MIPS32 Architecture (and subsequent releases) Architectures, it is used exclu-
sively for the floating point unit and is not available for implementation-specific
use. Release 1 MIPS32 implementations are encouraged not to use Coprocessor
3 as an implementation-specific coprocessor.

FPU (COP1X)
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Coprocessor 0 is always used for system control and coprocessor 1 and 3 are used for the floating point unit. Copro-
cessor 2 is reserved for implementation-specific use.

A coprocessor may have two different register sets:

• Coprocessor general registers

• Coprocessor control registers

Each set contains up to 32 registers. Coprocessor computational instructions may use the registers in either set.

4.1.5.2 System Control Coprocessor 0 (CP0)

The system controller for all MIPS processors is implemented as coprocessor 0 (CP02), the System Control Copro-
cessor. It provides the processor control, memory management, and exception handling functions.

4.1.5.3 Floating Point Coprocessor 1 (CP1)

If a system includes a Floating Point Unit, it is implemented as coprocessor 1 (CP1). Details of the FPU instructions
are documented in “Overview of the FPU Instruction Set” on page 68.

Coprocessor instructions are divided into two main groups:

• Load and store instructions (move to and from coprocessor), which are reserved in the main opcode space

• Coprocessor-specific operations, which are defined entirely by the coprocessor

4.1.5.4 Coprocessor Load and Store Instructions

Explicit load and store instructions are not defined for CP0; for CP0 only, the move to and from coprocessor instruc-
tions must be used to write and read the CP0 registers. The loads and stores for the remaining coprocessors are sum-
marized in “Coprocessor Loads and Stores” on page 56.

4.1.6 CPU Instruction Restrictions

Most 32-bit integer CPU instructions (aside from shifts) require properly sign-extended 32-bit integer operands for
well-defined behavior.

2. CP0 instructions use the COP0 opcode, and as such are differentiated from the CP0 designation in this book.
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Overview of the FPU Instruction Set

This chapter describes the instruction set architecture (ISA) for the floating point unit (FPU) in the microMIPS64
architecture. In the MIPS architecture, the FPU is implemented via Coprocessor 1 and Coprocessor 3, an optional

processor implementing IEEE Standard 7541 floating point operations. The FPU also provides a few additional oper-
ations not defined by the IEEE standard.

This chapter provides an overview of the following FPU architectural details:

• “Binary Compatibility” on page 68

• “Enabling the Floating Point Coprocessor” on page 69

• “IEEE Standard 754” on page 69

• “FPU Data Types” on page 69

• “Floating Point Register Types” on page 74

• “Floating Point Control Registers (FCRs)” on page 77

• “Formats of Values Used in FP Registers” on page 87

• “FPU Exceptions” on page 87

• “FPU Instructions” on page 92

• “Valid Operands for FPU Instructions” on page 98

• “FPU Instruction Formats” on page 100

The FPU instruction set is summarized by functional group. Each instruction is also described individually in alpha-
betical order in Volume II.

5.1 Binary Compatibility

In addition to an Instruction Set Architecture, the MIPS architecture definition includes processing resources such as
the set of coprocessor general registers. A 32-bit CPU may include a full 64-bit coprocessor, including a floating
point unit which implements the same mode bit to select 32-bit or 64-bit FPU register model. As of Release 5 of the

1. In this chapter, references to “IEEE standard” and “IEEE Standard 754” refer to IEEE Standard 754-1985, “IEEE Standard
for Binary Floating Point Arithmetic.” For more information about this standard, see the IEEE web page at http://
grouper.ieee.org/groups/754/.
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Architecture, if floating point is implemented then FR=1 is required. I.e. the 64-bit FPU, with the FR=1 64-bit FPU
register model, is required. The FR=0 32-bit FPU register model continues to be required.

Any processor implementing microMIPS64 can also run microMIPS32 binary programs, built for the same, or a
lower release of the Architecture, without change.

5.2 Enabling the Floating Point Coprocessor

Enabling the Floating Point Coprocessor is done by enabling Coprocessor 1, and is a privileged operation provided by
the System Control Coprocessor. If Coprocessor 1 is not enabled, an attempt to execute a floating point instruction
causes a Coprocessor Unusable exception. Every system environment either enables the FPU automatically or pro-
vides a means for an application to request that it is enabled.

5.3 IEEE Standard 754

IEEE Standard 754 defines the following:

• Floating point data types

• The basic arithmetic, comparison, and conversion operations

• A computational model

The IEEE standard does not define specific processing resources nor does it define an instruction set.

The MIPS architecture includes non-IEEE FPU control and arithmetic operations (multiply-add, reciprocal, and
reciprocal square root) which may not supply results that match the IEEE precision rules.

5.4 FPU Data Types

The FPU provides both floating point and fixed point data types, which are described in the next two sections.

• The single and double precision floating point data types are those specified by the IEEE standard.

• The fixed point types are signed integers provided by the CPU architecture.

5.4.1 Floating Point Formats

The following three floating point formats are provided by the FPU:

• 32-bit single precision floating point (type S, shown in Figure 5.1)

• 64-bit double precision floating point (type D, shown in Figure 5.2)

• 64-bit paired single floating point, combining two single precision data types (Type PS, shown in Figure 5.3)

The floating point data types represent numeric values as well as other special entities, such as the following:

• Two infinities, +∞ and -∞
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• Signaling non-numbers (SNaNs)

• Quiet non-numbers (QNaNs)s

• Numbers of the form: (-1)s 2E b0.b1 b2..bp-1, where

• s=0 or 1

• E=any integer between E_min and E_max, inclusive

• bi=0 or 1 (the high bit, b0, is to the left of the binary point)

• p is the signed-magnitude precision

The single and double floating point data types are composed of three fields—sign, exponent, fraction—whose sizes
are listed in Table 5.1.

Layouts of these fields are shown in Figures 5.1, 5.2, and 5.3 below. The fields are

• 1-bit sign, s

• Biased exponent, e=E + bias

• Binary fraction, f=.b1 b2..bp-1  (the b0 bit is not recorded)

Table 5.1 Parameters of Floating Point Data Types

Parameter
Single (or each half

of Paired Single) Double

Bits of mantissa precision, p 24 53

Maximum exponent, E_max +127 +1023

Minimum exponent, E_min -126 -1022

Exponent bias +127 +1023

Bits in exponent field, e 8 11

Representation of b0 integer bit hidden hidden

Bits in fraction field, f 23 52

Total format width in bits 32 64
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Figure 5.1 Single-Precisions Floating Point Format (S)

Figure 5.2 Double-Precisions Floating Point Format (D)

Figure 5.3 Paired Single Floating Point Format (PS)

Values are encoded in the specified format by using unbiased exponent, fraction, and sign values listed in Table 5.2.
The high-order bit of the Fraction field, identified as b1, is also important for NaNs.
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Table 5.2 Value of Single or Double Floating Point DataType Encoding

Unbiased E f s b1 Value V Type of Value

Typical Single

Bit Pattern1 Typical Double Bit Pattern1

E_max + 1 ≠ 0 1 SNaN Signaling NaN
(FIRHas2008=0 or

FCSRNAN2008=0)

0x7fffffff 0x7fffffff ffffffff

0 QNaN Quiet NaN
(FIRHas2008=0 or

FCSRNAN2008=0)

0x7fbfffff 0x7ff7ffff ffffffff

E_max + 1 ≠ 0 0 SNaN Signaling NaN
(FCSRNAN2008=1)

0x7fbfffff 0x7ff7ffff ffffffff

1 QNaN Quiet NaN
(FCSRNAN2008=1)

0x7fffffff 0x7fffffff ffffffff

E_max +1 0 1 - ∞ minus infinity 0xff800000 0xfff00000 00000000

0 + ∞ plus infinity 0x7f800000 0x7ff00000 00000000

E_max
    to

E_min

1 - (2E)(1.f) negative normalized number 0x80800000
  through
0xff7fffff

0x80100000 00000000
       through
0xffefffff ffffffff

0 + (2E)(1.f) positive normalized number 0x00800000
  through
0x7f7fffff

0x00100000 00000000
       through
0x7fefffff ffffffff

E_min -1 ≠ 0 1 - (2E_min)(0.f) negative denormalized number 0x807fffff 0x800fffff ffffffff

0 + (2E_min)(0.f) positive denormalized number 0x007fffff 0x000fffff ffffffff
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5.4.1.1 Normalized and Denormalized Numbers

For single and double data types, each representable nonzero numerical value has just one encoding; numbers are
kept in normalized form. The high-order bit of the p-bit mantissa, which lies to the left of the binary point, is “hid-
den,” and not recorded in the Fraction field. The encoding rules permit the value of this bit to be determined by look-
ing at the value of the exponent. When the unbiased exponent is in the range E_min to E_max, inclusive, the number
is normalized and the hidden bit must be 1. If the numeric value cannot be normalized because the exponent would be
less than E_min, then the representation is denormalized and the encoded number has an exponent of E_min-1 and the
hidden bit has the value 0. Plus and minus zero are special cases that are not regarded as denormalized values.

5.4.1.2 Reserved Operand Values—Infinity and NaN

A floating point operation can signal IEEE exception conditions, such as those caused by uninitialized variables, vio-
lations of mathematical rules, or results that cannot be represented. If a program does not choose to trap IEEE excep-
tion conditions, a computation that encounters these conditions proceeds without trapping but generates a result
indicating that an exceptional condition arose during the computation. To permit this, each floating point format
defines representations, listed in Table 5.2, for plus infinity (+∞), minus infinity (-∞), quiet non-numbers (QNaN),
and signaling non-numbers (SNaN).

5.4.1.3 Infinity and Beyond

Infinity represents a number with magnitude too large to be represented in the format; in essence it exists to represent
a magnitude overflow during a computation. A correctly signed ∞ is generated as the default result in division by zero
and some cases of overflow; details are given in the IEEE exception condition described in 5.8.1 “Exception
Conditions” on page 88.

Once created as a default result, ∞ can become an operand in a subsequent operation. The infinities are interpreted
such that -∞ < (every finite number) < +∞. Arithmetic with ∞ is the limiting case of real arithmetic with operands of
arbitrarily large magnitude, when such limits exist. In these cases, arithmetic on ∞ is regarded as exact and exception
conditions do not arise. The out-of-range indication represented by ∞ is propagated through subsequent computa-
tions. For some cases there is no meaningful limiting case in real arithmetic for operands of ∞, and these cases raise
the Invalid Operation exception condition (see “Invalid Operation Exception” on page 89).

5.4.1.4 Signalling Non-Number (SNaN)

SNaN operands cause the Invalid Operation exception for arithmetic operations. SNaNs are useful values to put in
uninitialized variables. An SNaN is never produced as a result value.

IEEE Standard 754 states that “Whether copying a signaling NaN without a change of format signals the Invalid
Operation exception is the implementor’s option.” The MIPS architecture has chosen to make the formatted operand
move instructions (MOV.fmt MOVT fmt MOVF.fmt MOVN fmt MOVZ fmt) non-arithmetic and they do not signal
IEEE 754 exceptions.

E_min -1 0 1 - 0 negative zero 0x80000000 0x80000000 00000000

0 + 0 positive zero 0x00000000 0x00000000 00000000

1. The "Typical" nature of the bit patterns for the NaN and denormalized values reflects the fact that the sign may have either value (NaN)
and the fact that the fraction field may have any non-zero value (both). As such, the bit patterns shown are one value in a class of poten-
tial values that represent these special values.

Table 5.2 Value of Single or Double Floating Point DataType Encoding (Continued)

Unbiased E f s b1 Value V Type of Value

Typical Single

Bit Pattern1 Typical Double Bit Pattern1
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5.4.1.5 Quiet Non-Number (QNaN)

QNaNs are intended to afford retrospective diagnostic information inherited from invalid or unavailable data and
results. Propagation of the diagnostic information requires information contained in a QNaN to be preserved through
arithmetic operations and floating point format conversions.

QNaN operands do not cause arithmetic operations to signal an exception. When a floating point result is to be deliv-
ered, a QNaN operand causes an arithmetic operation to supply a QNaN result. When possible, this QNaN result is
one of the operand QNaN values. QNaNs do have effects similar to SNaNs on operations that do not deliver a floating
point result—specifically, comparisons. (For more information, see the detailed description of the floating point com-
pare instruction, C.cond.fmt.)

When certain invalid operations not involving QNaN operands are performed but do not trap (because the trap is not
enabled), a new QNaN value is created. Table 5.3 shows the QNaN value generated when no input operand QNaN
value can be copied. The values listed for the fixed point formats are the values supplied to satisfy the IEEE standard
when a QNaN or infinite floating point value is converted to fixed point. There is no other feature of the architecture
that detects or makes use of these “integer QNaN” values. The FCSRNAN2008=1 “integer QNAN” values were chosen
to match the requirements of the Java and Fortran programming languages.

Table 5.3 Value Supplied When a New Quiet NaN Is Created

Format

New QNaN value (FIRHas2008
= 0 or FCSRNAN2008 = 0)

New QNaN value
(FCSRNAN2008 = 1)

Single floating point 0x7fbf ffff 0x7fc0 0000

Double floating point 0x7ff7 ffff ffff ffff 0x7ff8 0000 0000 0000

Word fixed point
(result from converting
any FP number too big
to represent as a 32-bit
positive integer)

0x7fff ffff 0x7fff ffff

Word fixed point
(result from converting
any FP NAN)

0x7fff ffff 0x0000 0000

Word fixed point
(result from converting
any FP number too
small to represent as a
32-bit negative integer)

0x7fff ffff 0x8000 0000

Longword fixed point
(result from converting
any FP number too big
to represent as a 64-bit
positive integer)

0x7fff ffff ffff ffff 0x7fff ffff ffff ffff

Longword fixed point
(result from converting
any FP NAN)

0x7fff ffff ffff ffff 0x0000 0000 0000 0000

Longword fixed
point(result from con-
verting any FP number
too small to represent
as a 64-bit negative
integer)

0x7fff ffff ffff ffff 0x8000 0000 0000 0000
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If a CPU implements passing an input NAN operand to the output of an instruction in hardware (instead of taking an
Unimplemented FP exception) and FCSRNAN2008=1, the mantissa portion of the input NAN operand is preserved as
much as possible:

• If the chosen input is a QNAN, the entire mantissa is passed to the output without change.

• If the chosen input is a SNAN, the only change is to set the leftmost/most-significant mantissa bit.

5.4.1.6 Paired Single Exceptions

Exception conditions that arise while executing the two halves of a floating point vector operation are ORed together,
and the instruction is treated as having caused all the exceptional conditions arising from both operations. The hard-
ware makes no effort to determine which of the two operations encountered the exceptional condition.

5.4.1.7 Paired Single Condition Codes

The c.cond.PS instruction compares the upper and lower halves of FPR fs and FPR ft independently and writes the
results into condition codes CC +1 and CC respectively. The CC number must be even. If the number is not even the
operation of the instruction is UNPREDICTABLE.

5.4.2 Fixed Point Formats

The FPU provides two fixed point data types:

• 32-bit Word fixed point (type W), shown in Figure 5.4

• 64-bit Longword fixed point (type L), shown in Figure 5.5

The fixed point values are held in the 2’s complement format used for signed integers in the CPU. Unsigned fixed
point data types are not provided by the architecture; application software may synthesize computations for unsigned
integers from the existing instructions and data types.

Figure 5.4 Word Fixed Point Format (W)

Figure 5.5 Longword Fixed Point Format (L)

5.5 Floating Point Register Types

This section describes the organization and use of the two types of FPU register sets:
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Floating Point registers (FPRs) are 32 or 64 bits wide. A 32-bit floating point unit contains 32 32-bit FPRs, each of
which is capable of storing a 32-bit data type. Double-precision (type D) data types are stored in even-odd pairs of
FPRs, and the long-integer (type L) and paired single (type PS) data types are not supported. A 64-bit floating point
unit contains 32 64-bit FPRs, each of which is capable of storing any data type. For compatibility with 32-bit FPUs,
the FR bit in the CP0 Status register is used by processor that supports a 64-bit FPU to configure the FPU in a mode
in which the FPRs are treated as 32 32-bit registers, each of which is capable of storing only 32-bit data types. In this
mode, the double-precision floating point (type D) data type is stored in even-odd pairs of FPRs, and the long-integer
(type L) and paired single (type PS) data types are not supported.

• These registers transfer binary data between the FPU and the system, and are also used to hold formatted FPU
operand values. Refer to Volume III, The MIPS Privileged Architecture Manual, for more information on the CP0
Registers.

• Floating Point Control registers (FCRs), which are 32 bits wide. There are five FPU control registers, used to
identify and control the FPU. These registers are indicated by the fs field of the instruction word. Three of these
registers, FCCR, FEXR, and FENR, select subsets of the floating point Control/Status register, the FCSR.

5.5.1 FPU Register Models

There are separate FPU register models:

• 32 32-bit registers, with D-format values stored in even-odd pairs of registers.

• 32 64-bit registers, with all formats supported in a register.

The register modelsare made available as a mode selection through the FR Bit of the CP0 Status Register.

If the value of FR bit is changed, the contents of the FPRs becomes UNPREDICTABLE. For some implementations,
it might be necessary for software to re-initialize the FPRs.

5.5.2 Binary Data Transfers (32-Bit and 64-Bit)

The data transfer instructions move words and doublewords between the FPU FPRs and the remainder of the system.
The operations of the word and doubleword load and move-to instructions are shown in Figure 5.6 and Figure 5.7.

The store and move-from instructions operate in reverse, reading data from the location which the corresponding load
or move-to instruction wrote.
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Figure 5.11 FIR Register Format

31 29 28 27 24 23 22 21 20 19 18 17 16 15 8 7 0

0
000
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2008

F64 L W 3D PS D S ProcessorID Revision

Table 5.4 FIR Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

0 31:28 Reserved for future use; reads as zero 0 0 Reserved

UFRP 28 See Release 5 definition of CFC1 and CTC1. R Preset Optional
(Release 5)

Impl 27..24 These bits are implementation dependent and are not
defined by the architecture, other than the fact that they are
read-only. This bits are explicitly not intended to be used
for mode control functions.

R Preset Optional

Has2008 23 Indicates that one or more IEEE-754-2008 features are
implemented. If this bit is set, the  ABS2008 and
NAN2008 fields within the FCSR register also exist.

R Preset by hard-
ware

Optional as of
Release 3.

Required as of
Release 5.

F64 22 Indicates that the floating point unit has registers and data
paths that are 64-bits wide..

R Preset by hard-
ware

Required

L 21 Indicates that the longword fixed point (L) data type and
instructions are implemented:

R Preset by hard-
ware

Required

Encoding Meaning

0 User mode FR switching instructions
not supported.

1 User mode FR switching instructions
supported.

Encoding Meaning

0 FPU is 32 bits

1 FPU is 64 bits

Encoding Meaning

0 L fixed point not implemented

1 L fixed point implemented
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W 20 Indicates that the word fixed point (W) data type and
instructions are implemented:

R Preset by hard-
ware

Required

3D 19 The MIPS-3D ASE is supported on any processors with a
64-bit floating point unit, and this bit indicates that the
MIPS-3D ASE is implemented:

Indicates that the MIPS-3D ASE is implemented:

R Preset by hard-
ware

Required

PS 18 Indicates that the paired single floating point data type is
implemented:

R Preset by hard-
ware

Required

D 17 Indicates that the double-precision (D) floating point data
type and instructions are implemented:

R Preset by hard-
ware

Required

S 16 Indicates that the single-precision (S) floating point data
type and instructions are implemented:

R Preset by hard-
ware

Required

ProcessorID 15:8 Identifies the floating point processor. R Preset by hard-
ware

Required

Table 5.4 FIR Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset State ComplianceName Bits

Encoding Meaning

0 W fixed point not implemented

1 W fixed point implemented

Encoding Meaning

0 MIPS-3D ASE not implemented

1 MIPS-3D ASE implemented

Encoding Meaning

0 MIPS-3D ASE not implemented

1 MIPS-3D ASE implemented

Encoding Meaning

0 PS floating point not implemented

1 PS floating point implemented

Encoding Meaning

0 D floating point not implemented

1 D floating point implemented

Encoding Meaning

0 S floating point not implemented

1 S floating point implemented
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5.6.2 User Floating point Register mode control (UFR, CP1 Control Register 1)

Compliance Level: Optional in MIPS64r5 if floating point is implemented and user-mode FR switching is sup-
ported

The UFR register allows user-mode to clear StatusFR by executing a CTC1 to UFR with GPR[0] as input, and read
StatusFR. by executing a CFC1 to UFR. CTC1 to UFR with any other input register is required to produce a Reserved
Instruction Exception. User-mode software can determine presence of this feature from FIRUFRP.

Per the definition of the CTC1 instruction, writing any value other than 0 obtained from integer GPR[0] to UFR using
the CTC1 instruction is UNPREDICTABLE. To set UFR.FR / StatusFR use CTC1 to the UNFR FCR alias.

Figure 5.12 UFR Register Format

5.6.3 User Negated Floating point Register mode control (UNFR, CP1 Control Regis-
ter 4)

Compliance Level: Optional in MIPS64r5 if floating point is implemented and user-mode FR switching is sup-
ported

The UNFR register allows user-mode to set StatusFR by executing a CTC1 to UNFR with GPR[0] as input. CTC1 to
UNFR with any other input register is required to produce a Reserved Instruction Exception. User-mode software can
determine presence of this feature from FIRUFRP.

Revision 7:0 Specifies the revision number of the floating point unit.
This field allows software to distinguish between one revi-
sion and another of the same floating point processor type.
If this field is not implemented, it must read as zero.

R Preset by hard-
ware

Optional

31 1 0

0 FR

Table 5.5 UFR Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

0 31:1 Must be written as zero; returns zero on read 0 0 Reserved

FR 0 User-mode access to StatusFR. R/W0g1

1. R/W0g definition: UFR can read as 0 or 1, but can only be written with the zero from GPR[0], which clearsStatusFR . Using CTC1

to write UFR with any value or GPR other than GPR[0] is UNPREDICTABLE.

Undefined

See reset state
of StatusFR

 Optional
(Release 5)

Table 5.4 FIR Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset State ComplianceName Bits
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Figure 5.13 UNFR Register Format

The UNFR pseudo-control-register alias is a convenience, allowing CTC1 R0, UNFR to be used to set UFR/StatusFR.
without requiring a GPR to hold the value such as 1 to be written. Because reading UNFR would be redundant with
reading UFR, UNFR is write-only; attempting to read UNFR via CFC1 is UNPREDICTABLE, per the definition of
the CFC1 instruction. Writing any value other than 0 obtained from integer GPR R0 to UNFR using the CTC1
instruction is similarly UNPREDICTABLE from software’s point of view, and is required to produce a Reserved
Instruction Exception in R5.03 implementations.

5.6.4 Floating Point Control and Status Register (FCSR, CP1 Control Register 31)

Compliance Level: Required if floating point is implemented.

The Floating Point Control and Status Register (FCSR) is a 32-bit register that controls the operation of the floating
point unit, and shows the following status information:

• selects the default rounding mode for FPU arithmetic operations

• selectively enables traps of FPU exception conditions

• controls some denormalized number handling options

• reports any IEEE exceptions that arose during the most recently executed instruction

• reports IEEE exceptions that arose, cumulatively, in completed instructions

• indicates the condition code result of FP compare instructions

Access to FCSR is not privileged; it can be read or written by any program that has access to the floating point unit
(via the coprocessor enables in the Status register). Figure 5.14 shows the format of the FCSR register; Table 5.7
describes the FCSR register fields.

31 1 0

0 NFR

Table 5.6 UNFR Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

0 31:1 Must be written as zero. 0 n.a.2 Reserved

NFR 0 User-mode inverted write to StatusFR. W01

1. W0g defintion: UNFR can only be written with the zero from GPR[0], which sets StatusFR. Using CFC1 to read UNFR, or using

CTC1 to write UNFR with any value or GPR other than GPR[0] is UNPREDICTABLE. UNFR’s “state” can be inferred by reading
StatusFR, e.g. via UFR.

n.a.2

2. UNFR’s reset state is “n.a.” (not applicable), since UNFR is not readable state.

 Optional
(Release 5)
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Figure 5.14 FCSR Register Format
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Table 5.7 FCSR Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

FCC 31:25, 23 Floating point condition codes. These bits record the result
of floating point compares and are tested for floating point
conditional branches and conditional moves. The FCC bit
to use is specified in the compare, branch, or conditional
move instruction. For backward compatibility with previ-
ous MIPS ISAs, the FCC bits are separated into two, non-
contiguous fields.

R/W Undefined Required

FS 24 Flush to Zero (Flush Subnormals).
See sections 5.8.1.3 “Underflow Exception” on page 90
and 5.8.1.4 “Alternate Flush to Zero Underflow
Handling” on page 91.

R/W Undefined Required

Impl 22:21 Available to control implementation dependent features of
the floating point unit. If these bits are not implemented,
they must be ignored on write and read as zero.

R/W Undefined Optional

0 20 Reserved for future use; reads as zero. R Preset by hard-
ware

Reserved

Encoding Meaning

0 Input subnormal values and tiny non-
zero results are not altered. Unimple-
mented Operation Exception may be
signaled as needed.

1 When FS is one, subnormal results are
flushed to zero. The Unimplemented
Operation Exception is NOT signalled
for this reason.

Every tiny non-zero result is
replaced with zero of the same sign.

Prior to Release 5 it is implementa-
tion dependent whether subnormal
operand values are flushed to zero
before the operation is carried out.

As of Release 5 every input subnor-
mal value is replaced with zero of the
same sign.
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ABS2008 19 ABS fmt & NEG.fmt instructions compliant with IEEE
Standard 754-2008.
The IEEE 754-2008 standard requires that the ABS and
NEG functions are non-arithmetic and accept NAN inputs
without trapping.

This fields exists if FIRHas2008 is set.

R Preset by hard-
ware

Required as of
Release 5

NAN2008 18 Quiet and signaling NaN encodings recommended by the
IEEE Standard 754-2008, i.e. a quiet NaN is encoded with
the first bit of the fraction being 1 and a signaling NaN is
encoded with the first bit of the fraction field being 0.
MIPS legacy FPU encodes NaN values with the opposite
polarity, i.e. a quiet NaN is encoded with the first bit of the
fraction being 0 and a signaling NaN is encoded with the
first bit of the fraction field being 1.
Refer to Table 5.3 for the quiet NaN encoding values.

This fields exists if FIRHas2008 is set.

R Preset by hard-
ware

Required as of
Release 5

Cause 17:12 Cause bits. These bits indicate the exception conditions
that arise during execution of an FPU arithmetic instruc-
tion. A bit is set to 1 if the corresponding exception condi-
tion arises during the execution of an instruction and is set
to 0 otherwise. By reading the registers, the exception con-
dition caused by the preceding FPU arithmetic instruction
can be determined.
Refer to Table 5.8 for the meaning of each bit.

R/W Undefined Required

Table 5.7 FCSR Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset State ComplianceName Bits

Encoding Meaning

0 ABS & NEG instructions are arith-
metic and trap for NAN input. MIPS
legacy behavior.

1 ABS & NEG instructions are non-
arithmetic and accept NAN input with-
out trapping. IEEE 754-2008 behavior

Encoding Meaning

0 MIPS legacy NaN encoding

1 IEEE 754-2008 NaN encoding
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The FCC, FS, Cause, Enables, Flags and RM fields in the FCSR, FCCR, FEXR, and FENR registers always display
the correct state. That is, if a field is written via FCCR, the new value may be read via one of the alternate registers.
Similarly, if a value is written via one of the alternate registers, the new value may be read via FCSR.

Enables 11:7 Enable bits. These bits control whether or not a exception
is taken when an IEEE exception condition occurs for any
of the five conditions. The exception occurs when both an
Enable bit and the corresponding Cause bit are set either
during an FPU arithmetic operation or by moving a value
to FCSR or one of its alternative representations. Note that
Cause bit E has no corresponding Enable bit; the non-
IEEE Unimplemented Operation exception is defined by
MIPS as always enabled.
Refer to Table 5.8 for the meaning of each bit.

R/W Undefined Required

Flags 6:2 Flag bits. This field shows any exception conditions that
have occurred for completed instructions since the flag
was last reset by software.
When a FPU arithmetic operation raises an IEEE excep-
tion condition that does not result in a Floating Point
Exception (i.e., the Enable bit was off), the corresponding
bit(s) in the Flag field are set, while the others remain
unchanged. Arithmetic operations that result in a Floating
Point Exception (i.e., the Enable bit was on) do not update
the Flag bits.
 This field is never reset by hardware and must be explic-
itly reset by software.
Refer to Table 5.8 for the meaning of each bit.

R/W Undefined Required

RM 1:0 Rounding mode. This field indicates the rounding mode
used for most floating point operations (some operations
use a specific rounding mode).
Refer to Table 5.9 for the meaning of the encodings of this
field.

R/W Undefined Required.

Table 5.8 Cause, Enable, and Flag Bit Definitions

Bit Name Bit Meaning

E Unimplemented Operation (this bit exists only in the
Cause field)

V Invalid Operation

Z Divide by Zero

O Overflow

U Underflow

I Inexact

Table 5.7 FCSR Register Field Descriptions (Continued)

Fields

Description
Read/
Write Reset State ComplianceName Bits
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5.6.5 Floating Point Condition Codes Register (FCCR, CP1 Control Register 25)

Compliance Level: Required if floating point is implemented.

The Floating Point Condition Codes Register (FCCR) is an alternative way to read and write the floating point condi-
tion code values that also appear in FCSR. Unlike FCSR, all eight FCC bits are contiguous in FCCR. Figure 5.15
shows the format of the FCCR register; Table 5.10 describes the FCCR register fields.

Figure 5.15 FCCR Register Format

5.6.6 Floating Point Exceptions Register (FEXR, CP1 Control Register 26)

Compliance Level: Required if floating point is implemented.

The Floating Point Exceptions Register (FEXR) is an alternative way to read and write the Cause and Flags fields that
also appear in FCSR. Figure 5.16 shows the format of the FEXR register; Table 5.11 describes the FEXR register
fields.

Table 5.9 Rounding Mode Definitions

RM Field
Encoding Meaning

0 RN - Round to Nearest
Rounds the result to the nearest representable value. When two representable values are equally
near, the result is rounded to the value whose least significant bit is zero (that is, even)

1 RZ - Round Toward Zero
Rounds the result to the value closest to but not greater than in magnitude than the result.

2 RP - Round Towards Plus Infinity
Rounds the result to the value closest to but not less than the result.

3 RM - Round Towards Minus Infinity
Rounds the result to the value closest to but not greater than the result.

31 8 7 0

0
0000 0000 0000 0000 0000 0000

FCC

7 6 5 4 3 2 1 0

Table 5.10 FCCR Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

0 31:8 Must be written as zero; returns zero on read 0 0 Reserved

FCC 7:0 Floating point condition code. Refer to the description of
this field in the FCSR register.

R/W Undefined Required
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Figure 5.16 FEXR Register Format

5.6.7 Floating Point Enables Register (FENR, CP1 Control Register 28)

Compliance Level: Required if floating point is implemented.

The Floating Point Enables Register (FENR) is an alternative way to read and write the Enables, FS, and RM fields
that also appear in FCSR. Figure 5.17 shows the format of the FENR register; Table 5.12 describes the FENR regis-
ter fields.

31 18 17 16 15 14 13 12 11 7 6 5 4 3 2 1 0

0
0000 0000 0000 00

Cause
0

00 000
Flags

0
00

E V Z O U I V Z O U I

Table 5.11 FEXR Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

0 31:18,
11:7, 1:0

Must be written as zero; returns zero on read 0 0 Reserved

Cause 17:12 Cause bits. Refer to the description of this field in the
FCSR register.

R/W Undefined Required

Flags 6:2 Flags bits. Refer to the description of this field in the
FCSR register.

R/W Undefined Optional
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Figure 5.17 FENR Register Format

5.7 Formats of Values Used in FP Registers

Unlike the CPU, the FPU does not interpret the binary encoding of source operands nor produce a binary encoding of
results for every operation. The value held in a floatig point register (FPR) is either uninterpreted, or one one of the
valid numeric formats: single, double, paired-single floating-point, word and long fixed point.

The value in a FPR is set to one of these formats when the register is written:

• When a data transfer instruction writes binary data into a FPR (LWC1, LWXC1, LDC1, LDXC1, LUXC1,
MTC1, MTHC1, DMTC1), then the binary value of the register is uninterpreted.

• A FP computational or FP register move (MOV*.fmt) instruction which produces a result of type fmt puts a value
of type fmt into the result register.

• The format of the value of a FPR is unchanged when it is read by data transfer instruction (SWC1, SWXC1,
SDC1, SDXC1, SUXC1, MFC1, MFHC1, DMFC1).

When an FPR with an uninterpreted value is used as a source operand by an instruction that requires a value of format
fmt, the binary contents are interpreted as a value of format fmt. A FP arithmetic instruction produces a value of the
expected numeric format into the destination register.

If an FPR contains a value of numeric format fmt and an instruction uses the FPR as source operand of different
numeric format, the result of the instruction is UNPREDICTABLE.

5.8 FPU Exceptions

This section provides the following information FPU exceptions:

• Precise exception mode

• Descriptions of the exceptions

31 12 11 10 9 8 7 6 3 2 1 0

0
0000 0000 0000 0000 0000

Enables
0

000 0
FS RM

V Z O U I

Table 5.12 FENR Register Field Descriptions

Fields

Description
Read/
Write Reset State ComplianceName Bits

0 31:12, 6:3 Must be written as zero; returns zero on read 0 0 Reserved

Enables 11:7 Enable bits. Refer to the description of this field in the
FCSR register.

R/W Undefined Required

FS 2 Flush to Zero bit. Refer to the description of this field in
the FCSR register.

R/W Undefined Required

RM 1:0 Rounding mode. Refer to the description of this field in
the FCSR register.

R/W Undefined Required
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• Non-Arithmetic Instructions

FPU exceptions are implemented in the MIPS FPU architecture with the Cause, Enable, and Flag fields of the Con-
trol/Status register. The Flag bits implement IEEE exception status flags, and the Cause and Enable bits control
exception trapping. Each field has a bit for each of the five IEEE exception conditions and the Cause field has an
additional exception bit, Unimplemented Operation, used to trap for software emulation assistance.

5.8.0.1 Precise Exception Mode

In precise exception mode, a trap occurs before the instruction that causes the trap, or any following instruction, can
complete and write its results. If desired, the software trap handler can resume execution of the interrupted instruction
stream after handling the exception.

The Cause field reports per-bit instruction exception conditions. The Cause bits are written during each floating point
arithmetic operation to show any exception conditions that arise during the operation. The bit is set to 1 if the corre-
sponding exception condition arises; otherwise it is set to 0.

A floating point trap is generated any time both a Cause bit and its corresponding Enable bit are set. This occurs
either during the execution of a floating point operation or by moving a value into the FCSR. There is no Enable for
Unimplemented Operation; this exception always generates a trap.

In a trap handler, exception conditions that arise during any trapped floating point operations are reported in the
Cause field. Before returning from a floating point interrupt or exception, or before setting Cause bits with a move to
the FCSR, software must first clear the enabled Cause bits by executing a move to FCSR to prevent the trap from
being erroneously retaken.

User-mode programs cannot observe enabled Cause bits being set. If this information is required in a User-mode han-
dler, it must be available someplace other than through the Status register.

If a floating point operation sets only non-enabled Cause bits, no trap occurs and the default result defined by the
IEEE standard is stored (see Table 5.13). When a floating point operation does not trap, the program can monitor the
exception conditions by reading the Cause field.

The Flag field is a cumulative report of IEEE exception conditions that arise as instructions complete; instructions
that trap do not update the Flag bits. The Flag bits are set to 1 if the corresponding IEEE exception is raised, other-
wise the bits are unchanged. There is no Flag bit for the MIPS Unimplemented Operation exception. The Flag bits
are never cleared as a side effect of floating point operations, but may be set or cleared by moving a new value into the
FCSR.

Addressing exceptions are precise.

5.8.1 Exception Conditions

The following five exception conditions defined by the IEEE standard are described in this section:

• Invalid Operation Exception

• Division By Zero Exception

• Underflow Exception

• Overflow Exception
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• Inexact Exception

This section also describes a MIPS-specific exception condition, Unimplemented Operation, that is used to signal a
need for software emulation of an instruction. Normally an IEEE arithmetic operation can cause only one exception
condition; the only case in which two exceptions can occur at the same time are Inexact With Overflow and Inexact
With Underflow.

At the program’s direction, an IEEE exception condition can either cause a trap or not cause a trap. The IEEE stan-
dard specifies the result to be delivered in case the exception is not enabled and no trap is taken. The MIPS architec-
ture supplies these results whenever the exception condition does not result in a precise trap (that is, no trap or an
imprecise trap). The default action taken depends on the type of exception condition, and in the case of the Overflow,
the current rounding mode. The default results are summarized in Table 5.13.

5.8.1.1 Invalid Operation Exception

The Invalid Operation exception is signaled if one or both of the operands are invalid for the operation to be per-
formed. The result, when the exception condition occurs without a precise trap, is a quiet NaN.

These are invalid operations:

• One or both operands are a signaling NaN (except for the non-arithmetic MOVfmt, MOVT.fmt, MOVF.fmt,
MOVN.fmt, and MOVZ fmt instructions).

• Addition or subtraction: magnitude subtraction of infinities, such as (+∞) + (-∞) or (-∞) - (-∞).

• Multiplication: 0 × ∞, with any signs.

• Division: 0/0 or ∞/∞, with any signs.

• Square root: An operand of less than 0 (-0 is a valid operand value).

• Conversion of a floating point number to a fixed point format when either an overflow or an operand value of
infinity or NaN precludes a faithful representation in that format.

Table 5.13 Default Result for IEEE Exceptions Not Trapped Precisely

Bit Description Default Action

V Invalid Operation Supplies a quiet NaN.

Z Divide by zero Supplies a properly signed infinity.

U Underflow Supplies a rounded result.

I Inexact Supplies a rounded result. If caused by an overflow without the overflow trap enabled, sup-
plies the overflowed result.

O Overflow Depends on the rounding mode, as shown below.

0 (RN) Supplies an infinity with the sign of the intermediate result.

1 (RZ) Supplies the format’s largest finite number with the sign of the intermediate result.

2 (RP) For positive overflow values, supplies positive infinity. For negative overflow values, supplies
the format’s most negative finite number.

3 (RM) For positive overflow values, supplies the format’s largest finite number. For negative over-
flow values, supplies minus infinity.
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• Some comparison operations in which one or both of the operands is a QNaN value. (The detailed definition of
the compare instruction, C.cond.fmt, in Volume II has tables showing the comparisons that do and do not signal
the exception.)

5.8.1.2 Division By Zero Exception

An implemented divide operation signals a Division By Zero exception if the divisor is zero and the dividend is a
finite nonzero number. The result, when no precise trap occurs, is a correctly signed infinity. Divisions (0/0) and (∞/0)
do not cause the Division By Zero exception. The result of (0/0) is an Invalid Operation exception. The result of (∞/0)
is a correctly signed infinity.

5.8.1.3 Underflow Exception

This section describes IEEE standard compliant underflow exception handling, desired when FCSR.FS=0. Some
implementations may require software assistance to accomplish this, via the Unimplemented Operation Exception
handler. See the next section, 5.8.1.4, for Alternate Flush to Zero Underflow Handling, obtained by setting
FCSR.FS=1, which may be faster on some implementations.

Two related events contribute to underflow:

• Tininess: the creation of a tiny nonzero result between ±2E_min which, because it is tiny, may cause some other
exception later such as overflow on division

• Loss of accuracy: the extraordinary loss of accuracy during the approximation of such tiny numbers by denor-
malized numbers

Tininess: The IEEE standard allows choices in detecting these events, but requires that they be detected in the same
manner for all operations. The IEEE standard specifies that “tininess” may be detected at either of these times:

• After rounding, when a nonzero result computed as though the exponent range were unbounded would lie strictly

between ±2E_min

• Before rounding, when a nonzero result computed as though both the exponent range and the precision were

unbounded would lie strictly between ±2E_min

The MIPS architecture specifies that tininess be detected after rounding.

Loss of Accuracy: The IEEE standard specifies that loss of accuracy may be detected as a result of either of these
conditions:

• Denormalization loss, when the delivered result differs from what would have been computed if the exponent
range were unbounded

• Inexact result, when the delivered result differs from what would have been computed if both the exponent range
and precision were unbounded

The MIPS architecture specifies that loss of accuracy is detected as inexact result.

Signalling an Underflow: When an underflow trap is not enabled, underflow is signaled only when both tininess and

loss of accuracy have been detected. The delivered result might be zero, denormalized, or ±2E_min.
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When an underflow trap is enabled (through the FCSR Enable field bit), underflow is signaled when tininess is
detected regardless of loss of accuracy.

5.8.1.4 Alternate Flush to Zero Underflow Handling

Previous section 5.8.1.3 “Underflow Exception” describes IEEE standard compliant underflow exception handling,
desired when FCSR.FS=0. The current section describes Alternate Flush to Zero Underflow Handling, obtained by
setting FCSR.FS=1,which never requires the Unimplemented Operation Exception handler to handle subnormal
results, and which may be faster on some implementations even if software exception handler assistance is not
required.

When the FCSR.FS is set:

Results: Every tiny non-zero result is replaced with zero of the same sign.

Inputs: Prior to Release 5 it is implementation dependent whether subnormal operand values are flushed to zero
before the operation is carried out. As of Release 5 every input subnormal value is replaced with zero of the same
sign.

Exceptions: Because the FCSR.FS bit flushes subnormal results to zero, the Unimplemented Operation Exception
will never be produced for this reason. All the other floating point exceptions are signaled according to the new values
of the operands or the results. In addition, when the FCSR.FS bit is set:

• Tiny non-zero results are detected before rounding2. Flushing of tiny non-zero results causes Inexact and Under-
flow Exceptions to be signaled.

• Flushing of subnormal input operands in all instructions except comparisons causes Inexact Exception to be sig-
naled.

• For floating-point comparisons, the Inexact Exception is not signaled when subnormal input operands are
flushed.

• Inputs to non-arithmetic floating-point instructions are never flushed.

Should the alternate exception handling attributes of the IEEE Standard for Floating-Point Arithmetic 754TM-2008,
Section 8 be desired, the FCSR.FS bit should be zero, the Underflow Exception should be enabled and a trap handler
should be provided to carry out the execution of the alternate exception handling attributes.

5.8.1.5 Overflow Exception

An Overflow exception is signaled when the magnitude of a rounded floating point result, were the exponent range
unbounded, is larger than the destination format’s largest finite number.

When no precise trap occurs, the result is determined by the rounding mode and the sign of the intermediate result.

5.8.1.6 Inexact Exception

An Inexact exception is signaled if one of the following occurs:

• The rounded result of an operation is not exact

2. Tiny non-zero results that would have been normal after rounding are flushed to zero.
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• The rounded result of an operation overflows without an overflow trap

5.8.1.7 Unimplemented Operation Exception

The Unimplemented Operation exception is a MIPS defined exception that provides software emulation support. This
exception is not IEEE-compliant.

The MIPS architecture is designed so that a combination of hardware and software may be used to implement the
architecture. Operations that are not fully supported in hardware cause an Unimplemented Operation exception so
that software may perform the operation.

There is no Enable bit for this condition; it always causes a trap. After the appropriate emulation or other operation is
done in a software exception handler, the original instruction stream can be continued.

5.8.1.8 Non-Arithmetic Instructions

Some FPU conversion and FPU Formatted Operand-Value Move instructions (see next section) do not perform float-
ing-point arithmetic operations on their input operands. For that reason, such instructions do not generate IEEE arith-
metic exceptions. These instructions include MOV.fmt, MOVF.fmt, MOVT fmt, MOVZ.fmt, MOVN fmt, PLL.PS,
PLU.PS, PUL.PS, PUU.PS, CVT.S.PU, CVT.PS.S, CVT.S.PL.

5.9 FPU Instructions

The FPU instructions comprise the following functional groups:

• Data Transfer Instructions

• Arithmetic Instructions

• Conversion Instructions

• Formatted Operand-Value Move Instructions

• Conditional Branch Instructions

• Miscellaneous Instructions

5.9.1 Data Transfer Instructions

The FPU has two separate register sets: coprocessor general registers and coprocessor control registers. The FPU has
a load/store architecture; all computations are done on data held in coprocessor general registers. The control registers
are used to control FPU operation. Data is transferred between registers and the rest of the system with dedicated
load, store, and move instructions. The transferred data is treated as unformatted binary data; no format conversions
are performed, and therefore no IEEE floating point exceptions can occur.
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The supported transfer operations are listed in Table 5.14.

5.9.1.1 Data Alignment in Loads, Stores, and Moves

All coprocessor loads and stores operate on naturally-aligned data items. An attempt to load or store to an address that
is not naturally aligned for the data item causes an Address Error exception. Regardless of byte-ordering (the endian-
ness), the address of a word or doubleword is the smallest byte address in the object. For a big-endian machine, this is
the most-significant byte; for a little-endian machine, this is the least-significant byte (endianness is described in
“Byte Ordering and Endianness” on page 37).

5.9.1.2 Addressing Used in Data Transfer Instructions

The FPU has loads and stores using the same register+offset addressing as that used by the CPU. Moreover, for the
FPU only, there are load and store instructions using register+register addressing.

Tables 5.15 through 5.17 list the FPU data transfer instructions.

Table 5.14 FPU Data Transfer Instructions

Transfer Direction Data Transferred

FPU general reg ↔ Memory Word/doubleword load/store

FPU general reg ↔ CPU general reg Word/doubleword move

FPU control reg ↔ CPU general reg Word move

Table 5.15 FPU Loads and Stores Using Register+Offset Address Mode

Mnemonic
Instruction

Defined in MIPS ISA

LDC1 Load Doubleword to Floating Point microMIPS32

LWC1 Load Word to Floating Point microMIPS32

SDC1 Store Doubleword to Floating Point microMIPS32

SWC1 Store Word to Floating Point microMIPS32

Table 5.16 FPU Loads and Using Register+Register Address Mode

Mnemonic Instruction Defined in MIPS ISA

LDXC1 Load Doubleword Indexed to Floating Point  microMIPS32

LUXC1 Load Doubleword Indexed Unaligned to Floating Point  microMIPS32

LWXC1 Load Word Indexed to Floating Point microMIPS32

SDXC1 Store Doubleword Indexed to Floating Point microMIPS32

SUXC1 Store Doubleword Indexed Unaligned to Floating Point microMIPS32

SWXC1 Store Word Indexed to Floating Point microMIPS32

Table 5.17 FPU Move To and From Instructions

Mnemonic Instruction Defined in MIPS ISA

CFC1 Move Control Word From Floating Point microMIPS32

CTC1 Move Control Word To Floating Point microMIPS32
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5.9.2 Arithmetic Instructions

Arithmetic instructions operate on formatted data values. The results of most floating point arithmetic operations
meet the IEEE standard specification for accuracy—a result is identical to an infinite-precision result that has been
rounded to the specified format, using the current rounding mode. The rounded result differs from the exact result by
less than one unit in the least-significant place (ULP).

FPU IEEE-approximate arithmetic operations are listed in Table 5.18.

Two operations, Reciprocal Approximation (RECIP) and Reciprocal Square Root Approximation (RSQRT), may be
less accurate than the IEEE specification:

• The result of RECIP differs from the exact reciprocal by no more than one ULP.

DMFC1 Doubleword Move From Floating Point microMIPS64

DMTC1 Doubleword Move To Floating Point microMIPS64

MFC1 Move Word From Floating Point microMIPS32

MFHC1 Move Word from High Half of Floating Point Register microMIPS32

MTC1 Move Word To Floating Point microMIPS32

MTHC1 Move Word to High Half of Floating Point Register microMIPS32

Table 5.18 FPU IEEE Arithmetic Operations

Mnemonic Instruction Defined in MIPS ISA

ABS fmt Floating Point Absolute Value
(Arithmetic if FIRHas2008=0 or FCSRABS2008=0)

microMIPS32

ABS fmt (PS) Floating Point Absolute Value (Paired Single)
(Arithmetic if FIRHas2008=0 or FCSRABS2008=0)

microMIPS32

ADD fmt Floating Point Add microMIPS32

ADD fmt (PS) Floating Point Add (Paired Single) microMIPS32

C.cond fmt Floating Point Compare microMIPS32

C.cond fmt (PS) Floating Point Compare (Paired Single) microMIPS32

DIVfmt Floating Point Divide microMIPS32

MUL.fmt Floating Point Multiply microMIPS32

MUL fmt (PS) Floating Point Multiply (Paired Single) microMIPS32

NEG fmt Floating Point Negate
(Arithmetic if FIRHas2008=0 or FCSRABS2008=0)

microMIPS32

NEG.fmt (PS) Floating Point Negate (Paired Single)
(Arithmetic if FIRHas2008=0 or FCSRABS2008=0)

microMIPS32

SQRT fmt Floating Point Square Root microMIPS32

SUB fmt Floating Point Subtract microMIPS32

SUB fmt (PS) Floating Point Subtract (Paired Single) microMIPS32

Table 5.17 FPU Move To and From Instructions (Continued)

Mnemonic Instruction Defined in MIPS ISA
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• The result of RSQRT differs from the exact reciprocal square root by no more than two ULPs.

Within these error limits, the results of these instructions are implementation specific.

A list of FPU-approximate arithmetic operations is given in Table 5.19..

Four compound-operation instructions perform variations of multiply-accumulate—that is, multiply two operands,
accumulate the result to a third operand, and produce a result. These instructions are listed in Table 5.20.

Arithmetic and rounding behavior: The product is rounded according to the current rounding mode prior to the
accumulation. The accumulated result is also rounded. This model meets the IEEE-754-1985 accuracy specification;
the result is numerically identical to an equivalent computation using a sequence of multiply, add/subtract, or negate
instructions. Similarly, exceptions and flags behave as if the operation was implemented with a sequence of multiply,
add/subtract and negate instructions. This behavior is often known as “Non-Fused”.

Table 5.20 lists the FPU Multiply-Accumulate arithmetic operations.

5.9.3 Conversion Instructions

These instructions perform conversions between floating point and fixed point data types. Each instruction converts
values from a number of operand formats to a particular result format. Some conversion instructions use the rounding
mode specified in the Floating Control/Status register (FCSR), while others specify the rounding mode directly.
Tables 5.21 and 5.22 list the FPU conversion instructions according to their rounding mode.

Table 5.19 FPU-Approximate Arithmetic Operations

Mnemonic Instruction Defined in MIPS ISA

RECIP.fmt Floating Point Reciprocal Approximation microMIPS32

RSQRT fmt Floating Point Reciprocal Square Root Approximation microMIPS32

Table 5.20 FPU Multiply-Accumulate Arithmetic Operations

Mnemonic Instruction Defined in MIPS ISA

MADD fmt Floating Point Multiply Add microMIPS32

MADD fmt (PS) Floating Point Multiply Add (Paired Single) microMIPS32

MSUB fmt Floating Point Multiply Subtract microMIPS32

MSUB fmt (PS) Floating Point Multiply Subtract (Paired Single) microMIPS32

NMADD.fmt Floating Point Negative Multiply Add microMIPS32

NMADD fmt (PS) Floating Point Negative Multiply Add (Paired Single) microMIPS32

NMSUB.fmt Floating Point Negative Multiply Subtract microMIPS32

NMSUB fmt (PS) Floating Point Negative Multiply Subtract (Paired Single) microMIPS32

Table 5.21 FPU Conversion Operations Using the FCSR Rounding Mode

Mnemonic
Instruction

Defined in MIPS ISA

CVT.D fmt Floating Point Convert to Double Floating Point microMIPS32
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5.9.4 Formatted Operand-Value Move Instructions

These instructions all move formatted operand values among FPU general registers. A particular operand type must
be moved by the instruction that handles that type. There are four kinds of move instructions:

• Unconditional move

• Instructions which modify the sign bit (ABS fmt and NEG.fmt when FCSRABS2008=1)

• Conditional move that tests an FPU true/false condition code

• Conditional move that tests a CPU general-purpose register against zero

Conditional move instructions operate in a way that may be unexpected. They always force the value in the destina-
tion register to become a value of the format specified in the instruction. If the destination register does not contain an
operand of the specified format before the conditional move is executed, the contents become UNPREDICTABLE.
(For more information, see the individual descriptions of the conditional move instructions in Volume II.)

These instructions are listed in Tables 5.23 through 5.25.

CVT.L fmt Floating Point Convert to Long Fixed Point microMIPS32

CVT.PS.S Floating Point Convert Pair to Paired Single microMIPS32

CVT.S fmt Floating Point Convert to Single Floating Point microMIPS32

CVT.S fmt (PL, PU) Floating Point Convert to Single Floating Point
(Paired Lower, Paired Upper)

microMIPS32

CVT.W fmt Floating Point Convert to Word Fixed Point microMIPS32

Table 5.22 FPU Conversion Operations Using a Directed Rounding Mode

Mnemonic Instruction Defined in MIPS ISA

CEIL.L.fmt Floating Point Ceiling to Long Fixed Point microMIPS32

CEIL.W.fmt Floating Point Ceiling to Word Fixed Point microMIPS32

FLOOR.L fmt Floating Point Floor to Long Fixed Point microMIPS32

FLOOR.W fmt Floating Point Floor to Word Fixed Point microMIPS32

ROUND.L fmt Floating Point Round to Long Fixed Point microMIPS32

ROUND.W fmt Floating Point Round to Word Fixed Point microMIPS32

TRUNC.L.fmt Floating Point Truncate to Long Fixed Point microMIPS32

TRUNC.W fmt Floating Point Truncate to Word Fixed Point microMIPS32

Table 5.23 FPU Formatted Operand Move Instructions

Mnemonic Instruction Defined in MIPS ISA

ABS fmt Floating Point Absolute Value
(Non-Arithmetic if FCSRABS2008=1)

microMIPS32

Table 5.21 FPU Conversion Operations Using the FCSR Rounding Mode

Mnemonic
Instruction

Defined in MIPS ISA
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5.9.5 Conditional Branch Instructions

The FPU has PC-relative conditional branch instructions that test condition codes set by FPU compare instructions
(C.cond fmt).

All branches have an architectural delay of one instruction. When a branch is taken, the instruction immediately fol-
lowing the branch instruction is said to be in the branch delay slot, and it is executed before the branch to the target
instruction takes place. Conditional branches come in two versions, depending upon how they handle an instruction in
the delay slot when the branch is not taken and execution falls through:

• Branch instructions execute the instruction in the delay slot.

Branch likely instructions do not execute the instruction in the delay slot if the branch is not taken (they are said
to nullify the instruction in the delay slot). The microMIPS architectures do not include any branch likely instruc-
tions. They are listed here only for historical background.

ABS fmt (PS) Floating Point Absolute Value (Paired Single)
(Non-Arithmetic if FCSRABS2008=1)

microMIPS32

MOVfmt Floating Point Move microMIPS32

MOVfmt (PS) Floating Point Move (Paired Single) microMIPS32

NEG fmt Floating Point Negate
(Non-Arithmetic if FCSRABS2008=1)

microMIPS32

NEG.fmt (PS) Floating Point Negate (Paired Single)
(Non-Arithmetic if FCSRABS2008=1)

microMIPS32

Table 5.24 FPU Conditional Move on True/False Instructions

Mnemonic Instruction Defined in MIPS ISA

MOVF fmt Floating Point Move Conditional on FP False microMIPS32

MOVF fmt (PS) Floating Point Move Conditional on FP False
(Paired Single)

microMIPS32

MOVT fmt Floating Point Move Conditional on FP True microMIPS32

MOVT fmt (PS) Floating Point Move Conditional on FP True
(Paired Single)

microMIPS32

Table 5.25 FPU Conditional Move on Zero/Nonzero Instructions

Mnemonic Instruction Defined in MIPS ISA

MOVN fmt Floating Point Move Conditional on Nonzero microMIPS32

MOVN fmt (PS) Floating Point Move Conditional on Nonzero
(Paired Single)

microMIPS32

MOVZ.fmt Floating Point Move Conditional on Zero microMIPS32

MOVZ fmt (PS) Floating Point Move Conditional on Zero
(Paired Single)

microMIPS32

Table 5.23 FPU Formatted Operand Move Instructions

Mnemonic Instruction Defined in MIPS ISA
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The MIPS64 Architecture defines eight condition codes for use in compare and branch instructions. For backward
compatibility with previous revision of the ISA, condition code bit 0 and condition code bits 1 thru 7 are in discontig-
uous fields in FCSR.

Table 5.26 lists the conditional branch FPU instructions;

5.9.6 Miscellaneous Instructions

The MIPS ISA defines various miscellaneous instructions that conditionally move one CPU general register to
another, based on an FPU condition code. It also defines an instruction to align a misaligned pair of paired-single val-
ues (ALNV.PS) and a quartet of instructions that merge a pair of paired-single values (PLL.PS, PLU.PS, PUL.PS,
PUU.PS).

Table 5.27 lists these conditional move instructions.

5.10 Valid Operands for FPU Instructions

The floating point unit arithmetic, conversion, and operand move instructions operate on formatted values with differ-
ent precision and range limits and produce formatted values for results. Each representable value in each format has a
binary encoding that is read from or stored to memory. The binary encodings of the operand formats are described in
Volume II-B: The microMIPS Instruction Set. A conversion instruction specifies the result type in the function field;
the result of other operations is given in the same format as the operands.

Table 5.26 FPU Conditional Branch Instructions

Mnemonic Instruction Defined in MIPS ISA

BC1F Branch on FP False microMIPS32

BC1T Branch on FP True microMIPS32

Table 5.27 CPU Conditional Move on FPU True/False Instructions

Mnemonic Instruction Defined in MIPS ISA

ALNV.PS FP Align Variable microMIPS32

MOVN fmt Move Conditional on FP False microMIPS32

MOVZ.fmt Move Conditional on FP True microMIPS32

PLL.PS Pair Lower Lower microMIPS32

PLU.PS Pair Lower Upper microMIPS32

PUL.PS Pair Upper Lower microMIPS32

PUU.PS Pair Upper Upper microMIPS32

Table 5.28 FPU Operand Formats

Instruction
Mnemonic

Size

Data TypeName Bits

S single 32 Floating point

D double 64 Floating point

W word 32 Fixed point



 Overview of the FPU Instruction Set

99 MIPS® Architecture For Programmers Volume I-B: Introduction to the microMIPS64® Architecture, Revision 5.03

The result of an instruction using operand formats marked U in Table 5.31 is not currently specified by this architec-
ture and causes a Reserved Instruction exception.

L long 64 Fixed point

PS paired single 64 (2x32) Floating point

Table 5.29 Valid Formats for FPU Operations

Mnemonic Operation

Operand Fmt

Float Fixed

S D PS W L

ABS Absolute value • • •

ADD Add • • •

C.cond Floating Point compare • • •

CEIL.L,
(CEIL.W)

Convert to longword (word) fixed point, round
toward +∞

• •

CVT.D Convert to double floating point • • •

CVT.L Convert to longword fixed point • •

CVT.S Convert to single floating point • • •

CVT. PU, PL Convert to single floating point (paired upper,
paired lower)

•

CVT.W Convert to 32-bit fixed point • •

DIV Divide • •

FLOOR.L,
(FLOOR.W)

Convert to longword (word) fixed point, round
toward −∞

• •

MADD.S Multiply-Add Single •

MADD.D Multiply-Add Double •

MADD.PS Multiply-Add Paired-Single •

MOV Move Register • • •

MOVC FP Move conditional on condition • • •

MOVN FP Move conditional on GPR≠zero • • •

MOVZ FP Move conditional on GPR=zero • • •

MSUB.S Multiply-Subtract Single •

MSUB.D Multiply-Subtract Double •

MSUB.PS Multiply-Subtract Paired-Single •

MUL Multiply • • •

NEG Negate • • •

NMADD.S Negative Multiply-Add Single •

NMADD.D Negative Multiply-Add Double •

Table 5.28 FPU Operand Formats

Instruction
Mnemonic

Size

Data TypeName Bits
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5.11 FPU Instruction Formats

An FPU instruction is a single 32-bit word. Instruction Formats are shown in Volume II-B: The microMIPS instruc-
tion set.

NMADD.PS Negative Multiply-Add Paired-Single •

NMSUB.S Negative Multiply-Subtract Single •

NMSUB.D Negative Multiply-Subtract Double •

NMSUB.PS Negative Multiply-Subtract Paired-Single •

PLL, PLU, PUL,
PUU

Pair (Lower Lower, Lower Upper, Upper Lower,
Upper Upper)

•

RECIP Reciprocal Approximation • •

ROUND.L,
(ROUND.W)

Convert to longword (word) fixed point, round
to nearest/even

• •

RSQRT Reciprocal square root approximation • •

SQRT Square Root • •

SUB Subtract • • •

TRUNC.L,
(TRUNC.W)

Convert to longword (word) fixed point, round
toward zero

• •

Key: • − Valid. Blank - not represented in format encoding

Table 5.29 Valid Formats for FPU Operations (Continued)

Mnemonic Operation

Operand Fmt

Float Fixed

S D PS W L
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Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant
changes to this document since its last release. Significant changes are defined as those which you should take note of
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

 Please note: Limitations on the authoring tools make it difficult to place change bars on changes to figures. Change
bars on figure titles are used to denote a potential change in the figure itself.

Revision Date Description

0.95 March 12, 2001 External review copy of reorganized and updated architecture documentation.

1.00 August 29, 2002 Update based on all feedback received:
• Fix bit numbering in FEXR diagram
• Clarify the description of the width of FPRs in 32-bit implementations
• Correct tag on FIR diagram.
• Update the compatibility and subsetting rules to capture the current require-

ments.
• Remove the requirement that a licensee must consult with MIPS Technolo-

gies when assigning SPECIAL2 function fields.

1.90 September 1, 2002 Update the specification with the changes due to Release 2 of the Architecture.
Changes included in this revision are:
• The Coprocessor 1 FIR register was updated with new fields and interpreta-

tions.
• Update architecture and ASE summaries with the new instructions and

information introduced by Release 2 of the Architecture.

2.00 June 8, 2003 Continue the update of the specification for Release 2 of the Architecture.
Changes included in this revision are:
• Correct the revision history year for Revision 1.00 (above). It should be

2002, not 2001.
• Remove NOR, OR, and XOR from the 2-operand ALU instruction table.

2.50 July 1, 2005 Changes in this revision:
• Correct the wording of the hidden modes section (see Section 2.2,

"Compliance and Subsetting").
• Update all files to FrameMaker 7.1.
• Allow shadow sets to be implemented without vectored interrupts or support

for an external interrupt controller. In such an implementation, they are soft-
ware-managed.

2.60 June 25, 2008 • COP3 no longer extendable by customer.
• Section on Instruction fetches added - 1. fetches & endian-ness 2. fetches &

CCA 3. self-modified code

2.61 December 5, 2009 • Fixed paragraph numbering between chapters.
• FPU chapter didn’t make it clear that MADD/MSUB were non-fused.
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3.00 March 25, 2010 • Changes for microMIPS.
• List changes in Release 2.5+ and non-microMIPS changes in Release 3.
• List PRA implementation options.

3.01 December 10, 2010 • Change Security Classification for microMIPS AFP versions.

3.02 March 06, 2011 • There is no persietent interpretation of FPR values between instructions.
The interpretation comes from the instruction being executed.

• Clarification that the PS format availability is solely defined by the FIR.PS
bit.

3.50 September 20,2012 • Mention EVA load, store instructions
• Define Architecture version of UCA.
• IEEE2008, MAC2008, ABS2008, NAN2008 status bits for FPU.
• Mention SegCtl, TLBInv*, EVA in Intro.

5.00 December 14, 2012 • R5 changes - mention MSA and VZ modules
• R5 change - DSP and MT are now modules
• Generated QNAN values - changed to use more common bit patterns

5.01 December 15, 2012 • No technical content change:
• Updated cover for logos
• Updated copyright text.

5.02 April 12, 2013 • R5 changes: FR=1 64-bit FPU register model required is required, if float-
ing point is supported. Section 2.1.2.4 MIPSr5 Architecture. Section 2.2
Compliance and Subsetting. Section 2.8.5 FPU Registers. Chapter 5 Over-
view of the FPU Instruction Set: Section 5.1 Binary Compatibility. Section
5.5 Floating Point egister Types. Section 5.5.1 FPU Register Models.

• R5 change: if any R5 feature, other features must be R5. E.g. if VZ or MSA
is implemented, then if floating point is implemented then FR=1 must be
implemented. Section 2.2 Compliance and Subsetting.

• R5 change retroactive to R3: removed FCSR.MCA2008 bit: no architectural
support for fused multiply add with no intermediate rounding. Section
2.1.2.3 MIPSr3 Architecture. Table 5.4 FIR Register Field Descriptions,
HAS2008 bit. Figure 5-12 FCSR register Format: MAC2008 bit removed.
Section 5.9.2 Arithmetic Instructions: paragraph titled “Arithmetic and
rounding behavior”.

• R5 change: UFR (User mode FR changing): UFR, UNFR, FIR.UFRP,
CTC1 and CFC1 changes. Section 5.6 Floating Point Control Registers
(FCRs) - UFR and UNFR FCR numbers; Figure 5-11 FIR Register Format,
Table 5.6 FIR Register Field Descriptions - UFRP bit; Section 5.6.2 UFR
Register and Section 5.6.3 UNFR Register.

Revision Date Description
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5.03 August 21, 2013 • Resolved inconsistencies with regards to the availability of instructions in
MIPS32r2: MADD fmt family (MADD.S, MADD.D, NMADD.S,
NMADD.D, MSUB.S, MSUB.D, NMSUB,S, NMSUB.D), RECIP fmt fam-
ily (RECIP.S, RECIP.D, RSQRT.S, RSQRT.D), and indexed FP loads and
stores (LWXC1, LDXC1, SWXC1, SDXC1). The appendix section A.2
“Instruction Bit Encoding Tables”, shared between Volume I and Volume II
of the ARM, was updated, in particular the new upright delta ∆ mark is
added to Table A.2 “Symbols Used in the Instruction Encoding Tables”,
replacing the inverse delta marking ∇ for these instructions. Similar updates
made to microMIPS’s corresponding sections. Instruction set descriptions
and pseudocode in Volume II, Basic Instruction Set Architecture, updated.
These instructions are required in MIPS32r2 if an FPU is implemented. .

• Misaligned memory access support for MSA: see Volume II, Appendix B
“Misaligned Memory Accesses”.

• Has2008 is is required as of release 5 - Table 5.4, “FIR Register Descrip-
tions”.

• ABS2008 and NAN2008 fields of Table 5.7 “FCSR RegisterField Descrip-
tions” were optional in release 3 and could be R/W , but as of release 5 are
required, read-only, and preset by hardware.

• FPU FCSR.FS Flush Subnormals / Flush to Zero behaviour is made consis-
tent with MSA behaviour, in MSACSR.FS: Table 5.7, “FCSR Register Field
Descriptions”, updated. New section 5.8.1.4 “Alternate Flush to Zero
Underflow Handling”.

• Volume I, Section 2.2 “Compliance ad Subsetting” noted that the L format
is required in MIPS FPUs, to be consistent with Table 5.4 “FIR Register
Field Definitions” .

• Noted that UFR and UNFR can only be written with the value 0 from
GPR[0]. See section 5.6.5 “User accessible FPU Register model con-
trol (UFR, CP1 Control Register 1)” and section 5.6.5 “User accessi-
ble Negated FPU Register model control (UNFR, CP1 Control
Register 4)”
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