MII—PS

MIPS32® Architecture for Programmers
Volume IV-a: The MIPS16e™ Application-
Specific Extension to the MIPS32®
Architecture

Document Number: M DO00076
Revision 2.63
July 16, 2013

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS Ill, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CorelV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCl, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

alt{ont MOKIISOMNS 720 t2MI-Y Y Siig +2f7Y'S L+l ¢KS alt{meSu 1LLH0I2yR{LISOMI0 OEiSyalzy (2 (KS alt{ont
VOKASOdIST w2y Hico

3 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

Contents

Chapter 1: About ThiS BOOK .o, 10
1.1: TypOgraphiCal CONVENTIONSuuuiiiiiiiieeeee ittt e e e e e e e ettt e et e e e e e e e s e e e nbbbbe e e e eeaaeeeeeaaannnbssaeeeeaaaaaaaaan 10
N R | =1 o I ST U TP PPPPRRPRR 11

R 2 = 1o [=Y PP UPUPRRTSPPPRR 11
G O 0o U 1T g I 4 AT PP TR PPPPRRPRR 11
1.2: UNPREDICTABLE and UNDEFINEDcccoiiiiiiiiiiiiiiie ettt eee e e e sitaa e e e e atbaa e e e s sntaaeeeaenees 11
1.2.2: UNPREDICTABLE ...ttt ettt ettt e e e ettt e e e sttt e e e e st e e e e anne et e e e entteeeeennssaeaaean 11
L.2.2: UNDEFINEDtiiiii ettt ettt ettt e e ettt e e e ettt e e e e e aa bttt e e e e es bt e e e e e anbbeeeeeeanbaeeeeeasbeaaaenas 12
L2 31 UNSTABLE ...ttt ettt e e e ettt e e e ettt e e e e aatb et e e e e esbb e e e e e ansbeeeeeeanbaeeeeessbeaeaenas 12
1.3: Special Symbols in PSeudoCode NOLATIONuuiiiiiiiiieae ettt e e e e e e e e e e eeaeaaeas 12
S o |V (o (=N [a1 (o] g =11 o] o BT P TP PPPRUTTTR 15
Chapter 2: Guide to the INSITUCHION Stcoveiiiiiii e e 16
2.1: Understanding the INStrUCHON FIEIASo.uviiiiiiiii et 16
200 I T 1S3 B o 1 o T 1= o £SO 17
2.1.2: Instruction Descriptive Name and MNEMONIC.uuuiiiaiiiiiiie it 18

0 I o T 0 F= L = o PR 18

2. 1.4 PUIPOSE FIEIA ..ottt et e e ekt e e e et e e et e e as 19
2.1.5: DESCHIPLION FIEIA ...ttt e et e e et e e e et e e e nneeas 19

b I G =) 1o 1o K = o PSP 19
P S O o 1= =i o] N = (o TP RPN 20
2.1.8: EXCEPLIONS FIEI ...ttt e et e e et e e e et e e e nbaeas 20
2.1.9: Programming Notes and Implementation NOtes Fields. ... 21
2.2: Operation Section Notation and FUNCHONSuuiiiiiiiii ettt e s ee e 21
2.2.1: INSruction EXECULION OFOEING . .eetieiiiiieie ittt ettt ettt e ettt e e sttt e e s ettt e e s anbb e e e s annne s 21
2.2.2: PSEUAOCOTE FUNCHONS.t e e ettt e e e e e e e ettt et e e e e e e e e e e et tee e e e e eeeeeeeeeannstnnneeeeeeeens 21
2.3: Op and Function SUDfIEld NOTATION.........oiituiiiieiiii et e et e e s s e ea e 30
S e O 1 1 1 T o SRR 30
Chapter 3: The MIPS16e™ Application-Specific Extension to the MIPS32® Architecture............. 32
3.1: Base ArChiteCture REQUITEMENTSuuuuiiiiiiieeeeie s it e e e e e e e s e e s r e e e e e e e e e s e e b eeeeeeaeeeeseansnsanrrnnreeaeens 32
3.2: Software DeteCtion OF TNE ASEiiiiiiiiiiiee et e e ettt e e e sttt e e e et e e e e arareee e 32
3.3: Compliance and SUDSEIING........coo e e e e e e e e e e e s s s e reeeaaee e e s e a e aaaes 32
3.2 IMIPSLBE OVEIVIEWiiteiee sttt e ettt e ekttt et e e es ettt e 4 skttt e e 4ttt e a4 an bttt e e 4 s bttt e e e e nsb bt e e e e ensee e e e e annbbeeeesannsneaeenn 32
3.5 MIPSLBE ASE FRAIUIEScoiiiiiiiiiit ettt e oottt et e e e a4 e e s bbb e et e e e e e e e e e e anbb b e e e e eeeeas 33
3.6: MIPSLBE REGISIET SOlL...uiiiiiiieiiii i ittt e et e e e et e e et e e e e e e s s s ettt e e eeeaeeeessasa s eaebeeeeeaaeeeeeesaassnntrnannneeeas 33
3.7 MIPSLEE ISA IMOUESeeieeei ittt ettt ettt ettt e e e ettt e e e ettt e e a4kttt e e e anb bt e e e e am bttt e e e e bbe e e e e e anbeeeeeesnbbreeaeaas 35
3.7.1: Modes Available in the MIPS16€ ArChItECIUIEeviiiiiiiiie ettt 35
3.7.2: Defining the ISA MO FIA ...veevviiiiee et e e e e e e e e e e e areaeeeaeeas 35
3.7.3: Switching Between Modes When an EXCEPioN OCCUISuuviiiiiieeeeeeeiiiiiiieiieereeeeeeeeesessennssnsneeeees 35
3.7.4: Using MIPS16e Jump Instructions to SWItch MOAES..........ccuvviiiiiiiieeeee e 36
3.8: JALX, JR, JR.HB, JALR and JALR.HB Operations in MIPS16e and MIPS32 Mode...............cccccuvvvvrennnnn. 36
3.9: MIPS16€ INSIIUCLION SUMIMAITESuviiiieiiiiiiee et ettt e e ettt e e e ettt e e s st e e e e s anbb e e e e e s sbeeeeessnbaeeeessbbreeaenas 37
3.10: MIPS16€ PC-RelatiVe INSLIUCHIONSciiiiiiiiiieiiiiiiee ettt ettt e et e e e st e e e e s sntbe e e e e anbreeaeaas 39
3.11: MIPS16€ EXtENSIDIE INSITUCTIONS .. .ueeiiiiiieiiee ettt ettt e ettt e e e ettt e e e s snba e e e e snbreeeeaas 40
3.12: MIPS16e Implementation-Definable Macro INStrUCLIONSccociiiiiiiiiieee e 41
3.13: MIPS16€e Jump and BranCh INSITUCHIONScciiiiiiiiiiie e e e e e r e e e e e e e s e s s rneeeeaeeas 42

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 4

3.14: MIPS16€ INSIIUCTION FOIMNALSceve et e e e e e e e e e e et e e et e e e et e e e et e e s aa e s s aaneessbaeeseraans 42

3.14.1: [-tyPe INSTFUCHION FOMMAL. ... ettt ettt e e et e e e e e e e e e e e e nnnbb e e e eeeeas 44
3.14.2: RI-type INSTIUCLION FOMMIALueiiiiiiie ettt e e e e e e e s e bbb e eeeeaeeas 44
3.14.3: RR-type INSIUCTION TOIMMALeeiiiiieiiiiiiie e e et e e e e e e e s e eeeeeeeas 44
3.14.4: RRI-type INSrUCTION FOIMMALeiiiiieiiiiii et e e e e e e e eeeaeeeas 44
3.14.5: RRR-type INSIUCHION FOMMAL.ciiiiiiiiiiiitii et e e e e e e e eeeeeeas 44
3.14.6: RRI-A type iNStrUCTION TOIMMALciiiiiiiiiiiiiie ettt e e e e e e e eeeae s 44
3.14.7: Shift INSTIUCION FOMMIAL ...ttt e et r e e e e e e e e e et eeeeeas 44
3.14.8: [8-typPe INSIIUCHION TOMMIAL.eeeiiiiieee ettt e et e e e e e e e s e bbb e e e e eaeeas 44
3.14.9: 18_MOVR32 instruction format (used only by the MOVR32 inStruction)ccccoceeeeeeeeeiiviiiieeeennns 45
3.14.10: 18_MOV32R instruction format (used only by MOV32R iNStruCtion)cccceeeeieieieieeeeeiiiiiiieieenens 45
3.14.11: 18_SVRS instruction format (used only by the SAVE and RESTORE instructions)..................... 45
3.14.12: JAL and JALX INSTrUCION fOMMIAL.......iiiiiiiieieie et e e e e e 45
3.14.13: EXT-1INSTUCTION TOMMAL ...ttt ettt e e e e e e e s e bbb b e e e e eeeeas 45
3.14.14: ASMACRO INSIIUCHION FOMMALoeiiiiiiiiiie et e e e e e e eeeeeeas 45
3.14.15: EXT-RIINSIIUCHON FOFMAL.eeiiiiieiiiiiiitte ettt et e e e e e e e s e e e e eeeeas 45
3.14.16: EXT-RRIINSIIUCION FOMMIALiiiiieeiiiiii ettt e e e e e e e eeeae s 45
3.14.17: EXT-RRI-A INSEUCTION TOMMAL.coiiiiiiiiiiiii ittt e e e e e ee e e e e as 46
3.14.18: EXT-SHIFT INSrUCHON FOIMAL......coiiiiiiiiiiiei et e e e eeaeeas 46
3.14.19: EXT-18 INSLIUCTION TOIMALeeeiiiiieeiii ittt e et e e e e e e e e e eeeeeeeas 46
3.14.20: EXT-18_SVRS instruction format (used only by the SAVE and RESTORE instructions)............. 46
70 Tl 1153 (0 T o I = 1 =t oo Lo 11 o 46
3.16: MIPS16e Instruction Stream Organization and ENAIANNESScocoeieeiiiiiiiiiieeeeeee e 49
3.17: MIPS16e Instruction FEtCh RESIIICHIONScoiiiiiiiiiiei et e e e e e as 50
Chapter 4: The MIPS16e™ ASE INStruction Set.........cccoiiiiii 52
4.1: MIPS16€™ INSIrUCLION DESCIIPTIONSeiieeiiiiiiiee ittt ettt ekt e e st e e st e e e s annee s 52
4.1.1: Pseudocode Functions SPecCific t0 MIPSLBE™oiiiiiiiiii et 52
T O PSP OUPPPRTOPPRPR 53
T O PSP OUPPPRTOPPRPR 54
T O PSP OUPPPRTOPPRPR 55
T O PSP OUPPPRTOPPRPR 56
T O PSP OUPPPRTOPPRPR 57
T O PSP OUPPPRTOPPRPR 58
T O PSP OUPPPRTOPPRPR 59
T O PSP OUPPPRTOPPRPR 60
T O PSP OUPPPRTOPPRPR 61
T O PSP OUPPPRTOPPRPR 62
ADDU .ottt e e e e e ———— e e e ot ———e e e e ot ——ee e e et E et eee e ot te e e e e e aREta e e e e e tbaeeeeeabreaeeeanrraaeeeaas 63
N L SO RU U UPPPRRRPPRRPR 64
F] Y A @1 = { @ RSP RR U UPPPRRPPPPPR 65
2 SO P PRSP 66
2 SO P PRSP 67
2] 1 2SRRI 68
2] 1 2SRRI 69
2 NSRS 70
2 NSRS 71
2 A OSSP PPRPT 72
2 I OSSP 73
2 I OSSP 74
2 N OSSP PPRSP 75
2 N OSSP PPRSP 76
O 1Y O RRPTPRP 77

5 MIPS32® Archi
tecture, Revision

tecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
2.63

L0 | PO TP PP PP PPTPT TP 79
] Y PP P PP PR 80
[1Y O PP PP PPN 82
T e e e e e e e e e e e e e 83
JA L R L e a e e e 84
JALR C e e e e e 85
T K e et e e e e e e e e e e e e e e s 86
T K e et e e e e e e e e e e e e e e s 87
TR e e e e a e e e e 88
TR e e e e a e e e e 89
TR C e e e e e e e e e 90
TR C e e e e e e e e e 91
B e e e e e et e e e e e e e e e et e e e e e e s 92
B e e e e e et e e e e e e e e e et e e e e e e s 93
LB e et e e e e e et e e e e e e e e 94
LB e et e e e e e et e e e e e e e e 95
] o PP PP PP PPN 96
] o PP PP PP PPN 97
LU e e e e e e e e e et e e e e e e e 98
LU e e e e e e e e e et e e e e e e e 99
PO PP PP PPTPPON 100
PO PP PP PPTPPON 101
YOO PP TP PP PTPP PPN 102
YOO PP TP PP PTPP PPN 103
YOO PP TP PP PTPP PPN 104
YOO PP TP PP PTPP PPN 105
YOO PP TP PP PTPP PPN 106
YOO PP TP PP PTPP PPN 107
L | PO PP PO P PPN 108
IVIFLO ettt e e et e e e e e e e et e e e e e e e e 109
VIOV E ettt e e e e oo e e e e e e e e e e et e e e e e e e 110
VIOV E ettt e e e e oo e e e e e e e e e e et e e e e e e e 111
171 PO PP PO P PPN 112
IVIULTU ettt e e e e e e e e e e o bbb e ettt e e e e e e e e e e s bbb e e e e e e e e e e e e e s e aabanne e 113
] PO PP P PPN 114
N[O PO PP OO PPN 115
N[PO PO PPN 116
L] o PP PP PR PP TP 117
RESTORE ...t e e e e e et e e e e e e e e e e e e s e it e e r e e e e e e s 118
RESTORE ...t e e e e e et e e e e e e e e e e e e s e it e e r e e e e e e s 120
S AV E e e e 123
S AV E e e e 125
= TP TP PPTPRTPPTP 129
= TP TP PPTPRTPPTP 130
SDBBP .. e e e e e e 131
S B e e a et 132
S H e e e e e e 133
SH e e e e e e e e a e 134
SH e e e e e e e e a e 135
Y PP PP PR PP TP 136
Y PP PP PPTRPPTPTP 137
I OO PPPTRPTPPTP 138

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 6

] N PRSP 140
] N PRSP 141
1] N SRR 142
1] N SRR 143
1] 1 OSSP RPUPPPR PP 144
S R A e et e e e e e e e et e e et e e e e e e et b e et e et e e e e aa s 145
S R A e et e e e e e e e et e e et e e e e e e et b e et e et e e e e aa s 146
S R AV e e e e e e ettt e e et et e e e e ettt e et e e e eeeeaar s 147
] PP 148
] PP 149
] T SO 150
1 U L PO 151
1) PP 152
1) PP 153
1) PP 154
1) PP 155
1) PP 156
1) PP 157
D = PP TUUPPPPT RPN 158
A L = PRSPPI 159
A = o PP TUUPPPPT RPN 160
APPENAIX A: REVISION HISTOIY ..uuuiiiiiiiiiiiiiitsiiisiititsesssessssssseersssrrseeeerereeae..—e.—..———————————.—————————————————————— 162

7 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

Figures

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 2.9:

Figure 2.10:
Figure 2.11:
Figure 2.12:
Figure 2.13:
Figure 2.14:
Figure 2.15:
Figure 2.16:
Figure 2.17:
Figure 2.18:
Figure 2.19:
Figure 2.20:
Figure 2.21:
Figure 2.22:
Figure 2.23:
Figure 2.24:
Figure 2.25:
Figure 2.26:
Figure 2.27:
Figure 2.28:
Figure 2.29:
Figure 2.30:
Figure 2.31:

Figure 4-1:

Example of INStruCtioN DESCIIPLIONeiiiiiiiiiiii ittt e e e e e e e e e e e e aaeeeeeees 17
Example of INStrUCTION FIEIAS..........uuiiiiiiiiii et e e e e e 18
Example of Instruction Descriptive Name and MNEMONICuuiiiiiiiiiieeaiiiiiiieie e 18
Example of INStrUCTION FOIMAL.........uuiiiiiiiiii ettt e e e e s e e e e e e e e e e e e nnebneeees 18
Example Of INSTIUCTION PUIMDOSEuutiiiiiiiiiee ittt e e e e e e s et e e e e e e e e e e e e e anaebneeees 19
Example of INStruCtionN DESCIIPLIONeiiiiiiiieiii ittt e e e e e e e e e e e aeebeeee s 19
Example of INStruCtioN RESIICIONS.oiiiiiiiiiii et e e e e e e e e eeeeas 20
Example of INStrUCTION OPEIALION.ciiiiiiiiii ittt e e e et e e e e e e e s e beeeeeeeas 20
Example of INStrUCTION EXCEPLION.ciiiiiiiiiiiii ettt e e e e e e e e e e e e eeeeeeeas 20
Example of Instruction Programming NOTESuuiiiiiiiiiiiiiiiiiiiii e 21
COP_LW PSeUAOCOUE FUNCHION .. .uuetittitiieieee e e e e e e e e e e e e e e ettt s e s e s e e s e e e e aeaeaeaeeeeeereenssssennnnes 22
COP_LD PSUAOCOTE FUNCLION.......utuitiiiiiiies s e e e e e e e e e e e e e ettt s e e e s e e e e e e aeeaeaeaeeeeeeeeensnsssnnnnes 22
COP_SW PSeUAOCOUE FUNCHION.uutitieiiieie e e e e e e e e e e e e et s e s e s e e e e e e e aaaeaaeeeeeeeeesnnessrnnanes 22
COP_SD PSeUdOCOUE FUNCLIONuutiiiiiiiiiiie e e e e e e e e e e e e e e e ettt s s s e s e e e e e eaaaaeaeeeeeeeeeeensessrnnanes 23
CoprocessorOperation PSeudOCOde FUNCHIONooiiiiiiiiiiiieee ettt e e e e e 23
AddressTranslation PSEUAOCOAE FUNCHIONuuuiiiiiiiiieiiiiiiieee et e e 23
LoadMemory PSeudoCOde FUNCHIONuuiiiiii et e e e e e e e e e e e e e aeaees 24
StoreMemory PSeUdOCOAE FUNCHON. e e e e e e e e e e e e e e e e e e eeeeeeaerraranaaas 24
Prefetch PSeUdOCOOE FUNCLION.........ui it e et e e e e e e e 25
SyncOperation PSeUdOCOAE FUNCLIONeiiiiiiiiiiiiiiie e e e e e e e 26
ValueFPR PSEUAOCOUE FUNCHON......ciiiiiiiiiitiite ettt e e e e e e e e e st e e e e ee s 26
StoreFPR PS@UAOCOTE FUNCHON ...ttt e e e e e e e e e e e e e e 27
CheckFPException PSeudoCode FUNCHON. ...ttt e e 28
FPConditionCode PSeudocode FUNCHON.........oooiiiiiiiiiie e e e 28
SetFPConditionCode PSeudOCOde FUNCHIONcooiiiiiiiiiiiiiet ettt a e e e e 28
SignalException PSeUdOCOdE FUNCLIONiiiiiiiiiiiiiii et e e e e e 29
SignalDebugBreakpointException Pseudocode FUNCLON...........cccuiiiiiiiiiiiieei e 29
SignalDebugModeBreakpointException Pseudocode FUNCHION...........uuviiiiiiiiiiieiiiiiiiieeieeeee e 29
NullifyCurrentinstruction PSeudoCode FUNCHONccooiiiiiiiiiciicceeeee e aeae e e aa e 30
JumpDelaySIot PSEUAOCOTE FUNCHONuuiiiiiiiiiieii ittt a e e e 30
PolyMult PSEUdOCOTE FUNCLIONcoeiiiiiiiiiiiei sttt s e e e s e e e e e e e e e aeaaaeees 30
Xlat PSEUAOCOTE FUNCHON. ...ttt e e e e e e e et e e e e e e e e e e e e anebneeees 52

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

8

Tables

Table 1.1:
Table 2.1:
Table 3.1:
Table 3.2:
Table 3.3:
Table 3.4:
Table 3.5:
Table 3.6:
Table 3.7:
Table 3.8:
Table 3.9:

Table 3.10:
Table 3.11:
Table 3.12:
Table 3.13:
Table 3.14:
Table 3.15:
Table 3.16:
Table 3.17:
Table 3.18:
Table 3.19:
Table 3.20:
Table 3.21:
Table 3.22:
Table 3.23:
Table 3.24:
Table 3.25:
Table 3.26:
Table 3.27:

9 MIPS32®

Symbols Used in Instruction Operation StatemMENTS........coooiiiiiiiiiiiiii e 12
AccessLength Specifications for LOAUS/STOIESciiiiiiiiiiiiiieee et e e 25
MIPS16€ General-PUrPOSE REQISIEISuiiiiiiiiiiiee ettt ettt e e e e e e eaeaa e e e e e aan 34
MIPS16€ Special-PUurpOSE REGISIEISuiiiiiiiiiiiie ettt e e e e e e e e e e e e e e e eans 34
ISA MOAE Bit ENCOGINGS ...eeiiiiieiieitettttiteee e st e s e s e e e e e e e e e e e e e et ee et eeeeeaete et a e s s e aeaaaaaeaeaeaaaeaeeesesessssssnrnsnnns 35
MIPS16€e Load and Store INSIIUCTIONSooiiiiiiiiieiiiiii ettt 37
MIPS16e Save and ReStOre INSIIUCLIONSccoiuiiiiaiiiiiii ettt 37
MIPS16e ALU Immediate INSIUCTIONSvviiiiiiiiiieiiiie ettt 38
MIPS16e Arithmetic One, Two or Three Operand Register INStrUCHONSccoeiveeriiiiiiiiiiiiiieieeeeeeen 38
MIPS16€ SPECIAl INSIIUCLIONSeeiiiieiiiiiit ettt ettt e e e e e e e e bbbt e e e e e aaeeeaeaaans 38
MIPS16e Multiply and Divide INSIIUCTIONSeeiiiiieiaiiiiiiiiiie ettt e e e e e e e 38

MIPS16e Jump and BranCh INSTIUCTIONSuuiiiiiiiiiaiiiiii et e e 39
MIPS16€ Shift INSTIUCTIONSeettiiiieiieeee ettt e e e e e e bbbt r e et e e e e e e e e b et eeeeeeeeas 39
Implementation-Definable Macro INSIIUCLIONS..........oiiiiiiiiiie e 39
PC-Relative MIPSL16€ INSIIUCLIONScooiiiiiiiiiiiie ettt et e e e e e e e eeeeeee s 39
PC-Relative Base Used for Address CalCulationcc..uuiiiiiiiiiiiiiiiiiie e 40
MIPS16€ EXtensible INSITUCHIONSooiiiiiiiiiiti ettt e e e e e e e e e e ee s 41
MIPS16€ INSIIUCHON FIEIAS ...t e et e e e e e e eeeee s 42
Symbols Used in the Instruction ENcoding TablesS........ccoooii i ee e, 46
MIPS16e Encoding of the Opcode FIeldooiiiiiiiiiii e a7
MIPS16e JAL(X) Encoding Of the X FIeld.........oooiiiiiiieeee e 48
MIPS16e SHIFT Encoding of the f FIeldcooiiiiiieeeee e 48
MIPS16e RRI-A Encoding Of the f FIeld..........oooiiiiiiee e 48
MIPS16e I8 Encoding of the fUNCE FIeld...........ooiiiiiiii e 48
MIPS16e RRR Encoding of the f Field...........oooiiiiiieeee e e 48
MIPS16e RR Encoding of the FUNCE FIeldooorriimieeee e 49
MIPS16e I8 Encoding of the s Field when fUNCI=SVRS ... 49
MIPS16e RR Encoding of the ry Field when funCt=J(AL)R(C)........ccceeeieiiiiiii e 49
MIPS16e RR Encoding of the ry Field when fuNCt=CNVT ... 49

Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-

tecture, Revision 2.63

Chapter 1

About This Book

The MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the
MIPS32® Architecture comes as part of a multi-volume set.

* Volume I-A describes conventions used throughout the document set, and provides an introduction to the
MIPS32® Architecture

* Volume I-B describes conventions used throughout the document set, and provides an introduction to the
microMIPS32™ Architecture

* Volume II-A provides detailed descriptions of each instruction in the MIPS32® instruction set
* Volume II-B provides detailed descriptions of each instruction in the microMIPS32™ instruction set

* Volume III describes the MIPS32® and microMIPS32™ Privileged Resource Architecture which defines an
governs the behavior of the privileged resources included in a MIPS® processor implementation

* Volume IV-a describes the MIPS16e™ Application-Specifi Extension to the MIPS32® Architecture. Beginning
with Release 3 of the Architecture, microMIPS is the preferred solution for smaller code size.

* Volume I'V-b describes the MDMX™ Application-Specific Extension to the MIPS64® Architecture an
microMIPS64™. It is not applicable to the MIPS32® document set nor the microMIPS32™ document set. With
Release 5 of the Architecture, MDMX is deprecated. MDMX and MSA can not be implemented at the same
time.

* Volume I'V-c describes the MIPS-3D® Application-Specific Extension to the MIPS® Architectur

e Volume I'V-d describes the SmartMIPS® Application-Specific Extension to the MIPS32® Architecture and th
microMIPS32™ Architecture .

* Volume I'V-e describes the MIPS® DSP Module to the MIPS® Architecture

* Volume I'V-f describes the MIPS® MT Module to the MIPS® Architecture

e Volume I'V-h describes the MIPS® MCU Application-Specific Extension to the MIPS® Architectur
* Volume I'V-i describes the MIPS® Virtualization Module to the MIPS® Architecture

* Volume I'V-j describes the MIPS® SIMD Architecture Module to the MIPS® Architecture

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fonts in this book.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 10

About This Book

1.1.1 ltalic Text

* isused for emphasis

» isused for bits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmable fields and r gisters), and various floating point instruction formats, such as S, D,
and PS

» is used for the memory access types, such as cached and uncached

1.1.2 Bold Text

* represents a term that is being defined

» isused for bitsand fields that are important from a hardware perspective (for instance, register bits, which are
not programmable but accessible only to hardware)

» isused for ranges of numbers; the range is indicated by an ellipsis. For instance, 5..1 indicates numbers 5 through
1

* isused to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined bel w.

1.1.3 Courier Text

Courier fi ed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the pro-
cessor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions in
a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register). Unpriv-
ileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and unprivileged
software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDI CTABL E results may vary from processor implementation to implementation, instruction to instruction,
or as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause a result to be generated or not. If a result is gener-
ated, it is UNPREDICTABL E. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDI CTABL E results or operations have several implementation restrictions:

* Implementations of operations generating UNPREDICTABL E results must not depend on any data source
(memory or internal state) which is inaccessible in the current processor mode

* UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
is inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

11MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

1.3 Special Symbols in Pseudocode Notation

* UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

+ UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which

there is no exit other than powering down the processor). The assertion of any of the reset signals must restore the
processor to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDI CTABLE values, software may depend on the fact that a sampling of an UNSTABL E value results in a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABLE values have one implementation restriction:

* Implementations of operations generating UNSTABL E results must not depend on any data source (memory or
internal state) which is inaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning
— Assignment
=+ Tests for equality and inequality

I Bit string concatenation

xY A y-bit string formed by Yy copies of the single-bit value X

b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the
binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the de ault base is 10.

Obn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).

Oxn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).

Xy 2 Selection of bits Yy through z of bit string X. Little-endian bit notation (rightmost bit is 0) is used. If y is less
than z this expression is an empty (zero length) bit string.

+ - 2’s complement or floating point arithmetic: addition, subtractio

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 12

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
* X 2’s complement or floating point multiplication (both used for either
div 2’s complement integer division
mod 2’s complement modulo
/ Floating point division
< 2’s complement less-than comparison
> 2’s complement greater-than comparison
< 2’s complement less-than or equal comparison
= 2’s complement greater-than or equal comparison
nor Bitwise logical NOR
Xor Bitwise logical XOR
and Bitwise logical AND
or Bitwise logical OR
not Bitwise inversion
&& Logical (non-Bitwise) AND
<< Logical Shift left (shift in zeros at right-hand-side)
>> Logical Shift right (shift in zeros at left-hand-side)
GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers
GPR[X] CPU general-purpose register X. The content of GPR[(] is always zero. In Release 2 of the Architecture,
GPR[x] is a short-hand notation for SGPR[SRSCltlcgsg, X].
SGPR[s,x] In Release 2 of the Architecture and subsequent releases, multiple copies of the CPU general-purpose regis-
ters may be implemented. SGPR[S,X] refers to GPR set S, register X.
FPR[X] Floating Point operand register X
FCC[C(C] Floating Point condition code CC. FCC[Q] has the same value as COC[1].
FPR[X] Floating Point (Coprocessor unit 1), general register X
CPR[zx,d] Coprocessor unit z general register X, select S
CP2CPR[x] Coprocessor unit 2, general register X
CCR[zX] Coprocessor unit z, control register X
CP2CCR[x] Coprocessor unit 2, control register X
COC[Z] Coprocessor unit z condition signal
Xlat[x] Translation of the MIPS16e GPR number X into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (—Little-Endian, 1 — Big-Endian). Specifies the endianness o
the memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endi-
anness of Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0 — Little-Endian, 1 — Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and is implemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRgg and User mode).

13MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-

tecture, Revision 2.63

1.3 Special Symbols in Pseudocode Notation

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when a linked load occurs and is tested by the conditional store. It is cleared, during other CPU operation,
when a store to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

I, This occurs as a prefix t Operation description lines and functions as a label. It indicates the instruction
I+n:, time during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
I-n: instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
time label of |. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the

instruction time of another instruction. When this happens, the instruction operation is written in sections
labeled with the instruction time, relative to the current instruction |, in which the effect of that pseudocode
appears to occur. For example, an instruction may have a result that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in a section labeled [+1.

The effect of pseudocode statements for the current instruction labelled | +1 appears to occur “at the same
time” as the effect of pseudocode statements labeled | for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for
different instructions that occur “at the same time,” there is no define order. Programs must not depend on a
particular order of evaluation between such sections.

PC The Program Counter value. During the instruction time of an instruction, this is the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction time is determined by assign-
ing a value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16¢ instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.

In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the
restart address into a GPR on a jump-and-link or branch-and-link instruction, or into a Coprocessor 0 register
on an exception. The PC value contains a full 32-bit address all of which are significan during a memory ref-
erence.

ISA Mode In processors that implement the MIPS16e Application Specific Extension or the microMIPS base architec
tures, the ISA Mode is a single-bit register that determines in which mode the processor is executing, as fol-
lows:

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions

1 The processor is executing MIIPS16e or microMIPS
instructions

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on a jump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 phys-

ical address bits were implemented, the size of the physical address space would be 2P ABITS _ 536

FP32RegistersMode | Indicates whether the FPU has 32-bit or 64-bit floatin point registers (FPRs). the FPU has 32 64-bit FPRs
in which 64-bit data types are stored in any FPR.

bytes.

MIPS64 implementations have a compatibility mode in which the processor references the FPRs as if it were
a MIPS32 implementation. In such a case FP32Register M ode is computed from the FR bit in the Status reg-
ister. If this bit is a 0, the processor operates as if it had 32 32-bit FPRs. If this bit is a 1, the processor oper-

ates with 32 64-bit FPRs.

The value of FP32RegistersMode is computed from the FR bit in the Satus register.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 14

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

InstructionInBranchDe- | Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch

laySlot or jump. This condition reflects th dynamic state of the instruction, not the static state. That is, the value is
false if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which
is not executed in the delay slot of a branch or jump.

SignalException(excep- | Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
tion, argument) parameter as an exception-specific a gument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

1.4 For More Information

Various MIPS RISC processor manuals and additional information about MIPS products can be found at the MIPS
URL: http://www mips.com

For comments or questions on the MIPS32® Architecture or this document, send Email to support@mips.com.

15MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

Chapter 2

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical
order in the tables at the beginning of the next chapter.

2.1 Understanding the Instruction Fields

Figure 2.1 shows an example instruction. Following the figure are descriptions of the fields listed be w:
e “Instruction Fields” on page 17

e “Instruction Descriptive Name and Mnemonic” on page 18

* “Format Field” on page 18

e “Purpose Field” on page 19

e “Description Field” on page 19

e “Restrictions Field” on page 19

e “Operation Field” on page 20

e “Exceptions Field” on page 20

* “Programming Notes and Implementation Notes Fields” on page 21

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 16

Guide to the Instruction Set

Figure 2.1 Example of Instruction Description

Instruction Mnemonic and .
Descriptive Name —————> Example Instruction Name EXAMPLE
EXAMPLE
Instruction encoding 31 26 25 21 20 16 15 11 10 6 5 0
e seeciaL [) « o [Exavee
000000 00000 000000
6 5 5 5 5 6

Architecture level at which

instruction was defined/redefined \A

Format: EXAMPLE fd,rs,rt MI1PS32
Assembler format(s) for each /7
definition)
/V Purpose: Example Instruction Name
Short description
To execute an EXAMPLE op.

Symbolic descriptio ——J> Description: GPR[rd] < GPR[r]s exampleop GPR[rt]

Full description of ———————1>> This section describes the operation of the instruction in text, tables, and illustrations. It
instruction operation includes information that would be difficult to encode in the Operation section

Restrictions on instruction > Restrictions:

and operands
This section lists any restrictions for the instruction. This can include values of the instruc-
tion encoding fields such as r gister specifiers, operand alues, operand formats, address
alignment, instruction scheduling hazards, and type of memory access for addressed loca-
tions.

High-level language ——J> Operation:

description of instruction

operation /* This section describes the operation of an instruction in */
/* a high-level pseudo-language. It 1is precise in ways that */
/* the Description section is not, but is also missing */
/* information that is hard to express in pseudocode. */
temp ¢ GPR[rs] exampleop GPR[rt]

GPR[rd] « temp

Exceptions that = Exceptions:
instruction can cause

A list of exceptions taken by the instruction

Notes for programmers — I~ Programming Notes:

Information useful to programmers, but not necessary to describe the operation of the
instruction

Notes for implementors ——J~ [Implementation Notes:

Like Programming Notes, except for processor implementors

2.1.1 Instruction Fields

17MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

2.1 Understanding the Instruction Fields
Fields encoding the instruction word are shown in register form at the top of the instruction description. The follow-
ing rules are followed:

* The values of constant fields and th opcode names are listed in uppercase (SPECIAL and ADD in Figure 2.2).
Constant values in a field are sh wn in binary below the symbolic or hexadecimal value.

e All variable field are listed with the lowercase names used in the instruction description (rs, rt, and rd in Figure
2.2).

» Fields that contain zeros but are not named are unused field that are required to be zero (bits 10:6 in Figure 2.2).
If such fields are set to non-zero alues, the operation of the processor is UNPREDICTABLE.

Figure 2.2 Example of Instruction Fields

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL o ’ 0 ADD
000000 s : 00000 100000
6 5 5 5 5 6

2.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown in Figure
2.3.

Figure 2.3 Example of Instruction Descriptive Name and Mnemonic

Add Word ADD

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally define are
given in the Format field. If the instruction definition as later extended, the architecture levels at which it was
extended and the assembler formats for the extended definitio are shown in their order of extension (for an example,
see C.cond fmt). The MIPS architecture levels are inclusive; higher architecture levels include all instructions in pre-
vious levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the
extended architecture.

Figure 2.4 Example of Instruction Format

Format: ADD fd,rs,rt MIPS32

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields. The architectural | vel at
which the instruction was first defined, for xample “MIPS32” is shown at the right side of the page.

There can be more than one assembler format for each architecture level. Floating point operations on formatted data
show an assembly format with the actual assembler mnemonic for each valid value of the fmt field. or example, the
ADD fmt instruction lists both ADD.S and ADD.D.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 18

Guide to the Instruction Set

The assembler format lines sometimes include parenthetical comments to help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

2.1.4 Purpose Field

The Purpose field g ves a short description of the use of the instruction.

Figure 2.5 Example of Instruction Purpose

Purpose: Add Word

To add 32-bit integers. If an overfl w occurs, then trap.

2.1.5 Description Field

If a one-line symbolic description of the instruction is feasible, it appears immediately to the right of the Description
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation

Figure 2.6 Example of Instruction Description

Description: GPR[rd] <« GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rsto produce a 32-bit
result.

o Ifthe addition results in 32-bit 2’s complement arithmetic overfl w, the destination
register is not modified and an Int ger Overfl w exception occurs.

» If'the addition does not overfl w, the 32-bit result is placed into GPR rd.

The body of the section is a description of the operation of the instruction in text, tables, and figures This description
complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU general-purpose register specified by th
instruction fiel rt. “FPR fs” is the floating point operand r gister specified by the instruction fie fs. “CP1 register
fd” is the coprocessor 1 general register specified by the instruction fie fd. “FCSR” is the floating poin Control /
Status register.

2.1.6 Restrictions Field

The Restrictions field documents a y possible restrictions that may affect the instruction. Most restrictions fall into
one of the following six categories:

* Valid values for instruction fields (for xample, see floating poin ADD fmt)
* ALIGNMENT requirements for memory addresses (for example, see LW)
* Valid values of operands (for example, sece ALNV.PS)

* Valid operand formats (for example, see floating poin ADD fmt)

19MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

2.1 Understanding the Instruction Fields
* Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards
for which some processors do not have hardware interlocks (for example, see MUL).
* Valid memory access types (for example, see LL/SC)

Figure 2.7 Example of Instruction Restrictions

Restrictions:

None

2.1.7 Operation Field

The Operation fiel describes the operation of the instruction as pseudocode in a high-level language notation resem-
bling Pascal. This formal description complements the Description section; it is not complete in itself because many
of the restrictions are either difficult to include in the pseudocode or are omitted for | gibility.

Figure 2.8 Example of Instruction Operation

Operation:

temp < (GPR[rsli;||GPR[rslz; o) + (GPR[rtlsq||GPR[rtls; o)
if temps;, # temps; then
SignalException (IntegerOverflow)
else
GPR[rd] ¢« temp
endif

See 2.2 “Operation Section Notation and Functions” on page 21 for more information on the formal notation used
here.

2.1.8 Exceptions Field

The Exceptions field lists the xceptions that can be caused by Operation of the instruction. It omits exceptions that
can be caused by the instruction fetch, for instance, TLB Refill and also omits exceptions that can be caused by asyn-
chronous external events such as an Interrupt. Although a Bus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship
between load and store instructions and external error indications, like Bus Error, are dependent upon the implemen-
tation.

Figure 2.9 Example of Instruction Exception

Exceptions:

Integer Overfl w

An instruction may cause implementation-dependent exceptions that are not present in the Exceptions section.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 20

Guide to the Instruction Set

2.1.9 Programming Notes and Implementation Notes Fields

The Notes sections contain material that is useful for programmers and implementors, respectively, but that is not
necessary to describe the instruction and does not belong in the description sections.

Figure 2.10 Example of Instruction Programming Notes
Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overfl w.

2.2 Operation Section Notation and Functions

In an instruction description, the Operation section uses a high-level language notation to describe the operation per-
formed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specifi
pseudocode functions are described below.

This section presents information about the following topics:

* “Instruction Execution Ordering” on page 21

* “Pseudocode Functions” on page 21

2.2.1 Instruction Execution Ordering

Each of the high-level language statements in the Operations section are executed sequentially (except as constrained
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific beh vior, or both. These functions are defined in this section, an
include the following:
e “Coprocessor General Register Access Functions” on page 21
e “Memory Operation Functions” on page 23
e “Floating Point Functions” on page 26
e “Miscellaneous Functions™ on page 29

2.2.2.1 Coprocessor General Register Access Functions
Defined coprocessors, xcept for CP0, have instructions to exchange words and doublewords between coprocessor
general registers and the rest of the system. What a coprocessor does with a word or doubleword supplied to it and

how a coprocessor supplies a word or doubleword is define by the coprocessor itself. This behavior is abstracted into
the functions described in this section.

21MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

2.2 Operation Section Notation and Functions

COP_LW

The COP_LW function defines the action ta en by coprocessor z when supplied with a word from memory during a
load word operation. The action is coprocessor-specific. The typical action ould be to store the contents of mem-

word in coprocessor general register rt.

Figure 2.11 COP_LW Pseudocode Function

COP_LW (z, rt, memword)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */
endfunction COP_LW
COP_LD

The COP_LD function defines the action ta en by coprocessor z when supplied with a doubleword from memory
during a load doubleword operation. The action is coprocessor-specific. The typical action ould be to store the con-

tents of memdouble in coprocessor general register rt.
Figure 2.12 COP_LD Pseudocode Function

COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memdouble: 64-bit doubleword value supplied to the coprocessor.

/* Coprocessor-dependent action */
endfunction COP_LD
COP_SW

The COP_SW function defines the action ta en by coprocessor z to supply a word of data during a store word opera-
tion. The action is coprocessor-specific. The typical action ould be to supply the contents of the low-order word in

coprocessor general register rt.
Figure 2.13 COP_SW Pseudocode Function

dataword ¢« COP_SW (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
dataword: 32-bit word value

/* Coprocessor-dependent action */
endfunction COP_SW
COP_SD

The COP_SD function defines the action ta en by coprocessor z to supply a doubleword of data during a store dou-
bleword operation. The action is coprocessor-specific. The typical action ould be to supply the contents of the low-

order doubleword in coprocessor general register rt.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 22

Guide to the Instruction Set

Figure 2.14 COP_SD Pseudocode Function
datadouble ¢« COP_SD (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
datadouble: 64-bit doubleword value
/* Coprocessor-dependent action */

endfunction COP_SD

CoprocessorOperation
The CoprocessorOperation function performs the specified Coprocessor operation

Figure 2.15 CoprocessorOperation Pseudocode Function
CoprocessorOperation (z, cop_fun)

/* z: Coprocessor unit number */
/* cop_fun: Coprocessor function from function field of instruction */

/* Transmit the cop_fun value to coprocessor z */
endfunction CoprocessorOperation

2.2.2.2 Memory Operation Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for a little-endia
ordering this is the least-significant byte

In the Operation pseudocode for load and store operations, the following functions summarize the handling of virtual
addresses and the access of physical memory. The size of the data item to be loaded or stored is passed in the
AccessLength field The valid constant names and values are shown in Table 2.1. The bytes within the addressed unit
of memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined directly
from the AccessLength and the two or three low-order bits of the address.

AddressTranslation

The AddressTranslation function translates a virtual address to a physical address and its cacheability and coherency
attribute, describing the mechanism used to resolve the memory reference.

Given the virtual address VAddr, and whether the reference is to Instructions or Data (lorD), find the correspondin
physical address (pAddr) and the cacheability and coherency attribute (CCA) used to resolve the reference. If the vir-
tual address is in one of the unmapped address spaces, the physical address and CCA are determined directly by the
virtual address. If the virtual address is in one of the mapped address spaces then the TLB or fi ed mapping MMU
determines the physical address and access type; if the required translation is not present in the TLB or the desired
access is not permitted, the function fails and an exception is taken.

Figure 2.16 AddressTranslation Pseudocode Function
(pAddr, CCA) <« AddressTranslation (vAddr, IorD, LorS)

/* pAddr: physical address */
/* CCA: Cacheability&Coherency Attribute, the method used to access caches*/

23MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

2.2 Operation Section Notation and Functions

/* and memory and resolve the reference */

/* vAddr: virtual address */
/* IorD: Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

LoadMemory
The LoadMemory function loads a value from memory.

This action uses cache and main memory as specified in both the Cacheability and Coheren y Attribute (CCA) and
the access (lorD) to fin the contents of AccessLength memory bytes, starting at physical location pAddr. The data is
returned in a fi ed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address
and the AccessLength indicate which of the bytes within MemElem need to be passed to the processor. If the memory
access type of the reference is uncached, only the referenced bytes are read from memory and marked as valid within
the memory element. If the access type is cached but the data is not present in cache, an implementation-specifi Size
and alignment block of memory is read and loaded into the cache to satisfy a load reference. At a minimum, this
block is the entire memory element.

Figure 2.17 LoadMemory Pseudocode Function

MemElem ¢« LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */
/* width is the same size as the CPU general-purpose register, */

/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */

/* respectively. */

/* CCA: Cacheability&CoherencyAttribute=method used to access caches */

/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */

/* pAddr: physical address */
/* vAddr: virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadMemory

StoreMemory
The StoreMemory function stores a value to memory.

The specifie data is stored into the physical location pAddr using the memory hierarchy (data caches and main mem-
ory) as specifie by the Cacheability and Coherency Attribute (CCA). The MemElem contains the data for an aligned,
fi ed-width memory element (a word for 32-bit processors, a doubleword for 64-bit processors), though only the
bytes that are actually stored to memory need be valid. The low-order two (or three) bits of pAddr and the AccessLen-
gth fiel indicate which of the bytes within the MemElem data should be stored; only these bytes in memory will actu-
ally be changed.

Figure 2.18 StoreMemory Pseudocode Function

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 24

Guide to the Instruction Set

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */

/* AccessLength: Length, in bytes, of access */

/* MemElem: Data in the width and alignment of a memory element. */

/* The width is the same size as the CPU general */

/* purpose register, either 4 or 8 bytes, */

/* aligned on a 4- or 8-byte boundary. For a */

/* partial-memory-element store, only the bytes that will be*/
/* stored must be valid.*/

/* pAddr: physical address */

/* VAddr: virtual address */

endfunction StoreMemory

Prefetch
The Prefetch function prefetches data from memory.

Prefetch is an advisory instruction for which an implementation-specific action is ta en. The action taken may
increase performance but must not change the meaning of the program or alter architecturally visible state.

Figure 2.19 Prefetch Pseudocode Function
Prefetch (CCA, pAddr, vAddr, DATA, hint)
/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* pAddr: physical address */
/* vAddr: virtual address */
/* DATA: Indicates that access is for DATA */
/* hint: hint that indicates the possible use of the data */

endfunction Prefetch

Table 2.1 lists the data access lengths and their labels for loads and stores.

Table 2.1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning
DOUBLEWORD 7 8 bytes (64 bits)
SEPTIBYTE 6 7 bytes (56 bits)
SEXTIBYTE 5 6 bytes (48 bits)
QUINTIBYTE 4 5 bytes (40 bits)
WORD 3 4 bytes (32 bits)
TRIPLEBYTE 2 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 bits)
BYTE 0 1 byte (8 bits)

SyncOperation

The SyncOperation function orders loads and stores to synchronize shared memory.

25MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

2.2 Operation Section Notation and Functions

This action makes the effects of the synchronizable loads and stores indicated by stype occur in the same order for all
processors.

Figure 2.20 SyncOperation Pseudocode Function
SyncOperation (stype)
/* stype: Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

2.2.2.3 Floating Point Functions

The pseudocode shown in below specifies h w the unformatted contents loaded or moved to CP1 registers are inter-
preted to form a formatted value. If an FPR contains a value in some format, rather than unformatted contents from a
load (uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).

ValueFPR
The ValueFPR function returns a formatted value from the floating point r gisters.

Figure 2.21 ValueFPR Pseudocode Function

value ¢« ValueFPR (fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */

/* fmt: The format of the data, one of: */
/* s, D, w, L, PS, */

/* OB, QH, */

/* UNINTERPRETED_WORD, */

/* UNINTERPRETED_DOUBLEWORD */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* 1s not known as, for example, in SWC1l and SDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:
valueFPR « FPR[fpr]

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)
if (fprg # 0) then
valueFPR ¢« UNPREDICTABLE

else
valueFPR < FPR[fpr+lls; o || FPRIfprls; o
endif
else
valueFPR « FPR[fpr]
endif

L, PS:
if (FP32RegistersMode = 0) then
valueFPR <« UNPREDICTABLE

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 26

Guide to the Instruction Set

else
valueFPR « FPR[fpr]
endif

DEFAULT:
valueFPR <« UNPREDICTABLE

endcase
endfunction ValueFPR

The pseudocode shown below specifies the ay a binary encoding representing a formatted value is stored into CP1
registers by a computational or move operation. This binary representation is visible to store or move-from instruc-
tions. Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a

different format.

StoreFPR

Figure 2.22 StoreFPR Pseudocode Function

StoreFPR (fpr, fmt, value)

/* fpr: The FPR number */

/* fmt: The format of the data, one of: */
/* s, D, W, L, PS, */

/* OB, QH, */

/* UNINTERPRETED WORD, */

/* UNINTERPRETED_DOUBLEWORD */

/* value: The formattted value to be stored into the FPR */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in LWC1 and LDC1l */

case fmt of
S, W, UNINTERPRETED_WORD:
FPR[fpr] « value

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)
if (fprg # 0) then
UNPREDICTABLE
else
FPR[fpr] < UNPREDICTABLE’? || value;;
FPR[fpr+l] <« UNPREDICTABLE’? || valueg; 3,
endif
else
FPR[fpr] <« value
endif

L, PS:
if (FP32RegistersMode = 0) then
UNPREDICTABLE
else
FPR[fpr] <« value
endif

endcase

27MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

2.2 Operation Section Notation and Functions

endfunction StoreFPR

The pseudocode shown below checks for an enabled floatin point exception and conditionally signals the exception.
CheckFPException
Figure 2.23 CheckFPException Pseudocode Function
CheckFPException ()
/* A floating point exception is signaled if the E bit of the Cause field is a 1 */

/* (Unimplemented Operations have no enable) or if any bit in the Cause field */
/* and the corresponding bit in the Enable field are both 1 */

if | (FCSRy7 = 1) or
((FCSR1g. .15 and FCSRqq_ . 7) # 0))) then
SignalException (FloatingPointException)
endif

endfunction CheckFPException

FPConditionCode
The FPConditionCode function returns the value of a specific floating point condition cod
Figure 2.24 FPConditionCode Pseudocode Function
tf <FPConditionCode (cc)
/* tf: The value of the specified condition code */
/* cc: The Condition code number in the range 0..7 */
if cc = 0 then
FPConditionCode ¢« FCSRj3
else
FPConditionCode ¢ FCSRyg,cc

endif
endfunction FPConditionCode
SetFPConditionCode
The SetFPConditionCode function writes a new value to a specific floating point condition cod

Figure 2.25 SetFPConditionCode Pseudocode Function

SetFPConditionCode(cc, tf)
if cc = 0 then

FCSR ¢« FCSR3; 24 || tf || FCSRyy. g
else
FCSR ¢ FCSR31. 254cc | | tf | | FCSR334cc. .0

endif

endfunction SetFPConditionCode

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 28

Guide to the Instruction Set

2.2.2.4 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

SignhalException
The SignalException function signals an exception condition.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.26 SignalException Pseudocode Function
SignalException (Exception, argument)

/* Exception: The exception condition that exists. */
/* argument: A exception-dependent argument, if any */

endfunction SignalException

SignhalDebugBreakpointException

The SignalDebugBreakpointException function signals a condition that causes entry into Debug Mode from non-
Debug Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.27 SignalDebugBreakpointException Pseudocode Function
SignalDebugBreakpointException ()
endfunction SignalDebugBreakpointException
SignalDebugModeBreakpointException

The SignalDebugModeBreakpointException function signals a condition that causes entry into Debug Mode from
Debug Mode (i.e., an exception generated while already running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.28 SignalDebugModeBreakpointException Pseudocode Function
SignalDebugModeBreakpointException ()
endfunction SignalDebugModeBreakpointException
NullifyCurrentinstruction
The NullifyCurrentInstruction function nullifies the current instruction

The instruction is aborted, inhibiting not only the functional effect of the instruction, but also inhibiting all exceptions
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullificatio
kills the instruction in the delay slot of the branch likely instruction.

29MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

2.3 Op and Function Subfield Notation

Figure 2.29 NullifyCurrentinstruction PseudoCode Function
NullifyCurrentInstruction ()
endfunction NullifyCurrentInstruction

JumpDelaySlot

The JumpDelaySlot function is used in the pseudocode for the PC-relative instructions in the MIPS16e ASE. The
function returns TRUE if the instruction at VAddr is executed in a jump delay slot. A jump delay slot always immedi-
ately follows a JR, JAL, JALR, or JALX instruction.

Figure 2.30 JumpDelaySlot Pseudocode Function
JumpDelaySlot (vAddr)
/* VAddr:Virtual address */
endfunction JumpDelaySlot
PolyMult

The PolyMult function multiplies two binary polynomial coefficients

Figure 2.31 PolyMult Pseudocode Function

PolyMult (x, vy)

temp < 0
for i in 0 .. 31
if x; = 1 then
temp ¢« temp xor (y(31-i)..0 || 0%)
endif
endfor

PolyMult <« temp

endfunction PolyMult
2.3 Op and Function Subfield Notation

In some instructions, the instruction subfield op and function can have constant 5- or 6-bit values. When reference is
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction
op=COP1 and function=ADD. In other cases, a single field has both f ed and variable subfields, so the name con
tains both upper- and lowercase characters.

2.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfield in an instruction format (such as fs, ft, imme-
diate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in upper-
case.

For the sake of clarity, an alias is sometimes used for a variable subfield in the formats of specific instructions. or

example, rs=base in the format for load and store instructions. Such an alias is always lowercase since it refers to a
variable subfield

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 30

Guide to the Instruction Set

Bit encodings for mnemonics are given in Volume I, in the chapters describing the CPU, FPU, MDMX, and MIPS16e
instructions.

See “Op and Function Subfield Notation” on page 30 for a description of the op and function subfields

31MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

Chapter 3

The MIPS16e™ Application-Specific Extension to the
MIPS32® Architecture

This chapter describes the purpose and key features of the MIPS16e™ Application-Specific Extension (ASE) to th
MIPS32® Architecture. The MIPS16e ASE is an enhancement to the previous MIPS16™ ASE which provides addi-
tional instructions to improve the compaction of the code.

3.1 Base Architecture Requirements

The MIPS16e ASE requires the following base architecture support:

* TheMIPS32or MIPS64 Architecture: The MIPS16e ASE requires a compliant implementation of the MIPS32
or MIPS64 Architecture.

3.2 Software Detection of the ASE

Software may determine if the MIPS16e ASE is implemented by checking the state of the CA bit in the Configl CPO
register.

3.3 Compliance and Subsetting

There are no instruction subsets of the MIPS16e ASE to the MIPS64 Architecture — all MIPS16e instructions must
be implemented. Specificall , this means that the original MIPS16 ASE is not an allowable subset of the MIPS16e
ASE. For the MIPS16e ASE to the MIPS32 Architecture, the instructions which require a 64-bit processor are not
implemented and execution of such an instruction must cause a Reserved Instruction exception.

3.4 MIPS16e Overview

The MIPS16e ASE allows embedded designs to substantially reduce system cost by reducing overall memory
requirements. The MIPS16e ASE is compatible with any combination of the MIPS32 or MIPS64 Architectures, and
existing MIPS binaries can be run without modification on a y embedded processor implementing the MIPS16e
ASE.

The MIPS16e ASE must be implemented as part of a MIPS based host processor that includes an implementation of
the MIPS Privileged Resource Architecture, and the other components in a typical MIPS based system.

This volume describes only the MIPS16e ASE, and does not include information about any specific hard are imple-
mentation such as processor-specific details, because these details may ary with implementation. For this informa-

tion, please refer to the specific processor s user manual.

This chapter presents specific information about the foll wing topics:

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 32

The MIPS16e™ Application-Specific Extension to the MIPS32® Architecture

* “MIPS16e ASE Features” on page 33

o “MIPS16e Register Set” on page 33

o “MIPS16e ISA Modes” on page 35

« “JALX, JR, JR.HB, JALR and JALR.HB Operations in MIPS16e and MIPS32 Mode” on page 36
o “MIPS16e Instruction Summaries” on page 37

o “MIPS16e PC-Relative Instructions” on page 39

o “MIPS16e Extensible Instructions” on page 40

o “MIPS16e Implementation-Definable Macro Instructions” on page 41

o “MIPS16e Jump and Branch Instructions” on page 42

o “MIPS16e Instruction Formats™ on page 42

* “Instruction Bit Encoding” on page 46

o “MIPS16e Instruction Stream Organization and Endianness” on page 49

o “MIPS16e Instruction Fetch Restrictions” on page 50
3.5 MIPS16e ASE Features

The MIPS16e ASE includes the following features:

+ allows MIPS16e instructions to be intermixed with existing MIPS instruction binaries

* is compatible with the MIPS32 and MIPS64 instruction sets

* allows switching between MIPS16e and 32-bit MIPS Mode

* supports 8, 16, 32, and 64-bit data types (64-bit only in conjunction with MIPS64)

» defines eight general-purpose r gisters, as well as a number of special-purpose registers

» defines special instructions to increase code density (Extend, PC-relat ve instructions)

The MIPS16e ASE contains some instructions that are available on MIPS64 host processors only. These instructions

must cause a Reserved Instruction exception on 32-bit processors, or on 64-bit processors on which 64-bit operations
have not been enabled.

3.6 MIPS16e Register Set

The MIPS16e register set is listed in Table 3.1 and Table 3.2. This register set is a true subset of the register set avail-
able in 32-bit mode; the MIPS16e ASE can directly access 8 of the 32 registers available in 32-bit mode.

33MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

3.6 MIPS16e Register Set

In addition to the eight general-purpose registers, 0-7, listed in Table 3.1, specific instructions in the MIPS16e AS
reference the stack pointer register (Sp), the return address register (ra), the condition code register (t8), and the pro-
gram counter (PC). Of these, Table 3.1 lists Sp, ra, and t8, and Table 3.2 lists the MIPS16e special-purpose registers,
including PC.

The MIPS16e ASE also contains two move instructions that provide access to all 32 general-purpose registers.

Table 3.1 MIPS16e General-Purpose Registers

MIPS16e 32-Bit MIPS | Symbolic Name
Register Register (From
Encoding! | Encoding? ArchDefs.h)3 Description
0 16 sO General-purpose register
1 17 sl General-purpose register
2 2 v0 General-purpose register
3 3 vl General-purpose register
4 4 a0 General-purpose register
5 5 al General-purpose register
6 6 a2 General-purpose register
7 7 a3 General-purpose register
N/A 24 t8 MIPS16e Condition Code register;
implicitly referenced by the BTEQZ,
BTNEZ, CMP, CMP], SLT, SLTU,
SLTI, and SLTIU instructions
N/A 29 sp Stack pointer register
N/A 31 ra Return address register

1. “0-7” correspond to the register’s MIPS16e binary encoding and show how that encoding
relates to the MIPS registers. “0-7” never refer to the registers, except within the binary
MIPS16e instructions. From the assembler, only the MIPS names ($16, $17, $2, etc.) or the
symbolic names (s0, s1, v0, etc.) refer to the registers. For example, to access register num-
ber 17 in the register file, the programmer references $17 or s1, ven though the MIPS16e
binary encoding for this register is 001.

2. General registers not shown in the above table are not accessible through the MIPS16e
instruction set, except by using the Move instructions. The MIPS16e Move instructions can
access all 32 general-purpose registers.

3. The MIPS16e condition code register is referred to as T, t8, or $24 throughout this docu-
ment, depending on the context. All three names refer to the same physical register.

Table 3.2 MIPS16e Special-Purpose Registers

Symbolic Name Purpose

PC Program counter. The PC-relative Add and Load instruc-
tions can access this register as an operand.

HI Contains high-order word of multiply or divide result.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 34

The MIPS16e™ Application-Specific Extension to the MIPS32® Architecture

Table 3.2 MIPS16e Special-Purpose Registers

Symbolic Name Purpose

LO Contains low-order word of multiply or divide result.

3.7 MIPS16e ISA Modes

This section describes the following:

* the ISA modes available in the architecture, page 35

» the purpose of the ISA Mode field page 35

* how to switch between 32-bit MIPS and MIPS16e modes, page 35
+ the role of the jump instructions when switching modes, page 36

3.7.1 Modes Available in the MIPS16e Architecture

There are two ISA modes defined in the MIPS16e Architecture, as foll ws:
e MIPS 32-bit mode (32-bit instructions)

e MIPS16e mode (16-bit instructions)

3.7.2 Defining the ISA Mode Field

The |SA Mode bit controls the type of code that is executed, as follows:

Table 3.3 ISA Mode Bit Encodings

Encoding Mode
0b0 MIPS 32-bit mode. In this mode, the processor executes
32-bit MIPS instructions.
0bl MIPS16e mode. In this mode, the processor executes
MIPS16¢ instructions.

In MIPS 32-bit mode and MIPS16e mode, the JALX, JR, JALR, JALRC, and JRC instructions can change the |SA
Mode bit, as described in Section 3.7.4, "Using MIPS16e Jump Instructions to Switch Modes".

3.7.3 Switching Between Modes When an Exception Occurs

When an exception occurs (including a Reset exception), the | SA Mode bit is cleared so that exceptions are handled

by 32-bit code.

35MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-

tecture, Revision 2.63

3.8 JALX, JR, JR.HB, JALR and JALR.HB Operations in MIPS16e and MIPS32 Mode

The ISA Mode in which the processor was running at the time that the exception occurred is visible to software as bit
0 of the Coprocessor 0 register in which the restart address is stored (EPC, ErrorEPC, or DEPC). See the descrip-
tion of these instructions in Volume III for a complete description of this process.

After the processor switches to 32-bit mode following a Reset exception, the processor starts execution at the 32-bit
mode Reset exception vector.

3.7.4 Using MIPS16e Jump Instructions to Switch Modes

The MIPS16e application-specific xtension supports procedure calls and returns from both MIPS16e and 32-bit
MIPS code to both MIPS16¢ and 32-bit MIPS code. The following instructions are used:

* The JAL instruction supports calls to the same ISA.

* The JALX instruction supports calls that change the ISA.

* The JALR, JALR.HB and JALRC instructions support calls to either ISA.

* The JR, JR.HB and JRC instructions support returns to either ISA.

The JAL, JALR, JALR.HB, JALRC, and JALX instructions save the | SA Mode bit in bit 0 of the general register con-
taining the return address. The contents of this general register may be used by a future JR, JR.HB, JRC, JALR, or
JALRC instruction to return and restore the ISA Mode.

The JALX instruction in both modes switches to the other ISA (it changes 0b0 — 0bl and Ob1 — 0b0).

The JR, JR.HB, JALR and JALR.HB instructions in both modes load the | SA Mode bit from bit 0 of the general regis-
ter holding the target address. Bit 0 of the general register is not part of the target address; bit 0 of PC is loaded with a
0 so that no address exceptions can occur.

The JRC and JALRC instructions in MIPS16e mode load the |SA Mode bit from bit 0 of the general register holding

the target address. Bit 0 of the general register is not part of the target address; bit 0 of PC is loaded with a 0 so that no
address exceptions can occur.

3.8 JALX, JR, JR.HB, JALR and JALR.HB Operations in MIPS16e and
MIPS32 Mode

The behavior of f ve of the 32-bit MIPS instructions—JALX, JR, JR.HB, JALR, JALR .HB —differs between those
processors that implement MIPS16e and those processors that do not.

In processors that implement the MIPS16e ASE, the fve instructions behave as follows:
* The JALX instruction executes a JAL and switches to the other mode.

* JR,JR.HB, JALR and JALR.HB instructions load the |SA Mode bit from bit 0 of the source register. Bit 0 of PC
is loaded with a 0, and no Address exception can occur when bit 0 of the source register is a 1 (MIPS16e mode).

In CPUs that do not implement the MIPS16e ASE, the fve instructions behave as follows:

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 36

The MIPS16e™ Application-Specific Extension to the MIPS32® Architecture

* JALX instructions cause a Reserved Instruction exception.

* JR,JR.HB, JALR and JALR.HB instructions cause an Address exception on the target instruction fetch when bit
0 of the source register is a 1.

3.9 MIPS16e Instruction Summaries

This section describes the various instruction categories and then summarizes the MIPS16e instructions included in
each category. Extensible instructions are also identified

There are six instruction categories:

* Loadsand Stores—These instructions move data between memory and the GPRs.

+ Saveand Restore—These instructions create and tear down stack frames.

+ Computational—These instructions perform arithmetic, logical, and shift operations on values in registers.
* Jump and Branch—These instructions change the control fl w of a program.

» Special—This category includes the Break and Extend instructions. Break transfers control to an exception han-
dler, and Extend enlarges the immediate field of the n xt instruction.

+ Implemention-Definable M acro I nstructions—This category includes the capability of defining macros tha
are replaced at execution time by a set of 32-bit MIPS instructions, with appropriate parameter substitution.

Tables 3.4 through 3.12 list the MIPS16e instruction set.

Table 3.4 MIPS16e Load and Store Instructions

Extensible Implemented Only on

Mnemonic Instruction Instruction? MIPS64 Processors?
LB Load Byte Yes No
LBU Load Byte Unsigned Yes No
LH Load Halfword Yes No
LHU Load Halfword Unsigned Yes No
LW Load Word Yes No
SB Store Byte Yes No
SH Store Halfword Yes No
SW Store Word Yes No

Table 3.5 MIPS16e Save and Restore Instructions

Extensible Implemented Only on

Mnemonic Instruction Instruction? MIPS64 Processors?
RESTORE Restore Registers and Deallocate Stack Frame Yes No
SAVE Save Registers and SetUp Stack Frame Yes No

37MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

3.9 MIPS16e Instruction Summaries

Table 3.6 MIPS16e ALU Immediate Instructions

Extensible Implemented Only on

Mnemonic Instruction Instruction? MIPS64 Processors?
ADDIU Add Immediate Unsigned Yes No
CMPI Compare Immediate Yes No
LI Load Immediate Yes No
SLTI Set on Less Than Immediate Yes No
SLTIU Set on Less Than Immediate Unsigned Yes No

Table 3.7 MIPS16e Arithmetic One, Two or Three Operand Register Instructions

Extensible Implemented Only on

Mnemonic Instruction Instruction? MIPS64 Processors?
ADD Add Unsigned No No
AND AND No No
CMP Compare No No
MOVE Move No No
NEG Negate No No
NOT Not No No
OR OR No No
SEB Sign-Extend Byte No No
SEH Sign-Extend Halfword No No
SLT Set on Less Than No No
SLTU Set on Less Than Unsigned No No
SUBU Subtract Unsigned No No
XOR Exclusive OR No No
ZEB Zero-extend Byte No No
ZEH Zero-Extend Halfword No No

Table 3.8 MIPS16e Special Instructions

Extensible Implemented Only on

Mnemonic Instruction Instruction? MIPS64 Processors?
BREAK Breakpoint No No
EXTEND Extend No No

Table 3.9 MIPS16e Multiply and Divide Instructions

Extensible Implemented Only on

Mnemonic Instruction Instruction? MIPS64 Processors?
DIV Divide No No
DIVU Divide Unsigned No No
MFHI Move From HI No No
MFLO Move From LO No No
MULT Multiply No No
MULTU Multiply Unsigned No No

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

38

The MIPS16e™ Application-Specific Extension to the MIPS32® Architecture

Table 3.10 MIPS16e Jump and Branch Instructions

Extensible Implemented Only on

Mnemonic Instruction Instruction? MIPS64 Processors?
B Branch Unconditional Yes No
BEQZ Branch on Equal to Zero Yes No
BNEZ Branch on Not Equal to Zero Yes No
BTEQZ Branch on T Equal to Zero Yes No
BTNEZ Branch on T Not Equal to Zero Yes No
JAL! Jump and Link No No
JALR Jump and Link Register No No
JALRC Jump and Link Register Compact No No
JALX1 Jump and Link Exchange No No
JR Jump Register No No
JRC Jump Register Compact No No

1. The JAL and JALX instructions are not extensible because they are inherently 32-bit instructions.

Table 3.11 MIPS16e Shift Instructions

Extensible Implemented Only on

Mnemonic Instruction Instruction? MIPS64 Processors?
SRA Shift Right Arithmetic Yes No
SRAV Shift Right Arithmetic Variable No No
SLL Shift Left Logical Yes No
SLLV Shift Left Logical Variable No No
SRL Shift Right Logical Yes No
SRLV Shift Right Logical Variable No No

Table 3.12 Implementation-Definable Macro Instructions

Extensible Implemented Only on
Mnemonic Instruction Instruction? MIPS64 Processors?

ASMACRO Implementation-Definable Macro Instruction Yes! No

1. The Implementation-Definable Macro Instructions are a ways extended instructions. There are no 16-bit
macro instruction

3.10 MIPS16e PC-Relative Instructions

The MIPS16e ASE provides PC-relative addressing for four instructions, in both extended and non-extended ver-
sions. The two instructions are listed in Table 3.13.

Table 3.13 PC-Relative MIPS16e Instructions

Instruction Use
Load Word LW rx, offset(pc)
Add Immediate Unsigned ADDIU rx, pc, immediate

39MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

3.11 MIPS16e Extensible Instructions
These instructions use the PC value of either the PC-relative instruction itself or the PC value for the preceding
instruction as the base for address calculation.

Table 3.14 summarizes the address calculation base used for the various instruction combinations.

Table 3.14 PC-Relative Base Used for Address Calculation

Instruction BasePC Value

Non-extended PC-relative instruction not in Jump Address of instruction
Delay Slot

Extended PC-relative instruction Address of Extend instruction

Non-extended PC-relative instruction in JR or JALR Address of JR or JALR instruction

jump delay slot
Non-extended PC-relative instruction in JAL or Address of first AL or JALX half-
JALX jump delay slot word

The JRC and JALRC instructions do not have delay slots and do not affect the PC-relative base address calculated for
an instruction immediately following the JRC or JALRC.

In the descriptive summaries of PC-relative instructions, located in Tables 3.13 and 3.14, the PC value used as the
basis for calculating the address is referred to as the BasePC value. The BasePC equals the Exception Program
Counter (EPC) value associated with the PC-relative instruction.

3.11 MIPS16e Extensible Instructions

This section explains the purpose of an Extend instruction, how to use it, and which MIPS16e instructions are exten-
sible.

The Extend instruction allows you to enlarge the immediate field of a y MIPS16¢ instruction whose immediate fiel
is smaller than the immediate fiel in the equivalent 32-bit MIPS instruction. The Extend instruction is a prefi which
modifie the behavior of the instruction which follows it, and must always immediately precede the instruction whose
immediate fiel you want to extend. Every extended instruction uses 4 bytes in program memory instead of 2 bytes (2
bytes for Extend and 2 bytes for the instruction being extended), and it can cross a word boundary. The PC value of an
extended instruction is the address of the halfword containing the Extend.

For example, the following MIPS16e instruction contains a fve-bit immediate.

LW ry, offset(rx)

The immediate expands to 16 bits (0b000000000 || offset || 0b00) before execution in the pipeline. This allows 32 dif-
ferent offset values of 0, 4, 8, and up through 124, in increments of 4. Once extended, this instruction can hold any of
the 65,536 values in the range -32768 through 32767 that are also available with the 32-bit MIPS version of the LW
instruction.

Shift instructions are extended to unsigned immediates of 5 bits. All other immediate instructions expand to either
signed or unsigned 16-bit immediates. There is only one exception which can be extended to a 15-bit signed immedi-
ate:

ADDIU ry, rx, immediate

Unlike most other extended instructions, an extended RESTORE or SAVE instruction provides both a larger frame
size adjustment, and the ability to save and restore more registers than the non-extended version.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 40

The MIPS16e™ Application-Specific Extension to the MIPS32® Architecture

Once both halves of an extended instruction have been fetched and the instruction starts fl wing down the pipeline,
the instruction is treated as a single entity, not as independent instructions. This implies that an exception or interrupt
never reports an EPC value between the EXTEND and the instruction being extended, and that EJTAG single step
treats an instruction step as the execution of the entire extended instruction, not the components.

There is only one restriction on the location of extensible instructions: They may not be placed in jump delay slots.
Doing so causes UNPREDICTABLE results.

Table 3.15 lists the MIPS16e extensible instructions, the size of their immediate, and how much each immediate can
be extended when preceded with an Extend instruction. Executing an instruction which is not extensible (those which
are maked No in the “Extensible Instruction?” column of Table 3.4 through Table 3.12, including the EXTEND
instruction itself) must cause a Reserved Instruction Exception.

Table 3.15 MIPS16e Extensible Instructions

Mnemonic MIPS16e Instruction MIPS16e Immediate Extended Immediate
ADDIU Add Immediate Unsigned 4 (ADDIU ry, rx, imm) 15 (ADDIU ry, rx, imm)
8 16
B Branch Unconditional 11 16
BEQZ Branch on Equal to Zero 8 16
BNEZ Branch on Not Equal to Zero 8 16
BTEQZ Branch on T Equal to Zero 8 16
BTNEZ Branch on T Not Equal to Zero 8 16
CMPI Compare Immediate 8 16
LB Load Byte 5 16
LBU Load Byte Unsigned 5 16
LD Load Doubleword 5 16
LH Load Halfword 5 16
LHU Load Halfword Unsigned 5 16
LI Load Immediate 8 16
LW Load Word 5 (or 8) 16
RESTORE Restore Registers and Deallocate Stack 4 8
Frame
SAVE Save Registers and Set Up Stack Frame 4 8
SB Store Byte 5 16
SH Store Halfword 5 16
SLL Shift Left Logical 3 5
SLTI Set on Less Than Immediate 8 16
SLTIU Set on Less Than Immediate Unsigned 8 16
SRA Shift Right Arithmetic 3 5
SRL Shift Right Logical 3 5
SW Store Word 5 (or 8) 16

3.12 MIPS16e Implementation-Definable Macro Instructions

Previous revisions of the MIPS16e ASE assumed that most MIPS16e instructions mapped to a single 32-bit MIPS
instruction. However, there are several MIPS16e instructions for which there is no corresponding 32-bit MIPS

41MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

3.13 MIPS16e Jump and Branch Instructions

instruction equivalent. The addition of the SAVE and RESTORE instructions introduced the possibility that a single
MIPS16e instruction expand to a fi ed sequence of multiple 32-bit instructions. The obvious extension to this capa-
bility is the ability to defin a Macro capability in which a single extended MIPS16e instruction can be expanded into
a sequence of 32-bit MIPS instructions, with parameter substitution done between field of the macro instruction and
fields of the xpanded instructions. This is the concept behind the addition of Implementation-Definable Macr
Instructions to the MIPS16e ASE.

The term “Implementation-Definable” refers to the act that the macro definitions are created when the processor i
implemented, rather than via a programmable mechanism that is available to the user of the processor. The macro def-
initions, expansions, and parameter substitutions are defined when the processor is implemented, and is therefor
implementation-dependent. The programmer visible representation of this macro capability is provided by the
ASMACRO (for Application Specific Macro) instruction, as defined in the xt chapter.

3.13 MIPS16e Jump and Branch Instructions

Jump and Branch instructions change the control flow of a program.

The JAL, JALR, JALX, and JR instructions occur with a one-instruction delay. That is, the instruction immediately
following the jump is always executed, whether or not the jump is taken.

Branch instructions and the JALRC and JRC jump instructions do not have a delay slot. If a branch or jump is taken,
the instruction immediately following the branch or jump is never executed. If the branch or jump is not taken, the

instruction following the branch or jump is always executed.

Branch, jump and extended instructions may not be placed in jump delay slots. Doing so causes UNPREDICTABLE
results.

3.14 MIPS16e Instruction Formats

This section defines th format' for each MIPS16¢ instruction type and includes formats for both normal and
extended instructions.

Every MIPS16¢ instruction consists of 16 bits aligned on a halfword boundary. All variable subfield in an instruction
format (such as rx, ry, rz, and immediate) are shown in lowercase letters.

The two instruction subfield op and funct have constant values for specific instructions. These alues are given in
their uppercase mnemonic names. For example, op is LB in the Load Byte instruction; op is RRR and function is

ADDU in the Add Unsigned instruction.

Definitions for the fields that appear in the instruction formats are summarized Table 3.16.

Table 3.16 MIPS16e Instruction Fields

Field Definition
funct or £ Function fiel
immediate 4-, 5-, 8-, or 11-bit immediate, branch displacement, or
or imm address displacement
op 5-bit major operation code

1. Asused here, the term format means the layout of the MIPS16e¢ instruction word.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 42

The MIPS16e™ Application-Specific Extension to the MIPS32® Architecture

X 3-bit source or destination register specifie
ry 3-bit source or destination register specifie
1Z 3-bit source or destination register specifie
sa 3- or 5-bit shift amount

43MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

3.14.1

3.14.2

3.14.3

3.14.4

3.14.5

3.14.6

3.14.7

3.14.8

I-type instruction format

3.14 MIPS16e Instruction Formats

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| op | immediate
RI-type instruction format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| op | X immediate
RR-type instruction format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RR X ry! funct

1. When the funct field is eithe CNVT or J(AL)R(C), the ry field encodes
sub-function to be performed rather than a register number

RRI-type instruction format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| op | X ry immediate
RRR-type instruction format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| RRR | X ry rz | f |
RRI-A type instruction format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| RRI-A | X ry | f | immediate
Shift instruction format
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SHIFT rx ry sal f

1. The three-bit sa field can encode a shift amount of 0 through 7. 0 bit shift
(NOPs) are not possible; a 0 value translates to a shift amount of 8.

I8-type instruction format

15 14 13 12 11 10 9

8 7 6

5 4 3 2 1 0

| 18 |

funct

immediate

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63

44

The MIPS16e™ Application-Specific Extension to the MIPS32® Architecture

3.14.9 18_MOVR32 instruction format (used only by the MOVR32 instruction)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| I8 | funct | vy | 132[4:0] |

3.14.10 18_MOV32R instruction format (used only by MOV32R instruction)

15 14 13 12 11 10 9 & 7 6 5 4 3 2 1 0

I8 funct 132[2:0,4:3]" 1z

1. The r32 field uses special bit encoding. or example, the encoding for $7
(00111) is 11100 in the r32 field

3.14.11 18_SVRS instruction format (used only by the SAVE and RESTORE instruc-
tions)

15 14 13 12 11 10 9 8 7 6 5 4 3 0
| 18 | SVRS | s | ra | sO| sl | framesize

3.14.12 JAL and JALX instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 & 7 6 5 4 3 2 1 0
JAL x!| immediate 20:16 immediate 25:21 immediate 15:0

1. If x=0, instruction is JAL. If x=1, instruction is JALX.
3.14.13 EXT-l instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| EXTEND | immediate 10:5 | immediate 1511 op | oofofo]o]o] immediate 4:0

3.14.14 ASMACRO instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| EXTEND | select | p4 | p3 RRR 2 | pl | p0

3.14.15 EXT-RI instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| EXTEND | immediate 10:5 | immediate 15:11 op rx | 0| 0| 0| immediate 4:0

3.14.16 EXT-RRI instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| EXTEND | immediate 10:5 | immediate 15:11 op x| oy | immediate 4:0

45MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

3.15 Instruction Bit Encoding

3.14.17 EXT-RRI-A instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| EXTEND | immediate 10:4 | imm 14:11 RRI-A rx | ry | f| imm 3:0

3.14.18 EXT-SHIFT instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EXTEND sa 4:0 0] 0[O0 0]0 SHIFT X ry ofofo f

1. s5 is equivalent to sa5, the most significan bit of the 6-bit shift amount (sa) field For extended DSLL shifts, this bit may be either 0
or 1. For all 32-bit extended shifts, s5 must be 0. None of the extended shift instructions perform the 0-to-8 mapping, so 0 bit shifts
are possible using the extended format.

3.14.19 EXT-I8 instruction format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| EXTEND | immediate 10:5 | immediate 15:11 | I8 | funct |0| 0| 0| immediate 4:0 |

3.14.20 EXT-I8_SVRS instruction format (used only by the SAVE and RESTORE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| EXTEND | Xsregs | framesize 7:4 | 0 | aregs | I8 | SVRS |] | ra| sO| sl| framesize 3:0|

instructions)

3.15 Instruction Bit Encoding

Table 3.18 through Table 3.25 describe the encoding used for the MIPS16e ASE. Table 3.17 describes the meaning
of the symbols used in the tables.

Table 3.17 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

* Operation or field codes mar ed with this symbol are reserved for future use. Executing such an
instruction must cause a Reserved Instruction Exception.

) (Also italic field name.) Operation or field codes ma ed with this symbol denotes a field class
The instruction word must be further decoded by examining additional tables that show values for
another instruction field

B Operation or field codes mar ed with this symbol represent a valid encoding for a higher-order
MIPS ISA level. Executing such an instruction must cause a Reserved Instruction Exception.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 46

The MIPS16e™ Application-Specific Extension to the MIPS32® Architecture

Table 3.17 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

L Operation or field codes mar ed with this symbol represent instructions which are not legal if the
processor is configured to be back ard compatible with MIPS32 processors. If the processor is
executing in Kernel Mode, Debug Mode, or 64-bit instructions are enabled, execution proceeds
normally. In other cases, executing such an instruction must cause a Reserved Instruction Excep-
tion (non-coprocessor encodings or coprocessor instruction encodings for a coprocessor to which
access is allowed) or a Coprocessor Unusable Exception (coprocessor instruction encodings for a
coprocessor to which access is not allowed).

0 Operation or fiel codes marked with this symbol are available to licensed MIPS partners. To avoid
multiple conflicting instruction definitions, MIPS echnologies will assist the partner in selecting
appropriate encodings if requested by the partner. The partner is not required to consult with MIPS
Technologies when one of these encodings is used. If no instruction is encoded with this value,
executing such an instruction must cause a Reserved Instruction Exception (SPECIAL2 encodings
or coprocessor instruction encodings for a coprocessor to which access is allowed) or a Coproces-
sor Unusable Exception (coprocessor instruction encodings for a coprocessor to which access is
not allowed).

c Field codes marked with this symbol represent an EJTAG support instruction and implementation
of this encoding is optional for each implementation. If the encoding is not implemented, execut-
ing such an instruction must cause a Reserved Instruction Exception. If the encoding is imple-
mented, it must match the instruction encoding as shown in the table.

€ Operation or field codes mar ed with this symbol are reserved for MIPS Application Specifi
Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

(0] Operation or field codes mar ed with this symbol are obsolete and will be removed from a future
revision of the MIPS64 ISA. Software should avoid using these operation or field codes

g Operation or field codes mar ed with this symbol are not extensible (see Section 3.11, "MIPS16e
Extensible Instructions" on page 40). Executing such an instruction with an EXTEND prefi must
cause a Reserved Instruction Exception.

Table 3.18 MIPS16e Encoding of the Opcode Field

opcode | bits 13..11
0 1 2 3 4 5 6 7
bits 15..14 000 001 010 011 100 101 110 111
0] 00 | ADDIUSP! | ADDIUPC? B JAL(X) & BEQZ BNEZ HIFT S B
1] 01 RRI-AS | ADDIUS3 SLTI SLTIU 188 LI CMPI B
21 10 LB LH LWSP# Lw LBU LHU LWPC3 B
31 11 SB SH SWSP® SwW RRR 3 RR & EXTEND &¢ B

1. The ADDIUSP opcode is used by the ADDIU rx, sp, immediate instruction
2. The ADDIUPC opcode is used by the ADDIU rx, pc, immediate instruction
3. The ADDIUS opcode is used by the ADDIU rx, immediate instruction

4. The LWSP opcode is used by the LW rx, offset(sp) instruction

5. The LWPC opcode is used by the LW rx, offset(pc) instruction

6. The SWSP opcode is used by the SW rx, offset(sp) instruction

47MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

3.15 Instruction Bit Encoding

Table 3.19 MIPS16e JAL(X) Encoding of the x Field

X bit 26

0 1
JAL ¢ JALX ¢

Table 3.20 MIPS16e SHIFT Encoding of the f Field

f bits 1..0
0 1 2 3
00 01 10 11
SLL B SRL SRA

Table 3.21 MIPS16e RRI-A Encoding of the f Field
f bit 4

0 1

ADDIU' B

1. The ADDIU function is used by
the ADDIU ry, rx, immediate
instruction

Table 3.22 MIPS16e 18 Encoding of the funct Field

funct bits 10..8
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
BTEQZ | BTNEZ | gWRASP! | ADJSP? SVRS8 IMOV32R3 ¢ * MOVR32* ¢

1. The SWRASP function is used by the SW ra, offset(sp) instruction

2. The ADJSP function is used by the ADDIU sp, immediate instruction
3. The MOV32R function is used by the MOVE r32, rz instruction

4. The MOVR32 function is used by the MOVE ry, r32 instruction

Table 3.23 MIPS16e RRR Encoding of the f Field

f bits 1..0
0 1 2 3
00 01 10 11
B ADDU ¢ B SUBU ¢

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 48

The MIPS16e™ Application-Specific Extension to the MIPS32® Architecture

Table 3.24 MIPS16e RR Encoding of the Funct Field

funct bits 2..0
0 1 2 3 4 5 6 7
bits 4..3 000 001 010 011 100 101 110 111
0| 00 | JAL)R(C)S | SDBBP¢ SLT ¢ SLTU ¢ SLLV ¢ BREAK ¢ SRLV ¢ SRAV ¢
1| 01 B * CMP ¢ NEG ¢ AND ¢ OR ¢ XOR ¢ NOT ¢
2| 10 MFHI ¢ CNVT § MFLO ¢ B B * B B
30 11 MULT ¢ MULTU ¢ DIV ¢ DIVU ¢ B B B B

Table 3.26 MIPS16e RR Encoding of the ry Field when funct=J(AL)R(C)

Table 3.25 MIPS16e 18 Encoding of the s Field when funct=SVRS

5]

bit 7

0

RESTORE

SAVE

ry bits 7..5
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
JRrx ¢ JRrag JALR ¢ JRCrx¢ | JRCrag | JALRC ¢
Table 3.27 MIPS16e RR Encoding of the ry Field when funct=CNVT
ry bits 7..5
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
ZEB ¢ ZEH ¢ B * SEB ¢ SEH ¢ § *

3.16 MIPS16e Instruction Stream Organization and Endianness

49MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-

The instruction halfword is placed within the 32-bit (or 64-bit) memory element according to system endianness.

* On a 32-bit processor in big-endian mode, the firs instruction is read from bits 31..16 and the second instruction
is read from bits 15..0

* On a 32-bit processor in little-endian mode, the firs instruction is read from bits 15..0 and the second instruction
is read from bits 31..16

The above rule also applies to all extended instructions, since they consist of two 16-bit halfwords. Similarly, JAL and

JALX instructions should be viewed as consisting of two 16-bit halfwords, which means this rule also applies to

them.

For a 16-bit-instruction sequence, instructions are placed in memory so that an LH instruction with the PC as an argu-

ment fetches the instruction independent of system endianness.

tecture, Revision 2.63

3.17 MIPS16e Instruction Fetch Restrictions

3.17 MIPS16e Instruction Fetch Restrictions

When the processor is running in MIPS16e mode and fetch address is in uncacheable memory, certain restrictions
apply to the width of each instruction fetch. Under these circumstances, the processor never fetches more than an
aligned word during each instruction fetch. It is UNPREDICTABLE whether the processor fetches a single aligned
word, or two aligned halfwords during each instruction fetch.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 50

The MIPS16e™ Application-Specific Extension to the MIPS32® Architecture

51MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

Chapter 4

The MIPS16e™ ASE Instruction Set

4.1 MIPS16e™ Instruction Descriptions

This chapter provides an alphabetical listing of the instructions listed in Table 3.4 through Table 3.12. Instructions
that are legal only in 64-bit implementations are not listed, as they are not part of a MIPS32 implementation of
MIPS16e.

4.1.1 Pseudocode Functions Specific to MIPS16e™

This section defines the pseudocode functions that are specific to the MIPS16e ASE. These functions are used in t
Operation section of each MIPS16e instruction description.

4.1.1.1 Xlat

The Xlat function translates the MIPS16e register field ind x to the correct 32-bit MIPS physical register index. It is
used to assure that a value of 0b000 in a MIPS16e register fiel maps to GPR 16, and a value of 0b001 maps to GPR
17. All other values (0b010 through 0b111) map directly.

Figure 4-1 Xlat Pseudocode Function
PhyReg ¢« Xlat (i)
/* PhyReg: Physical register index, in the range 0..7 */
/* 1: Opcode register field index */
if (1 < 2) then
Xlat < 1 + 16
else

Xlat < i
endif

endfunction Xlat

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 52

Add Immediate Unsigned Word (2-Operand) ADDIU

15 11 10 8 7 0
ADDIUS I immediate
01001 x
5 3 8
Format: ADDIU rx, immediate M| PS16e

Purpose: Add Immediate Unsigned Word (2-Operand)

To add a constant to a 32-bit integer.

Description: GPR[rx] <« GPR[rx] + immediate

The 8-bit immediate is sign-extended and then added to the contents of GPR rx to form a 32-bit result. The result is
placed in GPR rx.

No integer overfl w exception occurs under any circumstances.

Restrictions:

None

Operation:
temp ¢ GPR[Xlat(rx)] + sign_extend(immediate)
GPR[Xlat (rx)] < temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overfl w. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overfl w, such as C language arithmetic.

53MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

Add Immediate Unsigned Word (2-Operand, Extended) ADDIU

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND . . ADDIUS 0 .
11110 imm 10:5 imm 15:11 01001 rx 000 imm 4:0
5 6 5 5 3 3 5
Format: ADDIU rx, immediate M| PS16e

Purpose: Add Immediate Unsigned Word (2-Operand, Extended)

To add a constant to a 32-bit integer.

Description: GPR[rx] <« GPR[rx] + immediate

The 16-bit immediate is sign-extended and then added to the contents of GPR rx to form a 32-bit result. The result is
placed in GPR rx.

No integer overfl w exception occurs under any circumstances.

Restrictions:

None

Operation:
temp ¢ GPR[Xlat(rx)] + sign_extend(immediate)
GPR[Xlat (rx)] < temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overfl w. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overfl w, such as C language arithmetic.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 54

Add Immediate Unsigned Word (3-Operand)

ADDIU

15 11 10 4 0
RRI-A I ADDIU immediate
01000 x 0
5 3 1 4
Format: ADDIU ry, rx, immediate M| PS16e

Purpose: Add Immediate Unsigned Word (3-Operand)

To add a constant to a 32-bit integer.

Description: GPR[ry] < GPR[rx] + immediate

The 4-bit immediate is sign-extended and then added to the contents of GPR rx to form a 32-bit result. The result is

placed into GPR ry.

No integer overfl w exception occurs under any circumstances.

Restrictions:

None

Operation:

temp ¢ GPR[Xlat(rx)] + sign_extend(immediate)

GPR[Xlat (ry)] ¢ temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overfl w. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-

ments that ignore overfl w, such as C language arithmetic.

55MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-

tecture, Revision 2.63

Add Immediate Unsigned Word (3-Operand, Extended) ADDIU

31 27 26 20 19 16 15 11 10 8 7 5 4 3 0
EXTEND imm 10:4 imm RRI-A x ADDIU imm 3:0
11110 ’ 14:11 01000 y 0 ’
5 7 4 5 3 3 1 4
Format: ADDIU ry, rx, immediate M| PS16e

Purpose: Add Immediate Unsigned Word (3-Operand, Extended)

To add a constant to a 32-bit integer.

Description: GPR[ry] < GPR[rx] + immediate

The 15-bit immediate is sign-extended and then added to the contents of GPR rx to form a 32-bit result. The result is
placed into GPR ry.

No integer overfl w exception occurs under any circumstances.

Restrictions:

None

Operation:
temp ¢ GPR[Xlat(rx)] + sign_extend(immediate)
GPR[Xlat (ry)] ¢ temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overfl w. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overfl w, such as C language arithmetic.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 56

Add Immediate Unsigned Word (3-Operand, PC-Relative) ADDIU

15 11 10 8 7 0
ADDIUPC I immediate
00001 x
5 3 8
Format: ADDIU rx, pc, immediate M| PS16e

Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative)

To add a constant to the program counter.

Description: GPR[rx] < PC + (immediate << 2)

The 8-bit immediate is shifted left two bits, zero-extended, and added to either the address of the ADDIU instruction
or the address of the jump instruction in whose delay slot the ADDIU is executed. This result (with its two lower bits
cleared) is placed in GPR rx.

No integer overfl w exception occurs under any circumstances.

Restrictions:

None
Operation:
I-1: base_pc ¢ PC
I: if not (JumpDelaySlot (PC)) then
base_pc ¢« PC
endif
temp ¢ (base_DCgprien-1..2 + zero_extend (immediate)) || 0%)

GPR[Xlat (rx)] ¢ temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overfl w. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overfl w, such as C language arithmetic.

Since the 8-bit immediate is shifted left two bits before being added to the PC, the range is 0, 4, 8..1020.

The assembler LA (Load Address) pseudo-instruction is implemented as a PC-relative add.

57MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended) ADDIU

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND . . ADDIUPC 0 .
11110 imm 10:5 imm 15:11 00001 rx 000 imm 4:0
5 6 5 5 3 3 5
Format: ADDIU rx, pc, immediate M| PS16e

Purpose: Add Immediate Unsigned Word (3-Operand, PC-Relative, Extended)

To add a constant to the program counter.

Description: GPR[rx] < PC + immediate

The 16-bit immediate is sign-extended and added to the address of the ADDIU instruction. Before the addition, the
two lower bits of the instruction address are cleared.

The result of the addition is placed in GPR rx.

No integer overfl w exception occurs under any circumstances.

Restrictions:

A PC-relative, extended ADDIU may not be placed in the delay slot of a jump instruction.

Operation:
temp ¢ (PCoprrgn-1..2 || 0%) + sign_extend(immediate)
GPR[Xlat (rx)] <« temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overfl w. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overfl w, such as C language arithmetic.

The assembler LA (Load Address) pseudo-instruction is implemented as a PC-relative add.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 58

Add Immediate Unsigned Word (2-Operand, SP-Relative) ADDIU

15 11 10 8 7 0
18 ADJSP immediate
01100 011
5 3 8
Format: ADDIU sp, immediate M| PS16e

Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative)

To add a constant to the stack pointer.

Description: GPR[sp] < GPR[sp] + immediate

The 8-bit immediate is shifted left three bits, sign-extended, and then added to the contents of GPR 29 to form a 32-
bit result. The result is placed in GPR 29.

No integer overfl w exception occurs under any circumstances.

Restrictions:

None

Operation:
temp < GPR[29] + sign_extend(immediate || 0°)
GPR[29] ¢« temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overfl w. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overfl w, such as C language arithmetic.

59MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended) ADDIU

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND . . 18 ADJSP 0 .
11110 imm 10:5 imm 15:11 01100 011 000 imm 4:0
5 6 5 5 3 3 5
Format: ADDIU sp, immediate M| PS16e

Purpose: Add Immediate Unsigned Word (2-Operand, SP-Relative, Extended)

To add a constant to the stack pointer.

Description: GPR[sp] <« GPR[sp] + immediate

The 16-bit immediate is sign-extended, and then added to the contents of GPR 29 to form a 32-bit result. The result is
placed in GPR 29.

No integer overfl w exception occurs under any circumstances.

Restrictions:

None

Operation:
temp ¢— GPR[29] + sign_extend(immediate)
GPR[29] ¢« temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overfl w. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overfl w, such as C language arithmetic.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 60

Add Immediate Unsigned Word (3-Operand, SP-Relative) ADDIU

15 11 10 8 7 0
ADDIUSP s immediate
00000 x
5 3 8
Format: ADDIU rx, sp, immediate M| PS16e

Purpose: Add Immediate Unsigned Word (3-Operand, SP-Relative)

To add a constant to the stack pointer.

Description: GPR[rx] < GPR[sp] + immediate

The 8-bit immediate is shifted left two bits, zero-extended, and then added to the contents of GPR 29 to form a 32-bit
result. The result is placed in GPR rx.

No integer overfl w exception occurs under any circumstances.

Restrictions:

None

Operation:
temp < GPR[29] + zero_extend (immediate || 02
GPR[Xlat (rx)] < temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overfl w. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overfl w, such as C language arithmetic.

61MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

Add Immediate Unsigned Word (3-Operand, SP-Relative, Extended) ADDIU

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND . . ADDIUSP 0 .
11110 imm 10:5 imm 15:11 00000 rx 000 imm 4:0
5 6 5 5 3 3 5
Format: ADDIU rx, sp, immediate M| PS16e

Purpose: Add Immediate Unsigned Word (3-Operand, SP-Relative, Extended)

To add a constant to the stack pointer.

Description: GPR[rx] <« GPR[sp] + immediate

The 16-bit immediate is sign-extended and then added to the contents of GPR 29 to form a 32-bit result. The result is
placed in GPR rx.

No integer overfl w exception occurs under any circumstances.

Restrictions:

None

Operation:
temp ¢— GPR[29] + sign_extend(immediate
GPR[Xlat (rx)] < temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overfl w. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overfl w, such as C language arithmetic.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 62

Add Unsigned Word (3-Operand) ADDU

15 11 10 8 7 5 4 2 1 0
RRR . . ADDU
11100 X vy z 01
5 3 3 3 2
Format: ADDU rz, rx, ry M| PS16e

Purpose: Add Unsigned Word (3-Operand)
To add 32-bit integers.

Description: GPR[rz] < GPR[rx] + GPR[ry]
The contents of GPR rx and GPR ry are added together to form a 32-bit result. The result is placed into GPR rz

No integer overfl w exception occurs under any circumstances.

Restrictions:

None

Operation:
temp ¢ GPR[Xlat(rx)] + GPR[Xlat(ry)]
GPR[Xlat(rz)] < temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overfl w. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overfl w, such as C language arithmetic.

63MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

15 11 10 8 7 0
RR o AND
11101 Y 01100
5 3 3 5

Format: AND rx, ry

Purpose: AND
To do a bitwise logical AND.

Description: GPR[rx] < GPR[rx] AND GPR[ry]

MIPS16e

The contents of GPR ry are combined with the contents of GPR rx in a bitwise logical AND operation. The result is

placed in GPR rx.

Restrictions:

None

Operation:
GPR[Xlat (rx)] < GPR[Xlat(rx)] and GPR[Xlat(ry)]

Exceptions:

None

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

64

Application-Specific Macro Instructions ASMACRO

31 27 26 24 23 21 20 16 15 11 10 8 7 5 4 0
EXTEND RRR
11110 select p4 p3 11100 p2 pl pO
5 3 3 5 5 3 3 5
Format: ASMACRO select,p0,pl,p2,p3,pd M| PS16e

The format listed is the most generic assembler format and is unlikely to be used for an actual implementation of
application-specifi macro instructions. Rather, the assembler format is likely to represent the use of the macro, with
the assembler turning that format into the appropriate bit pattern required by the instruction.

Purpose: Application-Specific Macro Instruction

To execute an implementation-definable macro instruction

Description:

The ASMACRO instruction is the programming interface to the implementation-definabl macro instruction facility
that is defined by the MIPS16e architecture

The select fiel specifie which of 8 possible macros is expanded. The definitio of each macro specifie how the
parameters p0, pl, p2, p3, and p4 are substituted into the 32-bit instructions with which the macro is defined The exe-
cution of the 32-bit instructions occurs while PC remains unchanged.

It is implementation-dependent whether a processor implements any implementation-definabl macro instructions
and, if it does, how many. It is implementation-dependent whether the macro is executed with interrupts disabled.
Restrictions:

The 32-bit instructions with which the macro is define must by chosen with care. Issues of atomicity, restartability of
the instruction sequence, and similar factors must be considered when using the implementation-definabl macro
instruction facility. Failure to do so can cause UNPREDICTABL E behavior.

If implementation-definabl macro instructions are not implemented by the processor, or if the select fiel references
a specific macro which is not implemented by the processo , a Reserved Instruction exception is signaled.
Operation:

ExecuteMacro (sel,p0,pl,p2,p3,p4)

Exceptions:

Reserved Instruction
Others as may be generated by the 32-bit instructions included in each macro expansion.

Programming Notes:

Implementations may impose certain restrictions on 32-bit instructions are supported within an ASMACRO instruc-
tion. For instance, many implementations may not allow loads, stores, branches or jumps within an ASMACRO defi
nition. Refer to the Users Guide for each processor which implements this capability for a list of macros define and
implemented by that processor, and for any specific restrictions imposed by that processo .

65MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

Unconditional Branch B

15 11 10 0
B
00010 offset
5 11
Format: B offset MIPS16e

Purpose: Unconditional Branch

To do an unconditional PC-relative branch.

Description: branch

The 11-bit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. The program branches to the target address unconditionally.

Restrictions:

None

Operation:

I: PC ¢~ PC + 2 + sign_extend(offset || 0)

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branch offset is interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 66

Unconditional Branch (Extended) B

31 27 26 21 20 16 15 11 10 5 4 0
EXTEND B 0
11110 offset 10:5 offset 15:11 00010 000000 offset 4:0
5 6 5 5 6 5
Format:. B offset M IPS16e

Purpose: Unconditional Branch (Extended)

To do an unconditional PC-relative branch.

Description: branch

The 16-bit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. The program branches to the target address unconditionally.

Restrictions:

None

Operation:

I: PC ¢~ PC + 4 + sign_extend(offset || 0)

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branch offset is interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

67MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

Branch on Equal to Zero BEQZ

15 11 10 8 7 0
BEQZ
00100 rx offset
5 3 8
Format: BEQZ rx, offset M| PS16e

Purpose: Branch on Equal to Zero
To test a GPR then do a PC-relative conditional branch.

Description: if (GPR[rx] = 0) then branch

The 8-bit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR rx are equal to zero, the program branches to the target address.
Restrictions:

None

Operation:

I: tgt_offset ¢ sign_extend(offset || 0)
condition ¢ (GPR[Xlat (rx)] = QCPRLEN)
if condition then

PC ¢ PC + 2 + tgt_offset
endif

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branch offset is interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 68

Branch on Equal to Zero (Extended)

31 27 26

21 20

16 15

11 10

BEQZ

EXTEND
11110

offset 10:5

offset 15:11

BEQZ
00100

X

000

offset 4:0

5

Format:. BEQZ rx,

6

offset

5

Purpose: Branch on Equal to Zero (Extended)

To test a GPR then do a PC-relative conditional branch.

Description: if (GPR[rx]

0) then branch

5

MIPS16e

The 16-bit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR rx are equal to zero, the program branches to the target address.

Restrictions:

None

Operation:

I:

Exceptions:

None

tgt_offset ¢ sign_extend(offset || 0)

condition ¢ (GPR[Xlat (rx)] = QCPRLEN)

if condition then
PC ¢ PC + 4 + tgt_offset

endif

Programming Notes:

In MIPS16e mode, the branch offset is interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

69MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-

tecture, Revision 2.63

Branch on Not Equal to Zero BNEZ

15 11 10 8 7 0
BNEZ
00101 rx offset
5 3 8
Format: BNEZ rx, offset M| PS16e

Purpose: Branch on Not Equal to Zero
To test a GPR then do a PC-relative conditional branch.

Description: if (GPR[rx] # 0) then branch

The 8-bit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR rx are not equal to zero, the program branches to the target address.
Restrictions:

None

Operation:

I: tgt_offset ¢ sign_extend(offset || 0)
condition ¢ (GPR[Xlat (rx)] # 0CFRLEN)
if condition then

PC ¢ PC + 2 + tgt_offset
endif

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branch offset is interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 70

Branch on Not Equal to Zero (Extended)

31 27 26

21 20

16 15

11 10

BNEZ

EXTEND
11110

offset 10:5

offset 15:11

BNEZ
00101

X

000

offset 4:0

5

Format:. BNEZ rx,

6

offset

5

Purpose: Branch on Not Equal to Zero (Extended)

To test a GPR then do a PC-relative conditional branch.

Description: if (GPR[rx] # 0) then branch

5

MIPS16e

The 16-bit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR rx are not equal to zero, the program branches to the target address.

Restrictions:

None

Operation:

I:

Exceptions:

None

tgt_offset ¢ sign_extend(offset || 0)

condition ¢ (GPR[Xlat (rx)] # 0CFRLEN)

if condition then
PC ¢ PC + 4 + tgt_offset

endif

Programming Notes:

In MIPS16e mode, the branch offset is interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

71MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-

tecture, Revision 2.63

Breakpoint BREAK
15 11 10 0
RR code BREAK
11101 00101
5 6 5
Format: BREAK immediate M IPS16e

Purpose: Breakpoint

To cause a Breakpoint exception.

Description:

A breakpoint exception occurs, immediately and unconditionally transferring control to the exception handler.

Restrictions:

None

Operation:

SignalException (Breakpoint)

Exceptions:

Breakpoint

Programming Notes:

The code fiel is available for use as software parameters, but is retrieved by the exception handler only by loading

the contents of the memory halfword containing the instruction.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

72

Branch on T Equal to Zero BTEQZ

15 11 10 8 7 0
I8 BTEQZ
01100 000 offset
5 3 8
Format: BTEQZ offset M| PS16e

Purpose: Branch on T Equal to Zero

To test special register T then do a PC-relative conditional branch.

Description: if (T = 0) then branch

The 8-bit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR 24 are equal to zero, the program branches to the target address.
Restrictions:

None

Operation:

I: tgt_offset ¢ sign_extend(offset || 0)
condition ¢ (GPR[24] = OCFRLEN)
if condition then
PC ¢« PC + 2 + tgt_offset
endif

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branch offset is interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

73MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

Branch on T Equal to Zero (Extended)

31 27 26

21 20

16 15

11 10 8

BTEQZ

EXTEND
11110

offset 10:5

offset 15:11

I8
01100

BTEQZ
000

000

offset 4:0

5

6

Format. BTEQZ offset

5

Purpose: Branch on T Equal to Zero (Extended)

To test special register T then do a PC-relative conditional branch.

Description: if (T = 0) then branch

5

MIPS16e

The 16-bit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR 24 are equal to zero, the program branches to the target address.

Restrictions:

None

Operation:

I:

Exceptions:

None

tgt_offset ¢ sign_extend(offset || 0)
condition ¢ (GPR[24] = OCFRLEN)
if condition then

PC ¢« PC + 4 + tgt_offset

endif

Programming Notes:

In MIPS16e mode, the branch offset is interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

74

Branch on T Not Equal to Zero BTNEZ

15 11 10 8 7 0
I8 BTNEZ
01100 001 offset
5 3 8
Format: BTNEZ offset M| PS16e

Purpose: Branch on T Not Equal to Zero

To test special register T then do a PC-relative conditional branch.

Description: if (T # 0) then branch

The 8-bit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR 24 are not equal to zero, the program branches to the target address.
Restrictions:

None

Operation:

I: tgt_offset ¢ sign_extend(offset || 0)
condition ¢ (GPR[24] # 0CFRLEN)
if condition then
PC ¢ PC + 2 + tgt_offset
endif

Exceptions:

None

Programming Notes:

In MIPS16e mode, the branch offset is interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

75MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

Branch on T Not Equal to Zero (Extended)

31 27 26

21 20

16 15

11 10 8

BTNEZ

EXTEND
11110

offset 10:5

offset 15:11

I8
01100

BTNEZ
001

000

offset 4:0

5

6

Format. BTNEZ offset

5

Purpose: Branch on T Not Equal to Zero (Extended)

To test special register T then do a PC-relative conditional branch.

Description: if (T # 0) then branch

5

MIPS16e

The 16-bit offset is shifted left 1 bit, sign-extended, and then added to the address of the instruction after the branch to
form the target address. If the contents of GPR 24 are not equal to zero, the program branches to the target address.

Restrictions:

None

Operation:

I:

Exceptions:

None

tgt_offset ¢ sign_extend(offset || 0)
condition ¢ (GPR[24] # 0CFRLEN)
if condition then

PC ¢ PC + 4 + tgt_offset

endif

Programming Notes:

In MIPS16e mode, the branch offset is interpreted as halfword-aligned. This is unlike 32-bit MIPS mode, which inter-
prets the offset value as word-aligned.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

76

15 11 10 8 7 0
RR x CMP
11101 01010
5 3 5

Format: cMP rx, ry

Purpose: Compare

To compare the contents of two GPRs.

Description: T « GPR[rx] XOR GPR[ry]

The contents of GPR ry are Exclusive-ORed with the contents of GPR rx. The result is placed into GPR 24.

Restrictions:

None

Operation:
GPR[24] « GPR[Xlat(ry)] xor GPR[Xlat (rx)]

Exceptions:

None

MIPS16e

77MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-

tecture, Revision 2.63

15 11 10 0
CMPI immediate
01110
5 8
Format: CcMPI rx, immediate

Purpose: Compare Immediate

To compare a constant with the contents of a GPR.

Description: T « GPR[rx] XOR immediate

MIPS16e

The 8-bit immediate is zero-extended and Exclusive-ORed with the contents of GPR rx. The result is placed into GPR

24.

Restrictions:

None

Operation:

GPR[24] ¢« GPR[Xlat(rx)] xor zero_extend(immediate)

Exceptions:

None

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

78

Compare Immediate (Extended) CMPI

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND . . CMPI 000 .
11110 imm 10:5 imm 15:11 01110 rx 0 imm 4:0
5 6 5 5 3 3 5
Format: cMPI rx, immediate M| PS16e

Purpose: Compare Immediate (Extended)

To compare a constant with the contents of a GPR.

Description: T < GPR[rx] XOR immediate

The 16-bit immediate is zero-extended and Exclusive-ORed with the contents of GPR rx. The result is placed into
GPR 24.

Restrictions:

None

Operation:

GPR[24] ¢« GPR[Xlat(rx)] xor zero_extend(immediate)

Exceptions:

None

79MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

Divide Word DIV

15 11 10 8 7 5 4 0
RR . DIV
11101 X vy 11010
5 3 3 5
Format: DIV rx, ry M| PS16e

Purpose: Divide Word
To divide 32-bit signed integers.

Description: (Lo, HI) < GPR[rx] / GPR[ry]

The 32-bit word value in GPR rx is divided by the 32-bit value in GPR ry, treating both operands as signed values.
The 32-bit quotient is placed into special register LO, and the 32-bit remainder is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:
If the divisor in GPR ry is zero, the arithmetic result is UNPREDICTABLE.

Operation:

g ¢ GPR[Xlat(rx)] div GPR[Xlat (ry)]
r ¢ GPR[Xlat(rx)] mod GPR[Xlat (ry)]
LO <« g
HI <« r

Exceptions:

None

Programming Notes:

No arithmetic exception occurs under any circumstances. If divide-by-zero or overfl w conditions are detected and
some action taken, then the divide instruction is typically followed by additional instructions to check for a zero divi-
sor and/or for overfl w. If the divide is asynchronous then the zero-divisor check can execute in parallel with the
divide. The action taken on either divide-by-zero or overfl w is either a convention within the program itself, or more
typically within the system software; one possibility is to take a BREAK exception with a code fiel value to signal
the problem to the system software.

As an example, the C programming language in a UNIX® environment expects division by zero to either terminate
the program or execute a program-specifie signal handler. C does not expect overfl w to cause any exceptional con-
dition. If the C compiler uses a divide instruction, it also emits code to test for a zero divisor and execute a BREAK
instruction to inform the operating system if a zero is detected.

Where the size of the operands are known, software should place the shorter operand in GPR ry. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

In some processors the integer divide operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the divide so that other instructions can execute in parallel.

Historical Perspective:

In MIPS 1 through MIPS 111, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subse-

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 80

quent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

81MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

Divide Unsigned Word

DIVU

15 11 10 8 0
RR . DIVU
11101 x 11011
5 3 5
Format: DpIVU rx, ry M| PS16e

Purpose: Divide Unsigned Word
To divide 32-bit unsigned integers.

Description: (Lo, HI) < GPR[rx] / GPR[ry]

The 32-bit word value in GPR rx is divided by the 32-bit value in GPR ry, treating both operands as unsigned values.
The 32-bit quotient is placed into special register LO, and the 32-bit remainder is placed into special register HI.

Restrictions:

If the divisor in GPR ry is zero, the arithmetic result is UNPREDICTABLE.

Operation:

g < (0 || GPRI[Xlat(rx)]) div (0 || GPR[Xlat(ry)l)
r < (0 || GPR[Xlat(rx)]) mod (0 || GPR[Xlat(ry)])

LO < g
HI < r

Exceptions:

None

Programming Notes:

See “Programming Notes” for the DIV instruction.

Historical Perspective:

In MIPS 1 through MIPS 111, if either of the two instructions preceding the divide is an MFHI or MFLO, the result of
the MFHI or MFLO is UNPREDICTABLE. Reads of the HI or LO special register must be separated from subse-
quent instructions that write to them by two or more instructions. This restriction was removed in MIPS IV and
MIPS32 and all subsequent levels of the architecture.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

82

Jump and Link JAL

31 27 26 25 21 20 16 15 0
JAL X target target .
00011 0 20:16 2521 target 15:0
5 1 5 5 16
Format: JAL target MIPS16e

Purpose: Jump and Link

To execute a procedure call within the current 256 MB-aligned region and preserve the current ISA.

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call. The value stored in GPR 31 bit 0 reflect the current
value of the 1SA Mode bit.

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 bits of the target address is the target fiel shifted left 2 bits. The remaining upper bits are the correspond-
ing bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address, preserving the ISA Mode bit. Execute the instruction that follows the jump, in the
branch delay slot, before executing the jump itself.

The opcode fiel describes a general jump-and-link operation, with the X fiel as a variable. The individual instruc-
tions, JAL and JALX have specific alues for this variables.
Restrictions:

An extended instruction should not be placed in a jump delay slot as it causes one-half of an instruction to be exe-
cuted.

Processor operation is UNPREDICTABLE if a branch or jump instruction is placed in the delay slot of a jump.

Operation:
I: GPR[31] ¢ (PC + 6)gprrmn-1..1 || ISAMode
I+l: PC < PCuprien-1. .28 || target || 02
Exceptions:
None

Programming Notes:

Forming the jump target address by catenating PC and the 26-bit target address rather than adding a signed offset to
the PC is an advantage if all program code addresses fi into a 256 MB region aligned on a 256 MB boundary. It
allows a branch from anywhere in the region to anywhere in the region, an action not allowed by a signed relative Off-
Set.

This definitio creates the boundary case where the jump instruction is in the last word of a 256 MB region and can
therefore jump only to the following 256 MB region containing the jump delay slot.

83MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

Jump and Link Register JALR

15 11 10 8 7 6 5 4 0
RR ; nd 1 ra J(AL)R(C)
11101 X 0 1 0 00000
5 3 1 1 1 5
Format: JALR ra, rx MIPS16e

Purpose: Jump and Link Register

To execute a procedure call to an instruction address in a register.

Description: GPR[ra] ¢« return_addr, PC ¢ GPR[rx]

The program unconditionally jumps to the address contained in GPR rx, with a delay of one instruction. The instruc-
tion sets the | SA Mode bit to the value in GPR rx bit 0.

The address of the instruction following the delay slot is placed into GPR 31. The value stored in GPR 31 bit 0
reflects the current alue of the |SA Mode bit.

Bit 0 of the target address is always zero so that no Address Exceptions occur when bit 0 of the source register is one.

The opcode and function fiel describe a general jump-thru-register operation, with the nd (no delay slot), | (link),
and ra (source register is ra) field as variables. The individual instructions, JALR, JR, JALRC, and JRC have specifi
values for these variables.

Restrictions:

The effective target address in GPR rx must be naturally-aligned. If bit 0 is zero and bit 1 is one, an Address Error
exception occurs when the jump target is subsequently fetched as an instruction.

An extended instruction should not be placed in a jump delay slot, because this causes one-half of an instruction to be
executed.

Processor operation is UNPREDICTABLE if a branch or jump instruction is placed in the delay slot of a jump.

Operation:
I: GPR[31] ¢ (PC + 4)gprrEn-1..1 || ISAMode
I+l: PC ¢ GPR[Xlat (rx)lgprren-1..1 || O

ISAMode <— GPR[Xlat(rx)]j

Exceptions:

None

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 84

Jump and Link Register, Compact JALRC

15 11 10 8 7 6 5 4 0
RR ; nd 1 ra J(AL)R(C)
11101 X 1 1 0 00000
5 3 1 1 1 5
Format: JALRC ra, rx MIPS16e

Purpose: Jump and Link Register, Compact

To execute a procedure call to an instruction address in a register

Description: GPR[ra] < return_addr, PC ¢ GPR[rx]

The program unconditionally jumps to the address contained in GPR rx, with no delay slot instruction. The instruc-
tion sets the |SA Mode bit to the value in GPR rx bit 0.

The address of the instruction following the jump is placed into GPR 31. The value stored in GPR 31 bit 0 reflect the
current value of the |SA Mode bit.

Bit 0 of the target address is always zero so that no Address Exceptions occur when bit 0 of the source register is one.
The opcode and function fiel describe a general jump-thru-register operation, with the nd (no delay slot), | (link),
and ra (source register is ra) field as variables. The individual instructions, JALR, JR, JALRC, and JRC have specifi
values for these variables.

Restrictions:

The effective target address in GPR rx must be naturally-aligned. If bit 0 is zero and bit 1 is one, an Address Error
exception occurs when the jump target is subsequently fetched as an instruction.

Operation:

I: GPR[31] ¢ (PC + 2)GprrEn-1..1
PC ¢ GPR[Xlat (rx)]gprien-1. .1
ISAMode < GPR[Xlat(rx)]j

Exceptions:

None.

Programming Notes:

Unlike most “jump” instructions in the MIPS instruction set, JALRC does not have a delay slot.

85MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

Jump and Link Exchange (MIPS16e Format) JALX

31 27 26 25 21 20 16 15 0
JAL X target target .
00011 1 20:16 2521 target 15:0
5 1 5 5 16
Format: JALX target MIPS16e

Purpose: Jump and Link Exchange (MIPS16e Format)

To execute a procedure call within the current 256 MB-aligned region and change the ISA Mode from MIPS16e to
32-bit MIPS.

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call. The value stored in GPR 31 bit 0 reflect the current
value of the 1SA Mode bit.

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 bits of the target address is the target fiel shifted left 2 bits. The remaining upper bits are the correspond-
ing bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address, toggling the 1SA Mode bit. Execute the instruction that follows the jump, in the
branch delay slot, before executing the jump itself.

The opcode fiel describes a general jump-and-link operation, with the X fiel as a variable. The individual instruc-
tions, JAL and JALX have specific alues for this variables.
Restrictions:

An extended instruction should not be placed in a jump delay slot, because this causes one-half an instruction to be
executed.

Processor operation is UNPREDICTABLE if a branch or jump instruction is placed in the delay slot of a jump.

Operation:
I: GPR[31] « (PC + 6)gprren-1..1 || ISAMode
I+l: PC < PCqprrmn-1..28 || target || 02
ISAMode <« (not ISAMode)
Exceptions:
None

Programming Notes:

Forming the jump target address by catenating PC and the 26-bit target address rather than adding a signed offset to
the PC is an advantage if all program code addresses fi into a 256 MB region aligned on a 256 MB boundary. It
allows a jump to anywhere in the region from anywhere in the region which a signed relative offset would not allow.

This definitio creates the boundary case where the jump instruction is in the last word of a 256 MB region and can
therefore jump only to the following 256 MB region containing the jump delay slot.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 86

Jump and Link Exchange (32-bit MIPS Format) JALX

31 26 25 0
JALX instr index
011101 str_inde
6 26
Format: JaALX target MI1PS32 with M| PS16e

Purpose: Jump and Link Exchange (32-bit MIPS Format)

To execute a procedure call within the current 256 MB-aligned region and change the |SA Mode from 32-bit MIPS to
MIPS16e.

Description:

Place the return address link in GPR 31. The return link is the address of the second instruction following the branch,
at which location execution continues after a procedure call. The value stored in GPR 31 bit O reflect the current
value of the |SA Mode bit.

This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256 MB-aligned region.
The low 28 bits of the target address is the instr_index fiel shifted left 2 bits. The remaining upper bits are the corre-
sponding bits of the address of the instruction in the delay slot (not the branch itself).

Jump to the effective target address, toggling the |SA Mode bit. Execute the instruction that follows the jump, in the
branch delay slot, before executing the jump itself.
Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction is placed in the
delay slot of a branch or jump.

Operation:
I: GPR[31] « PC + 8
I+1: PC ¢« PCgprrey..2s8 || instr_index || 02
ISAMode ¢« (not ISAMode)
Exceptions:
None

Programming Notes:

Forming the branch target address by catenating PC and index bits rather than adding a signed offset to the PC is an
advantage if all program code addresses fi into a 256 MB region aligned on a 256 MB boundary. It allows a branch
from anywhere in the region to anywhere in the region, an action not allowed by a signed relative offset.

This definitio creates the following boundary case: When the branch instruction is in the last word of a 256 MB
region, it can branch only to the following 256 MB region containing the branch delay slot.

87MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

Jump Register Through Register ra JR

15 11 10 8 7 6 5 4 0
RR 000 nd 1 ra J(AL)R(C)
11101 0 0 1 00000
5 3 1 1 1 5
Format: JRrR ra MIPS16e

Purpose: Jump Register Through Register ra

To execute a branch to the instruction address in the return address register.

Description: pC « GPR[ra]

The program unconditionally jumps to the address specifie in GPR 31, with a delay of one instruction. The instruc-
tion sets the |SA Mode bit to the value in GPR 31 bit 0.

Bit 0 of the target address is always zero so that no Address Exceptions occur when bit 0 of the source register is one.

The opcode and function fiel describe a general jump-thru-register operation, with the nd (no delay slot), | (link),
and ra (source register is ra) field as variables. The individual instructions, JALR, JR, JALRC, and JRC have specifi
values for these variables.

Restrictions:

The effective target address in GPR 31 must be naturally-aligned. If bit 0 is zero and bit 1 is one, then an Address
Error exception occurs when the jump target is subsequently fetched as an instruction.

An extended instruction should not be placed in a jump delay slot, because this causes one-half of an instruction to be
executed.

Processor operation is UNPREDICTABLE if a branch or jump instruction is placed in the delay slot of a jump.

Operation:

I+1: PC ¢ GPRI[31]gprrEn-1..1 Il o
ISAMode <« GPR[31],

Exceptions:

None

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 88

Jump Register Through MIPS16e GPR JR

15 11 10 8 7 6 5 4 0
RR ; nd 1 ra J(AL)R(C)
11101 X 0 0 0 00000
5 3 1 1 1 5
Format: JRrR rx MIPS16e

Purpose: Jump Register Through MIPS16e GPR

To execute a branch to an instruction address in a register.

Description: PC « GPR[rx]

The program unconditionally jumps to the address specifie in GPR rx, with a delay of one instruction. The instruc-
tion sets the |SA Mode bit to the value in GPR rx bit 0.

Bit 0 of the target address is always zero so that no Address Exceptions occur when bit 0 of the source register is one.

The opcode and function fiel describe a general jump-thru-register operation, with the nd (no delay slot), | (link),
and ra (source register is ra) field as variables. The individual instructions, JALR, JR, JALRC, and JRC have specifi
values for these variables.

Restrictions:

The effective target address in GPR rx must be naturally aligned. If bit 0 is zero and bit 1 is one, then an Address
Error exception occurs when the jump target is subsequently fetched as an instruction.

An extended instruction should not be placed in a jump delay slot, because this causes one-half of an instruction to be
executed.

Processor operation is UNPREDICTABLE if a branch or jump instruction is placed in the delay slot of a jump.

Operation:

I+l: PC « GPR[Xlat(rx)lgprien-1..1 || O
ISAMode <« GPR[Xlat(rx)]j

Exceptions:

None

89MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

Jump Register Through Register ra, Compact JRC

15 11 10 8 7 6 5 4 0
RR 000 nd 1 ra J(AL)R(C)
11101 1 0 1 00000
5 3 1 1 1 5
Format. JRC ra MIPS16e

Purpose: Jump Register Through Register ra, Compact

To execute a branch to the instruction address in the return address register.

Description: pC < GPR[ra]

The program unconditionally jumps to the address specifie in GPR 31, with no delay slot instruction. The instruction
sets the | SA Mode bit to the value in GPR 31 bit 0.

Bit 0 of the target address is always zero so that no Address Exceptions occur when bit 0 of the source register is one.
The opcode and function fiel describe a general jump-thru-register operation, with the nd (no delay slot), | (link),
and ra (source register is ra) field as variables. The individual instructions, JALR, JR, JALRC, and JRC have specifi
values for these variables.

Restrictions:

The effective target address in GPR 31 must be naturally-aligned. If bit 0 is zero and bit 1 is one, then an Address
Error exception occurs when the jump target is subsequently fetched as an instruction.

Operation:

I: PC ¢ GPR[31lgpprey-1..1 || 0
ISAMode < GPR[31],

Exceptions:

None.

Programming Notes:

Unlike most MIPS “jump” instructions, JRC does not have a delay slot.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 90

Jump Register Through MIPS16e GPR, Compact JRC

15 11 10 8 7 6 5 4 0
RR ; nd 1 ra J(AL)R(C)
11101 X 1 0 0 00000
5 3 1 1 1 5
Format. JRC rx MIPS16e

Purpose: Jump Register Through MIPS16e GPR, Compact

To execute a branch to an instruction address in a register

Description: pC < GPR[rx]

The program unconditionally jumps to the address specifie in GPR rx, with no delay slot instruction. The instruction
sets the | SA Mode bit to the value in GPR rx bit 0.

Bit 0 of the target address is always zero so that no Address Exceptions occur when bit 0 of the source register is one.
The opcode and function fiel describe a general jump-thru-register operation, with the nd (no delay slot), | (link),
and ra (source register is ra) field as variables. The individual instructions, JALR, JR, JALRC, and JRC have specifi
values for these variables.

Restrictions:

The effective target address in GPR rx must be naturally-aligned. If bit 0 is zero and bit 1 is one, then an Address
Error exception occurs when the jump target is subsequently fetched as an instruction.

Operation:

I: PC ¢« GPR[Xlat(rx)lgprren-1..1 || O
ISAMode < GPR[Xlat(rx)],

Exceptions:

None.

Programming Notes:

Unlike most MIPS “jump” instructions, JRC does not have a delay slot.

91MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 2.63

Load Byte LB

15 11 10 8 7 5 4 0
LB
10000 X ry offset
5 3 3 5
Format: 1B ry, offset(rx) M| PS16e

Purpose: Load Byte

To load a byte from memory as a signed value.

Description: GPR[ry] ¢ memory[GPR[rx] + offset]

The 5-bit offset is zero-extended, then added to the contents of GPR rx to form the effective address. The contents of
the byte at the memory location specified by the e fective address are sign-extended and loaded into GPR ry.

Restrictions:

None

Operation:

vAddr ¢« zero_extend(offset) + GPR[Xlat (rx)]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
pPAAdr ¢« pPAdArpgrgg.1. .2 || (pAddr; , xor ReverseEndian?)
memword ¢« LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte « vAddr, o xor BigEndianCPU?

GPR[Xlat (ry)] ¢« sign_extend(memwordy,gspyte. . g*byte)

Exceptions:
TLB Refill, TLB I valid, Bus Error, Address Error

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 92

Load Byte (Extended) LB
31 27 26 21 20 16 15 11 10 0
EXTEND LB
11110 offset 10:5 offset 15:11 10000 rx offset 4:0
5 6 5 5 3 5
Format: 1B ry, offset(rx) M| PS16e

Purpose: Load Byte (Extended)

To load a byte from memory as a signed value.

Description: GPR[ry] < memory[GPR[rx] + offset]

The 16-bit offset is sign-extended, then added to the contents of GPR rx to form the effective address. The contents of
the byte at the memory location specified by the e fective address are sign-extended and loaded into GPR ry.

Restrictions:

None

Operation:

vAddr ¢« sign_extend(offset) + GPR[Xlat (rx)]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢« PAddrpgrze-1. .2 || (PAddr; , xor ReverseEndian?)
memword ¢ LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ¢« vAddr,; , xor BigEndianCPU?

GPR[Xlat (ry)] ¢« sign_extend(memwords,gspyte. . g*byte)

Exceptions:
TLB Refill, TLB I valid, Bus Error, Address Error

93MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-

tecture, Revision 2.63

Load Byte Unsigned LBU

15 11 10 8 7 5 4 0
LBU
10100 X ry offset
5 3 3 5
Format: LBU ry, offset(rx) M| PS16e

Purpose: Load Byte Unsigned

To load a byte from memory as an unsigned value

Description: GPR[ry] ¢ memory[GPR[rx] + offset]

The 5-bit offset is zero-extended, then added to the contents of GPR rx to form the effective address. The contents of
the byte at the memory location specified by the e fective address are zero-extended and loaded into GPR ry.

Restrictions:

None

Operation:

vAddr ¢« zero_extend(offset) + GPR[Xlat (rx)]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
pPAAdr ¢« pPAdArpgrgg.1. .2 || (pAddr; , xor ReverseEndian?)
memword ¢« LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte « vAddr, o xor BigEndianCPU?

GPR[Xlat (ry)] ¢« zero_extend(memwordy,gspyte. . 8*byte)

Exceptions:
TLB Refill, TLB I valid, Bus Error, Address Error

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 94

Load Byte Unsigned (Extended) LBU
31 27 26 21 20 16 15 11 10 0
EXTEND LBU
11110 offset 10:5 offset 15:11 10100 rx offset 4:0
5 6 5 5 3 5
Format: LBU ry, offset(rx) M| PS16e

Purpose: Load Byte Unsigned (Extended)

To load a byte from memory as an unsigned value

Description: GPR[ry] < memory[GPR[rx] + offset]

The 16-bit offset is sign-extended, then added to the contents of GPR rx to form the effective address. The contents of
the byte at the memory location specified by the e fective address are zero-extended and loaded into GPR ry.

Restrictions:

None

Operation:

vAddr ¢« sign_extend(offset) + GPR[Xlat (rx)]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢« PAddrpgrze-1. .2 || (PAddr; , xor ReverseEndian?)
memword ¢ LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ¢« vAddr,; , xor BigEndianCPU?

GPR[Xlat (ry)] ¢« zero_extend(memwordy,gspyte. . g*byte)

Exceptions:
TLB Refill, TLB I valid, Bus Error, Address Error

95MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-

tecture, Revision 2.63

Load Halfword LH

15 11 10 8 7 5 4 0
LH
10001 X ry offset
5 3 3 5
Format: LH ry, offset(rx) M| PS16e

Purpose: Load Halfword

To load a halfword from memory as a signed value.

Description: GPR[ry] ¢ memory[GPR[rx] + offset]

The 5-bit offset is shifted left 1 bit, zero-extended, then added to the contents of GPR rx to form the effective address.
The contents of the halfword at the memory location specifiec by the effective address are sign-extended and loaded
into GPR ry.

Restrictions:

The effective address must be naturally-aligned. If the least-significan bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr < zero_extend(offset ” 0) + GPR[Xlat(rx)]
if vAddry # 0 then
SignalException (AddressError)

endif

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
PAJAr < pAddrpgrpe_1..2 || (PAddr; o xor (ReverseEndian | 0))
memword ¢ LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor (BigEndianCPU || 0)

GPR[Xlat (ry)] ¢« sign_extend(memword;s,g«pyte..g*byte)

Exceptions:
TLB Refill, TLB I valid, Bus Error, Address Error

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 96

Load Halfword (Extended)

LH

31 27 26 21 20 16 15 11 10 8 0
EXTEND LH
11110 offset 10:5 offset 15:11 10001 rx offset 4:0
5 6 5 5 3 5
Format: LH ry, offset(rx) M| PS16e

Purpose: Load Halfword (Extended)

To load a halfword from memory as a signed value.

Description: GPR[ry] ¢ memory[GPR[rx] + offset]

The 16-bit offset is sign-extended and then added to the contents of GPR rx to form the effective address. The con-
tents of the halfword at the memory location specifie by the effective address are sign-extended and loaded into GPR

ry.

Restrictions:

The effective address must be naturally-aligned. If the least-significan bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset)

if vAddry # 0 then
SignalException (AddressError)

endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
PAJAr < pAddrpgrpe_1..2 || (PAddr; o xor (ReverseEndian | 0))

memword ¢ LoadMemory

Exceptions:

TLB Refill, TLB I valid, Bus Error, Address Error

+ GPR[Xlat (rx)]

(CCA, HALFWORD, pAddr, vAddr,
byte < vAddr, o xor (BigEndianCPU | 0)
GPR[Xlat (ry)] ¢« sign_extend(memword;s,g«pyte..g*byte)

DATA)

97MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-

tecture, Revision 2.63

Load Halfword Unsigned LHU

15 11 10 8 7 5 4 0
LHU
10101 X ry offset
5 3 3 5
Format: LHU ry, offset(rx) M| PS16e

Purpose: Load Halfword Unsigned

To load a halfword from memory as an unsigned value.

Description: GPR[ry] ¢ memory[GPR[rx] + offset]

The 5-bit offset is shifted left 1 bit, zero-extended, then added to the contents of GPR rx to form the effective address.
The contents of the halfword at the memory location specifie by the effective address are zero-extended and loaded
into GPR ry.

Restrictions:

The effective address must be naturally-aligned. If the least-significan bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr < zero_extend(offset ” 0) + GPR[Xlat(rx)]
if vAddry # 0 then

SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
pAddr ¢« pAddrpgrzpq..2 | (PAAdr; o xor (ReverseEndian || 0))
memword ¢ LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ¢« vAddr, , xor (BigEndianCPU || 0)
GPR[Xlat (ry)] ¢« zero_extend(memword;s,g«pyte..g*byte)

Exceptions:
TLB Refill, TLB I valid, Bus Error, Address Error

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 98

Load Halfword Unsigned (Extended)

LHU

31 27 26 21 20 16 15 11 10 8 0
EXTEND LHU
11110 offset 10:5 offset 15:11 10101 rx offset 4:0
5 6 5 5 3 5
Format: LHU ry, offset(rx) M| PS16e

Purpose: Load Halfword Unsigned (Extended)

To load a halfword from memory as an unsigned value.

Description: GPR[ry] ¢ memory[GPR[rx] + offset]

The 16-bit offset is sign-extended and then added to the contents of GPR rx to form the effective address. The con-
tents of the halfword at the memory location specifie by the effective address are zero-extended and loaded into GPR

ry.

Restrictions:

The effective address must be naturally-aligned. If the least-significan bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset)

if vAddry # 0 then
SignalException (AddressError)

endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
PAJAr < pAddrpgrpe_1..2 || (PAddr; o xor (ReverseEndian | 0))

memword ¢ LoadMemory

Exceptions:

TLB Refill, TLB I valid, Bus Error, Address Error

+ GPR[Xlat (rx)]

(CCA, HALFWORD, pAddr, vAddr,
byte ¢« vAddr, , xor (BigEndianCPU || 0)
GPR[Xlat (ry)] ¢« zero_extend(memword;s,g«pyte..g*byte)

DATA)

99MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Archi-

tecture, Revision 2.63

15 11 10 8 7 0
LI . .
01101 rx immediate
5 3 8

Format: LI rx, immediate

Purpose: Load Immediate

To load a constant into a GPR.

Description: GPR[rx] <« immediate

The 8-bit immediate is zero-extended and then loaded into GPR rx.

Restrictions:

None

Operation:

GPR[Xlat (rx)] ¢ zero_extend(immediate)

Exceptions:

None

MIPS16e

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

100

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND LI 0 . .
11110 immediate 10:5 immediate 15:11 01101 rx 000 iummediate 4:0
5 6 5 5 3 3 5
Format: LI rx, immediate M| PS16e

Purpose: Load Immediate (Extended)

To load a constant into a GPR.

Description: GPR[rx] ¢« immediate
The 16-bit immediate is zero-extended and then loaded into GPR rx.

Restrictions:

None

Operation:

GPR[Xlat (rx)] ¢« zero_extend(immediate)

Exceptions:

None

101 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-
chitecture, Revision 2.63

Load Word LW

15 11 10 8 7 5 4 0
LW
10011 X ry offset
5 3 3 5
Format: 1w ry, offset(rx) M| PS16e

Purpose: Load Word

To load a word from memory as a signed value.

Description: GPR[ry] ¢« memory[GPR[rx] + offset]

The 5-bit offset is shifted left 2 bits, zero-extended, then added to the contents of GPR rx to form the effective
address. The contents of the word at the memory location specified by the e fective address are loaded into GPR ry.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significan bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr < zero_extend(offset || 0%) + GPR[Xlat (rx)]
if vAddr, o # 0% then

SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[Xlat (ry)] ¢« memword

Exceptions:
TLB Refill, TLB I valid, Bus Error, Address Error

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 102

Load Word (Extended) LW

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND LW
11110 offset 10:5 offset 15:11 10011 X ry offset 4:0
5 6 5 5 3 3 5
Format: 1w ry, offset(rx) M| PS16e

Purpose: Load Word (Extended)

To load a word from memory as a signed value.

Description: GPR[ry] ¢« memory[GPR[rx] + offset]

The 16-bit offset is sign-extended and then added to the contents of GPR rx to form the effective address. The con-
tents of the word at the memory location specified by the e fective address are loaded into GPR ry.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significan bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[Xlat(rx)]
if vAddr, o # 0% then

SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[Xlat (ry)] ¢« memword

Exceptions:
TLB Refill, TLB I valid, Bus Error, Address Error

103 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-
chitecture, Revision 2.63

Load Word (PC-Relative)

LW

15 11 10 8 7 0
LWPC
10110 rx offset
5 3 8
Format: 1Lw rx, offset (pc) M| PS16e

Purpose: Load Word (PC-Relative)

To load a PC-relative word from memory as a signed value.

Description: GPR[rx] ¢ memory[PC + offset]

The 8-bit offset is shifted left 2 bits, zero-extended, and added either to the address of the LW instruction or to the
address of the jump instruction in whose delay slot the LW is executed. The 2 lower bits of this result are cleared to
form the effective address. The contents of the 32-bit word at the memory location specifie by the effective address
are loaded into GPR rx.

Restrictions:

None

Operation:

I-1:
I:

Exceptions:

base_pc & PC
if not (JumpDelaySlot (PC)) then

base_pc « PC
endif
vAddr ¢ (base_pCgprimy-1..2 + zero_extend(offset)) | 02
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[Xlat (rx)] ¢« memword

TLB Refill, TLB I valid, Bus Error

Programming Note

For the purposes of watchpoints (provided by the CPO WatchHi and WatchLo registers) and EJTAG breakpoints, the
PC-relative reference is considered to be a data, rather than an instruction reference. That is, the watchpoint or break-
point is triggered only if enabled for data references.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

104

Load

Word (PC-Relative, Extended) LW
31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND LWPC 0
11110 offset 10:5 offset 15:11 10110 rx 000 offset 4:0
5 6 5 5 3 3 5
Format: 1Lw rx, offset (pc) M| PS16e

Purpose: Load Word (PC-Relative, Extended)

To load a PC-relative word from memory as a signed value.

Description: GPR[rx] ¢ memory[PC + offset]

The 16-bit offset is sign-extended and added to the address of the LW instruction; this forms the effective address.
Before the addition, the 2 lower bits of the instruction address are cleared. The contents of the 32-bit word at the
memory location specified by the e fective address are loaded into GPR rx.

Restrictions:

A PC-relative, extended LW may not be placed in the delay slot of a jump instruction.

The effective address must be naturally-aligned. If either of the 2 least-significan bits of the address is non-zero, an
Address Error exception occurs.

Operation:

VAAdr ¢« (PCgprien-1..2 || 0%) + sign_extend(offset)
if vAddr, o # 02 then

SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[Xlat (rx)] ¢« memword

Exceptions:
TLB Refill, TLB I valid, Bus Error, Address Error

Programming Note

For the purposes of watchpoints (provided by the CPO WatchHi and WatchLo registers) and EJTAG breakpoints, the
PC-relative reference is considered to be a data, rather than an instruction reference. That is, the watchpoint or break-
point is triggered only if enabled for data references.

105 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-
chitecture, Revision 2.63

Load Word (SP-Relative)

LW

15 11 10 8 7 0
LWSP
10010 rx offset
5 3 8
Format: 1w rx, offset (sp) M| PS16e

Purpose: Load Word (SP-Relative)

To load an SP-relative word from memory as a signed value.

Description: GPR[rx] ¢ memory[GPR[sp] + offset]

The 8-bit offset is shifted left 2 bits, zero-extended, then added to the contents of GPR 29 to form the effective
address. The contents of the word at the memory location specified by the e fective address are loaded into GPR rx.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significan bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr < zero_extend(offset || 0%) + GPR[29]
if vAddr, o # 0% then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr,

GPR[Xlat (ry)] ¢« memword

Exceptions:
TLB Refill, TLB I valid, Bus Error, Address Error

DATA, LOAD)
memword ¢ LoadMemory (CCA, WORD, pAddr, vAddr,

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

106

Load Word (SP-Relative, Extended) LW

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND LWSP 0
11110 offset 10:5 offset 15:11 10010 rx 000 offset 4:0
5 6 5 5 3 3 5
Format: 1w rx, offset (sp) M| PS16e

Purpose: Load Word (SP-Relative, Extended)

To load an SP-relative word from memory as a signed value.

Description: GPR[rx] ¢ memory[GPR[sp] + offset]

The 16-bit offset is sign-extended and then added to the contents of GPR 29 to form the effective address. The con-
tents of the word at the memory location specified by the e fective address are loaded into GPR rx.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significan bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[29]
if vAddr, o # 0% then

SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[Xlat (ry)] ¢« memword

Exceptions:
TLB Refill, TLB I valid, Bus Error, Address Error

107 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-
chitecture, Revision 2.63

Move From HI Register MFHI

15 11 10 8 7 5 4 0
RR . 0 MFHI
11101 X 000 10000
5 3 3 5
Format: MFHI rx MIPS16e

Purpose: Move From HI Register

To copy the special purpose HI register to a GPR.

Description: GPR[rx] <« HI

The contents of special register HI are loaded into GPR rx.

Restrictions:

None

Operation:

GPR[Xlat (rx)] <« HI

Exceptions:

None

Historical Information:

In the MIPS 1, 11, and III architectures, the two instructions which follow the MFHI must not moodify the HI register.
If this restriction is violated, the result of the MFHI is UNPREDICTABLE. This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 108

Move From LO Register MFLO

15 11 10 8 7 5 4 0
RR . 0 MFLO
11101 X 000 10010
5 3 3 5
Format:. MFLO rx MIPS16e

Purpose: Move From LO Register
To copy the special purpose LO register to a GPR.

Description: GPR[rx] < LO

The contents of special register LO are loaded into GPR rx.

Restrictions:

None

Operation:

GPR[Xlat (rx)] <« LO

Exceptions:

None

Historical Information:

In the MIPS 1, 11, and III architectures, the two instructions which follow the MFHI must not moodify the HI register.
If this restriction is violated, the result of the MFHI is UNPREDICTABLE. This restriction was removed in MIPS
IV and MIPS32, and all subsequent levels of the architecture.

109 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-
chitecture, Revision 2.63

Move

15 11

10

MOVE

I8
01100

MOV32R
101

r32
2:0

r32
4:3

17

5

Format. MOVE r32, rz

Purpose: Move

3

To move the contents of a GPR to a GPR.

Description: GPR[r32] « GPR[rz]

The contents of GPR rz are moved into GPR 32, and r32 can specify any one of the 32 GPRs.

Restrictions:

None

Operation:

GPR[r32] ¢ GPR[Xlat(rz)]

Exceptions:

None

Programming Notes:

The instruction word of 0x6500

denote no operation.

MIPS16e

(move $0,5$16), expressed as NOP, is the assembly idiom used to

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

110

15 11 10 8 7 5 4 0
18 MOVR32 a2
01100 111 Y
5 3 3 5
Format: MOVE ry, r32 M IPS16e

Purpose: Move
To move the contents of a GPR to a GPR.

Description: GPR[ry] < GPR[r32]
The contents of GPR r32 are moved into GPR ry, and r32 can specify any one of the 32 GPRs.

Restrictions:

None

Operation:
GPR[Xlat (ry)] ¢« GPR[r32]

Exceptions:

None

111 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-
chitecture, Revision 2.63

Multiply Word MULT

15 11 10 8 7 5 4 0
RR . MULT
11101 X vy 11000
5 3 3 5
Format: MULT rx, ry M| PS16e

Purpose: Multiply Word
To multiply 32-bit signed integers.

Description: (Lo, HI) < GPR[rx] X GPR[ry]

The 32-bit word value in GPR rx is multiplied by the 32-bit value in GPR ry, treating both operands as signed values,
to produce a 64-bit result. The low-order 32-bit word of the result is placed into special register LO, and the high-
order 32-bit word is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:
None

Operation:

prod ¢ GPR[Xlat(rx)] * GPR[Xlat(ry)]

LO ¢ sign_extend(prods; g)

HI < sign_extend(prodgs 33)
Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overfl w detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 112

Multiply Unsigned Word MULTU

15 11 10 8 7 5 4 0
RR . MULTU
11101 X vy 11001
5 3 3 5
Format: MULTU rx, ry M| PS16e

Purpose: Multiply Unsigned Word
To multiply 32-bit unsigned integers.

Description: (Lo, HI) < GPR[rx] X GPR[ry]

The 32-bit word value in GPR rx is multiplied by the 32-bit value in GPR ry, treating both operands as unsigned val-
ues, to produce a 64-bit result. The low-order 32-bit word of the result is placed into special register LO, and the high-
order 32-bit word is placed into special register HI.

No arithmetic exception occurs under any circumstances.

Restrictions:

None

Operation:

prod < (0 || GPR[X1lat(rx)]) * (0 || GPR[Xlat (ry)])
LO ¢ sign_extend(prods; g)
HI < sign_extend(prodgs 33)

Exceptions:

None

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overfl w detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in GPR rt. This may reduce the
latency of the instruction on those processors which implement data-dependent instruction latencies.

113 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-
chitecture, Revision 2.63

15 11 10 8 0
RR x NEG
11101 01011
5 3 5

Format: NEG rx, ry

Purpose: Negate

To negate an integer value.

Description: GPR[rx] < 0 - GPR[ry]

The contents of GPR ry are subtracted from zero to form a 32-bit result. The result is placed in GPR rx.

Restrictions:

None

Operation:

temp < 0 - GPR[Xlat(ry)]
GPR[Xlat (rx)] ¢ sign_extend(temps; g)

Exceptions:

None

MIPS16e

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

114

No Operation NOP

15 11 10 8 7 5 4 3 2 0
I8 MOV32R 0 0 0
01100 101 000 00 000
5 3 3 2 3
Format: wnop MIPS16e Assembly Idiom

Purpose: No Operation

To perform no operation.

Description:

NOP is the assembly idiom used to denote no operation. The actual instruction is interpreted by the hardware as
MOVE $0, $16.

Restrictions:

None
Operation:
None

Exceptions:

None

Programming Notes:

The 0x6500 instruction word, which represents MOVE $0, $16, is the preferred NOP for software to use to fil jump
delay slots and to pad out alignment sequences.

115 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-
chitecture, Revision 2.63

15 11 10 8 7 0
RR o NOT
11101 Y 01111
5 3 3 5

Format: NOT rx, ry

Purpose: Not

To complement an integer value

Description: GPR[rx] ¢« (NOT GPR[ryl)

The contents of GPR ry are bitwise-inverted and placed in GPR rx.

Restrictions:

None

Operation:
GPR[Xlat (rx)] <« (not GPR[Xlat(ry)])

Exceptions:

None

MIPS16e

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

116

15 11 10 8 7 5 4 0
RR - OR
11101 y 01101
5 3 3 5
Format: OR rx, ry M IPS16e
Purpose: Or
To do a bitwise logical OR.

Description: GPR[rx] < GPR[rx] OR GPR[ry]

The contents of GPR ry are combined with the contents of GPR rx in a bitwise logical OR operation. The result is
placed in GPR rx.

Restrictions:

None

Operation:
GPR[Xlat (rx)] ¢ GPR[Xlat(rx)] or GPR[Xlat(ry)]

Exceptions:

None

117 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-
chitecture, Revision 2.63

Restore Registers and Deallocate Stack Frame RESTORE

15 11 10 8 7 5 4 0
18 SVRS s ra sO sl framesize
01100 100 z
5 3 1 1 1 1 4
Format: RESTORE {ra, }{s0/sl1l/s0-1,}{framesize} (All args are optional) MIPS16e

Purpose: Restore Registers and Deallocate Stack Frame

To deallocate a stack frame before exit from a subroutine, restoring return address and static registers, and adjusting
stack

Description: GPR[ra] <« Stack and/or GPR[17]¢« Stack and/or GPR[16]« Stack,

sp « sp + (framesize*8)

Restore the ra and/or GPR 16 and/or GPR 17 (S0 and sl in the MIPS ABI calling convention) registers from the stack
if the corresponding ra, SO, or Sl bits of the instruction are set, and adjust the stack pointer by 8 times the framesize
value. Registers are loaded from the stack assuming higher numbered registers are stored at higher stack addresses. A
framesize value of 0 is interpreted as a stack adjustment of 128.

The opcode and function fiel describe a general save/restore operation, with the Sfield as a variables. The individual
instructions, RESTORE and SAVE have specific alues for this variable.
Restrictions:

If either of the 2 least-significan bits of the stack pointer are not zero, and any of the ra, SO, or Sl bits are set, then an
Address Error exception will occur.

Operation:
if framesize = 0 then
temp < GPR[29] + 128
else
temp < GPR[29] + (0 || (framesize << 3))
endif

temp2 <« temp
if ra = 1 then

temp < temp — 4

GPR[31] ¢« LoadStackWord (temp)
endif
if s1 = 1 then

temp ¢ temp - 4

GPR[17] ¢« LoadStackWord (temp)
endif
if s0 = 1 then

temp ¢« temp — 4

GPR[16] ¢« LoadStackWord (temp)
endif
GPR[29] ¢« temp2

LoadStackWord (vaddr)
if vAddr; , # 02 then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memword ¢« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
LoadStackWord <« memword
enfunction LoadStackWord

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 118

Exceptions:
TLB refill, TLB i valid, Address error, Bus Error

Programming Notes:

This instruction executes for a variable number of cycles and performs a variable number of loads from memory. A
full restart of the sequence of operations will be performed on return from any exception taken during execution.

119 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-
chitecture, Revision 2.63

Restore Registers and Deallocate Stack Frame (Extended) RESTORE

31 27 26 24 23 20 19 16 15 11 10 8 7 6 5 4 3 0
EXTEND . 18 SVRS S .
11110 xsregs | framesize 7:4 aregs 01100 100 0™ s0 | s1 | framesize 3:0
5 3 4 4 5 3 1 1 1 1 4
Format: RESTORE {ra, } {xsregs, }{aregs, } {framesize} (All arguments optional) MIPS16e

Purpose: Restore Registers and Deallocate Stack Frame (Extended)

To deallocate a stack frame before exit from a subroutine, restoring return address and static registers from an
extended static register set, and adjusting the stack

Description: GPR[ra] < Stack and/or GPR[18-23,30] « Stack and/or GPR[17] ¢« Stack
and/or GPR[16] « Stack and/or GPR[4-7] « Stack, sp ¢« sp + (framesize * 8)

Restore the ra register from the stack if the ra bit is set in the instruction. Restore from the stack the number of regis-
ters in the set GPR[18-23,30] indicated by the value of the xsregs field Restore from the stack GPR 16 and/or GPR
17 (S0 and sl in the MIPS ABI calling convention) from the stack if the corresponding SO and sl bits of the instruc-
tion are set, restore from the stack the number of registers in the range GPR[4-7] indicated by the aregs field and
adjust the stack pointer by 8 times the 8-bit concatenated framesize value. Registers are loaded from the stack assum-
ing higher numbered registers are stored at higher stack addresses.

Interpretation of the aregs Field

In the standard MIPS ABIs, GPR[4-7] are designated as argument passing registers, 80-a3. When they are so used,
they must be saved on the stack at locations allocated by the caller of the routine being entered, but need not be
restored on subroutine exit. In other MIPS16e calling sequences, however, it is possible that some of the registers
GPR[4-7] need to be saved as static registers on the local stack instead of on the caller stack, and restored before
return from the subroutine. The encoding used for the aregs fiel of an extended RESTORE instruction is the same as
that used for the extended SAVE, but since argument registers can be ignored for the purposes of a RESTORE, only
the registers treated as static need be handled. The following table shows the RESTORE encoding of the aregs field

aregs Encoding Registers Restored as Static
(binary) Registers
0000O0 None
0001 GPR[7]
0010 GPR[6], GPR[7]
0011 GPR[5], GPR[6], GPR[7]
0100 None
0101 GPR[7]
0110 GPR[6], GPR[7]
0111 GPR[5], GPR[6], GPR[7]
1000 None
1001 GPR[7]
1010 GPR[6], GPR[7]
1011 GPR[4], GPR[5], GPR[6]. GPR[7]

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 120

Restore Registers and Deallocate Stack Frame (Extended) RESTORE

aregs Encoding Registers Restored as Static
(binary) Registers
1100 None
1101 GPR[7]
1110 None
1111 Reserved

Restrictions:

If either of the 2 least-significan bits of the stack pointer are not zero, and any of the ra, S0, s1, or xsregs field are
non-zero or the aregs fiel contains an encoding that implies a register load, then an Address Error exception will
occur.

Operation:

temp < GPR[29] + (0 | (framesize << 3))
temp2 ¢« temp
if ra = 1 then
temp ¢« temp — 4
GPR[31] ¢« LoadStackWord(temp)
endif
if xsregs > 0 then
if xsregs > 1 then
if xsregs > 2 then
if xsregs > 3 then
if xsregs > 4 then
if xsregs > 5 then
if xsregs > 6 then
temp ¢ temp — 4
GPR[30] ¢« LoadStackWord (temp)
endif
temp ¢« temp — 4
GPR[23] ¢« LoadStackWord (temp)
endif
temp ¢« temp — 4
GPR[22] ¢« LoadStackWord (temp)
endif
temp < temp — 4
GPR[21] ¢« LoadStackWord (temp)
endif
temp « temp — 4
GPR[20] ¢« LoadStackWord(temp)
endif
temp < temp — 4
GPR[19] ¢« LoadStackWord (temp)
endif
temp ¢ temp — 4
GPR[18] ¢« LoadStackWord (temp)
endif
if s1 = 1 then
temp ¢« temp — 4
GPR[17] ¢« LoadStackWord (temp)
endif
if s0 = 1 then

121 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-
chitecture, Revision 2.63

Restore Registers and Deallocate Stack Frame (Extended)

temp ¢« temp — 4
GPR[16] ¢« LoadStackWord (temp)
endif
case aregs of
0b0000 0b0100 0b1000 01100 0b1110: astatic « O
0b0001 0b0101 0b1001 0b1101: astatic « 1
0b0010 0b0110 0b1010: astatic « 2
0b0011 0b0111l: astatic « 3
0b1011: astatic « 4
otherwise: UNPREDICTABLE
endcase

if astatic > 0 then
temp ¢« temp — 4
GPR[7] ¢« LoadStackWord (temp)
if astatic > 1 then
temp ¢« temp — 4
GPR[6] ¢ LoadStackWord (temp)
if astatic > 2 then
temp ¢« temp — 4
GPR[5] ¢« LoadStackWord (temp)
if astatic > 3 then
temp ¢« temp — 4
GPR[4] ¢ LoadStackWord (temp)
endif
endif
endif
endif
GPR[29] ¢« temp2

LoadStackWord (vaddr)
if vAddr; # 02 then
SignalException (AddressError)
endif

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)

memword ¢ LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
LoadStackWord ¢ memword
enfunction LoadStackWord

Exceptions:
TLB refill, TLB i valid, Address error, Bus Error

Programming Notes:

RESTORE

This instruction executes for a variable number of cycles and performs a variable number of loads from memory. A
full restart of the sequence of operations will be performed on return from any exception taken during execution.

Behavior of the processor is UNPREDICTABLE for Reserved values of aregs.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

122

Save Registers and Set Up Stack Frame SAVE

15 11 10 8 7 5 4 0
18 SVRS S ra sO sl framesize
01100 100 1 z
5 3 1 1 1 1 4
Format: SAVE {ra,}{s0/sl/s0-1,}{framesize} (All arguments are optional) MIPS16e

Purpose: Save Registers and Set Up Stack Frame

To set up a stack frame on entry to a subroutine, saving return address and static registers, and adjusting stack

Description: stack « GPR[ra] and/or Stack « GPR[17] and/or Stack <« GPR[16],
sp < sp — (framesize * 8)

Save the ra and/or GPR 16 and/or GPR 17 (S0 and sl in the MIPS ABI calling convention) on the stack if the corre-
sponding ra, S0, and sl bits of the instruction are set, and adjust the stack pointer by 8 times the framesize value. Reg-
isters are stored with higher numbered registers at higher stack addresses. A framesize value of 0 is interpreted as a
stack adjustment of 128.

The opcode and function fiel describe a general save/restore operation, with the Sfield as a variables. The individual
instructions, RESTORE and SAVE have specific alues for this variable.

Restrictions:

If either of the 2 least-significan bits of the stack pointer are not zero, and any of the ra, S0, or Sl bits are set, then an
Address Error exception will occur.

Operation:

temp ¢ GPR[29]
if ra = 1 then
temp ¢« temp — 4
StoreStackWord (temp, GPR[31])
endif
if s1 = 1 then
temp ¢« temp — 4
StoreStackWord (temp, GPR[17])
endif
if s0 = 1 then
temp ¢« temp — 4
StoreStackWord (temp, GPR[16])

endif
if framesize = 0 then
temp ¢« GPR[29] — 128
else
temp < GPR[29] — (0 | (framesize << 3))
endif

GPR[29] « temp

StoreStackWord (vaddr, value)

if vAddr; , # 02 then

SignalException (AddressError)

endif

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)

dataword <« value

StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endfunction StoreStackWord

123 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-
chitecture, Revision 2.63

Exceptions:
TLB refill, TLB i valid, TLB modified, Address erro , Bus Error

Programming Notes:

This instruction executes for a variable number of cycles and performs a variable number of stores to memory. A full
restart of the sequence of operations will be performed on return from any exception taken during execution.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 124

Save Registers and Set Up Stack Frame (Extended) SAVE

31 27 26 24 23 20 19 16 15 11 10 8 7 6 5 4 3 0
EXTEND . 18 SVRS S .
11110 xsregs | framesize 7:4 aregs 01100 100 1| s0 | s1 | framesize 3:0
5 3 4 4 5 3 1 1 1 1 4
Format: SAVE {ra, }{xsregs, }{aregs, } {framesize} (All arguments optional) MIPS16e

Purpose: Save Registers and Set Up Stack Frame (Extended)

To set up a stack frame on entry to a subroutine, saving return address, static, and argument registers, and adjusting
the stack

Description: stack < GPR[ra] and/or Stack < GPR[18-23,30] and/or Stack < GPR[17] and/or
Stack « GPR[16] and/or Stack <« GPR[4-7], sp <« sp - (framesize * 8)

Save registers GPR[4-7] specifie to be treated as incoming arguments by the aregs field Save the ra register on the
stack if the ra bit of the instruction is set. Save the number of registers in the set GPR[18-23, 30] indicated by the
value of the xsregs field and/or GPR 16 and/or GPR 17 (SO and sl in the MIPS ABI calling convention) on the stack
if the corresponding SO and sl bits of the instruction are set. Save the number of registers in the range GPR[4-7] that
are to be treated as static registers as indicated by the aregs field and adjust the stack pointer by 8 times the 8-bit con-
catenated framesize value. Registers are stored with higher numbered registers at higher stack addresses.

Interpretation of the aregs Field

In the standard MIPS ABIs, GPR[4-7] are designated as argument passing registers, 80-a3. When they are so used,
they must be saved on the stack at locations allocated by the caller of the routine being entered. In other MIPS16e
calling sequences, however, it is possible that some of the registers GPR[4-7] will need to be saved as static registers
on the local stack instead of on the caller stack. The encoding of the aregs fiel allows for 0-4 arguments, 0-4 statics,
and for mixtures of the two. Registers are bound to arguments in ascending order, a0, al, a2, and a3, and thus
assigned to static values in the reverse order, GPR[7], GPR[6], GPR[5], and GPR[4]. The following table shows the
encoding of the aregs field

aregs Encoding Registers Saved as Registers Saved as Static
(binary) Arguments Registers
0000O None None
0001 None GPR[7]
0010 None GPR[6], GPR[7]
0011 None GPR[5], GPR[6], GPR[7]
0100 a0 None
0101 a0 GPR[7]
0110 a0 GPR[6], GPR[7]
0111 a0 GPR[5], GPR[6], GPR[7]
1000 a0, al None
1001 a0, al GPR[7]
1010 a0, al GPR[6], GPR[7]
1011 None GPR[4], GPR[5], GPR[6], GPR[7]

125 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-

chitecture, Revision 2.63

Save Registers and Set Up Stack Frame (Extended)

aregs Encoding Registers Saved as Registers Saved as Static
(binary) Arguments Registers
1100 a0, al, a2 None
1101 a0, al, a2 GPR[7]
1110 a0, al, a2, a3 None
1111 Reserved Reserved

Restrictions:

SAVE

If either of the 2 least-significan bits of the stack pointer are not zero, and any of the ra, S0, s1, or xsregs field are
non-zero or the aregs field contains an alue that implies a register store, then an Address Error exception will occur.

Operation:

temp < GPR[29]
temp2 <« GPR[29]
case aregs of

0b0000 0b0001 0b0010 0b0O011 0Ob10O11:

0b0100 0b0101 0b0110 0bO011l1l: args <« 1
0b1000 0bl001 0b1010: args « 2
0b1100 0bl10l: args « 3

0b1110: args « 4

otherwise: UNPREDICTABLE

endcase
if args > 0 then

StoreStackWord (temp, GPRI[4])

if args > 1 then

StoreStackWord(temp + 4, GPR[5])
if args > 2 then

StoreStackWord(temp + 8,

if args > 3 then

StoreStackWord (temp + 12,

endif
endif
endif
endif
if ra = 1 then
temp < temp — 4

StoreStackWord (temp, GPR[31])

endif
if xsregs > 0 then
if xsregs > 1 then

if xsregs > 2 then
if xsregs > 3 then
if xsregs > 4 then
if xsregs > 5 then
if xsregs > 6 then

temp ¢« temp — 4

StoreStackWord (temp,

endif
temp ¢« temp — 4
StoreStackWord (temp,

endif

temp < temp — 4

GPR[6])

args <« 0

GPRI[71])

GPR[30])

GPR[23])

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

126

Save Registers and Set Up Stack Frame (Extended) SAVE

StoreStackWord (temp, GPR[22])
endif
temp ¢« temp — 4
StoreStackWord (temp, GPR[21])
endif
temp < temp — 4
StoreStackWord (temp, GPR[20])
endif
temp ¢« temp — 4
StoreStackWord (temp, GPR[19])
endif
temp ¢« temp — 4
StoreStackWord (temp, GPR[18])
endif
if sl = 1 then
temp < temp — 4
StoreStackWord (temp, GPR[17])
endif
if s0 = 1 then
temp ¢« temp — 4
StoreStackWord (temp, GPR[16])
endif
case aregs of
0b0000 0b0100 01000 0b1100 0b1110: astatic « 0
0b0001 0b0101 0b1001 0b1101l: astatic « 1
0b0010 0b0110 0b1010: astatic <« 2
0b0011 0b0111l: astatic « 3
0b1011: astatic « 4
otherwise: UNPREDICTABLE
endcase
if astatic > 0 then
temp ¢« temp — 4
StoreStackWord (temp, GPR[7])
if astatic > 1 then
temp < temp — 4
StoreStackWord (temp, GPRI[6])
if astatic > 2 then
temp < temp — 4
StoreStackWord (temp, GPR[5])
if astatic > 3 then
temp < temp — 4
StoreStackWord (temp, GPR[4])
endif
endif
endif
endif
temp « temp2 — (0 || (framesize << 3))
GPR[29] « temp

StoreStackWord (vaddr, wvalue)

if vAddr; # 02 then

SignalException (AddressError)

endif

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)

dataword <« value

StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endfunction StoreStackWord

127 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-
chitecture, Revision 2.63

Save Registers and Set Up Stack Frame (Extended) SAVE

Exceptions:
TLB refill, TLB i valid, TLB modified, Address erro , Bus Error

Programming Notes:

This instruction executes for a variable number of cycles and performs a variable number of stores to memory. A full
restart of the sequence of operations will be performed on return from any exception taken during execution.

Behavior of the processor is UNPREDICTABLE for Reserved values of aregs.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 128

Store Byte SB
15 11 10 8 7 5 0
SB
11000 X ry offset
5 3 3 5
Format: sB ry, offset(rx) M| PS16e

Purpose: Store Byte

To store a byte to memory.

Description: memory [GPR[rx] + offset] <« GPR[ry]

The 5-bit offset is zero-extended, then added to the contents of GPR rx to form the effective address. The least-signif-

icant byte of GPR ry is stored at the effective address.

Restrictions:

None

Operation:

vAddr < zero_extend(offset) + GPR[Xlat (rx)]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
pAddr < pAddrpgryzg 1. .5 || (PAddr; o xor ReverseEndian?)
bytesel ¢« vAddr,; , xor BigEndianCPU?

dataword ¢ GPRI[rtls3j_gspytesel..o |l o8 bytesel

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB I valid, TLB Modified, Bus Erro , Address Error

129 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-

chitecture, Revision 2.63

Store Byte (Extended) SB

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND SB
11110 offset 10:5 offset 15:11 11000 X ry offset 4:0
5 6 5 5 3 3 5
Format: sB ry, offset(rx) M| PS16e

Purpose: Store Byte (Extended)

To store a byte to memory.

Description: memory [GPR[rx] + offset] <« GPR[ry]

The 16-bit offset is sign-extended and then added to the contents of GPR rx to form the effective address. The least-
significant byte of GP ry is stored at the effective address.

Restrictions:

None

Operation:

vAddr ¢« sign_extend(offset) + GPR[Xlat (rx)]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
pAddr < pAddrpgryzg 1. .5 || (PAddr; o xor ReverseEndian?)
bytesel ¢« vAddr,; , xor BigEndianCPU?

dataword ¢ GPR[rtlsi_gspytesel..o || o8 bytesel
StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB I valid, TLB Modified, Bus Erro , Address Error

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 130

Software Debug Breakpoint

SDBBP

15 11 10
RR code SDBBP
11101 00001
5 6 5

Format: SDBBP code

Purpose: Software Debug Breakpoint

To cause a debug breakpoint exception

Description:

EJTAG

This instruction causes a debug exception, passing control to the debug exception handler. If the processor is execut-
ing in Debug Mode when the SDBBP instruction is executed the exception is a Debug Mode Exception, which sets
the Debugpgyecode fiel to the value 0x9 (Bp). The code fiel can be used for passing information to the debug

exception handler, and is retrieved by the debug exception handler only by loading the contents of the memory word

containing the instruction, using the DEPC register. The CODE field is not used in a y way by the hardware.

Restrictions:

Operation:

If Debugpy = 0 then
SignalDebugBreakpointException ()
else

SignalDebugModeBreakpointException ()

endif

Exceptions:

Debug Breakpoint Exception
Debug Mode Breakpoint Exception

131 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-

chitecture, Revision 2.63

15 11 10 8 7 5 4 0
RR x SEB CNVT
11101 100 10001
5 3 3 5

Format: SEB rx

Purpose: Sign-Extend Byte

Sign-extend least significant byte in r gister rx.

Description: GPR[rx] ¢« sign_extend(GPR[rx]7..0)

The least significant byte of GP rx is sign-extended and the value written back to rx.

Restrictions:

None

Operation:

temp ¢ GPR[Xlat (rx)]
GPR[Xlat (rx)] ¢ sign_extend(temp,;)

Exceptions:

None.

Programming Notes:

None.

MIPS16e

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

132

15 11 10 8 7 5 4 0
RR x SEH CNVT
11101 101 10001
5 3 3 5
Format: SEH rx M IPS16e

Purpose: Sign-Extend Halfword

Sign-extend least significant ord in register rx.
Description: GPR[rx] <« sign_extend(GPR[rx]qs o)
The least significant half ord of GPR rx is sign-extended and the value written back to rx.

Restrictions:

None

Operation:

temp ¢« GPR[Xlat (rx)]
GPR[Xlat (rx)] ¢« sign_extend(tempis_ _g)

Exceptions:

None.

Programming Notes:

None.

133 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-
chitecture, Revision 2.63

Store Halfword

SH

15 11 10 8 7 0
SH
11001 X ry offset
5 3 3 5
Format: sH ry, offset(rx) M| PS16e

Purpose: Store Halfword

To store a halfword to memory.

DeSCI’iptionImemory[GPR[rXGPR[+ offset] « GPR[rvy]

The 5-bit offset is shifted left 1 bit, zero-extended, and then added to the contents of GPR rx to form the effective

address. The least-significant half ord of GPR ry is stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significan bit of the address is non-zero, an Address

Error exception occurs.

Operation:

vAddr < zero_extend(offset || 0) + GPR[Xlat (rx)]
if vAddry # 0 then

SignalException (AddressError)
endif

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
PAJAr < pAddrpgrye-1..2 || (PAddrl; , xor (ReverseEndian | 0))

bytesel « vAddrl; xor (BigEndianCPU | 0)
dataword ¢ GPR[Xlat(ry)l3i_g«pytesel..o |l o8 bytesel

StoreMemory (CCA, HALFWORD, dataword, pAddr, vAddr,

Exceptions:
TLB Refill, TLB I valid, TLB Modified, Bus Erro , Address Error

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

134

Store Halfword (Extended)

SH

31 27 26 21 20 16 15 11 10 0
EXTEND SH
11110 offset 10:5 offset 15:11 11001 rx offset 4:0
5 6 5 5 3 5
Format: sH ry, offset(rx) M| PS16e

Purpose: Store Halfword (Extended)

To store a halfword to memory.

DeSCHpﬁonImemory[GPR[rx] + offset] « GPR[ry]

The 16-bit offset is sign-extended and then added to the contents of GPR rx to form the effective address. The least-
significant half ord of GPR ry is stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If the least-significan bit of the address is non-zero, an Address
Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset)

if vAddry # 0 then
SignalException (AddressError)

endif

(pAddr, CCA)
PAJAr < pAddrpgrye-1..2 || (PAddrl; , xor (ReverseEndian | 0))

< AddressTranslation

(vAddr,

+ GPR[Xlat (rx)]

DATA, STORE)

bytesel « vAddrl; xor (BigEndianCPU | 0)

dataword ¢« GPR[Xlat(ry)l3i_gspytesel.

StoreMemory (CCA, HALFWORD, dataword, pAddr,

Exceptions:

0 ” OS*bytesel
vAddr,

TLB Refill, TLB I valid, TLB Modified, Bus Erro , Address Error

DATA)

135 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-

chitecture, Revision 2.63

Shift Word Left Logical SLL
15 11 10 0
SHIFT . “ SLL
00110 X 00
5 3 3 2
Format: sLL rx, ry, sa M| PS16e

Purpose: Shift Word Left Logical

To execute a left-shift of a word by a fi ed number of bits—1 to 8 bits.

Description: GPR[rx] < GPR[ry] << sa

The 32-bit contents of GPR ry are shifted left, and zeros are inserted into the emptied low-order bits. The 3-bit sa
fiel specifie the shift amount. A shift amount of 0 is interpreted as a shift amount of 8. The result is placed into

GPR rx.

Restrictions:

None
Operation:
if sa = 0% then
s < 8
else

s « 02| sa

endif

temp — GPR[Xlat(ry)](3l_s)__o ” OS

GPR[Xlat (rx)]

Exceptions:

None

— temp

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

136

Shift Word Left Logical (Extended)

SLL

31 27 26 22 21 16 15 11 10 8 1 0
EXTEND a4:0 0 SHIFT 0 SLL
11110 sa%: 000000 00110 000 00
5 5 6 5 3 2
Format: sLL rx, ry, sa M| PS16e

Purpose: Shift Word Left Logical (Extended)

To execute a left-shift of a word by a fi ed number of bits—0 to 31 bits.

Description: GPR[rx] « GPR[ry] << sa

The 32-bit contents of GPR ry are shifted left, and zeros are inserted into the emptied low-order bits. The 5-bit sa

field specifies the shift amount. The result is placed into G

Restrictions:

None

Operation:

S ¢« sa

temp — GPR[Xlat(ry)](:Sl,s)..o ” OS
GPR[Xlat (rx)]

Exceptions:

None

«— temp

rx.

137 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-

chitecture, Revision 2.63

Shift Word Left Logical Variable SLLV

15 11 10 8 7 5 4 0
RR . SLLV
11101 X vy 00100
5 3 3 5
Format: sLLv ry, rx M| PS16e

Purpose: Shift Word Left Logical Variable

To execute a left-shift of a word by a variable number of bits.

Description: GPR[ry] < GPR[ry] << GPR[rx]

The 32-bit contents of GPR ry are shifted left, and zeros are inserted into the emptied low-order bits; the result word
is and placed back in GPR ry. The 5 low-order bits of GPR rx specify the shift amount.

Restrictions:

None

Operation:

s < GPR[Xlat(rx)1l4. o
temp ¢« GPR[Xlat(ry)] (31-g)..0 || O°
GPR[Xlat(ry)] <« temp

Exceptions:

None

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 138

Set on Less Than

15 11 10

SLT

RR

11101 ™

SLT
00010

5 3

Format: sLT rx, ry

Purpose: Set on Less Than

To record the result of a less-than comparison.

Description: T « (GPR[rx] < GPR[ryl)

MIPS16e

The contents of GPR ry are subtracted from the contents of GPR rx. Considering both quantities as signed integers, if
the contents of GPR rx are less than the contents of GPR ry, the result is set to 1 (true); otherwise, the result is set to 0

(false). This result is placed into GPR 24.

Restrictions:

None

Operation:

if GPR[Xlat(rx)] < GPR[Xlat(ry)]

GPR[24] « QCFREEN-L)7
else

GPR[24] « 0
endif

GPRLEN

Exceptions:

None

139 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-

chitecture, Revision 2.63

Set on Less Than Immediate

SLTI

15 11 10 0
SLTI I immediate
01010 x
5 3 8

Format: SLTI rx, immediate

Purpose: Set on Less Than Immediate

To record the result of a less-than comparison with a constant.

Description: T « (GPR[rx] < immediate)

MIPS16e

The 8-bit immediate is zero-extended and subtracted from the contents of GPR rx. Considering both quantities as
signed integers, if GPR rx is less than the zero-extended immediate, the result is set to 1 (true); otherwise, the result is

set to 0 (false). The result is placed into GPR 24.

Restrictions:

None

Operation:

if GPR[Xlat(rx)] < zero_extend(immediate) then

GPR[24] « QCFREEN-L)7
else

GPR[24] « 0
endif

GPRLEN

Exceptions:

None

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

140

Set on Less Than Immediate (Extended)

SLTI

31 27 26 21 20 16 15 11 10 0
EXTEND . . SLTI 0 .
11110 imm 10:5 imm 15:11 01010 rx 000 imm 4:0
5 6 5 5 3 3 5
Format: SLTI rx, immediate

Purpose: Set on Less Than Immediate (Extended)

To record the result of a less-than comparison with a constant.

Description: T « (GPR[rx] < immediate)

MIPS16e

The 16-bit immediate is sign-extended and subtracted from the contents of GPR rx. Considering both quantities as
signed integers, if GPR rx is less than the sign-extended immediate, the result is set to 1 (true); otherwise, the result is
set to 0 (false). The result is placed into GPR 24.

Restrictions:

None

Operation:

if GPR[Xlat(rx)] < sign_extend(immediate) then

GPR[24] « QCFREEN-L)7

else

GPR[24]

endif

Exceptions:

None

«~— 0

GPRLEN

141 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-

chitecture, Revision 2.63

Set on Less Than Immediate Unsigned

SLTIU

15 11 10 0
SLTIU rx immediate
01011
5 3 8
Format: SLTIU rx, immediate

Purpose: Set on Less Than Immediate Unsigned

To record the result of an unsigned less-than comparison with a constant.

Description: T « (GPR[rx] < immediate)

MIPS16e

The 8-bit immediate is zero-extended and subtracted from the contents of GPR rx. Considering both quantities as
unsigned integers, if GPR rx is less than the zero-extended immediate, the result is set to 1 (true); otherwise, the result

is set to 0 (false). The result is placed into GPR 24.

Restrictions:

None

Operation:

if (0 || GPRI[X1lat(rx)]) < (0 || zero_extend(immediate)) then

GPR[24] « QCFRREN-L)7

else

GPR[24] « O

endif

Exceptions:

None

GPRLEN

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

142

Set on Less Than Immediate Unsigned (Extended)

SLTIU

31 27 26 21 20 16 15 11 10 0
EXTEND . . SLTIU 0 .
11110 imm 10:5 imm 15:11 01011 rx 000 imm 4:0
5 6 5 5 3 3 5
Format: SLTIU rx, immediate

Purpose: Set on Less Than Immediate Unsigned (Extended)

To record the result of an unsigned less-than comparison with a constant.

Description: T « (GPR[rx] < immediate)

MIPS16e

The 16-bit immediate is sign-extended and subtracted from the contents of GPR rx. Considering both quantities as
unsigned integers, if GPR rx is less than the sign-extended immediate, the result is set to 1 (true); otherwise, the result

is set to 0 (false). The result is placed into GPR 24.

Restrictions:

None

Operation:

if (0 || GPRI[X1lat(rx)]) < (0 || sign_extend(immediate)) then

GPR[24] « QCFRREN-L)7

else

GPR[24]

endif

Exceptions:

None

«~— 0

GPRLEN

143 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-

chitecture, Revision 2.63

Set on Less Than Unsigned

15 11

10

SLTU

RR
11101

X

SLTU
00011

5

Format. sSLTU rx, ry

Purpose: Set on Less Than Unsigned

To record the result of an unsigned less-than comparison.

Description: T « (GPR[rx] < GPR[ryl)

MIPS16e

The contents of GPR ry are subtracted from the contents of GPR rx. Considering both quantities as unsigned integers,
if the contents of GPR rx are less than the contents of GPR ry, set the result to 1 (true); otherwise, set the result to 0
(false). The result is placed into GPR 24.

Restrictions:

None

Operation:

if (0 || GPRI[Xlat (rx)
GPR[24] ¢« QCPRLEN
else
GPR[24] « O
endif

GPRLEN

Exceptions:

None

| 1

< (0 || GPR[X1lat(ry)]l) then
|

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

144

Shift Word Right Arithmetic SRA

15 11 10 8 7 5 4 2 1 0
SHIFT . “ SRA
00110 X vy 11
5 3 3 3 2
Format: sra rx, ry, sa M| PS16e

Purpose: Shift Word Right Arithmetic

To execute an arithmetic right-shift of a word by a fi ed number of bits—1 to 8 bits.

Description: GPR[rx] <« GPR[ry] >> sa (arithmetic)

The 32-bit contents of GPR ry are shifted right, and the sign bit is replicated into the emptied high-order bits. The 3-
bit sa fiel specifie the shift amount. A shift amount of 0 is interpreted as a shift amount of 8. The result is placed
into GPR rx.

Restrictions:

None

Operation:

s « 0° | sa
if (s = 0) then
s « 8
endif
temp ¢« (GPR[Xlat(ry)ls;)® || GPRI[Xlat(ry)ls;. ¢
GPR[Xlat (rx)] <« temp

Exceptions:

None

145 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-
chitecture, Revision 2.63

Shift Word Right Arithmetic (Extended) SRA

31 27 26 22 21 16 15 11 10 8 7 5 4 2 1 0
EXTEND sad:0 0 SHIFT . 0 SRA
11110 ’ 000000 00110 X y 000 11
5 5 6 5 3 3 3 2
Format: sra rx, ry, sa M| PS16e

Purpose: Shift Word Right Arithmetic (Extended)

To execute an arithmetic right-shift of a word by a fi ed number of bits—0 to 3 1bits.

Description: GPR[rx] < GPR[ry] >> sa (arithmetic)

The 32-bit contents of GPR ry are shifted right, and the sign bit is replicated into the emptied high-order bits. The 5-
bit sa field specifies the shift amount. The result is placed into G rx.

Restrictions:

None

Operation:

S < sa
temp ¢« (GPR[Xlat(ry)lsq)® || GPRI[Xlat(ry)ls;. ¢
GPR[Xlat (rx)] ¢ sign_extend(temps; g)

Exceptions:

None

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-
ture, Revision 2.63 146

Shift Word Right Arithmetic Variable SRAV

15 11 10 8 7 5 4 0
RR . SRAV
11101 X vy 00111
5 3 3 5
Format: srav ry, rx M| PS16e

Purpose: Shift Word Right Arithmetic Variable

To execute an arithmetic right-shift of a word by a variable number of bits.

Description: GPR[ry] < GPR[ry] >> GPR[rx] (arithmetic)

The 32-bit contents of GPR ry are shifted right, and the sign bit is replicated into the emptied high-order bits; the
word result is placed back in GPR ry. The 5 low-order bits of GPR rx specify the shift amount.

Restrictions:

None

Operation:

s < GPR[Xlat(rx)1l4. o
temp ¢« (GPR[Xlat(ry)lsq)® || GPRI[Xlat(ry)ls;. ¢
GPR[Xlat(ry)] <« temp

Exceptions:

None

147 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-
chitecture, Revision 2.63

Shift Word Right Logical

15 11 10

SRL

SHIFT
00110

X

sa

SRL
10

5

Format: SrRL rx, ry, sa

Purpose: Shift Word Right Logical

To execute a logical right-shift of a word by a fi ed number of bits—1 to 8 bits.

Description: GPR[rx] < GPR[ry] >> sa (logical)

MIPS16e

The 32-bit contents of GPR ry are shifted right, and zeros are inserted into the emptied high-order bits. The 3-bit sa
fiel specifie the shift amount. A shift amount of 0 is interpreted as a shift amount of 8. The result is placed into

GPR rx.

Restrictions:

None
Operation:
if sa = 0% then
s < 8
else
s « 02| sa
endif

temp « 0° || GPR[Xlat (ry)ls3; .

GPR[Xlat (rx)] « temp

Exceptions:

None

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

148

Shift Word Right Logical (Extended)

SRL

31 27 26 22 21 16 15 11 10 1 0
EXTEND sad:0 0 SHIFT . 0 SRL
11110 ’ 000000 00110 X 000 10
5 5 6 5 3 3 2
Format: SrRL rx, ry, sa M| PS16e

Purpose: Shift Word Right Logical (Extended)
To execute a logical right-shift of a word by a fi ed number of bits—0 to 31 bits.

Description: GPR[rx] < GPR[ry] >> sa (logical)

The 32-bit contents of GPR ry are shifted right, and zeros are inserted into the emptied high-order bits. The 5-bit sa
field specifies the shift amount. The result is placed into G rx.

Restrictions:

None

Operation:

S < sa

temp « 0° || GPR[Xlat (ry)ls1, s

GPR[Xlat (rx)]

Exceptions:

None

«— temp

149 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-

chitecture, Revision 2.63

Shift Word Right Logical Variable

15

11 10

SRLV

RR
11101

X

SRLV
00110

5

Format: SRLV ry, rx

Purpose: Shift Word Right Logical Variable

To execute a logical right-shift of a word by a variable number of bits.

Description: GPR[ry] < GPR[ry] >> GPR[rx]

MIPS16e

The 32-bit contents of GPR ry are shifted right, and zeros are inserted into the emptied high-order bits; the word

result is placed back in GPR ry. The 5 low-order bits of GPR rx specify the shift amount.

Restrictions:

None

Operation:

s < GPR[Xlat(rx)1l4. o
temp < 0° || GPR[Xlat(ry)ls3q. ¢
GPR[Xlat(ry)] <« temp

Exceptions:

None

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

150

Subtract Unsigned Word SUBU

15 11 10 8 7 5 4 2 1 0
RRR . . SUBU
11100 X vy z 11
5 3 3 3 2
Format: SuUBU rz, rx, ry M| PS16e

Purpose: Subtract Unsigned Word
To subtract 32-bit integers.

Description: GPR[rz] < GPR[rx] — GPR[ry]

The 32-bit word value in GPR ry is subtracted from the 32-bit value in GPR rx and the 32-bit arithmetic result is
placed into GPR rz.

No integer overfl w exception occurs under any circumstances.

Restrictions:

None

Operation:
temp ¢ GPR[Xlat(rx)] — GPR[Xlat(ry)]
GPR[Xlat (rz)] <« (temp)

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overfl w. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overfl w, such as C language arithmetic.

151 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-
chitecture, Revision 2.63

Store Word SW
15 11 10 8 7 0
SW
11011 X ry offset
5 3 3 5
Format: sw ry, offset(rx) M| PS16e

Purpose: Store Word

To store a word to memory.

DeSCHpﬁonImemory[GPR[rx] + offset] « GPR[ry]

The 5-bit offset is shifted left 2 bits, zero-extended, and then added to the contents of GPR rx to form the effective

address. The contents of GPR ry are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significan bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr < zero_extend(offset || 0%) + GPR[Xlat (rx)]

if vAddr, o # 0% then
SignalException (AddressError)
endif

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)

dataword ¢« GPR[Xlat(ry)]

StoreMemory (CCA, WORD, dataword, pAddr, vAddr,

Exceptions:
TLB Refill, TLB I valid, TLB Modified, Bus Erro , Address Error

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

152

Store Word (Extended)

SW

31 27 26 21 20 16 15 11 10 0
EXTEND SW
11110 offset 10:5 offset 15:11 11011 rx offset 4:0
5 6 5 5 3 5
Format: sw ry, offset(rx) M| PS16e

Purpose: Store Word (Extended)

To store a word to memory.

DeSCHpﬁonImemory[GPR[rx] + offset] « GPR[ry]

The 16-bit offset is sign-extended and then added to the contents of GPR rx to form the effective address. The con-

tents of GPR ry are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significan bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[Xlat (rx)]
if vAddr, o # 0% then

SignalException (AddressError)
endif

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)

dataword ¢« GPR[Xlat(ry)]

StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB I valid, TLB Modified, Bus Erro , Address Error

153 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-

chitecture, Revision 2.63

Store Word rx (SP-Relative) SW
15 11 10 8 7 0
SWSP
11010 rx offset
5 3 8
Format: sw rx, offset (sp) M| PS16e

Purpose: Store Word rx (SP-Relative)

To store an SP-relative word to memory.

DeSCHpﬁonImemory[GPR[sp] + offset] « GPR[rx]

The 8-bit offset is shifted left 2 bits, zero-extended, and then added to the contents of GPR 29 to form the effective

address. The contents of GPR rx are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significan bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr < zero_extend(offset || 0%) + GPR[29]
if vAddr, o # 0% then

SignalException (AddressError)
endif

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)

dataword <« GPR[Xlat (rx)]

StoreMemory (CCA, WORD, dataword, pAddr, vAddr,

Exceptions:
TLB Refill, TLB I valid, TLB Modified, Bus Erro , Address Error

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

154

Store Word rx (SP-Relative, Extended) SW

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND SWSP 0
11110 offset 10:5 offset 15:11 11010 rx 000 offset 4:0
5 6 5 5 3 3 5
Format: sw rx, offset (sp) MIPSl6e

Purpose: Store Word rx (SP-Relative, Extended)

To store an SP-relative word to memory.

DeSCHpﬁonImemory[GPR[sp] + offset] « GPR[rx]

The 16-bit offset is sign-extended and then added to the contents of GPR 29 to form the effective address. The con-
tents of GPR rx are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the two least-significan bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[29]
if vAddr, o # 0% then
SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)
dataword <« GPR[Xlat (rx)]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB I valid, TLB Modified, Bus Erro , Address Error

155 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-
chitecture, Revision 2.63

Store Word ra (SP-Relative) SW
15 11 10 8 0
18 SWRASP
01100 010 offset
5 3 8
Format: sw ra, offset (sp) M| PS16e

Purpose: Store Word ra (SP-Relative)

To store register ra SP-relative to memory.

Description: memory[sp + offset] « ra

The 8-bit offset is shifted left 2 bits, zero-extended, and then added to the contents of GPR 29 to form the effective

address. The contents of GPR 31 are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significan bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr < zero_extend(offset || 0%) + GPR[29]

if vAddr, o # 0% then
SignalException (AddressError)
endif

(pAddr, CCA) ¢« AddressTranslation (vAddr,

dataword <« GPR[31]

StoreMemory (CCA, WORD, dataword, pAddr,

Exceptions:
TLB Refill, TLB I valid, TLB Modified, Address Erro

DATA, STORE)

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

156

Store Word ra (SP-Relative, Extended) SW
31 27 26 21 20 16 15 11 10 8 0
EXTEND 18 SWRASP 0
11110 offset 10:5 offset 15:11 01100 010 000 offset 4:0
5 6 5 5 3 3 5
Format: sw ra, offset (sp) M| PS16e

Purpose: Store Word ra (SP-Relative, Extended)

To store register ra SP-relative to memory.

Description: memory[sp + offset] « ra

The 16-bit offset is sign-extended and then added to the contents of GPR 29 to form the effective address. The con-

tents of GPR 31 are stored at the effective address.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significan bits of the address is non-zero, an

Address Error exception occurs.

Operation:

vAddr ¢« sign_extend(offset) + GPR[29]
if vAddr, o # 0% then

SignalException (AddressError)
endif

(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, STORE)

dataword <« GPR[31]

StoreMemory (CCA, WORD, dataword, pAddr, vAddr,

Exceptions:
TLB Refill, TLB I valid, TLB Modified, Address Erro

DATA)

157 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-

chitecture, Revision 2.63

15 11 10 8 7

RR
11101

XOR
01110

5 3 3

Format: XOR rx, ry

Purpose: Exclusive OR
To do a bitwise logical Exclusive OR.

Description: GPR[rx] < GPR[rx] XOR GPR[ry]

MIPS16e

The contents of GPR ry are combined with the contents of GPR rx in a bitwise Exclusive OR operation. The result is

placed in GPR rx.

Restrictions:

None

Operation:
GPR[Xlat (rx)] <« GPR[Xlat(rx)] xor GPR[Xlat(ry)]

Exceptions:

None

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

158

15 11 10 8 7 5 4 0
RR x ZEB CNVT
11101 000 10001
5 3 3 5
Format: zEB rx MIPSl6e

Purpose: Zero-Extend Byte

Zero-extend least significant byte in r gister rx.

Description: GPR[rx] < zero_extend(GPR[rx]l; ,);

The least significant byte of GP rx is zero-extended and the value written back to rx.

Restrictions:

None

Operation:

temp ¢« GPR[Xlat (rx)]
GPR[Xlat(rx)] <« 0 || temp; |

Exceptions:

None

Programming Notes:

None

159 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-
chitecture, Revision 2.63

15 11 10 8 7 5 4 0
RR x ZEH CNVT
11101 001 10001
5 3 3 5

Format: zEH rx

Purpose: Zero-Extend Halfword

Zero-extend least significant half ord in register rx.

Description: GPR[rx] <« zero_extend(GPR[rx]is o)

The least significant half ord of GPR rx is zero-extended and the value written back to rx.

Restrictions:

None

Operation:

temp ¢« GPR[Xlat (rx)]
GPR[Xlat(rx)] ¢« 0 || temp;5 ¢

Exceptions:

None

Programming Notes:

None

MIPS16e

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

160

161 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-
chitecture, Revision 2.63

Appendix A

Revision History

In the left hand page margins of this document you may find ertical change bars to note the location of significan
changes to this document since its last release. Significan changes are define as those which you should take note of
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

Please note: Limitations on the authoring tools make it difficult to place change bars on changes to figures. Chan
bars on figure titles are used to denote a potential change in the figure itsel

Revision

Date

Description

0.90

November 1, 2000

External review copy of reorganized and updated architecture documentation.

0.91

November 15, 2000

Changes in this revision:

» Correct table 3-10 description of branch instructions (branches really are
implemented in the 32-bit architecture and are extensible)

» Correct the pseudo code for all MIPS16 branches - the offset value should
be added to the address of the instruction following the branch, not the
branch itself.

0.92

December 15, 2000

Changes in this revision:
* Add missing I8 MOVER32 instruction format.

0.93

January 25, 2001

Changes in this revision:

 Correct minor typos in the previous version.

* Add the 32-bit MIPS version of JALX and update the instruction descrip-
tions of JAL and JALX.

0.95

March 12, 2001

Document cleanup for next external release.

0.96

November 12, 2001

Changes in this revision:

* Declassify the MIPS32 Architecture for Programmers volume.

» Fix PDF bookmarks for the MIPS16 instructions.

» Fix formatting in instruction translation section.

» Correct the description of the shift count for extended SRA and SLL.
* Change all uses of “MIPS16” to “MIPS16¢”.

1.00

August 29, 2002

Changes in this revision:

» Update pseudo code for SAVE and RESTORE to be explicit about the mem-
ory operations inherent in the instructions.

 Correct extended PC-relative LW and LD to remove the implication that
they can be executed in the delay slot of a jump.

* Add section defining instruction fetch restrictions when the processor i
running in MIPS16e mode and the fetch address is in uncached memory.

MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Architec-

ture, Revision 2.63

162

Revision History

Revision Date Description

2.00 May 15, 2003 Changes in this revision:

» For MIPS64 processors, add a programming note to ADDIUPC to indicate
that this instruction will generate the expected result only when run in the
32-bit Compatibility Address Space.

* For MIPS64 processors, clean up the input operand sign-extension require-
ments for ADDIUPC, ADDIUSP, ADDU, NEG, SEB, SEH, SEW, ZEB,
ZEH, and ZEW.

* Add a note to specify that the ISA Mode flag is made vailable to software
in EPC, ErrorEPC, or DEPC when an exception occurs.

* Clarify that for the purposes of Watchpoints and EJTAG Breakpoints, that
PC-relative load references are consider data, not instruction, references.

2.50 July 1, 2005 Changes in this revision:

* Make it explicit that attempting to execute a non-extensible instruction must
cause a Reserved Instruction exception. This was implied, but not explicitly
stated in the previous revision of the document.

» Update all files to FrameMa er 7.1.

» Correct copyright year in Architecture for Programmers version.

2.60 June 25, 2008 Changes in this revision:
* JALR.HB and JR.HB act like JALR and JR.
2.61 January 26,2010 « MIPS64-only release: Store Doubleword ra (SP-relative, Extended), instruc-

tion bits 7:5 should be zero, not holding ra value. Similar to Store Word ra
(SP-relative, Extended)

2.62 December 16,2012 + Updated Cover logos
» Updated copyright text
» About this book chapter updated for R5 (DSP, MT, VZ, MSA modules)

2.63 July 16,2013 * New cover page and legal text.

163 MIPS32® Architecture for Programmers Volume IV-a: The MIPS16e™ Application-Specific Extension to the MIPS32® Ar-
chitecture, Revision 2.63

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

