MIIFPPS

MIPS32® Architecture for Programmers:
MIPS16e2 Application-Specific Extension
Technical Reference Manual

Document Number: MD01172
Revision 01.00
April 26, 2016

Public. This publication contains proprietary information which is subject to change without notice and is supplied
‘as is’, without any warranty of any kind.

MIPS16e2 Application Specific Extension, Revision 01.00

Table of Contents

Chapter 1: INtroducCtion tO MIPSLBE2.........uuuuuuuuiiiiiiiiiiiieiiesitreeeeeeeresaesseeseeeeseeeeeeeera————ererrrrrrrrrrreaaaeas 5
1.1: Base ArchiteCture REQUIFEIMENTSoiiiiiiiitii e e ettt e e e e e e e s e s e bttt eeeaeaaaeaaasannbbbbeeeaaaeeesaaaannnnnes 5
1.2: Software DeteCtion Of the ASE ...ttt ettt et e e e e e e e e e e annreeeaaaaeaasaaaannnnes 5
1.3: ComPlianCe and SUDSETHINGcciiiiei ittt e e e e oottt e e e e e e e e e e e e annnbseeeeaeaaeaasaaaannnne 5
L. IMIPSLBE2 OVEIVIEW ...ttt e e e ettt et e e e e e e e e 44 e o ke ettt bttt e e e ee e e e e e e aaaamnnbeebeeeeeeeaaeaeeeasbssnneeaaaaaaasaaaannnnnes 5
1.5 MIPSL1BE2 ASE FRALUIESiiiiiiiiiiiiittititt e e oo e e e e e ettt et et e ettt te bt be bbb b h e e e oo oo e e e e e e e e e eeeeeeeeeeeeseaetnsbabnnnnnnnn 6
1.6 MIPSL1EE2 REQISLEI SOeteeeiiiiieieiei ittt ettt e e e e e e oottt e et e e e e e e s e e e e e aebteeeeeeaeaaaaeaasaanbesaneeaaaaaaasaaaannnnnes 6
1.7 MIPSLEE2 ISA MOUES ... ietiee et ettt ettt ettt ettt e ekt e e ek ket e e ab e e e o2k bt a2 ah bt e e ah b e e e e ke e e et e e ansbe e e anbeeeabbeeesnneeas 7
1.8: MIPS16€2 INSrUCLION SUMIMAIIES ...ceeeiiiiiiiititee et e e e e e e ettt e e e e e e e e e e e e e annbeebeeeteaaeaeaaeaaaannnbbeeeaaaaaeaasannnnnes 8
1.9: MIPS16€2 INSLrUCHION FOMMIALS ..ccieiiiii ittt ettt e e e e e e e e e e e e et e e e e e e e e e e e e e e s aabbnseeeaaaaaaaaaaas 10
1.10: MIPS16e2 Instruction Stream Organization and ENdI@NNESScuevveiiiiiiiiiiiiiiieee e 11
1.11: MIPS16€e2 Instruction FEtCh RESIICHONSccoiiiiiiiiiiiiiii e 11
A = L U 7= T [T P PPV P PP OPPPRP O 11

Chapter 2: MIPS16€2 INStruction DeSCIIPLIONS ...uuiuiii e e e e e e e 13

ADDIU .ttt h e Rt e e R Ee ettt e eRt et e e Rt e e et te e e eRt e e e ket eeen bt e naee e Eaeeeenteeeanteeeeraeean 14
N A OSSR 15
O A @ | SRR 16
Dl ettt e et e h et eRtee e e R et e et eeeeaREee e Rt e e e oA Eee e ettt e e Eee e e Rttt ent et anEeeeeeneeeeanneeeenneeeanneeeenneeas 22
D ST 23
D SRS 24
| ST 26
SRR 27
SRR 28
BV P E ... ittt ettt e ea Lt eR et e e Rttt e ettt e aREe e oo R et e anE et e anEee e e tee e e R te e e neeeeanneeeentneeaaneeeenneen 29
SRR 31
N SRR 33
N SRR 35
0 SRR 37
0 OSSR 38
0 SO RR 39
0 LSS RRR 40
L L ettt ettt ettt et e e e R et e anEee e e Rt e e e R et e e aR Rt e e Rt e e e eREeeeeneeeeEeeeeneeeenn et ennteeeneeeeanneeeeneeeeanteeeenneen 41
0 SRR 42
L) ettt ettt e R et e et et oo Rttt e R et e e aR R et e Rt e e e on Rt e e ett e e e EeeeeReee e s eeeenteeeneeeeanaeeeanaeeennneeeenneen 43
LVl L ettt ettt ettt Rt Rttt e e Rttt e R et e e oA Rt e e Rttt e aR Rt e e enn et e e R eeeeReeeenRaeeeeaeeeneeeeanneeeanneeennreeeanneen 44
T SRR 46
Y SR 48
Y1 SR 49
1Y@ 72 SRR 50
1Y@ 72 SRR 51
Y@ N TSRO PP 52
Y N TSP P TR PPPRTPP 53
Y PP PR PP 54
Y I O RPOTEPT PP 55
Y@ 72T P TR PPPRPP 56
Y@ 72 TP PP 57
PAUSE ..ottt e et et R et s 58
P R R ettt e ettt n e e e s 60
L0 PP U PP O PR PPRRPURPTURIN 63
RDHWR ...ttt etttk et ettt e o a e oottt e e R et ekt e e e e e et e e E et n 64
] = F PP P PP PR PPPR 66
S O TSP PP PRR PP 67

MIPS16e2 Application-Specific Extension, Revision 01.00 3

Table of Contents

SH e e e e e e e e e e e e e e e 69
S e e e e e e e et e e r e e e e e e e e 70
S N Lt e e e et e e e e e e e st e e e e e e e e e e e a e 71
S R et e e e e e e e e r et e e e e e e e n e 73
S N C e e e e e et e e e e e e r e e e e e e e e e n s 75
KORI ettt e e e e et e e e e e e e e e 80

4 MIPS16e2 Application-Specific Extension, Revision 01.00

Chapter 1

Introduction to MIPS16e2

This chapter describes the purpose and key features of the MIPS16e2™ Application-Specific Extension (ASE) to the
MIPS32® Architecture. The MIPS16e2 ASE is an enhancement to the previous MIPS16e™ ASE which provides
additional instructions to improve the compaction of the code and overall performance.

1.1 Base Architecture Requirements

The MIPS16e2 ASE requires the following base architecture support:

e The MIPS32 or MIPS64 Architecture: The MIPS16e2 ASE requires a compliant implementation of the
MIPS32 or MIPS64 Architecture.

1.2 Software Detection of the ASE

Software may determine if the MIPS16e2 ASE is implemented by checking the state of the CA2 bit in the Config5
CPO register.

1.3 Compliance and Subsetting

There are no instruction subsets of the MIPS16e2 ASE to the MIPS64 Architecture — all MIPS16e2 instructions
must be implemented. Specifically, this means that the original MIPS16 ASE is not an allowable subset of the
MIPS16e2 ASE. For the MIPS16e2 ASE to the MIPS32 Architecture, the instructions which require a 64-bit proces-
sor are not implemented and execution of such an instruction must cause a Reserved Instruction exception.

1.4 MIPS16e2 Overview

The MIPS16e2 ASE allows embedded designs to substantially reduce system cost by reducing overall memory
requirements. The MIPS16e2 ASE is compatible with any combination of the MIPS32 or MIPS64 Architectures, and
existing MIPS binaries can be run without modification on any embedded processor implementing the MIPS16e2
ASE.

The MIPS16e2 ASE must be implemented as part of a MIPS based host processor that includes an implementation of
the MIPS Privileged Resource Architecture, and the other components in a typical MIPS based system.

This volume describes only the new instructions in the MIPS16e2 ASE, and does not include information about any

specific hardware implementation such as processor-specific details, because these details may vary with implemen-
tation. For this information, please refer to the specific processor’s user manual.

MIPS16e2 Application-Specific Extension, Revision 0.00 5

Introduction to MIPS16e2

1.5 MIPS16e2 ASE Features

The MIPS16e2 ASE includes the following features:

* Includes all MIPS16¢ instructions — refer to MIPS16e ASE for details

* Allows MIPS16e¢2 instructions to be intermixed with existing MIPS instruction binaries

* Compatible with the MIPS32 and MIPS64 instruction sets

* Allows switching between MIPS16e2 and 32-bit MIPS Mode

* Supports 8, 16, 32, and 64-bit data types (64-bit only in conjunction with MIPS64)

* Defines eight general-purpose registers, as well as a number of special-purpose registers

» Defines special instructions to increase code density (Extend, PC-relative instructions)

The MIPS16¢e2 ASE contains some instructions that are available on MIPS64 host processors only. These instructions

must cause a Reserved Instruction exception on 32-bit processors, or on 64-bit processors on which 64-bit operations
have not been enabled.

1.6 MIPS16e2 Register Set

The MIPS16e2 register set is listed in Table 1.1 and Table 1.2. This register set is a true subset of the register set
available in 32-bit mode; the MIPS16e2 ASE can directly access 8 of the 32 registers available in 32-bit mode.

Table 1.1 lists the general purpose registers, and Table 1.2 lists the MIPS16e2 special-purpose registers, including
PC.

The MIPS16e2 ASE also contains two move instructions that provide access to all 32 general-purpose registers.

Table 1.1 MIPS16e2 General-Purpose Registers

MIPS16e 32-Bit MIPS | Symbolic Name
Register Register (From
Encoding? Encoding? ArchDefs.h)3 Description

0 16 sO General-purpose register
1 17 sl General-purpose register
2 2 v0 General-purpose register
3 3 vl General-purpose register
4 4 a0 General-purpose register
5 5 al General-purpose register
6 6 a2 General-purpose register
7 7 a3 General-purpose register

6 MIPS16e2 Application-Specific Extension

1.7 MIPS16e2 ISA Modes

Table 1.1 MIPS16e2 General-Purpose Registers

MIPS16e 32-Bit MIPS | Symbolic Name
Register Register (From
Encoding? Encoding? ArchDefs.h)3 Description
N/A 24 t8 MIPS16¢2 Condition Code register;

implicitly referenced by the BTEQ,
BTNE, CMP, CMPI, SLT, SLTU,
SLTI, and SLTIU instructions

N/A 28 ep Global pointer register
N/A 29 sp Stack pointer register
N/A 31 ra Return address register

1. “0-7” correspond to the register’s MIPS16e2 binary encoding and show how that encoding relates
to the MIPS registers. “0-7” never refer to the registers, except within the binary MIPS16e2
instructions. From the assembler, only the MIPS names ($16, $17, $2, etc.) or the symbolic names
(s0, s1, v0, etc.) refer to the registers. For example, to access register number 17 in the register file,
the programmer references $17 or s1, even though the MIPS16e2 binary encoding for this register
is 001.

2. General registers not shown in the above table are not accessible through the MIPS16¢2 instruction
set, except by using the Move instructions. The MIPS16e2 Move instructions can access all 32
general-purpose registers.

3. The MIPS16e2 condition code register is referred to as T, t8, or $24 throughout this document,
depending on the context. All three names refer to the same physical register.

Table 1.2 MIPS16e2 Special-Purpose Registers

Symbolic Name Purpose
PC Program counter. The PC-relative Add and Load instruc-
tions can access this register as an operand.
HI Contains high-order word of multiply or divide result.
LO Contains low-order word of multiply or divide result.

1.7 MIPS16e2 ISA Modes

This section describes the following:
e the ISA modes available in the architecture, page 7

* the purpose of the ISA Mode field, page 8
1.7.1 Modes Available in the MIPS16e2 Architecture

There are two ISA modes defined in the MIPS16¢e2 Architecture, as follows:

* MIPS 32-bit mode (32-bit instructions)

MIPS16e2 Application-Specific Extension, Revision 0.00 7

Introduction to MIPS16e2

e MIPS16e mode (16-bit instructions)

1.7.2 Defining the ISA Mode Field

The ISA Mode bit controls the type of code that is executed, as follows:

Table 1.3 ISA Mode Bit Encodings

Encoding Mode
0b0 MIPS 32-bit mode. In this mode, the processor executes
32-bit MIPS instructions.
Obl MIPS16e mode. In this mode, the processor executes
MIPS16e instructions.

1.7.3 Switching Between Modes When an Exception Occurs

When an exception occurs (including a Reset exception), the ISA Mode bit is cleared so that exceptions are handled
by 32-bit code.

The ISA Mode in which the processor was running at the time that the exception occurred is visible to software as bit
0 of the Coprocessor 0 register in which the restart address is stored (EPC, ErrorEPC, or DEPC). See the descrip-

tion of these instructions in Volume III for a complete description of this process.

After the processor switches to 32-bit mode following a Reset exception, the processor starts execution at the 32-bit
mode Reset exception vector.

1.8 MIPS16e2 Instruction Summaries

This section describes the various instruction categories and then summarizes the MIPS16e2 instructions included in
each category. Extensible instructions are also identified.

There are six instruction categories:

* Loads and Stores — These instructions move data between memory and the GPRs.

* Immediate —These instructions perform arithmetic, logical, and shift operations on immediate values.
* Move — These instructions perform move operations.

» Special — This category includes the Break and Extend instructions. Break transfers control to an exception
handler, and Extend enlarges the immediate field of the next instruction.

» Enable and Disable — This category enables and disables hardware such as interrupt generation, multi-thread-
ing, and virtual processors.

Tables 1.4 through 1.8 list the MIPS16e2 instruction set.

8 MIPS16e2 Application-Specific Extension

1.8 MIPS16e2 Instruction Summaries

Table 1.4 MIPS16e2 Load and Store Instructions

Instruction

Always Implemented Only on

Mnemonic Instruction Extendible? MIPS64 Processors?
LB Load Byte (global pointer) Yes No
LBU Load Byte Unsigned (global pointer) Yes No
LH Load Halfword (global pointer) Yes No
LHU Load Halfword Unsigned (global pointer) Yes No
Lw Load Word (global pointer) Yes No
LWL Load Word Left Yes No
LWR Load Word Right Yes No
SB Store Byte (global pointer) Yes No
SH Store Halfword (global pointer) Yes No
SW Store Word (global pointer) Yes No
SWL Store Word Left Yes No
SWR Store Word Right Yes No
SC Store Conditional Yes No

Table 1.5 MIPS16e2 Immediate Instructions

Instruction

Always Implemented Only on

Mnemonic Instruction Extendible? MIPS64 Processors?
ADDIU Add Immediate Unsigned (global pointer) Yes No
ANDI Logical AND immediate Yes No
ORI Logical OR immediate Yes No
XORI Logical Exclusive OR immediate Yes No
LL Load Linked Word Immediate Yes No
LUI Load Upper Immediate Extended Yes No

Table 1.6 MIPS16e2 Move Instructions

Instruction

Always Implemented Only on

Mnemonic Instruction Extendible? MIPS64 Processors?
MEFCO0 Move from Coprocessor 0 Yes No
MTCO Move to Coprocessor 0 Yes No
MOVN Move Conditional on Not Equal to Zero Extended Yes No
MOVN Move Zero Conditional on Not Equal to Zero Extended Yes No
MOVZ Move Conditional on Equal to Zero Extended Yes No
MOVZ Move Zero Conditional on Not Equal to Zero Extended Yes No
MOVTN Move Conditional on T Not Equal to Zero Extended Yes No
MOVTN Move Zero Conditional on T Not Equal to Zero Extended Yes No
MOVTZ Move Conditional on T Equal to Zero Extended Yes No
MOVTZ Move Zero Conditional on T Equal to Zero Extended Yes No

MIPS16e2 Application-Specific Extension, Revision 0.00 9

Introduction to MIPS16e2

Table 1.7 MIPS16e2 Special Instructions

Instruction

Always Implemented Only on

Mnemonic Instruction Extendible? MIPS64 Processors?
CACHE Perform Cache Operation Extended Yes No
EHB Execution Hazard Barrier Extended Yes No
EXT Extract Bit Field Extended Yes No
INS Insert Bit Field Extended Yes No
INSO Insert Bit Field 0 Extended Yes No
PAUSE Wait for the LLBit to Clear Extended Yes No
PREF Prefetch Extended Yes No
RDHWR Read Hardware Register Extended Yes No
SYNC Synchronize Shared Memory Extended Yes No

Table 1.8 MIPS16e2 Enable and Disable Instructions

Instruction

Always Implemented Only on

Mnemonic Instruction Extendible? MIPS64 Processors?
DI Disable Interrupts Yes No
DMT Disable Multi-threading Yes No
DVPE Disable Virtual Processor Execution Yes No
EI Enable Interrupts Yes No
EMT Enable Multi-threading Yes No
EVPE Enable Virtual Processor Execution Yes No

1.9 MIPS16e2 Instruction Formats

This section defines the format! for each MIPS16¢2 instruction type and includes formats for both normal and
extended instructions.

Every MIPS16e2 instruction consists of 16 bits aligned on a halfword boundary. All variable subfields in an instruc-
tion format (such as rx, ry, rz, and immediate) are shown in lowercase letters.

The two instruction subfields op and funct have constant values for specific instructions. These values are given in
their uppercase mnemonic names. For example, op is LB in the Load Byte instruction; op is RRR and function is
ADDU in the Add Unsigned instruction.

Definitions for the fields that appear in the instruction formats are summarized in Table 1.9.

Table 1.9 MIPS16e2 Instruction Fields

Field Definition

funct or f Function field

1. Asused here, the term format means the layout of the MIPS16¢2 instruction word.

10 MIPS16e2 Application-Specific Extension

1.10 MIPS16e2 Instruction Stream Organization and Endianness

immediate 9- or 16-bit immediate field

or imm

rx 3-bit source or destination register specifier
ry 3-bit source or destination register specifier
b 3-bit source or destination register specifier
sel 3-bit select field

op 5-bit opcode field

1.10 MIPS16e2 Instruction Stream Organization and Endianness

The instruction halfword is placed within the 32-bit (or 64-bit) memory element according to system endianness.

* On a 32-bit processor in big-endian mode, the first instruction is read from bits 31..16 and the second instruction
is read from bits 15..0

* On a 32-bit processor in little-endian mode, the first instruction is read from bits 15..0 and the second instruction
is read from bits 31..16

The above rule also applies to all extended instructions, since they consist of two 16-bit halfwords. For a
16-bit-instruction sequence, instructions are placed in memory so that an LH instruction with the PC as an argument
fetches the instruction independent of system endianness.

1.11 MIPS16e2 Instruction Fetch Restrictions

When the processor is running in MIPS16e2 mode and fetch address is in uncacheable memory, certain restrictions
apply to the width of each instruction fetch. Under these circumstances, the processor never fetches more than an
aligned word during each instruction fetch. It is UNPREDICTABLE whether the processor fetches a single aligned
word, or two aligned halfwords during each instruction fetch.

1.12 Xlat Usage

Many of the instructions in this document use the Xlat function when defining the destination register. The Xlat func-
tion translates the MIPS16e register field index to the correct 32-bit MIPS physical register index. It is used to assure
that a value of 0b000 in a MIPS16e register field maps to GPR 16, and a value of 0b001 maps to GPR 17. All other
values (0b010 through Ob111) map directly.

MIPS16e2 Application-Specific Extension, Revision 0.00 11

Introduction to MIPS16e2

12

MIPS16e2 Application-Specific Extension

Chapter 2

MIPS16e2 Instruction Descriptions

This chapter describes the MIPS16e2 instructions in alphabetical order.

MIPS16e2 Application-Specific Extension, Revision 01.00

13

ADDIU Add Immediate Unsigned Word (3-Operand, GP-Relative, Extended)

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND ADDIUSP _ .
11110 Imm[10:5] Imm[15:11] 00000 rx sel=1 Imm([4:0]
5 5 0 5 5 3 3 5
Format: ADDIU rx, gp, immediate MIPS16e2

Purpose: Add Immediate Unsigned Word (3-Operand, GP-Relative, Extended)
To add a constant to the global pointer.

Description: GPR [rx] <« GPRI[gp] + immediate

The 16-bit immediate is sign-extended and then added to the contents of GPR 28 to form a 32-bit result. The result is
placed in GPR rx.

No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:
temp < GPR[28] + sign extend(immediate)
GPR [XLat [rx]] <« temp

Exceptions:

None

Programming Notes:

The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arithmetic that does not
trap on overflow. It is appropriate for unsigned arithmetic, such as address arithmetic, or integer arithmetic environ-
ments that ignore overflow, such as C language arithmetic.

MIPS16e2 Application-Specific Extension, Revision 01.00 14

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND LI B .
11110 Imm[10:5] Imm[15:11] 01101 rx sel=3 Imm[4:0]
5 5 0 5 5 3 3 5
Format: ANDI rx, immediate MIPS16e2

Purpose: AND Immediate Extended

To do a bitwise logical AND with a constant.

Description: GPR [rx] ¢ GPR[rx] AND zero extend(immediate)

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rx in a bitwise logical AND
operation. The result is placed back into GPR rx.

Restrictions:

Unpredictable prior to MIPS16e2.

Operation:

GPR [XLat [rx]] < GPR[XLat[rx]] and zero extend(immediate)

Exceptions:

None

MIPS16e2 Application-Specific Extension, Revision 01.00 15

CACHE

Perform Cache Operation Extended

31 27 26 25 24 21 20 16 15 1 10 8 7 5 0
EXTEND , _ SWSP ~ _
11110 00 Imm([8:5] op[4:0] 11010 X sel=5 Imm[4:0]
5 5 0 5 5 3 3 5
Format: CACHE op, immediate (rx) MIPS16e2

Purpose: Perform Cache Operation Extended

To perform the cache operation specified by the op field.

Description:

The 9-bit immediate value is sign-extended and added to the contents of the base register to form an effective address.
The effective address is used in one of the following ways based on the operation to be performed and the type of
cache as described in the following table.

Usage of Effective Address

Operation Type of
Requires an Cache Usage of Effective Address

Address Virtual The effective address is used to address the cache. An address translation may or
may not be performed on the effective address (with the possibility that a TLB
Refill or TLB Invalid exception might occur)

Address Physical | The effective address is translated by the MMU to a physical address. The physical
address is then used to address the cache

Index N/A The effective address is translated by the MMU to a physical address. It is imple-

mentation dependent whether the effective address or the translated physical
address is used to index the cache. As such, an unmapped address (such as within
kseg0) should always be used for cache operations that require an index. See the
Programming Notes section below.

Assuming that the total cache size in bytes is CS, the associativity is A, and the
number of bytes per tag is BPT, the following calculations give the fields of the
address which specify the way and the index:

OffsetBit < Log2 (BPT)

IndexBit ¢« Log2(CS / A)

WayBit ¢« IndexBit + Ceiling(Log2 (A))
Way ¢ Addryaypit-1..IndexBit

Index ¢« Addripgexpit-1..0ffsetBit
For a direct-mapped cache, the Way calculation is ignored and the Index value fully

specifies the cache tag. This is shown symbolically in the figure below.

Usage of Address Fields to Select Index and Way

WayBit ~ IndexBit OffsetBit

[[[0

Unused

Way Index Byte Index

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation. For index

MIPS16e2 Application-Specific Extension, Revision 01.00

16

CACHE Perform Cache Operation Extended

operations (where the address is used to index the cache but need not match the cache tag), software must use
unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modified exceptions nor TLB
Refill exceptions with a cause code of TLBS. This instruction never causes Execute-Inhibit nor Read-Inhibit excep-
tions.

The effective address may be an arbitrarily-aligned by address. The CACHE instruction never causes an Address
Error Exception due to an non-aligned address.

As aresult, a Cache Error exception may occur because of some operations performed by this instruction. For exam-
ple, if a Writeback operation detects a cache or bus error during the processing of the operation, that error is reported
via a Cache Error exception. Also, a Bus Error Exception may occur if a bus operation invoked by this instruction is
terminated in an error. However, cache error exceptions must not be triggered by an Index Load Tag or Index Store
tag operation, as these operations are used for initialization and diagnostic purposes.

An Address Error Exception (with cause code equal AdEL) may occur if the effective address references a portion of
the kernel address space which would normally result in such an exception. It is implementation dependent whether
such an exception does occur.

It is implementation dependent whether a data watch is triggered by a cache instruction whose address matches the
Watch register address match conditions.

The CACHE instruction and the memory transactions which are sourced by the CACHE instruction, such as cache
refill or cache writeback, obey the ordering and completion rules of the SYNC instruction.

Bits [17:16] of the instruction specify the cache on which to perform the operation, as follows:

Encoding of Bits[17:16] of CACHE Instruction

Code Name Cache
0b00 I Primary Instruction
0b01 D Primary Data or Unified Primary
0b10 T Tertiary
Obl11 S Secondary

Bits [20:18] of the instruction specify the operation to perform. To provide software with a consistent base of cache
operations, certain encodings must be supported on all processors. The remaining encodings are recommended

When implementing multiple level of caches and where the hardware maintains the smaller cache as a proper subset
of a larger cache (every address which is resident in the smaller cache is also resident in the larger cache; also known
as the inclusion property). It is recommended that the CACHE instructions which operate on the larger, outer-level
cache; must first operate on the smaller, inner-level cache. For example, a Hit Writeback Invalidate operation tar-
geting the Secondary cache, must first operate on the primary data cache first. If the CACHE instruction implementa-
tion does not follow this policy then any software which flushes the caches must mimic this behavior. That is, the
software sequences must first operate on the inner cache then operate on the outer cache. The software must place a
SYNC instruction after the CACHE instruction whenever there are possible writebacks from the inner cache to
ensure that the writeback data is resident in the outer cache before operating on the outer cache. If neither the CACHE
instruction implementation nor the software cache flush sequence follow this policy, then the inclusion property of
the caches can be broken, which might be a condition that the cache management hardware cannot properly deal with.

When implementing multiple level of caches without the inclusion property, the use of a SYNC instruction after the
CACHE instruction is still needed whenever writeback data has to be resident in the next level of memory hierarchy.

For multiprocessor implementations that maintain coherent caches, some of the Hit type of CACHE instruction oper-
ations may optionally affect all coherent caches within the implementation. If the effective address uses a coherent
Cache Coherency Attribute (CCA), then the operation is globalized, meaning it is broadcast to all of the coherent
caches within the system. If the effective address does not use one of the coherent CCAs, there is no broadcast of the

MIPS16e2 Application-Specific Extension, Revision 01.00 17

CACHE Perform Cache Operation Extended

operation. If multiple levels of caches are to be affected by one CACHE instruction, all of the affected cache levels
must be processed in the same manner - either all affected cache levels use the globalized behavior or all affected
cache levels use the non-globalized behavior.

Encoding of Bits [20:18] of the CACHE Instruction

Effective
Address
Operand Compliance
Code Caches Name Type Operation Implemented
0b000 I Index Invalidate Index Set the state of the cache block at the specified Required
index to invalid.
This required encoding may be used by software
to invalidate the entire instruction cache by step-
ping through all valid indices.
D Index Writeback Index For a write-back cache: If the state of the cache Required
Invalidate / Index block at the specified index is valid and dirty,
Invalidate write the block back to the memory address
specified by the cache tag. After that operation
S.T Index Writeback Index is completed, set the state of the cache block to Required if S, T cache

invalid. If the block is valid but not dirty, set the

Invali I
nvalidate / Index state of the block to invalid.

Invalidate

is implemented

For a write-through cache: Set the state of the
cache block at the specified index to invalid.
This required encoding may be used by software
to invalidate the entire data cache by stepping
through all valid indices. The Index Store Tag
must be used to initialize the cache at power up.

0b001 All Index Load Tag Index Read the tag for the cache block at the specified Recommended
index into the TagLo and TagHi Coprocessor 0
registers. If the DataLo and DataHi registers
are implemented, also read the data correspond-
ing to the byte index into the Datal.o and
DataHi registers. This operation must not cause
a Cache Error Exception.

The granularity and alignment of the data read
into the DatalLo and DataHi registers is imple-
mentation-dependent, but is typically the result
of an aligned access to the cache, ignoring the
appropriate low-order bits of the byte index.

0b010 All Index Store Tag Index Write the tag for the cache block at the specified Required
index from the TagLo and TagHi Coprocessor 0
registers. This operation must not cause a Cache
Error Exception.

This required encoding may be used by software
to initialize the entire instruction or data caches
by stepping through all valid indices. Doing so
requires that the TagLo and TagHi registers
associated with the cache be initialized first.

0b011 All Implementation Unspecified | Available for implementation-dependent opera- Optional
Dependent tion.

MIPS16e2 Application-Specific Extension, Revision 01.00 18

CACHE Perform Cache Operation Extended
Encoding of Bits [20:18] of the CACHE Instruction (continued)
Effective
Address
Operand Compliance
Code Caches Name Type Operation Implemented
0b100 I,D Hit Invalidate Address If the cache block contains the specified Required (Instruction
address, set the state of the cache block to Cache Encoding
invalid. Only), Recom-
This required encoding may be used by software | mended otherwise
to invalidate a range of addresses from the
S, T Hit Invalidate Address instruction cache by stepping through the Optional, if
’ address range by the line size of the cache. Hit Invali da'ze Dis
. . . . implemented, the S
In multiprocessor implementations with coher- and T variants are rec-
ent caches, the operation may optionally be ommended.
broadcast to all coherent caches within the sys-
tem.
0b101 I Fill Address Fill the cache from the specified address. Recommended
D Hit Writeback Inval- Address For a write-back cache: If the cache block con- Required
idate / Hit Invalidate tains the specified address and it is valid and
dirty, write the contents back to memory. After
S, T Hit Writeback Inval- Address that operation 18 completed, set the §tate 9f the Required if S, T cache
idate / Hit Invalidate cache block to invalid. If the block is valid but is implemented
not dirty, set the state of the block to invalid.
For a write-through cache: If the cache block
contains the specified address, set the state of
the cache block to invalid.
This required encoding may be used by software
to invalidate a range of addresses from the data
cache by stepping through the address range by
the line size of the cache.
In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.
0b110 D Hit Writeback Address If the cache block contains the specified address Recommended
and it is valid and dirty, write the contents back
ST Hit Writeback Address to memory. After the operation is completed, Optional, if
’ leave the state of the line valid, but clear the Hit Writeba(;k Dis
dirty state. For a write-through cache, this oper- | . -
. implemented, the S
ation may be treated as a nop. and T variants are rec-
. . . . ommended.
In multiprocessor implementations with coher-
ent caches, the operation may optionally be
broadcast to all coherent caches within the sys-
tem.

MIPS16e2 Application-Specific Extension, Revision 01.00

19

CACHE

Perform Cache Operation Extended

Encoding of Bits [20:18] of the CACHE Instruction (continued)

Effective
Address
Operand Compliance
Code Caches Name Type Operation Implemented
Ob111 LD Fetch and Lock Address If the cache does not contain the specified
address, fill it from memory, performing a write- Recommended

back if required. Set the state to valid and
locked.

If the cache already contains the specified
address, set the state to locked. In set-associative
or fully-associative caches, the way selected on
a fill from memory is implementation depen-
dent.

The lock state may be cleared by executing an
Index Invalidate, Index Writeback Invalidate,
Hit Invalidate, or Hit Writeback Invalidate oper-
ation to the locked line, or via an Index Store
Tag operation to the line that clears the lock bit.
Clearing the lock state via Index Store Tag is
dependent on the implementation-dependent
cache tag and cache line organization, and that
Index and Index Writeback Invalidate opera-
tions are dependent on cache line organization.
Only Hit and Hit Writeback Invalidate opera-
tions are generally portable across implementa-
tions.

It is implementation dependent whether a locked
line is displaced as the result of an external
invalidate or intervention that hits on the locked
line. Software must not depend on the locked
line remaining in the cache if an external invali-
date or intervention would invalidate the line if
it were not locked.

It is implementation dependent whether a Fetch
and Lock operation affects more than one line.
For example, more than one line around the ref-
erenced address may be fetched and locked. It is
recommended that only the single line contain-
ing the referenced address be affected.

MIPS16e2 Application-Specific Extension, Revision 01.00

Restrictions:

The operation of this instruction is UNDEFINED for any operation/cache combination that is not implemented.

The operation of this instruction is UNDEFINED if the operation requires an address, and that address is uncache-

able.

The operation of the instruction is UNPREDICTABLE if the cache line that contains the CACHE instruction is the
target of an invalidate or a writeback invalidate.

If this instruction is used to lock all ways of a cache at a specific cache index, the behavior of that cache to subsequent

cache misses to that cache index is UNDEFINED.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Any use of this instruction that can cause cacheline writebacks should be followed by a subsequent SYNC instruction
to avoid hazards where the writeback data is not yet visible at the next level of the memory hierarchy.

20

CACHE Perform Cache Operation Extended

This instruction does not produce an exception for a misaligned memory address, since it has no memory access size.

Operation:

vAddr ¢ GPR[XLat[rx]] + sign extend(immediate)
(pAddr, uncached) ¢ AddressTranslation(vAddr, DataReadReference)
CacheOp (op, VvAddr, pAddr)

Exceptions:

TLB Refill Exception.

TLB Invalid Exception
Coprocessor Unusable Exception
Address Error Exception

Cache Error Exception

Bus Error Exception

Programming Notes:

For cache operations that require an index, it is implementation dependent whether the effective address or the trans-
lated physical address is used as the cache index. Therefore, the index value should always be converted to an
unmapped address (such as an kseg0 address - by ORing the index with 0x80000000 before being used by the cache
instruction). For example, the following code sequence performs a data cache Index Store Tag operation using the

index passed in GPR a0:
11 al, 0x80000000 /* Base of kseg0 segment */
or a0, al /* Convert index to kseg0 address */
cache DCIndexStTag, 0(a0) /* Perform the index store tag operation */

MIPS16e2 Application-Specific Extension, Revision 01.00 21

DI Disable Interrupts Extended

31 27 26 24 23 21 20 16 15 11 10 8 7 5 4 0
CLRBIT NORES
EXTEND CPO sel[2:0] 00110 (DI) I8 MOVR32 | 000 (DI) 01100
11110 000 000 CLRBIT 01100 111 ry (DLry)
00010 (DI ry)
5 3 3 5 5 3 3 5

Format: b1 MIPS16e2
DI ry MIPS16e2

Purpose: Disable Interrupts Extended

To return the previous value of the Status register and disable interrupts. If DI is specified without an argument, GPR
r0 is implied, which discards the previous value of the Status register.

Description: GPR[ry] < Status; Statusyg € 0

The current value of the Status register is loaded into general register ry. The Interrupt Enable (IE) bit in the Status
register is then cleared.

Restrictions:

Unpredictable prior to MIPS16e2. If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is
signaled.

Operation — DI:

The following operation pertains to the DI instruction.

Statusig < O

Operation — DI ry:
The following operation pertains to the DI ry instruction.
data ¢ Status

GPR [XLat [ry]] ¢« data
Statusig < O

Exceptions:

Coprocessor Unusable

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading Status into a GPR,
clearing the IE bit, and writing the result back to Status. Unlike the multiple instruction sequence, however, the DI
instruction cannot be aborted in the middle by an interrupt or exception.

This instruction creates an execution hazard between the change to the Status register and the point where the change
to the interrupt enable takes effect. This hazard is cleared by the EHB, JALR.HB, JR.HB, or ERET instructions. Soft-
ware must not assume that a fixed latency will clear the execution hazard.

MIPS16e2 Application-Specific Extension, Revision 01.00 22

DMT Disable Multi-Threaded Execution Extended

31 27 26 24 23 21 20 16 15 11 10 8 7 5 4 0

CLRBIT NORES
EXTEND CPO sel[2:0] | 00110 (DMT) I8 MOVR32 | 000 (DMT) 00001
11110 000 001 CLRBIT 01100 111 ry (DMT ry)
00010 (DMT ry)
5 3 3 5 5 3 3 5
Format: bpmT MIPS16e2
DMT ry MIPS16e2

Purpose: Disable Multi-Threaded Execution Extended

To return the previous value of the VPEControl register and disable multi-threaded execution. If DMT is specified
without an argument, GPR r0 is implied, which discards the previous value of the VPEControl register.

Description: GPR [ry] <« VPEControl; VPEControlpg < O

The current value of the VPEControl register isloaded into general register ry. The Threads Enable (TE) bit in the
VPEControl register is then cleared, suspending concurrent execution of instruction streams other than that which
issues the DMT. This is independent of any per-TC halted state.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations that do not implement the MT Module, this instruction results in a Reserved Instruction Excep-
tion. Unpredictable prior to MIPS16e2.

Operation — DMT:

The following operation pertains to the DMT instruction.

VPEControlqgy < 0

Operation — DMT ry:

The following operation pertains to the DMT ry instruction.

data <« VPEControl
GPR [XLat [ry]] <« sign extend(data)
VPEControlqgy < 0

Exceptions:

Coprocessor Unusable
Reserved Instruction (Implementations that do not include the MT Module)

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading VPEControl into a GPR,
clearing the TE bit to create a temporary value in a second GPR, and writing that value back to VPEControl. Unlike
the multiple instruction sequence, however, the DMT instruction does not consume a temporary register, and cannot
be aborted by an interrupt or exception.

The effect of a DMT instruction may not be instantaneous. An instruction hazard barrier, e.g., JR.HB, is required to
guarantee that all other threads have been suspended. If a DMT instruction is followed in the same instruction stream
by an MFCO or MFTR from the VPEControl register, a JALR.HB, JR.HB, EHB, or ERET instruction must be issued
between the DMT and the read of VPEControl to guarantee that the new state of TE will be accessed by the read.

MIPS16e2 Application-Specific Extension, Revision 01.00 23

DVPE Disable Virtual Processor Execution Extended

31 27 26 24 23 21 20 16 15 11 10 8 7 5 4 0
CLRBIT NORES
EXTEND CPO sel[2:0] | 00110 (DVPE) I8 MOVR32 | 000 (DVPE) 00000
11110 000 001 CLRBIT 01100 111 ry (DVPE ry)
00010 (DPVE ry)
5 3 3 5 5 3 3 5
Format: DVPE MIPS16e2
DVPE ry

Purpose: Disable Virtual Processor Execution Extended

To return the previous value of the MVPControl register and disable multi-VPE execution. If DVPE is specified with-
out an argument, GPR 10 is implied, which discards the previous value of the MVPControl register.

Description: GPR [ry] <« MVPControl; MVPControlgyp ¢« O

The current value of the MVPControl register isloaded into general register ry. The Enable Virtual Processors (EVP)
bit in the MVPControl register is then cleared, suspending concurrent execution of instruction streams other than the
instruction stream that issues the DVPE.

Restrictions:

Unpredictable prior to MIPS16e2. If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is
signaled. If the VPE executing the instruction is not a Master VPE, with the MVP bit of the VPEConfO register set, the
EVP bit is unchanged by the instruction.

In implementations that do not implement the MT Module, this instruction results in a Reserved Instruction Excep-
tion.
Operation — DVPE:
The following operation pertains to the DVPE instruction.
if (VPEConfOyyp = 0) then

MVPControlgyp < O
endif

Operation — DVPE ry:
The following operation pertains to the DVPE ry instruction.
data <« MVPControl
GPR [XLat [ry]] <« data
if (VPEConfOyyp = 0) then
MVPControlgyp < O
endif
Exceptions:
Coprocessor Unusable
Reserved Instruction (Implementations that do not include the MT Module)
Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading MVPControl into a GPR,
clearing the EVP bit to create a temporary value in a second GPR, and writing that value back to MVPControl. Unlike
the multiple instruction sequence, however, the DVPE instruction does not consume a temporary register, and cannot

MIPS16e2 Application-Specific Extension, Revision 01.00 24

DVPE Disable Virtual Processor Execution Extended

be aborted by an interrupt or exception, nor by the scheduling of a different instruction stream.

The effect of a DVPE instruction may not be instantaneous. An instruction hazard barrier, e.g., JR.HB, is required to
guarantee that all other TCs have been suspended.

If a DVPE instruction is followed in the same instruction stream by an MFCO or MFTR from the MVPControl regis-
ter, a JALR.HB, JR.HB, EHB, or ERET instruction must be issued between the DVPE and the read of MVPControl to
guarantee that the new state of EVP will be accessed by the read.

MIPS16e2 Application-Specific Extension, Revision 01.00 25

EHB Execution Hazard Barrier Extended

31 27 26 22 21 20 16 15 1 10 8 7 5 4 2 1 0
EXTEND SHIFT _ SLL
11110 00011 0 00000 00110 000 000 sel=4 00
5 5 1 5 5 3 3 3 2
Format: EHB MIPS16e2

Purpose: Execution Hazard Barrier Extended

To stop instruction execution until all execution hazards have been cleared.

Description:
EHB is used to denote execution hazard barrier. The actual instruction is interpreted by the hardware as SLL 10, r0, 3.

This instruction alters the instruction issue behavior on a pipelined processor by stopping execution until all execu-
tion hazards have been cleared. Other than those that might be created as a consequence of setting Statuscyq, there

are no execution hazards visible to an unprivileged program running in User Mode. All execution hazards created by
previous instructions are cleared for instructions executed immediately following the EHB, even if the EHB is exe-
cuted in the delay slot of a branch or jump. The EHB instruction does not clear instruction hazards—such hazards are
cleared by the JALR.HB, JR.HB, and ERET instructions.

Restrictions:
Unpredictable prior to MIPS16¢2.

Operation:

ClearExecutionHazards ()

Exceptions:

None

Programming Notes:

This instruction resolves all execution hazards.

MIPS16e2 Application-Specific Extension, Revision 01.00 26

El Enable Interrupts Extended

31 27 26 24 23 21 20 16 15 11 10 8 7 5 4 0
SETBIT NORES
EXTEND CPO sel[2:0] 00111 (EI) I8 MOVR32 | 000 (EI) 01100
11110 000 000 SETBIT 01100 111 ry (El ry)
00011 (EI ry)
5 3 3 5 5 3 3 5

Format: EI MIPS16e2
EI ry MIPS16e2

Purpose: Enable Interrupts Extended

To return the previous value of the Status register and enable interrupts. If EI is specified without an argument, GPR
r0 is implied, which discards the previous value of the Status register.

Description: GPR[ry] < Status; Statusyg ¢« 1

The current value of the Status register is loaded into general register ry. The Interrupt Enable (IE) bit in the Status
register is then set.

Restrictions:

Unpredictable prior to MIPS16e2. If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is
signaled.

Operation — El:

The following operation pertains to the El instruction.

Statusig < 1

Operation — El ry:

The following operation pertains to the El ry instruction.
data ¢ Status
GPR [XLat [ry]] ¢« data
Statusig < 1

Exceptions:

Coprocessor Unusable

Reserved Instruction

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading Status into a GPR, set-
ting the IE bit, and writing the result back to Status. Unlike the multiple instruction sequence, however, the EI
instruction cannot be aborted in the middle by an interrupt or exception.

This instruction creates an execution hazard between the change to the Status register and the point where the change
to the interrupt enable takes effect. This hazard is cleared by the EHB, JALR.HB, JR.HB, or ERET instructions. Soft-
ware must not assume that a fixed latency will clear the execution hazard.

MIPS16e2 Application-Specific Extension, Revision 01.00 27

EMT Enable Multi-Threaded Execution Extended

31 27 26 24 23 21 20 16 15 11 10 8 7 5 4 0

SETBIT NORES
EXTEND CPO sel[2:0] 00111 (EMT) I8 MOVR32 | 000 (EMT) 00001
11110 000 001 SETBIT 01100 111 ry (EMT ry)
00011 (EMT ry)
5 3 3 5 5 3 3 5
Format: EMT MIPS16e2
EMT ry MIPS16e2

Purpose: Enable Multi-Threaded Execution Extended

To return the previous value of the VPEControl register and to enable multi-threaded execution. If EMT is specified
without an argument, GPR r0 is implied, which discards the previous value of the VPEControl register.

Description: GPR [ry] <« VPEControl; VPEControlpg < 1

The current value of the VPEControl register isloaded into general register ry. The Threads Enable (TE) bit in the
VPEControl register is then set, allowing multiple instruction streams to execute concurrently.

Restrictions:

Unpredictable prior to MIPS16¢2. If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is
signaled.

In implementations that do not implement the MT Module, this instruction results in a Reserved Instruction Excep-
tion.
Operation — EMT:

The following operation pertains to the EMT instruction.
VPEControlgyy « 1

Operation — EMT ry:

The following operation pertains to the EMT ry instruction.

data <« VPEControl
GPR [XLat [ry]] <« sign extend(data)
VPEControlgyy « 1

Exceptions:
Coprocessor Unusable
Reserved Instruction (Implementations that do not include the MT Module)

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading VPEControl into a GPR,
setting the TE bit to create a temporary value in a second GPR, and writing that value back to VPEControl. Unlike the
multiple instruction sequence, however, the EMT instruction does not consume a temporary register, and cannot be
aborted by an interrupt or exception.

If an EMT instruction is followed in the same instruction stream by an MFCO or MFTR from the VPEControl register,
a JALR.HB, JR.HB, EHB, or ERET instruction must be issued between the EMT and the read of VPEControl to guar-
antee that the new state of TE will be accessed by the read.

MIPS16e2 Application-Specific Extension, Revision 01.00 28

EVPE Enable Virtual Processor Execution Extended

31 27 26 24 23 21 20 16 15 11 10 8 7 5 4 0
SETBIT NORES
EXTEND CPO sel[2:0] | 00111 (EVPE) I8 MOVR32 | 000 (EVPE) 00000
11110 000 001 SETBIT 01100 111 ry (EVPE ry)
00011 (EPVE 1y)
5 3 3 5 5 3 3 5
Format: EVPE MIPS16e2
EVPE ry

Purpose: Enable Virtual Processor Execution Extended

To return the previous value of the MVPControl register and enable multi-VPE execution. If EVPE is specified with-
out an argument, GPR 10 is implied, which discards the previous value of the MVPControl register.

Description: GPR [ry] <« MVPControl; MVPControlgyp ¢« 1

The current value of the MVPControl register isloaded into general register ry. The Enable Virtual Processors (EVP)
bit in the MVPControl register is then set, enabling concurrent execution of instruction streams on all non-inhibited
Virtual Processing Elements (VPEs) on a processor.

Restrictions:

Unpredictable prior to MIPS16e2. If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is
signaled. If the VPE executing the instruction is not a Master VPE, with the MVP bit of the VPEConfO register set, the
EVP bit is unchanged by the instruction.

In implementations that do not implement the MT Module, this instruction results in a Reserved Instruction Excep-
tion.
Operation — EVPE:
The following operation pertains to the EVPE instruction.
if (VPEConfOyyp = 1) then

MVPControlgyp < 1
endif

Operation — EVPE ry:
The following operation pertains to the EVPE ry instruction.
data <« MVPControl
GPR [XLat [ry]] <« data
if (VPEConfOyyp = 1) then
MVPControlgyp <« 1
endif
Exceptions:
Coprocessor Unusable
Reserved Instruction (Implementations that do not include the MT Module)
Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading MVPControl into a GPR,
setting the EVP bit to create a temporary value in a second GPR, and writing that value back to MVPControl. Unlike
the multiple instruction sequence, however, the EVPE instruction does not consume a temporary register, and cannot

MIPS16e2 Application-Specific Extension, Revision 01.00 29

be aborted by an interrupt or exception, nor by the scheduling of a different instruction stream.

If an EVPE instruction is followed in the same instruction stream by an MFCO or MFTR from the MVPControl regis-
ter, a JALR.HB, JR.HB, EHB, or ERET instruction must be issued between the EVPE and the read of MVPControl to
guarantee that the new state of EVP will be accessed by the read.

MIPS16e2 Application-Specific Extension, Revision 01.00 30

EXT Extract Bit Field Extended
31 27 26 22 21 20 16 15 1 10 8 7 5 4 1 0
EXTEND LSB 1 MSBD SHIFT x cel=2 SLL
11110 (pos) (size-1) 00110 00
5 5 0 5 5 3 3 2
Format: EXT ry, rx, pos, size MIPS16e2

Purpose: Extract Bit Field Extended
To extract a bit field from GPR rx and store it right-justified into GPR 7y.

Description: GPR[ry] ¢ ExtractField(GPR[rx], msbd, 1lsb)

The bit field starting at bit pos and extending for size bits is extracted from GPR rx and stored zero-extended and
right-justified in GPR 7. The assembly language arguments pos and size are converted by the assembler to the
instruction fields msbd (the most significant bit of the destination field in GPR 77), in instruction bits 20..16, and /sb

(least significant bit of the source field in GPR rx), in instruction bits 26..22, as follows:

msbd < size-

1sb ¢« pos

The values of pos and size must satisfy all of the following relations:

0 £ pos < 32
0 <

1

size < 32

0 < pos+size < 32

The following figure shows the symbolic operation of the instruction.

Operation of the EXT Instruction

pos+size pos+size-1 pos pos-1
31 Isb+msbd+1 Isb+msbd Isb Isb-1 0
KL MNOP QRST
GPR rx 32-(pos+size) size
Initial Value 32-(Isb+msbd+1) msbd+1
size size-1
31 msbd+1 msbd 0
0 MNOP
GPR 1y 32-size size
Final Value 32-(msbd+1) msbd+1
Restrictions:

In implementations prior to MIPS16e2, this instruction yields unpredictable results. It would typically be executed as
an SLL instruction. The operation is UNPREDICTABLE if /sb+msbd > 31.

Operation:
if (1sb + msbd) > 31)then
UNPREDICTABLE
endif
temp & 032-(MPA*L) || GPR [XLat [rx]]nepasisp. . 180

MIPS16e2 Application-Specific Extension, Revision 01.00

31

GPR [XLat [ry]] €« temp

Exceptions:

None

MIPS16e2 Application-Specific Extension, Revision 01.00 32

INS Insert Bit Field Extended
31 27 26 22 21 20 16 15 1 10 8 7 5 4 1 0
EXTEND LSB . MSB SHIFT ~ wl—1 | SLL
11110 (pos) (pos+size-1) 00110 o 00
5 5 1 5 3 3 2
Format: INS ry, rx, pos, size MIPS16e2

Purpose: Insert Bit Field Extended

To merge a right-justified bit field from GPR rx into a specified field in GPR 7.

Description: GPR[ry] ¢ InsertField(GPR[ry], GPR[rx], msb, 1lsb)

The right-most size bits from GPR 7x are merged into the value from GPR 7y starting at bit position pos. The result is
placed back in GPR 7y. The assembly language arguments pos and size are converted by the assembler to the instruc-
tion fields msb (the most significant bit of the field), in instruction bits 20..16, and /sb (least significant bit of the

field), in instruction bits 26..22, as follows:

msb ¢« pos+size-1
1sb ¢« pos

The values of pos and size must satisfy all of the following relations:

0 £ pos < 32
0 < size < 32
0 < pos+size < 32

The following figure shows the symbolic operation of the instruction.

Operation of the INS Instruction

size size-1
31 msb-Isb+1 msb-Isb
GPR X ABCD EFGH
32-size size
32-(msb-Isb+1) msb-isb+1
pos+size pos+size-1 pos pos-1
31 msb+1 msb Isb Isb-1
DKL MNOP / | QRST
GPRT1y 32-(pos+size) size pos
Initial Value 32-(msb+1) msb-Isb+1 Isb
pos+size pos+size-1
31 msb+1 msb
DKL EFGH QRST
GPRTy 32-(pos+size) size pos
Final Value 32-(msb+1) msb-Isb+1 Isb
Restrictions:

In implementations prior to MIPS16e2, this instruction yields unpredictable results. Typically, it would be silently

MIPS16e2 Application-Specific Extension, Revision 01.00

33

executed as an SLL instruction. The operation is UNPREDICTABLE if Isb > msh.

Operation:

if 1sb > msb)then
UNPREDICTABLE
endif

GPRI[XLat [ryl] < GPRIXLat[rylls;. mep«1 || GPRIXLat[rx]llnep 1ep..0 || GPRIXLatlrylligp 1. .o

Exceptions:

None

MIPS16e2 Application-Specific Extension, Revision 01.00 34

INS Insert Bit Field 0 Extended

31 27 26 22 21 20 16 15 1 10 8 7 5 4 2 1 0
EXTEND LSB MSB SHIFT SLL
0 . 0 ry sel=1
11110 (pos) (pos+size-1) 00110 00
5 5 1 5 5 3 3 3 2
Format: INS ry, $0, pos, size MIPS16e2

Purpose: Insert Bit Field 0 Extended

To merge bits with a value of zero into a specified field in GPR ry.

Description: GPR[ry] ¢ InsertField(GPR[ry], msb, 1sb)

Size bits with a value of zero are merged into the value from GPR 77 starting at bit position pos. The result is placed
back in GPR 7y. The assembly language arguments pos and size are converted by the assembler to the instruction
fields msb (the most significant bit of the field), in instruction bits 20..16, and /sb (least significant bit of the field), in
instruction bits 26..22, as follows:

msb ¢« pos+size-1
1sb ¢« pos

The values of pos and size must satisfy all of the following relations:
0 £ pos < 32
<

0 size < 32
0 < pos+size < 32

The following figure shows the symbolic operation of the instruction.
Operation of the INS Instruction

pos+size pos+size-1 pos pos-1

31 msb+1 msb Isb Isb-1 0
UKL MNOP / QRST
GPR1y 32-(pos+size) size pos
Initial Value 32-(msb+1) msb-Isb+1 Isb

pos+size pos+size-1 pos pos-1

31 msb+1 msb Isb Isb-1 0
UKL 0 ‘ QRST
GPR1y 32-(pos+size) size pos
Final Value 32-(msb+1) msb-isb+1 Isb

Restrictions:

In implementations prior to MIPS16e2, this instruction yield unpredictable results. It would typically be performed as
an SLL instruction.

The operation is UNPREDICTABLE if /sb > msb.

Operation:

if 1sb > msb)then
UNPREDICTABLE
endif

MIPS16e2 Application-Specific Extension, Revision 01.00 35

GPR[XLat [ry]] « GPRIXLat[rylls; mep+1 || GPRIXLat[ryllpep-1sp..0 || GPRIXLat([rylligy1..o

Exceptions:

None

MIPS16e2 Application-Specific Extension, Revision 01.00 36

LB Load Byte (GP-relative) Extended

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND LWSP _)
11110 Imm[10:5] Imm[15:11] 10010 rx sel=3 Imm([4:0]
5 5 0 5 5 3 3 5
Format: LB rx, immediate (gp) MIPS16e2

Purpose: Load Byte (GP-relative) Extended

To load a byte from memory as a signed value.

Description: GPR [rx] < memory[GPR[gp] + immediate]

The 16-bit immediate value is sign-extended, then added to the contents of GPR 28 to form the effective address. The
contents of the byte at the memory location specified by the effective address are sign-extended and loaded into GPR
rX.

Restrictions:
Unpredictable prior to MIPS16¢2.

Operation:

vVAddr <« sign extend(immediate) + GPR[28]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
pAddr <« pAddrpgrze.1. o || (pAddr; , xor ReverseEndian?)
memword < LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte <« vAddr; , xor BigEndianCPU?

GPR[Xlat (rx)] <« sign_extend(memword;, gspyte..s*byte)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error

MIPS16e2 Application-Specific Extension, Revision 01.00 37

LBU Load Byte Unsignhed (GP-relative) Extended

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND LWSP _)
11110 Imm[10:5] Imm[15:11] 10010 rx sel=5 Imm([4:0]
5 5 0 5 5 3 3 5
Format: LBU rx, immediate (gp) MIPS16e2

Purpose: Load Byte Unsigned (GP-relative) Extended

To load a byte from memory as an unsigned value

Description: GPR [rx] < memory[GPR[gp] + immediate]

The 16-bit immediate value is sign-extended, then added to the contents of GPR 28 to form the effective address. The
contents of the byte at the memory location specified by the effective address are zero-extended and loaded into GPR
rX.

Restrictions:
Unpredictable prior to MIPS16¢2.

Operation:

vVAddr <« sign extend(immediate) + GPR[28]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
pAddr <« pAddrpgrze.1. o || (pAddr; , xor ReverseEndian?)
memword < LoadMemory (CCA, BTE, pAddr, vAddr, DATA)
byte <« vAddr; , xor BigEndianCPU?

GPR[Xlat (rx)] <« zero_extend(memword;, gspyte..s*byte)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error

MIPS16e2 Application-Specific Extension, Revision 01.00 38

LH Load Halfword (GP-relative) Extended
31 27 26 21 20 16 15 1 10 8 5 0
EXTEND LWSP N)
11110 Imm[10:5] Imm[15:11] 10010 rx sel =2 Imm([4:0]
5 5 0 5 5 3 3 5
Format: LH rx, immediate (gp) MIPS16e2

Purpose: Load Halfword (GP-relative) Extended

To load a halfword from memory as a signed value.

Description: GPR [rx] < memory[GPR[gp] + immediate]

The 16-bit immediate value is sign-extended, then added to the contents of GPR 28 to form the effective address. The
contents of the halfword at the memory location specified by the effective address are sign-extended and loaded into

GPR rx.

Restrictions:

Unpredictable prior to MIPS16e2. The effective address must be naturally-aligned. If the least-significant bit of the
address is non-zero, an Address Error exception occurs.

Operation:

vAddr <« sign extend(immediate)

if vAddr, # 0 then
SignalException (AddressError)

endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
pAddr < pAddrpgrgg-1..» || (PAddr,; , xor (ReverseEndian || 0))

memword < LoadMemory

Exceptions:

+ GPR[28]

(CCA, HALFWORD, pAddr, vAddr, DATA)
byte « vAddr; , xor (BigEndianCPU || 0)
GPR[Xlat (rx)] <« sign_extend(memword;s,g«pyte..g*byte)

TLB Refill, TLB Invalid, Bus Error, Address Error

MIPS16e2 Application-Specific Extension, Revision 01.00

39

LHU Load Halfword Unsigned Extended

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND LWSP _)
11110 Imm[10:5] Imm[15:11] 10010 rx sel =4 Imm([4:0]
5 5 0 5 5 3 3 5
Format: LHU rx, immediate (gp) MIPS16e2

Purpose: Load Halfword Unsigned Extended

To load a halfword from memory as an unsigned value.

Description: GPR [rx] < memory[GPR[gp] + immediate]

The 16-bit immediate value is sign-extended, then added to the contents of GPR 28 to form the effective address. The
contents of the halfword at the memory location specified by the effective address are zero-extended and loaded into
GPR rx.

Restrictions:

Unpredictable prior to MIPS16e2. The effective address must be naturally-aligned. If the least-significant bit of the
address is non-zero, an Address Error exception occurs.

Operation:

vVAddr <« sign extend(immediate) + GPR[28]
if vAddr, # 0 then

SignalException (AddressError)
endif
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)
PAddr < pAddrpgrzp_;. .o || (PAdAdr, , xor (ReverseEndian || 0))
memword <« LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte « vAddr; , xor (BigEndianCPU || 0)
GPR[Xlat (rx)] < zero_extend (memword;s,g+pyte..s*byte)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error

MIPS16e2 Application-Specific Extension, Revision 01.00 40

LL Load Linked Word Immediate

31 27 26 25 24 21 20 19 18 16 15 11 10 8 7 5 4 0
EXTEND X LWSP _ .
11110 00 Imm([8:5] 00 rb 10010 rx sel =6 Imm[4:0]
5 5 4 2 3 5 3 3 5
Format: LL rx, immediate (rb) MIPS16e2

Purpose: Load Linked Word Immediate

To load a word from memory for an atomic read-modify-write.

Description: GPR[rx] < memory[GPR[rb] + immediate]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
written into GPR rx. The 9-bit signed immediate value is added to the contents of GPR rb to form an effective
address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LL is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
sequence is completed by a subsequent SC instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LL on one processor does not cause an action that, by itself, causes an SC for the same block to fail on
another processor.

An execution of LL does not have to be followed by execution of SC; a program is free to abandon the RMW
sequence without attempting a write.

Restrictions:

Unpredictable prior to MIPS16e2. The addressed location must be synchronizable by all processors and I/O devices
sharing the location; if it is not, the result is UNPREDICTABLE. Which storage is synchronizable is a function of
both CPU and system implementations. See the documentation of the SC instruction for the formal definition.

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the effective address is non-
zero, an Address Error exception occurs.

Operation:

vAddr ¢ sign extend(immediate) + GPR[XLat [rb]]
if vAddr,; , # 0% then
SignalException (AddressError)
endif
(pAddr, CCA) < AddressTranslation (vAddr, DATA, LOAD)
memword € LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR [XLat [rx]] ¢ memword
LLbit « 1

Exceptions:
TLB Refill, TLB Invalid, Address Error, Watch

Programming Notes:

MIPS16e2 implements a 9-bit immediate value as the offset.

MIPS16e2 Application-Specific Extension, Revision 01.00 41

31 27 26 21 20 16 15 11 10 5
EXTEND LI B .
11110 Imm[10:5] Imm[15:11] 01101 sel=1 Imm[4:0]
5 5 0 5 5 3 5
Format: LUI rx, immediate MIPS16e2

Purpose: Load Upper Immediate Extended

To load a constant into the upper half of a word.

Description: GPR[rx] ¢« immediate || 0'°

The 16-bit immediate is shifted left 16 bits and concatenated with 16 bits of low-order zeros. The 32-bit result is

placed into GPR rx.

Restrictions:

Unpredictable prior to MIPS16e2.

Operation:

GPR[XLat[rx]] < immediate || 0'°

Exceptions:

None

MIPS16e2 Application-Specific Extension, Revision 01.00

42

LW Load Word (GP-Relative, Extended)
31 27 26 21 20 16 15 1 10 5 0
EXTEND LWSP _ .
11110 Imm[10:5] Imm[15:11] 10010 rx sel=1 Imm([4:0]
5 5 0 5 5 3 3 5
Format: LW rx, immediate (gp) MIPS16e2

Purpose: Load Word (GP-Relative, Extended)

To load a GP-relative word from memory as a signed value.

Description: GPR [rx] < memory[GPR[gp] + immediate]

The 16-bit immediate value is sign-extended, then added to the contents of GPR 28 to form the effective address. The
contents of the word at the memory location specified by the effective address are loaded into GPR rx.

Restrictions:

Unpredictable prior to MIPS16e2. The effective address must be naturally-aligned. If either of the 2 least-significant

bits of the address is non-zero, an Address Error exception occurs.

Operation:

vVAddr <« sign extend(immediate) + GPR[28]
if vAddr; , # 07 then

SignalException (AddressError)
endif

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, LOAD)

memword <« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)

GPR [X1lat (rx)] <« memword

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error

MIPS16e2 Application-Specific Extension, Revision 01.00

43

LWL Load Word Left Extended

31 27 26 25 24 21 20 19 18 16 15 1 10 8 7 5 4 0
EXTEND , LWSP ~ .
11110 00 Imm([8:5] 00 rb 10010 X sel=7 Imm[4:0]
5 5 4 2 3 5 3 3 5
Format: LWL rx, immediate (rb) MIPS16e2

Purpose: Load Word Left Extended

To load the most-significant part of a word as a signed value from an unaligned memory address

Description: GPR[rx] ¢ GPR[rx] MERGE memory[GPR[rb] + immediate]

The 9-bit signed immediate value is added to the contents of GPR 75 to form an effective address (Eff4dddr). EffAddr
is the address of the most-significant of 4 consecutive bytes forming a word (7) in memory starting at an arbitrary
byte boundary.

The most-significant 1 to 4 bytes of 7 is in the aligned word containing the Eff4ddr. This part of W is loaded into the
most-significant (left) part of the word in GPR rx. The remaining least-significant part of the word in GPR rx is
unchanged.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4 con-
secutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes, is in the aligned word con-
taining the most-significant byte at 2. First, LWL loads these 2 bytes into the left part of the destination register word
and leaves the right part of the destination word unchanged. Next, the complementary LWR loads the remainder of
the unaligned word.

Unaligned Word Load Using LWL and LWR

Word at byte 2 in big-endian memory; each memory byte contains its own address
most - significance - least

|0|1 2|3|4|
Galbl°lu;lf|9|

| sign bit (31) extend | 2 I 3 | g | h

(&)}

6 | 7 I 8 | 9 | Memory initial contents

=

GPR 24 initial contents

After executing LWL $24,2(3$0)

| sign bit (31) extend | 2 | 3 | 4 |

[&))

Then after LWR $24,5($0)

The bytes loaded from memory to the destination register depend on both the offset of the effective address within an
aligned word, that is, the low 2 bits of the address (vAddr; (), and the current byte-ordering mode of the processor

(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte ordering.

MIPS16e2 Application-Specific Extension, Revision 01.00 44

LWL Load Word Left Extended

Bytes Loaded by LWL Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 <big-endian
‘ | ‘ J ‘ K | L ‘ offset (vAddry ¢) ‘ e ‘ f ‘ g ‘ h ‘
3 2 1 0 «little-endian most least
most least — significance —
— significance —
Destination register contents after instruction (shaded is unchanged)
Big-endian vAddry o Little-endian
I J K L 0 L | f g h
J K L | h 1 K L | g h
K L | g h 2 J K L | h
L | f g h 3 I J K L

Restrictions:
Unpredictable prior to MIPS16e2.

Operation:

vAddr ¢ sign extend(immediate) + GPR[XLat [rb]]
(pAddr, CCA) ¢ AddressTranslation (vAddr, DATA, LOAD)

pAddr & pAddrpgrze-1. .2 || (PAddr; , xor ReverseEndian?)
if BigEndianMem = 0 then

pAddr ¢« pAddrpsizg.i..z || 07
endif

byte € vAddr; , xor BigEndianCPU?

memword € LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ¢ memwords,gipyte. .o | | GPR [XLat [rx]] 23 _gspyte. .0
GPR [XLat [rx]] < temp

Exceptions:
None

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits
63..32 of the destination register when bit 31 is loaded.

MIPS16e2 Application-Specific Extension, Revision 01.00 45

LWR Load Word Right Extended

31 27 26 25 24 21 20 19 18 16 15 1 10 8 7 5 4 0
EXTEND LWSP _ .
11110 00 Imm[8:5] 10 rb 10010 X sel=7 Imm[4:0]
5 5 4 2 3 5 3 3 5
Format: LWR rx, immediate (rb) MIPS16e2

Purpose: Load Word Right Extended

To load the least-significant part of a word from an unaligned memory address as a signed value

Description: GPR[rx] ¢ GPR[rx] MERGE memory[GPR[rb] + immediate]

The 9-bit signed immediate value is added to the contents of GPR 75 to form an effective address (Eff4dddr). EffAddr
is the address of the least-significant of 4 consecutive bytes forming a word (%) in memory starting at an arbitrary
byte boundary.

A part of W (the least-significant 1 to 4 bytes) is in the aligned word containing Eff4ddr. This part of W is loaded into
the least-significant (right) part of the word in GPR rx. The remaining most-significant part of the word in GPR rx is
unchanged.

Executing both LWR and LWL, in either order, delivers a sign-extended word value in the destination register.

The figure below illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4 con-
secutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes, is in the aligned word con-
taining the least-significant byte at 5.

1. LWR loads these 2 bytes into the right part of the destination register.

2. The complementary LWL loads the remainder of the unaligned word.

Unaligned Word Load Using LWL and LWR

Word at byte 2 in big-endian memory:; each memory byte contains its own address
most - significance - least
| 0 | t2]sfa]5]6 | 7 I 8 | 9 | Memory initial contents
| a | b | c | d I e | f | g | h GPR 24 initial contents
no cng or sign bit (31) After executing LWR $24,5($0)
extend e f 4 5
I sign bit (31) extend | 2 I 3 | 4 I 5 | Then after LWL $24,2($0)

The bytes loaded from memory to the destination register depend on both the offset of the effective address within an
aligned word, that is, the low 2 bits of the address (vAddr; (). and the current byte-ordering mode of the processor

(big- or little-endian). The figure below shows the bytes loaded for every combination of offset and byte ordering.

MIPS16e2 Application-Specific Extension, Revision 01.00 46

LWR Load Word Right Extended

Bytes Loaded by LWR Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 <big-endian
‘ | ‘ J ‘ K | L ‘ offset (vAddry o) ‘ e ‘ f ‘ g ’ h ‘
3 2 1 0 «little-endian most least
most least — significance—
— significance —
Destination register contents after instruction (shaded is unchanged)
Big-endian VAddr o Little-endian
e f g I | 0 I J K L
e f | I J 1 e | I J K
e | I J K 2 e f | I J
I J K L 3 e f g | I

Restrictions:
Unpredictable prior to MIPS16e2.

Operation:

vAddr ¢ sign extend(immediate) + GPR[XLat [rb]]
(pAddr, CCA) ¢ AddressTranslation (vAddr, DATA, LOAD)

pAddr & pAddrpgrze-1. .2 || (PAddr; , xor ReverseEndian?)
if BigEndianMem = 0 then

pAddr ¢« pAddrpsizg.i..z || 07
endif

byte € vAddr; , xor BigEndianCPU?
memword € LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ¢ memwords; 33-gspyre || GPRIXLat [rx]]31_gspyte. .o
GPR [XLat [rx]] < temp

Exceptions:

TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

Programming Notes:

The architecture provides no direct support for treating unaligned words as unsigned values, that is, zeroing bits
63..32 of the destination register when bit 31 is loaded.

Historical Information:

In the MIPS I architecture, the LWL and LWR instructions were exceptions to the load-delay scheduling restriction.
A LWL or LWR instruction which was immediately followed by another LWL or LWR instruction, and used the
same destination register would correctly merge the 1 to 4 loaded bytes with the data loaded by the previous instruc-
tion. All such restrictions were removed from the architecture in MIPS II.

MIPS16e2 Application-Specific Extension, Revision 01.00 a7

MFCO Move from Coprocessor 0 Extended
31 27 26 24 23 21 20 16 15 11 10 8 7 0
EXTEND CPO sel[2:0] MFCO0 18 MOVR32 a2
11110 000 ' 00000 01100 111
5 3 3 5 5 3 5
Format: MFCO ry, r32, sel MIPS16e2

Purpose: Move from Coprocessor 0 Extended

To move the contents of a coprocessor 0 register to a general register.

Description: GPR[ry] < CPR[0,r32,sel]

The contents of the coprocessor 0 register specified by the combination of r32 and sel are loaded into general register

ry. Not all coprocessor 0 registers support the sel field. In those instances, the sel field must be zero.

Restrictions:

The results are UNDEFINED if coprocessor 0 does not contain a register as specified by r32 and sel.

Operation:

reg = r32

if IsCoprocessorRegisterImplemented (0,

data ¢« CPR[0, reg, sell
GPR [XLat [ry]] < data
else
if ArchitectureRevision() > 6 then
GPR [XLat [ry]] < 0
else
UNDEFINED
endif
endif

Exceptions:

Coprocessor Unusable, Reserved Instruction

MIPS16e2 Application-Specific Extension, Revision 01.00

reg, sel)

then

48

MTCO

Move to Coprocessor 0 Extended

31 27 26 24 23 21 20 16 15 11 10 8 7 5 4 0
EXTEND CPO sel[2:0] MTCO I8 MOVR32 32
11110 000 ' 00001 01100 111 vy
5 3 3 5 5 3 3 5
Format: MTCO ry, r32, sel MIPS16e2

Purpose: Move to Coprocessor 0 Extended

To move the contents of a general register to a coprocessor 0 register.

Description: CPR[0, r32, sel] <« GPRIryl

The contents of general register ry are loaded into the coprocessor 0 register specified by the combination of r32 and
sel. Not all coprocessor 0 registers support the sel field. In those instances, the sel field must be set to zero.

Restrictions:

Unpredictable prior to MIPS16e2. The results are UNDEFINED if coprocessor 0 does not contain a register as spec-
ified by r32 and sel.

Operation:

data < GPR[XLat[ryl]

reg < r32

if IsCoprocessorRegisterImplemented (0, reg, sel) then
CPR[0,reg,sel] <« data
if (Config5yyy = 1) then

endif
endif

Exceptions:

endif

Coprocessor Unusable

Reserved Instruction

The most-significant bit may vary by register. Only supported
bits should be written 0. Extended LLAddr is not written with Os,
as it is a read-only register. BadVAddr is not written with 0s, as
it is read-only
(Config3;pa = 1) then
if (reg,sel = EntryLo0 or EntryLol) then CPR[0,reg,sellqs,3, = 032
if (reg,sel = MAAR) then CPR[0,reg,sellcs.;, = 032 endif
// TagLo is zeroed only if the implementation-dependent bits
// are writeable
if (reg,sel = TagLo) then CPR[0,reg,sellg;.3, = 0°2 endif
if (Config3yy; = 1) then
if (reg,sel = EntryHi) then CPR[0,reg,sell 3.3, = 0°2 endif
endif

MIPS16e2 Application-Specific Extension, Revision 01.00 49

MOVZ Move Conditional on Equal to Zero Extended

31 27 26 22 21 20 19 18 16 15 11 10 8 7 5 4 2 1 0
EXTEND SHIFT _ SRL
11110 00000 1| 00 b 00110 rx ry sel=1 10
5 5 1 2 3 5 3 3 3 2
Format: mMovz rx, rb, ry MIPS16e2

Purpose: Move Conditional on Equal to Zero Extended

To conditionally move a GPR after testing a GPR value.

Description: if GPR[ry] = 0 then GPR[rx] ¢ GPRI[rb]

If the value in GPR ry is equal to zero, then the contents of GPR rb are placed into GPR rx.

Restrictions:

In implementations prior to MIPS16e2, this instruction yielded unpredictable results. It would typically be executed
as an SRL instruction.

Operation:

if GPR[XLat[ry]] = 0 then
GPR [XLat [rx]] ¢« GPRI[XLat [rb]]
endif

Exceptions:

None

Programming Notes:

The zero value tested might be the condition false result from the SLT, SLTI, SLTU, and SLTIU comparison instruc-
tions or a boolean value read from memory.

MIPS16e2 Application-Specific Extension, Revision 01.00 50

MOVZ Move Zero Conditional on Equal to Zero Extended

31 27 26 22 21 20 19 18 16 15 11 10 8 7 5 4 2 1 0
EXTEND SHIFT B SRL
11110 00000 0| 00 000 00110 rx ry sel=1 10
5 5 1 2 3 5 3 3 3 2
Format: mMovz rx, 30, ry MIPS16e2

Purpose: Move Zero Conditional on Equal to Zero Extended

To conditionally zero a GPR after testing a GPR value.

Description: if GPR[ry] = 0 then GPR[rx] ¢« 0

If the value in GPR ry is equal to zero, then GPR rx is written with the value of 0.

Restrictions:

In implementations prior to MIPS16e2, this instruction yielded unpredictable results. It would typically be exexcuted
as an SRL instruction.

Operation:

if GPR[XLat[ry]] = 0 then
GPR [XLat [rx]] < 0
endif

Exceptions:

None

Programming Notes:

The zero value tested might be the condition false result from the SLT, SLTI, SLTU, and SLTIU comparison instruc-
tions or a boolean value read from memory.

MIPS16e2 Application-Specific Extension, Revision 01.00 51

MOVN Move Conditional on Not Equal to Zero Extended

31 27 26 22 21 20 19 18 16 15 11 10 8 7 5 4 2 1 0
EXTEND SHIFT _ SRL
11110 00000 1| 00 b 00110 rx ry sel=2 10
5 5 1 2 3 5 3 3 3 2
Format: MOVN rx, rb, ry MIPS16e2

Purpose: Move Conditional on Not Equal to Zero Extended

To conditionally move a GPR after testing a GPR value.

Description: if GPR[ry] # 0 then GPR[rx] ¢ GPR[rb]

If the value in GPR ry is not equal to zero, then the contents of GPR rb are placed into GPR rx.

Restrictions:

In implementations prior to MIPS16e2, this instruction yielded unpredictable results. It would typically be executed
as an SRL instruction.

Operation:

if GPR[XLat[ry]] # 0 then
GPR [XLat [rx]] ¢ GPRI[XLat [rb]]
endif

Exceptions:

None

Programming Notes:

The non-zero value tested might be the condition true result from the SLT, SLTI, SLTU, and SLTIU comparison
instructions or a boolean value read from memory.

MIPS16e2 Application-Specific Extension, Revision 01.00 52

MOVN Move Zero Conditional on Not Equal to Zero Extended

31 27 26 22 21 20 19 18 16 15 11 10 8 7 5 4 2 1 0
EXTEND SHIFT B SRL
11110 00000 0| 00 000 00110 rx ry sel =2 10
5 5 1 2 3 5 3 3 3 2
Format: MOVN rx, 30, ry MIPS16e2

Purpose: Move Zero Conditional on Not Equal to Zero Extended

To conditionally zero a GPR after testing a GPR value.

Description: if GPR[ry] # 0 then GPR[rx] ¢« 0

If the value in GPR ry is not equal to zero, GPR rx is written with the value of 0.

Restrictions:

In implementations prior to MIPS16e2, this instruction yielded unpredictable results. It would typically be exexcuted
as an SRL instruction.

Operation:

if GPR[XLat[ry]] # 0 then
GPR [XLat [rx]] < 0
endif

Exceptions:

None

Programming Notes:

The non-zero value tested might be the condition true result from the SLT, SLTI, SLTU, and SLTIU comparison
instructions or a boolean value read from memory.

MIPS16e2 Application-Specific Extension, Revision 01.00 53

MOVTN Move Conditional on T Not Equal to Zero Extended

31 27 26 22 21 20 19 18 16 15 11 10 8 7 5 4 2 1 0
EXTEND SHIFT B SRL
11110 00000 1 00 rb 00110 rx 0 sel =6 10
5 5 1 2 3 5 3 3 3 2
Format: MOVTIN rx, rb MIPS16e2

Purpose: Move Conditional on T Not Equal to Zero Extended

Test special register T and then conditionally move a GPR.

Description: If T != 0, then GPR[rx] ¢« GPR[rb]
If the value in GPR[24] is not equal to 0, the contents of GPR rb are placed into GPR rx.

Restrictions:

In implementations prior to MIPS16e2, this instruction yielded unpredictable results. It would typically be executed
as an SRL instruction.

Operation:
if GPR[24] != 0, then
GPR[XLat [rx]] € GPR[XLat [rb]]
endif
Exceptions:
None

Programming Notes:

The non-zero value tested might be the condition true result from the CMP or CMPI comparison instructions or a
boolean value read from memory.

MIPS16e2 Application-Specific Extension, Revision 01.00 54

MOVTN Move Zero Conditional on T Not Equal to Zero Extended

31 27 26 22 21 20 19 18 16 15 11 10 8 7 5 4 2 1 0
EXTEND SHIFT B SRL
11110 00000 0 00 000 00110 rx 0 sel =6 10
5 5 1 2 3 5 3 3 3 2
Format: MOVTN rx, $0 MIPS16e2

Purpose: Move Zero Conditional on T Not Equal to Zero Extended

Test special register T and then conditionally move a GPR after testing a GPR value.

Description: If T != 0, then GPR[rx] « 0
If the value in GPR[24] is not equal to 0, GPR rx is written with the value 0.

Restrictions:

In implementations prior to MIPS16e2, this instruction yielded unpredictable results. It would typically be executed
as an SRL instruction.

Operation:
if GPR[24] != 0, then
GPR [XLat [rx]] < O
endif
Exceptions:
None

Programming Notes:

The non-zero value tested might be the condition true result from the CMP or CMPI comparison instructions or a
boolean value read from memory.

MIPS16e2 Application-Specific Extension, Revision 01.00 55

MOVTZ Move Conditional on T Equal to Zero Extended

31 27 26 22 21 20 19 18 16 15 11 10 8 7 5 4 2 1 0
EXTEND SHIFT B SRL
11110 00000 1 00 rb 00110 rx 0 sel =5 10
5 5 1 2 3 5 3 3 3 2
Format: MovTZz rx, rb MIPS16e2

Purpose: Move Conditional on T Equal to Zero Extended

To test special register T and then conditionally move a GPR.

Description: If T = 0, then GPR[rx] < GPR[rb]
If the value in GPR[24] is equal to 0, the contents of GPR rb are placed into GPR rx.

Restrictions:

In implementations prior to MIPS16e2, this instruction yielded unpredictable results. It would typically be exexcuted
as an SRL instruction.

Operation:

if GPR[24] = 0 then
GPR [XLat [rx]] < GPRI[XLat [rb]l]
endif

Exceptions:

None

Programming Notes:

The zero value tested might be the condition false result from the CMP or CMPI comparison instructions or a boolean
value read from memory.

MIPS16e2 Application-Specific Extension, Revision 01.00 56

MOVTZ Move Zero Conditional on T Equal to Zero Extended

31 27 26 22 21 20 19 18 16 15 11 10 8 7 5 4 2 1 0
EXTEND SHIFT B SRL
11110 00000 0 00 000 00110 rx 0 sel =5 10
5 5 1 2 3 5 3 3 3 2
Format: MovTZz rx, $0 MIPS16e2

Purpose: Move Zero Conditional on T Equal to Zero Extended

To test special register T and then conditionally move a GPR after testing a GPR value.

Description: If T = 0, then GPR[rx] < 0
If the value in GPR[24] is equal to 0, GPR rx is written with the value 0.

Restrictions:
Unpredictable prior to MIPS16¢2.

Operation:

if GPR[24] = 0 then

GPR [XLat [rx]] €« 0

endif
Exceptions:
In implementations prior to MIPS16¢2, this instruction yielded unpredictable results. It would typically be executed
as an SRL instruction.
Programming Notes:

The zero value tested might be the condition false result from the CMP or CMPI comparison instructions or a boolean
value read from memory.

MIPS16e2 Application-Specific Extension, Revision 01.00 57

PAUSE Wait for the LLBit to Clear Extended

31 27 26 22 21 20 16 15 11 10 8 7 5 4 2 1 0
EXTEND SHIFT -~ SLL
11110 00101 0 00000 00110 000 000 sel =6 00
5 5 1 5 5 3 3 3 5
Format: PAUSE MIPS16e2

Purpose: Wait for the LLBit to Clear Extended

Description:

Locks implemented using the LL/SC instructions are a common method of synchronization between threads of con-
trol. A lock implementation does a load-linked instruction and checks the value returned to determine whether the
software lock is set. If it is, the code branches back to retry the load-linked instruction, implementing an active busy-
wait sequence. The PAUSE instruction is intended to be placed into the busy-wait sequence to block the instruction
stream until such time as the load-linked instruction has a chance to succeed in obtaining the software lock.

The PAUSE instruction is implementation-dependent, but it usually involves descheduling the instruction stream
until the LLBiIt is zero.

* Inasingle-threaded processor, this may be implemented as a short-term WAIT operation which resumes at the
next instruction when the LLBit is zero or on some other external event such as an interrupt.

* On a multi-threaded processor, this may be implemented as a short term YIELD operation which resumes at the
next instruction when the LLBit is zero.

In either case, it is assumed that the instruction stream which gives up the software lock does so via a write to the lock
variable, which causes the processor to clear the LLBit as seen by this thread of execution.

Restrictions:

Unpredictable prior to MIPS16¢2. The operation of the processor is UNPREDICTABLE if a PAUSE instruction is
executed placed in the delay slot of a branch or jump instruction.

Operations:

if LLBit # 0 then
EPC <« PC + 4 /* Resume at the following instruction */
DeschedulelInstructionStream ()

endif

Exceptions:
None

Programming Notes:

The PAUSE instruction is intended to be inserted into the instruction stream after an LL instruction has set the LLBit
and found the software lock set. The program may wait forever if a PAUSE instruction is executed and there is no
possibility that the LLBit will ever be cleared.

An example use of the PAUSE instruction is included in the following example:

acquire_lock:

11 v0, 0(a0) /* Read software lock, set hardware lock */
bnez v0, acquire lock retry: /* Branch if software lock is taken */
addiu wvo0, vO, 1 /* Set the software lock */

sc v0, 0(ao0) /* Try to store the software lock */

MIPS16e2 Application-Specific Extension, Revision 01.00 58

bnez v0, 10f

sync
acquire lock_ retry:
pause
b acquire_lock

10:
Critical region code

release_ lock:

sync
1i tl, O
sw tl, 0(a0)

/* Branch if lock acquired successfully */

/*
/*

/*
/*

MIPS16e2 Application-Specific Extension, Revision 01.00

Wait for LLBIT to clear before retry */
and retry the operation */

Release software lock, clearing LLBIT */
for any PAUSEd waiters */

59

PREF Prefetch Extended

31 27 26 25 24 21 20 16 15 11 10 8 7 5 4 0
EXTEND . oo SWSP _)
11110 00 Imm([8:5] hint[4:0] 11010 rx sel =4 Imm([4:0]
5 5 0 5 5 3 3 5
Format: PREF hint, immediate (rx) MIPS16e2

Purpose: Prefetch Extended

To move data between memory and cache.

Description: prefetch memory (GPR[rx] + immediate)

PREF adds the signed immediate to the contents of GPR rx to form an effective byte address. The hint field supplies
information about the way that the data is expected to be used.

PREF enables the processor to take some action, typically causing data to be moved to or from the cache, to improve
program performance. The action taken for a specific PREF instruction is both system and context dependent. Any
action, including doing nothing, is permitted as long as it does not change architecturally visible state or alter the
meaning of a program. Implementations are expected either to do nothing, or to take an action that increases the per-
formance of the program. The PrepareForStore function is unique in that it may modify the architecturally visible
state.

PREF does not cause addressing-related exceptions, including TLB exceptions. If the address specified would cause
an addressing exception, the exception condition is ignored and no data movement occurs. However even if no data is
moved, some action that is not architecturally visible, such as write-back of a dirty cache line, can take place.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREF instruction.

PREF neither generates a memory operation nor modifies the state of a cache line for a location with an uncached
memory access type, whether this type is specified by the address segment (e.g., ksegl), the programmed cacheability
and coherency attribute of a segment (e.g., the use of the KO, KU, or K23 fields in the Config register), or the per-
page cacheability and coherency attribute provided by the TLB.

If PREF results in a memory operation, the memory access type and cacheability&coherency attribute used for the
operation are determined by the memory access type and cacheability&coherency attribute of the effective address,
just as it would be if the memory operation had been caused by a load or store to the effective address.

For a cached location, the expected and useful action for the processor is to prefetch a block of data that includes the
effective address. The size of the block and the level of the memory hierarchy it is fetched into are implementation
specific.

In coherent multiprocessor implementations, if the effective address uses a coherent Cacheability and Coherency
Attribute (CCA), then the instruction causes a coherent memory transaction to occur. This means a prefetch issued on
one processor can cause data to be evicted from the cache in another processor.

The PREF instruction and the memory transactions which are sourced by the PREF instruction, such as cache refill or
cache writeback, obey the ordering and completion rules of the SYNC instruction.

Values of hint Field for PREF Instruction

Value Name Data Use and Desired Prefetch Action

0 load Use: Prefetched data is expected to be read (not modified).
Action: Fetch data as if for a load.

1 store Use: Prefetched data is expected to be stored or modified.
Action: Fetch data as if for a store.

MIPS16e2 Application-Specific Extension, Revision 01.00 60

PREF Prefetch Extended
Values of hint Field for PREF Instruction (continued)
Value Name Data Use and Desired Prefetch Action
2 L1 LRU hint Pre-Release 6: Reserved for Architecture.
Release 6: Implementation-dependent. This hint code marks the line as LRU
in the L1 cache and thus preferred for next eviction. Implementations can
choose to writeback and/or invalidate as long as no architectural state is modi-
fied.
3 Reserved Pre-Release 6: Reserved for Architecture.
Release 6: Available for implementation-dependent use.
4 load_streamed Use: Prefetched data is expected to be read (not modified) but not reused
extensively; it “streams” through cache.
Action: Fetch data as if for a load and place it in the cache so that it does not
displace data prefetched as “retained.”
5 store_streamed Use: Prefetched data is expected to be stored or modified but not reused exten-
sively; it “streams” through cache.
Action: Fetch data as if for a store and place it in the cache so that it does not
displace data prefetched as “retained.”
6 load_retained Use: Prefetched data is expected to be read (not modified) and reused exten-
sively; it should be “retained” in the cache.
Action: Fetch data as if for a load and place it in the cache so that it is not dis-
placed by data prefetched as “streamed.”
7 store_retained Use: Prefetched data is expected to be stored or modified and reused exten-
sively; it should be “retained” in the cache.
Action: Fetch data as if for a store and place it in the cache so that it is not dis-
placed by data prefetched as “streamed.”
8-15 L2 operation Pre-Release 6: Reserved for Architecture.
In the Release 6 architecture, hint codes 8 - 15 are treated the same as hint
codes 0 - 7 respectively, but operate on the L2 cache.
16-23 | L3 operation Pre-Release 6: Reserved for Architecture.
In the Release 6 architecture, hint codes 16 - 23 are treated the same as hint
codes 0 - 7 respectively, but operate on the L3 cache.
24 Reserved Pre-Release 6: Unassigned by the Architecture - available for implementation-
dependent use.
Release 6: This hint code is not implemented in the Release 6 architecture and
generates a Reserved Instruction exception (RI).
25 writeback_invalidate (also Pre-Release 6:
known as “nudge”) Use: Data is no longer expected to be used.
Action: For a writeback cache, schedule a writeback of any dirty data. At the
completion of the writeback, mark the state of any cache lines written back as
invalid. If the cache line is not dirty, it is implementation dependent whether
the state of the cache line is marked invalid or left unchanged. If the cache line
is locked, no action is taken.
Release 6: This hint code is not implemented in the Release 6 architecture and
generates a Reserved Instruction exception (RI).
26-29 | Reserved Pre-Release 6: Unassigned by the Architecture—available for implementa-
tion-dependent use.
Release 6: These hints are not implemented in the Release 6 architecture and
generate a Reserved Instruction exception (RI).

MIPS16e2 Application-Specific Extension, Revision 01.00

61

PREF Prefetch Extended

Values of hint Field for PREF Instruction (continued)

Value Name Data Use and Desired Prefetch Action

30 PrepareForStore Pre-Release 6:

Use: Prepare the cache for writing an entire line, without the overhead
involved in filling the line from memory.

Action: If the reference hits in the cache, no action is taken. If the reference
misses in the cache, a line is selected for replacement, any valid and dirty vic-
tim is written back to memory, the entire line is filled with zero data, and the
state of the line is marked as valid and dirty.

Programming Note: Because the cache line is filled with zero data on a cache
miss, software must not assume that this action, in and of itself, can be used as
a fast bzero-type function.

Release 6: This hint is not implemented in the Release 6 architecture and
generates a Reserved Instruction exception (RI).

31 Reserved Pre-Release 6: Unassigned by the Architecture—available for implementa-
tion-dependent use.

Release 6: This hint is not implemented in the Release 6 architecture and gen-
erates a Reserved Instruction exception (RI).

Restrictions:
Unpredictable prior to MIPS16¢2.

Operation:
vAddr ¢ GPR[Xlat[rx]] + sign extend(immediate)
(pAddr, CCA) ¢ AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:

Bus Error, Cache Error

Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:

Prefetch cannot move data to or from a mapped location unless the translation for that location is present in the TLB.
Locations in memory pages that have not been accessed recently may not have translations in the TLB, so prefetch
may not be effective for such locations.

Prefetch does not cause addressing exceptions. A prefetch may be used using an address pointer before the validity of
the pointer is determined without worrying about an addressing exception.

It is implementation dependent whether a Bus Error or Cache Error exception is reported if such an error is detected
as a byproduct of the action taken by the PREF instruction. Typically, this only occurs in systems which have high-
reliability requirements.

Prefetch operations have no effect on cache lines that were previously locked with the CACHE instruction.

Hint field encodings whose function is described as “streamed” or “retained” convey usage intent from software to
hardware. Software should not assume that hardware will always prefetch data in an optimal way. If data is to be truly
retained, software should use the Cache instruction to lock data into the cache.

MIPS16e2 Application-Specific Extension, Revision 01.00 62

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND LI B .
11110 Imm[10:5] Imm[15:11] 01101 rx sel =2 Imm[4:0]
5 5 0 5 5 3 3 5
Format: ORI rx, immediate MIPS16e2

Purpose: Or Immediate Extended

To do a bitwise logical OR with a constant.

Description: GPR[rx] < GPR[rx] OR immediate

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rx in a bitwise logical OR
operation. The result is placed back into GPR rx.

Restrictions:

Unpredictable prior to MIPS16e2.

Operations:

GPR [XLat [rx]] < GPR[Xlat[rx]] or zero extend(immediate)

Exceptions:

None

MIPS16e2 Application-Specific Extension, Revision 01.00 63

RDHWR Read Hardware Register Extended

31 27 26 22 21 20 16 15 1 10 8 7 5 4 2 1 0
EXTEND SHIFT _ SLL
11110 00000 0 HWR 00110 000 ry sel=3 00
5 5 1 5 5 3 3 3 2
Format: RDHWR ry, HWR MIPS16e2

Purpose: Read Hardware Register Extended

To move the contents of a hardware register to a general purpose register (GPR) if that operation is enabled by privi-
leged software.

The purpose of this instruction is to give user mode access to specific information that is otherwise only visible in
kernel mode.
Description: GPR[ry] ¢ HWR [HWR]

If access is allowed to the specified hardware register, the contents of the register specified by SHIFT is loaded into
general register ry Access control for each register is selected by the bits in the coprocessor 0 HWREna register.

The available hardware registers, and the encoding of the rd field for each, are shown below.

RDHWR Register Numbers

Register Number
(HWR Value) Mnemonic Description

CPUNum Number of the CPU on which the program is currently running. This register pro-
vides read access to the coprocessor 0 EBasecpynym field.

SYNCI_Step Address step size to be used with the SYNCI instruction, or zero if no caches need
be synchronized. See that instruction’s description for the use of this value.

CcC High-resolution cycle counter. This register provides read access to the coprocessor
0 Count Register.

CCRes Resolution of the CC register. This value denotes the number of cycles between
update of the register. For example:

CCRes Value Meaning

1 CC register increments every CPU cycle

2 CC register increments every second CPU cycle

3 CC register increments every third CPU cycle

etc.

4 Rsv Reserved.

XNP Indicates support for Release 6 Double-Width LLX/SCX family of instructions. If
set to 1, then LLX/SCX family of instructions is not present, otherwise present in the
5 implementation. In absence of hardware support for double-width or extended atom-
ics, user software may emulate the instruction’s behavior through other means. See
Configbyyp-

These registers numbers are reserved for future architecture use. Access results in a

6-28 Reserved Instruction Exception.

MIPS16e2 Application-Specific Extension, Revision 01.00 64

RDHWR

Read Hardware Register Extended

RDHWR Register Numbers

Register Number
(HWR Value) Mnemonic Description
ULR User Local Register. This register provides read access to the coprocessor 0
29 UserLocal register, if it is implemented. In some operating environments, the

UserLocal register is a pointer to a thread-specific storage block.
These register numbers are reserved for implementation-dependent use. If they are

30-31
not implemented, access results in a Reserved Instruction Exception.

Restrictions:

Unpredictable prior to MIPS16e2. Access to the specified hardware register is enabled if Coprocessor 0 is enabled, or
if the corresponding bit is set in the HWRENa register. If access is not allowed or the register is not implemented, a
Reserved Instruction Exception is signaled.

Operation:
case HWR
0:

1:

2:

3:

5: temp < XNP

29: temp ¢ UserLocal

temp < EBasecpynum

temp ¢ SYNCI StepSize()
temp ¢ Count
temp ¢ CountResolution ()

30: temp ¢« Implementation-Dependent-Value
31: temp ¢« Implementation-Dependent-Value

otherwise:

endcase
else

endif
GPR [Xlat [ry]]

Exceptions:

Reserved Instruction

< temp

SignalException (ReservedInstruction)

MIPS16e2 Application-Specific Extension, Revision 01.00

65

SB Store Byte (GP-relative) Extended

31 27 26 21 20 16 15 11 10 8 7 5 4 0
EXTEND SWSP _)
11110 Imm[10:5] Imm[15:11] 11010 rx sel=3 Imm([4:0]
5 5 0 5 5 3 3 5
Format: SB rx, immediate (gp) MIPS16e2

Purpose: Store Byte (GP-relative) Extended

To store a byte to memory.

Description: memory [GPR [gp] + immediate] <« GPR[rx]

The 16-bit immediate value is sign-extended, then added to the contents of GPR 28 to form the effective address. The
least-significant byte of GPR rx is stored at the effective address.

Restrictions:
Unpredictable prior to MIPS16¢2.

Operation:

vAddr <« sign extend(immediate) + GPR[28]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
pAddr <« pAddrpgrze-1. o || (PAddr; o xor ReverseEndian?)
bytesel <« vAddr, o xor BigEndianCPU?
dataword < GPR[Xlat [rx]];;_gspytesel..o |
StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)

0 8*bytesel

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

MIPS16e2 Application-Specific Extension, Revision 01.00 66

SC Store Conditional Word Extended

31 27 26 25 24 21 20 19 18 16 15 11 10 8 7 5 4 0
EXTEND X SWSP _ .
11110 00 Imm([8:5] 00 rb 11010 rx sel =6 Imm[4:0]
5 5 4 2 3 5 3 3 5
Format: SsC rx, immediate (rb) MIPS16e2

Purpose: Store Conditional Word Extended

To store a word to memory to complete an atomic read-modify-write.

Description: if atomic update then memory [GPR[rb] + immediate] « GPR[rx], GPR[rx] <« 1
else GPR[rx] « O

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations on syn-
chronizable memory locations.

The 32-bit word in GPR rx is conditionally stored in memory at the location specified by the aligned effective
address. The signed immediate value is added to the contents of GPR rb to form an effective address.

The SC completes the RMW sequence begun by the preceding LL instruction executed on the processor. To complete
the RMW sequence atomically, the following occur:

* The 32-bit word of GPR rx is stored to memory at the location specified by the aligned effective address.
* A one, indicating success, is written into GPR rx.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rx

If the following event occurs between the execution of LL and SC, the SC fails:

* A coherent store is executed between an LL and SC sequence on the same processor to the block of synchroniz-
able physical memory containing the word (if Config5; | g=1; else whether such a store causes the SC to fail is not

predictable).

* An ERET instruction is executed.

Furthermore, an SC must always compare its address against that of the LL. An SC will fail if the aligned address of
the SC does not match that of the preceeding LL.

A load that executes on the processor executing the LL/SC sequence to the block of synchronizable physical memory
containing the word, will not cause the SC to fail (if Config5, | g=1; else such a load may cause the SC to fail).

If any of the events listed below occurs between the execution of LL and SC, the SC may fail where it could have suc-
ceeded, i.e., success is not predictable. Portable programs should not cause any of these events.

* A load or store executed on the processor executing the LL and SC that is not to the block of synchronizable
physical memory containing the word. (The load or store may cause a cache eviction between the LL and SC that
results in SC failure. The load or store does not necessarily have to occur between the LL and SC.)

* Any prefetch that is executed on the processor executing the LL and SC sequence (due to a cache eviction
between the LL and SC).

* A non-coherent store executed between an LL and SC sequence to the block of synchronizable physical memory
containing the word.

* The instructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

MIPS16e2 Application-Specific Extension, Revision 01.00 67

SC Store Conditional Word Extended

CACHE operations that are local to the processor executing the LL/SC sequence will result in unpredictable behav-
iour of the SC if executed between the LL and SC, that is, they may cause the SC to fail where it could have suc-
ceeded. Non-local CACHE operations (address-type with coherent CCA) may cause an SC to fail on either the local
processor or on the remote processor in multiprocessor or multi-threaded systems. This definition of the effects of
CACHE operations is mandated if Config5, | g=1. If Config5 | g=0, then CACHE effects are implementation-depen-

dent.

The following conditions must be true or the result of the SC is not predictable—the SC may fail or succeed (if
Config5, | g=1, then either success or failure is mandated, else the result is UNPREDICTABLE):

» Execution of SC must have been preceded by execution of an LL instruction.

* An RMW sequence executed without intervening events that would cause the SC to fail must use the same
address in the LL and SC. The address is the same if the virtual address, physical address, and cacheability &
coherency attribute are identical.

Restrictions:

Unpredictable prior to MIPS16e2. The effective address must be naturally-aligned. If either of the 2 least-significant
bits of the address is non-zero, an Address Error exception occurs.

Operation:

vAddr <« sign_extend(immediate) + GPR[Xlat [rb]]
(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
dataword<«— GPR [Xlat [rx]]
if LLbit then
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[Xlat [rx]] <« 0°! || LLbit
LLbit « 0 // if Config5;;z=1, SC always clears LLbit regardless of address match.

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Watch

Programming Notes:

LL and SC are used to atomically update memory locations, as shown below.

Ll:
LL al, (a0) # load counter
ADDIU vO0, al, 1 # increment
scC v0, (a0) # try to store, checking for atomicity
BEQ v0, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided. Some examples of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-
lation assistance.

LL and SC function on a single processor for cached noncoherent memory so that parallel programs can be run on
uniprocessor systems that do not support cached coherent memory access types.

MIPS16e2 Application-Specific Extension, Revision 01.00 68

SH Store Halfword (GP-relative)
31 27 26 21 20 16 15 1 10 7 5 0
EXTEND SWSP _ .
11110 Imm[10:5] Imm[15:11] 11010 rx sel =2 Imm([4:0]
5 5 0 5 5 3 3 5
Format: SH rx, immediate (gp) MIPS16e2

Purpose: Store Halfword (GP-relative)

To store a halfword to memory.

Description: memory [GPR [gp] + immediate] < GPR[rx]

The 16-bit immediate value is sign-extended, and then added to the contents of GPR 28 to form the effective address.
The least-significant halfword of GPR rx is stored at the effective address.

Restrictions:

Unpredictable prior to MIPS16e2. The effective address must be naturally-aligned. If the least-significant bit of the
address is non-zero, an Address Error exception occurs.

Operation:

vAddr <« sign extend(immediate) + GPR[28]
(pAddr, CCA) <« AddressTranslation (vAddr,

dataword < GPR[Xlat [rx]];;_gspytesel..o |

StoreMemory (CCA, HALFWORD, dataword, pAddr, vAddr,

Exceptions:

DATA, STORE)
pAddr < pAddrpgrgg_1..o || (PAAdrl, , xor (ReverseEndian || 0))
bytesel <« vAddrl; o, xor

(BigEndianCPU || 0)
| OB*bytesel

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error.

MIPS16e2 Application-Specific Extension, Revision 01.00

DATA)

69

SW Store Word (GP-relative) Extended
31 27 26 21 20 16 15 1 10 8 7 5 4 0
EXTEND SWSP N)
11110 Imm[10:5] Imm[15:11] 11010 rx sel=1 Imm([4:0]
5 5 0 5 5 3 3 5
Format: sw rx, immediate (gp) MIPS16e2

Purpose: Store Word (GP-relative) Extended

To store a word to memory.

Description: memory [GPR [gp] + immediate] < GPRI[rx]

The 16-bit immediate value is sign-extended, then added to the contents of GPR 28 to form the effective address. The
contents of GPR rx are stored at the effective address.

Restrictions:
Unpredictable prior to MIPS16e2. The effective address must be naturally-aligned. If either of the 2 least-significant
bits of the address is non-zero, an Address Error exception occurs.

Operation:

vAddr <« sign extend(immediate) + GPR[28]

(pAddr, CCA) <« AddressTranslation (vAddr, DATA, STORE)
dataword <« GPR[Xlat (rx)]

StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

MIPS16e2 Application-Specific Extension, Revision 01.00 70

SWL Store Word Left Extended

31 27 26 25 24 21 20 19 18 16 15 11 10 8 7 5 4 0
EXTEND X SWSP _ .
11110 00 Imm[8:5] 00 rb 11010 rx sel =7 Imm[4:0]
5 5 4 2 3 5 3 3 5
Format: SWL rx, immediate (rb) MIPS16e2

Purpose: Store Word Left Extended

To store the most-significant part of a word to an unaligned memory address.

Description: memory [GPR[rb] + immediate] ¢ GPRI[rx]

The 9-bit signed immediate value is added to the contents of GPR rb to form an effective address (EffAddr). EffAddr
is the address of the most-significant of 4 consecutive bytes forming a word (W) in memory starting at an arbitrary
byte boundary.

A part of W (the most-significant 1 to 4 bytes) is in the aligned word containing EffAddr. The same number of the
most-significant (left) bytes from the word in GPR rx are stored into these bytes of W.

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The four
consecutive bytes in 2..5 form an unaligned word starting at location 2. A part of W (2 bytes) is located in the aligned
word containing the most-significant byte at 2.

3. SWL stores the most-significant 2 bytes of the low word from the source register into these 2 bytes in memory.

4. The complementary SWR stores the remainder of the unaligned word.

Unaligned Word Store Using SWL and SWR

Word at byte 2 in memory, big-endian byte order; each memory byte contains its own address
most — significance — least

| 0 | 12 | 3 I 4 | 5|6 | 7 I 8 | | Memory: Initial contents

| 0 | 1| E | F I 4 | 516 | |AfterexecutingSWL $24,2(30)

| 0 | 1| E | F I G | H| 6 | |ThenafterSWR $24,5(30)

The bytes stored from the source register to memory depend on both the offset of the effective address within an
aligned word—that is, the low 2 bits of the address (vAddr;_g)—and the current byte-ordering mode of the processor

(big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte ordering.

MIPS16e2 Application-Specific Extension, Revision 01.00 71

SWL Store Word Left Extended

Bytes Stored by an SWL Instruction

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 <—big-endian 64-bit register
‘i‘j‘k‘l‘ offset (vAddry, o) ‘A‘B‘C‘D‘E‘F‘G‘H‘
3 2 1 0 elittle-endian most — significance — least
most least 32-bit register | E | F | G | H |
— significance —
Memory contents after instruction (shaded is unchanged)
Big-endian Little-endian
byte ordering vAddry o byte ordering
E F G H 0 i i k | E
i | E F G 1 i i T E F
i i | E F 2 i | E F G
i i k | E 3 E F G H

Restrictions:
Unpredictable prior to MIPS16e2.

Operation:

vAddr ¢ sign extend(immediate) + GPR[Xlat [rb]]
(pAddr, CCA) ¢ AddressTranslation (vAddr, DATA, STORE)
pAddr < pAddrpgrzg-1..2 || (pAddr; , xor ReverseEndian
If BigEndianMem = 0 then

pAddr « pAddrpgrzp.i..2 || 0
endif
byte ¢ vAddr; , xor BigEndianCPU?
dataword < (2%-8*byte || GPR[Xlat [rx]]31. 24-gsbyte
StoreMemory (CCA, byte, dataword, pAddr, vAddr, DATA)

2)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

MIPS16e2 Application-Specific Extension, Revision 01.00

72

SWR Store Word Right Extended
31 27 26 25 24 21 20 19 18 16 15 11 10 8 7 5 4 0
EXTEND SWSP _ .
11110 00 Imm[8:5] 10 b 11010 rx sel=7 Imm{[4:0]
5 5 4 2 3 5 3 3 5
Format: SWR rx, immediate (rb) MIPS16e2

Purpose: Store Word Right Extended

To store the least-significant part of a word to an unaligned memory address.

Description: memory [GPR[rb] + immediate] ¢ GPRI[rx]

The 9-bit signed immediate value is added to the contents of GPR rb to form an effective address (EffAddr). EffAddr
is the address of the least-significant of 4 consecutive bytes forming a word (W) in memory starting at an arbitrary
byte boundary.

A part of W (the least-significant 1 to 4 bytes) is in the aligned word containing EffAddr. The same number of the
least-significant (right) bytes from the word in GPR rx are stored into these bytes of W.

The following figure illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers. The 4
consecutive bytes in 2..5 form an unaligned word starting at location 2. A part of W (2 bytes) is contained in the
aligned word containing the least-significant byte at 5.

1. SWR stores the least-significant 2 bytes of the low word from the source register into these 2 bytes in memory.

2. The complementary SWL stores the remainder of the unaligned word.

Unaligned Word Store Using SWR and SWL

Word at byte 2 in memory, big-endian byte order, each mem byte contains its address

— significance — least

2|3|4|5

GPR 24

2|3|G|H

least

(o]
(o]
EE

E|FIG|H

6 | 7 I 8 | | Memory: Initial contents
6 | |Afterexecuting SWR $24,5(30)
6 | - |Thenafter SWL $24,2 ($0)

The bytes stored from the source register to memory depend on both the offset of the effective address within an
aligned word—that is, the low 2 bits of the address (vAddr;_g)—and the current byte-ordering mode of the processor

(big- or little-endian). The following figure shows the bytes stored for every combination of offset and byte-ordering.

MIPS16e2 Application-Specific Extension, Revision 01.00

73

SWR

Bytes Stored by SWR Instruction

Store Word Right Extended

— significance —

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 e«big-endian 64-bit register
‘i‘i‘k [offset (vAddry, o) ‘A‘B‘C‘D‘E‘F‘G‘H‘
3 2 1 0 elittle-endian most — significance — least
most least 32-bit register | E | F | G | H |

Memory contents after instruction (shaded is unchanged)

Big-endian Little-endian
byte ordering vAddry o byte ordering
H | i k1 0 E F G H
G HI[k 1 1 F G H| I
F G H | I 2 G H | k|
E F G H 3 H | i ko

Restrictions:
Unpredictable prior to MIPS16e2.

Operation:

vAddr ¢ sign extend(immediate) + GPR[Xlat [rb]]

(pAddr, CCA) ¢ AddressTranslation (vAddr, DATA, STORE)

pAddr ¢ pAddrpgrzz1. .. || (pAddr; , xor ReverseEndian?)
If BigEndianMem = 0 then
pAddr « pAddrpgrzp.i..2 || 0
endif
byte ¢ vAddr; , xor BigEndianCPU?
dataword ¢ GPRI[XLat [rx]]31_gspyte || g8*byte

StoreMemory (CCA, WORD-byte, dataword, pAddr, vAddr,

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error, Watch

MIPS16e2 Application-Specific Extension, Revision 01.00

DATA)

74

SYNC

Synchronize Shared Memory Extended

31 27 26 22 21 20 16 15 1 10 8 1 0
EXTEND SHIFT - SLL
11110 stype 0 00000 00110 000 000 sel=5 00
5 5 1 5 5 3 3 3 5
Format: SyYNC stype MIPS16e2

Purpose: Synchronize Shared Memory Extended

To order loads and stores for shared memory.

Description:

These types of ordering guarantees are available through the SYNC instruction:

* Completion Barriers

* Ordering Barriers

Completion Barrier — Simple Description:

The barrier affects only uncached and cached coherent loads and stores.

The specified memory instructions (loads or stores or both) that occur before the SYNC instruction must be
completed before the specified memory instructions after the SYNC are allowed to start.

Loads are completed when the destination register is written. Stores are completed when the stored value is
visible to every other processor in the system.

Completion Barrier — Detailed Description:

Every synchronizable specified memory instruction (loads or stores or both) that occurs in the instruction
stream before the SYNC instruction must be already globally performed before any synchronizable speci-
fied memory instructions that occur after the SYNC are allowed to be performed, with respect to any other
processor or coherent I/O module.

The barrier does not guarantee the order in which instruction fetches are performed.

A stype value of zero will always be defined such that it performs the most complete set of synchronization
operations that are defined. This means stype zero always does a completion barrier that affects both loads
and stores preceding the SYNC instruction and both loads and stores that are subsequent to the SYNC
instruction. Non-zero values of stype may be defined by the architecture or specific implementations to per-
form synchronization behaviors that are less complete than that of stype zero. If an implementation does not
use one of these non-zero values to define a different synchronization behavior, then that non-zero value of
stype must act the same as stype zero completion barrier. This allows software written for an implementation
with a lighter-weight barrier to work on another implementation which only implements the stype zero com-
pletion barrier.

A completion barrier is required, potentially in conjunction with EHB, to guarantee that memory reference
results are visible across operating mode changes. For example, a completion barrier is required on some
implementations on entry to and exit from Debug Mode to guarantee that memory effects are handled cor-
rectly.

SYNC behavior when the stype field is zero:

* A completion barrier that affects preceding loads and stores and subsequent loads and stores.

MIPS16e2 Application-Specific Extension, Revision 01.00

75

SYNC Synchronize Shared Memory Extended

Ordering Barrier — Simple Description:
* The barrier affects only uncached and cached coherent loads and stores.

* The specified memory instructions (loads or stores or both) that occur before the SYNC instruction must
always be ordered before the specified memory instructions after the SYNC.

* Memory instructions which are ordered before other memory instructions are processed by the load/store
datapath first before the other memory instructions.

Ordering Barrier — Detailed Description:

* Every synchronizable specified memory instruction (loads or stores or both) that occurs in the instruction
stream before the SYNC instruction must reach a stage in the load/store datapath after which no instruction
re-ordering is possible before any synchronizable specified memory instruction which occurs after the
SYNC instruction in the instruction stream reaches the same stage in the load/store datapath.

» Ifany memory instruction before the SYNC instruction in program order, generates a memory request to the
external memory and any memory instruction after the SYNC instruction in program order also generates a
memory request to external memory, the memory request belonging to the older instruction must be globally
performed before the time the memory request belonging to the younger instruction is globally performed.

* The barrier does not guarantee the order in which instruction fetches are performed.

As compared to the completion barrier, the ordering barrier is a lighter-weight operation as it does not require the
specified instructions before the SYNC to be already completed. Instead it only requires that those specified instruc-
tions which are subsequent to the SYNC in the instruction stream are never re-ordered for processing ahead of the
specified instructions which are before the SYNC in the instruction stream. This potentially reduces how many cycles
the barrier instruction must stall before it completes.

The Acquire and Release barrier types are used to minimize the memory orderings that must be maintained and still
have software synchronization work.

Implementations that do not use any of the non-zero values of stype to define different barriers, such as ordering bar-
riers, must make those stype values act the same as stype zero.

For the purposes of this description, the CACHE, PREF and PREFX instructions are treated as loads and stores. That

is, these instructions and the memory transactions sourced by these instructions obey the ordering and completion
rules of the SYNC instruction.

MIPS16e2 Application-Specific Extension, Revision 01.00 76

SYNC

Synchronize Shared Memory Extended

The following table lists the available completion barrier and ordering barriers behaviors that can be specified using

the stype field.
Younger
Olderinstructions instructions Olderinstructions
which mustreach | which must reach which must be
the load/store the load/store globally
ordering point ordering point performed when
before the SYNC only after the the SYNC
instruction SYNC instruction instruction
Code Name completes. completes. completes Compliance
0x0 SYNC Loads, Stores Loads, Stores Loads, Stores Required
or
SYNC 0
0x4 SYNC_WMB Stores Stores Optional
or
SYNC 4
0x10 SYNC MB Loads, Stores Loads, Stores Optional
or
SYNC 16
0x11 SYNC_ACQUIRE Loads Loads, Stores Optional
or
SYNC 17
0x12 SYNC RELEASE Loads, Stores Stores Optional
or
SYNC 18
0x13 SYNC RMB Loads Loads Optional
or
SYNC 19
0x1-0x3, 0x5-0xF Implementation-Spe-
cific and Vendor Spe-
cific Sync Types
0x14 - Ox1F RESERVED Reserved for MIPS
Technologies for
future extension of
the architecture.
Terms:

Synchronizable: A load or store instruction is synchronizable if the load or store occurs to a physical location in
shared memory using a virtual location with a memory access type of either uncached or cached coherent. Shared
memory is memory that can be accessed by more than one processor or by a coherent I/O system module.

Performed load: A load instruction is performed when the value returned by the load has been determined. The result
of a load on processor A has been determined with respect to processor or coherent I/O module B when a subsequent
store to the location by B cannot affect the value returned by the load. The store by B must use the same memory
access type as the load.

Performed store: A store instruction is performed when the store is observable. A store on processor A is observable
with respect to processor or coherent I/O module B when a subsequent load of the location by B returns the value
written by the store. The load by B must use the same memory access type as the store.

MIPS16e2 Application-Specific Extension, Revision 01.00

77

SYNC Synchronize Shared Memory Extended

Globally performed load: A load instruction is globally performed when it is performed with respect to all processors
and coherent I/O modules capable of storing to the location.

Globally performed store: A store instruction is globally performed when it is globally observable. It is globally
observable when it is observable by all processors and I/O modules capable of loading from the location.

Coherent 1/0 module: A coherent 1/0 module is an Input/Output system component that performs coherent Direct
Memory Access (DMA). It reads and writes memory independently as though it were a processor doing loads and
stores to locations with a memory access type of cached coherent.

Load/Store Datapath: The portion of the processor which handles the load/store data requests coming from the pro-
cessor pipeline and processes those requests within the cache and memory system hierarchy.

Restrictions:

Unpredictable prior to MIPS16e2. The effect of SYNC on the global order of loads and stores for memory access
types other than uncached and cached coherent is UNPREDICTABLE.

Operation:

SyncOperation (stype)

Exceptions:

None

Programming Notes:

A processor executing load and store instructions observes the order in which loads and stores using the same mem-
ory access type occur in the instruction stream; this is known as program order.

A parallel program has multiple instruction streams that can execute simultaneously on different processors. In mul-
tiprocessor (MP) systems, the order in which the effects of loads and stores are observed by other processors—the
global order of the loads and store—determines the actions necessary to reliably share data in parallel programs.

When all processors observe the effects of loads and stores in program order, the system is strongly ordered. On such
systems, parallel programs can reliably share data without explicit actions in the programs. For such a system, SYNC
has the same effect as a NOP. Executing SYNC on such a system is not necessary, but neither is it an error.

If a multiprocessor system is not strongly ordered, the effects of load and store instructions executed by one processor
may be observed out of program order by other processors. On such systems, parallel programs must take explicit
actions to reliably share data. At critical points in the program, the effects of loads and stores from an instruction
stream must occur in the same order for all processors. SYNC separates the loads and stores executed on the proces-
sor into two groups, and the effect of all loads and stores in one group is seen by all processors before the effect of
any load or store in the subsequent group. In effect, SYNC causes the system to be strongly ordered for the executing
processor at the instant that the SYNC is executed.

Many MIPS-based multiprocessor systems are strongly ordered or have a mode in which they operate as strongly
ordered for at least one memory access type. The MIPS architecture also permits implementation of MP systems that
are not strongly ordered; SYNC enables the reliable use of shared memory on such systems. A parallel program that
does not use SYNC generally does not operate on a system that is not strongly ordered. However, a program that does
use SYNC works on both types of systems. (System-specific documentation describes the actions needed to reliably
share data in parallel programs for that system.)

The behavior of a load or store using one memory access type is UNPREDICTABLE if a load or store was previ-
ously made to the same physical location using a different memory access type. The presence of a SYNC between the
references does not alter this behavior.

SYNC affects the order in which the effects of load and store instructions appear to all processors; it does not gener-
ally affect the physical memory-system ordering or synchronization issues that arise in system programming. The
effect of SYNC on implementation-specific aspects of the cached memory system, such as writeback buffers, is not

MIPS16e2 Application-Specific Extension, Revision 01.00 78

SYNC Synchronize Shared Memory Extended

defined.

Processor A (writer)
Conditions at entry:
The value 0 has been stored in FLAG and that value is observable by B

SW R1, DATA # change shared DATA value

LI R2, 1

SYNC # Perform DATA store before performing FLAG store
SW R2, FLAG # say that the shared DATA value is valid

Processor B (reader)

LT R2, 1
1: LW R1, FLAG # Get FLAG
BNE R2, R1, 1B# if it says that DATA is not valid, poll again
NOP
SYNC # FLAG value checked before doing DATA read
LW R1, DATA # Read (valid) shared DATA value

The code fragments above shows how SYNC can be used to coordinate the use of shared data between separate writer
and reader instruction streams in a multiprocessor environment. The FLAG location is used by the instruction streams
to determine whether the shared data item DATA is valid. The SYNC executed by processor A forces the store of
DATA to be performed globally before the store to FLAG is performed. The SYNC executed by processor B ensures
that DATA is not read until after the FLAG value indicates that the shared data is valid.

Software written to use a SYNC instruction with a non-zero stype value, expecting one type of barrier behavior,
should only be run on hardware that actually implements the expected barrier behavior for that non-zero stype value
or on hardware which implements a superset of the behavior expected by the software for that stype value. If the
hardware does not perform the barrier behavior expected by the software, the system may fail.

MIPS16e2 Application-Specific Extension, Revision 01.00 79

XORI

31 27 26 21 20 16 15 11 10 5 0
EXTEND LI _)
11110 Imm[10:5] Imm[15:11] 01101 rx sel =4 Imm([4:0]
5 5 0 5 5 3 3 5
Format: XORI rx, immediate MIPS16e2

Purpose: Exclusive OR Immediate Extended

To do a bitwise logical Exclusive OR with a constant.

Description: GPR[rx] ¢ GPR[rx] XOR immediate

Combine the contents of GPR rx and the 16-bit zero-extended immediate in a bitwise logical Exclusive OR operation
and place the result back into GPR rx.

Restrictions:
Unpredictable prior to MIPS16¢2.

Operation:

GPR [XLat [rx]]

Exceptions:

None

MIPS16e2 Application-Specific Extension, Revision 01.00

Copyright © Wave Computing, Inc. All rights reserved.

www.wavecomp.ai

¢« GPR[Xlat[rx]] xor zero extend(immediate)

80

