MIIFPS

MIPS® Architecture for Programmers
Volume IV-d: The SmartMIPS®
Application-Specific Extension to the
MIPS32® Architecture

Document Number: M D00101
Revision 3.01
December 16, 2012

M| PS Technologies, Inc.
955 East Arques Avenue
Sunnyvale, CA 94085-4521

Copyright © 2004-2005, 2008, 2010,2012 M1PS TechnologiesInc. All rightsreserved.

MIPS;Y



Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies, Inc. All rights reserved.
Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies'). Any copying, reproducing, modifying or use of
this information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a
minimum, thisinformation is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution
restrictions that are independent of and supplemental to any and al confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT
PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN
PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technol ogies reserves the right to change the information contained in this document to improve function, design or otherwise. MIPS Technol ogies does
not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether
express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded.
Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not
give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any
country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export,
reexport, transfer, or release of the information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial computer software
documentation or other commercial items. If the user of thisinformation, or any related documentation of any kind, including related technical data or manuals,
isan agency, department, or other entity of the United States government (" Government"), the use, duplication, reproduction, release, modification, disclosure,
or transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian
agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further
restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS
Technologies or an authorized third party.

MIPS, MIPSI, MIPSII, MIPSIII, MIPSIV, MIPSV, MIPS3, MIPS32, MIPS64, microM1PS32, microM1PS64, MIPS-3D, MIPS16, MIPS16e, M1PS-Based,
MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microMIPS logo, MIPS Technologies logo, MIPS-VERIFIED logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4K Ec,
4KEm, 4KEp, 4K S, 4K Sc, 4K Sd, M4K, M14K, 5K, 5K ¢, 5Kf, 24K, 24K c, 24K f, 24KE, 24K Ec, 24K Ef, 34K, 34Kc, 34Kf, 74K, 74K c, 74Kf, 1004K, 1004Kc,
1004Kf, 1074K, 1074K c, 1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.”, BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CorelV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug, HyperJTAG, IASIm,
iFlowtrace, interAptiv, JALGO, Logic Navigator, Mata, MDMX, MED, MGB, microAptiv, microMIPS, OCI, PDtrace, the Pipeline, proAptiv, Pro Series,
SEAD, SEAD-2, SmartMIPS, SOC-it, System Navigator, and YAMON are trademarks or registered trademarks of MIPS Technologies, Inc. in the United
States and other countries. All other trademarks referred to herein are the property of their respective owners.

All other trademarks referred to herein are the property of their respective owners.

Template: nB1.02, Built with tags: 2B ARCH MIPS32

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 3

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



AMIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



Table of Contents

Chapter 1: ADOUL THIS BOOK ...cciiiiiiiiiiii ittt e e e e e e et s s e e e e e e e e e et a e e e e e e e e eentenn e aeees 11
1.1: TypographiCal CONVENTIONS .......coiiiiiiii ittt ettt e et e e e e bt e e e e et e e e e e e e e e e e 11
R O | = 1o I P PPPRERPR 12
g = 1o o = PR PPPRRRPR 12
G O o U 1Y g I RSP PPPRRRPR 12
1.2: UNPREDICTABLE and UNDEFINED .......ccccoiiiiiiiiiiiiit ettt s et stee e e et e e e e s astaa e e e s ensaeeeeennees 12
1.2.2: UNPREDICTABLE ...ttt etttk e e et e e e e s ettt et e e e st e e e e s esta e e e e e e steeeeeesntaeaeeesssnaeeenas 12
L1220 UNDEFINED .....ttiiii ettt ettt ettt e e e ettt e e e e ettt e e e e e esb e e e e e aatb e e e e e astaaeeeeasbeeeeeeantaeaeeesssneeeenas 13
L2 31 UNSTABLE ...ttt e e e ettt e e e e st e e e s eh b e e e e e eatb e e e e e e asbaeeeeeasbeeeeeeantaeaeeessbnaeaenas 13
1.3: Special Symbols in PSEUdOCOTE NOTATION .........uviieiiiiiiie ettt 13
S o g |V (o (=N [0 =1 (o o SRRSO 16
Chapter 2: Guide t0 the INSTIUCTION SE.........uiiiiiiiiiii e 17
2.1: Understanding the INSrUCtION FIEIAS .......cciiieiiii e e e e e e e e ereeeeeas 17
P e | S B ot 1o T [ [T PRP 19
2.1.2: Instruction Descriptive Name and MNEMONIC.........iieeiieiiiiiiiieiieiieeeeeessesaeanrerrerereeeeeesssssnnnsnnnenereeees 19

P e T o 1 4 = L 1= (o PO PPP 19
0 I S g o o Y= = o PP 20
A T T B 1= o o) (o T T o PP 20
2.1.6: RESIICHONS FIEIO......eiiiiiitiiie ettt ettt e e s st e e s et e e e s st e e e s annneeas 20
0 I A @ o =T = 1o T o I i = [ 1O 21
N I S (o7 =T ) 1[0 T LS 1= o PP 21
2.1.9: Programming Notes and Implementation NOtes Fields...........uuuuiiiieeeiiiiiiiiire e 22
2.2: Operation Section Notation and FUNCHONS .........ccuuiiiiiiiiiece e e e e e e s s e e e e e e e e s e s snenrreereeeeeas 22
2.2.1: INStruction EXECULION OFGEIING .. .viiiieeeiiiieiiiiiiiieet e e ee e e e e e s s e e e eeeeeeese s st eeeeaeeaeeeessssnsrnnneeeeeeees 22
A Y= 10 o [ Yoo To [= 2 e T o ot 1o o TSRO PRP T 22
2.3: Op and Function SUBfield NOTALION. ........uiiiiee e e e e e s e e e e e e e e e e e s e ssnnrnraeereeeaeas 31
P e U [ S F ot 1o o £ TP RPUOUPPRPTPPPR 31
Chapter 3: The SmartMIPS® Application-Specific Extension to the MIPS32® Architecture......... 33
3.1: Base ArChiteCture REQUITEIMENTS ... ... ittt e e e e e e e e e e ettt e e e e e e e e e s e s bbbt b e eeeeaaeas 33
3.2: Software DeteCtion OF tNE ASE ........uuiiiiiiii ettt e ettt e e e e e e e e e bbb e e eaeaaeas 33
3.3: ComplianCe and SUDSEIING.......ccieiiiiiiieii ettt et e e e e e e s bbbt e e e e e e e e e e e e s bbb b b e e eeeaaeas 33
3.4: 0verview Of the SMArtMIPS ASE ... ettt e et e e e e e e e e e eeeaeaaeas 34
3.4.1: Support for Cryptographic Algorithms in the SmartMIPS ASE...........coooiiiiiiiiieeeeee 34
3.4.2: Code DeNSity OPLIMUZALION. ......eeiiiiieeiiiiaiiitie ettt e e e e e e e e e bbb e e e et e e e e e e e s e s anbbebeeeeeeeeeas 34
3.4.3: Other ISA ENNANCEIMENTS ......uuiiiiiiiieiiii ittt e e e e e e e et r e e e e e e e e e e s e e nnbebeeeeeeeeeas 35
3.4.4: Privileged Resource Architecture ENhanCemMENTS.........ooouiiiiiiiiiiiiiece e 36
3.5 INSLIUCHON BIt ENCOING ...cttiiieiiiiiiiiite ettt e e e ettt e e e e e e e e e e e s b e bbbttt e e e e e e e e e e e annbbbbbeeeeeaaeas 37
Chapter 4: The SmartMIPS® Cryptographic Feature Set.........ccccvvuiiiiiiiiii e 41
4.1 The SPECIAI REGISIEN ACX ...ttt ettt et oot e e o a bttt e e e bbb et e e s nb bt e e e annne s 41
4.2: Change t0 MADDU SEIMANTICS .....ccoiittiiieeiiiiiii ettt et et e e sk bt e e s et r e e e s anb b e e e s anneeeas 42
4.3: Change t0 MULTU SEMANTICS .....eeieiiiiiiieeiiiiii ettt ettt e e ekt e e s ekt e e s st e e e s annne s 42
4.4: Possible Changes to other Multiply/Accumulate SEMANTICS.........cuiiiiiiiiiiiiii e 42
T N L 1 ] (VT 1o 1 EEUR 42

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 5

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



A.5. 1 MELHXU L.t e et e e e e 42

YA Y I T ) T TP PRRPPR 42
5.3 IMADDNP ..ot E e b et Rt e R bt e aR bt e e e R bt e e e Rt e e e abe e e anbe e e abeeeanes 42
YR S 1V 16 | I TP U R OU PP 42
5.5 PPERM ...ttt h b ke e b et e R b e e e R et e eR b e e e eRb e e e aRbe e e anae e e anbe e e anreeeanes 43
I ST = { @ I = TS U PP SRR 43
5.7 ROTRV .ttt ekt ook b e oo kbt e 4ok bt e ek bt e 4ok bt e e bb e a4 eh bt e e eh bt e e ehbe e e enbe e e anbeeeenneeeanes 43
Chapter 5: Other ISA Elements of the SmartMIPS® ASE...........ooooiii e, 45
LR I I VY T [ 1S 4 o 1o PR 45
Chapter 6: The SmartMIPS® Release 3 Privileged Resource ArchiteCture..........cccoooviiiviiieienennnnns 57
L3 B [0 £ o (0T 1T o I T TP TP U PP PU PP TUPRPPPPRPPRN 57
B.27 OVEBIVIEW ...ttt ettt etttk e e 4 ke e ke e 4 4H £ 4o s e 44 H et 44kt e oA Rt e e R e E et E et enn e 57
SRS T @0 ] 1 1] o] 1=V o oL SRRSO 57
6.4: Interaction between the SmartMIPS ASE and Release 2 of the MIPS32 Architecture ...........ccccocveennen. 58
6.5: The SMartMIPS SYStEM COPIOCESSON ....ciiiieeeieiieiieiteeeeeeeeeee e et e e seit e e eeeteeaaaesaaassraareeareeaaeessesassssrraereeaaeas 58
6.5.1: CPO REQISIEr SUMMIAIY ...uuiiiiiiiiiiieieee et e ee et e e e e e e e e e e s e et eeeeeaeeeesesaa b e baeseeeeaeaeeeesesansrsannaeeeaeens 58
(SR R (0T VY, [T g YRS 58
6.6.1: TLB-Based Virtual ADdress TransSIation ...........cocuviiiiiiiiiiieiiecie e 58
6.6.2: General EXCEPLION PrOCESSING .......iiciiiiiii ittt et e e e e e e ettt e e e e e e e s e s et eeeaaaeaesaesansbsaaeaeeeaeens 61
6.6.3: TLB RETill EXCEPLION .. ..ottt e e e e e e e e e e e et e e et e e aee e e s e s nassbnannaaeeaeens 61
6.6.4: TLB INVAII EXCEPLION ...ttt e ettt e e e e e et e e e e e e e e e e e et e e e e eeaeeeesesannsreaaneaeeaeeas 61
6.6.5: TLB MOIfied EXCEPLION .. ..uiiiiiiiieiie e ee e e ettt et e e e e e e e e e e e e e e e e e s e s st e e e e e eaeeeeseaannsbsanneaeeaeeas 62
LI O =0 J = =T 1) 1= £ RSO 62
6.7.1: PageMask Register (CPO Register 5, SEIECT 0) ....oviieiiiiiiiiiiieiee e 62
6.7.2: PageGrain Register (CPO RegiSter 5, SEIECE 1) ......cccceiiiiiiiiiiiiiieeee et 64
6.7.3: EntryHi Register (CPO Register 10, SEIECE 0 .....uvviiieeeeiiiiciiiiieiee et e e 66
6.7.4: Configuration Register 3 (CPO Register 16, Select 3)......ccccviiiiiiiiieece et 66
Appendix A: The SmartMIPS® Release 2 Privileged Resource Architecture ......cccccvvvvvvvvvveeieennnn, 67
N 11 7o [0 T 1o o RO PPPPPPPPPURTRP 67
F N @ )= V= RO UPPPPPPPRURTRP 67
YN 001071 o] 7= T [ox =SS UPPPPPPPPURTRR 67
A.4: Interaction between the SmartMIPS ASE and Release 2 of the MIPS32 Architecture ...........cccccceeeeeennn. 68
A.5: The SMartMIPS SYSTEM COPIOCESSOL .. ...uuieiiiiiieeieaaeea e e aeitetee et et e e e e e e e s s e s nnbabbeeeeaaaeaeaaaaaaannbbsbeeeeaaaaaaaaaaanns 68
A.5.1: CPO REQISIET SUMIMAIY ...eiiiiiieiiiiiiiiite ettt e e e e e e ettt ettt e e e e e e e e e e s aebbee bt e eeaaaaaeaeaaaannsbbabseeeaaaaeaasaaanns 68

Y YT (8 F= LAY (=T o't To RS UPPPPPPPPURTRP 69
A.6.1: TLB-Based Virtual Address TranSIatioN..........ooooeiiiiiiiiiiieeeee et e e e 69
A.6.2: General EXCEPLION PrOCESSING ....ccouueiiiiiiiteiaeeai ettt e e e e e e e e e et bbbt e eaaaaaeaeeaaasnbbebseeeaaaaaeaaaaanns 72
A.B.3: TLB RETII EXCEPLION ...teeieeitee ettt ettt et e e e e e e e ettt e e e e e e e e e e e e nnnbbbbeeeeaaaaeeeaaaanns 72
A.6.4: TLB INVAIH EXCEPLION ...ttt e e e e e e ettt e e e e e e e e e e s e nnnbbbeeeeeaaaaeeeaeaanns 72
A.6.5: TLB MOAIfI@d EXCOPLION....ccii ittt e ettt e e e e e e ettt e e e e e e e e e e e e nnnbbb b s e eeaaaaeeeeaaanns 73
YN A O = O (T o |1 (= £ ST UPPPPPPPPURTRP 73
A.7.1: EntryLoO, EntryLol (CPO Registers 2 and 3, Select 0) ......coovviiiiiiiiiiiiiiiie e 73
A.7.2: Context Register (CPO Register 4, SEIECT 0) .....uuiuiiiiiiiiiie et e e 75
A.7.3: ContextConfig Register (CPO RegiSter 4, SEIECE 1) .....ccuiiiiiiiiiiiiiiiiiie et 76
A.7.4: PageMask Register (CPO Register 5, SEIECE 0).......uuuuiiiiiiiaiiiiiiiiiiiiiiee e e e 77
A.7.5: PageGrain Register (CPO RegiSter 5, SEIECT 1) .....uuuiiiiiiiiiiiiiiiiiiiie et e e 79
A.7.6: EntryHi Register (CPO Register 10, SEIECT O .......uuiiiiiiiiiiieaeee e e e e e 81
A.7.7: Configuration Register 3 (CP0 Register 16, SEIECE 3) ...cciiiiiiiiiiiiiiiiiiei e 81

6MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



APPENdIX B: REVISION HISTOIY ..uuiiiiiiiii i ee e e e et s e e e e e e e e ettt e e e e e e e e eeaaann s e eeeeeeeannes 83

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 7

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



List of Figures

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 2.9:

Figure 2.10:
Figure 2.11:
Figure 2.12:
Figure 2.13:
Figure 2.14:
Figure 2.15:
Figure 2.16:
Figure 2.17:
Figure 2.18:
Figure 2.19:
Figure 2.20:
Figure 2.21:
Figure 2.22:
Figure 2.23:
Figure 2.24:
Figure 2.25:
Figure 2.26:
Figure 2.27:
Figure 2.28:
Figure 2.29:
Figure 2.30:
Figure 2.31:

Figure 6.1:
Figure 6.2:
Figure 6.3:
Figure A.1:
Figure A.2:
Figure A.3:
Figure A.4:
Figure A.5:
Figure A.6:
Figure A.7:

Example of INStruCtion DESCIIPLION ......eiiiiiiii ittt e e e e e e e e e e e e e e e e e e e e e ennneeeeees 18
Example of INStrUCTION FIEIAS..........uiiieiiiiiiee et e e e e e e e e e e 19
Example of Instruction Descriptive Name and MNEMONIC ..........uuuiiiiiiiiiaaaiiiiiiiieie e 19
Example of INStrUCTION FOIMAL.........uuiiiiiiiiiee ettt ettt e e e e e e s e st e e e e e e e e e e e e aannneeeeees 19
Example Of INSTUCTION PUIMPOSE ......uueiiiiiiiieae ettt et e e e e e e e e e e e bbb e e e e eaaaeaeeaaaannneneeees 20
Example of INStruCtioN DESCIIPLION ......eeiiiiiii ittt e e e e e e e e r e e e e e e e e e e e e anneeeeees 20
Example of INStruCtiON RESIICHIONS. ......iiiiiiii ittt a e e e e e e e e e e e e e aneeeeeees 21
Example of INStrUCTION OPEIALION. .......uiiiiiiiiee ittt e e e e e e e e et eeaeaaeaaeaeaannneneeees 21
Example oOf INStrUCTION EXCEPLION. ......eeeiiiiiiie ittt e e e e e e e et e e e e e e e e e e e e aannneeeeees 21
Example of Instruction Programming NOEES ..........uuuiiiiiiiiiiiai it e e 22
COP_LW PSeUAOCOUE FUNCHION .. .uuuttitiiiiieeee e e e e e e e e e e e e e e e e ettt s s e s e e e e e e e eeaeaeaeaeaeseeresasessensnnes 23
COP_LD PSeUAOCOTE FUNCLION.......uuuiiiiiiiiiieee e e e e e e eeeeeee et s s s e s e e e e e e e e aaeaeaeeeeeeeereeassssrnnanns 23
COP_SW PSeUAOCOUE FUNCHION.......uutiieiiiiie e e et e e e e e e e e et s s s e s e e e e e e e e e aeaeaeeeeeeeeeassssraranes 23
COP_SD PSeUdOCOUE FUNCHION .....uutuiiiiiiiiiieeee e e e e e eeeee e ettt s s e s e e e e e e e e e aeaeaeaeeeeeeeeeessssrnsanes 24
CoprocessorOperation PSeudoCOde FUNCHION ........ooiiiiiiiiiii ettt e e e e e e 24
AddressTranslation PSEUAOCOTE FUNCLION ........cuviiiiiiiiiiiie ettt 24
LoadMemory PSEUAOCOUE FUNCHION .......ciiiiiiiiiiiiieie ettt e e e e e e e e e e e e e e e e e e nnneeneees 25
StoreMemory PSEUAOCOUIE FUNCHION. ........uiiiiiiieeaii ittt e e e e e et e e e e e e e e e e e e anns 25
Prefetch PSEUdOCOTE FUNCHION .......ciiiiiiiiiiiieii et e e e e 26
SyncOperation PSeUdOCOAE FUNCLION .........iiiiiiiiiiiiiiii ettt e e e e e e e e e e e e e ann 27
ValueFPR PSeUdOCOUE FUNCHION........cciiiiiiiiieiiiiiie ettt 27
StoreFPR PSEUAOCOTE FUNCHION .....iiiiiiiiiiiiiiiiiii ettt e 28
CheckFPException PSeudoCode FUNCHON. ........ooiiiiiiiiiiieiic et e e e e e e e e 29
FPConditionCode PSeudoCode FUNCHION...........ciiiiiiiiiiiiiiieeeitiee et 29
SetFPConditionCode PSeudoCode FUNCHION ........coiiiiiiieiiiiiiee ittt 29
SignalException PSeUdOCOdE FUNCLION ........iiiiiiiiiiiiiieeii et e e e e e e e e e 30
SignalDebugBreakpointException Pseudocode FUNCHON...........cocuiiiiiiiiiiiiaaieieieeeee e 30
SignalDebugModeBreakpointException Pseudocode FUNCHION............uuiiiiiiiiiiaaiiiiiieiieeee e 30
NullifyCurrentinstruction PsSeudoCode FUNCHON ..........uiiiiiiiiiiiiiiiiiiee e 31
JumpDelaySIot PSEUAOCOTE FUNCHON .......uuiiiiiiiiieeei ittt e e e e e e e e 31
PolyMult PSEUAOCOAE FUNCLION ......uiiiiiiiiiieee ittt e e e e e e e e e e e e e e e e nneeeeees 31
SmartMIPS PageMask RegiSter FOIMAL.........coiiiiiiiiiiiiiiiiie et e e e e e e e 62
SmartMIPS PageGrain RegiSter FOMIAL........cooi it e e e e 64
SmMartMIPS EntryHi REQISTEr FOMIAL.......oiiiiiiiiiii it e e e e e 66
[O7e] 01 (T a1E 3] = T I 01 T PP EUPTRP P 69
SmartMIPS EntryLo0, EntryL01 RegiSter FOIMAL...........eeiiiiiiaiiiiiiiiiiiiie e 74
SmartMIPS Context ReIStEr FOMMAL ........ooiiiiiiiiii e e e e e 76
SmartMIPS ContextConfig RegiSter FOIMMAL..........c..uuuiiiiiiiieeeeei e e e 77
SmartMIPS PageMask RegiSter FOIMAL .........ooiiiiiiiiiiiiiie et e e e e e 78
SmartMIPS PageGrain ReQIStEr FOIMIAL .......cooiiiiiiiiiiieeii et e e e e e e 79
SmartMIPS EntryHi REQISIEr FOMMIAL.......cciiiiiiiiiiiiit et e e e e e e e e eeeeeeees 81

8MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



List of Tables

Table 1.1: Symbols Used in Instruction Operation StatemMeENTS. ..........uiiiiiiaiiiiiiiiiiieie e e e e eaeeees 13
Table 2.1: AccessLength Specifications for LOAAS/SIOIES ........cuuuiiiiiiiiiie et 26
Table 3.1: Symbols Used in the Instruction ENcoding TabIles.............ooiiiiiiiii e 37
Table 3.2: SmartMIPS ASE Encoding of the Opcode FIeld ... 37
Table 3.3: SmartMIPS ASE SPECIAL Opcode Encoding of Function Field ... 38
Table 3.4: SmartMIPS ASE SPECIAL2 Encoding of FUNCHON Field............oooiiiiiiii e 38
Table 3.5: SmartMIPS ASE SRL Encoding of Shift/ROTALE............ccuuiiiiiiiiieiee e 38
Table 3.6: SmartMIPS ASE SRLV Encoding of Shift/ROTALE ............eeiiiiiiiiiiiiii e 38
Table 3.7: SmartMIPS ASE MFLO Encoding of MFLO/MFLHXU ........uiiiiiiiiiii it 38
Table 3.8: SmartMIPS ASE MTLO Encoding of MTLO/MTLHX .....uuiiiiiiiiiiiiee et 39
Table 3.9: SmartMIPS ASE MULTU Encoding of MULTU/MULTP ......ccoiiiiiiiiiieie e 39
Table 3.10: SmartMIPS ASE MADDU Encoding of MADDU/MADDP/PPERM .......ccccciiiiiiiiiiiiie e 39
Table 3.11: SmartMIPS ASE LXS ENCOAING Of LVWXS....coi ittt e e e e e e e e 39
Table 6.1: SmartMIPS Changes to Coprocessor 0 Registers in Numerical Order..........ccccooiiiiiiiiiiieiiiieeeeeeeeeies 58
Table 6.2: PhySiCal AQAreSS GENEIALION.........ccii ittt e e e e e e e e e e et bbbt et e e e aaeeaasaaannbbsseeeeaaaaaeaaaaanns 60
Table 6.3: TLB Refill Exception State Saved in Addition to the Cause RegISter...........eaiiiiiiiiiiiiiiiiiieeeeee e 61
Table 6.4: TLB Invalid Exception State Saved in Addition to the Cause RegiSter .........cccccoviiiiiiiiiiiiiiiieieee e 61
Table 6.5: TLB Modified Exception State Saved in Addition to the Cause RegiSter.........ccoovviiiiiiiiiiiiiieieeeiee 62
Table 6.7: Values for the Mask Field of the PageMask REQISTEN .........couiiiiiiiiiiiiiiiie e 63
Table 6.6: PageMask Register Field DESCHPHIONS ........uuiiiiiiiaaiaiiiiiiiee et e ettt e e e e e e e e e e s eenab b e e e e e aaaeeaaaanns 63
Table 6.8: SmartMIPS PageGrain Register Field DeSCIPLIONS. ........uuiiiiiiiai ittt a e e 64
Table 6.9: PageGrain Implementation SUDSEt BENAVIOL ..........ooiiiiiiiiiiiiiiiei et 65
Table 6.10: EntryHi Register Field DESCIPLIONS .......uuiiiiiiiiiieaaie ittt e e e ettt e e e e e e e e e e e annbbesrreeaaaaeeaaaaanns 66
Table A.1: SmartMIPS Changes to Coprocessor 0 Registers in Numerical Order .........ccccovviiiiiiiiieiiiieieeeeeeiies 68
Table A.2: Physical AQAreSS GENEIALION ......ccoii ittt ettt e e e e e e e e e s et ab bbbt e eeeeaaeeaesaaannbbsseeeeaaaaeeaaaaanns 71
Table A.3: TLB Refill Exception State Saved in Addition to the Cause RegiSter ..........ccccceviiiiiiiiiiiiiiiiieeeeeeeee 72
Table A.4: TLB Invalid Exception State Saved in Addition to the Cause RegiSter........cccccoviiiiiiiiiiiiiiiieieeeeie 73
Table A.5: TLB Modified Exception State Saved in Addition to the Cause RegiSter..........coooiiiiiiiiiiiiiieieeeieiiis 73
Table A.6: SmartMIPS EntryLoO, EntryLol Register Field DeSCrPLONS. .........cccuvuiiiiiiiiieeae et 74
Table A.7: SmartMIPS Context Register Field DeSCIHPLIONS .........uuuiiiiiiiiiaae ettt e e e e e e eneeees 76
Table A.8: SmartMIPS ContextConfig Register Field DeSCIPLIONS. ......cuiiiii it 77
Table A.9: Recommended ContextConfig Values for SMartMIPS ... 77
Table A.10: PageMask Register Field DESCIIPIIONS......... it ittt e e e e e e e e e s s eeeeaeaaeaeaaaanns 78
Table A.11: Values for the Mask Field of the PageMask REQISTEN ..........ccoaiiiiiiiiiiiii e 78
Table A.12: SmartMIPS PageGrain Register Field DESCHPLIONS ........uiiiiiiiiaiiiiiiiiiiie e 79
Table A.13: PageGrain Implementation SUDSEt BENAVIOL...........cccuuiiiiiiiiiiiaee et 80
Table A.14: EntryHi Register Field DESCIPLIONS .......uuuiiiiiiiiiee ettt ettt e e e e e e e e e s e einbbe e e eaaaaaaeaaaanns 81

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 9

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



10 MIPS® Architecture for Programmers Volume 1V-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



Chapter 1

About This Book

The MIPS® Architecture for Programmers Volume I V-d: The SmartMIPS® A pplication-Specific Extension to the
MIPS32® Architecture comes as part of a multi-volume set.

*  VolumeI-A describes conventions used throughout the document set, and provides an introduction to the
MIPS32® Architecture

*  Volume I-B describes conventions used throughout the document set, and provides an introduction to the
microMIPS32™ Architecture

*  Volumell-A provides detailed descriptions of each instruction in the MIPS32® instruction set
*  Volumell-B provides detailed descriptions of each instruction in the microMIPS32™ instruction set

*  Volume Il describes the MIPS32® and microMIPS32™ Privileged Resource Architecture which defines and
governs the behavior of the privileged resources included in a MIPS® processor implementation

*  Volume IV-adescribesthe MIPS16e™ A pplication-Specific Extension to the MIPS32® Architecture. Beginning
with Release 3 of the Architecture, microMIPS is the preferred solution for smaller code size.

*  Volume IV-b describes the MDM X ™ A pplication-Specific Extension to the M1 Architecture and
microM1PS64™. It is not applicable to the MIPS32® document set nor the microMIPS32™ document set. With
Release 5 of the Architecture, MDMX is deprecated. MDMX and MSA can not be implemented at the same
time.

*  Volume IV-c describes the MIPS-3D® A pplication-Specific Extension to the MIPS® Architecture

*  Volume IV-d describes the SmartM I PS®A pplication-Specific Extension to the MIPS32® Architecture and the
microMIPS32™ Architecture .

*  Volume IV-e describes the MIPS® DSP Module to the MIPS® Architecture

*  Volume IV-f describes the MIPS® MT Module to the MIPS® Architecture

*  Volume IV-h describes the MIPS® MCU Application-Specific Extension to the MIPS® Architecture
*  Volume IV-i describesthe MIPS® Virtualization Module to the MIPS® Architecture

*  Volume IV-j describes the MIPS® SIMD Architecture Module to the MIPS® Architecture
1.1 Typographical Conventions
This section describes the use of italic, bold and courier fontsin this book.

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 11

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



About This Book

1.1.1 Italic Text

e isusedfor emphasis

e isused for bits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmabl e fields and registers), and various floating point instruction formats, such as S, D,
and PS

» isused for the memory access types, such as cached and uncached

1.1.2 Bold Text

* representsaterm that is being defined

» isused for bitsand fields that are important from a hardware perspective (for instance, register bits, which are
not programmabl e but accessible only to hardware)

» isusedfor ranges of numbers; the rangeisindicated by an ellipsis. For instance, 5..1 indicates numbers 5 through
1

* isused to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

Theterms UNPREDICTABL E and UNDEFINED are used throughout this book to describe the behavior of the pro-
cessor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructionsin
aprivileged mode (i.e., in Kernel Mode or Debug Mode, or with the CPO usable hit set in the Status register). Unpriv-
ileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and unprivileged
software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDI CTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as afunction of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause aresult to be generated or not. If aresult is gener-
ated, itisUNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDI CTABLE results or operations have several implementation restrictions:

* Implementations of operations generating UNPREDI CTABL E results must not depend on any data source
(memory or internal state) which is inaccessible in the current processor mode

UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
isinaccessible in the current processor mode. For example, UNPREDICTABL E operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

12 MIPS® Architecture for Programmers Volume 1V-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



1.3 Special Symbols in Pseudocode Notation

* UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as afunction of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

e« UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which

thereisno exit other than powering down the processor). The assertion of any of the reset signals must restore the
processor to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as afunction of time on the same implementation or instruction. Unlike
UNPREDI CTABLE values, software may depend on the fact that a sampling of an UNSTABLE value resultsin a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABL E values have one implementation restriction:

* Implementations of operations generating UNSTABL E results must not depend on any data source (memory or
internal state) which isinaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning
«— Assignment
= # Tests for equality and inequality
[ Bit string concatenation
xY A y-bit string formed by y copies of the single-bit value x
b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the

binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default baseis 10.

Obn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).
0oxn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).
Xy. 2 Selection of hitsy through z of bit string x. Little-endian bit notation (rightmost bit is 0) isused. If yisless

than z, this expression is an empty (zero length) bit string.

+, — 2's complement or floating point arithmetic: addition, subtraction

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 13

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
* X 2's complement or floating point multiplication (both used for either)
div 2's complement integer division
mod 2's complement modulo
/ Floating point division
< 2's complement less-than comparison
> 2's complement greater-than comparison
< 2's complement less-than or equal comparison

> 2's complement greater-than or equal comparison
nor Bitwise logical NOR
xor Bitwiselogical XOR
and Bitwise logical AND
or Bitwiselogical OR
not Bitwise inversion
&& Logical (non-Bitwise) AND
<< Logical Shift left (shift in zeros at right-hand-side)
>> Logical Shift right (shift in zeros at left-hand-side)
GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers
GPR[X] CPU general -purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR[X] is ashort-hand notation for SGPR[ SRSCltlcgs, X].
SGPR[sX] In Release 2 of the Architecture and subsequent rel eases, multiple copies of the CPU general-purpose regis-
ters may be implemented. SGPR([s,X] refersto GPR set s, register x.
FPR{X] Floating Point operand register x
FCC[C(C] Floating Point condition code CC. FCC[0] has the same value as COCJ[ 1].
FPR[X] Floating Point (Coprocessor unit 1), general register x
CPR[zx,9] Coprocessor unit z, general register x, select s
CP2CPR[X] Coprocessor unit 2, general register x
CCR[zX] Coprocessor unit z, control register X
CP2CCR[X] Coprocessor unit 2, control register x
COC[7] Coprocessor unit z condition signal
Xlat[x] Translation of the MIPS16e GPR number X into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (O —Little-Endian, 1 — Big-Endian). Specifies the endianness of
the memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endi-
anness of Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0 — Little-Endian, 1 — Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and isimplemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRge and User mode).

14 MIPS® Architecture for Programmers Volume 1V-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



1.3 Special Symbols in Pseudocode Notation

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when alinked load occurs and istested by the conditional store. It is cleared, during other CPU operation,
when a store to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

I, This occurs as a prefix to Operation description lines and functions as alabel. It indicates the instruction
I+n:, time during which the pseudocode appears to “ execute.” Unless otherwise indicated, all effects of the current
I-n: instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
timelabel of . Sometimes effects of an instruction appear to occur either earlier or later — that is, during the

instruction time of another instruction. When this happens, the instruction operation is written in sections
labeled with the instruction time, relative to the current instruction I, in which the effect of that pseudocode
appears to occur. For example, an instruction may have aresult that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in asection labeled | +1.

The effect of pseudocode statements for the current instruction labelled | +1 appears to occur “at the same
time” asthe effect of pseudocode statements labeled | for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for
different instructions that occur “at the sametime,” thereis no defined order. Programs must not depend on a
particular order of evaluation between such sections.

PC The Program Counter value. During the instruction time of an instruction, thisis the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction timeis determined by assign-
ing avalue to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.

In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the
restart address into a GPR on ajump-and-link or branch-and-link instruction, or into a Coprocessor O register
on an exception. The PC value contains afull 32-bit address all of which are significant during amemory ref-

erence.

ISA Mode In processors that implement the M1PS16e Application Specific Extension or the microM|PS base architec-
tures, the ISA Mode isasingle-bit register that determines in which mode the processor is executing, as fol-
lows:

Encoding Meaning
0 The processor is executing 32-bit MIPS instructions
1 The processor is executing M11PS16e or microMIPS
instructions

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor storesa
combined value of the upper bits of PC and the ISA Mode into a GPR on ajump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS The number of physical address bitsimplemented is represented by the symbol PABITS. Assuch, if 36 phys-
ical address bits were implemented, the size of the physical address space would be 2PABITS = 236

bytes.

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 15

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

FP32RegistersMode | Indicates whether the FPU has 32-hit or 64-hit floating point registers (FPRs). In MIPS32 Release 1, the FPU

has 32 32-bit FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, (and option-
aly in MIPS32 Release? and MIPSr3) the FPU has 32 64-bit FPRs in which 64-bit data types are stored in

any FPR.

In MIPS32 Release 1 implementations, FP32Register sM ode is always a 0. M1PS64 implementations have a
compatibility mode in which the processor references the FPRs as if it were a MIPS32 implementation. In
such a case FP32Register M ode is computed from the FR bit in the Status register. If thisbit isa0, the pro-
cessor operates asif it had 32 32-bit FPRs. If thisbit isa 1, the processor operates with 32 64-bit FPRs.

The value of FP32Register sM ode is computed from the FR bit in the Satus register.

InstructioninBranchDe- | Indicates whether the instruction at the Program Counter address was executed in the delay slot of abranch

laySlot or jJump. This condition reflects the dynamic state of the instruction, not the static state. That is, the valueis
falseif abranch or jump occursto an instruction whose PC immediately follows a branch or jump, but which
is not executed in the delay slot of abranch or jump.

Signal Exception(excep- | Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
tion, argument) parameter as an exception-specific argument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

1.4 For More Information

Various MIPS RISC processor manuals and additional information about MIPS products can be found at the MIPS
URL: http://www.mips.com

For comments or questions on the MIPS32® Architecture or this document, send Email to support@mips.com.

16 MIPS® Architecture for Programmers Volume 1V-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.


http://www.mips.com/
mailto:architecture@mips.com

Chapter 2

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical
order in the tables at the beginning of the next chapter.

2.1 Understanding the Instruction Fields

Figure 2.1 shows an example instruction. Following the figure are descriptions of the fields listed below:
* “Instruction Fields’ on page 19

e “Instruction Descriptive Name and Mnemonic” on page 19

e “Format Field” on page 19

e “Purpose Field” on page 20

*  “Description Field” on page 20

* “Restrictions Field” on page 20

*  “Operation Field” on page 21

* “ExceptionsField” on page 21

e “Programming Notes and Implementation Notes Fields’ on page 22

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 17

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



Guide to the Instruction Set

Figure 2.1 Example of Instruction Description

Instruction Mnemonic and .
Descriptive Name  ————> Example Instruction Name EXAMPLE
EXAMPLE
Instruction encoding 31 26 25 21 20 16 15 11 10 6 5 0
s 7€ 0 ) ” 0 [ exavme
000000 00000 000000
6 5 5 5 5 6

Architecture level at which

instruction was defined/redefined \Q

Format: EXAMPLE fd,rs,rt MIPS32
Assembler format(s) for each /7
definition .
/D Purpose: Example Instruction Name
Short description
To execute an EXAMPLE op.

Symbolic description ——J> Description: GPR[rd] < GPR[r]s exampleop GPR[rt]

Full description of = This section describes the operation of the instruction in text, tables, and illustrations. It
instruction operation includes information that would be difficult to encode in the Operation section.

Restrictions on instruction I~ Restrictions:

and operands
This section lists any restrictions for the instruction. This can include values of theinstruc-
tion encoding fields such as register specifiers, operand values, operand formats, address
alignment, instruction scheduling hazards, and type of memory access for addressed loca
tions.

High-level language. ———J> Operation:

description of instruction

operation /* This section describes the operation of an instruction in */
/* a high-level pseudo-language. It is precise in ways that */
/* the Description section is not, but is also missing */
/* information that is hard to express in pseudocode. */
temp < GPR[rs] exampleop GPR[rt]

GPR[rd] <« temp

Exceptions that = Exceptions:
instruction can cause

A list of exceptions taken by theinstruction
Notes for programmers _— I Programming Notes:

Information useful to programmers, but not necessary to describe the operation of the
instruction

Notes for implementors —————J~ Implementation Notes:

Like Programming Notes, except for processor implementors

18 MIPS® Architecture for Programmers Volume 1V-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



2.1 Understanding the Instruction Fields

2.1.1 Instruction Fields

Fields encoding the instruction word are shown in register form at the top of the instruction description. The follow-
ing rules are followed:

e Thevalues of constant fields and the opcode names are listed in uppercase (SPECIAL and ADD in Figure 2.2).
Constant values in afield are shown in binary below the symbolic or hexadecimal value.

e All variable fields are listed with the lowercase names used in the instruction description (rs, rt, and rd in Figure
2.2).

e Fieldsthat contain zeros but are not named are unused fields that are required to be zero (bits 10:6 in Figure 2.2).
If such fields are set to non-zero values, the operation of the processor is UNPREDICTABLE.

Figure 2.2 Example of Instruction Fields

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs " rd 0 ADD
000000 00000 100000
6 5 5 5 5 6

2.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown in Figure
2.3.

Figure 2.3 Example of Instruction Descriptive Name and Mnemonic

Add Word ADD

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
given in the Format field. If the instruction definition was later extended, the architecture levels at which it was
extended and the assembl er formats for the extended definition are shown in their order of extension (for an example,
see C.cond.fmt). The MIPS architecture levels are inclusive; higher architecture levelsinclude all instructionsin pre-
vious levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the
extended architecture.

Figure 2.4 Example of Instruction Format

Format: ADD fd,rs,rt MI1PS32

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields. The architectura level at
which the instruction was first defined, for example “MIPS32” is shown at the right side of the page.

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 19

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



Guide to the Instruction Set

There can be more than one assembler format for each architecture level. Floating point operations on formatted data
show an assembly format with the actual assembler mnemonic for each valid value of the fmt field. For example, the
ADD.fmt instruction lists both ADD.S and ADD.D.

The assembler format lines sometimes include parenthetical commentsto help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

2.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Figure 2.5 Example of Instruction Purpose

Purpose: Add Word
To add 32-bit integers. If an overflow occurs, then trap.

2.1.5 Description Field

If aone-line symbolic description of the instruction isfeasible, it appearsimmediately to the right of the Description
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation.

Figure 2.6 Example of Instruction Description

Description: GPR[rd] < GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rsto produce a 32-bit
result.

e |f theaddition resultsin 32-bit 2's complement arithmetic overflow, the destination
register is not modified and an Integer Overflow exception occurs.

» |f the addition does not overflow, the 32-bit result is placed into GPR rd.

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU general-purpose register specified by the
instruction field rt. “FPR fs” is the floating point operand register specified by the instruction field fs. “ CP1 register
fd” isthe coprocessor 1 general register specified by the instruction field fd. “FCSR” is the floating point Control
/Status register.

2.1.6 Restrictions Field

The Restrictions field documents any possible restrictions that may affect the instruction. Most restrictions fall into
one of the following six categories:

» Valid valuesfor instruction fields (for example, see floating point ADD.fmt)
* ALIGNMENT requirements for memory addresses (for example, see LW)

» Validvalues of operands (for example, see ALNV.PS)

20 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



2.1 Understanding the Instruction Fields

» Valid operand formats (for example, see floating point ADD.fmt)

»  Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards
for which some processors do not have hardware interlocks (for example, see MUL).

» Vaid memory access types (for example, see LL/SC)

Figure 2.7 Example of Instruction Restrictions

Restrictions:
None

2.1.7 Operation Field

The Operation field describes the operation of the instruction as pseudocode in a high-level language notation resem-
bling Pascal. Thisformal description complements the Description section; it is not complete in itself because many
of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Figure 2.8 Example of Instruction Operation

Operation:

temp < (GPR[rsli;||GPRI[rslz; o) + (GPR[rtlsi||GPR[rtlss o)
if temps, # temps;; then
SignalException (IntegerOverflow)
else
GPR[rd] <« temp
endif

See 2.2 “Operation Section Notation and Functions’ on page 22 for more information on the formal notation used
here.

2.1.8 Exceptions Field

The Exceptions field lists the exceptions that can be caused by Operation of the instruction. It omits exceptions that
can be caused by the instruction fetch, for instance, TLB Refill, and al so omits exceptions that can be caused by asyn-
chronous external events such as an Interrupt. Although a Bus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship
between load and store instructions and external error indications, like Bus Error, are dependent upon the implemen-
tation.

Figure 2.9 Example of Instruction Exception

Exceptions:

Integer Overflow

An instruction may cause implementation-dependent exceptions that are not present in the Exceptions section.

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 21

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



Guide to the Instruction Set

2.1.9 Programming Notes and Implementation Notes Fields

The Notes sections contain material that is useful for programmers and implementors, respectively, but that is not nec-
essary to describe the instruction and does not belong in the description sections.

Figure 2.10 Example of Instruction Programming Notes
Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

2.2 Operation Section Notation and Functions

In an instruction description, the Operation section uses a high-level language notation to describe the operation per-
formed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described bel ow.

This section presents information about the following topics:

* “Instruction Execution Ordering” on page 22

»  “Pseudocode Functions’ on page 22

2.2.1 Instruction Execution Ordering

Each of the high-level language statementsin the Operations section are executed sequentially (except as constrained
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and
include the following:

»  “Coprocessor General Register Access Functions’ on page 22
e “Memory Operation Functions’ on page 24
*  “Floating Point Functions’” on page 27

e “Miscellaneous Functions’ on page 30

2.2.2.1 Coprocessor General Register Access Functions

Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between coprocessor
genera registers and the rest of the system. What a coprocessor does with aword or doubleword supplied to it and
how a coprocessor supplies aword or doubleword is defined by the coprocessor itself. Thisbehavior is abstracted into
the functions described in this section.

22 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



2.2 Operation Section Notation and Functions

COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with aword from memory during a
load word operation. The action is coprocessor-specific. The typical action would be to store the contents of mem-

word in coprocessor general register rt.

Figure 2.11 COP_LW Pseudocode Function

COP_LW (z, rt, memword)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */
endfunction COP_LW
COP LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory
during aload doubleword operation. The action is coprocessor-specific. The typical action would be to store the con-
tents of memdouble in coprocessor general register rt.

Figure 2.12 COP_LD Pseudocode Function

COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memdouble: 64-bit doubleword value supplied to the coprocessor.

/* Coprocessor-dependent action */
endfunction COP_LD
COP_SW

The COP_SW function defines the action taken by coprocessor z to supply aword of data during a store word opera-
tion. The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in

coprocessor general register rt.
Figure 2.13 COP_SW Pseudocode Function

dataword <« COP_SW (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
dataword: 32-bit word value

/* Coprocessor-dependent action */
endfunction COP_SW
COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store dou-
bleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the
low-order doubleword in coprocessor general register rt.

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 23

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



Guide to the Instruction Set

Figure 2.14 COP_SD Pseudocode Function
datadouble « COP_SD (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
datadouble: 64-bit doubleword value
/* Coprocessor-dependent action */

endfunction COP_SD

CoprocessorOperation
The CoprocessorOperation function performs the specified Coprocessor operation.

Figure 2.15 CoprocessorOperation Pseudocode Function
CoprocessorOperation (z, cop_fun)

/* z: Coprocessor unit number */
/* cop_fun: Coprocessor function from function field of instruction */

/* Transmit the cop_fun value to coprocessor z */
endfunction CoprocessorOperation

2.2.2.2 Memory Operation Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword isthe smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for alittle-endian
ordering thisis the least-significant byte.

In the Operation pseudocode for load and store operations, the foll owing functions summarize the handling of virtual
addresses and the access of physical memory. The size of the dataitem to be loaded or stored is passed in the
AccessLength field. The valid constant names and values are shown in Table 2.1. The bytes within the addressed unit
of memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined directly
from the AccessLength and the two or three low-order bits of the address.

AddressTranslation

The AddressTranglation function trandates a virtual address to a physical address and its cacheability and coherency
attribute, describing the mechanism used to resolve the memory reference.

Given the virtual address vAddr, and whether the referenceisto Instructions or Data (lorD), find the corresponding
physical address (pAddr) and the cacheability and coherency attribute (CCA) used to resolve the reference. If the vir-
tual addressisin one of the unmapped address spaces, the physical address and CCA are determined directly by the
virtual address. If the virtual addressisin one of the mapped address spaces then the TLB or fixed mapping MMU
determines the physical address and accesstype; if the required translation is not present in the TLB or the desired
access is not permitted, the function fails and an exception is taken.

Figure 2.16 AddressTranslation Pseudocode Function
(pAddr, CCA) <« AddressTranslation (vAddr, IorD, LorS)

/* pAddr: physical address */
/* CCA: Cacheability&Coherency Attribute, the method used to access caches*/

24 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



2.2 Operation Section Notation and Functions

/* and memory and resolve the reference */

/* vAddr: virtual address */
/* TorD: Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

LoadMemory
The LoadMemory function loads a value from memory.

This action uses cache and main memory as specified in both the Cacheability and Coherency Attribute (CCA) and
the access (lorD) to find the contents of AccessLength memory bytes, starting at physical location pAddr. The datais
returned in a fixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address
and the AccessLength indicate which of the bytes within MemElem need to be passed to the processor. If the memory
accesstype of the reference is uncached, only the referenced bytes are read from memory and marked as valid within
the memory element. If the accesstypeis cached but the dataiis not present in cache, an implementation-specific size
and alignment block of memory is read and loaded into the cache to satisfy aload reference. At a minimum, this
block is the entire memory element.

Figure 2.17 LoadMemory Pseudocode Function

MemElem ¢« LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */
/* width is the same size as the CPU general-purpose register, */

/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */

/* respectively. */

/* CCA: Cacheability&CoherencyAttribute=method used to access caches */

/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */

/* pAddr: physical address */
/* vAddr: virtual address */
/* TIorD: Indicates whether access is for Instructions or Data */

endfunction LoadMemory

StoreMemory
The StoreMemory function stores a value to memory.

The specified datais stored into the physical location pAddr using the memory hierarchy (data caches and main mem-
ory) as specified by the Cacheability and Coherency Attribute (CCA). The MemElem contains the data for an aligned,
fixed-width memory element (aword for 32-bit processors, a doubleword for 64-bit processors), though only the
bytesthat are actually stored to memory need be valid. The low-order two (or three) bits of pAddr and the AccessLen-
oth field indicate which of the bytes within the MemElem data should be stored; only these bytesin memory will actu-
ally be changed.

Figure 2.18 StoreMemory Pseudocode Function

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 25

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



Guide to the Instruction Set

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */

/* AccessLength: Length, in bytes, of access */

/* MemElem: Data in the width and alignment of a memory element. */

/* The width is the same size as the CPU general */

/* purpose register, either 4 or 8 bytes, */

/* aligned on a 4- or 8-byte boundary. For a */

/* partial-memory-element store, only the bytes that will be*/
/* stored must be valid.*/

/* pAddr: physical address */

/* VAddr: virtual address */

endfunction StoreMemory

Prefetch
The Prefetch function prefetches data from memory.

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may
increase performance but must not change the meaning of the program or ater architecturaly visible state.

Figure 2.19 Prefetch Pseudocode Function
Prefetch (CCA, pAddr, vAddr, DATA, hint)
/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* pAddr: physical address */
/* vAddr: virtual address */
/* DATA: Indicates that access is for DATA */
/* hint: hint that indicates the possible use of the data */

endfunction Prefetch

Table 2.1 lists the data access lengths and their labels for loads and stores.

Table 2.1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning
DOUBLEWORD 7 8 bytes (64 bits)
SEPTIBYTE 6 7 bytes (56 hits)
SEXTIBYTE 5 6 bytes (48 bits)
QUINTIBYTE 4 5 bytes (40 bits)
WORD 3 4 bytes (32 bits)
TRIPLEBYTE 2 3 bytes (24 bits)
HALFWORD 1 2 bytes (16 bits)
BYTE 0 1 byte (8 bits)

SyncOperation

The SyncOperation function orders |oads and stores to synchronize shared memory.

26 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



2.2 Operation Section Notation and Functions

This action makes the effects of the synchronizable loads and storesindicated by stype occur in the same order for all
processors.

Figure 2.20 SyncOperation Pseudocode Function
SyncOperation (stype)
/* stype: Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

2.2.2.3 Floating Point Functions

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are inter-
preted to form aformatted value. If an FPR contains a value in some format, rather than unformatted contents from a
load (uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).

ValueFPR

The ValueFPR function returns a formatted value from the floating point registers.

Figure 2.21 ValueFPR Pseudocode Function

value ¢« ValueFPR (fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */

/* fmt: The format of the data, one of: */
/* s, D, w, L, PSS, */

/* OB, QH, */

/* UNINTERPRETED_WORD, */

/* UNINTERPRETED_DOUBLEWORD */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in SWC1 and SDC1l */

case fmt of
S, W, UNINTERPRETED_WORD:
valueFPR « FPR[fpr]

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)
if (fpry # 0) then
valueFPR <« UNPREDICTABLE
else
valueFPR < FPR[fpr+lls; o || FPRIfprls;
endif
else
valueFPR « FPR[fpr]
endif

L, PS:
if (FP32RegistersMode = 0) then
valueFPR ¢« UNPREDICTABLE

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 27

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



Guide to the Instruction Set

else
valueFPR « FPR[fpr]
endif

DEFAULT:
valueFPR <« UNPREDICTABLE

endcase
endfunction ValueFPR

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored into CP1
registers by a computational or move operation. This binary representation is visible to store or move-from instruc-
tions. Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a
different format.

StoreFPR

Figure 2.22 StoreFPR Pseudocode Function

StoreFPR (fpr, fmt, value)

/* fpr: The FPR number */

/* fmt: The format of the data, one of: */
/* s, D, w, L, PSS, */

/* OB, QH, */

/* UNINTERPRETED_WORD, */

/* UNINTERPRETED_DOUBLEWORD */

/* value: The formattted value to be stored into the FPR */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in LWC1 and LDC1l */

case fmt of
S, W, UNINTERPRETED_WORD:
FPR[fpr] <« wvalue

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode = 0)
if (fpry # 0) then
UNPREDICTABLE
else
FPR[fpr] <« UNPREDICTABLE>’ || values;
FPR[fpr+l] < UNPREDICTABLE’? || valueg; 3,
endif
else
FPR[fpr] <« wvalue
endif

L, PS:
if (FP32RegistersMode = 0) then
UNPREDICTABLE
else
FPR[fpr] <« wvalue
endif

endcase

28 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



2.2 Operation Section Notation and Functions

endfunction StoreFPR

The pseudocode shown below checks for an enabled floating point exception and conditionally signals the exception.
CheckFPException
Figure 2.23 CheckFPException Pseudocode Function
CheckFPException ()
/* A floating point exception is signaled if the E bit of the Cause field is a 1 */

/* (Unimplemented Operations have no enable) or if any bit in the Cause field */
/* and the corresponding bit in the Enable field are both 1 */

if ( (FCSR17 = 1) or
((FCSRq14. .13 and FCSRqq1_ . 7) # 0)) ) then
SignalException(FloatingPointException)
endif

endfunction CheckFPException

FPConditionCode
The FPConditionCode function returns the value of a specific floating point condition code.

Figure 2.24 FPConditionCode Pseudocode Function
tf «<FPConditionCode (cc)

/* tf: The value of the specified condition code */
/* cc: The Condition code number in the range 0..7 */
if cc = 0 then

FPConditionCode ¢ FCSRy;
else

FPConditionCode ¢ FCSRygicc

endif
endfunction FPConditionCode
SetFPConditionCode
The SetFPConditionCode function writes a new value to a specific floating point condition code.

Figure 2.25 SetFPConditionCode Pseudocode Function

SetFPConditionCode(cc, tf)
if cc = 0 then

FCSR ¢« FCSR31 44 || tf || FCSRyy.
else
FCSR ¢ FCSR31. 254cc || tf || FCSR334cc. .0

endif

endfunction SetFPConditionCode

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 29

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



Guide to the Instruction Set

2.2.2.4 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

SignalException
The Signal Exception function signals an exception condition.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.26 SignalException Pseudocode Function
SignalException (Exception, argument)

/* Exception: The exception condition that exists. */
/* argument: A exception-dependent argument, if any */

endfunction SignalException

SighalDebugBreakpointException

The Signal DebugBreakpointException function signals a condition that causes entry into Debug Mode from
non-Debug Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.27 SignalDebugBreakpointException Pseudocode Function
SignalDebugBreakpointException ()
endfunction SignalDebugBreakpointException

SignhalDebugModeBreakpointException

The Signal DebugM odeBreakpointException function signals a condition that causes entry into Debug Mode from
Debug Mode (i.e., an exception generated while already running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.28 SignalDebugModeBreakpointException Pseudocode Function
SignalDebugModeBreakpointException ()
endfunction SignalDebugModeBreakpointException

NullifyCurrentinstruction
The NullifyCurrentlnstruction function nullifies the current instruction.

Theinstruction is aborted, inhibiting not only the functional effect of the instruction, but also inhibiting all exceptions
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullification
killsthe instruction in the delay slot of the branch likely instruction.

30 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



2.3 Op and Function Subfield Notation

Figure 2.29 NullifyCurrentinstruction PseudoCode Function
NullifyCurrentInstruction ()
endfunction NullifyCurrentInstruction
JumpDelaySlot

The JumpDelaySlot function is used in the pseudocode for the PC-relative instructions in the MIPS16e ASE. The
function returns TRUE if the instruction at vAddr is executed in ajump delay slot. A jump delay slot always immedi-
ately followsaJr, JAL, JALR, or JALX instruction.

Figure 2.30 JumpDelaySlot Pseudocode Function
JumpDelaySlot (vAddr)
/* VAddr:Virtual address */
endfunction JumpDelaySlot
PolyMult
The PolyMult function multiplies two binary polynomial coefficients.
Figure 2.31 PolyMult Pseudocode Function

PolyMult (x, V)

temp < 0
for i in 0 .. 31
if x; = 1 then
temp ¢« temp xor (y(3zi-i)..0 || 0%)
endif
endfor

PolyMult <« temp

endfunction PolyMult

2.3 Op and Function Subfield Notation

In some instructions, the instruction subfields op and function can have constant 5- or 6-bit values. When referenceis
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction,
op=COP1 and function=ADD. In other cases, asingle field has both fixed and variable subfields, so the name con-

tains both upper- and lowercase characters.

2.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfieldsin an instruction format (such asfs, ft, imme-
diate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in upper-

case.

For the sake of clarity, an diasis sometimes used for a variable subfield in the formats of specific instructions. For
example, rs=base in the format for load and store instructions. Such an aliasis always lowercase sinceit refersto a

variable subfield.

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 31

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



Guide to the Instruction Set
Bit encodings for mnemonics are given in Volume |, in the chapters describing the CPU, FPU, MDMX, and MIPS16e
instructions.

See “Op and Function Subfield Notation” on page 31 for a description of the op and function subfields.

32 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



Chapter 3

The SmartMIPS® Application-Specific Extension to the
MIPS32® Architecture

3.1 Base Architecture Requirements

The SmartMIPS® A SE requires the following base architecture support:

*  TheMIPS32 Architecture: The SmartMIPS ASE requires a compliant implementation of the MIPS Architec-
ture.

»  For Release 2 (and subsequent) of the MIPS® Architecture, the following COPO register field settings and
implementation of features are required:

1. Config3gp must be clear to denote that the Release 2 definition of 1KB Virtual pagesis not implemented.

»  For Release 3 of the MIPS® Architecture, the following COPO register field settings and implementation of fea-
tures are required:

1. Config3ry, must be set to denote that the RI/X1 protection feature isimplemented in the TLB.

2. Both PageGraing g and PageGrainy g bits must be writeable to denote that both protection bits are imple-
mented.

3. Config3ctxTc must be set to denote that the ContextConfig register is implemented.

Software can use the asserted values of Config3ry, or Config3tx1c to denote that the Privileged Architectureis at
Release 3.

3.2 Software Detection of the ASE

Software may determine if the SmartMI1PS ASE isimplemented by checking the state of the SM bit in the Config3
CPO register.

3.3 Compliance and Subsetting

There are no instruction subsets of the SmartM|PS ASE to the MIPS32 Architecture — all SmartMIPS instructions
must be implemented.

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 33

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



The SmartMIPS® Application-Specific Extension to the MIPS32® Architecture

3.4 Overview of the SmartMIPS ASE

The SmartMIPS ASE extends the MIPS32® Architecture with set of new instructions combined with a set of back-
ward-compatible modifications to existing MIPS32 instructions, designed to improve the performance and reduce the
memory consumption of MIPS-based smart card or “smart object” systems. The SmartMIPS ASE contains enhance-
ments in several distinct areas. cryptographic processing, code density, and virtual machine performance.

3.4.1 Support for Cryptographic Algorithms in the SmartMIPS ASE

The SmartM1PS ASE includes a package of extensions to MIPS32 to enhance the performance of cryptographic algo-
rithms. Cryptographic algorithms can be generally divided into two categories - public key algorithms and secret key
algorithms. Secret key a gorithms, also known as symmetric algorithms, encrypt and decrypt with the same key, while
public key algorithms operate in terms of key pairs, one for encryption and the other for decryption.

3.4.1.1 Secret Key Cryptography

Secret key algorithms are generally computationally relatively simple and frequently reducible to simple hardware
solutions performing sequences of XORs, rotations, and permutations on blocks of data.

The SmartMIPS ASE contains the following elements for accel erating software implementations of secret key cryp-
tography:

e A partial permutation instruction, capable of permuting 6 bits per instruction.

e A single-instruction bitwise rotate capability.

3.4.1.2 Public Key Cryptography

Public key cryptosystems are mathematically more subtle and computationally more difficult than private-key sys-
tems. While different schemes have different bases in mathematics, they tend to have a common need for integer
computation across very large ranges of values, on the order of 1024 hits. This extended precision arithmetic is often
modular (operating modulo the value range), and in some cases polynomial instead of twos-complement. Research
conducted with industry partners has led us to conclude that accelerating extended-precision modular arithmetic pro-
vides a significant improvement in performance across a range of public key cryptography schemes.

The SmartMIPS ASE contains the following elements for accelerating public key cryptography:

Additional architecturally visible accumulator state containing extended carry information.

* Instructionsto allow the extended carry state to be initialized, extracted, saved, and restored.

» Extension of the definition of the MIPS32 MADDU instruction to generate and use the extended carry state.
» Instructions which allow multiplication and accumulation of polynomial-basis values.

3.4.2 Code Density Optimization

Note: For Release 3 of the MIPS32 Architecture, the microM I PSinstruction set isthe preferred solution for
small code-sizes. Therest of this section ismeant for implementations using Release 2 or Release 1 of the
MIPS32 Architecture.

34 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



3.4 Overview of the SmartMIPS ASE

The SmartMIPS ASE is meant to be used with the MIPS16e™ ASE. ThisASE is fully documented in Volume 1V-a
of the MIPS Architecture reference, and is outside the scope of this document. Relative to the earlier version of
MIPSL16, there are enhancements in the following aress:

3.4.2.1 Data Type Conversion

Invirtual machines and other software that very frequently handles data elements smaller than a 32-bit word, sign and
zero extension operations must be performed on those data elements before they can be used computationally. In
MIPS16, these operations require relatively large instruction sequences, on the order of 8 bytes per conversion. The
MIPS16e ASE provides a set of specific instructions to perform zero and sign-extension of bytes and 16-bit half-
words, bringing the footprint down to 2 bytes per conversion.

3.4.2.2 Jump Delay Slot Suppression

The MIPS16 ASE preserved the “delay dot” following the jump instructions used for subroutine call and return. The
compiler can frequently, but by no means always, fill these delay slots with a useful instruction. Where it cannot, the
MIPS16 ASE required that a no-op instruction be inserted into the instruction stream, at a cost of 2 bytes of footprint.
The MIPS16e ASE provides variant jump-via-register instructions that suppress these visible delay slots and elimi-
nate the need for those no-ops.

3.4.2.3 Stack Frame Set-up and Tear-down

In generating code compatible with the MIPS Application Binary Interface (ABI) calling conventions, the compiler
must assure that each subroutine set up and tear down a stack frame on which register values are saved and where
local variables can be stored. The process of storing register values and updating the stack pointer on subroutine
entry, and of restoring the values of the registers and the stack pointer on subroutine exit, can consume a significant
amount of code, particularly in system composed of many small subroutines.

While a convention exists for trapping into the operating system from MIPS16 code, and having the operating system
perform the necessary stack frame maintenance, thisimposes a significant burden on small operating systems and has
asignificant impact on performance. The MIPS16e | SA providesinstructions that allow stack frame setup and resto-
ration each to be done in a single compressed instruction.

3.4.3 Other ISA Enhancements

In order to accelerate the interpretation of JavaCard bytecodes and similar interpretive languages, SmartMIPS intro-
duces a scaled, indexed 32-bit load instruction.

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 35

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



The SmartMIPS® Application-Specific Extension to the MIPS32® Architecture

3.4.4 Privileged Resource Architecture Enhancements

In addition to an augmented instruction set, SmartMIPS defines an augmented privileged resource architecture with
augmented memory management capabilities.

*  True Read-only, Write-only, and Execute-only page protection are supported.1
» 2K or 1K virtual memory pages can be supported.

* A more flexible CPO Context register is provided to accelerate TLB lookups in small memory wstemsl

1 For Release 3 of the MIPS Architecture, this feature is an available option in the standard Privileged Architecture. For Smart-
MIPS implementations, these features are required to be implemented.

36 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



3.5 Instruction Bit Encoding

3.5 Instruction Bit Encoding

Table 3.2 through Table 3.11 describe the encoding used for the SmartMIPS ASE. Table 3.1 describes the meaning of
the symbols used in the tables. These tables only list the instruction encodings for the SmartMIPS instructions. See
Volume I1-A of this multi-volume set for afull encoding of al instructions.

Table 3.1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

* Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction must cause a Reserved Instruction Exception.

) (Alsoitalic field name.) Operation or field codes marked with this symbol denotes afield class.
The instruction word must be further decoded by examining additional tables that show values for
another instruction field.

B Operation or field codes marked with this symbol represent a valid encoding for a higher-order
MIPS ISA level. Executing such an instruction must cause a Reserved Instruction Exception.

0 Operation or field codes marked with this symbol are available to licensed MIPS partners. To
avoid multiple conflicting instruction definitions, MIPS Technologies will assist the partner in
selecting appropriate encodings if requested by the partner. The partner is not required to consult
with MIPS Technol ogies when one of these encodings is used. If no instruction is encoded with
this value, executing such an instruction must cause a Reserved | nstruction Exception (SPECIAL2
encodings or coprocessor instruction encodings for a coprocessor to which accessis allowed) or a
Coprocessor Unusable Exception (coprocessor instruction encodings for a coprocessor to which
accessis not alowed).

c Field codes marked with this symbol represent an EJTAG support instruction and implementation
of thisencoding is optional for each implementation. If the encoding is not implemented, execut-
ing such an instruction must cause a Reserved Instruction Exception. If the encoding isimple-
mented, it must match the instruction encoding as shown in the table.

€ Operation or field codes marked with this symbol are reserved for MIPS Application Specific
Extensions. If the ASE is not implemented, executing such an instruction must cause a Reserved
Instruction Exception.

] Operation or field codes marked with this symbol are obsolete and will be removed from a future

revision of the MIPS32 ISA. Software should avoid using these operation or field codes.

Table 3.2 SmartMIPS ASE Encoding of the Opcode Field

opcode bits 28..26

0 1 2 3 4 5 6 7
bits 31..29 000 001 010 011 100 101 110 111
0 | 000 | SPECIAL &
001
010

011 SPECIAL2 §
100
101
110
111

N| o g M| W] N

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 37

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



The SmartMIPS® Application-Specific Extension to the MIPS32® Architecture

Table 3.3 SmartMIPS ASE SPECIAL Opcode Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7

bits5..3 000 001 010 011 100 101 110 111
000 SRL & SRLV §
001
010 MFLO & MTLO &

011 MULTU &
100
101
110
111

N[O O] W] NP |O

Table 3.4 SmartMIPS ASE SPECIAL2 Encoding of Function Field

function bits 2..0

0 1 2 3 4 5 6 7

bits5..3 000 001 010 011 100 101 110 111
000 MADDU &
001 LXS 8
010
011
100
101
110
111

N|o|o| hjwW[N|FL|O

Table 3.5 SmartMIPS ASE SRL Encoding of Shift/Rotate

R bit 21

0 1
SRL ROTR

Table 3.6 SmartMIPS ASE SRLV Encoding of Shift/Rotate

R bit 6

0 1
SRLV ROTRV

Table 3.7 SmartMIPS ASE MFLO Encoding of MFLO/MFLHXU

sa bits 10..6

0b00000 0b00001
MFLO MFLHXU

38 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



3.5 Instruction Bit Encoding

Table 3.8 SmartMIPS ASE MTLO Encoding of MTLO/MTLHX

sa bits 10..6
0b00000 0b00001
MTLO MTLHX

Table 3.9 SmartMIPS ASE MULTU Encoding of MULTU/MULTP

sa bits 10..6
0b00000 0b10001
MULTU MULTP

Table 3.10 SmartMIPS ASE MADDU Encoding of MADDU/MADDP/PPERM

sa bits 10..6
0b00000 0b10001 0b10010
MADDU MADDP PPERM

Table 3.11 SmartMIPS ASE LXS Encoding of LWXS

=]

bits 10..6

0b00001

LWXS

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-

ture, Revision 3.01

39

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



The SmartMIPS® Application-Specific Extension to the MIPS32® Architecture

40 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



Chapter 4

The SmartMIPS® Cryptographic Feature Set

The SmartM1PS ASE includes a set of features that form a cryptographic extension to the M1PS32 Architecture. This
adds the following new architecturally visible state:

» A special accumulator extension register, ACX.

It modifies the following MI1PS32/MIPS64 instructions to generate and consume the new ACX state:
- MADDU

e MULTU

It adds the following new instructions to extract and restore the new ACX state:

e MFLHXU

e MTLHX

It adds the following new instructions to implement efficient binary polynomial arithmetic in the multiply/divide unit:
- MADDP

e MULTP

It adds a partial permutation instruction to accelerate bit-permutation of data.

e PPERM

And it adds bitwise rotate instructions that operate on the general register set:

e ROTR

* ROTRV
4.1 The Special Register ACX

The special register ACX contains some number of bits of additional integer precision beyond those contained in the
HI/LO special register pair. The precise number of bitsisimplementation dependent, but can betrivially determined at
run-time by software. The minimum architectural size of the ACX register is 8 bits. The maximum architectural size
of the ACX register is 64 bits for aMIPS64 processor and 32 bits for aMI1PS32 processor. The currently recom-
mended implementation size of the ACX register is 8 hits.

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 41

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



The SmartMIPS® Cryptographic Feature Set

4.2 Change to MADDU Semantics

Whereas the MIPS32 MADDU instruction is defined to produce a 64-bit result, the SmartMI1PS ASE MADDU
instruction produces a higher-precision result, with the carry out of the HI register propagating into the ACX register.
The behavior of the instruction as seen by the MIPS32 ISA is unchanged.

4.3 Change to MULTU Semantics

The definition of the MIPS32 MULTU instruction is extended to clear the ACX register to all zeroes.
4.4 Possible Changes to other Multiply/Accumulate Semantics

While only MADDU, MULTU, MADDP, and MULTP need affect the ACX register to implement the extended-pre-
cision modular arithmetic algorithms targeted by the ASE, in the interests of consistency and design simplicity, it is
possible that the MADD instruction will also generate ACX bits should the HI register overflow, and that the MULT,
DIV, and DIV U instructions will clear the ACX hits. Code written to the SmartMIPS ASE should make no assump-
tions about the behavior of the ACX bits during the execution of any instruction that writes both the HI and LO spe-
cial registers, other than MULTU, MADDU, MULTP, and MADDP as described in this document.

4.5 New Instructions

4.5.1 MFLHXU

The MFLHXU, or Move-from-L O-HI-ACX-Unsigned instruction, in effect shifts the extended precision accumul ator
formed by the ACX, HI, and LO registersto the right by one register position: the LO register is copied into the speci-
fied GPR, the HI register is copied into the LO register, and the ACX register is zero-extended and copied into the HI
register. Theinstruction is designated as “unsigned” because the ACX bits are zero-extended and not sign-extended
when they are transferred to aHI register of higher precision.

4.5.2 MTLHX

The MTLHXI, or Move-to-LO-HI-ACX instruction, is the inverse operation from MFLHXU. It effectively shiftsthe
extended-precision accumulator formed by the ACX, HI, and LO registers to the left by one register position: The HI
register istruncated to the width of the ACX register and the remaining lower bits are copied to the ACX register, the
LO register is copied to the HI register, and the specified GPR is copied to the LO register.

4.5.3 MADDP

Binary polynomial addition and multiplication form the basis for an important family of elliptical curve (EC) crypto-
systems. The MADDP instruction performs a polynomial basis multiply of apair of general registers, and then per-
forms a polynomial basis add of the resulting product to the contents of the HI/LO register pair.

4.5.4 MULTP

The MULTP instruction performs a binary polynomial basis multiply of a pair of general registers, placing the result
in the HI/LO register pair.

42 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



4.5 New Instructions

4.5.5 PPERM

The PPERM instruction performs a partial permutation of avaluein ageneral register into the ACX-HI-LO registers.
The ACX-HI-LO registers are shifted left by six bit positions, and the least significant six bits of LO are set to the val-
ues of arbitrary bitsin an input register, based on a set of six, 5-bit bit specifiersin the second general-purpose input

register. Thisallows for an arbitrary permutation of 32 bits of aGPR in 7 instructions. 6 PPERMS and aMFLO or
MFLHX.

4.5.6 ROTR

DES and the candidate AES secret-key block ciphers al require rotations of 32-bit quantities. In the MIPS32 I1SA,
this requires a sequence of 3 instructions to perform. The ROTR instruction performs a bitwise rotation of a general
purpose register of up to 31 bitsin asingle instruction. The definition and encoding of the ROTR instruction in the
SmartMIPS ASE isidentical to that of the same instruction in Release 2 of the MIPS Architecture.

4.5.7 ROTRV

The ROTRYV instruction performs a variable-length rotation of a general purpose register, with the number of bitsto
be rotated determined at run-time by the value of another general purpose register. The definition and encoding of the

ROTRYV instruction in the SmartMIPS ASE isidentical to that of the same instruction in Release 2 of the MIPS
Architecture.

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 43

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



The SmartMIPS® Cryptographic Feature Set

44 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



Chapter 5

Other ISA Elements of the SmartMIPS® ASE

In addition to the cryptography feature set and the enhanced MI1PS16 ASE, the SmartMIPS ASE contains the follow-
ing instruction:

e LWXS- Scaled, indexed word load.

5.1 LWXS Instruction

Theinner-loop function of interpreters for JavaCard bytecodes and similar interpretive languages requires a dispatch
to afunction based on an integer value. The LWXS instruction reduces and accel erates such loops, by integrating a
scaling of an integer operand into aword offset and an address generation based on using the scaled value as an offset
relative to a base register.

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 45

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



Load Word Indexed, Scaled LWXS

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2 base index rd LWXS LXS
011100 00010 001000
6 5 5 5 5 6
Format: Lwxs rd, index (base) SmartMIPS

Purpose: Load Word Indexed, Scaled
To load aword from memory as a signed value, using scaled indexed addressing.

Description: GPR[rd] ¢« memory[GPR[base] + (GPR[index] X 4)]

The contents of GPR index is multiplied by 4 and the result is added to the contents of GPR base to form an effective
address. The contents of the 32-bit word at the memory location specified by the aligned effective address are
fetched, sign-extended to the GPR register length if necessary, and placed in GPR rd.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Operation:

vAddr < (GPR[index]l,q o || 0%) + GPR[base]
if vAddr; , # 02 then

SignalException (AddressError)
endif
(pAddr, CCA) ¢« AddressTranslation (vAddr, DATA, LOAD)
memword ¢« LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rd] ¢« memword

Exceptions:
TLB Ré€fill, TLB Invalid, Bus Error, Address Error

46 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01



Multiply and Add Polynomial Basis Word to Hi,Lo

31 26 25

21 20

16 15

11 10

MADDP

SPECIAL2
011100

s

rt

00000

MADDP
10001

MADDU
000001

6

5

Format: MaADDP rs, rt

Purpose: Multiply and Add Polynomia Basis Word to Hi,Lo

To multiply two 32-bit binary polynomial values and polynomial-basis add the result to Hi, Lo.

Description: (L0O,HI,ACX) « PolyMult (GPR[rs], GPR[rt]) xor (LO,HI,ACX)

6

SmartMIPS Crypto

The 32-bit word value in GPR rsis polynomial-basis multiplied by the 32-bit valuein GPR rt, treating both operands
as binary polynomial values, to produce a 64-bit result. The product is polynomial-basis added (X ORed) to the 64-bit
concatenated value of HI and LO, and the zero-extended result is written back into HI and LO. Although MADDP is
formally defined to operate on special register ACX as well, its value can never be changed by the operation, nor can

itsinput value affect the result. No arithmetic exception occurs under any circumstances.

Restrictions:

Thisinstruction does not provide the capability of writing directly to atarget GPR.

Operation:

temp — (HIBI..O ” LO31__O) XOor PolyMult(GPR[rs]3l__O,GPR[rt]3l__O)
HI <« sign_extend(tempgs 33)
LO ¢« sign_extend(temps;. g)

ACX <« ACX

Exceptions:
None

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-

ture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.

a7



Multiply and Add Unsigned Word to Hi,Lo

31

26 25

21 20

16 15

11 10

MADDU

SPECIAL2
011100

rs

rt

00000

MADDU
00000

MADDU
000001

6

5

Format: MADDU rs, rt

Purpose: Multiply and Add Unsigned Word to Hi,Lo

To multiply two unsigned words and add the result to ACX, HI, LO.

Description: (LO,HI,ACX) < (GPR[rs] X GPR[rt]) + (LO,HI,ACX)

The 32-bit word value in GPR rsis multiplied by the 32-bit value in GPR rt, treating both operands as unsigned val-
ues, to produce a 64-hit result. The product is added to the 72-or-more-bit concatenated value of ACX, HI, and LO,
and the carry-extended result is written back into ACX, HI, and LO. No arithmetic exception occurs under any cir-

cumstances.

Restrictions:

Thisinstruction does not provide the capability of writing directly to atarget GPR.

Operation:

temp < (ACXpcxmse. .o || HIz1. .o || LO31, . o) + (GPR[rsls; g X GPRIrtls;. o)
ACX « zero_extend(tempacxmssi64a. . 64)

HI <« sign_extend(tempgs 33)

LO < sign_extend(temps; )

Exceptions:
None

6

SmartMIPS Crypto

48 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-

tecture, Revision 3.01



Move from Extended Carry, Hi and Lo (Unsigned) MFLHXU

31 26 25 16 15 11 10 6 5 0
SPECIAL 0 rd MFLHXU MFLO
000000 00 0000 0000 00001 010010
6 10 5 5 6
Format: MFLHXU rd SmartMIPS Crypto

Purpose: Move from Extended Carry, Hi and Lo (Unsigned)
Extract extended Hi/L o state.

Description: GPR[rd] ¢« LO; LO « HI; HI <« ACX; ACX « 0;

Thevaluein specia register LO iswritten to GPR rd. The valuein special register HI isthen written to special register
LO, the extended accumulator bits ACX are zero-extended and copied to HI, and the extended accumulator bits ACX
are cleared

»  The number of ACX extended accumulator bits is implementation dependent, ranging from 8 to 64 hits.

»  |f 64-hit operations are not available and enabled, at most the least-significant 32 bits of ACX will be copied to
HI, but the whole ACX field will then be cleared.

Restrictions:

None

Operation:

newHI <« zero_extend (ACX)
newlLO <« HI

GPR[rd] « LO

LO < newLO

HI < newHI

ACX < 0

Exceptions:
None

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 49

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



Move to Lo, Hi, and Extended Carry

31 26 25

21 20

11 10

MTLHX

SPECIAL
000000

rs

0
0 0000 0000 O

MTLHX
00001

MTLO
010011

6

Format: MTLHX rs

10

Purpose: Moveto Lo, Hi, and Extended Carry

Set extended Hi/Lo state.

Description: ACX « HI; HI « LO; LO < GPR[rs]

6

SmartMIPS Crypto

The value special register HI iswritten to the extended accumulator bits ACX. The value in special register LO isthen
written to specia register HI, and the value in GPR rsiswritten to specia register LO. Thisisthe reverse of the oper-
ation of the MFLHXU instruction.

e Thenumber of ACX extended accumulator bits isimplementation-dependent, ranging from 8 to 64 bits. If the HI
register contains more significant bits than the number of implemented ACX hits, that information is discarded

without raising an exception.

» |f 64-hit operations are not enabled, at most the |east-significant 32 bits of HI will be copied to ACX.

Restrictions:
None

Operation:

newlLO « GPR[rs]
newHI <« LO
ACX ¢ Hlacxuss. .o
HI < newHI
LO < newLO

Exceptions:
None

50 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-

tecture, Revision 3.01



Multiply Binary Polynomial Basis Word MULTP

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs " 0 MULTP MULTU
000000 10001 011001
6 5 5 5 5 6
Format: MULTP rs, rt SmartMIPS Crypto

Purpose: Multiply Binary Polynomial Basis Word
To multiply two 32-bit binary polynomial values

Description: (Lo, HI) <« BinPolyMult (GPR[rs], GPR[rt])

The 32-bit word value in GPR rt is polynomial-basis multiplied by the 32-bit value in GPR rs, treating both operands
as binary polynomial values, to produce a 64-hit result. The low-order 32-bit word of the result is placed into special
register LO, and the high-order 32-bit word is placed into special register HI. The special register ACX is cleared.

No arithmetic exception occurs under any circumstances.

Restrictions:

None

Operation:

prod ¢« PolyMult (GPR[rs]s3q o, GPR[rtls; o)
LO ¢« sign_extend(prods; g)

HI < sign_extend (prodgs 33)

ACX « 0

Exceptions:
None

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 51

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



Multiply Unsigned Word MULTU

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL rs " 0 MULTU MULTU
000000 00000 011001
6 5 5 5 5 6
Format: MUuLTU rs, rt SmartMIPS Crypto

Purpose: Multiply Unsigned Word
To multiply 32-bit unsigned integers

Description: (Lo, HI) <« GPR[rs] X GPR[rt]

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both operands as unsigned val-
ues, to produce a 64-hit result. The low-order 32-bit word of the result is placed into specia register LO, and the
high-order 32-bit word is placed into special register HI. The special register ACX is cleared.

No arithmetic exception occurs under any circumstances.

Restrictions:

None

Operation:

prod < (0 || GPR[rsl3q. o) X (0 || GPRIrtl3q, q)
LO ¢« sign_extend(prods; g)

HI < sign_extend (prodgs 33)

ACX « 0

Exceptions:
None

52 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01



Partial Permutation of Word Data into ACX-Hi-Lo Accumulator

PPERM

31 26 25 21 20 16 15 11 10 6 0
SPECIAL2 rs " 0 PPERM MADDU
011100 10010 000001
6 5 5 5 5 6
Format: PPERM rs, rt

Purpose: Partial Permutation of Word Data into ACX-Hi-Lo Accumulator
Perform a partial permutation of a 32-bit value into the ACX/Hi/Lo registers

SmartMIPS Crypto

Description: (Lo, HI, ACX) « (LO, HI, ACX) << 6 | GPRI[rs] bits specified by contents of GPR [rt ]

The extended accumulator formed by the ACX, HI, and LO registersis shifted left by six bits, and 32-bit word value
in GPR rt is used as a permutation descriptor to select a set of six bits from GPR rs, to be written into the least signif-
icant six bits of the LO register.

The contents of the rt register areinterpreted as follows:

31 30 29

25 24

20 19

15 14 10

9

0

0

Source of bit 5

Source of bit 4

Source of bit 3

Source of hit 2

Source of hit 1

Source of bit 0

2

5 5

5

No arithmetic exception occurs under any circumstances.

Restrictions:

None

Operation:

TEMP <« ACX (acxprrs-6) - -0 || HIz1. 26

ACX ¢ TEMPpcxmrTs. .o

TEMP <« HIys || LO31. .26
HI <« sign_extend (TEMP)

TEMP3; ... < LO2s5..0
BITSEL < GPR[rtl,g. o5
TEMPs < GPRIrs]prrsar
BITSEL < GPR[rtl,, oo
TEMP, < GPRIrs]grrsar
BITSEL < GPR[rtlqg 15
TEMP; < GPRIrs]prres,
BITSEL < GPR[rtlqs 1o
TEMP, < GPR[rs]prrsar
BITSEL <« GPR[rtlg. s
TEMP; < GPRIrs]grrsar
BITSEL < GPR[rtl,
TEMP, < GPRIrs]prres,
LO ¢« sign_extend (TEMP)

Exceptions:

None

5

5

5

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-

ture, Revision 3.01

53

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



Rotate Word Right

ROTR

31 26 25 22 21 20 16 15 11 10 0
SPECIAL R SRL
000000 R ) t rd 000010

6

4

Format: ROTR rd, rt,

sa

Purpose: Rotate Word Right

To execute alogical right-rotate of aword by afixed number of bits

Description: GPR[rd] « GPR[rt] ¢« (right) sa

6

SmartMIPS Crypto

The contents of the low-order 32-bit word of GPR rt are rotated right; the word result is placed in GPR rd. The
bit-rotate amount is specified by sa.

Restrictions:

Operation:

if ((ArchitectureRevision() < 2) and (Config3gy = 0))

UNPREDICTABLE

endif
S ¢« sa

temp < GPR[rtlg i g || GPRIrtls;. ¢

GPR[rd] « temp

Exceptions:
Reserved Instruction

54 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-

tecture, Revision 3.01



Rotate Word Right Variable

ROTRV

31 26 25 21 20 16 15 11 10 6 0
SPECIAL R SRLV
000000 rs t rd R ) 000110

6 5 5 5 4 1 6
Format: ROTRV rd, rt, rs

Purpose: Rotate Word Right Variable

To execute alogical right-rotate of aword by a variable number of bits

Description: GPR[rd] « GPR[rt] ¢«> (right) GPR[rs]

SmartMIPS Crypto

The contents of the low-order 32-bit word of GPR rt are rotated right; the word result is placed in GPR rd. The
bit-rotate amount is specified by the low-order 5 bits of GPR rs.

Restrictions:

Operation:

if ((ArchitectureRevision() < 2) and (Config3gy = 0)) then

UNPREDICTABLE

endif

s < GPRI[rsl, g
temp < GPR[rtlg i o || GPRIrtls;, ¢
GPR[rd] « temp

Exceptions:

Reserved Instruction

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-

ture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.

55



56 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01



Chapter 6

The SmartMIPS® Release 3 Privileged Resource
Architecture

6.1 Introduction

The MIPS Privileged Resource Architecture (PRA) defines a set of environments and capabilities on which the
Instruction Set Architecture operates. This includes definitions of the programming interface and operation of the
system coprocessor, CP0. SmartM I PS defines extensions to the MIPS PRA that are desirable in a smart card environ-
ment. This document describes these extensions. It is not intended to be a stand-alone PRA specification, and must be
read in the context of the MIPS Architecture specification.

This chapter describes how the SmartMIPS ASE interacts with the Release 3 of the MIPS PRA.

An Appendix describes how the SmartMIPS ASE interacts with Release 2 and Release 1 of the MIPS PRA.
6.2 Overview

The SmartMIPS PRA extends the standard MIPS PRA in these specific regards:
*  Virtual Memory Page Size
»  Detection of SmartMIPS Features

The minimum virtual memory page size supported by the standard MIPS PRA is4K (4096) bytes. SmartMIPS alows
for the TLB to be configured to optimally support 4K, 2K, and 1K virtual memory pages, and to accel erate lookups of
multilevel page tables.

The presence of SmartMIPS featuresis indicated in the CPO Config3g,, register field.
6.3 Compliance

Features described as Required in this document are required of all processors claiming compatibility with Smart-
MIPS. Any features described as Recommended should be implemented unless there is an overriding need not to do
s0. Features described as Optional provide a standardization of features that may or may not be appropriate for a par-
ticular SmartMIPS processor implementation. If such afeatureisimplemented, it must be implemented as described
in this document if a processor is to claim compatibility with SmartMIPS.

In some cases, there are features within features that have different levels of compliance. For example, if thereisan
Optional field within a Required register, this means that the register must be implemented, but the field may or may
not be, depending on the needs of the implementation. Similarly, if there is a Required field within an Optional regis-
ter, thismeansthat if the register isimplemented, it must have the specified field.

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 57

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



The SmartMIPS® Release 3 Privileged Resource Architecture

6.4 Interaction between the SmartMIPS ASE and Release 2 of the MIPS32
Architecture

Some features that are included in the SmartMIPS ASE (e.g., 1KB page support) were implemented in Release 2 of
the MIPS32 Architecture in such away that there is conflict between the specifications. In such a case, the conflict is
resolved in favor of the SmartMI1PS ASE specification. That is, an implementation of the SmartMIPS ASE in a pro-
cessor that also implements Release 2 of the MIPS32 Architecture obeys the rules of the SmartMIPS ASE whenever
the specifications have a conflict.

For the 1KB page support, this means the Release 2 definition of that feature must not be implemented (Config3gp =
0) in an device that also implements SmartMIPS.

6.5 The SmartMIPS System Coprocessor

Except as defined bel ow, the SmartM I PS system coprocessor interface and functionality isidentical to MIPS32.
6.5.1 CPO Register Summary

Table 6.1 lists the CPO registers affected by the SmartM I PS specification, in numerical order. Theindividua registers
are described later in this document. Otherwise the definition revertsto the standard M1PS PRA specification. The Sl
column indicates the value to be used in the field of the same name in the MFCO and MTCO instructions.

Table 6.1 SmartMIPS Changes to Coprocessor 0 Registers in Numerical Order

Register Compliance
Number Sel | Register Name Modification Reference Level
5 0 |PageMask Qualified by PageGrain register. Section 6.7.1 Required
5 1 |PageGrain Controls granularity of virtual pagesin EntryLo, Section 6.7.2 Required
PageMask, and EntryHi registers.
10 0 |[EntryHi Qualified by PageGrain register. Section 6.7.3 Required
16 2 | Config3 I dentifies SmartM | PS feature set. Section 6.7.4 Required

6.6 Virtual Memory

6.6.1 TLB-Based Virtual Address Translation

This section describes the SmartM I PS changes and additions to the standard MIPS PRA TLB-based virtual address
trangl ation mechanism.

6.6.1.1 Address Translation

The address tranglation process in SmartMIPS varies from the standard MIPS PRA address trandlation processin this
regard:

*  The number and position of the bits that form the virtual page number, physical page frame number, and page
mask may vary from the standard MIPS PRA definition and provide 4K, 2K or 1K page granularity, depending
on the state of the PageGrain register.

The modified TLB lookup process can be described as follows:

58 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



found < 0
for i in 0...TLBEntries-1
if ((TLB[i]lypyz and not

(TLB[1lyaek)) =

6.6 Virtual Memory

(vazq. .11 and not (TLB[ilysex))) and

(TLB[ilg or (TLBI[ilagrp = EntryHi,grp))
# EvenOddBit selects between even and odd halves of the TLB as
# a function of the page size in the matching TLB entry

then

effective_mask = TLB[ilyzex OR (0 || PageGraimy,gy)
case effective_mask
00000000000000,: EvenOddBit « 10
00000000000001,: EvenOddBit « 11
00000000000011,: EvenOddBit ¢« 12
00000000001111,: EvenOddBit « 14
00000000111111,: EvenOddBit <« 16
00000011111111,: EvenOddBit ¢« 18
00001111111111,: EvenOddBit ¢« 20
00111111111111,: EvenOddBit ¢« 22
11111111111111,: EvenOddBit ¢« 24
otherwise: UNDEFINED
endcase
if Vagyenodamit = 0 then
pfn « TLBI[i]pgyo
v « TLB[ilyg
c « TLBI[ilcg
d < TLB[ilpg
ri « TLB[ilgrg
xi « TLB[ilgg
else
pfn < TLB[i]pmn
v ¢« TLB[ily
c < TLB[ilq
d « TLB[ilp
ri < TLB[ilgry
xi ¢« TLB[ilx11
endif
if v = 0 then
SignalException (TLBInvalid, reftype)
endif
if (ri = 1) and (reftype = load) then
if (xi = 0) and (IsPCRelativeLoad(PC))
# PC relative loads are allowed where execute is allowed
else
SignalException (TLBInvalid, reftype)
endif
endif
if (xi = 1) and (reftype = fetch) then
SignalException (TLBInvalid, reftype)
endif
if (d = 0) and (reftype = store) then

SignalException (TLBModified)

endif
case PageGrainy,gx

00,: pa_pfn <« 00, || pfn

01,: pa_pfn < 0, || pfn || 0,

115: pa_pfn <« pfn || 00,

endcase

# pa_pfn paprrs-1)-10..0 corresponds to Papagrrs-i..10
pPa ¢ Pa_Pfn paprrs-1)-10..Evenodasit-10 || V@Evenoaasit-1..0

found « 1

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-

ture, Revision 3.01

59

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



The SmartMIPS® Release 3 Privileged Resource Architecture

break
endif
endfor
if found = 0 then
SignalException (TLBMiss, reftype)
endif

Table 6.2 shows how the physical address is generated as a function of the page size of the TLB entry matching the
virtual address. The“Even/Odd Select” column of the table indicates which virtual address bit is used to select
between the even (EntryLo0) or odd (EntryLo1) entry in the matching TLB entry. The “PA generated from” column
specifies how the physical address is generated from the selected PFN and the off set-in-page bits in the virtual
address. PFN isthe physical page number asloaded into the TLB from the EntryLo0O or EntryLo1l registers, and hasthe
bit range PFN (pag| Ts.1)-12..0» COrresponding to PApag 1112, PApaBITS 2,11, OF PApaBITS 3,10, depending on the
value of PageGrainy 4. Note that there are multiple combinations of PageMask and PageGrain that result in the
same effective virtual page size.

The standard MIPS PRA might support page sizes larger than listed in Table 6.2. Those larger page sizes are allowed
on SmartM|PS implementations as long as they don't interfere with support for 1KB, 2KB and 4KB pages.

Table 6.2 Physical Address Generation

Even/Odd PageGrain
Page Size Select Mask value PA(PaBITS-1)..0 generated from
1K Bytes VAo 00, 00; || PFN(paBiTs-1)-12.0 l VAG9.0
2K Bytes VA1 00, 00, [| PFN(paBiTs-1)-12..1 [l VA10.0
01, 05 || PFN(paBITS 2)-12.0 Il VA10.0
4K Bytes VA1, 00, 00, [| PFNpaBiTs 1)-12.2 [l VA11.0
01, 05 || PFN(paBiTS 2)-12.1 Il VA11.0
11, PFN(paBITS 1)-12.0 Il VA11.0
16K Bytes VA1 00, 005 || PFN(pagiTs-1)-12.4 | VA13 0
01, 02 [ PFN(paBiTS 1)-12.3 | VA13.0
11, PFN@aBITS1)-12.2 [l VA13.0
64K Bytes VA1 00, 00; | PFNpaBITs-1)-12.6 | VA15.0
01, 05 | PFNpaBITS 1)-12.5 [l VA15.0
11, PFNmaBITS1)-12.4 | VA 15 0
256K Bytes VA8 00, 00; || PFN(paBiTs-1)-12.8 | VA17.0
01, 02 [ PFN(paBiTS 1)-12.7 | VA17.0
11, PFN(paBITS1)-12.6 l| VA17.0
1M Bytes VA2 00, 00; || PFN(paBITS-1)-12..10 Il VA19.0
01, 02 [ PFN(paBITS 1)-12.9 | VA19.0
11, PFNaBITS1)-12.8 | VA19.0

60 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



Table 6.2 Physical Address Generation

6.6 Virtual Memory

Even/Odd PageGrain
Page Size Select Mask value PApaBITS-1).0 9€NErated from
4M Bytes VA2 00, 00; || PFNpaBITS-1)-12.12 Il VA21. 0
01, 02 || PFN(paBITS 1)-12.11 [l VA21. 0
11, PFN@aBITS 1)-12.10 | VA21.0
16M Bytes VA4 11, PFN(paBITS 1)-12..12 [l VA23.0

6.6.2 General Exception Processing

The SmartMIPS ASE modifies the exception processing in the following ways:
»  TheEntryHi contents varies according to the page granularity specified by the PageGrain register.

6.6.3 TLB Refill Exception

Asin the standard MIPS PRA, a TLB refill exception occursin a TLB-based MMU when no TLB entry matches a
reference to a mapped address space and the EXL bit is zero in the Status register. SmartM1PS CPUs can differ from
the standard MIPS PRA in the information provided on a TLB Refill exception in the EntryHi registers, depending on
the page granularity supported.

Table 6.3 TLB Refill Exception State Saved in Addition to the Cause Register

Register State Value
BadVAddr Failing address
EntryHi Bits 31:13 contain VA3;.13 0f the failing address. Bits 12:11 contain VA 15.1; ANDed with the compliment

(logical negation) of PageGrainy,ag; ASID field contains ASID of the reference that missed.

UNPREDICTABLE
UNPREDICTABLE

EntryLoO
EntryLol

6.6.4 TLB Invalid Exception

Asin standard MIPS PRA, a TLB invalid exception occurs when a TLB entry matches a reference to a mapped
address space, but the matched entry hasthe V (valid) bit off. SmartMIPS can differ from the standard MIPS PRA in
the information provided on a TLB Invalid exception in the EntryHi register.

Table 6.4 TLB Invalid Exception State Saved in Addition to the Cause Register

Register State Value

BadVAddr Failing address

EntryHi Bits 31:13 contain VA3;.13 Of the failing address. Bits 12:11 contain VA 5.1 ANDed with the compliment
(logical negation) of PageGrainy,,q; ASID field contains ASID of theinvalid reference.

EntryLoO UNPREDICTABLE

EntryLol UNPREDICTABLE

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 61

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



The SmartMIPS® Release 3 Privileged Resource Architecture

6.6.5 TLB Modified Exception

Asin standard MIPS PRA, TLB modified exception occurs on a store reference to a mapped address when the match-
ing TLB entry isvalid, but the entry’s D bit is zero, indicating that the pageis not writable. SmartM1PS CPUs can dif-
fer from the standard MIPS PRA in the information provided on a TLB Refill exception in the EntryHi register.

Table 6.5 TLB Modified Exception State Saved in Addition to the Cause Register

Register State Value

BadVAddr Failing address

EntryHi Bits 31:13 contain VA3;.13 Of the failing address. Bits 12:11 contain VA 5.1 ANDed with the compliment
(logical negation) of PageGrainy, ,; ASID field contains ASID of the modifying reference.

EntryLoO UNPREDICTABLE

EntryLol UNPREDICTABLE

6.7 CPO Registers

The CPO registers provide the interface between the | SA and the Privileged Resource Architecture. Those CPO regis-
tersthat are extended or redefined for SmartM|IPS relative to the MIPS Privileged Architecture reference are dis-
cussed below, with the registers presented in numerical order, first by register number, then by select field number.

6.7.1 PageMask Register (CP0O Register 5, Select 0)

Compliance L evel: PageMask register modifications are Required for SmartMIPS MM Us.

Asinthe standard MIPS PRA, the PageMask register is aread/write register used for reading from and writing to the
TLB. SmartMIPS alows implementation of page sizes smaller than 4K bytes, and the PageMask register must be
extended to accommodate them, as shown in Table 6.7. To assure backward compatibility with the standard MIPS
PRA, the Mask field extension bits 12 ad 11 can be inhibited and overridden by the corresponding bits of the
PageGrain register. Inhibited PageMask bits are treated as 1 bits for the purposes of virtual address tranglation - the
corresponding virtual address bits are not used for TLB match comparisons - but read as zeroes to software to pre-
serve backward compatibility.

Figure 6.1 shows the format of the PageMask register; Table 6.6 describes the PageMask register fields.

Figure 6.1 SmartMIPS PageMask Register Format
31 25 24 11 10 0

0 Mask 0

62 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



Table 6.6 PageMask Register Field Descriptions

6.7 CPO Registers

Fields
Read /
Name Bits Description Write Reset State | Compliance
Mask 24:11 The Mask field is abit mask in which a“1” bit indicates R/W Ofor bits Required
that the corresponding bit of the virtual address should not 12..1; Unde-
participate in the TLB match. fined for bits
24..13
Bits 12 and 11 of the Mask field can be overridden by the
Mask field of the PageGrain register: If setinthe
PageGrain register, the corresponding bit in the
PageMask register is unwritable and reads as a zero to
software, but the corresponding bit is excluded from
address comparison asif it were set in the PageMask
Mask field.
0 31:25, Must be written as zero; return zero on read. 0 0 Reserved
10:.0
Table 6.7 Values for the Mask Field of the PageMask Register
Bit
Page Size 24 23 22 21 20 19 18 17 16 15 14 13 12* 11*
1 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 1
4 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 1 1
16 KBytes 0 0 0 0 0 0 0 0 0 0 1 1 1 1
64 KBytes 0 0 0 0 0 0 0 0 1 1 1 1 1 1
256 KBytes 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 MByte 0 0 0 0 1 1 1 1 1 1 1 1 1 1
4 MByte 0 0 1 1 1 1 1 1 1 1 1 1 1 1
16 Mbyte 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The columns marked with an asterix (*) are those which can be disabled and overridden by the PageGrain register.

It isimplementation-dependent how many of the encodings described in Table 6.7 are implemented. All processors
must implement the 4KB page size, and the implemented Mask bits must span the contiguous range of values from
4K B to the smallest page granularity that can be specified by the implemented PageGrain register. If aparticular page

size encoding is not implemented by a processor, aread of the PageMask register must return zerosin al bits that

correspond to encodings that are not implemented. Software can determine which page sizes are supported by writing
the encoding for a 16MB page to the PageMask register, then examine the value returned from aread of the
PageMask register. If apair of bits reads back as ones, the processor implements that page size. The operation of the
processor is UNDEFINED if software loads the PageMask register with a value other than one of thoselisted in

Table6.7.

The standard MIPS PRA might support page sizeslarger than listed in Table 6.7. Those larger page sizes are allowed
on SmartMIPS implementations as long as they don't interfere with support for 1KB, 2KB and 4KB pages.

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.

63



The SmartMIPS® Release 3 Privileged Resource Architecture

The value of the PageMask register is UNPREDI CTABL E following a modification of the contents of the
PageGrain register.

6.7.2 PageGrain Register (CP0O Register 5, Select 1)

Compliance Level: Required for SmartMIPS MMUSs. Optional for Release 2 (and subsequent) of the standard MI1PS
PRA.

The PageGrain register is aread/write register used to configure the SmartMIPS MMU to operate on pages smaller
than 4K bytes. It's value is used when reading from and writing to the TLB. SmartMIPS allows implementation of
page sizes smaller than 4K bytes, and in those implementations, the PageMask register must be extended to accom-
modate them, as shown in Table 6.7. The PageGrain register also contains enable bits for the read-inhibit (RI) and
execute-inhibit (XI) bits of the EntryLo registers.

It is not required that the contents of the PageGrain register be reflected in the contents of the TLB. Therefore, the
TLB must be flushed before any change to the PageGrain register is made. The operation of the processor is UNDE-
FINED if software modifies any field of the PageGrain register while valid entries are present in the TLB.

Figure 6.2 shows the format of the PageGrain register; Table 6.6 describes the PageGrain register fields.

Figure 6.2 SmartMIPS PageGrain Register Format
31 30 29 13 12 11 10 8 7 0

RIE | XIE 0 Mask 111 0

Table 6.8 SmartMIPS PageGrain Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance

RIE 31 Read Inhibit Enable. If thisbit is set, the Rl bit of the EntryLo0O R/W 0 Required
and EntryLol registersisenabled. If thebitisclear, the Rl bitis
disabled and not writable by software.

XIE 30 Execute Inhibit Enable. If this bit is set, the X| bit of the R/W 0 Required
EntryLoO and EntryLo1 registersis enabled. If the bit is clear,
the Xl bit is disabled and not writable by software.

64 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



Table 6.8 SmartMIPS PageGrain Register Field Descriptions

6.7 CPO Registers

Fields
Read / Reset
Name Bits Description Write State Compliance
Mask 12:11 Determines whether the corresponding bits of avirtual address R/W 11 Required
are to be used for address trand ation purposes. This affects the
behavior of the EntryLoO/EntryLol, EntryHi, and PageMask
registers according to the following scheme:
00 Bits 12 and 11 of PageMask and EntryHi are R/W to
software and used in address trandation. PFN field of
EntryLoO/EntryLol istreated as PApagiTs.3.10
01 Bit 12 of PageMask and EntryHi is R/W to software
and used in address translation. Bit 11 of PageMask
and EntryHi reads as zero, and is not used in address
trandation.
PFN field of EntryLoO/EntryLol istreated as
PApaBITs 2.11
11 Bits 12 and 11 of PageMask and EntryHi read as
zero, and are not used in address translation. PFN
field of EntryLoO/EntryLol istreated as
PApaBITS 1..12- IN this setting, virtual address transla-
tionisidentical to that of the standard MIPS PRA.
10 UNDEFINED
1 10:8 Reserved bits for future Mask expansion. Must be written as
one, return one on read.
0 29:13, Must be written as zero; return zero on read. 0 0 Reserved
7:0

It isnot required that all bits of the PageGrain Mask field be fully implemented. Unimplemented |ow-order bits must
be read-only, and must read and function as having a value of 1. Unimplemented high-order bits must read and func-

tion as having the same value as the highest-order implemented bit. Table 6.9 shows some the read/write and func-

tional behavior of the possible SmartMIPS PageGrain subsets.

Table 6.9 PageGrain Implementation Subset Behavior

Mask Value Mask Value Read Page
Subset Written Back Granularity

2K Byte Page 00 01 2K Bytes
Grain but not 1K
Byte Page Grain 01 01 2K Bytes

10 11 4K Bytes

11 11 4K Bytes
1K Byte Page 00 00 1K Bytes
Grain but not 2K

i 1 11 4K B

Byte Page Grain 0 ytes

10 00 1K Bytes

11 11 4K Bytes

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.

65



The SmartMIPS® Release 3 Privileged Resource Architecture

6.7.3 EntryHi Register (CPO Register 10, Select 0

Compliance L evel: EntryHi register modifications are Required for SmartM1PS MMUSs. Maodifications optional in
Release 2 (and subsequent) of the standard MIPS PRA.

Asinthe standard MIPS PRA, the EntryHi register contains the virtual address match information used for TLB read,

write, and access operations.

For SmartMIPS implementations supporting pages sizes smaller than 4K, the VPN2 field of EntryHi must be extended

to allow for the greater number of VPNs in an address space divided into smaller pages. A similar optional feature
was added to Release 2 (and subsequent) of the standard MIPS Privileged Resource Architecture.

Figure 6.3 shows the format of the modified SmartMIPS EntryHi register; Table 6.10 describes the EntryHi register

fields.
Figure 6.3 SmartMIPS EntryHi Register Format
31 11 10 8 7 0
VPN2 0 ASID
Table 6.10 EntryHi Register Field Descriptions
Fields
Read /
Name Bits Description Write Reset State Compliance
VPN2 31:11 VAg3;.14 Of the virtual address (virtual page number / 2). R/W Ofor bits 12..1; Required
This field is written by hardware on a TLB exception or Undefined for
onaTLB read, and iswritten by software beforea TLB bits 31..13
write. Bits 12 and 11 can take a non-zero value only if
the corresponding bits of the PageGrain register are
Zeroes.
ASID 7.0 ASD. Unchanged from the standard MIPS PRA R/W Undefined Required
0 10:8 Must be written as zero; returns zero on read. 0 0 Reserved

The value of the EntryHi register is UNPREDICTABL E following a modification of the contents of the PageGrain
register.

6.7.4 Configuration Register 3 (CPO Register 16, Select 3)

Compliance L evel: Required for SmartMIPS.

The Config3 register isfully defined in Volume I11 of this multi-volume set. Bit 1 (named SM) of the Config3 register

denotes the presence of the SmartMI1PS ASE.

66 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-

tecture, Revision

3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.




Appendix A

The SmartMIPS® Release 2 Privileged Resource
Architecture

A.1 Introduction

Thisappendix describes how the SmartM|PS ASE interacts with the older Release 2 and Release 1 of the
MIPS PRA.

The MIPS Privileged Resource Architecture (PRA) defines a set of environments and capabilities on which the
Instruction Set Architecture operates. This includes definitions of the programming interface and operation of the
system coprocessor, CP0. SmartM I PS defines extensions to the MIPS PRA that are desirable in a smart card environ-

ment. This document describes these extensions. It is not intended to be a stand-alone PRA specification, and must be
read in the context of the MIPS Architecture specification.

A.2 Overview

The SmartMIPS PRA extends the standard MIPS PRA in these specific regards:
»  Protection of Virtual Memory Pages

*  Virtual Memory Page Size

* Increase the usability of the Context Register as a pointer to Page Tables

»  Detection of SmartMIPS Features

The standard MIPS PRA provides for Virtual memory pages to be invalid, readable and executable, or readable, exe-
cutable, and writable. SmartM1PS extends this to allow true read-only, execute-only, and write-only pages.

The minimum virtual memory page size supported by the standard MIPS PRA is4K (4096) bytes. SmartMIPS alows
for the TLB to be configured to optimally support 4K, 2K, and 1K virtual memory pages, and to accel erate lookups of
multilevel page tables.

The presence of SmartMIPS featuresis indicated in the CPO Config3g,, register field.
A.3 Compliance

Features described as Required in this document are required of all processors claiming compatibility with Smart-
MIPS. Any features described as Recommended should be implemented unless there is an overriding need not to do
s0. Features described as Optional provide a standardization of features that may or may not be appropriate for a par-
ticular SmartMIPS processor implementation. If such afeatureisimplemented, it must be implemented as described
in this document if a processor is to claim compatibility with SmartMIPS.

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 67

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



The SmartMIPS® Release 2 Privileged Resource Architecture

In some cases, there are features within features that have different levels of compliance. For example, if thereisan
Optional field within a Required register, this means that the register must be implemented, but the field may or may
not be, depending on the needs of the implementation. Similarly, if thereis a Required field within an Optional regis-
ter, thismeans that if the register isimplemented, it must have the specified field.

A.4 Interaction between the SmartMIPS ASE and Release 2 of the MIPS32
Architecture

Some features that are included in the SmartMIPS ASE (e.g., the ROTR and ROTRV) were subsequently added to
Release 2 of the MIPS32 Architecture. In such cases, the features are implemented identically.

Some features that are included in the SmartMI1PS ASE (e.g., 1KB page support) were implemented in Release 2 of
the MIPS32 Architecture in such away that thereis conflict between the specifications. In such a case, the conflict is
resolved in favor of the SmartMI1PS ASE specification. That is, an implementation of the SmartMIPS ASE in a pro-
cessor that also implements Release 2 of the MIPS32 Architecture obeys the rules of the SmartMIPS ASE whenever
the specifications have a conflict.

For the 1KB page support, this means the Release 2 definition of that feature must not be implemented (Config3gp =
0) in an device that also implements SmartMI1PS.

A.5 The SmartMIPS System Coprocessor

Except as defined below, the SmartM I PS system coprocessor interface and functionality isidentical to MIPS32.

A.5.1 CPO Register Summary

Table A.1 liststhe CPO registers affected by the SmartM I PS specification, in numerical order. Theindividual registers
are described later in this document. Otherwise the definition revertsto the standard MIPS PRA specification. The Sd
column indicates the value to be used in the field of the same name in the MFCO and MTCO instructions.

Table A.1 SmartMIPS Changes to Coprocessor 0 Registers in Numerical Order

Register Compliance
Number Sel | Register Name Modification Reference Level
2 0 |[EntryLoO Two additional bits per page to provide greater vari- | Section A.7.1 Required
ety of access modes. PFN field definition modified
by PageGrain register.
3 0 |EntryLol Two additional bits per page to provide greater vari- | Section A.7.1 Required
ety of access modes.PFN field definition modified by
PageGrain register.
4 0 |Context Layout controlled by ContextConfig. Only appliesto | Section A.7.2 Required
PRA Release 2 and older.
4 1 |ContextConfig |New Register. Controlslayout of Context register. Section A.7.3 Required
Only appliesto PRA Release 2 and older.
5 0 [PageMask Qualified by PageGrain register. Section A.7.4 Required
5 1 |PageGrain New register. Controls granularity of virtual pagesin | Section A.7.5 Required
EntryL o, PageMask, and EntryHi registers.
10 0 |EntryHi Qualified by PageGrain register. Section A.7.6 Required

68 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-

tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.




A.6 Virtual Memory

Table A.1 SmartMIPS Changes to Coprocessor 0 Registers in Numerical Order

Register Compliance
Number Sel | Register Name Modification Reference Level
16 2 |[Config3 | dentifies SmartMIPS feature set. Section A.7.7 Required

A.6 Virtual Memory

A.6.1 TLB-Based Virtual Address Translation

This section describes the SmartM I PS changes and additions to the standard MI1PS PRA TLB-based virtual address
translation mechanism.

A.6.1.1 TLB Organization

SmartMIPS extends the TLB organization defined by the standard M1PS Privileged Resource Architecture. The size
of thefield containing the virtual page number in the comparison section must accommodate awider range of virtual
page sizes. In all profiles, the trandation section is augmented by two additional bits, Rl (Read Inhibit) and XI (Exe-
cute Inhibit), which can be thought of as qualifiers for the existing V (Valid) bit. There are still two entriesin the
tranglation section for each TLB entry, because each TLB entry maps an aligned pair of virtual pages, and the pair of
physical trandation entries corresponds to the even and odd pages of the pair. Figure A.1 shows the logical arrange-
ment of a TLB entry.

Figure A.1 Contents of a TLB Entry

PageMask

VPN2 G ASID
PFNO co |Rio|xio|Do|vo
PEN1 c1 |ria|xigp1|vi

Thefields of the TLB entry still correspond exactly to the fields in the CPO PageMask, EntryHi, EntryLo0O and
EntryLol registers. The even page entriesin the TLB (e.g., PFNO) come from EntryLo0O. Similarly, odd page entries
come from EntryLo1l.

A.6.1.2 Address Translation

The address translation process in SmartMIPS varies from the standard MIPS PRA address translation process in two
specific regards:

*  The number and position of the bits that form the virtual page number, physical page frame number, and page
mask may vary from the standard MIPS PRA definition and provide 4K, 2K or 1K page granularity, depending
on the state of the PageGrain register.

» TheRI and XI bits serve to inhibit the V (Valid) bit for Read and Instruction Fetch accesses respectively. Fetch-
ing instructions from a page with the X1 bit set will generate a TLB Invalid exception even if the V bit is set.
Similarly, attempting to load data from a page with the RI bit set will generate a TLB Invalid exception even if

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 69

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



The SmartMIPS® Release 2 Privileged Resource Architecture

theV bitisset. The set of the RI, XI, D, and V bits allows for any combination of read/write/execute protections

to be enforced by hardware.

The modified TLB lookup process can be described as follows:

found < 0
for i in 0...TLBEntries-1
if ((TLB[i]lypyy and not

(TLB[1lyaek)) =

(vazq. .11 and not (TLB[ilysex))) and

(TLB[ilg or (TLBI[ilagrp = EntryHi,grp))
# EvenOddBit selects between even and odd halves of the TLB as
# a function of the page size in the matching TLB entry

then

effective_mask = TLB[ilyzex OR (0 || PageGraimy,gy)
case effective_mask
00000000000000,: EvenOddBit « 10
00000000000001,: EvenOddBit « 11
00000000000011,: EvenOddBit ¢« 12
00000000001111,: EvenOddBit « 14
00000000111111,: EvenOddBit <« 16
00000011111111,: EvenOddBit ¢« 18
00001111111111,: EvenOddBit « 20
00111111111111,: EvenOddBit ¢« 22
11111111111111,: EvenOddBit ¢« 24
otherwise: UNDEFINED
endcase
if Vagyenodamit = 0 then
pfn « TLBI[i]pmyo
v « TLB[ilyg
c « TLBI[ilcg
d < TLB[ilpg
ri « TLB[ilgrg
xi « TLB[ilgg
else
pfn < TLB[i]pmn
v ¢« TLB[ily
c < TLB[ilq
d « TLB[ilp
ri < TLB[ilgry
xi ¢« TLB[ilx11
endif
if v = 0 then
SignalException (TLBInvalid, reftype)
endif
if (ri = 1) and (reftype = load) then
if (xi = 0) and (IsPCRelativeLoad(PC))
# PC relative loads are allowed where execute is allowed
else
SignalException (TLBInvalid, reftype)
endif
endif
if (xi = 1) and (reftype = fetch) then
SignalException (TLBInvalid, reftype)
endif
if (d = 0) and (reftype = store) then

SignalException (TLBModified)

endif
case PageGrainy,gx

00,: pa_pfn <« 00, || pfn

01,: pa_pfn < 0, || pfn || 0,

70 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-

tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



A.6 Virtual Memory

115: pa_pfn <« pfn | 00,
endcase
# pa_pfn paprrs-1)-10..0 corresponds Lo Papaprrs-1..10

pa ¢ Pa_Pfn pagrms-1)-10..Evenoddit-10 || V@Evenoddeit-1..0
found « 1

break
endif
endfor
if found = 0 then
SignalException (TLBMiss, reftype)
endif

Table A.2 shows how the physical addressis generated as a function of the page size of the TLB entry matching the
virtual address. The“Even/Odd Select” column of the table indicates which virtual address bit is used to select
between the even (EntryLo0) or odd (EntryLo1) entry in the matching TLB entry. The “PA generated from” column
specifies how the physical addressis generated from the selected PFN and the off set-in-page bitsin the virtual
address. PFN isthe physical page number asloaded into the TLB from the EntryLoO or EntryLol registers, and hasthe
bit range PFN (pag| Ts.1)-12..0» COrresponding to PApag 15112, PAPaBITS 2,11, OF PApaBITS 3,10, depending on the
value of PageGrainy . Note that there are multiple combinations of PageMask and PageGrain that result in the

same effective virtual page size.

Table A.2 Physical Address Generation

Even/Odd PageGrain
Page Size Select Mask value PA(paBITS-1)..0 generated from
1K Bytes VA1 00, 005 || PFN(paBiTs-1)-12.0 l VA09.0
2K Bytes VA1 00, 00, [| PFN(paBiTs 1)-12..1 [l VA10.0
01, 05 || PFN(paBITS 2)-12.0 Il VA10.0
4K Bytes VA2 00, 00; | PFNpaBiTs-1)-12.2 | VA11.0
01, 05 || PFN(pagiTS 2)-12.1 Il VA11.0
11, PFNmaBITS 1)-12.0 [l VA11.0
16K Bytes VA4 00, 00, || PFN(pagiTs-1)-12.4 | VA13 0
01, 02 [ PFN(paBiTS 1)-12.3 | VA13.0
11, PFN@aBITS 1)-12.2 [l VA13.0
64K Bytes VA6 00, 00; | PFN(paBiTs-1)-12.6 | VA15.0
01, 02 [ PFN(paBiTS 1)-12.5 | VA15.0
11, PFNaBITS1)-12.4 | VA 15 0
256K Bytes VAsg 00, 00, [| PFNpaBITs 1)-12.8 Il VA17.0
01, 05 || PFN(paBITS 2)-12.7 Il VA17.0
11, PFNmaBITS 1)-12.6 |l VA17.0
1M Bytes VA 00, 00; || PFN(paBITS-1)-12.10 Il VA19.0
01, 02 [ PFN(paBITS 1)-12.9 | VA19.0
11, PFNaBITS1)-12.8 | VA19.0

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 71

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



The SmartMIPS® Release 2 Privileged Resource Architecture

Table A.2 Physical Address Generation

Even/Odd PageGrain
Page Size Select Mask value PApaBITS-1).0 9€NErated from
4M Bytes VA2 00, 00; || PFNpaBITS-1)-12.12 Il VA21. 0
01, 02 || PFN(paBITS 1)-12.11 [l VA21. 0
11, PFN@aBITS 1)-12.10 | VA21.0
16M Bytes VA4 11, PFN(paBITS 1)-12..12 [l VA23.0

A.6.2 General Exception Processing

The SmartMIPS ASE modifies the exception processing in the following ways:

e TLB Réfill, TLB Invalid, and TLB Modified exceptions, where new qualifying conditions exist for virtual pages
to be considered to be valid.

»  The setup of the Context register is now configurable by the ContextConfig register.
»  TheEntryHi contents varies according to the page granularity specified by the PageGrain register.

A.6.3 TLB Refill Exception

Asin the standard MIPS PRA, a TLB refill exception occursin a TLB-based MMU when no TLB entry matches a
reference to a mapped address space and the EXL bit is zero in the Status register. SmartM1PS CPUs can differ from
the standard M1PS PRA in the information provided on a TLB Refill exception in the Context and EntryHi registers,
depending on the Context register configuration and the page granularity supported.

Table A.3 TLB Refill Exception State Saved in Addition to the Cause Register

Register State Value

BadVAddr Failing address

Context The bits of the Context register corresponding to the set bits of the VirtualIndex field of the ContextConfig
register are loaded with the high-order bits of the virtual address that missed.

EntryHi Bits 31:13 contain VAg;.13 of the failing address. Bits 12:11 contain VA 1,.1; ANDed with the compliment
(logical negation) of PageGrainy, ,q; ASID field contains ASID of the reference that missed.

EntryLoO UNPREDICTABLE

EntryLol UNPREDICTABLE

A.6.4 TLB Invalid Exception

Asin standard MIPS PRA, a TLB invalid exception occurs when a TLB entry matches a reference to a mapped
address space, but the matched entry hasthe V (valid) bit off. On a SmartMIPS CPU, however, if avalid, matching
TLB entry isfound with the RI (Read Inhibit) set on aread reference, or with X1 (Execute Inhibit) set on an instruc-
tion fetch reference, a TLB Invalid exception will occur despite the presence of the valid bit. MI1PS16 PC-relative

72 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



A.7 CPO Registers

loads are a special case, and are not affected by the RI bit. In addition, SmartMIPS can differ fro the standard MI1PS
PRA in the information provided on a TLB Invalid exception in the Context and EntryHi registers.

Table A.4 TLB Invalid Exception State Saved in Addition to the Cause Register

Register State Value

BadVAddr Failing address

Context The bits of the Context register corresponding to the set bits of the VirtualIndex field of the ContextConfig
register are loaded with the high-order bits of the invalid virtual address.

EntryHi Bits 31:13 contain VAz3;.13 of the failing address. Bits 12:11 contain VA 1,.11 ANDed with the compliment
(logical negation) of PageGrainy,,q; ASID field contains ASID of theinvalid reference.

EntryLoO UNPREDICTABLE

EntryLol UNPREDICTABLE

A.6.5 TLB Modified Exception

Asin standard MIPS PRA, TLB modified exception occurs on a store reference to amapped address when the match-
ing TLB entry isvalid, but the entry’s D bit is zero, indicating that the page is not writable. SmartM|PS CPUs can dif-
fer from the standard MIPS PRA in the information provided on a TLB Refill exception in the Context and EntryHi
registers.

Table A.5 TLB Modified Exception State Saved in Addition to the Cause Register

Register State Value

BadVAddr Failing address

Context The bits of the Context register corresponding to the set bits of the VirtualIndex field of the ContextConfig
register are loaded with the high-order bits of the virtual address being written.

EntryHi Bits 31:13 contain VA3;.13 Of the failing address. Bits 12:11 contain VA15.11 ANDed with the compliment
(logical negation) of PageGrainy, ,; ASID field contains ASID of the modifying reference.

EntryLoO UNPREDICTABLE

EntryLol UNPREDICTABLE

A.7 CPO Registers

The CPO registers provide the interface between the ISA and the Privileged Resource Architecture. Those CPO regis-
ters that are extended or redefined for SmartM1PS relative to the MIPS Privileged Architecture reference are dis-
cussed below, with the registers presented in numerical order, first by register number, then by select field number.

A.7.1 EntryLoO, EntryLol (CPO Registers 2 and 3, Select 0)

Compliance L evel: EntryLo0 modifications are Required for a SmartMIPS MMU.
Compliance Level: EntryLol modifications are Required for a SmartMIPS MMU.

Asin the standard MIPS PRA, the pair of EntryLo registers act as the interface between the TLB and the TLBR,
TLBWI, and TLBWR instructions. EntryLo0 holds the entries for even pages and EntryL o1 holds the entries for odd

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 73

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



The SmartMIPS® Release 2 Privileged Resource Architecture

In a SmartMIPS MMU, the previously reserved bits 31 and 30 are defined for further access control.

The interpretation, though not the size or location, of the PFN field in a SmartMIPS MMU varies with the content of
the PageGrain register.

Figure A.2 shows the format of the EntryLoO and EntryLol registers; Table A.6 describes the EntryLoO and EntryLol

register fields.
Figure A.2 SmartMIPS EntryLoO, EntryLo1 Register Format
31 30 29 6 5 3 2 10
RI | XI PFN C DIV|G

Table A.6 SmartMIPS EntryLoO, EntryLol Register Field Descriptions

Fields
Read / Reset

Name Bits Description Write State Compliance

RI 31 Read Inhibit. If thisbitissetina TLB entry, an attempt, R/W 0 Required
other than a M1PS16 PC-relative load, to read data on the
virtual page causesa TLB Invalid exception, even if the V
(Vvalid) bit isset. The RI bit iswritable only if the RIE bit of
the PageGrain register is set. If the RIE bit of PageGrain is
not set, the Rl bit of EntryLoO/EntryLol is set to zero on any
write to the register, regardless of the value written.

Xl 30 Execute Inhibit. If thisbit isset ina TLB entry, an attempt to R/W 0 Required
fetch an instruction or to load MIPS16 PC-relative data from
the virtual page causesa TLB Invalid exception, even if the V
(Valid) bit isset. The XI bit iswritable only if the XIE bit of
the PageGrain register is set. If the XIE bit of PageGrain is
not set, the Xl bit of EntryLoO/EntryLol is set to zero on any
write to the register, regardless of the value written.

74 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



A.7 CPO Registers

Table A.6 SmartMIPS EntryLoO, EntryLol Register Field Descriptions

Fields

Name

Bits

Description

Read /
Write

Reset
State

Compliance

PFN

29:6

Up to 24 bits of the physical address associated with the page.
The binding of PFN bits to physical address bits depends on
the value of the Mask field of the PageGrain register:

PageGrainyag= 00: PFN corresponds to PApagiTs3.10
PageGrainy o= 0 1: PFN corresponds to PApagits2.11
PageGrainyag= 1 1: PFN corresponds to PApagiTs1.12
PageGrainyg= 10: UNDEFINED

The width of thisfield implicitly limits the range of physical
addresses to 36 bits, 35 bits, or 34 bits for minimum page
sizes of 4K, 2K, and 1K bytes respectively. If the processor
implements fewer physical address bits than thislimit, the
unimplemented bits must be written as zero, and return zero
on read. If the processor implements more physical address
bits than are defined by PFN, given a non-zero value of
PageGrainy s the bits to the left of the MSB of PFN are

zero in the generated physical address.

Starting with Release 2, the standard MIPS Privileged
Resource Architecture supports the above meanings of
PageGrainy o= 00 and PageGrainy o= 1 1.

R/W

Undefined

Required

5:3

Coherency attribute. Unchanged from MIPS32.

“Dirty” bit. Unchanged from MIPS32.

Valid bit, indicating that the TLB entry, and thus the virtual
page mapping are valid. If this bit is a one, accesses to the
page are permitted. If this bit is a zero, accesses to the page
cause a TLB Invalid exception. In SmartMIPS this bit is fur-
ther qualified by the RI and XI bits.

RIW

Undefined

Required

G

Global bit. Unchanged from MIPS32.

A.7.2 Context Register (CPO Register 4, Select 0)

Compliance L evel: Context register modifications are Required for a SmartMIPS MMU.

In SmartMIPS, the Context register is a read/write register containing a pointer to an arbitrary power-of-two aligned
data structure in memory, such as an entry in the page table entry (PTE) array. Unlike the standard MIPS PRA, where
this pointer was defined to reference a 16-byte structure in memory within alinear array containing an entry for each
even/odd virtual page pair, the SmartMIPS Context register can be used far more generally. Depending on the value
in the ContextConfig register, it may point to an 8-byte pair of 32-hit PTEswithin asingle-level page table scheme, or
to afirst level page directory entry in atwo-level lookup scheme.

A TLB exception (Refill, Invalid, or Modified) causes bits VA31.31.((x-y)-1) to be written to a variable range of bits

“(X-1):Y" of the Context register, where this range corresponds to the contiguous range of set bitsin the

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.

75



The SmartMIPS® Release 2 Privileged Resource Architecture

ContextConfig register. Bits 31:X are R/W to software, and are unaffected by the exception. Bits Y-1:0 will always
read as0. If X =23 and Y =4, i.e. bits 22:4 are set in ContextConfig, the behavior isidentical to the standard MIPS
PRA Context register. Although the fields have been made variable in size and interpretation, the standard M1PS PRA
nomenclature is retained. Bits 31:X are referred to asthe PTEBase field, and bits X:Y-1 are referred to as BadVPN2.

The value of the Context register is UNPREDI CTABL E following a modification of the contents of the
ContextConfig register.

Figure A.3 shows the format of the Context Register; Table A.7 describes the Context register fields.

Figure A.3 SmartMIPS Context Register Format
31 X X-1 Y Y-1 0

PTEBase BadVPN2 0

Table A.7 SmartMIPS Context Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
PTEBase | Variable, 31:X where | Thisfield isfor use by the operating system R/W Undefined Required
Xin{31.0}. and is normally written with a value that
May be null. allows the operating system to use the
Context Register as a pointer to an array of
data structures in memory corresponding to
the address region containing the virtual
address which caused the exception.
BadVPN2 | Variable, (X-1):Y Thisfield iswritten by hardwareonaTLB R Undefined Required
where exception. It contains bits VA3;. 31-((X-Y)-1) of
Xin{32.1} and the virtual address that caused the exception.
Y in{31..0}.
May be null.
0 Variable, (Y-1):0 Must be written as zero; returns zero on read. 0 0 Reserved
where
Y in{31:1}.
May be null.

A.7.3 ContextConfig Register (CPO Register 4, Select 1)

Compliance L evel: Required for a SmartMIPS MMU.

The ContextConfig register defines the bits of the Context register into which the high order bits of the virtual address
causing a TLB exception will be written, and how many bits of that virtual address will be extracted. Bits above the
selected field of the Context register are R/W to software and serve asthe PTEBase field. Bits below the selected field
of the Context register will read as zeroes.

Thefield to contain the virtual addressindex is defined by a single block of contiguous non-zero bits within the
ContextConfig register's VirtualIndex field. Any zero bits to the right of the least significant one bit cause the corre-
sponding Context register bitsto read as zero. Any zero bitsto the left of the most significant one bit cause the corre-
sponding Context register bitsto be R/W to software and unaffected by TLB exceptions.

76 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



A.7 CPO Registers

A value of all onesin the ContextConfig register means that the full 32 bits of the faulting virtual address will be cop-
ied into the context register, making it duplicate the BadVAddr register. A value of all zeroes means that the full 32
bits of the Context register are R/W for software and unaffected by TLB exceptions.

Figure A.4 shows the SmartM1PS formats of the ContextConfig Register; Table A.8 describes the ContextConfig reg-
ister fields.

Figure A.4 SmartMIPS ContextConfig Register Format

Virtuallndex

Table A.8 SmartMIPS ContextConfig Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
Virtual Index 310 A mask of 0to 32 contiguous 1 bitsin thisfield causes R/W 0x007ffff0 Required

the corresponding bits of the Context register to be writ-
ten with the high-order bits of the virtual address causing
aTLB exception.

Behavior of the processor is UNDEFINED if non-con-
tiguous 1 bits are written into the register field.

Itis permissible to implement a subset of the ContextConfig register, in which some number of bits are read-only and
set to one or zero as appropriate. It is possible for software to determine which bits are implemented by alternately
writing all zeroes and all ones to the register, and reading back the resulting values. All implementations of the
ContextConfig register must allow for the emulation of the standard MIPS PRA fixed Context register configuration.
Table A.9 describes some useful ContextConfig values.

Table A.9 Recommended ContextConfig Values for SmartMIPS

Page Table
Value Organization Page Size PTE Size Compliance
0x007ffffO Single Level 4K 64 bits/page REQUIRED
0x003ffff8 Single Level 4K 32 hits/page RECOMMENDED
0x00Tffff8 Single Level 2K 32 bitd/page RECOMMENDED
OXOOfffff8 Single Level 1K 32 bitspage | RECOMMENDED

A.7.4 PageMask Register (CPO Register 5, Select 0)

Compliance L evel: PageMask register modifications are Required for SmartMIPS MM Us.

Asin the standard MIPS PRA, the PageMask register is aread/write register used for reading from and writing to the
TLB. SmartMIPS alows implementation of page sizes smaller than 4K bytes, and the PageMask register must be
extended to accommodate them, as shown in Table A.11. To assure backward compatibility with the standard MIPS
PRA, the Mask field extension bits 12 ad 11 can be inhibited and overridden by the corresponding bits of the
PageGrain register. Inhibited PageMask bits are treated as 1 bits for the purposes of virtual address translation - the
corresponding virtual address bits are not used for TLB match comparisons - but read as zeroes to software to pre-
serve backward compatibility.

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.

77



The SmartMIPS® Release 2 Privileged Resource Architecture

Figure A.5 shows the format of the PageMask register; Table A.10 describes the PageMask register fields.

Figure A.5 SmartMIPS PageMask Register Format

31 25 24 11 10 0
0 Mask 0
Table A.10 PageMask Register Field Descriptions
Fields
Read /
Name Bits Description Write Reset State | Compliance
Mask 24:11 The Mask field isabit mask in which a“1” bit indicates R/W O for bits Required
that the corresponding bit of the virtual address should not 12..1; Unde-
participate in the TLB match. fined for bits
24..13
Bits 12 and 11 of the Mask field can be overridden by the
Mask field of the PageGrain register: If set in the
PageGrain register, the corresponding bit in the
PageMask register is unwritable and reads as a zero to
software, but the corresponding bit is excluded from
address comparison as if it were set in the PageMask
Mask field.
0 31:25, Must be written as zero; return zero on read. 0 0 Reserved
10:0
Table A.11 Values for the Mask Field of the PageMask Register
Bit
Page Size 24 23 22 21 20 19 18 17 16 15 14 13 | 12* | 11~
1 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 0 1
4 KBytes 0 0 0 0 0 0 0 0 0 0 0 0 1 1
16 KBytes 0 0 0 0 0 0 0 0 0 0 1 1 1 1
64 KBytes 0 0 0 0 0 0 0 0 1 1 1 1 1 1
256 KBytes 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 MByte 0 0 0 0 1 1 1 1 1 1 1 1 1 1
4 MByte 0 0 1 1 1 1 1 1 1 1 1 1 1 1
16 Mbyte 1 1 1 1 1 1 1 1 1 1 1 1 1 1

The columns marked with an asterix (*) are those which can be disabled and overridden by the PageGrain register.

It isimplementation-dependent how many of the encodings described in Table A.11 areimplemented. All processors

must implement the 4KB page size, and the implemented Mask bits must span the contiguous range of values from

4K B to the smallest page granularity that can be specified by the implemented PageGrain register. If aparticular page

size encoding is not implemented by a processor, aread of the PageMask register must return zerosin al bits that

correspond to encodings that are not implemented. Software can determine which page sizes are supported by writing

the encoding for a 16MB page to the PageMask register, then examine the value returned from aread of the

78 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.




A.7 CPO Registers

PageMask register. If apair of bits reads back as ones, the processor implements that page size. The operation of the
processor is UNDEFINED if software loads the PageMask register with a value other than one of thoselisted in
Table A.11.

The standard MIPS PRA might support page sizes larger than listed in Table A.11. Those larger page sizes are
allowed on SmartMIPS implementations as long as they don't interfere with support for 1KB, 2KB and 4KB pages.

The value of the PageMask register is UNPREDI CTABL E following a modification of the contents of the
PageGrain register.

A.7.5 PageGrain Register (CPO Register 5, Select 1)

Compliance Level: Required for SmartMIPS MMUSs. Optional for Release 2 (and subsequent) of the standard MI1PS
PRA.

The PageGrain register is aread/write register used to configure the SmartMIPS MMU to operate on pages smaller
than 4K bytes. It's value is used when reading from and writing to the TLB. SmartMIPS allows implementation of
page sizes smaller than 4K bytes, and in those implementations, the PageMask register must be extended to accom-
modate them, as shown in Table A.11. The PageGrain register also contains enable bits for the read-inhibit (Rl) and
execute-inhibit (XI) bits of the EntryLo registers.

It is not required that the contents of the PageGrain register be reflected in the contents of the TLB. Therefore, the
TLB must be flushed before any change to the PageGrain register is made. The operation of the processor is UNDE-
FINED if software modifies any field of the PageGrain register while valid entries are present in the TLB.

Figure A.6 shows the format of the PageGrain register; Table A.10 describes the PageGrain register fields.

Figure A.6 SmartMIPS PageGrain Register Format
31 30 29 13 12 11 10 8 7 0

RIE | XIE 0 Mask 111 0

Table A.12 SmartMIPS PageGrain Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance

RIE 31 Read Inhibit Enable. If thisbit is set, the Rl bit of the EntryLo0O R/W 0 Required
and EntryLol registersisenabled. If thebitisclear, the Rl bitis
disabled and not writable by software. See section A.7.1.

XIE 30 Execute Inhibit Enable. If this bit is set, the XI bit of the R/W 0 Required
EntryLoO and EntryLo1 registersis enabled. If the bit is clear,
the XI bit is disabled and not writable by software. See section
A.7.1.

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.

79



The SmartMIPS® Release 2 Privileged Resource Architecture

Table A.12 SmartMIPS PageGrain Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
Mask 12:11 Determines whether the corresponding bits of avirtual address R/W 11 Required
are to be used for address trand ation purposes. This affects the
behavior of the EntryLoO/EntryLol, EntryHi, and PageMask
registers according to the following scheme:
00 Bits 12 and 11 of PageMask and EntryHi are R/W to
software and used in address trandation. PFN field of
EntryLoO/EntryLol istreated as PApagiTs.3.10
01 Bit 12 of PageMask and EntryHi is R/W to software
and used in address translation. Bit 11 of PageMask
and EntryHi reads as zero, and is not used in address
trandation.
PFN field of EntryLoO/EntryLol istreated as
PApaBITs 2.11
11 Bits 12 and 11 of PageMask and EntryHi read as
zero, and are not used in address translation. PFN
field of EntryLoO/EntryLol istreated as
PApaBITS 1..12- IN this setting, virtual address transla-
tionisidentical to that of the standard MIPS PRA.
10 UNDEFINED
1 10:8 Reserved bits for future Mask expansion. Must be written as
one, return one on read.
0 29:13, Must be written as zero; return zero on read. 0 0 Reserved
7:0

It isnot required that all bits of the PageGrain Mask field be fully implemented. Unimplemented |ow-order bits must
be read-only, and must read and function as having a value of 1. Unimplemented high-order bits must read and func-
tion as having the same value as the highest-order implemented bit. Table A.13 shows some the read/write and func-
tional behavior of the possible SmartMIPS PageGrain subsets.

Table A.13 PageGrain Implementation Subset Behavior

Mask Value Mask Value Read Page
Subset Written Back Granularity

2K Byte Page 00 01 2K Bytes
Grain but not 1K
Byte Page Grain 01 01 2K Bytes

10 11 4K Bytes

11 11 4K Bytes
1K Byte Page 00 00 1K Bytes
Grain but not 2K

i 1 11 4K B

Byte Page Grain 0 ytes

10 00 1K Bytes

11 11 4K Bytes

80 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



A.7 CPO Registers

A.7.6 EntryHi Register (CPO Register 10, Select 0

Compliance L evel: EntryHi register modifications are Required for SmartM1PS MMUSs. Maodifications optional in
Release 2 (and subsequent) of the standard MIPS PRA.

Asinthe standard MIPS PRA, the EntryHi register contains the virtual address match information used for TLB read,
write, and access operations.

For SmartMIPS implementations supporting pages sizes smaller than 4K, the VPN2 field of EntryHi must be extended
to allow for the greater number of VPNs in an address space divided into smaller pages. A similar optional feature
was added to Release 2 (and subsequent) of the standard MIPS Privileged Resource Architecture.

Figure A.7 shows the format of the modified SmartMIPS EntryHi register; Table A.14 describes the EntryHi register

fields.
Figure A.7 SmartMIPS EntryHi Register Format
31 11 10 8 7 0
VPN2 0 ASID
Table A.14 EntryHi Register Field Descriptions
Fields
Read /
Name Bits Description Write Reset State Compliance
VPN2 31:11 VAg3;.14 Of the virtual address (virtual page number / 2). R/W Ofor bits 12..1; Required
This field is written by hardware on a TLB exception or Undefined for
onaTLB read, and iswritten by software beforea TLB bits 31..13
write. Bits 12 and 11 can take a non-zero value only if
the corresponding bits of the PageGrain register are
Zeroes.
ASID 7.0 ASD. Unchanged from the standard MIPS PRA R/W Undefined Required
0 10:8 Must be written as zero; returns zero on read. 0 0 Reserved

The value of the EntryHi register is UNPREDI CTABL E following a modification of the contents of the PageGrain
register.

A.7.7 Configuration Register 3 (CPO Register 16, Select 3)

Compliance L evel: Required for SmartMIPS.

The Config3 register isfully defined in Volume I11 of this multi-volume set. Bit 1 (named SM) of the Config3 register
denotes the presence of the SmartMI1PS ASE.

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 81

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



The SmartMIPS® Release 2 Privileged Resource Architecture

82 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



Appendix B

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant
changesto this document sinceits last release. Significant changes are defined as those which you should take note of
asyou use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

Please note: Limitations on the authoring tools make it difficult to place change bars on changes to figures. Change
bars on figure titles are used to denote a potential change in the figure itself.

Version Date Comments
0.10 27 September 2000  Initial review draft.
0.20 27 October 2000 PRA section added, MIPS16 instructions migrated to Volume IV of MIPS Archi-
tecture specification. SmartMIPS no longer referred to asan “ASE” in the text.
0.90 1 November 2000  Conversion to new specification format. First external review draft.
0.91 December 15, 2000 Changesin thisrevision:

 Correct temp variable indexing in the pseudo code for MADDU.

 Featureslisted in the Config2 register should have been included in the Config3
register instead.

0.92 December 21, 2000 Changesin thisrevision:

» Make effects of MULTP and MADDP on ACX explicit and mandatory.

» Reduce size of reserved 1'sfield in PageGrain register to align with EntryHi
ASID field as intended.

* Clarification of “binary polynomial basis’ nomenclature.

0.93 January 30,2001  Elimination of referencesto a“MIPS Crypto” ASE as a subset of SmartMIPS.
Clarify UNPREDICTABLE state of PageMask and EntryHi registers following
modification of PageGrain register.

0.94 February 28,2001  Addition of RIE and XIE bits to PageGrain register as enables for the Rl and X1
bitsin the EntryL o registers, to enhance backward compatibility.

0.95 March 12, 2001 Update for next external review revision.

1.00 August 1, 2001 Update based on all feedback received from external distribution.

1.01 April 23, 2002 Create and release an External Confidential version of the Architecture for Pro-
grammers manual.

1.20 August 29,2002  Add bit encoding tables to describe the SmartMIPS instructions.

2.00 May 15, 2003 Changesin thisrevision:

 Add base architecture requirements, software detection of the ASE, and compli-
ance and subsetting sections to the introduction.

» Update the ROTR and ROTRV instruction encoding to specify a 1-bit differ-
ence between shift and rotate, and to align with the Release 2 instruction
descriptions.

* Notethat conflicts between the SmartM1PS ASE specification and Release 2 of
the MIPS32 Architecture are resolved in favor of the SmartMIPS ASE.

» Remove the register description of the Config3 register, asthisis now fully
described in Volume 1.

MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architec-
ture, Revision 3.01 83

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



Revision History

Version Date Comments

250 July 1, 2005 Changesin thisrevision:
e Update al filesto FrameMaker 7.1.
* Replace the use of the BinPolyMult function in MULTP with PolyMult, and
define that function as pseudo code.
» Change reset state of bits 12..11 of the PageMask and EntryHi registersto 0
from Undefined. Thisis simply a clarification because the reset state of
PageGrain forces those bits of PageMask and EntryHi to be 0.

251 July 15, 2008 Changesin thisrevision:
» Update copyrights.
» Update contact information.

3.00 April 30, 2010 Edit for microMIPS and Release 3:

» Similar RI/XI TLB bits feature added to Release 3 base Architecture

» ContextConfig added to Release 3 base Architecture

* PRA chapter now pertains relationship of SmartMIPS to Release 3 of the stan-
dard PRA.

» Appendix A added to show historical relationship of SmartMIPS with Release 2
and older of the standard PRA.

» Document title updated to match other Release 3 documents.

3.01 December 16, 2012 « Update copyrights.
» Update logos on cover page.
» About This Book chapter updated for R5 - (DSP, MT, VZ, MSA modules)

84 MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Archi-
tecture, Revision 3.01

Copyright © 2004-2005, 2008, 2010,2012 MIPS Technologies Inc. All rights reserved.



	MIPS® Architecture for Programmers Volume IV-d:The SmartMIPS® Application-Specific Extension to the MIPS32® Architecture
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	1.1 Typographical Conventions
	1.1.1 Italic Text
	1.1.2 Bold Text
	1.1.3 Courier Text

	1.2 UNPREDICTABLE and UNDEFINED
	1.2.1 UNPREDICTABLE
	1.2.2 UNDEFINED
	1.2.3 UNSTABLE

	1.3 Special Symbols in Pseudocode Notation
	1.4 For More Information

	Guide to the Instruction Set
	2.1 Understanding the Instruction Fields
	2.1.1 Instruction Fields
	2.1.2 Instruction Descriptive Name and Mnemonic
	2.1.3 Format Field
	2.1.4 Purpose Field
	2.1.5 Description Field
	2.1.6 Restrictions Field
	2.1.7 Operation Field
	2.1.8 Exceptions Field
	2.1.9 Programming Notes and Implementation Notes Fields

	2.2 Operation Section Notation and Functions
	2.2.1 Instruction Execution Ordering
	2.2.2 Pseudocode Functions
	2.2.2.1 Coprocessor General Register Access Functions
	2.2.2.2 Memory Operation Functions
	2.2.2.3 Floating Point Functions
	2.2.2.4 Miscellaneous Functions


	2.3 Op and Function Subfield Notation
	2.4 FPU Instructions

	The SmartMIPS® Application-Specific Extension to the MIPS32® Architecture
	3.1 Base Architecture Requirements
	3.2 Software Detection of the ASE
	3.3 Compliance and Subsetting
	3.4 Overview of the SmartMIPS ASE
	3.4.1 Support for Cryptographic Algorithms in the SmartMIPS ASE
	3.4.1.1 Secret Key Cryptography
	3.4.1.2 Public Key Cryptography

	3.4.2 Code Density Optimization
	3.4.2.1 Data Type Conversion
	3.4.2.2 Jump Delay Slot Suppression
	3.4.2.3 Stack Frame Set-up and Tear-down

	3.4.3 Other ISA Enhancements
	3.4.4 Privileged Resource Architecture Enhancements

	3.5 Instruction Bit Encoding

	The SmartMIPS® Cryptographic Feature Set
	4.1 The Special Register ACX
	4.2 Change to MADDU Semantics
	4.3 Change to MULTU Semantics
	4.4 Possible Changes to other Multiply/Accumulate Semantics
	4.5 New Instructions
	4.5.1 MFLHXU
	4.5.2 MTLHX
	4.5.3 MADDP
	4.5.4 MULTP
	4.5.5 PPERM
	4.5.6 ROTR
	4.5.7 ROTRV


	Other ISA Elements of the SmartMIPS® ASE
	5.1 LWXS Instruction
	LWXS
	MADDP
	MADDU
	MFLHXU
	MTLHX
	MULTP
	MULTU
	PPERM
	ROTR
	ROTRV


	The SmartMIPS® Release 3 Privileged Resource Architecture
	6.1 Introduction
	6.2 Overview
	6.3 Compliance
	6.4 Interaction between the SmartMIPS ASE and Release 2 of the MIPS32 Architecture
	6.5 The SmartMIPS System Coprocessor
	6.5.1 CP0 Register Summary

	6.6 Virtual Memory
	6.6.1 TLB-Based Virtual Address Translation
	6.6.1.1 Address Translation

	6.6.2 General Exception Processing
	6.6.3 TLB Refill Exception
	6.6.4 TLB Invalid Exception
	6.6.5 TLB Modified Exception

	6.7 CP0 Registers
	6.7.1 PageMask Register (CP0 Register 5, Select 0)
	6.7.2 PageGrain Register (CP0 Register 5, Select 1)
	6.7.3 EntryHi Register (CP0 Register 10, Select 0
	6.7.4 Configuration Register 3 (CP0 Register 16, Select 3)


	The SmartMIPS® Release 2 Privileged Resource Architecture
	A.1 Introduction
	A.2 Overview
	A.3 Compliance
	A.4 Interaction between the SmartMIPS ASE and Release 2 of the MIPS32 Architecture
	A.5 The SmartMIPS System Coprocessor
	A.5.1 CP0 Register Summary

	A.6 Virtual Memory
	A.6.1 TLB-Based Virtual Address Translation
	A.6.1.1 TLB Organization
	A.6.1.2 Address Translation

	A.6.2 General Exception Processing
	A.6.3 TLB Refill Exception
	A.6.4 TLB Invalid Exception
	A.6.5 TLB Modified Exception

	A.7 CP0 Registers
	A.7.1 EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)
	A.7.2 Context Register (CP0 Register 4, Select 0)
	A.7.3 ContextConfig Register (CP0 Register 4, Select 1)
	A.7.4 PageMask Register (CP0 Register 5, Select 0)
	A.7.5 PageGrain Register (CP0 Register 5, Select 1)
	A.7.6 EntryHi Register (CP0 Register 10, Select 0
	A.7.7 Configuration Register 3 (CP0 Register 16, Select 3)


	Revision History


