

Document Number: MD00375
Revision 3.02

March 30, 2015

MIPS® Architecture for Programmers
Volume IV-e: MIPS® DSP Module for

MIPS64™ Architecture

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Public. This publication contains proprietary information which is subject to change without notice and is supplied ‘as is’, without any warranty of any kind.

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 3

Contents

Chapter 1: About This Book .. 7
1.1: Typographical Conventions ... 8

1.1.1: Italic Text.. 8
1.1.2: Bold Text .. 8
1.1.3: Courier Text ... 8

1.2: UNPREDICTABLE and UNDEFINED ... 8
1.2.1: UNPREDICTABLE... 8
1.2.2: UNDEFINED .. 9
1.2.3: UNSTABLE .. 9

1.3: Special Symbols in Pseudocode Notation... 9
1.4: Notation for Register Field Accessibility .. 12
1.5: For More Information ... 14

Chapter 2: Guide to the Instruction Set.. 15
2.1: Understanding the Instruction Fields ... 15

2.1.1: Instruction Fields .. 16
2.1.2: Instruction Descriptive Name and Mnemonic... 17
2.1.3: Format Field ... 17
2.1.4: Purpose Field ... 18
2.1.5: Description Field .. 18
2.1.6: Restrictions Field.. 18
2.1.7: Availability and Compatibility Fields ... 19
2.1.8: Operation Field... 19
2.1.9: Exceptions Field... 20
2.1.10: Programming Notes and Implementation Notes Fields.. 20

2.2: Operation Section Notation and Functions.. 20
2.2.1: Instruction Execution Ordering... 21
2.2.2: Pseudocode Functions... 21

2.2.2.1: Coprocessor General Register Access Functions.. 21
2.2.2.2: Memory Operation Functions ... 23
2.2.2.3: Floating Point Functions ... 26
2.2.2.4: Pseudocode Functions Related to Sign and Zero Extension ... 29
2.2.2.5: Miscellaneous Functions .. 30

2.3: Op and Function Subfield Notation.. 33
2.4: FPU Instructions .. 33

Chapter 3: The MIPS® DSP Application Specific Extension to the MIPS64® Architecture........... 35
3.1: Base Architecture Requirements... 35
3.2: Software Detection of the Module ... 35
3.3: Compliance and Subsetting... 35
3.4: Introduction to the MIPS® DSP Module .. 36
3.5: DSP Applications and their Requirements .. 36
3.6: Fixed-Point Data Types ... 37
3.7: Saturating Math ... 38
3.8: Conventions Used in the Instruction Mnemonics .. 39
3.9: Effect of Endian-ness on Register SIMD Data .. 41
3.10: Additional Register State for the DSP Module... 41

4 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

3.11: Software Detection of the DSP Module ... 43
3.12: Exception Table for the DSP Module .. 44
3.13: DSP Module Instructions that Read and Write the DSPControl Register.. 44
3.14: Arithmetic Exceptions .. 45

Chapter 4: MIPS® DSP Module Instruction Summary... 47
4.1: The MIPS® DSP Module Instruction Summary... 47

Chapter 5: Instruction Encoding ... 67
5.1: Instruction Bit Encoding... 67

Chapter 6: The MIPS® DSP Module Instruction Set .. 77
6.1: Compliance and Subsetting... 77

ABSQ_S.PH.. 78
ABSQ_S.QB.. 80
ABSQ_S.W.. 81
ADDQ[_S].PH.. 82
ADDQ_S.W ... 84
ADDQH[_R].PH... 86
ADDQH[_R].W .. 88
ADDSC.. 89
ADDU[_S].PH.. 90
ADDU[_S].QB.. 91
ADDWC... 93
ADDUH[_R].QB... 94
APPEND.. 96
BALIGN ... 97
BITREV ... 98
BPOSGE32 ... 99
BPOSGE32C... 100
CMP.cond.PH.. 101
CMPGDU.cond.QB ... 102
CMPGU.cond.QB.. 104
CMPU.cond.QB... 106
DPA.W.PH... 108
DPAQ_S.W.PH ... 109
DPAQ_SA.L.W.. 110
DPAQX_S.W.PH... 112
DPAQX_SA.W.PH... 115
DPAU.H.QBL... 117
DPAU.H.QBR.. 118
DPAX.W.PH .. 119
DPS.W.PH... 120
DPSQ_S.W.PH ... 121
DPSQ_SA.L.W.. 122
DPSQX_S.W.PH... 123
DPSQX_SA.W.PH... 126
DPSU.H.QBL... 128
DPSU.H.QBR.. 129
DPSX.W.PH .. 130
EXTP... 131
EXTPDP.. 132

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 5

EXTPDPV.. 133
EXTPV... 134
EXTR[_RS].W ... 135
EXTR_S.H... 137
EXTRV[_RS].W... 138
EXTRV_S.H .. 140
INSV.. 141
LBUX... 143
LDX ... 145
LHX ... 146
LWX... 147
MADD.. 148
MADDU ... 149
MAQ_S[A].W.PHL... 150
MAQ_S[A].W.PHR .. 152
MFHI.. 154
MFLO .. 155
MODSUB... 156
MSUB.. 157
MSUBU ... 158
MTHI.. 159
MTHLIP ... 160
MTLO .. 161
MUL[_S].PH .. 162
MULEQ_S.W.PHL... 164
MULEQ_S.W.PHR .. 166
MULEU_S.PH.QBL ... 168
MULEU_S.PH.QBR... 170
MULQ_RS.PH... 171
MULQ_RS.W... 173
MULQ_S.PH.. 176
MULQ_S.W ... 178
MULSA.W.PH.. 179
MULSAQ_S.W.PH .. 180
MULT... 181
MULTU.. 182
PACKRL.PH.. 183
PICK.PH.. 184
PICK.QB.. 185
PRECEQ.W.PHL... 186
PRECEQ.W.PHR .. 187
PRECEQU.PH.QBL .. 188
PRECEQU.PH.QBLA.. 189
PRECEQU.PH.QBR.. 190
PRECEQU.PH.QBRA ... 191
PRECEU.PH.QBL ... 192
PRECEU.PH.QBLA... 193
PRECEU.PH.QBR... 194
PRECEU.PH.QBRA .. 195
PRECR.QB.PH.. 196
PRECR_SRA[_R].PH.W ... 197
PRECRQ.PH.W... 199
PRECRQ.QB.PH... 200

6 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

PRECRQU_S.QB.PH.. 201
PRECRQ_RS.PH.W.. 203
PREPEND... 204
RADDU.W.QB... 205
RDDSP.. 206
REPL.PH... 208
REPL.QB... 209
REPLV.PH... 210
REPLV.QB .. 211
SHILO.. 212
SHILOV ... 213
SHLL[_S].PH... 214
SHLL.QB ... 216
SHLLV[_S].PH... 217
SHLLV.QB... 218
SHLLV_S.W .. 219
SHLL_S.W... 220
SHRA[_R].QB.. 221
SHRA[_R].PH.. 223
SHRAV[_R].PH ... 225
SHRAV[_R].QB ... 226
SHRAV_R.W... 228
SHRA_R.W ... 229
SHRL.PH... 230
SHRL.QB... 231
SHRLV.PH .. 232
SHRLV.QB .. 233
SUBQ[_S].PH.. 234
SUBQ_S.W ... 236
SUBQH[_R].PH... 237
SUBQH[_R].W... 239
SUBU[_S].PH.. 240
SUBU[_S].QB.. 242
SUBUH[_R].QB... 244
WRDSP... 245

Appendix 7: Endian-Agnostic Reference to Register Elements .. 247
7.1: Using Endian-Agnostic Instruction Names .. 247
7.2: Mapping Endian-Agnostic Instruction Names to DSP Module Instructions ... 248

Appendix 8: Revision History.. 251

Chapter 1

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 7

About This Book

The MIPS® DSP Module for MIPS64™ Architecture comes as part of a multi-volume set.

• Volume I-A describes conventions used throughout the document set, and provides an introduction to the
MIPS64® Architecture

• Volume I-B describes conventions used throughout the document set, and provides an introduction to the micro-
MIPS™ Architecture

• Volume II-A provides detailed descriptions of each instruction in the MIPS64® instruction set

• Volume II-B provides detailed descriptions of each instruction in the microMIPS64™ instruction set

• Volume III describes the MIPS64® and microMIPS64™ Privileged Resource Architecture which defines and
governs the behavior of the privileged resources included in a MIPS® processor implementation

• Volume IV-a describes the MIPS16e™ Application-Specific Extension to the MIPS64® Architecture. Beginning
with Release 3 of the Architecture, microMIPS is the preferred solution for smaller code size. Release 6 removes
MIPS16e: MIPS16e cannot be implemented with Release 6.

• Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS64® Architecture and
microMIPS64™. With Release 5 of the Architecture, MDMX is deprecated. MDMX and MSA can not be imple-
mented at the same time. Release 6 removes MDMX: MDMX cannot be implemented with Release 6.

• Volume IV-c describes the MIPS-3D® Application-Specific Extension to the MIPS® Architecture. Release 6
removes MIPS-3D: MIPS-3D cannot be implemented with Release 6.

• Volume IV-d describes the SmartMIPS®Application-Specific Extension to the MIPS32® Architecture and the
microMIPS32™ Architecture and is not applicable to the MIPS64® document set nor the microMIPS64™ docu-
ment set. Release 6 removes SmartMIPS: SmartMIPS cannot be implemented with Release 6, neither MIPS32
Release 6 nor MIPS64 Release 6.

• Volume IV-e describes the MIPS® DSP Module to the MIPS® Architecture.

• Volume IV-f describes the MIPS® MT Module to the MIPS® Architecture

• Volume IV-h describes the MIPS® MCU Application-Specific Extension to the MIPS® Architecture

• Volume IV-i describes the MIPS® Virtualization Module to the MIPS® Architecture

• Volume IV-j describes the MIPS® SIMD Architecture Module to the MIPS® Architecture

 About This Book

8 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fonts in this book.

1.1.1 Italic Text

• is used for emphasis

• is used for bits, fields, and registers that are important from a software perspective (for instance, address bits
used by software, and programmable fields and registers), and various floating point instruction formats, such as
S and D

• is used for the memory access types, such as cached and uncached

1.1.2 Bold Text

• represents a term that is being defined

• is used for bits and fields that are important from a hardware perspective (for instance, register bits, which are
not programmable but accessible only to hardware)

• is used for ranges of numbers; the range is indicated by an ellipsis. For instance, 5..1 indicates numbers
5 through 1

• is used to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the pro-
cessor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions in
a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register). Unpriv-
ileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and unprivileged
software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause a result to be generated or not. If a result is gener-
ated, it is UNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

• Implementations of operations generating UNPREDICTABLE results must not depend on any data source
(memory or internal state) which is inaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 9

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
is inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

• UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

• UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which
there is no exit other than powering down the processor). The assertion of any of the reset signals must restore
the processor to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDICTABLE values, software may depend on the fact that a sampling of an UNSTABLE value results in a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABLE values have one implementation restriction:

• Implementations of operations generating UNSTABLE results must not depend on any data source (memory or
internal state) which is inaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described using a high-level language pseudocode resem-
bling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning

 Assignment

,  Tests for equality and inequality

 Bit string concatenation

xy A y-bit string formed by y copies of the single-bit value x

b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the
binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default base is 10.

0bn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).

0xn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).

 About This Book

10 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

xy..z Selection of bits y through z of bit string x. Little-endian bit notation (rightmost bit is 0) is used. If y is less
than z, this expression is an empty (zero length) bit string.

x.bit[y] Bit y of bitstring x. Alternative to the traditional MIPS notation xy.

x.bits[y..z] Selection of bits y through z of bit string x. Alternative to the traditional MIPS notation xy..z.

x.byte[y] Byte y of bitstring x. Equivalent to the traditional MIPS notation x8*y+7..8*y.

x.bytes[y..z] Selection of bytes y through z of bit string x. Alternative to the traditional MIPS notation x8*y+7..8*z.

x.halfword[y]
x.word[i]

x.doubleword[i]

Similar extraction of particular bitfields (used in e.g., MSA packed SIMD vectors).

x.bit31, x.byte0, etc. Examples of abbreviated form of x.bit[y], etc. notation, when y is a constant.

x.fieldy Selection of a named subfield of bitstring x, typically a register or instruction encoding.
More formally described as “Field y of register x”.
For example, FIR.D = “the D bit of the Coprocessor 1 Floating-point Implementation Register (FIR)”.

,  2’s complement or floating point arithmetic: addition, subtraction

*,  2’s complement or floating point multiplication (both used for either)

div 2’s complement integer division

mod 2’s complement modulo

 Floating point division

 2’s complement less-than comparison

 2’s complement greater-than comparison

 2’s complement less-than or equal comparison

� 2’s complement greater-than or equal comparison

nor Bitwise logical NOR

xor Bitwise logical XOR

and Bitwise logical AND

or Bitwise logical OR

not Bitwise inversion

&& Logical (non-Bitwise) AND

<< Logical Shift left (shift in zeros at right-hand-side)

>> Logical Shift right (shift in zeros at left-hand-side)

GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers

GPR[x] CPU general-purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR[x] is a short-hand notation for SGPR[SRSCtlCSS, x].

SGPR[s,x] In Release 2 of the Architecture and subsequent releases, multiple copies of the CPU general-purpose regis-
ters may be implemented. SGPR[s,x] refers to GPR set s, register x.

FPR[x] Floating Point operand register x

FCC[CC] Floating Point condition code CC. FCC[0] has the same value as COC[1].
Release 6 removes the floating point condition codes.

FPR[x] Floating Point (Coprocessor unit 1), general register x

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

1.3 Special Symbols in Pseudocode Notation

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 11

CPR[z,x,s] Coprocessor unit z, general register x, select s

CP2CPR[x] Coprocessor unit 2, general register x

CCR[z,x] Coprocessor unit z, control register x

CP2CCR[x] Coprocessor unit 2, control register x

COC[z] Coprocessor unit z condition signal

Xlat[x] Translation of the MIPS16e GPR number x into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (0 Little-Endian, 1  Big-Endian). Specifies the endianness of
the memory interface (see LoadMemory and StoreMemory pseudocode function descriptions) and the endi-
anness of Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0  Little-Endian, 1  Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and is implemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRRE and User mode).

LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when a linked load occurs and is tested by the conditional store. It is cleared, during other CPU operation,
when a store to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

I:,
I+n:,
I-n:

This occurs as a prefix to Operation description lines and functions as a label. It indicates the instruction
time during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
time label of I. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections
labeled with the instruction time, relative to the current instruction I, in which the effect of that pseudocode
appears to occur. For example, an instruction may have a result that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in a section labeled I+1.
The effect of pseudocode statements for the current instruction labeled I+1 appears to occur “at the same
time” as the effect of pseudocode statements labeled I for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for
different instructions that occur “at the same time,” there is no defined order. Programs must not depend on a
particular order of evaluation between such sections.

PC The Program Counter value. During the instruction time of an instruction, this is the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction time is determined by assign-
ing a value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.
In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the restart
address into a GPR on a jump-and-link or branch-and-link instruction, or into a Coprocessor 0 register on an
exception. Release 6 adds PC-relative address computation and load instructions. The PC value contains a
full 64-bit address, all of which are significant during a memory reference.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

 About This Book

12 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

1.4 Notation for Register Field Accessibility

In this document, the read/write properties of register fields use the notations shown in Table 1.1.

ISA Mode In processors that implement the MIPS16e Application Specific Extension or the microMIPS base architec-
tures, the ISA Mode is a single-bit register that determines in which mode the processor is executing, as fol-
lows:

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on a jump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 phys-

ical address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes.

SEGBITS The number of virtual address bits implemented in a segment of the address space is represented by the sym-
bol SEGBITS. As such, if 40 virtual address bits are implemented in a segment, the size of the segment is

2SEGBITS = 240 bytes.

FP32RegistersMode Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). In MIPS32 Release 1, the FPU
has 32, 32-bit FPRs, in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, (and
optionally in MIPS32 Release2 and Release 3) the FPU has 32 64-bit FPRs in which 64-bit data types are
stored in any FPR.

In MIPS32 Release 1 implementations, FP32RegistersMode is always a 0. MIPS64 implementations have a
compatibility mode in which the processor references the FPRs as if it were a MIPS32 implementation. In
such a case FP32RegisterMode is computed from the FR bit in the Status register. If this bit is a 0, the pro-
cessor operates as if it had 32, 32-bit FPRs. If this bit is a 1, the processor operates with 32 64-bit FPRs.

The value of FP32RegistersMode is computed from the FR bit in the Status register.

InstructionInBranchDe-
laySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch
or jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the value is
false if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which
is not executed in the delay slot of a branch or jump.

SignalException(excep-
tion, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
parameter as an exception-specific argument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

Table 1.2 Read/Write Register Field Notation

Read/Write
Notation Hardware Interpretation Software Interpretation

R/W A field in which all bits are readable and writable by software and, potentially, by hardware.
Hardware updates of this field are visible by software read. Software updates of this field are visible by
hardware read.
If the Reset State of this field is ‘‘Undefined’’, either software or hardware must initialize the value before
the first read will return a predictable value. This should not be confused with the formal definition of
UNDEFINED behavior.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions

1 The processor is executing MIIPS16e or microMIPS
instructions

1.4 Notation for Register Field Accessibility

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 13

R A field which is either static or is updated only by
hardware.
If the Reset State of this field is either ‘‘0’’, ‘‘Pre-
set’’, or ‘‘Externally Set’’, hardware initializes this
field to zero or to the appropriate state, respectively,
on powerup. The term ‘‘Preset’’ is used to suggest
that the processor establishes the appropriate state,
whereas the term ‘‘Externally Set’’ is used to sug-
gest that the state is established via an external
source (e.g., personality pins or initialization bit
stream). These terms are suggestions only, and are
not intended to act as a requirement on the imple-
mentation.
If the Reset State of this field is ‘‘Undefined’’, hard-
ware updates this field only under those conditions
specified in the description of the field.

A field to which the value written by software is
ignored by hardware. Software may write any value
to this field without affecting hardware behavior.
Software reads of this field return the last value
updated by hardware.
If the Reset State of this field is ‘‘Undefined’’, soft-
ware reads of this field result in an UNPREDICT-
ABLE value except after a hardware update done
under the conditions specified in the description of
the field.

R0 R0 = reserved, read as zero, ignore writes by soft-
ware.

Hardware ignores software writes to an R0 field.
Neither the occurrence of such writes, nor the val-
ues written, affects hardware behavior.

Hardware always returns 0 to software reads of R0
fields.

The Reset State of an R0 field must always be 0.

If software performs an mtc0 instruction which
writes a non-zero value to an R0 field, the write to
the R0 field will be ignored, but permitted writes to
other fields in the register will not be affected.

Architectural Compatibility: R0 fields are reserved,
and may be used for not-yet-defined purposes in
future revisions of the architecture.

When writing an R0 field, current software should
only write either all 0s, or, preferably, write back the
same value that was read from the field.

Current software should not assume that the value
read from R0 fields is zero, because this may not be
true on future hardware.

Future revisions of the architecture may redefine an
R0 field, but must do so in such a way that software
which is unaware of the new definition and either
writes zeros or writes back the value it has read from
the field will continue to work correctly.

Writing back the same value that was read is guaran-
teed to have no unexpected effects on current or
future hardware behavior. (Except for non-atomicity
of such read-writes.)

Writing zeros to an R0 field may not be preferred
because in the future this may interfere with the oper-
ation of other software which has been updated for
the new field definition.

Table 1.2 Read/Write Register Field Notation (Continued)

Read/Write
Notation Hardware Interpretation Software Interpretation

 About This Book

14 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

1.5 For More Information

MIPS processor manuals and additional information about MIPS products can be found at http://www.mips.com..

.

.

0 Release 6
Release 6 legacy “0” behaves like R0 - read as zero, nonzero writes ignored.

Legacy “0” should not be defined for any new control register fields; R0 should be used instead.

HW returns 0 when read.
HW ignores writes.

Only zero should be written, or, value read from reg-
ister.

pre-Release 6
pre-Release 6 legacy “0” - read as zero, nonzero writes UNDEFINED

A field which hardware does not update, and for
which hardware can assume a zero value.

A field to which the value written by software must
be zero. Software writes of non-zero values to this
field may result in UNDEFINED behavior of the
hardware. Software reads of this field return zero as
long as all previous software writes are zero.
If the Reset State of this field is ‘‘Undefined’’, soft-
ware must write this field with zero before it is guar-
anteed to read as zero.

R/W0 Like R/W, except that writes of non-zero to a R/W0 field are ignored.
E.g. Status.NMI

Hardware may set or clear an R/W0 bit.

Hardware ignores software writes of nonzero to an
R/W0 field. Neither the occurrence of such writes,
nor the values written, affects hardware behavior.

Software writes of 0 to an R/W0 field may have an
effect.

Hardware may return 0 or nonzero to software
reads of an R/W0 bit.

If software performs an mtc0 instruction which
writes a non-zero value to an R/W0 field, the write
to the R/W0 field will be ignored, but permitted
writes to other fields in the register will not be
affected.

Software can only clear an R/W0 bit.

Software writes 0 to an R/W0 field to clear the field.

Software writes nonzero to an R/W0 bit in order to
guarantee that the bit is not affected by the write.

Table 1.2 Read/Write Register Field Notation (Continued)

Read/Write
Notation Hardware Interpretation Software Interpretation

http://www.mips.com/

Chapter 2

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 15

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical
order in the tables at the beginning of the next chapter.

2.1 Understanding the Instruction Fields

Figure 2.1 shows an example instruction. Following the figure are descriptions of the fields listed below:

• “Instruction Fields” on page 16

• “Instruction Descriptive Name and Mnemonic” on page 17

• “Format Field” on page 17

• “Purpose Field” on page 18

• “Description Field” on page 18

• “Restrictions Field” on page 18

• “Operation Field” on page 19

• “Exceptions Field” on page 20

• “Programming Notes and Implementation Notes Fields” on page 20

 Guide to the Instruction Set

16 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Figure 2.1 Example of Instruction Description

2.1.1 Instruction Fields

EXAMPLE

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0 rt rd
0

00000
EXAMPLE

000000

6 5 5 5 5 6

Format: EXAMPLE fd,rs,rt MIPS32

Purpose: Example Instruction Name

To execute an EXAMPLE op.

Description: GPR[rd]  GPR[r]s exampleop GPR[rt]

This section describes the operation of the instruction in text, tables, and illustrations. It
includes information that would be difficult to encode in the Operation section.

Restrictions:

This section lists any restrictions for the instruction. This can include values of the instruc-
tion encoding fields such as register specifiers, operand values, operand formats, address
alignment, instruction scheduling hazards, and type of memory access for addressed loca-
tions.

Operation:

/* This section describes the operation of an instruction in */
/* a high-level pseudo-language. It is precise in ways that */
/* the Description section is not, but is also missing */
/* information that is hard to express in pseudocode. */
temp  GPR[rs] exampleop GPR[rt]
GPR[rd]  sign_extend(temp31..0)

Exceptions:

A list of exceptions taken by the instruction

Programming Notes:

Information useful to programmers, but not necessary to describe the operation of the
instruction

Implementation Notes:

Like Programming Notes, except for processor implementors

Example Instruction Name EXAMPLEInstruction Mnemonic and
Descriptive Name

Instruction encoding
constant and variable
field names and

Architecture level at which
instruction was defined/

Assembler format(s) for
each definition

Short

Symbolic

Full description of
instruction

Restrictions on
instruction and

High-level language
description of
instruction operation

Exceptions that
instruction can

Notes for

Notes for

2.1 Understanding the Instruction Fields

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 17

Fields encoding the instruction word are shown in register form at the top of the instruction description. The follow-
ing rules are followed:

• The values of constant fields and the opcode names are listed in uppercase (SPECIAL and ADD in Figure 2.2).
Constant values in a field are shown in binary below the symbolic or hexadecimal value.

• All variable fields are listed with the lowercase names used in the instruction description (rs, rt, and rd in Figure
2.2).

• Fields that contain zeros but are not named are unused fields that are required to be zero (bits 10:6 in Figure 2.2).
If such fields are set to non-zero values, the operation of the processor is UNPREDICTABLE.

Figure 2.2 Example of Instruction Fields

2.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown in Figure
2.3.

Figure 2.3 Example of Instruction Descriptive Name and Mnemonic

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
given in the Format field. If the instruction definition was later extended, the architecture levels at which it was
extended and the assembler formats for the extended definition are shown in their order of extension (for an example,
see C.cond.fmt). The MIPS architecture levels are inclusive; higher architecture levels include all instructions in pre-
vious levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the
extended architecture.

Figure 2.4 Example of Instruction Format

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields.

The architectural level at which the instruction was first defined, for example “MIPS32” is shown at the right side of
the page. Instructions introduced at different times by different ISA family members, are indicated by markings such
as “MIPS64, MIPS32 Release 2”. Instructions removed by particular architecture release are indicated in the Avail-
ability section.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

rs rt rd
0

00000
ADD

100000

6 5 5 5 5 6

Add Word ADD

Format: ADD fd,rs,rt MIPS32

 Guide to the Instruction Set

18 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

There can be more than one assembler format for each architecture level. Floating point operations on formatted data
show an assembly format with the actual assembler mnemonic for each valid value of the fmt field. For example, the
ADD.fmt instruction lists both ADD.S and ADD.D.

The assembler format lines sometimes include parenthetical comments to help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

2.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Figure 2.5 Example of Instruction Purpose

2.1.5 Description Field

If a one-line symbolic description of the instruction is feasible, it appears immediately to the right of the Description
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation.

Figure 2.6 Example of Instruction Description

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU general-purpose register specified by the
instruction field rt. “FPR fs” is the floating point operand register specified by the instruction field fs. “CP1 register
fd” is the coprocessor 1 general register specified by the instruction field fd. “FCSR” is the floating point Control /
Status register.

2.1.6 Restrictions Field

The Restrictions field documents any possible restrictions that may affect the instruction. Most restrictions fall into
one of the following six categories:

• Valid values for instruction fields (for example, see floating point ADD.fmt)

• ALIGNMENT requirements for memory addresses (for example, see LW)

• Valid values of operands (for example, see DADD)

Purpose: Add Word

To add 32-bit integers. If an overflow occurs, then trap.

Description: GPR[rd]  GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit
result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination
register is not modified and an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is signed-extended and placed into
GPR rd.

2.1 Understanding the Instruction Fields

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 19

• Valid operand formats (for example, see floating point ADD.fmt)

• Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards
for which some processors do not have hardware interlocks (for example, see MUL).

• Valid memory access types (for example, see LL/SC)

Figure 2.7 Example of Instruction Restrictions

2.1.7 Availability and Compatibility Fields

The Availability and Compatibility sections are not provided for all instructions. These sections list considerations
relevant to whether and how an implementation may implement some instructions, when software may use such
instructions, and how software can determine if an instruction or feature is present. Such considerations include:

• Some instructions are not present on all architecture releases. Sometimes the implementation is required to
signal a Reserved Instruction exception, but sometimes executing such an instruction encoding is architec-
turally defined to give UNPREDICTABLE results.

• Some instructions are available for implementations of a particular architecture release, but may be provided
only if an optional feature is implemented. Control register bits typically allow software to determine if the
feature is present.

• Some instructions may not behave the same way on all implementations. Typically this involves behavior
that was UNPREDICTABLE in some implementations, but which is made architectural and guaranteed con-
sistent so that software can rely on it in subsequent architecture releases.

• Some instructions are prohibited for certain architecture releases and/or optional feature combinations.

• Some instructions may be removed for certain architecture releases. Implementations may then be required
to signal a Reserved Instruction exception for the removed instruction encoding; but sometimes the instruc-
tion encoding is reused for other instructions.

All of these considerations may apply to the same instruction. If such considerations applicable to an instruction are
simple, the architecture level in which an instruction was defined or redefined in the Format field, and/or the Restric-
tions section, may be sufficient; but if the set of such considerations applicable to an instruction is complicated, the
Availability and Compatibility sections may be provided.

2.1.8 Operation Field

The Operation field describes the operation of the instruction as pseudocode in a high-level language notation resem-
bling Pascal. This formal description complements the Description section; it is not complete in itself because many
of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Restrictions:

If either GPR rt or GPR rs does not contain sign-extended 32-bit values (bits 63..31 equal),

then the result of the operation is UNPREDICTABLE.

 Guide to the Instruction Set

20 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Figure 2.8 Example of Instruction Operation

See 2.2 “Operation Section Notation and Functions” on page 20 for more information on the formal notation used
here.

2.1.9 Exceptions Field

The Exceptions field lists the exceptions that can be caused by Operation of the instruction. It omits exceptions that
can be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by asyn-
chronous external events such as an Interrupt. Although a Bus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship
between load and store instructions and external error indications, like Bus Error, are dependent upon the implemen-
tation.

Figure 2.9 Example of Instruction Exception

An instruction may cause implementation-dependent exceptions that are not present in the Exceptions section.

2.1.10 Programming Notes and Implementation Notes Fields

The Notes sections contain material that is useful for programmers and implementors, respectively, but that is not
necessary to describe the instruction and does not belong in the description sections.

Figure 2.10 Example of Instruction Programming Notes

2.2 Operation Section Notation and Functions

In an instruction description, the Operation section uses a high-level language notation to describe the operation per-
formed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described below.

This section presents information about the following topics:

• “Instruction Execution Ordering” on page 21

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt]) then
UNPREDICTABLE

endif
temp  (GPR[rs]31||GPR[rs]31..0) + (GPR[rt]31||GPR[rt]31..0)
if temp32  temp31 then

SignalException(IntegerOverflow)
else

GPR[rd]  sign_extend(temp31..0)
endif

Exceptions:

Integer Overflow

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

2.2 Operation Section Notation and Functions

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 21

• “Pseudocode Functions” on page 21

2.2.1 Instruction Execution Ordering

Each of the high-level language statements in the Operations section are executed sequentially (except as constrained
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both. These functions are defined in this section, and
include the following:

• “Coprocessor General Register Access Functions” on page 21

• “Memory Operation Functions” on page 23

• “Floating Point Functions” on page 26

• “Miscellaneous Functions” on page 30

2.2.2.1 Coprocessor General Register Access Functions

Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between coprocessor
general registers and the rest of the system. What a coprocessor does with a word or doubleword supplied to it and
how a coprocessor supplies a word or doubleword is defined by the coprocessor itself. This behavior is abstracted
into the functions described in this section.

2.2.2.1.1 COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with a word from memory during a
load word operation. The action is coprocessor-specific. The typical action would be to store the contents of mem-
word in coprocessor general register rt.

Figure 2.11 COP_LW Pseudocode Function

COP_LW (z, rt, memword)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */

endfunction COP_LW

2.2.2.1.2 COP_LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory
during a load doubleword operation. The action is coprocessor-specific. The typical action would be to store the con-
tents of memdouble in coprocessor general register rt.

Figure 2.12 COP_LD Pseudocode Function

COP_LD (z, rt, memdouble)

 Guide to the Instruction Set

22 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

z: The coprocessor unit number
rt: Coprocessor general register specifier
memdouble: 64-bit doubleword value supplied to the coprocessor.

/* Coprocessor-dependent action */

endfunction COP_LD

2.2.2.1.3 COP_SW

The COP_SW function defines the action taken by coprocessor z to supply a word of data during a store word opera-
tion. The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in
coprocessor general register rt.

Figure 2.13 COP_SW Pseudocode Function

dataword  COP_SW (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
dataword: 32-bit word value

/* Coprocessor-dependent action */

endfunction COP_SW

2.2.2.1.4 COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store dou-
bleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the low-
order doubleword in coprocessor general register rt.

Figure 2.14 COP_SD Pseudocode Function

datadouble  COP_SD (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
datadouble: 64-bit doubleword value

/* Coprocessor-dependent action */

endfunction COP_SD

2.2.2.1.5 CoprocessorOperation

The CoprocessorOperation function performs the specified Coprocessor operation.

Figure 2.15 CoprocessorOperation Pseudocode Function

CoprocessorOperation (z, cop_fun)

/* z: Coprocessor unit number */
/* cop_fun: Coprocessor function from function field of instruction */

/* Transmit the cop_fun value to coprocessor z */

endfunction CoprocessorOperation

2.2 Operation Section Notation and Functions

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 23

2.2.2.2 Memory Operation Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for a little-endian
ordering this is the least-significant byte.

In the Operation pseudocode for load and store operations, the following functions summarize the handling of virtual
addresses and the access of physical memory. The size of the data item to be loaded or stored is passed in the Access-
Length field. The valid constant names and values are shown in Table 2.1. The bytes within the addressed unit of
memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined directly
from the AccessLength and the two or three low-order bits of the address.

2.2.2.2.1 Misaligned Support

MIPS processors originally required all memory accesses to be naturally aligned. MSA (the MIPS SIMD Architec-
ture) supported misaligned memory accesses for its 128 bit packed SIMD vector loads and stores, from its introduc-
tion in MIPS Release 5. Release 6 requires systems to provide support for misaligned memory accesses for all
ordinary memory reference instructions: the system must provide a mechanism to complete a misaligned memory ref-
erence for this instruction, ranging from full execution in hardware to trap-and-emulate.

The pseudocode function MisalignedSupport encapsulates the version number check to determine if mislaignment is
supported for an ordinary memory access.

Figure 2.16 MisalignedSupport Pseudocode Function

predicate  MisalignedSupport ()
return Config.AR � 2 // Architecture Revision 2 corresponds to MIPS Release 6.

end function

See Appendix B, “Misaligned Memory Accesses” on page 511 for a more detailed discussion of misalignment,
including pseudocode functions for the actual misaligned memory access.

2.2.2.2.2 AddressTranslation

The AddressTranslation function translates a virtual address to a physical address and its cacheability and coherency
attribute, describing the mechanism used to resolve the memory reference.

Given the virtual address vAddr, and whether the reference is to Instructions or Data (IorD), find the corresponding
physical address (pAddr) and the cacheability and coherency attribute (CCA) used to resolve the reference. If the vir-
tual address is in one of the unmapped address spaces, the physical address and CCA are determined directly by the
virtual address. If the virtual address is in one of the mapped address spaces then the TLB or fixed mapping MMU
determines the physical address and access type; if the required translation is not present in the TLB or the desired
access is not permitted, the function fails and an exception is taken.

Figure 2.17 AddressTranslation Pseudocode Function

(pAddr, CCA) AddressTranslation (vAddr, IorD, LorS)

/* pAddr: physical address */
/* CCA: Cacheability&Coherency Attribute,the method used to access caches*/
/* and memory and resolve the reference */

/* vAddr: virtual address */
/* IorD: Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

 Guide to the Instruction Set

24 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

2.2.2.2.3 LoadMemory

The LoadMemory function loads a value from memory.

This action uses cache and main memory as specified in both the Cacheability and Coherency Attribute (CCA) and
the access (IorD) to find the contents of AccessLength memory bytes, starting at physical location pAddr. The data is
returned in a fixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address
and the AccessLength indicate which of the bytes within MemElem need to be passed to the processor. If the memory
access type of the reference is uncached, only the referenced bytes are read from memory and marked as valid within
the memory element. If the access type is cached but the data is not present in cache, an implementation-specific size
and alignment block of memory is read and loaded into the cache to satisfy a load reference. At a minimum, this
block is the entire memory element.

Figure 2.18 LoadMemory Pseudocode Function

MemElem  LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */
/* width is the same size as the CPU general-purpose register, */
/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */
/* respectively. */
/* CCA: Cacheability&CoherencyAttribute=method used to access caches */
/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */
/* pAddr: physical address */
/* vAddr: virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadMemory

2.2.2.2.4 StoreMemory

The StoreMemory function stores a value to memory.

The specified data is stored into the physical location pAddr using the memory hierarchy (data caches and main mem-
ory) as specified by the Cacheability and Coherency Attribute (CCA). The MemElem contains the data for an aligned,
fixed-width memory element (a word for 32-bit processors, a doubleword for 64-bit processors), though only the
bytes that are actually stored to memory need be valid. The low-order two (or three) bits of pAddr and the AccessLen-
gth field indicate which of the bytes within the MemElem data should be stored; only these bytes in memory will
actually be changed.

Figure 2.19 StoreMemory Pseudocode Function

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* AccessLength: Length, in bytes, of access */
/* MemElem: Data in the width and alignment of a memory element. */

2.2 Operation Section Notation and Functions

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 25

/* The width is the same size as the CPU general */
/* purpose register, either 4 or 8 bytes, */
/* aligned on a 4- or 8-byte boundary. For a */
/* partial-memory-element store, only the bytes that will be*/
/* stored must be valid.*/
/* pAddr: physical address */
/* vAddr: virtual address */

endfunction StoreMemory

2.2.2.2.5 Prefetch

The Prefetch function prefetches data from memory.

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may
increase performance but must not change the meaning of the program or alter architecturally visible state.

Figure 2.20 Prefetch Pseudocode Function

Prefetch (CCA, pAddr, vAddr, DATA, hint)

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* pAddr: physical address */
/* vAddr: virtual address */
/* DATA: Indicates that access is for DATA */
/* hint: hint that indicates the possible use of the data */

endfunction Prefetch

Table 2.1 lists the data access lengths and their labels for loads and stores.

2.2.2.2.6 SyncOperation

The SyncOperation function orders loads and stores to synchronize shared memory.

This action makes the effects of the synchronizable loads and stores indicated by stype occur in the same order for all
processors.

Table 2.1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning

DOUBLEWORD 7 8 bytes (64 bits)

SEPTIBYTE 6 7 bytes (56 bits)

SEXTIBYTE 5 6 bytes (48 bits)

QUINTIBYTE 4 5 bytes (40 bits)

WORD 3 4 bytes (32 bits)

TRIPLEBYTE 2 3 bytes (24 bits)

HALFWORD 1 2 bytes (16 bits)

BYTE 0 1 byte (8 bits)

 Guide to the Instruction Set

26 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Figure 2.21 SyncOperation Pseudocode Function

SyncOperation(stype)

/* stype: Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

2.2.2.3 Floating Point Functions

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are inter-
preted to form a formatted value. If an FPR contains a value in some format, rather than unformatted contents from a
load (uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).

2.2.2.3.1 ValueFPR

The ValueFPR function returns a formatted value from the floating point registers.

Figure 2.22 ValueFPR Pseudocode Function

value  ValueFPR(fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in SWC1 and SDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

valueFPR  UNPREDICTABLE32  FPR[fpr]31..0

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode  0)

if (fpr0  0) then
valueFPR  UNPREDICTABLE

else
valueFPR  FPR[fpr1]31..0  FPR[fpr]31..0

endif
else

valueFPR  FPR[fpr]
endif

L, PS, OB, QH:
if (FP32RegistersMode  0) then

valueFPR  UNPREDICTABLE
else

valueFPR  FPR[fpr]
endif

2.2 Operation Section Notation and Functions

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 27

DEFAULT:
valueFPR  UNPREDICTABLE

endcase
endfunction ValueFPR

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored into CP1
registers by a computational or move operation. This binary representation is visible to store or move-from instruc-
tions. Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a
different format.

2.2.2.3.2 StoreFPR

Figure 2.23 StoreFPR Pseudocode Function

StoreFPR (fpr, fmt, value)

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* value: The formattted value to be stored into the FPR */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in LWC1 and LDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

FPR[fpr]  UNPREDICTABLE32  value31..0

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode  0)

if (fpr0  0) then
UNPREDICTABLE

else
FPR[fpr]  UNPREDICTABLE32  value31..0
FPR[fpr1]  UNPREDICTABLE32  value63..32

endif
else

FPR[fpr]  value
endif

L, PS, OB, QH:
if (FP32RegistersMode  0) then

UNPREDICTABLE
else

FPR[fpr]  value
endif

endcase

endfunction StoreFPR

 Guide to the Instruction Set

28 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

2.2.2.3.3 CheckFPException

The pseudocode shown below checks for an enabled floating point exception and conditionally signals the exception.

Figure 2.24 CheckFPException Pseudocode Function

CheckFPException()

/* A floating point exception is signaled if the E bit of the Cause field is a 1 */
/* (Unimplemented Operations have no enable) or if any bit in the Cause field */
/* and the corresponding bit in the Enable field are both 1 */

if ((FCSR17  1) or
((FCSR16..12 and FCSR11..7)  0))) then

SignalException(FloatingPointException)
endif

endfunction CheckFPException

2.2.2.3.4 FPConditionCode

The FPConditionCode function returns the value of a specific floating point condition code.

Figure 2.25 FPConditionCode Pseudocode Function

tf FPConditionCode(cc)

/* tf: The value of the specified condition code */

/* cc: The Condition code number in the range 0..7 */

if cc = 0 then
FPConditionCode  FCSR23

else
FPConditionCode  FCSR24+cc

endif

endfunction FPConditionCode

2.2.2.3.5 SetFPConditionCode

The SetFPConditionCode function writes a new value to a specific floating point condition code.

Figure 2.26 SetFPConditionCode Pseudocode Function

SetFPConditionCode(cc, tf)
if cc = 0 then

FCSR  FCSR31..24 || tf || FCSR22..0
else

FCSR  FCSR31..25+cc || tf || FCSR23+cc..0
endif

endfunction SetFPConditionCode

2.2 Operation Section Notation and Functions

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 29

2.2.2.4 Pseudocode Functions Related to Sign and Zero Extension

2.2.2.4.1 Sign extension and zero extension in pseudocode

Much pseudocode uses a generic function sign_extend without specifying from what bit position the extension is
done, when the intention is obvious. E.g. sign_extend(immediate16) or sign_extend(disp9).

However, sometimes it is necessary to specify the bit position. For example, sign_extend(temp31..0) or the

more complicated (offset15)
GPRLEN-(16+2) || offset || 02.

The explicit notation sign_extend.nbits(val) or sign_extend(val,nbits) is suggested as a simpli-
fication. They say to sign extend as if an nbits-sized signed integer. The width to be sign extended to is usually appar-
ent by context, and is usually GPRLEN, 32 or 64 bits. The previous examples then become.

sign_extend(temp31..0)
= sign_extend.32(temp)

and
(offset15)

GPRLEN-(16+2) || offset || 02

= sign_extend.16(offset)<<2

Note that sign_extend.N(value) extends from bit position N-1, if the bits are numbered 0..N-1 as is typical.

The explicit notations sign_extend.nbits(val) or sign_extend(val,nbits) is used as a simplifica-
tion. These notations say to sign extend as if an nbits-sized signed integer. The width to be sign extended to is usually
apparent by context, and is usually GPRLEN, 32 or 64 bits.

Figure 2.27 sign_extend Pseudocode Functions
sign_extend.nbits(val) = sign_extend(val,nbits) /* syntactic equivalents */

function sign_extend(val,nbits)
return (valnbits-1)

GPRLEN-nbits || valnbits-1..0
end function

The earlier examples can be expressed as
(offset15)

GPRLEN-(16+2) || offset || 02

= sign_extend.16(offset) << 2)

and
sign_extend(temp31..0)
= sign_extend.32(temp)

Similarly for zero_extension, although zero extension is less common than sign extension in the MIPS ISA.

Floating point may use notations such as zero_extend.fmt corresponding to the format of the FPU instruction.
E.g. zero_extend.S and zero_extend.D are equivalent to zero_extend.32 and zero_extend.64.

Existing pseudocode may use any of these, or other, notations. TBD: rewrite pseudocode.

2.2.2.4.2 memory_address

The pseudocode function memory_address performs mode-dependent address space wrapping for compatibility
between MIPS32 and MIPS64. It is applied to all memory references. It may be specified explicitly in some places,
particularly for new memory reference instructions, but it is also declared to apply implicitly to all memory refer-

 Guide to the Instruction Set

30 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

ences as defined below. In addition, certain instructions that are used to calculate effective memory addresses but
which are not themselves memory accesses specify memory_address explicitly in their pseudocode.

Figure 2.28 memory_address Pseudocode Function
function memory_address(ea)

if User mode and Status.UX = 0 then return sign_extend.32(ea)
/* Preliminary proposal to wrap privileged mode addresses */
if Supervisormode and Status.SX = 0 then return sign_extend.32(ea)
if Kernel mode and Status.KX = 0 then return sign_extend.32(ea)
/* if Hardware Page Table Walking, then wrap in same way as Kernel/VZ Root */
return ea

end function

On a 32-bit CPU, memory_address returns its 32-bit effective address argument unaffected.

On a 64-bit processor, memory_address optionally truncates a 32-bit address by sign extension, It discards car-
ries that may have propagated from the lower 32-bits to the upper 32-bits that would cause minor differences between

MIPS32 and MIPS64 execution.It is used in certain modes1 on a MIPS64 CPU where strict compatibility with

MIPS32 is required. This behavior was and continues to be described in a section of Volume III of the MIPS ARM2-
However, the behavior was not formally described in pseudocode functions prior to Release 6.

In addition to the use of memory_address for all memory references (including load and store instructions, LL/
SC), Release 6 extends this behavior to control transfers (branch and call instructions), and to the PC-relative address
calculation instructions (ADDIUPC, AUIPC, ALUIPC). In newer instructions the function is explicit in the pseudo-
code.

Implicit address space wrapping for all instruction fetches is described by the following pseudocode fragment which
should be considered part of instruction fetch:

Figure 2.29 Instruction Fetch Implicit memory_address Wrapping
PC  memory_address(PC)
(instruction_data, length)  instruction_fetch(PC)
/* decode and execute instruction */

Implicit address space wrapping for all data memory accesses is described by the following pseudocode, which is
inserted at the top of the AddressTranslation pseudocode function:

Figure 2.30 AddressTranslation implicit memory_address Wrapping
(pAddr, CCA) AddressTranslation (vAddr, IorD, LorS)

vAddr  memory_address(vAddr)

In addition to its use in instruction pseudocode,

2.2.2.5 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

1. Currently, if in User/Supervisor/Kernel mode and Status.UX/SX/KX=0.
2. E.g. see section named “Special Behavior for Data References in User Mode with StatusUX=0”, in the MIPS(r)

Architecture Reference Manual Volume III, the MIPS64(R) and microMIPS64(tm) Privileged Resource Archi-
tecture, e.g. in section 4.11 of revision 5.03, or section 4.9 of revision 1.00.

2.2 Operation Section Notation and Functions

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 31

2.2.2.5.1 SignalException

The SignalException function signals an exception condition.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.31 SignalException Pseudocode Function

SignalException(Exception, argument)

/* Exception: The exception condition that exists. */
/* argument: A exception-dependent argument, if any */

endfunction SignalException

2.2.2.5.2 SignalDebugBreakpointException

The SignalDebugBreakpointException function signals a condition that causes entry into Debug Mode from non-
Debug Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.32 SignalDebugBreakpointException Pseudocode Function

SignalDebugBreakpointException()

endfunction SignalDebugBreakpointException

2.2.2.5.3 SignalDebugModeBreakpointException

The SignalDebugModeBreakpointException function signals a condition that causes entry into Debug Mode from
Debug Mode (i.e., an exception generated while already running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.33 SignalDebugModeBreakpointException Pseudocode Function

SignalDebugModeBreakpointException()

endfunction SignalDebugModeBreakpointException

2.2.2.5.4 NullifyCurrentInstruction

The NullifyCurrentInstruction function nullifies the current instruction.

The instruction is aborted, inhibiting not only the functional effect of the instruction, but also inhibiting all exceptions
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullification
kills the instruction in the delay slot of the branch likely instruction.

Figure 2.34 NullifyCurrentInstruction PseudoCode Function

NullifyCurrentInstruction()

 Guide to the Instruction Set

32 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

endfunction NullifyCurrentInstruction

2.2.2.5.5 JumpDelaySlot

The JumpDelaySlot function is used in the pseudocode for the PC-relative instructions in the MIPS16e ASE. The
function returns TRUE if the instruction at vAddr is executed in a jump delay slot. A jump delay slot always immedi-
ately follows a JR, JAL, JALR, or JALX instruction.

Figure 2.35 JumpDelaySlot Pseudocode Function

JumpDelaySlot(vAddr)

/* vAddr:Virtual address */

endfunction JumpDelaySlot

2.2.2.5.6 NotWordValue

The NotWordValue function returns a boolean value that determines whether the 64-bit value contains a valid word
(32-bit) value. Such a value has bits 63..32 equal to bit 31.

Figure 2.36 NotWordValue Pseudocode Function

result  NotWordValue(value)

/* result: True if the value is not a correct sign-extended word value; */
/* False otherwise */

/* value: A 64-bit register value to be checked */

NotWordValue  value63..32  (value31)32

endfunction NotWordValue

2.2.2.5.7 PolyMult

The PolyMult function multiplies two binary polynomial coefficients.

Figure 2.37 PolyMult Pseudocode Function

PolyMult(x, y)
temp  0
for i in 0 .. 31

if xi = 1 then
temp  temp xor (y(31-i)..0 || 0

i)
endif

endfor

PolyMult  temp

endfunction PolyMult

2.3 Op and Function Subfield Notation

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 33

2.3 Op and Function Subfield Notation

In some instructions, the instruction subfields op and function can have constant 5- or 6-bit values. When reference is
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction,
op=COP1 and function=ADD. In other cases, a single field has both fixed and variable subfields, so the name con-
tains both upper- and lowercase characters.

2.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfields in an instruction format (such as fs, ft, imme-
diate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in upper-
case.

For the sake of clarity, an alias is sometimes used for a variable subfield in the formats of specific instructions. For
example, rs=base in the format for load and store instructions. Such an alias is always lowercase since it refers to a
variable subfield.

Bit encodings for mnemonics are given in Volume I, in the chapters describing the CPU, FPU, MDMX, and MIPS16e
instructions.

See “Op and Function Subfield Notation” on page 33 for a description of the op and function subfields.

 Guide to the Instruction Set

34 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Chapter 3

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 35

The MIPS® DSP Application Specific Extension to the
MIPS64® Architecture

3.1 Base Architecture Requirements

The MIPS DSP Module requires the following base architecture support:

• MIPS32 Release 2 or MIPS64 Release 2 Architecture: The MIPS DSP Module requires a compliant imple-
mentation of the MIPS32 Release 2 or MIPS64 Release 2 Architecture.

The MIPS DSP Module Rev2 requires the following base architecture support:

• MIPS DSP Module

• MIPS32 Release 2 or MIPS64 Release 2 Architecture

3.2 Software Detection of the Module

Software may determine if the MIPS DSP Module is implemented by checking the state of the DSPP (DSP Present)
bit, which is bit 10 in the Config3 CP0 register.

Software may determine if the MIPS DSP Module Rev2 is implemented by checking the state of the DSP2P (DSP
Rev2 Present) bit, which is bit 11 in the Config3 CP0 register. Compliant MIPS DSP Module Rev2 implementations
must set both DSPP and DSP2P bits.

An implementation supports MIPS DSP Module Rev3 if CP0 Config3DSPP=1 and Config3DSP2P=1 and Con-
figAR>=2.

The DSPP and DSP2P bits are fixed by the hardware implementation and are read-only for software.

3.3 Compliance and Subsetting

There are no instruction subsets of the MIPS DSP Module—all DSP Module instructions and state must be imple-
mented.

There are no instruction subsets of the MIPS DSP Module Rev2 — all DSP Module and DSP Module Rev2 instruc-
tions and state must be implemented.

 The MIPS® DSP Application Specific Extension to the MIPS64® Architecture

36 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

3.4 Introduction to the MIPS® DSP Module

This document contains a complete specification of the MIPS® DSP Module to the MIPS64®architecture. State-
ments about MIPS DSP Module include MIPS DSP Module Rev2, except where noted. The table entries in Chapter
4, “MIPS® DSP Module Instruction Summary” on page 50 contain notations which flag the Rev2 instructions; this
information is also available in the per instruction pages. The extensions comprises new integer instructions and new
state that includes new HI-LO accumulator pairs and a DSPControl register. The MIPS DSP Module can be included
in either a MIPS32 or MIPS64 architecture implementation. The Module has been designed to benefit a wide range of
DSP, multimedia, and DSP-like algorithms. The performance increase from these extensions can be used to integrate
DSP-like functionality into MIPS cores used in a SOC (System on Chip), potentially reducing overall system cost.
The Module includes many of the typical features found in other integer-based DSP extensions, for example, support
for operations on fractional data types and register SIMD (Single Instruction Multiple Data) operations such as add,
subtract, multiply, shift, etc. In addition, the extensions includes some key features that efficiently address specific
problems often encountered in DSP applications. These include, for example, support for complex multiplication,
variable bit insertion and extraction, and the implementation and use of virtual circular buffers.

This chapter contains a basic overview of the principles behind DSP application processing and the data types and
structures needed to efficiently process such applications. Chapter 4, “MIPS® DSP Module Instruction Summary” on
page 50, contains a list of all the instructions in the MIPS DSP Module arranged by function type. Chapter 5,
“Instruction Encoding” on page 70, describes the position of the new instructions in the MIPS instruction opcode
map. The rest of the specification contains a complete list of all the instructions that comprise the MIPS DSP Module,
and serves as a quick reference guide to all the instructions. Finally, various Appendix chapters describe how to
implement and use the DSP Module instructions in some common algorithms and inner loops.

3.5 DSP Applications and their Requirements

The MIPS DSP Module has been designed specifically to improve the performance of a set of DSP and DSP-like
applications. Table 3.1 shows these application areas sorted by the size of the data operands typically preferred by
that application for internal computations. For example, raw audio data is usually signed 16-bit, but 32-bit internal
calculations are often necessary for high quality audio. (Typically, an internal precision of about 28 bits may be all
that is required which can be achieved using a fractional data type of the appropriate width.) There is some cross-over
in some cases, which are not explicitly listed here. For example, some hand-held consumer devices may use lower
precision internal arithmetic for audio processing, that is, 16-bit internal data formats may be sufficient for the quality
required for hand-held devices.

Table 3.1 Data Size of DSP Applications

In/Out Data Size Internal Data Size Applications

8 bits 8/16 bits • Printer image processing.
• Still JPEG processing.
• Moving video processing

16 bits 16 bits • Voice Processing. For example, G.723.1, G.729, G.726, echo cancellation,
noise cancellation, channel equalization, etc.

• Soft modem processing. For example V.92.
• General DSP processing. For example, filters, correlation, convolution, etc.

16/24 bits 32 bits • Audio decoding and encoding. For example, MP3, AAC, SRS TruSurround,
Dolby Digital Decoder, Pro Logic II, etc.

3.6 Fixed-Point Data Types

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 37

3.6 Fixed-Point Data Types

Typical implementations of DSP algorithms use fractional fixed-point arithmetic, for reasons of size, cost, and power
efficiency. Unlike floating-point arithmetic, fractional fixed-point arithmetic assumes that the position of the decimal
point is fixed with respect to the bits representing the fractional value in the operand. To understand this type of arith-
metic further, please consult DSP textbooks or other references that are easily available on the internet.

Fractional fixed-point data types are often referred to using Q format notation. The general form for this notation is
Qm.n, where Q designates that the data is in fractional fixed-point format, m is the number of bits used to designate
the twos complement integer portion of the number, and n is the number of bits used to designate the twos comple-
ment fractional part of the number. Because the twos complement number is signed, the number of bits required to
express a number is m+n+1, where the additional bit is required to denote the sign. In typical usage, it is very com-
mon for m to be zero. That is, only fractional bits are represented. In this case, a Q notation of the form Q0.n is abbre-
viated to Qn.

For example, a 32-bit word can be used to represent data in Q31 format, which implies one (left-most) sign bit fol-
lowed by the binary point and then 31 bits representing the fractional data value. The interpretation of the 32 bits of
the Q31 representation is shown in Table 3.2. Negative values are represented using the twos-complement of the
equivalent positive value. This format can represent numbers in the range of -1.0 to +0.999999999.... Similarly a
16-bit halfword can be used to represent data in Q15 format, which implies one sign bit followed by 15 fractional bits
that represent a value between -1.0 and +0.9999....

Table 3.2 The Value of a Fixed-Point Q31 Number

Table 3.3 shows the limits of the Q15 and the Q31 representations. Note that the value -1.0 can be represented
exactly, but the value +1.0 cannot. For practical purposes, 0x7FFFFFFF is used to represent 1.0 inexactly. Thus, the
multiplication of two values where both are -1 will result in an overflow since there is no representation for +1 in
fixed-point format. Saturating instructions must check for this case and prevent the overflow by clamping the result to
the maximal representable value. Instructions in the MIPS DSP Module that operate on fractional data types include a
“Q” in the instruction mnemonic; the assumed size of the instruction operands is detailed in the instruction descrip-
tion.

Given a fixed-point representation, we can compute the corresponding decimal value by using bit weights per posi-
tion as shown in Figure 3.1 for a hypothetical Q7 format number representation with 8 total bits.

DSP applications often, but not always, prefer to saturate the result after an arithmetic operation that causes an over-
flow or underflow. For operations on signed values, saturation clamps the result to the smallest negative or largest

+
-

2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15 2-16 2-17 2-18 2-19 2-20 2-21 2-22 2-23 2-24 2-25 2-26 2-27 2-28 2-29 2-30 2-31

Table 3.3 The Limits of Q15 and Q31 Representations

Fixed-Point
Representation Definition

Hexadecimal
Representation

Decimal
Equivalent

Q15 minimum -215/215 0x8000 -1.0

Q15 maximum (215-1)/215 0x7FFF 0.999969482421875

Q31 minimum -231/231 0x80000000 -1.0

Q31 maximum (231-1)/231 0x7FFFFFFF 0.9999999995343387126922607421875

 The MIPS® DSP Application Specific Extension to the MIPS64® Architecture

38 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

positive value in the case of underflow and overflow, respectively. For operations on unsigned values, saturation
clamps the result to either zero or the maximum positive value.

Figure 3.1 Computing the Value of a Fixed-Point (Q7) Number

3.7 Saturating Math

Many of the MIPS DSP Module arithmetic instructions provide optional saturation of the results, as detailed in each
instructions description.

Saturation of fixed-point addition, subtraction, or shift operations that result in an underflow or overflow requires
clamping the result value to the closest available fixed-point value representable in the given number of result bits.
For operations on unsigned values, underflow is clamped to zero, and overflow to the largest positive fixed-point
value. For operations on signed values, underflow is clamped to the minimum negative fixed-point value and over-
flow to the maximum positive value.

-20 2-1bit 2-2 2-3 2-4 2-5 2-6 2-7

Example
0 1 1 0 0 1 0 0

decimal
value is

value

weights

 2-1 + 2-2 + 2-5

= 0.5 + 0.25 + 0.03125
 = 0.78125

binary

Example
0 0 1 1 0 0 0 0

decimal
value is

value

 2-2 + 2-3

= 0.25 + 0.125
 = 0.375

binary

Example
1 0 0 0 0 0 0 0

decimal
value is

value

 -20

= -1.0

binary

Example
1 0 1 0 1 0 0 0

decimal
value is

value

 -20 + 2-2 + 2-4

= -1.0 + 0.25 + 0.0625
 = -0.6875

binary

Example
0 1 1 1 1 1 1 1

decimal
value is

value

 2-1 + 2-2+ 2-3+ 2-4

= 0.5 + 0.25 + 0.125 + 0.0625
binary

maximum positive value

+ 2-5+ 2-6+ 2-7

+ 0.03125 + 0.01562 + 0.00781
= 0.99218

maximum negative value

3.8 Conventions Used in the Instruction Mnemonics

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 39

Saturation of fractional fixed-point multiplication operations clamps the result to the maximum representable
fixed-point value when both input multiplicands are equal to the minimum negative value of -1.0, which is indepen-
dent of the Q format used.

3.8 Conventions Used in the Instruction Mnemonics

MIPS DSP Module instructions with a Q in the mnemonic assume the input operands to be in fractional fixed-point
format. Multiplication instructions that operate on fractional fixed-point data will not produce correct results when
used with integer fixed-point data. However, addition and subtraction instructions will work correctly with either
fractional fixed-point or signed integer fixed-point data.

Instructions that use unsigned data are indicated with the letter U. This letter appears after the letter Q for fractional in
the instruction mnemonic. For example, the ADDQU instruction performs an unsigned addition of fractional data. In
the MIPS base instruction set, the overflow trap distinguishes signed and unsigned arithmetic instructions. In the
MIPS DSP Module, the results of saturation distinguish signed and unsigned arithmetic instructions.

Some instructions provide optional rounding up, saturation, or rounding up and saturation of the result(s). These
instructions use one of the modifiers _RS, _R, _S, or _SA in their mnemonic. For example, MULQ_RS is a multiply
instruction (MUL) where the result is the same size as the input operands (indicated by the absence of E for expanded
result in the mnemonic) that assumes fractional (Q) input data operands, and where the result is rounded up and satu-
rated (_RS) before writing the result in the destination register. (For fractional multiplication, saturation clamps the
result to the maximum positive representable value if both multiplicands are equal to -1.0.) Several multiply-accumu-
late (dot product) instructions use a variant of the saturation flag, _SA, indicating that the accumulated value is satu-
rated in addition to the regular fractional multiplication saturation check.

The MIPS DSP Module instructions provide support for single-instruction, multiple data (SIMD) operations where a
single instruction can invoke multiple operation on multiple data operands. As noted previously, DSP applications
typically use data types that are 8, 16, or 32 bits wide. In the MIPS32 architecture a general-purpose register (GPR) is
32 bits wide, and in the MIPS64 architecture, 64 bits wide. Thus, each GPR can be used to hold one or more operands
of each size. For example, a 64-bit GPR can store eight 8-bit operands, a 32-bit GPR can store two 16-bit operands,
and so on. A GPR containing multiple data operands is referred to as a vector.

MIPS64 implementations of the MIPS DSP Module support three basic formats for data operands: 32 bit, 16 bit, and
8 bit. The latter format is motivated by the fact that video applications typically operate on 8-bit data. The instruction
mnemonics indicate the supported data types as follows:

• W = “Word”, 1  32-bit

• PH = “Paired Halfword”, 2  16-bit. See Figure 3.2.

• QB = “Quad Byte”, 4  8-bit. See Figure 3.3.

In microMIPS64 architecture implementations, data of types word, paired halfword, and quad byte is stored in the 32
least-significant bits of the GPR to maintain compatibility with applications developed for the microMIPS32 archi-
tecture. Bit 31 is always extended into 32 most-significant bits of the destination register.

 The MIPS® DSP Application Specific Extension to the MIPS64® Architecture

40 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Figure 3.2 A Paired-Half (PH) Representation in a GPR for the MIPS32 Architecture

Figure 3.3 A Quad-Byte (QB) Representation in a GPR for the MIPS32 Architecture

For example, MULQ_RS.PH rd, rs,rt refers to the multiply instruction (MUL) that multiplies two vector elements
of type fractional (Q) 16 bit (Halfword) data (PH) with rounding and saturation (_RS). Each source register supplies
two data elements and the two results are written into the destination register in the corresponding vector position as
shown in Figure 3.4.

When an instruction shows two format types, then the first is the output size and the second is the input size. For
example, PRECRQ.PH.W is the (fractional) precision reduction instruction that creates a PH output format and uses
W format as input from the two source registers. When the instruction only shows one format then this implies the
same source and destination format.

Figure 3.4 Operation of MULQ_RS.PH rd, rs, rt

halfword

16

halfword

32 bits

16

8

32 bits

8 8 8

Byte ByteByteByte

c

a b

d

optional round

b  da  c

rt

rd

rs

 

16

optional round
and saturateand saturate

16

3.9 Effect of Endian-ness on Register SIMD Data

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 41

3.9 Effect of Endian-ness on Register SIMD Data

The order of data in memory and therefore in the register has a direct impact on the algorithm being executed. To
reduce the effort required by the programmer and the development tools to take endian-ness into account, many of the
instructions operate on pre-defined bits of a given register. The assembler can be used to map the endian-agnostic
names to the actual instructions based on the endian-ness of the processor during the compilation and assembling of
the instructions.

When a SIMD vector is loaded into a register or stored back to memory from a register, the endian-ness of the proces-
sor and memory has an impact on the view of the data. For example, consider a vector of eight byte values aligned in
memory on a 64-bit boundary and loaded into a 64-bit register using the load double instruction: the order of the eight
byte values within the register depends on the processor endian-ness. In a big-endian processor, the byte value stored
at the lowest memory address is loaded into the left-most (most-significant) 8 bits of the 64-bit register. In a lit-
tle-endian processor, the same byte value is loaded into the right-most (least-significant) 8 bits of the register.

In general, if the byte elements are numbered 0-7 according to their order in memory, in a big-endian configuration,
element 0 is at the most-significant end and element 7 is at the least-significant end. In a little-endian configuration,
the order is reversed. This effect applies to all the sizes of data when they are in SIMD format.

To avoid dealing with the endian-ness issue directly, the instructions in the DSP Module simply refer to the left and
right elements of the register when it is required to specify a subset of the elements. This issue can quite easily be
dealt with in the assembler or user code using suitably defined mnemonics that use the appropriate instruction for a
given endian-ness of the processor. A description of how to do this is specified in Appendix 7.

3.10 Additional Register State for the DSP Module

The MIPS DSP Module adds four new registers. The operating system is required to recognize the presence of the
MIPS DSP Module and to include these additional registers in context save and restore operations.

• Three additional HI-LO registers to create a total of four accumulator registers. Many common DSP computa-
tions involve accumulation, e.g., convolution. MIPS DSP Module instructions that target the accumulators use
two bits to specify the destination accumulator, with the zero value referring to the original accumulator of the
MIPS architecture.

Release 6 of the MIPS Architecture moves the accumulators into the DSP Module for use as a DSP resource
exclusively.

• A new control register, DSPControl, is used to hold extra state bits needed for efficient support of the new
instructions. Figure 3.5 illustrates the bits in this register. Table 3.4 describes the use of the various bits and the
instructions that refer to the fields. Table 3.5 lists the instructions that affect the DSPControl register ouflag field.

Figure 3.5 MIPS® DSP Module Control Register (DSPControl) Format

31 28 27 24 23 16 15 14 13 12 7 6 5 0

0 ccond ouflag 0 EFI c scount 0 pos

 The MIPS® DSP Application Specific Extension to the MIPS64® Architecture

42 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Table 3.4 MIPS® DSP Module Control Register (DSPControl) Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

ccond 27:24 Condition code bits set by vector comparison
instructions and used as source selectors by
PICK instructions. The vector element size
determines the number of bits set by a compar-
ison (1, 2, or 4); bits not set are UNPRE-
DICTABLE after the comparison.

R/W 0 Required

ouflag 23:16 Overflow/underflow indication bits set when
the result(s) of specific instructions (listed in
Table 3.5) caused, or, if optional saturation has
been used, would have caused overflow or
underflow.

R/W 0 Required

EFI 14 Extract Fail Indicator. This bit is set to 1 when
one of the extraction instructions (EXTP,
EXTPV, EXTPDP, or EXTPDP) fails. Failure
occurs when there are insufficient bits to
extract, i.e., when the value of the pos field in
the DSPControl register is less than the size
argument specified in the instruction. This bit
is not sticky—the bit is set or reset after each
extraction operation.

R/W 0 Required

c 13 Carry bit set and used by a special add instruc-
tion used to implement a 64-bit addition across
two GPRs in a MIPS32 implementation.
Instruction ADDSC sets the bit and instruction
ADDWC uses this bit.

R/W 0 Required

scount 12:7 This field is used by the INSV instruction to
specify the size of the bit field to be inserted.

R/W 0 Required

pos 5:0 This field is used by the variable insert instruc-
tion INSV to specify the position to insert bits.
It is also used to indicate the extract position
for the EXTP, EXTPV, EXTPDP, and EXTP-
DPV instructions. The decrement pos (DP)
variants of these instructions decrement the
value of the pos field by the amount size+1
after the extraction completes successfully.
The MTHLIP instruction increments the value
of pos by 32 after copying the value of LO to
HI.

R/W 0 Required

3.11 Software Detection of the DSP Module

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 43

The bits of the overflow flag (ouflag) field in the DSPControl register are set by a number of instructions. These bits
are sticky and can be reset only by an explicit write to these bits in the register (using the WRDSP instruction). The
table below shows which bits can be set by which instructions and under what conditions.

3.11 Software Detection of the DSP Module

Bit 10 in the config3 CP0 register, “DSP Present” (DSPP), is used to indicate the presence of the MIPS DSP Module,
and bit 11, “DSP Rev2 Present,” (DSP2P), the presence of the MIPS DSP Module Rev2, as shown in Figure 3.6.
Valid MIPS DSP Module Rev2 implementations set both DSPP and DSP2P bits: the condition of DSP2P set and
DSPP unset is invalid. Software may read the DSPP, DSP2P bits of the config3 CP0 register to check whether this
processor has implemented the MIPS DSP Module and MIPS DSP Module Rev2.

Release 6 of the MIPS Architecture moves the accumulators into the DSP Module for use as a DSP resource exclu-
sively, and introduces the compact branch BPOSGE32C, for which DSP Module Rev3 is required. An implementa-
tion supports Rev3 if CP0 Config3DSPP=1 and Config3DSP2P=1 and ConfigAR>=2.

Any attempt to execute MIPS DSP Module instructions must cause a Reserved Instruction Exception if DSPP, and
DSP2P are not indicating the presence of the appropriate MIPS DSP Module implementation. The DSPP and DSP2P
bits are fixed by the hardware implementation and are read-only for software.

Figure 3.6 Config3 Register Format

The “DSP Module Enable” (DSPEn) bit—the MX bit, bit 24 in the CP0 Status register as shown in Figure 3.7—is
used to enable access to the extra instructions defined by the MIPS DSP Module as well as enabling four modified
move instructions (MTLO/HI and MFLO/HI) that provide access to the three additional accumulators ac1, ac2, and
ac3. Executing a MIPS DSP Module instruction or one of the four modified move instructions when DSPEn is set to

Table 3.5 Instructions that set the ouflag bits in DSPControl

Bit Number Instructions That Set This Bit

16 Instructions that set this bit when the destination is accumulator (HI-LO pair) zero and an operation over-
flow or underflow occurs are: DPAQ_S, DPAQ_SA, DPSQ_S, DPSQ_SA, MAQ_S, MAQ_SA, and
MULSAQ_S, DPAQX_S, DPAQX_SA, DPSQX_S, DPSQX_SA.

17 Instructions as above, when the destination is accumulator (HI-LO pair) one.

18 Instructions as above, when the destination is accumulator (HI-LO pair) two.

19 Instructions as above, when the destination is accumulator (HI-LO pair) three.

20 Instructions that on an overflow/underflow will set this bit are: ABSQ_S, ADD, ADD_S, ADDQ,
ADDQ_S, ADDU, ADDU_S, ADDWC, SUB, SUB_S, SUBQ, SUBQ_S, SUBU, and SUBU_S.

21 Instructions that on an overflow/underflow will set this bit are: MUL, MUL_S, MULEQ_S, MULEU_S,
MULQ_RS, and MULQ_S.

22 Instructions that on an overflow/underflow will set this bit are: PRECRQ_RS, PRECRQU_RS, SHLL,
SHLL_S, SHLLV, and SHLLV_S.

23 Instructions that on an overflow/underflow will set this bit are: EXTR, EXTR_S, EXTR_RS, EXTRV,
EXTRV_RS

31 30 11 10 9 8 7 6 5 4 3 2 1 0

M
0

000 0000 0000 0000 0000 0000
DSP2P DSPP 0 LPA VEIC VInt SP 0 MT SM TL

 The MIPS® DSP Application Specific Extension to the MIPS64® Architecture

44 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

zero causes a DSP State Disabled Exception and results in exception code 26 in the CP0 Cause register. This allows
the OS to do lazy context-switching. Table 3.6 shows the Cause Register exception code fields.

Figure 3.7 CP0 Status Register Format

3.12 Exception Table for the DSP Module

Table 3.7 shows the exceptions caused when a MIPS DSP Module or MIPS DSP Module Rev2 instruction,
MTLO/HI or MFLO/HI, or any other instruction such as an CorExtend instruction attempts to access the new DSP
Module state, that is, ac1, ac2, or ac3, or the DSPControl register, and all other possible exceptions that relate to the
DSP Module.

3.13 DSP Module Instructions that Read and Write the DSPControl Register

Many MIPS DSP Module instructions read and write the DSPControl register, some explicitly and some implicitly.
Like other register resource in the architecture, it is the responsibility of the hardware implementation to ensure that
appropriate execution dependency barriers are inserted and the pipeline stalled for read-after-write dependencies and

31 25 24 23 0

MX

Table 3.6 Cause Register ExcCode Field

Exception Code Value

Mnemonic DescriptionDecimal Hexadecimal

26 16#1a DSPDis DSP Module State Disabled Exception

Table 3.7 Exception Table for the DSP Module

Config3DSP2P Config3DSPP StatusMX

Exception for
DSP Module Rev2

Instructions
Exception for DSP

Module Instructions

0 0  Reserved Instruction

0 1 0 Reserved Instruction DSP Module State Dis-
abled

0 1 1 Reserved Instruction None

1 1 0 DSP Module State Disabled

1 1 1 None

1 1 0 DSP Module State Disabled

1 1 1 None

3.14 Arithmetic Exceptions

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 45

other data dependencies that may occur. Table 3.8 lists the MIPS DSP Module instructions that can read and write the
DSPControl register and the bits or fields in the register that they read or write.

3.14 Arithmetic Exceptions

Under no circumstances do any of the MIPS DSP Module instructions cause an arithmetic exception. Other excep-
tions are possible, for example, the indexed load instruction can cause an address exception. The specific exceptions
caused by the different instructions are listed in the per-instruction description pages.

Table 3.8 Instructions that Read/Write Fields in DSPControl

Instruction Read/Write DSPControl Field (Bits)

WRDSP W All (31:0)

EXTPDP, EXTPDPV, MTHLIP W pos (5:0)

ADDSC W c (13)

EXTP, EXTPV, EXTPDP, EXTPDPV W EFI (14)

See Table 3.5 W ouflag (23:16)

CMP, CMPU, and CMPGDU variants W ccond (27:24)

RDDSP R All (31:0)

BPOSGE32, BPOSGE32C, EXTP, EXTPV, EXT-
PDP, EXTPDPV, INSV

R pos (5:0)

INSV R scount (12:7)

ADDWC R c (13)

PICK variants R ccond (27:24)

 The MIPS® DSP Application Specific Extension to the MIPS64® Architecture

46 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Chapter 4

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 47

MIPS® DSP Module Instruction Summary

4.1 The MIPS® DSP Module Instruction Summary

The tables in this chapter list all the instructions in the DSP Module. For operation details about each instruction,
refer to the per-page descriptions. In each table, the column entitled “Writes GPR / ac / DSPControl”, indicates the
explicit write performed by each instruction. This column indicates the writing of a field in the DSPControl register
other than the ouflag field (which is written by a large number of instructions as a side-effect).

Table 4.1 List of Instructions in MIPS® DSP Module in Arithmetic Sub-class

Instruction
Mnemonics

Input
Data Type

Output
Data Type

 Writes
GPR / ac /

DSPControl App Description

ADDQ.PH rd,rs,rt
ADDQ_S.PH rd,rs,rt

Pair Q15 Pair Q15 GPR VoIP
SoftM

Element-wise addition of two vectors of Q15
fractional values, with optional saturation. The
most-significant bit of the 32-bit result is
extended into the 32 most-significant bits of
the destination register.

ADDQ_S.W rd,rs,rt Q31 Q31 GPR Audio Add two Q31 fractional values with saturation.
The most-significant bit of the 32-bit result is
extended into the 32 most-significant bits of
the destination register.

ADDU.QB rd,rs,rt
ADDU_S.QB rd,rs,rt

Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR Video Element-wise addition of unsigned byte val-
ues, with optional unsigned saturation. The
most-significant bit of the 32-bit result is
extended into the 32 most-significant bits of
the destination register.

ADDUH.QB rd,rs,rt
ADDUH_R.QB rd,rs,rt
MIPSDSP-R2 Only

Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR Video Element-wise addition of vectors of four
unsigned byte values, halving each result by
right-shifting by one bit position. Results may
be optionally rounded up in the least-signifi-
cant bit. The most-significant bit of the 32-bit
result is extended into the 32 most-significant
bits of the destination register.

ADDU.PH rd,rs,rt
ADDU_S.PH rd,rs,rt
MIPSDSP-R2 Only

Pair
Unsigned
Halfword

Pair
Unsigned
Halfword

GPR Video Element-wise addition of vectors of two
unsigned halfword values, with optional satu-
ration on overflow. The most-significant bit of
the 32-bit result is extended into the 32
most-significant bits of the destination regis-
ter.

 MIPS® DSP Module Instruction Summary

48 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

ADDQH.PH rd,rs,rt
ADDQH_R.PH rd,rs,rt
MIPSDSP-R2 Only

Pair Signed
Halfword

Pair Signed
Halfword

GPR Misc Element-wise addition of vectors of two
signed halfword values, halving each result
with right-shifting by one bit position. Results
may be optionally rounded up in the least-sig-
nificant bit. The most-significant bit of the
32-bit result is extended into the 32 most-sig-
nificant bits of the destination register.

ADDQH.W rd,rs,rt
ADDQH_R.W rd,rs,rt
MIPSDSP-R2 Only

Signed
Word

Signed
Word

GPR Misc Add two signed word values, halving the
result with right-shifting by one bit position.
Result may be optionally rounded up in the
least-significant bit. The most-significant bit
of the 32-bit result is extended into the 32
most-significant bits of the destination regis-
ter.

SUBQ.PH rd,rs,rt
SUBQ_S.PH rd,rs,rt

Pair Q15 Pair Q15 GPR VoIP Element-wise subtraction of two vectors of
Q15 fractional values, with optional satura-
tion. The most-significant bit of the 32-bit
result is extended into the 32 most-significant
bits of the destination register.

SUBQ_S.W rd,rs,rt Q31 Q31 GPR Audio Subtraction with Q31 fractional values, with
saturation.The most-significant bit of the
32-bit result is extended into the 32 most-sig-
nificant bits of the destination register.

SUBU.QB rd,rs,rt
SUBU_S.QB rd,rs,rt

Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR Video Element-wise subtraction of unsigned byte
values, with optional unsigned saturation. The
most-significant bit of the 32-bit result is
extended into the 32 most-significant bits of
the destination register.

SUBUH.QB rd,rs,rt
SUBUH_R.QB rd,rs,rt
MIPSDSP-R2 Only

Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR Video Element-wise subtraction of unsigned byte
values, shifting the results right one bit posi-
tion (halving). The results may be optionally
rounded up by adding 1 to each result at the
most-significant discarded bit position before
shifting. The most-significant bit of the 32-bit
result is extended into the 32 most-significant
bits of the destination register.

SUBU.PH rd,rs,rt
SUBU_S.PH rd,rs,rt
MIPSDSP-R2 Only

Pair
Unsigned
Halfword

Pair
Unsigned
Halfword

GPR Video Element-wise subtraction of vectors of two
unsigned halfword values, with optional satu-
ration on overflow. The most-significant bit of
the 32-bit result is extended into the 32
most-significant bits of the destination regis-
ter.

Table 4.1 List of Instructions in MIPS® DSP Module in Arithmetic Sub-class (Continued)

Instruction
Mnemonics

Input
Data Type

Output
Data Type

 Writes
GPR / ac /

DSPControl App Description

4.1 The MIPS® DSP Module Instruction Summary

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 49

SUBQH.PH rd,rs,rt
SUBQH_R.PH rd,rs,rt
MIPSDSP-R2 Only

Pair Signed
Halfword

Pair Signed
Halfword

GPR Misc Element-wise subtraction of vectors of two
signed halfword values, halving each result
with right-shifting by one bit position. Results
may be optionally rounded up in the least-sig-
nificant bit. The most-significant bit of the
32-bit result is extended into the 32 most-sig-
nificant bits of the destination register.

SUBQH.W rd,rs,rt
SUBQH_R.W rd,rs,rt
MIPSDSP-R2 Only

Signed
Word

Signed
Word

GPR Misc Subtract two signed word values, halving the
result with right-shifting by one bit position.
Result may be optionally rounded up in the
least-significant bit. The most-significant bit
of the 32-bit result is extended into the 32
most-significant bits of the destination regis-
ter.

ADDSC rd,rs,rt Signed
Word

Signed
Word

GPR &
DSPControl

Audio Add two signed words and set the carry bit in
the DSPControl register. The most-significant
bit of the 32-bit result is extended into the 32
most-significant bits of the destination regis-
ter.

ADDWC rd,rs,rt Signed
Word

Signed
Word

GPR Audio Add two signed words with the carry bit from
the DSPControl register. The most-significant
bit of the 32-bit result is extended into the 32
most-significant bits of the destination regis-
ter.

MODSUB rd,rs,rt Signed
Word

Signed
Word

GPR Misc Modulo addressing support: update a byte
index into a circular buffer by subtracting a
specified decrement (in bytes) from the index,
resetting the index to a specified value if the
subtraction results in underflow.

RADDU.W.QB rd,rs Quad
Unsigned
Byte

Unsigned
Word

GPR Misc Reduce (add together) the 4 right-most
unsigned byte values in rs, zero-extending the
sum to 64 bits before writing to the destination
register. For example, if all 4 input values are
0x80 (decimal 128), then the result in rd is
0x200 (decimal 512).

ABSQ_S.QB rd,rt
MIPSDSP-R2 Only

Quad Q7 Quad Q7 GPR Misc Find the absolute value of each of four Q7
fractional byte elements in the source register,
saturating values of -1.0 to the maximum posi-
tive Q7 fractional value. The most-significant
bit of the 32-bit result is extended into the 32
most-significant bits of the destination regis-
ter.

Table 4.1 List of Instructions in MIPS® DSP Module in Arithmetic Sub-class (Continued)

Instruction
Mnemonics

Input
Data Type

Output
Data Type

 Writes
GPR / ac /

DSPControl App Description

 MIPS® DSP Module Instruction Summary

50 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

ABSQ_S.PH rd,rt Pair Q15 Pair Q15 GPR Misc Find the absolute value of each of two Q15
fractional halfword elements in the source reg-
ister, saturating values of -1.0 to the maximum
positive Q15 fractional value. The most-sig-
nificant bit of the 32-bit result is extended into
the 32 most-significant bits of the destination
register.

ABSQ_S.W rd,rt Q31 Q31 GPR Misc Find the absolute value of the Q31 fractional
element in the source register, saturating the
value -1.0 to the maximum positive Q31 frac-
tional value. The most-significant bit of the
32-bit result is extended into the 32 most-sig-
nificant bits of the destination register.

PRECR.QB.PH rd,rs,rt
MIPSDSP-R2 Only

Two Pair
Integer
Halfwords

Four Inte-
ger Bytes

GPR Misc Reduce the precision of four signed integer
halfword input values by discarding the eight
most-significant bits from each to create four
signed integer byte output values. The two
right-most halfword values from register rs are
used to create the two left-most byte results,
allowing an endian-agnostic implementation.
The most-significant bit of the 32-bit result is
extended into the 32 most-significant bits of
the destination register.

PRECRQ.QB.PH rd,rs,rt 2 Pair Q15 Quad Byte GPR Misc Reduce the precision of four Q15 fractional
input values by truncation to create four Q7
fractional output values. The two Q15 values
from register rs are written to the two
left-most byte results, allowing an
endian-agnostic implementation. The
most-significant bit of the 32-bit result is
extended into the 32 most-significant bits of
the destination register.

PRECR_SRA.PH.W
rt,rs,sa
PRECR_SRA_R.PH.W
rt,rs,sa
MIPSDSP-R2 Only

Two Inte-
ger Words

Pair Integer
Halfword

GPR Misc Reduce the precision of two integer word val-
ues to create a pair of integer halfword values.
Each word value is first shifted right arithmeti-
cally by sa bit positions, and optionally
rounded up by adding 1 at the most-significant
discard bit position. The 16 least-significant
bits of each word are then written to the corre-
sponding halfword elements of destination
register rt. The most-significant bit of the
32-bit result is extended into the 32 most-sig-
nificant bits of the destination register.

Table 4.1 List of Instructions in MIPS® DSP Module in Arithmetic Sub-class (Continued)

Instruction
Mnemonics

Input
Data Type

Output
Data Type

 Writes
GPR / ac /

DSPControl App Description

4.1 The MIPS® DSP Module Instruction Summary

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 51

PRECRQ.PH.W rd,rs,rt
PRECRQ_RS.PH.W
rd,rs,rt

2 Q31 Pair half-
word

GPR Misc Reduce the precision of two Q31 fractional
input values by truncation to create two Q15
fractional output values. The Q15 value
obtained from register rs creates the left-most
result, allowing an endian-agnostic implemen-
tation. Results may be optionally rounded up
and saturated before being written to the desti-
nation. The most-significant bit of the 32-bit
result is extended into the 32 most-significant
bits of the destination register.

PRECRQU_S.QB.PH
rd,rs,rt

2 Pair Q15 Quad
Unsigned
Byte

GPR Misc Reduce the precision of four Q15 fractional
values by saturating and truncating to create
four unsigned byte values. The most-signifi-
cant bit of the 32-bit result is extended into the
32 most-significant bits of the destination reg-
ister.

PRECEQ.W.PHL rd,rt
PRECEQ.W.PHR rd,rt

Q15 Q31 GPR Misc Expand the precision of a Q15 fractional value
to create a Q31 fractional value by adding 16
least-significant bits to the input value. The
most-significant bit of the 32-bit result is
extended into the 32 most-significant bits of
the destination register.

PRECEQU.PH.QBL rd,rt
PRECEQU.PH.QBR rd,rt
PRECEQU.PH.QBLA
rd,rt
PRECEQU.PH.QBRA
rd,rt

Unsigned
Byte

Q15 GPR Video Expand the precision of two unsigned byte
values by prepending a sign bit and adding
seven least-significant bits to each to create
two Q15 fractional values. The most-signifi-
cant bit of the 32-bit result is extended into the
32 most-significant bits of the destination reg-
ister.

PRECEU.PH.QBL rd,rt
PRECEU.PH.QBR rd,rt
PRECEU.PH.QBLA rd,rt
PRECEU.PH.QBRA rd,rt

Unsigned
Byte

Unsigned
halfword

GPR Video Expand the precision of two unsigned byte
values by adding eight least-significant bits to
each to create two unsigned halfword values.
The most-significant bit of the 32-bit result is
extended into the 32 most-significant bits of
the destination register.

Table 4.1 List of Instructions in MIPS® DSP Module in Arithmetic Sub-class (Continued)

Instruction
Mnemonics

Input
Data Type

Output
Data Type

 Writes
GPR / ac /

DSPControl App Description

 MIPS® DSP Module Instruction Summary

52 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Table 4.2 List of Instructions in MIPS® DSP Module in GPR-Based Shift Sub-class

Instruction
Mnemonics

Input
Data Type

Output
Data Type

 Writes
GPR / ac /

DSPControl App Description

SHLL.QB rd, rt, sa
SHLLV.QB rd, rt, rs

Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR Misc Element-wise left shift of eight signed bytes.
Zeros are inserted into the bits emptied by the
shift. The shift amount is specified by the three
least-significant bits of sa or rs. The most-sig-
nificant bit of the 32-bit result is extended into
the 32 most-significant bits of the destination
register.

SHLL.PH rd, rt, sa
SHLLV.PH rd, rt, rs
SHLL_S.PH rd, rt, sa
SHLLV_S.PH rd, rt, rs

Pair Signed
halfword

Pair Signed
halfword

GPR Misc Element-wise left shift of two signed half-
words, with optional saturation on overflow.
Zeros are inserted into the bits emptied by the
shift. The shift amount is specified by the four
least-significant bits of sa or rs. The most-sig-
nificant bit of the 32-bit result is extended into
the 32 most-significant bits of the destination
register.

SHLL_S.W rd, rt, sa
SHLLV_S.W rd, rt, rs

Signed
Word

Signed
Word

GPR Misc Left shift of a signed word, with saturation on
overflow. Zeros are inserted into the bits emp-
tied by the shift. The shift amount is specified
by the five least-significant bits of sa or rs.
The most-significant bit of the 32-bit result is
extended into the 32 most-significant bits of
the destination register.
Use the MIPS32 instructions SLL or SLLV for
non-saturating shift operations.

SHRL.QB rd, rt, sa
SHRLV.QB rd, rt, rs

Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR Video Element-wise logical right shift of four byte
values. Zeros are inserted into the bits emptied
by the shift. The shift amount is specified by
the three least-significant bits of sa or rs. The
most-significant bit of the 32-bit result is
extended into the 32 most-significant bits of
the destination register.

SHRL.PH rd, rt, sa
SHRLV.PH rd, rt, rs
MIPSDSP-R2 Only

Pair Half-
words

Pair Half-
words

GPR Video Element-wise logical right shift of two half-
word values. Zeros are inserted into the bits
emptied by the shift. The shift amount is spec-
ified by the four least-significant bits of rs or
the sa argument. The most-significant bit of
the 32-bit result is extended into the 32
most-significant bits of the destination regis-
ter.

4.1 The MIPS® DSP Module Instruction Summary

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 53

SHRA.QB rd,rt,sa
SHRA_R.QB rd,rt,sa
SHRAV.QB rd,rt,rs
SHRAV_R.QB rd,rt,rs
MIPSDSP-R2 Only

Quad Byte Quad Byte GPR Misc Element-wise arithmetic (sign preserving)
right shift of four byte values. Optional round-
ing may be performed, adding 1 at the
most-significant discard bit position. The shift
amount is specified by the three least-signifi-
cant bits of rs or by the argument sa. The
most-significant bit of the 32-bit result is
extended into the 32 most-significant bits of
the destination register.

SHRA.PH rd, rt, sa
SHRAV.PH rd, rt, rs
SHRA_R.PH rd, rt, sa
SHRAV_R.PH rd, rt, rs

Pair Signed
halfword

Pair Signed
halfword

GPR Misc Element-wise arithmetic (sign preserving)
right shift of two halfword values. Optionally,
rounding may be performed, adding 1 at the
most-significant discard bit position. The shift
amount is specified by the four least-signifi-
cant bits of rs or by the argument sa. The
most-significant bit of the 32-bit result is
extended into the 32 most-significant bits of
the destination register.

SHRA_R.W rd, rt, sa
SHRAV_R.W rd, rt, rs

Signed
Word

Signed
Word

GPR Video Arithmetic (sign preserving) right shift of a
word value. Optionally, rounding may be per-
formed, adding 1 at the most-significant dis-
card bit position. The shift amount is specified
by the five least-significant bits of rs or the
argument sa. The most-significant bit of the
32-bit result is extended into the 32 most-sig-
nificant bits of the destination register.

Table 4.3 List of Instructions in MIPS® DSP Module in Multiply Sub-class

Instruction
Mnemonics

Input
Data Type

Output
Data Type

 Writes
GPR / ac /

DSPControl App Description

MULEU_S.PH.QBL
rd,rs,rt
MULEU_S.PH.QBR
rd,rs,rt

Pair
Unsigned
Byte, Pair
Unsigned
Halfword,

Pair
Unsigned
Halfword

GPR Still
Image

Element-wise multiplication of two unsigned
byte values from register rs with two unsigned
halfword values from register rt. Each 24-bit
product is truncated to 16 bits, with saturation
if the product exceeds 0xFFFF, and written to
the corresponding element in the destination
register. The most-significant bit of the 32-bit
result is extended into the 32 most-significant
bits of the destination register.

Table 4.2 List of Instructions in MIPS® DSP Module in GPR-Based Shift Sub-class (Continued)

Instruction
Mnemonics

Input
Data Type

Output
Data Type

 Writes
GPR / ac /

DSPControl App Description

 MIPS® DSP Module Instruction Summary

54 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

MULQ_RS.PH rd,rs,rt Pair Q15 Pair Q15 GPR Misc Element-wise multiplication of two Q15 frac-
tional values to create two Q15 fractional
results, with rounding and saturation. After
multiplication, each 32-bit product is rounded
up by adding 0x00008000, then truncated to
create a Q15 fractional value that is written to
the destination register. If both multiplicands
are -1.0, the result is saturated to the maximum
positive Q15 fractional value.
To stay compliant with the base architecture,
this instruction leaves the base HI-LO pair
UNPREDICTABLE after the operation. The
other DSP Module accumulators ac1-ac3 are
untouched. The most-significant bit of the
32-bit result is extended into the 32 most-sig-
nificant bits of the destination register.

MULEQ_S.W.PHL
rd,rs,rt
MULEQ_S.W.PHR
rd,rs,rt

Pair Q15 Q31 GPR VoIP Multiplication of two Q15 fractional values,
shifting the product left by 1 bit to create a
Q31 fractional result. If both multiplicands are
-1.0 the result is saturated to the maximum
positive Q31 value.
To stay compliant with the base architecture,
this instruction leaves the base HI-LO pair
UNPREDICTABLE after the operation. The
other DSP Module accumulators ac1-ac3
must be untouched. The most-significant bit of
the 32-bit result is extended into the 32
most-significant bits of the destination regis-
ter.

DPAU.H.QBL
DPAU.H.QBR

Pair Bytes Halfword Acc Image Dot-product accumulation. Two pairs of corre-
sponding unsigned byte elements from source
registers rt and rs are separately multiplied,
and the two 16-bit products are then summed
together. The summed products are then added
to the accumulator.

DPSU.H.QBL
DPSU.H.QBR

Pair Bytes Halfword Acc Image Dot-product subtraction. Two pairs of corre-
sponding unsigned byte elements from source
registers rt and rs are separately multiplied,
and the two 16-bit products are then summed
together. The summed products are then sub-
tracted from the accumulator.

DPA.W.PH ac,rs,rt
MIPSDSP-R2 Only

Pair Signed
Halfword

Pair Signed
Halfword

ac VoIP /
SoftM

Dot-product accumulation. The two pairs of
corresponding signed integer halfword values
from the two right-most halfwords of source
registers rt and rs are separately multiplied to
create two separate integer word products. The
products are then summed and accumulated
into the specified accumulator.

Table 4.3 List of Instructions in MIPS® DSP Module in Multiply Sub-class (Continued)

Instruction
Mnemonics

Input
Data Type

Output
Data Type

 Writes
GPR / ac /

DSPControl App Description

4.1 The MIPS® DSP Module Instruction Summary

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 55

DPAX.W.PH ac,rs,rt
MIPSDSP-R2 Only

Pair Signed
Halfword

Double-
word

ac VoIP Dot-product with crossed operands and accu-
mulation. The two crossed pairs of signed inte-
ger halfword values from the two right-most
halfwords of source registers rt and rs are sep-
arately multiplied to create two separate inte-
ger word products. The products are then
summed and accumulated into the specified
accumulator.

DPAQ_S.W.PH ac,rs,rt Pair Q15 Q32.31 ac VoIP /
SoftM

Dot-product accumulation. Two pairs of corre-
sponding Q15 fractional values from source
registers rt and rs are separately multiplied and
left-shifted 1 bit to create two Q31 fractional
products. For each product, if both multipli-
cands are equal to -1.0 the product is clamped
to the maximum positive Q31 fractional value.
The products are then summed, and the sum is
then sign extended to the width of the accumu-
lator and accumulated into the specified accu-
mulator.
This instruction may be used to compute the
imaginary component of a 16-bit complex
multiplication operation after first swapping
the operands to place them in the correct order.

DPAQX_S.W.PH ac,rs,rt
MIPSDSP-R2 Only

Pair Signed
Halfword

Q32.31 ac VoIP Dot-product with saturating fractional multi-
plication and using crossed operands, with a
final accumulation. The two crossed pairs of
signed fractional halfword values from the two
right-most halfwords of source registers rt and
rs are separately multiplied to create two sepa-
rate fractional word products. The products are
then summed and accumulated into the speci-
fied accumulator.

DPAQX_SA.W.PH
ac,rs,rt
MIPSDSP-R2 Only

Pair Signed
Halfword

Q32.31 ac VoIP Dot-product with saturating fractional multi-
plication and using crossed operands, with a
final saturating accumulation. The two crossed
pairs of signed fractional halfword values from
the two right-most halfwords of source regis-
ters rt and rs are separately multiplied to create
two separate fractional word products. The
products are then summed and accumulated
with saturation into the specified accumulator.

DPS.W.PH ac,rs,rt
MIPSDSP-R2 Only

Pair Signed
Halfword

Double-
word

ac VoIP /
SoftM

Dot-product subtraction. The two pairs of cor-
responding signed integer halfword values
from the two right-most halfwords of source
registers rt and rs are separately multiplied to
create two separate integer word products. The
products are then summed and subtracted from
the specified accumulator.

Table 4.3 List of Instructions in MIPS® DSP Module in Multiply Sub-class (Continued)

Instruction
Mnemonics

Input
Data Type

Output
Data Type

 Writes
GPR / ac /

DSPControl App Description

 MIPS® DSP Module Instruction Summary

56 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

DPSX.W.PH ac,rs,rt
MIPSDSP-R2 Only

Pair Signed
Halfword

Q32.31 ac VoIP Dot-product with crossed operands and sub-
traction. The two crossed pairs of signed inte-
ger halfword values from the two right-most
halfwords of source registers rt and rs are sep-
arately multiplied to create two separate inte-
ger word products. The products are then
summed and subtracted into the specified
accumulator.

DPSQ_S.W.PH ac,rs,rt Pair Q15 Q32.31 ac VoIP /
SoftM

Dot-product subtraction. Two pairs of corre-
sponding Q15 fractional values from source
registers rt and rs are separately multiplied and
left-shifted 1 bit to create two Q31 fractional
products. For each product, if both multipli-
cands are equal to -1.0 the product is clamped
to the maximum positive Q31 fractional value.
The products are then summed, and the sum is
then sign extended to the width of the accumu-
lator and subtracted from the specified accu-
mulator.
This instruction may be used to compute the
imaginary component of a 16-bit complex
multiplication operation after first swapping
the operands to place them in the correct order.

DPSQX_S.W.PH ac,rs,rt
MIPSDSP-R2 Only

Pair Signed
Halfword

Q32.31 ac VoIP Dot-product with saturating fractional multi-
plication and using crossed operands, with a
final subtraction. The two crossed pairs of
signed fractional halfword values from the two
right-most halfwords of source registers rt and
rs are separately multiplied to create two sepa-
rate fractional word products. The products are
then summed and subtracted from the speci-
fied accumulator.

DPSQX_SA.W.PH ac,rs,rt
MIPSDSP-R2 Only

Pair Signed
Halfword

Q32.31 ac VoIP Dot-product with saturating fractional multi-
plication and using crossed operands, with a
final saturating subtraction. The two crossed
pairs of signed fractional halfword values from
the two right-most halfwords of source regis-
ters rt and rs are separately multiplied to create
two separate fractional word products. The
products are then summed and subtracted with
saturation into the specified accumulator.

Table 4.3 List of Instructions in MIPS® DSP Module in Multiply Sub-class (Continued)

Instruction
Mnemonics

Input
Data Type

Output
Data Type

 Writes
GPR / ac /

DSPControl App Description

4.1 The MIPS® DSP Module Instruction Summary

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 57

MULSAQ_S.W.PH
ac,rs,rt

Pair Q15 Q32.31 ac SoftM Complex multiplication step. Performs ele-
ment-wise fractional multiplication of the two
right-most Q15 fractional values from regis-
ters rt and rs, subtracting one product from the
other to create a Q31 fractional result that is
added to accumulator ac. The intermediate
products are saturated to the maximum posi-
tive Q31 fractional value if both multiplicands
are equal to -1.0.

DPAQ_SA.L.W ac,rs,rt Q31 Q63 ac Audio Fractional multiplication of two Q31 fractional
values to produce a Q63 fractional product. If
both multiplicands are -1.0 the product is satu-
rated to the maximum positive Q63 fractional
value. The product is then added to accumula-
tor ac. If the addition results in overflow or
underflow, the accumulator is saturated to the
maximum positive or minimum negative
value.

DPSQ_SA.L.W ac,rs,rt Q31 Q63 ac Audio Fractional multiplication of two Q31 fractional
values to produce a Q63 fractional product. If
both multiplicands are -1.0 the product is satu-
rated to the maximum positive Q63 fractional
value. The product is then subtracted from
accumulator ac. If the addition results in over-
flow or underflow, the accumulator is satu-
rated to the maximum positive or minimum
negative value.

MAQ_S.W.PHL ac,rs,rt
MAQ_S.W.PHR ac,rs,rt

Q15 Q32.31 ac SoftM Fractional multiply-accumulate. The product
of two Q15 fractional values is sign extended
to the width of the accumulator and added to
accumulator ac. The intermediate product is
saturated to the maximum positive Q31 frac-
tional value if both multiplicands are equal to
-1.0.

MAQ_SA.W.PHL ac,rs,rt
MAQ_SA.W.PHR ac,rs,rt

Q15 Q31 ac speech Fractional multiply-accumulate with satura-
tion after accumulation. The product of two
Q15 fractional values is sign extended to the
width of the accumulator and added to accu-
mulator ac. The intermediate product is satu-
rated to the maximum positive Q31 fractional
value if both multiplicands are equal to -1.0.
If the accumulation results in overflow or
underflow, the accumulator value is saturated
to the maximum positive or minimum negative
Q31 fractional value.

Table 4.3 List of Instructions in MIPS® DSP Module in Multiply Sub-class (Continued)

Instruction
Mnemonics

Input
Data Type

Output
Data Type

 Writes
GPR / ac /

DSPControl App Description

 MIPS® DSP Module Instruction Summary

58 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

MUL.PH rd,rs,rt
MUL_S.PH rd,rs,rt
MIPSDSP-R2 Only

Pair Signed
Halfword

Pair Signed
Halfword

GPR speech Element-wise multiplication of two vectors of
signed integer halfwords, writing the 16
least-significant bits of each 32-bit product to
the corresponding element of the destination
register. Optional saturation clamps each
16-bit result to the maximum positive or mini-
mum negative value if the product cannot be
accurately represented in 16 bits. The
most-significant bit of the 32-bit result is
extended into the 32 most-significant bits of
the destination register.

MULQ_S.PH rd,rs,rt
MIPSDSP-R2 Only

Pair Q15 Pair Q15 GPR speech Element-wise multiplication of two vectors of
Q15 fractional halfwords, writing the 16
most-significant bits of each Q31-format prod-
uct to the corresponding element of the desti-
nation register. Each result is saturated to the
maximum positive Q15 value if both multipli-
cands were equal to -1.0 (0x8000 hexadeci-
mal). The most-significant bit of the 32-bit
result is extended into the 32 most-significant
bits of the destination register.

MULQ_S.W rd,rs,rt
MIPSDSP-R2 Only

Q31 Q31 GPR speech Fractional multiplication of two Q31 format
words to create a Q63 format result that is
truncated by discarding the 32 least-significant
bits before being sign-extended to 64 bits and
written to the destination register. The result is
saturated to the maximum positive Q31 value
if both multiplicands were equal to -1.0
(0x80000000 hexadecimal) before being
sign-extended.

MULQ_RS.W rd,rs,rt
MIPSDSP-R2 Only

Q31 Q31 GPR speech Multiplication of two Q31 fractional words to
create a Q63-format intermediate product that
is rounded up by adding a 1 at bit position 31.
The 32 most-significant bits of the rounded
result are then sign-extended to 64 bits and
written to the destination register. If both mul-
tiplicands were equal to -1.0 (0x80000000
hexadecimal), rounding is not performed and
the result is clamped to the maximum positive
Q31 value before being sign-extended and
written to the destination.

MULSA.W.PH ac,rs,rt
MIPSDSP-R2 Only

Pair Signed
Halfword

Double-
word

ac speech Element-wise multiplication of two vectors of
signed integer halfwords to create two 32-bit
word intermediate results. The right intermedi-
ate result is subtracted from the left intermedi-
ate result, and the resulting sum is
accumulated into the specified accumulator.

Table 4.3 List of Instructions in MIPS® DSP Module in Multiply Sub-class (Continued)

Instruction
Mnemonics

Input
Data Type

Output
Data Type

 Writes
GPR / ac /

DSPControl App Description

4.1 The MIPS® DSP Module Instruction Summary

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 59

MADD ac,rs,rt
MADDU ac,rs,rt
MSUB ac,rs,rt
MSUBU ac,rs,rt
MULT ac,rs,rt
MULTU ac,rs,rt

Word Double-
word

ac Misc Allows these instructions to target accumula-
tors ac1, ac2, and ac3 (in addition to the orig-
inal ac0 destination).

Table 4.4 List of Instructions in MIPS® DSP Module in Bit/ Manipulation Sub-class

Instruction
Mnemonics

Input
Data Type

Output
Data Type

 Writes
GPR / ac /

DSPControl App Description

BITREV rd,rt Unsigned
Word

Unsigned
Word

GPR Audio /
FFT

Reverse the order of the 16 least-significant
bits of register rt, writing the result to register
rd. The 48 most-significant bits are set to zero.

INSV rt,rs Unsigned
Word

Unsigned
Word

GPR Misc Like the Release 2 INS instruction, except that
the 5 bits for pos and size values are obtained
from the DSPControl register. size =
scount[14:10], and pos = pos[20:16].

REPL.QB rd,imm
REPLV.QB rd,rt

Byte Quad Byte GPR Video /
Misc

Replicate a signed byte value into the four
right-most byte elements of register rd. The
byte value is given by the 8 least-significant
bits of the specified 10-bit immediate constant
or by the 8 least-significant bits of register rt.
The most-significant bit of the 32-bit result is
extended into the 32 most-significant bits of
the destination register.

REPL.PH rd,imm
REPLV.PH rd,rt

Signed
halfword

Pair Signed
halfword

GPR Misc Replicate a signed halfword value into the two
right-most halfword elements of register rd.
The halfword value is given by the 16
least-significant bits of register rt, or by the
value of the 10-bit immediate constant,
sign-extended to 16 bits. The most-significant
bit of the 32-bit result is extended into the 32
most-significant bits of the destination regis-
ter.

Table 4.3 List of Instructions in MIPS® DSP Module in Multiply Sub-class (Continued)

Instruction
Mnemonics

Input
Data Type

Output
Data Type

 Writes
GPR / ac /

DSPControl App Description

 MIPS® DSP Module Instruction Summary

60 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Table 4.5 List of Instructions in MIPS® DSP Module in Compare-Pick Sub-class

Instruction
Mnemonics

Input
Data Type

Output
Data Type

 Writes
GPR / ac /

DSPControl App Description

CMPU.EQ.QB rs,rt
CMPU.LT.QB rs,rt
CMPU.LE.QB rs,rt

Quad
Unsigned
Byte

Quad
Unsigned
Byte

DSPControl Video Element-wise unsigned comparison of the four
right-most unsigned byte elements of rs and rt,
recording the boolean comparison results to
the four right-most bits in the ccond field of
the DSPControl register.

CMPGDU.EQ.QB rd,rs,rt
CMPGDU.LT.QB rd,rs,rt
CMPGDU.LE.QB rd,rs,rt
MIPSDSP-R2 Only

Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR
DSPControl

Video Element-wise unsigned comparison of the four
right-most unsigned byte elements of rs and rt,
recording the boolean comparison results to
the four least-significant bits of register rd and
to the four right-most bits in the ccond field of
the DSPControl register.

CMPGU.EQ.QB rd,rs,rt
CMPGU.LT.QB rd,rs,rt
CMPGU.LE.QB rd,rs,rt

Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR Video Element-wise unsigned comparison of the four
right-most unsigned byte elements of rs and rt,
recording the boolean comparison results to
the four least-significant bits of register rd.

CMP.EQ.PH rs,rt
CMP.LT.PH rs,rt
CMP.LE.PH rs,rt

Pair Signed
halfword

Pair Signed
halfword

DSPControl Misc Element-wise signed comparison of the two
right-most halfword elements of rs and rt,
recording the boolean comparison results to
the two right-most bits in the ccond field of the
DSPControl register.

PICK.QB rd,rs,rt Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR Video Element-wise selection of unsigned bytes from
the four right-most bytes of registers rs and rt
into the corresponding elements of register rd,
based on the value of the four right-most bits
of the ccond field in the DSPControl register.
If the corresponding ccond bit is 1, the byte
value is copied from register rs, otherwise it is
copied from rt.

PICK.PH rd,rs,rt Pair Signed
halfword

Pair Signed
halfword

GPR Misc Element-wise selection of signed halfwords
from the two right-most halfwords in registers
rs and rt into the corresponding elements of
register rd, based on the value of the two
right-most bits of the ccond field in the
DSPControl register. If the corresponding
ccond bit is 1, the halfword value is copied
from register rs, otherwise it is copied from rt.

APPEND rt,rs,sa
MIPSDSP-R2 Only

Two Words Word GPR Misc Shifts the right-most 32-bit word in register rt
left by sa bits, inserting the sa least-significant
bits from register rs into the bit positions emp-
tied by the shift. The 32-bit result is then
sign-extended to 64 bits and written to register
rt.

4.1 The MIPS® DSP Module Instruction Summary

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 61

PREPEND rt,rs,sa
MIPSDSP-R2 Only

Two Words Word GPR Misc Shifts the right-most 32-bit word in register rt
right by sa bits, inserting the sa least-signifi-
cant bits from register rs into the bit positions
emptied by the shift. The 32-bit result is then
sign-extended to 64 bits and written to register
rt.

BALIGN rt,rs,bp
MIPSDSP-R2 Only

Two Words Word GPR Misc Packs bp bytes from register rt and (4-bp)
bytes from register rs into a 32-bit word,
sign-extends the packed result to 64 bits and
writes it to register rt.

PACKRL.PH rd,rs,rt Pair Signed
Halfwords

Pair Signed
Halfword

GPR Misc Pack two halfwords taken from registers rs
and rt into destination register rd. The
most-significant bit of the 32-bit result is
extended into the 32 most-significant bits of
the destination register.

Table 4.6 List of Instructions in MIPS® DSP Module in Accumulator and DSPControl Access Sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data Type

 Writes
GPR / ac /

DSPControl App Description

EXTR.W rt,ac,shift
EXTR_R.W rt,ac,shift
EXTR_RS.W rt,ac,shift

Q63 Q31 GPR Misc Extract a Q31 fractional value from the 32
least-significant bits of 64-bit accumulator ac.
The accumulator value may be shifted right
logically by shift bits prior to the extraction,
and the extracted value may be optionally
rounded or rounded and saturated before being
sign-extended to 64 bits and written to register
rt.
The shift argument value ranges from 0 to 31.
The optional rounding step adds 1 at the
most-significant bit position discarded by the
shift. The optional saturation clamps the
extracted value to the maximum positive Q31
value if the rounding step results in overflow.
On a MIPS64 processor, this instruction treats
the 128-bit accumulator ac as a 64-bit accu-
mulator, duplicating bit 31 of the accumulator
HI and LO registers into the 32 most-signifi-
cant bits of each.

Table 4.5 List of Instructions in MIPS® DSP Module in Compare-Pick Sub-class (Continued)

Instruction
Mnemonics

Input
Data Type

Output
Data Type

 Writes
GPR / ac /

DSPControl App Description

 MIPS® DSP Module Instruction Summary

62 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

EXTR_S.H rt,ac,shift Q63 Q15 GPR Misc Extract a Q15 fractional value from the 16
least-significant bits of 64-bit accumulator ac.
The accumulator value may be shifted right
logically by shift bits prior to the extraction,
and the extracted value is saturated before
being sign-extended to 64 bits and written to
register rt.
The shift argument value ranges from 0 to 31.
The saturation clamps the extracted value to
the maximum positive or minimum negative
Q15 value if the shifted accumulator value
cannot be represented accurately as a Q15 for-
mat value.
On a MIPS64 processor, this instruction treats
the 128-bit accumulator ac as a 64-bit accu-
mulator, duplicating bit 31 of the accumulator
HI and LO registers into the 32 most-signifi-
cant bits of each.

EXTRV_S.H rt,ac,rs Q63 Q15 GPR Misc Extract a Q15 fractional value from the 16
least-significant bits of 64-bit accumulator ac.
The accumulator value may be shifted right
logically by shift bits prior to the extraction,
and the extracted value is saturated before
being sign-extended to 64 bits and written to
register rt.
The shift argument ranges from 0 to 31 and is
given by the five least-significant bits of regis-
ter rs. The saturation clamps the extracted
value to the maximum positive or minimum
negative Q15 value if the shifted accumulator
value cannot be represented accurately as a
Q15 format value.
On a MIPS64 processor, this instruction treats
the 128-bit accumulator ac as a 64-bit accu-
mulator, duplicating bit 31 of the accumulator
HI and LO registers into the 32 most-signifi-
cant bits of each.

Table 4.6 List of Instructions in MIPS® DSP Module in Accumulator and DSPControl Access Sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data Type

 Writes
GPR / ac /

DSPControl App Description

4.1 The MIPS® DSP Module Instruction Summary

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 63

EXTRV.W rt,ac,rs
EXTRV_R.W rt,ac,rs
EXTRV_RS.W rt,ac,rs

Q63 Q31 GPR Misc Extract a Q31 fractional value from the 32
least-significant bits of 64-bit accumulator ac.
The accumulator value may be shifted right
logically by shift bits prior to the extraction,
and the extracted value may be optionally
rounded or rounded and saturated before being
sign-extended to 64 bits and written to register
rt.
The shift argument value is provided by the
five least-significant bits of rs and ranges from
0 to 31. The optional rounding step adds 1 at
the most-significant bit position discarded by
the shift. The optional saturation clamps the
extracted value to the maximum positive Q31
value if the rounding step results in overflow.
On a MIPS64 processor, this instruction treats
the 128-bit accumulator ac as a 64-bit accu-
mulator, duplicating bit 31 of the accumulator
HI and LO registers into the 32 most-signifi-
cant bits of each.

EXTP rt,ac,size
EXTPV rt,ac,rs
EXTPDP rt,ac,size
EXTPDPV rt,ac,rs

Unsigned
DWord

Unsigned
Word

GPR /
DSPControl

Audio /
Video

Extract a set of size+1 contiguous bits from
accumulator ac, right-justifying and
sign-extending the result to 64 bits before writ-
ing the result to register rt.
The position of the left-most bit to extract is
given by the value of the pos field in the
DSPControl register (see Appendix 7 for
details). The number of bits (less one) to
extract is provided either by the size immedi-
ate operand or by the five least-significant bits
of rs.
The EXTPDP and EXTPDPV instructions also
decrement the pos field by size+1 to facilitate
sequential bit field extraction operations.

SHILO ac,shift
SHILOV ac,rs

Unsigned
DWord

Unsigned
DWord

ac Misc Shift accumulator ac left or right by the speci-
fied number of bits, writing the shifted value
back to the accumulator. The signed shift argu-
ment is specified either by the immediate oper-
and shift or by the six least-significant bits of
register rs. A negative shift argument results
in a right shift of up to 32 bits, and a positive
shift argument results in a left shift of up to 31
bits.
On a MIPS64 processor, this instruction treats
the 128-bit accumulator ac as a 64-bit accu-
mulator, duplicating bit 31 of the accumulator
HI and LO registers into the 32 most-signifi-
cant bits of each.

Table 4.6 List of Instructions in MIPS® DSP Module in Accumulator and DSPControl Access Sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data Type

 Writes
GPR / ac /

DSPControl App Description

 MIPS® DSP Module Instruction Summary

64 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

MTHLIP rs, ac Unsigned
Word

Unsigned
Word

ac /
DSPControl

Audio /
Video

Copy the LO register of the specified accumu-
lator to the HI register, copy rs to LO, and
increment the pos field in DSPcontrol by 32.

MFHI/MFLO/MTHI/MT
LO

Unsigned
Word

Unsigned
Word

GPR/ac Misc Copy an unsigned word to or from the speci-
fied accumulator HI or LO register to the spec-
ified GPR.

WRDSP rt,mask Unsigned
Word

Unsigned
Word

DSPControl Misc Overwrite specific fields in the DSPControl
register using the corresponding bits from the
specified GPR. Bits in the mask argument cor-
respond to specific fields in DSPControl; a
value of 1 causes the corresponding
DSPControl field to be overwritten using the
corresponding bits in rt, otherwise the field is
unchanged.

RDDSP rt,mask Unsigned
Word

Unsigned
Word

GPR Misc Copy the values of specific fields in the
DSPControl register to the specified GPR.
Bits in the mask argument correspond to spe-
cific fields in DSPControl; a value of 1 causes
the corresponding DSPControl field to be
copied to the corresponding bits in rt, other-
wise the bits in rt are unchanged.

Table 4.7 List of Instructions in MIPS® DSP Module in Indexed-Load Sub-class

Instruction
Mnemonics

Input
Data Type

Output
Data Type

 Writes
GPR / ac /

DSPControl App Description

LBUX rd,index(base) - Unsigned
byte

GPR Misc Index byte load from address base+(index).
Loads the byte in the low-order bits of the des-
tination register and zero-extends the result.

LHX rd,index(base) - Signed
halfword

GPR Misc Index halfword load from address
base+(index). Loads the halfword in the
low-order bits of the register and sign-extends
the result.

LWX rd, index(base) - Signed
Word

GPR Misc Indexed word load from address base+(index).
The most-significant bit of the word result is
extended into the 32 most-significant bits of
the destination.

LDX rd, index(base) - Double-
word

GPR Misc Load a doubleword from address
base+(index).

Table 4.6 List of Instructions in MIPS® DSP Module in Accumulator and DSPControl Access Sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data Type

 Writes
GPR / ac /

DSPControl App Description

4.1 The MIPS® DSP Module Instruction Summary

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 65

Table 4.8 List of Instructions in MIPS® DSP Module in Branch Sub-class

Instruction
Mnemonics

Input
Data Type

Output
Data Type

 Writes
GPR / ac /

DSPControl App Description

BPOSGE32 offset
BPOSGE32C offset

- - - Audio /
Video

Branch if the pos value is greater than or equal
to integer 32.

 MIPS® DSP Module Instruction Summary

66 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Chapter 5

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 67

Instruction Encoding

5.1 Instruction Bit Encoding

This chapter describes the bit encoding tables used for the MIPS DSP Module. Table 5.1 describes the meaning of the
symbols used in the tables. These tables only list the instruction encoding for the MIPS DSP Module instructions. See
Volumes I and II of this multi-volume set for a full encoding of all instructions.

Figure 5.1 shows a sample encoding table and the instruction opcode field this table encodes. Bits 31..29 of the
opcode field are listed in the left-most columns of the table. Bits 28..26 of the opcode field are listed along the top-
most rows of the table. Both decimal and binary values are given, with the first three bits designating the row, and the
last three bits designating the column.

An instruction’s encoding is found at the intersection of a row (bits 31..29) and column (bits 28..26) value. For
instance, the opcode value for the instruction labelled EX1 is 33 (decimal, row and column), or 011011 (binary). Sim-
ilarly, the opcode value for EX2 is 64 (decimal), or 110100 (binary).

Figure 5.1 Sample Bit Encoding Table

31 26 25 21 20 16 15 0

opcode rs rt immediate

6 5 5 16

opcode bits 28..26

0 1 2 3 4 5 6 7

bits 31..29 000 001 010 011 100 101 110 111

0 000

1 001

2 010

3 011 EX1

4 100

5 101

6 110 EX2

7 111

Decimal encoding of
opcode (28..26)

Binary encoding of
opcode (28..26)

Decimal encoding of
opcode (31..29)

Binary encoding of
opcode (31..29)

 Instruction Encoding

68 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Table 5.1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

 Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction must cause a Reserved Instruction Exception.

 (Also italic field name.) Operation or field codes marked with this symbol denotes a field class.
The instruction word must be further decoded by examining additional tables that show values for
another instruction field.

 Operation or field codes marked with this symbol represent a valid encoding for a higher-order
MIPS ISA level. Executing such an instruction must cause a Reserved Instruction Exception.

 Operation or field codes marked with this symbol represent instructions which are not legal if the
processor is configured to be backward compatible with MIPS32 processors. If the processor is
executing in Kernel Mode, Debug Mode, or 64-bit instructions are enabled, execution proceeds
normally. In other cases, executing such an instruction must cause a Reserved Instruction Excep-
tion (non-coprocessor encoding or coprocessor instruction encoding for a coprocessor to which
access is allowed) or a Coprocessor Unusable Exception (coprocessor instruction encoding for a
coprocessor to which access is not allowed).

 Operation or field codes marked with this symbol are available to licensed MIPS partners. To
avoid multiple conflicting instruction definitions, MIPS Technologies will assist the partner in
selecting appropriate encoding if requested by the partner. The partner is not required to consult
with MIPS Technologies when one of these encoding is used. If no instruction is encoded with this
value, executing such an instruction must cause a Reserved Instruction Exception (SPECIAL2
encoding or coprocessor instruction encoding for a coprocessor to which access is allowed) or a
Coprocessor Unusable Exception (coprocessor instruction encoding for a coprocessor to which
access is not allowed).

 Field codes marked with this symbol represent an EJTAG support instruction and implementation
of this encoding is optional for each implementation. If the encoding is not implemented, execut-
ing such an instruction must cause a Reserved Instruction Exception. If the encoding is imple-
mented, it must match the instruction encoding as shown in the table.

 Operation or field codes marked with this symbol are reserved for MIPS Modules/Application
Specific Extensions. If the Module/ASE is not implemented, executing such an instruction must
cause a Reserved Instruction Exception.

 Operation or field codes marked with this symbol are obsolete and will be removed from a future
revision of the MIPS64 ISA. Software should avoid using these operation or field codes.

 Operation or field codes marked with this symbol are valid for Release 2 implementations of the
architecture. Executing such an instruction in a Release 1 implementation must cause a Reserved
Instruction Exception.

5.1 Instruction Bit Encoding

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 69

The instructions in the MIPS DSP Module are encoded in the SPECIAL3 space under the opcode map as shown in
Table 5.2 and Table 5.3. The sub-encoding for individual instructions defined by the MIPS DSP Module are shown in
the following tables in this chapter.

Each MIPS DSP Module instruction sub-class in SPECIAL3 that needs further decoding, is done via the op field as
shown in Figure 5.2.

Figure 5.2 SPECIAL3 Encoding of ADDU.QB/CMPU.EQ.QB/ADDU.OB/CMPU.EQ.OB Instruction

Table 5.2 MIPS64® DSP Module Encoding of Opcode Field

opcode bits 28..26

0 1 2 3 4 5 6 7

bits 31..29 000 001 010 011 100 101 110 111

0 000 REGIMM 

1 001

2 010

3 011 SPECIAL3 

4 100

5 101

6 110

7 111

Table 5.3 MIPS64® SPECIAL31 Encoding of Function Field for DSP Module Instructions2

1. Release 2 of the Architecture added the SPECIAL3 opcode. Implementations of Release 1 of the Architecture signaled a
Reserved Instruction Exception for this opcode and all function field values shown above.

2. The empty slots in this table are used by Release 2 instructions not shown here, refer to Volume II of this multi-volume specifi-
cation for these instructions.

function bits 2..0

0 1 2 3 4 5 6 7

bits 5..3 000 001 010 011 100 101 110 111

0 000

1 001 LX   INSV DINSV  

2 010 ADDU.QB  CMPU.EQ.QB  ABSQ_S.PH  SHLL.QB  ADDU.OB  CMPU.EQ.OB  ABSQ_S.QH  SHLL.OB 

3 011 ADDUH.QB        

4 100      

5 101        

6 110 DPA.W.PH  APPEND    DPAQ.W.QH    

7 111 EXTR.W    DEXTR.W    

Table 5.4 MIPS64® REGIMM Encoding of rt Field

rt bits 18..16

0 1 2 3 4 5 6 7

bits 20..19 000 001 010 011 100 101 110 111

0 00    

1 01  

2 10    

3 11     BPOSGE32 BPOSGE64 

 Instruction Encoding

70 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Sub-classes

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd op
ADDU.QB

01 0000

6 5 5 5 5 6

Table 5.5 MIPS64® ADDU.QB Encoding of op Field1

1. The op field is decoded to identify the final instructions. Entries in this table with no mnemonic are reserved for future use by
MIPS Technologies and may or may not cause a Reserved Instruction exception.

op bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 ADDU.QB SUBU.QB   ADDU_S.QB SUBU_S.QB
MULEU_S.PH.Q

BL
MULEU_S.PH.Q

BR

1 01 ADDU.PH SUBU.PH ADDQ.PH SUBQ.PH ADDU_S.PH SUBU_S.PH ADDQ_S.PH SUBQ_S.PH

2 10 ADDSC ADDWC MODSUB  RADDU.W.QB  ADDQ_S.W SUBQ_S.W

3 11    
MULEQ_S.W.PH

L
MULEQ_S.W.PH

R MULQ_S.PH MULQ_RS.PH

Table 5.6 MIPS64® ADDU.OB Encoding of the op Field

op bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 ADDU.OB SUBU.OB   ADDU_S.OB SUBU_S.OB
MULEU_S.QH.O

BL
MULEU_S.QH.O

BR

1 01 ADDUH.QH SUBU.QH ADDQ.QH SUBQ.QH ADDU_S.QH SUBU_S.QH ADDQ_S.QH SUBQ_S.QH

2 10   ADDQ.PW SUBQ.PW RADDU.L.OB  ADDQ_S.PW SUBQ_S.PW

3 11  SUBUH.OB  SUBUH_R.OB
MULEQ_S.PW.Q

HL
MULEQ_S.PW.Q

HR  MULQ_RS.QH

Table 5.7 MIPS64® CMPU.EQ.QB Encoding of op Field

op bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 CMPU.EQ.QB CMPU.LT.QB CMPU.LE.QB PICK.QB CMPGU.EQ.QB CMPGU.LT.QB CMPGU.LE.QB 

1 01 CMP.EQ.PH CMP.LT.PH CMP.LE.PH PICK.PH PRECRQ.QB.PH PRECR.QB.PH PACKRL.PH
PRECRQU_S.Q

B.PH

2 10     PRECRQ.PH.W
PRECRQ_RS.P

H.W  

3 11
CMPGDU.EQ.Q

B CMPGDU.LT.QB CMPGDU.LE.QB   
PRECR_SRA.P

H.W
PRECR_SRA_R.

PH.W

5.1 Instruction Bit Encoding

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 71

Figure 5.3 SPECIAL3 Encoding of ABSQ_S.PH/ABSQ_S.QH Instruction Sub-class without Immediate Field

Figure 5.4 SPECIAL3 Encoding of ABSQ_S.PH/ABSQ_S.QH Instruction Sub-class with Immediate Field

Table 5.8 MIPS64® CMPU.EQ.OB Encoding of op Field

op bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 CMPU.EQ.OB CMPU.LT.OB CMPU.LE.OB PICK.OB CMPGU.EQ.OB CMPGU.LT.OB CMPGU.LE.OB 

1 01 CMP.EQ.QH CMP.LT.QH CMP.LE.QH PICK.QH
PRECRQ.OB.Q

H PRECR.OB.QH PACKRL.PW
PRECRQU_S.O

B.QH

2 10 CMP.EQ.PW CMP.LT.PW CMP.LE.PW PICK.PW
PRECRQ.QH.P

W
PRECRQ_RS.Q

H.PW  

3 11
CMPGDU.EQ.O

B CMPGDU.LT.OB CMPGDU.LE.OB  PRECRQ.PW.L 
PRECR_SRA.Q

H.PW
PRECR_SRA_R.

QH.PW

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

0 rt rd
ABSQ_S.PH/QH

01001
ABSQ_S.PH/QH
01 0010/010110

6 5 5 5 5 6

31 26 25 16 15 11 10 6 5 0

SPECIAL3
011111

immediate rd
REPL.PH/QH

01010
ABSQ_S.PH/QH
01 0010/010110

6 10 5 5 6

Table 5.9 MIPS64® ABSQ_S.PH Encoding of op Field

op bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00  ABSQ_S.QB REPL.QB REPLV.QB
PRECEQU.PH.Q

BL
PRECEQU.PH.Q

BR
PRECEQU.PH.Q

BLA
PRECEQU.PH.Q

BRA

1 01  ABSQ_S.PH REPL.PH REPLV.PH PRECEQ.W.PHL
PRECEQ.W.PH

R  

2 10  ABSQ_S.W   *   

3 11    BITREV
PRECEU.PH.QB

L
PRECEU.PH.QB

R
PRECEU.PH.QB

LA
PRECEU.PH.QB

RA

Table 5.10 MIPS64® ABSQ_S.QH Encoding of op Field

op bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00   REPL.OB REPLV.OB
PRECEQU.PH.Q

BL
PRECEQU.PH.Q

BR
PRECEQU.PH.Q

BLA
PRECEQU.PH.Q

BRA

1 01  ABSQ_S.QH REPL.QH REPLV.QH
PRECEQ.PW.Q

HL
PRECEQ.PW.Q

HR
PRECEQ.PW.PH

LA
PRECEQ.PW.PH

RA

2 10  ABSQ_S.PW REPL.PW REPLV.PW PRECEQ.L.PWL PRECEQ.L.PWR  

3 11    
PRECEU.QH.OB

L
PRECEU.QH.OB

R
PRECEU.QH.OB

LA
PRECEU.QH.OB

RA

 Instruction Encoding

72 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Figure 5.5 SPECIAL3 Encoding of SHLL.QB/SHLL.OB Instruction Sub-class

For the LX sub-class of instructions, the format to interpret the op field is similar to the instructions above, with the
exception that the rs and rt fields are named to be the base and index fields respectively for the indexed load opera-
tion. The instruction format is shown in Figure 5.6.

Figure 5.6 SPECIAL3 Encoding of LX Instruction Sub-class

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs/sa rt rd op
SHLL.QB/SHLL.OB

010011/010111

6 5 5 5 5 6

Table 5.11 MIPS64® SHLL.QB Encoding of op Field

op bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 SHLL.QB SHRL.QB SHLLV.QB SHRLV.QB SHRA.QB SHRA_R.QB SHRAV.QB SHRAV_R.QB

1 01 SHLL.PH SHRA.PH SHLLV.PH SHRAV.PH SHLL_S.PH SHRA_R.PH SHLLV_S.PH SHRAV_R.PH

2 10    * SHLL_S.W SHRA_R.W SHLLV_S.W SHRAV_R.W

3 11  SHRL.PH  SHRLV.PH    

Table 5.12 MIPS64® SHLL.OB Encoding of op Field

op bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 SHLL.OB SHRL.OB SHLLV.OB SHRLV.OB SHRA.OB SHRA_R.OB SHRAV.OB SHRAV_R.OB

1 01 SHLL.QH SHRA.QH SHLLV.QH SHRAV.QH SHLL_S.QH SHRA_R.QH SHLLV_S.QH SHRAV_R.QH

2 10 SHLL.PW SHRA.PW SHLLV.PW SHRAV.PW SHLL_S.PW SHRA_R.PW SHLLV_S.PW SHRAV_R.PW

3 11  SHRL.QH  SHRLV.QH    

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

base index rd op
LX

00 1010

6 5 5 5 5 6

Table 5.13 MIPS64® LX Encoding of op Field

op bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 LWX    LHX  LBUX 

1 01 LDX       

2 10        

3 11        

5.1 Instruction Bit Encoding

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 73

The sub-class of DPA.W.PH and DPAQ.W.QH instructions target one of the accumulators for the destination. These
instructions use the lower bits of the rd field of the opcode to specify the accumulator number which can range from
0 to 3. This format is shown in Figure 5.7.

Figure 5.7 SPECIAL3 Encoding of DPA.W.PH/DPAQ.W.QH Instruction Sub-class

The EXTR.W sub-class is an assortment that has three types of instructions:

1. In the first one, the destination is a GPR and this is specified by the rt field in the opcode, as shown in Figure 5.8.
The source is an accumulator and this comes from the right-most 2 bits of the rd field, again, as shown in the fig-
ure. When a second source must be specified, then the rs field is used. The second value could be a 5-bit immedi-
ate or a variable from a GPR. The first and the second rows of Table 5.16 show this type of instruction.

2. The RDDSP and WRDSP instructions specify one immediate 6 bit mask field and a GPR that holds both the
position and size values, as seen in Figure 5.9.

3. The MTHLIP instruction copies the LO part of the specified accumulator to the HI, the GPR contents to LO. In
this case, the source rs field is used and the destination is specified by ac, which is both a source and destination,
as shown in Figure 5.10. The SHILO and SHILOV instructions which shift the HI-LO pair and leave the result in
the HI-LO register pair is a variant that does not use the source rs register. The shift amount can be specified as
an immediate value or in the rs register as a variable value.

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

rs rt 0 ac op
DPA.W.PH

11 0000

6 5 5 3 2 5 6

Table 5.14 MIPS64® DPA.W.PH Encoding of op Field

op bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 DPA.W.PH DPS.W.PH MULSA.W.PH DPAU.H.QBL DPAQ_S.W.PH DPSQ_S.W.PH
MULSAQ_S.W.P

H DPAU.H.QBR

1 01 DPAX.W.PH DPSX.W.PH  DPSU.H.QBL DPAQ_SA.L.W DPSQ_SA.L.W  DPSU.H.QBR

2 10 MAQ_SA.W.PHL  MAQ_SA.W.PHR  MAQ_S.W.PHL  MAQ_S.W.PHR 

3 11 DPAQX_S.W.PH DPSQX_S.W.PH
DPAQX_SA.W.P

H
DPSQX_SA.W.P

H    

Table 5.15 MIPS64® DPAQ.W.QH Encoding of op Field

op bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 DPA.W.QH DPS.W.QH DMADD DPAU.H.OBL DPAQ_S.W.QH DPSQ_S.W.QH
MULSAQ_S.W.Q

H DPAU.H.OBR

1 01 DPAX.W.QH DPSX.W.QH DMSUB DPSU.H.OBL DPAQ_SA.L.PW DPSQ_SA.L.PW
MULSAQ_S.

L.PW DPSU.H.OBR

2 10
MAQ_SA.W.QHL

L
MAQ_SA.W.QHL

R
MAQ_SA.W.QH

RL
MAQ_SA.W.QH

RR MAQ_S.W.QHLLMAQ_S.W.QHLRMAQ_S.W.QHRL
MAQ_S.W.QHR

R

3 11 DPAQX_S.W.QHDPSQX_S.W.QH
DPAQX_SA.W.Q

H
DPSQX_SA.W.Q

H MAQ_S.L.PWL DMADDU MAQ_S.L.PWR DMSUBU

 Instruction Encoding

74 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Figure 5.8 SPECIAL3 Encoding Example for EXTR.W/DEXTR.W Instruction Sub-class Type 1

Figure 5.9 SPECIAL3 Encoding Example for EXTR.W Instruction Sub-class Type 2

Figure 5.10 SPECIAL3 Encoding Example for EXTR.W Instruction Sub-class Type 3

Finally, the opcode change for the MFHI and MTLO instructions requires the specification of the accumulator num-
ber. For the MTHI and MTLO instructions, the change will use bits 11 and 12 of the opcode to specify the accumula-
tor, where the value of 0 provides backwards compatibility and refers to the original Hi-Lo pair. For the MFHI and
MFLO instructions, the change will use bits 21 and 22 to encode the accumulator, and zero is the original pair as
before.

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

shift/rs rt 0 ac
D/EXTR_R /
D/EXTRV_R
00100/00101

EXTR.W/DEXTR.W
111000/111100

6 5 5 3 2 5 6

31 26 25 21 20 17 16 11 10 6 5 0

SPECIAL3
011111

rs 0 mask
WRDSP
10011

EXTR.W
111000

6 5 4 6 5 6

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

0/rs/shift 0 0 ac
MTHLIP/

SHILOV/SHILO
11xxx

EXTR.W
111000

6 5 5 3 2 5 6

Table 5.16 MIPS64® EXTR.W Encoding of op Field

op bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 EXTR.W EXTRV.W EXTP EXTPV EXTR_R.W EXTRV_R.W EXTR_RS.W EXTRV_RS.W

1 01   EXTPDP EXTPDPV   EXTR_S.H EXTRV_S.H

2 10   RDDSP WRDSP    

3 11   SHILO SHILOV    MTHLIP

Table 5.17 MIPS64® DEXTR.W Encoding of op Field

op bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 DEXTR.W DEXTRV.W DEXTP DEXTPV DEXTR_R.W DEXTRV_R.W DEXTR_RS.W DEXTRV_RS.W

1 01   DEXTPDP DEXTPDPV   DEXTR_S.H DEXTRV_S.H

2 10 DEXTR.L DEXTRV.L   DEXTR_R.L DEXTRV_R.L DEXTR_RS.L DEXTRV_RS.L

3 11   DSHILO DSHILOV    DMTHLIP

5.1 Instruction Bit Encoding

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 75

Figure 5.11 SPECIAL3 Encoding of ADDUH.QB/ADDUH.OB Instruction Sub-classes

Figure 5.12 SPECIAL3 Encoding of APPEND/DAPPEND Instruction Sub-class

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd op
ADDUH.QB/ADDUH

.OB
011000/011100

6 5 5 5 5 6

Table 5.18 MIPS64® ADDUH.QB Encoding of op Field1

1. The op field is decoded to identify the final instructions. Entries in this table with no mnemonic are reserved for future use by
MIPS Technologies and may or may not cause a Reserved Instruction exception.

op bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 ADDUH.QB SUBUH.QB ADDUH_R.QB SUBUH_R.QB    

1 01 ADDQH.PH SUBQH.PH ADDQH_R.PH SUBQH_R.PH MUL.PH  MUL_S.PH 

2 10 ADDQH.W SUBQH.W ADDQH_R.W SUBQH_R.W   MULQ_S.W MULQ_RS.W

3 11        

Table 5.19 MIPS64® ADDUH.OB Encoding of the op Field

op bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 ADDUH.OB * ADDUH_R.QB     

1 01 ADDQH.QH SUBQH.QH ADDQH_R.QH SUBQH_R.QH MUL.QH  MUL_S.QH 

2 10 ADDQH.PW SUBQH.PW ADDQH_R.PW SUBQH_R.PW   MULQ_S.PW MULQ_RS.PW

3 11        

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt sa/bp op
APPEND/DAPPEND

110001/110101

6 5 5 5/2 5 6

Table 5.20 MIPS64® APPEND Encoding of op Field

op bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 APPEND PREPEND      

1 01        

2 10 BALIGN       

3 11        

 Instruction Encoding

76 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Table 5.21 MIPS64® DAPPEND Encoding of op Field

op bits 8..6

0 1 2 3 4 5 6 7

bits 10..9 000 001 010 011 100 101 110 111

0 00 DAPPEND PREPENDW  PREPENDD    

1 01        

2 10 DBALIGN       

3 11        

Chapter 6

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 77

The MIPS® DSP Module Instruction Set

6.1 Compliance and Subsetting

There are no instruction subsets allowed for the MIPS DSP Module —all instructions must be implemented with all
data format types as shown. Instructions are listed in alphabetical order, with a secondary sort on data type format
from narrowest to widest, i.e., quad byte, paired halfword, and word.

ABSQ_S.PH Find Absolute Value of Two Fractional Halfwords

78 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: ABSQ_S.PH rd, rt MIPSDSP

Purpose: Find Absolute Value of Two Fractional Halfwords

Find the absolute value of each of a pair of Q15 fractional halfword values with 16-bit saturation.

Description: rd  sign_extend(sat16(abs(rt31..16))) || sat16(abs(rt15..0))

For each value in the right-most pair of Q15 fractional halfword values in register rt, the absolute value is found and
written to the corresponding Q15 halfword in register rd. If either input value is the minimum Q15 value (-1.0 in dec-
imal, 0x8000 in hexadecimal), the corresponding result is saturated to 0x7FFF. The upper 32 bits of register rt are
ignored.

The sign of the left-most halfword result is extended into the 32 most-significant bits of the destination register.

This instruction sets bit 20 in the DSPControl register in the ouflag field if either input value was saturated.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

tempB15..0  satAbs16(GPR[rt]31..16)
tempA15..0  satAbs16(GPR[rt]15..0)
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

function satAbs16(a15..0)
if (a15..0 = 0x8000) then

DSPControlouflag:20  1
temp15..0  0x7FFF

else
if (a15 = 1) then

temp15..0  -a15..0
else

temp15..0  a15..0
endif

endif
return temp15..0

endfunction satAbs16

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

0
00000

rt rd
ABSQ_S.PH

01001
ABSQ_S.PH

010010

6 5 5 5 5 6

ABSQ_S.PH Find Absolute Value of Two Fractional Halfwords

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 79

ABSQ_S.QB Find Absolute Value of Four Fractional Byte Values

80 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: ABSQ_S.QB rd, rt MIPSDSP-R2

Purpose: Find Absolute Value of Four Fractional Byte Values

Find the absolute value of four fractional byte vector elements with saturation.

Description: rd  sign_extend(sat8(abs(rt31..24)) || sat8(abs(rt23..16)) ||

sat8(abs(rt15..8)) || sat8(abs(rt7..0)))

For each value in the four right-most Q7 fractional byte elements in register rt, the absolute value is found and written
to the corresponding byte in register rd. If either input value is the minimum Q7 value (-1.0 in decimal, 0x80 in hexa-
decimal), the corresponding result is saturated to 0x7F. The upper 32 bits of register rts are ignored.

The sign of the left-most byte result is extended into the 32 most-significant bits of destination register rdt.

This instruction sets bit 20 in ouflag field of the DSPControl register if any input value was saturated.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

tempD7..0  abs8(GPR[rt]31..24)
tempC7..0  abs8(GPR[rt]23..16)
tempB7..0  abs8(GPR[rt]15..8)
tempA7..0  abs8(GPR[rt]7..0)
GPR[rd]63..0  (tempD7)

32 || tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

function abs8(a7..0)
if (a7..0 = 0x80) then

DSPControlouflag:20  1
temp7..0  0x7F

else
if (a7 = 1) then

temp7..0  -a7..0
else

temp7..0  a7..0
endif

endif
return temp7..0

endfunction abs8

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

0 rt rd
ABSQ_S.QB

00001
ABSQ_S.PH

010010

6 5 5 5 5 6

ABSQ_S.W Find Absolute Value of Fractional Word

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 81

Format: ABSQ_S.W rd, rt MIPSDSP

Purpose: Find Absolute Value of Fractional Word

Find the absolute value of a fractional Q31 value with 32-bit saturation.

Description: rd  sign_extend(sat32(abs(rt31..0)))

The absolute value of the right-most Q31 fractional value in register rt is found, sign-extended to 64 bits, and written
to destination register rd. If the input value is the minimum Q31 value (-1.0 in decimal, 0x80000000 in hexadecimal),
the result is saturated to 0x7FFFFFFF before being sign-extended and written to register rd.

This instruction sets bit 20 in the DSPControl register in the ouflag field if the input value was saturated.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

temp31..0  satAbs32(GPR[rt]31..0)
GPR[rd]63..0  (temp31)

32 || temp31..0

function satAbs32(a31..0)
if (a31..0 = 0x80000000) then

DSPControlouflag:20  1
temp31..0  0x7FFFFFFF

else
if (a31 = 1) then

temp31..0  -a31..0
else

temp31..0  a31..0
endif

endif
return temp31..0

endfunction satAbs32

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

0 rt rd
ABSQ_S.W

10001
ABSQ_S.PH

010010

6 5 5 5 5 6

ADDQ[_S].PH Add Fractional Halfword Vectors

82 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: ADDQ[_S].PH
ADDQ.PH rd, rs, rt MIPSDSP
ADDQ_S.PH rd, rs, rt MIPSDSP

Purpose: Add Fractional Halfword Vectors

Element-wise addition of two vectors of Q15 fractional values to produce a vector of Q15 fractional results, with
optional saturation.

Description: rd  sign_extend(sat16(rs31..16 + rt31..16) || sat16(rs15..0 + rt15..0))

Each of the two right-most fractional halfword elements in register rt are added to the corresponding fractional half-
word elements in register rs.

For the non-saturating version of the instruction, the result of each addition is written into the corresponding element
in register rd. If the addition results in overflow or underflow, the result modulo 2 is written to the corresponding ele-
ment in register rd.

For the saturating version of the instruction, signed saturating arithmetic is performed, where an overflow is clamped
to the largest representable value (0x7FFF hexadecimal) and an underflow to the smallest representable value
(0x8000 hexadecimal) before being written to the destination register rd.

For each instruction, the sign of the left-most halfword result is extended into the 32 most-significant bits of the des-
tination register.

For each instruction, if either of the individual additions result in underflow, overflow, or saturation, a 1 is written to
bit 20 in the DSPControl register in the ouflag field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ADDQ.PH:
tempB15..0  add16(GPR[rs]31..16 , GPR[rt]31..16)
tempA15..0  add16(GPR[rs]15..0 , GPR[rt]15..0)
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

ADDQ_S.PH:
tempB15..0  satAdd16(GPR[rs]31..16 , GPR[rt]31..16)
tempA15..0  satAdd16(GPR[rs]15..0 , GPR[rt]15..0)
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

function add16(a15..0, b15..0)
temp16..0  (a15 || a15..0) + (b15 || b15..0)
if (temp16  temp15) then

DSPControlouflag:20  1
endif

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
ADDQ.PH

01010
ADDU.QB

010000

SPECIAL3
011111

rs rt rd
ADDQ_S.PH

01110
ADDU.QB

010000

6 5 5 5 5 6

ADDQ[_S].PH Add Fractional Halfword Vectors

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 83

return temp15..0
endfunction add16

function satAdd16(a15..0, b15..0)
temp16..0  (a15 || a15..0) + (b15 || b15..0)
if (temp16  temp15) then

if (temp16 = 0) then
temp15..0  0x7FFF

else
temp15..0  0x8000

endif
DSPControlouflag:20  1

endif
return temp15..0

endfunction satAdd16

Exceptions:

Reserved Instruction, DSP Disabled

ADDQ_S.W Add Fractional Words

84 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: ADDQ_S.W rd, rs, rt MIPSDSP

Purpose: Add Fractional Words

Addition of two Q31 fractional values to produce a Q31 fractional result, with saturation.

Description: rd  sign_extend(sat32(rs31..0 + rt31..0))

The right-most Q31 fractional word in register rt is added to the corresponding fractional word in register rs. The
result is then sign-extended to 64 bits and written to the destination register rd.

Signed saturating arithmetic is used, where an overflow is clamped to the largest representable value (0x7FFFFFFF
hexadecimal) and an underflow to the smallest representable value (0x80000000 hexadecimal) before being sign-
extended and written to the destination register rd.

If the addition results in underflow, overflow, or saturation, a 1 is written to bit 20 in the DSPControl register within
the ouflag field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

temp31..0  satAdd32(GPR[rs]31..0 , GPR[rt]31..0)
GPR[rd]63..0  (temp31)

32 || temp31..0

function satAdd32(a31..0, b31..0)
temp32..0  (a31 || a31..0) + (b31 || b31..0)
if (temp32  temp31) then

if (temp32 = 0) then
temp31..0  0x7FFFFFFF

else
temp31..0  0x80000000

endif
DSPControlouflag:20  1

endif
return temp31..0

endfunction satAdd32

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
ADDQ_S.W

10110
ADDU.QB

010000

6 5 5 5 5 6

ADDQ_S.W Add Fractional Words

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 85

ADDQH[_R].PH Add Fractional Halfword Vectors And Shift Right to Halve Results

86 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: ADDQH[_R].PH
ADDQH.PH rd, rs, rt MIPSDSP-R2
ADDQH_R.PH rd, rs, rt MIPSDSP-R2

Purpose: Add Fractional Halfword Vectors And Shift Right to Halve Results

Element-wise fractional addition of halfword vectors, with a right shift by one bit to halve each result, with optional
rounding.

Description: rd  sign_extend(round((rs31..16 + rt31..16) >> 1) || round((rs15..0 + rt15..0)

>> 1))

Each element from the two right-most halfword values in register rs is added to the corresponding halfword element
in register rt to create an interim 17-bit result.

In the non-rounding instruction variant, each interim result is then shifted right by one bit before being written to the
corresponding halfword element of destination register rd.

In the rounding version of the instruction, a value of 1 is added at the least-significant bit position of each interim
result; the interim result is then right-shifted by one bit and written to the destination register.

This instruction does not modify the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ADDQH.PH
tempB15..0  rightShift1AddQ16(GPR[rs]31..16 , GPR[rt]31..16)
tempA15..0  rightShift1AddQ16(GPR[rs]15..0 , GPR[rt]15..0)
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

ADDQH_R.PH
tempB15..0  roundRightShift1AddQ16(GPR[rs]31..16 , GPR[rt]31..16)
tempA15..0  roundRightShift1AddQ16(GPR[rs]15..0 , GPR[rt]15..0)
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

function rightShift1AddQ16(a15..0 , b15..0)
temp16..0  ((a15 || a15..0) + (b15 || b15..0))
return temp16..1

endfunction rightShift1AddQ16

function roundRightShift1AddQ16(a15..0 , b15..0)
temp16..0  ((a15 || a15..0) + (b15 || b15..0))
temp16..0  temp16..0 + 1
return temp16..1

endfunction roundRightShift1AddQ16

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
ADDQH.PH

01000
ADDUH.QB

011000

SPECIAL3
011111

rs rt rd
ADDQH_R.PH

01010
ADDUH.QB

011000

6 5 5 5 5 6

ADDQH[_R].PH Add Fractional Halfword Vectors And Shift Right to Halve Results

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 87

Exceptions:

Reserved Instruction, DSP Disabled

ADDQH[_R].W Add Fractional Words And Shift Right to Halve Results

88 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: ADDQH[_R].W
ADDQH.W rd, rs, rt MIPSDSP-R2
ADDQH_R.W rd, rs, rt MIPSDSP-R2

Purpose: Add Fractional Words And Shift Right to Halve Results

Fractional addition of word vectors, with a right shift by one bit to halve the result, with optional rounding.

Description: rd  sign_extend(round((rs31..0 + rt31..0) >> 1))

The right-most word in register rs is added to the right-most word in register rt to create an interim 33-bit result.

In the non-rounding instruction variant, the interim result is then shifted right by one bit before being written to the
destination register rd.

In the rounding version of the instruction, a value of 1 is added at the least-significant bit position of the interim
result; the interim result is then right-shifted by one bit and written to the destination register.

This instruction does not modify the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ADDQH.W
tempA31..0  rightShift1AddQ32(GPR[rs]31..0 , GPR[rt]31..0)
GPR[rd]63..0  (tempB15)

32 || tempA31..0

ADDQH_R.W
tempA31..0  roundRightShift1AddQ32(GPR[rs]31..0 , GPR[rt]31..0)
GPR[rd]63..0  (tempB15)

32 || tempA31..0

function rightShift1AddQ32(a31..0 , b31..0)
temp32..0  ((a31 || a31..0) + (b31 || b31..0))
return temp32..1

endfunction rightShift1AddQ32

function roundRightShift1AddQ32(a31..0 , b31..0)
temp32..0  ((a31 || a31..0) + (b31 || b31..0))
temp32..0  temp32..0 + 1
return temp32..1

endfunction roundRightShift1AddQ32

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
ADDQH.W

10000
ADDUH.QB

011000

SPECIAL3
011111

rs rt rd
ADDQH_R.W

10010
ADDUH.QB

011000

6 5 5 5 5 6

ADDSC Add Signed Word and Set Carry Bit

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 89

Format: ADDSC rd, rs, rt MIPSDSP

Purpose: Add Signed Word and Set Carry Bit

Add two signed 32-bit values and set the carry bit in the DSPControl register if the addition generates a carry-out bit.

Description: DSPControl[c],rd  sign_extend(rs + rt)

The right-most 32-bit signed value in register rt is added to the right-most 32-bit signed value in register rs. The result
is then sign-extended to 64 bits and written into register rd. The carry bit result out of the addition operation is written
to bit 13 (the c field) of the DSPControl register.

This instruction does not modify the ouflag field in the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

Operation:

temp32..0  (0 || GPR[rs]31..0) + (0 || GPR[rt]31..0)
DSPControlc:13  temp32
GPR[rd]63..0  (temp31)

32 || temp31..0

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

Note that this is really two’s complement (modulo) arithmetic on the two integer values, where the overflow is pre-
served in architectural state. The ADDWC instruction can be used to do an add using this carry bit. These instructions
are provided in the MIPS32 ISA to support 64-bit addition and subtraction using two pairs of 32-bit GPRs to hold
each 64-bit value. In the MIPS64 ISA, 64-bit addition and subtraction can be performed directly, without requiring
the use of these instructions.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
ADDSC
10000

ADDU.QB
010000

6 5 5 5 5 6

ADDU[_S].PH Unsigned Add Integer Halfwords

90 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: ADDU[_S].PH
ADDU.PH rd, rs, rt MIPSDSP-R2
ADDU_S.PH rd, rs, rt MIPSDSP-R2

Purpose: Unsigned Add Integer Halfwords

Add two pairs of unsigned integer halfwords, with optional saturation.

Description: rd  sign_extend(sat16(rs31..16 + rt31..16) || sat16(rs15..0 + rt15..0))

The two right-most unsigned integer halfword elements in register rt are added to the corresponding unsigned integer
halfword elements in register rs.

For the non-saturating version of the instruction, the result modulo 65,536 is written into the corresponding element
in register rd.

For the saturating version of the instruction, the addition is performed using unsigned saturating arithmetic. Results
that overflow are clamped to the largest representable value (65,535 decimal, 0xFFFF hexadecimal) before being
written to the destination register rd.

Bit 31 of the result is extended into the 32 most-significant bits of the destination register.

For either instruction, if any of the individual additions result in overflow or saturation, a 1 is written to bit 20 in the
DSPControl register within the ouflag field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ADDU.PH
tempB15..0  addU16(GPR[rs]31..16 , GPR[rt]31..16)
tempA15..0  addU16(GPR[rs]15..0 , GPR[rt]15..0)
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

ADDU_S.PH
tempB15..0  satAddU16(GPR[rs]31..16 , GPR[rt]31..16)
tempA15..0  satAddU16(GPR[rs]15..0 , GPR[rt]15..0)
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
ADDU.PH

01000
ADDU.QB

010000

SPECIAL3
011111

rs rt rd
ADDU_S.PH

01100
ADDU.QB

010000

6 5 5 5 5 6

ADDU[_S].QB Unsigned Add Quad Byte Vectors

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 91

Format: ADDU[_S].QB
ADDU.QB rd, rs, rt MIPSDSP
ADDU_S.QB rd, rs, rt MIPSDSP

Purpose: Unsigned Add Quad Byte Vectors

Element-wise addition of two vectors of unsigned byte values to produce a vector of unsigned byte results, with
optional saturation.

Description: rd  sign_extend(sat8(rs31..24 + rt31..24)) || sat8(rs23..16 + rt23..16) ||

sat8(rs15..8 + rt15..8) || sat8(rs7..0 + rt7..0)

The four right-most byte elements in register rt are added to the corresponding byte elements in register rs.

For the non-saturating version of the instruction, the result modulo 256 is written into the corresponding element in
register rd.

For the saturating version of the instruction, the addition is performed using unsigned saturating arithmetic. Results
that overflow are clamped to the largest representable value (255 decimal, 0xFF hexadecimal) before being written to
the destination register rd.

Bit 31 of the result is extended into the 32 most-significant bits of the destination register.

For either instruction, if any of the individual additions result in overflow or saturation, a 1 is written to bit 20 in the
DSPControl register within the ouflag field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ADDU.QB:
tempD7..0  addU8(GPR[rs]31..24 , GPR[rt]31..24)
tempC7..0  addU8(GPR[rs]23..16 , GPR[rt]23..16)
tempB7..0  addU8(GPR[rs]15..8 , GPR[rt]15..8)
tempA7..0  addU8(GPR[rs]7..0 , GPR[rt]7..0)
GPR[rd]63..0  (tempD7)

48 || tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

ADDU_S.QB:
tempD7..0  satAddU8(GPR[rs]31..24 , GPR[rt]31..24)
tempC7..0  satAddU8(GPR[rs]23..16 , GPR[rt]23..16)
tempB7..0  satAddU8(GPR[rs]15..8 , GPR[rt]15..8)
tempA7..0  satAddU8(GPR[rs]7..0 , GPR[rt]7..0)
GPR[rd]63..0  (tempD7)

48 || tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

function addU8(a7..0, b7..0)
temp8..0  (0 || a7..0) + (0 || b7..0)
if (temp8 = 1) then

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
ADDU.QB

00000
ADDU.QB

010000

SPECIAL3
011111

rs rt rd
ADDU_S.QB

00100
ADDU.QB

010000

6 5 5 5 5 6

ADDU[_S].QB Unsigned Add Quad Byte Vectors

92 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

DSPControlouflag:20  1
endif
return temp7..0

endfunction addU8

function satAddU8(a7..0, b7..0)
temp8..0  (0 || a7..0) + (0 || b7..0)
if (temp8 = 1) then

temp7..0  0xFF
DSPControlouflag:20  1

endif
return temp7..0

endfunction satAddU8

Exceptions:

Reserved Instruction, DSP Disabled

ADDWC Add Word with Carry Bit

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 93

Format: ADDWC rd, rs, rt MIPSDSP

Purpose: Add Word with Carry Bit

Add two signed 32-bit values with the carry bit in the DSPControl register.

Description: rd  sign_extend(rs + rt + DSPControlc:13)

The right-most 32-bit value in register rt is added to the right-most 32-bit value in register rs and the carry bit in the
DSPControl register. The result is then sign-extended to 64 bits and written to destination register rd.

If the addition results in either overflow or underflow, this instruction writes a 1 to bit 20 in the ouflag field of the
DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

Operation:

temp32..0  (GPR[rs]31 || GPR[rs]31..0) + (GPR[rt]31 || GPR[rt]31..0) + (0
32 ||

DSPControlc:13)
if (temp32  temp31) then

DSPControlouflag:20  1
endif
GPR[rd]63..0  (temp31)

32 || temp31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
ADDWC

10001
ADDU.QB

010000

6 5 5 5 5 6

ADDUH[_R].QB Unsigned Add Vector Quad-Bytes And Right Shift to Halve Results

94 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: ADDUH[_R].QB
ADDUH.QB rd, rs, rt MIPSDSP-R2
ADDUH_R.QB rd, rs, rt MIPSDSP-R2

Purpose: Unsigned Add Vector Quad-Bytes And Right Shift to Halve Results

Element-wise unsigned addition of unsigned byte vectors, with right shift by one bit to halve each result, with
optional rounding.

Description rd  round((rs31..24 + rt31..24)>>1) || round((rs23..16 + rt23..16)>>1) ||

round((rs15..8 + rt15..8)>>1) || round((rs7..0 + rt7..0)>>1)

Each element from the four unsigned byte values in register rs is added to the corresponding unsigned byte element in
register rt to create an unsigned interim result.

In the non-rounding instruction variant, each interim result is then shifted right by one bit before being written to the
corresponding unsigned byte element of destination register rd.

In the rounding version of the instruction, a value of 1 is added at the least-significant bit position of each interim
result before being right-shifted by one bit and written to the destination register.

This instruction does not modify the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ADDUH.QB
tempD7..0  rightShift1AddU8(GPR[rs]31..24 , GPR[rt]31..24)
tempC7..0  rightShift1AddU8(GPR[rs]23..16 , GPR[rt]23..16)
tempB7..0  rightShift1AddU8(GPR[rs]15..8 , GPR[rt]15..8)
tempA7..0  rightShift1AddU8(GPR[rs]7..0 , GPR[rt]7..0)
GPR[rd]63..0  (tempD7)

32 || tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

ADDUH_R.QB
tempD7..0  roundRightShift1AddU8(GPR[rs]31..24 , GPR[rt]31..24)
tempC7..0  roundRightShift1AddU8(GPR[rs]23..16 , GPR[rt]23..16)
tempB7..0  roundRightShift1AddU8(GPR[rs]15..8 , GPR[rt]15..8)
tempA7..0  roundRightShift1AddU8(GPR[rs]7..0 , GPR[rt]7..0)
GPR[rd]63..0  (tempD7)

32 || tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

function rightShift1AddU8(a7..0 , b7..0)
temp8..0  ((0 || a7..0) + (0 || b7..0))
return temp8..1

endfunction rightShift1AddU8

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
ADDUH

00000
ADDUH.QB

011000

SPECIAL3
011111

rs rt rd
ADDUH_R

00010
ADDUH.QB

011000

6 5 5 5 5 6

ADDUH[_R].QB Unsigned Add Vector Quad-Bytes And Right Shift to Halve Results

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 95

function roundRightShift1AddU8(a7..0 , b7..0)
temp8..0  ((0 || a7..0) + (0 || b7..0))
temp8..0  temp8..0 + 1
return temp8..1

endfunction roundRightShift1AddU8

Exceptions:

Reserved Instruction, DSP Disabled

APPEND Left Shift and Append Bits to the LSB

96 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: APPEND rt, rs, sa MIPSDSP-R2

Purpose: Left Shift and Append Bits to the LSB

Shift a general-purpose register left, inserting bits from the another GPR into the bit positions emptied by the shift.

Description: rt  sign_extend((rt31..0 << sa4..0) || rssa-1..0

The right-most 32-bit value in register rt is left-shifted by the specified shift amount sa, and sa bits from the least-sig-
nificant positions of the rs register are inserted into the bit positions in rt emptied by the shift. The 32-bit shifted value
is sign-extended to 64 bits and written to destination register rt.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

if (sa4..0 = 0) then
temp31..0  GPR[rt]31..0

else
temp31..0  (GPR[rt]31-sa..0 || GPR[rs]sa-1..0)

endif
GPR[rt]63..0 = (temp31)

32 || temp31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt sa
APPEND

00000
APPEND
110001

6 5 5 5 5 6

BALIGN Byte Align Contents from Two Registers

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 97

Format: BALIGN rt, rs, bp MIPSDSP-R2

Purpose: Byte Align Contents from Two Registers

Create a word result by combining a specified number of bytes from each of two source registers.

Description: rt  sign_extend((rt << 8*bp) || (rs >> 8*(4-bp)))

The right-most 32-bit word in register rt is left-shifted as a 32-bit value by bp byte positions, and the right-most word
in register rs is right-shifted as a 32-bit value by (4-bp) byte positions. The shifted values are then or-ed together to
create a 32-bit result that is sign-extended to 64 bits and written to destination register rt.

The argument bp is provided by the instruction, and is interpreted as an unsigned two-bit integer taking values
between zero and three.

Restrictions:

No data-dependent exceptions are possible.

Operation:

if (bp1..0 = 0) or (bp1..0 = 2) then
GPR[rt]63..0  UNPREDICTABLE

else
temp31..0  (GPR[rt]31..0 << (8*bp1..0)) || (GPR[rs]31..0 >> (8*(4-bp1..0)))
GPR[rt]63..0 = (temp31)

32 || temp31..0
endif

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

rs rt 0 bp
BALIGN

10000
APPEND
110001

6 5 5 3 2 5 6

BITREV Bit-Reverse Halfword

98 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: BITREV rd, rt MIPSDSP

Purpose: Bit-Reverse Halfword

To reverse the order of the bits of the least-significant halfword in the specified register.

Description: rd  zero_extend(rt0..15)

The right-most halfword value in register rt is bit-reversed into the right-most halfword position in the destination
register rd. The 48 most-significant bits of the destination register are zero-filled.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

temp15..0  GPR[rt]0..15
GPR[rd]63..0  048 || temp15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

0 rt rd
BITREV

11011
ABSQ_S.PH

010010

6 5 5 5 5 6

BPOSGE32 Branch on Greater Than or Equal To Value 32 in DSPControl Pos Field

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 99

Format: BPOSGE32 offset MIPSDSP

Purpose: Branch on Greater Than or Equal To Value 32 in DSPControl Pos Field

Perform a PC-relative branch if the value of the pos field in the DSPControl register is greater than or equal to 32.

Description: if (DSPControlpos:6..0 >= 32) then goto PC+offset

First, the offset argument is left-shifted by two bits to form an 18-bit signed integer value. This value is added to the
address of the instruction immediately following the branch to form a target branch address. Then, if the value of the
pos field of the DSPControl register is greater than or equal to 32, the branch is taken and execution begins from the
target address after the instruction in the branch delay slot has been executed.

Restrictions:

Pre-Release 6: Processor operation is UNPREDICTABLE if a control transfer instruction (CTI), specifically a
branch, jump, NAL (Release 6), ERET, ERETNC (Release 5), DERET, WAIT, or PAUSE (Release 2) instruction is
placed in the delay slot of a branch or jump.

Release 6: If a control transfer instruction (CTI) is executed in the delay slot of a branch or jump, Release 6 imple-
mentations are required to a signal a Reserved Instruction Exception.

Availability:

None.

Operation:

I: se_offsetGPRLEN..0  (offset15)
GPRLEN-18 || offset15..0 || 0

2

branch_condition  (DSPControlpos:6..0 >= 32 ? 1 : 0)
I+1: if (branch_condition = 1) then

PCGPRLEN..0  PCGPRLEN..0 + se_offsetGPRLEN..0
endif

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is 128 Kbytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside of this range.

31 26 25 21 20 16 15 0

REGIMM
000001

0
BPOSGE32

11100
offset

6 5 5 16

BPOSGE32C Branch on Greater Than or Equal To Value 32 in DSPControl Pos Field

100 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: BPOSGE32C offset MIPSDSP-R3

Purpose: Branch on Greater Than or Equal To Value 32 in DSPControl Pos Field

Perform a PC-relative branch if the value of the pos field in the DSPControl register is greater than or equal to 32.

Description: if (DSPControlpos:6..0 >= 32) then goto PC+offset

First, the offset argument is left-shifted by two bits to form an 18-bit signed integer value. This value is added to the
address of the instruction immediately following the branch to form a target branch address. Then, if the value of the
pos field of the DSPControl register is greater than or equal to 32, the branch is taken and execution begins from the
target address.

Restrictions:

If a control transfer instruction (CTI) is executed in the forbidden slot of a branch or jump, Release 6 implementations
are required to signal a Reserved Instruction Exception. A CTI is considered to be one of the following instructions:
branch, jump, NAL (Release 6), ERET, ERETNC (Release 5), DERET, WAIT, or PAUSE (Release 2). An instruction
is in the forbidden slot if it is the instruction following the branch.

Availability:

This instruction is introduced by and required as of Revision 3 of the DSP Module.

Operation:

I: se_offsetGPRLEN..0  (offset15)
GPRLEN-18 || offset15..0 || 0

2

branch_condition  (DSPControlpos:6..0 >= 32 ? 1 : 0)
I+1: if (branch_condition = 1) then

PCGPRLEN..0  PCGPRLEN..0 + se_offsetGPRLEN..0
endif

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

With the 18-bit signed instruction offset, the conditional branch range is 128 Kbytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside of this range.

31 26 25 21 20 16 15 0

REGIMM
000001

0
BPOSGE32C

11000
offset

6 5 5 16

CMP.cond.PH Compare Vectors of Signed Integer Halfword Values

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 101

Format: CMP.cond.PH
CMP.EQ.PH rs, rt MIPSDSP
CMP.LT.PH rs, rt MIPSDSP
CMP.LE.PH rs, rt MIPSDSP

Purpose: Compare Vectors of Signed Integer Halfword Values

Perform an element-wise comparison of two vectors of two signed integer halfwords, recording the results of the
comparison in condition code bits.

Description: DSPControlccond:25..24  (rs31..16 cond rt31..16) || (rs15..0 cond rt15..0)

The two right-most signed integer halfword elements in register rs are compared with the corresponding signed inte-
ger halfword element in register rt. The two 1-bit boolean comparison results are written to bits 24 and 25 of the
DSPControl register’s 8-bit condition code field. The values of the six remaining condition code bits (bits 26 through
31 of the DSPControl register) are UNPREDICTABLE.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

CMP.EQ.PH
ccB  GPR[rs]31..16 EQ GPR[rt]31..16
ccA  GPR[rs]15..0 EQ GPR[rt]15..0
DSPControlccond:25..24  ccB || ccA
DSPControlccond:31..26  UNPREDICTABLE

CMP.LT.PH
ccB  GPR[rs]31..16 LT GPR[rt]31..16
ccA  GPR[rs]15..0 LT GPR[rt]15..0
DSPControlccond:25..24  ccB || ccA
DSPControlccond:31..26  UNPREDICTABLE

CMP.LE.PH
ccB  GPR[rs]31..16 LE GPR[rt]31..16
ccA  GPR[rs]15..0 LE GPR[rt]15..0
DSPControlccond:25..24  ccB || ccA
DSPControlccond:31..26  UNPREDICTABLE

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt
0

00000
CMP.EQ.PH

01000
CMPU.EQ.QB

010001

SPECIAL3
011111

rs rt
0

00000
CMP.LT.PH

01001
CMPU.EQ.QB

010001

SPECIAL3
011111

rs rt
0

00000
CMP.LEPH

01010
CMPU.EQ.QB

010001

6 5 5 5 5 6

CMPGDU.cond.QB Compare Unsigned Vector of Four Bytes and Write Result to GPR and DSPControl

102 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: CMPGDU.cond.QB
CMPGDU.EQ.QB rd, rs, rt MIPSDSP-R2
CMPGDU.LT.QB rd, rs, rt MIPSDSP-R2
CMPGDU.LE.QB rd, rs, rt MIPSDSP-R2

Purpose: Compare Unsigned Vector of Four Bytes and Write Result to GPR and DSPControl

Compare two vectors of four unsigned bytes each, recording the comparison results in condition code bits that are
written to both the specified destination GPR and the condition code bits in the DSPControl register.

Description: DSPControl[ccond]27..24  (rs31..24 cond rt31..24) || (rs23..16 cond rt23..16) ||

(rs15..8 cond rt15..8) || (rs7..0 cond rt7..0);

rd  0(GPRLEN-4) || DSPControl[ccond]27..24

Each of the four right-most unsigned byte elements in register rs are compared with the corresponding unsigned byte
elements in register rt. The four 1-bit boolean comparison results are written to the four least-significant bits of desti-
nation register rd and to bits 24 through 27 of the DSPControl register’s 8-bit condition code field. The remaining bits
in destination register rd are set to zero. The value of bits 28 through 31 of the DSPControl register’s condition code
field are UNPREDICTABLE.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

CMPGDU.EQ.QB
ccD  GPR[rs]31..24 EQ GPR[rt]31..24
ccC  GPR[rs]23..16 EQ GPR[rt]23..16
ccB  GPR[rs]15..8 EQ GPR[rt]15..8
ccA  GPR[rs]7..0 EQ GPR[rt]7..0
DSPControlcc:27..24  ccD || ccC || ccB || ccA
DSPControlccond:31..28  UNPREDICTABLE
GPR[rd]63..0  0(GPRLEN-4) || ccD || ccC || ccB || ccA

CMPGDU.LT.QB
ccD  GPR[rs]31..24 LT GPR[rt]31..24
ccC  GPR[rs]23..16 LT GPR[rt]23..16
ccB  GPR[rs]15..8 LT GPR[rt]15..8
ccA  GPR[rs]7..0 LT GPR[rt]7..0
DSPControlcc:27..24  ccD || ccC || ccB || ccA
DSPControlccond:31..28  UNPREDICTABLE
GPR[rd]63..0  0(GPRLEN-4) || ccD || ccC || ccB || ccA

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
CMPGDU.EQ.QB

11000
CMPU.EQ.QB

010001

SPECIAL3
011111

rs rt rd
CMPGDU.LT.QB

11001
CMPU.EQ.QB

010001

SPECIAL3
011111

rs rt rd
CMPGDU.LE.QB

11010
CMPU.EQ.QB

010001

6 5 5 5 5 6

CMPGDU.cond.QB Compare Unsigned Vector of Four Bytes and Write Result to GPR and DSPControl

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 103

CMPGDU.LE.QB
ccD  GPR[rs]31..24 LE GPR[rt]31..24
ccC  GPR[rs]23..16 LE GPR[rt]23..16
ccB  GPR[rs]15..8 LE GPR[rt]15..8
ccA  GPR[rs]7..0 LE GPR[rt]7..0
DSPControlcc:27..24  ccD || ccC || ccB || ccA
DSPControlccond:31..28  UNPREDICTABLE
GPR[rd]63..0  0(GPRLEN-4) || ccD || ccC || ccB || ccA

Exceptions:

Reserved Instruction, DSP Disabled

CMPGU.cond.QB Compare Vectors of Unsigned Byte Values and Write Results to a GPR

104 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: CMPGU.cond.QB
CMPGU.EQ.QB rd, rs, rt MIPSDSP
CMPGU.LT.QB rd, rs, rt MIPSDSP
CMPGU.LE.QB rd, rs, rt MIPSDSP

Purpose: Compare Vectors of Unsigned Byte Values and Write Results to a GPR

Perform an element-wise comparison of two vectors of unsigned bytes, recording the results of the comparison in
condition code bits that are written to the specified GPR.

Description: rd  060 || (rs31..24 cond rt31..24) || (rs23..16 cond rt23..16) ||

(rs15..8 cond rt15..8) || (rs7..0 cond rt7..0)

Each of the four right-most unsigned byte elements in register rs are compared with the corresponding unsigned byte
elements in register rt. The four 1-bit boolean comparison results are written to the four least-significant bits of desti-
nation register rd. The remaining bits in rd are set to zero.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

CMPGU.EQ.QB
ccD  GPR[rs]31..24 EQ GPR[rt]31..24
ccC  GPR[rs]23..16 EQ GPR[rt]23..16
ccB  GPR[rs]15..8 EQ GPR[rt]15..8
ccA  GPR[rs]7..0 EQ GPR[rt]7..0
GPR[rd]63..0  0(GPRLEN-4) || ccD || ccC || ccB || ccA

CMPGU.LT.QB
ccD  GPR[rs]31..24 LT GPR[rt]31..24
ccC  GPR[rs]23..16 LT GPR[rt]23..16
ccB  GPR[rs]15..8 LT GPR[rt]15..8
ccA  GPR[rs]7..0 LT GPR[rt]7..0
GPR[rd]63..0  0(GPRLEN-4) || ccD || ccC || ccB || ccA

CMPGU.LE.QB
ccD  GPR[rs]31..24 LE GPR[rt]31..24
ccC  GPR[rs]23..16 LE GPR[rt]23..16
ccB  GPR[rs]15..8 LE GPR[rt]15..8
ccA  GPR[rs]7..0 LE GPR[rt]7..0
GPR[rd]63..0  0(GPRLEN-4) || ccD || ccC || ccB || ccA

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
CMPGU.EQ.QB

00100
CMPU.EQ.QB

010001

SPECIAL3
011111

rs rt rd
CMPGU.LT.QB

00101
CMPU.EQ.QB

010001

SPECIAL3
011111

rs rt rd
CMPGU.LE.QB

00110
CMPU.EQ.QB

010001

6 5 5 5 5 6

CMPGU.cond.QB Compare Vectors of Unsigned Byte Values and Write Results to a GPR

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 105

Exceptions:

Reserved Instruction, DSP Disabled

CMPU.cond.QB Compare Vectors of Unsigned Byte Values

106 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: CMPU.cond.QB
CMPU.EQ.QB rs, rt MIPSDSP
CMPU.LT.QB rs, rt MIPSDSP
CMPU.LE.QB rs, rt MIPSDSP

Purpose: Compare Vectors of Unsigned Byte Values

Perform an element-wise comparison of two vectors of four unsigned bytes, recording the results of the comparison
in condition code bits.

Description: DSPControlccond:27..24  (rs31..24 cond rt31..24) || (rs23..16 cond rt23..16) ||

(rs15..8 cond rt15..8) || (rs7..0 cond rt7..0)

Each of the four right-most unsigned byte elements in register rs are compared with the corresponding unsigned byte
elements in register rt. The four 1-bit boolean comparison results are written to bits 24 through 27 of the DSPControl
register’s 8-bit condition code field. The value of bits 28 through 31 of the DSPControl register’s condition code field
are UNPREDICTABLE.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

CMPU.EQ.QB
ccD  GPR[rs]31..24 EQ GPR[rt]31..24
ccC  GPR[rs]23..16 EQ GPR[rt]23..16
ccB  GPR[rs]15..8 EQ GPR[rt]15..8
ccA  GPR[rs]7..0 EQ GPR[rt]7..0
DSPControlccond:27..24  ccD || ccC || ccB || ccA
DSPControlccond:31..28  UNPREDICTABLE

CMPU.LT.QB
ccD  GPR[rs]31..24 LT GPR[rt]31..24
ccC  GPR[rs]23..16 LT GPR[rt]23..16
ccB  GPR[rs]15..8 LT GPR[rt]15..8
ccA  GPR[rs]7..0 LT GPR[rt]7..0
DSPControlccond:27..24  ccD || ccC || ccB || ccA
DSPControlccond:31..28  UNPREDICTABLE

CMPU.LE.QB
ccD  GPR[rs]31..24 LE GPR[rt]31..24
ccC  GPR[rs]23..16 LE GPR[rt]23..16
ccB  GPR[rs]15..8 LE GPR[rt]15..8

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt
0

00000
CMPU.EQ.QB

00000
CMPU.EQ.QB

010001

SPECIAL3
011111

rs rt
0

00000
CMPU.LT.QB

00001
CMPU.EQ.QB

010001

SPECIAL3
011111

rs rt
0

00000
CMPU.LE.QB

00010
CMPU.EQ.QB

010001

6 5 5 5 5 6

CMPU.cond.QB Compare Vectors of Unsigned Byte Values

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 107

ccA  GPR[rs]7..0 LE GPR[rt]7..0
DSPControlccond:27..24  ccD || ccC || ccB || ccA
DSPControlccond:31..28  UNPREDICTABLE

Exceptions:

Reserved Instruction, DSP Disabled

DPA.W.PH Dot Product with Accumulate on Vector Integer Halfword Elements

108 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: DPA.W.PH ac, rs, rt MIPSDSP-R2

Purpose: Dot Product with Accumulate on Vector Integer Halfword Elements

Generate the dot-product of two integer halfword vector elements using full-size intermediate products and then
accumulate into the specified accumulator register.

Description: ac  ac + ((rs31..16 * rt31..16) + (rs15..0 * rt15..0))

Each of the two halfword integer values from register rt is multiplied with the corresponding halfword element from
register rs to create two integer word results. These two products are summed to generate a dot-product result, which
is then accumulated into the specified 64-bit HI/LO accumulator, creating a 64-bit integer result.

The value of ac selects an accumulator numbered from 0 to 3. When ac=0, this refers to the original HI/LO register
pair of the MIPS64 architecture.

This instruction does not set any bits of the ouflag field in the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

tempB31..0  (GPR[rs]31..16 * GPR[rt]31..16)
tempA31..0  (GPR[rs]15..0 * GPR[rt]15..0)
dotp32..0  (tempB31 || tempB31..0) + (tempA31 || tempA31..0)
acc63..0  (HI[ac]31..0 || LO[ac]31..0) + ((dotp32)

31 || dotp32..0)
(HI[ac]63..0 || LO[ac]63..0)  (acc63)

32 || acc63..32 || (acc31)
32 || acc31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

rs rt
0

000
ac

DPA.W.PH
00000

DPA.W.PH
110000

6 5 5 3 2 5 6

DPAQ_S.W.PH Dot Product with Accumulation on Fractional Halfword Elements

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 109

Format: DPAQ_S.W.PH ac, rs, rt MIPSDSP

Purpose: Dot Product with Accumulation on Fractional Halfword Elements

Element-wise multiplication of two vectors of fractional halfword elements and accumulation of the accumulated 32-
bit intermediate products into the specified 64-bit accumulator register, with saturation.

Description: ac  ac + (sat32(rs31..16 * rt31..16) + sat32(rs15..0 * rt15..0))

Each of the two right-most Q15 fractional word values from registers rt and rs are multiplied together, and the results
left-shifted by one bit position to generate two Q31 fractional format intermediate products. If both multiplicands for
either of the multiplications are equal to -1.0 (0x8000 hexadecimal), the resulting intermediate product is saturated to
the maximum positive Q31 fractional value (0x7FFFFFFF hexadecimal).

The two intermediate products are then sign-extended and summed to generate a 64-bit, Q32.31 fractional format dot-
product result that is accumulated into the specified 64-bit HI/LO accumulator to produce a final Q32.31 fractional
result.

The value of ac can range from 0 to 3; a value of 0 refers to the original HI/LO register pair of the MIPS64 architec-
ture.

If saturation occurs as a result of a halfword multiplication, a 1 is written to one of bits 16 through 19 of the
DSPControl register, within the ouflag field. The value of ac determines which of these bits is set: bit 16 corresponds
to ac0, bit 17 to ac1, bit 18 to ac2, and bit 19 to ac3.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

tempB31..0  multiplyQ15Q15(ac, GPR[rs]31..16, GPR[rt]31..16)
tempA31..0  multiplyQ15Q15(ac, GPR[rs]15..0, GPR[rt]15..0)
dotp63..0  ((tempB31)

32 || tempB31..0) + ((tempA31)
32 || tempA31..0)

tempC63..0  (HI[ac]31..0 || LO[ac]31..0) + dotp63..0
(HI[ac]63..0 || LO[ac]63..0)  (tempC63)

32 || tempC63..32 || (tempC31)
32 || tempC31..0

function multiplyQ15Q15(acc1..0, a15..0, b15..0)
if (a15..0 = 0x8000) and (b15..0 = 0x8000) then

temp31..0  0x7FFFFFFF
DSPControlouflag:16+acc  1

else
temp31..0  (a15..0 * b15..0) << 1

endif
return temp31..0

endfunction multiplyQ15Q15

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

rs rt
0

000
ac

DPAQ_S.W.PH
00100

DPA.W.PH
110000

6 5 5 3 2 5 6

DPAQ_SA.L.W Dot Product with Accumulate on Fractional Word Element

110 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: DPAQ_SA.L.W ac, rs, rt MIPSDSP

Purpose: Dot Product with Accumulate on Fractional Word Element

Multiplication of two fractional word elements, accumulating the product to the specified 64-bit accumulator register,
with saturation.

Description: ac  sat64(ac + sat32(rs31..0 * rt31..0))

The two right-most Q31 fractional word values from registers rt and rs are multiplied together and the result left-
shifted by one bit position to generate a 64-bit, Q63 fractional format intermediate product. If both multiplicands are
equal to -1.0 (0x80000000 hexadecimal), the intermediate product is saturated to the maximum positive Q63 frac-
tional value (0x7FFFFFFFFFFFFFFF hexadecimal).

The intermediate product is then added to the specified 64-bit HI/LO accumulator, creating a Q63 fractional result. If
the accumulation results in overflow or underflow, the accumulator is saturated to either the maximum positive or
minimum negative Q63 fractional value (0x8000000000000000 hexadecimal), respectively.

The value of ac can range from 0 to 3; a value of 0 refers to the original HI/LO register pair of the MIPS64 architec-
ture.

If saturation occurs, a 1 is written to one of bits 16 through 19 of the DSPControl register, within the ouflag field. The
value of ac determines which of these bits is set: bit 16 corresponds to ac0, bit 17 to ac1, bit 18 to ac2, and bit 19 to
ac3.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

dotp63..0  multiplyQ31Q31(ac, GPR[rs]31..0, GPR[rt]31..0)
temp64..0  HI[ac]31 || HI[ac]31..0 || LO[ac]31..0
temp64..0  temp64..0 + dotp63..0
if (temp64  temp63) then

if (temp64 = 1) then
temp63..0  0x8000000000000000

else
temp63..0  0x7FFFFFFFFFFFFFFF

endif
DSPControlouflag:16+ac  1

endif
(HI[ac]63..0 || LO[ac]63..0)  (temp63)

32 || temp63..32 || (temp31)
32 || temp31..0

function multiplyQ31Q31(acc1..0, a31..0, b31..0)
if ((a31..0 = 0x80000000) and (b31..0 = 0x80000000)) then

temp63..0  0x7FFFFFFFFFFFFFFF
DSPControlouflag:16+acc  1

else
temp63..0  (a31..0 * b31..0) << 1

endif

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

rs rt
0

000
ac

DPAQ_SA.L.W
01100

DPA.W.PH
110000

6 5 5 3 2 5 6

DPAQ_SA.L.W Dot Product with Accumulate on Fractional Word Element

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 111

return temp63..0
endfunction multiplyQ31Q31

Exceptions:

Reserved Instruction, DSP Disabled

DPAQX_S.W.PH Cross Dot Product with Accumulation on Fractional Halfword Elements

112 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: DPAQX_S.W.PH ac, rs, rt MIPSDSP-R2

Purpose: Cross Dot Product with Accumulation on Fractional Halfword Elements

Element-wise cross multiplication of two vectors of fractional halfword elements and accumulation of the 32-bit
intermediate products into the specified 64-bit accumulator register, with saturation.

Description: ac  ac + (sat32(rs31..16 * rt15..0) + sat32(rs15..0 * rt31..16))

The left of the right-most Q15 fractional word values from registers rt is multiplied with the right halfword element
from register rs and the result left-shifted by one bit position to generate a Q31 fractional format intermediate prod-
uct. Similarly, the right of the right-most Q15 fractional word values from registers rt is multiplied with the left half-
word element from register rs and the result left-shifted by one bit position to generate a Q31 fractional format
intermediate product. If both multiplicands for either of the multiplications are equal to -1.0 (0x8000 hexadecimal),
the resulting intermediate product is saturated to the maximum positive Q31 fractional value (0x7FFFFFFF hexadec-
imal).

The two intermediate products are then sign-extended and summed to generate a 64-bit, Q32.31 fractional format dot-
product result that is accumulated into the specified 64-bit HI/LO accumulator to produce a final Q32.31 fractional
result.

The value of ac can range from 0 to 3; a value of 0 refers to the original HI/LO register pair of the MIPS64 architec-
ture.

If saturation occurs as a result of a halfword multiplication, a 1 is written to one of bits 16 through 19 of the
DSPControl register, within the ouflag field. The value of ac determines which of these bits is set: bit 16 corresponds
to ac0, bit 17 to ac1, bit 18 to ac2, and bit 19 to ac3.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

tempB31..0  multiplyQ15Q15(ac, GPR[rs]31..16, GPR[rt]15..0)
tempA31..0  multiplyQ15Q15(ac, GPR[rs]15..0, GPR[rt]31..16)
dotp63..0  ((tempB31)

32 || tempB31..0) + ((tempA31)
32 || tempA31..0)

tempC63..0  (HI[ac]31..0 || LO[ac]31..0) + dotp63..0
(HI[ac]63..0 || LO[ac]63..0)  (tempC63)

32 || tempC63..32 || (tempC31)
32 || tempC31..0

function multiplyQ15Q15(acc1..0, a15..0, b15..0)
if (a15..0 = 0x8000) and (b15..0 = 0x8000) then

temp31..0  0x7FFFFFFF
DSPControlouflag:16+acc  1

else
temp31..0  (a15..0 * b15..0) << 1

endif
return temp31..0

endfunction multiplyQ15Q15

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

rs rt
0

000
ac

DPAQX_S.W.PH
11000

DPA.W.PH
110000

6 5 5 3 2 5 6

DPAQX_S.W.PH Cross Dot Product with Accumulation on Fractional Halfword Elements

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 113

Exceptions:

Reserved Instruction, DSP Disabled

DPAQX_S.W.PH Cross Dot Product with Accumulation on Fractional Halfword Elements

114 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

DPAQX_SA.W.PH Cross Dot Product with Accumulation on Fractional Halfword Elements

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 115

Format: DPAQX_SA.W.PH ac, rs, rt MIPSDSP-R2

Purpose: Cross Dot Product with Accumulation on Fractional Halfword Elements

Element-wise cross multiplication of two vectors of fractional halfword elements and accumulation of the 32-bit
intermediate products into the specified 64-bit accumulator register, with saturation of the accumulator.

Description: ac  sat32(ac + (sat32(rs31..16 * rt15..0) + sat32(rs15..0 * rt31..16)))

The left of the right-most Q15 fractional word values from registers rt is multiplied with the right halfword element
from register rs and the result left-shifted by one bit position to generate a Q31 fractional format intermediate prod-
uct. Similarly, the right of the right-most Q15 fractional word values from registers rt is multiplied with the left half-
word element from register rs and the result left-shifted by one bit position to generate a Q31 fractional format
intermediate product. If both multiplicands for either of the multiplications are equal to -1.0 (0x8000 hexadecimal),
the resulting intermediate product is saturated to the maximum positive Q31 fractional value (0x7FFFFFFF hexadec-
imal).

The two intermediate products are then sign-extended and summed to generate a 64-bit, Q32.31 fractional format dot-
product result that is accumulated into the specified 64-bit HI/LO accumulator to produce a Q32.31 fractional result. If
this result is larger than or equal to +1.0, or smaller than -1.0, it is saturated to the Q31 range.

The value of ac can range from 0 to 3; a value of 0 refers to the original HI/LO register pair of the MIPS64 architec-
ture.

If saturation occurs as a result of halfword multiplication or accumulation, a 1 is written to one of bits 16 through 19
of the DSPControl register, within the ouflag field. The value of ac determines which of these bits is set: bit 16 corre-
sponds to ac0, bit 17 to ac1, bit 18 to ac2, and bit 19 to ac3.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

tempB31..0  multiplyQ15Q15(ac, GPR[rs]31..16, GPR[rt]15..0)
tempA31..0  multiplyQ15Q15(ac, GPR[rs]15..0, GPR[rt]31..16)
dotp63..0  ((tempB31)

32 || tempB31..0) + ((tempA31)
32 || tempA31..0)

tempC63..0  (HI[ac]31..0 || LO[ac]31..0) + dotp63..0
if (tempC63 = 0) and (tempC62..31  0) then

tempC63..0 = 0
32 || 0x7FFFFFFF

DSPControlouflag:16+acc  1
endif
if (tempC63 = 1) and (tempC62..31  132) then

tempC63..0 = 1
32 || 0x80000000

DSPControlouflag:16+acc  1
endif
(HI[ac]63..0 || LO[ac]63..0)  (tempC63)

32 || tempC63..32 || (tempC31)
32 || tempC31..0

function multiplyQ15Q15(acc1..0, a15..0, b15..0)
if (a15..0 = 0x8000) and (b15..0 = 0x8000) then

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

rs rt
0

000
ac

DPAQX_SA.W.PH
11010

DPA.W.PH
110000

6 5 5 3 2 5 6

DPAQX_SA.W.PH Cross Dot Product with Accumulation on Fractional Halfword Elements

116 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

temp31..0  0x7FFFFFFF
DSPControlouflag:16+acc  1

else
temp31..0  (a15..0 * b15..0) << 1

endif
return temp31..0

endfunction multiplyQ15Q15

Exceptions:

Reserved Instruction, DSP Disabled

DPAU.H.QBL Dot Product with Accumulate on Vector Unsigned Byte Elements

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 117

Format: DPAU.H.QBL ac, rs, rt MIPSDSP

Purpose: Dot Product with Accumulate on Vector Unsigned Byte Elements

Element-wise multiplication of the two left-most elements of the four right-most elements of each of two vectors of
unsigned bytes, accumulating the sum of the products into the specified 64-bit accumulator register.

Description: ac  ac + zero_extend((rs31..24 * rt31..24) + (rs23..16 * rt23..16))

The two left-most elements of the four right-most unsigned byte elements of each of registers rt and rs are multiplied
together using unsigned arithmetic to generate two 16-bit unsigned intermediate products. The intermediate products
are then zero-extended to 64 bits and accumulated into the specified 64-bit HI/LO accumulator.

The value of ac can range from 0 to 3; a value of 0 refers to the original HI/LO register pair of the MIPS64 architec-
ture.

This instruction does not set any bits in the ouflag field in the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

tempB15..0  multiplyU8U8(GPR[rs]31..24, GPR[rt]31..24)
tempA15..0  multiplyU8U8(GPR[rs]23..16, GPR[rt]23..16)
dotp63..0  (048 || tempB15..0) + (0

48 || tempA15..0)
tempC63..0  (HI[ac]31..0 || LO[ac]31..0) + dotp63..0
(HI[ac]63..0 || LO[ac]63..0)  (tempC63)

32 || tempC63..32 || (tempC31)
32 ||

tempC31..0

function multiplyU8U8(a7..0, b7..0)
temp17..0  (0 || a7..0) * (0 || b7..0)
return temp15..0

endfunction multiplyU8U8

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

rs rt
0

000
ac

DPAU.H.QBL
00011

DPA.W.PH
110000

6 5 5 3 2 5 6

DPAU.H.QBR Dot Product with Accumulate on Vector Unsigned Byte Elements

118 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: DPAU.H.QBR ac, rs, rt MIPSDSP

Purpose: Dot Product with Accumulate on Vector Unsigned Byte Elements

Element-wise multiplication of the two right-most elements of the four right-most elements of each of two vectors of
unsigned bytes, accumulating the sum of the products into the specified 64-bit accumulator register.

Description: ac  ac + zero_extend((rs15..8 * rt15..8) + (rs7..0 * rt7..0))

The two right-most elements of the four right-most unsigned byte elements of each of registers rt and rs are multi-
plied together using unsigned arithmetic to generate two 16-bit unsigned intermediate products. The intermediate
products are then zero-extended to 64 bits and accumulated into the specified 64-bit HI/LO accumulator.

The value of ac can range from 0 to 3; a value of 0 refers to the original HI/LO register pair of the MIPS64 architec-
ture.

This instruction does not set any bits in the ouflag field in the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

tempB15..0  multiplyU8U8(GPR[rs]15..8, GPR[rs]15..8)
tempA15..0  multiplyU8U8(GPR[rs]7..0, GPR[rs]7..0)
dotp63..0  (048 || tempB15..0) + (0

48 || tempA15..0)
tempC63..0  (HI[ac]31..0 || LO[ac]31..0) + dotp63..0
(HI[ac]63..0 || LO[ac]63..0)  (tempC63)

32 || tempC63..32 || (tempC31)
32 || tempC31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

rs rt
0

000
ac

DPAU.H.QBR
00111

DPA.W.PH
110000

6 5 5 3 2 5 6

DPAX.W.PH Cross Dot Product with Accumulate on Vector Integer Halfword Elements

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 119

Format: DPAX.W.PH ac, rs, rt MIPSDSP-R2

Purpose: Cross Dot Product with Accumulate on Vector Integer Halfword Elements

Generate the cross dot-product of two integer halfword vector elements using full-size intermediate products and then
accumulate into the specified accumulator register.

Description: ac  ac + ((rs31..16 * rt15..0) + (rs15..0 * rt31..16))

The left halfword integer value from register rt is multiplied with the right halfword element from register rs to create
an integer word result. Similarly, the right halfword integer value from register rt is multiplied with the left halfword
element from register rs to create the second integer word result. These two products are summed to generate the dot-
product result, which is then accumulated into the specified 64-bit HI/LO accumulator, creating a 64-bit integer result.

The value of ac selects an accumulator numbered from 0 to 3. When ac=0, this refers to the original HI/LO register
pair of the MIPS64 architecture.

This instruction will not set any bits of the ouflag field in the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

tempB31..0  (GPR[rs]31..16 * GPR[rt]15..0)
tempA31..0  (GPR[rs]15..0 * GPR[rt]31..16)
dotp32..0  ((tempB31) || tempB31..0) + ((tempA31) || tempA31..0)
acc63..0  (HI[ac]31..0 || LO[ac]31..0) + ((dotp32)

31 || dotp32..0)
(HI[ac]63..0 || LO[ac]63..0)  (acc63)

32 || acc63..32 || (acc31)
32 acc31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

rs rt
0

00000
ac

DPAX
01000

DPA.W.PH
110000

6 5 5 5 2 5 6

DPS.W.PH Dot Product with Subtract on Vector Integer Half-Word Elements

120 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: DPS.W.PH ac, rs, rt MIPSDSP-R2

Purpose: Dot Product with Subtract on Vector Integer Half-Word Elements

Generate the dot-product of two integer halfword vector elements using full-size intermediate products and then sub-
tract from the specified accumulator register.

Description: ac  ac - ((rs31..16 * rt31..16) + (rs15..0 * rt15..0))

Each of the two halfword integer values from register rt is multiplied with the corresponding halfword element from
register rs to create two integer word results. These two products are summed to generate the dot-product result,
which is then subtracted from the specified 64-bit HI/LO accumulator, creating a 64-bit integer result.

The value of ac selects an accumulator numbered from 0 to 3. When ac=0, this refers to the original HI/LO register
pair of the MIPS64 architecture.

This instruction will not set any bits of the ouflag field in the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

tempB31..0  (GPR[rs]31..16 * GPR[rt]31..16)
tempA31..0  (GPR[rs]15..0 * GPR[rt]15..0)
dotp32..0  ((tempB31) || tempB31..0) + ((tempA31) || tempA31..0)
acc63..0  (HI[ac]31..0 || LO[ac]31..0) - ((dotp32)

31 || dotp32..0)
(HI[ac]63..0 || LO[ac]63..0)  (acc63)

32 || acc63..32 || (acc31)
32 || acc31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

rs rt
0

000
ac

DPS.W.PH
00001

DPA.W.PH
110000

6 5 5 3 2 5 6

DPSQ_S.W.PH Dot Product with Subtraction on Fractional Halfword Elements

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 121

Format: DPSQ_S.W.PH ac, rs, rt MIPSDSP

Purpose: Dot Product with Subtraction on Fractional Halfword Elements

Element-wise multiplication of two vectors of fractional halfword elements and subtraction of the accumulated 32-bit
intermediate products from the specified 64-bit accumulator register, with saturation.

Description: ac  ac - (sat32(rs31..16 * rt31..16) + sat32(rs15..0 * rt15..0))

Each of the two right-most Q15 fractional word values from registers rt and rs are multiplied together, and the results
left-shifted by one bit position to generate two Q31 fractional format intermediate products. If both multiplicands for
either of the multiplications are equal to -1.0 (0x8000 hexadecimal), the resulting intermediate product is saturated to
the maximum positive Q31 fractional value (0x7FFFFFFF hexadecimal).

The two intermediate products are then sign-extended and summed to generate a 64-bit, Q32.31 fractional format dot-
product result that is subtracted from the specified 64-bit HI/LO accumulator to produce a final Q32.31 fractional
result.

The value of ac can range from 0 to 3; a value of 0 refers to the original HI/LO register pair of the MIPS64 architec-
ture.

If saturation occurs as a result of a halfword multiplication, a 1 is written to one of bits 16 through 19 of the
DSPControl register, within the ouflag field. The value of ac determines which of these bits is set: bit 16 corresponds
to ac0, bit 17 to ac1, bit 18 to ac2, and bit 19 to ac3.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

tempB31..0  multiplyQ15Q15(ac, GPR[rs]31..16, GPR[rt]31..16)
tempA31..0  multiplyQ15Q15(ac, GPR[rs]15..0, GPR[rt]15..0)
dotp63..0  ((tempB31)

32 || tempB31..0) + ((tempA31)
32 || tempA31..0)

tempC63..0  (HI[ac]31..0 || LO[ac]31..0) - dotp63..0
(HI[ac]63..0 || LO[ac]63..0)  (tempC63)

32 || tempC63..32 || (tempC31)
32 ||

tempC31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

rs rt
0

000
ac

DPSQ_S.W.PH
00101

DPA.W.PH
110000

6 5 5 3 2 5 6

DPSQ_SA.L.W Dot Product with Subtraction on Fractional Word Element

122 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: DPSQ_SA.L.W ac, rs, rt MIPSDSP

Purpose: Dot Product with Subtraction on Fractional Word Element

Multiplication of two fractional word elements, subtracting the accumulated product from the specified 64-bit accu-
mulator register, with saturation.

Description: ac  sat64(ac - sat32(rs31..0 * rt31..0))

The two right-most Q31 fractional word values from registers rt and rs are multiplied together and the result left-
shifted by one bit position to generate a 64-bit Q63 fractional format intermediate product. If both multiplicands are
equal to -1.0 (0x80000000 hexadecimal), the intermediate product is saturated to the maximum positive Q63 frac-
tional value (0x7FFFFFFFFFFFFFFF hexadecimal).

The intermediate product is then subtracted from the specified 64-bit HI/LO accumulator, creating a Q63 fractional
result. If the accumulation results in overflow or underflow, the accumulator is saturated to either the maximum posi-
tive or minimum negative Q63 fractional value (0x8000000000000000 hexadecimal), respectively.

The value of ac can range from 0 to 3; a value of 0 refers to the original HI/LO register pair of the MIPS64 architec-
ture.

If saturation occurs, a 1 is written to one of bits 16 through 19 of the DSPControl register, within the ouflag field. The
value of ac determines which of these bits is set: bit 16 corresponds to ac0, bit 17 to ac1, bit 18 to ac2, and bit 19 to
ac3.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

dotp63..0  multiplyQ31Q31(ac, GPR[rs]31..0, GPR[rt]31..0)
temp64..0  HI[ac]31 || HI[ac]31..0 || LO[ac]31..0
temp64..0  temp - dotp63..0
if (temp64  temp63) then

if (temp64 = 1) then
temp63..0  0x8000000000000000

else
temp63..0  0x7FFFFFFFFFFFFFFF

endif
DSPControlouflag:16+ac  1

endif
(HI[ac]63..0 || LO[ac]63..0)  (temp63)

32 || temp63..32 || (temp31)
32 || temp31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

rs rt
0

000
ac

DPSQ_SA.L.W
01101

DPA.W.PH
110000

6 5 5 3 2 5 6

DPSQX_S.W.PH Cross Dot Product with Subtraction on Fractional Halfword Elements

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 123

Format: DPSQX_S.W.PH ac, rs, rt MIPSDSP-R2

Purpose: Cross Dot Product with Subtraction on Fractional Halfword Elements

Element-wise cross multiplication of two vectors of fractional halfword elements and subtraction of the accumulated
32-bit intermediate products from the specified 64-bit accumulator register, with saturation.

Description: ac  ac - (sat32(rs31..16 * rt15..0) + sat32(rs15..0 * rt31..16))

The left of the right-most Q15 fractional word values from registers rt is multiplied with the right halfword element
from register rs and the result left-shifted by one bit position to generate a Q31 fractional format intermediate prod-
uct. Similarly, the right of the right-most Q15 fractional word values from registers rt is multiplied with the left half-
word element from register rs and the result left-shifted by one bit position to generate a Q31 fractional format
intermediate product. If both multiplicands for either of the multiplications are equal to -1.0 (0x8000 hexadecimal),
the resulting intermediate product is saturated to the maximum positive Q31 fractional value (0x7FFFFFFF hexadec-
imal).

The two intermediate products are then sign-extended and summed to generate a 64-bit, Q32.31 fractional format dot-
product result that is subtracted from the specified 64-bit HI/LO accumulator to produce a final Q32.31 fractional
result.

The value of ac can range from 0 to 3; a value of 0 refers to the original HI/LO register pair of the MIPS64 architec-
ture.

If saturation occurs as a result of a halfword multiplication, a 1 is written to one of bits 16 through 19 of the
DSPControl register, within the ouflag field. The value of ac determines which of these bits is set: bit 16 corresponds
to ac0, bit 17 to ac1, bit 18 to ac2, and bit 19 to ac3.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

tempB31..0  multiplyQ15Q15(ac, GPR[rs]31..16, GPR[rt]15..0)
tempA31..0  multiplyQ15Q15(ac, GPR[rs]15..0, GPR[rt]31..16)
dotp63..0  ((tempB31)

32 || tempB31..0) + ((tempA31)
32 || tempA31..0)

tempC63..0  (HI[ac]31..0 || LO[ac]31..0) - dotp63..0
(HI[ac]63..0 || LO[ac]63..0)  (tempC63)

32 || tempC63..32 || (tempC31)
32 || tempC31..0

function multiplyQ15Q15(acc1..0, a15..0, b15..0)
if (a15..0 = 0x8000) and (b15..0 = 0x8000) then

temp31..0  0x7FFFFFFF
DSPControlouflag:16+acc  1

else
temp31..0  (a15..0 * b15..0) << 1

endif
return temp31..0

endfunction multiplyQ15Q15

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

rs rt
0

000
ac

DPSQX_S.W.PH
11001

DPA.W.PH
110000

6 5 5 3 2 5 6

DPSQX_S.W.PH Cross Dot Product with Subtraction on Fractional Halfword Elements

124 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Exceptions:

Reserved Instruction, DSP Disabled

DPSQX_S.W.PH Cross Dot Product with Subtraction on Fractional Halfword Elements

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 125

DPSQX_SA.W.PH Cross Dot Product with Subtraction on Fractional Halfword Elements

126 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: DPSQX_SA.W.PH ac, rs, rt MIPSDSP-R2

Purpose: Cross Dot Product with Subtraction on Fractional Halfword Elements

Element-wise cross multiplication of two vectors of fractional halfword elements and subtraction of the accumulated
32-bit intermediate products from the specified 64-bit accumulator register, with saturation of the accumulator.

Description: ac  sat32(ac - (sat32(rs31..16 * rt15..0) + sat32(rs15..0 * rt31..16)))

The left of the right-most Q15 fractional word values from registers rt is multiplied with the right halfword element
from register rs and the result left-shifted by one bit position to generate a Q31 fractional format intermediate prod-
uct. Similarly, the right of the right-most Q15 fractional word values from registers rt is multiplied with the left half-
word element from register rs and the result left-shifted by one bit position to generate a Q31 fractional format
intermediate product. If both multiplicands for either of the multiplications are equal to -1.0 (0x8000 hexadecimal),
the resulting intermediate product is saturated to the maximum positive Q31 fractional value (0x7FFFFFFF hexadec-
imal).

The two intermediate products are then sign-extended and summed to generate a 64-bit, Q32.31 fractional format dot-
product result that is subtracted from the specified 64-bit HI/LO accumulator to produce a Q32.31 fractional result. If
this result is larger than or equal to +1.0, or smaller than -1.0, it is saturated to the Q31 range.

The value of ac can range from 0 to 3; a value of 0 refers to the original HI/LO register pair of the MIPS64 architec-
ture.

If saturation occurs as a result of halfword multiplication or accumulation, a 1 is written to one of bits 16 through 19
of the DSPControl register, within the ouflag field. The value of ac determines which of these bits is set: bit 16 corre-
sponds to ac0, bit 17 to ac1, bit 18 to ac2, and bit 19 to ac3.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

tempB31..0  multiplyQ15Q15(ac, GPR[rs]31..16, GPR[rt]15..0)
tempA31..0  multiplyQ15Q15(ac, GPR[rs]15..0, GPR[rt]31..16)
dotp63..0  ((tempB31)

32 || tempB31..0) + ((tempA31)
32 || tempA31..0)

tempC63..0  (HI[ac]31..0 || LO[ac]31..0) - dotp63..0
if (tempC63 = 0) and (tempC62..31  0) then

tempC63..0 = 0
32 || 0x7FFFFFFF

DSPControlouflag:16+acc  1
endif
if (tempC63 = 1) and (tempC62..31  132) then

tempC63..0 = 1
32 || 0x80000000

DSPControlouflag:16+acc  1
endif
(HI[ac]63..0 || LO[ac]63..0)  (tempC63)

32 || tempC63..32 || (tempC31)
32 || tempC31..0

function multiplyQ15Q15(acc1..0, a15..0, b15..0)
if (a15..0 = 0x8000) and (b15..0 = 0x8000) then

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

rs rt
0

000
ac

DPSQX_SA.W.PH
11011

DPA.W.PH
110000

6 5 5 3 2 5 6

DPSQX_SA.W.PH Cross Dot Product with Subtraction on Fractional Halfword Elements

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 127

temp31..0  0x7FFFFFFF
DSPControlouflag:16+acc  1

else
temp31..0  (a15..0 * b15..0) << 1

endif
return temp31..0

endfunction multiplyQ15Q15

Exceptions:

Reserved Instruction, DSP Disabled

DPSU.H.QBL Dot Product with Subtraction on Vector Unsigned Byte Elements

128 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: DPSU.H.QBL ac, rs, rt MIPSDSP

Purpose: Dot Product with Subtraction on Vector Unsigned Byte Elements

Element-wise multiplication of two left-most elements from the four right-most elements of each of two vectors of
unsigned bytes, subtracting the sum of the products from the specified 64-bit accumulator register.

Description: ac  ac - zero_extend((rs31..24 * rt31..24) + (rs23..16 * rt23..16))

The two left-most elements of the four right-most unsigned byte elements of each of registers rt and rs are multiplied
together using unsigned arithmetic to generate two 16-bit unsigned intermediate products. The intermediate products
are then zero-extended to 64 bits and subtracted from the specified 64-bit HI/LO accumulator. The result of the sub-
traction is written back to the specified 64-bit HI/LO accumulator.

The value of ac can range from 0 to 3; a value of 0 refers to the original HI/LO register pair of the MIPS64 architec-
ture.

This instruction does not set any bits in the ouflag field in the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

tempB15..0  multiplyU8U8(GPR[rs]31..24, GPR[rt]31..24)
tempA15..0  multiplyU8U8(GPR[rs]23..16, GPR[rt]23..16)
dotp63..0  (048 || tempB15..0) + (0

48 || tempA15..0)
tempC63..0  (HI[ac]31..0 || LO[ac]31..0) - dotp63..0
(HI[ac]63..0 || LO[ac]63..0)  (tempC63)

32 || tempC63..32 || (tempC31)
32 || tempC31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

rs rt
0

000
ac

DPSU.H.QBL
01011

DPA.W.PH
110000

6 5 5 3 2 5 6

DPSU.H.QBR Dot Product with Subtraction on Vector Unsigned Byte Elements

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 129

Format: DPSU.H.QBR ac, rs, rt MIPSDSP

Purpose: Dot Product with Subtraction on Vector Unsigned Byte Elements

Element-wise multiplication of the two right-most elements of the four right-most elements of each of two vectors of
unsigned bytes, subtracting the sum of the products from the specified 64-bit accumulator register.

Description: ac  ac - zero_extend((rs15..8 * rt15..8) + (rs7..0 * rt7..0))

The two right-most elements of the four right-most unsigned byte elements of each of registers rt and rs are multi-
plied together using unsigned arithmetic to generate two 16-bit unsigned intermediate products. The intermediate
products are then zero-extended to 64 bits and subtracted from the specified 64-bit HI/LO accumulator.

The value of ac can range from 0 to 3; a value of 0 refers to the original HI/LO register pair of the MIPS64 architec-
ture.

This instruction does not set any bits in the ouflag field in the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

tempB15..0  multiplyU8U8(GPR[rs]15..8, GPR[rt]15..8)
tempA15..0  multiplyU8U8(GPR[rs]7..0, GPR[rt]7..0)
dotp63..0  (048 || tempB15..0) + (0

48 || tempA15..0)
tempC63..0  (HI[ac]31..0 || LO[ac]31..0) - dotp63..0
(HI[ac]63..0 || LO[ac]63..0)  (tempC63)

32 || tempC63..32 || (tempC31)
32 || tempC31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

rs rt
0

000
ac

DPSU.H.QBR
01111

DPA.W.PH
110000

6 5 5 3 2 5 6

DPSX.W.PH Cross Dot Product with Subtract on Vector Integer Halfword Elements

130 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: DPSX.W.PH ac, rs, rt MIPSDSP-R2

Purpose: Cross Dot Product with Subtract on Vector Integer Halfword Elements

Generate the cross dot-product of two integer halfword vector elements using full-size intermediate products and then
subtract from the specified accumulator register.

Description: ac  ac - ((rs31..16 * rt15..0) + (rs15..0 * rt31..16))

The left halfword integer value from register rt is multiplied with the right halfword element from register rs to create
an integer word result. Similarly, the right halfword integer value from register rt is multiplied with the left halfword
element from register rs to create the second integer word result. These two products are summed to generate the dot-
product result, which is then subtracted from the specified 64-bit HI/LO accumulator, creating a 64-bit integer result.

The value of ac selects an accumulator numbered from 0 to 3. When ac=0, this refers to the original HI/LO register
pair of the MIPS64 architecture.

This instruction will not set any bits of the ouflag field in the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

tempB31..0  (GPR[rs]31..16 * GPR[rt]15..0)
tempA31..0  (GPR[rs]15..0 * GPR[rt]31..16)
dotp32..0  ((tempB31) || tempB31..0) + ((tempA31) || tempA31..0)
acc63..0  (HI[ac]31..0 || LO[ac]31..0) - ((dotp32)

31 || dotp32..0)
(HI[ac]63..0 || LO[ac]63..0)  (acc63)

32 || acc63..32 || (acc31)
32 acc31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

rs rt
0

00000
ac

DPSX
01001

DPA.W.PH
110000

6 5 5 5 2 5 6

EXTP Extract Fixed Bitfield From Arbitrary Position in Accumulator to GPR

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 131

Format: EXTP rt, ac, size MIPSDSP

Purpose: Extract Fixed Bitfield From Arbitrary Position in Accumulator to GPR

Extract size+1 contiguous bits from a 64-bit accumulator from a position specified in the DSPControl register, writing
the bits to a GPR with zero-extension.

Description: rt  sign_extend(zero_extend(acpos..pos-size))

A set of size+1 contiguous bits are extracted from an arbitrary position in accumulator ac, zero-extended to 64 bits,
and then written to register rt.

The bit position, start_pos, of the first bit of the contiguous set to extract is specified by the pos field in bits 0 through
5 of the DSPControl register; bit 6 of the DSPControl register is ignored. The last bit in the set is start_pos - size,
where size is specified in the instruction.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS64 archi-
tecture. After the execution of this instruction, accumulator ac remains unmodified.

If , the extraction is valid, otherwise the extraction is invalid and is said to have failed. The
value of the destination register is UNPREDICTABLE when the extraction is invalid. Upon an invalid extraction
this instruction writes a 1 to bit 14, the Extract Failed Indicator (EFI) bit of the DSPControl register, and 0 otherwise.

Bit 31 of the result is extended into the 32 most-significant bits of the destination register.

The values of bits 0 to 6 in the pos field of the DSPControl register are unchanged by this instruction.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

start_pos5..0  DSPControlpos:5..0
if (start_pos - (size+1) >= -1) then

tempsize..0  (HI[ac]31..0 || LO[ac]31..0)start_pos..start_pos-size
temp31..0  0(32-(size+1)) || tempsize..0
GPR[rt]63..0  (temp31)

32 || temp31..0
DSPControlEFI:14  0

else
DSPControlEFI:14  1
GPR[rt]  UNPREDICTABLE

endif

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

size rt
0

000
ac

EXTP
00010

EXTR.W
111000

6 5 5 3 2 5 6

start_pos size 1+ – 1–

EXTPDP Extract Fixed Bitfield From Arbitrary Position in Accumulator to GPR and Decrement Pos

132 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: EXTPDP rt, ac, size MIPSDSP

Purpose: Extract Fixed Bitfield From Arbitrary Position in Accumulator to GPR and Decrement Pos

Extract size+1 contiguous bits from a 64-bit accumulator from a position specified in the DSPControl register, writing
the bits to a GPR with zero-extension and modifying the extraction position.

Description: rt  zero_extend(acpos..pos-size) ; DSPControlpos:6..0 -= (size+1)

A set of size+1 contiguous bits are extracted from an arbitrary position in accumulator ac, zero-extended to 64 bits,
then written to register rt.

The bit position, start_pos, of the first bit of the contiguous set to extract is specified by the pos field in bits 0 through
5 of the DSPControl register; bit 6 of the DSPControl register is ignored. The position of the last bit in the extracted
set is start_pos - size, where the size argument is specified in the instruction.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS64 archi-
tecture. After the execution of this instruction, accumulator ac remains unmodified.

If , the extraction is valid and the value of the pos field in the DSPControl register is decre-
mented by size+1. Otherwise, the extraction is invalid and is said to have failed. The value of the destination register
is UNPREDICTABLE when the extraction is invalid, and the value of the pos field in the DSPControl register (bits
0 through 6) is not modified.

Upon an invalid extraction this instruction writes a 1 to bit 14, the Extract Failed Indicator (EFI) bit of the
DSPControl register, and 0 otherwise.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

start_pos5..0  DSPControlpos:5..0
if (start_pos - (size+1) >= -1) then

tempsize..0  (HI[ac]31..0 || LO[ac]31..0)start_pos..start_pos-size
GPR[rt]  0(GPRLEN-(size+1)) || tempsize..0
DSPControlpos:6..0  DSPControlpos:6..0 - (size + 1)
DSPControlEFI:14  0

else
DSPControlEFI:14  1
GPR[rt]  UNPREDICTABLE

endif

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

size rt
0

000
ac

EXTPDP
01010

EXTR.W
111000

6 5 5 3 2 5 6

start_pos size 1+ – 1–

EXTPDPV Extract Variable Bitfield From Arbitrary Position in Accumulator to GPR and Decrement Pos

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 133

Format: EXTPDPV rt, ac, rs MIPSDSP

Purpose: Extract Variable Bitfield From Arbitrary Position in Accumulator to GPR and Decrement Pos

Extract a fixed number of contiguous bits from a 64-bit accumulator from a position specified in the DSPControl reg-
ister, writing the bits to a GPR with zero-extension and modifying the extraction position.

Description: rt  zero_extend(acpos..pos-GPR[rs][4:0]) ; DSPControlpos:6..0 -= (GPR[rs]4..0+1)

A fixed number of contiguous bits are extracted from an arbitrary position in accumulator ac, zero-extended to 64
bits, then written to destination register rt. The number of bits extracted is size+1, where size is specified by the five
least-significant bits in register rs, interpreted as a five-bit unsigned integer. The remaining bits in register rs are
ignored.

The bit position, start_pos, of the first bit of the contiguous set to extract is specified by the pos field in bits 0 through
5 of the DSPControl register; bit 6 of the DSPControl register is ignored. The position of the last bit in the extracted
set is start_pos - size.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS64 archi-
tecture. After the execution of this instruction, accumulator ac remains unmodified.

If , the extraction is valid and the value of the pos field in the DSPControl register is decre-
mented by size+1. Otherwise, the extraction is invalid and is said to have failed. The value of the destination register
is UNPREDICTABLE when the extraction is invalid, and the value of the pos field in the DSPControl register (bits
0 through 6) is not modified.

Upon an invalid extraction this instruction writes a 1 to bit 14, the Extract Failed Indicator (EFI) bit of the
DSPControl register, and 0 otherwise.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

start_pos5..0  DSPControlpos:5..0
size4..0  GPR[rs]4..0
if (start_pos - (size+1) >= -1) then

tempsize..0  (HI[ac]31..0 || LO[ac]31..0)start_pos..start_pos-size
GPR[rt]  0(GPRLEN-(size+1)) || tempsize..0
DSPControlpos:6..0  DSPControlpos:6..0 - (size + 1)
DSPControlEFI:14  0

else
DSPControlEFI:14  1
GPR[rt]  UNPREDICTABLE

endif

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

rs rt
0

000
ac

EXTPDPV
01011

EXTR.W
111000

6 5 5 3 2 5 6

start_pos size 1+ – 1–

EXTPV Extract Variable Bitfield From Arbitrary Position in Accumulator to GPR

134 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: EXTPV rt, ac, rs MIPSDSP

Purpose: Extract Variable Bitfield From Arbitrary Position in Accumulator to GPR

Extract a variable number of contiguous bits from a 64-bit accumulator from a position specified in the DSPControl
register, writing the bits to a GPR with zero-extension.

Description: rt  zero_extend(acpos..pos-rs[4:0])

A variable number of contiguous bits are extracted from an arbitrary position in accumulator ac, zero-extended to 64
bits, then written to register rt. The number of bits extracted is size+1, where size is specified by the five least-signifi-
cant bits in register rs, interpreted as a five-bit unsigned integer. The remaining bits in register rs are ignored.

The position of the first bit of the contiguous set to extract, start_pos, is specified by the pos field in bits 0 through 6
of the DSPControl register. The position of the last bit in the contiguous set is start_pos - size.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS64 archi-
tecture. After the execution of this instruction, accumulator ac remains unmodified.

An extraction is valid if ; otherwise, the extraction is invalid and is said to have failed. The
value of the destination register is UNPREDICTABLE when the extraction is invalid. Upon an invalid extraction
this instruction writes a 1 to bit 14, the Extract Failed Indicator (EFI) bit of the DSPControl register, and 0 otherwise.

The values of bits 0 to 6 in the pos field of the DSPControl register are unchanged by this instruction.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

start_pos5..0  DSPControlpos:5..0
size4..0  GPR[rs]4..0
if (start_pos - (size+1) >= -1) then

tempsize..0  (HI[ac]31..0 || LO[ac]31..0)start_pos..start_pos-size
GPR[rt]  0(GPRLEN-(size+1)) || tempsize..0
DSPControlEFI:14  0

else
DSPControlEFI:14  1
GPR[rt]  UNPREDICTABLE

endif

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

rs rt
0

000
ac

EXTPV
00011

EXTR.W
111000

6 5 5 3 2 5 6

start_pos size 1+ – 1–

EXTR[_RS].W Extract Word Value With Right Shift From Accumulator to GPR

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 135

Format: EXTR[_RS].W
EXTR.W rt, ac, shift MIPSDSP
EXTR_R.W rt, ac, shift MIPSDSP
EXTR_RS.W rt, ac, shift MIPSDSP

Purpose: Extract Word Value With Right Shift From Accumulator to GPR

Extract a word value from a 64-bit accumulator to a GPR with right shift, and with optional rounding or rounding and
saturation.

Description: rt  sign_extend(sat32(round(ac >> shift)))

The value in accumulator ac is shifted right by shift bits with sign extension (arithmetic shift right). The 32 least-sig-
nificant bits of the shifted value are then sign extended to 64 bits and written to the destination register rt.

The rounding variant of the instruction adds a 1 at the most-significant discarded bit position. The 32 least-significant
bits of the rounded result are then sign-extended to 64 bits and written to the destination register.

The rounding and saturating variant of the instruction adds a 1 at the most-significant discarded bit position. If the
rounding operation results in an overflow, the shifted value is clamped to the maximum positive Q31 fractional value
(0x7FFFFFFF hexadecimal). The rounded and saturated result is then sign-extended to 64 bits and written to the des-
tination register.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS64 archi-
tecture. After the execution of this instruction, ac remains unmodified.

For all variants of the instruction, including EXTR.W, bit 23 of the DSPControl register is set to 1 if either of the
rounded or non-rounded calculation results in overflow or saturation.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

EXTR.Wtemp64..0  _shiftShortAccRightArithmetic(ac, shift)
if ((temp64..32  0) and (temp64..32  0x1FFFFFFFF)) then

DSPControlouflag:23  1
endif
GPR[rt]63..0  (temp32)

32 || temp32..1
temp64..0  temp + 1
if ((temp64..32  0) and (temp64..32  0x1FFFFFFFF)) then

DSPControlouflag:23  1
endif

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

shift rt
0

000
ac

EXTR.W
00000

EXTR.W
111000

SPECIAL3
011111

shift rt
0

000
ac

EXTR_R.W
00100

EXTR.W
111000

SPECIAL3
011111

shift rt
0

000
ac

EXTR_RS.W
00110

EXTR.W
111000

6 5 5 3 2 5 6

EXTR[_RS].W Extract Word Value With Right Shift From Accumulator to GPR

136 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

EXTR_R.W
temp64..0  _shiftShortAccRightArithmetic(ac, shift)
if ((temp64..32  0) and (temp64..32  0x1FFFFFFFF)) then

DSPControlouflag:23  1
endif
temp64..0  temp + 1
if ((temp64..32  0) and (temp64..32  0x1FFFFFFFF)) then

DSPControlouflag:23  1
endif
GPR[rt]63..0  (temp32)

32 || temp32..1

EXTR_RS.W
temp64..0  _shiftShortAccRightArithmetic(ac, shift)
if ((temp64..32  0) and (temp64..32  0x1FFFFFFFF)) then

DSPControlouflag:23  1
endif
temp64..0  temp + 1
if ((temp64..32  0) and (temp64..32  0x1FFFFFFFF)) then

if (temp64 = 0) then
temp32..1  0x7FFFFFFF

else
temp32..1  0x80000000

endif
DSPControlouflag:23  1

endif
GPR[rt]63..0  (temp32)

32 || temp32..1

function _shiftShortAccRightArithmetic(ac1..0, shift4..0)
if (shift4..0 = 0) then

temp64..0  (HI[ac]31..0 || LO[ac]31..0 || 0)
else

temp64..0  ((HI[ac]31)
shift || HI[ac]31..0 || LO[ac]31..shift-1)

endif
return temp64..0

endfunction _shiftShortAccRightArithmetic

Exceptions:

Reserved Instruction, DSP Disabled

EXTR_S.H Extract Halfword Value From Accumulator to GPR With Right Shift and Saturate

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 137

Format: EXTR_S.H rt, ac, shift MIPSDSP

Purpose: Extract Halfword Value From Accumulator to GPR With Right Shift and Saturate

Extract a halfword value from a 64-bit accumulator to a GPR with right shift and saturation.

Description: rt  sign_extend(sat16(ac >> shift))

The value in the 64-bit accumulator ac is shifted right by shift bits with sign extension (arithmetic shift right). The 64-
bit value is then saturated to 16-bits, sign extended to 64 bits, and written to the destination register rt. The shift argu-
ment is provided in the instruction.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS64 archi-
tecture. After the execution of this instruction, ac remains unmodified.

This instruction sets bit 23 of the DSPControl register in the ouflag field if the operation results in saturation.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

temp63..0  shiftShortAccRightArithmetic(ac, shift)
if (temp63..0 > 0x0000000000007FFF) then

temp31..0  0x00007FFF
DSPControlouflag:23  1

else if (temp63..0 < 0xFFFFFFFFFFFF8000) then
temp31..0  0xFFFF8000
DSPControlouflag:23  1

endif
GPR[rt]63..0  (temp31)

32 || temp31..0

function shiftShortAccRightArithmetic(ac1..0, shift4..0)
sign  HI[ac]31
if (shift = 0) then

temp63..0  HI[ac]31..0 || LO[ac]31..0
else

temp63..0  signshift || ((HI[ac]31..0 || LO[ac]31..0) >> shift)
endif
if (sign temp31) then

DSPControlouflag:23  1
endif
return temp63..0

endfunction shiftShortAccRightArithmetic

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

shift rt
0

000
ac

EXTR_S.H
01110

EXTR.W
111000

6 5 5 3 2 5 6

EXTRV[_RS].W Extract Word Value With Variable Right Shift From Accumulator to GPR

138 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: EXTRV[_RS].W
EXTRV.W rt, ac, rs MIPSDSP
EXTRV_R.W rt, ac, rs MIPSDSP
EXTRV_RS.W rt, ac, rs MIPSDSP

Purpose: Extract Word Value With Variable Right Shift From Accumulator to GPR

Extract a word value from a 64-bit accumulator to a GPR with variable right shift, and with optional rounding or
rounding and saturation.

Description: rt  sign_extend(sat32(round(ac >> rs5..0)))

The value in accumulator ac is shifted right by shift bits with sign extension (arithmetic shift right). The lower 32 bits
of the shifted value are then sign extended to 64-bits and written to the destination register rt. The number of bits to
shift is given by the five least-significant bits of register rs; the remaining bits of rs are ignored.

The rounding variant of the instruction adds a 1 at the most-significant discarded bit position. The 32 least-significant
bits of the rounded result are then sign extended to 64-bits and written to the destination register.

The rounding and saturating variant of the instruction adds a 1 at the most-significant discarded bit position. If the
rounding operation results in an overflow, the shifted value is clamped to the maximum positive Q31 fractional value
(0x7FFFFFFF hexadecimal). The rounded and saturated result is then sign extended to 64-bits and written to the des-
tination register.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS64 archi-
tecture. After the execution of this instruction, ac remains unmodified.

For all variants of the instruction, including EXTRV.W, bit 23 of the DSPControl register is set to 1 if either of the
rounded or non-rounded calculation results in overflow or saturation.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

EXTRV.W
temp64..0  _shiftShortAccRightArithmetic(ac, GPR[rs]4..0)
if ((temp64..32  0) and (temp64..32  0x1FFFFFFFF)) then

DSPControlouflag:23  1
endif
GPR[rt]63..0  (temp32)

32 || temp32..1
temp64..0  temp + 1
if ((temp64..32  0) and (temp64..32  0x1FFFFFFFF)) then

DSPControlouflag:23  1
endif

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

rs rt
0

000
ac

EXTRV.W
00001

EXTR.W
111000

SPECIAL3
011111

rs rt
0

000
ac

EXTRV_R.W
00101

EXTR.W
111000

SPECIAL3
011111

rs rt
0

000
ac

EXTRV_RS.W
00111

EXTR.W
111000

6 5 5 3 2 5 6

EXTRV[_RS].W Extract Word Value With Variable Right Shift From Accumulator to GPR

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 139

EXTRV_R.W
temp64..0  _shiftShortAccRightArithmetic(ac, GPR[rs]4..0)
if ((temp64..32  0) and (temp64..32  0x1FFFFFFFF)) then

DSPControlouflag:23  1
endif
temp64..0  temp + 1
if ((temp64..32  0) and (temp64..32  0x1FFFFFFFF)) then

DSPControlouflag:23  1
endif
GPR[rt]63..0  (temp32)

32 || temp32..1

EXTRV_RS.W
temp64..0  _shiftShortAccRightArithmetic(ac, GPR[rs]4..0)
if ((temp64..32  0) and (temp64..32  0x1FFFFFFFF)) then

DSPControlouflag:23  1
endif
temp64..0  temp + 1
if ((temp64..32  0) and (temp64..32  0x1FFFFFFFF)) then

if (temp64 = 0) then
temp32..1  0x7FFFFFFF

else
temp32..1  0x80000000

endif
DSPControlouflag:23  1

endif
GPR[rt]63..0  (temp32)

32 || temp32..1

Exceptions:

Reserved Instruction, DSP Disabled

EXTRV_S.H Extract Halfword Value Variable From Accumulator to GPR With Right Shift and Saturate

140 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: EXTRV_S.H rt, ac, rs MIPSDSP

Purpose: Extract Halfword Value Variable From Accumulator to GPR With Right Shift and Saturate

Extract a halfword value from a 64-bit accumulator to a GPR with right shift and saturation.

Description: rt  sign_extend(sat16(ac >> rs4..0))

The value in the 64-bit accumulator ac is shifted right by shift bits with sign extension (arithmetic shift right). The 64-
bit value is then saturated to 16-bits and sign-extended to 64 bits before being written to the destination register rt.
The five least-significant bits of register rs provide the shift argument, interpreted as a five-bit unsigned integer; the
remaining bits in rs are ignored.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS64 archi-
tecture. After the execution of this instruction, ac remains unmodified.

This instruction sets bit 23 of the DSPControl register in the ouflag field if the operation results in saturation.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

shift4..0  GPR[rs]4..0
temp31..0  shiftShortAccRightArithmetic(ac, shift)
if (temp63..0 > 0x0000000000007FFF) then

temp31..0  0x00007FFF
DSPControl23  1

else if (temp63..0 < 0xFFFFFFFFFFFF8000) then
temp31..0  0xFFFF8000
DSPControl23  1

endif
GPR[rt]63..0  (temp31)

32 || temp31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

rs rt
0

000
ac

EXTRV_S.H
01111

EXTR.W
111000

6 5 5 3 2 5 6

INSV Insert Bit Field Variable

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 141

Format: INSV rt, rs MIPSDSP

Purpose: Insert Bit Field Variable

To merge a right-justified bit field from register rs into a specified field in register rt.

Description: rt  InsertFieldVar(rt, rs, Scount, Pos)

The DSPControl register provides the size value from the Scount field, and the pos value from the pos field. The right-
most size bits from register rs are merged into the value from register rt starting at bit position pos. The result is put
back in register rt. These pos and size values are converted by the instruction into the fields msb (the most significant
bit of the field), and lsb (least significant bit of the field), as follows:

pos  DSPControl5..0
size  DSPControl12..7
msb  pos+size-1
lsb  pos

The values of pos and size must satisfy all of the following relations, or the instruction results in UNPREDICTABLE
results:

0  pos  32
0  size  32
0  pos+size  32

 Figure 6.1 shows the symbolic operation of the instruction.

Figure 6.1 Operation of the INSV Instruction

Restrictions:

The operation is UNPREDICTABLE if lsb  msb.

If either register rs or register rt does not contain sign-extended 32-bit values (bits 63..31 equal), then the result of the

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt
0

00000
0

00000
INSV

001100

6 5 5 5 5 6

GPR rs

31
size

msb-lsb+1

ABCD

32-size
32-(msb-lsb+1)

0
size-1
msb-lsb

EFGH

size
msb-lsb+1

Initial
Value

GPR rt

31
pos+size

msb+1

IJKL

32-(pos+size)
32-(msb+1)

pos+size-1
msb

MNOP

size
msb-lsb+1

pos
lsb

QRST

0
pos-1
lsb-1

pos
lsb

Final
Value

GPR rt

31
pos+size

msb+1

IJKL

32-(pos+size)
32-(msb+1)

pos+size-1
msb

EFGH

size
msb-lsb+1

pos
lsb

QRST

0
pos-1
lsb-1

pos
lsb

INSV Insert Bit Field Variable

142 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

operation is UNPREDICTABLE.

Operation:

if (lsb > msb) or (NotWordValue(GPR[rs])) or (NotWordValue(GPR[rt]))) then
UNPREDICTABLE

endif
GPR[rt]63..0  (GPR[rt]31)

32 || GPR[rt]31..msb+1 || GPR[rs]msb-lsb..0 || GPR[rt]lsb-1..0

Exceptions:

Reserved Instruction, DSP Disabled

LBUX Load Unsigned Byte Indexed

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 143

Format: LBUX rd, index(base) MIPSDSP

Purpose: Load Unsigned Byte Indexed

To load a byte from memory as an unsigned value, using indexed addressing.

Description: rd  memory[base+index]

The contents of GPR index is added to the contents of GPR base to form an effective address. The contents of the 8-
bit byte at the memory location specified by the aligned effective address are fetched, zero-extended to the GPR reg-
ister length and placed in GPR rd.

Restrictions:

None.

Operation:

vAddr31..0  GPR[index]31..0 + GPR[base]31..0
(pAddr, CCA)  AddressTranslation(vAddr, DATA, LOAD)
pAddr  pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
memwordGPRLEN..0  LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
GPR[rd]63..0  zero_extend(memword7..0)

Exceptions:

Reserved Instruction, DSP Disabled, TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

base index rd
LBUX
00110

LX
001010

6 5 5 5 5 6

LBUX Load Unsigned Byte Indexed

144 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

LDX Load Doubleword Indexed

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 145

Copyright © 2015 MIPS Technologies Inc. All rights reserved.

Format: LDX rd, index(base) MIPSDSP

Purpose: Load Doubleword Indexed

To load a doubleword value from memory as a signed value, using indexed addressing.

Description: rd  memory[base+index]

The contents of GPR index is added to the contents of GPR base to form an effective address. The contents of the 64-
bit word at the memory location specified by the aligned effective address are fetched and placed in GPR rd.

Restrictions:

The effective address must be naturally-aligned. If any of the three least-significant bits of the address are non-zero,
an Address Error exception occurs.

Operation:

vAddr63..0  GPR[index] + GPR[base]
if (vAddr2..00

3) then
SignalException(AddressError)

endif
(pAddr, CCA)  AddressTranslation(vAddr, DATA, LOAD)
doubleword63..0  LoadMemory (CCA, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[rd]63..0  doubleword63..0

Exceptions:

Reserved Instruction, DSP Disabled, TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

base index rd
LDX
01000

LX
001010

6 5 5 5 5 6

LHX Load Halfword Indexed

146 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: LHX rd, index(base) MIPSDSP

Purpose: Load Halfword Indexed

To load a halfword value from memory as a signed value, using indexed addressing.

Description: rd  memory[base+index]

The contents of GPR index is added to the contents of GPR base to form an effective address. The contents of the 16-
bit halfword at the memory location specified by the aligned effective address are fetched, sign-extended to the length
of the destination GPR, and placed in GPR rd.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the effective address is non-zero, an
Address Error exception occurs.

Operation:

vAddr31..0  GPR[index]31..0 + GPR[base]31..0
if (vAddr00) then

SignalException(AddressError)
endif
(pAddr, CCA)  AddressTranslation(vAddr, DATA, LOAD)
halfwordGPRLEN..0  LoadMemory(CCA, HALFWORD, pAddr, vAddr, DATA)
GPR[rd]63..0  sign_extend(halfword15..0)

Exceptions:

Reserved Instruction, DSP Disabled, TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

base index rd
LHX
00100

LX
001010

6 5 5 5 5 6

LWX Load Word Indexed

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 147

Format: LWX rd, index(base) MIPSDSP

Purpose: Load Word Indexed

To load a word value from memory as a signed value, using indexed addressing.

Description: rd  memory[base+index]

The contents of GPR index is added to the contents of GPR base to form an effective address. The contents of the 32-
bit word at the memory location specified by the aligned effective address are fetched, sign-extended to the length of
the GPR register, and placed in GPR rd.

Restrictions:

The effective address must be naturally-aligned. If either of the two least-significant bits of the address are non-zero,
an Address Error exception occurs.

Operation:

vAddr31..0  GPR[index]31..0 + GPR[base]31..0
if (vAddr1..00

2) then
SignalException(AddressError)

endif
(pAddr, CCA)  AddressTranslation(vAddr, DATA, LOAD)
memwordGPRLEN..0  LoadMemory(CCA, WORD, pAddr, vAddr, DATA)
GPR[rd]63..0  sign_extend(memword31..0)

Exceptions:

Reserved Instruction, DSP Disabled, TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

base index rd
LWX
00000

LX
001010

6 5 5 5 5 6

MADD Multiply Word and Add to Accumulator

148 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: MADD ac, rs, rt MIPS32 pre-Release 6, MIPSDSP

Purpose: Multiply Word and Add to Accumulator

To multiply two 32-bit integer words and add the 64-bit result to the specified accumulator.

Description: (HI[ac]||LO[ac])  (HI[ac]||LO[ac]) + (rs31..0 * rt31..0)

The 32-bit signed integer word in register rs is multiplied by the corresponding 32-bit signed integer word in register
rt to produce a 64-bit result. The 64-bit product is added to the specified 64-bit accumulator.

These special registers HI and LO are specified by the value of ac. When ac=0, this refers to the original HI/LO regis-
ter pair of the MIPS64 architecture.

In Release 6 of the MIPS Architecture, accumulators are eliminated from MIPS64.

No arithmetic exception occurs under any circumstances.

Restrictions:

If registers rs or rt do not contain sign-extended 32-bit values (i.e., bits 31 through 63 are equal), then the results of
the operation are UNPREDICTABLE.

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then
UNPREDICTABLE

endif
temp63..0  ((GPR[rs]31)

32 || GPR[rs]31..0) * ((GPR[rt]31)
32 || GPR[rt]31..0)

acc63..0  (HI[ac]31..0 || LO[ac]31..0) + temp63..0
(HI[ac]63..0 || LO[ac]63..0)  (acc63)

32 || acc63..32 || (acc31)
32 || acc31..0

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in register rt. This may reduce
the latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL2
011100

rs rt
0

000
ac 0

MADD
000000

6 5 5 3 2 5 6

MADDU Multiply Unsigned Word and Add to Accumulator

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 149

Format: MADDU ac, rs, rt MIPS32 pre-Release 6, MIPSDSP

Purpose: Multiply Unsigned Word and Add to Accumulator

To multiply two 32-bit unsigned integer words and add the 64-bit result to the specified accumulator.

Description: (HI[ac]||LO[ac])  (HI[ac]||LO[ac]) + (rs31..0 * rt31..0)

The 32-bit unsigned integer word in register rs is multiplied by the corresponding 32-bit unsigned integer word in
register rt to produce a 64-bit result. The 64-bit product is added to the specified 64-bit accumulator.

These special registers HI and LO are specified by the value of ac. When ac=0, this refers to the original HI/LO regis-
ter pair of the MIPS64 architecture.

In Release 6 of the MIPS Architecture, accumulators are eliminated from MIPS64.

No arithmetic exception occurs under any circumstances.

Restrictions:

If registers rs or rt do not contain sign-extended 32-bit values (i.e., bits 31 through 63 are equal), then the results of
the operation are UNPREDICTABLE.

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then
UNPREDICTABLE

endif
temp64..0  (032 || GPR[rs]31..0) * (0

32 || GPR[rt]31..0)
acc63..0  (HI[ac]31..0 || LO[ac]31..0) + temp63..0
(HI[ac]63..0 || LO[ac]63..0)  (acc63)

32 || acc63..32 || (acc31)
32 || acc31..0

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in register rt. This may reduce
the latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL2
011100

rs rt
0

000
ac 0

MADDU
000001

6 5 5 3 2 5 6

MAQ_S[A].W.PHL Multiply with Accumulate Single Vector Fractional Halfword Element

150 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: MAQ_S[A].W.PHL
MAQ_S.W.PHL ac, rs, rt MIPSDSP
MAQ_SA.W.PHL ac, rs, rt MIPSDSP

Purpose: Multiply with Accumulate Single Vector Fractional Halfword Element

To multiply one pair of elements from two vectors of fractional halfword values using full-sized intermediate prod-
ucts and accumulate the result into the specified 64-bit accumulator, with optional saturating accumulation.

Description: ac  sat32(ac + sat32(rs31..16 * rt31..16))

The left-most Q15 fractional halfword values from the two right-most paired halfword vectors in each of registers rt
and rs are multiplied together, and the product left-shifted by one bit position to generate a Q31 fractional format
intermediate result. If both multiplicands are equal to -1.0 in Q15 fractional format (0x8000 hexadecimal), the inter-
mediate result is saturated to the maximum positive Q31 fractional value (0x7FFFFFFF hexadecimal). The interme-
diate result is then sign-extended and accumulated into accumulator ac to generate a 64-bit Q32.31 fractional format
result.

In the saturating accumulation variant of this instruction, if the accumulation of the intermediate product with the
accumulator results in a value that cannot be represented as a Q31 fractional format value, the accumulator is satu-
rated to either the maximum positive Q31 fractional format value (0x7FFFFFFF hexadecimal) or the minimum nega-
tive Q31 fractional format value (0x80000000), sign-extended to 64 bits.

The value of ac can range from 0 to 3; a value of 0 refers to the original HI/LO register pair of the MIPS64 architec-
ture.

If overflow or saturation occurs, a 1 is written to one of bits 16 through 19 of the DSPControl register, within the
ouflag field. The value of ac determines which of these bits is set: bit 16 corresponds to ac0, bit 17 to ac1, bit 18 to
ac2, and bit 19 to ac3.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

MAQ_S.W.PHL
tempA31..0  multiplyQ15Q15(ac, GPR[rs]31..16, GPR[rt]31..16)
tempB63..0  (HI[ac]31..0 || LO[ac]31..0) + ((tempA31)

32 || tempA31..0)
(HI[ac]63..0 || LO[ac]63..0)  (tempB63)

32 || tempB63..32 || (tempB31)
32 ||

tempB31..0

MAQ_SA.W.PHL
tempA31..0  multiplyQ15Q15(ac, GPR[rs]31..16, GPR[rt]31..16)
tempA31..0  sat32AccumulateQ31(ac, temp)
tempB63..0  (tempA31)

32 || tempA31..0
(HI[ac]63..0 || LO[ac]63..0)  (tempB63)

32 || tempB63..32 || (tempB31)
32 ||

tempB31..0

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

rs rt
0

000
ac

MAQ_S.W.PHL
10100

DPA.W.PH
110000

SPECIAL3
011111

rs rt
0

000
ac

MAQ_SA.W.PHL
10000

DPA.W.PH
110000

6 5 5 3 2 5 6

MAQ_S[A].W.PHL Multiply with Accumulate Single Vector Fractional Halfword Element

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 151

function sat32AccumulateQ31(acc1..0, a31..0)
signA  a31
temp127..0  HI[acc]63..0 || LO[acc]63..0
temp127..0  temp + ((signA)

96 || a31..0)
if (temp32  temp31) then

if (temp32 = 0) then
temp31..0  0x80000000

else
temp31..0  0x7FFFFFFF

endif
DSPControlouflag:16+acc  1

endif
return temp31..0

endfunction sat32AccumulateQ31

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

The MAQ_SA version of the instruction is useful for compliance with some ITU speech processing codecs that
require a 32-bit saturation after every multiply-accumulate operation.

MAQ_S[A].W.PHR Multiply with Accumulate Single Vector Fractional Halfword Element

152 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: MAQ_S[A].W.PHR
MAQ_S.W.PHR ac, rs, rt MIPSDSP
MAQ_SA.W.PHR ac, rs, rt MIPSDSP

Purpose: Multiply with Accumulate Single Vector Fractional Halfword Element

To multiply one pair of elements from two vectors of fractional halfword values using full-sized intermediate prod-
ucts and accumulate the result into the specified 64-bit accumulator, with optional saturating accumulation.

Description: ac  sat32(ac + sat32(rs15..0 * rt15..0))

The right-most Q15 fractional halfword values from each of the registers rt and rs are multiplied together and the
product left-shifted by one bit position to generate a Q31 fractional format intermediate result. If both multiplicands
are equal to -1.0 in Q15 fractional format (0x8000 hexadecimal), the intermediate result is saturated to the maximum
positive Q31 fractional value (0x7FFFFFFF hexadecimal). The intermediate result is then sign-extended and accu-
mulated into accumulator ac to generate a 64-bit Q32.31 fractional format result.

In the saturating accumulation variant of this instruction, if the accumulation of the intermediate product with the
accumulator results in a value that cannot be represented as a Q31 fractional format value, the accumulator is satu-
rated to either the maximum positive Q31 fractional format value (0x7FFFFFFF hexadecimal) or the minimum nega-
tive Q31 fractional format value (0x80000000), sign-extended to 64 bits.

The value of ac can range from 0 to 3; a value of 0 refers to the original HI/LO register pair of the MIPS64 architec-
ture.

If overflow or saturation occurs, a 1 is written to one of bits 16 through 19 of the DSPControl register, within the
ouflag field. The value of ac determines which of these bits is set: bit 16 corresponds to ac0, bit 17 to ac1, bit 18 to
ac2, and bit 19 to ac3.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

MAQ_S.W.PHR
tempA31..0  multiplyQ15Q15(ac, GPR[rs]15..0, GPR[rt]15..0)
tempB63..0  (HI[ac]31..0 || LO[ac]31..0) + ((tempA31)

32 || tempA31..0)
(HI[ac]63..0 || LO[ac]63..0)  (tempB63)

32 || tempB63..32 || (tempB31)
32 ||

tempB31..0

MAQ_SA.W.PHR
tempA31..0  multiplyQ15Q15(ac, GPR[rs]15..0, GPR[rt]15..0)
tempA31..0  sat32AccumulateQ31(ac, temp)
tempB63..0  (tempA31)

32 || tempA31..0
(HI[ac]63..0 || LO[ac]63..0)  (tempB63)

32 || tempB63..32 || (tempB31)
32 ||

tempB31..0

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

rs rt
0

000
ac

MAQ_S.W.PHR
10110

DPA.W.PH
110000

SPECIAL3
011111

rs rt
0

000
ac

MAQ_SA.W.PHR
10010

DPA.W.PH
110000

6 5 5 3 2 5 6

MAQ_S[A].W.PHR Multiply with Accumulate Single Vector Fractional Halfword Element

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 153

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

The MAQ_SA version of the instruction is useful for compliance with some ITU speech processing codecs that
require a 32-bit saturation after every multiply-accumulate operation.

MFHI Move from HI register

154 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: MFHI rd, ac MIPS32 pre-Release 6, MIPSDSP

Purpose: Move from HI register

To copy the special purpose HI register to a GPR.

Description: rd  HI[ac]

The HI part of accumulator ac is copied to the general-purpose register rd. The HI part of the accumulator is defined
to be bits 64 through 127 of the DSP Module accumulator register.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS64 archi-
tecture.

In Release 6 of the MIPS Architecture, accumulators are eliminated from MIPS64.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

GPR[rd]63..0  HI[ac]63..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5

SPECIAL
000000

0
000

ac
0

00000
rd

0
00000

MFHI
010000

6 3 2 5 5 5 6

MFLO Move from LO register

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 155

Format: MFLO rd, ac MIPS32 pre-Release 6, MIPSDSP

Purpose: Move from LO register

To copy the special purpose LO register to a GPR.

Description: rd  LO[ac]

The LO part of accumulator ac iscopied to the general-purpose register rd. The LO part of the accumulator is defined
to be bits 0 through 63 of the DSP Module accumulator register.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS64 archi-
tecture.

In Release 6 of the MIPS Architecture, accumulators are eliminated from MIPS64.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

GPR[rd]63..0  LO[ac]63..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 23 22 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0
000

ac
0

00000
rd

0
00000

MFLO
010010

6 3 2 5 5 5 6

MODSUB Modular Subtraction on an Index Value

156 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: MODSUB rd, rs, rt MIPSDSP

Purpose: Modular Subtraction on an Index Value

Do a modular subtraction on a specified index value, using the specified decrement and modular roll-around values.

Description: rd  (GPR[rs]==0 ? zero_extend(GPR[rt]23..8) : GPR[rs] - GPR[rt]7..0)

The right-most 32-bit value in register rs is compared to the value zero. If it is zero, then the index value has reached
the bottom of the buffer and must be rolled back around to the top of the buffer. The index value of the top element of
the buffer is obtained from bits 8 through 23 in register rt; this value is zero-extended to 64 bits and written to destina-
tion register rd.

If the value of register rs is not zero, then it is simply decremented by the size of the elements in the buffer. The size
of the elements, in bytes, is specified by bits 0 through 7 of register rt, interpreted as an unsigned integer.

This instruction does not modify the ouflag field in the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

decr7..0  GPR[rt]7..0
lastindex15..0  GPR[rt]23..8
if (GPR[rs]31..0 = 0x00000000) then

GPR[rd]63..0  0(GPRLEN-16) || lastindex15..0
else

GPR[rd]63..0  GPR[rs]63..0 - decr7..0
endif

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
MODSUB

10010
ADDU.QB

010000

6 5 5 5 5 6

MSUB Multiply Word and Subtract from Accumulator

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 157

Format: MSUB ac, rs, rt MIPS32 pre-Release 6, MIPSDSP

Purpose: Multiply Word and Subtract from Accumulator

To multiply two 32-bit integer words and subtract the 64-bit result from the specified accumulator.

Description: (HI[ac]||LO[ac])  (HI[ac]||LO[ac]) - (rs31..0 * rt31..0)

The 32-bit signed integer word in register rs is multiplied by the corresponding 32-bit signed integer word in register
rt to produce a 64-bit result. The 64-bit product is subtracted from the specified 64-bit accumulator.

These special registers HI and LO are specified by the value of ac. When ac=0, this refers to the original HI/LO regis-
ter pair of the MIPS64 architecture.

In Release 6 of the MIPS Architecture, accumulators are eliminated from MIPS64.

No arithmetic exception occurs under any circumstances.

Restrictions:

If registers rs or rt do not contain sign-extended 32-bit values (i.e., bits 31 through 63 are equal), then the results of
the operation are UNPREDICTABLE.

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then
UNPREDICTABLE

endif
temp63..0  ((GPR[rs]31)

32 || GPR[rs]31..0) * ((GPR[rt]31)
32 || GPR[rt]31..0)

acc63..0  (HI[ac]31..0 || LO[ac]31..0) - temp63..0
(HI[ac]63..0 || LO[ac]63..0)  (acc63)

32 || acc63..32 || (acc31)
32 || acc31..0

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in register rt. This may reduce
the latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL2
011100

rs rt
0

000
ac

0
00000

MSUB
000100

6 5 5 3 2 5 6

MSUBU Multiply Unsigned Word and Add to Accumulator

158 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: MSUBU ac, rs, rt MIPS32 pre-Release 6, MIPSDSP

Purpose: Multiply Unsigned Word and Add to Accumulator

To multiply two 32-bit unsigned integer words and subtract the 64-bit result from the specified accumulator.

Description: (HI[ac]||LO[ac])  (HI[ac]||LO[ac]) - (rs31..0 * rt31..0)

The 32-bit unsigned integer word in register rs is multiplied by the corresponding 32-bit unsigned integer word in
register rt to produce a 64-bit result. The 64-bit product is subtracted from the specified 64-bit accumulator.

These special registers HI and LO are specified by the value of ac. When ac=0, this refers to the original HI/LO regis-
ter pair of the MIPS64 architecture.

In Release 6 of the MIPS Architecture, accumulators are eliminated from MIPS64.

No arithmetic exception occurs under any circumstances.

Restrictions:

If registers rs or rt do not contain sign-extended 32-bit values (i.e., bits 31 through 63 are equal), then the results of
the operation are UNPREDICTABLE.

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then
UNPREDICTABLE

endif
temp64..0  (032 || GPR[rs]31..0) * (0

32 || GPR[rt]31..0)
acc63..0  (HI[ac]31..0 || LO[ac]31..0) - temp63..0
(HI[ac]63..0 || LO[ac]63..0)  (acc63)

32 || acc63..32 || (acc31)
32 || acc31..0

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in register rt. This may reduce
the latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL2
011100

rs rt
0

000
ac

0
00000

MSUBU
000101

6 5 5 3 2 5 6

MTHI Move to HI register

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 159

Format: MTHI rs, ac MIPS32 pre-Release 6, MIPSDSP

Purpose: Move to HI register

To copy a GPR to the special purpose HI part of the specified accumulator register.

Description: HI[ac]  GPR[rs]

The source register rs is copied to the HI part of accumulator ac. The HI part of the accumulator is defined to be bits
64 to 127 of the DSP Module accumulator register.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS64 archi-
tecture.

In Release 6 of the MIPS Architecture, accumulators are eliminated from MIPS64.

Restrictions:

A computed result written to the HI/LO pair by DIV, DIVU, DDIV, DDIVU, DMULT, DMULTU, MULT, or MULTU
must be read by MFHI or MFLO before a new result can be written into either HI or LO. Note that this restriction
only applies to the original HI/LO accumulator pair, and does not apply to the new accumulators, ac1, ac2, and ac3.

If an MTHI instruction is executed following one of these arithmetic instructions, but before an MFLO or MFHI
instruction, the contents of LO are UNPREDICTABLE. The following example shows this illegal situation:

MULT r2,r4 # start operation that will eventually write to HI,LO
... # code not containing mfhi or mflo
MTHI r6
... # code not containing mflo
MFLO r3 # this mflo would get an UNPREDICTABLE value

Operation:


HI[ac]63..0  GPR[rs]63..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 13 12 11 10 6 5 0

SPECIAL
000000

rs
0

00000000
ac

0
00000

MTHI
010001

6 5 8 2 5 6

MTHLIP Copy LO to HI and a GPR to LO and Increment Pos by 32

160 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: MTHLIP rs, ac MIPSDSP

Purpose: Copy LO to HI and a GPR to LO and Increment Pos by 32

Copy the LO part of an accumulator to the HI part, copy a GPR to LO, and increment the pos field in the DSPControl
register by 32.

Description: ac  sign_extend(LO[ac]31..0) || sign_extend(GPR[rs]31..0) ; DSPControlpos:6..0

+= 32

The 32 least-significant bits of the specified accumulator are sign-extended to 64 bits and copied to the most-signifi-
cant 64 bits of the same accumulator. Then the 32 least-significant bits of register rs are sign-extended to 64 bits and
copied to the least-significant 64 bits of the accumulator. The instruction then increments the value of bits 0 through 6
of the DSPControl register (the pos field) by 32.

The result of this instruction is UNPREDICTABLE if the value of the pos field before the execution of the instruc-
tion is greater than 32.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS64 archi-
tecture.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

tempA63..0  ((GPR[rs]31)
32 || GPR[rs]31..0)

tempB63..0  ((LO[ac]31)
32) || LO[ac]31..0)

(HI[ac]63..0 || LO[ac]63..0)  tempB63..0 || tempA63..0
oldpos6..0  DSPControlpos:6..0
if (oldpos6..0 > 32) then

DSPControlpos:6..0  UNPREDICTABLE
else

DSPControlpos:6..0  oldpos6..0 + 32
endif

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 13 12 11 10 6 5 0

SPECIAL3
011111

rs
0

00000000
ac

MTHLIP
11111

EXTR.W
111000

6 5 8 2 5 6

MTLO Move to LO register

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 161

Format: MTLO rs, ac MIPS32 pre-Release 6, MIPSDSP

Purpose: Move to LO register

To copy a GPR to the special purpose LO part of the specified accumulator register.

Description: LO[ac]  GPR[rs]

The source register rs is copied to the LO part of accumulator ac. The LO part of the accumulator is defined to be bits
0 to 63 of the DSP Module accumulator register.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS64 archi-
tecture.

In Release 6 of the MIPS Architecture, accumulators are eliminated from MIPS64.

Restrictions:

A computed result written to the HI/LO pair by DIV, DIVU, DDIV, DDIVU, DMULT, DMULTU, MULT, or MULTU
must be read by MFHI or MFLO before a new result can be written into either HI or LO. Note that this restriction
only applies to the original HI/LO accumulator pair, and does not apply to the new accumulators, ac1, ac2, and ac3.

If an MTHI instruction is executed following one of these arithmetic instructions, but before an MFLO or MFHI
instruction, the contents of LO are UNPREDICTABLE. The following example shows this illegal situation:

MULT r2,r4 # start operation that will eventually write to HI,LO
... # code not containing mfhi or mflo
MTHI r6
... # code not containing mflo
MFLO r3 # this mflo would get an UNPREDICTABLE value

Operation:

LO[ac]63..0  GPR[rs]63..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 13 12 11 10 6 5 0

SPECIAL
000000

rs
0

00000000
ac

0
00000

MTLO
010011

6 5 8 2 5 6

MUL[_S].PH Multiply Vector Integer HalfWords to Same Size Products

162 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: MUL[_S].PH
MUL.PH rd, rs, rt MIPSDSP-R2
MUL_S.PH rd, rs, rt MIPSDSP-R2

Purpose: Multiply Vector Integer HalfWords to Same Size Products

Multiply two vector halfword values.

Description: rd  (rs31..16 * rt31..16) || (rs15..0 * rt15..0)

Each of the two integer halfword elements in register rs is multiplied by the corresponding integer halfword element
in register rt to create a 32-bit signed integer intermediate result.

In the non-saturation version of the instruction, the 16 least-significant bits of each 32-bit intermediate result are writ-
ten to the corresponding vector element in destination register rd.

In the saturating version of the instruction, intermediate results that cannot be represented in 16 bits are clipped to
either the maximum positive 16-bit value (0x7FFF hexadecimal) or the minimum negative 16-bit value (0x8000
hexadecimal), depending on the sign of the intermediate result. The saturated results are then written to the destina-
tion register.

To stay compliant with the base architecture, this instruction leaves the base HI/LO pair (accumulator ac0) UNPRE-
DICTABLE after the operation completes. The other DSP Module accumulators, ac1, ac2, and ac3, are unchanged.

In the saturating instruction variant, if either multiplication results in an overflow or underflow, the instruction writes
a 1 to bit 21 in the ouflag field in the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

MUL.PH
tempB31..0  MultiplyI16I16(GPR[rs]31..16, GPR[rt]31..16)
tempA31..0  MultiplyI16I16(GPR[rs]15..0, GPR[rt]15..0)
GPR[rd]..0  tempB15..0 || tempA15..0
HI..0  UNPREDICTABLE
LO..0  UNPREDICTABLE

MUL_S.PH
tempB31..0  sat16MultiplyI16I16(GPR[rs]31..16, GPR[rt]31..16)
tempA31..0  sat16MultiplyI16I16(GPR[rs]15..0, GPR[rt]15..0)
GPR[rd]..0  tempB15..0 || tempA15..0
HI..0  UNPREDICTABLE
LO..0  UNPREDICTABLE

function MultiplyI16I16(a15..0, b15..0)

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
MUL.PH

01100
ADDUH.QB

011000

SPECIAL3
011111

rs rt rd
MUL_S.PH

01110
ADDUH.QB

011000

6 5 5 5 5 6

MUL[_S].PH Multiply Vector Integer HalfWords to Same Size Products

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 163

temp31..0  a15..0 * b15..0
if (temp31..0 > 0x7FFF) or (temp31..0 < 0xFFFF8000) then

DSPControlouflag:21  1
endif
return temp15..0

endfucntion MultiplyI16I16

function satMultiplyI16I16(a15..0, b15..0)
temp31..0  a15..0 * b15..0
if (temp31..0 > 0x7FFF) then

temp31..0  0x00007FFF
DSPControlouflag:21  1

else
if (temp31..0 < 0xFFFF8000) then

temp31..0  0xFFFF8000
DSPControlouflag:21  1

endif
endif
return temp15..0

endfucntion satMultiplyI16I16

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

The base MIPS64 architecture states that upon the after a GPR-targeting multiply instruction such as MUL, the con-
tents of HI and LO are UNPREDICTABLE. To stay compliant with the base architecture, this multiply instruction
states the same requirement. But this requirement does not apply to the new accumulators ac1-ac3 and hence a pro-
grammer must save the value in ac0 (which is the same as HI and LO) across a GPR-targeting multiply instruction, it
needed, while the values in ac1-ac3 do not need to be saved.

MULEQ_S.W.PHL Multiply Vector Fractional Left Halfwords to Expanded Width Products

164 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: MULEQ_S.W.PHL rd, rs, rt MIPSDSP

Purpose: Multiply Vector Fractional Left Halfwords to Expanded Width Products

Multiply two Q15 fractional halfword values to produce a Q31 fractional word result, with saturation.

Description: rd  sign_extend(sat32(rs31..16 * rt31..16))

The left-most Q15 fractional halfword value from the right-most paired halfword vector in register rs is multiplied by
the corresponding Q15 fractional halfword value from register rt. The result is left-shifted one bit position to create a
Q31 format result, sign-extended to 64 bits, and written into the destination register rd. If both input values are -1.0 in
Q15 format (0x8000 in hexadecimal) the result is clamped to the maximum positive Q31 fractional value
(0x7FFFFFFF in hexadecimal) before being sign-extended and written to the destination register.

To stay compliant with the base architecture, this instruction leaves the base HI/LO pair (accumulator ac0) UNPRE-
DICTABLE after the operation completes. The other DSP Module accumulators, ac1, ac2, and ac3 are unmodified.

If the result is saturated, this instruction writes a 1 to bit 21 in the ouflag field of the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

temp31..0  multiplyQ15Q15ouflag21(GPR[rs]31..16, GPR[rt]31..16)
GPR[rd]63..0  (temp31)

32 || temp31..0
HI[0]63..0  UNPREDICTABLE
LO[0]63..0  UNPREDICTABLE

function multiplyQ15Q15ouflag21(a15..0, b15..0)
if (a15..0 = 0x8000) and (b15..0 = 0x8000) then

temp31..0  0x7FFFFFFF
DSPControlouflag:21  1

else
temp31..0  (a15..0 * b15..0) << 1

endif
return temp31..0

endfunction multiplyQ15Q15ouflag21

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

The base MIPS64 architecture states that after a GPR-targeting multiply instruction such as MUL, the contents of
registers HI and LO are UNPREDICTABLE. To maintain compliance with the base architecture this multiply
instruction, MULEQ_S.W.PHL, has the same requirement. Software must save and restore the ac0 register if the pre-
vious value in the ac0 register is needed following the MULEQ_S.W.PHL instruction.

Note that the requirement on HI and LO does not apply to the new accumulator registers ac1, ac2, and ac3; as a result

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
MULEQ_S.W.PHL

11100
ADDU.QB

010000

6 5 5 5 5 6

MULEQ_S.W.PHL Multiply Vector Fractional Left Halfwords to Expanded Width Products

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 165

the values in these accumulators need not be saved.

MULEQ_S.W.PHR Multiply Vector Fractional Right Halfwords to Expanded Width Products

166 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: MULEQ_S.W.PHR rd, rs, rt MIPSDSP

Purpose: Multiply Vector Fractional Right Halfwords to Expanded Width Products

Multiply two Q15 fractional halfword values to produce a Q31 fractional word result, with saturation.

Description: rd  sign_extend(sat32(rs15..0 * rt15..0))

The right-most Q15 fractional halfword value from register rs is multiplied by the corresponding Q15 fractional half-
word value from register rt. The result is left-shifted one bit position to create a Q31 format result, sign-extended to
64 bits, and written into the destination register rd. If both input values are -1.0 in Q15 format (0x8000 in hexadeci-
mal) the result is clamped to the maximum positive Q31 fractional value (0x7FFFFFFF in hexadecimal) before being
sign-extended and written to the destination register.

To stay compliant with the base architecture, this instruction leaves the base HI/LO pair (accumulator ac0) UNPRE-
DICTABLE after the operation completes. The other DSP Module accumulators, ac1, ac2, and ac3 are unmodified.

If the result is saturated, this instruction writes a 1 to bit 21 in the ouflag field of the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

temp31..0  multiplyQ15Q15ouflag21(GPR[rs]15..0, GPR[rt]15..0)
GPR[rd]63..0  (temp31)

32 || temp31..0
HI[0]63..0  UNPREDICTABLE
LO[0]63..0  UNPREDICTABLE

function multiplyQ15Q15ouflag21(a15..0, b15..0)
if (a15..0 = 0x8000) and (b15..0 = 0x8000) then

temp31..0  0x7FFFFFFF
DSPControlouflag:21  1

else
temp31..0  (a15..0 * b15..0) << 1

endif
return temp31..0

endfunction multiplyQ15Q15ouflag21

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

The base MIPS64 architecture states that after a GPR-targeting multiply instruction such as MUL, the contents of
registers HI and LO are UNPREDICTABLE. To maintain compliance with the base architecture this multiply
instruction, MULEQ_S.W.PHR, has the same requirement. Software must save and restore the ac0 register if the pre-
vious value in the ac0 register is needed following the MULEQ_S.W.PHR instruction.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
MULEQ_S.W.PHR

11101
ADDU.QB

010000

6 5 5 5 5 6

MULEQ_S.W.PHR Multiply Vector Fractional Right Halfwords to Expanded Width Products

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 167

Note that the requirement on HI and LO does not apply to the new accumulator registers ac1, ac2, and ac3; as a result
the values in these accumulators need not be saved.

MULEU_S.PH.QBL Multiply Unsigned Vector Left Bytes by Halfwords to Halfword Products

168 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: MULEU_S.PH.QBL rd, rs, rt MIPSDSP

Purpose: Multiply Unsigned Vector Left Bytes by Halfwords to Halfword Products

Multiply two left-most unsigned byte vector elements in a four-element byte vector by two unsigned halfword vector
elements to produce two unsigned halfword results, with saturation.

Description: rd  sign_extend(sat16(rs31..24 * rt31..16) || sat16(rs23..16 * rt15..0))

The two left-most unsigned byte elements in the right-mostfour-element byte vector in register rs are multiplied as
unsigned integer values with the four corresponding unsigned halfword elements from register rt. The eight most-sig-
nificant bits of each 24-bit result are discarded, and the remaining 16 least-significant bits are written to the corre-
sponding elements in halfword vector register rd. The instruction saturates the result to the maximum positive value
(0xFFFF hexadecimal) if any of the discarded bits from each intermediate result are non-zero.

Bit 31 of the result is extended into the 32 most-significant bits of the destination register.

To stay compliant with the base architecture, this instruction leaves the base HI/LO pair (accumulator ac0) UNPRE-
DICTABLE after the operation completes. The other DSP Module accumulators, ac1, ac2, and ac3 are unmodified.

If either result is saturated this instruction writes a 1 to bit 21 in the DSPControl register in the ouflag field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

tempB15..0  multiplyU8U16(GPR[rs]31..24, GPR[rt]31..16)
tempA15..0  multiplyU8U16(GPR[rs]23..16, GPR[rt]15..0)
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0
HI[0]63..0  UNPREDICTABLE
LO[0]63..0  UNPREDICTABLE

function multiplyU8U16(a7..0, b15..0)
temp25..0  (0 || a) * (0 || b)
if (temp25..16> 0x00) then

temp25..0  010 || 0xFFFF
DSPControlouflag:21  1

endif
return temp15..0

endfunction multiplyU8U16

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

The base MIPS64 architecture states that after a GPR-targeting multiply instruction such as MUL, the contents of
registers HI and LO are UNPREDICTABLE. To maintain compliance with the base architecture this multiply
instruction, MULEU_S.PH.QBL, has the same requirement. Software must save and restore the ac0 register if the

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
MULEU_S.PH.QBL

00110
ADDU.QB

010000

6 5 5 5 5 6

MULEU_S.PH.QBL Multiply Unsigned Vector Left Bytes by Halfwords to Halfword Products

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 169

previous value in the ac0 register is needed following the MULEU_S.PH.QBL instruction.

Note that the requirement on HI and LO does not apply to the new accumulator registers ac1, ac2, and ac3; as a result
the values in these accumulators need not be saved.

MULEU_S.PH.QBR Multiply Unsigned Vector Right Bytes with halfwords to Half Word Products

170 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: MULEU_S.PH.QBR rd, rs, rt MIPSDSP

Purpose: Multiply Unsigned Vector Right Bytes with halfwords to Half Word Products

Element-wise multiplication of unsigned byte elements with corresponding unsigned halfword elements, with satura-
tion.

Description: rd  sign_extend(sat16(rs15..8 * rt31..16) || sat16(rs7..0 * rt15..0))

The two right-most unsigned byte elements in the right-mostfour-element byte vector in register rs are multiplied as
unsigned integer values with the corresponding right-most 16-bit unsigned values from register rt. Each result is
clipped to preserve the 16 least-significant bits and written back into the respective halfword element positions in the
destination register rd. The instruction saturates the result to the maximum positive value (0xFFFF hexadecimal) if
any of the clipped bits are non-zero.

Bit 31 of the result is extended into the 32 most-significant bits of the destination register.

To stay compliant with the base architecture, this instruction leaves the base HI/LO pair (accumulator ac0) UNPRE-
DICTABLE after the operation completes. The other DSP Module accumulators, ac1, ac2, and ac3 must be unmod-
ified.

This instruction writes a 1 to bit 21 in the ouflag field in the DSPControl register if either multiplication results in sat-
uration.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

tempB15..0  multiplyU8U16(GPR[rs]15..8, GPR[rt]31..16)
tempA15..0  multiplyU8U16(GPR[rs]7..0, GPR[rt]15..0)
GPR[rd] (tempB15)

32 || tempB15..0 || tempA15..0
HI[0]63..0  UNPREDICTABLE
LO[0]63..0  UNPREDICTABLE

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

The base MIPS64 architecture states that after a GPR-targeting multiply instruction such as MUL, the contents of
registers HI and LO are UNPREDICTABLE. To maintain compliance with the base architecture this multiply
instruction, MULEU_S.PH.QBR, has the same requirement. Software must save and restore the ac0 register if the
previous value in the ac0 register is needed following the MULEU_S.PH.QBR instruction.

Note that the requirement on HI and LO does not apply to the new accumulator registers ac1, ac2, and ac3; as a result
the values in these accumulators need not be saved.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
MULEU_S.PH.QBR

00111
ADDU.QB

010000

6 5 5 5 5 6

MULQ_RS.PH Multiply Vector Fractional Halfwords to Fractional Halfword Products

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 171

Format: MULQ_RS.PH rd, rs, rt MIPSDSP

Purpose: Multiply Vector Fractional Halfwords to Fractional Halfword Products

Multiply Q15 fractional halfword vector elements with rounding and saturation to produce two Q15 fractional half-
word results.

Description: rd  sign_extend(rndQ15(rs31..16 * rt31..16) || rndQ15(rs15..0 * rt15..0))

The two right-most Q15 fractional halfword elements from register rs are separately multiplied by the corresponding
Q15 fractional halfword elements from register rt to produce 32-bit intermediate results. Each intermediate result is
left-shifted by one bit position to produce a Q31 fractional value, then rounded by adding 0x00008000 hexadecimal.
The rounded intermediate result is then truncated to a Q15 fractional value and written to the corresponding position
in destination register rd.

The sign of the left-most result is extended into the 32 most-significant bits of the destination register.

If the two input values to either multiplication are both -1.0 (0x8000 in hexadecimal), the final halfword result is sat-
urated to the maximum positive Q15 value (0x7FFF in hexadecimal) and rounding and truncation are not performed.

To stay compliant with the base architecture, this instruction leaves the base HI/LO pair (accumulator ac0) UNPRE-
DICTABLE after the operation completes. The other DSP Module accumulators, ac1, ac2, and ac3 must be unmod-
ified.

If either result is saturated this instruction writes a 1 to bit 21 in the DSPControl register in the ouflag field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

tempB15..0  rndQ15MultiplyQ15Q15(GPR[rs]31..16, GPR[rt]31..16)
tempA15..0  rndQ15MultiplyQ15Q15(GPR[rs]15..0, GPR[rt]15..0)
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0
HI[0]63..0  UNPREDICTABLE
LO[0]63..0  UNPREDICTABLE

function rndQ15MultiplyQ15Q15(a15..0, b15..0)
if (a15..0 = 0x8000) and (b15..0 = 0x8000) then

temp31..0  0x7FFF0000
DSPControlouflag:21  1

else
temp31..0  (a15..0 * b15..0) << 1
temp31..0  temp31..0 + 0x00008000

endif
return temp31..16

endfunction rndQ15MultiplyQ15Q15

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
MULQ_RS.PH

11111
ADDU.QB

010000

6 5 5 5 5 6

MULQ_RS.PH Multiply Vector Fractional Halfwords to Fractional Halfword Products

172 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Programming Notes:

The base MIPS64 architecture states that after a GPR-targeting multiply instruction such as MUL, the contents of
registers HI and LO are UNPREDICTABLE. To maintain compliance with the base architecture, this multiply
instruction, MULQ_RS.PH, has the same requirement. Software must save and restore the ac0 register if the previous
value in the ac0 register is needed following the MULQ_RS.PH instruction.

Note that the requirement on HI and LO does not apply to the new accumulator registers ac1, ac2, and ac3; as a result,
the values in these accumulators need not be saved.

MULQ_RS.W Multiply Fractional Words to Same Size Product with Saturation and Rounding

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 173

Format: MULQ_RS.W rd, rs, rt MIPSDSP-R2

Purpose: Multiply Fractional Words to Same Size Product with Saturation and Rounding

Multiply fractional Q31 word values, with saturation and rounding.

Description: rd  sign_extend(round(sat32(rs31..0 * rt31..0)))

The right-most Q31 fractional format words in registers rs and rt are multiplied together and the product shifted left
by one bit position to create a 64-bit fractional format intermediate result. The intermediate result is rounded up by
adding a 1 at bit position 31, and then truncated by discarding the 32 least-significant bits to create a 32-bit fractional
format result. The result is then sign-extended to 64 bits and written to destination register rd.

If both input multiplicands are equal to -1 (0x80000000 hexadecimal), rounding is not performed and the maximum
positive Q31 fractional format value (0x7FFFFFFF hexadecimal) is sign-extended to 64 bits and written to the desti-
nation register.

To stay compliant with the base architecture, this instruction leaves the base HI/LO pair (accumulator ac0) UNPRE-
DICTABLE after the operation completes. The other DSP Module accumulators, ac1, ac2, and ac3, are unchanged.

This instruction, on an overflow or underflow of the operation, writes a 1 to bit 21 in the DSPControl register in the
ouflag field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

if (GPR[rs]31..0 = 0x80000000) and (GPR[rt]31..0 = 0x80000000) then
temp63..0  0x7FFFFFFF00000000
DSPControlouflag:21  1

else
temp63..0  (GPR[rs]31..0 * GPR[rt]31..0) << 1
temp63..0  temp63..0 + (0

32 || 0x80000000)
endif
GPR[rd]63..0  (temp63)

32 || temp63..32
HI[0]63..0  UNPREDICTABLE
LO[0]63..0  UNPREDICTABLE

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

The base MIPS64 architecture states that after a GPR-targeting multiply instruction such as MUL, the contents of
registers HI and LO are UNPREDICTABLE. To maintain compliance with the base architecture, this multiply
instruction, MULQ_RS.W, has the same requirement. Software must save and restore the ac0 register if the previous
value in the ac0 register is needed following the MULQ_RS.W instruction.

Note that the requirement on HI and LO does not apply to the new accumulator registers ac1, ac2, and ac3; as a result,

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
MULQ_RS.W

10111
MUL.PH
011000

6 5 5 5 5 6

MULQ_RS.W Multiply Fractional Words to Same Size Product with Saturation and Rounding

174 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

the values in these accumulators need not be saved.

MULQ_RS.W Multiply Fractional Words to Same Size Product with Saturation and Rounding

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 175

MULQ_S.PH Multiply Vector Fractional Half-Words to Same Size Products

176 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: MULQ_S.PH rd, rs, rt MIPSDSP-R2

Purpose: Multiply Vector Fractional Half-Words to Same Size Products

Multiply two vector fractional Q15 values to create a Q15 result, with saturation.

Description: rd  sign_extend(sat16(rs31..16 * rt31..16) || sat16(rs15..0 * rt15..0))

The two right-most vector fractional Q15 values in register rs are multiplied with the corresponding elements in reg-
ister rt to produce two 32-bit products. Each product is left-shifted by one bit position to create a Q31 fractional word
intermediate result. The two 32-bit intermediate results are then each truncated by discarding the 16 least-significant
bits of each result, and the resulting Q15 fractional format halfwords are then written to the corresponding positions
in destination register rd. For each halfword result, if both input multiplicands are equal to -1 (0x8000 hexadecimal),
the final halfword result is saturated to the maximum positive Q15 value (0x7FFF hexadecimal).

The sign of the left-most halfword result is extended into the 32 most-significant bits of the destination register.

To stay compliant with the base architecture, this instruction leaves the base HI/LO pair (accumulator ac0) UNPRE-
DICTABLE after the operation completes. The other DSP Module accumulators, ac1, ac2, and ac3, must be
untouched.

This instruction, on an overflow or underflow of any one of the two vector operation, writes bit 21 in the ouflag field
in the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

tempB31..0  sat16MultiplyQ15Q15(GPR[rs]31..16, GPR[rt]31..16)
tempA31..0  sat16MultiplyQ15Q15(GPR[rs]15..0, GPR[rt]15..0)
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0
HI[0]63..0  UNPREDICTABLE
LO[0]63..0  UNPREDICTABLE

function sat16MultiplyQ15Q15(a15..0, b15..0)
if (a15..0 = 0x8000) and (b15..0 = 0x8000) then

temp31..0  0x7FFF0000
DSPControlouflag:21  1

else
temp31..0  (a15..0 * b15..0)
temp31..0  (temp30..0 || 0)

endif
return temp31..16

endfunction sat16MultiplyQ15Q15

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
MULQ_S.PH

11110
ADDU.QB

010000

6 5 5 5 5 6

MULQ_S.PH Multiply Vector Fractional Half-Words to Same Size Products

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 177

Programming Notes:

The base MIPS64 architecture states that after a GPR-targeting multiply instruction such as MUL, the contents of
registers HI and LO are UNPREDICTABLE. To maintain compliance with the base architecture, this multiply
instruction, MULQ_S.PH, has the same requirement. Software must save and restore the ac0 register if the previous
value in the ac0 register is needed following the MULQ_S.PH instruction.

Note that the requirement on HI and LO does not apply to the new accumulator registers ac1, ac2, and ac3; as a result,
the values in these accumulators need not be saved.

MULQ_S.W Multiply Fractional Words to Same Size Product with Saturation

178 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: MULQ_S.W rd, rs, rt MIPSDSP-R2

Purpose: Multiply Fractional Words to Same Size Product with Saturation

Multiply two Q31 fractional format word values to create a fractional Q31 result, with saturation.

Description: rd  sign_extend(sat32(rs31..0 * rt31..0))

The right-most Q31 fractional format words in registers rs and rt are multiplied together to create a 64-bit fractional
format intermediate result. The intermediate result is left-shifted by one bit position, and then truncated by discarding
the 32 least-significant bits to create a Q31 fractional format result. This result is then sign-extended to 64 bits and
written to destination register rd.

If both input multiplicands are equal to -1 (0x80000000 hexadecimal), the product is clipped to the maximum posi-
tive Q31 fractional format value (0x7FFFFFFF hexadecimal), and sign-extended to 64 bits and written to the destina-
tion register.

To stay compliant with the base architecture, this instruction leaves the base HI/LO pair (accumulator ac0) UNPRE-
DICTABLE after the operation completes. The other DSP Module accumulators, ac1, ac2, and ac3, are unchanged.

This instruction, on an overflow or underflow of the operation, writes a 1 to bit 21 in the DSPControl register in the
ouflag field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

if (GPR[rs]31..0 = 0x80000000) and (GPR[rt]31..0 = 0x80000000) then
temp63..0  0x7FFFFFFF00000000
DSPControlouflag:21  1

else
temp63..0  (GPR[rs]31..0 * GPR[rt]31..0) << 1

endif
GPR[rd]63..0  (temp63)

32 || temp63..32
HI[0]63..0  UNPREDICTABLE
LO[0]63..0  UNPREDICTABLE

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

The base MIPS64 architecture states that after a GPR-targeting multiply instruction such as MUL, the contents of
registers HI and LO are UNPREDICTABLE. To maintain compliance with the base architecture, this multiply
instruction, MULQ_S.W, has the same requirement. Software must save and restore the ac0 register if the previous
value in the ac0 register is needed following the MULQ_S.W instruction.

Note that the requirement on HI and LO does not apply to the new accumulator registers ac1, ac2, and ac3; as a result,
the values in these accumulators need not be saved.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
MULQ_S.W

10110
MUL.PH
011000

6 5 5 5 5 6

MULSA.W.PH Multiply and Subtract Vector Integer Halfword Elements and Accumulate

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 179

Format: MULSA.W.PH ac, rs, rt MIPSDSP-R2

Purpose: Multiply and Subtract Vector Integer Halfword Elements and Accumulate

To multiply and subtract two integer vector elements using full-size intermediate products, accumulating the result
into the specified accumulator.

Description: ac  ac + ((rs31..16 * rt31..16) - (rs15..0 * rt15..0))

Each of the two right-most halfword integer elements from register rt are multiplied by the corresponding elements in
rs to create two word results. The right-most result is subtracted from the left-most result to generate the intermediate
result, which is then added to the specified 64-bit accumulator.

The value of ac selects an accumulator numbered from 0 to 3. When ac=0, this refers to the original HI/LO register
pair of the MIPS64 architecture.

This instruction does not set any bits of the ouflag field in the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

tempB31..0  (GPR[rs]31..16 * GPR[rt]31..16)
tempA31..0  (GPR[rs]15..0 * GPR[rt]15..0)
dotp32..0  ((tempB31) || tempB31..0) - ((tempA31) || tempA31..0)
acc63..0  (HI[ac]31..0 || LO[ac]31..0) + ((dotp32)

31 || dotp32..0)
(HI[ac]63..0 || LO[ac]63..0)  (acc63)

32 || acc63..32 || (acc31)
32 || acc31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

rs rt
0

000
ac

MULSA.W.PH
00010

DPA.W.PH
110000

6 5 5 3 2 5 6

MULSAQ_S.W.PH Multiply And Subtract Vector Fractional Halfwords And Accumulate

180 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: MULSAQ_S.W.PH ac, rs, rt MIPSDSP

Purpose: Multiply And Subtract Vector Fractional Halfwords And Accumulate

Multiply and subtract two Q15 fractional halfword vector elements using full-size intermediate products, accumulat-
ing the result from the specified accumulator, with saturation.

Description: ac  ac + (sat32(rs31..16 * rt31..16) - sat32(rs15..0 * rt15..0))

The two corresponding right-most Q15 fractional values from registers rt and rs are multiplied together and left-
shifted by 1 bit to generate two Q31 fractional format intermediate products. If the input multiplicands to either of the
multiplications are both -1.0 (0x8000 hexadecimal), the intermediate result is saturated to 0x7FFFFFFF hexadecimal.

The two intermediate products (named left and right) are summed with alternating sign to create a sum-of-products,
i.e., the sign of the right product is negated before summation. The sum-of-products is then sign-extended to 64 bits
and accumulated into the specified 64-bit accumulator, producing a Q32.31 result.

The value of ac can range from 0 to 3; a value of 0 refers to the original HI/LO register pair of the MIPS64 architec-
ture.

If saturation occurs, a 1 is written to one of bits 16 through 19 of the DSPControl register, within the ouflag field. The
value of ac determines which of these bits is set: bit 16 corresponds to ac0, bit 17 to ac1, bit 18 to ac2, and bit 19 to
ac3.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

tempB31..0  multiplyQ15Q15(ac, rs31..16, rt31..16)
tempA31..0  multiplyQ15Q15(ac, rs15..0, rt15..0)
dotp63..0  ((tempB31)

32 || tempB31..0) - ((tempA31)
32 || tempA31..0)

tempC63..0  (HI[ac]31..0 || LO[ac]31..0) + dotp63..0
(HI[ac]63..0 || LO[ac]63..0)  (tempC63)

32 || tempC63..32 || (tempC31)
32 || tempC31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

rs rt
0

000
ac

MULSAQ_S.W.PH
00110

DPA.W.PH
110000

6 5 5 3 2 5 6

MULT Multiply Word

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 181

Format: MULT ac, rs, rt MIPS32 pre-Release 6, MIPSDSP

Purpose: Multiply Word

To multiply two 32-bit signed integers, writing the 64-bit result to the specified accumulator.

Description: ac  rs31..0 * rt31..0

The right-most 32-bit signed integer value in register rt is multiplied by the corresponding 32-bit signed integer value
in register rs, to produce a 64-bit result that is written to the specified accumulator register.

The value of ac selects an accumulator numbered from 0 to 3. When ac=0, this refers to the original HI/LO register
pair of the MIPS64 architecture.

In Release 6 of the MIPS Architecture, accumulators are eliminated from MIPS64.

No arithmetic exception occurs under any circumstances.

Restrictions:

On 64-bit processors, if the 32 most-significant bits of register rt or register rs do not contain sign bits (i.e., bits 31
through 63 equal) then the result of the operation is UNPREDICTABLE.

Operation:

if (NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then
UNPREDICTABLE

endif
temp63..0  ((GPR[rs]31)

32 || GPR[rs]31..0) * ((GPR[rt31)
32 || GPR[rt]31..0)

(HI[ac]63..0 || LO[ac]63..0)  (temp63)
32 || temp63..32 || (temp31)

32 || temp31..0

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in register rt. This may reduce
the latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL
000000

rs rt
0

000
ac

0
00000

MULT
011000

6 5 5 3 2 5 6

MULTU Multiply Unsigned Word

182 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: MULTU ac, rs, rt MIPS32 pre-Release 6, MIPSDSP

Purpose: Multiply Unsigned Word

To multiply 32-bit unsigned integers, writing the 64-bit result to the specified accumulator.

Description: ac  rs31..0 * rt31..0

The right-most 32-bit unsigned integer value in register rt is multiplied by the corresponding 32-bit unsigned integer
value in register rs, to produce a 64-bit unsigned result that is written to the specified accumulator register.

The value of ac selects an accumulator numbered from 0 to 3. When ac=0, this refers to the original HI/LO register
pair of the MIPS64 architecture.

In Release 6 of the MIPS Architecture, accumulators are eliminated from MIPS64.

No arithmetic exception occurs under any circumstances.

Restrictions:

On 64-bit processors, if the 32 most-significant bits of register rt or register rs do not contain sign bits (i.e., bits 31
through 63 equal) then the result of the operation is UNPREDICTABLE.

Operation:

if NotWordValue(GPR[rs]) or NotWordValue(GPR[rt])) then
UNPREDICTABLE

endif
temp64..0  (032 || GPR[rs]31..0) * (0

32 || GPR[rt]31..0)
(HI[ac]63..0 || LO[ac]63..0)  (temp63)

32 || temp63..32 || (temp31)
32 || temp31..0

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not affect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in register rt. This may reduce
the latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL
000000

rs rt
0

000
ac 0

MULTU
011001

6 5 5 3 2 5 6

PACKRL.PH Pack a Vector of Halfwords from Vector Halfword Sources

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 183

Format: PACKRL.PH rd, rs, rt MIPSDSP

Purpose: Pack a Vector of Halfwords from Vector Halfword Sources

Pick two elements for a halfword vector using the right halfword and left halfword respectively from the two source
registers.

Description: rd  sign_extend(rs15..0 || rt31..16)

The right-most halfword element from register rs and the left halfword from the two right-most halfwords in register
rt are packed into the two right-most halfword positions of the destination register rd.

The sign of the left-most halfword result is extended into the 32 most-significant bits of the destination register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

tempB15..0  GPR[rs]15..0
tempA15..0  GPR[rt]31..16
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
PACKRL.PH

01110
CMPU.EQ.QB

010001

6 5 5 5 5 6

PICK.PH Pick a Vector of Halfword Values Based on Condition Code Bits

184 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: PICK.PH rd, rs, rt MIPSDSP

Purpose: Pick a Vector of Halfword Values Based on Condition Code Bits

Select two halfword elements from either of two source registers based on condition code bits, writing the selected
elements to the destination register.

Description: rd  sign_extend(pick(cc25,rs31..16,rt31..16) || pick(cc24,rs15..0,rt15..0))

The two right-most condition code bits in the DSPControl register are used to select halfword values from the corre-
sponding element of either source register rs or source register rt. If the value of the corresponding condition code bit
is 1, then the halfword value is selected from register rs; otherwise, it is selected from rt. The selected halfwords are
written to the destination register rd.

The sign of the left-most halfword result is sign-extended into the 32 most-significant bits of the destination register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be in the specified format. If they are not, the results are UNPREDICTABLE and the values of
the operand vectors become UNPREDICTABLE.

Operation:

tempB15..0  (DSPControlccond:25 = 1 ? GPR[rs]31..16 : GPR[rt]31..16)
tempA15..0  (DSPControlccond:24 = 1 ? GPR[rs]15..0 : GPR[rt]15..0)
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
PICK.PH

01011
CMPU.EQ.QB

010001

6 5 5 5 5 6

PICK.QB Pick a Vector of Byte Values Based on Condition Code Bits

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 185

Format: PICK.QB rd, rs, rt MIPSDSP

Purpose: Pick a Vector of Byte Values Based on Condition Code Bits

Select four byte elements from either of two source registers based on condition code bits, writing the selected ele-
ments to the destination register.

Description: rd  sign_extend(pick(cc27,rs31..24,rt31..24) || pick(cc26,rs23..16,rt23..16) ||

pick(cc25,rs15..8,rt15..8) || pick(cc24,rs7..0,rt7..0))

Four of the eight condition code bits in the DSPControl register are used to select byte values from the corresponding
byte element of either source register rs or source register rt. If the value of the corresponding condition code bit is 1,
then the byte value is selected from register rs; otherwise, it is selected from rt. The selected bytes are written to the
destination register rd.

The sign of the left-most selected byte is extended into the 32 most-significant bits of the destination register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be in the specified format. If they are not, the results are UNPREDICTABLE and the values of
the operand vectors become UNPREDICTABLE.

Operation:

tempD7..0  (DSPControlccond:27 = 1 ? GPR[rs]31..24 : GPR[rt]31..24)
tempC7..0  (DSPControlccond:26 = 1 ? GPR[rs]23..16 : GPR[rt]23..16)
tempB7..0  (DSPControlccond:25 = 1 ? GPR[rs]15..8 : GPR[rt]15..8)
tempA7..0  (DSPControlccond:24 = 1 ? GPR[rs]7..0 : GPR[rt]7..0)
GPR[rd]63..0  (tempD7)

32 || tempD7..0|| tempC7..0 || tempB7..0 || tempA7..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
PICK.QB

00011
CMPU.EQ.QB

010001

6 5 5 5 5 6

PRECEQ.W.PHL Precision Expand Fractional Halfword to Fractional Word Value

186 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: PRECEQ.W.PHL rd, rt MIPSDSP

Purpose: Precision Expand Fractional Halfword to Fractional Word Value

Expand the precision of a Q15 fractional value taken from the left element of a paired halfword vector to create a Q31
fractional word value.

Description: rd  sign_extend(expand_prec(rt31..16))

The left Q15 fractional halfword value from the two right-most halfwords in register rt is expanded to a Q31 frac-
tional value, sign-extended to 64 bits, and written to destination register rd. The precision expansion is achieved by
appending 16 least-significant zero bits to the original halfword value to generate the 32-bit fractional value.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

temp31..0  GPR[rt]31..16 || 0
16

GPR[rd]63..0  (temp31)
32 || temp31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

0
00000

rt rd
PRECEQ.W.PHL

01100
ABSQ_S.PH

010010

6 5 5 5 5 6

PRECEQ.W.PHR Precision Expand Fractional Halfword to Fractional Word Value

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 187

Format: PRECEQ.W.PHR rd, rt MIPSDSP

Purpose: Precision Expand Fractional Halfword to Fractional Word Value

Expand the precision of a Q15 fractional value taken from the right element of a paired halfword vector to create a
Q31 fractional word value.

Description: rd  sign_extend(expand_prec(rt15..0))

The right Q15 fractional halfword value from the two right-most halfwords in register rt is expanded to a Q31 frac-
tional value, sign-extended to 64 bits, and written to destination register rd. The precision expansion is achieved by
appending 16 least-significant zero bits to the original halfword value to generate the 32-bit fractional value.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

temp31..0  GPR[rt]15..0 || 0
16

GPR[rd]63..0  (temp31)
32 || temp31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

0
00000

rt rd
PRECEQ.W.PHR

01101
ABSQ_S.PH

010010

6 5 5 5 5 6

PRECEQU.PH.QBL Precision Expand two Unsigned Bytes to Fractional Halfword Values

188 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: PRECEQU.PH.QBL rd, rt MIPSDSP

Purpose: Precision Expand two Unsigned Bytes to Fractional Halfword Values

Expand the precision of two unsigned byte values taken from the two left-most elements of a quad byte vector to cre-
ate two Q15 fractional halfword values.

Description: rd  sign_extend(expand_prec(rt31..24) || expand_prec(rt23..16))

The two left-most unsigned integer byte values from the four right-most byte elements in register rt are expanded to
create two Q15 fractional values that are then written to destination register rd. The precision expansion is achieved
by pre-pending a single zero bit (for positive sign) to the original byte value and appending seven least-significant
zeros to generate each 16-bit fractional value.

Bit 31 of the result is extended into the 32 most-significant bits of the destination register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

tempB15..0  01 || GPR[rt]31..24 || 0
7

tempA15..0  01 || GPR[rt]23..16 || 0
7

GPR[rd]63..0  (tempB15)
32 || tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

0
00000

rt rd
PRECEQU.PH.QBL

00100
ABSQ_S.PH

010010

6 5 5 5 5 6

PRECEQU.PH.QBLA Precision Expand two Unsigned Bytes to Fractional Halfword Values

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 189

Format: PRECEQU.PH.QBLA rd, rt MIPSDSP

Purpose: Precision Expand two Unsigned Bytes to Fractional Halfword Values

Expand the precision of two unsigned byte values taken from the two left-alternate aligned elements of a quad byte
vector to create two Q15 fractional halfword values.

Description: rd  sign_extend(expand_prec(rt31..24) || expand_prec(rt15..8))

The two left-alternate aligned unsigned integer byte values from the four right-most byte elements in register rt are
expanded to create two Q15 fractional values that are then written to destination register rd. The precision expansion
is achieved by pre-pending a single zero bit (for positive sign) to the original byte value and appending seven least-
significant zeros to generate each 16-bit fractional value.

The sign of the left-most result is extended into the 32 most-significant bits of the destination register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

tempB15..0  01 || GPR[rt]31..24 || 0
7

tempA15..0  01 || GPR[rt]15..8 || 0
7

GPR[rd]63..0  (tempB15)
32 || tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

0
00000

rt rd
PRECEQU.PH.QBLA

00110
ABSQ_S.PH

010010

6 5 5 5 5 6

PRECEQU.PH.QBR Precision Expand two Unsigned Bytes to Fractional Halfword Values

190 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: PRECEQU.PH.QBR rd, rt MIPSDSP

Purpose: Precision Expand two Unsigned Bytes to Fractional Halfword Values

Expand the precision of two unsigned byte values taken from the two right-most elements of a quad byte vector to
create two Q15 fractional halfword values.

Description: rd  sign_extend(expand_prec(rt15..8) || expand_prec(rt7..0))

The two right-most unsigned integer byte values from the four right-most byte elements in register rt are expanded to
create two Q15 fractional values that are then written to destination register rd. The precision expansion is achieved
by pre-pending a single zero bit (for positive sign) to the original byte value and appending seven least-significant
zeros to generate each 16-bit fractional value.

Bit 31 of the result is extended into the 32 most-significant bits of the destination register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

tempB15..0  01 || GPR[rt]15..8 || 0
7

tempA15..0  01 || GPR[rt]7..0 || 0
7

GPR[rd]63..0  (tempB15) || tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

0
00000

rt rd
PRECEQU.PH.QBR

00101
ABSQ_S.PH

010010

6 5 5 5 5 6

PRECEQU.PH.QBRA Precision Expand two Unsigned Bytes to Fractional Halfword Values

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 191

Format: PRECEQU.PH.QBRA rd, rt MIPSDSP

Purpose: Precision Expand two Unsigned Bytes to Fractional Halfword Values

Expand the precision of two unsigned byte values taken from the two right-alternate aligned elements of a quad byte
vector to create two Q15 fractional halfword values.

Description: rd  sign_extend(expand_prec(rt23..16) || expand_prec(rt7..0))

The two right-alternate aligned unsigned integer byte values from the four right-most byte elements in register rt are
expanded to create two Q15 fractional values that are then written to destination register rd. The precision expansion
is achieved by pre-pending a single zero bit (for positive sign) to the original byte value and appending seven least-
significant zeros to generate each 16-bit fractional value.

The sign of the left-most result is extended into the 32 most-significant bits of the destination register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

tempB15..0  01 || GPR[rt]23..16 || 0
7

tempA15..0  01 || GPR[rt]7..0 || 0
7

GPR[rd]63..0  (tempB15)
32 || tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

0
00000

rt rd
PRECEQU.PH.QBRA

00111
ABSQ_S.PH

010010

6 5 5 5 5 6

PRECEU.PH.QBL Precision Expand Two Unsigned Bytes to Unsigned Halfword Values

192 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: PRECEU.PH.QBL rd, rt MIPSDSP

Purpose: Precision Expand Two Unsigned Bytes to Unsigned Halfword Values

Expand the precision of two unsigned byte values taken from the two left-most elements of a quad byte vector to cre-
ate two unsigned halfword values.

Description: rd  sign_extend(expand_prec8u16(rt31..24) || expand_prec8u16(rt23..16))

The two left-most unsigned integer byte values from the four right-most byte elements in register rt are expanded to
create two unsigned halfword values that are then written to destination register rd. The precision expansion is
achieved by pre-pending eight most-significant zeros to each original value to generate each 16 bit unsigned value.

Bit 31 of the result is extended into the 32 most-significant bits of the destination register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

tempB15..0  08 || GPR[rt]31..24
tempA15..0  08 || GPR[rt]23..16
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

0
00000

rt rd
PRECEU.PH.QBL

11100
ABSQ_S.PH

010010

6 5 5 5 5 6

PRECEU.PH.QBLA Precision Expand Two Unsigned Bytes to Unsigned Halfword Values

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 193

Format: PRECEU.PH.QBLA rd, rt MIPSDSP

Purpose: Precision Expand Two Unsigned Bytes to Unsigned Halfword Values

Expand the precision of two unsigned integer byte values taken from the two left-alternate aligned positions of a quad
byte vector to create four unsigned halfword values.

Description: rd  sign_extend(expand_prec8u16(rt31..24) || expand_prec8u16(rt15..8))

The two left-alternate aligned unsigned integer byte values from the four right-most byte elements in register rt are
each expanded to unsigned halfword values and written to destination register rd. The precision expansion is
achieved by pre-pending eight most-significant zero bits to the original byte value to generate each 16 bit unsigned
halfword value.

The sign of the left-most result is extended into the 32 most-significant bits of the destination register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

tempB15..0  08 || GPR[rt]31..24
tempA15..0  08 || GPR[rt]15..8
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

0
00000

rt rd
PRECEU.PH.QBLA

11110
ABSQ_S.PH

010010

6 5 5 5 5 6

PRECEU.PH.QBR Precision Expand two Unsigned Bytes to Unsigned Halfword Values

194 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: PRECEU.PH.QBR rd, rt MIPSDSP

Purpose: Precision Expand two Unsigned Bytes to Unsigned Halfword Values

Expand the precision of two unsigned integer byte values taken from the two right-most elements of a quad byte vec-
tor to create two unsigned halfword values.

Description: rd  sign_extend(expand_prec8u16(rt15..8) || expand_prec8u16(rt7..0))

The two right-most unsigned integer byte values from the four right-most byte elements in register rt are expanded to
create two unsigned halfword values that are then written to destination register rd. The precision expansion is
achieved by pre-pending eight most-significant zero bits to each original value to generate each 16 bit halfword
value.

Bit 31 of the result is extended into the 32 most-significant bits of the destination register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

tempB15..0  08 || GPR[rt]15..8
tempA15..0  08 || GPR[rt]7..0
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

0
00000

rt rd
PRECEU.PH.QBR

11101
ABSQ_S.PH

010010

6 5 5 5 5 6

PRECEU.PH.QBRA Precision Expand Two Unsigned Bytes to Unsigned Halfword Values

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 195

Format: PRECEU.PH.QBRA rd, rt MIPSDSP

Purpose: Precision Expand Two Unsigned Bytes to Unsigned Halfword Values

Expand the precision of two unsigned byte values taken from the two right-alternate aligned positions of a quad byte
vector to create two unsigned halfword values.

Description: rd  sign_extend(expand_prec8u16(rt23..16) || expand_prec8u16(rt7..0))

The two right-alternate aligned unsigned integer byte values from the four right-most byte elements in register rt are
each expanded to unsigned halfword values and written to destination register rd. The precision expansion is
achieved by pre-pending eight most-significant zero bits to the original byte value to generate each 16 bit unsigned
halfword value.

The sign of the left-most result is extended into the 32 most-significant bits of the destination register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

tempB15..0  08 || GPR[rt]23..16
tempA15..0  08 || GPR[rt]7..0
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

0
00000

rt rd
PRECEU.PH.QBRA

11111
ABSQ_S.PH

010010

6 5 5 5 5 6

PRECR.QB.PH Precision Reduce Four Integer Halfwords to Four Bytes

196 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: PRECR.QB.PH rd, rs, rt MIPSDSP-R2

Purpose: Precision Reduce Four Integer Halfwords to Four Bytes

Reduce the precision of four integer halfwords to four byte values.

Description: rd  sign_extend(rs23..16 || rs7..0 || rt23..16 || rt7..0)

The 8 least-significant bits from each of the two right-most integer halfword values in registers rs and rt are taken to
produce four byte-sized results that are written to the four right-most byte elements in destination register rd. The two
bytes values obtained from rs are written to the two left-most destination byte elements, and the two bytes obtained
from rt are written to the two right-most destination byte elements.

The sign of the left-most byte result is extended into the 32 most-significant bits of the destination register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

tempD7..0  GPR[rs]23..16
tempC7..0  GPR[rs]7..0
tempB7..0  GPR[rt]23..16
tempA7..0  GPR[rt]7..0
GPR[rd]63..0  (tempD7)

32 || tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
PRECR.QB.PH

01101
CMPU.EQ.QB

010001

6 5 5 5 5 6

PRECR_SRA[_R].PH.W Precision Reduce Two Integer Words to Halfwords after a Right Shift

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 197

Format: PRECR_SRA[_R].PH.W
PRECR_SRA.PH.W rt, rs, sa MIPSDSP-R2
PRECR_SRA_R.PH.W rt, rs, sa MIPSDSP-R2

Purpose: Precision Reduce Two Integer Words to Halfwords after a Right Shift

Do an arithmetic right shift of two integer words with optional rounding, and then reduce the precision to halfwords.

Description: rt  sign_extend((round(rt>>shift))15..0 || (round(rs>>shift))15..0)

The two right-most words in registers rs and rt are right shifted arithmetically by the specified shift amount sa to cre-
ate interim results. The 16 least-significant bits of each interim result are then written to the corresponding elements
of destination register rt.

In the rounding version of the instruction, a value of 1 is added at the most-significant discarded bit position after the
shift is performed. The 16 least-significant bits of each interim result are then written to the corresponding elements
of destination register rt.

The shift amount sa is interpreted as a five-bit unsigned integer taking values between 0 and 31.

The sign of the left-most halfword result is extended into the 32 most-significant bits of destination register rt.

This instruction does not write any bits of the ouflag field in the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

PRECR_SRA.PH.W
if (sa4..0 = 0) then

tempB15..0 GPR[rt]15..0
tempA15..0 GPR[rs]15..0

else
tempB15..0 ((GPR[rt]31)

sa || GPR[rt]31..sa)
tempA15..0 ((GPR[rs]31)

sa || GPR[rs]31..sa)
endif
GPR[rt]63..0 (tempB15)

32 || tempB15..0 || tempA15..0

PRECR_SRA_R.PH.W
if (sa4..0 = 0) then

tempB16..0 (GPR[rt]15..0 || 0)
tempA16..0 (GPR[rs]15..0 || 0)

else
tempB32..0 ((GPR[rt]31)

sa || GPR[rt]31..sa-1) + 1
tempA32..0 ((GPR[rs]31)

sa || GPR[rs]31..sa-1) + 1
endif
GPR[rt]63..0 (tempB16)

32 || tempB16..1 || tempA16..1

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt sa
PRECR_SRA.PH.W

11110
CMPU.EQ.QB

010001

SPECIAL3
011111

rs rt sa
PRECR_SRA_R.PH.W

11111
CMPU.EQ.QB

010001

6 5 5 5 5 6

PRECR_SRA[_R].PH.W Precision Reduce Two Integer Words to Halfwords after a Right Shift

198 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Exceptions:

Reserved Instruction, DSP Disabled

PRECRQ.PH.W Precision Reduce Fractional Words to Fractional Halfwords

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 199

Format: PRECRQ.PH.W rd, rs, rt MIPSDSP

Purpose: Precision Reduce Fractional Words to Fractional Halfwords

Reduce the precision of two fractional words to produce two fractional halfword values.

Description: rd  sign_extend(rt31..16 || rs31..16)

The 16 most-significant bits from each of the right-most Q31 fractional word values in registers rs and rt are written
to destination register rd, creating a vector of two Q15 fractional values. The right-most fractional word from the rs
register is used to create the left-most Q15 fractional value in rd, and the right-most fractional word from the rt regis-
ter is used to create the right-most Q15 fractional value.

The sign of the left-most halfword result is sign-extended into the 32 most-significant bits of the destination register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

tempB15..0  GPR[rs]31..16
tempA15..0  GPR[rt]31..16
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
PRECRQ.PH.W

10100
CMPU.EQ.QB

010001

6 5 5 5 5 6

PRECRQ.QB.PH Precision Reduce Four Fractional Halfwords to Four Bytes

200 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: PRECRQ.QB.PH rd, rs, rt MIPSDSP

Purpose: Precision Reduce Four Fractional Halfwords to Four Bytes

Reduce the precision of four fractional halfwords to four byte values.

Description: rd  sign_extend(rs31..24 || rs15..8 || rt31..24 || rt15..8)

The two right-most Q15 fractional values in each of registers rs and rt are truncated by dropping the eight least signif-
icant bits from each value to produce four fractional byte values. The four fractional byte values are written to the
four right-most byte elements of destination register rd. The two values obtained from register rt are placed in the two
right-most byte positions in the destination register, and the two values obtained from register rs are placed in the two
remaining byte positions.

The sign of the left-most result is extended into the 32 most-significant bits of the destination register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

tempD7..0  GPR[rs]31..24
tempC7..0  GPR[rs]15..8
tempB7..0  GPR[rt]31..24
tempA7..0  GPR[rt]15..8
GPR[rd]63..0  (tempD7)

32 || tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
PRECRQ.QB.PH

01100
CMPU.EQ.QB

010001

6 5 5 5 5 6

PRECRQU_S.QB.PH Precision Reduce Fractional Halfwords to Unsigned Bytes With Saturation

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 201

Format: PRECRQU_S.QB.PH rd, rs, rt MIPSDSP

Purpose: Precision Reduce Fractional Halfwords to Unsigned Bytes With Saturation

Reduce the precision of four fractional halfwords with saturation to produce four unsigned byte values, with satura-
tion.

Description: rd  sign_extend(sat(reduce_prec(rs31..16)) || sat(reduce_prec(rs15..0)) ||

sat(reduce_prec(rt31..16)) || sat(reduce_prec(rt15..0)))

The four right-most Q15 fractional halfwords from registers rs and rt are used to create four unsigned byte values that
are written to corresponding elements of destination register rd. The two right-most halfwords from the rs register
and the two right-most halfwords from the rt register are used to create the four unsigned byte values.

Each unsigned byte value is created from the Q15 fractional halfword input value after first examining the sign and
magnitude of the halfword. If the sign of the halfword value is positive and the value is greater than 0x7F80 hexadec-
imal, the result is clamped to the maximum positive 8-bit value (255 decimal, 0xFF hexadecimal). If the sign of the
halfword value is negative, the result is clamped to the minimum positive 8-bit value (0 decimal, 0x00 hexadecimal).
Otherwise, the sign bit is discarded from the input and the result is taken from the eight most-significant bits that
remain.

If clamping was needed to produce any of the unsigned output values, bit 22 of the DSPControl register is set to 1.

The sign of the left-most byte result is extended into the 32 most-significant bits of destination register rd.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

tempD7..0  sat8ReducePrecision(GPR[rs]31..16)
tempC7..0  sat8ReducePrecision(GPR[rs]15..0)
tempB7..0  sat8ReducePrecision(GPR[rt]31..16)
tempA7..0  sat8ReducePrecision(GPR[rt]15..0)
GPR[rd]63..0  (tempD7)

32 || tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

function sat8ReducePrecision(a15..0)
sign  a15
mag14..0  a14..0
if (sign = 0) then

if (mag14..0 > 0x7F80) then
temp7..0  0xFF
DSPControlouflag:22  1

else
temp7..0  mag14..7

endif
else

temp7..0  0x00
DSPControlouflag:22  1

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
PRECRQU_S.QB.PH

01111
CMPU.EQ.QB

010001

6 5 5 5 5 6

PRECRQU_S.QB.PH Precision Reduce Fractional Halfwords to Unsigned Bytes With Saturation

202 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

endif
return temp7..0

endfunction sat8ReducePrecision

Exceptions:

Reserved Instruction, DSP Disabled

PRECRQ_RS.PH.W Precision Reduce Fractional Words to Halfwords With Rounding and Saturation

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 203

Format: PRECRQ_RS.PH.W rd, rs, rt MIPSDSP

Purpose: Precision Reduce Fractional Words to Halfwords With Rounding and Saturation

Reduce the precision of two fractional words to produce two fractional halfword values, with rounding and satura-
tion.

Description: rd  sign_extend(truncQ15SatRound(rs31..0) || truncQ15SatRound(rt31..0))

The two right-most Q31 fractional word values in each of registers rs and rt are used to create two Q15 fractional
halfword values that are written to the two right-most halfword elements in destination register rd. The right-most
fractional word from the rs register is used to create the left-most Q15 fractional halfword result in rd, and the right-
most fractional word from the rt register is used to create the right-most halfword value.

Each input Q31 fractional value is rounded and saturated before being truncated to create the Q15 fractional halfword
result. First, the value 0x00008000 is added to the input Q31 value to round even, creating an interim rounded result.
If this addition causes overflow, the interim rounded result is saturated to the maximum Q31 value (0x7FFFFFFF
hexadecimal). Then, the 16 least-significant bits of the interim rounded and saturated result are discarded and the 16
most-significant bits are written to the destination register in the appropriate position.

The sign of the left-most halfword result is sign-extended into the 32 most-significant bits of the destination register.

If either of the rounding operations results in overflow and saturation, a 1 is written to bit 22 in the DSPControl regis-
ter within the ouflag field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

tempB15..0  trunc16Sat16Round(GPR[rs]31..0)
tempA15..0  trunc16Sat16Round(GPR[rt]31..0)
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

function trunc16Sat16Round(a31..0)
temp32..0  (a31 || a31..0) + 0x00008000
if (temp32temp31) then

temp32..0  0 || 0x7FFFFFFF
DSPControlouflag:22  1

endif
return temp31..16

endfunction trunc16Sat16Round

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
PRECRQ_RS.PH.W

10101
CMPU.EQ.QB

010001

6 5 5 5 5 6

PREPEND Right Shift and Prepend Bits to the MSB

204 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: PREPEND rt, rs, sa MIPSDSP-R2

Purpose: Right Shift and Prepend Bits to the MSB

Logically right-shift the first source register, replacing the bits emptied by the shift with bits from the source register.

Description: rt  sign_extend(rssa-1..0 || (rt >> sa))

The right-most word value in register rt is logically right-shifted by the specified shift amount sa, and sa bits from the
least-significant positions of register rs are written into the sa most-significant bits emptied by the shift. The result is
then sign-extended to 64 bits and written to destination register rt.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

if (sa4..0 = 0) then
temp31..0  GPR[rt]31..0

else
temp31..0  (GPR[rs]sa-1..0 || GPR[rt]31..sa)

endif
GPR[rt]63..0 = (temp31)

32 || temp31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt sa
PREPEND

00001
APPEND
110001

6 5 5 5 5 6

RADDU.W.QB Unsigned Reduction Add Vector Quad Bytes

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 205

Format: RADDU.W.QB rd, rs MIPSDSP

Purpose: Unsigned Reduction Add Vector Quad Bytes

Reduction add of four unsigned byte values in a vector register to produce an unsigned word result.

Description: rd  zero_extend(rs31..24 + rs23..16 + rs15..8 + rs7..0)

The four right-most unsigned byte elements in register rs are added together as unsigned 8-bit values, and the result is
zero extended to a doubleword and written to register rd.

Restrictions:

No data-dependent exceptions are possible.

The operands must be in the specified format. If they are not, the results are UNPREDICTABLE and the values of
the operand vectors become UNPREDICTABLE.

Operation:

temp9..0  (02 || GPR[rs]31..24) + (0
2 || GPR[rs]23..16) + (0

2 || GPR[rs]15..8) +
(02 || GPR[rs]7..0)
GPR[rd]63..0  0(GPRLEN-10) || temp9..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs
0

00000
rd

RADDU.W.QB
10100

ADDU.QB
010000

6 5 5 5 5 6

RDDSP Read DSPControl Register Fields to a GPR

206 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: RDDSP
RDDSP rd, mask MIPSDSP
RDDSP rd Assembly Idiom

Purpose: Read DSPControl Register Fields to a GPR

To copy selected fields from the special-purpose DSPControl register to the specified GPR.

Description: rd  select(mask, DSPControl)

Selected fields in the special register DSPControl are copied into the corresponding bits of destination register rd.
Each of bits 0 through 5 of the mask operand corresponds to a specific field in the DSPControl register. A mask bit
value of 1 indicates that the bits from the corresponding field in DSPControl will be copied into the same bit positions
in register rd, and a mask bit value of 0 indicates that the corresponding bit positions in rd will be set to zero. Bits 6
through 9 of the mask operand are ignored.

The table below shows the correspondence between the bits in the mask operand and the fields in the DSPControl reg-
ister; mask bit 0 is the least-significant bit in mask.

For example, to copy only the bits from the scount field in DSPControl, the value of the mask operand used will be 2
decimal (0x02 hexadecimal). After execution of the instruction, bits 7 through 12 of register rd will have the value of
bits 7 through 12 from the scount field in DSPControl. The remaining bits in register rd will be set to zero.

The one-operand version of the instruction provides a convenient assembly idiom that allows the programmer to read
all fields in the DSPControl register into the destination register, i.e., it is equivalent to specifying a mask value of 31
decimal (0x1F hexadecimal).

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

temp63..0  064

if (mask0 = 1) then
temp6..0  DSPControlpos:6..0

endif
if (mask1 = 1) then

temp12..7  DSPControlscount:12..7
endif
if (mask2 = 1) then

temp13  DSPControlc:13
endif
if (mask3 = 1) then

temp23..16  DSPControlouflag:23..16

31 26 25 16 15 11 10 6 5 0

SPECIAL3
011111

mask rd
RDDSP
10010

EXTR.W
111000

6 10 5 5 6

Bit 31 24 23 16 15 14 13 12 7 6 0

DSPControl
field ccond ouflag 0 EFI C scount pos

Mask bit 4 3 5 2 1 0

RDDSP Read DSPControl Register Fields to a GPR

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 207

endif
if (mask4 = 1) then

temp31..24  DSPControlccond:31..24
endif
if (mask5 = 1) then

temp14  DSPControlefi:14
endif

GPR[rd]63..0  temp63..0

Exceptions:

Reserved Instruction, DSP Disabled

REPL.PH Replicate Immediate Integer into all Vector Element Positions

208 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: REPL.PH rd, immediate MIPSDSP

Purpose: Replicate Immediate Integer into all Vector Element Positions

Replicate a sign-extended, 10-bit signed immediate integer value into the two right-most halfwords in a halfword
vector.

Description: rd  sign_extend(sign_extend(immediate) || sign_extend(immediate))

The specified 10-bit signed immediate integer value is sign-extended to 16 bits and replicated into the two right-most
halfword positions in destination register rd.

The sign of the immediate value is sign-extended into the 32 most-significant bits of the destination register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

temp15..0  (immediate9)
6 || immediate9..0

GPR[rd]63..0  (temp15..0)
32 || temp15..0 || temp15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 16 15 11 10 6 5 0

SPECIAL3
011111

immediate rd
REPL.PH

01010
ABSQ_S.PH

010010

6 10 5 5 6

REPL.QB Replicate Immediate Integer into all Vector Element Positions

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 209

micro

Format: REPL.QB rd, immediate MIPSDSP

Purpose: Replicate Immediate Integer into all Vector Element Positions

Replicate a immediate byte into all elements of a quad byte vector.

Description: rd  sign_extend(immediate || immediate || immediate || immediate)

The specified 8-bit signed immediate value is replicated into the four right-most byte elements of destination register
rd.

The sign of the immediate value is extended into the 32 most-significant bits of the destination register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

temp7..0  immediate7..0
GPR[rd]63..0  (temp7)

32 || temp7..0 || temp7..0 || temp7..0 || temp7..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 24 23 16 15 11 10 6 5 0

SPECIAL3
011111

0
00

immediate rd
REPL.QB

00010
ABSQ_S.PH

010010

6 2 8 5 5 6

REPLV.PH Replicate a Halfword into all Vector Element Positions

210 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: REPLV.PH rd, rt MIPSDSP

Purpose: Replicate a Halfword into all Vector Element Positions

Replicate a variable halfword into the right-most elements of a halfword vector.

Description: rd  sign_extend(rt15..0 || rt15..0)

The right-most halfword value in register rt is replicated into the two right-most halfword elements of destination reg-
ister rd.

The sign of the source halfword is extended into the 32 most-significant bits of the destination register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

temp15..0  GPR[rt]15..0
GPR[rd]63..0  (temp15..0)

32 || temp15..0 || temp15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

0
00000

rt rd
REPLV.PH

01011
ABSQ_S.PH

010010

6 5 5 5 5 6

REPLV.QB Replicate Byte into all Vector Element Positions

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 211

Format: REPLV.QB rd, rt MIPSDSP

Purpose: Replicate Byte into all Vector Element Positions

Replicate a variable byte into all elements of a quad byte vector.

Description: rd  sign_extend(rt7..0 || rt7..0 || rt7..0 || rt7..0)

The right-most byte value in register rt is replicated into the four right-most byte elements of destination register rd.

The sign of the source byte value is extended into the 32 most-significant bits of the destination register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

temp7..0  GPR[rt]7..0
GPR[rd]63..0  (temp7)

32 || temp7..0 || temp7..0 || temp7..0 || temp7..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

0
00000

rt rd
REPLV.QB

00011
ABSQ_S.PH

010010

6 5 5 5 5 6

SHILO Shift an Accumulator Value Leaving the Result in the Same Accumulator

212 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: SHILO ac, shift MIPSDSP

Purpose: Shift an Accumulator Value Leaving the Result in the Same Accumulator

Shift the HI/LO paired value in a 64-bit accumulator either left or right, leaving the result in the same accumulator.

Description: ac  (shift >= 0) ? (ac >> shift) : (ac << -shift)

The HI/LO register pair is treated as a single 64-bit accumulator that is shifted logically by shift bits, with the result of
the shift written back to the source accumulator. The shift argument is a six-bit signed integer value: a positive argu-
ment results in a right shift of up to 31 bits, and a negative argument results in a left shift of up to 32 bits.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS64 archi-
tecture.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

sign  shift5
shift5..0  (sign = 0 ? shift5..0 : -shift5..0)
if (shift5..0 = 0) then

temp63..0  (HI[ac]31..0 || LO[ac]31..0)
else

if (sign = 0) then
temp63..0  0shift || ((HI[ac]31..0 || LO[ac]31..0) >> shift)

else
temp63..0  ((HI[ac]31..0 || LO[ac]31..0) << shift) || 0

shift

endif
endif
(HI[ac]63..0 || LO[ac]63..0)  (temp63)

64 || temp63..32 || (temp63)
64 || temp31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 20 19 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

shift
0

0000
0

000
ac

SHILO
11010

EXTR.W
111000

6 6 4 3 2 5 6

SHILOV Variable Shift of Accumulator Value Leaving the Result in the Same Accumulator

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 213

Format: SHILOV ac, rs MIPSDSP

Purpose: Variable Shift of Accumulator Value Leaving the Result in the Same Accumulator

Shift the HI/LO paired value in an accumulator either left or right by the amount specified in a GPR, leaving the result
in the same accumulator.

Description: ac  (GPR[rs]6..0 >= 0) ? (ac >> GPR[rs]6..0) : (ac << -GPR[rs]6..0)

The HI/LO register pair is treated as a single 64-bit accumulator that is shifted logically by shift bits, with the result of
the shift written back to the source accumulator. The shift argument is provided by the six least-significant bits of reg-
ister rs; the remaining bits of rs are ignored. The shift argument is interpreted as a six-bit signed integer: a positive
argument results in a right shift of up to 31 bits, and a negative argument results in a left shift of up to 32 bits.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS64 archi-
tecture.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

sign  GPR[rs]5
shift5..0  (sign = 0 ? GPR[rs]5..0 : -GPR[rs]5..0)
if (shift5..0 = 0) then

temp63..0  (HI[ac]31..0 || LO[ac]31..0)
else

if (sign = 0) then
temp63..0  0shift || ((HI[ac]31..0 || LO[ac]31..0) >> shift)

else
temp63..0  ((HI[ac]31..0 || LO[ac]31..0) << shift) || 0

shift

endif
endif
(HI[ac]63..0 || LO[ac]63..0)  (temp63)

64 || temp63..32 || (temp63)
64 || temp31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 13 12 11 10 6 5 0

SPECIAL3
011111

rs
0

00000
0

000
ac

SHILOV
11011

EXTR.W
111000

6 5 5 3 2 5 6

SHLL[_S].PH Shift Left Logical Vector Pair Halfwords

214 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: SHLL[_S].PH
SHLL.PH rd, rt, sa MIPSDSP
SHLL_S.PH rd, rt, sa MIPSDSP

Purpose: Shift Left Logical Vector Pair Halfwords

Element-wise shift of two independent halfwords in a vector data type by a fixed number of bits, with optional satu-
ration.

Description: rd  sign_extend(sat16(rt31..16 << sa) || (rt15..0 << sa))

The two right-most halfword values in register rt are each independently shifted left, inserting zeros into the least-sig-
nificant bit positions emptied by the shift. In the saturating version of the instruction, if the shift results in an overflow
the intermediate result is saturated to either the maximum positive or the minimum negative 16-bit value, depending
on the sign of the original unshifted value. The two independent results are then written to the corresponding half-
word elements of destination register rd.

The sign of the left-most halfword result is extended into the 32 most-significant bits of the destination register.

This instruction writes a 1 to bit 22 in the DSPControl register in the ouflag field if any of the left shift operations
results in an overflow or saturation.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

SHLL.PH
tempB15..0  shift16Left(GPR[rt]31..16, sa)
tempA15..0  shift16Left(GPR[rt]15..0, sa)
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

SHLL_S.PH
tempB15..0  sat16ShiftLeft(GPR[rt]31..16, sa)
tempA15..0  sat16ShiftLeft(GPR[rt]15..0, sa)
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

function shift16Left(a15..0, s3..0)
if (s3..0 = 0) then

temp15..0  a15..0
else

sign  a15
temp15..0  (a15-s..0 || 0

s)
discard15..0  (sign(16-s) || a14..14-(s-1))
if ((discard15..0  0x0000) and (discard15..0  0xFFFF)) then

DSPControlouflag:22  1

31 26 25 24 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

0 sa rt rd
SHLL.PH

01000
SHLL.QB

010011

SPECIAL3
011111

0 sa rt rd
SHLL_S.PH

01100
SHLL.QB

010011

6 1 4 5 5 5 6

SHLL[_S].PH Shift Left Logical Vector Pair Halfwords

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 215

endif
endif
return temp15..0

endfunction shift16Left

function sat16ShiftLeft(a15..0, s3..0)
if (s3..0 = 0) then

temp15..0  a15..0
else

sign  a15
temp15..0  (a15-s..0 || 0

s)
discard15..0  (sign(16-s) || a14..14-(s-1))
if ((discard15..0  0x0000) and (discard15..0  0xFFFF)) then

temp15..0  (sign = 0 ? 0x7FFF : 0x8000)
DSPControlouflag:22  1

endif
endif
return temp15..0

endfunction sat16ShiftLeft

Exceptions:

Reserved Instruction, DSP Disabled

SHLL.QB Shift Left Logical Vector Quad Bytes

216 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: SHLL.QB rd, rt, sa MIPSDSP

Purpose: Shift Left Logical Vector Quad Bytes

Element-wise left shift of four independent bytes in a vector data type by a fixed number of bits.

Description: rd  sign_extend((rt31..24 << sa) || (rt23..16 << sa) || (rt15..8 << sa) ||

(rt7..0 << sa))

The four right-most byte values in register rt are each independently shifted left by sa bits and the sa least significant
bits of each value are set to zero. The four independent results are then written to the corresponding byte elements of
destination register rd.

The sign of the left-most byte result is extended into the 32 most-significant bits of the destination register.

This instruction writes a 1 to bit 22 in the DSPControl register in the ouflag field if any of the left shift operations
results in an overflow.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

tempD7..0  shift8Left(GPR[rt]31..24, sa2..0)
tempC7..0  shift8Left(GPR[rt]23..16, sa2..0)
tempB7..0  shift8Left(GPR[rt]15..8, sa2..0)
tempA7..0  shift8Left(GPR[rt]7..0, sa2..0)
GPR[rd]63..0  (tempD7)

32 || tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

function shift8Left(a7..0, s2..0)
if (s2..0 = 0) then

temp7..0  a7..0
else

sign  a7
temp7..0  (a7-s..0 || 0

s)
discard7..0  (sign(8-s) || a6..6-(s-1))
if (discard7..0  0x00) then

DSPControlouflag:22  1
endif

endif
return temp7..0

endfunction shift8Left

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 24 23 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

0
00

sa rt rd
SHLL.QB

00000
SHLL.QB

010011

6 2 3 5 5 5 6

SHLLV[_S].PH Shift Left Logical Variable Vector Pair Halfwords

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 217

Format: SHLLV[_S].PH
SHLLV.PH rd, rt, rs MIPSDSP
SHLLV_S.PH rd, rt, rs MIPSDSP

Purpose: Shift Left Logical Variable Vector Pair Halfwords

Element-wise left shift of the two right-most independent halfwords in a vector data type by a variable number of
bits, with optional saturation.

Description: rd  sign_extend(sat16(rt31..16 << rs3..0) || sat16(rt15..0 << rs3..0))

The two right-most halfword values in register rt are each independently shifted left by shift bits, inserting zeros into
the least-significant bit positions emptied by the shift. In the saturating version of the instruction, if the shift results in
an overflow the intermediate result is saturated to either the maximum positive or the minimum negative 16-bit value,
depending on the sign of the original unshifted value. The two independent results are then written to the correspond-
ing halfword elements of destination register rd.

The sign of the left-most halfword result is extended into the 32 most significant bits of destination register rd.

The four least-significant bits of rs provide the shift value, interpreted as a four-bit unsigned integer; the remaining
bits of rs are ignored.

This instruction writes a 1 to bit 22 in the DSPControl register in the ouflag field if any of the left shift operations
results in an overflow or saturation.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

SHLLV.PH
tempB15..0  shift16Left(GPR[rt]31..16, GPR[rs]3..0)
tempA15..0  shift16Left(GPR[rt]15..0, GPR[rs]3..0)
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

SHLLV_S.PH
tempB15..0  sat16ShiftLeft(GPR[rt]31..16, GPR[rs]3..0)
tempA15..0  sat16ShiftLeft(GPR[rt]15..0, GPR[rs]3..0)
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
SHLLV.PH

01010
SHLL.QB

010011

SPECIAL3
011111

rs rt rd
SHLLV_S.PH

01110
SHLL.QB

010011

6 5 5 5 5 6

SHLLV.QB Shift Left Logical Variable Vector Quad Bytes

218 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: SHLLV.QB rd, rt, rs MIPSDSP

Purpose: Shift Left Logical Variable Vector Quad Bytes

Element-wise left shift of four independent bytes in a vector data type by a variable number of bits.

Description: rd  sign_extend((rt31..24 << rs2..0) || (rt23..16 << rs2..0) || (rt15..8 <<

rs2..0) || (rt7..0 << rs2..0))

The four right-most byte values in register rt are each independently shifted left by sa bits, inserting zeros into the
least-significant bit positions emptied by the shift. The four independent results are then written to the corresponding
byte elements of destination register rd.

The sign of the left-most byte result is extended into the 32 most-significant bits of the destination register.

The three least-significant bits of rs provide the shift value, interpreted as a three-bit unsigned integer; the remaining
bits of rs are ignored.

This instruction writes a 1 to bit 22 in the DSPControl register in the ouflag field if any of the left shift operations
results in an overflow.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

tempD7..0  shift8Left(GPR[rt]31..24, GPR[rs]2..0)
tempC7..0  shift8Left(GPR[rt]23..16, GPR[rs]2..0)
tempB7..0  shift8Left(GPR[rt]15..8, GPR[rs]2..0)
tempA7..0  shift8Left(GPR[rt]7..0, GPR[rs]2..0)
GPR[rd]63..0  (tempD7)

32 || tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
SHLLV.QB

00010
SHLL.QB

010011

6 5 5 5 5 6

SHLLV_S.W Shift Left Logical Variable Vector Word

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 219

Format: SHLLV_S.W rd, rt, rs MIPSDSP

Purpose: Shift Left Logical Variable Vector Word

A left shift of the right-most word in a vector data type by a variable number of bits, with optional saturation.

Description: rd  sign_extend(sat32(rt31..0 << rs4..0))

The right-most word element in register rt is shifted left by shift bits, inserting zeros into the least-significant bit posi-
tions emptied by the shift. If the shift results in an overflow the intermediate result is saturated to either the maximum
positive or the minimum negative 32-bit value, depending on the sign of the original unshifted value.

The shifted result is then sign-extended to 64 bits and written to destination register rd.

The five least-significant bits of rs are used as the shift value, interpreted as a five-bit unsigned integer; the remaining
bits of rs are ignored.

This instruction writes a 1 to bit 22 in the DSPControl register in the ouflag field if either of the left shift operations
results in an overflow or saturation.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

temp31..0  sat32ShiftLeft(GPR[rt]31..0, GPR[rs]4..0)
GPR[rd]63..0  (temp31)

32 || temp31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
SHLLV_S.W

10110
SHLL.QB

010011

6 5 5 5 5 6

SHLL_S.W Shift Left Logical Word with Saturation

220 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: SHLL_S.W rd, rt, sa MIPSDSP

Purpose: Shift Left Logical Word with Saturation

To execute a left shift of a word with saturation by a fixed number of bits.

Description: rd  sign_extend(sat32(rt << sa))

The right-most 32-bit word in register rt is shifted left by sa bits, with zeros inserted into the bit positions emptied by
the shift. If the shift results in a signed overflow, the shifted result is saturated to either the maximum positive (hexa-
decimal 0x7FFFFFFF) or minimum negative (hexadecimal 0x80000000) 32-bit value, depending on the sign of the
original unshifted value. The shifted result is then sign-extended to 64 bits and written to destination register rd.

The instruction’s sa field specifies the shift value, interpreted as a five-bit unsigned integer.

If the shift operation results in an overflow and saturation, this instruction writes a 1 to bit 22 of the DSPControl reg-
ister within the ouflag field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

temp31..0  sat32ShiftLeft(GPR[rt]31..0, sa4..0)
GPR[rd]63..0  (temp31)

32 || temp31..0

function sat32ShiftLeft(a13..0, s4..0)
if (s = 0) then

temp31..0  a
else

sign  a31
temp31..0  (a31-s..0 || 0

s)
discard31..0  (sign(32-s) || a30..30-(s-1))
if ((discard31..0  0x00000000) and (discard31..0  0xFFFFFFFF)) then

temp31..0  (sign = 0 ? 0x7FFFFFFF : 0x80000000)
DSPControlouflag:22  1

endif
endif
return temp31..0

endfunction sat32ShiftLeft

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

To do a logical left shift of a word in a register without saturation, use the MIPS64 SLL instruction.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

sa rt rd
SHLL_S.W

10100
SHLL.QB

010011

6 5 5 5 5 6

SHRA[_R].QB Shift Right Arithmetic Vector of Four Bytes

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 221

Format: SHRA[_R].QB
SHRA.QB rd, rt, sa MIPSDSP-R2
SHRA_R.QB rd, rt, sa MIPSDSP-R2

Purpose: Shift Right Arithmetic Vector of Four Bytes

To execute an arithmetic right shift on four independent bytes by a fixed number of bits.

Description: rd  sign_extend(round(rt31..24 >> sa) || round(rt23..16 >> sa) || round(rt15..8

>> sa) || round(rt7..0 >> sa))

The four right-most byte elements in register rt are each shifted right arithmetically by sa bits, then written to the cor-
responding vector elements in destination register rd. The sa argument is interpreted as an unsigned three-bit integer
taking values from zero to seven.

In the rounding variant of the instruction, a value of 1 is added at the most significant discarded bit position of each
result prior to writing the rounded result to the destination register.

The sign of the left-most byte result is extended into the 32 most-significant bits of the destination register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

SHRA.QB
tempD7..0  (GPR[rt]31)

sa || GPR[rt]31..24+sa)
tempC7..0  (GPR[rt]23)

sa || GPR[rt]23..16+sa)
tempB7..0  (GPR[rt]15)

sa || GPR[rt]15..8+sa)
tempA7..0  (GPR[rt]7)

sa || GPR[rt]7..sa)
GPR[rd]63..0  (tempD7)

32 || tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

SHRA_R.QB
if (sa2..0 = 0) then

tempD7..0  GPR[rt]31..24
tempC7..0  GPR[rt]23..16
tempB7..0  GPR[rt]15..8
tempA7..0  GPR[rt]7..0

else
tempD8..0  (GPR[rt]31)

sa || GPR[rt]31..24+sa-1) + 1
tempC8..0  (GPR[rt]23)

sa || GPR[rt]23..16+sa-1) + 1
tempB8..0  (GPR[rt]15)

sa || GPR[rt]15..8+sa-1) + 1
tempA8..0  (GPR[rt]7)

sa || GPR[rt]7..sa-1) + 1
endif
GPR[rd]63..0  (tempD8)

32 || tempD8..1 || tempC8..1 || tempB8..1 || tempA8..1
endif

31 26 25 24 23 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

0 sa rt rd
SHRA.QB

00100
SHLL.QB

010011

SPECIAL3
011111

0 sa rt rd
SHRA_R.QB

00101
SHLL.QB

010011

6 2 3 5 5 5 6

SHRA[_R].QB Shift Right Arithmetic Vector of Four Bytes

222 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Exceptions:

Reserved Instruction, DSP Disabled

SHRA[_R].PH Shift Right Arithmetic Vector Pair Halfwords

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 223

Format: SHRA[_R].PH
SHRA.PH rd, rt, sa MIPSDSP
SHRA_R.PH rd, rt, sa MIPSDSP

Purpose: Shift Right Arithmetic Vector Pair Halfwords

Element-wise arithmetic right-shift of two independent halfwords in a vector data type by a fixed number of bits, with
optional rounding.

Description: rd  sign_extend(rnd16(rt31..16 >> sa) || rnd16(rt15..0 >> sa))

The two right-most halfword values in register rt are each independently shifted right by sa bits, with each value’s
original sign bit duplicated into the sa most-significant bits emptied by the shift.

In the non-rounding variant of this instruction, the two independent results are then written to the corresponding half-
word elements of destination register rd.

In the rounding variant of the instruction, a 1 is added at the most-significant discarded bit position before the results
are written to destination register rd.

For both instructions, the sign of the left-most halfword result is sign-extended into the 32 most-significant bits of the
destination register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

SHRA.PH
tempB15..0  shift16RightArithmetic(GPR[rt]31..16, sa)
tempA15..0  shift16RightArithmetic(GPR[rt]15..0, sa)
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

SHRA_R.PH
tempB15..0  rnd16ShiftRightArithmetic(GPR[rt]31..16, sa)
tempA15..0  rnd16ShiftRightArithmetic(GPR[rt]15..0, sa)
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

function shift16RightArithmetic(a15..0, s3..0)
if (s3..0 = 0) then

temp15..0  a15..0
else

sign  a15
temp15..0  (signs || a15..s)

endif
return temp15..0

endfunction shift16RightArithmetic

31 26 25 24 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

0 sa rt rd
SHRA.PH

01001
SHLL.QB

010011

SPECIAL3
011111

0 sa rt rd
SHRA_R.PH

01101
SHLL.QB

010011

6 1 4 5 5 5 6

SHRA[_R].PH Shift Right Arithmetic Vector Pair Halfwords

224 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

function rnd16ShiftRightArithmetic(a15..0, s3..0)
if (s3..0 = 0) then

temp16..0  (a15..0 || 0)
else

sign  a15
temp16..0  (signs || a15..s-1)

endif
temp16..0  temp + 1
return temp16..1

endfunction rnd16ShiftRightArithmetic

Exceptions:

Reserved Instruction, DSP Disabled

SHRAV[_R].PH Shift Right Arithmetic Variable Vector Pair Halfwords

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 225

+

Format: SHRAV[_R].PH
SHRAV.PH rd, rt, rs MIPSDSP
SHRAV_R.PH rd, rt, rs MIPSDSP

Purpose: Shift Right Arithmetic Variable Vector Pair Halfwords

Element-wise arithmetic right shift of two independent halfwords in a vector data type by a variable number of bits,
with optional rounding.

Description: rd  sign_extend(rnd16(rt31..16 >> rs3..0) || rnd16(rt15..0 >> rs3..0))

The two right-most halfword values in register rt are each independently shifted right, with each value’s original sign
bit duplicated into the most-significant bits emptied by the shift. In the non-rounding variant of this instruction, the
two independent results are then written to the corresponding halfword elements of destination register rd.

In the rounding variant of this instruction, a 1 is added at the most-significant discarded bit position before the results
are written to destination register rd.

The shift amount sa is given by the four least-significant bits of register rs; the remaining bits of rs are ignored.

For both instructions, the sign of the left-most halfword result is sign-extended into the 32 most-significant bits of the
destination register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

SHRAV.PH
tempB15..0  shift16RightArithmetic(GPR[rt]31..16, GPR[rs]3..0)
tempA15..0  shift16RightArithmetic(GPR[rt]15..0, GPR[rs]3..0)
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

SHRAV_R.PH
tempB15..0  rnd16ShiftRightArithmetic(GPR[rt]31..16, GPR[rs]3..0)
tempA15..0  rnd16ShiftRightArithmetic(GPR[rt]15..0, GPR[rs]3..0)
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
SHRAV.PH

01011
SHLL.QB

010011

SPECIAL3
011111

rs rt rd
SHRAV_R.PH

01111
SHLL.QB

010011

6 5 5 5 5 6

SHRAV[_R].QB Shift Right Arithmetic Variable Vector of Four Bytes

226 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: SHRAV[_R].QB
SHRAV.QB rd, rt, rs MIPSDSP-R2
SHRAV_R.QB rd, rt, rs MIPSDSP-R2

Purpose: Shift Right Arithmetic Variable Vector of Four Bytes

To execute an arithmetic right shift on four independent bytes by a variable number of bits.

Description: rd  sign_extend(round(rt31..24 >> rs2..0)) || round(rt23..16 >> rs2..0) ||

round(rt15..8 >> rs2..0) || round(rt7..0 >> rs2..0)

The four right-most byte elements in register rt are each shifted right arithmetically by sa bits, then written to the cor-
responding byte elements in destination register rd. The sa argument is provided by the three least-significant bits of
register rs, interpreted as an unsigned three-bit integer taking values from zero to seven. The remaining bits of rs are
ignored.

In the rounding variant of the instruction, a value of 1 is added at the most significant discarded bit position of each
result prior to writing the rounded result to the destination register.

The sign of the left-most byte result is extended into the 32 most-significant bits of the destination register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

SHRAV.QB
sa2..0  GPR[rs]2..0
if (sa2..0 = 0) then

tempD7..0  GPR[rt]31..24
tempC7..0  GPR[rt]23..16
tempB7..0  GPR[rt]15..8
tempA7..0  GPR[rt]7..0

else
tempD7..0  (GPR[rt]31)

sa || GPR[rt]31..24+sa)
tempC7..0  (GPR[rt]23)

sa || GPR[rt]23..16+sa)
tempB7..0  (GPR[rt]15)

sa || GPR[rt]15..8+sa)
tempA7..0  (GPR[rt]7)

sa || GPR[rt]7..sa)
endif
GPR[rd]63..0  (tempD7)

32 || tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

SHRAV_R.QB
sa2..0  GPR[rs]2..0
if (sa2..0 = 0) then

tempD8..0  (GPR[rt]31..24 || 0)
tempC8..0  (GPR[rt]23..16 || 0)

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
SHRAV.QB

00110
SHLL.QB

010011

SPECIAL3
011111

rs rt rd
SHRAV_R.QB

00111
SHLL.QB

010011

6 5 5 5 5 6

SHRAV[_R].QB Shift Right Arithmetic Variable Vector of Four Bytes

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 227

tempB8..0  (GPR[rt]15..8 || 0)
tempA8..0  (GPR[rt]7..0 || 0)

else
tempD8..0  (GPR[rt]31)

sa || GPR[rt]31..24+sa-1) + 1
tempC8..0  (GPR[rt]23)

sa || GPR[rt]23..16+sa-1) + 1
tempB8..0  (GPR[rt]15)

sa || GPR[rt]15..8+sa-1) + 1
tempA8..0  (GPR[rt]7)

sa || GPR[rt]7..sa-1) + 1
endif
GPR[rd]63..0  (tempD8)

32 || tempD8..1 || tempC8..1 || tempB8..1 || tempA8..1

Exceptions:

Reserved Instruction, DSP Disabled

SHRAV_R.W Shift Right Arithmetic Variable Word with Rounding

228 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: SHRAV_R.W rd, rt, rs MIPSDSP

Purpose: Shift Right Arithmetic Variable Word with Rounding

Arithmetic right shift with rounding of a signed 32-bit word by a variable number of bits.

Description: rd  sign_extend(rnd32(rt31..0 >> rs4..0))

The right-most word value in register rt is shifted right, with the value’s original sign bit duplicated into the most-sig-
nificant bits emptied by the shift. A 1 is then added at the most-significant discarded bit position before the result is
sign-extended and written to destination register rd.

The shift amount sa is given by the five least-significant bits of register rs; the remaining bits of rs are ignored.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

temp31..0  rnd32ShiftRightArithmetic(GPR[rt]31..0, GPR[rs]4..0)
GPR[rd]63..0  (temp31)

32 || temp31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
SHRAV_R.W

10111
SHLL.QB

010011

6 5 5 5 5 6

SHRA_R.W Shift Right Arithmetic Word with Rounding

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 229

Format: SHRA_R.W rd, rt, sa MIPSDSP

Purpose: Shift Right Arithmetic Word with Rounding

To execute an arithmetic right shift with rounding on a word by a fixed number of bits.

Description: rd  sign_extend(rnd32(rt31:0 >> sa))

The right-most word in register rt is shifted right by sa bits, and the sign bit is duplicated into the sa bits emptied by
the shift. The shifted result is then rounded by adding a 1 bit to the most-significant discarded bit. The rounded result
is then sign-extended to 64 bits and written to the destination register rd.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

temp31..0  rnd32ShiftRightArithmetic(GPR[rt]31..0, sa4..0)
GPR[rd]63..0  (temp32)

32 || temp32..1

function rnd32ShiftRightArithmetic(a31..0, s4..0)
if (s4..0 = 0) then

temp32..0  (a31..0 || 0)
else

sign  a31
temp32..0  (signs || a31..s-1)

endif
temp32..0  temp + 1
return temp32..1

endfunction rnd32ShiftRightArithmetic

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

To do an arithmetic right shift of a word in a register without rounding, use the MIPS64 SRA instruction.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

sa rt rd
SHRA_R.W

10101
SHLL.QB

010011

6 5 5 5 5 6

SHRL.PH Shift Right Logical Two Halfwords

230 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: SHRL.PH rd, rt, sa MIPSDSP-R2

Purpose: Shift Right Logical Two Halfwords

To execute a right shift of two independent halfwords in a vector data type by a fixed number of bits.

Description: rd  sign_extend((rt31..16 >> sa) || (rt15..0 >> sa))

The two right-most halfwords in register rt are independently logically shifted right, inserting zeros into the bit posi-
tions emptied by the shift. The two halfword results are then written to the corresponding halfword elements in desti-
nation register rd.

The shift amount is provided by the sa field, which is interpreted as a four bit unsigned integer taking values between
0 and 15.

The sign of the left-most halfword result is extended into the 32 most-significant bits of the destination register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

tempB15..0  0sa || GPR[rt]31..sa+16
tempA15..0  0sa || GPR[rt]15..sa
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 24 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

0 sa rt rd
SHRL.PH

11001
SHLL.QB

010011

6 1 4 5 5 5 6

SHRL.QB Shift Right Logical Vector Quad Bytes

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 231

Format: SHRL.QB rd, rt, sa MIPSDSP

Purpose: Shift Right Logical Vector Quad Bytes

Element-wise logical right shift of four independent bytes in a vector data type by a fixed number of bits.

Description: rd  sign_extend(rt31..24 >> sa) || (rt23..16 >> sa) || (rt15..8 >> sa) ||

(rt7..0 >> sa))

The four right-most byte values in register rt are each independently shifted right by sa bits and the sa most-signifi-
cant bits of each value are set to zero. The four independent results are then written to the corresponding byte ele-
ments of destination register rd.

The sign of the left-most result is extended into the 32 most-significant bits of the destination register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

tempD7..0  shift8Right(GPR[rt]31..24, sa)
tempC7..0  shift8Right(GPR[rt]23..16, sa)
tempB7..0  shift8Right(GPR[rt]15..8, sa)
tempA7..0  shift8Right(GPR[rt]7..0, sa)
GPR[rd]63..0  (tempD7)

32 || tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

function shift8Right(a7..0, s2..0)
if (s2..0 = 0) then

temp7..0  a7..0
else

temp7..0  (0s || a7..s)
endif
return temp7..0

endfunction shift8Right

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

To do a logical left shift of a word in a register without saturation, use the MIPS64 SLL instruction.

31 26 25 24 23 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

0
00

sa rt rd
SHRL.QB

00001
SHLL.QB

010011

6 2 3 5 5 5 6

SHRLV.PH Shift Variable Right Logical Pair of Halfwords

232 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: SHRLV.PH rd, rt, rs MIPSDSP-R2

Purpose: Shift Variable Right Logical Pair of Halfwords

To execute a right shift of two independent halfwords in a vector data type by a variable number of bits.

Description: rd  sign_extend((rt31..16 >> rs3..0) || (rt15..0 >> rs3..0))

The two right-most halfwords in register rt are independently logically shifted right, inserting zeros into the bit posi-
tions emptied by the shift. The two halfword results are then written to the corresponding halfword elements in desti-
nation register rd.

The shift amount is provided by the four least-significant bits of register rs, which is interpreted as a four bit unsigned
integer taking values between 0 and 15. The remaining bits of rs are ignored.

The sign of the left-most halfword result is extended into the 32 most-significant bits of the destination register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

sa3..0  GPR[rs]3..0
tempB15..0  0sa || GPR[rt]31..sa+16
tempA15..0  0sa || GPR[rt]15..sa
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
SHRLV.PH

11011
SHLL.QB

010011

6 5 5 5 5 6

SHRLV.QB Shift Right Logical Variable Vector Quad Bytes

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 233

Format: SHRLV.QB rd, rt, rs MIPSDSP

Purpose: Shift Right Logical Variable Vector Quad Bytes

Element-wise logical right shift of four independent bytes in a vector data type by a variable number of bits.

Description: rd  sign_extend((rt31..24 >> rs2..0) || (rt23..16 >> rs2..0) || (rt15..8 >>

rs2..0) || (rt7..0 >> rs2..0))

The four right-most byte values in register rt are each independently shifted right, inserting zeros into the most-signif-
icant bit positions emptied by the shift. The four independent results are then written to the corresponding byte ele-
ments of destination register rd.

The sign of the left-most result is extended into the 32 most-significant bits of the destination register.

The three least-significant bits of rs provide the shift value, interpreted as an unsigned integer; the remaining bits of
rs are ignored.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

tempD7..0  shift8Right(GPR[rt]31..24, GPR[rs]2..0)
tempC7..0  shift8Right(GPR[rt]23..16, GPR[rs]2..0)
tempB7..0  shift8Right(GPR[rt]15..8, GPR[rs]2..0)
tempA7..0  shift8Right(GPR[rt]7..0, GPR[rs]2..0)
GPR[rd]63..0  (tempD7)

32 || tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
SHRLV.QB

00011
SHLL.QB

010011

6 5 5 5 5 6

SUBQ[_S].PH Subtract Fractional Halfword Vector

234 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: SUBQ[_S].PH
SUBQ.PH rd, rs, rt MIPSDSP
SUBQ_S.PH rd, rs, rt MIPSDSP

Purpose: Subtract Fractional Halfword Vector

Element-wise subtraction of one vector of Q15 fractional halfword values from another to produce a vector of Q15
fractional halfword results, with optional saturation.

Description: rd  sign_extend(sat16(rs31..16 - rt31..16)) || sat16(rs15..0 - rt15..0)

The two right-most fractional halfwords in register rt are subtracted from the corresponding fractional halfword ele-
ments in register rs.

For the non-saturating version of this instruction, each result is written to the corresponding element in register rd. In
the case of overflow or underflow, the result modulo 2 is written to register rd.

For the saturating version of the instruction, the subtraction is performed using signed saturating arithmetic. If the
operation results in an overflow or an underflow, the result is clamped to either the largest representable value
(0x7FFF hexadecimal) or the smallest representable value (0x8000 hexadecimal), respectively, before being written
to the destination register rd.

For both instructions, the left-most result is sign-extended into the 32 most-significant bits of the destination register.

For both instructions, if any of the individual subtractions result in underflow, overflow, or saturation, a 1 is written to
bit 20 in the DSPControl register within the ouflag field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

SUBQ.PH:
tempB15..0  subtract16(GPR[rs]31..16 , GPR[rt]31..16)
tempA15..0  subtract16(GPR[rs]15..0 , GPR[rt]15..0)
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

SUBQ_S.PH:
tempB15..0  sat16Subtract(GPR[rs]31..16 , GPR[rt]31..16)
tempA15..0  sat16Subtract(GPR[rs]15..0 , GPR[rt]15..0)
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

function subtract16(a15..0, b15..0)
temp16..0  (a15 || a15..0) - (b15 || b15..0)
if (temp16  temp15) then

DSPControlouflag:20  1
endif
return temp15..0

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
SUBQ.PH

01011
ADDU.QB

010000

SPECIAL3
011111

rs rt rd
SUBQ_S.PH

01111
ADDU.QB

010000

6 5 5 5 5 6

SUBQ[_S].PH Subtract Fractional Halfword Vector

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 235

endfunction subtract16

function sat16Subtract(a15..0, b15..0)
temp16..0  (a15 || a15..0) - (b15|| b15..0)
if (temp16  temp15) then

if (temp16 = 0) then
temp  0x7FFF

else
temp  0x8000

endif
DSPControlouflag:20  1

endif
return temp15..0

endfunction sat16Subtract

Exceptions:

Reserved Instruction, DSP Disabled

SUBQ_S.W Subtract Fractional Word

236 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: SUBQ_S.W rd, rs, rt MIPSDSP

Purpose: Subtract Fractional Word

One Q31 fractional word is subtracted from another to produce a Q31 fractional result, with saturation.

Description: rd  sign_extend(sat32(rs31..0 - rt31..0))

The right-mostQ31 fractional word in register rt is subtracted from the corresponding fractional word in register rs,
and the 32-bit result is sign-extended to 64 bits and written to destination register rd. The subtraction is performed
using signed saturating arithmetic. If the operation results in an overflow or an underflow, the result is clamped to
either the largest representable value (0x7FFFFFFF hexadecimal) or the smallest representable value (0x80000000
hexadecimal), respectively, before being sign-extended and written to the destination register rd.

If the subtraction results in underflow, overflow, or saturation, a 1 is written to bit 20 in the DSPControl register
within the ouflag field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

temp31..0  sat32Subtract(GPR[rs]31..0 , GPR[rt]31..0)
GPR[rd]63..0  (temp31)

32 || temp31..0

function sat32Subtract(a31..0, b31..0)
temp32..0  (a31 || a31..0) - (b31 || b31..0)
if (temp32  temp31) then

if (temp32 = 0) then
temp31..0  0x7FFFFFFF

else
temp31..0  0x80000000

endif
DSPControlouflag:20  1

endif
return temp31..0

endfunction sat32Subtract

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
SUBQ_S.W

10111
ADDU.QB

010000

6 5 5 5 5 6

SUBQH[_R].PH Subtract Fractional Halfword Vectors And Shift Right to Halve Results

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 237

Format: SUBQH[_R].PH
SUBQH.PH rd, rs, rt MIPSDSP-R2
SUBQH_R.PH rd, rs, rt MIPSDSP-R2

Purpose: Subtract Fractional Halfword Vectors And Shift Right to Halve Results

Element-wise fractional subtraction of halfword vectors, with a right shift by one bit to halve each result, with
optional rounding.

Description: rd  sign_extend(round((rs31..16 - rt31..16) >> 1) || round((rs15..0 - rt15..0)

>> 1))

Each element from the two right-most halfword values in register rt is subtracted from the corresponding halfword
element in register rs to create an interim 17-bit result.

In the non-rounding instruction variant, each interim result is then shifted right by one bit before being written to the
corresponding halfword element of destination register rd.

In the rounding version of the instruction, a value of 1 is added at the least-significant bit position of each interim
result; the interim result is then right-shifted by one bit and written to the destination register.

This instruction does not modify the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ADDQH.PH
tempB15..0  rightShift1SubQ16(GPR[rs]31..16 , GPR[rt]31..16)
tempA15..0  rightShift1SubQ16(GPR[rs]15..0 , GPR[rt]15..0)
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

ADDQH_R.PH
tempB15..0  roundRightShift1SubQ16(GPR[rs]31..16 , GPR[rt]31..16)
tempA15..0  roundRightShift1SubQ16(GPR[rs]15..0 , GPR[rt]15..0)
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

function rightShift1SubQ16(a15..0 , b15..0)
temp16..0  ((a15 || a15..0) - (b15 || b15..0))
return temp16..1

endfunction rightShift1SubQ16

function roundRightShift1SubQ16(a15..0 , b15..0)
temp16..0  ((a15 || a15..0) - (b15 || b15..0))
temp16..0  temp16..0 + 1
return temp16..1

endfunction roundRightShift1SubQ16

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
SUBQH.PH

01001
ADDUH.QB

011000

SPECIAL3
011111

rs rt rd
SUBQH_R.PH

01011
ADDUH.QB

011000

6 5 5 5 5 6

SUBQH[_R].PH Subtract Fractional Halfword Vectors And Shift Right to Halve Results

238 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Exceptions:

Reserved Instruction, DSP Disabled

SUBQH[_R].W Subtract Fractional Words And Shift Right to Halve Results

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 239

Format: SUBQH[_R].W
SUBQH.W rd, rs, rt MIPSDSP-R2
SUBQH_R.W rd, rs, rt MIPSDSP-R2

Purpose: Subtract Fractional Words And Shift Right to Halve Results

Fractional subtraction of word vectors, with a right shift by one bit to halve the result, with optional rounding.

Description: rd  sign_extend(round((rs31..0 - rt31..0) >> 1))

The right-most word in register rt is subtracted from the word in register rs to create an interim 33-bit result.

In the non-rounding instruction variant, the interim result is then shifted right by one bit before being written to the
destination register rd.

In the rounding version of the instruction, a value of 1 is added at the least-significant bit position of the interim
result; the interim result is then right-shifted by one bit and written to the destination register.

This instruction does not modify the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ADDQH.W
tempA31..0  rightShift1SubQ32(GPR[rs]31..0 , GPR[rt]31..0)
GPR[rd]63..0  (tempB15)

32 || tempA31..0

ADDQH_R.W
tempA31..0  roundRightShift1SubQ32(GPR[rs]31..0 , GPR[rt]31..0)
GPR[rd]63..0  (tempB15)

32 || tempA31..0

function rightShift1SubQ32(a31..0 , b31..0)
temp32..0  ((a31 || a31..0) - (b31 || b31..0))
return temp32..1

endfunction rightShift1SubQ32

function roundRightShifttSubQ32(a31..0 , b31..0)
temp32..0  ((a31 || a31..0) - (b31 || b31..0))
temp32..0  temp32..0 + 1
return temp32..1

endfunction roundRightShift1SubQ32

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
SUBQH.W

10001
ADDUH.QB

011000

SPECIAL3
011111

rs rt rd
SUBQH_R.W

10011
ADDUH.QB

011000

6 5 5 5 5 6

SUBU[_S].PH Subtract Unsigned Integer Halfwords

240 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: SUBU[_S].PH
SUBU.PH rd, rs, rt MIPSDSP-R2
SUBU_S.PH rd, rs, rt MIPSDSP-R2

Purpose: Subtract Unsigned Integer Halfwords

Element-wise subtraction of pairs of unsigned integer halfwords, with optional saturation.

Description: rd  sign_extend(sat16(rs31..16 - rt31..16) || sat16(rs15..0 - rt15..0))

The two right-most unsigned integer halfwords in register rs are subtracted from the corresponding unsigned integer
halfwords in register rt. The unsigned results are then written to the corresponding element in destination register rd.

In the saturating version of the instruction, if either subtraction results in an underflow the result is clamped to the
minimum unsigned integer halfword value (0x0000 hexadecimal), before being written to the destination register rd.

Bit 31 of the result is extended into the 32 most-significant bits of the destination register.

For both instruction variants, if either subtraction causes an underflow the instruction writes a 1 to bit 20 in the
DSPControl register in the ouflag field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

SUBU.PH
tempB15..0  subtractU16U16(GPR[rt]31..16 , GPR[rs]31..16)
tempA15..0  subtractU16U16(GPR[rt]15..0 , GPR[rs]15..0)
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

SUBU_S.PH
tempB15..0  satU16SubtractU16U16(GPR[rt]31..16 , GPR[rs]31..16)
tempA15..0  satU16SubtractU16U16(GPR[rt]15..0 , GPR[rs]15..0)
GPR[rd]63..0  (tempB15)

32 || tempB15..0 || tempA15..0

function subtractU16U16(a15..0, b15..0)
temp16..0  (0 || a15..0) - (0 || b15..0)
if (temp16 = 1) then

DSPControlouflag:20  1
endif
return temp15..0

endfunction subtractU16U16

function satU16SubtractU16U16(a15..0, b15..0)
temp16..0  (0 || a15..0) - (0 || b15..0)
if (temp16 = 1) then

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
SUBU.PH

01001
ADDU.QB

010000

SPECIAL3
011111

rs rt rd
SUBU_S.PH

01101
ADDU.QB

010000

6 5 5 5 5 6

SUBU[_S].PH Subtract Unsigned Integer Halfwords

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 241

temp15..0  0x0000
DSPControlouflag:20  1

endif
return temp15..0

endfunction satU16SubtractU16U16

Exceptions:

Reserved Instruction, DSP Disabled

SUBU[_S].QB Subtract Unsigned Quad Byte Vector

242 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: SUBU[_S].QB
SUBU.QB rd, rs, rt MIPSDSP
SUBU_S.QB rd, rs, rt MIPSDSP

Purpose: Subtract Unsigned Quad Byte Vector

Element-wise subtraction of one vector of unsigned byte values from another to produce a vector of unsigned byte
results, with optional saturation.

Description: rd  sign_extend(sat8(rs31..24 - rt31..24)) || sat8(rs23..16 - rt23..16) ||

sat8(rs15..8 - rt15..8) || sat8(rs7..0 - rt7..0)

The four right-most byte elements in rt are subtracted from the corresponding byte elements in register rs.

For the non-saturating version of the instruction, the result modulo 256 is written into the corresponding position in
register rd.

For the saturating version of the instruction the subtraction is performed using unsigned saturating arithmetic. If the
subtraction results in underflow, the value is clamped to the smallest representable value (0 decimal, 0x00 hexadeci-
mal) before being written to the destination register rd.

For each instruction, the sign of the left-most byte result is extended into the 32 most-significant bits of the destina-
tion register.

For each instruction, if any of the individual subtractions result in underflow or saturation, a 1 is written to bit 20 in
the DSPControl register within the ouflag field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

SUBU.QB:
tempD7..0  subtractU8(GPR[rs]31..24 , GPR[rt]31..24)
tempC7..0  subtractU8(GPR[rs]23..16 , GPR[rt]23..16)
tempB7..0  subtractU8(GPR[rs]15..8 , GPR[rt]15..8)
tempA7..0  subtractU8(GPR[rs]7..0 , GPR[rt]7..0)
GPR[rd]63..0  (tempD7)

32 || tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

SUBU_S.QB:
tempD7..0  satU8Subtract(GPR[rs]31..24 , GPR[rt]31..24)
tempC7..0  satU8Subtract(GPR[rs]23..16 , GPR[rt]23..16)
tempB7..0  satU8Subtract(GPR[rs]15..8 , GPR[rt]15..8)
tempA7..0  satU8Subtract(GPR[rs]7..0 , GPR[rt]7..0)
GPR[rd]63..0  (tempD7)

32 || tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

function subtractU8(a7..0, b7..0)
temp8..0  (0 || a7..0) - (0 || b7..0)

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
SUBU.QB

00001
ADDU.QB

010000

SPECIAL3
011111

rs rt rd
SUBU_S.QB

00101
ADDU.QB

010000

6 5 5 5 5 6

SUBU[_S].QB Subtract Unsigned Quad Byte Vector

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 243

if (temp8 = 1) then
DSPControlouflag:20  1

endif
return temp7..0

endfunction subtractU8

function satU8Subtract(a7..0, b7..0)
temp8..0  (0 || a7..0) - (0 || b7..0)
if (temp8 = 1) then

temp7..0  0x00
DSPControlouflag:20  1

endif
return temp7..0

endfunction satU8Subtract

Exceptions:

Reserved Instruction, DSP Disabled

SUBUH[_R].QB Subtract Unsigned Bytes And Right Shift to Halve Results

244 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Format: SUBUH[_R].QB
SUBUH.QB rd, rs, rt MIPSDSP-R2
SUBUH_R.QB rd, rs, rt MIPSDSP-R2

Purpose: Subtract Unsigned Bytes And Right Shift to Halve Results

Element-wise subtraction of two vectors of unsigned bytes, with a one-bit right shift to halve results and optional
rounding.

Description: rd  sign_extend(round((rs31..24 - rt31..24)>>1) || round((rs23..16 -

rt23..16)>>1) || round((rs15..8 - rt15..8)>>1) || round((rs7..0 - rt7..0)>>1))

The four right-mostunsigned byte values in register rt are subtracted from the corresponding unsigned byte values in
register rs. Each unsigned result is then halved by shifting right by one bit position. The byte results are then written
to the corresponding elements of destination register rd.

In the rounding variant of the instruction, a value of 1 is added to the result of each subtraction at the discarded bit
position before the right shift.

The sign of the left-most byte result is extended into the 32 most-significant bits of the destination register.

The results of this instruction never overflow; no bits of the ouflag field in the DSPControl register are written.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

SUBUH.QB
tempD7..0 ((0 || GPR[rs]31..24) - (0 || GPR[rt]31..24)) >> 1
tempC7..0 ((0 || GPR[rs]23..16) - (0 || GPR[rt]23..16)) >> 1
tempB7..0 ((0 || GPR[rs]15..8) - (0 || GPR[rt]15..8)) >> 1
tempA7..0 ((0 || GPR[rs]7..0) - (0 || GPR[rt]7..0)) >> 1
GPR[rd]63..0  (tempD7)

32 || tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

SUBUH_R.QB
tempD7..0 ((0 || GPR[rs]31..24) - (0 || GPR[rt]31..24) + 1) >> 1
tempC7..0 ((0 || GPR[rs]23..16) - (0 || GPR[rt]23..16) + 1) >> 1
tempB7..0 ((0 || GPR[rs]15..8) - (0 || GPR[rt]15..8) + 1) >> 1
tempA7..0 ((0 || GPR[rs]7..0) - (0 || GPR[rt]7..0) + 1) >> 1
GPR[rd]63..0  (tempD7)

32 || tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL3
011111

rs rt rd
SUBUH
00001

ADDUH.QB
011000

SPECIAL3
011111

rs rt rd
SUBUH_R

00011
ADDUH.QB

011000

6 5 5 5 5 6

WRDSP Write Fields to DSPControl Register from a GPR

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 245

Format: WRDSP
WRDSP rs, mask MIPSDSP
WRDSP rs Assembly Idiom

Purpose: Write Fields to DSPControl Register from a GPR

To copy selected fields from the specified GPR to the special-purpose DSPControl register.

Description: DSPControl  select(mask, GPR[rs])

Selected fields in the special register DSPControl are overwritten with the corresponding bits from the source GPR rs.
Each of bits 0 through 5 of the mask operand corresponds to a specific field in the DSPControl register. A mask bit
value of 1 indicates that the field will be overwritten using the bits from the same bit positions in register rs, and a
mask bit value of 0 indicates that the corresponding field will be unchanged. Bits 6 through 9 of the mask operand are
ignored.

The table below shows the correspondence between the bits in the mask operand and the fields in the DSPControl reg-
ister; mask bit 0 is the least-significant bit in mask.

For example, to overwrite only the scount field in DSPControl, the value of the mask operand used will be 2 decimal
(0x02 hexadecimal). After execution of the instruction, the scount field in DSPControl will have the value of bits 7
through 12 of the specified source register rs and the remaining bits in DSPControl are unmodified.

The one-operand version of the instruction provides a convenient assembly idiom that allows the programmer to
write all the allowable fields in the DSPControl register from the source GPR, i.e., it is equivalent to specifying a
mask value of 31 decimal (0x1F hexadecimal).

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

newbits31..0  032

overwrite31..0  0xFFFFFFFF
if (mask0 = 1) then

overwrite6..0  07

newbits6..0  GPR[rs]6..0
endif
if (mask1 = 1) then

overwrite12..7  06

newbits12..7  GPR[rs]12..7
endif
if (mask2 = 1) then

overwrite13  0

31 26 25 21 20 11 10 6 5 0

SPECIAL3
011111

rs mask
WRDSP
10011

EXTR.W
111000

6 5 10 5 6

Bit 31 24 23 16 15 14 13 12 7 6 0

DSPControl
field ccond ouflag 0 EFI C scount pos

Mask bit 4 3 5 2 1 0

WRDSP Write Fields to DSPControl Register from a GPR

246 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

newbits13  GPR[rs]13
endif
if (mask3 = 1) then

overwrite23..16  08

newbits23..16  GPR[rs]23..16
endif
if (mask4 = 1) then

overwrite31..24  08

newbits31..24  GPR[rs]31..24
endif
if (mask5 = 1) then

overwrite14  0
newbits14  GPR[rs]14

endif

DSPControl  DSPControl and overwrite31..0
DSPControl  DSPControl or new31..0

Exceptions:

Reserved Instruction, DSP Disabled

Appendix 7

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 247

Endian-Agnostic Reference to Register Elements

7.1 Using Endian-Agnostic Instruction Names

Certain instructions being proposed in the Module only operate on a subset of the operands in the register. In most
cases, this is simply the left (L) or right (R) half of the register. Some instructions refer to the left alternating (LA) or
right alternating (RA) elements of the register. But this type of reference does not take the endian-ness of the proces-
sor and memory into account. Since the DSP Module instructions do not take the endian-ness into account and simply
use the left or right part of the register, this section describes a method by which users can take advantage of
user-defined macros to translate the given instruction to the appropriate one for a given processor endian-ness.

An example is given below that uses actual element numbers in the mnemonics to be endian-agnostic.

In the MIPS32 architecture, the following conventions could be used:

• PH0 refers to halfword element 0 (from a pair in the specified register).

• PH1 refers to halfword element 1.

• QB01 refers to byte elements 0 and 1 (from a quad in the specified register).

• QB23 refers to byte elements 2 and 3.

• QB02 refers to (even) byte elements 0 and 2.

• QB13 refers to (odd) byte elements 1 and 3.

 In the MIPS64 architecture, the following conventions could be used:

• PW0 refers to word element 0.

• PW1 refers to word element 1.

• QH01 refers to halfword elements 0 and 1.

• QH23 refers to halfword elements 2 and 3.

• QH02 refers to halfword elements 0 and 2.

• QH13 refers to halfword elements 1 and 3.

• OB0123 refers to byte elements 0--3.

• OB4567 refers to byte elements 4--7.

 Endian-Agnostic Reference to Register Elements

248 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

• OH0246 refers to (even) byte elements 0, 2, 4, and 6.

• OH1357 refers to (odd) byte elements 1, 3, 5, and 7.

The even and odd subsets are mainly used in storing, computing on, and loading complex numbers that have a real
and imaginary part. If the real and imaginary parts of a complex number are stored in consecutive memory locations,
then computations that involve only the real or only the imaginary parts must first extract these to a different register.
This can most effectively be done using the even and odd formats of the relevant operations.

Note that these mnemonics are translated by the assembler to underlying real instructions that operate on absolute ele-
ment positions in the register based on the endian-ness of the processor.

7.2 Mapping Endian-Agnostic Instruction Names to DSP Module Instruc-
tions

To illustrate this process, we will use one instruction as an example. This can be repeated for all the relevant instruc-
tions in the Module.

The MULEQ_S instruction multiplies fractional data operands to expanded full-size results in a destination register
with optional saturation. Since the result occupies twice the width of the input operands, only half the operands from
the source registers are operated on at a time. So the complete instruction mnemonic would be given as
MULEQ_S.W.PH0 rd, rs, rt where the second part (after the first dot) indicates the size of the result, and the third

part (after the second dot) indicates the element of the source register being used, which in this example is the 0th ele-
ment. The real instructions that the hardware implements are MULEQ_S.W.PHL and MULEQ_S.W.PHR which
operate on the left halfword element and the right halfword element respectively, of the given source registers, as
shown in Figure 7.1. The user can map the user instruction (with .PH0) to the MULEQ_S.W.PHL real instruction if
the processor is big-endian or to the real instruction MULEQ_S.W.PHR if the processor is little-endian.

Figure 7.1 The Endian-Independent PHL and PHR Elements in a GPR for the MIPS32 Architecture

Then MULEQ_S.W.PH1 rd, rs, rt instruction can be mapped to MULEQ_S.W.PHR if the processor is big-endian
(see Figure 7.2), and to MULEQ_S.W.PHL real instruction if the processor is little-endian (see Figure 7.3).

Figure 7.2 The Big-Endian PH0 and PH1 Elements in a GPR for the MIPS32 Architecture

PHR

16 16

PHL

32 bits

PH1

16 16

PH0

32 bits

7.2 Mapping Endian-Agnostic Instruction Names to DSP Module Instructions

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 249

Figure 7.3 The Little-Endian PH0 and PH1 Elements in a GPR for the MIPS32 Architecture

To specify the even and odd type operations, a user instruction (to use odd elements) such as PRECEQ_S.PH.QB02
(which precision expands the values) would be mapped to PRECEQ_S.PH.QBLA or PRECEQ_S.PH.QBRA
depending on whether the endian-ness of the processor was big or little, respectively. (LA stands for left-alternating
and RA for right-alternating).

Figure 7.4 The Endian-Independent QBL and QBR Elements in a GPR for the MIPS32 Architecture

Figure 7.5 The Endian-Independent QBLA and QBRA Elements in a GPR for the MIPS32 Architecture

PH0

16 16

PH1

32 bits

32 bits

Byte ByteByteByte

QBL QBR

32 bits

Byte ByteByteByte

QBLA QBRA

 Endian-Agnostic Reference to Register Elements

250 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

Appendix 8

MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02 251

Revision History

Vertical change bars in the left page margin note the location of changes to this document since its last release.

NOTE: Change bars on figure titles are used to denote a potential change in the figure itself.

Version Date Comments

1.00 6 July, 2005 Initial revision

1.10 30 January, 2006 Typographical fixes.

2.00 12 January, 2007 Added the DSP Module Rev2 instructions to the specification and related material.

2.10 18 May, 2007 Allow MADD, MADDU, MSUB, MSUBU, MULT, and MULTU that access
ac1-ac3 to be in the DSP Module (Revision 1) version.
Fix typographical errors.

2.20 July 15, 2008 • Update copyrights.
• Update contact information.

2.21 January 02, 2009 • EXTR.W, EXTR_R.W, EXTR_RS.W, EXTRV.W, EXTRV_R.W and
EXTRV_RS.W all set DSPControl_ouflag for overflow/saturation, even for
intermediate values.

2.22 January 06, 2009 • SHRA[_R].* Operation description was incorrectly not using the rounded inter-
mediate values.

• PRECRQU_S* instructions set bit 22 in DSPControl if clamping occurred.
• DPAQX_S.W.PH, PDAQX_SA.W.PH, DPSQX_S.W.PH, DPSQX_SA.W.PH

were incorrectly marked DSP Module Rev1 instructions, actually Rev2 instruc-
tions.

2.23 June 26, 2009 • MADD, MADDU, MSUB, MSUBU, MULT and MULTU description pages
listed these as Rev2 DSPASE, when they were actually included in Rev1.

2.24 September 03, 2009 • No content change. Rev 2.23 was generated with incorrect script parameters.

2.25 April 06, 2010 • Title change to match microMIPS32/64 and updated MIPS32/64 base ISA doc-
ument sets.

• microMIPS mentioned in “About This Book” chapter.
• Got rid of blank page.

2.30 October 20, 2010 • Some clean-up for microMIPS version. Those edits are not visible for
MIPS32/64 versions.

2.31 March 20, 2011 • Reclassification of microMIPS AFP version. No changes for MIPS32/64.

2.32 March 21,2011 • Edit for microMIPS. No changes for MIPS32/64.

 Revision History

252 MIPS® DSP Module for MIPS64™ Architecture, Revision 3.02

2.33 April 23,2011 • Remove the x fields in the instruction encoding diagrams. Replace them with
explicit binary values.

• MUL.PH & MUL_S.PH had wrong minor opcode mnemonic string in the
instruction description page. Binary value was correct.

• EXTR.W and EXTRV.W pseudocode – comparison checks are for 33bit values
not 32bit values.

• PRECR_SRA[_R].PH.W, PRECR_SRA[_R].QH.PW not listed as DSPRev2 in
Summary.

• SHRAV.OB & SHRAV_R.OB had wrong minor opcode mnemonic string in the
instruction description page. Binary value was correct.

• SHLL.OB encoding was missing in SPECIAL3 Figure 5.5.
• SUBUH.OB & SUBUH_R.OB placement in the Chapter 5 opcode table was

incorrect. They are in ADDU.OB table, not ADDUH.OB table.
• DPSU.H.OBL & DPSU.H.OBR were missing in the summary of instructions.

They were incorrectly listed as DPAU.H.OBL & DPAU.H.OBR.

2.34 May 6, 2011 • SPECIAL3 SHLL.QB instruction sub-class opcode changed from SLL.QB to
SHLL.QB.

• SPECIAL3 DPAQ.W.PH instruction sub-class name changed to DPA.W.PH
• SHRA_R.W with shift amount 0 does not round – changed the pseudocode and

created a new function, rnd32ShiftRightArithmetic(), which is
shared with SHRAV_R.W.

• SHRAV_R.W does not operate element-wise and the rounding is not optional –
changed the description accordingly.

• Pseudocode functions shift16Left(), sat16ShiftLeft(), and
sat32ShiftLeft() fixed to show the correct discarded bits.

• Pseudocode function shift8Left() fixed to handle unsigned bytes and to
show the correct discarded bits.

• MULQ_[R]S instructions’ pseodocode fixed to use a 64-bit temporary for the
overflow condition.

• Added a new pseudocode function for MUL.PH to set DSPControl bit 21 in
case of overflow.

• Changed pseudocode function sat16MultiplyQ15Q15() to set
DSPControl bit 21 in case of overflow.

• Added a new pseudocode function for MULEQ_S.W.PHL and
MULEQ_S.W.PHR to set DSPControl bit 21 in case of overflow.

• MODSUB pseudocode changed to use all 32 bits of source register.
• Resorted some of the instructions in alphabetical order.

2.40 December 16, 2012 • Deprecated 64-bit instructions operating on octal bytes and quad halfwords
• Specified sign-extension semantics for EXTP and SUBUH instructions.
• DSP ASE -> DSP Module
• Updated logos on Cover
• Updated copyright text

2.41 July 16, 2013 • New cover page and legal text.

3.00 November 7, 2014 • Release 6 new BPOSGE32C instruction.

3.01 December 15, 2014 • New BPOSGE32C instruction
• Modified Section 3.10 to note changes due to Release 6 of MIPS Architecture
• Modified Section 3.2 and 3.11 to note detection of Rev 3.0.
• Removed DSP3P references

3.02 March 30, 2015 • Added missing BPOSGE32C instruction

Version Date Comments

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

	MIPS® Architecture for Programmers Volume IV-e: MIPS® DSP Module for MIPS64™ Architecture
	Contents
	About This Book
	1.1 Typographical Conventions
	1.1.1 Italic Text
	1.1.2 Bold Text
	1.1.3 Courier Text

	1.2 UNPREDICTABLE and UNDEFINED
	1.2.1 UNPREDICTABLE
	1.2.2 UNDEFINED
	1.2.3 UNSTABLE

	1.3 Special Symbols in Pseudocode Notation
	1.4 Notation for Register Field Accessibility
	1.5 For More Information

	Guide to the Instruction Set
	2.1 Understanding the Instruction Fields
	2.1.1 Instruction Fields
	2.1.2 Instruction Descriptive Name and Mnemonic
	2.1.3 Format Field
	2.1.4 Purpose Field
	2.1.5 Description Field
	2.1.6 Restrictions Field
	2.1.7 Availability and Compatibility Fields
	2.1.8 Operation Field
	2.1.9 Exceptions Field
	2.1.10 Programming Notes and Implementation Notes Fields

	2.2 Operation Section Notation and Functions
	2.2.1 Instruction Execution Ordering
	2.2.2 Pseudocode Functions
	2.2.2.1 Coprocessor General Register Access Functions
	2.2.2.2 Memory Operation Functions
	2.2.2.3 Floating Point Functions
	2.2.2.4 Pseudocode Functions Related to Sign and Zero Extension
	2.2.2.5 Miscellaneous Functions

	2.3 Op and Function Subfield Notation
	2.4 FPU Instructions

	The MIPS® DSP Application Specific Extension to the MIPS64® Architecture
	3.1 Base Architecture Requirements
	3.2 Software Detection of the Module
	3.3 Compliance and Subsetting
	3.4 Introduction to the MIPS® DSP Module
	3.5 DSP Applications and their Requirements
	3.6 Fixed-Point Data Types
	3.7 Saturating Math
	3.8 Conventions Used in the Instruction Mnemonics
	3.9 Effect of Endian-ness on Register SIMD Data
	3.10 Additional Register State for the DSP Module
	3.11 Software Detection of the DSP Module
	3.12 Exception Table for the DSP Module
	3.13 DSP Module Instructions that Read and Write the DSPControl Register
	3.14 Arithmetic Exceptions

	MIPS® DSP Module Instruction Summary
	4.1 The MIPS® DSP Module Instruction Summary

	Instruction Encoding
	5.1 Instruction Bit Encoding

	The MIPS® DSP Module Instruction Set
	6.1 Compliance and Subsetting
	ABSQ_S.PH
	ABSQ_S.QB
	ABSQ_S.W
	ADDQ[_S].PH
	ADDQ_S.W
	ADDQH[_R].PH
	ADDQH[_R].W
	ADDSC
	ADDU[_S].PH
	ADDU[_S].QB
	ADDWC
	ADDUH[_R].QB
	APPEND
	BALIGN
	BITREV
	BPOSGE32
	BPOSGE32C
	CMP.cond.PH
	CMPGDU.cond.QB
	CMPGU.cond.QB
	CMPU.cond.QB
	DPA.W.PH
	DPAQ_S.W.PH
	DPAQ_SA.L.W
	DPAQX_S.W.PH
	DPAQX_SA.W.PH
	DPAU.H.QBL
	DPAU.H.QBR
	DPAX.W.PH
	DPS.W.PH
	DPSQ_S.W.PH
	DPSQ_SA.L.W
	DPSQX_S.W.PH
	DPSQX_SA.W.PH
	DPSU.H.QBL
	DPSU.H.QBR
	DPSX.W.PH
	EXTP
	EXTPDP
	EXTPDPV
	EXTPV
	EXTR[_RS].W
	EXTR_S.H
	EXTRV[_RS].W
	EXTRV_S.H
	INSV
	LBUX
	LDX
	LHX
	LWX
	MADD
	MADDU
	MAQ_S[A].W.PHL
	MAQ_S[A].W.PHR
	MFHI
	MFLO
	MODSUB
	MSUB
	MSUBU
	MTHI
	MTHLIP
	MTLO
	MUL[_S].PH
	MULEQ_S.W.PHL
	MULEQ_S.W.PHR
	MULEU_S.PH.QBL
	MULEU_S.PH.QBR
	MULQ_RS.PH
	MULQ_RS.W
	MULQ_S.PH
	MULQ_S.W
	MULSA.W.PH
	MULSAQ_S.W.PH
	MULT
	MULTU
	PACKRL.PH
	PICK.PH
	PICK.QB
	PRECEQ.W.PHL
	PRECEQ.W.PHR
	PRECEQU.PH.QBL
	PRECEQU.PH.QBLA
	PRECEQU.PH.QBR
	PRECEQU.PH.QBRA
	PRECEU.PH.QBL
	PRECEU.PH.QBLA
	PRECEU.PH.QBR
	PRECEU.PH.QBRA
	PRECR.QB.PH
	PRECR_SRA[_R].PH.W
	PRECRQ.PH.W
	PRECRQ.QB.PH
	PRECRQU_S.QB.PH
	PRECRQ_RS.PH.W
	PREPEND
	RADDU.W.QB
	RDDSP
	REPL.PH
	REPL.QB
	REPLV.PH
	REPLV.QB
	SHILO
	SHILOV
	SHLL[_S].PH
	SHLL.QB
	SHLLV[_S].PH
	SHLLV.QB
	SHLLV_S.W
	SHLL_S.W
	SHRA[_R].QB
	SHRA[_R].PH
	SHRAV[_R].PH
	SHRAV[_R].QB
	SHRAV_R.W
	SHRA_R.W
	SHRL.PH
	SHRL.QB
	SHRLV.PH
	SHRLV.QB
	SUBQ[_S].PH
	SUBQ_S.W
	SUBQH[_R].PH
	SUBQH[_R].W
	SUBU[_S].PH
	SUBU[_S].QB
	SUBUH[_R].QB
	WRDSP

	Endian-Agnostic Reference to Register Elements
	7.1 Using Endian-Agnostic Instruction Names
	7.2 Mapping Endian-Agnostic Instruction Names to DSP Module Instructions

	Revision History

