MII—PS

MIPS64® Architecture for Programmers
Volume IV-i: Virtualization Module of the
MIPS64® Architecture

Document Number: M D00847
Revision 1.06
December 10, 2013

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS Ill, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CorelV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCl, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

alt{cnt NOKIiSOidIS F21 tI2301-Y Y Siig +26i2Y'S Lnly Mgz -6TI-Gi2y a2RitS 27 iKS alt{cnt OKIiSOidIS: wSdiai2y minc

Table of Contents

(Of g o1 (=T o AN o Yo T U A I 1S = 0 1 9
1.1: TypographiCal CONVENTIONSc.iuiiiiiiiiiiit ettt e et e e ekt e e e et b et e e e e nbe e e e e e annnes 9
R O | = 1o I U PPPRRRPR 10
g = 1o o B = U PPPRRRPRR 10
R O o U 1Y g I =4 PRSP PPPERRPR 10
1.2: UNPREDICTABLE and UNDEFINEDuitiiiiiiiiiie ittt ettt ente et e e anteeeaneeeeanneeeanneeeanes 10
1.2.1: UNPREDICTABLE ...ttt ettt ettt ekt e et e e e mt e e et e e et e e e anee e e st e e e enbeeeanees 10
1.2.2: UNDEFINED ...ttt ettt ettt e ekttt e ettt e e mt e o4ttt e ekt e e e ket eeemte e e s bt e e ambeeeanbeeeeneneeanneas 11
L.2.3: UNSTABLE ..ottt ettt ekttt e ettt e e m ke e okt e et et e ek bt e e em e e e e b be e e ambeeeenbeeeeneneeanneas 11
1.3: Special Symbols in PSEUAOCOTE NOTATIONuviieiiiiiii ettt 11
S o g |V (o {3 [0 g =1 (o o O PRURRT 14
Chapter 2: The Virtualization Module of the MIPS64® Architecture............ccccooeiii 15
2.1: Base ArChiteCture REQUITEMENTSuuuuiiiiiiiee e e e e s ittt e e e e e e e s s s st r e e eeaeeaesssssss b b e e aeeeeeeeeseansnsenarnneeeeaees 15
2.2: Software Detection Of the MOUUIEc.oiiiiiii e 15
2.3: ComplianCe and SUDSEIING.......cciiiriiiiiie e e e e e e e e e s e e e e e e e e e s s s s a et e ereaaeaeeeesannnnrrnrreaeeees 15
2.4: Overview of the Virtualization MOGUIEc.oiiiiiiiic e 15
P2 [1Sy (0 Tox 1 o] g T =11l =1 o Lo 1o S 15
Chapter 3: Overview of Virtualization SUPPOIt ..o, 19
I R O YT [TP PO PP P TP RPPPPPPPPPPOPPPPPN 19
Chapter 4: The Virtualization Privileged Resource ArchiteCturecccceevvivviiiiiii e 21
T 1o o 11 o3 1 T o I EEURT 21
A @ YT 4V T P EUR P 21
R Oe] 440] L= o Lo PP P PP PRPPPP 21
S @l oT=T = 11 g To I 1Y oo [PP P P PUPRRR PP 22
g I s T @ T 1T o TN 1Y/ o To 1= OO PUPRRRRN 23
N =T 0111 Vo] (0o | P PO U PP PPPR 25
4.4.3: Definition Of GUESE IMIOUE. ...ttt e et e e e e e e e e e et eeeaeaeeeeeeaaannnnnnes 25
N N T U 1] A @0] 1= S PUPRRRRN 28
A5 VIFTUBI MEBIMIOTY ..tttk e o4kttt e 4okttt e 4 ettt 444kt e et e n kbt e e e e nb bt e e e annnee s 31
4.5.1: Virtualized MMU GUESEID USEueeiiiiiiieeeeeeieiiee ettt e e e e e e e e e e e eeeaeaaeeeaeannnneeenees 36
4.5.2: Root and Guest Shared TLB OPEIatiONc.uueiiiiiiiiiee ittt 39
4.5.3: NESIEA GUESE CCA SUPPOM ...eieiiiiiete ettt ettt e e et e et e e ettt e e et e e e e e bt e e e e e e nees 40
4.6: COPIOCESSON O ..ttt ettt oo oo oottt e e e oo oo oo b e ettt et e e e e e e s e bbb e et et e e e e e e e n e e 41
4.6.1: New and Modified CPO REGISTEISciutriiieiiiiiit ettt e e 41
4.6.2: NEW CPO INSIIUCTIONS. ...eieeee ettt et e e e e e e ettt ettt e e e e e e e e e s atte e e et eeeeeaaeeaaaaannsesbeeeeeeaaaaeeesaaannnnnnes 42
4.6.3: GUESE CPO TEOISTEIS ...eieeiiteit ettt etttk e et e oo h bt e e e e bbbt e e e e e st et e e e b e e e e e abeeas 43
4.6.4: Guest Privileged SENSItIVE FEAIUINESuiiiiiiiiii ittt 48
4.6.5: Access Control for Guest CPO Register FIeldSuuiviiiiiiiiiei e 49
4.6.6: Guest Config REGISIET FIEIASuiiiiiiiei ittt 50
4.6.7: Guest Context Dynamically Set Read-only FIeldscooooiiiiiiiiiiii e 51
RS T U= ES] I T 1= SRR 52
4.6.9: GUESE CACNE OPEIALIONS.eeiieiiitiit ettt ettt ettt e e et e e ettt e e e s b e e e et e e e e e e nees 54
4.6.10: UNPREDICTABLE and UNDEFINED in GUESt MOE.........cccouuiiiiiieiiiie et 54

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 3

o (o= o] 110 o S PO PEURP TR 55

4.7.1: EXCEPLONS IN GUEST IMIOUE ...ttt ettt e ettt et e e e e e e e e e e s bbb be et e e aeaeaaaesaaannnnnnes 56
4.7.2: Faulting Address for Exceptions from GUESE MOUE.........cooiiiiiiiiiiiiiiiiei e 57
4.7.3: Guest initiated ROOt TLB EXCEPLIONciiiiiiiiiiiiiiiiiie ettt e et e e e e e e e e e e ennneneees 57
o oY o1 To] o T o 1T 1 TP PPPPRPUTT RPN 58
4.7.5: EXCEPON VECION LOCALIONS. .. . ueiiieiiieiteie e e e ettt e e e e e e ettt et e e e e e e e e e s ettt e e e e e e e e aaeeeaeaannneeeenes 62
4.7.6: Synchronous and Synchronous Hypervisor EXCEPLIONSccccuuiiiiiiiiiiiiieaiee i 62
4.7.7: Guest Privileged Sensitive INStruCtioN EXCEPLIONuiiiiaiiiiiiiiiiieieie e 63
4.7.8: Guest Software Field Change EXCEPLIONccuiiiiiiiiiie et e e e e e e e 64
4.7.9: Guest Hardware Field Change EXCEPLION.......c..uuuiiiiiiieiieeiie et 66
4.7.10: Guest Reserved INStrUCHON REAITECTc.iiuuiiiieiiiii et 67
o o Y/ o1 o= 1| I (=T o] (o o EO PP PPPRPRTTRRTIN 68
4.7.12: Guest Exception Code iN ROOt CONTEXEoiieiiiiiiiiiieee ettt e e e e e e e e e aneeeeees 68
R O 01 (T A (U] o S TP PSSO UUPPPPPPTP 69
4.8. 11 EXEEINAL INTEITUDES ... eeeeeee ettt ettt et e e e e e e e o e s bttt e et e e e e e e e e e e e e e nnbbsbaeaeeaeaeeeaeaaaannnnnnes 71
4.8.2: Derivation of GUESE.CAUSEIP/RIPL.uiiiiiiiiiiie e 76
TG T 100 LT Y =T 4 (U o] £ OO PPPRPUTTRTIN 77
4.8.4: Performance COUNTET INTEITUPLS. ittt e ettt e e e e e e e e e e e bbb e e e e e aaeeeaeaannneeneees 78
4.9: Instructions and Machine State, other than CPOocuiiiiiiii e 79
4.9.1: General Purpose Registers and Shadow RegiSter SetsSccccuuiiiiiiiiiiiiiiiiii e 79
4.9.2: MUItIPlIEr RESUIL REGISIEIS ... ettt ettt et e e e e e e e e e et et e e aeaeeeaeaaaannnennes 81
4.9.3: DSP MOUUIE ...ttt ettt e et e et s e e e 81
4.9.4: Floating Point UNit (COPIrOCESSON 1) ...iiiiiiiiiiiiiiiiiietii et e e e e ettt e e e e e e e e e s e bbb eeeeaaaaaeaaaaannneeneees 81
4.9.5: COPIOCESSON 2. .ttt e oo o4 o4 o4 oo e e e e e ee e e ettt et e eeeeesbebebebb R e e oo e o2 e e e e e e e e eeaeeeaeeeeeeennesnrnbnrnnns 82
4.9.6: MSA (MIPS SIMD AICRITECIUIE)etteeitiieee ettt ettt et e e e e e e e e s et e e e e e e e e e e e e aennneseeees 82
4.9.7: USEI FR FRAIUIEveiiiiiiiieii ettt et e e e e e s r et e e e e e e e s seannees 82
4.9.8: LL/SC LLDIt HANAING .ceeieeieieeee ettt et e e e e e e e e e e e bbbt e e e e e e e e e e e e e s aaannnnnnes 83
4.9.9: XPA : Extended PhySICal AQUIESScoiiiiiiiiiiiie ittt e e e e e e e e e eneeeaeees 83
4.9.10: SDBBP INStruCtion HaNGIINGeeeeeiiiiaeaaii ittt e e e e e e e e e e e e e e e e e e ennereneees 83
4.10: Combining the Virtualization Module and the MT MOAUIEoooiiiiiiiiiiiiee e 84
4.11: Guest Mode and DebUQ fFEATUIESuueiiiiiieiiee ettt e e e e e e et e e e e e e e e e e e e nnneeneees 86
4.12: Watchpoint DEDUG SUPPOIT ..cceiieiii ittt e e e e e e ettt e e e e e e e e e e s e aabbebeeeeeaaaaaeaaaannnenneees 87
4.13: Virtualization Module features and Hypervisor SOftWAIecoooiiiiiiiiiiiiiiee e 89
4.14: Lightweight VIrTUIIZATIONcciii ittt ettt et e e e e e e e e e s bbb be e e e e e aaaeeaeaaaannnnanes 95
o el [g (0T [8o 1 o PO P PP PP PPPPPPP 95
4.14.2: Support for Lightweight VirtUaliZation...........cccuiiiiiiiee e 95
Chapter 5: Coprocessor 0 (CPO) REGISTEIS .o 99
5.1: CPO REQISIEI SUMMAIY ...eeiiiiutieiieeiiiite et e e ettt ettt e e s et ettt e s okttt e a4 aa bbbt e e a4 s b bt e e e e aa bbbt e e e s anbba e e e s snnbbeeeesanntneeeean 99
5.2: GuestCtl0 Register (CPO ReQiISter 12, SEIECE B)cciiuuiiiieiiiiiiie ettt ee e 99
5.3: GuestCtl1l Register (CPO RegiSter 10, SEIECE 4)coiiiiiiiiiiiiiiii ettt 108
5.4: GuestCtl2 Register (CPO RegiSter 10, SEIECE D)iiiiiiiiiiiiiiiiiiie it 109
5.5: GuestCtl3 Register (CPO RegiSter 10, SEIECE B)cciiuuiiiiiiiiiiiieiiiiiee et 112
5.6: GuestCtIOExt Register (CPO RegiSter 11, SEIECE 4)uuuiiiiiiiiiiiie ettt 113
5.7: GTOffset Register (CPO ReQIStEr 12, SEIECE 7)uueiiiiiiiiiie ittt 116
5.8: Cause Register (CPO RegiSter 13, SEIECT 0) ...ciiuiiiiiiiiiiiiie ittt 117
5.9: Configuration Register 3 (CPO Register 16, SEIECE 3)uuviiiiiiiiiiiiiiiiie ettt 118
5.10: WatchHi Register (CPO REGISIEN 19)iuuiiiiiiiiiiiiee ittt ettt e et e e e annaneeas 119
5.11: Performance Counter Register (CPO REJISIEI 25)uuiiiiiiiiiiiie ittt 119
5.12: NOtE ON fULUIE CPO FEALIUMNEScii ittt ettt et e st e e st e e ettt e e s annbneeas 122
Chapter 6: INSTrUCTION DESCIIPIIONS . .iiiiiiiiiiitiii ittt e e e e e eeeeeaans 123
8.7 OVEBIVIBW ...ttt ettt ettt 4 ke ekt e 4 ARt £ 4 h et 4o h et e e st oot e et n e b s 123

4 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

D1V 1 O 0 PP TP TP 127

[N O N I PP TP U TP 128
| 1O O PP P TP PP 129
| o [O O P TP TP TP 132
1 1O O PP PT TP 135
I (O O PP TP TP PP 137
TLBGINV ettt oo o4 o4 oo 2o e e e e e et et ettt e ettt bt behh b a e e oo oo e e e e e e e e aeaeaeeeeeeeeenrernrnra 140
LB G NV et e oo oo oo oo e e e e e et ettt e eeeetetebe bbbk e e e oo oo e e e e e e e e aeaaaeaeeeeeennrnrnrnra 142
B 1 OO PPPUPURPPTPRPPNE 145
TLBGR ettt e oo oo oo e oo et e e ettt e ettt behhah e a e e oo oo e e e e e e e e aeaeaeeteeeeaesrnrnrnra 148
TLB GV oottt o oo 44 £ 4o 2o e oo e e e et e et ettt e ettt tehhah R e e oo oo e e e e e e e e aeaeaeeeeeeeeenrnrnrnra 150
TLBGWVR ..ottt e oo oo o4 oo 2o e oot e et e ettt ettt ettt teheabah e e oo oo e e e e e e e e aeeeaeeeeeeeennrnrnrnra 152
TLBINV ettt oo oo oo oo oo oo e et e e e ettt ettt e te bt tehhhh b e e oo oo e e e e e e e e aeaeaeeteeeeeenrnrnrnra 154
B N A OO PPPUPURPPTPTPPN 156
B] OO PPPPPURPPTPPPPNE 157
B] o OO PPPPPUUPPPPRPRINE 159
B Y OO P PP PUPTPPPTPRPPINE 162
TLBWVR .ottt oo oo oo oo oo e oo e e e et e et e ettt ettt behhhbah e e oo o e e e e e e e e e aeaeaeeeeeeeeenrernrara 164
(O F= 1oL A o = 167
7.1: Potential areas Of IMPIrOVEIMENT.iiiii ettt e e et e e e s aneneeas 167
APPENdiX A: REVISION HISTOMY .oiiiiiiiiiiiiii e e e e e e e e e e e as 169

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 5

List of Figures

Figure 4.1: State Transitions between Operating MOUESuiiiii i eeae s 23
Figure 4.2: Virtualization Module ONION MOUEcooiiiiee et e e e e e e eeaeae s 23
Figure 4.3: Virtualization Module Onion Model and @XCEPLIONScoiiiiiiiiiiiiiii e 24
Figure 4.4: Simplified processor operation in OOt MOTE............iiiiiiaiiiiiitiie et a e e e eeeeas 30
Figure 4.5: Virtualization Module Onion Model applied to simplified processor (full virtualization)......................... 31
Figure 4.6: Outline of AddresSs TranNSIAtION.uiii it e e et e e e e e e e e e e s e nnebeeeeeeeeeas 33
Figure 4.7: ROOt AnNd GUESTE TIMEIS ...ttt e ettt et e e e e e e o et ettt et e e e e e e e e e s e s bebbe et e eeeeaeaesaaannrbsbeeeeaaaaeas 54
Figure 4.8: Interrupts in the Virtualization Module 0nion MOdel ..o 70
Figure 4.9: Guest and Root CauselP (NON-EIC) VirtualiZation.............ooi it 73
Figure 4.10: A MT Module processor equipped With thre@ VPESooiiiiiiiiiiieeee e 84
Figure 4.11: A MT Module processor equipped with three VPEs and the Virtualization Module............................ 85
Figure 5.1: GUESICHO REQISIEI FOIMMALuuiiiiiiiiiiie ettt e e ettt et e e e e e e e s e e b et bt e e e aaeeaeesaaannneeneeees 100
Figure 5.2: GUESICHL REQISIEI FOIMMALuuiiiiiiiiiiie ettt et e e e e e e e e e e bbbt e e e aaaeaeesaaannneeseeees 109
Figure 5.3: GuestCtl2 Register Format for NON-EIC MOUE.........euiiiiiiiiiiiiiiie et 109
Figure 5.4: GuestCtl2 Register Format for EIC MOTEuuiiiiiiiiiiiaai e 110
Figure 5.5: GUESICH3 REQISIEI FOIMMALuuiiiiiiiiiiie ettt e e e e e e e e e e e bbbt e e e e e e e e e e s aaannneeneeees 113
Figure 5.6: GUESTCHOEXt REGISIET FOIMIALuuiiiiiiieiai ittt e e e e e e e et e e e e e e e e e e s e e annneeneeees 113
Figure 5.7: GTOMSEt REQISTEr FOIMMAL..........uiiiiiiiiiiiie ettt e e e e e e e e e et b e e e e e aaeeeeesaaannneeeeeees 117
Figure 5.8: Virtualization Module Cause RegiSter FOIMALciiiiiiiiiiiiiiiee e 117
Figure 5-9: Config3 REQISIEr FOIMMAL... ...ttt e e et et e e e e e e e e e e e e bbb be e e e e e aaeeeeesaaannnnenaeees 118
Figure 5-10: WatChHi REQISTEr FOIMIALuuiiiiiiiiiie it e e e e e e e e e st e e e e e e e e e e s e e annneeseeees 119
Figure 5-11: Performance Counter Control RegiSter FOrMALcooaii i 120

6 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

List of Tables

Table 1.1: Symbols Used in Instruction Operation StatemMENTS.uiiiiiiaiiiiiiiiiii e e e 11
Table 2.1: Symbols Used in the Instruction ENcoding TabIles.............ooiiiiiiiii e 16
Table 2.2: Virtualization Module Encoding of the Opcode FIeldcouiiiiiiiiiiiie e 16
Table 2.3: Virtualization Module COPO Encoding Of 1S fieldcc.uuiiiiiiiie e 17
Table 2.4: MIPS64 COPO Encoding of Function Field WHen rS=V ... 17
Table 2.5: Virtualization Module COPO Encoding of Function Field When rs=COccccoiiiiiiiiiiiiiiiieeeeeie 17
Table 4.1: Guest, ROOt and DEDUQG MOUEScoiiiiiiiiiiiii ettt e e e e e e e e e e e eeaaaeaeeeaaaanns 27
Table 4.2: GuestID Translation Related Usage Mode CONLIOl...........uiiiiiiiiiiiiiiiiiie e 37
Table 4.3: GUestID USe DY TLB INSITUCHIONS. ...ttt e e e e e e ettt e e e e e e e e e s e e nnnbbeseeeeaaaaaeeaaaanns 39
Table 4.4: GUEST INESTEA CCA ..ottt e oottt e ookt ee e ookt e e e e aa b et e e e s bbb e e e e s asbb e e e e e anbeeee e 40
Table 4.5: CPO Registers Introduced by the Virtualization MOAUIE..............oooiiiiiiiiii e 42
Table 4.6: CPO Registers Modified by the Virtualization MOAUIE ... 42
Table 4.7: CPO Instructions Introduced by the Virtualization MOdUle............oooiiiiiiiiiiii e 42
Table 4.8: CPO Registers iN GUEST CPO CONTEXEuuuiiiiiiiiiieeaee ittt e e e e e e e e et et e e e e e e e e e s s e annbbeseeeeaaaaeeaaaaanns 44
Table 4.9: Root Modification of Guest CPO CONfIQUIALIONoiiiiiiiiiieiie et e e e e e a7
Table 4.10: Guest CPO Fields Subject to Software or Hardware Field Change Exception...........ccccccceieeiiiiiiinns 49
Table 4.11: Guest CPO Read-only Config Fields Writable from ROOt MOAEueiiiiiiiiiiiiiiiiiiieeeceee e 50
Table 4.12: Guest CPO Read-only Fields Writable from ROOt MOde...........oooiiiiiiiiiiiii e 52
Table 4.13: Priority Of EXCEPLIONSuuitiiiiiiiiaaaia ittt e e ettt e e e e e e e e e s e ek e ab bbbttt eaeaeeaaesaanbnbbsseeeeeaaaaeeaananns 58
Table 4.14: EXCeption TYPE CharaCteriStICS.c.uuuiiiiiiiiieie e ettt e e ettt e e e e e e s e e e bbbbereeeeaaaaeeesaaannnnnes 61
Table 4.15: Hypervisor EXCepPtion CONAITIONSco..uiiiiiiiiiiiee ettt e e ettt e e e e e e e e e s s e nnnbbeseeeeaaaaeeeaaaanns 62
Table 4.16: Root effeCt 0N GUESE XPA CONTIOLviiiiiiiiiii et e e e s e e 83
Table 4.17: Virtualization control of SDBBP @XECULIONccciiiiiiiiiaiiiiiie ettt e s e e 84
Table 4.18: Debug Features and Application to Virtualization Module ... 86
Table 4.19: GUeSt WaALCNPOINT SUPPOIceiieieii ittt e e e e e e e e e e e bb e et et e e eaaeaaesaaabnbesseeeaeaaaeeaaaaanns 87
Table 4.20: WALCN CONIIOI ...eiiiiiiiiie ettt e e sttt e e st e e ekt e e e e st e e e s annne e e e e s 88
Table 4.21: Virtualization Optimizations and their Intended PUrPOSEooiiiiiiiiiiiiiiiieae e 89
Table 4.22: MMU Configurations With RPU ...ttt e e e e e e e e e e e e e e e e e aanns 96
Table 5.1: Virtualization Module Changes to Coprocessor 0 Registers in Numerical Order..........cccccceeeeeeiiiiiinnns 99
Table 5.2: GuestCtl0 Register Field DESCHPHIONSuuiiiiiiieaiiiiiiiite ettt e e e e e e e e e e eeeeaeaaaaeaeeaaas 101
Table 5.3: GUESICHO GEXCCOUER VAIUESuviiiiiiiiiiie ettt ettt e e s 107
Table 5.4: GuestCtll Register Field DESCHPHIONSu ittt e e e e e e e e e e s ae e e e e e e e e e e e e aaas 109
Table 5.5: non-EIC mode GuestCtl2 Register Field DeSCIPLIONSeiiiiiiiiiiiiiiiiiie e 110
Table 5.6: EIC mode GuestCtl2 Register Field DeSCIPUONSuuuiiiiiiiiaiaiaiaiiiiiiii et e e 112
Table 5.7: GuestCtl3 Register Field DESCHPHIONSuiiiiiiiiaaiiiiiiie ettt e et e e e e e e e e e e e e e e e e e e e aaes 113
Table 5.8: GuestCtIOExt Register Field DeSCIPLIONScuiiiiiiiiiiiiiie ettt e e e e e e e s e e e e e e e e e e e aaes 114
Table 5.9: GTOffset Register Field DeSCIPLIONS.u ittt e e ettt e e e e e e e e e aabbebaeeeeeeaaaeaeaaaanns 117
Table 5.11: Cause RegiSter EXCCOUE VAIUESuuuiiiiiiiiiiaie ittt e e e e e e e e et e e e e e e e e e e e e anns 118
Table 5.10: Cause Register Field Description, modified by Virtualization Module..............cccooiiiiiiiiiiiinns 118
Table 5.13: WatchHi Register Field DeSCIPLIONS.u. ittt e e e e e e e e e e e s bbb e eaaaaaaeaaaanas 119
Table 5.12: Config3 Register Field DEeSCIIPIIONSt ittt e et e e e e e e e e e e eeeaaaaaaeeaaaans 119
Table 5.14: New Performance Counter Control Register Field DeSCrpPtioNSuuviiiiiiiiiaiiiiiiiiiiiieeee e 121
Table 6.1: New and MOdified INSIIUCTIONSeiiiiiiiiii ettt e e e s 123

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 7

8 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Chapter 1

About This Book

| The MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture
comes as part of amulti-volume set.

* VolumeI-A describes conventions used throughout the document set, and provides an introduction to the
Ml Architecture

* Volume I-B describes conventions used throughout the document set, and provides an introduction to the
microM|PS64™ Architecture

* Volumell-A provides detailed descriptions of each instruction in the MIPS64® instruction set
* Volumell-B provides detailed descriptions of each instruction in the microMIPS64™ instruction set

* Volumelll describesthe Ml and microMIPS64™ Privileged Resource Architecture which defines and
governs the behavior of the privileged resources included in a MIPS® processor implementation

* Volume IV-adescribesthe MIPS16e™ A pplication-Specific Extension to the MIPS64® Architecture. Beginning
with Release 3 of the Architecture, microMIPS is the preferred solution for smaller code size.

* Volume IV-b describes the MDM X ™ A pplication-Specific Extension to the M1 Architecture and
microM1PS64™. With Release 5 of the Architecture, MDMX is deprecated. MDMX and MSA can not beimple-
mented at the same time.

* Volume IV-c describes the MIPS-3D® A pplication-Specific Extension to the MIPS® Architecture

* Volume IV-d describes the SmartM 1 PS®A pplication-Specific Extension to the MIPS32® Architecture and the
microM1PS32™ Architecture and is not applicable to the MIPS64® document set nor the microM1PS64™ doc-
ument set.

* Volume IV-e describes the MIPS® DSP Module to the MIPS® Architecture

* Volume IV-f describes the MIPS® MT Module to the MIPS® Architecture

* Volume IV-h describes the MIPS® MCU Application-Specific Extension to the MIPS® Architecture

* Volume IV-i describesthe MIPS® Virtualization Module to the MIPS® Architecture

* Volume IV-j describes the MIPS® SIMD Architecture Module to the MIPS® Architecture
1.1 Typographical Conventions

This section describes the use of italic, bold and courier fontsin this book.

I MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 9

About This Book

1.1.1 Italic Text
e isusedfor emphasis
e isused for bits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmabl e fields and registers), and various floating point instruction formats, suchas S, D,
and PS

e isused for the memory access types, such as cached and uncached

1.1.2 Bold Text

* representsaterm that is being defined

» isused for bitsand fields that are important from a hardware perspective (for instance, register bits, which are
not programmabl e but accessible only to hardware)

» isusedfor ranges of numbers; therangeisindicated by an ellipsis. For instance, 5..1 indicates numbers 5 through
1

* isused to emphasize UNPREDICTABL E and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

Theterms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the pro-
cessor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructionsin
aprivileged mode (i.e., in Kernel Mode or Debug Mode, or with the CPO usable hit set in the Status register). Unpriv-
ileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and unprivileged
software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDI CTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as afunction of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause aresult to be generated or not. If aresult is gener-
ated, itisUNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDI CTABLE results or operations have several implementation restrictions:

* Implementations of operations generating UNPREDICTABL E results must not depend on any data source
(memory or internal state) which is inaccessible in the current processor mode

UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
isinaccessible in the current processor mode. For example, UNPREDICTABL E operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

I 10 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

1.3 Special Symbols in Pseudocode Notation

* UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as afunction of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

« UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which

thereisno exit other than powering down the processor). The assertion of any of the reset signals must restore the
processor to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as afunction of time on the same implementation or instruction. Unlike
UNPREDI CTABLE values, software may depend on the fact that a sampling of an UNSTABLE value resultsin a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABL E values have one implementation restriction:

* Implementations of operations generating UNSTABL E results must not depend on any data source (memory or
internal state) which isinaccessible in the current processor mode

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described as pseudocode in a high-level language notation
resembling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning
«— Assignment
= # Tests for equality and inequality
I Bit string concatenation
xY A y-bit string formed by y copies of the single-bit value x
b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the

binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default baseis 10.

Obn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).
Ooxn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).
Xy 7 Selection of hitsy through z of bit string x. Little-endian bit notation (rightmost bit is0) isused. If yisless

than z, this expression is an empty (zero length) bit string.

+, — 2's complement or floating point arithmetic: addition, subtraction

I MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 11

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
* X 2's complement or floating point multiplication (both used for either)
div 2's complement integer division
mod 2's complement modulo
/ Floating point division
< 2's complement less-than comparison
> 2's complement greater-than comparison
< 2's complement less-than or equal comparison

> 2's complement greater-than or equal comparison
nor Bitwiselogical NOR
xor Bitwiselogical XOR
and Bitwise logical AND
or Bitwiselogical OR
not Bitwise inversion
&& Logical (non-Bitwise) AND
<< Logical Shift left (shift in zeros at right-hand-side)
>> Logical Shift right (shift in zeros at left-hand-side)
GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers
GPR[X] CPU general -purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR([x] isashort-hand notation for SGPR[SRSCtlcgs, X].
SGPR[sX] In Release 2 of the Architecture and subsequent rel eases, multiple copies of the CPU general-purpose regis-
ters may be implemented. SGPR[s,X] refersto GPR set s, register x.
FPR[X] Floating Point operand register x
FCC[C(C] Floating Point condition code CC. FCC[0] has the same value as COCJ[1].
FPR[X] Floating Point (Coprocessor unit 1), general register x
CPR[zx,9] Coprocessor unit z, general register x, select s
CP2CPR[X] Coprocessor unit 2, general register x
CCR[zX] Coprocessor unit z, control register x
CP2CCR[X] Coprocessor unit 2, control register x
COC[Z] Coprocessor unit z condition signal
Xlat[x] Translation of the MIPS16e GPR number X into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (O —Little-Endian, 1 — Big-Endian). Specifies the endianness of
the memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endi-
anness of Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0 — Little-Endian, 1 — Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and isimplemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRge and User mode).

I 12 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

1.3 Special Symbols in Pseudocode Notation

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when alinked load occurs and istested by the conditional store. It is cleared, during other CPU operation,
when a store to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

I, This occurs as a prefix to Operation description lines and functions as alabel. It indicates the instruction
I+n:, time during which the pseudocode appears to “ execute.” Unless otherwise indicated, all effects of the current
I-n: instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
timelabel of . Sometimes effects of an instruction appear to occur either earlier or later — that is, during the

instruction time of another instruction. When this happens, the instruction operation is written in sections
labeled with the instruction time, relative to the current instruction I, in which the effect of that pseudocode
appears to occur. For example, an instruction may have aresult that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in asection labeled | +1.

The effect of pseudocode statements for the current instruction labelled | +1 appears to occur “at the same
time” asthe effect of pseudocode statements labeled | for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for
different instructions that occur “at the sametime,” there is no defined order. Programs must not depend on a
particular order of evaluation between such sections.

PC The Program Counter value. During the instruction time of an instruction, thisis the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction timeis determined by assign-
ing avaue to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.

In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the
restart address into a GPR on ajump-and-link or branch-and-link instruction, or into a Coprocessor O register
on an exception. The PC value contains afull 64-bit address all of which are significant during amemory ref-

erence.

ISA Mode In processors that implement the MIPS16e Application Specific Extension or the microMIPS base architec-
tures, the ISA Mode isasingle-bit register that determines in which mode the processor is executing, asfol-
lows:

Encoding Meaning
0 The processor is executing 32-bit MIPS instructions
1 The processor is executing M11PS16e or microMIPS
instructions

In the MIPS Architecture, the ISA Mode value isonly visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the |SA Modeinto a GPR on ajump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS The number of physical address bitsimplemented is represented by the symbol PABITS. Assuch, if 36 phys-
ical address bits were implemented, the size of the physical address space would be 2PABITS = 236 pytes,

SEGBITS The number of virtual address bitsimplemented in a segment of the address space is represented by the sym-
bol SEGBITS. Assuch, if 40 virtual address bits are implemented in a segment, the size of the segment is
25EGB|TS - 240 bytes.

I MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 13

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

FP32RegistersMode | Indicates whether the FPU has 32-hit or 64-hit floating point registers (FPRs). In MIPS32 Release 1, the FPU

has 32 32-bit FPRs in which 64-bit data types are stored in even-odd pairs of FPRs. In MIPS64, (and option-
aly in MIPS32 Release? and MIPSr3) the FPU has 32 64-bit FPRs in which 64-bit data types are stored in

any FPR.

In MIPS32 Release 1 implementations, FP32Register sM ode is always a 0. M1PS64 implementations have a
compatibility mode in which the processor references the FPRs as if it were a MIPS32 implementation. In
such a case FP32Register M ode is computed from the FR bit in the Satus register. If thisbitisa0, the pro-
cessor operates asif it had 32 32-bit FPRs. If thisbit isa 1, the processor operates with 32 64-bit FPRs.

The value of FP32Register sM ode is computed from the FR bit in the Satus register.

InstructioninBranchDe- | Indicates whether the instruction at the Program Counter address was executed in the delay slot of abranch

laySlot or jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the valueis
falseif abranch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which
is not executed in the delay slot of abranch or jump.

Signal Exception(excep- | Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
tion, argument) parameter as an exception-specific argument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

1.4 For More Information

Various MIPS RISC processor manuals and additional information about M1PS products can be found at the MIPS
URL.: http://www mips.com

For comments or questions on the MIPS64® Architecture or this document, send Email to support@mips.com.

I 14 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Chapter 2

The Virtualization Module of the MIPS64® Architecture

2.1 Base Architecture Requirements

The Virtualization Application-Specific Extension (Module) requires the following base architecture support:

* TheMIPS64 Architecture: The Virtualization Module requires a compliant implementation of the MIPS64
Architecture, Release 5.00 or |ater.

* A TLB-based MMU isrequired.

» Coprocessor O registers KScratchl and KScratch2 are required
2.2 Software Detection of the Module

Software can determine if the Virtualization Module is implemented by checking the state of the VZ bit in the
Config3 CPO register.

2.3 Compliance and Subsetting

The Virtualization Module to the MIPS64 Architecture provides hardware support for software-controlled platform
virtualization. A subset of Virtualization Module instructions and registers must be implemented, but certain instruc-
tions and machine state are defined to be optional and may be omitted.

2.4 Overview of the Virtualization Module

The Virtualization Module extends the M| Architecture with a set of new instructions and machine state, and
makes backward-compatible modifications to existing MIPS64 features.The Virtualization Moduleis designed to
enable full virtualization of operating systems.

2.5 Instruction Bit Encoding

Table 2.2 through Table 2.5 describe the instruction encodings used for the Virtualization Module. Table 2.1
describes the meaning of the symbols used in the tables. These tables only list the instruction encodings for the Virtu-
alization Module instructions. See Volume | of this multi-volume set for afull encoding of all instructions.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 15

The Virtualization Module of the MIPS64® Architecture

Table 2.1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

* Operation or field codes marked with this symbol are reserved for future use. Executing such an
instruction must cause a Reserved Instruction Exception.

) (Alsoitalic field name.) Operation or field codes marked with this symbol denctes afield class.
The instruction word must be further decoded by examining additional tables that show values for
another instruction field.

B Operation or field codes marked with this symbol represent avalid encoding for a higher-order
MIPS ISA level. Executing such an instruction must cause a Reserved Instruction Exception.

L Operation or field codes marked with this symbol represent instructions which are not legal if the
processor is configured to be backward compatible with M1PS64 processors. If the processor is
executing in Kernel Mode, Debug Mode, or 64-hit instructions are enabled, execution proceeds
normally. In other cases, executing such an instruction must cause a Reserved Instruction Excep-
tion (non-coprocessor encodings or coprocessor instruction encodings for a coprocessor to which
accessis allowed) or a Coprocessor Unusable Exception (coprocessor instruction encodings for a
coprocessor to which access is not allowed).

0 Operation or field codes marked with this symbol are available to licensed MIPS partners. To avoid
multiple conflicting instruction definitions, MIPS Technologies will assist the partner in selecting
appropriate encodings if requested by the partner. The partner is not required to consult with MIPS
Technologies when one of these encodingsis used. If no instruction is encoded with this value,
executing such an instruction must cause a Reserved Instruction Exception (SPECIAL2 encodings
or coprocessor instruction encodings for a coprocessor to which accessis allowed) or a Coproces-
sor Unusable Exception (coprocessor instruction encodings for a coprocessor to which accessis
not allowed).

c Field codes marked with this symbol represent an EJTAG support instruction and implementation
of this encoding is optional for each implementation. If the encoding is not implemented, execut-
ing such an instruction must cause a Reserved Instruction Exception. If the encoding isimple-
mented, it must match the instruction encoding as shown in the table.

€ Operation or field codes marked with this symbol are reserved for MIPS Modules. If theModuleis
not implemented, executing such an instruction must cause a Reserved Instruction Exception.

[0} Operation or field codes marked with this symbol are obsolete and will be removed from a future
revision of the MIPS64 | SA. Software should avoid using these operation or field codes.

Table 2.2 Virtualization Module Encoding of the Opcode Field

opcode bits 28..26

0 1 2 3 4 5 6 7

16

bits 31..29 000

001

010

011

100

101

110

111

0 | 000

001

010

COPO0 6

011

100

101

110

~N| o o | W] N

111

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

2.5 Instruction Bit Encoding

Table 2.3 Virtualization Module COPO Encoding of rs field

’T bits 23..21
0 1 2 3 4 5 6 7
bits 25..24 000 001 010 011 100 101 110 111
0 00 MFCO DMFCO L *) MTCO DMTCO L * *
1 01 * * % * * % % *
2 10
3 11 C0o3d
Table 2.4 MIPS64 COPO Encoding of Function Field When rs=V
W bits 10..8
0 1 2 3 4 5 6 7
000 001 010 011 100 101 110 111
MFGCO DMFGCO L MTGCO DMTGCO L MFHGCO # MTHGCO *

Table 2.5 Virtualization Module COPO Encoding of Function Field When rs=CO

’W bits 2..0

0 1 2 3 4 5 6 7
bits 5..3 000 001 010 011 100 101 110 111
0 | 000 * TLBR TLBWI TLBINV TLBINVF ® TLBWR *
1 001 TLBP TLBGR TLBGWI TLBGINV TLBGINVF # TLBGWR *
2 | o010 TLBGP * ® # * ® * s
3| o11 ERET # " B " p ; DERET
4 | 100 WAIT # # # # # # B
5 101 HYPCALL * * * * * * %
6 | 110 # * « # * x # *
7 | 111 # * * * * * * #

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

17

The Virtualization Module of the MIPS64® Architecture

18 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Chapter 3

Overview of Virtualization Support

3.1 Overview

The Virtuaization Module defines a set of extensions to the MIPS64 Architecture for efficient implementation of vir-
tualized systems.

Virtualization is enabled by software - the key element is a control program known as a Virtual Machine Monitor
(VMM) or hypervisor. The hypervisor isin full control of machine resources at all times.

When an operating system (OS) kernel is run within avirtual machine (VM), it becomesa‘guest’ of the hypervisor.
All operations performed by a guest must be explicitly permitted by the hypervisor. To ensure that it remainsin con-
trol, the hypervisor always runs at a higher level of privilege than a guest operating system kernel.

The hypervisor is responsible for managing access to sensitive resources, maintaining the expected behavior for each
VM, and sharing resources between multiple VMs.

In atraditional operating system, the kernel (or ‘supervisor’) typically runs at a higher level of privilege than user
applications. The kernel provides a protected virtual-memory environment for each user application, inter-process
communications, 10 device sharing and transparent context switching. The hypervisor performs the same basic func-
tionsin avirtualized system - except that the hypervisor’s clients are full operating systems rather than user applica
tions.

The virtual machine execution environment created and managed by the hypervisor consists of the full Instruction Set
Architecture, including all Privileged Resource Architecture facilities, plus any device-specific or board-specific
peripherals and associated registers. It appears to each guest operating system asiif it is running on areal machine
with full and exclusive contral.

The Virtualization Module enables full virtualization, and is intended to allow VM scheduling to take place while
meeting real-time requirements, and to minimize costs of context switching between VMs.

Minimum Requirements for Virtualization

Thefirst implementations of platform virtualization used ‘ trap-and-emulate’ software techniques, which rely on cer-
tain properties of the underlying hardware. To be considered ‘ classically virtualizable' an architecture must have the
following characteristics:

* Atleast two operating modes - including privileged and unprivileged

» System resources can only be controlled through privileged instructions while executing in privileged mode

» Execution of aprivileged instruction in unprivileged mode will cause an exception (trap), returning control to
privileged mode software

» Addresstrandation is performed on the entire address space when in unprivileged mode

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 19

Overview of Virtualization Support

20

Inthe‘classic’ approach, the guest operating system kernel is‘de-privileged’ and is executed in the unprivileged
mode. All privileged operations attempted by the guest will trap back to the hypervisor, which executes in the privi-
leged mode. The hypervisor emulates all guest privileged operations, keepstrack of the guest view of privileged state,
and ensures that the system behaves as expected by the guest. Full address trandlation allows an unmodified guest ker-
nel to execute from its original location in memory, and allows the hypervisor to manage address translation to match
the expectations of the guest kernel. This approach is aso known as ‘trap and emulate’ virtualization.

The base M1PS64 architecture satisfies all the requirementsfor classic virtualization, except that addresstranglation is
not provided for the entire address space in user mode. User mode programs can only run from kuseg or xkuseg,
located in the lower portion of the virtual address space. The kernel istypically compiled to run from kseg0, which is
located in the upper portion of the virtual address space, and is accessible only in kernel mode. An operating system
kernel compiled to work with instructions and data located in ksegO or xkphys cannot efficiently execute in user
mode.

A Segmentation Control system is available for use by the Virtualization Module. Thisis a programmable memory
segmentation system defined to support remapping (and therefore virtualization) of the existing fixed segment mem-
ory model.

In addition to addressing the minimum requirements for virtualization, the Virtualization Module provides features
designed to reduce the number of hypervisor traps required, and to reduce the length of each hypervisor intervention.

For an outline of virtualization support and for a description of each included feature, see Chapter 4, “The
Virtualization Privileged Resource Architecture” on page 21.

For a description of how each feature isintended to be used by software, see Section 4.13 “Virtualization Module
features and Hypervisor Software”.

For a description of recommended features, see Table 4.8.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Chapter 4

The Virtualization Privileged Resource Architecture

4.1 Introduction

The MIPS64 Privileged Resource Architecture (PRA) defines a set of environments and capabilities on which the
Instruction Set Architecture operates. Thisincludes definitions of the programming interface and operation of the sys-
tem coprocessor, CPO. The Virtualization Module defines extensions to the M1PS64 PRA that are desirable for the
execution of guest Operating Systemsin afully virtualized environment. This document describes these extensions. It
is not intended to be a stand-alone PRA specification, and must be read in the context of the M1PS64 Privileged
Resource Architecture specification.

4.2 Overview

The Virtualization Module defines extensions to MIPS64 which are related to virtualization:

* Guest Operating Mode

» Partial CPO register set (or context) for Guest Mode use

* Registersfor Guest Mode control

* Guest interrupt system

* Two-level addresstrandation

» Detection of Virtualization Features

The Virtualization Module provides a separate Coprocessor O register set (or context) for guest mode oper a-
tion, which is physically separate from, and a subset of the Root Coprocessor 0 context. This Coprocessor 0 con-

text isreferred to by the term ‘ context’ throughout this document.

The presence of the Virtualization Module is indicated by the Config3,,, field.See Section 5.9 “Configuration
Register 3 (CPO Register 16, Select 3)".

4.3 Compliance

Features described as Required in this document are required of all processors claiming compatibility with the Virtu-
alization Module. Any features described as Recommended should be implemented unless there is an overriding need
not to do so. Features described as Optional are features that may or may not be appropriate for a particular Virtual-
ization Module processor implementation. If such afeature isimplemented, it must be implemented as described in
this document if a processor isto claim compatibility with the Virtualization Module.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 21

The Virtualization Privileged Resource Architecture

In some cases, there are features within features that have different levels of compliance. For example, if thereisan
Optional field within a Required register, this means that the register must be implemented, but the field may or may
not be, depending on the needs of the implementation. Similarly, if thereis a Required field within an Optional regis-
ter, thismeans that if the register isimplemented, it must have the specified field.

4.4 Operating Modes

22

Fundamental to the Virtualization Moduleis a limited-privilege guest operating mode. Guest mode consists of new
operating modes guest-kernel, guest-user and guest-supervisor - orthogonal to the existing kernel, user and supervisor
modes.

The pre-existing (non-guest) operating mode is known as root mode. The pre-existing kernel, user and supervisor
operating modes can be referred to as root-kernel, root-user and root-supervisor respectively, to distinguish them
from their guest-mode equivalents.

The guest mode all ows the separation between kernel, user and supervisor modes to be retained for a guest operating
system running within a virtual machine - the guest-kernel mode can handle interrupts and exceptions, and manage
virtual memory for guest-user mode processes.

The separation between root mode and the limited-privilege guest mode allows root mode software to be in full con-
trol of the machine at all times even when aguest is running. Backward compatibility isretained for existing software
running in root mode.

The GuestCtl0 register, described in Section 5.2, contains the GM (Guest Mode) bit. This bit is used along with
root-mode exception and error status bits (Statusgy, , Statusgg,) and the Debug Mode bit (Debugpy,) to determine
whether the processor is operating in guest mode or root mode.

See also Section 4.4.3 “Definition of Guest Mode'

Figure 4.1 shows the state transitions between operating modes.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.4 Operating Modes

Figure 4.1 State Transitions between Operating Modes

IRQ,
Exceptions

Hypercall
Root-handled exceptions

Reset

root-kernel eret guest-kernel
Root-handled IRQs A
exceptions .
hypcall, if Guest.Satuscg=1 |GRUS§ handied

exceptions
eret IRQs, eret
Exceptions
root-user guest-user

4.4.1 The Onion Model

The Virtualization Module applies an ‘onion model’ to address translation and exception handling for guests. Three
operating modes are required to execute a virtualized guest operating system: unprivileged guest-user, limited-privi-
lege guest-kernel and full-privilege root-kernel. The root-user mode is used to execute non-virtualized software. At
each layer within the onion, any operation must be permitted by al the outer layers.

Figure 4.3 shows the logical arrangement of operating modes.

Figure 4.2 Virtualization Module Onion Model

root-kernel
root Coprocessor 0

guest-kernel
guest Coprocessor 0

root-user

In aMIPS64 processor, Coprocessor 0 contains system control registers, and can be accessed only by privileged

instructions. A processor implementing the Virtualization Module physically replicates a subset of the Coprocessor O
register set for use by the Guest Operating System. Root mode operation uses one set of Coprocessor O registers and
Guest mode operation the other. The term ‘ context’ refers to the software visible state held within each Coprocessor 0

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 23

The Virtualization Privileged Resource Architecture

register set. The software visible state is the contents of these registers and any state which is accessed via these reg-
isters, such as TLB entries and Segmentation Control configurations. For a Hypervisor to save, restore or switch con-
text from one guest to another, it is the entire software visible state which must be saved and restored, not solely the

replicated registers themselves, but also the physical resources which are shared between Root and Guest, such asthe
GPRs, FPRs and Hi/L o registers.

During guest mode execution, both the guest Coprocessor 0 and the root Coprocessor 0 are active. The presence of
two simultaneoudly active Coprocessor 0 contexts is fundamental to the operation of the Virtualization Module.

During guest mode execution, all guest operations are first tested against the guest CPO context, and then against the
root CPO context. An ‘operation’ is any process which can trigger an exception - thisincludes address trand ation,
instruction fetches, memory accesses for data, instruction validity checks, coprocessor accesses and breakpoints.

Exceptions are handled in the mode whose context triggered the exception. An exception triggered by the guest CPO
context will be handled in guest mode. An exception triggered by the root CPO context will be handled in root mode.

Guest mode software has no access to the root Coprocessor 0. Root mode software can access the guest Coprocessor
0, and if required can emulate guest-mode accesses to disabled or unimplemented features within guest Coprocessor
0. The guest Coprocessor 0 is partially populated - only a subset of the complete root Coprocessor 0 is implemented.

The presence of two Coprocessor 0 contexts allows for an immediate switch between guest and root modes - without
requiring a context switch to/from memory. Simultaneously active contexts for the guest and root Coprocessor 0
allows guest-kernel privileged code to execute with the minimum hypervisor intervention, and ensures that key
root-mode machine systems such timekeeping, address translation and external interrupt handling continue to operate
without major changes during guest execution.

Figure 4.3 shows the how the Virtualization Module ‘onion model’ is applied to operations starting in each of the
operating modes (supervisor modes are omitted for clarity).

Figure 4.3 Virtualization Module Onion Model and exceptions

root-kernel

Complete
operation

root-kernel handler

O operation start point

An operation executed in guest-user mode must travel from the inside of the onion to the outside.

24 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.4 Operating Modes

Thefirst layer to be crossed is the guest CPO context (controlled by guest-kernel mode software). All exception and
trang ation rules defined by the guest CPO context are applied, and resulting exceptions taken in guest mode.

If the operation does not trigger a guest-context exception, the next layer to be crossed is the root CPO context (con-
trolled by root-kernel mode software). All exception and trandlation rules defined by the root CPO context are applied,
and resulting exceptions taken in root mode.

For example, an access to Coprocessor 1 (the Floating Point Unit) must first be permitted by the guest context
Statuscy bit, and then by the root context Statusc; bit. However, access of guest to Coprocessor O is not qualified
by root context Statusc o as Coprocessor 0 state is not shared with root.

External interrupts must travel from the outside of the onion to the inside - first being parsed by the root CPO context,
and if passed on by the hypervisor software, by the guest CPO context.

4.4.2 Terminology

When executing in guest mode, both the root and guest Coprocessor 0 contexts are in active use. See Section
4.4.1 “The Onion Model”. A prefix is used to distinguish between registers located in the guest and root contexts.

For example - Root.Status refers to the status register from the root context, and Guest.Compare refersto the timer
compare register in the guest context.

Pseudocode in this document uses object-oriented terminology to describe processes which can be applied to multiple
contexts. A prefix is used to indicate which context isto be operated on by the process. In object-oriented terminol-
ogy, the subroutines shown are akin to methods provided by a CPO class.

For example:
Perform TLB lookup using Root CP0O context
- exceptions taken in root context

Root .TLBLookup (.., .., ..)

Perform TLB lookup using Guest CP0O context

- exceptions taken in guest context

Guest.TLBLookup (.., .., ..)

Perform TLB lookup using context defined by ‘object’ variable
- exceptions taken in ‘object’ context

object.TLBLookup (.., .., ..)

Perform TLB lookup using context of the caller
TLBLookup (.., ..,

4.4.3 Definition of Guest Mode
4.4.3.1 Definition
The processor isin guest mode (guest-user, guest-supervisor or guest-kernel) when:
* Root.GuestCtlOgy = 1 and Root.Statusgy, =0 and Root.Statusgg, =0 and Root.Debugp,=0.
Guest mode operation is determined asfollows. This subroutine will be used in pseudo-code to test whether processor

isin guest-mode.
subroutine IsGuestMode ()

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 25

The Virtualization Privileged Resource Architecture

if (GuestCtlOgy=1) and (Root.Debugp,=0) and
(Root.Statusgg,=0) and (Root.Statusgyg;,=0) then
return (true)
else
return(false)
endif
endsub

In contrast, the following subroutine isto be used in pseudo-code to test whether processor isin root-mode.
subroutine IsRootMode ()
if (
(GuestCtlOgy=0) or
((GuestCtlOgy=1) and not ((Root.Debugpy=0) and
(Root.Statusgg;,=0) and (Root.Statusgy;,=0))
) then
return (true)
else
return(false)
endif
endsub

4.4.3.2 Entry to Guest mode

The recommended method of entering Guest mode is by executing an ERET instruction when Root.GuestCtlOgy=1,
Root.Statusgy =1, Root.Statusgr, =0 and Root.Debugpy,=0.

Instructions executed in root mode use the root context. When an ERET instruction is executed in root mode and
Root.Statusgr, =0, the target address is obtained from Root.EPC and the exception-level bit EXL iscleared in
Root.Status. After the ERET instruction execution is completed, the processor will be in guest mode if the
Root.GuestCtlOg), bit was set.

The behavior of ERET, and DERET and their usage of EPC, ErrorEPC and DEPC registers are unchanged from the
base architecture. The determination of Guest vs. Root mode is the result of setting the Root register fields
GueStCtIOGM, StatUSEXL, StatUSERL and DebugDM to the Guest mode definition state (ROOt.GUeStCthGM =1land

Root.Statusgy; =0 and Root.Statusgg; =0 and Root.Debugp,=0).
4.4.3.3 Exit from Guest mode

When an interrupt or exception isto be taken in root mode, the bits Root.Statusgy, or Root.Statusgg, are set on entry,
before any machine state is saved. As aresult, execution of the handler will take place in root mode, and root mode
exception context registers are used, including Root.EPC, Root.Cause, Root.BadVAddr, Root.Context, Root.XContext,
Root.EntryHi.

The HYPCALL instruction is provided for controlled guest-to-root transitions. This instruction triggers a Hypercall
Exception, taken in root mode. See Section 4.7.11 “Hypercall Exception”.

The ERET instruction cannot be used to enter root mode from guest mode. No root-mode state is accessible from
guest mode, thus the guest cannot change the Root.GuestCtl0, Root.Status or Root.Debug registers.

4.4.3.4 Guest mode execution

When running in guest mode, the distinction between guest-user, guest-supervisor and guest-kernel is made using
Guest.Statusgg, , Guest.Statusgy, and Guest.Statusk sy, following the rules described in the base architecture.

26 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.4 Operating Modes

When an interrupt or exception isto be taken in guest mode, the bits Root.Statusgy, Or Root.Statusgg, remain unal-

tered on entry. As aresult, execution of the handler will take place in guest mode, and guest mode exception context
registers are used, including Guest.EPC, Guest.Cause, Guest.BadVAddr, Guest.Context, Guest.XContext,
Guest.EntryHi.

4.4.3.5 Reset
At reset, Root.Statusgg, =1, thus a MIPS64 processor will always start in root mode.

In addition, Root.GuestCtl0g),=0 on reset, ensuring that the operation of existing software is unchanged.

4.4.3.6 Debug Mode

For processors that implement EJTAG, the processor is operating in debug privileged execution mode (Debug Mode)
when Root.Debugpy,=1. If the processor is running in Debug Mode, it has full accessto all resources that are avail-
able to Root Kernel Mode operation.

Debug Mode, Root Mode and Guest Mode are mutually exclusive. At any given time, the processor can only bein
one of the three modes. Note that Debug mode operates in the Root context, while Guest mode operatesin its own
unigue context.

4.4.3.7 Fields affecting processor mode
Table 4.1 describes the fields affecting the processor mode.

Table 4.1 Guest, Root and Debug modes

Root Guest
Debugpy | Statusgg| | Statusgy, | Statusgsy Gue;\tACtIO Statusgg, | Statusgy, | Statusksy Mode
Don't care Debug
0 1 Don't care Root-Kernel
0 1 Don't care
0 00 0 Don't care
01 Root-Supervisor
10 Root-User
Don't care 1 1 Don't care Guest-Kernel
0 1 Don't care
0 00
01 Guest-Supervisor
10 Guest-User
Don't care 11 UNPREDICTABLE
Don't care 11 Don't care UNDEFINED

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 27

The Virtualization Privileged Resource Architecture

4.4.4 The Guest Context

The Virtualization Module provides root-mode software with controls over the instructions that can be executed, the
registers which can be accessed, and the interrupts and exceptions which can be taken when in guest mode. These
controls are combined with new exceptions that return control to root mode when intervention is required. The overall
intent isto allow guest-mode software to perform the most common privileged operations without root-mode inter-
vention - including transitions between guest kernel and guest user mode, controlling the virtual memory system (the
TLB) and dealing with interrupt and exception conditions. Controls allows root-mode software to enforce security
policies, and alow for virtualized features to be provided using direct access or trap-and-emul ate approaches.

The features added by the Virtualization Module are primarily concerned with virtualizing the privileged state of the
machine and dealing with related exception conditions. Hence most features are related to guest-mode interaction
with Coprocessor 0. A partially-populated Coprocessor 0 context is added for guest-mode use. See Section

4.6.3 “Guest CPO registers’.

The Virtualization Module provides controls to trigger an exception on any access to Coprocessor 0 from the guest,
access to a particular register or registers, or to trigger an exception after a particular field has been changed. See
Section 5.2 “ GuestCtl0 Register (CPO Register 12, Select 6)”.

The guest Coprocessor 0 context includes its own interrupt system. Root-mode software can directly control guest
interrupt sources, and can also pass through one or more external hardware interrupts to the Guest. Guest mode soft-
ware can enable or disable its own interrupts to enforce critical regions. The root-mode interrupt system remains
active, allowing timer and external interrupts to be dealt with by root-mode handlers at any time. See Section

4.8 “Interrupts’.

The guest context includesits own TLB. Thisisuseful for fully virtualized systems, where direct guest accessto the
TLB is necessary to maintain performance. A two-level address trandation system is present, along with the related
exception system. This system is used to manage guest mode access to virtual and physical memory, and then to
relate those accesses to the real machine's physical memory. See Section 4.5 “Virtual Memory”.

All MIPS64 unprivileged instructions and registers can be used by guest mode software without restriction. This
includes the General Purpose Registers (GPRs) and multiplier result registers hi and lo. See Section 4.9 “Instructions
and Machine State, other than CPO".

MIPS defines optional architecture features and M odules which add machine state and instructions to the base
MIPS64 architecture. Some examples include the Floating Point Unit, the DSP Module, and the UserLocal register.
The presence of these optional features and Modules within the machine is indicated by read-only configuration bits
in the Root.Config,_7 registers.

The Virtualization Module allows implementations to choose which optional features are available to the guest con-
text. The optional features available to the guest are indicated by fieldsin the Guest.Config,_; registers. An imple-

mentation can further choose to allow run-time configuration of the features available to the guest by allowing
root-mode writes to fields in the Guest.Config,_; registers.

Root-mode software can control guest writes to the Guest.Config registers when GuestCtlO-g=0. This allows Root to

control changesto Guest configuration, or be informed of changes to Guest configuration. See Section 4.6.6 “Guest
Config Register Fields’.

The base MIPS64 architecture includes access controls which alow kernel-mode code to limit access to optional or
Module features. Examplesinclude the Statuscj; bit and the Statusyy bit. The ‘onion model’ requires that both

root-mode and guest-mode permissions are applied to guest-mode accesses. For example, access to the floating point
unit must be enabled by the root (Root.Statuscy;;) and the guest (Guest.Statuscy,;) before exception-free accesses can

28 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.4 Operating Modes

be performed. See Section 4.9.4 “Floating Point Unit (Coprocessor 1)”. There are exceptions to the onion model, for
example the HWREna register only appliesin respective context for guest and root operations.

In afully virtualized system, the virtual machine presented to the guest is afaithful copy of areal machine - al pro-
cessor state, instructions, memory and peripherals operate as expected by the guest software.

Figure 4.4 shows a simplified M1PS64 processor during root mode execution. Shadow register controls determine
which General Purpose Register set isused. Multiplier result registers are accessible in user and kernel modes.
Address translation is performed using a TL B-based MMU and Segment Configurations. Access to the FPU is con-
trolled by kernel-mode software using the Statusc;; bit. Interrupts can result from external sources or the system
timer. Exceptions can result from address translation, breakpoints, instruction execution, or serious errors such as
NMI, Machine Check or Cache Error.

The example assumes a non-EIC interrupt system, and for reasons of clarity, omits Supervisor modes and Configg -
registers.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 29

The Virtualization Privileged Resource Architecture

30

Figure 4.4 Simplified processor operation in root mode

Root-Kernel Mode
User Mode Shadow Regs
SRSCHl
SRSMap
GPRs hi, lo - -
' Timekeeping
Count
L Compare
Base Instrs. FPU Instrs. 'CRQ detect
ausepz o
Status; IRQs
Statusyy7. »
IntICtljpT,
Address
Translation
Segmentation Exceptions
Control (optional)
EPC
EntryLo0,1 ErrorEPC
EntryHi Cause
PageMask Statuscy; BadVAddr
PageGrain
Index, Wired R
EJTAG Breakpoints
External Debug
NMI, Cache Error,

Machine Check
Memory FPU

Figure 4.5 shows the Virtualization Module ‘ onion model’ applied to the simplified M1PS64 processor from Figure
4.4, for afully virtualized guest. Guest context shadow register controls determine which General Purpose Register
set isused. Multiplier result registers are accessible in user and kernel modes. Address translation is performed first
using the guest context (enabled by GuestCtl0,r=1 or 3), then through the root context TLB. Note that root context
Segment Configurations are not used - the root context TLB trand ates every address from the guest.

Exceptions detected by the guest context are handled in guest mode - from guest segmentation/trandlation, guest
coprocessor enables, guest timekeeping, and IRQs - both external sources passed through by the root context, and
IRQ sources directly asserted by root-mode software. Exceptions detected by the root context are handled in root

mode - root timekeeping, IRQs, coprocessor enables and second-level address trandation, plus new controls over
guest behavior.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.5 Virtual Memory

Figure 4.5 Virtualization Module Onion Model applied to simplified processor (full virtualization)

Root-Kernel Mode
Guest-Kernel Mods
]
Guest-User Mode Shadow Sets Shadow Regs
SRSCHl SRSCtl
SRSMap SRSMap
- GTOffset
S hi, lo - - - -
’ Timekeeping Timekeeping
Count + Count
L™ Compare Compare
A 4 \ 4
SuestCtio,
Base Instrs. FPU Instrs. I?:Dsgetect i pIPT.2 I(F?’angetect
U U,
Sta tus,’ZZ ? PIP Status;Z " IRQs
GuestCtioar=1or 3 Statusyz » Status;yz. »
{ ¢ IntiCtl oy x IntiCtl o7,
Address
Translation
Segmentation
Control (optional) A 4
EntryLo0,1 Exceptions ggg:
EntryHi GHFC
PageMask A 4 EP c YEPC Hypercall
PageGrain Statusyq b GuestCtio
Index, Wired BadVAddr {CPO, AT, GT, CF
MC, RI, CG}
\ 4
Address
Translation \ 4 4
Segmentation Exceptions
Control (optional)
EPC
EntryLo0,1 v ErrorEPC
EntryHi Cause
PageMask Statuscy, »| BadVAddr
PageGrain
Index, Wired -
- EJTAG Breakpoints »
r 3
External Debug
4 4 NMI, Cache Error,
Machine Check
Memory FPU

4.5 Virtual Memory

The Virtualization Module includes an option for two levels of address translation to be applied during guest-mode
execution. The Virtualization Module requires that a TLB-based MMU is implemented in the root context.

The Virtualization Module provides a separate CP0 context for guest-mode execution. This context can optionally

include segmentation controls and address translation (MMU). The guest MMU can be TLB-based, block address
translation (BAT) or fixed mapping (FMT).

MIPS64® Architecture for Programmers Volume [V-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 31

The Virtualization Privileged Resource Architecture

In guest mode when guest segmentation and translation are enabled (GuestCtl0,r=1 or 3), two levels of address trans-
lation are performed. Thefirst level uses the guest segmentation controls and the guest MMU. This translates an
address from a Guest Virtual address (GVA) to a Guest Physical Address (GPA). The second level of translation uses
theroot TLB, using the GPA in place of the Virtual Address (VA) that would normally be used. This second tranda
tion resultsin aPhysical Address (PA). The cache attribute used is that supplied by the guest context. In this second
level of trandation, exceptions in address translation are handled by Root.

When a TLB-based guest MMU is provided, it is recommended the number of entries be equal to the number of
entries in the root-context TLB used for Guest mappings. The page sizes used in the root-mode TLB must be care-
fully considered to allow sufficient control for root-mode software, while maximizing the number of guest-mode TLB
entries which are mapped through each root-mode TLB entry. Larger root TLB pages will likely result in better per-
formance.

Both the guest and root MMU's can be active at the same time. We recommend that the Root TLB maintain an ade-
guate amount of reserved TLB entries for its own use to avoid cascading TLB evictions (thrashing).

Figure 4.6 shows the outline of address trandation in the Virtualization Module.

32 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.5 Virtual Memory

Figure 4.6 Outline of Address Translation

Virtual Address (VA)

v

Root CPO

GuestID=0
Root ASID

v

segmentation GPTIONAL

Root Virtual Address

Root TLB

G

N

Physical Address (PA)

Implementation note: Processor designs incorporating the Virtualization Module and implementing a guest context
MMU are unlikely to perform translation twice on each memory access. A hardware mechanism will be used to
ensure that a Physical Address can be obtained from a Guest Virtual Address within the CPU pipelinein asingle

GuestID=N

Root ASID isignored
Guest Physical Address

Guest CPO

NY

segmentation JPTIONAL

GuestID=N

Guest
ASID

v

Guest TLB

Root exception

Guest exception

tranglation. The mechanism may use micro-TLBs - for example, on amicro-TLB refill, aguest TLB lookup would be
followed by aroot TLB lookup, to produce a one-step GVA-PA trandation. Other methods are possible. The system

must be arranged to allow for efficient execution and to appear to software that two independent translation steps are
taking place for each memory access.

Guest mode segmentation controls and the guest mode MM U have no effect on the root mode address space.

The optiona ‘ GuestID’ field (GuestCtl1,p or GuestCtllgp) represents a unique identifier for Root and all Guest Vir-
tual Address spaces. Each Guest’s address space is identified by a unique non-zero GuestID. The GuestlD value zero
isreserved for Root address space. The GuestCtl1 CPO register isunique in the Root register space and inaccessiblein
guest mode. GuestID is an optimization, designed to minimize TLB invalidation overhead on a virtual machine con-

text switch and simplify Root access to Guest TLB entries. The implementation of a GuestID is recommended.

Implementation complexity can be minimized by reducing the GuestID to 1 bit. This allows the Root TLB to distin-

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

33

The Virtualization Privileged Resource Architecture

34

guish between Root and Guest Entries, and flush either set of mappingsin entirety with the TLBINVF instruction.
Alternatively, GuestID can be eliminated by having Root virtual address space shared with Guest physical addresses.

The KX, SX, and UX bitsin the Guest.Status register control access to 64-bit segments within the Guest Virtua
Address Space. Guest accessto KX,SX,UX will trigger a GPSI exception as per Section 4.7.8 “ Guest Software Field
Change Exception”. Guest accessesto 64-bit segments are not affected by the KX, SX and UX bitsin the Root.Status
register.

If Statusyx=0, then a special transformation applies to data virtual addresses as per the baseline architecture. The
effective address calculated by aload, store, or prefetch instruction must be sign extended from bit 31 into bits 63..32
of the full 64-bit address, ignoring the previous contents of bits 63..32 of the address, before the final addressis
checked for address error exceptions or used to access the TLB or cache. This special-case behavior is not performed
for instruction references. In particular, this transformation applies to the first step of guest address translation, and
not the second.

Hardware will use Guest.Statusy x/sx/ux t0 determine whether a TLB Refill or XRefill exception isto be taken on a
Guest TLB miss on a Guest access. Similarly, hardware will use Root.Statusy x/sx/ux to determine whether a TLB
Refill or XRefill exception isto be taken on a Root TLB miss. However, hardware will use Root.Statusy x to deter-
mine whether a TLB Refill or XRefill exception is to be taken on a Root TLB miss on a Guest access.

The pseudocode bel ow describes the compl ete address translation process for the MIPS64 Virtualization Module.
Segmentation, TLB lookups, hardware TLB refill and second-level address translation are invoked below. The pro-
cessis described in top-down order - subsequent sections describe the subroutines called. See Section

4.5.1 “Virtualized MMU GuestID Use” for description of RAD and DRG terms.

/* Inputs

* vAddr - Virtual Address

* TorD - Access type - INSTRUCTION or DATA
* LorS - Access type - LOAD or STORE

* pLevel - Privilege level - USER, SUPER, KERNEL
*

* Qutputs

* pAddr - physical address

* CCA - cache attribute (valid when mapped)
*

* Exceptions: See called functions

* Called from guest or root context.

*

~

subroutine AddressTranslation(vAddr, IorD, LorS, pLevel)

// Initialization.
// GuestID is only applicable if GuestCtlOzap=0. Otherwise GuestID
// is ignored (not applicable) in process of address translation.
GuestID « ignored

if (IsGuestMode()) then
// This is a Guest Address translation
// step 1l: Guest Virtual -> Guest Physical Address translation
if (GuestCtl0gyp=0)
GuestID ¢« GuestCtllip
endif
(mapped, addr, CCA) <« AddressDecode (vAddr, pLevel)
if (Configyy=1 or Configyr=4) then // TLB type MMU
if (mapped) then
asid ¢« Guest.EntryHi,gqrp

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.5 Virtual Memory

(addr, CCA) <« Guest.TLBLookup(asid, GuestID, addr, IorD, LorS)
endif
else
if (Configy=0) then
MMU=None case is undefined
UNDEFINED
else
Other MMU type, FMT or BAT. BAT will use LorS.
(addr, CCA) ¢« Guest.OtherMMULookup (addr, CCA, LorS, pLevel)
endif
endif
if (exception)
Guest Exception
// TLB exceptions may include Refill, Invalid, Execute-Inhibit for
// Instruction, Refill, Invalid, Modified, Read-Inhibit for Data.
// Guest segment map related exceptions may include Address Error
endif

// step 2: Guest Physical -> Root Physical Address translation
// if GuestCtlOzrap=0, then guest entry ASID is global in Root TLB.
// H/W must set G=1 for guest entry for TLBWI and TLBWR.
asid <« Root.EntryHi,grp
pAddr ¢« Root.TLBLookup (asid, GuestID, addr, IorD, LorS)
if (exception)
Root Exception
// This is a Root exception initiated in guest context
// This includes all TLB exceptions.
// Segment map Address Error exception not included, as guest does not
// lookup root segment map.
endif

else
// This is a Root Address translation
// Root Virtual -> Root Physical Address translation
// If GuestCtlOpgg=1,GuestCtllyrp is non-zero,Root.Statusgyr,, grr=0,
// and Debugpy=0, then all root kernel data accesses are mapped and root
// SegCtl is ignored.H/W must set G=1 as if the access were for guest.
drg_valid ¢ (GuestCtlOpgg=1 and Root.Statusggy=00 and Root.Statusgy;,=0 and
Root.Statusgg;,=0 and Debugpy=0 and GuestCtllgz;p!=0 and !Instruction)
if (drg_valid) then
mapped « 1
addr < vAddr
else
(mapped, addr, CCA) <« AddressDecode (vAddr, pLevel)
endif
if (!mapped) then
pAddr ¢« addr
else 1if (GuestCtlOgap=0)
if (Instruction or (!drg_valid))
GuestID « 0
else
GuestID <« GuestCtllgprp
endif
endif
asid ¢« Root.EntryHi,grp
(pAddr, CCA) ¢« Root.TLBLookup(asid, GuestID, addr, IorD, LorS)
endif

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 35

The Virtualization Privileged Resource Architecture

endif
if (exception)
Root Exception
// Includes all TLB and Segment related exceptions in Root context.
// If drg_valid, and access is not by root-kernel,then an Address Error
// exception is caused.
endif

return (pAddr,CCA)
end

subroutine AddressDecode (vAddr, pLevel)
Determine whether address is mapped
- if unmapped, obtain physical address and cache attribute
if (Config3g.) then
// optional Segmentation Control based address decode
(mapped, addr, CCA) ¢« SegmentLookup (vAddr, pLevel)

else
(mapped, addr, CCA) ¢« LegacyDecode (vAddr[63:62],vAddr[31:29], pLevel)
endif
return (mapped, addr, CCA)
endsub

See also Section 4.7.1 “Exceptionsin Guest Mode” and Section 4.7.2 “Faulting Address for Exceptions from Guest
Mode”.

45.1 Virtualized MMU GuestID Use

The use of GuestID is optional as specified by the value of GuestCtlOg;. Software can detect presence of GuestCtl1
and thus GuestCtl 1|D and GuestCitl 1R|D by readi ng GuestCthGl

For an implementation that supports GuestCtlOgap=0, GuestCtl0g, must be preset to 1, otherwise GuestCtl0g, must
be preset to 0. GuestCtlOgap is read-only - an implementation can support one or the other, but never both. On the
other hand, GuestCtlOprg is R/W. See Table 5.2 for description of R/W state of DRG and RAD.

GuestCtl1,p is used for guest-mode operation, while GuestCtl1g p is used for root-mode operation. Root address
transl ation assumes GuestI D=0 providing GuestCtl0prs=0.

The Guest TLB may or may not be shared by multiple guests. The Root TLB will be shared by Root and at least one
unique Guest. Options to support dealiasing guest and root entriesin Root TLB, and possibly multiple guestsin the
Guest TLB is described below.

A processor will support one of the two modes below. Software can determine the mode by reading GuestCtl1gap
described in Table 4.2

1. Deadliasing by GuestID

GuestID is used to dealias multiple guest contextsin both Guest and Root TLB. Specifically, GuestCtl 1, is used
for guest-mode operation, whereas GuestCtl 1, is used for root-mode operations. A guest or root-mode opera-
tionisan instruction or datatransdation, or TLB instruction.

An implementation may choose to provide direct root-mode access to guest entries (GPA->RPA) in the Root
TLB. Direct root-mode access is described by GuestCtlOprg in Table 4.2. In the absence of this feature, root

36 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.5 Virtual Memory

would have to probe the Root TLB with GPA, and subsequently read on match to obtain the RPA. If amiss
occurs, then root must walk the guest shadow page tablesin memory. Otherwise, with direct access, a miss will
result in a hardware pagewalk, assuming a hardware pagewalker is supported.

Root ASID for guest entriesin the Root TLB are ignored because hardware will set the global bit on awrite for
such entries.

2. Dedliasing by Root ASID.

This option should be used if no GuestID isimplemented. Software can detect this mode by reading
GuestCtl1gpp.

Between Guest context-switches, the Guest and Root TLBs must be flushed of current guest context by root soft-
ware. Root.EntryHiagp is used to dealias Root from Guest entriesin the Root TLB. Root software must maintain

aoneisto one correspondence between alocated ASID and the unique Guest it represents.

Root ASID for guest entries in the Root TLB are not ignored unless software explicitly sets G=1 for the guest
entry.

Table 4.2 GuestID Translation Related Usage Mode Control

Field Description

GuestCtlOgpp | RAD, or “Root ASID Dealias’ mode determines the means that a Virtualized
MMU implementation uses to dealias different contexts.

Encoding Meaning
0 GuestI D used to dealias both Guest
and Root TLB entriesin Root TLB.
1 Root ASID isused to dealias Root

TLB entries, while Guest TLB con-
tains only one context at any given
time.

GuestCtlOprs | DRG, or “Direct Root to Guest” access determines whether an implementation
with GuestCtlOgrap=0 provides root kernel the means to access guest entries
directly in the Root TLB for access to guest memory. If GuestCtlOprg=1 then
GuestCtl 1z,p must be used. If GuestID for root operation is non-zero, root is
in kernel mode, Root.Statusgx | gr =0 and Debugpy=0, then all root kernel
data accesses are mapped, root SegCtl isignored and Root TLB CCA is used.
Accessin root mode by other than kernel will cause an address error. H/W
must set G=1 asiif the access were for guest.

Encoding Meaning
0 Root software cannot access guest
entries directly.
1 Root software can access guest entries
directly.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 37

The Virtualization Privileged Resource Architecture

The following pseudo-code indicates how to specify the ASID and GuestI D(if present) interface to the Root and
Guest TLBsfor Guest and Root address translations, as a function of GuestCtlOgap. A field within a TLB entry needs

to be compared with a“Key” asinput to the interface to determine whether amatch is has occurred.
Guest and Root TLB interfaces for GuestID dealiasing method (GuestCtlOgap=0):

Guest TLB Interface:

if (Instruction or Load or Store)
GuestTLB.Key[GuestID] = GuestCtll;p

endif

GuestTLB.Key[ASID] = Guest.EntryHigrp

Root TLB Interface:
if (IsRootMode())
drg_valid < (GuestCtlOpgg=1 and Root.Statusggqy=00 and Root.Statusgy;,=0 and
Root.Statusgg;=0 and Debugp,=0 and GuestCtllg;p!=0 and !Instruction)
if (!drg_valid) then
// Instruction or Load or Store

RootTLB.Key[GuestID] = 0
else // special mode - root access guest entries
RootTLB.Key[GuestID] = GuestCtllgp;p

endif

else // Guest mode
// Instruction or Load or Store
ROOtTLB.Key[GuestID] = GuestCtll;p

endif
RootTLB.Key[ASID] = Root.EntryHi,grp

With GuestCtlOgrap=0, Guest entries in the Root TLB must ignore the ASID. For this reason, if GuestCtlgp!=0, that

isentry isa Guest entry, then Root mode execution of TLBWI and TLBWR sets the entry’s G bit to 1 automatically.
Otherwise, for Root entries, TLBWI and TLBWR must set/clear the G hit in accordance with the baseline architec-
ture.

Guest and Root TLB interface for Root ASID dealiasing method (GuestCtlOgap=1) :

Guest TLB Interface:

GuestTLB.Key[ASID] = Guest.EntryHigrp
Root TLB Interface:
RootTLB.Key[ASID] = Root.EntryHi,grp

GuestCtlOprg has no effect on the Guest and Root address trandations if GuestCtlOgap=1. If GuestCtlOgap=1, then
GuestCtlOprg must be read-only as 0.

For more detail on Guest and Root address translation, please refer to pseudo-codein Section 4.5 “Virtual Memory”.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.5 Virtual Memory

Table 4.3 specifies the association of GuestID with TLB instructions. For supporting information, refer to Section

4.6.2 “New CPO Instructions’.

Table 4.3 GuestID Use by TLB instructions.

GuestID
TLB Operation (GuestCtl1p/GuestCtlligp)
TLBGINV GuestCtllgp
TLBGINVF GuestCtl1gp
TLBGP GuestCtllgp
TLBGR GuestCtl1gp
TLBGWI GuestCtl1gp
TLBGWR GuestCitl 1R| D
TLBINV if RootMode then GuestCtl1gp
else GuestCitl 1,
TLBINVF if RootMode then GuestCtl1gp
else GuestCtl1,p
TLBP if RootMode then GuestCtl1zp
else GuestCtl1,p
TLBR if RootMode then GuestCtl1g,p
else GuestCtl 1|D
TLBWI if RootMode then GuestCtl1gp
else GuestCitl 1,
TLBWR if RootMode then GuestCtl1gp
else GuestCtl1,p

4.5.2 Root and Guest Shared TLB Operation

An implementation may choose to share a common physical TLB amongst root and guest. In a TLB structure that
incorporatesaVTLB (Variable page size TLB) and FTLB (Fixed page size TLB), the VTLB must accommodate
wired entries for both root and guest in a shared structure. In other implementations, the VTLB may be standalone

without a supporting FTLB.

In anon-virtualized design, the number of wired entriesislimited by the CPO Wired register in either context. And the
number of entriesin the VTLB is determined by Configlyugze-1 @nd Configdy 1 ggzeext OF Configdymusizeext: FOr

this purpose, it is required that any of these fields be writeable by root as givenin Table 4.11.

In arecommended shared TLB implementation, the root index increases from the bottom of the physical TLB while
the guest index increases from the top of the physical TLB. Thisisto avoid overlap of root and guest wired entries, if
programmed appropriately. On the other hand, the root and guest indices to the FTLB grow from the bottom of the

FTLB. Both guest and root TLB operations must interpret the TLB index accordingly.

It is expected that root will allocate the appropriate number of wired entriesto itself, and then write guest Configl and
Config4 related fields to set the available VTLB entries for guest. Root will read Guest.Configdpmuesxtper t0 deter-

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 39

The Virtualization Privileged Resource Architecture

40

mine which of the guest Configd MMU size extension fields need to be written. Since the entries allocated for guest
use aso includes non wired entries shared by both root and guest, root software must be careful not to allocate all
remaining non root-wired entries to guest. This prevents guest from populating all remaining non root-wired entries
with its own guest-wired entries, leaving no entries for non root-wired entries.

Root software should not change guest MMU configuration while the guest isin operation, asisthe case for any guest
configuration that is read-only to guest but writeable by root.

It is not required that hardware check for illegal values written to guest MMU size and extensions. A typical imple-
mentation will however check to ensure that any field write saturates at the maximum number of bits required to sup-
port the total number of entriesin the shared TLB.

4.5.3 Nested Guest CCA Support

The specification optionally provides the ability for root CCA, in the 2nd step of guest address trandation, to modify
guest CCAs.

As specified, nesting is specifically recommended if the hypervisor allows guest to access device addresses, or mem-
ory-mapped 1/0 addresses. It is possible for arogue guest to store data in the cache as writeback using a cacheable
CCA, with this datalater on being evicted in another guest’s operating context, with the intent of corrupting a periph-
era. The hypervisor would allow guest access assuming that the system MMU is programmed correctly to selectively
allow guest access to device address ranges. However such a system MMU would not have the capability of prevent-
ing writeback datafrom accessing the peripheral asit either allows read/write access on a per guest basis and does not
further differentiate the access.

Nesting is not required if the hypervisor traps and emulates all guest accesses to I/0 address ranges.

In either case, guest accessto physical memory does not require the application of nesting, asthe Root MMU protects
such accesses on a per guest page basis. However, hypervisor may always apply the policies givenin Table 4.4.

See Table 5.8 for definition of related configuration, GuestCtIOEXtycc.

Table 4.4 Guest Nested CCA

Root CCA Guest CCA
1st step of 2nd step of
guest address | guest address Resultant
translation translation Guest CCA Changed? Comment
not UC or UCA Any Unchanged
uc uc uc Unchanged
uct WB/WT?2 uc Unchanged Protects against WB to device address
uc UCA uc Unchanged Possible performanceimpact for guest
UCA
UCA3 uc uc Unchanged
UCA WB/WT UCA Changed Store gathering may occur on cache-
able accesses
UCA UCA UCA Unchanged No performance impact

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.6 Coprocessor 0

1. UC - Uncacheable CCA, Architecturally defined.
2. WB/WT (Writeback/ Writethru) - Cacheable CCA, Implementation defined.
3. UCA - Uncacheable Accelerated CCA, |mplementation defined.

4.6 Coprocessor 0

Defined by the MIPS64 Privileged Resource Architecture (PRA), Coprocessor 0 (CPO) contains system control regis-
ters. Accessto these registersis restricted and can only be performed using privileged instructions.

The Virtualization Module provides a partial set of CPO registers for use by the guest, thisis known as the guest con-
text. When in guest mode, the behavior of the machine is controlled by the combination of the guest CPO context and
the root CPO context. When in root mode, the behavior of the machine is controlled entirely by the root CPO context.

The guest CPO context consists of a base set plus optional features.

Access to features within the guest CPO context is controlled from root mode. The Guest.Configg.; registers deter-
mine which architecture features are active during guest mode execution. The GuestCtl0 register controls whether a
guest access to a privileged feature will trigger an exception.

Guest CPQ registers can be accessed from root mode by using the root-only MFGCO0 and MTGCO instructions. Dou-
bleword access to guest CPO registersis performed using the root-only DMFGCO0 and DMTGCO instructions. Guest
TLB contents can be accessed by using the root-only TLBGP, TLBGR, TLBGWI and TLBGWR instructions.

Root context software (hypervisor) is required to manage the initial state of writable Guest context registers. On
power-up, the initial state defaults to the hardware reset state as defined in the base architecture. On Guest context
save and restore, the hypervisor is required to preserve and re-initialize the Guest state. For virtual boot of a Guest,
the hypervisor isrequired to initialize the Guest state equivalent to the hardware reset state.

Root has the ability to define the presence of and control the contents of Guest CPO registers. Therefore, if so config-
ured, Guest access to guest CPO state may cause a Guest Privileged Sensitive Instruction exception. Refer to Table
4.8, Section 4.6.6 “Guest Config Register Fields” and Section 4.7.7 “Guest Privileged Sensitive Instruction
Exception” for further information.

Root may deconfigure guest CPO registers by writing to guest configuration registers as defined in Table 4.11. Guest
behavior in response to these modifications is defined in Table 4.9.

The Virtualization Module requires that scratch registers KScratch1 and KScratch2 are present in the root context.
This ensures that hypervisor exception handlers have an adequate number of scratch registers to save and restore all
general purpose registersin use by the guest.

4.6.1 New and Modified CPO Registers

Coprocessor 0 registers are added by the Virtualization Module to control the guest context - GuestCtl0, GuestCtl1
and GTOffset.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 41

The Virtualization Privileged Resource Architecture

Table 4.5 describes CPO registers introduced by the Virtualization Module.

Table 4.5 CPO Registers Introduced by the Virtualization Module

Register Register Compliance
Number Sel Name Description Reference Level
12 6 |GuestCtl0 Controls guest mode behavior. Section 5.2 Required
10 4 | GuestCtl1 Guest ID Section 5.3 Optional
10 5 | GuestCtl2 Virtua Interrupts Section 5.4 Optional
10 6 |GuestCt3 Virtual Shadow Sets Section 5.5 Optional
11 4 | GuestCtIOExt |Extension to GuestCtlO Section 5.6 Optional
12 7 | GTOffset Offset for guest timer value Section 5.7 Required
Table 4.6 describes CPO registers modified by the Virtualization Module.
Table 4.6 CPO Registers Modified by the Virtualization Module
Register Register Compliance
Number Sel Name Description Reference Level
13 0 |Cause Addition of hypervisor cause code. Section 5.8 Required
16 3 |Config3 Identifies Virtualization Module feature set. Section 5.9 Required
19 0 | WatchHi Added support for Guest Watch. Section 5.10 Optional
25 0 |PerfCnt Added support for Root/Guest performance count. Section 5.11 Optional
31 2 |KScratchl Required in root context. - Required
31 3 | KScratch2 Required in root context. - Required

4.6.2 New CPO Instructions

The Virtualization Module introduces new instructions for root mode access to the guest CPO context, and for a guest
to make acall into root mode - a‘hypervisor cal’.

42

Table 4.7 describes CPO instructions introduced by the Virtualization Module.

Table 4.7 CPO Instructions Introduced by the Virtualization Module

Compliance
Instruction Description Reference Level

HYPCALL Hypercall - call to root mode. “HYPCALL" on page 128 Required
DMFGCO Double-Word Move from Guest CPO “DMFGCOQ" on page 126

DMTGCO Double-Word Move to Guest CPO “DMTGCOQ" on page 127

MFGCO Move from Guest CPO “MFGCO” on page 129

MTGCO Move to Guest CPO “MTGCO” on page 135

TLBGINV Guest TLB Invalidate “TLBGINV” on page 140 Optional
TLBGINVF Guest TLB Invalidate Flush “TLBGINVF" on page 142 Optional

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.6 Coprocessor 0

Table 4.7 CPO Instructions Introduced by the Virtualization Module

Compliance
Instruction Description Reference Level
TLBGP Probe Guest TLB “TLBGP” on page 145 Required
p ” when guest
TLBGR Read Guest TLB TLBGR” on page 148 TLB present
TLBGWI Write Guest TLB “TLBGWI” on page 150
TLBGWR Write Random to Guest TLB “TLBGWR” on page 152

4.6.3 Guest CPO registers

The Virtualization Module provides a partial set of CPO registers for use by the guest, thisis known as the guest con-
text. Many guest context registers are optional or can be disabled under software control.

Asin the base architecture, fieldsin Guest.Config Guest.Configl..7 registers define the architectural capabilities of
the guest context. When a CPO register does not exist in the guest context, or is disabled by aroot-writable
Guest.Config field, it can have no effect on guest behavior. See Section 4.6.6 “ Guest Config Register Fields’ for
information on guest Config register fields which can be dynamically reconfigured by Root. Note that accesses to
Guest CPO registersin certain cases will trigger a Guest Privileged Sensitive Instruction (GPSI) exception as defined
in Table 4.8.

When a CPO register is defined in the guest context, it is used to control guest execution. Fieldsin the GuestCtlO reg-
ister can be used to cause Guest Privileged Sensitive Instruction exceptions when an access from guest modeis
attempted. This allows hypervisor software to control the value of aregister in the guest CPO context (thus controlling
guest-mode execution) while denying guest-kernel accessto the register. See Section 4.6.4 “Guest Privileged
Sensitive Features’.

Attempting modification of certain fields in guest context CPO registers triggers a Guest Software Field Change
exception. In asimilar manner, the Guest Hardware Field Change exception is triggered when a hardware initiated
change to Guest CPO registers occurs. These mechanisms are used to support Root recognition of Guest initiated
changes to guest context CPO registers. Thisis done to properly manage the operation of the guest virtual machine.
See Section 4.6.5 “Access Control for Guest CPO Register Fields'.

Table 4.8 lists the base architecture CPO registers noting which may be implemented in the guest context.
Definitions of terms used in Table 4.8:

* Required - Must be implemented in the Guest context.

» Recommended - Should be implemented in the Guest context.

» Optiona - Implementation dependent as to whether included in the Guest context.

* Not Available - Never implemented in the Guest context.

The guest CPO context must include all CPO registers from an optional feature or an Module if the associated
Guest.Config field indicates that the feature or Module is available in the guest context. For any of these registers,
guest access may be controlled by Root software. Thisis done by triggering a Guest Privileged Sensitive Instruction

Exception on a guest-mode access. Guest Software Field Change and Guest Hardware Field Change exceptions can
also be used.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 43

The Virtualization Privileged Resource Architecture

44

See also Section 4.9.10 “SDBBP Instruction Handling”.

Table 4.8 CPO Registers in Guest CP0 context

Guest Privileged
Sensitive Instruction
Available to Exception when
Register Guest-Kernel software | Root.GuestCtlOcpp=0, |Compliance
Number | Sel | Register Name when or Level
0 0 |Index Guest.Configyr=1 or GuestCtlOExtyg=1 Required for
1 0 |Random Guest.Configy =4 Guest context
TLB
2 0 |EntryLoO
3 0 |EntryLol
4 0 | Context
4 1 | ContextConfig Guest.Config3gy=1 or Optional
GUest.COﬂfigaCTXTczl
4 2 |UserLocal Guest.Config3y g =1 GuestCtlOExtog=1 Recom-
mended
4 3 | XContextConfig Guest.Config3g)=1 or GuestCtlOExty =1 Optional
GueSt.COnfigBCTXTczl
5 0 |PageMask Guest.Configy =1 or GuestCtlOExtyg=1 Reguired for
o= Guest context
5 1 |PageGrain Guest.Configyr=4 GuestCtloar=1 TLB
5 2 | SegCtlO Guest.Config3gc=1 Optional
5 3 |SegCtll
5 4 | SegCtl2
5 5 |[PWBase Guest.Config3p\y=1 Optional
5 6 |PWField
5 7 |PWSize
6 0 |Wired Guest.Configyr=1or Required for
Guest.Configy =4 Guest context
TLB
6 6 |PWCtl Guest.Config3py=1 Optional
7 0 |HWREnNa Guest.Configag>=1 GuestCtlOExtog=1 Required
8 0 |BadVAddr Always GuestCtlOExtgg=1
8 1 |Badinstr Guest.Config3g,=1 GuestCtlOExtgg=1 Optional
8 2 |BadlnstrP Guest.Config3gp=1 GuestCtlOExtgg=1 Optional
9 0 |Count Always GuestCtl0gt=0 Required
10 0 |EntryHi Guest.Configyt=1 or GuestCtlOExty =1 Required for
Guest.Configy =4 Guest context
TLB
11 0 |Compare Always GuestCtl0gt=0 Required
12 0 |Status Always -
12 IntCtl Guest.Configag>=1 -

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Table 4.8 CPO Registers in Guest CP0 context

4.6 Coprocessor 0

Guest Privileged
Sensitive Instruction
Available to Exception when
Register Guest-Kernel software | Root.GuestCtlOcpp=0, | Compliance
Number | Sel | Register Name when or Level
12 2 |[SRSCil Guest.Configag>=1 Always Optional
12 3 |SRSMap Guest.Configag>=1
13 0 |Cause Always - Required
13 5 |NestedExc Guest.Config5nrexists=1 - Optional
14 0 |EPC Always - Required
14 2 |NestedEPC Guest.Config5nrexists=1 - Optional
15 0 |PRid - Always Not Available
Emulated by
Hypervisor
15 1 |EBase Guest.Configag>=1 - Required
15 2 |CDMMBase Guest.Config3cpym=1 Always Not Available
; — Emulated by
15 CMGCRBase Guest.Config3cpycer=1 Hypervisor
16 0 |Config Always On write access when Required
16 1 |Configl Guest.Configy=1 GuestCtloce=0.
16 2 |Config2 Guest.Configly=1
16 3 [Config3 Guest.Config2,,=1
16 4 | Configd Guest.Config3y,=1
16 5 |Configh Guest.Config4y=1
16 6 |Configb Implementation dependent - Optional
16 7 |Config7
17 0 |[LLAddr GuestCtlOEXt5g=1 Optional®
17 1 |MAAR Guest.Config5yrp=1 Always Not Available
Release 5
17 2 | MAARI Guest.Config5yrp=1 Always Not Available
Release 5
18 0 |WatchLo Guest.Configlyr=1 Conditional, refer to Section Optional
hei . — 4.12 “Watchpoint Debug
19 0 | WatchHi Guest.Configlyr=1 Support”
20 0 | XContext Guest.Configy =1 or - Required for
Guest.Configy =4 Guest context
TLB

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 45

The Virtualization Privileged Resource Architecture

Table 4.8 CPO Registers in Guest CP0 context

Guest Privileged
Sensitive Instruction
Available to Exception when
Register Guest-Kernel software | Root.GuestCtlOcpp=0, | Compliance
Number | Sel | Register Name when or Level
23 0 |Debug Guest.Configlgp=1 Always Not Available
24 0 |DEPC Guest.Configlgp=1
25 0-n | PerfCnt Guest.Configlpc=1 Conditional, refer to Section
4.8.4 “Performance
Counter Interrupts’
26 0 |ErrCitl - Always
27 0 [CacheErr
28 0 |[TagLo
28 1 |DatalLo
28 2 |TagLo
28 3 |DatalLo
29 0 |[TagHi
29 1 |DataHi
29 2 | TagHi
29 3 |DataHi
30 0 |ErrorEPC Always? - Required
31 0 |DESAVE Guest.Configlgp=1 Always Not Available
31 2 |KScratchl Always GuestCtlOExtog=1 Optional
Defined by
31 3 [KScratch2 Guest.ConfigAysertsiet
31 4 | KScratch3
31 5 [KScratch4
31 6 |[KScratch5
31 7 | KScratch6

1. LLAddr may optionaly be implemented providing the Guest context has access to Guest Physical
Addresses, else Not Available.
2. ErrorEPC isrequired in guest context because it used as scratch by some MIPS compatible OSes.

Table 4.8 indicates the conditions under which guest access of guest CPO registers can cause a Guest Privileged Sen-
sitive Instruction exception (GPSI) to Root. If a GPSI istaken for a guest CPO register which may or may not be
active in guest mode, the corresponding root CPO register must be implemented. This is true because the guest CPO
context is always a subset of the root CPO context. Otherwise, access to the corresponding guest CPO register is
UNPREDICTABLE.

If the configuration of a Guest accessible CPO register can be modified by Root, then Guest access behavior is as
specified in Table 4.9.

Root should not modify Guest configuration while the Guest is running. It is assumed that the Guest software will

read its configuration registers during boot and not thereafter. Since Root can modify guest configuration, Root
should maintain a copy of guest configuration at hardware reset so that it knows which guest CPO registers are actu-

46 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.6 Coprocessor 0

ally implemented. Once modified by Root, the guest configuration registers may not accurately reflect the physical
existence of guest CPO registers.

Table 4.9 Root Modification of Guest CPO Configuration

Guest Guest
Register Configuration Guest Configuration
Replicatedin register bit Configuration | Register bit
Guest Root writeable | Register bit value after
Context? as per Table |value on reset | write by Root,
4.11 if writeable Interpretation of Configuration
No No 0 N/A The register does not exist in Guest. Reads and writesto this
register are UNDEFINED.
Yes No 1 N/A The register isreplicated in the Guest. Guest can accessiits ver-
sion of the register without traps to Root excluding the cases
identified in Table 4.8
No Yes 0 0 The register existsin Root and is not replicated in the Guest
context. In Guest mode, reads and writes to this register are
UNDEFINED.
No Yes 0 1 The register existsin Root and is not replicated in the Guest
context. In Guest mode, reads and writesto this register throw a
GPSI exception which alows Root to selectively emulate the
register. Registers which conform to this definition are the
Watch Registers (4.12) and Performance Registers (5.11).
Yes Yes 1 1 The register existsin the Root context and is replicated in the
Guest context. Guest can access its version of the register with-
out exception excluding cases identified in Table 4.8
Yes Yes 1 0 The register existsin the Root context and is replicated in the

Guest context. Guest access to the register is disabled. Reads
and writes to the register are UNDEFINED.

4.6.3.1 Guest Reserved Register Handling

This section defines the behaviour of guest access to reserved CPO registers of different types.

1. Reserved for Architecture. These are CPO registers reserved by the privileged architecture for future use.

2. Reserved for Implementation. These are CPO registers reserved for implementations which may or may not be
present in guest context.

Thelist of registersis CPO Register 9 (Selects 6 and 7), Register 11 (Selects 6 and 7), Register 16 (Selects 6 and
7), Register 22 (all Selects).

The behaviour of Reserved for Architecture registers follows.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

if (GuestCtl0ppp=0) {

<GPSI>

} elsif (GuestCtlOExtpg=1) {
<GPSI>

} elsif (is_MFCO) {

a7

The Virtualization Privileged Resource Architecture

MF (H)CO is UNPREDICTABLE
} else { // is_MTCO

MT (H)CO is UNPREDICTABLE
}

A recommended UNPREDICTABLE responseis for an MF(H)CO to return 0Os, and for an MT(H)CO to be dropped.

Release 5 of the architecture introduces extensions to 32-bit CPO registers. The following distinction applies to han-
dling of a CPO register and its extension.

* A CPOregister may exist but not be extended. An MT(F)HCO should be treated asif the extension were Reserved
for Architecture.

* A guest CPO register may extended but access to the extension disabled in its own context. The behaviour of
MT(F)HCO should be asif the extension were not present. Example, if PageGraing; », = 0 for XPA (Extended
Physical Addressing) related registers, an MT(F)HCO should follow the rules for access to Reserved for Archi-
tecture registers.

» |If the CPO register itself does not exist then MT(F)HCO must always be treated asif the extension were Reserved
for Architecture.

An implementation that supports M T(F)CO must also support MT(F)GCO. The rules for handling of MT(F)GCO are
identical to MT(F)CO except that if a guest copy exists and access to the register is under the control of an enable,
then root copy of the enable determines whether the MT(F)GCO is treated as an access to a Reserved for Architecture
register. For example, for XPA related registers, an MT(F)HCO will be treated as if the related registers were
Reserved for Architectureif and only if root PageGraing;p, = 0. The same rules also apply to MT(F)HGCO.

The behaviour of Reserved for Implementation registers follows.

if (GuestCtlO.pp=0) |

<GPSI>
} elsif (is_MFCO) {

MF (H)CO is UNPREDICTABLE
} else {

MT (H)CO is UNPREDICTABLE
}

If an implementation dependent register is not supported, then it is recommended that the UNPREDICTABLE
response be identical to that of a Reserved for Architecture register.

Any extensions to Implementation Dependent CPO registers should follow the behaviour described for Reserved for
Architecture registers.

Reserved for Implementation registers are not qualified by GuestCtlOExtog=1 because the requirements for imple-
mentation dependent registers is unknown.

4.6.4 Guest Privileged Sensitive Features

The GuestCtl0 register controls which privileged features can be accessed from guest mode. See Section
5.2 “GuestCtl0 Register (CPO Register 12, Select 6)”.

48 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.6 Coprocessor 0

A hypervisor can limit guest access to privileged (CPO) registers and privileged sensitive instructions. A hypervisor
exception is taken when a guest accesses a privileged feature which is ‘ sensitive’. See Section 4.7.7 “ Guest
Privileged Sensitive Instruction Exception”.

4.6.5 Access Control for Guest CP0O Register Fields

The MIPS64 Privileged Resource Architecture includes register fields which are critical to machine behavior, where a
Guest Hardware Field Change (GHFC) or Guest Software Field Change (GSFC) requiresimmediate hypervisor inter-
vention. Guest Software Field Change and Guest Hardware Field Change detection mechanisms are provided in order
to reduce the need for hypervisor exceptions for all CPO writes, exceptions, interrupts and privileged instructions
which could cause changesto critical fields.

The GuestCtloy, field controls programmable change detection for certain guest CPO fields. Changes to these fields
will always result in a Guest Software Field Change or Guest Hardware Field Change exception.

See Section 4.7.8 “ Guest Software Field Change Exception” and Section 4.7.9 “Guest Hardware Field Change
Exception”.

Table 4.10 lists fields which can trigger a GSFC or GHFC exception. The architecture al so provides the capability to

disable GSFC and GHFC exceptions with GuestCtIOExtgcp . Table 4.10 assumes GuestCtl0Extgcp=0. See Section
4.14 “Lightweight Virtualization” and Table 5.8 for reference to GuestCtlOEXtEcp.

Table 4.10 Guest CPO Fields Subject to Software or Hardware Field Change Exception

Exception
Register Field Purpose Type
Status Cu2.Cul Coprocessor access. GSFC
Satuscy, causes GSFC if GuestCtlOg=c1=0
Satusey, causes GSFC if GuestCtl0g=c,=0
Status RP Reduced power mode. Guest value isignored, Root.Statusgp controls GSFC
system power mode.
Status FR Floating point register mode. GSFC
Status MX Enable accessto MDM X and DSP resources. GSFC
Status PX Enable 64-bit operationsin User mode. GSFC
Status BEV Bootstrap exception vector. Controlslocation of exception vectors, and is GSFC
used to determine EIC vs non-EIC interrupt mode.

Status TS TLB multiple match. Both

Status SR Reset exception vector due to Soft Reset. GSFC
Status NMI Reset exception vector due to Non-Maskable Interrupt. GSFC
Status Impl (17..16) Implementation dependent. GSFC
Status KX 64-bit segment access. GSFC
Status SX 64-bit segment access. GSFC
Status UX 64-hit segment access. GSFC
Status UM/KSU Operating mode. GSFC exception only when GuestCtlOy,c=1. GSFC
Status EXL Exception level. GHFC exception only when GuestCtlOy,c=1. GHFC

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 49

The Virtualization Privileged Resource Architecture

Table 4.10 Guest CPO Fields Subject to Software or Hardware Field Change Exception

Exception
Register Field Purpose Type
Status ERL Error level. GSFC
Cause DC Disable Count. Root software should disable guest timer access and emu- GSFC
late a non-counting timer when this bit is set by the guest.
Cause v Interrupt Vector. Controls EIC vs non-EIC interrupt mode. GSFC
IntCtl VS Vector spacing. Controls EIC vs non-EIC interrupt mode. GSFC
PerfCnt Event, Performance Counter Control Event field. GSFC
EventExt EventExt is Optional in implementations.

4.6.6 Guest Config Register Fields

The Guest.Config,._; registers control the behavior of architecture features during guest execution. All fields follow
base M1PS64 architecture definitions.

Virtualization Module implementations are permitted to choose whether to implement Optional M1PS64 featuresin
the guest context. All Required features specified by the architecture revision (Guest.Configar) must be implemented.

The operation of the guest context must always follow the setting of the Guest.Config register fields.

The guest context must be a subset of the root context - the guest context can only include features available in the
root context.

The MIPS64 architecture defines many read-only Config register fields. For each read-only Root.Configg.; register
field, the Virtualization Module implementation must choose a fixed value or allow dynamic reconfiguration in the
corresponding Guest.Configg_; field.

Dynamic configuration is implemented by permitting root-mode writes to fields in Guest.Config registers. Only val-
ues supported by the implementation will be accepted on writes to read-only Guest.Config fields from root mode.
When an unsupported value is written, the field will remain unchanged after the write. The Guest.Config fields con-
trolling dynamic reconfiguration are never writable from guest mode.

Root mode software can determine whether programmabl e features are available in the guest context by attempting to
write values to Guest.Config fields.

Table 4.11 lists Guest.Config register fields which can be written from root mode in the M1PS64 Virtualization Mod-
ule

The virtualization architecture does not require that hardware provide the capability to emulate different architectural
releases for guest software that is different from the base implementation, due to complexity. For this reason, root
cannot write Guest.Configag.

Table 4.11 Guest CPO Read-only Config Fields Writable from Root Mode

Register Field Purpose Root write
Config M Configl implemented Optional
Config MT MMU Type Optional

Configl M Config2 implemented Optional

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.6 Coprocessor 0

Table 4.11 Guest CPO Read-only Config Fields Writable from Root Mode

Register Field Purpose Root write
Configl MMU Size- 1 Number of entriesin (guest) MMU Required for-
Shared TLB!
Configl Cc2 Coprocessor 2 implemented Optional
Configl MD MDMX implemented Optional
Configl PC Performance Counter registers implemented Optional
Configl WR Weatch registers implemented Optional
Configl CA Code compression (M1PS16e) implemented Optional
Configl FP FPU implemented Optional
Config2 M Config3 implemented Optional
Config3 M Config4 implemented Optional
Config3 MSAP MSA (MIPS SIMD Architecture) implemented Optional
Config3 BPG Big pages feature implemented Optional
Config3 ULRI UserLocal implemented Optional
Config3 DSP2P DSP Module Revision 2 implemented Optional
Config3 DSPP DSP Module implemented Optional
Config3 CTXTC ContextConfig etc. implemented Optional
Config3 ITL IFlowTrace mechanism implemented Optional
Config3 LPA XPA isimplemented Optional
Config3 VEIC External Interrupt Controller implemented Optional
Config3 Vint Vectored interrupts implemented Optional
Config3 SP Small pages feature implemented Optional
Config3 CDMM Common Device Memory Map implemented Optional
Config3 MT MT (MultiThreading) Module implemented Optional
Config3 SM SmartMIPS Module implemented Optional
Config3 TL Trace Logic implemented Optional
Config4 M Config5 implemented Optional
Config4 VTLBSizeExt Extends Configlymusze1 if Required for
ConfigdymuEstne= 3 Shared TLB?
Config4 MMUSizeExt Extends Configlypmugze1 if Required for
Configymuestpe= 1 Shared TLB?
Configs MRP MAAR registers present (Release 5) Optional

1. Root must be able to write guest MM U size related fieldsin Configl and Config4 if aTLB is shared between root and guest
as described in Section 4.5.2 .

4.6.7 Guest Context Dynamically Set Read-only Fields

The MI1PS64 Privileged Resource Architecture includes register fields which are read only, and dynamically set by
hardware. Corresponding fields in the guest context can be written from root mode, but remain read-only to the guest.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 51

The Virtualization Privileged Resource Architecture

Reserved (zero) bits and static configuration bits are not included. The Random register is not included.

Table 4.12 lists fields which are read-only to the guest and writable from root mode.

Table 4.12 Guest CPO Read-only Fields Writable from Root Mode

Register Field Purpose
Index P Root restore of Pin guest context.

Context BadVPN2 Virtual Page Number from the address causing last exception.
XContext R Region field (bits 63..62) of the virtual address causing last exception.
XContext BadVPN2 Virtual Page Number from the address causing last exception.
BadVAddr BadVAddr Address causing last exception

SRSCil HSS Highest Shadow Set

SRSCtl EICSS Externa Interrupt Controller Shadow Set

SRSCitl CSsSs Current Shadow Set

Cause BD Last exception occurred in adelay slot

Cause TI Timer interrupt is pending

Cause CE Coprocessor number for coprocessor unusable exception

Cause FDCI Fast Debug Channdl interrupt is pending

Cause 1P7..2 Non-EIC interrupt pending bits. Write to Cause[7:2] is Optional if

GuestCtl2 implemented.

Cause RIPL EIC interrupt pending level. Optional if GuestCtl2 implemented.

Cause ExcCode Exception code, from last exception

EBase CPUNum CPU number in multi-core system

Status SR Soft Reset. Root write is Optional .

Status NMI Non Maskable Interrupt. Root write is Optional.
BadInstr Badlnstr Faulting Instruction Word. Optional in base architecture.
BadInstrP BadinstrP Prior Branch Instruction. Optional in base architecture.

Wired Limit Allow root to set guest Wired Limit field. (Release 6)

1 Root writesof 1 to Guest.Satuse or Guest. Satusyy will not directly cause an interrupt in the guest. Root software may set

EPC to the guest’s reset vector and ERET back to the guest such that to the guest it appears asif an NMI or SR had occurred.
Thisfeature is useful for resetting a guest that might be hung or otherwise unresponsive.

4.6.8 Guest Timer

Timekeeping within the guest context is controlled by root mode. The guest time value is generated from the root
timer value Root.Count by adding the two’s complement offset in the Root. GTOffset register. The guest time value
can be read from the Guest.Count register, and is used to generate timer interrupts within the guest context.

When GuestCtl0g7=1, guest mode can read and write the Compare register, and can read from the Count register. A
guest write to Count always results in a Guest Privileged Sensitive | nstruction exception.

When GuestCtl0g =0, al guest accesses to the Count and Compare registers result in a Guest Privileged Sensitive
Instruction exception, including read viathe RDHWR instruction.

52 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.6 Coprocessor 0

The value of Guest.Causepc has no direct effect on the calculation of the guest time value. A Guest Software Field
Change (GSFC) exception results when an attempt is made to change the value of Guest.Causepc from guest mode.
Note that the value of Root.Causep affects the value of Root.Count during debug mode operation - this indirectly
affects the value of Guest.Count.

The guest timer interrupt affects only the guest context - it cannot interrupt the root context. Similarly, the root timer
interrupt cannot be directly assigned to the guest.

Usage note: Guest.Causer is set when Guest.Count = Guest.Compare, even when the deviceis running in Root
mode. In order to preserve the value of Guest.Causer; while restoring Guest.Cause, the following approach may be

taken:
#
Root.Statusgg, < 1

Calculate desired GTOffset value based on saved
Guest.Count and current Root.Count values as well as hypervisor policies.
GTOoffset has a few different purposes:

- To provide each guest a different value of Count.

- To restore a guest’s virtual time between context switches.
In the latter case, GTOffset allows Root to restore time to when a guest was
switched out, by offsetting Root.Count by elapsed time.Or it allows guest Count
to reflect elapsed time also.

Under the simplest scheme, the new GTOffset must adjust current Root.Count
for elapsed time between guest save an restore.

HH o3 H H H H H FH H H H

new_gt_offset « calculate_gt_offset()

GTOffset « new_gt_offset

Restore Guest.Cause since Guest.Cause.TI may be 1.Guest.Cause must be saved
after Guest.Count to provide most current Cause.TI.

Guest.Cause ¢« saved_cause

after the following statement, the hardware might now set Guest.Cause[TI]

Guest.Compare <« saved_compare
current_guest_count « Guest.Count

set Guest.Causep; if it would have been set while the guest was sleeping.
Since GTOffset for the guest and Guest.Compare restore i1s not atomic, this code
is required to ensure that Guest.Cause.TI is set appropriately, since current
Guest.Count could have raced ahead of saved_count before restoring Guest.Compare.
if (current_guest_count > saved_count) then
if (saved_compare > saved_count && saved_compare < current_guest_count) then
saved_cause[TI] « 1
Guest.Cause ¢« saved_cause
endif
else
The count has wrapped. Check to see if
Guest.Count has passed the saved_compare value.
if (saved_compare > saved_count || saved_compare < current_guest_count) then
saved_cause[TI] « 1
Guest.Cause « saved_cause
endif
endif

#The trick is to not overwrite the Guest.Cause here

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 53

The Virtualization Privileged Resource Architecture

Root.GuestCtlgy < 1
restore_register_state()
eret

#

Root-mode writes to Guest.Count are ignored.
See also Section 4.8 “Interrupts’ and Section 5.7 “GTOffset Register (CPO Register 12, Select 7).
Figure 4.7 shows how the guest timer value is computed from the root timer.

Figure 4.7 Root and Guest Timers

Root. GTOffset .|
+ "1 Guest.Count
Guest
Timer
Root.Count Guest.Compare = [”IrRQ
increment
Root
q o Timer
Root.Compare " = " IRQ

4.6.9 Guest Cache Operations

A limited set of cache operations can be performed from guest mode, when the CACHE instruction is enabled by
GuestCtlo-g=1. For this case, any guest-mode cache operation using Effective Address Operand type other than
‘Address’ will result in a Guest Privileged Sensitive Instruction exception.

When GuestCtl0c5=0, guest-mode execution of the CACHE instruction will result in a Guest Privileged Sensitive
Instruction exception.

The above description also applies to the CACHEE instruction, which is optional in the baseline architecture.
See Section 4.7.7 “Guest Privileged Sensitive Instruction Exception”.

4.6.10 UNPREDICTABLE and UNDEFINED in Guest Mode

The terms UNPREDI CTABLE and UNDEFINED have specific meanings in MIPS architecture documents. See
Section 1.3 “Special Symbolsin Pseudocode Notation”.

A distinction is drawn between UNPREDICTABL E and UNDEFINED. Unprivileged instructions can only have
results which are UNPREDICTABLE.

Thisisto ensure that unprivileged code cannot:

» Compromise availability by preventing control being returned to the highest level of privilege on an interrupt or
exception - for example by causing a hang or other indefinite stall.

54 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.7 Exceptions

» Compromise confidentiality by allowing data (machine state or memory) to be read without permission or detec-
tion.

» Compromiseintegrity by allowing data (machine state or memory) to be altered without permission or detection.
Thisincludes:

» Altering data or instructions used by another process
- e.g. ater abank balance or bypass a license check

» Altering data, instructions or machine state used by the highest level of privilege
- eg. to gain ahigher level of privilege, or install an alternative interrupt handler

» Compromised integrity aso includes the case where one unprivileged process can communicate with
another process without permission - a*“ covert channel”. The channel can use datain memory, machine state
which is not context switched, or the ability to cause timing changes detectable in another process.

The definition of UNPREDICTABLE requires that any result returned is produced only from data sourceswhich are
accessible in the unprivileged mode. This ensures that the UNPREDI CTABL E result cannot be reproduced by
another process - provided that the complete set of available data sources are context switched between unprivileged
processes.

Hence process A might be able to perform an operation which produces a deterministic value where an UNPRE-
DICTABLE result is defined by the architecture. Process A may even be able to control the value returned. However,
if afull context switch is made between process A and process B, then process B will not be able to read hidden mes-
sages sent by process A. The value returned by the UNPREDICTABL E operation is dependent entirely on the state
visible to process B, which has been fully context switched. No covert communication channel is allowed, and no
data can be accidentally revealed from another process or from a higher level of privilege.

The definition of UNDEFINED only requires that the processor can be returned to a functioning state by application
of the reset signal. This meansthat it isin theory possible to design a system which would allow information to be
stored in hidden state, and communicated from one point in privileged code execution to another, even when it
appears that al available machine state has been context switched.

The MIPS architecture requires that UNDEFINED operations can only result from operations performed in Kernel
Mode or Debug Maode, or when the CPO access bit is set (granting Kernel-level permissions). In other words, UNDE-
FINED operations can result only from operations at the highest level of privilege.

The Virtualization M odule adds Guest Kernel Mode as alimited-privilege mode. Software executing in a Guest Mode
(guest-kernel, guest-supervisor or guest-user) must never cause an UNDEFINED result.

Wherever a privileged operation is described by the MI1PS architecture as having an UNDEFINED result, this must
be interpreted asan UNPREDICTABL E result when executing in Guest Mode.

This mechanism ensures that guest operating systems cannot compromise the availability, confidentiality or integrity
of the hypervisor, other guests or the system as awhole.

4.7 Exceptions

Normal execution of instructions can be interrupted when an exception occurs. Such events can be generated as a
by-product of instruction execution (e.g., an integer overflow caused by an add instruction or a TLB miss caused by a
load instruction), by anillegal attempt to use a privileged instruction (e.g. MTCO from user mode), or by an event not
directly related to instruction execution (e.g., an external interrupt).

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 55

The Virtualization Privileged Resource Architecture

When an exception occurs, the processor stops processing instructions, saves sufficient state to resume the interrupted
instruction stream, enters Exception or Error mode, and starts a software exception handler. The saved state and the
address of the software exception handler are afunction of both the type of exception, and the current state of the pro-
CESSO.

4.7.1 Exceptions in Guest Mode

The Virtualization Module retains the exception-processing methodology of the base M1PS64 architecture, and adds
additional rulesfor processing of exception conditions detected during guest-mode execution.

The ‘onion model’ requires that every guest-mode operation be checked first against the guest CPO context, and then
against the root CPO context. Exceptions resulting from the guest CPO context can be handled entirely within guest
mode without root-mode intervention. Exceptions resulting from the root-mode CPO context (including GuestCtl0
permissions) require aroot mode (hypervisor) handler.

During guest mode execution, the mode in which an exception is taken is determined by the following:
e Guest-mode operations must first be permitted by guest-mode CPO context and then by root mode CPO context

e Thisincludes all operations for which exceptions can be generated - memory accesses, coprocessor
accesses, breakpoints and so forth.

e Exceptions are always taken in the mode whose CPO state triggered the exception

e When architecture features in the guest context are present and enabled by the Guest.Config registers, excep-
tions triggered by those features are taken in guest mode.

e Exceptions resulting from control bits set in the Root.GuestCtI0 register, and exceptions resulting from
address translation of guest memory accesses through the root-mode TLB are taken in root mode.

Asynchronous exceptions such as Reset, NMI, Memory Error, Cache Error are taken in root mode. External inter-
rupts are received by the root CPO context, and if enabled are taken in root mode. If an interrupt is not enabled in root
mode and is bypassed to the guest CPO context, and is enabled in the guest CPO context, the interrupt istaken in guest
mode.

When an exception is detected during guest mode execution, any required mode switch is performed after the excep-
tion is detected and before any machine stateis saved. This allows machine state to be saved to either the root or guest
contexts, and allows the exception to be handled in the proper mode. See also Section 4.7.2 “Faulting Address for
Exceptions from Guest Mode”.

Booleans, indicating source of exception:

root_async - Asynchronous root context exception

root_sync - Synchronous exception triggered by root context

guest_async - Asynchronous exception triggered by guest context

guest_sync - Synchronous exception triggered by guest context

#

Exceptions directed to root context set Root.Status.ERL or Root.Status.EXL,
meaning that the processor executes the handler in root mode.

Ordering of exception conditions
if (root_async) then

ctx < Root
elsif (guest_async) then

ctx ¢ Guest

56 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.7 Exceptions

elsif (guest_sync) then
ctx < Guest

elsif (root_sync) then
ctx < Root

else
ctx ¢« null

endif

if (ctx) then
Defined by MIPS64 Privileged Resource Architecture

ctx.GeneralExceptionProcessing ()
endif

4.7.2 Faulting Address for Exceptions from Guest Mode

The BadVAddr register is aread-only register that captures the most recent virtual address that caused one of the fol-
lowing exceptions.

* Addresserror

* TLB Réfill or XTLB Réfill
e TLBInvdid

¢ TLB Modified

* TLB Execute Inhibit

* TLB Read Inhibit

4.7.3 Guest initiated Root TLB Exception

When an exception istriggered as aresult of aroot TLB access during guest-mode execution, the handler will be exe-
cuted in root mode, and exception state is stored into root CPO registers. The registers affected are GuestCtl0,
Root.EPC, Root.BadVAddr, Root.EntryHi, Root.Cause and Root.Contextgaqvpno-

The faulting address value stored into Root.BadVAddr and Root.Contextg,qven2 1Sideally the Guest Physical Address

(GPA) presented to theroot TLB by the guest context. A Guest Virtual Address (GVA) unmapped by the Guest MMU
is considered a GPA from the root’s perspective.

Whether the GPA can be provided isimplementation dependent. If a GVA is mapped by the Guest MMU, yet the
GPA isnot available for write to root context, then GuestCtlOggyccode MUSt indicate this. In a specific e.g., guest TLB
refill exception will always set GPA in GuestCtlOgeyccode: While TLB modified/invalid/execute-inhibit/read-inhibit
exceptions may set GVA due to implementation limitations.

The GPA presented to the root TLB isthe result of trandation through the guest context Segmentation Control if
implemented, and through the guest TLB if in a mapped region of memory. The value stored in Root.BadVAddr and
Root.Contextg,qvpnz IS the Guest Physical Address being accessed by the guest.

This process ensures that after an exception, both Root.BadVAddr and Root.Contextg,qyens Fefer to avirtual address

which isimmediately usable by aroot-mode handler, irrespective of whether the exception was triggered by
root-mode or guest-mode execution.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 57

The Virtualization Privileged Resource Architecture

4.7.4 Exception Priority

Table 4.13 lists al possible exceptions, and the relative priority of each, highest to lowest. The table also lists new

exception conditions introduced by the Virtualization Module, and defines whether a switch to root mode is required

before handling each exception.

Table 4.13 Priority of Exceptions

tion addresses.

Taken in
Exception Description Type mode
Reset The Cold Reset signal was asserted to the processor Asynchronous Root
Reset
Soft Reset The Reset signal was asserted to the processor
Debug Single Step An EJTAG Single Step occurred. Prioritized above other excep- Synchronous Root
tions, including asynchronous exceptions, so that one can sin- Debug
gle-step into interrupt (or other asynchronous) handlers.
Debug Interrupt An EJTAG interrupt (EjtagBrk or DINT) was asserted. Asynchronous Root
Debu
Imprecise Debug Data An imprecise EJTAG data break condition was asserted. 9
Break
Nonmaskable I nterrupt The NMI signal was asserted to the processor. Asynchronous Root
(NMI)
Machine Check Root, or Root TLB related. Asynchronous Root
This can only occur as part of aguest (second step) addresstrans- | or Synchronous
lation, root address translation, and root TLB operation (write,
probe) whether for guest or root TLB. It is recommended that the
Machine-Check be synchronous. A TLB instruction must cause a
synchronous Machine Check.
Aninternal inconsistency was detected by the processor. Root
Guest TLB related. Guest
This can only occur as part of aguest address trandation (first
step), and guest TLB operation (write, probe). It is recommended
that the Machine-Check be synchronous. A TLB instruction must
cause a synchronous Machine Check.
Interrupt A root enabled interrupt occurred. Asynchronous Root
Deferred Watch A Root watch exception, deferred because EXL was onewhenthe | Asynchronous Root
exception was detected, was asserted after EXL went to zero. A
deferred root watch exception may occur in guest mode in which
case it is prioritized higher than a simultaneous occuring guest
interrupt.
Interrupt A guest enabled interrupt occurred. Asynchronous Guest
Deferred Watch A Guest watch exception, deferred because Guest EXL was one Asynchronous Guest
when the exception was detected, was asserted after EXL went to
zero.
Debug Instruction Break An EJTAG instruction break condition was asserted. Prioritized Synchronous Root
above instruction fetch exceptionsto allow break onillegal instruc- Debug

58

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Table 4.13 Priority of Exceptions

4.7 Exceptions

Taken in
Exception Description Type mode
Watch - Instruction fetch A root context watch address match was detected on an instruction Synchronous Root
fetch. Prioritized above instruction fetch exceptionsto allow watch
onillegal instruction addresses. Refer to ‘Watch Registers’ -
Section 4.12 “Watchpoint Debug Support”.
A guest-context watch address match was detected on an instruc- Guest
tion fetch. Prioritized above instruction fetch exceptionsto allow
watch on illegal instruction addresses.
Refer to ‘Watch Registers' - Section 4.12 “Watchpoint Debug
Support”.
Address Error - Instruc- A non-word-aligned address was loaded into PC. Synchronous Current
tion fetch
TLB/XTLB Réfill - A Guest TLB miss occurred on an instruction fetch Synchronous Guest
Instruction fetch X X X
A Root TLB miss occurred on an instruction fetch. Root
This can occur due to a Root or Guest trandlation.
TLB Invalid - Instruction Thevalid bit was zero in the guest context TLB entry mapping the Synchronous Guest
fetch address referenced by an instruction fetch.
Thevalid bit was zero in the Root TLB entry mapping the address Root
referenced by an instruction fetch.
This can occur due to a Root or Guest trandlation.
TLB Execute-inhibit An instruction fetch matched avalid Guest TLB entry which had Synchronous Guest
the X1 bit set.
An instruction fetch matched avalid Root TLB entry which had Root
the X1 bit set.
This can occur due to a Root or Guest translation.
Cache Error - Instruction A cache error occurred on an instruction fetch. Synchronous Root
fetch or
- - - Asynchronous
Bus Error - Instruction A bus error occurred on an instruction fetch.
fetch
SDBBP An EJTAG SDBBP instruction was executed. Synchronous Root
Debug
Guest Reserved Instruc- A guest-mode instruction will trigger a Reserved Instruction or Synchronous Root
tion Redirect MDMX Unusable Exception. When GuestCtlOg,=1, this Hypervisor

root-mode exception israised before the guest-mode exception can
be taken. Reserved Instruction or MDM X Unusable Exception
processing otherwise follow standard rules of prioritization within
agiven context - Reserved Instruction Redirect istaken asa
side-effect of this processing.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

59

The Virtualization Privileged Resource Architecture

Table 4.13 Priority of Exceptions

Taken in
Exception Description Type mode

Instruction Validity An instruction could not be completed because it was not allowed Synchronous Current
Exceptions access to the required resources, or wasillegal: Coprocessor Unus-
able, MDMX Unusable, Reserved Instruction, MSA disabled. I
any two exceptions occur on the same instruction, the Coprocessor
Unusable, MSA disabled and MDMX Unusable Exceptions take
priority over the Reserved Instruction Exception.

Coprocessor unusable - guest. Access to a coprocessor was permit- Root
ted by the Guest.Statuscy;., bits, but denied by
Root.Statuscy;., bits.

MSA disabled - guest. Access to the MSA unit was permitted by
Guest.Config5ysagn, but denied by Root.ConfigSysagn.

Machine Check Root TLB related. Synchronous Root
This can only occur as part of a Guest or Root address trandlation,
or aTLBP/TLBWI/TLBGP/TLBGWI executed in root-mode.

Guest TLB related. Guest
This can only occur as part of a Guest address trandlation, or a
TLBP/TLBWI executed in guest-mode

An internal inconsistency was detected by the processor. Root

Guest Privileged Sensi- An instruction executing in guest-mode could not be completed Synchronous Root
tive Instruction Exception | because it was denied access to the required resources by the Hypervisor
Root.GuestCtlO register.

Hypercall A HYPCALL hypercall instruction was executed. Synchronous Root
Hypervisor

Guest Software Field- During guest execution, a software initiated change to certain CPO Synchronous Root
Change register fields occured. Refer to Section 4.7.8 “Guest Software Hypervisor
Field Change Exception”.

Guest Hardware Field- During guest execution, a hardware initiated set of Statusgy /1s Synchronous Root
Change occurred See Section 4.7.9 “Guest Hardware Field Change Hypervisor
Exception” for further information.

Execution Exception An instruction-based exception occurred: Integer overflow, trap, Synchronous Current
system call, breakpoint, floating point, coprocessor 2 exception.

Precise Debug Data Break | A precise EJTAG data break on load/store (address match only) or Synchronous Root
adatabreak on store (address+data match) condition was asserted. Debug
Prioritized above data fetch exceptions to allow break on illegal
data addresses.

Watch - Data access A root context watch address match was detected on the address Synchronous Root
referenced by aload or store. Prioritized above data fetch excep-
tionsto allow watch onillegal data addresses. Refer to ‘Watch
Registers’ - Section 4.12 “Watchpoint Debug Support”

A guest context watch address match was detected on the address Guest
referenced by aload or store. Prioritized above data fetch excep-
tionsto allow watch on illegal data addresses. Refer to ‘ Watch
Registers’ - Section 4.12 “Watchpoint Debug Support”

60 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Table 4.13 Priority of Exceptions

4.7 Exceptions

Taken in
Exception Description Type mode
Address error - Data An unaligned address, or an address that was inaccessible in the Synchronous Current
access current processor mode was referenced, by aload or store instruc-
tion
TLB/XTLB Refill - Data | A guest TLB miss occurred on a data access Synchronous Guest
access
A root TLB miss occurred on a data access. Root
This can occur due to a Root or Guest trandlation.
TLB Invalid - Dataaccess | On adataaccess, a matching guest TLB entry was found, but the Synchronous Guest
valid (V) bit was zero.
On adata access, a matching root TLB entry was found, but the Root
valid (V) bit was zero.
This can occur due to a Root or Guest translation.
TLB Read-Inhibit On adataread access, amatching guest TLB entry was found, and Synchronous Guest
the RI bit was set.
On adataread access, amatching root TLB entry was found, and Root
the RI bit was set.
This can occur due to a Root or Guest translation.
TLB Modified - Data The dirty bit was zero in the guest TLB entry mapping the address Synchronous Guest
access referenced by a store instruction
The dirty bit was zero in the root TLB entry mapping the address Root
referenced by a store instruction.
This can occur due to a Root or Guest trandlation.
Cache Error - Dataaccess | A cache error occurred on aload or store data reference Synchronous Root
or
Bus Error - Data access A bus error occurred on aload or store data reference Asynchronous
Precise Debug Data Break | A precise EJTAG data break on load (address+data match only) Synchronous Root
condition was asserted. Prioritized last because all aspects of the Debug

data fetch must complete in order to do data match.

The“Type” column of Table 4.13 describes the type of exception. Table 4.14 explains the characteristics of each

exception type.

Table 4.14 Exception Type Characteristics

Exception Type

Characteristics

Asynchronous Reset Denotes a reset-type exception that occurs asynchronously to instruction execution.
These exceptions always have the highest priority to guarantee that the processor can
always be placed in arunnable state. These exceptions always require a switch to root
mode.

Asynchronous Debug Denotes an EJTAG debug exception that occurs asynchronously to instruction execu-

tion. These exceptions have very high priority with respect to other exceptions because
of the desire to enter Debug Mode, even in the presence of other exceptions, both asyn-
chronous and synchronous. These exceptions aways require a switch to root mode.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

61

The Virtualization Privileged Resource Architecture

Table 4.14 Exception Type Characteristics

Exception Type Characteristics

Asynchronous Denotes any other type of exception that occurs asynchronously to instruction execu-
tion. These exceptions are shown with higher priority than synchronous exceptions
mainly for notational convenience. If one thinks of asynchronous exceptions as occur-
ring between instructions, they are either the lowest priority relative to the previous
instruction, or the highest priority relative to the next instruction. The ordering of the
table above considers them in the second way. These exceptions always require a
switch to root mode.

Synchronous Debug Denotes an EJTAG debug exception that occurs as aresult of instruction execution, and
is reported precisely with respect to the instruction that caused the exception. These
exceptions are prioritized above other synchronous exceptions to alow entry to Debug
Mode, even in the presence of other exceptions. These exceptions always require a
switch to root mode.

Synchronous Hypervi- Denotes an exception that occurs as aresult of guest-mode instruction execution which
sor requires hypervisor intervention. It is reported precisely with respect to the instruction
that caused the exception. These exceptions aways require a switch to root mode.

Synchronous Denotes any other exception that occurs as aresult of instruction execution, and is
reported precisely with respect to the instruction that caused the exception. These
exceptions tend to be prioritized below other types of exceptions, but thereisarelative
priority of synchronous exceptions with each other. In some cases, these exceptions
can be handled without switching modes.

4.7.5 Exception Vector Locations

Exception vector locations are as defined in the base architecture.

The vector location is determined from the values of EBase, Statusgy, , Statusggy, IntCtly,g and Config3ygc obtained
from the context in which the exception will be handled.

The General Exception entry point is used for new hypervisor exceptions Guest Privileged Sensitive Instruction,
Guest Reserved Instruction Redirect, Guest Software Field Change, Guest Hardware Field Change and Hypercall.

4.7.6 Synchronous and Synchronous Hypervisor Exceptions

During guest mode execution, control can be returned to root mode at any time. When an exception condition is
detected during guest mode execution and the condition requires a switch to root mode, the switch is made before any
exception state is saved. As aresult, exception state in the guest CPO context is not affected.

The switch to root mode is achieved by setting Root. Statusgy =1 or Root.Statusgg =1 (as appropriate) before any

other stateis saved. Thisensuresthat all exception state is stored into root CPO context, regardless of whether the pro-
Cessor was executing in root or guest mode at the point where the exception was detected.

Table 4.15 summarizes hypervisor conditions.

Table 4.15 Hypervisor Exception Conditions

Root-mode
Type Vector Causes Reference
Synchronous Hypervisor Genera Guest Privileged Sensitive Instruction Section 4.7.7

62 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.7 Exceptions

Table 4.15 Hypervisor Exception Conditions

Root-mode
Type Vector Causes Reference
Synchronous Hypervisor Genera Guest Software Field Change Section 4.7.8
Synchronous Hypervisor Genera Guest Hardware Field Change Section 4.7.9
Synchronous Hypervisor Genera Guest Reserved Instruction Redirect | Section 4.7.10
Synchronous Hypervisor Genera Hypercall Section 4.7.11

4.7.7 Guest Privileged Sensitive Instruction Exception

A Guest Privileged Sensitive Instruction exception occurs when an attempt is made to use a Guest Privileged Sensi-
tive Instruction from guest mode, where the instruction is either not permitted in guest mode or is not enabled in guest
mode. Theterm ‘sensitive’ refers to an instruction which may trigger a hypervisor exception when executed in guest
kernel mode, and selectively guest user, asis the case for RDHWR described bel ow.

Thelist of sensitive instructions follows:
« WAIT

e CACHE, CACHEE
- when GuestCtl0-¢=0
- with anything other than *‘Address’ as Effective Address Operand Type, if GuestCtlOcg=1. Specifically
CACHE(E) instructions with code 0b000, 0b001, 0b010, 0b011 will cause a GPSI.

GuestCtlOExt-g, is an optional qualifier of GuestCtlOqg as described in Table 5.8. If GuestCtlOEXt-g, =1
and GuestCtl0cg=1 then CACHE(E) instructions of type Index Invalidate (code Ob000) are excluded from
the CACHE(E) instructions that cause a GPSI.

 TLBWR, TLBWI, TLBR, TLBPR, TLBINV, TLBINVF when GuestCtl0a7 != 3.
- TLBINV, TLBINVF are optional in the baseline architecture.

» Accessto PageGrain, Wired, SegCtl0, SegCtl1, SegCtl2, PWBase, PWField, PWSize, PWCtl when
GuestCtl0r '= 3 (Guest TLB resources disabled)

* Write access to any Configy_; register when GuestCtlOc=0

» Accessto Count or Compare registers when GuestCtl0g =0
- including indirect read from CC using RDHWR providing CC is present and enabled by guest HWREna.

» Accessto CPO registers, or other non-CPO sources (CCRes, Sync_Step), using RDHWR when
GuestCtlOcpn=0 providing the registers are enabled for access by guest user or kernel.

- Guest user accessis enabled either by guest HWREna or Statuscyo.

- Guest kernel always has access to registers specified by RDHWR, regardless of guest HWREna and
Satuscyo-

- Guest access to CC may also cause GPSI based on GuestCtlOgr.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 63

The Virtualization Privileged Resource Architecture

64

Whether a guest RDHWR access to an implementation defined register causes a GPS| isimplementation
defined i.e., the access may cause a GPSI or not in an implementation dependent manner. Accessto reserved
registers with RDWR generates a Reserved Instruction exception in respective context.

Guest GPSI applies to both guest user and kernel access, as GuestCtlOcpg applies to guest kernel access
aso.

Write to Count register

Accessto SRSCtl or SRSMap CPO registers regardless of whether SRSCtl 55 = 0 (not present in guest con-
text), or SRSCtlyss > 0 (present in guest context). See Section 4.9.1 “General Purpose Registers and
Shadow Register Sets’.

Guest-kernel use of RDPGPR or WRPGPR instructions when SRSCtl,ss = 0. See Section 4.9.1 “General
Purpose Registers and Shadow Register Sets’.

All Privileged Instruction, excluding selected Release 3 EVA instructions, when GuestCtlOcpo=0

The baseline architecture defines privileged instructions as the following : CACHE, DI, El, DMTCQO,
DMFCO0, MTCO, MFCO, ERET, DERET, RDPGPR, WRPGPR, WAIT, all Enhanced Virtual Addressing
(EVA) related instructions (e.g., LBE, LBUE) (optional), and al TLB related instructions.

All EVA instructions except CACHEE are excluded from causing a GPS| when GuestCtl0cpg=0.

Privileged instructions are defined in Volume 11 of the architecture. Instructionsthat are supported depend on
the architecture rel ease that an implementation is compliant with, and in some casesinstructions are optional
within arelease.

Accessto any Guest CPO registersthat are active in guest context and always take Guest Privileged Sensitive
Instruction Exception as givenin Table 4.8.

Cause Register ExcCode value

GE (27, 0x1B)

GuestCtl0 Register GExcCode value

GPSI (0,

0x00)

Additional State saved

Badinstr

BadlnstrP

Entry Vector Used

General Exception Vector (offset 0x180).

A Guest

4.7.8 Guest Software Field Change Exception

Software Field Change exception occurs when the value of certain CPO register bitfields changes during

guest-mode execution.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.7 Exceptions

Change is caused by D/MTCO execution, the instruction is copied to the root context BadlInstr register (if the imple-
mentation is so equipped) and the exception is taken. The exception is used to allow the hypervisor to track changes
to certain guest-context fields (e.g. Statusgp Or Cause;y). This can be used to ensure the proper operation of the emu-

lated guest virtual machine.

This exception can only beraised by a D/MTCO instruction executed in guest mode. It isthe responsibility of Root to
increment EPC in order to return to the instruction following the D/MTCO. Note that the guest D/MTCO is never exe-
cuted, unless causing GSFC exception is disabled by GuestCtIOEXtgp , or selectively by GuestCtlOgzcqj0. It isthe

responsibility of Root to modify the field on the behalf of Guest, providing guest access causes a GSFC.

If afield indicated below is meant to enable access to aresource, but the implementation does not support the
resource, then a GSFC exception is not taken. As an example, if Guest.Configly,p=0, i.e.,, MDMX Moduleis not

supported, then a guest write to Guest. Satusyx will not cause a GSFC exception.

Changes to the following CPO register bitfields always trigger the exception.
« Guest.Satus bits: CU[2:1], RP, FR, MX, PX, BEV, SR, NMI, UM/KSU, ERL, Impl (17..16), TS (always on
clear, optionally on set), KX, SX, UX

A change to UM/KSU can only cause a GSFC if GuestCtlOyc=1. Whether guest access to Status;yy, causes a
GSFC isimplementation-dependent.

The occurrence of GSFC on guest write to Statusgg, is dependent on ConfigSygg as described below.

e Config5 : MSAEN. (Enable for MIPS SIMD Architecture module. Applicable only if MSA implemented.)
: UFR. (User FR enable, Release 5 optional feature)

e PageGrain: ELPA.

* Guest.Cause bits: DC, IV

* Guest.IntCtl bits: VS

* Root.PerfCnt w/ PerfCntg=2/3: Event, EventExt(Optional)

PerfCnt does not exist in guest context. When PerfCntgc=2/3, however root context registers are accessible to
Guest. GPSI on guest access is only taken only in this configuration.

Guest software may modify CU[2:1] often. To prevent frequent GSFC on these events, a set of enables,
GUGStCths:CZ and GueStCﬂOs:Cl, have been prOVided. GUGStCthS:CZ and GUG&C“OS:C]_ have been defined in

Section 5.2 “GuestCtl0 Register (CPO Register 12, Select 6)”.

Guest write of 0to SR or NMI will raise this exception. Guest write of 1 to Guest Statusgg or Statusy, 1S UNPRE-

DICTABLE behavior as specified in the base architecture. It is optional for an implementation to cause this excep-
tion on a guest write of 1 to either the SR or NMI or TS bits within the Status register. Guest Statusgg Or Statusy,

are never set by hardware, nor will Root software write of 1 to either Guest Statusgg Or Statusy,,, cause an interrupt
in Guest context. Root will handle hardware asserted SR/NMI as per Table 4.13.

Guest software modification of EXL will not cause a GSFC. Thisis because guest kernel will often write EXL=1

prior to setting KSU to user mode(b10), allowing processor to stay in kernel mode. ERET will clear EXL, affecting
change to user mode. To avoid frequent GSFC on such events, guest kernel modification of EXL is not trapped on.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 65

The Virtualization Privileged Resource Architecture

A D/MTCO that attemptsto clear TS will cause a GSFC, while setting of TS, caused by hardware, should result in a
GHFC. Optionally, the setting of TS may cause a GSFC also instead of GHFC, for ease of implementation. However,
it is recommended that setting of TS result in GHFC.

Clearing of TSwill result in GSFC before the D/MTCO completes. This should be contrasted with setting of TS as
described in Section 4.7.9 “Guest Hardware Field Change Exception”, which must set the value in Guest.Satus
before GHFC is taken.

If Root PerfCnt.EC=2 or 3, then Guest can access shared Root PerfCnt without GPS| exception. However, any
change to the Event or EventExt fields must be reported as a GSFC exception to Root.

Release 5 introduces an optional feature which allows user code to change the value of Statusegr. The presence of this
feature in a Release 5 implementation is determined by the writeable state of Configsgr. If Configs,gr=1, then a
GSFC exception on guest write to Statusgr is not generated. See Section 4.9.7 “User FR Feature” also.

Cause Register ExcCode value
GE (27, 0x1B)
GuestCtl0 Register GExcCode value

GSFC(1, 0x01)

Additional State saved
Badlnstr
BadinstrP

Entry Vector Used
General Exception Vector (offset 0x180).

4.7.9 Guest Hardware Field Change Exception

A Guest Hardware Field Change Exception is caused by exception/interrupt processing or a hardware initiated field
change. The exception is taken after Guest state has been updated and before the following instruction is executed.

A Guest Hardware Field Change exception is considered synchronous with respect to the Guest action that caused it.
Interms of priority, it isonly lower than any asynchronous Root exception. It is not prioritized with respect to Guest
exceptions: Guest exceptions are first prioritized amongst themselves, and then the Guest exception may then subse-
guently cause a Hardware Field Change exception.

When GuestCtlOExtgcp=1 (refer to Section 5.6), then no Guest Hardware Field Change exception is triggered.
Hardware events that cause the described events must be allowed to modify state as in the baseline architecture.

When GuestCtl0y,-=1, changes to the following bitfields trigger this exception.
* Guest Status bits: EXL.
Set of the following bitfield triggers this exception.

» Guest Status hits: TS (set)

66 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.7 Exceptions

A changein valuein any of thesefields causes a Guest Hardware Field Change exception, regardless of whether there
is an effective change in mode.

Since events (Reset, NMI, Cache Error) that set ERL are always processed by Root, hardware initiated field changes
involving ERL will not result in this exception.

Guest Statusgy, Will be modified by hardware on a Guest exception. The Guest Hardware Field Change exception is

taken prior to the actual Guest exception handler (when EXL is set) and after the Guest exception handler is com-
pleted (when ERET clears EXL) but prior to the first Guest instruction after the handler. The Guest Hardware Field
Change exception handler must compare state between successive invocations to determine which of TSor EXL have
changed.

For thetransition of EXL from 0to 1, it isrecommended that guest context be |oaded with exception related data as if
the guest exception handler were to be executed. Prior to execution of first instruction of guest handler, hardware
must cause a GHFC trap to root. The only root state modified is Root Statusgy; (=1), Causegyccode(=" Guest Exit”)

and GuestCtlOggyccode(="GHFC"). Hardware handling of transition of EXL from 1 to 0 should be similar. In this
manner, the hardware overhead of setting appropriate context for guest and root is kept to a minimum.

The GHFC exception must be viewed atomically with respect to the guest exception that caused it. In arecommended
implementation, the guest exception will cause guest context to be updated simultaneously along with root context

for the GHFC exception. Guest entry on completion of GHFC exception will cause related guest exception to be
taken.

Guest Statustg IS set by hardware, this exception istaken after TSis set and prior to start of the first instruction of the

Guest machine-check exception handler. Therefore, the Guest Hardware Field Change exception handler will return
to the first instruction of the Guest machine check exception handler.

See comment in Section 4.7.8 “Guest Software Field Change Exception”. Setting of TS in guest context may option-
ally cause GSFC in lieu of GHFC. GHFC is however recommended response.

Cause Register ExcCode value

GE (27, 0x1B)

GuestCtl0 Register GExcCode value
GHFC(9, 0x09)

Entry Vector Used

General Exception Vector (offset 0x180).

4.7.10 Guest Reserved Instruction Redirect

A Guest Reserved Instruction Redlirect Exception occurs when GuestCtlOg =1 and a guest mode instruction would
trigger a Reserved Instruction or MDMX Unusable Exception. This exception is raised before the guest mode excep-
tion can be taken. The instruction is not executed, the exception is taken in Root mode and the Guest context is
unchanged.

The Reserved Instruction Redirect (GRR) must be prioritized in the context of other guest-mode exceptions. For e.g.,

a Coprocessor Unusable exception due to guest context isranked higher in priority than a Reserved I nstruction excep-
tion. Thus a Reserved Instruction Redirect exception is not taken in this case. Another e.g., relatesto the case where

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 67

The Virtualization Privileged Resource Architecture

68

Root. Statuscy1=0, while Guest.Status.CU1=1. If the processor isin guest-mode and executes a reserved COP1

instruction, then the Coprocessor Unusable exception is aresult of Root qualification. It would be ranked higher pri-
ority than a Reserved Instruction exception for the same guest-mode instruction.

Cause Register ExcCode value

GE (27, 0x1B)

GuestCtl0 Register GExcCode value
GRR (3, 0x03)

Additional State saved
Badlnstr
BadlnstrP

Entry Vector Used

General Exception Vector (offset 0x180).
4.7.11 Hypercall Exception

A Hypercall Exception occurs when aHYPCALL instruction is executed. Thisis a Privileged Instruction and thus
can only be executed in kernel mode (root-kernel or guest-kernel mode) or debug mode. It is specifically meant to
cause a guest-exit. For specifics of Hypercall root-kernel and debug mode handling, refer to hypercall definition in
Chapter 6, “Instruction Descriptions’ .

Cause Register ExcCode value

GE (27, 0x1B)

GuestCtl0 Register GExcCode value
Hyp (2, 0x02)

Additional State saved
Badlnstr
BadlnstrP

Entry Vector Used
General Exception Vector (offset 0x180).

4.7.12 Guest Exception Code in Root Context

In the case of a guest exception which causes a guest exit to root, hardware must supply the appropriate value for
Root.Causegycode 8Nd GuestCtl Oggyccoder 8S described in the pseudo-code below.

if guest exception is (GPSI or GSFC or GHFC or HC or GRR or IMP) then
Root.Causegyccoge < “GE”
Root.GuestCt10ggyccoge < “GPSI” or “GSFC” or “GHFC” or “HC” or “GRR” or “IMP”

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

elseif guest exception is (Root TLB-Refill or TLB-Invalid)

Root.Causepyccoge < "TLBS” or “TLBL”
loading of GPA for both TLB-Refill and TLB-Invalid is recommended.

Root.GuestCt10ggyccoge < “GPA”

elseif guest exception is (Root TLB-Execute_Inhibit or TLB-Read_Inhibit)

if (Root.PageGrainrgz- = 0) then
Root.Causeégyccoqe < “TLBL”
Root.GuestCtl0gpxccoge < “GPA” or
elseif (TLB Execute-Inhibit)
Root.Causegyccoge < “TLBXI”
Root.GuestCt10ggyccoge < “GVA” or
else
Root.Causeépyccoge < “TLBRIL”
Root.GuestCtl1l0gpxccoge < “GVA” or
endif
elseif guest exception is (TLB Modified)
Root.Causeégyccoge < “MOD”
Root.GuestCtl1l0gpxccoge < “"GVA” or
else
Root.Causegy.coge ¢ baseline “ExcCode”
Root.GuestCt1l0gpxccode < “UNDEFINED”
endif

4.8 Interrupts

The Virtualization Module provides a virtualized interrupt system for the guest.

GVA”

“GPA”

“GPA”

“GPA”

4.8 Interrupts

Theroot context interrupt system is always active, even during guest mode execution. An interrupt source enabled in
the root context will always result in aroot-mode interrupt. Guests cannot disable root mode interrupts.

Standard M1PS64 interrupt rules are used by both root and guest contexts to determine when an interrupt should be
taken. An interrupt enabled in the root context is taken in root mode. An interrupt masked by root and enabled in the

guest context istaken in guest mode. Root interrupts take priority over guest interrupts.

Figure 4.8 shows the how the Virtualization Module ‘onion model’ is applied to interrupt sources.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 69

The Virtualization Privileged Resource Architecture

Figure 4.8 Interrupts in the Virtualization Module onion model

Root can assert IRQ by
write to pending field

External
Sources

Pending _+N
v

No action
Guest handler

Root handler No action

The Guest.Causegp p field is the source of guest interrupts. The behavior of thisfield is controlled from the root

context. Two methods can be used to trigger guest interrupts - aroot-mode write to the Guest.Cause register, or direct
assignment of real interrupt signal to the guest interrupt system. Interrupt sources are combined such that both meth-
ods can be used.

Timers and related interrupts are available in both guest and root contexts.

The set of pending interrupts seen by the guest context is the combination (logical OR) of:
» External interrupts passed through from the root context, enabled by GuestCtlOpp if implemented.
* Interrupts generated within the guest context (e.g., Timer interrupts, Software interrupts)

* Root asserted interrupts, set by software write to GuestCtl2,,p field in non-EIC mode, or hardware capture of a
guest interrupt in GuestCtl2ggp. in EIC mode.

Software should enable direct interrupt assignment only when root and guest agree on the interpretation of interrupt
pending/enable fields in the Status and Cause registers. Direct assignment is appropriate if both Root and Guest use
EIC mode, or if both use non-EIC mode. Root can track changes to the guest interrupt system status using the
field-change exceptions which result from guest initiated changes to fields Statusggy, Causey or IntCtlys.

Root must assign interrupts to Guest with caution. For example, in non-EIC mode, if an interrupt pin (HW[5:0]) is
shared by multiple interrupt sources, then enabling direct guest visibility (in Guest Causepy,,) Via GuestCtlOppy=1)
will cause all the interrupt sources on that pin to be visible to the Guest, possibly removing Root intervention capabil-
ity. If Root Software needs to guarantee Root intervention capability on an interrupt then that interrupt should not be
directly visible to Guest.

In non-EIC mode, the guest timer interrupt is always applied to the interrupt source indicated by the Guest.IntCtl p
field and is not affected by the GuestCtlOpp field. Similarly, Guest software interrupts are not affected by the
GuestCtlOpp field, and are always applied to the interrupt source indicated by Guest.IntCtljppc;

A virtualization-based external interrupt delivery system, whether EIC or non-EIC provides the following capabili-
ties:

70 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.8 Interrupts

1. Root assignment of External Interrupt.
Hardware delivers interrupt to root context, with root-mode servicing of external interrupt.
2. Guest assignment of External Interrupt with Root Intervention.

Hardware deliversinterrupt to root context, with root-mode hand-off to guest by writing to GuestCt| 2,,p, fol-
lowed by guest servicing of external interrupt.

If root requires visibility into guest interrupts, then root should use this method to deliver interrupts to guest.
3. Guest assignment of External Interrupt without Root Intervention.

Hardware delivers interrupt to guest context without root intervention, followed by guest servicing of external
interrupt. The interrupt is not visible to root as root has made the choice to assign to guest.

A MIPS enabled virtualized external interrupt delivery system also provides support for Virtual Interrupts. Root can
simulate a guest interrupt by writing 1 to GuestCtl2,,p It can subsequently clear the interrupt by writing O to

GuestCt 2,

Virtual Interrupt capability can be used to support guest virtual drivers. Root will inject an interrupt into guest con-
text. Guest will field the interrupt, and in so doing cause atrap to Root, either by device activity or protected memory
access. Root may then clear the interrupt by writing to guest Cause|p Set earlier.

4.8.1 External Interrupts

4.8.1.1 Non-EIC Interrupt Handling

This section provides a detailed description of non-EIC handling in arecommended implementation. Theterm HW is
used to represent an external interrupt source. HW is alternatively referred to as IRQ in other sections of the Module.
HW isaset of interrupt pins common to both root and guest context.

Whether an external interrupt is visible to guest context or root context is dependent on GuestCtlOp,p (Pending Inter-
rupt Passthrough). If GuestCtlOppj, =1, then HW[n] is visible to guest context through Guest.Cause,pjp+ 2], Other-
wiseit isvisible to root context through Root.Causepyn+ ;-

If GuestCt|Opp[;=0, but Root needsto transfer the external interrupt to Guest, then it must write to a software visible
register, GuestCtl2,,py,) (Interrupt Pending, Virtual). This method is also used by Root to inject avirtual interrupt

into guest context. It isalso aconvenient way for Root to save and restore interrupt state of a Guest, if an interrupt had
been injected by Root, but needs to be preserved across context switches. In the absence of GuestCtl2,,p, Root would

need to derive the equivalent of vIP by reading Guest.Cause,p which may be problematic since other interrupts could
also be present.

GuestCtl2,;p Guest.Causgp and Root.Causep handling is described below in relation to GuestCtl2,,p and
GuestCtlOp;p The application of GuestCtl2y ¢ is discussed below.

GuestCtl2,,p Handling:
if (MTCO[GuestCtl2yrpin;l=1)
GuestCtlZ,rpn; <1
else if ((Deassertion of HW[n] and GuestCtl2yqin)) or (MTCO[GuestCtlZ,rpry;1=0))
GuestCtlZ,rpiy; < 0

endif

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 71

The Virtualization Privileged Resource Architecture

72

Guest.Cause;p Handling:
Guest.Causerpp,z; = ((HW[n] and GuestCtlOprprnp;) Or GuestCtl2 rprn;)
Root.Cause p Handling:

Root.Causerprpi2j

= (HW[n] and ! (GuestCtlOprpy; Or (GuestCtl2 rpry; and GuestCtl2ycing)))

GuestCtl 2 is provided to control how GuestCtl2,,p isreset. If abit of GuestCtl2,cis1, then the deassertion of
related external interrupt will always cause associated GuestCtl2,,p to be cleared. If abit of GuestCtl2yis 0 then the
deassertion of HW[n] will not cause GuestCtl2,,p to be cleared. In this case, it isthe responsibility of root software to
clear by writing O to GuestCtl2,;p [, . See Section 5.4 “GuestCt|2 Register (CPO Register 10, Select 5)"for further
definition.

In summary, interrupt injection in guest context serves two purposes - root assignment of external interrupts and
injection of virtual interrupts to Guest. GuestCtl2 provides the means to root software to distinguish between the

two. Root software can use this facility to transfer an external interrupt HW[n] for guest servicing. In this scenario,
GuestCt 2y =1 and the assertion of GuestCtl2,;p [Will cause corresponding Root.Causepyn+ 2] to be cleared,

thus transparently affecting the transfer. Otherwise, Root would have to disable interrupts for that specific source by
clearing Root.Satus; . On the other hand, Root can use this capability to inject interrupts into Guest context for

guest virtual devicedrivers, asan e.g.. In this case, GuestCtI 2y, =0, the assumption isthat thereis no external inter-
rupt tied to the injected interrupt, and thus assertion of GuestCt2,;p [should not cause Root.Cause;p. 7 to be
cleared. Guest.Cause;pn+ 2] is asserted in both cases described.

Virtual interrupt handling is an option that can be detected by the presence of GuestCtl2. Hardware clear capability is
also an option, even if virtual interrupts are supported. This capability exists if the field iswriteable or preset to 1.

Figure 4.9 shows virtualized management of the Guest and Root Cause register IPfield . In the absence of support for
GuestCtl2,p , a hardware-only version of GuestCtl2,,p should be considered to exist. Root may write a 1 to the hard-

ware copy with MTGCO[Causel P]. Root may also write a 0 to the hardware copy to clear the interrupt, whille deas-
sertion of HW[n] will also clear corresponding bit in this hardware register. In presence of GuestCtl2,,p, root writesto

Guest.Causepj7 7] is considered optional. The mode of a hardware shadow copy should not beimplemented if virtual
interrupt capability is supported.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.8 Interrupts

Figure 4.9 Guest and Root Causep (non-EIC) Virtualization

set by MTCO[GuestCtl2,,p[n]]=1

HWI[n] cleared by MTCO[GuestCtl2,,p[n]]=0, or
GuesiCiOpplN | peassertion of HW[n] if GuestCt2c[n]=1

|
Dsuestce12ypln] |

Guest PCIl/Timer Interrupts
T pi

Guest.Causep[n]

HWI[n] GuestCtl0p|p[n]

N A T s T 1
tctlzyp[n
, xues vpln] |

g GuestCti2y,[n]

Root PCI/Timer Interrupts

; Root.Causep[n]

In EIC mode, the external interrupt controller (EIC) is responsible for combining internal and external sourcesinto a
single interrupt-priority level, which appearsin the Causegp, field.

4.8.1.2 EIC Interrupt Handling

When an implementation makes EIC mode available (as indicated by Guest.Config3yg,c=1), two interrupt prior-
ity-level signals must be generated within the EIC - one for the root context (affecting Root.Causeg,p,), and one for
the guest context (affecting Guest.Causegp.). The root and guest timer interrupt signals are combined in an imple-
mentation-dependent way with external inputs to produce the root and guest interrupt priority levels.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 73

The Virtualization Privileged Resource Architecture

In addition to RIPL, the interrupt Vector (offset or number), and EICSS will also be sent on each of the root and guest
interrupt buses. The Vector from the EIC is either utilized by hardware asis, or derived from the EIC input. A Gues-
tID accompanies only the root bus, providing GuestID is supported in the implementation. Thisis because the EIC
can also send an interrupt for guest on the root interrupt bus. Thus the GuestID for the root interrupt bus may be
non-zero. The GuestID for a guest interrupt taken in root mode must be registered in GuestCtl1g,p as described in

Table 5.4. The guest associated with the guest busis by default equal to GuestCtl 1, .

In the architecture as defined, the type of vector avirtualized core can accept from the EIC isfixed - it is either avec-
tor number or offset but never both. Thisis because currently there is no capability to distinguish between the two
types, intentionally so. It is recommended that atypical virtualized EIC source a vector number to the core.

The EIC should assign interrupts to root and guest interrupt buses as per the following rules:

» Root interrupts must always be taken in root context and thus be presented on root interrupt bus by the EIC.

» If aguestinterrupt requires root intervention, then it must be presented on the root interrupt bus by the EIC.
And interrupt for anon-resident guest must always be sent on the root interrupt bus. An interrupt for the res-
ident guest may also be sent on the root interrupt bus.

A guest interrupt while the processor isin root mode can cause an interrupt immediately unless masked by
Root.Satus,p, . Hardware should not stall the interrupt until the processor enters guest mode.

* Only aninterrupt for aresident guest can be sent on the guest interrupt bus. If software programsthe EIC to
send an interrupt for a non-resident guest on the guest interrupt bus, then an implementation of the coreis
not required to respond to thisinterrupt. .

To allow the EIC to distinguish between resident and non-resident guests, the core must send GuestCtl 1, to the EIC.
An implementation must account for the delay between when the GuestCtl 1,5 changes and when it is visible to the
EIC to avoid a spurious interrupt for a non-resident guest from being sent on the guest interrupt bus.

The processor and EIC are required to implement a protocol to avoid the above mentioned race. On a guest context

switch, root software must first write 0 to GuestCtl1,p. Thisis equivalent to a STOP command for the EIC. EIC will
recognize thisas astall and will not send interrupts to guest context by setting the requested interrupt priority level to
0 on the guest interrupt bus to the core. Root software can then save and restore guest context, followed by awrite of
new GuestID to GuestCtl1, . Once the write is compl ete, root software can enable guest mode operation. If an EIC

implementation and root software follow this recommendation, then this prevents loss of an interrupt posted to the
guest interrupt bus while root is switching guest context. Aninterrupt for the formerly active guest will now be posted
on the root interrupt bus.

An EIC mode interrupt is generated in either guest or root context whenever hardware detects a change in RIPL on
the respective interrupt buses from the EIC. It is possible for an EIC implementation to have active interrupts on both
bus. In this case the root interrupt is aways higher priority then the guest interrupt.

For the case of an interrupt in root context, two different interrupt vectors are used, one for root, the other for guest.
Hardware is able to distinguish between the two by checking the GuestID on the root interrupt bus. The following
pseudo-code describes how hardware generates the interrupt vector, depending on whether the EIC provides a vector
offset (vectorOffset) or vector number (vectorNumber).

EIC_mode <« Config3.VEIC=1 && IntCtl.VvS!=0 && Cause.IV=1 && Status.BEV=0
if EIC_mode
if (EIC provides vectorNumber)
if (GuestID=0)
vectorOffset « 0x200 + (EIC_vectorNumber x (IntCtl.VS || 0b00000))

74 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.8 Interrupts

else //GuestID is non-zero
vectorOffset «0x200
endif
else // EIC provides vectorOffset
if (GuestID=0)
// EIC provides an offset relative to 0x200
vectorOffset «EIC_vectorOffset
else //GuestID is non-zero
vectorOffset «-0x200
endif
endif
endif

If the interrupt is for guest, then the handler must compare GuestCtl1g,p to GuestCtl1,p. If they are not equal, then

interrupt is for non-resident guest, and interrupt servicing may either continue in root or guest context. If interrupt
servicing isto continue in guest context, then the handler must first save the resident guest architected state (CPO,

GPRs etc) following by arestore of the new guest’s context. The root ERET instruction causes a transfer to guest

mode (when GuestCtlOg)y=1), followed by a guest interrupt providing GuestCtl2gg,p, is non-zero.

If GuestCtl1gp and GuestCtl1,p are equal, then save and restore is not needed. Interrupt servicing may either

continue in root or guest context. If the interrupt isto be serviced in guest context, then the root ERET instruction
causes a change to guest mode (when GuestCtlOg),=1), following by a guest interrupt providing GuestCtl2grp is

non-zero.

As described above, for any change in GuestCtl1,p, root software must first insert a STOP command on interface to
EIC by writing 0 to GuestCtl1, 5. Once quiescent, root software may execute whatever software sequence it needs to.
Thisisfollowed by awrite of new GuestID to GuestCtl1,p, then the root ERET instruction. There may be some

arbitrary delay between write of Guest|D and ERET instruction where EIC can respond with an interrupt on guest
bus, but hardware will not trigger an interrupt because processor isin root mode.

A root interrupt must use Root.SRSCtl g css. Otherwise, hardware forces use of Root. SRSCtlz<sif the interrupt on the
root interrupt busisfor any guest.

The guest interrupt in the scenario where the interrupt is transferred from root context after having been received on
the root interrupt busis caused when the processor enters guest mode and hardware detects that GuestCtl2gg p, IS

non-zero.

Once in guest mode, the guest interrupt handler completes with an ERET instruction. The guest will continue
execution from its EPC, and not transfer back to root mode even if there was a change in guest context. If areturn to
root mode is required, then the HY PERCALL instruction must be used.

Theroot CPO register, GuestCtl2, where the root interrupt bus Vector, EICSS and RIPL is described in Section

5.4 Storagein root CPO state is required because in atypical EIC-based implementation, an acknowlegement is
returned to the EIC when the interrupt istriggered. If an interrupt for the guest isinitially triggered in root context,
then the use of these fields will not occur until the root ERET instruction is executed to effect a change to guest mode.
In the meanwhile, another root interrupt can occur which can overwrite the fields on the bus. Saving the fields as root
CPO register allows for nesting of these fields, and thus supports nesting of interrupts.

Hardware optimizes the transfer of GuestCtl2gg,p. and GuestCtl 2, csginto guest CPO context on guest entry.
Hardware will write GuestCtl2gg p, to Guest.Causerp , and GuestCtl 2g; csg to Guest. SRSCtl g cgg providing
GuestCtl2gg p is non-zero. Root software thus has the option of preventing hardware transfer by clearing
GuestCtl 2 p. before guest entry.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 75

The Virtualization Privileged Resource Architecture

76

In the case where root injects an interrupt into guest context after the interrupt was received on the root interrupt bus,
hardware must ensure that two acknowledgements are not returned to the EIC asthis may cause aloss of an interrupt.
In the case where an interrupt is received on the root interrupt bus, hardware must always send an acknowledgement
on theroot interrupt bus. But in the case where the interrupt was injected into guest context by root, hardware should
not send an acknowledgement on the guest interrupt bus as the interrupt was not received on this bus. Hardware can

determine this because GuestCtl2gg,p. Would be a non-zero value for the case of root injection.

The overhead of saving and restoring guest CPO context can be minimized. Table 4.8 indicates which guest CPO
registers will cause a Guest Physical Senstive Instruction (GPSI) on guest access, and under what root configuration.
Root software can opportunistically save/restore those guest CPO registers which cause, or can be configured to cause
aGPsl.

Guest GPR Shadow Sets are protected by virtual mapping to physical Shadow Sets. Section 4.9.1 “General Purpose
Registers and Shadow Register Sets” describes how root enables virtual mapping for a guest. For the virtual map for
Guest GPR Shadow Sets to be enabled, GuestCtl 35 ggmust be written by root with appropriate value for the guest. It

is assumed that Guest.SRSCtl is saved and restored.

Accessto COP1 FPR and COP2 may be protected setting Root.Statuscy» 1) appropriately. If accessis disabled in

root context, then it is also disabled in guest and will cause the appropriate exception (Coprocessor Unusable in root
context). Hi/Lo registers are not protected by any means, and must be saved/restored if necessary.

4.8.2 Derivation of Guest.Cause|p/ripL

Theinterrupt pending value seen by the guest is calculated as shown below. The result value can be read by the guest
(and the root) from the Guest.Causegp. ; p field and is the value used to determine whether a guest interrupt will be

taken. Note that the value returned from Guest.Causeg,p, ; p ON aread is generated from the value originally written
by the root and from the status of directly assigned external interrupts. Hence the value written by the root may not be
equal to the value read back.

Returns:
Non-EIC IP7..0.
EIC - (RIPL << 2) + IP1..0

subroutine GuestInterruptPending()

if ((Guest.Config3ygic = 1) and

Guest.IntCtlyg != 0) and
Guest.Causeqy = 1) and
Guest.Statusggy = 0)) then

(
(
(
Guest in EIC mode
- GuestCtlOprp does not apply in EIC mode.
- EIC must include guest interrupt sources in the EICGuestLevel signal
- This includes Guest’s TI, IP1, IPO and PCI if implemented.
- FDCI is only visible in root context.
- GuestCtl2 required in EIC mode.
if (EICGuestLevel > GuestCtl2ggrpr,)
irg <« EICGuestLevel
else
irg < GuestCtl2ggipr,
h/w must clear if GuestCtl2ggrp;, is source of interrupt.
GuestCtl2ggypr <0
endif
Guest.Causerp[;.p; is incorporated in EIC.
State of Guest.Causerp[;.o] is however preserved.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.8 Interrupts

r <« (irg << 2) OR Guest.Causerp[1.q]

else
Guest in non-EIC mode
- External interrupts factored in if guest passthrough enabled.
- Internal interrupts applied here, if implemented
- Includes support for guest interrupt injection by root.

irg[7:2] <« HW[5:0]
if (GuestCtl0pp=0)
All interrupts processed first by root.
if (GuestCtl0gy=1)
root software injects interrupts.
r ¢ GuestCtl2ip(s.q;
else
if GuestCtl2,;p is not supported, then root writes Guest.Cause.IP
to inject interrupt in guest context. H/W captures the write in a
shadow register called Root_HW_ VIP.
r ¢ Root_HW_VIP[5:0]
endif
else
Guest interrupt passthrough supported.
if (GuestCtlOgy=1)
r <« Root.GuestCtl2y1p[5.9; OR (irg[7:2] AND Root.GuestCtlOprp(s.07)

else
r <« Root_HW_VIP[5:0] OR (irqg[7:2] AND Root.GuestCtlOprp(s5.07)
endif
endif
r — r << 2
r < r OR (GuestTimerInterrupt << Guest.IntCtl;ppr)
r < r OR (PCIEvent << Guest.IntCtlippcr)
r < r OR Guest.Causerp1.0]
endif
return(r)
endsub

The value returned by GuestinterruptPending() will subsegquently be qualified by Guest Status)y, in hon-EIC mode or
Guest Statusp, in EIC mode, as per the base architecture.

Fieldsin Guest Config registers indicate which interrupt options are available to the guest.

4.8.3 Timer Interrupts

Root may inject atimer interrupt in guest context by setting Guest Causer, and indirectly Guest Cause pppry)- This
may happen under the scenario where a guest has been switched out, but its virtual timer, maintained by root, istrig-
gered. Root would set Guest Causer, before entering guest mode for the guest. Guest would take atimer interrupt,
clear Guest Compare, which would then clear Guest Causer;. As per baseline MIPS architecture, awrite to Compare
will clear Causey;.

Root maintaining avirtual timer for aguest is recommended if there are multiple guests in operation. Otherwise, if
thereis only one guest, but the processor isin root mode, then amatch on Guest Count and Guest Compare is allowed
in an implementation to set Guest Causer, and Guest Cause pjpry;. Once Root transitions to guest mode, then guest
timer interrupt can be signaled in guest mode.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 77

The Virtualization Privileged Resource Architecture

78

Root Injection of Guest TI:

if (MTGCO[Guest.Causepr]=1)
Root.Guest.Causeq; <1

else if ((MTCO[Guest.Comparel]))

Root.Guest.Causep; < 0

endif

where Root.Guest.Causey, is a hardware shadow copy of Guest.Causer, that is set when Guest.Causer, is written by
Root.

Guest.Cause|p[|p-|-|]:ZRoot.Guest.CauseTI or “Other External and Internal interrupts”.

where * Other External and Internal interrupts’ is defined in Section 4.8.2 “Derivation of Guest.Causel P/RIPL”.

4.8.4 Performance Counter Interrupts

Root can configure the definition of performance countersin the Guest context via Guest Configlpc asfollows:

* Guest Configlpc=0, then performance counters are unimplemented in the guest context, accessis UNPRE-
DICTABLE.

+ Guest Configlpc=1, the performance counters are virtually shared by root and guest contexts.

The PerfCnt register(s) are never implemented in the Guest context. A Guest may have direct accessto virtual perfor-
mance counter registers under root software management when Configlpc=1. If virtualy shared, the encodings of

PerfCntgc as0 or 1 cause a GPSI Exception to be raised on Guest access to a performance counter register. Root
software may choose to configure performance counters for legal Guest access by encoding PerfCntg as2 or 3.

Software may choose to assign al performance counters to Guest or Root, but not both. Thisisthe recommended pol-
icy for sharing between Root and Guest. Root will typically configure Guest access when it initializes guest context.
If assigned to Guest then Guest access will not cause a GPSI Exception.

Alternatively, an implementation may optionally choose to assign a subset of the total PerfCnt registersin Root CPO
context to Guest. Read of guest PerfCnt(N)y should return root PerfCnt(N+1)gc; 1) to indicate PerfCnt(N+1) is

owned by guest. If al PerfCnt pairs are allocated to guest, then guest read of the last M bit must return 0. Guest Per-
fCnt pairs assigned to Guest in this manner must be a contiguous range, starting from the least significant pair. It is
further assumed that the allotment of performance counters to a guest is not dynamic - once established after initial
guest access (which caused GPSl), then the allotment must remain as such for duration of guest.

Once assigned to Guest or Root (default) context, that context independently manages the performance counters,
including interrupts. E.g., if the performance counters are enabled for Root, then Root Causepc and Root

Causeppppcy are set by hardware on counter overflow. Otherwise, counter overflow sets Guest.Causepc, and
Guest.cause|p[|ppc|].

If Root software needsto inject a performance counter interrupt into Guest context, it must do so by setting the
most-significant bit of the PerfCnt counter. Similarly Root may clear a guest performance counter interrupt by clear-
ing the most-significant bit of the counter. Thus, Root does not require the ability to read/write Guest.Causep.

The PerfCntg field is Root only virtualization control and is not visible to the Guest.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.9 Instructions and Machine State, other than CPO

PerfCnt use of Status register K, S, U, and EXL fieldsis taken from the current Root or Guest context.

PerfCnt interrupt behavior is solely governed by PerfCnt g, enabled context Status register interrupt masks and
enable.

4.9 Instructions and Machine State, other than CPO

The Virtualization Module adds guest-mode context to duplicate privileged state, which islocated in Coprocessor O.
Typicaly, all machine state located outside Coprocessor 0 is shared by guest and root contexts and thus would require
save or restore by Root between context switches. Alternatively, in limited cases, state may be virtually shared among
different contexts asin the case of GPR Shadow Sets.

4.9.1 General Purpose Registers and Shadow Register Sets

Guest SRSCtl and SRSMap are optional in guest CPO context. The following cases apply to use and implementation
of these CPO registers.

1. No shadow sets are implemented. In this case, guest accessto SRSCtl and SRSMlap, or guest use of RDPGPR or
WRPGPR aways cause a GPSI. Root would return emulated Guest SRSCtl5s=0 in guest context to indicate to

guest that no shadow sets are present.

2. Shadow setsareimplemented in root context only. In this case, guest accessto SRSCtl and SRSViap, or guest use
of RDPGPR or WRPGPR aways causes a GPSI. Root software would return emulated SRSCtlss=0 on guest

read of SRSCitl to indicate that no shadow sets are present in guest context. Hardware would return SRSCtlg5=0
on root read of guest SRSCtl, while root writes to guest SRSCtl are ignored.

Guest is provided Root. SRSCtl g as its set of GPRs.

3. Shadow sets are implemented in root context, and virtually shared between root and guest. In this case, guest
SRSCtl and SRSMiap must be present in guest CPO context. Guest access to SRSCtl and SRSMiap will cause GPSI
to prevent guest from defining writeable SRSCtl fields specifically SRSCtl pggpsg Guest use of RDPGPR or

WRPGPR will not cause a GPSI as these instructions refer to guest SRSCtl psgwhich is writeable only by root -
guest writes to SRCtlpggalways cause a GPSI.

The case where Shadow Sets are implemented in guest context is not discussed in this section - it is not recommended
due to the overhead of guest context save and restore of Shadow Sets. A mechanism of virtual sharing of a unique set
of Shadow Sets amongst guests is thus not provided.

In the case of virtual sharing, the read-only field guest SRSCtl ;g must be writeable by root. This allows root software
to set the total number of Shadow Set available to guest, which is equal to guest SRSCtlyss . The Lowest Shadow Set
is specified by GuestCtl3g o5 Guest use will always assume GuestCtl 35| g5to GuestCtl 35 g5 plus Guest SRSCtl g
physical Shadow Sets as available to the guest. Root can write Guest SRSCtl esgpssWith (D)MTGCO instructions.

A non-zero GuestCtl3g sgisuseful if alarge number of Shadow Sets are implemented and can be physically
partitioned among guests and root. Prior to guest entry, root would write GuestCtl 35 sgand guest SRSCtlggto define

the continuous range of Shadow Sets available to the guest. This range should be non-overlapping with any other
guests and root’s range to avoid the overhead of save and restore. Root would also write Guest SRSCtl esgpss: RoOt

may also choose to write guest SRSCtl g csg , taking the example of an EIC (External Interrupt Controller) interrupt.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 79

The Virtualization Privileged Resource Architecture

80

In this case, root would read GuestCtl 1¢, then write this value to SRSCtl g s unless hardware implements the
transfer itself, as described in Section 4.8.1.2 .

Hardware must offset SRSCtl zggpgg by GuestCtl 3 g before access of corresponding Shadow Set for guest.

Similarly, the EIC, if supported, would drive avirtual EICSS. The virtual EICSS is registered and offset similarly
before use.

A zero (default) GuestCtl 3 sgis useful isthere are few Shadow Sets. Root may allocate one set for all guests, and
one set for root. Any switch between guests would require a save and restore of the related Shadow Set.

Guest SRSCtlgcssis set by EIC. EIC must be root managed since it is a shared resource and thus access must be
virtualized amongst guests. Guest SRSCtl g cggmust always fall in guest range of Shadow Sets.

4.9.1.1 Pseudo-code for Shadow Set Handling

The pseudo-code below uses the logical term GSRSEN specifically to indicate whether Shadow Sets are availablein
guest context.

GSRSEn <« (Guest.SRSCtl.HSS > 0) ? 1 : 0;

Guest Shadow Sets are thus available if Shadow Sets are implemented in guest context (not recommended), or virtu-
ally-shared between root and guest (case 3).

Determination of Current and Previous Shadow Sets:
/I Mode-specific CSS
Current_Shadow_Set (SRSCtligg) <

guest_mode and GSRSEn ? Guest.SRSCtl.gg + GuestCtl3ggs : Root.SRSCtlpgs 7

In the case where the processor is in guest mode and GRSEN=0 (e.g., case 2), guest will share
Root. SRSCtl -5 Shadow Set with root .

/I Mode-specific PSS, effective for RDPGPR/WRPGPR.

Previous_Shadow_Set (SRSCtlpgg) <
guest_mode and GSRSEn ? Guest.SRSCtlpgs + GuestCtl3ggs :
guest_mode and not GSRSEn ? <GPSI> : Root.SRSCtlpgg ;

In the case where the processor is in guest mode and GRSENn=0 (e.g., case 2), guest use of RDPGPR/WRPGPR will
cause aGPS|.

Events that update Root or Guest PSS and CSS:
Exception taken in root mode

Root.SRSCtlpgg < Root.SRSCtlogs:
Root.SRSCtlcgg ¢ Root.SRSCtlpgs/prcss 0r Root.SRSMapggys

This behavior is also applicable to exceptions taken in guest mode that cause a guest-exit to root mode.

Exception taken in guest mode, with GSRSEn =1

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.9 Instructions and Machine State, other than CPO
Guest.SRSCtlpgg ¢ Guest.SRSCtlygg
Guest.SRSCtl.gg ¢ Guest.SRSCtlgss prcss Or Guest.SRSMapggys
In this case that the exception originates and is taken in guest mode.
Exception taken in guest mode, with GSRSEn = 0
Not Applicable.
ERET executed in root mode
Root.SRSCtl,gg ¢ Root.SRSCtlpgg
Thisis applicable to an exception taken in root mode, or an exception that causes a guest-exit to root mode.
ERET executed in guest mode, with GSRSENn=1:
Guest.SRSCtlpgs < Guest.SRSCt1pgs
ERET executed in guest mode, with GSRSEN=0:
Not Applicable.

4.9.2 Multiplier Result Registers

The guest and root contexts share the multiplier result registers LO and HI.

4.9.3 DSP Module

The guest and root contexts share the DSP Module, if it isimplemented. The DSP Moduleis available to the guest
context when Guest.Config3pgpp=1.

During guest mode execution, access to the DSP Module is controlled by the Statusyy bits from both the root and
guest contexts. The DSPMDMX enable bit Guest.Statusy,y is checked first. If accessis not granted, a DSP Module
state unusable exception is taken in guest mode.

The Root.Statusyx bit is checked next. If accessis not granted by the Root.Statusyx bit, a DSP Module state unus-
able exception is taken in root mode.

Root has the ability to deconfigure DSP resourcesin guest context by writing Config3pgpp and Config3pgpop 8S
givenin Table 4.11. The writeable state of Guest.Statusyx, as visible in guest context, is dependent on
Guest.Config3pgpp only. An implementation may choose to limit root writeability to Guest.Config3pgpp as selective

enabling of DSP and DSP Revision 2 is not recommended in implementations. As a consequence of deconfiguration
either all DSP resources are available to guest or none.

4.9.4 Floating Point Unit (Coprocessor 1)

The guest and root contexts share the Floating Point Unit, if it isimplemented. The floating point unit is available to
the guest context when Guest.Configlgp=1.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 81

The Virtualization Privileged Resource Architecture

During guest mode execution, access to the floating point unit is controlled by the Statusc; bits from both the root
and guest contexts. The coprocessor enable bit Guest.Statuscy; is checked first. If accessis not granted, a coproces-
sor unusable exception is taken in guest mode.

The Root.Statuscy; bit is checked next. If accessis not granted by the Root.Statusc 1 bit, a coprocessor unusable
exception istaken in root mode.

4.9.5 Coprocessor 2

The guest and root contexts share coprocessor 2, if it isimplemented. Coprocessor 2 is available to the guest context
when Guest.Configlc,=1.

During guest mode execution, access to the coprocessor 2 is controlled by the Statusc, bits from both the root and
guest contexts. The coprocessor enable bit Guest.Statusc, is checked first. If accessis not granted, a coprocessor
unusable exception is taken in guest mode.

The Root.Statuscy, bit is checked next. If accessis not granted by the Root. Statuscy, bit, a coprocessor unusable
exception istaken in root mode.

4.9.6 MSA (MIPS SIMD Architecture)

The guest and root contexts share the MSA module, if it isimplemented. The MSA module is available to the guest
context when Guest.Config5ysagn=L1.

During guest mode execution, access to the MSA module is controlled by the Config5ysagn, bits from both the root
and guest contexts. Guest.Config5ysagn IS checked first. If accessis not granted, a M SA disabled exception is taken
in guest mode.

The Root.Config5ysaen bit is checked next. If accessis not granted by Root.Config5ysagn, @ MSA disabled exception
istaken in root mode.

4.9.7 User FR Feature

User access to Statusgris an optional feature in Release 5 of the architecture. The purpose of this feature isto facili-

tate atransition from an Floating-Point Register File that supports both 16 and 32 FP register modelsto one that sup-
ports only 32 FP register model.

The ability of user to modify Statusggis under the control of privileged Configsgg with this new feature. In avirtu-
alized implementation, guest kernel write of Config5,prWill cause a GSFC exception providing the write resultsin a
changeto Configbyggr - If Configsyer =1, then guest access of Statusegwill not cause a GSFC exception. See Section
4.7.8 “Guest Software Field Change Exception”.

In this state where change to guest Status-g is invisible to the hypervisor, hypervisor must always check guest Sa-
tuseg before saving guest FP register state, once the transition to Configs,rr=1 has been signalled to the hypervisor.

Thiswill determine the number of saves and thus restores that need to be done by hypervisor, based on active FP reg-
ister model.

82 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.9 Instructions and Machine State, other than CPO

4.9.8 LL/SC LLbit Handling

Root and guest context maintain separate copies of LLbit. An event that clearsroot LLbit will not effect guest LLbit
as aside-effect. Example, an ERET executed in root context will only clear the LLbit in root context itself.

4.9.9 XPA : Extended Physical Address

Release 5 of the base architecture adds the capability to extend the physical address beyond 36-bit in 32-bit imple-
mentations. This capability is termed Extended Physical Address (XPA).

Support for XPA is optional. In avirtualized implementation that supports XPA, the following changes are required
for both root and guest contexts :

* New instructions, MTHCO and MFHCO are required to access the extensions.

* New instructions, MTHGCO and MFHGCO are required by root to access the guest COPO extensions.

The architecture enforces control over guest XPA capabilities by allowing root software to optionally write guest
Config3, pa. Guest write to PageGraing pa that causes a change in value will result in aroot GSFC exception.

Table 4.16 describes how root software and the state of root context Config3, p, and PageGraing, pa effects the state of
guest context Config3| py and PageGraing pa.

Table 4.16 Root effect on Guest XPA control!

Root Guest Guest GSFC
on write to
Config3 pa | PageGraing ps | Config3; ps | PageGraing pa | PageGraing pa Guest XPA supported
1 1 1 0/1 Possible Yes
1 1 0 Force Reserved? Never Disabled by root clearing Config3| pa
Guest 36-bit PAE possible.
1 0 Force Reserved | Force Reserved Never Disabled by hardware due to
PageGraing pp=0
Guest 36-hit PAE not possible.3
0 Reserved Reserved? Reserved Never XPA not availablein either context
Guest 36-bit PAE not possible

1. Root control is also superimposed over the state of guest COPO PA bits.

2. “Forced Reserved” - Hardware must force the related state to be reserved based on root state.

3. Hardware must force PA[35:32] to zero in COPO registers CDMMBase, CMGCRBase, MAAR, EntryLo0/1, SegCtl. The number of PA
bits isimplementation dependent. Registers added in the future with PA should be similarly constrained.

4. “Reserved” - always reserved regardless of root state.

4.9.10 SDBBP Instruction Handling

Release 6 of the architecure adds virtualization constraints over use of software use of the SDBBP instruction in the
form of Config5ggr,- AS defined in the base architecture,

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

83

The Virtualization Privileged Resource Architecture

» If SBRI=0, then SDBBP can be executed in any privileged mode. This state allows backward compatibility.
» If SBRI=1, then SDBBP can be executed in kernel mode only. User (or supervisor) SDBBP causes RI.

Refer to Table 4.17 for virtualization control over SDBBP.

Table 4.17 Virtualization control of SDBBP execution

ConfigSspr) Context of SDBBP Execution and Result
Guest Root Guest User Guest Kernel Root User Root Kernel
0 0 No RI! No RI No RI NoRI
0 1 Root RI Root RI Root RI No RI
1 0 Guest RI NoRI NoRI NoRI
1 1 Guest RI Root RI Root RI No RI

1. Reserved Instruction exception

4.10 Combining the Virtualization Module and the MT Module

84

The MIPS MT Module defines a set of instructions and machine state which are used to implement multithreading.
The presence of the MT Module is indicated by the Config3y,r field.

Like the Virtualization Module, the MT Module provides duplicate Coprocessor O state. A single MIPS CPU can con-
tain multiple Virtual Processing Elements (VPEs). Each of these VPEs uses a separate set of general purpose registers
(GPRs), and a separate CPO context. Mechanisms for controlling one VPE from another are provided, to allow for
system initialization and control.

Each VPE runs a separate and independent program - a ‘thread’. Switching between VPEs happens very rapidly - for
example switching to a different VPEs on each cycle.

When used in a Symmetric Multi-Processing (SMP) configuration, the MT Module allows a single CPU core to
appear to software as multiple CPU cores which are simultaneously executing, using the same physical address space

accessed through a common set of L1 caches.

Figure 4.10 A MT Module processor equipped with three VPEs

VPEO

CPO context

GPRs

Program Counter

NaVahk

ALY

VPE1

~

CPO context >

GP

p
(
(

&

)
Program Counter >

VPE2

CPO context

GPRs

Program Counter

oVaVYalh

ALY

MIPS64® Architecture for Programmers Volume [V-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.10 Combining the Virtualization Module and the MT Module

The Virtualization Module enables virtualization for a single thread of execution. Multiple CPO contexts are present
(guest and root), but general purpose registers (GPRs) and coprocessor registers are shared. A single thread of execu-
tion covers the hypervisor software, guest kernel software, and guest-user software.

The Virtualization Module and MT Module can co-exist in the same processor. Each VPE is treated like a separate

processor - the pre-existing machine state of each VPE is accessible to root mode, and the new guest mode and guest
CPO context are added. In such a machine, Root.Config3;,7=1 and Root.Config3,,,=1.

Figure 4.10 shows a MT Module processor equipped with three VPEs and the Virtualization Module.

Figure 4.11 A MT Module processor equipped with three VPEs and the Virtualization Module

CP

s

VPEO

Guest CPO context

U
(Root CPO context

GPRs

Program Counter

C
(

O N

VPE1

Root CPO context

Guest CPO context

GPRs

\/\/\//

Program Counter

VPE2

Root CPO context

Guest CPO context

GPRs

\/\/\//

Program Counter

_/

TV VAT

/

_/

TV VAT

/

The ‘onion model” would in theory allow a processor to be built which would incorporate MT Module state and
instructions within the guest context (Guest.Config3,,7=1), but this is not recommended. The guest context of a real-
istic machine will not contain the MT Module - hence Guest.Config3;,7=0. When Guest.Config3,,7=0, then
(D)MTCO and (D)MFCO0 of MT Module CPO registers are UNPREDICTABLE and attempts to execute MT Module
instructions result in a Reserved Instruction exception in Guest context.

Hypervisor software running on each VPE manages the thread of execution for that VPE - as in a multi-core system.
The hypervisor software controls the physical address space and privileges of each guest - for example whether the
VPEs share a common physical address space (e.g. a SMP machine), or are configured to be entirely separate.

A trap-and-emulate approach is required for full virtualization of a guest which uses the MT Module (though this is
not recommended). MT Module registers are never present in Guest CP0 context, even if the intent is to emulate.

Root would write Guest.Config3,,7=1 to simulate presence of MT Module in guest context. Any guest-kernel access
to MT Module registers, guest use of MT instructions will trigger a Guest Privileged Sensitive Instruction exception.

When multiple guest virtual machines are running on a single-threaded machine, switches between guests occur tens,
hundreds or thousands of times per second. When a context switch takes place the outgoing guest’s machine state is
read out and saved, and the incoming guest’s machine state is loaded and restored. The processor is controlled by one
hypervisor instance, which is in control of the root context.

When multiple guest virtual machines are running on a multi-core machine, switches between guests on each core
may still occur tens or hundreds of times per second, using the context switch method. However, multiple guests can

MIPS64® Architecture for Programmers Volume [V-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 85

The Virtualization Privileged Resource Architecture

be run simultaneously - one on each processor core. A distinct hypervisor instance on each processor isin control of
that processor’s root context - these hypervisor instances communicate to achieve shared goals, asin atraditional
SMP system.

A similar arrangement is used when multiple guest virtual machines are running on a single-core multi-threaded
machine. Switches between guests are achieved on a cycle-by-cycle basis - as the processor switches between VPEs.
Multiple guests can run simultaneously - one on each VPE. A distinct hypervisor instance on each VPE isin control
of that VPE’s root context.

This concept can be further extended to a multi-threaded, multi-core machine. Each processor core features multiple
V PEs, each of which hasits own guest context. A distinct hypervisor instance is present on each VPE and in control
of the root context.

The MT Module and Virtualization Module provide complementary feature sets, which allow hypervisor software the
flexibility to schedule guest virtual machines on separate cores, on separate VPES, and to schedule using traditional
time-sharing methods.

4.11 Guest Mode and Debug features

86

The Virtualization Module provides full accessto Debug facilities implemented through the EJTAG interface.

When the processor is running in Debug privileged execution mode, it has full accessto all resources that are avail-
able in the Root context.

As per Table 4.1, The Debug privileged execution mode exists in the root context. A processor supporting virtualiza-
tion operatesin two contexts, Root and Guest. Within Guest, there are three privileged execution modes; kernel,
supervisor and user, and in Root context, there are four; kernel, supervisor, user and debug.

Table 4.18 lists debug features and their application to the Virtualization Module.

Table 4.18 Debug Features and Application to Virtualization Module

Feature Description Reference
Debug mode Guest mode is mutually exclusive with Debug mode. When in Section
Debug mode (Debugpy=1), the processor is not in guest mode. 4.4.3 “Definition
of Guest Mode”

When the processor is running in Debug mode, it has full access to MIPS EJTAG
all resources that are available to Root-Kernel mode operation. Specification.
Section 7.2.3 -
Debug Mode
Handling of Pro-
cessor Resources

Debug Segment (dseg) | When the processor is running in Debug mode, the memory map is MIPS EJTAG
determined by the root context. Memory mappings are unchanged Specification.
from the M1PS64 and EJTAG specifications. Section 7.2.2 -
Debug Mode
Address Space

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.12 Watchpoint Debug Support

Table 4.18 Debug Features and Application to Virtualization Module

Feature Description Reference

Access to guest CPO context | Debug tools access general purpose registers (GPRs) and coproces- Section 4.6.2
sor registers by executing instructions in the processor pipeline.

Accessto the guest CPO context must use the Virtualization Module
instructions provided to transfer data between the root and guest
contexts - DMTGCO, DMTGC, MTGCO and MFGCO.

Accesses to the guest TLB must use the instructions provided to ini-
tiate guest TLB operations from the root context - TLBGP, TLBGR,
TLBGWI, TLBGWR. These operations are used to transfer data
between the guest TLB and the guest CPO context. When accessing
the guest TLB in debug mode, a two-step processis required - to
transfer data to/from the guest CPO context and guest TLB, and to
transfer data to/from the root CPO context and guest CPO context.

Hardware Breakpoints | When implemented, hardware breakpoints are part of the root con- Section 4.7.4
text. The root context remains active during guest mode execution,
alowing hardware breakpoints to be used to debug guest software.

Exceptions resulting from hardware breakpoints are of type Syn-
chronous Debug or Asynchronous Debug. In both cases, the excep-
tions are handled in Debug mode.

Watch registers Support for use of watchpoint from the Guest is optionally provided. | Refer to Section
4.12 “Watchpoin
t Debug Support”

4.12 Watchpoint Debug Support

Root and Guest Watchpoint debug support is provided by Coprocessor 0 WatchHi and WatchLo register pair(s). These registers are present
in Root if Root Configlyr=1andin Guest if Guest Configlyg=1.

A virtualized implementation may choose to provide no Watch register support, Root-only Watch register support, or Root and Guest Watch
register support. Virtualized handling applies to both WatchHi and WatchLo registers but will be generically referred to as“Watch” regis-

ters.

In Table 4.19, the state of Guest Configl,yr. conveys what support is available to Guest.

Table 4.19 Guest Watchpoint Support

Guest
Configlyg Value| R/W State Function
0 R No Guest Watch
registers.
1 R Guest Watch reg-
isters present.
0/1 R (Guest) Virtual Guest
R/W (Root) Weatch support
provided.

Root-only Watch registers (Root Configlyyg=1 and Guest Configl,yr=0) allows for Root Watch of Root Virtual Addresses (RVA), and
optionally Guest Physical Addresses (GPA). Root Watch of GPA in this configuration is enabled through Root WatchHiywyq-

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 87

The Virtualization Privileged Resource Architecture

If both Root and Guest Watch registers are present (Guest Configlyyr=1), then Root and Guest Watch will operate independently. Watch
exceptions detected on match will be taken in respective modes.

The Virtualization Debug definition also allows for virtual Guest Watch via Root Watch registers (Guest Configl,,g=0/1). Thisfeatureis
optional. Root Software can test R/W state of Guest Configlyr to determine whether virtual Guest Watch registers are supported.

Table 4.20 Watch Control

Guest Guest Guest
Configlyg Value Root Exception on | Exception on Root
(in R/W State) | WatchHiww1:0) Function Access Match Exception
0 X0 Root Watch RVA UNPREDICTABLE None Watch
0 X1 Root Watch GPA (optional) | UNPREDICTABLE None Watch
1 00 Root Watch RVA GPSI None Watch
1 01 Root Watch GPA (optional) GPSI None Watch
1 10 Guest Watch GVA None Watch None
1 11 Reserved - - -

Thereisno support for Root emulation of Guest watch registers. Root emulation of Guest watch registers would require that every guest read
and write trap to Root. In sharing mode, once awatch register pair is assigned to Guest, Guest can setup registers without Root intervention.

Referring to Table 4.20, if Guest Config1,yr=0, then no watch register pairs are enabled for Guest watch. A Guest access will be treated as

as UNPREDICTABLE. Recommended implementations may either no-op both MTCO and MFCO, trap to Root software with a GPSI, or
no-op an MTCO and return 0s on MFCO. If Guest Configl,yr=1, then a Guest access s treated normally except a MTCO cannot modify

WatchHiyy, and an MFCO will return Os for WatchHiyy.

If Guest Configl,yr=1, then selected Root Watch register pairs are enabled for Root or Guest watch. Referring to Table 4.20, thisis deter-
mined by Root WatchHiy[1]. Root WatchHiy[0] determines whether Root is watching RVA or GPA. Root Watch of GPA isoptional. If
not supported, then awrite of 1 to Root WatchHi[1:0], will write O, defaulting to RVA watch. Root Watch of GPA would include qualifi-
cation with WatchHig and WatchHi oq p. WatchHipqp would be guest’s value. To exclude WatchHi g p, Root software would set WatchHig
=1.

If under Guest control, Guest can only watch GVA. A write of 3 to Root WatchHi[1:0], will write 2 in this configuration, defaulting to

GVA watch. Root can take away privilege from Guest at any time by writing to Root Watch registers. Root access will thus not take an
exception on access of ashared pair of registers under Guest control. If under Root control with Root WatchHiy[1]=0 then a Guest access

will result in a GPSI. Root may choose to assign this register pair to Guest at this point, or return to the guest instruction following the move.

Guest watch is enabled strictly in guest mode as defined by the equation:
(Root.GuestCtl0g), = 1 and Root.Statusgy, = 0 and Root.Statusgg, = 0 and Root.Debugpy, = 0)

Thereisno facility for Guest to watch addresses related to Root intervention events. That is, events occuring when the following equation is
true:
(Root.GuestCtl0g)y = 1 and (Root.Statusgy, = 1 or Root.Statusgg, = 1 or Root.Debugpy = 1))

In an implementation that supports virtual sharing between Root and Guest, Root software may choose to assign all WatchHi and WatchLo to
Guest or Root, but not both. Thisisthe recommended policy for sharing between Root and Guest. If assigned to Guest then Guest accesswill
not cause a GPS| exception.

Alternatively, an implementation may optionally choose to assign a subset of the total Watch register pairsin Root CPO context to Guest for
simultaneous use by Guest and Root. Read of guest WatchHi(N)y; should return root WatchHi(N+ 1)1 to indicate to guest software that

root WatchLo/Hi(N+1) is owned by guest. If al pairs are alocated to guest, then read by guest of the M bit in the last register pair should

88 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.13 Virtualization Module features and Hypervisor Software

return O. Initial access by guest to the Watch registers will result in a GPS| exception, allowing Root to configure Watch registers for guest
use. Watch register pairs assigned to Guest in this manner must be a contiguous range, starting from the least significant pair. It is further
assumed that the allotment of Watch registers to a guest is not dynamic - once established after initial guest access (which caused GPSI) or
on guest configuration by root software, then the allotment must remain as such for duration of guest operation.

4.13 Virtualization Module features and Hypervisor Software

The Virtualization Module provides many features which are intended as optimizations to reduce the number of
hypervisor traps required, and to reduce the length of each hypervisor intervention.

Table 4.21 describes an outline of the design intent of each feature, and how it is expected to be used in a virtualized
system. It isintended to be treated as a guideline, and does not aim to specify how software should be implemented.

Table 4.21 Virtualization Optimizations and their Intended Purpose

Virtualization Optimization Description

Guest mode The Guest Mode alows for a*“limited privilege” kernel mode, in addition to
the existing modes within the M PS64 Privileged Resource Architecture.

The separation of privileges between user and kernel modesis duplicated in
guest mode, through the use of the guest-user and guest-kernel modes. Thisis
intended to minimize virtualization overhead on mode transitions within a
guest.

A separation isintroduced between the existing full-privilege kernel mode and
the limited-privilege guest-kernel mode. This enables a hypervisor to selec-
tively grant access to system resources through emulation, address translation
or by granting direct access.

Separate Guest CPO context A partial CPO context is provided for use when in guest mode.

The guest CPO context includes registers for processor status, exception state
and timer access. Depending on the options chosen by the implementation, the
guest CPO context can also include registers to control segmentation and hard-
ware page table walking within the guest context.

The separate CPO context for the guest reduces the context switch overhead
when transitioning between root and guest modes. An interrupt or exception
causing an exit from guest mode can be immediately handled using the origi-
nal (root) CPO context without additional context switching.

The guest CPO context is partially populated. Guest accessesto registerswhich
are not included can be emulated by hypervisor handling of guest exceptions.

The registers chosen to be included in the guest CPO context are either neces-
sary to control guest mode operation, or are so frequently accessed by guest
kernels that trap-and-emulate isimpractical.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 89

The Virtualization Privileged Resource Architecture

Table 4.21 Virtualization Optimizations and their Intended Purpose

Virtualization Optimization Description

Simultaneously active guest and root | During guest mode execution the guest CPO context is used, but the original
CPO contexts (root) CPO context remains active. This permits an ‘onion model’ whereby
guest activities are first checked against the guest CPO context, and then
against the root CPO context. Exceptions are taken in the mode whose context
triggered the exception.

Systems controlled by the root CPO context continue operating during guest
mode execution. This includes CPO-controlled systems such as performance
counters and breakpoints. It also includes logic which detects external inter-
rupts and serious exceptions such as NM|I, Bus Error or Cache Error. The
onion model allows the pre-existing programming interface for these systems
to be retained, and for their continued operation during guest mode execution.

The addition of the guest-mode CPO context allows an inner layer of systems
to be used by the guest without hypervisor intervention. For example, the guest
interrupt, timekeeping and address translation systems can be programmed
and maintained by the guest kernel. Since these systems are active only during
guest mode execution, and the pre-existing root-context systemsremain active,
little hypervisor intervention is required, as the guest cannot inflict damage to
theroot.

When an exception returns control to root mode during guest mode execution,
the guest context isimmediately disabled. No context switch isrequired. The
presence of two separate contexts allows for an immediate entry to the
root-mode exception handler, using the root-mode exception state. On exit, an
immediate return to the guest is possible. No time-consuming memory
accesses for context switch are required.

Following the rules of the ‘onion model’, access to coprocessors must be
enabled by both the guest and original CPO contexts. This allows for lazy con-
text switch of coprocessors (for example, the floating point unit) when switch-
ing between guests.

90 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.13 Virtualization Module features and Hypervisor Software

Table 4.21 Virtualization Optimizations and their Intended Purpose

Virtualization Optimization Description
Dual-level address translation and In afully virtualized system, the ‘onion model’ is applied to address transa
guest TLB tion.

Memory accesses from the guest are translated using the guest context Seg-
ment Configurations and the guest context TLB. Exceptions or TLB refills

resulting from this trandlation step are handled by the guest. Theresult isa
‘guest physical’ address (GPA).

Theroot TLB (the original TLB) is used to perform a second level of tranda-
tion - from the ‘ guest physical’ address to a machine physical address. Excep-
tions or TLB refills resulting from this trand ation step are handled by the
hypervisor, using the pre-existing TLB exceptions, or the new hardware page
table walking system.

This arrangement allows the guest kernel to maintain its own page tables
which map guest-virtual to guest-physical addresses. The guest kernel can
handle TLB refills and other exceptions without hypervisor intervention.

The hypervisor maintains a separate page table which maps guest-physical
addresses to machine physical addresses. The hypervisor is not required to
parse or otherwise interpret the guest page tables, or to maintain a page table
on behalf of the guest. No hypervisor knowledge of guest-virtual addressesis
required.

The two trand ation systems operate independently, greatly simplying the soft-
ware architecture. Despite the two levels of trandation, hardware implementa-
tions ensure that each memory access is trand ated only once within processor
pipeline stages. Thisis done by dynamically creating single-level tranglations
which combine the translations held within both guest and root TLBs.

If theroot TLB and guest TLB use the same page size, aguest TLB refill is
likely to require aroot TLB refill. When the root TLB uses page sizes larger
than those used by the guest operating system, the number of root TLB refills
can be reduced.

Guest context Configg.7 registers The guest context includes its own set of Configg_ registers. These are used
for two purposes within avirtualized system.

Thefirst purpose is to indicate to hypervisor software how the guest context is
configured in the particular hardware implementation. For example the hyper-
visor can determine the size of the guest TLB, and which optional features are
included.

The second purpose is for the hypervisor software to indicate to the hardware
implementation how the guest context should behave. Hardware implementa-
tions can choose to allow writes to fields within guest context Configg_; regis-
ters.

This alows the hypervisor to enable or disable certain architectural features,
or to change the virtual machine behavior seen by the guest.

The guest Configg_7 register are primarily intended for use by hypervisor soft-

ware, but access by guest kernels can be enabled. Given the infrequent access
to Configg.7 registers, it islikely that a hypervisor would choose to trap and

emulate guest accesses.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 91

The Virtualization Privileged Resource Architecture

Table 4.21 Virtualization Optimizations and their Intended Purpose

Virtualization Optimization Description

Interrupt delivery to guests Global and individual interrupt enables areincluded in the guest context, along
with interrupt-pending signals. Interrupt handlers are located at the standard
entry points within the guest address space, or controlled by the guest context
exception base register.

Hypervisor software can deliver interrupts to a guest by writing the interrupt
pending bits within the guest context. The hypervisor can enable immediate
delivery of an external interrupt to a guest through direct assignment (pending
interrupt passthrough).

Guest kernels can implement critical regions using the normal interrupt
enabl e/disable mechanisms, thus holding off delivery of interrupts to the guest
context.

External interrupts controlled by the root context cause an immediate exit from
guest mode, returning control to a hypervisor interrupt handler. The guest can-
not hold off these interrupts, as they are controlled by the root context.

Guest Timer system Hypervisor software needsto control the passage of time as viewed by aguest.
Guests need an efficient method to set up timer interrupts without incurring
drift.

The hypervisor can set a control bit to which allows a guest to read from the
timer’s Count register, and allows the guest to set up timer interrupts with the
Compare register.

The timer value seen by the guest is created by adding an offset to the real
timer value, stored in Root. GTOffset. The guest does not have direct write
accessto itstimer value - writes must be trapped and emulated by the hypervi-
sor.

It may be necessary for a hypervisor to disallow guest timer access when emu-
lation isrequired. This may be the case if aguest kernel is booted on a system
with one timer clock frequency, and is subsequently required to be re-sched-
uled on a core with adifferent timer clock frequency.

Secure, unique TLB entries based on | An optional GuestID feature provides a Root programmable unique identifier
GuestID. for usein TLB entries eliminating the requirement for invalidation of TLB
entries on virtual machine context switch. Refer to documentation on
GuestCtll|p and GuestCtllg p fieldsin Section 5.3 “GuestCtl1 Register

(CPO Register 10, Select 4)”.
Root control of Guest TLB mapping | The GuestCtlO 4y field provides control for whether the guest may use the

and Guest TLB resources. privileged registers and instructions related to the MMU.

1) mapping using Guest TLB This allows the situation where the guest TLB and Segmentation Control is
2) Guest TLB instructionsiregisters - | part of the address translation, but any guest access to the control registers
GuestCtiOar resultsin an exception (GuestCtl0r=1). This can be used both for hypervisor

control and to debug guest behavior.

92 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.13 Virtualization Module features and Hypervisor Software

Table 4.21 Virtualization Optimizations and their Intended Purpose

Virtualization Optimization

Description

Guest Software Field Change excep-
tions

The Guest Software Field Change exception system allows for hypervisor
intervention before certain guest-context register fields are changed. The
exception istaken prior to execution of the instruction which would have mod-
ified the field.

Some guest register fields are implemented which correspond to fields in the
root CPO context, but are not actually connected to hardware. An exampleis
the “reduced power” control bit Statusgp. When the guest kernel changes the
value of such afield, it is expecting some change of behavior in the virtual
machine. The field-change exception allows the hypervisor to respond appro-
priately.

In other cases (e.g., Cause)y) the field change would affect guest execution,
but hypervisor intervention may be required in order to set up some other
aspect of thevirtual machine - for the example given, changes may be required
to how external interrupts are passed to the guest.

Guest Hardware Field Change excep-
tion

The Guest Hardware Field Change exception is related to the Guest Software
Field Change exception. It is used to trigger hypervisor intervention on a hard-
ware initiated field change within aguest. This mechanism can be used for
debug, security or emulation purposes by the hypervisor.

Guest Privileged Sensitive Instruction
exceptions

The guest kernel modeis alimited privilege mode. The Guest Privileged Sen-
sitive Instruction exception is the primary mechanism by which the hypervisor
traps privileged instructions executed in guest mode.

It can be used for emulation of non-existent CPO registers, and emulation of
accesses to registers which have been disabled by the hypervisor.

The hypervisor is provided with a catch-all mechanism to trap on all guest
privileged operations (GuestCtlOcpg), and a number of more targeted
enables. These targeted enables include fields to control access to guest
address trandlation (GuestCtlO7), the guest timer (GuestCtl0gT), limited
cache operations (GuestCtlOcg), and the Configg_; registers present in the
guest context (GuestCtlOcp).

The ability to control access to these features allows the hypervisor to restrict
guest permissions, or to emulate the hardware behavior expected by a guest -
for example different Configg._; registers than are present in the machine.

Guest Reserved Instruction Redirect
exception

A control bit is provided (GuestCtlOg,) which allows guest Rl exceptions to

be redirected to hypervisor software. This enables emulation of instructions
which are not available in the guest context.

New privileged instruction HY P-
CALL

A new instruction is provided, specifically to allow guest kernels to make API
callsto the hypervisor software. This can be used from both guest-kernel and
root-kernel modes.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

93

The Virtualization Privileged Resource Architecture

Table 4.21 Virtualization Optimizations and their Intended Purpose

Virtualization Optimization Description

New privileged instructions New instructions are provided to allow access to the guest CPO context for

MFGCO, MTGCO hypervisor software running in root mode. These instructions aso provide

DMFGCO0, DMTGCO access to the guest CPO context for instructions executed in Debug mode, pro-

TLBGINV, TLBGINVF, vided by the EJTAG debug system.

TLBGR, TLBGWI,

TLBGP, TLBGWR The instructions DMFGCO, DMTGCO0, MFGCO0 and MTGCO alow datato be
transferred between general purpose registers (GPRs) and guest CPO context
registers.

Theinstructions TLBGINV, TLBGINVF, TLBGP, TLBGR, TLBGWI and
TLBGWR are used from root mode to access the guest context TLB using the
TLB registers located in the guest context.

94 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.14 Lightweight Virtualization

4.14 Lightweight Virtualization

4.14.1 Introduction

The Virtualization architecture provides support for a lightweight implementation. The focus of such an implementa-
tion isto reduce implementation cost and feature complexity. The added benefit of reduced feature complexity is that
root software is simplified to the point where it need not be a complete hypervisor. For example, it may handle guest
interrupts, guest exceptions and related context switching, but it wouldn’t provide support for an added level of guest
trandlation.

The lightweight virtualization specification may also support a different class of embedded applications. For exam-
ple, where a Root Protection Unit (RPU) is used, the guests are not different OSes, but applications within an OS,
where the applications are from different vendors who do not trust each other. Virtualization in this case has been
extended to secure embedded applications.

4.14.2 Support for Lightweight Virtualization

4.14.2.1 Root Protection Unit (RPU)

The RPU isadefeatured Root TLB that does not trandate a guest physical addressto aroot physical address, and thus
does not require storage for root physical address. Instead it assumes that the guest physical addressis identity
mapped to physical memory. However, the RPU checks the guest physical address on a page basis, where the pageis
programmed by root software. If the page matches, then the guest has access to related physical memory. Otherwise
the access will trap to root software, using standard exceptions.

The RPU and its software interface support all instructions and COPO registers of the baseline architecture and exten-
sions provided in the Virtualization Module. Root EntryL.oO and EntryLol PFN fields are assumed read-only as 0
since the RPU does not trandate guest physical addresses.

The CCA(Cache Coherency Attribute) field isrequired if guest CCA nesting isimplemented. Nested guest CCA han-
dling is described in Section 4.5.3 . Otherwise the guest CCA field is not required.

The RPU supports X I (Execute-Inhibit), RI(Read-Inhibit) along with D(Dirty) page attributes which are mandatory in
an RPU implementation.

An RPU will support multiple page-sizes, though it is implementation dependent in the baseline architecture as to
which page sizes are supported.

The RPU isonly supported in a configuration with aroot FMT (Fixed Mapping Table). Any addresses in root mode
must use the Root FMT. Any guest addresses go through the guest FMT or TLB, and RPU.

An RPU is present in an implementation that supports virtualization (Root.Config3,,,=1) and hasaroot FMT
(Root.Configyy1=3). It isthus possible for the guest MMU to support aguest TLB with an RPU.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 95

The Virtualization Privileged Resource Architecture

96

Refer to Table 4.22 for possible MMU configurations with an RPU.

Table 4.22 MMU Configurations with RPU

Guest Logical Address
Translation .
Root Logical Address
1st Pass 2nd Pass Translation
FMT RPU FMT
TLB RPU FMT

4.14.2.2 Architectural Control
Additional software visible control has been added for lightweight virtualization.

1. GuestCitl OEXtFCD

Thisfield disables hardware generation of Guest Hardware Field Change Exception, and Guest Software Field
Change Exceptions. Consequently, root software does not need to support related exception handlers.

See Section 5.6 for reference.

2. GuestCtl 3GLSB

Thisfield allows virtualization Shadow Set allocation among guests. This root managed field provides the lowest
shadow set allocated to a guest, with the upper bounds provided by root-writeable Guest. SRSCtl 5. The context

switch penalty is minimized as root need only write GuestCtl3g sgwhen entering a new guest.
See Section 5.5 and Section 4.9.1 for reference.

3. GuestCtl OEXtMG,OG,BG

These fields have been introduced to enable GPSI on guest access to specified guest CPO registers. Thisis useful
for fast guest context switching. In this case, root will save and restore limited guest CPO registers, but in case the
unsaved registers are accessed by guest, then an exception to root will allow root software to save and restore the
effected registers opportunistically.

See Section 5.6 for reference.

4. GuestCtl2GRripL GEICSSGVEC
See Section 5.4 and Figure 5.4, for reference for reference.

In EIC(External Interrupt Controller) mode for interrupt handling, GuestCtl2 provides the capability of fast
guest-to-guest interrupt switching capability. A guest interrupt on the root interrupt bus from the EIC will cause
capture of interrupt related state (GRIPL ,GEICSS,GVEC) in GuestCtl2. Guest entry will subsequently cause
hardware to load GRIPL and GEICSS into guest context automatically, and GVEC would be used by the guest
interrupt handler directly. The root interrupt handler thus does not have to copy state from GuestCtl2 to guest
context.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

4.14 Lightweight Virtualization

See Section 4.8.1.2 for adescription of EIC handling.

4.14.2.3 Optional Features of Virtualization Architecture
Certain features are optional in the virtualization architecture. An implementation may choose to support such fea-

tures based on the class of applications that the product will support. An example being that an implementation need
not support root write of all Configuration fieldslisted in Table 4.12.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 97

The Virtualization Privileged Resource Architecture

98 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Chapter 5

Coprocessor 0 (CPO) Registers

The Coprocessor 0 (CPO) registers provide the interface between the Instruction Set Architecture (ISA) and the Privi-
leged Resource Architecture (PRA). The CPO registers that are added or extended by the Virtualization Module are
discussed below, with the registers presented in numerical order, first by register number, then by select field number.

5.1 CPO Register Summary

Table 5.1 lists the CPO registers affected by the Virtualization Module specification, in numerical order. The individ-
ual registers are described later in this document. Registers which are not described here follow the definitions from

the MIPS64 Privileged Resource Architecture. The Sel column indicates the value to be used in the field of the same
name in the MFCO and MTCO instructions.

Section 4.6.3 “Guest CPO registers’ describes CPO register availability in guest mode.

Table 5.1 Virtualization Module Changes to Coprocessor 0 Registers in Numerical Order

Register Register Compliance

Number Sel Name Modification Reference Level
12 6 |[GuestCtl0 New Register. Controls guest mode behavior. Section 5.2 Required
10 4 | GuestCtll New Register. Guest ID Section 5.3 Optional
10 5 | GuestCtl2 New Register. Interrupt related Section 5.4 Optional
10 6 |[GuestCtl3 New Register. GPR Shadow Set related. Section 5.5 Optional
11 4 | GuestCtlOExt | Extension to GuestCtlO Section 5.6 Optional
12 7 | GTOffset New Register. Guest timer offset. Section 5.7 Required
13 0 |Cause Addition of hypervisor cause code. Section 5.8 Required
16 3 |[Config3 Identifies Virtualization Module feature set. Section 5.9 Required
19 0 | WatchHi Watch Debug. Section 5.10 Optional
25 0 |PerfCnt Performance Counter, adds virtualization support. Section 5.11 Optional
31 2 |KScratchl Required in root context. - Required
31 3 [KScratch2 Required in root context. - Required

5.2 GuestCtlO Register (CPO Register 12, Select 6)

Compliance L evel: Required by the Virtualization Module.

The GuestCtl0 register contains control bits that indicate whether the base mode of the processor is guest mode or

root mode, plus additional bits controlling guest mode access to privileged resources. The GuestCtlO register is acces-
sible only in root mode.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

99

Coprocessor 0 (CP0) Registers

31

The GuestCtl0 register isinstantiated per-VPE inaMT Module processor. This register is added by the Virtualization
Module.

Note on behaviour of GuestCtlOprg/rap: These R/W fields define additional functions for the Guest and Root TLBs.

Both must be interpreted together. An implementation does not have to support all valid combinations. Root software
can test supported combinations by writing then reading legal values. Legal values for (RAD,DRG)={00,01,11}.

Figure 5.1 shows the format of the Virtualization Module GuestCtIO register; Table 5.2 describes the GuestCtI0 regis-
ter fields.

Figure 5.1 GuestCtlO Register Format

GM

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
®)] nlwm
RI|{MC|CPO| AT |GT|CG|CF|Gl| Impl | & | PT |ASE PIP §) 8 GExcCode m|n
m oo Q1Q

100

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

5.2 GuestCtlO Register (CPO Register 12, Select 6)

Table 5.2 GuestCtl0 Register Field Descriptions

provide Root software control over certain mode-changing events
within guest context that may be frequent in guest context by causing

Field Change exceptions.
Encoding Meaning
0 During guest mode execution a hardware

initiated change to Guest.Statusgy, will
not trigger a Guest Hardware Field
Change Exception.

During guest mode execution, a software
initiated change to Guest.Statusyyksu
will not trigger a Guest Software Field
Change Exception.

During guest mode execution a hardware
initiated change to Guest.Statusgy, will
trigger a Guest Hardware Field Change
Exception.

During guest mode execution, a software
initiated change to Guest.Statusyyksu
will trigger a Guest Software Field
Change Exception.

Fields
Read / Reset
Name Bits Description Write State Compliance
GM 31 Guest Mode R/W 0 Required
The processor isin guest mode when GM=1, Root.Statusgy =0 and
Root.Statusgg, =0 and Root.Debugp,=0.
RI 30 Guest Reserved Instruction Redirect. R/W 0 Required
Encoding Meaning
0 Reserved Instruction exceptions dur-
ing guest-mode execution are taken in
guest mode.
1 Reserved Instruction exceptions dur-
ing guest-mode execution result in a
Guest Reserved Instruction Redirect
exception, taken in root mode.
MC 29 Guest Mode-Change exception enable. The purpose of thisenableisto R/W 0 Required

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 101

Coprocessor 0 (CP0) Registers

Table 5.2 GuestCtl0 Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
CPO 28 Guest access to coprocessor 0. R/W 0 Required
Encoding Meaning
0 Guest-kernel use of any Guest Privi-

leged Sensitive Instruction will trigger
a Guest Privileged Sensitive Instruc-
tion exception.

E.g., Guest use of TLBWI always
causes GPS| if CPO=0.

1 Guest-kernel use of selective Guest
Privileged Sensitive Instructionsis
permitted, subject to all other excep-
tion conditions.

Eg., Guest use of TLBWI only causes
GPSl if GuestCtlOpt =3 while CP0=1

Thelist of Guest Privileged Sensitive instructions which trigger a
Guest Privileged Sensitive Instruction exception is given in Section
477

The CPO hit has no other effect on the operation of coprocessor 0in
guest mode.

102 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

5.2 GuestCtlO Register (CPO Register 12, Select 6)

Table 5.2 GuestCtl0 Register Field Descriptions

Guest and Root MMU both implemented and
activein hardware.
Thismodeis optional.

Reserved
3 Guest MMU under Guest control.

Guest and Root MMU both implemented and
activein hardware.
Thismodeis required.

Guest TLB resources are;

e TLB related Instructions- TLBWR, TLBWI, TLBR, TLBP, TLB-
INV, TLBINVF.

 Supporting Registers - Index, Random, EntryLoO, EntryLo1,
EntryHi, Context, XContext, ContextConfig, PageMask,
PageGrain, SegCtl0, SegCtll, SegCtl2, PWBase, PWField,
PWSize, PWCIHI.

If the Guest TLB resources (excluding Index, Random, EntryL o0,

EntryLol, Context, X Context, ContextConfig, PageMask and

EntryHi) are under Root control (GuestCtl0,1=1), Guest use of these

instructions or access to any of these registers (see Table 4.8), will

trigger a Guest Privileged Sensitive Instruction exception, alowing

Root to control Guest address translation directly. For additional infor-

mation refer to Table 4.21, Entry: “Root control of Guest TLB map-

ping and Guest TLB resources”

In default mode (GuestCtl07=3), the Guest TLB resources are active

under Guest control. Refer to Section 4.5 “Virtual Memory” for addi-
tional information on guest virtual address translation.

Fields
Read / Reset
Name Bits Description Write State Compliance
AT 27:26 | Guest Address Translation control. RorR/W | Imple- Required
if more | mentation
Encoding Meaning than defined
0 Resorved default
mode
imple-
1 Guest MMU under Root control. mented.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

103

Coprocessor 0 (CP0) Registers

Table 5.2 GuestCtl0 Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
GT 25 Timer register access. R/W 0 Required
Encoding Meaning
0 Guest-kernel accessto Count or
Compare registers, or aread from
CC with RDHWR will trigger a Guest
Privileged Sensitive Instruction
exception.
1 Guest kernel read access from Count
and guest-kernel read or write access
to Compare is permitted. Guest reads
from CC using RDHWR are permit-
ted in any mode.
The GT bit has no other effect on the operation of timersin guest
mode.
CG 24 Cache Instruction Guest-mode enable. RO, 0 Optional
If RO, then GPSI exception will always occur. CG asan enablein thuis R/W
thus optional .
CACHEE is optional in the baseline architecture.
Encoding Meaning
0 A Guest Privileged Sensitive Instruc-
tion exception will result from use the
CACHE, CACHEE instruction.
1 The CACHE, CACHEE instruction
can be used with an Effective Address
Operand type of ‘Address’. A Guest
Privileged Sensitive Instruction
exception will result from use of any
other Effective Address Operand type.
CF 23 Config register access. R/W 0 Required
Encoding Meaning
0 Guest-kernel write access to
Config0-7 will trigger a Guest Privi-
leged Sensitive Instruction exception.
1 Guest-kernel accessto Config0-7 is
permitted.
The CF bit has no other effect on the operation of Config register
fieldsin guest mode.

104 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

5.2 GuestCtlO Register (CPO Register 12, Select 6)

Table 5.2 GuestCtl0 Register Field Descriptions

Fields
Read / Reset

Name Bits Description Write State Compliance

Gl 22 GuestCtl1 register implemented. Set by hardware. R preset Required

Encoding Meaning

0 Unimplemented

1 Implemented.

Impl 21.20 | Implementation defined. R/W 0 Required
These bits are implementation dependent and not

defined by the architecture. If not implemented,

they must be ignored on write and read as zero.

If implemented and if modifying the behavior of

the processor, it must be defined in such away that

correct behavior is preserved if software, with no knowledge
of these bits, reads the GuestCtlO register, modifies

another field, and writes the updated value back to the
GuestCtlO register.

GOE 19 GuestCtIOEXt register implemented. Set by hardware. R preset Required

Encoding Meaning

0 Unimplemented

1 Implemented.

PT 18 Defines the existence of the Pending Interrupt Passthrough feature. R preset Required

Encoding Meaning

0 GuestCtlOp,p not supported.
GuestCtlOpp isareserved field.

All externa interrupts are processed
via Root intervention.

1 GuestCtlOp,p supported. Interrupts
may be assigned to Root or Guest.

Implementation of the Pending Interrupt Passthrough featureis
strongly recommended.

ASE 17..16 | Reserved for MCU Module Pending Interrupt Passthrough. 0 0 Required for
MCU Module;
Otherwise
Reserved

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 105

Coprocessor 0 (CP0) Registers

Table 5.2 GuestCtl0 Register Field Descriptions

Fields
Read / Reset

Name Bits Description Write State Compliance

PIP 15..10 | Pending Interrupt Passthrough. R/W 0 Required
In non-EIC mode, controls how external interrupts are passed through RO if

to the guest CPO context. Interpreted as abit mask and applies1:1to | unimple-
Guest.Causep[7:2] . GuestCtl1pp may be extended by GuestCtllpge. | mented
Existence of the PIP feature is defined by the GuestCtlOp+ field.

See Section 4.8.

Encoding Meaning

0 Corresponding interrupt request is not
visible in guest context.

1 Corresponding interrupt request is
visible in guest context.

RAD 9 RAD, or “Root ASID Dedias’ mode determines the means that a Vir- R 0 Required
tualized MMU implementation uses Root ASID to dealias different
contexts.

Encoding Meaning

0 GuestID used to deadlias both Guest
and Root TLB entries.

1 Root ASID is used to dealias Root
TLB entries, while Guest TLB con-
tains only one context at any given
time.

DRG 8 DRG, or “Direct Root to Guest” access determines whether an imple- RO, 0 Required
mentation provides root kernel the means to access guest entries R/W
directly in the Root TLB for access to guest memory.

If GuestCitl ODRG:1 then GUeStCthR|D must be used. If GuestID for
root operation is non-zero, root isin kernel mode, Root. Statu-

SexL er. =0 and Debugp=0, then all root kernel data accesses are
mapped, root SegCtl isignored and Root TLB CCA isused. Accessin
root mode by other than kernel will cause an address error. H/W must
set G=1 asif the access were for guest.

DRG is RO if only DRG=0 supported, otherwise it must be R/W.

Encoding Meaning

0 Root software cannot access guest
entries directly.

1 Root software can access guest entries
directly.

106 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

5.2 GuestCtlO Register (CPO Register 12, Select 6)

Table 5.2 GuestCtl0 Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
G2 7 GuestCtl2 register implemented. Set by hardware. R preset Required
Encoding Meaning
0 Unimplemented
1 Implemented.
GExc- 6.2 Hypervisor exception cause code. Described in Table 5.3. R Undefined Required
Code Thisfield is UNDEFINED on aroot exception.
SFC2 1 Guest Software Field Change exception enable for Guest.Satuscy ;- R/W if 0 Optional
The purpose of this enableisto provide Root software control over imple-
guest COP2 enable related Field Change exception. Guest software menteq, 0
may utilize Statusgyy, for COP2 specific context switching. otherwise
Encoding Meaning
0 GSFC exception taken if CU[2] is
modified by guest.
1 GSFC exception not taken if CU[2]
modified by guest.
SFC1 0 Guest Software Field Change exception enable for Guest. Satuscyy ;- R/W if 0 Optional
The purpose of this enable isto provide Root software control over imple-
guest COP1 enable related Field Change exception. Guest software menteo_l, 0
may utilize Statuscy; for COPL specific context switching. otherwise.
Encoding Meaning
0 GSFC exception taken if CU[1] is
modified by guest.
1 GSFC exception not taken if CU[1]
modified by guest.
Table 5.3 describes the cause codes use for GExcCode.
Table 5.3 GuestCtl0 GExcCode values
Exception code value
Decimal Hexadecimal | Mnemonic Description
0 0x00 GPSI Guest Privileged Sensitive instruction. Taken when execution of a Guest Privi-
leged Sensitive Instruction was attempted from guest-kernel mode, but the
instruction was not enabled for guest-kernel mode.
1 0x01 GSFC Guest Software Field Change event
2 0x02 HC Hypercall

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

107

Coprocessor 0 (CP0) Registers

Table 5.3 GuestCtl0 GExcCode values

Exception code value

Decimal Hexadecimal | Mnemonic Description

3 0x03 GRR Guest Reserved Instruction Redirect. A Reserved Instruction or MDMX Unus-
able exception would be taken in guest mode. When GuestCtlOg =1, this

root-mode exception is raised before the guest-mode exception can be taken.

4-7 0x4 - Ox7 IMP Available for implementation specific use

8 0x08 GVA Guest modeinitiated Root TLB exception has Guest Virtual Address available.
Set when aGuest mode initiated TLB translation resultsin aRoot TLB related
exception occurring in Root mode and the Guest Physical Addressis not avail-

able.

9 0x09 GHFC Guest Hardware Field Change event

10 Ox0A GPA Guest mode initiated Root TLB exception has Guest Physical Address avail-
able.

Set when a Guest mode initiated TLB translation resultsin aRoot TLB related
exception occurring in Root mode and the Guest Physical Addressis available.

11-31 0xB - Ox1f - Reserved

5.3 GuestCtl1 Register (CPO Register 10, Select 4)

Compliance L evel: Optional in the Virtualization Module.

The GuestCtl1 register defines GuestlD control fields for Root (GuestCtllz p) and Guest (GuestCtl1p) which may be
used in the context of TLB instructions, instruction and data address translation. The GuestCtllg,p field additionally
iswritten by the processor on aTLBR or TLBGR instruction in Root mode, then containing the GuestID read from
the TLB entry. A TLBR executed in Guest mode does not cause awrite to either GuestCtl1,5 and GuestCtllgp

GuestCtl1 is optional and thus the use of GuestID is optional in the context of TLB instructions, instruction and data
address tranglation. The GuestCtl 1 register only existsin Root Context. GuestID value of O is reserved for Root.

Section 4.5.1 “Virtualized MMU GuestID Use” provides additional detail on GuestlD usage asit appliesto instruc-
tion and data address trandlation. Section 4.6.2 “New CPO Instructions’ describes the TLB instructions and their use
of GuestID.

The primary purpose of the GuestI D isto provide a unique component of the Guest/Root TLB entry eliminating TLB
invalidation overhead on virtual machine level context switch.

A system implementing a GuestID is required to support a guest identifier field (GID) in each Guest and Root TLB
entry. This GuestID field within the TLB is not accessible to the Guest. While operating in guest context, the behavior
of guest TLB operations is constrained by the GuestCtl1,; field so that only guest TLB entries with amatching GID

field are considered.

The actual number of bits usable in the GuestCtl1,; and GuestCtllgp fields isimplementation dependent. Software
may determine the usable size of these fields by writing all ones and reading the value back. The size of GuestCtl1,p
and GuestCtl 1z, p must be equal .

The GuestCtl1 register isinstantiated per-VPE inaMT Module processor.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

5.4 GuestCtl2 Register (CPO Register 10, Select 5)

Figure 5.2 shows the format of the Virtualization Module GuestCtl1 register; Table 5.4 describes the GuestCtl1 regis-
ter fields.

Figure 5.2 GuestCtl1 Register Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

EID RID 0 ID

Table 5.4 GuestCtl1 Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
EID 31..24 | Externa Interrupt Controller Guest ID. ROorR 0 Optional

Required if an External Interrupt Controller (EIC) is supported.

A guest interrupt which is posted by the EIC to the root interrupt bus,
must cause the Guest |D of the root interrupt busto be registered in EID
once the interrupt is taken.

If implemented, the field is read-only and set by hardware.

If not implemented then must be written as zero; returns zero on read.

RID 23..16 | Root control GuestID. Used by root TLB operations, and when R/W 0 Required
GuestCtlOprg=1 in root mode.

0 15..8 Must be written as zero; returns zero on read. RO 0 Reserved
ID 7.0 Guest control GuestID. Identifies resident guest. Appliesto guest R/W 0 Required
address trandation.

5.4 GuestCtl2 Register (CPO Register 10, Select 5)

Compliance L evel: Optional in the Virtualization Module.

The GuestCtl2 register is optional in an implementation. It isonly required if support for Virtual Interruptsin
non-EIC modeisincluded in an implementation. Alternatively, if EIC modeis supported, then GuestCtl2 isrequired.
Refer to Section 4.8.1 “External Interrupts’ for a description of interrupt handling in EIC and non-EIC modes.

An implementation that supports the virtual interrupt functionality of GuestCtl2 is not required to support root writes
of Guest.Causep[7:2] or Guest.Causegp, as described in Table 4.12.

GuestCtl2 is present in an implementation if GuestCtl25,=1.

The GuestCtl2 register isinstantiated per-VPE inaMT Module processor.

Figure 5.3 shows the format of the Virtualization Module GuestCtl2 register in non-EIC mode. Table 5.5 describes
the non-EIC mode GuestCtI2 register fields.

Figure 5.4 shows the format of the Virtualization Module GuestCtI2 register in EIC mode. Table 5.6 describes the
EIC mode GuestCtl2 register fields.

Figure 5.3 GuestCtl2 Register Format for non-EIC mode
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

ASE HC 0 ASE VIP 0 Impl

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 109

Coprocessor 0 (CP0) Registers

Figure 5.4 GuestCtl2 Register Format for EIC mode
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

ASE GRIPL 0 GEICSS 0 GVEC

Table 5.5 non-EIC mode GuestCtl2 Register Field Descriptions

Fields
Read / Reset

Name Bits Description Write State Compliance

ASE 31:30 MCU Module extension for HC. Must be written as zero; returns zero RO 0 Reserved
onread.

HC 29..24 | Hardware Clear for GuestCtl2y,p R, Oorl Optional
This set of bits maps one to one to GuestCtl2,,p RIW

HC may be bit-wise Read-only or R/W. If abit is Read-only, then it may
be preset to O or 1. Similarly, if abit is R/W, then it may bereset to O or
1. Theinterpretation of O or 1 state follows.

Encoding Meaning

0 The deassertion of related external
interrupt (IRQ[N]) has no effect on
GuestCtl2,,p[n]. Root software must
write zero to GuestCtl2,,p[n] to clear
the virtual interrupt.

1 The deassertion of related external

interrupt (IRQ[N]) causes
GuestCtl2,,p[n] to be cleared by h/w.

In the case of HC=0, Guest.Cause,p[n+2] could continue to be asserted
due to an external interrupt when GuestCtl2,,p[n] is cleared by soft-
ware. Source of external interrupt must be serviced appropriately.

The choice of Read-only vs. R/W isimplementation dependent. Root
software can write then read field to determine supported configuration.

0 25..18 | Must be written as zero; returns zero on read. RO 0 Reserved

ASE 17:16 MCU Module extension for VIP. Must be written as zero; returns zero RO 0 Reserved
on read.

110 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

5.4 GuestCtl2 Register (CPO Register 10, Select 5)

Table 5.5 non-EIC mode GuestCtl2 Register Field Descriptions

Fields

Name

Bits

Description

Read / Reset
Write State Compliance

VIP

15..10

Virtua Interrupt Pending.

The VIPfield is used by root to inject virtual interrupts into Guest con-
text. VIP[5..0] maps to Guest.Status;p[7..2]. VIP effects Guest. Satus;p

in the the following manner:

R/W 0 Required

Encoding Meaning

0 Guest.Status,p[n+2] cannot be

IRQ[n].n=5..0

asserted due to VIP[n], though it may
be asserted by an external interrupt

interrupt. n=5..0

1 Guest. Status;p[n+2] must at least be

asserted due to VIP[n]. It may also be
asserted by a concurrent external

9.5

Must be written as zero; returns zero on read.

RO 0 Reserved

Impl

4.0

Implementation.

These bits are implementation dependent and not
defined by the architecture. If not implemented,
they must be written as 0, and read as zero.

If implemented and if modifying the behavior of
the processor, it must be defined in such away that

correct behavior is preserved if software, with no knowledge

of these bits, reads the GuestCtl2 register, modifies
another field, and writes the updated value back to the
GuestCtl2 register.

R/W 0 Required

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 111

Coprocessor 0 (CP0) Registers

Table 5.6 EIC mode GuestCtl2 Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
ASE 31:30 | MCU Module extension for GRIPL. Must be written as zero; returns RO 0 Reserved
zero on read.
GRIPL 29..24 | Guest RIPL R/W 0 Required

Thisfield iswritten only when an interrupt received on the root interrupt
bus for aguest is taken. The RIPL (Requested Interrupt Priority Level)
sent by EIC on the root interrupt bus is written to thisfield.

Root software can write the field if it needs to modify the EIC value
before assigning to guest. It may also clear thisfield to prevent atransi-
tion to guest mode from causing an interrupt if thisfield was set with a
non-zero value earlier.

GRIPL is 10 bits only for an implementation that complies with the
MCU Module, otherwiseit is 8 bits as in baseline architecture.

GEICSS 21:18 | Guest EICSS R/W Undefined Required
Thisfield iswritten only when an interrupt received on the root interrupt
bus for aguest istaken. The EICSS (Externa Interrupt Controller

Shadow Set) sent by EIC on the root interrupt bus is written to thisfield

Root software can write the field if it needs to modify the EIC value
before assigning to guest.

0 17:16 | Must be written as zero; returns zero on read. RO 0 Reserved

GVEC 15:0 Guest Vector R/W Undefined Required
Thisfield iswritten only when an interrupt is received on the root inter-
rupt bus for a guest. The Vector Offset (or Number) sent by EIC on the
root interrupt bus is written to thisfield.

GVEC isnot loaded into any guest CPO field, but is used to generate an
interrupt vector in guest mode using the root interrupt bus vector and not
the guest interrupt bus vector. Thiswill only occur if the interrupt was
first taken in root mode.

It is recommended that root software use write access only to restore
context, not to modify the value delivered by the EIC.

5.5 GuestCtl3 Register (CPO Register 10, Select 6)

Compliance L evel: Optional in the Virtualization Module.

The GuestCtl3 register is optional. It isrequired only if Shadow GPR Sets are supported, and the Shadow Sets used
by aguest are virtual and require mapping to physical Shadow Sets. With this mechanism, a pool of Shadow Sets can
be physically shared by partitioning the sets among multiple guests and root, under root control.

Virtual mapping of Guest GPR set(s) is supported if Guest SRSCtl <5 is writeable by root. Presence of GuestCtl3 can
be detected by root software by writing any non-zero value less than or equal to root SRSCtl g to Guest SRCil s
If aread returns the value written, then GuestCtl3 is present.

112 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

5.6 GuestCtIOExt Register (CPO Register 11, Select 4)

The GuestCtl3 register isinstantiated per-VPE inaMT Module processor.

Figure 5.3 shows the format of the Virtualization Module GuestCtl3 register; Table 5.7 describes the GuestCtl3 regis-
ter fields.

Figure 5.5 GuestCtl3 Register Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0 0 0 0 0 0 0 GLSS

Table 5.7 GuestCtl3 Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
0 31:4 This bit must be written as zero, returns zero on read. RO 0 Reserved
GLSS 3.0 Guest Lowest Shadow Set number. RO, 0 Required
This determines the lowest physical Shadow Set number assigned by R/W
root to guest. Guest is thus assigned physical Shadow Sets GLSS to
GLSS plus Guest SRCtlss
If thisfield is reserved, then all writes must be zero, and reads should
return 0.

5.6 GuestCtlOExt Register (CPO Register 11, Select 4)

Compliance L evel: Optional in the Virtualization Module.

GuestCtIOEXt is an optional extension to GuestCtl0. If not supported, the register must read as 0.
GuestCtlOgg should be read by software to determine if GuestCtIOExt is implemented.

The GuestCtIOEXt register is instantiated per-VPE in aMT Module processor.

Figure 5.6 shows the format of the Virtualization Module GuestCtIOExt register; Table 5.8describes the GuestCtIOExt
register fields.

Figure 5.6 GuestCtlOExt Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 1716 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Qld|o|m|=Z
0 RPW | NCC | O o} 8 305

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 113

Coprocessor 0 (CP0) Registers

Table 5.8 GuestCtIOExt Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
0 31:6 Must be written as zero, returns zero on read. RO 0 Reserved
RPW 9:8 Root Page Walk configuration. RO, 0 Optional
Determines whether Root COPO Page Walk registers are used for GPA R/W
to RPA or RVA to RPA trandations, or both.
Support for RPW is optional. If thisfield is read-only 0O, it implies page-
walk is supported for both cases.
Encoding Meaning
00 Pagewalk, if enabled, is enabled for
both. Root softwareis responsible for
restoring COPO Page Walk related
registers on context switch between
root and guest.
01 Reserved
10 Pagewalk in root context is enabled
for guest GPA to RPA trandation.
Root missin root TLB will cause an
exception.
11 Pagewalk in root context is enabled
for root RVA to RPA trandation.
Guest missinroot TLB will cause a
root exception.
NCC 7:6 Nested Cache Coherency Attributes R Preset Optional
Determines whether guest CCA is modified by root CCA in 2nd step of
guest address trangl ation.
Encoding Meaning
00 Guest CCA isindependent of root CCA
01 Guest CCA ismoadified by root CCA in
manner described in Table 4.4
10 Reserved
11 Reserved
0 5 Must be written as zero, returns zero on read. RO 0 Reserved

114 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

5.6 GuestCtIOExt Register (CPO Register 11, Select 4)

Table 5.8 GuestCtIOExt Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
Cal 4 Related to GuestCtlOqg. Allows execution of CACHE, CACHEE Index RO, 0 Optional
Invalidate operationsin guest mode. RW
Encoding Meaning
0 Definition of GuestCtlOcg does not
change.
1 If GuestCtlOcg =1 and
GUeStCthEXtCG| =1, thenal CACH E,
CACHEE Index Invalidate (code
0xb000) operations may execute in
guest mode without causing a GPSI.
Thisfield is RO if feature is not implemented.
The CACHEE instruction is optional in the baseline architecture.
FCD 3 Disables Guest Software/Hardware Field Change Exceptions RO, 0 Optional
(GSFCIGHFC). R/W

Thismode is useful for an implementation with root software that is not
afull-featured hypervisor. For e.g., the software may just support mem-
ory protection, but may not require protection of CPO state.

If FCD=1, then hardware must treat guest write, in case of GSFC, and
hardware events, in case of GHFC, as in the baseline architecture.

Encoding Meaning
0 GSFC or GHFC event will cause
exception.
1 GSFC or GHFC event will not cause
exception.

Thisfield is RO if feature is not implemented.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 115

Coprocessor 0 (CP0) Registers

Table 5.8 GuestCtIOExt Register Field Descriptions

Fields
Read / Reset

Name Bits Description Write State Compliance

0oG 2 Other GPSI Enable. Appliesto UserLocal, HWREna, LLAddr, Reserved RO, 0 Optional
(for Architecture), User TraceDatal, User TraceData2, KScratchl R/W
through KScratch6, when implemented. If function is not supported, this
field reads as 0.

Encoding Meaning

0 GPSI not enabled for these registers
unless GuestCtlOcpg=0.

1 GPSI enabled for these registers.

For a description of Reserved for Architecture registers, see Section
4631 .

UserTraceDatal, User TraceData2 are optional CPO registers defined in
MIPS PDTrace, iFlowTrace specifications.

Thisfield is RO if feature is not implemented.

BG 1 Bad register GPSI Enable. Applies to BadVAddr, Badinstr, BadlnstrP RO, 0 Optional
when implemented. If function is not supported, thisfield reads as 0. R/W

Encoding Meaning

0 GPSI not enabled for these registers
unless GuestCtl0cpg=0.

1 GPSI enabled for these registers.

Thisfield is RO if feature is not implemented.

MG 0 MMU GPSI Enable. Appliesto Index, Random, EntryLo0O, EntryLol, RO, 0 Optional
Context, ContextConfig, XContextConfig, PageMask, EntryHi. If func- R/W
tion is not supported, thisfield reads as 0.

Encoding Meaning

0 GPSI not enabled for these registers
unless GuestCtl Ocpozo.

1 GPSl enabled for these registers.

Thisfield isRO if feature is not implemented.

5.7 GTOffset Register (CPO Register 12, Select 7)

Compliance L evel: Required by the Virtualization Module.

Timekeeping within the guest context is controlled by root mode. The guest time value is generated by adding the
two’s complement offset in the Root. GTOffset register to the root timer in value Root.Count.

116 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

31

5.8 Cause Register (CP0O Register 13, Select 0)

The guest time value is used to generate timer interrupts within the guest context, by comparison with the
Guest.Compare register. The guest time value can be read from the Guest.Count register. Guest writes to the
Guest.Count register always result in a Guest Privileged Sensitive I nstruction exception.

The number of bits supported in GTOffset isimplementation dependent but must be non-zero. It isrecommended that
aminimum of 16 bits be implemented. Root software can check the number of implemented bits by writing al ones
and then reading. Unimplemented bits will return zero.

The GTOffset register isinstantiated per-VPE inaMT Module processor. This register is added by the Virtualization
Module.

See Section 4.6.8 “Guest Timer”.

Figure 5.7 shows the Virtualization Module format of the GTOffset register; Table 5.9 describes the GTOffset register
fields.

Figure 5.7 GTOffset Register Format

GTOffset

Table 5.9 GTOffset Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
GTOffset 31:0 Two's complement offset from Root.Count R/W 0 Required

5.8 Cause Register (CPO Register 13, Select 0)

Compliance L evel: Required by the Virtualization Module.

Asin MIPS64, the Cause register describes the cause of the most recent exception, and provides control of software
interrupt requests and interrupt vector selection.

The behavior of the Cause register is changed by the Virtualization Module only by the addition of one new cause
code.

The Cause register isinstantiated per-VPE inaMT Module processor.
Figure 5.8 shows the format of the Cause register; Table 5.10 describes fields modified by the Virtualization Module.

Figure 5.8 Virtualization Module Cause Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 10 9 8 7 6 2 1 0
BD|TI| CE |DC|PCI 0 IV |WP 0 Mucl)g_ IP7..IP2 / RIPL IP1..1IPO| O ExcCode 0
MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 117

Coprocessor 0 (CP0) Registers

Table 5.10 Cause Register Field Description, modified by Virtualization Module

Fields
Read / Reset
Name Bits Description Write State Compliance
ExcCode 6..2 Exception Code - See Table 5.11. R Undefined Required
Addition of Hypervisor (GE) code.

Table 5.11 describes the new cause code value defined for ExcCode.

Table 5.11 Cause Register ExcCode values

Exception code value

Decimal Hexadecimal Mnemonic Description

27 Ox1b GE Hypervisor Exception (Guest Exit). GE is set to 1 in following cases:

- Hypervisor-intervention exception occurred during guest mode execution.
- Hypercall executed in root mode

GuestCitl Ogeyccode CONtains additional cause information.

5.9 Configuration Register 3 (CPO Register 16, Select 3)

118

Compliance L evel: Required by the Virtualization Module.
The Config3 register encodes additional capabilities. All fields in the Config3 register are read-only.
Thisregister operates as described by the base architecture, except that the VZ field is added.

If Virtualization is supported (Config3,,,=1), and GuestID is supported, then explicit invalid TLB entry support
(EHINV) isrequired in order for a Guest to be able to detect invalid entries in the Guest TLB.

In Guest context, the VZ field is reserved and read as 0.
Figure 5-9 shows the format of the Config3 register; Table 5.12 describes the fields added to the Config3 register by
the Virtualization Module.

Figure 5-9 Config3 Register Format
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

c D c
BMI\gBBSPV M 1sA LLJRSQT'LEY €Dl
M| P|G IPLw| MMAR [u| On| ISA X|P X| TP} SP| M| T |SMITL
clclAlP'CY]? C|Exc ShilzolTial Lt M
R Y P C
n

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

5.10 WatchHi Register (CP0O Register 19)

Table 5.12 Config3 Register Field Descriptions

Fields
Read / Reset Complianc
Name Bits Description Write State e
VZ 23 MIPS® Virtualization Module implemented. This bit R Preset Required
indicates whether the Virtualization Module is present. (Always 0
Encodi Meani in Guest
ncoding eaning context)
0 Virtualization Module not imple-
mented
1 Virtualization Module isimplemented

5.10 WatchHi Register (CPO Register 19)

Compliance L evel: Optional.

The WatchHi register is as defined in the base architecture, except that it has been extended to optionally support
watch management in virtualized guest and root contexts.

Figure 5-10 shows the format of the WatchHi register; Table 5.13 describes the added WatchHi register fields.

The WatchHi register has a 10b wide ASID field only if Configdag=1. Otherwise, the ASID field is 8b wide.

Figure 5-10 WatchHi Register Format

31 30 29281272625 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M| G|WM 0 ASID 0 Mask IR

Table 5.13 WatchHi Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
WM 29.28 | Thisfield isused for Root management of Watch func- R/W or 0 Required
tionality in an implementation supporting the Virtualiza- R (Release 3)

tion Module.

Thisfield isreserved and read as 0, for Guest WatchHi,
or if such functionality is unimplemented. Software can
determine existence of this feature by writing then read-
ing thisfield.

Refer to Section 4.12 “Watchpoint Debug Support”

5.11 Performance Counter Register (CPO Register 25)

Compliance L evel: Optional.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 119

Coprocessor 0 (CP0) Registers

120

The PerfCnt register(s) are as defined in the base architecture, except that the EC field has been added to optionally
support performance measurement in virtualized guest and root contexts.

The Control Register associated with each performance counter controls the behavior of the performance counter.

Figure 5-11 shows the format of the Performance Counter Control Register; Table 5.14 describes the new Perfor-
mance Counter Control Register fields.

Figure 5-11 Performance Counter Control Register Format
31 30 29 25 24 23 22 16 15 14 11 10 5 4 3 2 1 0

M| W Impl EC 0 PCTD | EventExt Event IE| U|S|K|EXL

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

5.11 Performance Counter Register (CPO Register 25)

Table 5.14 New Performance Counter Control Register Field Descriptions

Fields

Name

Bits

Description

Read /
Write

Reset
State

Compliance

EC

24:23

Event Class. Root only. Reserved, read-only O in all
other contexts. An implementation may detect the exist-
ence of thisfeature by writing anon-zero value to the
field and reading. If value read is O, then EC is not sup-
ported.

Encoding Meaning

0 Root events counted. [default]
Active in Root context.

1 Root intervention events counted,
Activein Root context.

2 Guest events counted.
Active in Guest context.

3 Guest events plus Root intervention
events counted.

Active in Guest context.

Root will only assign encoding if it
wants to give Guest visibility into
Root intervention events.

Root events are those that occur when GuestCtlOgy,=0.
Root intervention events are those that occur when
GuestCtlOg=1 and ! (Root. Statusgy =0 and Root.Sta-
tusgr =0 and Root.Debugp),=0)

Guest events are those that occur when GuestCtlOgy,=1
and Root.Statusgy =0 and Root.Statusgg =0 and
Root.Debugpy, =0

For the case of root intervention mode, PerfCtl ;g /exL
areignored as Root.Statusgy =1 and root must bein
kernel mode.

An implementation must qualify existing performance
counter events with the value of EC. For example, if an
event is “Instructions Graduated” and EC=0, then only
instructions graduated in root mode are counted.

R/W in
Root
mode.

ROinall
others.

0

Optional

/XTLB

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

121

Coprocessor 0 (CP0) Registers

5.12

122

Note on future CPO features

Implementation note: Addition of anew feature to the root context does not mean that it must be included in the guest
context. However, when it becomes necessary to include a new architectural feature in the guest CPO context, the fol-
lowing rules must be followed.

A new architectural feature must have a corresponding Guest.Config field, which matches the Root.Config defini-
tion.

The guest context must always be a subset of the root. No feature can be specified with a Guest.Config field
which does not also exist in the root.

It isrecommended that the Guest.Config field be writable from root mode, to allow the feature to be disabled and
become invisible to the guest.

When the corresponding Guest.Config field indicates that a feature is present, it will operate as specified for root
mode, and will only use state held in the guest context. The functional behavior of the feature will not be atered
by fields in the root context. Timing may be affected.

Root mode state can only be used to apply translations to the inputs or outputs of the feature, to check for excep-
tion conditions within the feature, or to check guest interaction with the feature. The GuestCtl0 register should be
used for single-bit exception-enable bits.

Hypervisor exceptions can be triggered without the need for a GuestCtl0 bit, if the exception always results from
specified guest-mode interactions with the feature, or specified events within the feature itself. These exceptions
will be taken in root mode.

All memory accesses performed by the feature must be translated under root control. Thiswill be through the
root TLB unless another mechanism is provided (e.g. an IOMMU).

Synchronous exceptions detected by the guest context have a higher priority than the equivalent exception
detected by the root context. Synchronous exceptions originate from the ‘inside of the onion’ - the first boundary
to be crossed is the guest context, then the root context.

Asynchronous exceptions detected by the root context have higher priority than the equivalent exception detected
by the guest context. Asynchronous exceptions (e.g. interrupts, memory error) originate from ‘outside of the
onion’ - thefirst boundary to be crossed is the root context, and then the guest context.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Chapter 6

Instruction Descriptions

6.1 Overview

The Virtualization Module adds new and modifies existing instructions to allow root-mode access to the guest Copro-
cessor 0 context and the guest TLB. A new ‘hypercall’ instruction is added, to allow hypervisor callsto be made from
guest mode.

Table 6.1 listsin alphabetical order the instructions newly defined or modified by the Virtualization Module.

Table 6.1 New and Modified Instructions

Mnemonic Instruction Description Reference
HYPCALL |Hypercal Trigger Hypercall exception. “HYPCALL” on
page 128
DMFGCO | Doubleword Move from Guest Copro- | Read guest coprocessor 0 into GPR. “DMFGCO0” on
cessor 0 page 126
DMTGCO |Doubleword Move from Guest Copro- | Write guest coprocessor 0 from GPR. “DMTGCO” on
cessor 0 page 127
MFGCO | Move from Guest Coprocessor O Read guest coprocessor 0 into GPR. “MFGCO” on
page 129
MTGCO | Move from Guest Coprocessor 0 Write guest coprocessor 0 from GPR. “MTGCO0” on
page 135
TLBGINV | Guest TLB Invalidate Trigger guest TLB invalidate from root mode. | “TLBGINV” on
page 140
TLBGINVF | Guest TLB Invalidate Flush Trigger guest TLB invalidate from root mode. | “TLBGINVF" on
page 142
TLBGP | Probe Guest TLB Trigger guest TLB probe from root mode. “TLBGP’ on
page 145
TLBGR |Read Guest TLB Trigger guest TLB read from root mode. “TLBGR” on
page 148
TLBGWI | Write Guest TLB Trigger guest TLB write from root mode. “TLBGWI” on
page 150
TLBGWR | Write Guest TLB Trigger guest TLB write from root mode. “TLBGWR” on
page 152
TLBINV | TLB Invalidate Modified TLB Invalidate behavior. “TLBINV” on
page 154
TLBINVF |TLB Invalidate Flush Modified TLB Invalidate Flush behavior. “TLBINVF" on
page 156
TLBP TLB Probe Modified TLB probe behavior. “TLBP’ on
page 157

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

123

Instruction Descriptions

Table 6.1 New and Modified Instructions

Mnemonic Instruction Description Reference
TLBR Read TLB Modified TLB read behavior. “TLBR” on
page 159
TLBWI Write TLB, Indexed Modified indexed TLB write behavior. “TLBWI” on
page 162
TLBWR | Write TLB, Random Modified random TLB write behavior. “TLBWR” on
page 164

124 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

6.1 Overview

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 125

Doubleword Move from Guest Coprocessor 0 DMFGCO
31 26 25 21 20 16 15 11 10 8 0
COPO \%
010000 00011 rt rd 001 00000 sel
6 5 5 5 3 5 3
Format: DMFGCO rt, rd MI1PS64
DMFGCO rt, rd, sel MIPS64

Purpose: Doubleword Move from Guest Coprocessor 0

To move the contents of a guest coprocessor O register to ageneral purpose register (GPR).

Description: GPR[rt] « CPR[O0,rd, sell

The contents of the guest context coprocessor O register are loaded into GPR rt. Note that not all guest context copro-

cessor O registers support the sel field. In those instances, the sel field must be zero.

Restrictions:

Theresultsare UNDEFINED if the guest context coprocessor 0 does not contain aregister as specified by rd and sel,

or if the guest context coprocessor O register specified by rd and sel is a 32-bit register.

The guest context does not implement the Virtualization Module. Use of thisinstruction in guest-kernel mode will

result in a Reserved Instruction exception, taken in guest mode.

If accessto Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled. If accessto Coprocessor Ois

enabled but access to 64-bit operationsis not enabled, a Reserved Instruction Exception is signaled.

Operation:

if IsCoprocessorEnabled(0) then
if (Config3yy = 0) then
SignalException (ReservedInstruction, 0)

break
endif
if (not Are64bitOperationsEnabled()) then
SignalException (ReservedInstruction)
endif

datadoubleword ¢« Guest.CPR[0,rd, sel]
GPR[rt] ¢« datadoubleword
else
SignalException (CoprocessorUnusable, 0)
endif

Exceptions:
Coprocessor Unusable
Reserved Instruction

126 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Doubleword Move to Guest Coprocessor 0 DMTGCO

31 26 25 21 20 16 15 11 10 8 7 3 2 0
COPO \%
010000 00011 rt rd 011 00000 sel
6 5 5 5 3 5 3
Format: DMTGCO rt, rd MIPS64
DMTGCO rt, rd, sel MIPS64

Purpose: Doubleword Move to Guest Coprocessor 0
To move a doubleword from a GPR to a guest context coprocessor O register.

Description: cPR[0,rd, sel] <« GPR[rt]

The contents of GPR rt are loaded into the guest context coprocessor O register specified in the rd and sel fields. Note
that not all guest context coprocessor O registers support the sel field. In those instances, the sel field must be zero.
Restrictions:

Theresults are UNDEFINED if guest context coprocessor O does not contain a register as specified by rd and sel, or
if the guest context coprocessor O register specified by rd and sel is a 32-bit register or the destination register is the
Guest.Count register.

The guest context does not implement the Virtualization Module. Use of this instruction in guest-kernel mode will
result in a Reserved Instruction exception, taken in guest mode.

If accessto Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled. If accessto Coprocessor Ois
enabled but access to 64-bit operationsis not enabled, a Reserved Instruction Exception is signaled.
Operation:

if IsCoprocessorEnabled(0) then
if (Config3yy = 0) then
SignalException (ReservedInstruction, 0)

break
endif
if (not Are64bitOperationsEnabled()) then
SignalException (ReservedInstruction)
endif

datadoubleword <« GPR[rt]

CPR[0,rd,sel] « datadoubleword
else

SignalException (CoprocessorUnusable, 0)
endif

Exceptions:
Coprocessor Unusable
Reserved Instruction

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 127

Hypervisor Call HYPCALL

128

31 26 25 24.21 20 11 10 6 5 0
COPO CcO HYPCALL
010000 1 0000 code 00000 101000
6 1 4 10 5 6
Format: HYPCALL MIPS32

Purpose: Hypervisor Call
To cause a Hypercall exception

Description:

A hypervisor call (hypercall) exception occurs, immediately and unconditionally transferring control to the exception
handler.

The code field is available for use as a software parameter. It can be retrieved by the exception handler from the
BadInstr register, or by loading the contents of the memory word containing the instruction.

Restrictions:

Thisinstruction is available to debug, root kernel and guest kernel modes.

Execution of Hypercall in debug mode is defined, but will not cause a mode transition to root. The processor will stay
in debug mode (Debugpyy=1), and root COPO state is unmodified.

Refer to MD00047, “EJTAG Specification”, for rules regarding Hypercall exception processing in debug mode.
Hypercall exception falls into the category of “Other execution-based exceptions’ in EJTAG Section 2.4.1. Debug-
DExcCode is set to GE=27 (see Table 5.3), no COPO state is modified, and other modifications to COPO Debug state
are made according to the rulesin EJTAG Section 2.4.3.

Further, if root executes a hypercall in root mode, Root.Causegycoge JELS Set to GE=27 (even though its not a guest-
exit) and GuestCtl0Ggycoge IS St to HC=2. Root can distinguish aroot hypercall from a guest hypercall by looking
at GuestCtlOgy,. If it is set, then the hypercall must have come from a guest, if it is reset, then hypercall must have
come from root since Root.Statusgy; must have been 0, otherwise hypercall in root mode would not cause an excep-
tion.

Execution of hypercall in either root-kernel or debug mode is not recommended.

Operation:

if IsCoprocessorEnabled(0) then
SignalException (HyperCall, 0)
else
SignalException (CoprocessorUnusable, 0)
endif

Exceptions:
HyperCall Exception
Coprocessor Unusable Exception

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Move from Guest Coprocessor 0 MFGCO

26 25 21 20 16 15 11 10 8 7 3 2 0
COPO \%
010000 00011 rt rd 000 00000 sel
6 5 5 5 3 5 3
Format: MFGCO rt, rd MIPS32
MFGCO rt, rd, sel MIPS32

Purpose: Move from Guest Coprocessor 0
To move the contents of a guest coprocessor O register to ageneral register.

Description: GPR[rt] ¢« Guest.CPR[0, rd, sell

The contents of the guest context coprocessor 0 register specified by the combination of rd and sel are sign-extended
and loaded into general register rt. Note that not all guest context coprocessor 0 registers support the sel field. In those
instances, the sel field must be zero.

When the guest context coprocessor O register specified is the EntryLoO or the EntryLo1l register, the RI/X1 fields
appear at bits 31:30 of the destination register. This feature supports 32-bit addressing mode compatibility on a
MIPS64 system.

Restrictions:
Theresults are UNDEFINED if the guest context coprocessor 0 does not contain the register specified by rd and sel.

The guest context does not implement the Virtualization Module. Use of thisinstruction in guest-kernel mode will
result in a Reserved Instruction exception, taken in guest mode.

MFGCO must behave exactly the same as the corresponding guest MmFco instruction, except that it will not cause
exceptions that are specific to guest, such as GPSI and GSFC. Specifically, if the guest register is replicated in guest
context, then the read will return the register value, if the register is Reserved for Architecture/Implementation or is
Not Available, the read returns O, if the register is Shared (such as WatchHi) then the read will aways return the
register value except that fields invisible to guest are zeroed out.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

if IsCoprocessorEnabled(0) then

if (Config3yy; = 0) then
SignalException (ReservedInstruction, 0)
break

endif

reg = rd

data <« Guest.CPR[0,reg,sel]

if (reg,sel = EntryLol or reg,sel = EntryLo0O then
GPR[rtl,g. o ¢« datajzg. g

GPR[rt]3; < datags
GPR[rt]3y ¢« datag,
GPR[rtlgs 32 ¢ sign_extend(datags)
else
GPR[rt] ¢« sign_extend(data)
endif
else
SignalException (CoprocessorUnusable, 0)
endif

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 129

Exceptions:
Coprocessor Unusable
Reserved Instruction

130 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 131

Move from High Guest Coprocessor 0 MFHGCO

31 26 25 21 20 16 15 11 10 8 7 3 2 0
COPO \Y
010000 00011 rt rd 100 00000 sel
6 5 5 5 3 5 3
Format: MFHGCO rt, rd MIPS32 Release 5
MFHGCO rt, rd, sel MIPS32 Release 5

Purpose: Move from High Guest Coprocessor 0
To move the contents of the upper 32-bits of a guest coprocessor O register, extended by 32-bits, to a general register.

Description: GPR[rt] ¢« Guest.CPR[0,rd,sel] [63:32]

The contents of the guest coprocessor 0 register specified by the combination of rd and sel are sign-extended and
loaded into general register rt. Note that not all coprocessor O registers support the sel field. In those instances, the sel
field must be zero.

When the coprocessor O register specified is the EntryLoO or the EntryLo1 register, MFHGCO must undo the effects
of MTHGCO. That is, bits 31:30 of the register must be returned as bits 1:0 of the GPR, and bits 32 and those of
greater significance must be left shifted by 2 and written to bits 31:2 of the GPR.

This feature supports M1PS32 backward compatability on a M1PS64 system.

Restrictions:

Theresults are UNDEFINED if guest coprocessor 0 does not contain a register as specified by rd and sel, or the reg-
ister exists but is not extended by 32-hits, or the register is extended for XPA, but XPA is not enabled. XPA is a
Release 5 feature.

The guest context does not implement the Virtualization Module. Use of this instruction in guest-kernel mode will
result in a Reserved Instruction exception, taken in guest mode.

MFHGCO must behave exactly the same as the corresponding guest MFHECO instruction, except that it will not cause
exceptions that are specific to guest, such as GPSI and GSFC. Specifically, if the guest register is replicated in guest
context, then the read will return the register value, if the register is Reserved for Architecture/lmplementation or is
Not Available, the read returns O, if the register is Shared (e.g., WatchHi, but it is not extended) then the read will
always return the register value except that fields invisible to guest are zeroed out.

If access to Coprocessor O is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

PABITS is the total number of physical address bits implemented. The term can be found in the definition of
EntryLoO and EntryLo1l.

if IsCoprocessorEnabled(0) then
reg < rd
data ¢« Guest.CPR[0,reg,sel]
if (reg,sel = EntryLol or reg,sel = EntryLo0O) then
if (Root.Config3;ps = 1 and Root.PageGraingpa = 1) then // PABITS > 36
GPR[rt]31.9 ¢ datag;. 39
GPR[rtlgs. 35 ¢ (data61)32 // sign-extend
endif
else
GPR[rt] ¢« sign_extend(datags 33)
endif
else

I 132 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

SignalException (CoprocessorUnusable, 0)
endif

Exceptions:
Coprocessor Unusable
Reserved Instruction

I MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 133

I 134 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Move to Guest Coprocessor O MTGCO

31 26 25 21 20 16 15 11 10 8 7 3 2 0
COPO \%
010000 00011 rt rd 010 00000 sel
6 5 5 5 3 5 3
Format: mMTGCO rt, rd MIPS32
MTGCO rt, rd, sel MIPS32

Purpose: Move to Guest Coprocessor 0
To move the contents of a general register to a guest coprocessor O register.

Description: Guest.CPR[0, rd, sel] <« GPR[rt]

The contents of general register rt are loaded into the guest context coprocessor O register specified by the combina
tion of rd and sel. Not all guest context coprocessor 0 registers support the sel field. In those instances, the sl field
must be set to zero.

When the guest context coprocessor O destination register specified is the EntryLoO or the EntryLol register, bits
31:30 appear as the RI/X1 fields of the destination register. This feature supports 32-bit addressing mode compatibil-
ity on aMIPS64 system.

Restrictions:

Theresultsare UNDEFINED if guest context coprocessor 0 does not contain the register as specified by rd and sel or
the destination register is the Guest.Count register, which is read-only

The guest context does not implement the Virtualization Module. Use of this instruction in guest-kernel mode will
result in a Reserved Instruction exception, taken in guest mode.

MTGCO must behave exactly the same as the corresponding guest mTco instruction, except that it will not cause
exceptions that are specific to guest, such as GPSI and GSFC. Specifically, if the guest register is replicated in guest
context, then the write must complete, if the register is Reserved for Architecture/lmplementation or is Not Available,
the write is ignored, if the register is Shared (such as WatchHi) then the write always completes but does not effect
fieldsinvisible to guest.

In a 64-bit processor, the MTGCO instruction writes all 64 bits of register rt into the guest context coprocessor regis-
ter specified by rd and sel if that register is a 64-bit register.

If access to Coprocessor O is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

if IsCoprocessorEnabled(0) then

if (Config3yy; = 0) then
SignalException (ReservedInstruction, 0)
break

endif

data ¢« GPR[rt]

reg ¢« rd

if (reg,sel = EntryLol or reg,sel = EntryLo0) then
Guest.CPR[0,reg,sel]l,g o ¢ datazg. g
Guest.CPR[0,reg,sellg; ¢ datas;
Guest.CPR[0,reg,sellg, < datasg

Guest.CPR[0,reg,sellgi.39 ¢ 032
else if (Width(CPR[O0,reg,sel]) = 64) then
Guest.CPR[0,reg,sel] « data

else
Guest.CPR[0,reg,sel] « datas; g

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 135

endif
else

SignalException (CoprocessorUnusable, 0)
endif

Exceptions:
Coprocessor Unusable
Reserved Instruction

136 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Move to High Guest Coprocessor 0 MTHGCO

31 26 25 21 20 16 15 11 10 8 7 3 2 0
COPO \Y
010000 00011 rt rd 110 00000 s
6 5 5 5 3 5 3
Format: MTHGCO rt, rd MIPS32 Release 5
MTHGCO rt, rd, sel MIPS32 Release 5

Purpose: Move to High Guest Coprocessor 0

To move the contents of ageneral register to the upper 32-bits of a guest coprocessor O register that has been extended
by 32-bits.

Description: Guest.CPR[0, rd, sell[63:32] <« GPR[rt]

The contents of general register rt are loaded into the guest coprocessor O register specified by the combination of rd
and sel. Not all coprocessor 0 registers support the the sel field. In those instances, the sel field must be set to zero.

When the guest coprocessor 0 destination register specified is the EntryLoO or the EntryLo1l register, bits 1:0 of the
GPR appear at bits 31:30 of EntryLo0 or the EntryLo1 fields. Thisisto compensate for RI/X1 which were shifted to
bits 63:62 by MTCO of EntryLoO or the EntryLol. If RI/XI are not supported, then the shift must still occur, but
MFHCO will return Os for these two fields. The GPR is right shifted by 2 to vacate the lower 2-bits, and 2 Os are
shifted in from the left. The result is written to the upper 32-bits MIPS64 EntryLoO or EntryLo1, excluding RI/XI
that were placed in bits 63:62 i.e., the write must appear atomic asif both MTCO and MTHCO occured together.

This feature supports M1PS32 backward compatability on a M1PS64 system.

Restrictions:

The results are UNDEFINED if guest coprocessor 0 does not contain a register as specified by rd and sel, or if the
register exists but is not extended by 32-hits, or the register is extended for XPA, but XPA is not enabled. XPA isa
Release 5 feature.

MTHGCO must behave exactly the same as the corresponding guest mTHCO instruction, except that it will not cause
exceptions that are specific to guest, such as GPSI and GSFC. Specifically, if the guest register is replicated in guest
context, then the write must complete, if the register is Reserved for Architecture/lmplementation or is Not Available,
the write is ignored, if the register is Shared (such as WatchHi) then the write always completes but does not effect
fieldsinvisible to guest.

In a 64-bit processor, the MTHCO instruction writes only the lower 32 bits of register rt into the upper 32-bits of the
guest coprocessor register specified by rd and sel if that register is extended by MIPS32 Release 5. Specifically, the
only registers extended by MIPS32 Release 5 are those required for the feature XPA, and those registers are identical
to the same registers in the M1PS64 architecture, other than EntryLoO or the EntryLo1.

If access to Coprocessor O is not enabled, a Coprocessor Unusable Exception is signaled.

Operation:

if IsCoprocessorEnabled(0) then
data ¢« GPR[rt]
reg < rd
if (reg,sel = EntryLol or reg,sel = EntryLo0O) then
if (Root.Config3;py = 1 and Root.PageGraingpy = 1) then // PABITS > 36
Guest.CPR[0,reg,sell;; 39 ¢« data; g
Guest.CPR[0,reg,sellgi.35 ¢« datas;. , and ((1<<(PABITS-36))-1)
Guest.CPR[0,reg,sellgi.35 < O
endif
else
Guest.CPR[0,reg,sel] [63:32] « datas; g

I MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 137

endif
else

SignalException (CoprocessorUnusable, 0)
endif

Exceptions:
Coprocessor Unusable
Reserved Instruction

I 138 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

I MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 139

Guest TLB Invalidate TLBGINV

31 26 25 24 6 5 0
COPO CcO 0 TLBGINV
010000 1 000 0000 0000 0000 0000 001011
6 1 19 6
Format: TLBGINV MIPS32

Purpose: Guest TLB Invalidate

TLBGINV invalidates a set of guest TLB entries based on ASID and guest Index match. The virtual address is
ignored in the match.

Implementation of the TLBGINV instruction is optional. The implementation of thisinstruction isindicated by the IE
field in Config4.

Implementation of EntryHIgyny field isrequired for implementation of TLBGINV instruction.
Support for TLBGINV is recommended for implementations supporting VTLB/FTLB type TLB's.
Description:

On execution of the TLBGINV instruction, the set of guest TLB entries with matching ASID are marked invalid,
excluding those guest TLB entries which have their G bit set to 1.

The EntryHIag p field has to be set to the appropriate ASID value before executing the TLBGINV instruction.

Behavior of the TLBGINV instruction applies to all applicable guest TLB entries and is unaffected by the setting of
the Guest.Wired register.

For JTLB-based MMU(Configyt=1):
All matching entries in the guest JTLB are invalidated. Index is unused.

For VTLB/FTLB -based MMU(Configy1=4):

A TLBGINV with Index set in guest VTLB range causes al matching entriesin the guest VTLB to be invali-
dated. A TLBGINV with Index set in guest FTLB range causes al matching entriesin the single addressed guest
FTLB set to be invalidated.

If TLB invalidate walk isimplemented in software (Config4,z=2), then software must do these steps:

1. oneTLBGINYV instruction is executed with an index in guest VTLB range (invalidates all matching guest
VTLB entries)

2. aTLBGINV instruction is executed for each guest FTLB set (invalidates all matching entriesin guest FTLB
Set)

If TLB invalidate walk isimplemented in hardware (Config4,=3), then software must do these steps:

1. oneTLBGINYV instruction is executed (invalidates all matching entriesin both guest FTLB & guest VTLB).
In this case, Index is unused.

In an implementation supporting GuestID (GuestCtl0g;=1), matching of guest TLB entries includes comparison of
the TLB entry GuestID with the Root GuestI D control field, GuestCtllgp .

Note that the TLBGINV instruction only invalidates guest virtual address trandations in the guest TLB, invalidation
of guest physical address tranglations requires execution of the equivalent TLBINV instruction sequence in the root
TLB.

Restrictions:

140 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Guest TLB Invalidate TLBGINV

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of avail-

able TLB entries (for the case of Configy1=4).

If access to Coprocessor O is not enabled, a Coprocessor Unusable Exception is signaled.

For processors that do not include a TLB, the operation of thisinstruction isUNDEFINED. The preferred implemen-

tation isto signal a Reserved Instruction Exception.

Operation:

if (Guest.Configyp=1 or
(Guest.Configyp=4 & Guest.Configd;z=2 & Index < Guest.Configlyyy grze-1))
startnum < 0
endnum « Guest.Configlyyy srzr-1

endif B

// treating VTLB and FTLB as one array

if (Guest.Configyr=4 & Guest.Configdp=2 & Index > Guest.Configlyyy stzm-1)
startnum ¢« start of selected Guest FTLB set // implementation specific
endnum ¢« end of selected Guest FTLB set - 1 //implementation specifc

endif

if (Guest.Configyr=4 & Guest.Configd;g=3))
startnum < 0
endnum <« Guest.ConfiglMM[LSIZE_l +
((Guest.Configdprpyays + 2) * Guest.Configdprrpsets)
endif

if IsCoprocessorEnabled(0) then
for (i = startnum to endnum)
if ((Guest.TLB[i]agrp = Guest.EntryHi,grp) & (Guest.TLB[ilg = 0))
if (GuestCtlOg; = 1)
if (Guest.TLB[ilguyesttp = GuestCtllgip)
Guest.TLB[1i] hardware_invalid <1

endif
else
Guest.TLB[1] hardware_invalid <1
endif
endif
endfor
else
SignalException (CoprocessorUnusable, 0)
endif

Exceptions:
Coprocessor Unusable
Reserved Instruction

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

141

Guest TLB Invalidate Flush TLBGINVF

31 26 25 24 6 5 0
COPO CcO 0 TLBGINVF
010000 1 000 0000 0000 0000 0000 001100
6 1 19 6
Format: TLBGINVF MIPS32

Purpose: Guest TLB Invalidate Flush

TLBGINVF invalidates a set of Guest TLB entries based on Index match. The virtual address and ASID are ignored
in the match.

Implementation of the TLBGINVF instruction is optional. The implementation of thisinstruction is indicated by the
IE field in Config4.

Implementation of the EntryHIgny field is required for implementation of TLBGINV and TLBGINVF instruc-
tions.

Support for TLBGINVF is recommend for implementations supporting VTLB/FTLB type TLB's.
Description:
On execution of the TLBGINVF instruction, all entries within range of guest Index are invalidated.

Behavior of the TLBGINVF instruction appliesto all applicable guest TLB entries and is unaffected by the setting of
the Wired register.

For JTLB-based MM U(Configyt=1):
TLBGINVF causes all entriesin the guest JTLB to beinvalidated. Index is unused.

For VTLB/FTLB-based MMU(Configy,1=4):

TLBINVF with Index in guest VTLB range causes all entriesin the guest VTLB to be invalidated.

TLBINVF with Index in guest FTLB range causes al entriesin the single corresponding set in the guest FTLB
to be invalidated.

If TLB invalidate walk isimplemented in software (Config4,=2), then software must do these steps:

1. one TLBGINV instruction is executed with an index in guest VTLB range (invalidates all matching guest
VTLB entries)

2. aTLBGINV instructionis executed for each guest FTLB set (invalidates all matching entriesin guest FTLB
Set)

If TLB invalidate walk isimplemented in hardware (Config4,z=3), then software must do these steps:

1. oneTLBGINV instruction is executed (invalidates all matching entriesin both guest FTLB & guest VTLB).
In this case, Index is unused.

In an implementation supporting GuestID (GuestCtlOg,=1), matching of guest TLB entries includes comparison of
the TLB entry GuestID with the Root GuestI D control field, GuestCtllgp .

Note that the TLBGINVF instruction only invalidates guest virtual address trandationsin the guest TLB, invalidation
of guest physical address translations requires execution of the equivalent TLBINVF instruction sequence in the root
TLB.

142 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Guest TLB Invalidate Flush TLBGINVF

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equa to the number of TLB
entries visible as defined by the Config4 register.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

For processors that do not include the standard TLB MMU, the operation of this instruction is UNDEFINED. The
preferred implementation isto signal a Reserved Instruction Exception.

Operation:

if (Guest.Configyr=1 or
(Guest.Configyr=4 & Guest.Configdp=2 & Index < Guest.Configlypmy srzr-1))
startnum < 0 -
endnum <« Guest.Configlyyy stzr-1

endif -

// treating VTLB and FTLB as one array

if (Guest.Configyr=4 & Guest.Configdz=2 & Index > Guest.Configlyyy stzr-1)
startnum <« start of selected Guest FTLB set // implementation specific
endnum < end of selected Guest FTLB set - 1 //implementation specifc

endif

if (Guest.Configyr=4 & Guest.configd;z=3))
startnum < 0
endnum < Guest.Configlyyy stzr-1 +
((Guest.Configdpppyays +2) * Guest.Configdprpsets)
endif

if IsCoprocessorEnabled(0) then
for (i = startnum to endnum)
if (GuestCtlOg = 1)
if (Guest.TLB[ilguyesttp = GuestCtllgip)
Guest.TLB[1i] hardware_invalid <1

endif
else
Guest.TLB[1i] hardware_invalid <1
endif
endfor
else
SignalException (CoprocessorUnusable, 0)
endif
Exceptions:

Coprocessor Unusable
Reserved Instruction

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 143

144 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Probe Guest TLB for Matching Entry TLBGP

31 26 25 24 6 5 0
COPO CcO 0 TLBGP
010000 1 000 0000 0000 0000 0000 010000
6 1 19 6
Format: TLBGP MIPS32

Purpose: Probe Guest TLB for Matching Entry
To find amatching entry in the Guest TLB, initiated from root mode.

Description:

The Guest.Index register isloaded with the address of the Guest TLB entry whose contents match the contents of the
Guest.EntryHi register. If no Guest TLB entry matches, the high-order bit of the Guest.Index register is set.

In an implementation supporting GuestID (GuestCtl0g;=1), if the GuestID read does not match GuestCtllg,p, then
the match fails.

Restrictions:
If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

If an implementation detects multiple matches, and does not detect all multiple matches on TLB write, then a TLBGP
instruction can take a Machine Check Exception if multiple matches occur.

For processors that do not include a TLB in the guest context, the operation of thisinstruction is UNDEFINED. The
preferred implementation isto signal a Reserved Instruction Exception.

Operation:

if IsCoprocessorEnabled(0) then
if (Config3yy; = 0) then
SignalException (ReservedInstruction, 0)
break
endif
Guest.Index ¢« 1 || UNPREDICTABLE>!

// If a set-associative TLB is used, then a single set may be probed.

for i in 0...Guest.TLBEntries-1
if (((Guest.TLB[ilypyy and ~(Guest.TLBI[ilyaek))
(Guest .EntryHiypy, and ~(Guest.TLB[i]y,sk))) and
(Guest .TLB[i]g = Guest.EntryHig) and
((Configd(g >= 2)and not TLBI[ilynirgware invalia) and
(Guest.TLB[i]g or (Guest.TLB[ilagrp = auest.EntryHiMHD))) then
if (GuestCtlOg = 1)
if (Guest.TLB[ilgyesttp = GuestCtllgyp)
Guest.Index « i
endif
else
Guest.Index « i
endif
endif
endfor
else
SignalException (CoprocessorUnusable, 0)
endif

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 145

Exceptions:

Coprocessor Unusable

Machine Check (implementation dependent)
Reserved Instruction

146 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 147

Read Indexed Guest TLB Entry TLBGR

148

31 26 25 24 6 5 0
COPO CcO 0 TLBGR
010000 1 000 0000 0000 0000 0000 001001
6 1 19 6
Format: TLBGR MIPS32

Purpose: Read Indexed Guest TLB Entry
To read an entry from the Guest TLB into the guest context, initiated from root mode.

Description:

The Guest.EntryHi, Guest.EntryLoO, Guest.EntryLol, and Guest.PageMask registers are loaded with the con-
tents of the Guest TLB entry pointed to by the Guest.Index register. Note that the value written to the
Guest.EntryHi, Guest.EntryLo0, and Guest.EntryLo1 registers may be different from that originally written to the
TLB viathese registersin that:

e Thevauereturnedin the VPN2 field of the EntryHi register may have those bits set to zero corresponding to the
one hitsin the Mask field of the TLB entry (the least significant bit of VPN2 corresponds to the least significant
bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed after aTLB
entry iswritten and then read.

» Thevaluereturned in the PFN field of the EntryLoO and EntryLo1l registers may have those bits set to zero cor-
responding to the one bitsin the Mask field of the TLB entry (the least significant bit of PFN corresponds to the
least significant bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed
after aTLB entry iswritten and then read.

» Thevaluereturned in the G bit in both the EntryLoO and EntryLol registers comes from the single G bit in the
TLB entry. Recall that this bit was set from the logical AND of the two G bitsin EntryLo0O and EntryLol when
the TLB was written.

In an implementation supporting GuestiD, if the TLB entry is not marked invalid, the GuestCtllgp field is written
with the GuestID of the TLB entry read.

Restrictions:

The operation is UNDEFINED if the contents of the Guest.Index register are greater than or equal to the number of
TLB entriesin the guest context.

If root-mode access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

The guest context does not implement the Virtualization Module. Use of this instruction in guest-kernel mode will
result in a Reserved Instruction exception, taken in guest mode.

For processors that do not include a TLB in the guest context, the operation of thisinstruction is UNDEFINED. The
preferred implementation isto signal a Reserved Instruction Exception.

Operation:

if IsCoprocessorEnabled(0) then
if (Config3yy; = 0) then
SignalException (ReservedInstruction, 0)
break
endif
i ¢ Guest.Index
if 1 > (Guest.TLBEntries - 1) then

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Read Indexed Guest TLB Entry TLBGR

UNDEFINED

endif

if (Config4;g >= 2 && Guest.TLB[ilgyryy = 1) then
GuestCtllgip < O
Guest.Pagemasky,gq, < 0
Guest.EntryHi « 0
Guest.EntryLol « 0
Guest.EntryLo0 « 0
Guest.EntryHigyryy ¢ 1
break

endif

if (GuestCtlOg; = 1)
GuestCtllgyp ¢ Guest.TLB[i]guestiD

endif
Guest.PageMasky,q ¢ Guest.TLB[1]yagk
Guest.EntryHi « Guest.TLB[ilg || 07 |
(Guest.TLB[ilypy, and not Guest.TLB[ily,sx) || # Masking impl dependent
0° || Guest.TLB[ilagrp
Guest.EntryLol « 0711l ||
(Guest .TLB[i]ppy; and not Guest.TLB[ilu.ex) || # Masking impl dependent
Guest.TLB[i]o; || Guest.TLB[ilp; || Guest.TLB[ily; || Guest.TLB[ilg
Guest.EntryLo0 « 0Fill ||
(Guest.TLB[i]ppyo and not Guest.TLB[ily,sx) || # Masking impl dependent
Guest.TLB[1i]gy || Guest.TLB[ilpg || Guest.TLB[ilyy || Guest.TLB[ilg
else
SignalException (CoprocessorUnusable, 0)
endif
Exceptions:

Coprocessor Unusable
Reserved Instruction

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 149

Write Indexed Guest TLB Entry TLBGWI

31 26 25 24 6 5 0
COPO CcO 0 TLBGWI
010000 1 000 0000 0000 0000 0000 001010
6 1 19 6
Format: TLBGWI MIPS32

Purpose: Write Indexed Guest TLB Entry
To write a Guest TLB entry indexed by the Index register, initiated from root mode.

Description:

The Guest TLB entry pointed to by the Guest.Index register is written from the contents of the Guest.EntryHi,
Guest.EntryLoO, Guest.EntryLol, and Guest.PageMask registers. The information written to the Guest TLB
entry may be different from that in the Guest.EntryHi, Guest.EntryLo0O, and Guest.EntryLol registers, in that:

* Thevaluewritten to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the one
bitsin the Mask field of the PageMask register (the least significant bit of VPN2 corresponds to the least signif-
icant bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed during a
TLB write.

» Thevauewritten to the PFNO and PFN1 fields of the TLB entry may have those bits set to zero corresponding to
the one bitsin the Mask field of PageMask register (the least significant bit of PFN corresponds to the least sig-
nificant bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed during a
TLB write.

» Thesingle G bitinthe TLB entry is set from the logical AND of the G bitsin the EntryLoO and EntryLol regis-
ters.

* Inanimplementation supporting GuestID, GuestCtllg,p iswritten inthe TLB entry.

If EHINV isimplemented, the TLBGWI instruction also acts as an explicit TLB entry invalidate operation. The Guest
TLB entry pointed to by the Guest.Index register is marked invalid when guest EntryHI gy =1

When EntryHIgny=1, no machine check generating error conditions exist.

Implementation of the TLBGWI invalidate feature isrequired if the TLBGINV and TLBGINVF instructions are
implemented, optional otherwise.
Restrictions:

The operation is UNDEFINED if the contents of the Guest.Index register are greater than or equal to the number of
TLB entriesin the guest context.

If access to the root Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

On an FTLB enabled system, if Guest.Index isin FTLB range and the page size specified does not match FTLB
page size, recommended behavior isthat the write not complete and a Machine Check Exception be signaled.

On an FTLB enabled system, for awritein FTLB range, if the VPN isinconsistent with Index, it is recommended that
aMachine Check Exception be signaled.

It is implementation dependent whether multiple TLB matches are detected on a TLBGWI, though it is recom-
mended. If a TLB write detects multiple matches, but not necessarily all multiple matches, then it is recommended
that aTLB lookup or TLB probe operation signal a Machine Check Exception on detection of multiple matches.

150 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Write Indexed Guest TLB Entry TLBGWI

If multiple match detection is implemented, then on detection, it is recommended that the multiple match be invali-
dated and the write completed. It is recommended that no Machine Check Exception be signaled.

The guest context does not implement the Virtualization Module. Use of this instruction in guest-kernel mode will
result in a Reserved Instruction Exception, taken in guest mode.

For processors that do not include a TLB in the guest context, the operation of thisinstruction is UNDEFINED. The
preferred implementation isto signal a Reserved Instruction Exception.

Operation:

if IsCoprocessorEnabled(0) then
if (Config3yy, = 0) then
SignalException (ReservedInstruction, 0)
break
endif
i « Guest.Index
if (Configd;g >= 2) then
Guest.TLB[1i] hardware_invalid « 0
if (EntryHIgymn~=1) then
Guest.TLB[i] hardware_invalid <~ 1
endif
endif
Guest.TLB[1i]y,gx ¢ Guest.PageMasky,¢x
Guest.TLB[i]g . Guest.EntryHig
Guest.TLB[i]lypyy ¢ Guest.EntryHiypy, and not Guest.PageMasky,sx # Impl dependent
Guest.TLB[1i]aqrp ¢ Guest.EntryHiagrp
Guest.TLB[i]g ¢« Guest.EntryLolg and Guest.EntryLoOg
Guest.TLB[i]lppy; ¢ Guest.EntryLolppy and not Guest.PageMasky,q # Impl dependent
Guest.TLB[i]o; ¢ Guest.EntryLol,
Guest.TLB[i]p; ¢ Guest.EntryLolp
Guest.TLB[i]y; ¢ Guest.EntryLoly
Guest .TLB[ilppyg ¢ Guest.EntryLoOppy and not Guest.PageMasky,qr # Impl dependent
Guest.TLB[i]l.g < Guest.EntryLoO.
Guest.TLB[ilpy ¢« Guest.EntryLoOp
Guest.TLB[ilyy ¢ Guest.EntryLoOy
if (GuestCtlOg;) then
Guest.TLB[1i]gyesttp ¢ GuestCtllgrp
endif
else
SignalException (CoprocessorUnusable, 0)
endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Machine Check (disabled if guest EntryHIgpny=1.)

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 151

Write Random Guest TLB Entry TLBGWR

31 26 25 24 6 5 0
COPO CcO 0 TLBWR
010000 1 000 0000 0000 0000 0000 001110
6 1 19 6
Format: TLBGWR MIPS32

Purpose: Write Random Guest TLB Entry
To write a Guest TLB entry indexed by the Random register, initiated from root mode.

Description:

The Guest TLB entry pointed to by the Guest.Random register is written from the contents of the Guest.EntryHi,
Guest.EntryLo0, Guest.EntryLol, and Guest.PageMask registers.

The information written to the Guest TLB entry may be different from that in the Guest.EntryHi, Guest.EntryLoO,
and Guest.EntryLol registers, in that:

» Thevauewritten to the VPN2 field of the Guest TLB entry may have those bits set to zero corresponding to the
one bitsin the Mask field of the Guest.PageMask register (the least significant bit of VPN2 corresponds to the
least significant bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed
during a Guest TLB write.

» Thevauewritten to the PFNO and PFN1 fields of the TLB entry may have those bits set to zero corresponding to
the one bitsin the Mask field of Guest.PageMask register (the least significant bit of PFN corresponds to the
least significant bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed
during a Guest TLB write.

* Thesingle G hit in the Guest TLB entry is set from the logical AND of the G bitsin the Guest.EntryLoO and
Guest.EntryLol registers.

* Inanimplementation supporting GuestID, GuestCtllg,p iswritten inthe TLB entry.

Restrictions:
If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

On an VTLB/FTLB enabled implementation, if the Pagemask register contains a page size differing from the FTLB
page size defined in Config4, then the write goes into arandom entry in the VTLB.

It is implementation dependent whether multiple TLB matches are detected on a TLBGWR, though it is recom-
mended. If aTLB write detects multiple matches, but not necessarily all multiple matches, then a TLB lookup or TLB
probe operation should signal a Machine Check Exception on detection of multiple matches.

If multiple match detection isimplemented, then on detection, the multiple match should be invalidated and the write
completed. No Machine Check Exception should be signaled.

The guest context does not implement the Virtualization Module. Use of this instruction in guest-kernel mode will
result in a Reserved Instruction exception, taken in guest mode.

For processors that do not include a TLB in the guest context, the operation of thisinstruction is UNDEFINED. The
preferred implementation isto signal a Reserved Instruction Exception.
Operation:

if IsCoprocessorEnabled(0) then
if (Config3yy = 0) then

152 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Write Random Guest TLB Entry TLBGWR

SignalException (ReservedInstruction, 0)
break

endif

i ¢ Guest.Random

if (Configd;y >= 2) then
Guest.TLB[1i] hardware_invalid <« 0
if (EntryHIgyr=1) then

Guest.TLB[1] hardware_invalid « 1

endif

endif
Guest
Guest
Guest
Guest
Guest
Guest
Guest
Guest
Guest
Guest
Guest
Guest
Guest

.TLB
.TLB[i]p; ¢ Guest.EntryLolp
.TLB[i]y; ¢ Guest.EntryLoly
.TLB[i]lppyg ¢ Guest.EntryLoOpry and not PageMasky,qx # Impl. dependent
.TLB[i]gg ¢ Guest.EntryLoOlq
.TLB[i]lpg ¢ Guest.EntryLolp
.TLB[i]yg ¢ Guest.EntryLoOy

.TLB[i]yasx ¢ Guest.PageMasky,qx
.TLB[i]lg . Guest.EntryHig
.TLB[ilypyy ¢ Guest.EntryHiypy, and not Guest.PageMasky,qx # Impl. dependent
.TLB[i]agrp ¢ Guest.EntryHixgp
.TLB[i]g ¢ Guest.EntryLol; and Guest.EntryLo0g
.TLB[i]ppy1 ¢ Guest.EntryLolpry and not PageMasky,q, # Impl. dependent
[
[
[
[
[
[

i]g1 ¢ Guest.EntryLolg

if (GuestCtlOg;) then
Guest.TLB[1]lgyesttp ¢ GuestCtllgrp

endif
else

SignalException (CoprocessorUnusable, 0)

endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Machine Check (implementation dependent)

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 153

TLB Invalidate TLBINV

154

31 26 25 24 6 5 0
COPO CcO 0 TLBINV
010000 1 000 0000 0000 0000 0000 000011
6 1 19 6
Format: TLBINV MIPS32

Purpose: TLB Invaidate

Description:

The TLBINYV instruction is unmodified from the base architectural definition, except in an implementation supporting
GuestID:

* When executing in Guest mode, if the GuestID read does not match GuestCtl1,p, then the TLB entry is not
modified.

* When executing in Root mode, if the GuestID read does not match GuestCtllg,p, then the TLB entry is not

modified. Note that this only applies to the root TLB, invalidation of guest virtual address translations requires
execution of the equivalent TLBGINV instruction sequence to modify the guest TLB.

Restrictions:

Unchanged from the base architecture.

Exceptions:

Unchanged from the base architecture.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 155

TLB Invalidate Flush TLBINVF
31 26 25 24 0
COPO CcO 0 TLBINVF
010000 1 000 0000 0000 0000 0000 000100
6 1 19 6
Format: TLBINVF MIPS32

156

Purpose: TLB Invalidate Flush

Description:

The TLBINVF instruction is unmodified from the base architectural definition, except in an implementation support-

ing GuestID:

* When executing in Guest mode, if the GuestID read does not match GuestCtl1,p, then the TLB entry is not

modified.

* When executing in Root mode, if the GuestID read does not match GuestCtllg,p, then the TLB entry is not
modified. Note that this only applies to the root TLB, invalidation of guest virtual address translations requires

execution of the equivalent TLBGINVF instruction sequence to modify the guest TLB.

Restrictions:

Unchanged from the base architecture.

Exceptions:

Coprocessor Unusable

Reserved Instruction

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Probe TLB for Matching Entry TLBP

31 26 25 24 6 5 0
COPO co 0 TLBP
010000 1 000 0000 0000 0000 0000 001000
6 1 19 6

Format: TLBP

Purpose: Probe TLB for Matching Entry
To find amatching entry in the TLB.

Description:

MIPS32

The TLBP instruction is unmodified from the base architectural definition, except in an implementation supporting

GuestID:
* When executing in Guest mode, if the GuestID read does not match GuestCtl1,p, then the match fails.
* When executing in Root mode, if the GuestID read does not match GuestCitllg,p, then the match fails.

Restrictions:

Unchanged from the base architecture.

Operation:
if IsCoprocessorEnabled(0) then
Index ¢« 1 || UNPREDICTABLE>!
for i in 0...TLBEntries-1
if ((TLB[1ilypyz & ~(TLB[ilyack)) = (EntryHiypys & ~(TLB[1lyask))) and

(TLB[ilg = EntryHig) and
(Configdry >= 2 && TLB[ilpnaraware invalia ‘= 1) and
((IsRootMode () and (TLB[ilgyestrp = GuestCtllgip)) or
(IsGuestMode () and (TLB[ilgyesttp = GuestCtll;p))) and
(

(TLB[ilg = 1) or (TLB[ilagrp = EntryHigrp)) then
Index « i
endif
endfor
else
SignalException (CoprocessorUnusable, 0)
endif

Exceptions:

Coprocessor Unusable

Reserved Instruction

Machine Check (implementation defined)

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

157

158 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Read Indexed TLB Entry TLBR

31 26 25 24 6 5 0
COPO CcO 0 TLBR
010000 1 000 0000 0000 0000 0000 000001
6 1 19 6
Format: TLBR MIPS32

Purpose: Read Indexed TLB Entry
To read an entry from the TLB.

Description:

The TLBR instruction is unmodified from the base architectural definition, except in an implementation supporting
GuestID:

* When executing in Guest mode, if the GuestI D read does not match GuestCtl1,p, then the TLB related CPO reg-
isters are zeroed and EHINV isset to 1.

* When executing in Root mode and the TLB entry is not marked asinvalid, GuestCtllgp is set to the GuestI D of
the TLB entry read, elseitisset to 0.

Restrictions:

The operation is UNDEFINED if the contents of the Index register are greater than or equal to the number of TLB
entriesin the processor.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

For processors that do not include the standard TLB MMU, the operation of this instruction is UNDEFINED. The
preferred implementation isto signal a Reserved Instruction Exception.

Operation:

if IsCoprocessorEnabled(0) then
i ¢ Index
if 1 > (TLBEntries - 1) then
UNDEFINED
endif
if (Configd(z >= 2 && TLB[ilpargware invaliga=1) then
if GuestCtl0g;=1 B
if (GuestCtlOgy=0 or (GuestCtlOgy=1 and (Root.Debugpy=1 or
Root.Statusggr;,=1 or Root.Statusgy;,=1))) then
GuestCtllgip < 0 // RID only updated in root mode
endif
endif
// Remaining state is handled similarly in root and guest modes.
Pagemasky,cx < 0
EntryHi < O
EntryLol < 0
EntryLoO « 0
EntryHiggmyy ¢ 1
break
endif
PageMaskyasx ¢ TLB[1]lyask
EntryHi < TLB[ilg || 0Pl ||
(TLB[ilypyy and not TLB[ily.ex) || # Masking implementation dependent
0° || TLBlilasmp

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 159

EntryLol « O0Fill |

(TLB[i]ppy; and not TLB[il.cx) || # Masking mplementation dependent
TLB[ileq || TLBIilpy || TLBIilyy || TLBIilg

EntryLo0 « O0Fill |
(TLB[1]ppyo @nd not TLB[ily.,ex) || # Masking mplementation dependent
TLB[ileco || TLBIilpg || TLBIilye || TLBIilg

1if in guest mode, if the TLB entry guest id != guest id then zero the result

if (GuestCtlOg, = 1)
if (GuestCtlOgy=1) and (Root.Debugpy=0) and
(Root.Statusgg,=0) and (Root.Statusgy;,=0) then
if (TLB[il{p != GuestCtll;p) then
Pagemasky,gx < 0
EntryHi « 0
EntryLol <« 0
EntryLoO <« 0
EntryHigyrgy ¢ 1
endif
else #in root mode, RID with GuestID
GuestCtllgyp ¢ TLB[ilguesttp
endif
endif
else
SignalException (CoprocessorUnusable, 0)
endif

Exceptions:

Coprocessor Unusable
Reserved Instruction

160 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 161

Write Indexed TLB Entry TLBWI

31 26 25 24 6 5 0
COPO CcO 0 TLBWI
010000 1 000 0000 0000 0000 0000 000010
6 1 19 6
Format: TLBWI MIPS32

Purpose: Write Indexed TLB Entry
To writea TLB entry indexed by the Index register.

Description:
The TLBWI instruction is unmodified from the base architecture, except in an implementation supporting Guest|D:

* When executing in Guest mode, GuestCtl1,p iswritten in the guest TLB entry.

* When executing in Root mode GuestCtllg p iswrittenin theroot TLB entry.

It is expected that a Guest entry in the Root TLB must have its Global (G) bit set to 1 on a TLB write. Thisis because
the ASID field is not applicable for a Guest entry in the Root TLB.

If EHINV isimplemented, the TLBWI instruction also acts as an explicit TLB entry invalidate operation. The TLB
entry pointed to by the Index register is marked invalid when EntryHIgyny=1.

When EntryHIgny=1, no machine check generating error conditions exist.

Restrictions:

Unmodified from the base architecture.

Operation:

if IsCoprocessorEnabled(0) then
i ¢« Index
if (Config4;g >= 2) then
TLB[i]hardwareiinvalid « 0
if (EntryHIgynw=1) then
TLB[1] hardware_invalid <1
endif
endif
TLB[1i]lyask ¢ PageMasky,gx
TLB[ilg . EntryHig
TLB[ilypyy ¢ EntryHiypy, and not PageMasky,q # Implementation dependent
[
(

TLB[i]agrp ¢ EntryHixgrp
if (GuestCtlOq;) then
if ((GuestCtlOgap=0) and IsRootMode() and (GuestCtllgip != 0))
TLB[i]lg ¢« 1
else
TLB[i]g ¢ EntryLolg and EntryLoOg
endif
else
TLB[i]g ¢ EntryLolg and EntryLoOg
endif
if (IsRootMode()) then
TLB[ilguestip ¢ GuestCtllpip
else

162 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

TLB[i]guesttp ¢ GuestCtllip
endif
TLB[ilppy1 ¢ EntryLolppy and not PageMasky,gx # Implementation dependent
TLB[i]q; ¢ EntryLolg
TLB[i]lp; ¢ EntryLolp
TLB[ily; ¢ EntryLoly
TLB[i]ppyo ¢ EntryLoOppy and not PageMasky,qr # Implementation dependent
TLB[i]cp ¢ EntryLoO¢
TLB[i]py ¢ EntryLoOp
TLB[i]yo ¢ EntryLoOy
else
SignalException (CoprocessorUnusable, 0)
endif

Exceptions:
Unmodified from the base architecture.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 163

Write Random TLB Entry TLBWR

31 26 25 24 6 5 0
COPO CcO 0 TLBWR
010000 1 000 0000 0000 0000 0000 000110
6 1 19 6
Format: TLBWR MIPS32

Purpose: Write Random TLB Entry
To write a TLB entry indexed by the Random register.

Description:

The TLB entry pointed to by the Random register iswritten from the contents of the EntryHi, EntryLoO, EntryLol,
and PageMask registers.

The information written to the TLB entry may be different from that in the EntryHi, EntryLoO, and EntryLo1l regis-
ters, in that:

» Thevaluewritten to the VPN2 field of the TLB entry may have those bits set to zero corresponding to the one
bitsin the Mask field of the PageMask register (the least significant bit of VPN2 corresponds to the least signif-
icant bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed during a
TLB write.

» Thevauewritten to the PFNO and PFN1 fields of the TLB entry may have those bits set to zero corresponding to
the one bitsin the Mask field of PageMask register (the least significant bit of PFN corresponds to the least sig-
nificant bit of the Mask field). It isimplementation dependent whether these bits are preserved or zeroed during a
TLB write.

* Thesingle G hitinthe TLB entry is set from thelogical AND of the G bitsin the EntryLoO and EntryLol reg-
isters.

* Inanimplementation supporting GuestID, GuestCtllg,p iswritten inthe TLB entry.

Restrictions:
If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

On an VTLB/FTLB enabled implementation, if the Pagemask register contains a page size differing from the FTLB
page size defined in Config4, then the write goes into arandom entry in the VTLB.

It isimplementation dependent whether multiple TLB matches are detected on a TLBWR, though it is recommended.
If aTLB write detects multiple matches, but not necessarily all multiple matches, then a TLB lookup or TLB probe
operation should signal a Machine Check Exception on detection of multiple matches.

If multiple match detection isimplemented, then on detection, the multiple match should be invalidated and the write
completed. No Machine Check Exception should be signaled.

Operation:

if IsCoprocessorEnabled(0) then
if (Config3yy; = 0) then
SignalException (ReservedInstruction, 0)
break
endif
i ¢« Random

164 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Write Random TLB Entry

if (Config4;g = 1) then
TLB[i]hardware_invalid «~ 0
if (EntryHIgymyw=1) then

TLB[i]hardwareiinvalid <1

endif

endif

TLB[i]yask ¢ PageMasky,qx

TLB[ilg EntryHig

TLB[i]agrp ¢ EntryHingrp

TLBWR

[

TLB[ilypyy ¢ EntryHiypy, and not PageMasky,q, # Impl. dependent
[
(

if (GuestCtlOg;) then
if ((GuestCtlOgzap=0) and IsRootMode() and (GuestCtllgip != 0))
TLB[i]lg ¢« 1
else
TLB[i]g ¢ EntryLolg and EntryLoOg
endif
else
TLB[i]g ¢ EntryLolg and EntryLoOg
endif

TLB[i]lppy1 ¢ EntryLolppy and not PageMasky,g # Impl.

TLB[i]s; ¢« EntryLolg
TLB[i]p; ¢« EntryLolj
TLB[il]y; ¢ EntryLoly

TLB[i]ppyo ¢ EntryLoOppy and not PageMasky,qr # Impl.

TLB[i]pgy ¢« EntryLoOp

[
[
[
[

TLB[i]lcp ¢ EntryLoO¢
[

TLB[ilyo ¢ EntryLoOy
(

if (GuestCtl0q;) then
TLB[i]gyesttp ¢ GuestCtllgip
endif
else
SignalException (CoprocessorUnusable, 0)
endif
Exceptions:

Coprocessor Unusable
Reserved Instruction
Machine Check (implementation dependent)

dependent

dependent

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 165

166 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Chapter 7

Notes

This Virtualization Module specification is awork in progress. Feedback and comments are welcomed on the func-
tional behavior, and the explanations of that behavior.

7.1 Potential areas of improvement

The following items have been identified as potential areas of improvement in the specification.

e Extensionsto EJTAG specification to allow additional control over hardware breakpoints used during guest exe-
cution.

e Consider options to reduce the cost of guestO-guest1-guestO context switching.

» Security: JTAG, DEBUG, Boot, IOMMU

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 167

Notes

168 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Appendix A

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant

changesto this document sinceits last release. Significant changes are defined as those which you should take note of
asyou use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

Please note: Limitations on the authoring tools make it difficult to place change bars on changes to figures. Change
bars on figure titles are used to denote a potential change in the figure itself.

Version Date Comments
0.02 18-Aug-09 First paravirtualization spec for internal consumption.
0.03 21-Aug-09 Changes:
* First full virtualization spec for internal consumption.
» Revisionsto paravirtualization spec as aresult of full virtualization updates.
0.04 18-Sep-09 Changes:
» Modified PageMask g bit description
» Removed L2V0/1 from TLB entry, kept GP0O/1
» Changed al ‘real-physical’ referencesto ‘root-physical’
* Renamed GuestCtl|02 to GuestID
0.05 22-Sep-09 Changes:
 Replaced upper-half configuration registers SegmentCtl/SegmentCtl2 with
Segment Configuration system covering full virtual address space.
» Re-arranged sections to lighten load in overview chapters.
» Removed generic chapters - “About This Book” and “Guide To The Instruc-
tion Set”
0.06 31-Mar-10 Significant revisions, including:

» Combined introductory chapters

* Root and guest mode follow consistent rules, clarified transitions between
modes.

» Removed spec duplication with MIPS32 where possible

» Address trandation uses guest TLB asfirst level, root TLB used for second
level

* Added direct assignment of interrupts

» Added timer support

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

169

Revision History

Version Date Comments

0.07 1-Jun-10 Changes:

* Fixed many typos

» Changed how guest timer interrupt is applied (pseudocode)

» Expanded description of EIC use with guest mode

* Clarified use of Causepc.

* Moved HYPCALL to COPO opcode, changed from RI to CU exception when
used from guest-user mode

* Requires v3.00 of Volume II1 (PRA) rather than 2.80. Removed descriptions
of Context and ContextConfig. Added RI, XI bits and related exceptions.

» Renamed Segment Control modes, added UKSU unmapped, unrestricted
mode.

» Changed segmentation scheme to remove fall-back to MIPS32 when Statu-
Ser. =1. Changes required to segment control registers and EBase. Adjusted
schemeto incorporate FMT and BAT translation systems. Allowed imple-
mentation-dependent number of segments.

* Moved MTGCO and MFGCO onto the same sub-opcode, bit 3 selects.

* Adjusted description of guest mode entry with ERET.

» Moved PageGrain KE hit to avoid clash with IEC bit.

* Section covering UNDEFINED and UNPREDICTABLE and guest mode.

* Revised hardware page table walking scheme

» Added Badlnstr register for faulting instruction word

» Added Guest Reserved Instruction Redirect exception

» Added additional description to GTOffset register

» Guest mode and Debug mode are mutually exclusive

» Added section describing design intent of features, how they are expected to
be used by hypervisor software.

* Added TLBGP, TLBGWR

» Added description of shadow register set operation

» Added MIPS64 support

0.08 4-Jun-10 Changes:
* Identified Badlnstr as a future base architecture feature
 Changed guest-mode TL B enable from writable Guest.Configy,t to new field

GuestCtlOgr.
* Fixed minor typos
0.09 07-Jul-10 » Merge GuestCtlOgr and GuestCtl O, fields into one encoded field as not all
combinations of the 2 bits make sense.

0.10 03-Mar-11 » Removed non-virtualization specific functionality to CPO enhancement pro-
posal.

011 14-Sep-11 Added Guest TLB invalidate instructions.
Updated HY PCALL field size.
Updated TLBGW!I pseudo-code for EHINV use.

0.12 December 20, 2011 Minor corrections/enhancements.
Count register added to those available in Guest CPO context.
(Impl) Implementation defined fields added to GuestCTLO register.
Config5 addition noted.
Noted that a TLB related machine check exception istaken in current mode,
rather than always root.
Dropped GuestCtl0.AT=0 mode, pending further review.
Clarified Guest Watch exception behavior.
Noted that an exception caused by Root level address trangdlation initiated by a
Guest address trandlation is not a Guest level TLB related exception.

170 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Version

Date

Comments

0.13

January 11, 2012

Minor corrections/enhancements.

Guest/Root Watch support defined and enhanced.

Added Guest Mode change exception.

Updated Guest Field change definition.

Clarified entry to Guest mode definition.

Enhanced definition of Guest/Root TLB based address tranglation.
Improved GuestID definition.

Improved definition of TLBR behavior in Guest mode.

Extended Guest/Root CPO register availability definition.
Improved Guest initiated Root TLB exception handling definition.
Enhanced exception priority definitions.

Added Guest exception codes for GVA, GPA recognition

Added RID field to GuestCtl 1 register, supplies last Guest 1D read.

0.14

January 12, 2012

Added optional PerfCnt support (GM, RM fields).

0.15

February 29, 2012

Updated GuestCtl1 RID/ID definition.

Added definition of behavioral changes caused by GuestID to TLB lookup and
TLB instructions.

Renamed Guest Field/Mode Change exceptions to Guest Software Filed
Change/Guest Hardware Field Change exceptions.

Updated Performance Counter, Watch register descriptions.

Updated Interrupt behavior definition.

GuestCt|0.PT (PIP implemented) added.

Added TLBWI to note G=1 behavior.

Defined SRSCtl/SRSMap as not available in Guest context.

PSI renamed to GPSI for consistency with Guest Exception names.

0.16

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

May 18, 2012

Clarified that GPSI for guest use of RDHWR is signaled only if guest CPO reg-
isters are present and enabled by HWREna and GuestCtl0.CPO=0.

TLBR and TLBGR instructions set EntryHi, EntryL 00, EntryL o1, Page-

Mask mask and GuestCtl1.RID to zero on read of an invalid TLB entry or in
guest mode when the current guest id does not match the guest id in the TLB
entry read.

171

Revision History

Version Date Comments

0.17 June 8, 2012 Root/Guest TLB invalidate instructions only apply to Root/Guest TLB's. Clari-
fied use of GuestCtl1.ID/RID field usage by TLB instructions: TLBR, TLBWI,
TLBGWI, TLBGWR.

Clarified use of EHINV by TLB instructions: TLBR, TLBGR, TLBP, TLBWI,
TLBGWI, TLBGWR.

Change MC to recommended on FTLB page size match, FTLB writewith VPN
inconsistent with Index, and multiple match on TLBGWI.

Updated MFGCO, MTGCQO to contain recent MIPS32 RI/X1 hit changes.
DMTGCO assignment typo fixed.

Table 4.2 GuestCtl0 register field descriptions:

PWCtl added to list of GPSI triggering registers.

Index, Random EntryL 00/1, Context, X Context, COntextConfig, PageMask and
EntryHi dropped from list of GPSI triggering registers.

Table 3.5 Count: GuestCt|0.GT added as a modifier triggering GPSI.

Mention of potential support of recursive virtualization deleted to avoid confu-
sion.

Table 3.16 guest TLB was noted as optional, it’s required.

Watchpoint debug moved to seperate section.

Table 3.13 reference to dmseg removed.

Sec. 3.8.2 Clarified, assign performance counters to guest or root, not both.
Sec. 3.8 Interrupts. clarified PIP and other behavior under devel opment.

Sec. 3.7.8 Clarified handler ERET behavior requirements.

Sec. 3.7.7 Added PWCtl to GPSI triggering list.

Sec. 3.7.5 Added GRIR to Exception Vector Locations list.

Table 3.10 priority of GSFC placed above Execution Exception sinceit only
occurs on (D)MTCO instruction execution and suppresses execution.

Sec. 3.7.3 typo on GExcCode fixed.

Sec. 3.7.2 Added TLB Execute-Inhibit and Read-Inhibit to TLB exceptions
which update BadVaddr.

Table 3.7 Added Status { CU3..0, PX,KX,SX, UX} and PerfCtl.Control to Guest
CPO fields subject to Software or Hardware field change Exceptions.

Table 3.5 DEPC, DESAVE added. X ContextConfig made optional.

Sec. 3.5 Error in pseudo-code fixed. (now returns Guest CCA).

Sec. 3.4.3.6 Attempted to clarifiy operating mode definition.

Added Config4.IE=1 check to describe optionality of EHINV in TLBGWI,
TLBWI, TLBP, TLBGP, TLBR and TLBGR instruction pseudo-code.
Description of Guest/Root Cause.|P added.

172 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Version Date Comments

0.18 July 5, 2012 (Lists changes that may impact architecture or implementation.. No clarifica-
tions noted.)
Added Section 4.5.1 - Virtualized MMU GuestID Use
- Changed pseudo-code in Section 4.5 accordingly.
Rewrote Section 4.8.1 on External Interrupts - Detail handling plus Virtual
Interrupt handling.
Table 4.12 “Priority of Exceptions Table”
- Machine Check Asynchronous. Described event accurately. Split out guest
related events to reposition below GHFC.
- Machine Check Synchronous. Added event. Position below Instruction Valid-
ity.
- Repositioned Deferred Watch Guest below GHFC.
- GSFC has been repositioned below Instruction Validity.
- GRR has been repositioned below Instruction Validity.
Table 4.11 “Guest CPO Read-only fields writeable from Root mode”
- Remove PCI,SR,NMI.
Updated Section 4.12 “Watchpoint Debug Support”
- Table 4.17: Added column for Guest exception on Access.
- Added parafor sharing policy.
Section 4.8. “Performance Counter Interrupts”
- Changed UNDEFINED to UNPREDICTABLE.
- Added parafor sharing policy
- Added parafor root control of guest PCI state.
Table 4.7: “ CPO Registersin Guest CPO context”
- ContextConfig, X ContextConfig: Remove presence of TLB as qualifying con-
dition to determine presence of these registers.
Section 4.7.8 “ Guest Software Field Change Exception”
- setting TS by h/w can cause GSFC in lieu of GHFC.
- added description for optional GuestCtlOSRC/SFK.
Modified Section 4.8.2 “ Derivation of Guest.Cause.|P” pseudo-code to include
Virtua Interrupts’.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 173

Revision History

Version Date Comments

0.19 August 15,2012 Owner: sanjay
/I Only lists new functionality or modifications to existing functionality. Minor
self-evident changes not listed.
Page 9. Table 2.5 Added missing WAIT/ERET/DERET
Page 19. 4.4.3.1. Added subroutines | sGuestMode and IsRootMode. Used in
pseudo-code throughout.
Page 22. 4.4.4. Only guest writes constrained.
Pages 28-29. 4.5. pseudo-code corrected for RAD/DRG use.
Page 30, 4.5.1. Mention that RAD/DRG need not be Read-only.
Page 31, 4.5.1. Modified pseudo-code for RAD/DRG use.
Page 39, Table 4.5.1. SRSCtl/Map now Optional instead of Not_Available.
Page 42, Table 4.9.
- Miscellaneous changes.
- PerfCnt event fields added as causing GSFC.
Page 44, Table 4.11
- Added SR/NMI back. Now Optional.
- Added Badinstr.InstrP from COPO Enhancement Spec.
Page 51, Table 4.12:
- Moved guest Machine-Check Async back to original priority.
- Moved guest Deferred Watch back to origina priority.
- Above two had been shifted because of GHFC. Now resolved.
- Page 53, Table 4.12
- GHFC positioned below Instruction Validity.
Page 56, 4.7.7
- Count and Compare - should only cause GPSl if enabled.
Page 57, 4.7.8
- Miscellaneous changes.
- Added PerfCnt.Event, if under guest ctl, to list.
Page 59, 4.7.8
- UM/KSU GSFC enabled by GuestCtl0.MC
- Added GuestCtl0.SFC1/SFC2.
- Added PerfCnt.Event
Page 61, 4.7.9
- Mention atomic handling of GHFC exception.
Page 64, 4.8.1
- Rewrote section on Non-EIC Interrupt Handling.
- Introduce GuestCtl2.SCVIP.
Page 67, 4.8.2
- Modified Guestl nterruptPending.
- Removed Guest.Cause.lP[1:0] or’ing from EIC mode.
- Added Guest.Cause.IP[1:0] or’ing into non-EIC mode.
Page 69, 4.8.4
- Added conditions under which guest access to PerfCnt causes GPSI.
- Enhanced description for simultaneous sharing of PerfCnt.
Page 70, 4.9.1
- Rewrote virtualized Shadow Set control.
Page 72, 4.10
- Rewrote emulation of MT Module in guest context.
Page 76, Table 4.17
- Removed GPS| from “ Guest Exception on Match” column,.
Page 77, 4.12
- Enhanced description for simultaneous sharing of Watch Register.
Page 85, Table 5.1
- Added GuestCtl2. Corrected Section #s.

174 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Version Date Comments

0.19 August 15,2012 Page 87, Table 5.2
- GuestCt|0.MC now includes UM/KSU.
Page 90, Table 5.2
- GuestCtl0.CG can be RO - implementation dependent.
Page 92, Table 5.2
- Added GuestCtl0.G2
- SFC,SFK changed to SFC2,SFC1
Page 95, Section 5.4
- GuestCtl2 is new.
Page 105, Table 6.1
- TLBWRisnew.
Page 117, TLBGINV Operation
- Added test for GuestID,.
- VPN2_invalid changed to hardware_invalid.
Page 119, TLBGINVF Operation
- Added test for GuestID,.
- VPN2_invalid changed to hardware_invalid.
Page 121, TLBGP
- Added test for GuestID,
Page 127, TLBGWI
- Added test for GuestiD
Page 129, TLBGWR
- Added test for GuestID
Page 133, TLBP
- Changed inRoot/GuestM ode to | sRoot/GuestM ode
Page 136, TLBR
- Added test for GuestiD
Page 138, TLBWI
- Added test for GuestID
- Guest Entries are globalized for RAD=0
Page 141, TLBWR
- - Added test for GuestID
- Guest Entries are globalized for RAD=0
Note : For v0.20, add operation section for any instruction impacted by Gues-
tID.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 175

Revision History

Version Date Comments

0.20 September 7, 2012 // Updated Virtua Interrupt Handling. These changes are meant to
//keep compatibility between two different implementations on
/Inon-EIC mode.
GuestCtl2.SCV P converted to GuestCtl2.HC. Changed 4.8.1.1 accordingly.
Made reset state of GuestCtl2.HC implementation dependent.
In GuestCtl2, shifted current SCVIP field left by 1b. Removed M bit as
GuestCtl3 presence can be detected through other means.
/I Following edits are meant only for low end VZ implementations.
Added GuestCtl0.FCE, Field Change exception Enable. Allows disable of cor-
responding exceptions. Optional for high-end implementations.
Added GuestCtl0.AT=2. Thisisto indicate that a Root Protection Unit is sup-
ported.
I/ Following edits meant for External Interrupt Controller root intervention sup-
port.
New Section 4.8.1.2 for EIC Interrupt Handling
Added GuestCtl1.EID - External Interrupt Controller (EIC) GuestID.
Section 4.8.1.2 - add comment about Guest| D requirements for root and guest
buses.
Add GuestCtl2 definition for EIC mode.
// Following edits meant for virtualized Shadow Sets
Section 4.9.1 - Describe scheme for virtual sharing of Shadow Sets.
Added HSS,EICSS,CSSto Table 4.11 asroot writeabl e read-only fieldsin guest
SRSCitl.
Added GuestCtl3.
/I Miscellaneous
Changed GuestCt|0.FCE to FCD. Thisis to make compatible with existing
implementations.

0.21 September 22, 2012 Table 4.12, Priority of Exceptions. Add type of exception to Instruction
Cache/Bus Error. Missing.
Section 4.8.2 Changed non-EIC pseudo-code for interrupts.
- Inserted r<<2 earlier to accommodate | PTI and IPPCI. Both are 3b values and
can shift upto 7.
- Recoded dlightly to indicate Guest.Cause.IP is not aterm that is ORed into the
equation.
Section 4.8.1.2. Modified GuestCtl0.PIP paragraph to allow control of guest
interruptsin EIC mode.

176 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Version Date Comments

0.22 November 4, 2012 - Section 4.8 - Changed wording of 3rd bullet of set of pending interrupts. Root
November 27, 2012 interrupt njection through GuestCtl2.VIP and GRIPL.

- Modified pseudo-code in Section 4.8.2 to include virtual RIPL inclusionin
EIC interrupts.
- Section 4.9.1 : Guest cannot write Guest SRSCt.ESS/PSS. Modified 3rd last
parato reflect contradiction.
- Section 5.2, GuestCtl0.AT=2 is now listed as optional. AT=2 is VZ-lite option.
- Section 4.8.2 EIC pseudo-code corrected - EIC interrupt level isonly qualified
by Root.Status.IPL.
- Section 4.6.8. Added text to clarify purpose of pseudo-code, and specify dif-
ferent methods for restoring guest timer.
- Section 4.8.1.1 : non-EIC handling. Described NetL compatible mode for
injecting interrupt into guest context. This mode supported before virtual inter-
rupt injection was added.
- Updated 4.8.1.2, EIC Handling. Allow auto-update of guest RIPL and EICSS
from GuestCtl2 on guest entry.
- Added GuestCtIOExt for additional GPSI enables for Virtuoso.
- Shifted GuestCtl|0.FCD to GuestCtIOExt
- Added GuestCtl0.GOE as GuestCtIOEXxt presence bit.
- In section 4.8.2 correction - EICGuestL evel compared against Guest.Sta-
tus.IPL instead of Root.Status.IPL.
- Section 4.12 Clarified guest access to Watch for Guest Configl. WR=0/1.
- Added recommendation to Restriction section for TLBWR and TLBGWR.
The recommendation is for handling Random and Index overlap on write.

1.00 December 7, 2012 Copy of 0.22 for Release 5 of architecture.
1.01 January 10,2013 - Add GuestCtIOEXxt.CGl to allow guest to execute CACHE index invalidate
instructions.

-Remove GuestCtl0.AT=2. This was meant to indicate presence of Root Protec-
tion Unit. software will instead detect RPU through Config3.VZ and Root.Con-
fig.MT=3(FMT)..

- In section 4.8.1.2, replace al references to IRET with ERET.

- In section 4.8.1.2, update text on STOP protocol.

- Updated Table 4.11. Root write to Guest.Cause.|P/RIPL is now optional.
Made optional because if GuestCtl2.VIP/GRIPL are implemented then root
does not need to write these fields.

- Updated Figure 4.11 to show that guest-user hypcall can cause transition to
root if Guest.Status.CUO=1.

- Updated GuestCtl1.PIP to indicate PIP only applicable in non-EIC mode.
Removed reference to PIP in section 4.8.1.2.

- Removed reference to PIP in section 4.8.2, showed prioritization of
EICGuestLevel and GuestCtI2.RIPL. It was assumed before that
EICGuestLevel was higher priority.

- Added reserved ASE fields to GuestCtl2 for MCU ASE.

- Added Section 4.7.12 to describe setting of Root.Cause.ExcCode and
GuestCtl2.GExcCode.

- Updated Section 4.7.9 for recommended method of handling GHFC.

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 177

Revision History

Version Date Comments

1.02 February 19th, 2013 - Fix typo in Section 4.7.9. GuestCtl2.GExcCode should be GuestCtl0.GExc-
Code.
- Section 4.8.1.2. Removed comment about timeout. We have specified and sup-
port amethod for correct functionality. Thus, redundant.
- Section 5.3, Table 5.4. Change EID field to read-only if implemented. Was
R/W.
- Section 4.8.2 (pseudocode). Modified GuestCtl0.PT qualification. Added
GuestCtl0.G2 qualification for optional interrupt passthrough.
- Section 4.5.1 (pseudocodettable) and 5.2 (DRG). Comment -
“GuestCtlOprg=1 and GuestCtl1g,p is non-zero, then all root accesses are
mapped. H/W must set G=1 asif the access were for guest”
- Removed Reserved from list of registers qualified by GuestCtIOExt.OG. Since
it isreserved, it should be unimplemented in guest context. Add comment that
UserTraceDatais specific to iFlowTrace.
- Section 5.7 - GTOffset. # of bits made implementation dependent. For
lower-cost solutions.
- Section 5.5. Added that root must write a non-zero value to guest SRSCtl.HSS
to indicate guest SRSCtl.HSS is not writeable, shadow sets are not supported in
guest context, and thus GuestCtl3 is not present.
Section 5.4 : Added ASE extension for GuestCtl2.HC. Right shifted
GuestCtl2.HC by 2 hits. Left shifted GRIPL and its ASE extension by 2 bits.

178 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Version Date Comments

1.03 March 27,2013 // Part 1:
- Amended last paraof 4.8.1.1 (Non-EIC Interrupts) to indicate root can write 1
or 0to Guest.Cause.|P[7:2]. Earlier it could only set 1 but not clear. This addi-
tional capability isrequired for context switching in KV M. (possible functional
change)
- Table 4.7. Incorrect reference to Config3.AR. Should be Config.AR.
- In section 4.7.8, repositioned single line that references GuestCtlO,MC=1. (No
functional change.)
- In'section 4.7.7, add list of privileged instructions. (No functional change.)
- Added examples to definition of GuestCtl0.CP0 in Table 5.2. (No functional
change.)
- Table 4.10. Remove Config.AR. The requirement that h/w emulate different
architectural releasesis complex and thus not supported. See comment above
table aso. (possible functional change)
- Section 4.7.7. Under bullet referencing RDHWR, remove sentence which ref-
erences partial set of registers. Must be complete set that is supported in
HWREna. (possible functional change)
- For new MSA ASE/Module, add Config5.M SAEnN to Section 4.7.8, on GSFC.
Added 4.9.6 to explain nesting of MSAERN in guest context.
(functional change)
- Section 4.7.7. Amended CACHE bullet. Added control for GuestCtlOExtc, .

Added CACHEE (possible functional change due to addition of detail).

- Section 4.7.7. Added optional TLBINV/F to 3rd bullet. (no functional
change). (possible functional change due to addition of detail).

- Table 4.9, added comment for GuestCtl0.SFC1/2 control of Status.CU2..1 (no
functional change).

- Table 5.8, Correction. GuestCtlOExt. OG,BG,MG are optional features not
required. (no functional change)

- Table 4.7, Added GuestCtl0.Ext OG,BG,MG to qualify related entries. (no
functional change)

Il Part 2:

- Added greater detail on virtualization of SRSesto Section 4.9.1. (possible
functional change due to addition of detail)

- Section 4.8.4, Perf Ctr Interrupts. In paragraph that describes simultaneous
virtual sharing of perf ctrs by root, added that h/w can accomplish root control
over Guest PerfCtr.M state by qualifying it with Root.PerfCtr.EC[1]. Thisis
instead of root write to guest PerfCtr.M. (possible functional change if sup-
ported).

- Section 4.14.2.1. Removed mention of CCA. CCA should not be included in
an RPU design. Listed as optional currently. (no functional change since CCA
excluded in existing implementations).

- Section 4.7.11, Chapter6 - Hypercall. Added clarification for hypercall execu-
tion in debug mode and root mode(possible functional change because response
is now defined instead of UNDEFINED.)

- Section 4.7.8, GSFC. Added clarification that guest (D)MT/F will not com-
plete unless disabled by GuestCtl0.SFC1/1 and GuestCtlOExt.FCD. (no func-
tional change)

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 179

Revision History

Version Date Comments

1.03 March 27, 2013 - Section 4.5 (pseudo-code), Section 4.5.1 (pseudo-code) GuestCtl0.DRG
(continued) April 8, 2013 (Part 3) mode. Removed GuestCtl1.RID from guest address translation path. (functional
April 22,2013 (Part 4) change due to bug in architecture)

- Section 4.5 (pseudo-code), Table 4.2, Table 5.2: GuestCtl0.DRG mode. Clari-
fied that only root kernel is allowed accessto guest entriesin root TLB. This
access ignores root SegCitl, access is mapped, and root CCA isinherited. (clari-
fication which may require functional change due to lack of detail).
- Table 5.14, PerfCitr. In EC field, mention PerfCtl gk /ex | isignored in root

intervention mode since Status.EXL is set. Hardware should qualify instead of
requiring guarantee from s/w. (functional change).

- Section 4.5.2 (new) Relevant to share root and guest TLB. Determines how
root s/w allocates wired and non-wired entriesin ashared TLB. Table 4.10 has
also been updated to allow writeability of Configd TLB size extensions. (func-
tional change for implementations with shared TLB.)

- Section 4.9.3, DSP Module. Added clarification of guest Status.MX writeabil-
ity based on state of guest Config3.DSPP only. Config3.DSP2P need not be fac-
tored in. (possible functional change)

- Section 4.5.1, Virtualized MMU GuestID Use. Removed sentence that says
that GuestCtIODRG must be preset to 1 if GuestCtlIORAD=1. Must be RO in this
case. (possible functional change due to inconsistency in spec.)

- Section 4.5. Virtual Memory. Added special transformation for data virtual
addresses when StatusUX=0, specifically in reference to 1st step of guest
address trandlation. Standard in MIPS64 base architecture (possible functional
change for MIPS64 implementations).

- Table 4.12. Priority of Exceptions. Created an explicit entry for guest enabled
interrupts and placed at lower priority then root deferred watch. Though it is
inferred that root deferred watch is higher priority then a guest interrupt, this
change was made to avoid any confusion. (possible functional change due to
addition of detail).

- Table 4.12. In Machine_Check lines, clarified cases where guest or root can
cause an MC. (no functional change unlessthereis abug in the spec).

I Part 3

- Table 4.11. Added footnote to explain use case for root write of 1 to Guest Sta-
tus.SR/NMI. (no functional change)

- Section 4.7.8. Added reference to GuestCtlOExt.FCD. Similarily, added clarity
to Section 5.6 on behaviour of h/w if FCD=1. (no functional change).

- Table 4.12. Added M SA disabled exception to Instruction Validity category.
(functional change)

- section 4.5, Section 5.2. Changed GuestCtl0.DRG handling slightly by includ-
ing terms Root.Status.ERL/EXL and Debug.DM. (functional change).

I/ Part 4. (James Robinson’s feedback, Oliver's bug)

- Table 4.7, Table 5.8 (GuestCtIOEXt). Moved UserLocal from
GuestCtIOExt.MG to GuestCtIOExt.OG. (functional change.)

- Sections 4.5, 4.5.1Virtual Memory. See pseudo-code for new term drg_valid in
regards to GuestCtl0.DRG. (part 3 change was incorrect)

- Table 4.10. Added that root write to guest Configl,4 MMU Sizefieldsis
required for a shared TLB implementation.(clarification)

- Section 4.6.3.1 - Simplified reserved register handling. (possible functional
change)

- Table 4.7 - changed Config6,7 response based on changes to Section 4.6.3.1.
No longer takes GPSI if CF=0. (functional change)

- Section 4.7.8. Made GSFC on guest access to Status.Impl imp-dependent. Itis
impossible to judge what an implementation may useit for. (functional change)

180 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Version Date Comments

1.04 May 29th, 2013 - Part 1 // Part 1

July 2nd, 2013 - Part 2 - Section 4.7.8 : Added User FR impact - GSFC on guest access to

July 16, 2013 - Part 3 Config5.UFR. GSFC on guest access to StatusFR is now conditional on

July 26, 2013 - Part 4 Config5.UFR.
- Added Section 4.9.7 to describe s'w impact of UFR.
- Section 4.7.7: Updated Shadow Set related bullets (2). Description was incon-
sistent with Section 4.9.1.
// Part 2 - change bars also include Part 1
- Table 5.5, GuestCtl2 : Fixed typo. In GuestCtl2 HC entry, Was Status.|P, Now
correctly Cause.IP.
- Fixed Config4.1E value tested for in instruction descriptions for TLBGR,
TLBR, TLBWI, TLBGP, TLBGWI, TLBGWI, TLBGWR, TLBP. It wasa 1b
field but was extended to 2-b. (may be a bug leading to functional change)
- Section 4.12 - Adding comment that Root Watch of GPA should include com-
parison of { G,ASID}.
- Section 4.4.1 - Added sentence saying guest access to guest COPO is not qual-
ified by root Status.CUO.
- Section 4.8.1.2 - EIC Interrupt Handling. Added comment saying that a core
need only implement accepting vector number or offset from avirtualized EIC,
but not both.
- Table 5.5, GuestCtl2. added comment to GuestCtl2.GV EC saying that root
writeto GVEC is only meant to restore context.
Il Part 3
- VA extensions for extended PA (XPA) : Added MT(F)GCO, BadVAddr,
EntryHi 32-hit extensions.
- Added Section 4.9.9 to describe X PA impact on VZ
- Whereever MT(F)CO word is used, | have extended the use to include
MT(F)HCO.
- Added Section 4.9.8 to describe VZ handling of LLbit.
- Added GuestCtlOExt.RPW to enable h/w pagewalk for root or guest in root
context. (functional change)
I Part 4.
Added clarity to TLBGINV pseudo-code. EntryHi.ASID referenceis guest's
not root, so prefixed “ Guest” to EntryHi.ASID. (possible functional change).
Section 4.7.7, GPSI: remove al EVA instructions except CACHEE from list of
instructions that cause GPSI. (functional change)
TLBR: TLBR in guest mode does not update RID. Corresponds to text descrip-
tion now. (possible functional change)
Table 4.10: Config3.MSAP is now writeable by root, as an optional feature.
Section 4.12. Added emphasis that virtualized handling applies to both Lo and
Hi. (no functional change)

MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06 181

Revision History

Version Date Comments
1.05 11/1/2013 11/1/2013
11/11/2013 -Section 4.9.8 : LL/SC LLbit Handling. Added comment that ERET in root con-

text only clears LLbit in root context.

-Section 4.9.9 : XPA. Added Table 4.15 to describe root control over guest XPA.
-Table 4.7. Added Release 5 MAAR/MAARI. 11/11 - Made Not_Available.
-Section 4.6.31: Guest Reserved Register Handling. Added comments about
MT/FHCO for extensions to COPO registers.

-Table 4.12: Priority of Exceptions. Changed relative priority of RIDR vs. Rl in
table. Thisis not an architectural change asthe only real prioritization isRI vs.
other exceptions. RIDR istaken as a side-effect of this prioritization.

-Section 4.7.7: GPSI. Explicitly mention that RDHWR GPSI also appliesto
CCRes & Sync_Step, which are not CPO regs. Elaborated on conditions under
which guest user or kernel access causes GPSI.

- UMIPS Table 2.8 : Corrected HYPCALL position in Table 2.8. Now corre-
sponds to instruction description.

- UMIPS DMTGCO/DMFGCO instruction descriptions - POOL 32Sxf value cor-
rected to 111100. Changed DM TCO field to 10011, and DMFCO field to 11011.
11/11/2013

- Added Section 4.9.10, “SDBBP Instruction Handling” for virtualization con-
trol over guest execution of SDBBP. R6P related.

- Added Section 4.5.3, “Nested Guest CCA Support”. Optional feature to allow
root control over guest CCA.

- Table 5.8. Added field NCC to GuestCtlOExt for Nested CCA control.

- Added Wired Limit field to Table 4.12, “ Guest Read-only fields writeable
from root mode. R6P related.

- Section 4.9.9, “XPA”. Removed CDMMBase, CMGCRBase from list of regis-
ters requiring extension.

- Section 4.14, “Lightweight Virtualization”. Indicated RPU CCA support is
optional whereas before this field was reserved. Dependent on 4.5.3, nested
CCA handling.

1.06 1/10 -Modified GuestCtl0.RPW for b/w compatible mode. (functional change)
- Added effects of root XPA on guest 36-bit PAE. Table 4.16, “Root Effect on
Guest XPA control”. (may be afunctional change.)
- Added explicit comments about behaviour of MT(F)G(H)CO instructionsin
instruction descriptions (not afunctional change - added detail).

182 MIPS64® Architecture for Programmers Volume IV-i: Virtualization Module of the MIPS64® Architecture, Revision 1.06

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

