
MDMX Rev 1.0 C-1

MIPS Digital Media Extension

C

C 1 Introduction
The MIPS Digital Media Extension supports video, audio, and graphics pixel
processing by introducing vectors of small integers.

The MIPS Digital Media Extension (MDMX) is not a part of the MIPS Instruction
Set Architecture (ISA). If a MIPS processor implements the MDMX, that
implementation will follow this specification with no supersetting or subsetting.
There is no requirement that a MIPS processor implement the MDMX; a processor
that implements the MDMX must implement the MIPS-V ISA.

The MIPS MDMX is not intended for general purpose computing. Software
support for the MDMX is via shared libraries (DSOs) and assembly language only.
Compiler support is neither implied nor planned.

C 2 Register files
The Digital Media extension shares a register file with the Floating Point Unit. Data
is moved between the shared register file and memory with existing Floating Point
load and store doubleword operations (LDC1, SDC1, LDXC1, SDXC1, LUXC1, and
SUXC1). These operations were extended with MIPS-V to include unaligned (that
is, ignore any misaligned) loads and stores. Alignment within a double word is
performed by Align and Merge instructions. The DMTC1 and DMFC1 instructions
may also be used to move data to and from the integer GPRs.

C-2 Rev 1.0 MDMX

The registers are interpreted in two new formats: Quad Half (QH) and Oct Byte
(OB). In Quad Half format, a 64-bit FPR is interpreted as a vector of 4 signed 16-bit
integers. In Oct Byte format, a 64-bit FPR is interpreted as a vector of 8 unsigned 8-
bit integers. There is no data format conversion between floating-point and the
new formats.

The MDMX also shares the 8 Floating Point Condition Code bits. Unlike the FPU,
the MDMX is capable of reading and writing subsets or even all 8 of these bits
simultaneously during vector compare and select operations.

The MDMX has a private 192-bit Accumulator register. The format of the
Accumulator is determined by the format of the elements accumulated. In QH
format, the Accumulator contains 4 48-bit elements; in OB format, the
Accumulator contains 8 24-bit elements. Accumulator elements are always
signed.The Accumulator cannot be directly loaded from or stored to main
memory, but rather must be staged through the shared FP register file.

Digital Media operations always write all 192 bits of the Accumulator or all 64 bits
of an FPR, or the condition codes. Results are not stored to multiple destinations
(including the condition codes).

C 3 Exceptions
With the exception of the SHFL instruction, integer vector operations that write to
the FPRs clamp the values being written to the target’s representable range. Integer
vector operations that write to an Accumulator do not clamp their values before
writing, but allow underflows and overflows to wrap around the representable
range. It is the responsibility of software to ensure that unwanted overflows and
underflows do not occur when writing to the Accumulator or FPRs.

C 4 Instruction Format and VT Selection
The fmt/sel field in many integer vector instructions specifies the data format and
those elements of vector vt which are used with each element of the accumulator
acc, vector vs, or vector vd. The format encoding is shown in Table C-1 below. The
BW and L formats are reserved for future use.

Table C-1 Format Encoding

fmt/sel Format

s s s s 0 OB (oct byte)

s s s 0 1 QH (quad halfword)

s s 0 1 1 BW (bi word), reserved

s s 1 1 1 L (long), reserved

MDMX Rev 1.0 C-3

The part of the field labeled “s” indicates the VT selection for the specified format.
Table C-2 describes the VT select encoding:

Element select will select one element in VT and replicate it for every element of
VT. For select vector, VT is passed without any modification. For select
immediate, the VT field of the instruction opcode is used as an immediate value
that is replicated for every element of VT.

The following two tables, Table C-3 and Table C-4, show all valid OB and QH
sel/fmt encodings and the vector element used. All other encodings are reserved
or invalid.

Table C-2 Select Encoding

fmt/sel VT select

0 x x x x element select

1 0 x x x select vector

1 1 x x x select immediate

Table C-3 OB Format and Selects

fmt/sel
 OB Element

H G F E D C B A

0 000 0 A A A A A A A A

0 001 0 B B B B B B B B

0 010 0 C C C C C C C C

0 011 0 D D D D D D D D

0 100 0 E E E E E E E E

0 101 0 F F F F F F F F

0 110 0 G G G G G G G G

0 111 0 H H H H H H H H

10 11 0 H G F E D C B A

11 11 0 # # # # # # # #

C-4 Rev 1.0 MDMX

Most commonly, elements of vector vt are used with the same-numbered elements
of the other vector operands, in which case the fmt/sel field contains binary 10xxx,
and the assembly notation looks like any other vector register, e.g.:

sub.ob $v4, $v7, $v2

However, the fmt/sel field can also direct that the second argument to an
instruction be a vector of immediates -- copies of the vt field interpreted as a five
bit unsigned number, like this:

add.qh $v10, $v9, 25

An element of vector vt can be propagated, to be used with each of the elements of
the other vector operand vs. Following is the notation to propagate one element of
vector vt to be used in every element of the computation:

addl.ob $acc0, $v4, $v6[7]

C 5 Data format conversion
There is no implicit data type conversion from QH to OB or from OB to QH. Both
are stored as bit-arrays in memory, however the internal floating-point register
formats may differ. QH and OB vectors may be read or written without regard to
datatype. Conversion from a bit-array to either a QH or OB occurs during the
execution of the first MDMX opcode which includes a format field (e.g., ADD).
Subsequent operations must use the same datatype; mixing QH and OB operations
without explicit register content conversion results in an undefined operation.

The shuffle (SHFL) and MIN/MAX operators can be used to convert QH and OB
vectors. To convert either the lower or upper bytes of an OB vector into a QH
vector, the SHF.UPUL and SHF.UPUH can be used to convert the lower [0:3] and
upper [4:7] unsigned bytes into signed halves. To convert two QH vectors to an OB

Table C-4 QH Format and Selects

fmt/sel
QH Element

D C B A

0 00 01 A A A A

0 01 01 B B B B

0 10 01 C C C C

0 11 01 D D D D

10 1 01 D C B A

11 1 01 # # # #

MDMX Rev 1.0 C-5

vector, the QH vectors should first be clamped to 0..255, then packed (via
SHFL.PACL.OB). Clamping can be done with the MIN.QH and MAX.QH
instructions.

C 6 Description of an Instruction
For the Digital Media instruction documentation, all variable subfields in an
instruction format (such as vs, vt, acc, sel, and so on) are shown in lower-case. The
instruction name (such as ADD, SUB, and so on) is shown in upper-case.

In some instructions, the instruction subfields op and function can have constant 6-
and 5-bit values. When reference is made to these instructions, upper-case
mnemonics are used. For instance, in the floating-point ADD instruction uses
op = COP1 and function = ADD. In other cases, a single field has both fixed and
variable subfields, so the name contains both upper and lower case characters.

C 7 Opcode encoding

bits
2..0 function (for opcode = COP2)

0 1 2 3 4 5 6 7
 5..3 000 001 010 011 100 101 110 111

0 000 MSGN C.EQ PICKF PICKT C.LT C.LE MIN MAX
1 001 † † SUB ADD AND XOR OR NOR
2 010 SLL † SRL SRA † † † †
3 011 ALNI.OB ALNV.OB ALNI.QH ALNV.QH † † † SHFL
4 100 RZU RNAU RNEU † RZS RNAS RNES †
5 101 † † † † † † † †
6 110 MUL † MULS{,L} MUL{A,L} † † SUB{A,L} ADD{A,L}
7 111 † † † † † † WAC RAC

C-6 Rev 1.0 MDMX

Vector Add ADD.fmt

MDMX Rev 1.0 C-7

Format: ADD.QH vd, vs, vt MDMX
ADD.OB vd, vs, vt

Purpose: To add integer vectors.

Description: vd[i] ← vs[i]+select(i,sel,vt)

The values in vector vt are added to the values in vector vs. Saturated arithmetic is
performed, such that overflows and underflows clamp to the largest or smallest
representable value before writing to vector vd.

The operands and results are values in integer vector format fmt. sel selects the values
of vt[] used for each i. See section C 4 on page C-3 for a description of fmt/sel encoding.

This operation is a signal processing operation, no data-dependent exceptions are
possible.

The operands must be a value in the specified format. If not, the results are undefined
and the values of the operand vectors become undefined.

Operation:

StoreFPR (vd, fmt, Clamp(FGR[vs] + FGR[vt]))

Exceptions:
Coprocessor Unusable
Reserved Instruction

31 0

6 5 5 5 5 6

COP2 fmt/sel vt vs vd ADD

11 1021 20 16 1526 25 6 5

0 1 0 0 1 0 0 0 1 0 1 1

ADDA.fmt Accumulate Vector Add

C-8 Rev 1.0 MDMX

Format: ADDA.QH vs, vt MDMX
ADDA.OB vs, vt

Purpose: To add integer vectors.

Description: acc[i] ← acc[i]+vs[i]+select(i,sel,vt)

The values in vector vt and vector vs are added to those in the Accumulator. Wrapped
arithmetic is performed, such that overflows and underflows wrap around the
Accumulator’s representable range before being written into the Accumulator.

The operands are values in integer vector format fmt. The Accumulator is in the
corresponding Accumulator vector format. sel selects the values of vt[] used for each i.
See section C 4 on page C-2 for a description of fmt/sel encoding.

This operation is a signal processing operation, no data-dependent exceptions are
possible.

The operands must be a value in the specified format. If not, the results are undefined
and the values of the operand vectors become undefined.

Operation:

StoreACC (acc, fmt, Wrap(ValueACC(acc, fmt) + FGR[vs] + FGR[vt]))

Exceptions:
Coprocessor Unusable
Reserved Instruction

31 0

6 5 5 5 4 6

COP2 fmt/sel vt vs 0 ADDA

11 1021 20 16 1526 25 6 5

0 1 0 0 1 0 1 1 0 1 1 1

9

L

1

0

Load Vector Add ADDL.fmt

MDMX Rev 1.0 C-9

Format: ADDL.QH vs, vt MDMX
ADDL.OB vs, vt

Purpose: To add integer vectors.

Description: acc[i] ← vs[i]+select(i,sel,vt)

The values in vector vt and vector vs are added to those in the Accumulator. Wrapped
arithmetic is performed, such that overflows and underflows wrap around the
Accumulator’s representable range before being written into the Accumulator.

The operands are values in integer vector format fmt. The Accumulator is in the
corresponding Accumulator vector format. sel selects the values of vt[] used for each i.
See section C 4 on page C-2 for a description of fmt/sel encoding.

This operation is a signal processing operation, no data-dependent exceptions are
possible.

The operands must be a value in the specified format. If not, the results are undefined
and the values of the operand vectors become undefined.

Operation:

StoreACC (acc, fmt, FGR[vs] + FGR[vt])

Exceptions:
Coprocessor Unusable
Reserved Instruction

31 0

6 5 5 5 4 6

COP2 fmt/sel vt vs 0 ADDA

11 1021 20 16 1526 25 6 5

0 1 0 0 1 0 1 1 0 1 1 1

9

L

1

1

ALNI.fmt Vector align, Constant Alignment

C-10 Rev 1.0 MDMX

Format: ALNI.QH vd, vs, vt, imm MDMX
ALNI.OB vd, vs, vt, imm

Purpose: To perform a byte-wise funnel shift.

Description: vd ← ByteAlign(imm2..0, vs, vt)

The align amount is computed by masking the immediate, then using that value to
control a funnel shift of vector vs concatenated with vector vt.

This operation is a media unit operation, and so no data-dependent exceptions are
possible.

The operands must be a value in QH or OB format. If not, the results are undefined and
the values of the operand vectors become undefined.

This operation does not interpret the format of the registers specified.

Operation:

s ← imm2..0*8
if BigEndianCPU then

vd ← (vs || vt)127-s..64-s
else

vd ← (vs || vt)63+s..s
endif

Exceptions:
Coprocessor Unusable
Reserved Instruction

31 0

6 3 5 5 5 6

COP2 imm vt vs vd ALNI.fmt

11 1021 20 16 1526 25 6 5

0 1 0 0 1 0
0

24

2

0 1 1 0 x 0

23

Vector Align, Variable Alignment ALNV.fmt

MDMX Rev 1.0 C-11

Format: ALNV.QH vd, vs, vt, rs MDMX
ALNV.OB vd, vs, vt, rs

Purpose: To perform a byte-wise funnel shift.

Description: vd ← ByteAlign(rs2..0, vs, vt)

The align amount is computed by masking the contents of GPR rs, then using that
value to control a funnel shift of vector vs concatenated with vector vt.

This operation is a media unit operation, and so no data-dependent exceptions are
possible.

The operands must be a value in QH or OB format. If not, the results are undefined and
the values of the operand vectors become undefined.

This operation does not interpret the format of the registers specified.

Operation:

s ← GPR[rs]2..0*8
if BigEndianCPU then

vd ← (vs || vt)127-s..64-s
else

vd ← (vs || vt)63+s..s
endif

Exceptions:
Coprocessor Unusable
Reserved Instruction

31 0

6 5 5 5 5 6

COP2 rs vt vs vd ALNV.fmt

11 1021 20 16 1526 25 6 5

0 1 0 0 1 0 0 1 1 0 x 1

AND.fmt Vector And

C-12 Rev 1.0 MDMX

Format: AND.QH vd, vs, vt MDMX
AND.OB vd, vs, vt

Purpose: To do a bitwise logical AND.

Description: vd[i] ← vs[i] AND select(i,sel,vt)

Each element of vector vs is combined with the corresponding element of vector vt in
a bitwise logical AND operation.

The operands and results are values in integer vector format fmt. sel selects the values
of vt[] used for each i. See section C 4 on page C-2 for a description of fmt/sel encoding.

This operation is a signal processing operation, no data-dependent exceptions are
possible.

The operands must be a value in the specified format. If not, the results are undefined
and the values of the operand vectors become undefined.

Operation:

StoreFPR(fd, fmt, ValueFPR(fs,fmt) and ValueFPR(ft,fmt))

Exceptions:
Coprocessor Unusable
Reserved Instruction

31 0

6 5 5 5 5 6

COP2 fmt/sel vt vs vd AND

11 1021 20 16 1526 25 6 5

0 1 0 0 1 0 0 0 1 1 0 0

Vector Compare C.cond.fmt

MDMX Rev 1.0 C-13

Format: C.cond.QH vs, vt MDMX
C.cond.OB vs, vt

Purpose: To perform vector comparison.

Description: cc[i] ← vs[i] cond select(i,sel,vt)

The values in vector vt are compared to the values in vector vs, and the result is written
to the condition codes. In OB format, all 8 CC bits are set. In QH format, cc bits 0
through 3 are written, and cc bits 4 through 7 are unaffected.

The comparisons available are less than (LT), less than or equal (LE), and equal (EQ).
The inverse comparisons (GE, GT, NE) are not necessary; the instructions that use
condition codes (BC1F, BC1T, MOVF, MOVT, PICKF, PICKT) all allow both cc=0 and
cc=1 tests. Both LT and LE comparisons are necessary since the operands are not
symmetrical — every element of vector vs is used, whereas sel selects the values of vt[]
used for each i.

The operands are values in integer vector format fmt. sel selects the values of vt[] used
for each i. See section C 4 on page C-2 for a description of fmt/sel encoding.

This operation is a signal processing operation, no data-dependent exceptions are
possible.

The operands must be a value in the specified format. If not, the results are undefined
and the values of the operand vectors become undefined.

Operation:

Exceptions:
Coprocessor Unusable
Reserved Instruction

31 0

6 5 5 5 5 6

COP2 fmt/sel vt vs 0 C.cond

11 1021 20 16 1526 25 6 5

0 1 0 0 1 0 0 0 0 x x x

MAX.fmt Vector Maximum

C-14 Rev 1.0 MDMX

Format: MAX.QH vd, vs, vt MDMX
MAX.OB vd, vs, vt

Purpose: To perform vector maximum.

Description: vd[i] ← max(vs[i], select(i,sel,vt))

The values in vector vt are compared to the values in vector vs, and the larger is written
to each element of vector vd.

The operands and results are values in integer vector format fmt. sel selects the values
of vt[] used for each i. See section C 4 on page C-2 for a description of fmt/sel encoding.

This operation is a signal processing operation, no data-dependent exceptions are
possible.

The operands must be a value in the specified format. If not, the results are undefined
and the values of the operand vectors become undefined.

Operation:

Exceptions:
Coprocessor Unusable
Reserved Instruction

31 0

6 5 5 5 5 6

COP2 fmt/sel vt vs vd MAX

11 1021 20 16 1526 25 6 5

0 1 0 0 1 0 0 0 0 1 1 1

Vector Minimum MIN.fmt

MDMX Rev 1.0 C-15

Format: MIN.QH vd, vs, vt MDMX
MIN.OB vd, vs, vt

Purpose: To perform vector minimum.

Description: vd[i] ← min(vs[i], select(i,sel,vt))

The values in vector vt are compared to the values in vector vs, and the smaller is
written to each element of vector vd.

The operands and results are values in integer vector format fmt. sel selects the values
of vt[] used for each i. See section C 4 on page C-2 for a description of fmt/sel encoding.

This operation is a signal processing operation, no data-dependent exceptions are
possible.

The operands must be a value in the specified format. If not, the results are undefined
and the values of the operand vectors become undefined.

Operation:

Exceptions:
Coprocessor Unusable
Reserved Instruction

31 0

6 5 5 5 5 6

COP2 fmt/sel vt vs vd MIN

11 1021 20 16 1526 25 6 5

0 1 0 0 1 0 0 0 0 1 1 0

MSGN.fmt Vector Sign

C-16 Rev 1.0 MDMX

Format: MSGN.QH vd, vs, vt MDMX
Purpose: To multiply sign bits from one vector by another.

Description: vd[i] ← (vs[i] < 0) ? -select(i,sel,vt) : ((vs[i] = 0) ? 0 : select(i,sel,vt))

The values in vector vt are multiplied by the sign of the values in vector vs, and the
result is written to vector vd. If an element of vector vs is zero, the corresponding
element of vector vd is set to zero.

Should select(i,sel,vt) be the maximum negative value (-215), and vs[i] < 0, then
-select(i,sel,vt) will overflow and be clamped to the maximum positive value (215 - 1).

The operands are values in integer vector format QH. sel selects the values of vt[] used
for each i. See section C 4 on page C-2 for a description of fmt/sel encoding.

This operation is a signal processing operation, no data-dependent exceptions are
possible.

The operands must be a value in format QH. If not, the results are undefined and the
values of the operand vectors become undefined.

Operation:

Exceptions:
Coprocessor Unusable
Reserved Instruction

31 0

6 5 5 5 5 6

COP2 fmt/sel vt vs vd MSGN

11 1021 20 16 1526 25 6 5

0 1 0 0 1 0 0 0 0 0 0 0x x x 0 1

Vector Multiply MUL.fmt

MDMX Rev 1.0 C-17

Format: MUL.QH vd, vs, vt MDMX
MUL.OB vd, vs, vt

Purpose: To multiply integer vectors.

Description: vd[i] ← vs[i]*select(i,sel,vt)

The values in vector vt are multiplied by the values in vector vs, and the product is
written into vector vd. Saturated arithmetic is performed, such that overflows and
underflows clamp to the largest or smallest representable value before writing to
vector vd.

The operands and results are values in integer vector format fmt. sel selects the values
of vt[] used for each i. See section C 4 on page C-2 for a description of fmt/sel encoding.

This operation is a signal processing operation, no data-dependent exceptions are
possible.

The operands must be a value in the specified format. If not, the results are undefined
and the values of the operand vectors become undefined.

Operation:

StoreFPR (vd, fmt, Clamp(FGR[vs] * FGR[vt]))

Exceptions:
Coprocessor Unusable

31 0

6 5 5 5 5 6

COP2 fmt/sel vt vs vd MUL

11 1021 20 16 1526 25 6 5

0 1 0 0 1 0 1 1 0 0 0 0

MULA.fmt Accumulate Vector Multiply

C-18 Rev 1.0 MDMX

Format: MULA.QH vs, vt MDMX
MULA.OB vs, vt

Purpose: To perform a combined multiply-then-add of integer vectors.

Description: acc[i] ← acc[i]+(vs[i]*select(i,sel,vt))

The values in vector vt are multiplied by the values in vector vs, and the product is
added to the Accumulator. Wrapped arithmetic is performed, such that overflows and
underflows wrap around the Accumulator’s representable range before being written
into the Accumulator.

The operands are values in integer vector format fmt. The Accumulator is in the
corresponding Accumulator vector format. sel selects the values of vt[] used for each
i. See section C 4 on page C-2 for a description of fmt/sel encoding.

This operation is a signal processing operation, no data-dependent exceptions are
possible.

The operands must be a value in the specified format. If not, the results are undefined
and the values of the operand vectors become undefined.

Operation:

StoreACC (acc, fmt, Wrap(ValueACC(acc,fmt) + (FGR[vs] * FGR[vt])))

Exceptions:
Coprocessor Unusable
Reserved Instruction

31 0

6 5 5 5 4 6

COP2 fmt/sel vt vs 0 MULA

11 1021 20 16 1526 25 6 5

0 1 0 0 1 0 1 1 0 0 1 1

1

L

9

0

Add Vector Multiply to Accumulator MULL.fmt

MDMX Rev 1.0 C-19

Format: MULL.QH vs, vt MDMX
MULL.OB vs, vt

Purpose: To perform a combined multiply-then-add of integer vectors.

Description: acc[i] ← vs[i]*select(i,sel,vt)

The values in vector vt are multiplied by the values in vector vs, and the product is
added to the Accumulator. Wrapped arithmetic is performed, such that overflows and
underflows wrap around the Accumulator’s representable range before being written
into the Accumulator.

The operands are values in integer vector format fmt. The Accumulator is in the
corresponding Accumulator vector format. sel selects the values of vt[] used for each
i. See section C 4 on page C-2 for a description of fmt/sel encoding.

This operation is a signal processing operation, no data-dependent exceptions are
possible.

The operands must be a value in the specified format. If not, the results are undefined
and the values of the operand vectors become undefined.

Operation:

StoreACC (acc, fmt, FGR[vs] * FGR[vt])

Exceptions:
Coprocessor Unusable
Reserved Instruction

31 0

6 5 5 5 4 6

COP2 fmt/sel vt vs 0 MULA

11 1021 20 16 1526 25 6 5

0 1 0 0 1 0 1 1 0 0 1 1

1

L

9

1

MULS.fmt Subtract Vector Multiply from Accumulator

C-20 Rev 1.0 MDMX

Format: MULS.QH vs, vt MDMX
MULS.OB vs, vt

Purpose: To perform a combined multiply-then-subtract of integer vectors.

Description: acc[i] ← acc[i]-(vs[i]*select(i,sel,vt))

The values in vector vt are multiplied by the values in vector vs, and the product is
subtracted from the Accumulator. Wrapped arithmetic is performed, such that
overflows and underflows wrap around the Accumulator’s representable range before
being written into the Accumulator.

The operands are values in integer vector format fmt. The Accumulator is in the
corresponding Accumulator vector format. sel selects the values of vt[] used for each
i. See section C 4 on page C-2 for a description of fmt/sel encoding.

This operation is a signal processing operation, no data-dependent exceptions are
possible.

The operands must be a value in the specified format. If not, the results are undefined
and the values of the operand vectors become undefined.

Operation:

StoreACC (acc, fmt, Wrap(ValueACC(acc, fmt) - (FGR[vs] * FGR[vt])))

Exceptions:
Coprocessor Unusable
Reserved Instruction

31 0

6 5 5 5 4 6

COP2 fmt/sel vt vs 0 MULS

11 1021 20 16 1526 25 6 5

0 1 0 0 1 0 1 1 0 0 1 0

9

1

L
0

Load Negative Vector Multiply MULSL.fmt

MDMX Rev 1.0 C-21

Format: MULSL.QH vs, vt MDMX
MULSL.OB vs, vt

Purpose: To perform a combined multiply-then-subtract of integer vectors.

Description: acc[i] ← -(vs[i]*select(i,sel,vt))

The values in vector vt are multiplied by the values in vector vs, and the product is
subtracted from the Accumulator. Wrapped arithmetic is performed, such that
overflows and underflows wrap around the Accumulator’s representable range before
being written into the Accumulator.

The operands are values in integer vector format fmt. The Accumulator is in the
corresponding Accumulator vector format. sel selects the values of vt[] used for each
i. See section C 4 on page C-2 for a description of fmt/sel encoding.

This operation is a signal processing operation, no data-dependent exceptions are
possible.

The operands must be a value in the specified format. If not, the results are undefined
and the values of the operand vectors become undefined.

Operation:

StoreACC (acc, fmt, - (FGR[vs] * FGR[vt]))

Exceptions:
Coprocessor Unusable
Reserved Instruction

31 0

6 5 5 5 4 6

COP2 fmt/sel vt vs 0 MULS

11 1021 20 16 1526 25 6 5

0 1 0 0 1 0 1 1 0 0 1 0

9

1

L
1

NOR.fmt Vector Nor

C-22 Rev 1.0 MDMX

Format: NOR.QH vd, vs, vt MDMX
NOR.OB vd, vs, vt

Purpose: To do a bitwise logical NOR.

Description: vd[i] ← vs[i] NOR select(i,sel,vt)

Each element of vector vs is combined with the corresponding element of vector vt in
a bitwise logical NOR operation.

The operands and results are values in integer vector format fmt. sel selects the values
of vt[] used for each i. See section C 4 on page C-2 for a description of fmt/sel encoding.

This operation is a signal processing operation, no data-dependent exceptions are
possible.

The operands must be a value in the specified format. If not, the results are undefined
and the values of the operand vectors become undefined.

Operation:

StoreFPR(fd, fmt, ValueFPR(fs,fmt) nor ValueFPR(ft,fmt))

Exceptions:
Coprocessor Unusable
Reserved Instruction

31 0

6 5 5 5 5 6

COP2 fmt/sel vt vs vd NOR

11 1021 20 16 1526 25 6 5

0 1 0 0 1 0 0 0 1 1 1 1

Vector Or OR.fmt

MDMX Rev 1.0 C-23

Format: OR.QH vd, vs, vt MDMX
OR.OB vd, vs, vt

Purpose: To do a bitwise logical OR.

Description: vd[i] ← vs[i] OR select(i,sel,vt)

Each element of vector vs is combined with the corresponding element of vector vt in
a bitwise logical OR operation.

The operands and results are values in integer vector format fmt. sel selects the values
of vt[] used for each i. See section C 4 on page C-2 for a description of fmt/sel encoding.

This operation is a signal processing operation, no data-dependent exceptions are
possible.

The operands must be a value in the specified format. If not, the results are undefined
and the values of the operand vectors become undefined.

Operation:

StoreFPR(fd, fmt, ValueFPR(fs,fmt) or ValueFPR(ft,fmt))

Exceptions:
Coprocessor Unusable
Reserved Instruction

31 0

6 5 5 5 5 6

COP2 fmt/sel vt vs vd OR

11 1021 20 16 1526 25 6 5

0 1 0 0 1 0 0 0 1 1 1 0

PICKF.fmt Select Vector Elements

C-24 Rev 1.0 MDMX

Format: PICKF.QH vd, vs, vt MDMX
PICKF.OB vd, vs, vt

Purpose: To select elements of a vector.

Description: vd[i] ← cc[i] = 0 ? vs[i] : select(i,sel,vt)

Depending on the cc bits, the vector vd is written with either the corresponding element
of vector vs or the corresponding element of vector vt. When operating on OB format
data, all 8 cc bits are used. When operating on QH format data, cc bits 0 through 3 are
used.

The operands and results are values in integer vector format fmt. sel selects the values
of vt[] used for each i. See section C 4 on page C-2 for a description of fmt/sel encoding.

Both PICKF and PICKT are necessary since the operands are not symmetrical — every
element of vector vs is used, whereas sel selects the values of vt[] used for each i.

This operation is a signal processing operation, no data-dependent exceptions are
possible.

The operands must be a value in the specified format. If not, the results are undefined
and the values of the operand vectors become undefined.

Operation:

Exceptions:
Coprocessor Unusable
Reserved Instruction

31 0

6 5 5 5 5 6

COP2 fmt/sel vt vs vd PICKF

11 1021 20 16 1526 25 6 5

0 1 0 0 1 0 0 0 0 0 1 0

Select Vector Elements PICKT.fmt

MDMX Rev 1.0 C-25

Format: PICKT.QH vd, vs, vt MDMX
PICKT.OB vd, vs, vt

Purpose: To select elements of a vector.

Description: vd[i] ← cc[i] = 1 ? vs[i] : select(i,sel,vt)

Depending on the cc bit, the vector vd is written with either the corresponding element
of vector vs or the corresponding element of vector vt. When operating on OB format
data, all 8 cc bits are used. When operating on QH format data, cc bits 0 through 3 are
used.

The operands and results are values in integer vector format fmt. sel selects the values
of vt[] used for each i. See section C 4 on page C-2 for a description of fmt/sel encoding.

Both PICKF and PICKT are necessary since the operands are not symmetrical — every
element of vector vs is used, whereas sel selects the values of vt[] used for each i.

This operation is a signal processing operation, no data-dependent exceptions are
possible.

The operands must be a value in the specified format. If not, the results are undefined
and the values of the operand vectors become undefined.

Operation:

Exceptions:
Coprocessor Unusable
Reserved Instruction

31 0

6 5 5 5 5 6

COP2 fmt/sel vt vs vd PICKT

11 1021 20 16 1526 25 6 5

0 1 0 0 1 0 0 0 0 0 1 1

Rx.fmt Scale, Round and Clamp Accumulator

C-26 Rev 1.0 MDMX

Format: Rx.QH vd, vt MDMX
Rx.OB vd, vt

Purpose: To scale, round and then clamp an accumulator’s values into a vector
register.

Description: vd[i] ← Clamp(Round(acc[i] >> select(i,sel,vt)))

The values in the Accumulator are shifted right by the values in vector vt, rounded by
the indicated mode, and clamped to either a signed or unsigned subset of the range of
vd[]. This is the only instruction type that can do an unsigned quad-half clamp.

The vt operands are values in integer vector format fmt. The Accumulator is in the
corresponding Accumulator vector format. sel selects the values of vt[] used for each
i. See section C 4 on page C-2 for a description of fmt/sel encoding.

In the QH format, if an element of vt[] is negative, the corresponding element of vd[] is
undefined. If an element of vt[] is greater than 48, all significant bits will be shifted
away and the result will be zero. In the OB format, if an element of vt[] is greater than
24, then the result will be zero.

The rounding modes available depend on the format selected, and in the QH format
are available in signed and unsigned versions, as shown below:

 Rounding Modes Used in Rx.fmt

This operation is a signal processing operation, no data-dependent exceptions are
possible.

The operands must be a value in the specified format. If not, the results are undefined
and the values of the operand vectors become undefined.

Rounding direction
Quad Half format Oct Byte format

Signed Unsigned Unsigned

all fractional values round
toward zero RZS.QH RZU.QH RZU.OB

to nearest, exactly halfway
rounds away from zero RNAS.QH RNAU.QH RNAU.OB

to nearest, exactly halfway
rounds to even RNES.QH RNEU.QH RNEU.OB

31 0

6 5 5 5 5 6

COP2 fmt/sel vt 0 vd Rx

11 1021 20 16 1526 25 6 5

0 1 0 0 1 0 1 0 0 x x x

Scale, Round and Clamp Accumulator Rx.fmt

MDMX Rev 1.0 C-27

Operation:

Exceptions:
Coprocessor Unusable
Reserved Instruction

RAC.fmt Read Accumulator

C-28 Rev 1.0 MDMX

Format: RACL.QH vd MDMX
RACM.QH vd
RACH.QH vd
RACL.OB vd
RACM.OB vd
RACH.OB vd

Purpose: To read sections of the accumulator into a vector register.

Description: vd[i] ← acc[i].{low, med, high}

Read either the least significant, middle significant, or most significant third of the bits
of the Accumulator elements. No clamping of the values extracted is performed; the
bits are simply copied into elements of vd[].

The field fmt/op specifies which of the 8 or 16 bits of the Accumulator to read the
following:

 RAC fmt/op Encodings

This operation is a signal processing operation, no data-dependent exceptions are
possible.

A RACL/RACM/RACH followed by WACL/WACH are used to save and restore the
Accumulator. This save:restore function is format independent, either format can be
used to save or restore Accumulator values generated by either QH or OB operations.
There is no implied data conversion; the mapping between element bits of the OB
format Accumulator and bits of the same Accumulator interpreted in QH format is
implementation specific, but consistent for each implementation.

Operation:

Exceptions:
Coprocessor Unusable

operation
fmt/op

OB Fmt QH Fmt

RACL 0000 0 000 01

RACM 0100 0 010 01

RACH 1000 0 100 01

31 0

6 5 5 5 5 6

COP2 fmt/op 0 0 vd RAC

11 1021 20 16 1526 25 6 5

0 1 0 0 1 0 1 1 1 1 1 1

Vector Element Shuffle SHFL.op.fmt

MDMX Rev 1.0 C-29

Format: SHFL.op.QH vd, vs, vt MDMX
SHFL.op.OB vd, vs, vt

Purpose: To make a new vector of the elements of two other vectors.

Description: vd[i] ← one of vs[j] or vt[j]

Elements of vectors vs and vt and merged into a new vector. All possible value
rearrangings are not available -- the operations of the variants of this instruction are
tailored to the data movement patterns of specific calculations. The shuffles available
in OB and QH formats are given in the tables below.

Note that UPSL.OB and UPSH.OB are the only MU instructions that interpret an
element of an OB format vector as a signed quantity.

The operands are values in integer vector format fmt. sel selects the values of vt[] used
for each i. See section C 4 on page C-2 for a description of fmt encoding. The remaining
bits in the field are not used for a vt[] select but rather are used to encode the shuffle
operation.

This operation is a signal processing operation, no data-dependent exceptions are
possible.

The operands must be a value in the specified format. If not, the results are undefined
and the values of the operand vectors become undefined.

 Oct Byte Shuffles

fmt/op Operation vd[7] vd[6] vd[5] vd[4] vd[3] vd[2] vd[1] vd[0]

0000 0 UPUH 0 vs[7] 0 vs[6] 0 vs[5] 0 vs[4]

0001 0 UPUL 0 vs[3] 0 vs[2] 0 vs[1] 0 vs[0]

0010 0 UPSH sign
vs[7] vs[7] sign

vs[6] vs[6] sign
vs[5] vs[5] sign

vs[4] vs[4]

0011 0 UPSL sign
vs[3] vs[3] sign

vs[2] vs[2] sign
vs[1] vs[1] sign

vs[0] vs[0]

0100 0 PACH vs[7] vs[5] vs[3] vs[1] vt[7] vt[5] vt[3] vt[1]

0101 0 PACL vs[6] vs[4] vs[2] vs[0] vt[6] vt[4] vt[2] vt[0]

0110 0 MIXH vs[7] vt[7] vs[6] vt[6] vs[5] vt[5] vs[4] vt[4]

0111 0 MIXL vs[3] vt[3] vs[2] vt[2] vs[1] vt[1] vs[0] vt[0]

31 0

6 5 5 5 5 6

COP2 fmt/op vt vs vd SHFL

11 1021 20 16 1526 25 6 5

0 1 0 0 1 0 0 1 1 1 1 1

SHFL.op.fmt Vector Element Shuffle

C-30 Rev 1.0 MDMX

Operation:

Exceptions:
Coprocessor Unusable
Reserved Instruction

 Quad Half shuffles

fmt/op Operation vd[3] vd[2] vd[1] vd[0]

000 01 MIXH vs[3] vt[3] vs[2] vt[2]

001 01 MIXL vs[1] vt[1] vs[0] vt[0]

010 01 PACH vs[3] vs[1] vt[3] vt[1]

011 01 PACL vs[2] vs[0] vt[2] vt[0]

100 01 BFLA vs[2] vt[3] vs[0] vt[1]

101 01 BFLB vs[0] vt[1] vs[2] vt[3]

110 01 REPA vs[3] vs[2] vt[3] vt[2]

111 01 REPB vs[1] vs[0] vt[1] vt[0]

Vector Shift Left Logical SLL.fmt

MDMX Rev 1.0 C-31

Format: SLL.QH vd, vs, vt MDMX
SLL.OB vd, vs, vt

Purpose: To shift a vector’s elements by a variable number of bits.

Description: vd[i] ← vs[i] << select(i,sel,vt)

Each element of vector vs is shifted left by an amount specified by the corresponding
element of vector vt, and zeros are shifted into the low-order bits. The results are
written into vector vd. In QH format, all but the lower 4 bits of the shift amount are
masked to zero; the largest shift possible is 15 places. In OB format, all but the lower 3
bits of the shift amount are masked to zero; the largest possible shift is 7 places.

The operands and results are values in integer vector format fmt. sel selects the values
of vt[] used for each i. See section C 4 on page C-2 for a description of fmt/sel encoding.

This operation is a signal processing operation, no data-dependent exceptions are
possible.

The operands must be a value in the specified format. If not, the results are undefined
and the values of the operand vectors become undefined.

Operation:

Exceptions:
Coprocessor Unusable
Reserved Instruction

31 0

6 5 5 5 5 6

COP2 fmt/sel vt vs vd SLL

11 1021 20 16 1526 25 6 5

0 1 0 0 1 0 0 1 0 0 0 0

SRA.fmt Vector Shift Right Arithmetic

C-32 Rev 1.0 MDMX

Format: SRA.QH vd, vs, vt MDMX
Purpose: To arithmetic right shift a vector.

Description: vd[i] ← vs[i] >> select(i,sel,vt)

Each element of vector vs is shifted right by an amount specified by the corresponding
element of vector vt. The high-order bits are filled with copies of the original sign bit.
The results are written into vector vd. All but the lower 4 bits of the shift amount are
masked to zero; the largest shift possible is 15 places. This operation is undefined for
the OB format, since values in that format are unsigned.

The operands and results are values in integer vector format QH. sel selects the values
of vt[] used for each i. See section C 4 on page C-2 for a description of fmt/sel encoding.

This operation is a signal processing operation, no data-dependent exceptions are
possible.

The operands must be a value in the QH format. If not, the results are undefined and
the values of the operand vectors become undefined.

Operation:

Exceptions:
Coprocessor Unusable
Reserved Instruction

31 0

6 5 5 5 5 6

COP2 fmt/sel vt vs vd SRA

11 1020 16 1526 25 6 5

0 1 0 0 1 0 0 1 0 0 1 1x x x 0 1

21

Vector Shift Right Logical SRL.fmt

MDMX Rev 1.0 C-33

Format: SRL.QH vd, vs, vt MDMX
SRL.OB vd, vs, vt

Purpose: To shift a vector’s elements by a variable number of bits.

Description: vd[i] ← vs[i] >> select(i,sel,vt)

Each element of vector vs is shifted right by an amount specified by the corresponding
element of vector vt, and zeros are shifted into the high-order bits. The results are
written into vector vd. In QH format, all but the lower 4 bits of the shift amount are
masked to zero; the largest shift possible is 15 places. In OB format, all but the lower 3
bits of the shift amount are masked to zero; the largest possible shift is 7 places.

The operands and results are values in integer vector format fmt. sel selects the values
of vt[] used for each i. See section C 4 on page C-2 for a description of fmt/sel encoding.

This operation is a signal processing operation, no data-dependent exceptions are
possible.

The operands must be a value in the specified format. If not, the results are undefined
and the values of the operand vectors become undefined.

Operation:

Exceptions:
Coprocessor Unusable
Reserved Instruction

31 0

6 5 5 5 5 6

COP2 fmt/sel vt vs vd SRL

11 1021 20 16 1526 25 6 5

0 1 0 0 1 0 0 1 0 0 1 0

SUB.fmt Vector Subtract

C-34 Rev 1.0 MDMX

Format: SUB.QH vd, vs, vt MDMX
SUB.OB vd, vs, vt

Purpose: To subtract integer vectors.

Description: vd[i] ← vs[i]-select(i,sel,vt)

The difference of the values in vector vt and vector vs are written into vector vd.
Saturated arithmetic is performed, such that overflows and underflows clamp to the
largest or smallest representable value before writing to vector vd.

The operands and results are values in integer vector format fmt. sel selects the values
of vt[] used for each i. See section C 4 on page C-2 for a description of fmt/sel encoding.

This operation is a signal processing operation, no data-dependent exceptions are
possible.

The operands must be a value in the specified format. If not, the results are undefined
and the values of the operand vectors become undefined.

Operation:

StoreFPR (vd, fmt, Clamp(FGR[vs] - FGR[vt]))

Exceptions:
Coprocessor Unusable
Reserved Instruction

31 0

6 5 5 5 5 6

COP2 fmt/sel vt vs vd SUB

11 1021 20 16 1526 25 6 5

0 1 0 0 1 0 0 0 1 0 1 0

Accumulate Vector Difference SUBA.fmt

MDMX Rev 1.0 C-35

Format: SUBA.QH vs, vt MDMX
SUBA.OB vs, vt

Purpose: To subtract integer vectors and accumulate the difference.

Description: acc[i] ← acc[i]+vs[i]-select(i,sel,vt)

The differences of vector vt and vector vs are added to those in the Accumulator.
Wrapped arithmetic is performed, such that overflows and underflows wrap around
the Accumulator’s representable range before being written into the Accumulator.

The operands are values in integer vector format fmt. The Accumulator is in the
corresponding Accumulator vector format. sel selects the values of vt[] used for each
i. See section C 4 on page C-2 for a description of fmt/sel encoding.

If L is 1 then the Accumulator is cleared to zero before the operation.

This operation is a signal processing operation, no data-dependent exceptions are
possible.

The operands must be a value in the specified format. If not, the results are undefined
and the values of the operand vectors become undefined.

Operation:

StoreACC (acc, fmt, Wrap(ValueACC(acc, fmt) + FGR[vs] - FGR[vt]))

Exceptions:
Coprocessor Unusable
Reserved Instruction

31 0

6 5 5 5 4 6

COP2 fmt/sel vt vs 0 SUBA

11 921 20 16 1526 25 6 5

0 1 0 0 1 0 1 1 0 1 1 0

10

L

1

0

SUBL.fmt Load Vector Difference

C-36 Rev 1.0 MDMX

Format: SUBL.QH vs, vt MDMX
SUBL.OB vs, vt

Purpose: To subtract integer vectors.

Description: acc[i] ← vs[i]-select(i,sel,vt)

The differences of vector vt and vector vs are added to those in the Accumulator.
Wrapped arithmetic is performed, such that overflows and underflows wrap around
the Accumulator’s representable range before being written into the Accumulator.

The operands are values in integer vector format fmt. The Accumulator is in the
corresponding Accumulator vector format. sel selects the values of vt[] used for each
i. See section C 4 on page C-2 for a description of fmt/sel encoding.

If L is 1 then the Accumulator is cleared to zero before the operation.

This operation is a signal processing operation, no data-dependent exceptions are
possible.

The operands must be a value in the specified format. If not, the results are undefined
and the values of the operand vectors become undefined.

Operation:

StoreACC (acc, fmt, Wrap(FGR[vs] - FGR[vt]))

Exceptions:
Coprocessor Unusable
Reserved Instruction

31 0

6 5 5 5 4 6

COP2 fmt/sel vt vs 0 SUBA

11 921 20 16 1526 25 6 5

0 1 0 0 1 0 1 1 0 1 1 0

10

L

1

1

Write Accumulator High WACH.fmt

MDMX Rev 1.0 C-37

Format: WACH.QH vs MDMX
WACH.OB vs

Purpose: To write sections of the Accumulator from a vector register.

Description: acc[i].high ← vs[i]

Write the most significant third of the bits of the Accumulator elements. The least
significant two thirds of the bits of the Accumulator elements are unaffected.

The field fmt/op specifies which of the 8- or 16-bits of the Accumulator to read, as shown
below.

 WACH.fmt Instruction fmt/op Field

This operation is a signal processing operation, no data-dependent exceptions are
possible.

A RACL/RACM/RACH followed by WACL/WACH are used to save and restore the
Accumulator. This save:restore function is format independent, either format can be
used to save or restore Accumulator values generated by either QH or OB operations.
There is no implied data conversion; the mapping between element bits of the OB
format Accumulator and bits of the same Accumulator interpreted in QH format is
implementation specific, but consistent for each implementation.

This instruction is the only instruction that writes a portion of the Accumulator.

Operation:

Exceptions:
Coprocessor Unusable
Reserved Instruction

operation
fmt/op

OB Fmt QH Fmt

WACH 1000 0 100 01

31 0

6 5 5 5 5

COP2 0 vs 0 WAC

11 1021 20 16 1526 25 6 5

0 1 0 0 1 0
fmt/op

1 1 1 1 1 0

WACL.fmt Write Accumulator Low

C-38 Rev 1.0 MDMX

Format: WACL.QH vs, vt MDMX
WACL.OB vs, vt

Purpose: To load the Accumulator from a vector register.

Description: acc[i] ← {sign(vs[i]) x 16, vs[i], vt[i]} for QH

acc[i] ← {sign(vs[i]) x 8, vs[i], vt[i]} for OB

Write the least significant two thirds of the bits of the Accumulator elements. The
upper one third of the bits of the Accumulator elements are written by the sign bits of
the corresponding elements of vector vs[], replicated by 16 or 8, depending on the
format.

The field fmt/op specifies which of the 8 or 16 bits of the Accumulator to read.

 WACL.fmt Instruction fmt/op Field

This operation is a signal processing operation, no data-dependent exceptions are
possible.

A RACL/RACM/RACH followed by WACL/WACH are used to save and restore the
Accumulator. This save:restore function is format independent, either format can be
used to save or restore Accumulator values generated by either QH or OB operations.
There is no implied data conversion; the mapping between element bits of the OB
format Accumulator and bits of the same Accumulator interpreted in QH format is
implementation specific, but consistent for each implementation.

Operation:

Exceptions:
Coprocessor Unusable
Reserved Instruction

operation
fmt/op

OB Fmt QH Fmt

WACL 0000 0 000 01

31 0

6 5 5 5 5 6

COP2 vt vs 0 WAC

11 1021 20 16 1526 25 6 5

0 1 0 0 1 0
fmt/op

1 1 1 1 1 0

Vector Xor XOR.fmt

MDMX Rev 1.0 C-39

Format: XOR.QH vd, vs, vt MDMX
XOR.OB vd, vs, vt

Purpose: To do a bitwise logical XOR.

Description: vd[i] ← vs[i] XOR select(i,sel,vt)

Each element of vector vs is combined with the corresponding element of vector vt in
a bitwise logical XOR operation. The result is placed in vector vd.

The operands and results are values in integer vector format fmt. sel selects the values
of vt[] used for each i. See section C 4 on page C-2 for a description of fmt/sel encoding.

This operation is a signal processing operation, no data-dependent exceptions are
possible.

The operands must be a value in the specified format. If not, the results are undefined
and the values of the operand vectors become undefined.

Operation:

StoreFPR(fd, fmt, ValueFPR(fs,fmt) xor ValueFPR(ft,fmt))

Exceptions:
Coprocessor Unusable
Reserved Instruction

31 0

6 5 5 5 5 6

COP2 fmt/sel vt vs vd XOR

11 1021 20 16 1526 25 6 5

0 1 0 0 1 0 0 0 1 1 0 1

XOR.fmt Vector Xor

C-40 Rev 1.0 MDMX

