MII—PS

MIPS® Architecture For Programmers
Vol. lll: MIPS32® / microMIPS32™
Privileged Resource Architecture

Document Number: MD00090
Revision 6.02
July 10, 2015

Public. This publication contains proprietary information which is subject to change without notice and is supplied ‘as is’, without any warranty of any kind.

Template: nB1.03, Built with tags: 2B ARCH MIPS32

2 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

Contents

Chapter 1: ADOUL THIS BOOK ...uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiti sttt eee e eeeeses e e e s seeseeeeeeeeeeeeeeeaeeetaetaeaeaaaaaaaaeens 13
1.1: TYpPOGraphiCal CONVENTIONScciiiiie ettt e ettt e et e e e e e e e e e e bbbt b s e et e e e e e e e e e s e ssnbbesaeeaaaaaaaaaaans 14
I 0 | = o I = ST P PP PP PPPPPRPN 14

I B = To] [0 B = T PP PO P PP PP PPPPPRTN 14

I R T o 0 1= g =4 APPSO PP PP PPPPPRP 14
1.2: UNPREDICTABLE and UNDEFINEDcoiiuitiaiiiaaiiiie ettt ettt e st e e snsee s snaea e s e e e nnees 14
1.2.1: UNPREDICTABLE ...ttt ettt ettt ekt ekt e e sa e e emb e e e bt e e e beesntbeaesneeeas 14
1.2.2: UNDEFINED ..ottt ittt ettt ettt ekttt e ket e ekt e e e ab e e e e bkt e e e mbe e e embbe e e ebbe e enbeeannbeaesnneeas 15
L2.3: UNSTABLE ...ttt ettt ottt ekttt e ekt e ek bt e oo a bt e e eh b e e e e a kb e e em bt e e e ebe e e eneeeanbeeesnneeas 15
1.3: Special Symbols in PSeudocode NOTAIONcoiiiiiiiiiiiiii e 15
1.4: FOIr MOTE INFOMMIELION ...ttt e ekt e et bt e e e ekt e e et e e e e e e nnbe e e e e e nnes 18
Chapter 2: The MIPS32 and microMIPS32 Privileged Resource Architecture.......c.cccceeevviiiviinnnnnn, 19
P2 O 1 o T 8o 1o o F PSP P PPPPPPPTPPOPPRP 19
2.2: The MIPS COProCeSSOr MOGEcoiiiiiiiiii ettt e ettt e e e ebbae e e st e e e e e aaaes 19
2.2.1: CPO - The SYSIEM COPIOCESSONveeiieiiteiiie e ittt e e sttt e e s sttt e e s asbb et e e e s abb et e e s s aabae e e e s anbbeeeesannreeaeeas 19
2.2.2: CPO REGISIEIS ...ttt ettt ettt ettt ekttt oottt oo a bttt e 4o a bbbt e e e 4R bbbt e e e e ettt e e e n e e s 19
Chapter 3: MIPS32 and microMIPS32 Operating MOAESouiiiiiiiiiiiiiiiiiee e 21
G 0 I 7= o 18 o 1Y/ Yo [PPSR 21
3.2: KEINEI IMOOE ...ttt ekt e e a et e et e ekt e ekt e e st e nr e e et et e s e e e nnn e e nrneena 21
IR ST U o 1= Y/ 1Yo g 1Y o o - PSSR 21
K €= T 1V o Lo = PP U PP PURPRPPRRPPRIN 22
S @] 1o T=T 1Y [0 To [T PP P PP PURPPPPRPPPRIN 22
3.5.1: 64-bit Floating-Point Operations ENADIEccooiiiiiiiiiiiecc et e e 22
3.5.2: B4-Dit FPR ENADIE ..o 22
3.5.3: COProCeSSOr O ENADIE.ciiiiiiee ettt e e e e e e e e s e e et e e e e e e e e e aaaaaaeaeaaan 23
BL514I ISA MOAE ...ttt 23
Chapter 4: VIrtUal MEMOTY ...ttt e st e s s s s s s e e s s s s s s e s e e e s s e e sseaaaaeaaaaaaaaeeas 25
4.1: Differences between Releases Of the ArChItECTUNE............iii i 25
o I RV T (V=11 0T YO RT TP 25
4.1.2: Protection of Virtual MEemMOry PagesS. e ittt e e e e e e e e e e e eeeeas 25
N G T O 1 (o) R T=To 1] 1= TR 25
o T =T g g [T o= 4[] IO o] o (o] TSRS 26
4.1.5: Enhanced Virtual AQArESSINGcuoaa ittt ettt e e e e e e e e e et e e et e e e e e e e e e s annbeneeeeeeeas 26
A =T g 01 1T o] (o T |V TR RSP TTSROTP 26
A.2.0: AUAIESS SPACE ... eeeeeie ettt ettt oot e o4t e 4o et e o4 e et e et e e e e e e ar s 26
4.2.2: SegMeENt and SEGIMENT SIZEeiiiiiiiiiii it e et e e et e e 26
4.2.3: Physical ADAress Size (PABITS) ..ottt 26
4.3 VIFTUAI AGUIESS SPACES ...coietiieiee ittt ettt ettt e ettt o4 bbbttt o4 okt e e e 4o bbb et e e s e et e e e bbb e e e e annnneeeas 26
S Ofe] 40T] [>T (o= T TP PPUPPPPPPPN 29
4.5: Access Control as a Function of Address and Operating Mode............coccuuviiiiiiiiiiieeiiee e 30
4.6: Address Translation and Cacheability and Coherency Attributes for the kseg0 and ksegl Segments..... 30
4.7: Address Translation for the kuseg Segment when Statusgr; = L...ccccoccviiiiiiiiiii 31
4.8: Special Behavior for the kseg3 Segment when Debugpp = L....cccveiiiiiiiiiiiiic e 31

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 3

4.9: TLB-Based Virtual AdAress TranSIAtioNcoouueiiiiieii et e e e e e s e e e e e s et e e e s aaeseeanas 31

4.9.1: Address Space 1dentifierS (ASID)uuuuuuuuiiiie i ittt a e e e e e e e e e e e e arra———— 32
4.9.2: TLB OFQANIZALIONciii e e e et e e e e e e e e e e e e et e et et e e e e e et a e e s e e e e aeaaaaaaaaaaeaaaeaeeereananes 32
4.9.3: TLB INITANZALIONcee ettt et e e e e e e ettt e e e e e e e e e s nnbbnbaeeeees 33
4.9.4: ADAreSS TranSIALION ...ttt et e e e e e e s s e s s bbb e e e et es s bbb e beeeeeeas 36
O ST =o [=T a1 7= Ui To] o @] |1 (o) 40
4.10.1: Exception Behavior under Segmentation CONLIOl...........cccoieiiiiiiiiiiieeerere et ee s 43
o o = g g oY g o= o Y AT (U F= LA [0 [=TT o 48
4.11.1: EVA Segmentation Control ConfigUration.............ccooiiiiiiiiiiiiiies s e e e e e e e e e e e e e, 48
4.11.2: Enhanced Virtual Address (EVA) INSITUCHIONS...........ooiiiiiiiiieieiie s s e e e e e e e e e e e e e e eeeeeaeannnnns 50
4.12: Hardware Page Table WAAIKETccooiiiiii s e e e e e e e e e e eeaas 52
4.12.1: Multi-Level Page Table SUPPOITttt e e e e e e e e e ebe e eee e 53
4.12.2: PTE and DireCtory ENtry FOMMIAL............uuuiiiiiiiie it ee e e s s s s e e e e e e e e e e e e e e eeaeaeaeeeeeaeanes 57
4.12.3: Hardware page table WalKiNg PrOCESSuuuuiiiiiiiiieaii ittt e e e e e e e e e e beeeeeeas 60
Chapter 5: Common DeVviCe MeMOTY MaAPooiuuiiiiiiii et r e e e e e e et a e e e e e e eeeaeananas 67
5.1: CDMMBASE REQISTEI ...ttt ettt et e e e e e e e oot b ettt e e ee e e e e e s e e a b bbb e be e e e e e aeeeeeannnbbbsbeeeeaaaaaaaaaas 67
5.2: CDMM - Access Control and Device Register BIOCKSccouuiiiiiiiiiiieaaee e 68
5.2.1: Access Control and StatuUS REQISIEIS.oiii it e e e e e e e e e 69
Chapter 6: INterrupts and EXCEPTIONSuu ittt eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaaeaeeaaanns 71
L0t T 11 (= (1 0] £ U S 71
0 I T (=T W] 1/ o T [PSSR 72
6.1.2: Generation of Exception Vector Offsets for Vectored INtErrupts........cccvvvvevieeeeeev i 81
L2 o7 =T) 1[0 1 1 PP 82
L I e CoT=T o) o o I o1 Y/ PR 83
SOV = (ol=T o) [o] g NV A=Tox 1o) gl I Yo (o] o < TS PEERR 84
6.2.3: General EXCEPLION PrOCESSINGcccuutiiiiiiiiiieeee e et e e s ettt e e e e e e e e e s s e st raeeaeaeaeaaassnnsantaraaaaeaesaaas 86
6.2.4: EJTAG DEDUQG EXCEPLION ..eeiiiieeeiii ittt et e e e ettt e e e e e e e e s e s s ettt e e e e aaaeeeessanssntraaaeaaeeenans 89
T =T (=Y o] 1o o P EERRR 89
O TS Yo B =TT =t (o =Y o] 1o} o PRSP 20
6.2.7: Non Maskable Interrupt (NMI) EXCEPLION ...cvvviiie e e e e e e e e e 91
6.2.8: MAChiNg CheCK EXCEPLON......ccci ittt ettt e e e e r e e e e e e e e e s s e s st rrraaaaaeeeaaaan 92
6.2.9: AAAreSS ErrOr EXCEPLIONcviiiieeeee i i ittt e e e e e e e e s e s et e e e e e e e e e e s e s e s st e e e e e e aeeeaeessnnnnneaeaaaaeaeaaaas 92

L O I = =1 I o= o) o o PRSP 93
6.2.11: EXecUte-INhibIt EXCEPLION. ...t e e e e e e e e e e s e e s st e raaeeaeaeaaaan 94
6.2.12: Read-INhibit EXCEPLONcii it e e e e e e r e e e e e e e e e s s e s s e reraaaeaeaeaaaan 94

L o I = [NV 7=V [T I e CoT= o) o) o PRSP 95
L S I Yo T [=To T (ot =Y o 1 o] o U PPPPRRR 96
I R O Tod o Lo = o g (o =T o 1o o RSP 97
L R ST = 10 LS g o T g = (ot= o 1[0 RSP 97
6.2.17: Integer OVErfloOW EXCEPLIONccii it e e e e e e e et e et e e e e e e e e e aaeaaaeaeaeeeees 98
L I T I = T o TN e =Y o] o] o PSP 98
A Ko S VA1 (=T ¢ T 0= 1| B (o= o1 o] o U 98
6.2.20: BreakpOint EXCEPLIONciiii it e e e e eee e e e e s e e e e e e e e e e e et et e e e e e aeaabe s e e e e e e e e e easeaaaaaeaaaeeeees 99
6.2.21: Reserved INStruCtion EXCEPLIONccoiiiiiiiiiiieiiiieee s et a s e e e e e e e e e e e e aaaeaaaeeeees 99
6.2.22: Coprocessor UNUSable EXCEPLION...........uuuiiiiiiieiei ettt s e e e e e e e e e e e aaaeaeees 100
6.2.23: FIoating-POiNt EXCEPLION ...ttt e e e e e e e e e e e e et et e e e e et aa e e seeeaeeaeaaeaaaaaaenes 100
6.2.24: COPrOCESSOI 2 EXCOPLION ...uuiiiii e e e e e e e e e e e e et et e et e s s e e e e e e e aeaaaaaeaaaaaaaeanes 101
6.2.25: WaAlCN EXCEPUON L..ueiieiii i e e e e e e e e e e et et e e e e et ettt s e s e e e e aeeaeaaaaeaaeaaaaaeenes 101
LA ST 1 (=T 0T o] A =5 o =T o] 1o o SRR 102

4 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

Chapter 7: GPR ShadOW REQISTEIS . ..o b b esbe e eseseeseessreeeneneees 103

7.1 INtrodUCtioN t0 SNATOW SEES.......uuiiiiiiiiiiiie ettt e e e e e e e e s e e bbbt e eeeaae s e nnnbbeeneeeeaeas 103
A1 T o] o To i [S (1 o 1 o] o 1S TSP 104
Chapter 8: CPO HAZAIUS ..uuuuii it e e et r e e e e e e et e et e e e e e e e e eaettraa s aeeeeeeeaeeesennnns 105
S0 I [o T [T o) o SRR SPR 105
8.2: TYPES OF HAZAIUS ...ttt et e e o bttt e e e ekttt e e sttt e e e s nnnaeeeens 105
8.2.1: P0SSIble EXECULION HAZAIUS ... ettt e et r e e e e e e e e e e e e e eeaaeaeeeeean 105
8.2.2: P0SSIble INSrUCHION HAZAIAS. ...t e e e e e e e e e e e eeeeaaeee e e s 107
8.3: Hazard Clearing INStructions @nd BEVENTSocuuiiiiiiiiiiiii e 107
8.3.1: MIPS32 INStrUCLION ENCOUINGciiiiiiiiiieiiiiii ettt ettt e e 108
8.3.2: MIicroMIPS32 INSrUCtiON ENCOQINGceiiiriiiiieiiiiiiii ettt 109
Chapter 9: COpProCeSSOr 0 REGISTEISuuiiiiiiiiieiiiiiee et e e e e e e e e brneeeeas 111
9.1: CoprocesSOr O REQISIEr SUMIMAIYcuiiieeeeiiisieiiitieeteeeeeeee e e s s e sset et eeeeeeeeeeeeesssannsssaaareereeaeaeesessssnnneeeeeees 111
1S N0 - L1 o o H ST PP UURPPURRPI 117
S IR R VAV 11T gV I O W LYo 1) (= SO 117
9.4: Index Register (CPO Register 0, SEIECE 0).......ccccuuiiiiiiiiiiee e e e et e e e e e e e s e s rr e e e e ae e e e s e s nasaerneeeeeees 119
9.5: VPControl (CPO REQISLEr 0, SEIECT 4) ...uuuiiiiiiiiiiieee ettt e e e r e e e e e e e s e s se st ararreaaaaeaaeas 121
9.6: Random Register (CPO Register 1, SEIECE 0).....uuuiiiiiiiiiieeei it rrer e e e e e e e s e s ssnrraeeeeees 123
9.7: EntryLoO, EntryLol (CPO Registers 2 and 3, S€IECT 0) ...ccoeiiiiiiiiiiiiiiriecee et 125
9.8: Global Number Register (COPO Register 3, SEIECE 1) ...ccciiiiiiiiiiiiiiiiiie e e e e raeaee s 135
9.9: Context Register (CPO RegiSter 4, SEIECT 0)uuuiiiiiiiieieeeiis it ere e e e e e e e s r e e ae e e e e e e s s arereeeeeees 137
9.10: ContextConfig Register (CPO RegiSter 4, SEIECT 1)..uuuviiiiiiii e 141
9.11: UserLocal Register (CPO RegISter 4, SEIECE 2) ...uuuviiiiiieiei ittt a e e ee e 143
9.12: Debug ContextID (CPO REQIStEr 4, SEIECE 4)uuviiiieiieeeee ittt e e e e e e e e e aa e s 145
9.13: PageMask Register (CPO RegiSter 5, SEIECE 0)vvviiiieeiiiiiiciiiie e e e e e e e snaaarae e e e 147
9.14: PageGrain Register (CP0 RegiSter 5, SEIECE 1) ...uuiriiiiiiiii it e e e e e s srraae e e e e 151
9.15: SegCtI0 (CPO REQISIEI 5, SEIECT 2)uuuiiiiiiiiiiiieee e et e e e e r e e e e e e e e s e s s aan e ara e ereaaeeens 157
9.16: SeQCLIL (CPO REQISIEI 5, SEIECTE 3) ...uuuuiiiiiiiiiiiiee e e e e ie s i e e e e e e e e s s e e e e e e e e e e s e s sasanbeearrraeereaaeaens 157
9.17: SeQCtI2 (CPO REGISIEI 5, SEIECE 4)uuuiiiiiiiiiiiie e et e e e e e s e e et e e e e e e e s e s s san e arararereeaaaens 157
9.18: PWBase Register (CPO ReQIStEr 5, SEIECE D) ..uuiiiiiiiiiii it a s 161
9.19: PWField Register (CPO RegiSter 5, SEIECE B6)ccciiiiiiiiieeiiieiirrs e s 161
9.20: PWSize Register (CPO RegQISter 5, SEIECT 7)...ccoiiiiiiieeeeeeee e 164
9.21: Wired Register (CPO Register 6, SElECt Q)cccciiiiiiiiiiieeeee s e e e e e e 169
9.22: PWCtl Register (CPO RegiISter 6, SEIECE B)uuuuiiiiiiieaaiiiiiiiiie ittt e e e e 171
9.23: HWREnNa Register (CPO RegiSter 7, SEIECE 0)ueiiiiiieaiiiiiiiee ettt 175
9.24: BadVAddr Register (CPO Register 8, SEIECE 0)coeiiiiiiiiiiiieeiiie et 177
9.25: BadInstr Register (CPO RegiSter 8, SEIECT 1)uuiiiiiiiiiieiiiiiiiie et 179
9.26: BadInstrP Register (CPO RegiSter 8, SEIECT 2)....ccciiiiiiiiiiiei et 181
9.27: Count Register (CPO RegiSter 9, SEIECE)uuuiiiiiiieiiiaiiiet e a e e e e e e as 183
9.28: Reserved for Implementations (CPO Register 9, Selects 6 and 7)ooooiiiiiiiiiiiiiiieeeee e 183
9.29: EntryHi Register (CP0O Register 10, SEIECTE 0).......uutiiiiiiaieieiiiiiiiie it e e e e e ereeea e s 185
9.30: Compare Register (CPO Register 11, SEIECT 0)....iiiiiiiiiiiiiiiiiiiiiie e ee e e e 187
9.31: Reserved for Implementations (CPO Register 11, Selects 6 and 7)ccccvuviiiiiiiieiiieeiiieeeee e 187
9.32: Status Register (CP Register 12, SEIECE 0)coiiiiiiiiiiiiiiieieee et eeeeeaaaaens 189
9.33: IntCtl Register (CPO ReQISter 12, SEIECT 1) ...eiiiiiiieeeiii ittt e e e e e e as 199
9.34: SRSCtl Register (CPO RegISter 12, SEIECTE 2)uuuiiiiiiieeeiii ittt a e 203
9.35: SRSMap Register (CPO Register 12, SEIECE 3) ...oiiiiiiiiiiiiie e 207
9.36: Cause Register (CPO Register 13, SEIECE 0) ...coeiii ittt e e e e e as 209
9.37: NestedEXC (CPO RegiSter 13, SEIECT 5) .ottt e e e e e e e e e e e e e e s 215
9.38: Exception Program Counter (CPO Register 14, SElEeCt 0)occvviiieiiiiiiiiiiieieece e 217

9.38.1: Special Handling of the EPC Register in Processors that Implement MIPS16e ASE or microMIPS32

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 5

LS S ST AN o T C=Tox 0] 217

9.39: Nested Exception Program Counter (CPO Register 14, SeleCt 2)uuuiiiiiiiiiiieieeeeeieeeeeeen 219
9.40: Processor Identification (CPO Register 15, SeleCt Q)ccovvvriiiiiiiiiiiiiiis e 221
9.41: EBase Register (CPO RegiSter 15, SEIECE 1)iiiiiiii i e e e e e e e e e 223
9.42: CDMMBase Register (CPO Register 15, SEIECE 2)coeeeiiiiiieeeee e 227
9.43: CMGCRBase Register (CP0 Register 15, SEIECE 3).....ccviiiiiiiiiieieiiiiies et 229
9.44: BEVVA Register (CPO Register 15, SEIECE 4)cooiiiiiiiiieeeeeer s e e e e e e e e e e e e 231
9.45: Configuration Register (CPO Register 16, SeleCt 0)covviiiiiiiiiiiiiiiie i e e 233
9.46: Configuration Register 1 (CPO Register 16, SEIECE 1)covviiiiiiiiiiiiiiiiiis e e 237
9.47: Configuration Register 2 (CPO Register 16, SEIECE 2)vuiiriiiiiiiiiiiii e 241
9.48: Configuration Register 3 (CPO Register 16, SEIECE 3)ovvuiiiiiiiiiiiiiii i s 245
9.49: Configuration Register 4 (CPO Register 16, SEIECE 4)oovvviiiiiiiiiiiiei e s 253
9.50: Configuration Register 5 (CPO Register 16, SEIECE 5)coiuuiiiiiiiiiiieeeee e 259
9.51: Reserved for Implementations (CPO Register 16, Selects 6 and 7)ccccvvvieiiiiiiiiiiiiiiiiiiieeee e 267
9.52: Load Linked Address (CPO Register 17, SelECt 0)ocoiuuiiiiiiiiiiiieeeeee ettt 269
9.53: Memory Accessibility Attribute Register (CPO Register 17, SeleCt 1)uuuiviiiiiiiiiiiiiiiiiiiiiieeeeeeeeeen 271
9.54: Memory Accessibility Attribute Register Index (CP0O Register 17, SeleCt 2).........eveiiiiiiiiiiiiiiiiiieeeeenn. 277
9.55: WatchLo Register (CPO REGISIEI 18)uuiiiiiiiieiiiiiieea ettt e e e e e e ettt e et e e e e e e e s e e beereeeeaaens 279
9.56: WatchHi Register (CPO ReGISIEI 1)ttt e e e e e e e e e e e e e beeeeeeeeaeas 281
9.57: Reserved for Implementations (CPO Register 22, all Select values).........ccccuviviiiieiiiiiiiiiiiiieeee 283
9.58: Debug Register (CPO RegiSter 23, SEIECE 0)uuiiiiiieaiiiiiiiiiie ettt e e ea s 285
9.59: Debug?2 Register (CPO RegiSter 23, SEIECTE B)ccciiiiiiiiiiiiiieiie e ee e 287
9.60: DEPC Register (CPO REQISIEN 24) ...ttt e e ettt e e e e e e e e e e e annb e neeeeaaeas 289
9.60.1: Special Handling of the DEPC Register in Processors That Implement the MIPS16e ASE or
MICIOMIPS32 BASE AFCNITECIUIEttt e e e e e e e et e e e e e e e e e e e e e e annns 289
9.61: Performance Counter Register (CPO REQISIEN 25)uuiiiiiiiiiiiaaeie et 291
9.62: ErrCtl Register (CPO RegiSter 26, SEIECE 0)uuuuiiiieiieaiiaiiiiiiiii ettt e e e e e e e e e e e e e e ns 295
9.63: CacheErr Register (CPO Register 27, SEIECE 0)oiuiiiiiaiiiiiiiiie et 297
9.64: TagLo Register (CPO Register 28, SEIECE 0, 2)oeuiiiiiaiiiiiiiiie ettt 299
9.65: DataLo Register (CPO Register 28, SEIECE 1, 3)....uiiiiiiiaiiiiiiiiiiiie ettt e e ebebeee e e e e 301
9.66: TagHi Register (CPO Register 29, SEIECE 0, 2)uiiiiiiiieiiiiiiie ettt e s 303
9.67: DataHi Register (CPO Register 29, SEIECE 1, 3) ..ottt 305
9.68: ErrorEPC (CPO Register 30, SEIECTE 0)cciiiiiiiiiieeiie ettt e e e e e e e e e e e e e e e rbbeaneeeeaeas 307
9.68.1: Special Handling of the ErrorEPC Register in Processors That Implement the MIPS16e ASE or
MICTOMIPS32 BaASE AFCNITECIUIEttt e e e e e e e e e e et eeeaeaaeaeaeeaaannes 307
9.69: DESAVE Register (CPO REGISTEN 3L) .. .uuiiiiiiiiiieieiiiiiie ettt e st e et e e s b e e e e ans 309
9.70: KScratchn Registers (CPO Register 31, SEIECIS 2 10 7) ...uuuuiiiiiiiiiiieeeiieie e 311
Appendix A: Alternative MMU OrganiZationNsooovuuiuiiiiiieeeiie et e e eeeevs e e e e e e e e e e e e e 313
AL FiXed MapPiNg MIMU ..ottt e ekt e e e e e bbbt e e e e bt e e e et e e e e nnreas 313
A.1.1L: Fixed AdAreSs TranSIAtIONc.veiiiie et e st e e et e e e sibe e e e e aees 313
A.1.2: Cacheability AITDULESottt e e e st e e e s nbeeeeeesaees 316
A.1.3: Changes to the CPO RegiSter INtEITACEcoiiiiiiiiiiei e 317
A.2: BIOCK AAAreSS TIANSIALION ..ottt ettt e et e e et be e e et e e e e nnbeas 317
F N R = N B @ o F=T o171 (o] o PP UPRUOTPPRPP 317
E N A o [0 [T S I = g] F= o] o DTSR UPUPRPOTPPRPP 318
A.2.3: Changes to the CPO Register INtEITACEcuuiiiiiiii e 319
A.3: Dual Variable-Page-Size and Fixed-Page-Size TLBS ...t 319
F N T 1Y 1Y LW R @ o F= g 2= 11 [0] IR PP PPPUOTPPRPP 319
A.3.2: Programming INTEITACEcoiiiiiiiiiei et e et e e e st b e et ee e e s anes 321
A.3.3: Changes t0 the TLB INSIIUCTIONSvviiiiiiiiiieee ittt ettt e e st e e e s sbbreeeeeenees 322
A.3.4: Changes t0 the COPO REGISIEISvuiiiiiiiiiiie ettt ettt e e e e e e eneees 323
A.3.5: Software CoOmMPALiDIlILYooiiiiiiiii e 324

6 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

AppendiX B: ReVISION HIiSTOMY ..o

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

7

Figures

FIQUre 4.1: VirtUal AQUIESS SPACE ...uvvvuutiiiiieie e e e e et ettt s e s e s e e e e e e e e e aeaeeeeeeeaeasaesestntne s satanns e aneseaeaaeeeas 27
Figure 4.2: References as a Function of Operating MOAEcoooiiiiiiiiiiiiiic e 29
Figure 4.3: References as a Function of Operating MOAEcoooiiiiiiiiiiiii e 29
Figure 4.4: CoNteNtS Of @ TLB ENIIY .ouuuiiiiiiiii et e e e e e e s e e e e e e e e e e et et e e e aeeeaesasta b aas e ata s e e e e aeaeeeeas 32
Figure 4.5: Legacy addreSSability i e e e e e e e e e e e e e e aaas 49
Figure 4.6: EVA addreSSability...........oooiiiiiiiiiiiiieie ettt a e e e e e e e e e e e e aaaas 49
Figure 4.7: Legacy to EVA address CONfigUIatiON.............ouuiiiiiiiiiiiiiiis s s s e e e e e e e ettt ee e e e e e e e e eeas 50
Figure 4.8: Page Table WAaIK PrOCESSuuuuiiiiiiiieie et ettt s s e s e e e e e e e e e e e e e e e e e eeaa st et et an e e e e aaeeeeas 54
Figure 4.9: Page Table Walk Process & COPO CoNntrol fieldSuuuueiiiiiiiiii e 55
FIgure 4.10: 4-DYte Leaf PTEot et e e e e e e e e e e e e e e e ee e e e e e e ee e s e e et et at e e e e e aeaeaeeaas 58
Figure 4.11: 4-byte NON-Leaf PTE OPLIONS......coi ittt ettt e e e ettt e e e e e e e s e sanbb s beeeaeaaaeeaaeas 58
Figure 4.12: 4-Byte RoOtated PTE FOIMIALS........ccoiiiiiiiiiiie e s s s s ee e aa e e e e e e eaeeeeas 58
FIQUIrE 4.13: 8-DYLE LEAT PTE ittt e e e e e e e e e o b bbb bttt e e e e e e e e e nbbbe b b e e e e e eeeaaaeas 59
Figure 4.14: 8-Byte NON-1eaf PTE OPLIONS ...coiiiiiiiiiiiitiei ettt e e e ettt e e e e e e e e e e e saabb b s e e e eeaaaaeaeeas 59
Figure 4.15: 8-Byte ROtAted PTE FOIMALS......ciii ittt bbbttt e e e e e e e e e sabb st reaeaaaeeeeeas 59
Figure 5.1: Example Organization of the CDMM ... e e e 69
Figure 5.2: Access Control and StAtUS REGISTEToiiiiiiiiiiiiie ettt e e e e e e e e e e e e aaaaanes 69
Figure 6.1: Interrupt Generation for Vectored INterrupt MOAE..........couiiiiiiiiiiiee e 77
Figure 6.2: Interrupt Generation for External Interrupt Controller Interrupt Mode ..o 80
Figure 9.1: INAdeX REQISTET FOIMIALuuiiiiiiieeii ittt e e ettt ettt e e e e e e s e s s bbb e b e e e e e e e e e e s nnnnbesbeeeeeeas 119
Figure 9.2: VPCONrOl REQISIEr FOIMAL.eiiiiiiiiiiiii ittt e e e et e e e e s e s e s e e eeeeas 121
Figure 9.3: RaNdom REQISIEr FOIMIALooiiiiiiiiieit ettt e e e e e s et e e e e e e e e e e e e s e e sneanbesreeeeeeas 123
Figure 9-4: EntryLoO, EntryLol Register Format in Release 1 of the Architecturecccccceiiiiiiiiiiiiiiiiiiieeee, 125
Figure 9-5: EntryLoO, EntryLol Register Format in Release 2 of the Architecturecccccceiiiiiiiiiiiiiiiiiieeee. 126
Figure 9-6: EntryLoO, EntryLol Register Format in Release 3 of the Architectureccoccciiiiiiiiiiiiiiiiiceenen. 128
Figure 9-7: EntryLoO, EntryLol Register Format in REIEASE 5 ..o 129
Figure 9.8: Global Number RegiSter FOIMAL..........oooi it e e e e e e eeeeaeas 135
Figure 9.9: Context Register Format when Config3CTXTC=0 and Config3SM=0..........ccccccerieriiiiiiiiiiiiiiiiiieeeeenn 137
Figure 9.10: Context Register Format when Config3CTXTC=1 or Config3SM=1........cccccceeiiriiiiiiiiiiiiiiiiiieeaeeeeenn 138
Figure 9.11: ContextConfig RegIStEr FOIMALcooiiiiiiiiiiiieie et e e e e e s e eeeeaeas 142
Figure 9.12: UserLocal REGISIEr FOIMI@Luiiiiiiiaaiiiiiiie ittt e e e e e e e e e s bt eeeee e e e nanbesbeeeeeeas 143
Figure 9.13: Debug ContextID RegIStEr FOIMMALcccuuiiiiiiiieiie et e e e e e e e e e e enbabbe e e e eeeaeas 145
Figure 9.14: PageMask REQISIEr FOIMALooiiiiiiiiiite ettt e e e et e e e e e e e e e anb b e sreeeeaeas 147
Figure 9-15: PageGrain RegISTEr FOIMMAL.oi ittt e e e e et e e e e e e e aaaaneanbeeeeeeeeeas 151
Figure 9.16: SegCtl0 Register Format (CPO Register 5, SEIECE 2)........ciiiiiiiiiiiiiii e 157
Figure 9.17: SegCtll Register Format (CPO Register 5, SEleCt 3).......covvviriiiiiiiiiiiii i 158
Figure 9.18: SegCtl2 Register Format (CPO RegiSter 5, SEIECt 4)........oevvvriiiiiiiiiiiii e 158
Figure 9.19: PWBASE REQISIEr FOIMIALuuuiiiiiie e e e e e s e s e e e e e e e e e e et e eeeeaeeeae st e e e e e e aeaeeas 161
Figure 9.20: PWFIeld ReQISIEr FOIMIALiiiiii i e e e e e e e e e e e et e e et e e e e e et an e e e e eaeeas 163
Figure 9.21: PWSIZE REQISIEr FOIMALciiiiii i st e e e e e e e e e e et e e e e e e e e e ettt an e e e e eaeeas 166
Figure 9.22: Wired And Random ENtries IN The TLB ... 169
Figure 9.23: Wired ReQISIEr FOIMIAL.........uuiiiiiiiiiieis s e e e e e ettt e e e e e e e e e e e e e eeeeeeaeeeeestae st e e e e aeaeeas 170
Figure 9.24: PWCH ReQISEI FOIMAL.........oeriiiiiiiiiiie e s s et a e e e e aeaeeas 172
Figure 9.25: HWRENA REQISIEr FOIMMALvuiiiiieiii it e ae e e e e eaeeas 175
Figure 9.26: BadVAdAr RegISTEr FOMMAL...........cceiiiiiiieeeeeee s e e e e e e e e et e e e e e e e e e e aeeeeas 177
Figure 9.27: BadINStr REQISIEI FOIMMAL.ueiiiiiiiieiiii ittt e e e e e bbbt e e e e e s e e s aab e b b e e eeeeas 179
Figure 9.28: BadINStrP REGISIEI FOIMIALueiiiiiiieiie ittt e et e e e e e e e bbb eeee e 181

8 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

Figure 9.29: CoUNt REQISIEr FOIMIALuiiiie i e e e s e e e e e e e e e e e ee et eeeeeeaeseetata s raanra e e e e aeaeeas 183
Figure 9.30: ENtryHi REQISIEr FOMMIALceviiiiiiiiiiiee ettt s et a e e e e e eaeeas 185
Figure 9.31: Compare ReQISIEr FOMMALuuuiieiiiiiiie e s e e e e e e e e e e e e et e e e e s e e e e e aeeas 187
Figure 9.32: Status Register Format for Pre-Rel@ase B............oevvviiiiiiiiiiiiiiiie e 189
Figure 9.33: Status Register FOrmat for REICASE 6cccoiiiiiiiiieie e 189
Figure 9.34: INtCH REQISTEr FOIMIAL..... ...t e e e e e e e e e e e e et et e et eeeeeeaeaa et be e st a e e e aeaeeas 199
Figure 9.35: SRSCH REQISIEI FOMIALeviiiiiiiieiiieie it e e e et e s e e e e e e e e e e e aeaeeeeeae st araaeaeaeeas 203
Figure 9.36: SRSMap ReQISEr FOMMAL........ciii it e e e e e e e e et et e e e e e e e e eaeeas 207
Figure 9.37: Cause ReQISTEr FOMMAL.......ccciii i e e e e e e e e e e e e e e et et e e e ee st e et e e e e e e aeaeeas 209
Figure 9.38: NeStedEXC REQISEI FOMMAL..........ccoc i e e e e e e e e e et e e e e e e e e e aeeas 215
Figure 9.39: EPC ReQISIEI FOMMAL.......iiiiii et e s e e e e e e e e e e e e et et e e et eeee e et e e s a s e e e e aeaeeas 217
Figure 9.40: NeStedEPC REQISIEr FOIMALcccoiiiiiiiieie s e e e e e e e e e et e e e e e e e e e e e eeas 219
Figure 9.41: PRI REQISIEI FOIMMALeetiiiiiiiiei ittt e e e e e e e e e e e e bbb e e e ee e e e e s s nbnbbesbeeeeaeas 221
Figure 9.42: EBaS@ REQISIEr FOIMMALuuiiiiiiiiiiiiaii ittt e e e e e e s e bbbt e e e e e s e e s bbb e sreeeeeeas 223
Figure 9.43: EBaSe REQISIEr FOIMMALuuiiiiiiiiiii ittt e e e e e e s e bbb e e e e e e s e s s e b e sreeeeeeas 224
Figure 9.44: CDMMBASE REQISIENuitiiiiiiiiiit ettt ettt e e e e e e s e e bbb et et e eee e s e s e sanbrsbeeeeeeas 227
Figure 9.45: CMGCRBASE REQISIETciiiiiiiiiiii ittt e e e e e e e e e e e bbbt b e et e et e e e e e e e e e s s nbanbesbeeeeeeas 229
Figure 9.46: BEVVA REQISIEI FOIMMALuuiiiiiiiiiiieie ittt e e e e e e e e e et bttt e e e e ee e e s e s e nnnbeereeeeeeas 231
Figure 9.47: Config ReGISIEI FOMMIAL.........ueiiiiiiiiiie et e e e e e st eee e e e e e e nnbe e e e eeeeas 233
Figure 9.48: Configl REQISIEr FOIMMAL........coiiiiiiiiiiii ettt e e e e e e e e e e ettt e e et e e e e e e e e e s nnnbesbeeeeeeas 237
Figure 9.49: Config2 REQISIEr FOIMMAL........coeiiiiiiiiiiie ettt e e e e e e e e e e bbbt e e e e e e e e e e e e e e nanbesbeeeeeeas 241
Figure 9-50: CoNfig3 REQGISIEN FOIMALceiiiiiiiiiieiee ittt ettt e e e e e e e s e bbbt e e e e e e e e e e e nnnbesbeeeeeeas 245
Figure 9.51: Config4 Register Format (Pre-Release B)coouiiiiiiiiiiiiiiaeei e 253
Figure 9.52: Config4 Register FOrmat (REICASE B)ueiuiiiiiiiiiiiiitee it a e e e e 253
Figure 9.53: Configh REQISIEr FOMMAL........coi ettt et e e e e e e e e e s e b e e e e e e aeaeeaaaas 259
Figure 9-54: LLAddr Register Format (Pre REIEASE 5)......cuiiiiiiiiiiiiiiiiiiiiieeee et 269
Figure 9-55: LLAddr Register Format (Release 5 and after)...........uuueeiiiiiiiiiiiieee e 269
Figure 9-56: MAAR REQISIEN FOIMALeiiiiiiiiiiiiiiitttie ettt e et e e e e e e e e e s s b et b e et e e eeaaa e e e e s abbnbeeseeeaaaaaaaaaans 273
Figure 9.57: MAARI INdeX REQISTEr FOIMMALttt e et e e e e e e e e r e e e e e e e e e e e s 277
Figure 9.58: WatChLO REQISIEr FOMMALeeiiiiiiieeiii ittt e e e e e e e bbb e e e e e e e e e nnnbesreeeeeeas 279
Figure 9.59: WatChHi REQISIEr FOIMALcoiiiiiiiiiiie ettt e ettt et e e e e e e e e e bbb e e e e e e e aaaeaaaans 281
Figure 9.60: Performance Counter Control Register FOrMALuuiiiiiiiiiiiiiiiiieee e 291
Figure 9.61: Performance Counter Counter Register FOIMAL.............euiiiiiiiiiiiiiiiiiiee e 294
Figure 9-62: Example TagLo RegiSter FOMMIAL.......ccuuuiiiiiiiiiii et e e e e e e aa e e e 299
Figure 9.63: ErfOrEPC ReQISIEr FOIMAL.......coiiiiiiiiiiii ittt et e e e e e e e s bbb r e e e e e aeaeaeaaas 307
Figure 9.64: KScratChn RegQISIEr FOMMALccooii i eeas 311
Figure A.1: Memory Mapping When ERL = 0ccooiiiiiiiee st e e e e et e et e e a e e 315
Figure A.2: Memory Mapping When ERL = 1 ...t e et e e e e e 316
[To [V (SR NS S O] g io [= To 1 (=T g Ao (o 11 To] o 317
Figure A.4: ContentS Of @ BAT BN ... oo e e e e e e e e e e e et e e et e e et s e e e e e e e eeas 318

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 9

Tables

Table 1.1:
Table 4.1:
Table 4.2:
Table 4.3:
Table 4.4:
Table 4.5:
Table 4.6:
Table 4.7:
Table 4.8:
Table 5.1:
Table 6.1:
Table 6.2:
Table 6.3:
Table 6.4:
Table 6.5:
Table 6.6:
Table 6.7:
Table 6.8:
Table 6.9:
Table 6.10
Table 6.11
Table 7.1:
Table 8.1:
Table 8.2:
Table 8.3:
Table 9.1:
Table 9.2:
Table 9.3:
Table 9.4:
Table 9.5:
Table 9.6:
Table 9.7:
Table 9.8:
Table 9.9:

Table 9.10:
Table 9.11:
Table 9.12:
Table 9.13:
Table 9.14:
Table 9.15:
Table 9.16:
Table 9.17:
Table 9.18:
Table 9.19:
Table 9.20:
Table 9.21:
Table 9.22:

Symbols Used in Instruction Operation StatemMENTS............vviiiiiiiiiiiir e s 15
Virtual MemOory AGArESS SPACES.......cceeuuiiieiiiiiiie it i et e e e e e e e e e ee et ettt e e ettt e s s e aaaaaaaeaaaaaaaaaeaeaaaeeereannnes 28

Address Space Access as a Function of Operating MOde............ooovvviiiiiiiiiiiiie e 30
Address Translation, Cacheability and Coherency Attributes for the kseg0 and ksegl Segments 31
(o) VA (o= AN (o | =TS CT=T o =T = Vi o [40
Segment Configuration for 3GB EVAu i 50

EVA LOAA/SIOre INSTIUCTIONSeiieiiiiiiiiiiee ettt e ekttt et e e e e e e e e s e bbb bbb e et et eaaaeeeeaesannnes 51
Address translation behavior for EVA [0ad/Store iNStruCtioNSuvviiiiiiiiieiiiiiiiieeee e 51
Address translation behavior for ordinary load/store iNStrUCHIONSevvveiiiiiiiiiiie e, 52
Access Control and Status Register Field DeSCHPiONS..........ccooiiiiiiiiiieeses e eee e 69
INEEITUPT IMOAES ...ttt e e e oo oo e s o bbbt ettt e e e e e e e e nb bbb bbb et e e eeaeaeeaesannnnes 72
Request for Interrupt Service in Interrupt Compatibility Mode ... 73
Relative Interrupt Priority for Vectored INterrupt MOAE...........oooiiiiiiiiiiiiiieeee e 76
Exception Vector Offsets for Vectored INTEITUPLS.........uuiiiiiiiiiiiiiii et 81
Interrupt State Changes Made Visible DY EHBooiie e 82
PrIOFLY OF EXCEPLIONSeeiiiiiieeii ittt e e e e e e ottt ettt et e e e e e e e s s sbbb bbb e et e eeaaeeeeaesannnes 83
EXCepPtion TYPE CHArACLEIISTICSuteeeiiiiiiiieiii ittt e ettt e e e e e e e e e e et bbb b e e e e aeaaeae e e snnnnnes 84
EXCEPLION VECIOr BASE AUUIESSES .. . uuiiitiiieeiieei e e ettt e e e e e e e ettt et e e e e e e e e e s nbbabbeeeaaaeaeaaeannnnnes 85

EXCEPLION VECIOr OFfSELS ...oeiiiiiiiiiii ettt et e e e e e e s e et e e e e e e aeaeeaeaannnnes 85
R o Ced=T o] o] g Y £=Tox (o] £ T TP PPPRRRTRPN 86
: Value Stored in EPC, ErrorEPC, or DEPC 0N an EXCEPLIONuuuiiiiiiiiiiiaiiiiiiiiiiieeeeee e 87

Instructions SUPPOItiNG SNAJOW SELScoiiiiiiiiiiiete et e e e e e e e e e e e e e aneanes 104
POSSIble EXECULION HAZANSeviiiiiiiiii ettt 105
POSSIbIE INSIIUCHION HAZAITSeeiiiiiiiieeie et 107
Hazard Clearing INSIIUCLIONS.ooi ittt e e e e e e e e e e snnb bbb reeeeaaaaaaeaaas 107
Coprocessor 0 Registers in NUMETICAl OFUEIooiiiiiiiiiiiiieee et a e e e 111
Read/Write Bit FIEld NOTALIONeeiiiiiii ittt e e e 117
Index Register Field DESCIPLIONSu ittt e ettt e e e e e e e e e e bbbbeareaaaaeeaeaaaannnennes 119
VPControl Register Field DeSCIPLIONS...... ...ttt e e e e e e e e e e e e e e e e e e anneeees 121
Random Register Field DeSCIPLIONS.ciii ittt e e e e e e e reeeaeaaaee e e s 123

EntryLoO, EntryLol Register Field Descriptions in Release 1 of the Architectureoccceee 126
EntryLoO, EntryLol Register Field Descriptions in Release 2 of the Architecturecccceee 127
EntryLo Field Widths as a FUNCtion Of PABITSuuiiiiiiiiii et 127
EntryLoO, EntryLol Register Field Descriptions in Release 3 of the Architecturecccee. 128
EntryLoO, EntryLol Register Field Descriptions in Release 5 of the Architectureccccccceeeeenn. 130
EntryLo Field Widths as a Function of PABITS in Release 5..........oovvvvviiiiiiiiiiiiiiiciiie e 132
Cacheability and CoherenCy AtIDULEScoiiiiii e 133
Global Number Register Field DeSCIIPLIONSciiiiiiieieiieee e e e e 135
Deriving UNIQUE VPINUIM ..ot s s et e e e e e e et ettt e e e e e e e e e e aeeeeaeeeaeeeeeeeeeseanessenrnnnnan 136
Context Register Field Descriptions when Config3CTXTC=0 and Config3SM=0..............cccvvvvvnnnnnnn. 137
Context Register Field Descriptions when ConfigBCTXTC=1 or Config3SM=1.............ovvvrrrrrceeeennn. 138
ContextConfig Register Field DESCHPLIONSuvviiiiiiiiiiiise s e et 142
Recommended ConteXtCoNfig VAIUESuuuiiiiiiiiiiie et a e e e e e e e e 142
UserLocal Register Field DeSCIPLONSuuuiiiiiiieis e i e e e ee et s e e e e e e e e e e e e e eeaneeaesraeanas 143
Debug ContextlD Register Field DeSCHPONS.uu i e e e e e e e e e e aeeeaaaans 145
PageMask Register Field DESCHPIONSuu ittt a e e e e e e e e e 147
Values for the Mask and MaskX1 Fields of the PageMask RegiSteroooiiiiiiiiiiiiiiiiieeis 148

10 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

Table 9.23:
Table 9.24:
Table 9.25:
Table 9.26:
Table 9.27:
Table 9.28:
Table 9.29:
Table 9.30:
Table 9.31:
Table 9.32:
Table 9.33:
Table 9.34:
Table 9.35:
Table 9.36:
Table 9.37:
Table 9.38:
Table 9.39:
Table 9.40:
Table 9.41:
Table 9.42:
Table 9.43:
Table 9.44:
Table 9.45:
Table 9.46:
Table 9.47:
Table 9.48:
Table 9.49:
Table 9.50:
Table 9.51:
Table 9.52:
Table 9.53:
Table 9.54:
Table 9.55:
Table 9.56:
Table 9.57:
Table 9.58:
Table 9.59:
Table 9.60:
Table 9.61:
Table 9.62:
Table 9.63:
Table 9.64:
Table 9.65:
Table 9.66:
Table 9.67:
Table 9.68:
Table 9.69:
Table 9.70:
Table 9.71:
Table 9.72:
Table 9.73:
Table 9.74:
Table 9.75:

PageGrain Register Field DeSCIHPIONSuuuuiis i ieie e et r e e e e e e e e e aaaaaeaeaaaaaaanes 151
SegCtl0 Register Field DESCIPLIONSooiiiiiiieieiee e e e e e e eeas 157
SegCtll Register Field DESCIPLIONSoiviieiiiiiei st e e e e e e 158
SegCtl2 Register Field DESCIPLIONSooviieiiiiiei e e e e e e 158
CFG (Segment Configuration) Field DeSCIPLION..........uvuuiiiiceee e e 158
Segment Configuration Access Control MOUESoovueviiiiiiiiiiiis e 159
Segment Configuration 1€gacy reSEt StAteco.vvviiiiiiiiieie e 159
Segment Configuration partitioning of MIPS32 addreSs SPaCE.......ccceeviieiiieeeeeiiieieeeeeeeee s 160
PWBase Register Field DeSCIIPLIONSciiiiiii e s s e aaeeaeeeresrnnanas 161
PWField Register Field DEeSCHPIIONS.uuuuiiiiieieie i e e ee e eee ettt s e s e e e e e e e e e aeaaaeaeaeaeaeaeaaanns 163
PWSize Register Field DEeSCHIPLIONS ittt ettt e e e e e s e e e e e e e e e e aennes 166
PSIPTEW USAJEveiieiitiieeitet ettt ettt etttk e kbt s sttt s bt e e e b bt e e ek bt e e et et e ettt e anb e e e e nbe e e snbneeennnes 167
Wired Register Field DEeSCHIPLIONS..... ...ttt ittt et e e e e e e e et s e e e e e e e e aaeneanenees 170
PWCHtl Register Field DeSCHPLIONSuuuiiiiiiiiiiiee ettt ettt e e e e e e e e e s eeeaaaaaaeaeaaas 172
HugePg Field and Huge Page CONfIQUIAtioNScoiiiiiiiiiiiiiiiiiiiieeee e 173
Huge Page representation in DIir€CtOry LEVEISuuuiiiiiiiiiiiiiiiiiiiee e 173
HWRENa Register Field DESCHPIONSuuiiiiiiiieiee ittt ettt e e e et e e e e e e e e 175
RDHWR ReEGISIEr NUMDEIS ... ittt ettt e e e e e e e e e e e e s e eaaaaaaaaaans 176
BadVAddr Register Field DeSCHIPIIONS.......cuiii ittt e e e e e e e 177
BadInstr Register Field DESCHIPIIONS. ittt e e e e e st ee e e e e e e e e e anennes 179
BadInstrP Register Field DESCIPLIONSuu ittt ee e e e e e e e e e e e e e e e e e as 181
Count Register Field DESCIIPHIONSuuiiiiiiiiiiaeeie ittt e e e e e e e e e e st eeeaeaaaaeaaas 183
EntryHi Register Field DESCIPLIONSiiiiiiiiiiee ettt e e e e e e e e ee e e e e e e e eeeaas 185
Compare Register Field DeSCIPLIONS ..ottt e e e e e e e e e e eebebae e eeeaeas 187
Status Register Field DeSCHPUIONSooiiiiiiiiee et e e e e e e e e eeeeeeeas 190
INtCtl Register Field DeSCIIPIIONS ettt ittt e et e e e e e e e e e e e aaebbe e e e e e e e e e e aaannnnranes 199
SRSCtl Register Field DESCHPLIONScoiiiiiiiiie ettt e e e e e e e e e e e e e enbnbbeeeeeeeeeas 203
Sources for new SRSCtlcgg 0n an Exception or INterrupt..........ccoeeiiiiiiiiic e 204
SRSMap Register Field DeSCHPLIONS.........ooiiiiieeeieiiie e eaeeas 207
Cause Register Field DeSCIPONS........ccciiiiiieeeeee e e e e e e e e et et e e e e e aeas 209
Cause Register EXCCOUE FIEIUuuuuiiiii i e e e e e e as 212
NestedEXC Register Field DeSCIPLIONSt it e e e e e e e e e e e e e aeaaaaaaanes 215
EPC Register Field DEeSCHPLIONS.........viiiiiieieiiiiiiis e s e e e e e e e e e ettt s s e s s e s e e e e e e e seeesesesesessnnanns 217
NestedEPC Register Field DESCIPLIONSuuuuiii i e e e e e e e e e e e e e e e e aeaaaaaaanes 219
PRId Register Field DESCHPLIONSuuueiiiiiei i e e ettt e s e areeeeeaneeaennananns 221
EBase Register Field DESCIPLIONSuuuiuieiiiiiii s e e e e ettt e e e e e e e e e e e e e e e e e e aeeeeeaneesenrnnanns 224
EBase Register Field DESCIPLIONSuuuiuiiiiiiiiii e eeeee et ss e e e e e e e e e e e e e e e e e e aeeeeeaeesaessnnanns 224
Conditions Under Which EBase15..12 MUSE BE ZEI0ccccuvieieiiiiiiieii ittt 225
CDMMBase Register Field DeSCIIPUONSuutiiiiiiieeeae ittt e e e e e e e e s sban e e eeeeeas 227
CMGCRBase Register Field DESCIPLIONSuiiiiiiiieaiiiiiiieie et e e e e e ee e 229
BEVVA Register Field DeSCIIPUIONSuutiiiiiiiiieeee ettt ettt e e e e e e e s et e e e e e e aeeae e s 231
Config Register Field DeSCIPLIONS........ooi ittt e e e et e e e e e e s bbb e eeeeas 233
Configl Register Field DeSCIPLIONS.......coii ittt e e e e e e e e e s bbb e e eeeeeas 237
Config2 Register Field DeSCIPLIONS.......coii ittt e e e e e e s bbb eeeeaeas 241
Config3 Register Field DeSCIPLIONS......ccoii ittt e e r e e e e e e e e s bbb eeeeeeas 245
Configd Register Field DeSCHPLIONS.......coi ittt e et e e e e e e e e e s eeeeeeeas 253
Configh Register Field DeSCIPLIONS.......coiiiiiiiie ittt e e e e e e e e e e e e bbb eeeeeeeas 260
SegCtloK Segment CCA DetermMiNationeeeiiiiaraiiiiiiiieiie et e e e eee e e e e e e e e e e aaeeeeeeeeeas 265
LLAddr Register Field Descriptions (pre RelEaSE 5)....ccouiieiiiiiiiiiiiiiieieeee e 269
LLAddr Register Field Descriptions (Release 5 and after).........cccooiiiiiiiiii e 270
MAAR Register Field DeSCIIPIIONSttt e e e e e e e e e e s eeeaaaaaaae e s 273
Valid Determination fOr MAAR Pail.........ooo ittt e e e e e ee e e e e e e eanenees 275
Speculate Determination for MAAR Pail...........uueiiiiiiiiiiiii ettt eee s 275

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 11

Table 9.76: MAARI Index Register Field DeSCHPLIONSccoiiiiiiiiie s e e e e e e e e e e e e e e e e 277
Table 9.77: WatchLo Register Field DeSCHPONSciiiiii e e e e e e e e e e e e e e e e e e e te e reraraannas 279
Table 9.78: WatchHi Register Field DeSCHPLIONS.cciii i s e e e e e e e e e e e e e e e e e 281
Table 9.79: Example Performance Counter Usage of the PerfCnt CPO ReQISter.........cveeeiiiiieieieeeeeeeeeeeeeeeveiiins 291
Table 9.80: Performance Counter Control Register Field DeSCriptionScoovvviiiiiiiiiiiiiiiie e 292
Table 9.81: Performance Counter Counter Register Field DeSCrptioNS...........ccooiiiiiiiiiiiiiicceie e, 294
Table 9.82: Example TagLo Register Field DeSCIPLONSuvuuiiiiie e e e e e e e e e e e 299
Table 9.83: ErrorEPC Register Field DeSCIIPLIONS......cciiii i e e e e e e e e e e e e e e e e re e reranaanaas 307
Table 9.84: KScratchn Register Field DESCHPLIONS.ccciiii i e e e e e e e e e e e e e e e e e re s 311
Table A.1: Physical Address Generation from Virtual AddreSSES..........oovvviiiiiiiiiiiiiiiiii e 313
Table A.2: Config Register Field DESCIIPLIONSu ittt e e e e e e e e e e s e e e e e e e s e e e e annneees 317
Table A.3: BAT ENtry ASSIONMENTS.......ccciiiiiiiiieieieieie e s e e e e e e e e e e et e et e e e e aae e et e s e s e aaaeaeaeaeaeaeeeeeeereseseansennnnnnnn 318

12 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

Chapter 1

About This Book

The MIPS® Architecture For Programmers Vol. 111: MIPS32® / microMIPS32™ Privileged Resource Architecture
consists of the following documents:

» Volume I-A describes conventions used throughout the document set, and provides an introduction to the
MIPS32® Architecture

« Volume I-B describes conventions used throughout the document set, and provides an introduction to the
microMIPS32™ Architecture

* \Volume II-A provides detailed descriptions of each instruction in the MIPS32® instruction set
* Volume 1I-B provides detailed descriptions of each instruction in the microMIPS32™ instruction set

* Volume Il describes the MIPS32® and microMIPS32™ Privileged Resource Architecture which defines and
governs the behavior of the privileged resources included in a MIPS® processor implementation

* Volume IV-a describes the MIPS16e™ Application-Specific Extension to the MIPS32® Architecture. Beginning
with Release 3 of the Architecture, microMIPS is the preferred solution for smaller code size.

* Volume IV-b describes the MDMX™ Application-Specific Extension to the MIPS64® Architecture and
microMIPS64™. It is not applicable to the MIPS32® document set nor the microMIPS32™ document set. With
Release 5 of the Architecture, MDMX is deprecated. MDMX and MSA can not be implemented at the same
time.

* \olume IV-c describes the MIPS-3D® Application-Specific Extension to the MIPS® Architecture

* \olume IV-d describes the SmartMIPS® Application-Specific Extension to the MIPS32® Architecture and the
microMIPS32™ Architecture .

* \Volume IV-e describes the MIPS® DSP Module to the MIPS® Architecture

* \Volume IV-f describes the MIPS® MT Module to the MIPS® Architecture

* \olume IV-h describes the MIPS® MCU Application-Specific Extension to the MIPS® Architecture
* \Volume IV-i describes the MIPS® Virtualization Module to the MIPS® Architecture

* \olume IV-j describes the MIPS® SIMD Architecture Module to the MIPS® Architecture

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 13

About This Book

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fonts in this book.
1.1.1 Italic Text

e is used for emphasis

» isused for bits, fields, registers, that are important from a software perspective (for instance, address bits used by
software, and programmable fields and registers), and various floating point instruction formats, such as S, D,
and PS

» is used for the memory access types, such as cached and uncached
1.1.2 Bold Text

e represents a term that is being defined

» isused for bits and fields that are important from a hardware perspective (for instance, register bits, which are
not programmable but accessible only to hardware)

» isused for ranges of numbers; the range is indicated by an ellipsis. For instance, 5..1 indicates numbers 5 through
1

e isused to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.
1.1.3 Courier Text

courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the pro-
cessor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions in
a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CPO usable bit set in the Status register).
Unprivileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and
unprivileged software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE operations can cause a result to be generated or not. UNPREDICTABLE operations can cause
arbitrary exceptions. UNPREDICTABLE results or operations have several implementation restrictions:

» Implementations of operations generating UNPREDICTABLE results must not depend on any data source
(memory or internal state) that is inaccessible in the current processor mode.

« UNPREDICTABLE operations must not read, write, or modify the contents of memory or an internal state that
is inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in user

14 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

1.3 Special Symbols in Pseudocode Notation

mode must not access memory or an internal state that is only accessible in Kernel Mode or Debug Mode or in
another process.

« UNPREDICTABLE operations must not halt or hang the processor.

1.2.2 UNDEFINED

UNDEFINED operations or behavior can have no impoact, or they can create an environment in which execution
can no longer continue. UNDEFINED operations or behavior can cause data loss.

UNDEFINED operations or behavior must not cause the processor to enter a state from which there is no exit other
than powering down the processor (hang). The assertion of any of the reset signals must restore the processor to an
operational state.

1.2.3 UNSTABLE

A sampling of an UNSTABLE value results in a legal transient value that was correct at some time prior to the sam-
pling. Implementations of operations generating UNSTABLE results must not depend on any data source (memory
or internal state) which is inaccessible in the current processor mode.

1.3 Special Symbols in Pseudocode Notation

Algorithmic descriptions of an operation are described as pseudocode in a high-level language notation resembling
Pascal. Table 1.1 lists the special symbols used in the pseudocode notation.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning
«— Assignment.
= # Tests for equality, inequality.

I Bit string concatenation.

xY A y-bit string formed by y copies of the single-bit value x.

b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the
binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default base is 10.

Obn A constant value n in base 2. For example: 0b100 represents the binary value 100 (decimal 4).
0xn A constant value n in base 16. For example: 0x100 represents the hexadecimal value 100 (decimal 256).
Xy 7 Selection of bits y through z of bit string x. Little-endian bit notation (rightmost bit is 0) is used. If y is less
than z, this expression is an empty (zero length) bit string.
+, - 2’s complement or floating-point arithmetic: addition, subtraction.
* X 2’s complement or floating-point multiplication (both used for either).
div 2’s complement integer division.
mod 2’s complement modulo.
/ Floating-point division.
< 2’s complement less-than comparison.
> 2’s complement greater-than comparison.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 15

About This Book

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning
< 2’s complement less-than or equal comparison.
> 2’s complement greater-than-or-equal comparison.
nor Bitwise logical NOR.
xor Bitwise logical XOR.
and Bitwise logical AND.
or Bitwise logical OR.
not Bitwise inversion.
&& Logical (non-bitwise) AND.
<< Logical shift left (shift in zeros at right-hand-side).
>> Logical shift right (shift in zeros at left-hand-side).
GPRLEN The length, in bits (32 or 64), of the CPU general-purpose registers.
GPR[x] CPU general-purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR[X] is a short-hand notation for SGPR[SRSCtlcgs, X].
SGPR[s,X] From Release 2 on of the Architecture, multiple copies of the CPU general-purpose registers can be imple-
mented. SGPR([s,X] refers to GPR set s, register x.
FPR[X] Floating-point operand register x
FCC[CC] Floating-point condition code CC. FCC[0] has the same value as COC[1].
FPR[X] Floating-point (coprocessor unit 1), general register x
CPR[z,x,s] Coprocessor unit z, general register x, select s.
CP2CPR][X] Coprocessor unit 2, general register x.
CCR[z,X] Coprocessor unit z, control register x.
CP2CCR[X] Coprocessor unit 2, control register x.
COCIz] Coprocessor unit z condition signal.
Xlat[x] Translation of the MIPS16e GPR number x into the corresponding 32-bit GPR number.

BigEndianMem Endian mode as configured at chip reset (0 for little-endian, 1 for big-endian). Specifies the endianness of the
memory interface (see LoadMemory and StoreMemory pseudocode function descriptions), and the endian-
ness of Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0 for little-endian, 1 for big-endian). In User mode, this endi-
anness can be switched by setting the RE bit in the Status register. Thus, BigEndianCPU can be computed as
(BigEndianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only. It
is implemented by setting the RE bit of the Status register. Thus, ReverseEndian can be computed as (SRgg
and User mode).

LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when a linked load occurs and is tested by the conditional store. It is cleared (by exception return instruc-
tions) during other CPU operation, when a store to the location is no longer atomic.

16 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

1.3 Special Symbols in Pseudocode Notation

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol

Meaning

I+n:,
I-n:

This iss a prefix to Operation description lines and functions as a label. It indicates the instruction time dur-
ing which the pseudocode appears to “execute.” Unless otherwise stated, all effects of the current instruction
appear to occur during the instruction time of the current instruction. No label is equivalent to a time label of
I. Sometimes, effects of an instruction appear to occur either earlier or later (during the instruction time of
another instruction). When this happens, the instruction operation is written in sections labeled with the
instruction time relative to the current instruction I, in which the effect of that pseudocode appears to occur.
For example, an instruction can have a result that is not available until after the next instruction. Such an
instruction has the portion of the instruction operation description that writes the result register in a section
labeled 1+1.

The effect of pseudocode statements for the current instruction labelled 1+1 appears to occur “at the same
time” as the effect of pseudocode statements labeled 1 for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for
different instructions that occur “at the same time,” there is no defined order. Programs must not depend on a
particular order of evaluation between such sections.

PC

The Program Counter value. During the instruction time of an instruction, this is the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction time is determined by assign-
ing a value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.

In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the restart
address into a GPR on a jump-and-link or branch-and-link instruction, or into a Coprocessor 0 register on an
exception. The PC value contains a full 32-bit address, all bits of which are significant during a memory ref-
erence.

ISA Mode

In processors that implement the MIPS16e Application Specific Extension or the microMIPS base architec-
tures, the ISA Mode is a single-bit register that determines the mode in which the processor is executing.

Encoding

0 32-bit MIPS instructions.
1 MIIPS16e or microMIPS instructions.

Meaning

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on a jump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS

Represents the number of physical address bits implemented by the symbol PABITS. If 36 physical address
bits are implemented, the size of the physical address space is 2PAB!TS = 236 pytes.

FP32RegistersMode

Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). the FPU has 32 64-bit FPRs
in which 64-bit data types are stored in any FPR.

MIPS64 implementations have a compatibility mode in which the processor references the FPRs as if it were
a MIPS32 implementation. In this case, FP32RegisterMode is computed from the FR bit in the Status regis-
ter. If this bit is a 0, the processor operates as if it had thirty-two 32-bit FPRs. If this bit is a 1, the processor

operates with thirty-two 64-bit FPRs.

The value of FP32RegistersMode is computed from the FR bit in the Status register.

InstructionInBranchDe-
laySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch
or jump. This condition reflects the dynamic state of the instruction, not the static state. The value is false if
a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which is not
executed in the delay slot of a branch or jump.

SignalException(excep-
tion, argument)

Causes an exception to be signaled using the exception parameter as the type of exception, and the argument
parameter as an exception-specific argument. Control does not return from this pseudocode function; the
exception is signaled at the point of the call.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

17

About This Book

1.4 For More Information

Various MIPS RISC processor manuals and additional information about MIPS products can be found at the MIPS
URL: http://www mips.com

For comments or questions on the MIPS32® Architecture or this document, send email to support@mips.com.

18 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

Chapter 2

The MIPS32 and microMIPS32 Privileged Resource
Architecture

2.1 Introduction

The MIPS32 and microMIPS32 Privileged Resource Architecture (PRA) provides the mechanisms to manage the
resources of the CPU: virtual memory, caches, exceptions, and user contexts. The effects of some components of the
PRA, such as the virtual memory layout, are user-visible. Many other components are visible only to the operating
system kernel and to systems programmers.

2.2 The MIPS Coprocessor Model

The MIPS ISA provides for up to four coprocessors. A coprocessor extends the functionality of the MIPS ISA, while
sharing the instruction fetch and execution control logic of the CPU. Some coprocessors, such as the system copro-
cessor and the floating-point unit, are standard parts of the ISA and are specified as such in the architecture docu-
ments. Coprocessors are generally optional, with one exception: CPOQ, the system coprocessor, is required. CPO is the
ISA interface to the PRA and provides full control of the processor state and modes.

2.2.1 CPO - The System Coprocessor

CPO provides an abstraction of the functions necessary to support an operating system: exception handling, memory
management, scheduling, and control of critical resources. The interface to CPO is through various instructions
encoded with the COPO opcode, including the ability to move data to, and from, the CPO registers, as well as specific
functions that modify CPO state. The CPO registers and the interaction with them make up much of the PRA.

2.2.2 CPO Registers

The CPO registers provide the interface between the ISA and the PRA. The CPO registers are described in Chapter 9,
“Coprocessor 0 Registers” on page 111.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 19

The MIPS32 and microMIPS32 Privileged Resource Architecture

20 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

Chapter 3

MIPS32 and microMIPS32 Operating Modes

The MIPS32 and microMIPS32 PRA requires two operating modes: User Mode and Kernel Mode. In User Mode, the
programmer can access the CPU and FPU registers that are provided by the ISA, as well as a flat, uniform virtual
memory address space. In Kernel Mode, the system programmer can access the full capabilities of the processor, as
well as change the virtual memory mapping, control the system environment, and context switch between processes.

The MIPS PRA also supports the implementation of two additional modes: Supervisor Mode and EJTAG Debug
Mode. See the EJTAG specification for a description of Debug Mode.

Release 2 of the MIPS32 Architecture added support for 64-bit coprocessors (and, in particular, 64-bit floating-point
units) with 32-bit CPUs. Thus, certain floating-point instructions that previously were enabled by 64-bit operations

on a MIPS64 processor now are enabled by new 64-bit floating-point operations. Release 3 introduced the micro-
MIPS instruction set, allowing all microMIPS processors to implement a 64-bit floating-point unit.

3.1 Debug Mode

For processors that implement EJTAG, the processor is operating in Debug Mode if the DM bit in the CPO Debug reg-
ister is 1. If the processor is in Debug Mode, it has full access to all resources that are available to Kernel Mode oper-
ations.

3.2 Kernel Mode

The processor is in Kernel Mode when the DM bit in the Debug register is 0 (if the processor implements Debug
Mode), and any of the following is true:

» The KSU field in the CPO Status register contains 0b00.

* The EXL bit in the Status register is 1.

e The ERL bit in the Status register is 1.

The processor enters Kernel Mode at power-up, or as the result of an interrupt, exception, or error. The processor

leaves Kernel Mode and enters User Mode or Supervisor Mode when all of the previous three conditions are false,
usually as the result of an ERET instruction.

3.3 Supervisor Mode

The processor is operating in Supervisor Mode (if that optional mode is implemented by the processor) when all of
the following are true:

e The DM bit in the Debug register is 0 (if the processor implements Debug Mode).

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 21

MIPS32 and microMIPS32 Operating Modes

e The KSU field in the Status register contains Ob01.

e The EXL and ERL bits in the Status register are both 0.

3.4 User Mode

The processor is operating in User Mode when all of the following are true:
e The DM bit in the Debug register is 0 (if the processor implements Debug Mode).
e The KSU field in the Status register contains 0b10.

e The EXL and ERL bits in the Status register are both 0.

3.5 Other Modes

3.5.1 64-bit Floating-Point Operations Enable

Instructions that are implemented by a 64-bit floating-point unit are legal under any of the following conditions:

* Inanimplementation of Release 1 of the Architecture, 64-bit floating-point operations are never {{\erify}}
enabled in a MIPS32 processor.

* Inanimplementation of Release 2 or later of the , 64-bit floating-point operations are enabled if the F64 bit in the
FIR register is 1. The processor must also implement the floating-point data type. Release 3 introduced the
microMIPS instruction set; on all microMIPS processors, 64-bit floating-point operations are enabled if the F64
bit in the FIR register is 1.

3.5.2 64-hit FPR Enable

Access to 64-bit FPRs is controlled by the FR bit in the Status register. If the FR bit is 1, the FPRs are interpreted as
thirty-two 64-bit registers that can contain any data type. If the FR bit is 0, the FPRs are interpreted as thirty-two 32-
bit registers, any of which can contain a 32-bit data type (W, S). In this case, 64-bit data types are contained in even-
odd pairs of registers.

In Release 1 of the Architecture , 64-bit FPRs are supported in a MIPS64 processor. In Release 2 of the Architecture,
64-bit FPRs are supported in a 64-bit floating-point unit, for both MIPS32 and MIPS64 processors. From Release 3
and later of the Architecture, 64-bit FPRs are supported for all processors, including all microMIPS processors. As of
Release 5 of the Architecture, if floating-point is implemented, then FR=1 is required; that is, the 64-bit FPU, with the
FR=1 64-bit FPU register model, is required. The FR=0 32-bit FPU register model continues to be required.

The operation of the processor is UNPREDICTABLE under the following conditions:

e The FRbitis 0, 64-bit operations are enabled, and a floating-point instruction is executed whose datatype is L or
PS.

e TheFR bitis 0, and an odd register is referenced by an instruction whose datatype is 64 bits.

22 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

3.5 Other Modes

3.5.3 Coprocessor 0 Enable

Access to Coprocessor 0 registers are enabled under any of the following conditions:
e The processor is running in Kernel Mode or Debug Mode, as defined above.

e The CUO bit in the Status register is 1.

3.5.4 ISA Mode

Release 3 of the Architecture introduced a second branch of the instruction set family, microMIPS32. Devices can
implement both ISA branches (MIPS32 and microMIPS32) or only one branch.

The ISA Mode bit is used to specify which ISA branch to use when decoding instructions. This bit is normally not
visible to software. Its value is saved to any GPR used as a jump target address, such as GPR31 when written by a
JAL instruction, or the source register for a JR instruction.

For processors that implement the MIPS32 ISA, the ISA Mode bit value of zero selects MIPS32. For processors that
implement the microMIPS32 ISA, the ISA Mode bit value of 1 selects microMIPS32. For processors that implement

the MIPS16e™ ASE, the ISA Mode bit value of 1 selects MIPS16e. A processor is not allowed to implement both
MIPS16e and microMIPS.

Please read Volume I1-B: Introduction to the microMIPS32 Instruction Set, Section 5.3, “ISA Mode Switch” for a
detailed description of ISA mode switching between the ISA branches and the ISA Mode bit.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 23

MIPS32 and microMIPS32 Operating Modes

24 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

Chapter 4

Virtual Memory

4.1 Differences between Releases of the Architecture

4.1.1 Virtual Memory

In Release 1 of the Architecture, the minimum page size was 4 kB, with optional support for pages as large as

256 MB. In Release 2 of the Architecture (and subsequent releases), optional support for 1 kB pages was added for
use in specific embedded applications that require access to pages smaller than 4 kB. Such usage is expected to be in
conjunction with a default page size of 4 kB and is not intended, or suggested, to replace the default 4 kB page size;
rather, to augment it.

Support for 1 kB pages involves the following changes:

« Addition of the PageGrain register. This register is also used by the SmartMIPS™ ASE specification, but bits
used by Release 2 of the Architecture and those used by the SmartMIPS ASE specification do not overlap.

* Modification of the EntryHi register to enable writes to, and use of, bits 12..11 (VPN2X).
» Modification of the PageMask register to enable writes to, and use of, bits 12..11 (MaskX).

* Modification of the EntryLo0 and EntryLo1 registers to shift the Config3gp field to the left by two bits, when 1 kB
page support is enabled, to create space for two lower-order physical address bits.

Support for 1 kB pages is denoted by the Config3gp bit; it is enabled by the PageGraingsp bit.
4.1.2 Protection of Virtual Memory Pages

In Release 3 of the Architecture, two optional control bits are added to each TLB entry. These bits, RI (Read Inhibit)
and XI (Execute Inhibit), allow more types of protection to be used for virtual pages, including write-only pages and
non-executable pages.

This feature originated in the SmartMIPS ASE but has been modified from the original SmartMIPS definition. For
the Release 3 version of this feature, each of the RI and XI bits can be separately implemented. For the Release 3 ver-
sion of this feature, new exception codes are used when a TLB access does not obey the RI /XI bits.

4.1.3 Context Register

In Release 3 of the Architecture, the Context register is a read/write register containing a address pointer to an arbi-
trary power-of-two aligned data structure in memaory, such as an entry in the page table entry (PTE) array. In Releases
1 and 2, this pointer was defined to reference a fixed-sized 16-byte structure in memory within a linear array contain-
ing an entry for each even/odd virtual page pair. The Release 3 version of the Context register can be used more gen-
erally.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 25

Virtual Memory

This feature originated in the SmartMIPS ASE. This feature is optional in the Release 3 version of the base architec-
ture.

4.1.4 Segmentation Control

In Release 3 of the Architecture includes an optional programmable segmentation feature. This improves the flexibil-
ity of the MIPS virtual address space.

With Segmentation Control, address translation begins by matching a virtual address to the region specified in a Seg-
ment Configuration. Thus, the virtual address space is definable as the set of memory regions specified by Segment
Configurations. The behavior and attributes of each region are also specified by Segment Configurations. Six Seg-
ment Configurations are defined, fully mapping the virtual address space.

4.1.5 Enhanced Virtual Addressing

In Release 3 of the Architecture has an optional Enhanced Virtual Addressing (EVA) feature. EVA is a configuration
of Segmentation Control and a set of kernel mode load/store instructions allowing direct access to user-mode memory
space from kernel mode. In EVA, Segmentation Control is programmed to define two address ranges, a three-GB

range with mapped-user, mapped-supervisor, and unmapped-kernel access modes, and a one-GB address range with
mapped-kernel access mode.

4.2 Terminology

4.2.1 Address Space

An Address Space is the range of all possible addresses that can be generated. There is one 32-bit Address Space in
the MIPS32 Architecture.

4.2.2 Segment and Segment Size

A Segment is a defined subset of an Address Space that has self-consistent reference and access behavior. Segments
are either 22° or 231 bytes in size, depending on the specific Segment.

4.2.3 Physical Address Size (PABITS)

The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 physical
address bits were implemented, the size of the physical address space would be 2PABITS 536 bytes. The format of the

EntryLoO and EntryLo1 registers implicitly limits the physical address size to 236 bytes. Software can determine the
value of PABITS by writing all ones to the EntryLoO or EntryLol registers, then reading the value back. Bits read as
“1” from the PFN field allow software to determine the boundary between the PFN and O fields to calculate the value
of PABITS.

4.3 Virtual Address Spaces

The MIPS32/microMIPS32 virtual address space is divided into five segments, as shown in Figure 4.1.

26 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

4.3 Virtual Address Spaces

Figure 4.1 Virtual Address Space

OXFFFF FFFF Kernel Mapped
kseg3
0xE000 0000

0xDFFF FFFF Supervisor Mapped
ksseg
0xC000 0000

OxBFFF FFFF Kernel Unmapped Uncached
ksegl
0xA000 0000

0x9FFF FFFF Kernel Unmapped
kseg0
0x8000 0000

O0x7FFF FFFF User Mapped

useg

0x0000 0000

Each Segment of an Address Space is classified as “Mapped” or “Unmapped”. A “Mapped” address is translated
through the TLB or other address translation unit. An “Unmapped” address is not translated through the TLB and
provides a window into the lowest portion of the physical address space, starting at physical address zero, and with a
size corresponding to the size of the unmapped Segment.

The ksegl Segment is classified as “Uncached”. References to this Segment bypass all levels of the cache hierarchy
and allow direct access to memory without interference from the caches.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 27

Virtual Memory

28

Table 4.1 lists the same information in tabular form. Each Segment of an Address Space is associated with one of the

Table 4.1 Virtual Memory Address Spaces

Reference Actual
Segment Associated Legal from Segment
VA31.29 Name(s) Address Range | with Mode Mode(s) Size
Ob111 kseg3 OxFFFF FFFF Kernel Kernel 22 pytes
through
0xEO000 0000
0b110 sseg OxDFFF FFFF Supervisor Supervisor 22 pytes
ksseg through Kernel
0xC000 0000
0b101 ksegl 0xBFFF FFFF Kernel Kernel 229 pytes
through
0xA000 0000
0b100 kseg0 O0x9FFF FFFF Kernel Kernel 22 pytes
through
0x8000 0000
0b0xx useg O0x7FFF FFFF User User 231 bytes
suseg through Supervisor
kuseg 0x0000 0000 Kernel

three processor operating modes (User, Supervisor, or Kernel). A Segment associated with a mode is accessible if the
processor is running in that or a more privileged mode. For example, a Segment associated with User Mode is acces-
sible when the processor is running in User, Supervisor, or Kernel Modes. A Segment is not accessible if the proces-
sor is running in a less privileged mode than that associated with the Segment. For example, a Segment associated
with Supervisor Mode is not accessible when the processor is running in User Mode, and such a reference results in
an Address Error Exception. The “Reference Legal from Mode(s)” column in Table 4-2 lists the modes from which
each Segment can be referenced legally.

If a Segment has more than one name, each name denotes the mode from which the Segment is referenced. For exam-
ple, the Segment name “useg” denotes a reference from user mode, while the Segment name “kuseg” denotes a refer-
ence to the same Segment from kernel mode.

Figure 4.2 shows the Address Space as seen when the processor is operating in each of the operating modes.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

Figure 4.2 References as a Function of Operating Mode

4.4 Compliance

OxXFFFF FFFF

0x8000 0000
Ox7FFF FFFF

useg

0x0000 0000

Figure 4.3 References as a Function of Operating Mode

User Mode References

Address Error

User Mapped

Supervisor Mode References

OXFFFF FFFF

0xE000 0000
0xXDFFF FFFF
sseg
0xC000 0000
0XBFFF FFFF

0x8000 0000
Ox7FFF FFFF

suseg

0x0000 0000

Address Error

Supervisor Mapped

Address Error

User Mapped

Kernel Mode References

OXFFFF FFFF
kseg3
0xE000 0000
0xDFFF FFFF
ksseg
0xC000 0000
0XBFFF FFFF
ksegl
0xA000 0000
0x9FFF FFFF
kseg0
0x8000 0000
0x7FFF FFFF

kuseg

0x0000 0000

Kernel Mapped

Supervisor Mapped

Kernel Unmapped
Uncached

Kernel Unmapped

User Mapped

4.4 Compliance

A MIPS32/microMIPS32 compliant processor must implement the following Segments:

» useg/kuseg

* ksegO

o ksegl

A MIPS32/microMIPS32-compliant processor using TLB-based address translation also must implement the kseg3

Segment.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

29

Virtual Memory

4.5 Access Control as a Function of Address and Operating Mode

Table 4.2 lists the action taken by the processor for each section of the 32-bit Address Space as a function of the pro-
cessor’s operating mode. The selection of TLB Refill vector and other special behavior is listed for each reference.

Table 4.2 Address Space Access as a Function of Operating Mode

Action when Referenced from Operating Mode
Segment Supervisor
Virtual Address Range | Name(s) User Mode Mode Kernel Mode
O0xFFFF FFFF kseg3 Address Error Address Error Mapped
through See Section 4.8 for special
behavior when Debugpy, = 1.
0xE000 0000
0xDFFF FFFF sseg Address Error Mapped Mapped
ksseg
through
0xC000 0000
0xBFFF FFFF ksegl Address Error Address Error Unmapped, Uncached
through See Section 4.6.
0xA000 0000
0x9FFF FFFF kseg0 Address Error Address Error Unmapped
through See Section 4.6.
0x8000 0000
0x7FFF FFFF useg Mapped Mapped Unmapped if Statusgg =1
suseg
through kuseg See Section 4.7.
0x0000 0000 Mapped if Statusgg, =0.

4.6 Address Translation and Cacheability and Coherency Attributes for the
ksegO and ksegl Segments

The kseg0 and ksegl Unmapped Segments provide a window into the least significant 229 bytes of physical memory;
these are not translated using the TLB or other address translation unit. The cacheability and coherency attribute of
the kseg0 Segment is supplied by the KO field of the CPO Config register. The cacheability and coherency attribute for

30 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

4.7 Address Translation for the kuseg Segment when Statusgg, =1

the ksegl Segment is always Uncached. Table 4.3 describes how this transformation is done, as well as the source of
the cacheability and coherency attributes for each Segment.

Table 4.3 Address Translation, Cacheability and Coherency Attributes for the kseg0 and ksegl Segments

Generates Physical
Segment Name Virtual Address Range Address Cache Attribute
ksegl O0xBFFF FFFF 0x1FFF FFFF Uncached
through through
0xA000 0000 0x0000 0000
kseg0 0x9FFF FFFF 0x1FFF FFFF From KO field of Config
Register.
through through
0x8000 0000 0x0000 0000

4.7 Address Translation for the kuseg Segment when Statusgg =1

To support the cache error handler, the kuseg Segment becomes an unmapped, uncached Segment, similar to the
ksegl Segment, if the ERL bit is set in the Status register. This allows the cache error exception code to operate
uncached using GPR RO as a base register to save other GPRs before use.

4.8 Special Behavior for the kseg3 Segment when Debugpy =1

If EJTAG is implemented on the processor, the EJTAG block must treat the virtual address range 0xFF20 0000
through 0xFF3F FFFF, inclusive, as a special memory-mapped region in Debug Mode. A MIPS32/microMIPS32
compliant implementation that also implements EJTAG must:

» explicitly range-check the address range as given, and not assume that the entire region between 0xFF20 0000
and OxFFFF FFFF is included in the special memory-mapped region.

» enable the special EJTAG mapping for this region only in EJTAG Debug mode.

Even in Debug mode, normal memory rules can apply in some cases. See the EJTAG specification for details on this
mapping.

4.9 TLB-Based Virtual Address Translation?!

This section describes the TLB-based virtual address translation mechanism. Sufficient TLB entries must be imple-
mented to avoid a TLB exception loop on load and store instructions.

1. See Al “Fixed Mapping MMU” on page 313 and A.2 “Block Address Translation” on page 317 for descriptions of alterna-
tive MMU organizations.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 31

Virtual Memory

32

4.9.1 Address Space Identifiers (ASID)

The TLB-based translation mechanism supports Address Space Identifiers to uniquely identify the same virtual
address across different processes. The operating system assigns ASIDs to each process, and the TLB keeps track of
each ASID during address translation. In certain circumstances, the operating system may want to associate the same
virtual address with all processes; for this, the TLB includes a global (G) bit which over-rides the ASID comparison
during translation.

4.9.2 TLB Organization

The TLB is a fully-associative structure for translating virtual addresses. Each entry contains two logical compo-
nents: a comparison section, and a physical translation section. The comparison section includes the virtual page
number (VPN2 and, in Release 2 and subsequent releases, VPNX, which is the virtual page number/2 since each
entry maps two physical pages) of the entry, the ASID, the G(lobal) bit, and a recommended mask field that allows
mapping different page sizes with a single entry. The physical translation section contains a pair of entries, each of
which contains the physical page frame number (PFN), a valid (V) bit, a dirty (D) bit, optionally read-inhibit and exe-
cute-inhibit (Rl & XI) bits, and a cache coherency field (C) for which the valid encodings are given in Table 9.12.
There are two entries in the translation section for each TLB entry because each TLB entry maps an aligned pair of
virtual pages, and the pair of physical translation entries corresponds to the even and odd pages of the pair.

In Revision 3 of the architecture, the Rl and X1 bits were added to the TLB to enable more secure access of memory
pages. These bits (along with the Dirty bit) allow the implementation of read-only, write-only, and no-execute access
policies for mapped pages.

Figure 4.4 shows the logical arrangement of a TLB entry, including the optional support added in Release 2 of the
Architecture for 1 kB page sizes. Light grey fields denote extensions to the right that are required to support 1 kB
page sizes. This extension is not present in an implementation of Release 1 of the Architecture.

Figure 4.4 Contents of a TLB Entry

Mask Maskx
R VPN2 VPN2X G ASID
PFNX PFNO CO |RIO[XI0| DO| VO
PFNX PFN1 C1 |RI1{XI1 D1|V1

Optional Release 2 features required to support 1 kB pages.

Optional Release 3 features added for additional security.

Optional Release 2 features required to suport larger physical addresses.

The fields of the TLB entry correspond exactly to the fields in the CPO PageMask, EntryHi, EntryLo0O, and EntryLol
registers. The even page entries in the TLB (such as PFNO) come from EntryLoO. Similarly, odd page entries come
from EntryLo1.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

4.9 TLB-Based Virtual Address Translation

4.9.3 TLB Initialization

In many processor implementations, software must initialize the TLB during the power-up process. In processors that
detect multiple TLB matches, and signal this through a machine-check assumption, software must be able to handle
such an exception or use a TLB initialization algorithm that minimizes, or eliminates, the possibility of the exception.

In Release 1 of the Architecture, processor implementations can detect and report multiple TLB matches either on a
TLB write (TLBWI or TLBWR instructions) or a TLB read (TLB access or TLBR or TLBP instructions). In Release
2 (and subsequent releases) of the Architecture, processor implementations are limited to reporting multiple TLB
matches only on a TLB write; this is also true of most implementations of Release 1 of the Architecture.

The following code example shows a TLB initialization routine that, on implementations of Release 2 (and subse-
quent releases) of the Architecture, eliminates the possibility of reporting a machine check during TLB initialization.
This example has an equivalent effect on implementations of Release 1 of the Architecture that report multiple TLB
exceptions only on a TLB write and minimizes the probability of such an exception on other implementations. The
following example is for processors that do not implement TLB invalidate instructions, that is: Config4,z=0x0.

/*
InitTLB

Initialize the TLB to a power-up state, guaranteeing that all entries
are unique and invalid.

Arguments:
ao

Maximum TLB index (from MMUSize field of CO_Configl)

Returns:
No value

Restrictions:
This routine must be called in unmapped space

Algorithm:
va = kseg0 base;
for (entry = max TLB_index; entry »= 0, entry--) ({
while (TLB_Probe Hit (va)) {
va += Page Size;
}

TLB Write (entry, va, 0, 0, 0);

E R I R N TR R N N N SN S N N . N T N N I SN N N N N

Notes:

- The Hazard macros used in the code below expand to the appropriate
number of SSNOPs in an implementation of Release 1 of the
Architecture, and to an ehb in an implementation of Release 2 of
the Architecture. See , “CPO Hazards,” on page 105 for
more additional information.

/
InitTLB:

/*
* Clear PageMask, EntryLoO and EntryLol so that valid bits are off, PFN values
* are zero, and the default page size is used.
*/
mtcO0 zero, CO_EntryLoO /* Clear out PFN and valid bits */
mtcO zero, CO_EntryLol

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 33

Virtual Memory

34

mtcO zero, CO_PageMask /* Clear out mask register *
/* Start with the base address of kseg0 for the VA part of the TLB */
la t0, A KOBASE /* A KOBASE == 0x8000.0000 */

/*

* Write the VA candidate to EntryHi and probe the TLB to see if if is
* already there. If it is, a write to the TLB may cause a machine

* check, so just increment the VA candidate by one page and try again.

*/

10:
mtcO t0, CO_EntryHi /* Write VA candidate */
TLBP Write Hazard() /* Clear EntryHi hazard (ssnop/ehb in R1/2) */
tlbp /* Probe the TLB to check for a match */
TLBP_Read Hazard() /* Clear Index hazard (ssnop/ehb in R1/2) */
mfco tl, CO_Index /* Read back flag to check for match */
bgez tl, 10b /* Branch if about to duplicate an entry */
addiu tO0, (1<<S_EntryHiVPN2) /* Add 1 to VPN index in va */

/*

* A write of the VPN candidate will be unique, so write this entry
* into the next index, decrement the index, and continue until the
* index goes negative (thereby writing all TLB entries)

*/
mtco a0, CO0_Index /* Use this as next TLB index */
TLBW Write Hazard() /* Clear Index hazard (ssnop/ehb in R1/2) */
tlbwi /* Write the TLB entry */
bne a0, zero, 10b /* Branch if more TLB entries to do */
addiu a0, -1 /* Decrement the TLB index
/*

* Clear Index and EntryHi simply to leave the state constant for all
* returns
*/

mtcOo zero, CO_Index

mtcO zero, CO_EntryHi

jr ra /* Return to caller */

nop

The V(alid) bit within the TLB entry indicates if the Page Table Entry held in the TLB entry is valid. This Valid bit
does not indicate if the TLB entry has been initialized.

The above initialization routine relies on using unmapped addresses to be written to the VPN2 field of the TLB entry
to create entries that never match on mapped addresses. When Segmentation Control is implemented (Config35:=1),
the virtual address map can be programmed to not have any unmapped address regions. For this reason, the above
routine cannot be used when Segmentation Control is implemented. Instead, use the TLB invalidate feature. The TLB
invalidate feature is discussed in the next paragraph.

Release 3 introduces another optional valid bit that denotes whether the virtual address (the VPN2 field) of the TLB
entry has been initialized or not. If the VPN2 field is marked as invalid, the entry is ignored on address match for
memory accesses. This additional valid bit is visible through the EHINV field of the EntryHi register. If this bit is
implemented (indicated by Config4,g), there are three ways to initialize a TLB entry: the TLBINV, TLBINVF, and
TLBWI instructions. This feature is required if Segmentation Control is implemented and is required for FTLB/
VTLB MMUs; otherwise, it is optional.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

4.9 TLB-Based Virtual Address Translation

For Release 3 processors that implement TLB invalidate instructions, the code to initialize the TLB is much simpler:

just write each TLB entry with the EntryHig;ny bit set.
/*
* InitTLB

Initialize the TLB to a power-up state,
are unique and invalid.

Arguments:
a0

Maximum TLB index (from MMUSize field of CO_Configl)

Returns:
No value

Restrictions:

This routine must be called in unmapped space
Algorithm:

Write Each TLB entry with EntryHi.EHINV=1

Notes:

number of SSNOPs in an implementation of Release 1 of the
Architecture,
the Architecture. See “CPO Hazards,” on page 105 for
more additional information.

R S T N . R S S T N R .

InitTLB:

/*
* Clear PageMask, EntryLo0O and EntryLol so that valid bits are off,
* are zero, and the default page size is used.

guaranteeing that all entries

- The Hazard macros used in the code below expand to the appropriate

and to an ehb in an implementation of Release 2 of

PFN values

*/
mtco zero, CO_EntryLoO /* Clear out PFN and valid bits */
mtcOo zero, CO_EntryLol
mtco zero, CO_PageMask /* Clear out mask register */
ori t0, zero, 0x400
mtc0 t0, CO_EntryHi /* Set EHINV bit, Clear VPN2 field */

10:
mtco a0, CO_Index /* Use this as next TLB index */
TLBW Write Hazard() /* Clear Index hazard (ssnop/ehb in R1/2) */
tlbwi /* Write the TLB entry */
bne a0, zero, 10b /* Branch if more TLB entries to do */
addiu a0, -1 /* Decrement the TLB index

/*

* Clear Index and EntryHi simply to leave the state constant for all

* returns

*/
mtcO zero, CO_Index
mtcO zero, CO_EntryHi
jr ra /* Return to caller */
nop

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 35

Virtual Memory

36

4.9.4 Address Translation

Release 2 of the Architecture introduced support for 1 kB pages. For clarity in the discussion below, take the follow-
ing terms in the general sense to include the new Release 2 features:

Term Used Below Release 2 Substitution Comment

VPN2 VPN2 || VPN2X Release 2 (and subsequent releases) implementa-
tions that support 1 kB pages concatenate the
VPN2 and VPN2X fields to form the virtual page
number for a 1 kB page.

Mask Mask || MaskX Release 2 (and subsequent releases) implementa-
tions that support 1 kB pages concatenate the
Mask and MaskX fields to form the don’t care
mask for 1 kB pages.

When an address translation is requested, the virtual page number and the current process ASID are presented to the
TLB. All entries are checked simultaneously for a match, which occurs when all of the following conditions are true:

» The current process ASID (as obtained from the EntryHi register) matches the ASID field in the TLB entry, or the
G bit is set in the TLB entry.

* The appropriate bits of the virtual page number match the corresponding bits of the VPN2 field stored within the
TLB entry. The “appropriate” number of bits is determined by the Mask fields in each entry by ignoring each bit
in the virtual page number and the TLB VPN2 field corresponding to those bits that are set in the Mask fields.
This lets each entry of the TLB support a different page size, as determined by the PageMask register at the time
that the TLB entry was written. If the recommended PageMask register is not implemented, the TLB operation is
as if the PageMask register had been written with the encoding for a 4 kB page.

If a TLB entry matches the address and ASID presented, the corresponding PFN, C, V, and D bits (and optionally RI
and XI bits) are read from the translation section of the TLB entry. Which of the two PFN entries is read is a function
of the virtual address bit immediately to the right of the section masked with the Mask entry.

The valid and dirty bits (and optionally Rl and XI bits) determine the final success of the translation. If the valid bit is
off, the entry is not valid, and a TLB Invalid exception is raised. If the dirty bit is off and the reference was a store, a
TLB Modified exception is raised. If there is an address match with a valid entry and no dirty exception, the PFN and
the cache coherency bits are appended to the offset-within-page bits of the address to form the final physical address
with attributes. If the RI bit is implemented and is set, and the reference was a load, a TLB Invalid (or TLBRI) excep-
tion is raised. If the XI bit is implemented and is set, and the reference was an instruction fetch, a TLB invalid (or
TLBXI) exception is raised.

For clarity, the TLB lookup processes have been separated into two sets of pseudo code:

1. One used by an implementation of Release 1 of the Architecture, or an implementation of Release 2 (and subse-
guent releases) of the Architecture that does not include 1 kB page support (as denoted by Config3gp). This
instance is called the “4 kB TLB Lookup”.

2. One used by an implementation of Release 2 (and subsequent releases) of the Architecture that includes 1 kB
page support. This instance is called the “1 kB TLB Lookup”.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

The 4 kB TLB Lookup pseudo code is:

found « 0

for i in 0...TLBEntries-1
if ((TLB[ilypyy, and not

(TLB[ilyagk)) = (vas; 13 and not
(TLB[i]lg or (TLB[ilagrp = EntryHipgrp)) then

4.9 TLB-Based Virtual Address Translation

(TLB[1]magk)))

Vx !

and

to

EvenOddBit selects between even and odd halves of the TLB as a function of
the page size in the matching TLB entry. Not all page sizes need
be implemented on all processors, so the case below uses an
denote don’t-care cases. The actual implementation would select
the even-odd bit in a way that is compatible with the page sizes
actually implemented.
case TLBI[i]yagk
0b0000 0000 0000 0000: EvenOddBit <« 12 /* 4KB page */
0b0000 0000 0000 0011: EvenOddBit <« 14 /* 16KB page */
0b0000 0000 0000 1llxx: EvenOddBit <« 16 /* 64KB page */
0b0000 0000 0011 xxxx: EvenOddBit <« 18 /* 256KB page */
0b0000 0000 11lxx xxxXx: EvenOddBit <« 20 /* 1MB page */
0b0000 0011 xxxx xxxx: EvenOddBit <« 22 /* 4MB page */
0b0000 1lxx xXxXX XxXxx: EvenOddBit <« 24 /* 16MB page */
0b0011 xXxXXX XXXX xxxx: EvenOddBit <« 26 /* 64MB page */
0bl1lxX XXXX XXXX XxxX: EvenOddBit <« 28 /* 256MB page */
otherwise: UNDEFINED
endcase
if Vagyenoaasit = 0 then
pfn < TLBI[i]ppyo
Vv « TLBI[ilyg
c < TLBI[ilcg
d < TLBI[ilpg
if (Config3gzyy or Config3gy) then
ri « TLBI[ilgig
x1i <« TLBI[ilg7g
endif
else
pfn <« TLBI[i]ppy:
v ¢« TLBI[ilyg
c « TLB[i]l
d « TLB[ilp;
if (Config3gyy or Config3gy) then
ri < TLBI[ilgqy
xil <« TLBI[ilyrq
endif
endif
if v = 0 then
SignalException (TLBInvalid, reftype)
endif
if (Config3gyy or Config3gy) then
if (ri = 1) and (reftype = load) then
if (xi = 0) and (IsPCRelativeLoad (PC))
PC relative loads are allowed where execute is allowed
else
if (PageGrainige: = 0)
SignalException (TLBInvalid, reftype)
else
SignalException (TLBRI, reftype)
endif
endif
endif

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

37

Virtual Memory

if (xi = 1) and (reftype = fetch) then

if (PageGrainige: = 0)
SignalException (TLBInvalid, reftype)
else
SignalException (TLBXI, reftype)
endif
endif

endif

if (d = 0) and (reftype = store) then
SignalException (TLBModified)

endif

pPfnpaprrg 1-12..0 corresponds to Papaprrs-1..12

pa < DPfnpaprrs-1-12..Evenoddpit-12 || V@Evenoddmit-1..0
found « 1

break
endif
endfor
if found = 0 then
SignalException (TLBMiss, reftype)
endif

The 1 kB TLB Lookup pseudo code is:

found « 0
for i in 0...TLBEntries-1

if ((TLB[ilypyy and not (TLBI[ilysgk)) = (vas;. 13 and not (TLB[i]ysek))) and

(TLB[i]lg or (TLBI[ilagrp = EntryHigrp)) then

EvenOddBit selects between even and odd halves of the TLB as a function of
the page size in the matching TLB entry. Not all pages sizes need
be implemented on all processors, so the case below uses an ‘x’ to
denote don'’t-care cases. The actual implementation would select
the even-odd bit in a way that is compatible with the page sizes
actually implemented.
case TLBI[i]yagk

H o H H HF H*

0b0000 0000 0000 0000 00: EvenOddBit « 10 /* 1KB page */
0b0000 0000 0000 0000 11: EvenOddBit <« 12 /* 4KB page */
0b0000 0000 0000 0011 xx: EvenOddBit <« 14 /* 16KB page */
0b0000 0000 0000 1llxx xx: EvenOddBit <« 16 /* 64KB page */
0b0000 0000 0011 xxxx xX: EvenOddBit <« 18 /* 256KB page */
0b0000 0000 1llxx xxxXx xX: EvenOddBit <« 20 /* 1MB page */
0b0000 0011 XXXX XXXX XxX: EvenOddBit <« 22 /* 4MB page */
0b0000 11xXX XXXX XXXX XxX: EvenOddBit <« 24 /* 16MB page */
0b0011 XXXX XXXX XXXX XX: EvenOddBit <« 26 /* 64MB page */
0b1llxX XXXX XXXX XXXX xX: EvenOddBit <« 28 /* 256MB page */
otherwise: UNDEFINED

endcase

if Vagyenoddsit = 0 then

pfn <« TLBI[i]ppyo

v <« TLB[ilyg

c <« TLBI[il¢g

d < TLBI[ilpg

if (Config3gyy or Config3gy) then
ri <« TLB[ilg
xi <« TLB[ilxg

endif

else
pfn <« TLBI[i]pmy
vV « TLBIilyp

38 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

4.9 TLB-Based Virtual Address Translation

c « TLB[ilg
d <« TLB[ilp;
if (Config3gyy or Config3gy) then
ri < TLB[ilgry
xi <« TLB[ilgyq
endif
endif
if v = 0 then
SignalException (TLBInvalid, reftype)
endif
if (Config3gy; or Config3gy) then
if (ri = 1) and (reftype = load) then
if (xi = 0) and (IsPCRelativeLoad (PC))
PC relative loads are allowed where execute is allowed

else
if (PageGrainige = 0)
SignalException (TLBInvalid, reftype)
else
SignalException (TLBRI, reftype)
endif
endif
endif

if (xi = 1) and (reftype = fetch) then
if (PageGrainige = 0)
SignalException (TLBInvalid, reftype)
else
SignalException (TLBXI, reftype)
endif
endif
endif
if (d = 0) and (reftype = store) then
SignalException (TLBModified)
endif
pPfnpagrrs-1-10..0 corresponds toO Papaprrs-1..10

pa < PfNpaprrs-1-10..Evenoddrit-10 || Va@Evenoddmit-1..o0
found « 1

break
endif
endfor
if found = 0 then
SignalException (TLBMiss, reftype)
endif

Table 4.4 demonstrates how the physical address is generated as a function of the page size of the TLB entry that
matches the virtual address. The “Even/Odd Select” column of Table 4.4 indicates which virtual address bit is used to
select between the even (EntryLo0) or odd (EntryLol) entry in the matching TLB entry. The “PApapiTs-1).0 Gener-

ated From” columns specify how the physical address is generated from the selected PFN and the offset-in-page bits
in the virtual address. In this column, PFN is the physical page number as loaded into the TLB from the EntryLoO or
EntryLo1l registers, and has one of two bit ranges:

PFN Range PA Range Comment

PFN(paBITS-1)-12 0 PApARITS-1 12 Release 1 implementation, or Release 2 (and sub-
sequent releases) implementation without support
for 1 kB pages

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 39

Virtual Memory

PFN Range PA Range Comment

Release 2 (and subsequent releases) implementa-
tion with support for 1 kB pages enabled

PEN(paBITS-1)-10 0 PAPABITS-1 10

Table 4.4 Physical Address Generation

PA(PABITS-1)..0 Generated From:
1 kB Page Support Unavailable
(Release 1) or
Even/Odd Disabled (Release 2 & Release 2 (and subsequent)
Page Size Select subsequent) with 1 kB Page Support Enabled
1kB VA1 Not Applicable PFN(pagITs-1)-10 0 Il VA9 o
4kB VA1, PFN(paBITs-1)-12 0 [VA11 0 PFN(paBITs-1)-10 2 I VA11 0
16 kB VAL, PFN(paBITs-1)-12 2 Il VA13 0 PFN(paBITS-1)-10 4 I VA13 0
64 kB VArg PEN(paBITS-1)-12 4 Il VAL5 0 PFN(paBITS-1)-10 6 I VA5 0
256 kB VA8 PFN(pagITs-1)-12 6 Il VA17 0 PFN(pagITs-1)-10 8 Il VA17 0
1MB VA PEN(paBITS-1)-12 8 1| VA19 0 PFN(paBITS-1)-10 10 Il VA19.0
4MB VA, PEN(pagITs-1)-12 10 Il VA21 0 PEN(pagITs-1)-10 12 1l VA21 0
16 MB VA, PFN(paBITS-1)-12 12 | VA23 o PFN(paBITS-1)-10 14 Il VA23 o
64 MB VA PEN(paBITS-1)-12 14 Il VA25 o PEN(pagITs-1)-10 16 || VA25 0
256 MB VA PFN(paBITS-1)-12 16 Il VA27 0 PFN(paBITS-1)-10 18 Il VA27 o

4.10 Segmentation Control

40

As an optional alternative to fixed memory segmentation, a programmable segmentation control feature has been
added to Release 3. This improves the flexibility of the MIPS32 virtual address space.

In the traditional MIPS32 virtual address memory map, the mappability and cacheability attributes of segments are
mostly fixed. For example, useg has its mappability attribute fixed while kseg0/1 have their cacheability and mappa-
bility attributes fixed. Segmentation Control replaces these fixed attributes with programmable controls for these
attributes.

The Segmentation Control system can be used to implement a fully translated flat address space, or used to alter the
relative size of cached and uncached windows into the physical address space.

The existence of the unmapped segments in the virtual address map prevents a MIPS CPU from being fully virtual-
ized. Another use of Segmentation Control is to remove the unmapped segments from the virtual address map. Future
support for CPU virtualization would require Segmentation Control.

With Segmentation Control, address translation begins by matching a virtual address to the region specified in a Seg-
ment Configuration. The virtual address space is therefore definable as the set of memory regions specified by Seg-
ment Configurations. The behavior and attributes of each region are also specified by Segment Configurations. Six
Segment Configurations are defined, fully mapping the virtual address space.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

If Segmentation Control is implemented, the Segment Configurations are always active. Coprocessor 0 registers

4.10 Segmentation Control

SegCtl0, SegCtl1, and SegCtl2 contain six Segment Configurations. Configs contains additional control and configu-

ration fields.

The attributes of a Segment Configuration are:

e Access permissions from user, kernel, and supervisor modes

» Enable mapping (address translation) using the MMU specified in Configyt

» Physical address when mapping is disabled

e Cache attribute when mapping is disabled

» Force to unmapped, uncached when Statusgg =1

Besides the segments controlled by SegCtl* registers, the reset and BEV exceptions may use another segment which

is active only in kernel mode. Please read Section 4.10.1 “Exception Behavior under Segmentation Control” for an

explanation on how exceptions interact with programmable segmentation.

On reset, Segment Configuration default is implementation specific. A configuration backward compatible with

MIPS32 legacy fixed segmentation is defined by Table 9.29

Segment configuration access control modes are specified in Table 9.28

Operation of MIPS32Segmentation Control is described below:

/* Inputs

vAddr -
pLevel -
TorD -

LorS -

Outputs
mapped -
pAddr -
CCA -

b T S S I R

/

subroutine SegmentLookup (vAddr,

Virtual Address
Privilege level - USER, SUPER, KERNEL

Access type -

INSTRUCTION or DATA

Access type - LOAD or STORE

segment is mapped

physical address
cache attribute

Exceptions: Address Error

Index <« vAddr[31:29]

pAddr <« vAddr

case Index

7:

H N W ooy

endcase

CFG
CFG
CFG
CFG
CFG
CFG
CFG
CFG

1D O A N A

SegCtlo0.
SegCtlo0.
SegCtll.
SegCtll.
SegCtl2.
SegCtl2.
SegCtl2.
SegCtl2.

(valid when unmapped)
(valid when unmapped)

pLevel, IorD, LorS)

CFGO
CFG1
CFG2
CFG3
CFG4
CFG4
CFG5
CFG5

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

41

Virtual Memory

AM < CFG.AM
EU < CFG.EU
PA < CFG.PA
C < CFG.C

checkAM (AM, pLevel, IorD, LorS)

Special case - Error-Unmapped region when ERL=1
if (EU = 1) and (Statusgg;,=1) then

CCA «— 2 # uncached

mapped <« 0 # unmapped
else

CCA «~ C

mapped < isMapped(AM, pLevel, IorD, LorS)
endif

Physical address for unmapped use
if (mapped = 0) then
in a large (1GB) segment, drop the low order bit.
if (Index < 4) then
PAddr [35:30] <« PA >> 1

else
PAddr [35:29] « PA
endif
else
(CCA,pAddr) <« TLBLookup (vAddr)
endif

return (mapped, pAddr, CCA)
endsub

Access mode check
subroutine checkAM(AM, pLevel, IorD, LorS)

case AM
UK: seg _err <« (pLevel != KERNEL)
MK : seg _err <« (pLevel != KERNEL)
MSK: seg _err <« (pLevel = USER)
MUSK: seg_err <« 0
MUSUK: seg_err <« 0
USK: seg err <« (pLevel = USER)
UUSK: seg err <« 0
default: seg err <« UNDEFINED

endcase

if (seg_err != 0) then
segmentError (IorD, LorS)

endif

endsub

subroutine isMapped(AM, pLevel, IorD, LorS)

case AM
UK: mapped <« 0
MK : mapped <« 1
MSK: mapped <« 1
MUSK: mapped <« 1
MUSUK : mapped < (pLevel != KERNEL)
USK: mapped < 0
UUSK: mapped <« 0

42 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

4.10 Segmentation Control

default: mapped <« UNDEFINED
endcase
return mapped
endsub
subroutine segmentError (IorD, LorS)
if (IorD = INSTRUCTION) then
reftype « FETCH
else
if (LorS = LOAD) then
reftype <« LOAD
else
reftype < STORE
endif
endif
SignalException (AddrError, reftype)
endsub

See Section 9.15 “SegCtl0 (CPO Register 5, Select 2)”.

The presence of this facility is indicated by the SC field in the Config3 register. See Section 9.48 “Configuration
Register 3 (CPO Register 16, Select 3)”.

Debug mode behavior is retained in dseg.
4.10.1 Exception Behavior under Segmentation Control

4.10.1.1 Terminology
For this section discussing exception behavior under Segmentation Control, these terms are used:
Legacy Memory map - A MIPS32 Virtual/Physical memory system as described by Section 4.3 on page 26.
Non-Reset Exceptions - exceptions which would use EBase for the vector location when Statusgg,=0
Overlay Segment - A memory segment with these properties:
» Totally managed by hardware, not software programmable.
» Intercepts memory requests before they are dealt with by the rest of the virtual memory system.
» Isactive only in specific execution modes.

A pre-existing example of an overlay segment is DSEG which is part of the EJTAG debug architecture and is only
active in DebugMode. and ECRpyqpegn=1

4.10.1.2 Reset and BEV Vector Base Addresses under Segmentation Control

In the legacy memory map, the Reset/BEV vector base is fixed at virtual address 0xBFC0.0000 and physical address
0x1FC0.0000.

In contrast, Segmentation Control does not define a fixed value for the Reset/BEV vector base virtual address. Instead
the virtual addresses and physical addresses for Reset/BEV vector base are considered implementation-specific. In

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 43

Virtual Memory

44

Segmentation Control, the physical address of Reset/BEV vector does not have to be derived from the virtual address
by dropping VA[31:29], other mappings are allowed.

Reset and BEV exceptions - Cacheability and Map-ability

In the legacy memory map, the memory accesses to the Reset/BEV vector region are within KSEG1, which ensures
the accesses to this region are always uncached and unmapped.

The architecture requires that the reset and BEV exceptions vector to a memory region which is uncached and
unmapped.

Solution 1 - Uncached and Unmapped Segment always available

This architecture requirement can be satisfied if the system can guarantee these conditions:
1. One of the segments always powers up as uncached and unmapped for kernel mode.
2. That segment is always kept as uncached and unmapped for kernel mode.

3. The reset and BEV vectors always reside in the above mentioned segment.

If these conditions are met, then no special support is needed for reset and BEV exceptions.

Solution 2 - Overlay Segments for Reset and BEV exceptions

Not all systems may want to maintain the conditions for Solution 1, since Segmentation Control allows for any of the
segments to be programmed with any valid cache-ability and mappability attribute.

To meet the architecture requirement without reserving one segment as uncached and unmapped, overlay segments
are introduced in Segmentation Control for reset and exceptions while in kernel mode.

These overlay segments allow the reset/BEV regions to be accessed without accessing the caches and TLB during
reset and BEV exceptions. That is, when a reset or BEV exception is taken, the overlay segment handles the memory
requests for that vector region and the overlay segment attributes over-rides the cacheability and mappability attri-
butes of the regular segment control register.

If Solution 1 is not implemented, the CPU must implement at least one overlay segment for the Reset/BEV vector
location. If there is only one overlay segment for the Reset/BEV vector location, it must deal with memory requests
as uncached and unmapped.

Solution 2 - Requirements for Overlay Segments

The starting virtual address, starting physical address and size of this overlay segment are implementation-specific.
The overlay segments must be naturally aligned both in the virtual address space as well as the physical address
space. The physical address of the overlay segment does not have to be derived from the virtual address of the overlay
by dropping VA[31:29], other mappings are allowed.

The overlay segment must be at least 2 kB in size. Implementations would likely choose much larger sizes for the
overlay segment to access non-volatile memory and potentially other 10 devices.

The overlay segment must be accessible while in kernel-mode (Statusgg =1 or Statusgg, =1 or Statusyg,=kernel).

Solution 2 - Option A - Two Overlay Segments for KSEGO0/1 legacy behavior

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

4.10 Segmentation Control

An implementation may optionally support a second overlay segment for the Reset/BEV vector physical address
region. The purpose of two overlay segments is to mimic the cached and uncached views made available through
KSEGO0 and KSEGL1 segments in the legacy memory system. After reset, one overlay segment would be given
uncached and unmapped access to these vectors while the other overlay segment would give cached and unmapped
access to the vectors.

The two overlay segments must meet these requirements:
e The two overlay segments are of the same size.
« The two overlay segments cannot overlap in the virtual address space.
» The two overlay segments must point to the same physical address space.
» Both overlay segments must treat memory accesses as unmapped.

» The overlay segment in which the BEV/Reset vector location resides must come out of reset treating mem-
ory accesses as uncached.

» The cache coherency of each overlay segment can be fixed by hardware or programmable through the leg-
acy register fields in Config (see next section).

To mimic the legacy KSEGO/KSEGL1 behaviors, one overlay segment would be located within the addresses which
belong to SEGCTL1gq; (virtual addresses equivalent to legacy KSEGO segment) and the other overlay segment

would be located within the addresses which belong to SEGCTL1rg,(Virtual addresses equivalent to legacy KSEG1
segment).

Solution 2 - Option B - Overly Segments using legacy Coherency Control Register Fields

Segmentation Control allows the legacy Configyg, Configk,s and Configy, fields to control cacheability of their
respective non-legacy segments coming out of reset. This is in effect when Configsx =0. If the overlay segment

resides in one of these segments, it is optionally allowed for the overlay segment to get its cacheability attribute from
the appropriate field (K0, K23, KU) within the Config register. If the BEV/Reset vector resides in a overlay segment
which is controlled by that Config register field, then that register field must be set by hardware to uncached CCA
value upon reset.

The use of these register fields allows the boot firmware to be run cached after the caches have been initialized. Code
should not be executing within the overlay segment while the cache coherency of the overlay segment would be
changing through writing the Config register field.

For example, if the Reset/BEV overlay segments resides within the segment controlled by SEGCTL1¢gg3 (virtual
addresses equivalent to legacy KSEGO segment) and Configk, is enabled coming out of reset, Configyxg must be reset
to the uncached CCA value. When Configk, is modified, code execution should not be within the SEGCTL1¢gg3 Seg-
ment.

NOTE: This use of these legacy coherency fields within the Config register is only meant for systems using legacy

virtual address maps. For systems using non-legacy virtual address maps, the recommendation is to disable the legacy
coherency fields within the Config register.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 45

Virtual Memory

46

Solution 1 or Solution 2 - Option C - Relocation of non-Reset BEV exception vectors after Reset
There might be transitional devices in which the physical address map was inherited from legacy systems, but the vir-
tual address map to be used is set up by programming the Segmentation Control registers. For such transitional
devices, it might be useful to relocate the non-Reset BEV exceptions to an address more appropriate for the non-leg-
acy virtual address map. Such capability is allowed by Segmentation Control.

The Config5k bit can be used for this purpose. If Configy =1, it is allowed to relocate the BEV vector base address
for non-reset exceptions.

This feature would be used in this fashion:
1. Device boots up using legacy reset location (e.g. virtual address 0OxBFC0.0000)
2. Segmentation Registers are programmed to new non-legacy address map.

3. BEV vector base moved to new location using this capability. Non-Reset BEV exceptions would now use this
new location.

For the rest of this section, the following names are used:

o EffectiveBEV_VA - the virtual address of the reset/BEV vector

4.10.1.3 BEV Exceptions under Segmentation Control

As compared to a legacy system, the vector offsets are unchanged while the source of the vector base address is
changed.

For Reset/Soft-Reset/NMI, the reset vector is located at virtual address (EffectiveBEV_VA).

If Statusgg,=1 during other exceptions, the vectors are located at virtual address (EffectiveBEV_VA + 0x200 + off-
set).

Requirements for Option 2 - Overlay Segments

If there is only one overlay segment for BEV/Reset, then the overlay segment deals with these memory requests as
unmapped and uncached. The overlay segment is active in Kernel mode (Debugpy,=0 and (Statuskg=Kernel or

Statusgg, =1 or Statusgy, =1)).

If implemented, the second overlay segment is active at the same time as the first BEV/Reset overlay segment. If
there are two overlay segments, the one which contains the reset/BEV vector must use uncached and unmapped
behavior coming out of reset. Both overlay segments must use unmapped coherency.

If Config5k =0 and the overlay resides in a segment that is controlled by one of the Configyg, Configk,3 and Configy

register fields, it is allowed for the appropriate Config register field to control the cacheability attribute of the overlay
segment.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

4.10 Segmentation Control

4.10.1.4 Debug Exceptions under Segmentation Control

ECRpropTrap=0

As compared to a legacy system, the vector offset is unchanged while the source of the vector base address is
changed.

The debug exception vector is located at (EffectiveBEV_VA + 0x480).
Requirements for Option 2 - Overlay Segments

The sole debug overlay segment is active when ECRpgheen=1 and Debugpy=1. A second overlay segment is
not allowed for Debug exceptions.

The overlay segment deals with these memory requests as unmapped.

If Config5x =0 and the overlay resides in a segment that is controlled by one of the Configyq, Configk,3 and
Configyy register fields, it is allowed for the appropriate Config register field to control the cacheability attribute
of the overlay segment. Otherwise, the overlay segment deals with these memory requests as uncached.

ECRpyobTrap=1 and ECRg,=1

The debug exception vector is located at virtual address 0xFF20.0200. This virtual address is the same as in the
legacy system.

The memory requests to that region are handled by the Debug overlay segment, which covers the Virtual address
region of 0xFF20.0000 to OXFF3F.FFFF. This overlay segment is active when ECRpygpetrap=1 and ECRg,=1 and

Debugpy=1. This DSEG overlay segment takes precedence over the other overlay segments.
4.10.1.5 EBase Exceptions under Segmentation Control

If Statusgg,=0, then exception vectors are located at virtual address (Ebase[31:12] || 0x000 + offset). These virtual
addresses are the same as those in the legacy system (except now the upper 2 bits of the Ebase register are now also

writable.
The memory requests to that region are handled by the appropriate programmable segment.

Extended Exception Vector Placement (EBase Register)

The EBase register is modified to allow exception vectors to be located anywhere in the address space. See Figure
9.43.

4.10.1.6 Cache Error Exceptions under Segmentation Control
The Cache Error Exception operates as defined in the base architecture, with the following additions.
Each Segment Configuration contains an EU bit. When EU=1, the segment becomes uncached and unmapped when
Statusgg, =1. On reset, this bit is set for segments covering the range 0x00000000 to 0x7FFFFFFF, to match kuseg

behavior.

On a Cache Error exception, the legacy behavior requires that bit 29 of the exception vector is set true when
Statusggy,=0 and the EBase register is present. This places the exception vector in the uncached kseg1l region.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 a7

Virtual Memory

Setting Config5cy=1 allows this behavior to be overridden - the exception vector is taken directly from the EBase
register. This feature should be used alongside Segment Configuration EU fields to ensure that code is executed from
an uncached region in the event of a Cache Error exception.

The exception vector is computed as follows:

if Statusggy = 1 then
PC <« O0xBFCO 0200 + 0x100
else
if ArchitectureRevision > 2 then
if (Config3ge=1) and (Config5.y=1) then
/* Use full value of EBase */
PC « EBase;; 15 || 0x100
else
/* EBase;; ,9 ignored, resulting PC always in ksegl */
PC < 101, ||EBaseyg 1, || 0x100
endif
else
PC « 0xA000 0000 + Ox100
endif
endif

4.11 Enhanced Virtual Addressing

The addition of Segmentation Control and kernel load/store instructions to the MIPS architecture provide the ability
to configure virtual address ranges that exceed prior fixed segmentation limits and to access user address space from
kernel mode.

The Enhanced Virtual Addressing (EVA) feature is a configuration of Segmentation Control (refer to Section

4.10 “Segmentation Control”) and a set of kernel mode load/store instructions allowing direct access to user memory
from kernel mode. In EVA, Segmentation Control is programmed to define two address ranges, a 3 GB range with
mapped-user, mapped-supervisor and unmapped-kernel access modes and a 1 GB address range with mapped-kernel
access mode.

4.11.1 EVA Segmentation Control Configuration

EVA is a 2 section partitioning of the 32-bit virtual address space.
* 3.0GB Mapped User, Mapped Supervisor, Unmapped Kernel
* 1.0GB Mapped Kernel

The legacy fixed segmentation of the 32-bit virtual address space limited user addressable memory to 2.0GB as
shown in Figure 4.5.

48 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

4.11 Enhanced Virtual Addressing

Figure 4.5 Legacy addressability

User Addressable Kernel Addressable
40GB
kseg3 - mapped
35GB
kseg2 - mapped
3.0GB
ksegl - uncached, unmapped
25GB
kseg0 - cached, unmapped
20GB
useg - mapped kuseg - mapped
0.0GB

Where the EVA programmed segmentation of the 32-bit virtual address space extends user addressable memory to
3.0GB as shown in Figure 4.6.

Figure 4.6 EVA addressability

User Addressable Kernel Addressable Kernel Addressable
4.0 GB 4.0GB
ev_kmseg - Mapped
3.0 GB 3.0GB
same TLB mappings ev_kuseg - Mapped, ev_kseg - UnMapped,
ev_useg - Mapped - ;:c‘gzssed using :ec;:::id using
load/store load/store
instructions instructions
00G 0.0GB

Figure 4.7 shows how the Segmentation Control CFGs remap the legacy fixed partitioning.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

49

Virtual Memory

Figure 4.7 Legacy to EVA address configuration

Legacy 32-bit statically partitioned EVA Segmentation Control configuration
Virtual Address Space

4.0GB 4.0GB 1,

kseg3 :9,% CFGO
3.5GB 35GB ‘90’,\,

€,

ksseg Yy CFG1
3.0GB 3.0GB

ksegl CFG2
25GB |:> 25GB 4y

kseg0 “o,, CFG3
2.0GB 20GB ¢ —¢r

75 FG4
0'4, So CFG
useg 1.0GB /

CFG5

0.0GB 0.0GB

To support the EVA configuration, each Segment Configuration field (CFG (defined in “Segmentation Control” on
page 40)) must be initialized to define the overall memory map to support a 3GB (mapped user/supervisor, unmapped
kernel) memory segment.

To configure Segmentation Control to implement EVA, the AM, PA, C and EU fields of each CFG are programmed as
follows in the following table.

Table 4.5 Segment Configuration for 3GB EVA

CFG Description AM PA C EU
0 1GB Mapped Ker- MK 0x007 3 0
1 nel MK 0x006 3 0
2 3GB Mapped User, MUSUK 0x005 3 1
3 Supervisor, MUSUK 0004 3 1
Unmapped Kernel
4 Region MUSUK 0x002 3 1
5 MUSUK 0x000 3 1

4.11.2 Enhanced Virtual Address (EVA) Instructions

EVA defines a number of new load/store instructions that are used to allow the kernel to access user virtual address
space while executing in kernel mode

For example, the kernel can copy data from user address space to kernel physical address space by using these

instructions with user virtual addresses. Kernel system-calls from user space can be conveniently changed by replac-
ing normal load/store instructions with these instructions. Switching modes (kernel to user) is an alternative but this is

50 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

4.11 Enhanced Virtual Addressing

an issue if the same virtual address is being simultaneously used by the kernel. Further, there is a performance penalty

in context-switching.

Limitations on use of the EVA load/store instructions are as follows:

e Only usable from Kernel execution mode.

e Only usable on a memory segment configured with a User access mode (AM).

e The address translation selected will be mapped if possible, else unmapped. More simply, a TLB based

address translation is preferred.

Refer to Volume 11 of the MIPS Architectural Reference manual for further information on the EVVA Load/Store

instructions. The availability of these instructions are indicated by the Config5gy register field.

Table 4.6 lists kernel load/store instructions.

Table 4.6 EVA Load/Store Instructions

Instruction Mnemonic

Instruction Name

CACHEE

Perform Cache Operation EVA

LBE

Load Byte EVA

LBUE

Load Byte Unsigned EVA

LHE

Load Halfword EVA

LHUE

Load Halfword Unsigned EVA

LLE

Load-Linked EVA

LWE

Load Word EVA

LWLE

Load Word Left EVA

LWRE

Load Word Right EVA

PREFE

Prefetch EVA

SBE

Store Byte EVA

SCE

Store Conditional EVA

SHE

Store Halfword EVA

SWE

Store Word EVA

SWLE

Store Word Left EVA

SWRE

Store Word Right EVA

Table 4.7 lists the type of address translation (mapped/unmapped) performed by EVA load/store instructions accord-

ing to Segmentation Control access mode (AM) and processor execution mode (defined by StatuskSU = Kernel,

Supervisor or User). A Coprocessor 0 unusable exception is thrown if the instruction is executed in other than Kernel
mode. An Address Error exception is thrown if the access mode is not allowed.

Table 4.7 Address translation behavior for EVA load/store instructions

AM- Access Mode Kernel Supervisor User
UK Address Error Excpt COPO0 Unusable Excpt COPO Unusable Excpt
MK Address Error Excpt COPO Unusable Excpt COPO Unusable Excpt

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

51

Virtual Memory

Table 4.7 Address translation behavior for EVA load/store instructions

AM- Access Mode Kernel Supervisor User
MSK Address Error Excpt COPO Unusable Excpt COPO Unusable Excpt
MUSK mapped COPO Unusable Excpt COPO Unusable Excpt
MUSUK mapped COPO0 Unusable Excpt COPO Unusable Excpt
USK Address Error Excpt COPO Unusable Excpt COPO Unusable Excpt
UUSK unmapped COPO Unusable Excpt COPO Unusable Excpt

Table 4.8 lists the type of address translation (mapped/unmapped) performed by ordinary load/store instructions
according to Segmentation Control access mode (AM) and processor execution mode (defined by StatusKSU = Ker-
nel, Supervisor or User). An Address Error exception is thrown if the access mode is not allowed in the current exe-
cution mode.

Table 4.8 Address translation behavior for ordinary load/store instructions

AM - Access Mode Kernel Supervisor User
UK unmapped Address Error Excpt Address Error Excpt
MK mapped Address Error Excpt Address Error Excpt
MSK mapped mapped Address Error Excpt
MUSK mapped mapped mapped
MUSUK unmapped mapped mapped
USK unmapped unmapped Address Error Excpt
UUSK unmapped unmapped unmapped

4.12 Hardware Page Table Walker

Page Table Walking is the process by which a Page Table Entry (PTE) is located in memory. Hardware acceleration
for page table walking is an optional feature in the architecture. The mechanism can be used to replace the software
handler for the TLB Refill condition. This hardware mechanism is only used for this fast-path handler. This hardware
mechanism is not used for the TLB Invalid handler (or slow-path handler).

The MIPS Privileged Resource Architecture (PRA) includes mechanisms intended for rapid handling of TLB excep-
tions in software. Following a TLB-related exception, the Context register can provide the address of a TLB entry -
calculated from the faulting virtual address and a Page Table Base address. This mechanism is effective when the OS
page table is single level, the TLB entry is 16 bytes in size, and a 4k physical page size is used. Unfortunately, modern
operating systems use multi-level page tables, use different page sizes, and store TLB entries in 8, 16 byte and 32-
byte forms.

The existence of the Hardware Page Walking feature is denoted when Config3py,=1.

The Hardware Page Table Walker feature additionally includes enhancements to page table entry format, as follows:

1. Huge Page support in directories (non-leaf levels of the Page Table hierarchy), and Base Page Size for the (Page
Table Entry (PTE) levels (leaf levels of the Page Table hierarchy). This is the baseline definition. Inferred size

PTEs are supported at non-leaf levels.

2. Avreserved field has been added to PTEs. This field is for future extensions.

52 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

4.12 Hardware Page Table Walker

A Huge Page may logically be specified in two ways:

1. A Huge Page is a region composed of two power-of-4 pages which have adjacent virtual and physical addresses.
Since the even page and the odd page are derived from a single directory entry, they will both inherit the same
attributes and all but one of the address bits from the single directory entry. The memory region is divided evenly
between the even page and the odd page. The physical address held within the directory entry is aligned to 2 x
size of the page (which is a power of 4). This is distinct from EntryLoO and EntryLol pairs in the Page Table
which are only guaranteed to be adjacent in virtual, but not physical address. They may also have differing page
attributes. This method is known as Adjacent Pages since the EntryLo0/1 physical addresses are both derived
from one entry and have to be adjacent in the physical address space. This is the default method that is supported
by this specification. If an implementation chooses to support Huge Pages in the directory levels, then the Adja-
cent Page method must be implemented.

2. Where a Huge Page is itself a power-of-4 page, it is handled in exactly the same manner as a Base Page in the
Page Table. For this case, one directory entry is used for the even page and the adjacent directory entry is used
for the odd page. The physical address held within the directory entry is aligned to the size of the page (which is
a power of 4). This method is known as Dual Pages since each PFN does not have to be adjacent to each other. If
an implementation chooses to support Huge Pages in the directory levels, then the Dual Page method is an addi-
tional option.

Examples of power-of-4 regions (start with 1 kB and multiply by 4 a number of times): 256 MB, 1 MB, 4 MB,
16 MB, 64 MB, 256 MB, 1GB.

Examples of 2x power-of-4 regions (start with 1 kB and multiply by 4 a number of times; then multiple by 2)
512 MB, 2 MB, 8 MB, 32 MB, 128 MB, 512 MB, 2GB.

Huge Page Support is optional and is indicated by PWCtlyy,4epq=1. If an Implementation supports Huge Pages in the
directory levels, it must support the Adjacent Page method. The Dual Page method is optional if Huge Pages are sup-
ported. The implementation of Dual Page method is indicated by PWCtlpp=1

4.12.1 Multi-Level Page Table support

The hardware page table walking system specifies a mechanism for refilling the TLB, independent of the Context
register. Four additional coprocessor 0 registers are added. The PWBase register specifies the per-VPE page table
base. The PWField and PWSize registers specify address generation for up to four levels of page table. The PWCtl
register controls the behavior of the Page Table Walker. These registers also configure the separation between Page
Table Entries (PTEs) in memory and post-load shifting of PTEs.

A multi-level page table system forms a tree structure - the lowest (leaf) elements of which are Page Tables. A Page
Table is an array of Page Table Entries. Levels above the Page Tables are known as Directories. A Directory consists
of an array of pointers. Each pointer in a Directory is either to another Directory or to a Page Table.

The next figure shows an example of a multi-level page table structure.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 53

Virtual Memory

Figure 4.8 Page Table Walk Process

CPU ID Faulting address, excluding ASID
Gindex Uindex | Mindex | PTindex
I I | !
¥ : . : .
1 1 I [
PWBase ! ! ! !
| 1 | I
I 1 ! :
|
A [} | |
|
I
I
1
I
Page ! Page Table Entry (pair)
Global
Directory
(PGD) Page
Upper
Directory Page
(PUD) Middle
Directory Page
(PMD) Table
(PT)

Each executing process is typically associated with a separate page table base pointer (PWBase). In a single-threaded.
uniprocessor system, only one process is active at once. Where multiple CPUs or VPEs are in use, multiple processes
execute simultaneously - thus one page table base pointer is required per CPU or VPE. The term ‘page table base’
refers to the start of a Page Global Directory.

A typical page table structure consists of:

* A per CPU/VPE PWBase register, containing the base of the Page Global Directory.

* Page Global Directories, indexed by upper bits from the faulting address, containing pointers to Page Upper
Directories.

» Page Upper Directories, indexed by bits from the faulting address, containing pointers to Page Middle Directo-
ries.

* Page Middle Directories, indexed by bits from the faulting address, containing pointers to Page Tables.

» Page Tables, indexed by bits from the faulting address, containing Page Table Entry (PTE) pairs.

In some 32-bit systems, the Page Upper Directories and Page Middle Directories are not used. Some systems may
wish to exclude certain bits of the faulting address when performing a page table walk. Some systems use bits in the
Page Table Entries to store OS-specific flags, which are removed using a shift before writing into EntryLo0/1. Other
systems store these flags alongside the PTEs. Some hardware implementations may seek to include more than one
page table walker, allowing out-of-order execution to continue despite multiple TLB misses.

The hardware page table walking scheme takes account of all these possibilities.

Figure 4.9 shows the registers and fields used by the page table walking scheme for a four level page table structure.

54 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

4.12 Hardware Page Table Walker

Figure 4.9 Page Table Walk Process & COPO0 Control fields

PWSizeGDM,PWSizeUDW PWSizeMDW PWSizepTW
- - - >

Faulting address [[] Gindex Uindex Mindex PTindex

1 | I

1 1 1
PWFieldgp| PWFieldypy PWFieldyp PWFieldpr,

1

i
1
| 1
| l
! 1
I 1
! 1
! 1
! |
|
1

!

I
I
t
ase |
I
I
I
I
1
I
I
: Page Table Entry
(pair)
Page]
Global > —>{ EntryLo0]
Directory >>
(PGD) -
. \) N ~
(PUD) : '\ PWFieldPTEI
Directory Page \
(PMD) Table IR

(PT) PWSizePTE

Hardware page table walking is performed when enabled and a TLB refill condition is detected.
Hardware page table walking is enabled when

// it's globally enabled and

PWCltlpyen=1 and

// There’s a page table structure to walk

(PWSizegpyw>0 | PWSize py~0 | PWSizepyp>0) .

Hardware page table walking is not allowed if the CCA of the access is uncached, or if the address matches a MAAR
that is non-speculative. CP0O MAAR is defined in Release 5 of the architecture.

Memory reads during hardware page table walking are performed as if they were kernel-mode load instructions.
Addresses contained in the PWBase register and in memory-resident directories are virtual addresses.

Physical addresses and cache attributes are obtained from the Segment Configuration system when Config35-=1. or
from the default MIPS segment system when Config355=0.

The hardware page walk write should treat the multiple-hit case the same as a TLBWR. Assuming that the write by

design cannot detect all duplicates, then a preferred implementation is to invalidate the single duplicate and then write
the TLB. A Machine Check exception may subsequently be taken on a TLBP or lookup of TLB.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 55

Virtual Memory

If a synchronous exception condition is detected during the hardware page table walk, the HW walking process is
aborted and a TLB Refill exception will be taken. This includes synchronous exceptions such as Address Error, Pre-
cise Debug Data Break and other TLB exceptions resulting from accesses to mapped regions.

If an asynchronous exception is detected during the hardware page table walk, the HW walking process is aborted
and the asynchronous exception is taken. This includes asynchronous exceptions such as NMlI, Cache Error, and
Interrupts. It also includes the asynchronous Machine Check exception which results from multiple matching entries
being present in the TLB following a TLB write.

Implementations are not required to support hardware page table walk reads from mapped regions of the Virtual
Address space. If an implementation does not support reads from mapped regions, an attempted access during a page
table walk will cause the process to be aborted, and a TLB Refill exception will be taken.

Pointers within Directories are always treated as 32 bit addresses.

Hardware page table walking is performed as follows:

1. A temporary pointer is loaded with the contents of the PWBase register

2. The native pointer size is set to 4 bytes (32 bits).

3. If the Global Directory is disabled by PWSizegp\,=0, skip to the next step.

» If Huge Pages are supported, check PTEVId bit to determine if entry is PTE. If PTEVId bit is set, write Huge
Page into TLB (details left out for brevity, read pseudo-code at end of this section). Page Walking is com-
plete after Huge Page is written to TLB.

o Extract PWSizegpyy bits from the faulting address, with least-significant bit PWFieldgp,. This is the Global

Directory index (Gindex). Logical OR onto the temporary pointer, after multiplying (shifting) by the native
pointer size. The result is a pointer to a location within the Global Directory.

« Perform a memory read from the address in the temporary pointer, of the native pointer size. The returned
value is placed into the temporary pointer. If an exception is detected, abort.

4. If the Upper Directory is disabled by PWSize ;p=0, skip to the next step.

» If Huge Pages are supported, check PTEVId bit to determine if entry is PTE. If PTEVId bit is set, write Huge
Page into TLB (details left out for brevity, read pseudo-code at end of this section). Page Walking is com-
plete after Huge Page is written to TLB.

» Extract PWSizepyy bits from the faulting address, with least-significant bit PWField p,. This is the Upper
Directory index (Uindex). Logical OR onto the temporary pointer, after multiplying (shifting) by the native
pointer size. The result is a pointer to a location within the Upper Directory.

» Perform a memory read from the address in the temporary pointer, of the native pointer size. The returned
value is placed into the temporary pointer. If an exception is detected, abort.

5. If the Middle Directory is disabled by PWSizeyp=0, skip to the next step.
» If Huge Pages are supported, check PTEVId bit to determine if entry is PTE. If PTEVId bit is set, write Huge

Page into TLB (details left out for brevity, read pseudo-code at end of this section). Page Walking is com-
plete after Huge Page is written to TLB.

56 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

4.12 Hardware Page Table Walker

» Extract PWSizeypy bits from the faulting address, with least-significant bit PWFieldyp,. This is the Middle
Directory index (Mindex). Logical OR onto the temporary pointer, after multiplying (shifting) by the native
pointer size. The result is a pointer to a location within the Middle Directory.

» Perform a memory read from the address in the temporary pointer, of the native pointer size. The returned
value is placed into the temporary pointer. If an exception is detected, abort.

* The temporary pointer now contains the address of the Page Table to be used.

6. Extract PWSizepyy bits from the faulting address, with least-significant bit PWFieldp, This is the Page Table

index (PTindex). Multiply (shift) by the native pointer size, then multiply (shift) by the size of the Page Table
Entry, specified in PWSizeptpy

» The temporary pointer now contains the address of the first half of the Page Table Entry.

e Perform a memory read from the address in the temporary pointer, of the native pointer size. The returned
value is logically shifted right by PWFieldprg, bits. This is the first half of the Page Table Entry. If an excep-
tion is detected, abort.

7. Inthe temporary pointer, set the bit located at bit location PWFieldprg-1.

» The temporary pointer now contains the address of the second half of the Page Table Entry.

» Perform a memory read from the address in the temporary pointer, of the native pointer size. The returned
value is shifted right by PWFieldpyg, bits. This is the second half of the Page Table Entry. If an exception is
detected, abort.

8. Write the two halves of the Page Table Entry into the TLB, using the same semantics as the TLBWR (TLB write
random) instruction.

9. Continue with program execution.

Coprocessor 0 registers which are used by software on TLB refill exceptions are unused by the hardware page table
walking process. The registers and fields used by software are BadVAddr, EntryHi, PageMask, EntryLoO, EntryLol and
Contextggvpnz-

4.12.2 PTE and Directory Entry Format

All entries are read from in-memory data structures. There are three types of entries in the baseline definition: Direc-
tory Pointer, Huge Page non-leaf PTE of inferred size, and leaf PTE of base size. For options other than baseline, the
entry type is a function of the table level and the PTEvId field of an entry. For all but the last level table (leaf level),
the PTEvId bit is 0 for directory pointers to the next table and 1 for PTEs. In the leaf table, the entry is always a PTE
and the PTEvId bit is not used by Hardware Walker. The PWCtly,4epq register field indicates whether Huge Page

non-leaf PTEs are implemented.

All PTEs are shifted right by PWFieldptg, -2 (shifting in zeros at the most significant bit) and then rotated right by 2
bits before forming the page-walker equivalents of EntryLoO and EntryLo1 values. These operations are used to
remove the Software-only bits and placing the RI and XI protection bits in the proper bit location before writing the
TLB. If the Rl and XI bits are implemented and enabled, the HW Page Walker feature requires the RI bit to be placed
right of the G bit in the PTE memory format. Similarly, it is required that the X1 bit to be placed right of the Rl bit in
the PTE memory format.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 57

Virtual Memory

58

Note that the bit position of PTEvId is not fixed at 0. It can be programmed by the PWCtlpg, field. If non-leaf PTE

entries are available, there will already be a bit used by the software TLB handler to distinguish non-leaf PTE entries
from directory pointers. Normally, the PTEvId bit is configured to point to that software bit within the PTE.

A possible programming error to avoid is placing the PTEvId bit within the Directory Pointer field, as any of those
address bits may be set and thus not appropriate to be used to distinguish between a Directory Pointer or a non-leaf
PTE.

The following figures show an example of 4-byte pointers or PTE entries. The 4-byte width is configured by hav-
ingPWSlzeprey=0. In this example, 4bits are used for Software-only flags. The following figures assume a PTE for-
mat based on PWCtlp,,=0, PWFieldprg=6 and a Base Page Size of 4k for simplicity.

Figure 4.10 4-byte Leaf PTE
31 2 1 9 8 7 6 5 4 3.0 Comment

PFN C D|V |G RI|XI| S/WUse Page Size=Base

Figure 4.11 4-byte Non-Leaf PTE Options

31 16 15 12 11 9 8 7 6 5 4 3.0 Comment
Reserved Page Size=HgPgSz
PFN (must be 0) ¢ D V|G RIXI| SWUse PTE format in memory
31 16 15 12 11 9 8 7 6 5 4 3.1 0
Page Size=HgPgSz
Reserved Unused | PTEv| PTE format interpreted by HW Page
PFN (must be 0) ¢ DV |G RIXI by HW | 1d=1 |\Walker; PTEvId configured to be at bit
0
31 12 11 1 0
Directory Ptr format interpreted by
Dir Pointer 31:12 0 EE(Y HW Page Walker; PTEvld configured
to be at bit 0

After shifting out the software bits (3..0) (shifting in zeros at the most significant bit) and then rotating RI and XI
fields into bits 31:30, the PTE matches the EntryLo register format. In the non-Leaf PTE, 4-bits which are just left of
the C field are reserved for future features.

Figure 4.12 4-Byte Rotated PTE Formats

Comment 31 30 29 6 5.3 2 1 0 Comment
Leaf PTE RI | XI PFN C DI V|G Page Size=Base
31 30 29 10 9:6 5.3 2 1 0
Reserved o
Non-leaf PTE | RI | XI PFN (must be 0) C DIV G Page Size=HgPgSz

The following figures show an example of 8-byte pointers or PTE entries. The 8-byte width is configured by hav-
ingPWSizeprgy=1. This example uses 4-bits for Software-only flags. The use of the wider PTE allows for the use of
more PFN bits to be used for addressing - the 8-byte PTE format is required when more than 32-bits of physical
addressing is to be implemented. Both the non-leaf PTE and directory pointer both take 8-bytes of memory space,

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

4.12 Hardware Page Table Walker

though only 32-bits are actually used for the memory address. The following figures assume a PTE format based on
PWCtlpg,=0, PWFieldptg,=6 and a Base Page Size of 4k for simplicity.

Figure 4.13 8-byte Leaf PTE
63:36 35 2 119 8 7 6 5 4 3.0 Comment

Rsvd PFN C |D|V|G|RI|XI| S/W Use Page Size=Base

Figure 4.14 8-Byte Non-leaf PTE Options

63:36 35 16 15 12 119 8 7 6 5 4 3.0 Comment
Reserved Page Size=HgPgSz
Rsvd PFN (must be 0) € |D|V|GIRIXI SWUse PTE format in memory
63:39 35 16 15 12 119 8 7 6 5 4 3.1 0
Page Size=HgPgSz
Reserved PTE format interpreted by HW Page
Rsvd PFN (mustbeoy | C DV G RIXI byiow | sy | Walker; PTEVId configured to be at bit
0
63 32 31.12 1 1 0

Directory Pointer format interpreted
Rsvd Directory Ptr 0 FI’(LE(;’ by HW Page Walker; PTEvld config-
ured to be at bit 0

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

After the software bits (3..0) are right shifted away (shifting in zeros at the most significant bit) and the RI and XI
fields are rotated to bits 31:30, the PTE matches the EntryLo register format. By setting PWSIzeprgy=1 to denote 8-
byte PTE entries, the shift operation is done on the entire 8 byte PTE, but only the lower 4-bytes are written into the
TLB. In the non-Leaf PTE, 4-bits which are just left of the C field are reserved for future features.

Figure 4.15 8-Byte Rotated PTE Formats

Comment 31 30 29 6 5.3 2 1 0 Comment
Leaf PTE RI | XI PFN C D|V|G Page Size=Base
31 30 29.10 9.6 53 2 1 0
Non-leaf PTE | RI | XI | PEN | RSV C |D|V|G| PageSize=HgPgSz
(must be 0) g —rgrg

Leaf PTEs always occur in pairs (EntryLoO and EntryLo1). However, non-leaf PTEs (ones which occur in the upper
directories) can occur either in pairs (if Dual Page method is enabled) or occur with just one entry (Adjacent Page
method).

For the Adjacent Page method, the single non-leaf PTE represent both EntryLoO and EntryLol values. When the

walker populates the EntryLo registers for a PTE in a directory, the least significant bit above the page size is O for
EntryLoO and 1 for EntryLol. That is, EntryLoO and EntryLol represent adjacent physical pages.

59

Virtual Memory

For the Dual Page method, the two PTEs are read from the directory level by the Hardware Page Walker.

For Huge Page handling, the size of the Huge Page is inferred from the directory level in which the Huge Page
resides. For the Adjacent Page Method, the size of each individual PTE in EntryLoO and EntryLol as synthesized from
the single Huge Page is always half the inferred size.

If the inferred page size is 2 x power-of-4, then the Adjacent Page Method is used.

If the inferred page size is a power-of-4, then the Dual Page Method is used (if the Dual Page Method is imple-
mented). If the Dual Page method is implemented (PWCtlpp=1), it is implementation-specific whether the PTEVId

bit is checked for the second PTE when it is read from memory for writing the second TLB page. The recommended
behavior is to check this second PTEVId bit and if it is not set, a Machine Check exception is triggered. The
PageGrainyccause register field is used to differentiate between different types of Machine Check exceptions.

If the inferred Huge Page size is power-of-4, and the Dual Page Methods is not implemented, it is implementation-
specific whether a Machine Check is reported.

An example of Huge Page handling follows. It assumes a leaf PTE size of 4 kB.

* PMD Huge Page = 29 (PWSizepty) * 2712 (PWFieldpt,) = 2721 = 2 MB. Each EntryLo0/1 page is 1 MB,
which is a power-of-4 and use the Adjacent Page method.

* PUD Huge Page = 210 (PWSizeypw) * 29 (PWSizeprty) * 212 (PWFieldpr,) = 2*31 = 2GB. Each EntryLo0/1
page is 1GB, which is a power-of-4 and would use the Adjacent Page method. Note that the index into PMD has
been extended to 10 bits from 9 bits. Each PMD table thus has 1K entries instead of the typical 512 entries.

See also:

« Section 9.18, "PWBase Register (CPO Register 5, Select 5)" on page 161

» Section 9.19, "PWField Register (CP0O Register 5, Select 6)" on page 161

» Section 9.20, "PWSize Register (CP0O Register 5, Select 7)" on page 164

» Section 9.22, "PWCtI Register (CPO Register 6, Select 6)" on page 171

4.12.3 Hardware page table walking process

The hardware page table walking process is described in pseudocode as follows:

~
*

Perform hardware page table walk

Memory accesses are performed using the KERNEL privilege level.
Synchronous exceptions detected on memory accesses cause a silent exit
from page table walking, resulting in a TLB Refill exception.

Implementations are not required to support page table walk memory
accesses from mapped memory regions. When an unsupported access is
attempted, a silent exit is taken, resulting in a TLB Refill exception.

Note that if an exception is caused by AddressTranslation or LoadMemory
functions, the exception is not taken, a silent exit is taken,
resulting in a TLB Refill exception.

L . T N N

60 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

4.12 Hardware Page Table Walker

For readability, this pseudo-code does not deal with PTEs of different widths.
In reality, implementations will have to deal with the different PTE
and directory pointer widths.

* ok X *

*/
subroutine PageTableWalkRefill (vAddr)

if (Config3py = 0) then
return(0) # walker is unimplemented

if (PWCtlpyg,=0) then
return (0) # walker is disabled

if 1 (PWSizegpy>0 | PWSizeypy>0 | PWSizeyp,>0) then
return (0) # no structure to walk

Initial values
found <« 0

encMask « 0

HugePage <« False
HgPgBDhit < False
HgPgGDhit <« False
HgPgUDhit <« false
HgPgMDhit <« false

Native pointer size
NativeShift <« 2
DSize <« 32

Indices computed from faulting address

Gindex < (VAddr >> PWFieldgpr) and((l<<PWSizegpy) -1)
Uindex < (vAddr >> PWFieldypy) and((l<<PWSizeypy)-1)
Mindex < (VvAddr >> PWFieldypr) and ((1l<<PWSizeypy) -1)
PTindex < (vAddr >> PWFieldpp;) and((l<<PWSizepqy) -1)

Offsets into tables

Goffset < Gindex << NativeShift
Uoffset < Uindex << NativeShift
Moffset < Mindex << NativeShift

PToffset0 « (PTindex >> 1) << (NativeShift + PWSizeppgy+1l)
PToffsetl <« PToffset0 OR (1 << (NativeShift + PWSizeprgy))

EntryLoO < UNPREDICTABLE
EntryLol < UNPREDICTABLE
Contextp,gypy, < UNPREDICTABLE

Starting address - Page Table Base
vAddr <« PWBase

Global Directory
if (PWSizegpy > 0) then

vAddr <« VvAddr or Goffset
(pAddr, CCA) <« AddressTranslation(vAddr, DATA, LOAD, KERNEL)
t <« LoadMemory (CCA, DSize, pAddr, vAddr, DATA)

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 61

Virtual Memory

if (t and (1<<PWCtlpg,) && PWCtly,gq=1) then # PTEvld is set
HugePage <« true
HgPgGDHit <« true
t <« t >> PWFieldppgy - 2 // shift entire PTE
t <« ROTRIGHT (t, 2) // 32-bit rotate to place RI/XI bits
w < (PWFieldgpr) -1
if ((PWFieldgpy and 0x1)=1) // check if index is odd e.g. 2x power of 4
// generate adjacent page from same PTE for odd TLB page
1sb « (l<<w)>> 6
pw_EntryLo0 <« t and not 1lsb # 1lsb=0 even page; note FILL fields are O
pw _EntryLol <« t or 1lsb # 1lsb=1 odd page
elseif (PWCtlppy = 1)
// Dual Pages - figure out whether even or odd page loaded first
OddPageBit = (1 << PWFieldgpy)
if (vAddr and OddPageBit)
pw_EntryLol <« t
else
pw_EntryLoO <« t
endif
// load second PTE from directory for other TLB page
vAddr2 <« vAddr xor OddPageBit
(pAddr2, CCA2) <« AddressTranslation(vAddr2, DATA, LOAD, KERNEL)
t <« LoadMemory (CCA2, DSize, pAddr2, vAddr2, DATA)
t <« t >> PWFieldprgy - 2 // shift entire PTE
t <« ROTRIGHT(t, 2) // 32-bit rotate to place RI/XI bits
if (vAddr and OddPageBit)
pw_EntryLo0 <« t
else
pw_EntryLol <« t
endif
else
goto ERROR
endif
goto REFILL
else
vAddr <« t
endif
endif

Upper directory
if (PWSizeypy > 0) then

vAddr < vAddr or Uoffset
(pAddr, CCA) <« AddressTranslation(vAddr, DATA, LOAD, KERNEL)
t < LoadMemory (CCA, DSize, pAddr, vAddr, DATA)

if (t and (1<<PWCtlpg,) && PWCtly,g,g=1) then# PTEvld is set

HugePage <« true

HgPgUDHit <« true

t <« t >> PWFieldprgy - 2 // right-shift entire PTE

t <« ROTRIGHT(t, 2) // 32-bit rotate to place RI/XI bits

W < (PWFIELDypy) -1

if ((PWFIELDypr and 0x1)= 0x1) //check if odd e.g. 2x power of 4

// generate adjacent page from same PTE for odd TLB page
lsb « (1l<<w)>> 6 // align PA[12] into EntryLo* register bit 6
pw_EntryLo0 <« t and not 1lsb # 1lsb=0 even page; note FILL fields are 0
pw_EntryLol <« t or lsb # lsb=1 odd page

elseif (PWCtlppy = 1)

62 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

4.12 Hardware Page Table Walker

// Dual Pages - figure out whether even or odd page loaded first
OddPageBit = (1 << PWFIELDypp)
if (vAddr and OddPageBit)
pw_EntryLol <« t
else
pw_EntryLoO <« t
endif
// load second PTE from directory for odd TLB page
vAddr2 <« vAddr xor OddPageBit
(pAddr2, CCA2) <« AddressTranslation(vAddr2, DATA, LOAD, KERNEL)
t <« LoadMemory (CCA2, DSize, pAddr2, vAddr2, DATA)
t <« t >> PWFieldprgy - 2 // right-shift entire PTE
t <« ROTRIGHT (t, 2) // 32-bit rotate to place RI/XI bits
if (vAddr and OddPageBit)
pw_EntryLo0O <« t
else
pw_EntryLol <« t
endif
else
goto ERROR
endif
goto REFILL
else
VAddr <« t
endif
endif

Middle directory
if (PWSizeypy > 0) then

vAddr < vAddr OR Moffset
(pAddr, CCA) <« AddressTranslation(vAddr, DATA, LOAD, KERNEL)
t < LoadMemory (CCA, DSize, pAddr, vAddr, DATA)

if (t and (1<<PWCtlpg,) && PWCtly,g,q=1) then# PTEvld is set
HugePage <« true
HgPgMDHit < true
t <« t >> PWFieldprgy - 2 // right-shift entire PTE
t <« ROTRIGHT (t, 2) // 32-bit rotate to place RI/XI bits
pw_EntryLo0 <« t # note FILL fields are O
w <« (PWFieldypy) -1
if ((PWFieldyp; and 0x1)= 0x1) // check if odd e.g. 2x power of 4
// generate adjacent page from same PTE for odd TLB page
lsb « (l<<w)>> 6 // align PA[12] into EntryLo* register bit 6
pw_EntryLo0 <« t and not 1lsb # lsb=0 even page; note FILL fields are 0
pw_EntryLol <« t or lsb # lsb=1 odd page
elseif (PWCtlppy = 1)
// Dual Pages - figure out whether even or odd page loaded first
OddPageBit = (1 << PWFieldypr)
if (vAddr and OddPageBit)
pw_EntryLol <« t
else
pw_EntryLoO <« t
endif
// load second PTE from directory for odd TLB page
vVAddr2 <« vAddr xor (1 << (NativeShift + PWSizeppgy)
(pAddr2, CCA2) <« AddressTranslation(vAddr2, DATA, LOAD, KERNEL)
t <« LoadMemory (CCA2, DSize, pAddr2, vAddr2, DATA)
t <« t >> PWFieldppgy - 2 // right-shift entire PTE
t « ROTRIGHT(t, 2) // 32-bit rotate to place RI/XI bits

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 63

Virtual Memory

if (vAddr and OddPageBit)
pw_EntryLo0 <« t
else
pw_EntryLol <« t
endif
else
goto ERROR
endif
goto REFILL
else
vAddr <« t
endif
endif

Leaf Level Page Table - First half of PTE pair

vAddr < vAddr or PToffsetO
(pAddr, CCA) <« AddressTranslation(vAddr, DATA, LOAD, KERNEL)
tempO <« LoadMemory (CCA, DSize, pAddr, vAddr, DATA)

Leaf Level Page Table - Second half of PTE pair

vAddr < VvAddr or PToffsetl
(pAddr, CCA) <« AddressTranslation(vAddr, DATA, LOAD, KERNEL)
templ <« LoadMemory (CCA, DSize, pAddr, vAddr, DATA)

Load Page Table Entry pair into TLB
tempO < tempO >> PWFieldppgr - 2 // right-shift entire PTE
pw_EntryLoO < ROTRIGHT (tempO, 2) // 32-bit rotate to place RI/XI bits

templ < templ >> PWFieldprgr - 2 // right-shift entire PTE
pw_EntryLol <« ROTRIGHT (templ, 2) // 32-bit rotate to place RI/XI bits

REFILL:
found « 1
m <« (1<<PWFieldppg) -1

if (HugePage) then
Non-power-of-4 page size halved to provide power-of-4 page size.
1lst step: Halve page size (l<<(w-1))

switch ({HgPgBDHit, HgPgGDHit, HgPgUDHit, HgPgMDHit })
case 1000
m ¢« (l<<(PWFieldgpr)) -1
case 0100
m < (l<<(PWFieldgpr)) -1
case 0010
m <« (l<<(PWFieldyp;)) -1
case 0001
m < (l<<(PWFieldyps)) -1
end switch
endif
2nd step: Normalize mask field to 4KB as smallest base (>>12)
pw_PageMaskyygr < m>>12

The hardware page walker inserts a page into the TLB in a manner

identical to a TLBWR instruction as executed by the software refill handler
pw_EntryHi = (vaddr and not Oxfff)| EntryHi,grp
TLBWriteRandom (pw EntryHi, pw EntryLoO, pw_ EntryLol, pw PageMask)

64 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

4.12 Hardware Page Table Walker

return (found)
If an error/exception condition is detected on a page table
walk memory access, this function exits with found=0.

#
OnError:
return (0)
endsub

If a page is marked invalid, the hardware refill handler will still fill the page into the TLB. Software can point to
invalid PTESs to represent regions that are not mapped. When the Software attempts to use the invalid TLB entry, a

TLB invalid exception will be generated.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 65

Virtual Memory

66 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

Chapter 5

Common Device Memory Map

MIPS processors may include memory-mapped 10 devices that are packaged as part of the CPU. An example is the
Fast Debug Channel, which is a UART-like communication device that uses the EJTAG probe pins to move data to
the external world.

The Common Device Memory Map (CDMM) is a region of physical address space that is reserved for mapping 10
device configuration registers within a MIPS processor. The CDMM helps aggregate various device mappings into
one area, preventing fragmentation of the memory address space. It also enables the use of access control and mem-
ory address translation mechanisms for these device registers. The CDMM occupies a maximum of 32 kB in the
physical address map.

The CMDMM is an optional feature of the architecture. Software detects if CDMM is implemented by reading the
Config3cpmm register field (bit 3).

Two blocks are defined for the CDMM -

e CDMMBase - A new Coprocessor 0 register that sets the base physical address of the CDMM

e« CDMM Access Control and Device Register Block - The 32 kB CDMM region is divided into smaller 64-byte
aligned blocks called ‘Device Register Blocks’ (DRBs). Each block has access control and status information in

access control and status registers (ACSRs), followed by 10 device registers.

For implementations that have multiple VPEs, the 10 devices and their ACSRs are instantiated once per VPE, but the
CDMMBase register is shared among the VPEs.

Implementations are not required to maintain cache coherence for the CDMM region. For that reason, the memory
mapped registers located within this region must be accessed only using uncached memory transactions. Accessing
these register using a cacheable CCA may result in UNPREDICTABLE behavior.

Each of these blocks are now described in detail.
5.1 CDMMBase Register

The physical base address for the CDMM facility is defined by a coprocessor 0 register called CDMMBase, (CPO reg-
ister 15, select 2). This address must be aligned to a 32 kB boundary.

On a 32-bit core with a TLB-based MMU, this region would most likely be mapped to the lower 512 MB of physical
memory, allowing kernel-mode unmapped, uncached access via ksegl. User-mode access could be allowed through a
TLB mapping using an uncached coherency.

On cores that use a FMT MMU, the region would most likely be mapped to the lower 512 MB and made accessible

via kernel mode. Alternatively, if user-mode access is allowed, this region could be mapped to correspond to the
kuseg physical address segment.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 67

Common Device Memory Map

On cores that use a BAT MMU, if only kernel mode access is allowed, the region would be mapped to a physical
address region reachable through ksegl or kseg2/3 (using uncached coherency). If user mode access is allowed, the
useg BAT entry must use an uncached coherency.

Please refer to Section 9.42 on page 227 for the description of the CDMMBase register.

5.2 CDMM - Access Control and Device Register Blocks

68

The CDMM is divided into 64-byte aligned segments named ‘Device Register Blocks’ (DRBs), Each device occupies
at least one DRB. If a device needs additional address space, it can occupy multiple contiguous 64-byte blocks, e.g.,
multiple DRBs which are adjacent in the physical address map. For each device, device type identification and access
control information is located in the DRB allocated for the device with the lowest physical address.

Access control information is specified via ‘Access Control and Status Registers’ (ACSRs) that are found at the start
of the DRB allocated for the device with the lowest physical address. The ACSR for a device holds the size of the 10
device, and hence also act as a pointer to the start of the next device and its” ACSR. ACSRs are only accessible in
kernel mode. The ACSR is followed by the data/control registers for the 10 device. Figure 5.1 shows the organization
of the CDMM.

Reading any of the 10 device registers in either usermode or supervisor mode when such accesses are not allowed,
results in all zeros being returned. Writing any of the 10 device registers in either usermode or supervisor mode when
such accesses are not allowed, results in the write being ignored and the register not being modified. Reading any of
the ACSR registers while not in kernel mode results in all zeros being returned. Writing any of the ACSR registers
while not in kernel mode results in the write being ignored and the ACSR not being modified.

Since the ACSR act as a pointer that can only increment, the devices must be allocated in the memory space in a spe-
cific manner. The first device must be located at the address pointed by the CDMMBase register and any subsequent
device is allocated in the next available adjacent DRB.

If the CI bit is set in the CDOMMBASE register, the first DRB of the CDMM (at offset 0x0 from the CDMMBase) is
reserved for implementation specific use.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

5.2 CDMM - Access Control and Device Register Blocks

Figure 5.1 Example Organization of the CDMM

r— — — — — — — m
1 DRB= 64 Bytes Device 4 Registers
ACSR for Device 4
1 DRB= 64 Bytes Device 3 Registers |
Increasing
Physical Address F————— — = 1
1 DRB= 64 Bytes Device 3 Registers |
F———— — — = 1
Device 3 Registers
1 DRB= 64 Bytes
ACSR for Device 3
Device 2 Registers
1 DRB= 64 Bytes
ACSK for Device 2
1DRB=64Byt5<[| Device 1 Registers
F————— == 1
Device 1 Registers
1 DRB= 64 Bytes |
[ACSR for Device 1
I
Device 0 Registers
1 DRB= 64 Bytes
ACSR for Device 0

CDMMBase /

5.2.1 Access Control and Status Registers

The first DRB of a device has 8 bytes of access control address space allocated to it. These 8 bytes can be considered
to be two 32-bit registers (on a 32-bit or 64-bit core), or a single 64-bit register (on a 64-bit core). In revision 1.00 of
the CDMM, only the lower 32-bits hold access control and status information. The control/status register can be
accessed in kernel mode only. Reading this register while not in kernel mode results in all zeros being returned. Writ-
ing this register while not in kernel mode results in the write being ignored and the register not being modified.

Figure 5.2 has the format of an Access Control and Status register (shown as a 64-bit register), and Table 5.1
describes the register fields.

Figure 5.2 Access Control and Status Register

63 32 31 24 23 2 2 16 15 21 4 3 2 1 0
0 DevType | 0 | DevSize DevRev 0 | Uw | Ur | Sw | Sr |

Table 5.1 Access Control and Status Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
DevType 31:24 This field specifies the type of device. A non-zero value R Preset Required

indicates the type of device. A zero value indicates the
absence of a device.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 69

Common Device Memory Map

Table 5.1 Access Control and Status Register Field Descriptions (Continued)

Fields
Read / Reset

Name Bits Description Write State Compliance

DevSize 21:16 This field specifies the number of extra 64-byte blocks R Preset Required
allocated to this device. A value of 0 indicates that only
one 64-byte block is allocated. This also determines the
location of the next device block. A device is limited to 4
kB of memory.

DevRev 15:12 This field specifies the revision of device. This field is R Preset Required
combined with the DevType field to denote the specific
device revision.

Uw 3 This bit indicates if user-mode write access to this device R/W 0 Required
is enabled. A value of 1 indicates that access is enabled. A
value of 0 indicates that access is disabled. An attempt to
write to the device while in user mode with access dis-
abled is ignored.

ur 2 This bit indicates if user-mode read access to this device is R/W 0 Required
enabled. A value of 1 indicates that access is enabled. A

value of 0 indicates that access is disabled. An attempt to
read from the device while in user mode with access dis-
abled is ignored.

Sw 1 This bit indicates if supervisor-mode write access to this R/W 0 Required
device is enabled. A value of 1 indicates that access is
enabled. A value of 0 indicates that access is disabled. An
attempt to write to the device while in supervisor mode
with access disabled is ignored.

Sr 0 This bit indicates if supervisor-mode read access to this R/W 0 Required
device is enabled. A value of 1 indicates that access is
enabled. A value of 0 indicates that access is disabled. An
attempt to read from the device while in supervisor mode
with access disabled is ignored.

0 63:32, 11:4 | Reserved for future use. Ignored on write; returns zero on R 0 Required
read.

70 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

Chapter 6

Interrupts and Exceptions

Release 2 of the Architecture added the following features related to the processing of Exceptions and Interrupts:

« The addition of the Coprocessor 0 EBase register, which allows the exception vector base address to be modified
for exceptions that occur when Statusggy, equals 0. The EBase register is required.

» The extension of the Release 1 interrupt control mechanism to include two optional interrupt modes:

» Vectored Interrupt (V1) mode, in which the various sources of interrupts are prioritized by the processor and
each interrupt is vectored directly to a dedicated handler. When combined with GPR shadow registers, intro-
duced in the next chapter, this mode significantly reduces the number of cycles required to process an inter-
rupt.

« External Interrupt Controller (EIC) mode, in which the definition of the coprocessor O register fields associ-
ated with interrupts changes to support an external interrupt controller. This can support many more priori-
tized interrupts, while still providing the ability to vector an interrupt directly to a dedicated handler and take
advantage of the GPR shadow registers.

* The ability to stop the Count register for highly power-sensitive applications in which the Count register is not
used, or for reduced power mode. This change is required.

» The addition of the DI and El instructions which provide the ability to atomically disable or enable interrupts.
Both instructions are required.

e The addition of the TI and PCI bits in the Cause register to denote pending timer and performance counter inter-
rupts. This change is required.

» The addition of an execution hazard sequence which can be used to clear hazards introduced when software
writes to a coprocessor 0 register which affects the interrupt system state.

6.1 Interrupts

Release 1 of the Architecture included support for two software interrupts, six hardware interrupts, and two special-
purpose interrupts: timer and performance counter. The timer and performance counter interrupts were combined

with hardware interrupt 5 in an implementation-dependent manner. Interrupts were handled either through the general
exception vector (offset 0x180) or the special interrupt vector (0x200), based on the value of Cause,y. Software was

required to prioritize interrupts as a function of the Causep bits in the interrupt handler prologue.
Release 2 of the Architecture adds an upward-compatible extension to the Release 1 interrupt architecture that sup-
ports vectored interrupts. In addition, Release 2 adds a new interrupt mode that supports the use of an external inter-

rupt controller by changing the interrupt architecture.

Although a Non-Maskable Interrupt (NMI) includes “interrupt” in its name, it is more correctly described as an NMI
exception because it does not affect, nor is it controlled by the processor interrupt system.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 71

Interrupts and Exceptions

72

An interrupt is only taken when all of the following are true:

A specific request for interrupt service is made, as a function of the interrupt mode, described below.

The IE bit in the Status register is a one.

The DM bit in the Debug register is a zero (for processors implementing EJTAG)

e The EXL and ERL bits in the Status register are both zero.

Logically, the request for interrupt service is ANDed with the IE bit of the Status register. The final interrupt request
is then asserted only if both the EXL and ERL bits in the Status register are zero, and the DM bit in the Debug register
is zero, corresponding to a non-exception, non-error, non-debug processing mode, respectively.

6.1.1 Interrupt Modes
An implementation of Release 1 of the Architecture only implements interrupt compatibility mode.
An implementation of Release 2 of the Architecture may implement up to three interrupt modes:

e Interrupt compatibility mode, which acts identically to that in an implementation of Release 1 of the Architec-
ture. This mode is required.

e Vectored Interrupt (V1) mode, which adds the ability to prioritize and vector interrupts to a handler dedicated to
that interrupt, and to assign a GPR shadow set for use during interrupt processing. This mode is optional and its

presence is denoted by the VInt bit in the Config3 register.

« External Interrupt Controller (EIC) mode, which redefines the way in which interrupts are handled to provide full
support for an external interrupt controller handling prioritization and vectoring of interrupts. This mode is
optional and its presence is denoted by the VEIC bit in the Config3 register.

A compatible implementation of Release 2 of the Architecture must implement interrupt compatibility mode, and
may optionally implement one or both vectored interrupt modes. Inclusion of the optional modes may be done selec-
tively in the implementation of the processor, or they may always be implemented and be dynamically enabled based
on coprocessor 0 control bits. The reset state of the processor is to interrupt compatibility mode such that an imple-
mentation of Release 2 of the Architecture is fully compatible with implementations of Release 1 of the Architecture.

Table 6.1 shows the current interrupt mode of the processor as a function of the coprocessor 0 register fields that can
affect the mode.

Table 6.1 Interrupt Modes

> El 8

] >) Z w

06> | b

Z|2|C 2|2

SI8|E |55

n S 18 Interrupt Mode
1 (x X | X | x |Compatibility

x |0 X | x | x |Compatibility

X | X =0 | x | x | Compatibility
0|1 #0 | 1 | 0 |Vectored Interrupt

0|1 #0 | x | 1 |External Interrupt Controller

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

6.1 Interrupts

Table 6.1 Interrupt Modes (Continued)

Cause)y
|ntCt|VS

Interrupt Mode

o Conf|g3V|NT
o Config3VE|C

Not Allowed - IntCtly/g is zero if neither Vectored Inter-
rupt nor External Interrupt Controller mode are imple-
mented.

ol|| Statusggy

-
*
o

“x” denotes don’t care

6.1.1.1 Interrupt Compatibility Mode

This is the only interrupt mode for a Release 1 processor and the default interrupt mode for a Release 2 processor.
This mode is entered when a Reset exception occurs. In this mode, interrupts are non-vectored and dispatched though
exception vector offset 0x180 (if Cause), = 0) or vector offset 0x200 (if Cause;, = 1). This mode is in effect if any of

the following conditions are true:
* Causey=0

e Statusggy =1

IntCtlys = 0, which would be the case if vectored interrupts are not implemented, or have been disabled.

The current interrupt requests are visible via the IP field in the Cause register on any read of the register (not just after
an interrupt exception has occurred). Note that an interrupt request may be deasserted between the time the processor
starts the interrupt exception and the time that the software interrupt handler runs. The software interrupt handler
must be prepared to handle this condition by simply returning from the interrupt via ERET. A request for interrupt

service is generated as shown in Table 6.2.

Table 6.2 Request for Interrupt Service in Interrupt Compatibility Mode

Interrupt Interrupt Request
Interrupt Type Source Calculated From
Hardware Interrupt, Timer Interrupt, or Perfor- HW5 Cause,p; and Status;y;7
mance Counter Interrupt
Hardware Interrupt HW4 Causejpg and Statusye
HW3 Causepg and Statusps
HW?2 Causejpg and Statusyp4
HW1 Causepsz and Statusp3
HWO0 Cause,p, and Status;po
Software Interrupt Swi Causejpy and Status;pq
SWO Causepg and Statuspg

A typical software handler for interrupt compatibility mode might look as follows:

/*
* Assumptions:
* - Causepy = 1 (if it were zero, the interrupt exception would have to

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

73

Interrupts and Exceptions

* be isolated from the general exception vector before getting
* here)
* - GPRs kO and kl are available (no shadow register switches invoked in
* compatibility mode)
* - The software priority is IP7..IPO0 (HW5..HWO0, SW1..SWO)
*
* Location: Offset 0x200 from exception base
*/
IVexception:
mfc0 k0, CO_Cause /* Read Cause register for IP bits */
mfcO0 k1, CO_Status /* and Status register for IM bits */
andi kO, kO, M_CauseIM /* Keep only IP bits from Cause */
and k0, ko, k1 /* and mask with IM bits */
beq k0, zero, Dismiss /* no bits set - spurious interrupt */
clz k0, kO /* Find first bit set, IP7..IP0; kO = 16..23 */
xori k0, kO, 0x17 /* 16..23 => 7..0 */
sll ko, ko, VS /* Shift to emulate software IntCtlyg */
la k1, VectorBase /* Get base of 8 interrupt vectors */
addu k0, ko, k1 /* Compute target from base and offset */
jr ko0 /* Jump to specific exception routine */
nop
/*
* Each interrupt processing routine processes a specific interrupt, analogous
* to those reached in VI or EIC interrupt mode. Since each processing routine
* is dedicated to a particular interrupt line, it has the context to know
* which line was asserted. Each processing routine may need to look further
* to determine the actual source of the interrupt if multiple interrupt requests
* are ORed together on a single IP line. Once that task is performed, the
* interrupt may be processed in one of two ways:
*
* - Completely at interrupt level (e.g., a simply UART interrupt). The
* SimpleInterrupt routine below is an example of this type.
* - By saving sufficient state and re-enabling other interrupts. In this
* case the software model determines which interrupts are disabled during
* the processing of this interrupt. Typically, this is either the single
* StatusIM bit that corresponds to the interrupt being processed, or some
* collection of other Statuspy bits so that “lower” priority interrupts are
* also disabled. The NestedInterrupt routine below is an example of this type.
*/
SimpleInterrupt:
/*

* Process the device interrupt here and clear the interupt request

* at the device. In order to do this, some registers may need to be
* saved and restored. The coprocessor 0 state is such that an ERET

* will simply return to the interrupted code.

*/

eret /* Return to interrupted code */

NestedException:

/*
* Nested exceptions typically require saving the EPC and Status registers,
* any GPRs that may be modified by the nested exception routine, disabling
* the appropriate IM bits in Status to prevent an interrupt loop, putting
* the processor in kernel mode, and re-enabling interrupts. The sample code
* below cannot cover all nuances of this processing and is intended only

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

6.1 Interrupts

* to demonstrate the concepts.

*/
/* Save GPRs here, and setup software context */
mfcO0 kO, CO_EPC /* Get restart address */
sw k0, EPCSave /* Save in memory */
mfcO kO, CO_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
1i k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */

/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */
and ko, kO, ki1 /* Clear bits in copy of Status */
ins k0, zero, S _StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)
/* Clear KSU, ERL, EXL bits in kO */
mtcO k0, CO_Status /* Modify mask, switch to kernel mode, */
/* re-enable interrupts */

* Process interrupt here, including clearing device interrupt.

In some environments this may be done with a thread running in
* kernel or user mode. Such an environment is well beyond the scope of
* this example.

*/
/*

* To complete interrupt processing, the saved values must be restored
* and the original interrupted code restarted.

*/
di /* Disable interrupts - may not be required */
1w k0, StatusSave /* Get saved Status (including EXL set) */
1w k1, EPCSave /* and EPC */
mtcO k0, CO_Status /* Restore the original value */
mtco k1, CO_EPC /* and EPC */
/* Restore GPRs and software state */
eret /* Dismiss the interrupt */

6.1.1.2 Vectored Interrupt Mode
Vectored Interrupt mode builds on the interrupt compatibility mode by adding a priority encoder to prioritize pending
interrupts and to generate a vector with which each interrupt can be directed to a dedicated handler routine. This

mode also allows each interrupt to be mapped to a GPR shadow set for use by the interrupt handler. Vectored Inter-
rupt mode is in effect if all of the following conditions are true:

* Config3yi=1
e Config3yg,c =0
* IntCtyg#0

e Causey=1

d StatUSBEV =0

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 75

Interrupts and Exceptions

In VI interrupt mode, the six hardware interrupts are interpreted as individual hardware interrupt requests. The timer
and performance counter interrupts are combined in an implementation-dependent way with the hardware interrupts
(with the interrupt with which they are combined indicated by IntCtl;p1; and IntCtl,ppc;, respectively) to provide the

appropriate relative priority of these interrupts with that of the hardware interrupts. The processor interrupt logic
ANDs each of the Cause,p bits with the corresponding Status,, bits. If any of these values is 1, and if interrupts are

enabled (Status,g = 1, Statusgy, = 0, and Statusgg, = 0), an interrupt is signaled and a priority encoder scans the val-
ues in the order shown in Table 6.3.

Table 6.3 Relative Interrupt Priority for Vectored Interrupt Mode

Vector Number
Relative Interrupt Interrupt Interrupt Request Generated by
Priority Type Source Calculated From Priority Encoder
Highest Priority | Hardware HWS5 Cause|py and Status;p7 7
HW4 Causejpg and Statusyg 6
HW3 Cause,ps and Statusys 5
HW2 Causejpg and Statusp4 4
HW1 Cause,pz and Status;y3 3
HWO0 Causep, and Statusyo 2
Software SwW1 Cause p; and Status;yq 1
Lowest Priority SWO0 Causejpg and Statusyyo

The priority order places a relative priority on each hardware interrupt and places the software interrupts at a priority
lower than all hardware interrupts. When the priority encoder finds the highest priority pending interrupt, it outputs
an encoded vector number that is used in the calculation of the handler for that interrupt, as described below. This is
shown pictorially in Figure 6.1.

76 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

6.1 Interrupts

Figure 6.1 Interrupt Generation for Vectored Interrupt Mode

Latch Mask Encode Generate

p ntCtlppcy

IntCtllPTI
EE— - L Any Interrupt
HWS §] Ve B R‘“S”t::m?D—chum»
HW4— _E | IP6 | IM L % IntCtlyg
HWS3 8 p|Ps] gl gl 2 }
HW2 p-| P4 ol M4, L % Vect g Exception
HW1 | g |IP3 | IM3 > g veeter g - Vector Offset
3
IP2 | M2 > 3
[T B I V) B 5
Causery I SRSMap I
Causepcy Shadow Set
Number .

Note that an interrupt request may be deasserted between the time the processor detects the interrupt request and the
time that the software interrupt handler runs. The software interrupt handler must be prepared to handle this condition
by simply returning from the interrupt via ERET.

A typical software handler for vectored interrupt mode bypasses the entire sequence of code following the IVexcep-
tion label shown for the compatibility mode handler above. Instead, the hardware performs the prioritization, dis-
patching directly to the interrupt processing routine. Unlike the compatibility mode examples, a vectored interrupt
handler may take advantage of a dedicated GPR shadow set to avoid saving any registers. As such, the SimpleInter-
rupt code shown above need not save the GPRs.

A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the nested
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. Such a routine might
look as follows:

NestedException:
/*
* Nested exceptions typically require saving the EPC, Status and SRSCtl registers,
setting up the appropriate GPR shadow set for the routine, disabling
the appropriate IM bits in Status to prevent an interrupt loop, putting
the processor in kernel mode, and re-enabling interrupts. The sample code
below cannot cover all nuances of this processing and is intended only
to demonstrate the concepts.

* F F ¥ ¥ *

/* Use the current GPR shadow set, and setup software context */

mfcO0 k0, CO_EPC /* Get restart address */
sw k0, EPCSave /* Save in memory */
mfc0 kO, CO_Status /* Get Status wvalue */

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 77

Interrupts and Exceptions

78

sw k0, StatusSave /* Save in memory */

mfcOo k0, CO_SRSCtl /* Save SRSCtl if changing shadow sets */

sw k0, SRSCtlSave

1li k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */
/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */

and k0, ko, k1 /* Clear bits in copy of Status */

/* If switching shadow sets, write new value to SRSCtlpgg here */
ins k0, zero, S _StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)
/* Clear KSU, ERL, EXL bits in k0 */
mtcO kO, CO_Status /* Modify mask, switch to kernel mode, */
/* re-enable interrupts */
/*
* If switching shadow sets, clear only KSU above, write target
* address to EPC, and do execute an eret to clear EXL, switch
* shadow sets, and jump to routine

*/
/* Process interrupt here, including clearing device interrupt */

/*
* To complete interrupt processing, the saved values must be restored
* and the original interrupted code restarted.

*/
di /* Disable interrupts - may not be required */
1w k0, StatusSave /* Get saved Status (including EXL set) */
1w k1, EPCSave /* and EPC */
mtcO k0, CO_Status /* Restore the original value */
1w k0, SRSCtlSave /* Get saved SRSCtl */
mtcO k1, CO_EPC /* and EPC */
mtcO k0, CO_SRSCtl /* Restore shadow sets */
ehb /* Clear hazard */
eret /* Dismiss the interrupt */

6.1.1.3 External Interrupt Controller Mode
External Interrupt Controller Mode redefines the way that the processor interrupt logic is configured to provide sup-
port for an external interrupt controller. The interrupt controller is responsible for prioritizing all interrupts, including
hardware, software, timer, and performance counter interrupts, and directly supplying to the processor the vector
number (and optionally the priority level) of the highest priority interrupt. EIC interrupt mode is in effect if all of the
following conditions are true:
. COﬂﬁgSVHC =1
i |ntCt|VS * O
* Causey=1

d StatUSBEV =0

In EIC interrupt mode, the processor sends the state of the software interrupt requests (Cause p; _ipo), the timer inter-
rupt request (Causer;), and the performance counter interrupt request (Causepc) to the external interrupt controller,
where it prioritizes these interrupts in a system-dependent way with other hardware interrupts. The interrupt control-

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

6.1 Interrupts

ler can be a hard-wired logic block, or it can be configurable based on control and status registers. This allows the
interrupt controller to be more specific or more general as a function of the system environment and needs.

The external interrupt controller prioritizes its interrupt requests and produces the priority level and the vector num-
ber of the highest priority interrupt to be serviced. The priority level, called the Requested Interrupt Priority Level
(RIPL), is a 6-bit encoded value in the range 0..63, inclusive. A value of 0 indicates that no interrupt requests are
pending. The values 1..63 represent the lowest (1) to highest (63) RIPL for the interrupt to be serviced. The interrupt
controller passes this value on the 6 hardware interrupt lines, which are treated as an encoded value in EIC interrupt
mode. There are several implementation options available for the vector offset:

1. The first option is to treat the RIPL value as the vector number for the processor.
2. The second option is to send a separate vector number along with the RIPL to the processor.
3. Athird option is to send an entire vector offset along with the RIPL to the processor.

Statusp, (Which overlays Status;;7 v2) 1S interpreted as the Interrupt Priority Level (IPL) at which the processor is
currently operating (with a value of zero indicating that no interrupt is currently being serviced). When the interrupt
controller requests service for an interrupt, the processor compares RIPL with Statusp, to determine if the requested
interrupt has higher priority than the current IPL. If RIPL is strictly greater than Status,p|, and interrupts are enabled
(Statusjg = 1, Statusgy, = 0, and Statusgg_ = 0) an interrupt request is signaled to the pipeline. When the processor
starts the interrupt exception, it loads RIPL into Causegp, (Which overlays Causep; |p,) and signals the external
interrupt controller to notify it that the request is being serviced. Because Causeg,p,_ is only loaded by the processor
when an interrupt exception is signaled, it is available to software during interrupt processing. The vector number that
the EIC passes into the core is combined with the IntCtly5 to determine where the interrupt service routines is located.
The vector number is not stored in any software visible register. Some implementations may choose to use the RIPL
as the vector number, but this is not a requirement.

In EIC interrupt mode, the external interrupt controller is also responsible for supplying the GPR shadow set number
to use when servicing the interrupt. As such, the SRSMap register is not used in this mode, and the mapping of the
vectored interrupt to a GPR shadow set is done by programming (or designing) the interrupt controller to provide the
correct GPR shadow set number when an interrupt is requested. When the processor loads an interrupt request into
Causegypy, it also loads the GPR shadow set number into SRSCtlg css, Which is copied to SRSCtlqss When the inter-

rupt is serviced.

The operation of EIC interrupt mode is shown pictorially in Figure 6.2.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 79

Interrupts and Exceptions

80

Figure 6.2 Interrupt Generation for External Interrupt Controller Interrupt Mode

Encode Latch Compare Generate
An
Causery RIPL Y
Cause E‘ > Request Interrupt
Pl 3 IPL? —Requggl.
Causepp, g —» ? TSE_D—
Causepp 7

Interrupt

Gt Exception

Tt
2
B .
‘% Interrupt Service
| © garted
—» & Load IntCllys —y
E _f elds - Option 1 & 2 -
E Requested & Option1 - RIPL as Vector g ‘(E)xgpnon Vector
— ez gh"-;‘ Number _ § t
£ 3 -'4 O 3
— 2 8 5 =
” . .. 7]
—P» QuonZ- Ellcﬁ Vector Number = =

S
Option3 - Explicit Vector Offset

Shadow Set

——————————lell

Interrupt Sources

_>

SRSCtlgcss

Shadow Set
Mapping

A typical software handler for EIC interrupt mode bypasses the entire sequence of code following the IVexception
label shown for the compatibility mode handler above. Instead, the hardware performs the prioritization, dispatching
directly to the interrupt processing routine. Unlike the compatibility mode examples, an EIC interrupt handler may
take advantage of a dedicated GPR shadow set to avoid saving any registers. As such, the SimpleInterrupt code

shown above need not save the GPRs.

A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the nested
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. It also need only copy
Causeg;p; to Status;p; to prevent lower priority interrupts from interrupting the handler. Such a routine might look as

follows:

NestedException:
/*
* Nested exceptions typically require saving the EPC, Status,and SRSCtl registers,
setting up the appropriate GPR shadow set for the routine, disabling

*
* the appropriate IM bits in Status to prevent an interrupt loop, putting
* the processor in kernel mode, and re-enabling interrupts. The sample code
* below cannot cover all nuances of this processing and is intended only
* to demonstrate the concepts.
*/

/* Use the current GPR shadow set, and setup software context */

mfcO0 k1, CO_Cause /* Read Cause to get RIPL value */

mfc0 k0, CO_EPC /* Get restart address */

srl k1, k1, S CauseRIPL /* Right justify RIPL field */

sw k0, EPCSave /* Save in memory */

mfcO0 k0, CO_Status /* Get Status value */

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

sw k0, StatusSave

/* Save in memory */

6.1 Interrupts

ins k0, k1, S StatusIPL, 6 /* Set IPL to RIPL in copy of Status */

mfcO k1, CO_SRSCtl

sw k1, SRSCtlSave
/* If switching shadow sets, write new value to SRSCtlpgg here */

ins k0, zero,

S_StatusEXL,

mtcO kO, CO_Status

/*

* If switching

* address to EPC,

* gshadow sets,

*/

/* Process interrupt here,

/*

shadow sets,

(W_StatusKSU+W_StatusERL+W_StatusEXL)
/* Clear KSU, ERL, EXL bits in kO */

/* Modify IPL, switch to kernel mode,

/* Save SRSCtl if changing shadow sets */

/* re-enable interrupts */

clear only KSU above, write

and jump to routine

and do execute an eret to clear EXL,

target
switch

including clearing device interrupt */

*/

* The interrupt completion code is identical to that shown for VI mode above.

*/

6.1.2 Generation of Exception Vector Offsets for Vectored Interrupts

For vectored interrupts (in either VI or EIC interrupt mode - options 1 & 2), a vector number is produced by the inter-
rupt control logic. This number is combined with IntCtl to create the interrupt offset, which is added to 0x200 to cre-
ate the exception vector offset. For VI interrupt mode, the vector number is in the range 0..7, inclusive. For EIC
interrupt mode, the vector number is in the range 1..63, inclusive (0 being the encoding for “no interrupt”). The
IntCtly field specifies the spacing between vector locations. If this value is zero (the default reset state), the vector
spacing is zero and the processor reverts to Interrupt Compatibility Mode. A non-zero value enables vectored inter-
rupts, and Table 6.4 shows the exception vector offset for a representative subset of the vector numbers and values of

the IntCtlyg field.

Table 6.4 Exception Vector Offsets for Vectored Interrupts

Value of IntCtlyg Field
Vector Number 0b00001 | 0b00010 | 0b00100 | 0b01000 | Ob10000
0 0x0200 0x0200 0x0200 0x0200 0x0200
1 0x0220 0x0240 0x0280 0x0300 0x0400
2 0x0240 0x0280 0x0300 0x0400 0x0600
3 0x0260 0x02C0 0x0380 0x0500 0x0800
4 0x0280 0x0300 0x0400 0x0600 0x0A00
5 0x02A0 0x0340 0x0480 0x0700 0x0C00
6 0x02C0 0x0380 0x0500 0x0800 0xO0EO00
7 0x02E0 0x03C0 0x0580 0x0900 0x1000
.
61 0x09A0 0x1140 0x2080 0x3F00 0x7C00
62 0x09C0 0x1180 0x2100 0x4000 0x7EOQ0
63 0x09EO 0x11CO 0x2180 0x4100 0x8000

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 81

Interrupts and Exceptions

The general equation for the exception vector offset for a vectored interrupt is:

vectorOffset <« 0x200 + (vectorNumber x (IntCtlyg || 0b00000))

6.1.2.1 Software Hazards and the Interrupt System

Software writes to certain coprocessor 0 register fields may change the conditions under which an interrupt is taken.
This creates a coprocessor 0 (CP0) hazard, as described in the chapter “CP0 Hazards” on page 105. In Release 1 of

the Architecture, there was no architecturally-defined method for bounding the number of instructions which would
be executed after the instruction which caused the interrupt state change and before the change to the interrupt state
was seen. In Release 2 of the Architecture, the EHB instruction was added, and this instruction can be used by soft-
ware to clear the hazard.

Table 6.5 lists the CPO register fields which can cause a change to the interrupt state (either enabling interrupts which
were previously disabled or disabling interrupts which were previously enabled).

Table 6.5 Interrupt State Changes Made Visible by EHB

CPO Register Field(s)
Instruction(s) CPO Register Written Modified
MTCO Status IM, IPL, ERL, EXL, IE
El, DI Status IE
MTCO Cause IP1 o
MTCO PerfCnt Control IE
MTCO PerfCnt Counter Event Count

An EHB, executed after one of these fields is modified by the listed instruction, makes the change to the interrupt
state visible no later than the instruction following the EHB.

In the following example, a change to the Causey, field is made visible by an EHB:

mfcO k0o, CO_status

ins k0, zero, S_StatusIM4, 1 /* Clear bit 4 of the IM field */
mtc0 kO, CO_Status /* Re-write the register */

ehb /* Clear the hazard */

/* Change to the interrupt state is seen no later than this instruction */

Similarly, the effects of an DI instruction are made visible by an EHB:

di /* Disable interrupts */
ehb /* Clear the hazard */
/* Change to the interrupt state is seen no later than this instruction */

6.2 Exceptions

82

Normal execution of instructions may be interrupted when an exception occurs. Such events can be generated as a by-
product of instruction execution (e.g., an integer overflow caused by an add instruction or a TLB miss caused by a
load instruction), or by an event not directly related to instruction execution (e.g., an external interrupt). When an
exception occurs, the processor stops processing instructions, saves sufficient state to resume the interrupted instruc-
tion stream, enters Kernel Mode, and starts a software exception handler. The saved state and the address of the soft-
ware exception handler are a function of both the type of exception, and the current state of the processor.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

6.2.1 Exception Priority

Table 6.6 lists all possible exceptions, and the relative priority of each, highest to lowest.

Table 6.6 Priority of Exceptions

6.2 Exceptions

Prioritized above data fetch exceptions to allow break on illegal data
addresses.

Exception Description Type

Reset The Cold Reset signal was asserted to the processor Asynchronous

Soft Reset The Reset signal was asserted to the processor Reset

Debug Single Step An EJTAG Single Step occurred. Prioritized above other exceptions, Synchronous
including asynchronous exceptions, so that one can single-step into Debug
interrupt (or other asynchronous) handlers.

Debug Interrupt An EJTAG interrupt (EjtagBrk or DINT) was asserted. Asynchronous

Imprecise Debug Data Break An imprecise EJTAG data break condition was asserted. Debug

Nonmaskable Interrupt (NMI) The NMI signal was asserted to the processor. Asynchronous

Machine Check An internal inconsistency was detected by the processor.

Interrupt An enabled interrupt occurred.

Deferred Watch A watch exception, deferred because EXL was one when the excep-
tion was detected, was asserted after EXL went to zero.

Debug Instruction Break An EJTAG instruction break condition was asserted. Prioritized Synchronous
above instruction fetch exceptions to allow break on illegal instruc- Debug
tion addresses.

Watch - Instruction fetch A watch address match was detected on an instruction fetch. Priori- Synchronous
tized above instruction fetch exceptions to allow watch on illegal
instruction addresses.

Address Error - Instruction fetch A non-word-aligned address was loaded into PC.

TLB Refill - Instruction fetch A TLB miss occurred on an instruction fetch.

TLB Invalid - Instruction fetch The valid bit was zero in the TLB entry mapping the address refer-
enced by an instruction fetch.

TLB Execute-Inhibit An instruction fetch matched a valid TLB entry which had the XI bit
set.

Cache Error - Instruction fetch A cache error occurred on an instruction fetch.

Bus Error - Instruction fetch A bus error occurred on an instruction fetch.

SDBBP An EJTAG SDBBP instruction was executed. Synchronous

Debug

Instruction Validity Exceptions An instruction could not be completed because it was not allowed Synchronous
access to the required resources, or was illegal: Coprocessor Unus-
able, Reserved Instruction. If both exceptions occur on the same
instruction, the Coprocessor Unusable Exception takes priority over
the Reserved Instruction Exception.

Execution Exception An instruction-based exception occurred: Integer overflow, trap,
system call, breakpoint, floating-point, coprocessor 2 exception.

Precise Debug Data Break A precise EJTAG data break on load/store (address match only) or a Synchronous
data break on store (address+data match) condition was asserted. Debug

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

83

Interrupts and Exceptions

Table 6.6 Priority of Exceptions (Continued)

Exception Description Type

Watch - Data access A watch address match was detected on the address referenced by a Synchronous
load or store. Prioritized above data fetch exceptions to allow watch
on illegal data addresses.

Address error - Data access An unaligned address, or an address that was inaccessible in the cur-
rent processor mode was referenced, by a load or store instruction
TLB Refill - Data access A TLB miss occurred on a data access
TLB Invalid - Data access The valid bit was zero in the TLB entry mapping the address refer-
enced by a load or store instruction
TLB Read-Inhibit A data read access matched a valid TLB entry whose RI bit is set.
TLB Modified - Data access The dirty bit was zero in the TLB entry mapping the address refer-
enced by a store instruction
Cache Error - Data access A cache error occurred on a load or store data reference Synchronous
Bus Error - Data access A bus error occurred on a load or store data reference or
Asynchronous

The “Type” column of Table 6.7 describes the type of exception. Table 6.8 explains the characteristics of each excep-
tion type.

Table 6.7 Exception Type Characteristics

Exception Type Characteristics

Asynchronous Reset Denotes a reset-type exception that occurs asynchronously to instruction execution.
These exceptions always have the highest priority to guarantee that the processor can
always be placed in a runnable state.

Asynchronous Debug Denotes an EJTAG debug exception that occurs asynchronously to instruction execution.
These exceptions have very high priority with respect to other exceptions because of the
desire to enter Debug Mode, even in the presence of other exceptions, both asynchro-
nous and synchronous.

Asynchronous Denotes any other type of exception that occurs asynchronously to instruction execution.
These exceptions are shown with higher priority than synchronous exceptions mainly for
notational convenience. If one thinks of asynchronous exceptions as occurring between
instructions, they are either the lowest priority relative to the previous instruction, or the
highest priority relative to the next instruction. The ordering of the table above considers
them in the second way.

Synchronous Debug Denotes an EJTAG debug exception that occurs as a result of instruction execution, and
is reported precisely with respect to the instruction that caused the exception. These
exceptions are prioritized above other synchronous exceptions to allow entry to Debug
Mode, even in the presence of other exceptions.

Synchronous Denotes any other exception that occurs as a result of instruction execution, and is
reported precisely with respect to the instruction that caused the exception. These excep-
tions tend to be prioritized below other types of exceptions, but there is a relative priority
of synchronous exceptions with each other.

6.2.2 Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to location 0xBFC0.0000. EJTAG Debug excep-
tions are vectored to location 0xBFCO . 0480, or to location 0xFF20. 0200 if the ProbTrap bit is zero or one,
respectively, in the EJTAG_Control_register.

84 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

6.2 Exceptions

Addresses for all other exceptions are a combination of a vector offset and a vector base address. In Release 1 of the
architecture, the vector base address was fixed. In Release 2 of the architecture (and subsequent releases), software is
allowed to specify the vector base address via the EBase register for exceptions that occur when Statusggy, equals 0.
Table 6.8 gives the vector base address as a function of the exception and whether the BEV bit is set in the Status reg-
ister. Table 6.9 gives the offsets from the vector base address as a function of the exception. Note that the IV bit in the
Cause register causes Interrupts to use a dedicated exception vector offset, rather than the general exception vector.
For implementations of Release 2 of the Architecture (and subsequent releases), Table 6.4 gives the offset from the
base address in the case where Statusggy = 0 and Cause,y = 1. For implementations of Release 1 of the architecture in
which Causey = 1, the vector offset is as if IntCtl,g were 0.

Table 6.10 combines these two tables into one that contains all possible vector addresses as a function of the state that
can affect the vector selection. To avoid complexity in the table, the vector address value assumes that the EBase reg-
ister, as implemented in Release 2 devices, is not changed from its reset state and that IntCtlyg is O.

In Release 2 of the Architecture (and subsequent releases), software must guarantee that EBase s _1, contains zeros in

all bit positions less than or equal to the most significant bit in the vector offset. This situation can only occur when a
vector offset greater than OXFFF is generated when an interrupt occurs with VI or EIC interrupt mode enabled. The
operation of the processor is UNDEFINED if this condition is not met.

Table 6.8 Exception Vector Base Addresses

StatUSBEV
Exception 0 1

Reset, Soft Reset, NMI 0xBFC0.0000

EJTAG Debug (with ProbTrap =0 in 0xBFC0.0480

the EJTAG_Control_register)

EJTAG Debug (with ProbTrap = 1 in 0xFF20.0200

the EJTAG_Control_register)

Cache Error For Release 1 of the architecture: 0xBFC0.0200

0xA000.0000
For Release 2 of the architecture:
EBasez; 30/ 1| EBaseyg 1 |
0x000
Note that EBases; 3g have the
fixed value 0b10

Other For Release 1 of the architecture: 0xBFC0.0200
0x8000.0000
For Release 2 of the architecture:
EBasesl 12 || 0x000
Note that EBases; 3 have the
fixed value 0b10

Table 6.9 Exception Vector Offsets

Exception Vector Offset

TLB Refill, EXL =0 0x000

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 85

Interrupts and Exceptions

Table 6.9 Exception Vector Offsets (Continued)

Exception Vector Offset
Cache error 0x100
General Exception 0x180
Interrupt, Cause), = 1 0x200 (In Release 2 implementa-

tions, this is the base of the vectored
interrupt table when Statusggy = 0)

Reset, Soft Reset, NMI None (Uses Reset Base Address)

Table 6.10 Exception Vectors

Vector

For Release 2 Implementations,

EJTAG assumes that EBase retains its

Exception Statusggy Statusgy Causeyy ProbTrap reset state and that IntCtly,g =0
Reset, Soft Reset, NMI X X X X 0xBFC0.0000
EJTAG Debug X X X 0 0xBFC0.0480
EJTAG Debug X X X 1 0xFF20.0200
TLB Refill 0 0 X X 0x8000.0000
TLB Refill 0 1 X X 0x8000.0180
TLB Refill 1 0 X X 0xXBFCO0.0200
TLB Refill 1 1 X X 0xBFC0.0380
Cache Error 0 X X X 0xA000.0100
Cache Error 1 X X X 0xBFC0.0300
Interrupt 0 0 0 X 0x8000.0180
Interrupt 0 0 1 X 0x8000.0200
Interrupt 1 0 0 X 0xBFC0.0380
Interrupt 1 0 1 X 0xBFC0.0400
All others 0 X X X 0x8000.0180
All others 1 X X X 0xBFC0.0380

‘X’ denotes don’t care

6.2.3 General Exception Processing

With the exception of Reset, Soft Reset, NMI, cache error, and EJTAG Debug exceptions, which have their own spe-
cial processing as described below, exceptions have the same basic processing flow:

» If the EXL bit in the Status register is zero, the EPC register is loaded with the PC at which execution will be
restarted and the BD bit is set appropriately in the Cause register (see Table 9.52 on page 209). The value loaded
into the EPC register is dependent on whether the processor implements the MIPS16 ASE, and whether the
instruction is in the delay slot of a branch or jump which has delay slots. Table 6.11 shows the value stored in
each of the CPO PC registers, including EPC. For implementations of Release 2 of the Architecture if Statusggy =

86 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

6.2 Exceptions

0, the CSS field in the SRSCtl register is copied to the PSS field, and the CSS value is loaded from the appropri-
ate source.

If the EXL bit in the Status register is set, the EPC register is not loaded and the BD bit is not changed in the
Cause register. For implementations of Release 2 of the Architecture, the SRSCtl register is not changed.

Table 6.11 Value Stored in EPC, ErrorEPC, or DEPC on an Exception

MIPS16 In Branch/Jump
Implemented? Delay Slot? Value stored in EPC/ErrorEPC/DEPC

No No Address of the instruction

No Yes Address of the branch or jump instruction (PC-4)

Yes No Upper 31 bits of the address of the instruction, combined
with the ISA Mode bit

Yes Yes Upper 31 bits of the branch or jump instruction (PC-2 in
the MIPS16 ISA Mode and PC-4 in the 32-bit ISA Mode),
combined with the ISA Mode bit

e The CE, and ExcCode fields of the Cause registers are loaded with the values appropriate to the exception. The
CE field is loaded, but not defined, for any exception type other than a coprocessor unusable exception.

e The EXL bit is set in the Status register.
e The processor is started at the exception vector.

The value loaded into EPC represents the restart address for the exception and need not be modified by exception
handler software in the normal case. Software need not look at the BD bit in the Cause register unless it wishes to
identify the address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. This is noted in the descrip-
tion of each exception type below.

Operation:

/* If Statusgy; 1s 1, all exceptions go through the general exception vector */
/* and neither EPC nor Causepy nor SRSCtl are modified */
if Statusgyg; = 1 then
vectorOffset <« 0x180
else
if InstructionInBranchDelaySlot then
EPC « restartPC/* PC of branch/jump */
Causepp <« 1

else
EPC <« restartPC /* PC of instruction */
Causepp <« O

endif

/* Compute vector offsets as a function of the type of exception */
NewShadowSet < SRSCtlggg /* Assume exception, Release 2 only */
if ExceptionType = TLBRefill then

vectorOffset <« 0x000
elseif (ExceptionType = Interrupt) then

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 87

Interrupts and Exceptions

if (Causery = 0) then
vectorOffset <« 0x180
else
if (Statusggy = 1) or (IntCtlyg = 0) then
vectorOffset <« 0x200
else
if Config3ygrc = 1 then
if (EIC_optionl)
VecNum < Causegypy,
elseif (EIC option2)
VecNum < EIC VecNum Signal
endif
NewShadowSet < SRSCtlgicgg
else
VecNum <« VIntPriorityEncoder ()
NewShadowSet <« SRSMapiprX44.3..1pL%4
endif
if (EIC_option3)
vectorOffset < EIC_VectorOffset Signal
else
vectorOffset <« 0x200 + (VecNum x (IntCtlyg || 0b00000))
endif
endif /* if (Statusggy = 1) or (IntCtlyg = 0) then */
endif /* if (Causery = 0) then */
endif /* elseif (ExceptionType = Interrupt) then */

/* Update the shadow set information for an implementation of */
/* Release 2 of the architecture */
if (ArchitectureRevision 2 2) and (SRSCtlygg > 0) and (Statusggy = 0) then
SRSCtlpgg ¢« SRSCtlggg
SRSCtl.gg ¢« NewShadowSet
endif
endif /* if Statusgyy = 1 then */

Causeqg < FaultingCoprocessorNumber
Causegyccoge ¢ ExceptionType
Statusgy;, < 1

/* Calculate the vector base address */
if Statusggy = 1 then
vectorBase <« 0xBFC0.0200
else
if ArchitectureRevision > 2 then
/* The fixed value of EBase;; 3, forces the base to be in kseg0 or ksegl */
vectorBase <« EBase;; ;5 || 0x000
else
vectorBase <« 0x8000.0000
endif
endif

/* Exception PC is the sum of vectorBase and vectorOffset. Vector */
/* offsets > OXFFF (vectored or EIC interrupts only), require */
/* that EBase;; 1, have zeros in each bit position less than or */
/* equal to the most significant bit position of the vector offset */
PC <« vectorBase;; 3o || (vectorBase,y + vectorOffset,gy)

/* No carry between bits 29 and 30 */

88 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

6.2 Exceptions

6.2.4 EJTAG Debug Exception

An EJTAG Debug Exception occurs when one of a number of EJTAG-related conditions is met. Refer to the EJTAG
Specification for details of this exception.

Entry Vector Used

O0xBFCO 0480 if the ProbTrap bit is zero in the EJTAG_Control_register; 0xFF20 0200 if the ProbTrap bit is
one.

6.2.5 Reset Exception

A Reset Exception occurs when the Cold Reset signal is asserted to the processor. This exception is not maskable.
When a Reset Exception occurs, the processor performs a full reset initialization, including aborting state machines,
establishing critical state, and generally placing the processor in a state in which it can execute instructions from
uncached, unmapped address space. On a Reset Exception, only the following registers have defined state:

e The Random register is initialized to the number of TLB entries minus one. The Random register is deprecated in
Release 6.

e The Wired register is initialized to zero.

e The Config, Configl, Config2, and Config3 registers are initialized with their boot state.

e TheRP, BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.
e Waitch register enables and Performance Counter register interrupt enables are cleared.

e The ErrorEPC register is loaded with the restart PC, as described in Table 6.11. Note that this value may or may
not be predictable if the Reset Exception was taken as the result of power being applied to the processor because
PC may not have a valid value in that case. In some implementations, the value loaded into ErrorEPC register
may not be predictable on either a Reset or Soft Reset Exception.

e PCis loaded with 0xBFC0O 0000.

Cause Register ExcCode Value
None

Additional State Saved
None

Entry Vector Used
Reset (0xBFCO 0000)

Operation
Random <« TLBEntries - 1
PageMaskyckx < O # 1KB page support implemented
PageGrainggp < 0 # 1KB page support implemented

Wired « 0

HWREna <« 0

EntryHiypysx < O # 1KB page support implemented

Statusgp < O # This bit becomes reserved in Release 6
Statuspry < 1

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 89

Interrupts and Exceptions

Statuspg < 0 # This bit becomes reserved in Release 6
Statusgg < O
Statusyyy < O
Statusgg, < 1
IntCtlyg < O

SRSCtlygg < HighestImplementedShadowSet
SRSCtlggg <« O

SRSCtlpgg « O

SRSCtlepgg < O

SRSMap <« 0

Causeps < 0

EBaseExceptionBase <~ 0
Config <« ConfigurationState

Configgg <« 2 # Suggested - see Config register description
Configl « ConfigurationState
Config2 « ConfigurationState
Config3 <« ConfigurationState
WatchLo[n]; < 0 # For all implemented Watch registers
WatchLo[n]lg < 0 # For all implemented Watch registers
WatchLo[n]y < 0 # For all implemented Watch registers
PerfCnt.Control [n];g < O # For all implemented PerfCnt registers
if InstructionInBranchDelaySlot then

ErrorEPC « restartPC # PC of branch/jump
else

ErrorEPC <« restartPC # PC of instruction
endif
PC <« O0xBFCO 0000

6.2.6 Soft Reset Exception

A Soft Reset Exception occurs when the Reset signal is asserted to the processor. This exception is not maskable.
When a Soft Reset Exception occurs, the processor performs a subset of the full reset initialization. Although a Soft
Reset Exception does not unnecessarily change the state of the processor, it may be forced to do so in order to place
the processor in a state in which it can execute instructions from uncached, unmapped address space. Since bus,
cache, or other operations may be interrupted, portions of the cache, memory, or other processor state may be incon-
sistent.

The primary difference between the Reset and Soft Reset Exceptions is in actual use. The Reset Exception is typically
used to initialize the processor on power-up, while the Soft Reset Exception is typically used to recover from a non-
responsive (hung) processor. The semantic difference is provided to allow boot software to save critical coprocessor 0
or other register state to assist in debugging the potential problem. As such, the processor may reset the same state
when either reset signal is asserted, but the interpretation of any state saved by software may be very different.

In addition to any hardware initialization required, the following state is established on a Soft Reset Exception:

* TheRP, BEY, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.

» Waitch register enables and Performance Counter register interrupt enables are cleared.

» The ErrorEPC register is loaded with the restart PC, as described in Table 6.11.

e PCis loaded with 0xBFCO 0000.

Cause Register ExcCode Value
None

920 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

Additional State Saved
None

Entry Vector Used
Reset (0xBFCO 0000)

Operation

PageMasky,gkx < O
PageGrainggp <« 0
EntryHiypyox ¢ O
Configygy « 2
Statusgp <« 0
Statuspgy <« 1
Statuspg < 0
Statusgyp <« 1
Statusyyy < O
Statusgg, < 1
WatchLo[n]; < 0
WatchLo[n]lg < 0
WatchLo[n]y < 0
PerfCnt.Control [n];g < O

H HF H H HF

#
#
#
#

if InstructionInBranchDelaySlot
ErrorEPC « restartPC # PC of branch/jump

else

6.2 Exceptions

1KB page support implemented

1KB page support implemented

1KB page support implemented

Suggested - see Config register description
This bit becomes reserved in Release 6

This bit becomes reserved in Release 6

For
For
For
For
then

all
all
all
all

implemented Watch registers
implemented Watch registers
implemented Watch registers
implemented PerfCnt registers

ErrorEPC <« restartPC # PC of instruction

endif
PC « O0xBFCO 0000

6.2.7 Non Maskable Interrupt (NMI) Exception

A non maskable interrupt exception occurs when the NMI signal is asserted to the processor.

Although described as an interrupt, it is more correctly described as an exception because it is not maskable. An NMI
occurs only at instruction boundaries, so does not do any reset or other hardware initialization. The state of the cache,
memory, and other processor state is consistent and all registers are preserved, with the following exceptions:

 TheBEVY, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.

» The ErrorEPC register is loaded with restart PC, as described in Table 6.11.

e PCis loaded with 0xBFCO 0000.

Cause Register ExcCode Value
None

Additional State Saved

None

Entry Vector Used
Reset (0xBFC0 0000)

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 91

Interrupts and Exceptions

Operation

Statusppy < 1
Statuspg < 0 # This bit becomes reserved in Release 6
Statusgy < O
Statusyyr < 1
Statusggy, < 1
if InstructionInBranchDelaySlot then
ErrorEPC « restartPC # PC of branch/jump
else
ErrorEPC <« restartPC # PC of instruction
endif
PC <« OxBFCO 0000

6.2.8 Machine Check Exception

A machine check exception occurs when the processor detects an internal inconsistency.

The following conditions cause a machine check exception;

e Detection of multiple matching entries in the TLB in a TLB-based MMU.If the Hardware Page Table Walker
feature is implemented and the Directory-level Huge page feature is supported and the Dual Page method is also
supported, and if the first accessed PTE entry has PTEVId bit set and the second accessed PTE entry has PTEVId
bit clear.

Cause Register ExcCode Value
MCheck (See Table 9.53 on page 212)

Additional State Saved
Depends on the condition that caused the exception. See the descriptions above.

If there are multiple causes for the machine check exception, then the PageGrainyccause register field is used to dis-
tinguish which condition caused the exception.

Entry Vector Used
General exception vector (offset 0x180)

6.2.9 Address Error Exception

An address error exception occurs under the following circumstances:

* Aninstruction is fetched from an address that is not aligned on a word boundary.

» Aload or store word instruction is executed in which the address is not aligned on a word boundary.

» Aload or store halfword instruction is executed in which the address is not aligned on a halfword boundary.
» Areference is made to a kernel address space from User Mode or Supervisor Mode.

» Avreference is made to a supervisor address space from User Mode.

Release 6 supports misaligned load/store handling. Whether an Address Error is generated is implementation-depen-
dent, as described in Appendix B of Volume I-A of the MIPS Architecture documentation set.

92 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

6.2 Exceptions

Note that in the case of an instruction fetch that is not aligned on a word boundary, the PC is updated before the con-
dition is detected. Therefore, both EPC and BadVAddr point at the unaligned instruction address.

Cause Register ExcCode Value

AdEL: Reference was a load or an instruction fetch

AdES: Reference was a store

See Table 9.53 on page 212.

Additional State Saved

Register State Value
BadVAddr failing address
Contextypyy UNPREDICTABLE
EntryHiy/pns UNPREDICTABLE
EntryLoO UNPREDICTABLE
EntryLol UNPREDICTABLE

Entry Vector Used
General exception vector (offset 0x180)

6.2.10 TLB Refill Exception

A TLB Refill exception occurs in a TLB-based MMU when no TLB entry matches a reference to a mapped address
space and the EXL bit is zero in the Status register. Note that this is distinct from the case in which an entry matches
but has the valid bit off, in which case a TLB Invalid exception occurs.

Cause Register ExcCode Value

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store

See Table 9.53 on page 212.

Additional State Saved

Register State Value
BadVAddr Failing address
Context If Config3cTxTc bit is set, then the bits of the Context reg-

ister corresponding to the set bits of the Virtuallndex field
of the ContextConfig register are loaded with the high-
order bits of the virtual address that missed.

If Config3cTxTC bit is clear, then the BadVPN2 field con-
tains VAg; 13 of the failing address

EntryHi The VPN2 field contains VA3, 13 0f the failing address; the
ASID field contains the ASID of the reference that missed.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 93

Interrupts and Exceptions

Register State Value
EntryLo0O UNPREDICTABLE
EntryLol UNPREDICTABLE

Entry Vector Used

» TLB Refill vector (offset 0x000) if Statusgy, = 0 at the time of exception.

» General exception vector (offset 0x180) if Statusgy, = 1 at the time of exception
6.2.11 Execute-Inhibit Exception

An Execute-Inhibit exception occurs when the virtual address of an instruction fetch matches a TLB entry whose XI
bit is set. This exception type can only occur if the XI bit is implemented within the TLB and is enabled, this is
denoted by the PageGrainyg bit.

Cause Register ExcCode Value
if PageGrainjgc == 0 TLBL

if PageGrainjgc == 1 TLBXI
See Table 9.53 on page 212.

Additional State Saved

Register State Value
BadVAddr Failing address
Context If Config3cTxTc bit is set, then the bits of the Context reg-

ister corresponding to the set bits of the Virtuallndex field
of the ContextConfig register are loaded with the high-
order bits of the virtual address that missed.

If Config3cTxTc bit is clear, then the BadVPN2 field con-
tains VAz; 13 of the failing address

EntryHi The VPN2 field contains VA3, 13 0f the failing address; the
ASID field contains the ASID of the reference that missed.

EntryLoO UNPREDICTABLE

EntryLol UNPREDICTABLE

Entry Vector Used
General exception vector (offset 0x180)

6.2.12 Read-Inhibit Exception

An Read-Inhibit exception occurs when the virtual address of a memory load reference matches a TLB entry whose
RI bit is set. This exception type can only occur if the RI bit is implemented within the TLB and is enabled, this is
denoted by the PageGraing,g bit. MIPS16 PC-relative loads are a special case and are not affected by the RI bit.

94 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

Cause Register ExcCode Value
if PageGrainjgc == 0 TLBL

if PageGrain;zc == 1 TLBRI
See Table 9.53 on page 212.

Additional State Saved

Register State

Value

BadVAddr

Failing address

Context

If Config3cTxTc bit is set, then the bits of the Context reg-

ister corresponding to the set bits of the Virtuallndex field
of the ContextConfig register are loaded with the high-
order bits of the virtual address that missed.

If Config3cTxTC bit is clear, then the BadVPN2 field con-
tains VAg; 13 of the failing address

EntryHi

The VPN2 field contains VA3, 13 0f the failing address; the
ASID field contains the ASID of the reference that missed.

EntryLo0O

UNPREDICTABLE

EntryLol

Entry Vector Used

UNPREDICTABLE

General exception vector (offset 0x180)

6.2.13 TLB Invalid Exception

6.2 Exceptions

A TLB invalid exception occurs when a TLB entry matches a reference to a mapped address space, but the matched

entry has the valid bit off.

Note that the condition in which no TLB entry matches a reference to a mapped address space and the EXL bit is one
in the Status register is indistinguishable from a TLB Invalid Exception, in the sense that both use the general excep-
tion vector and supply an ExcCode value of TLBL or TLBS. The only way to distinguish these two cases is by prob-
ing the TLB for a matching entry (using TLBP).

If the RI and XI bits are implemented within the TLB and the PageGrainc bit is clear, then this exception also
occurs if a valid, matching TLB entry is found with the RI bit set on a memory load reference, or with the XI bit set
on an instruction fetch memory reference. MIPS16 PC-relative loads are a special case and are not affected by the RI

bit.

Cause Register ExcCode Value

TLBL: Reference was a load or an instruction fetch

TLBS: Reference was a store
See Table 9.52 on page 209.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 95

Interrupts and Exceptions

Additional State Saved

Register State Value
BadVAddr Failing address
Context If Config3cTxTc bit is set, then the bits of the Context reg-

ister corresponding to the set bits of the Virtuallndex field
of the ContextConfig register are loaded with the high-
order bits of the virtual address that missed.

If Config3cTxTc bit is clear, then the BadVPN2 field con-
tains VAg; 13 of the failing address

EntryHi The VPN2 field contains VA3, 13 0f the failing address; the
ASID field contains the ASID of the reference that missed.

EntryLoO UNPREDICTABLE

EntryLol UNPREDICTABLE

Entry Vector Used
General exception vector (offset 0x180)

6.2.14 TLB Modified Exception

A TLB modified exception occurs on a store reference to a mapped address when the matching TLB entry is valid,
but the entry’s D bit is zero, indicating that the page is not writable.

Cause Register ExcCode Value
Mod (See Table 9.52 on page 209)

Additional State Saved

Register State Value
BadVAddr Failing address
Context If Config3cTxTc bit is set, then the bits of the Context reg-

ister corresponding to the set bits of the Virtuallndex field
of the ContextConfig register are loaded with the high-
order bits of the virtual address that missed.

If Config3cTxTC bit is clear, then the BadVPN2 field con-
tains VAg; 13 of the failing address

EntryHi The VPN2 field contains VA3, 13 of the failing address; the
ASID field contains the ASID of the reference that missed.

EntryLo0 UNPREDICTABLE

EntryLol UNPREDICTABLE

96 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

6.2 Exceptions

Entry Vector Used

General exception vector (offset 0x180)

6.2.15 Cache Error Exception

A cache error exception occurs when an instruction or data reference detects a cache tag or data error, or a parity or
ECC error is detected on the system bus when a cache miss occurs. This exception is not maskable. Because the error
was in a cache, the exception vector is to an unmapped, uncached address.

Cause Register ExcCode Value
N/A

Additional State Saved

Register State Value

CacheErr Error state
ErrorEPC Restart PC

Entry Vector Used

Cache error vector (offset 0x100)

Operation

CacheErr <« ErrorState
Statusgg, < 1
if InstructionInBranchDelaySlot then
ErrorEPC restartPC # PC of branch/jump
else
ErrorEPC restartPC # PC of instruction
endif
if Statusggy = 1 then
PC <« O0xBFCO 0200 + 0x100
else
if ArchitectureRevision > 2 then
/* The fixed value of EBase;; 39 and bit 29 forced to a 1 puts the */
/* vector in ksegl */
PC « EBase;; 30 ||l||EBaseyg 15 || 0x100
else
PC <« 0xA000 0000 + 0x100
endif
endif

6.2.16 Bus Error Exception

A bus error occurs when an instruction, data, or prefetch access makes a bus request (due to a cache miss or an unca-
cheable reference) and that request is terminated in an error. Note that parity errors detected during bus transactions
are reported as cache error exceptions, not bus error exceptions.

Cause Register ExcCode Value
IBE: Error on an instruction reference
DBE: Error on a data reference

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 97

Interrupts and Exceptions

See Table 9.53 on page 212.

Additional State Saved
None

Entry Vector Used

General exception vector (offset 0x180)

6.2.17 Integer Overflow Exception

An integer overflow exception occurs when selected integer instructions result in a 2’s complement overflow.

Cause Register ExcCode Value
Ov (See Table 9.53 on page 212)

Additional State Saved
None

Entry Vector Used

General exception vector (offset 0x180)

6.2.18 Trap Exception

A trap exception occurs when a trap instruction results in a TRUE value.

Cause Register ExcCode Value
Tr (See Table 9.53 on page 212)

Additional State Saved
None

Entry Vector Used

General exception vector (offset 0x180)

6.2.19 System Call Exception

A system call exception occurs when a SYSCALL instruction is executed.

Cause Register ExcCode Value
Sys (See Table 9.52 on page 209)

Additional State Saved
None

Entry Vector Used

General exception vector (offset 0x180)

98 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

6.2 Exceptions

6.2.20 Breakpoint Exception

A breakpoint exception occurs when a BREAK instruction is executed.

Cause Register ExcCode Value
Bp (See Table 9.53 on page 212)

Additional State Saved
None

Entry Vector Used

General exception vector (offset 0x180)
6.2.21 Reserved Instruction Exception

A Reserved Instruction Exception occurs if any of the following conditions is true:

» Aninstruction was executed that specifies an encoding of the opcode field that is flagged with “*” (reserved),
“B” (higher-order ISA), or an unimplemented “&” (Module/ASE).

e Aninstruction was executed that specifies a SPECIAL opcode encoding of the function field that is flagged with
“x” (reserved), or “B” (higher-order ISA).

e Aninstruction was executed that specifies a REGIMM opcode encoding of the rt field that is flagged with “*”
(reserved).

e Aninstruction was executed that specifies an unimplemented SPECIAL2 opcode encoding of the function field
that is flagged with an unimplemented “6” (partner available), or an unimplemented “c” (EJTAG).

« Aninstruction was executed that specifies a COPz opcode encoding of the rs field that is flagged with “*”
(reserved), “B” (higher-order ISA), or an unimplemented “c” (Module/ASE), assuming that access to the copro-
cessor is allowed. If access to the coprocessor is not allowed, a Coprocessor Unusable Exception occurs instead.
For the COP1 opcode, some implementations of previous ISAs reported this case as a Floating-Point Exception,
setting the Unimplemented Operation bit in the Cause field of the FCSR register.

* Aninstruction was executed that specifies an unimplemented COPO opcode encoding of the function field when
rs is CO that is flagged with “+” (reserved), or an unimplemented “c” (EJTAG), assuming that access to copro-
cessor 0 is allowed. If access to the coprocessor is not allowed, a Coprocessor Unusable Exception occurs
instead.

* Aninstruction was executed that specifies a COP1 opcode encoding of the function field that is flagged with “x*”
(reserved), “B” (higher-order ISA), or an unimplemented “¢” (Module/ASE), assuming that access to coproces-
sor 1 is allowed. If access to the coprocessor is not allowed, a Coprocessor Unusable Exception occurs instead.
Some implementations of previous ISAs reported this case as a Floating-Point Exception, setting the Unimple-
mented Operation bit in the Cause field of the FCSR register.

Cause Register ExcCode Value

RI (See Table 9.53 on page 212)

Additional State Saved
None

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 99

Interrupts and Exceptions

100

Entry Vector Used
General exception vector (offset 0x180)

6.2.22 Coprocessor Unusable Exception

A coprocessor unusable exception occurs if any of the following conditions is true:

» A COPO or Cache instruction was executed while the processor was running in a mode other than Debug Mode
or Kernel Mode, and the CUO bit in the Status register was a zero

« ACOPL, COP1X,LWC1, SWC1, LDCL1, SDC1 or MOVCI (Special opcode function field encoding) instruction
was executed and the CU1 bit in the Status register was a zero.

« ACOP2, LWC2, SWC2, LDC2, or SDC2 instruction was executed, and the CU2 bit in the Status register was a
zero. COP2 instructions include MFC2, DMFC2, CFC2, MFHC2, MTC2, DMTC2, CTC2, MTHC?2.

NOTE: In Release 2 of the MIPS32 Architecture, the use of COP3 as a user-defined coprocessor has been removed.
The use of COP3 is reserved for the future extension of the architecture.

Cause Register ExcCode Value
CpU (See Table 9.52 on page 209)

Additional State Saved

Register State Value

Causecg unit number of the coprocessor being referenced

Entry Vector Used
General exception vector (offset 0x180)

6.2.23 Floating-Point Exception

A floating-point exception is initiated by the floating-point coprocessor to signal a floating-point exception.

Register ExcCode Value
FPE (See Table 9.52 on page 209)

Additional State Saved

Register State Value

FCSR indicates the cause of the floating-point exception

Entry Vector Used

General exception vector (offset 0x180)

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

6.2 Exceptions

6.2.24 Coprocessor 2 Exception

A coprocessor 2 exception is initiated by coprocessor 2 to signal a precise coprocessor 2 exception.

Register ExcCode Value
C2E (See Table 9.52 on page 209)

Additional State Saved

Defined by the coprocessor

Entry Vector Used

General exception vector (offset 0x180)

6.2.25 Watch Exception

The watch facility provides a software debugging vehicle by initiating a watch exception when an instruction or data
reference matches the address information stored in the WatchHi and WatchLo registers. A watch exception is taken
immediately if the EXL and ERL bits of the Status register are both zero. If either bit is a one at the time that a watch
exception would normally be taken, the WP bit in the Cause register is set, and the exception is deferred until both the
EXL and ERL bits in the Status register are zero. Software may use the WP bit in the Cause register to determine if the
EPC register points at the instruction that caused the watch exception, or if the exception actually occurred while in
kernel mode.

If the EXL or ERL bits are one in the Status register and a single instruction generates both a watch exception (which
is deferred by the state of the EXL and ERL bits) and a lower-priority exception, the lower priority exception is taken.

Watch exceptions are never taken if the processor is executing in Debug Mode. Should a watch register match while
the processor is in Debug Mode, the exception is inhibited and the WP bit is not changed.

It is implementation-dependent whether a data watch exception is triggered by a prefetch or cache instruction whose
address matches the Watch register address match conditions. A watch triggered by a SC instruction does so even if
the store would not complete because the LL bit is zero.

Register ExcCode Value
WATCH (See Table 9.52 on page 209)

Additional State Saved

Register State Value

Causeyp Indicates that the watch exception was deferred until after
both Statusgy; and Statusgg, were zero. This bit directly

causes a watch exception, so software must clear this bit as
part of the exception handler to prevent a watch exception
loop at the end of the current handler execution.

Entry Vector Used
General exception vector (offset 0x180)

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 101

Interrupts and Exceptions

6.2.26 Interrupt Exception

The interrupt exception occurs when an enabled request for interrupt service is made. See Section 6.1 on page 71 for
more information.

Register ExcCode Value
Int (See Table 9.53 on page 212)

Additional State Saved

Register State Value

Cause)p indicates the interrupts that are pending.

Entry Vector Used
General exception vector (offset 0x180) if the IV bit in the Cause register is zero.
Interrupt vector (offset 0x200) if the IV bit in the Cause register is one.

102 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

Chapter 7

GPR Shadow Registers

The capability in this chapter is targeted at removing the need to save and restore GPRs on entry to high priority inter-
rupts or exceptions, and to provide specified processor modes with the same capability. This is done by introducing
multiple copies of the GPRs, called shadow sets, and allowing privileged software to associate a shadow set with
entry to Kernel Mode via an interrupt vector or exception. The normal GPRs are logically considered shadow set
zero.

The number of GPR shadow sets is implementation-dependent and may range from one (the normal GPRs) to an
architectural maximum of 16. The highest number actually implemented is indicated by the SRSCtl s field, and all

shadow sets between 0 and SRSCtlygs, inclusive must be implemented. If this field is zero, only the normal GPRs are
implemented.

7.1 Introduction to Shadow Sets

Shadow sets are new copies of the GPRs that can be substituted for the normal GPRs on entry to Kernel Mode via an
interrupt or exception. Once a shadow set is bound to a Kernel Mode entry condition, reference to GPRs work exactly
as one would expect, but they are redirected to registers that are dedicated to that condition. Privileged software may
need to reference all GPRs in the register file, even specific shadow registers that are not visible in the current mode.
The RDPGPR and WRPGPR instructions are used for this purpose. The CSS field of the SRSCtl register provides the
number of the current shadow register set, and the PSS field of the SRSCtl register provides the number of the previ-
ous shadow register set (that which was current before the last exception or interrupt occurred).

If the processor is operating in VI interrupt mode, binding of a vectored interrupt to a shadow set is done by writing to
the SRSMap register. If the processor is operating in EIC interrupt mode, the binding of the interrupt to a specific
shadow set is provided by the external interrupt controller, and is configured in an implementation-dependent way.
Binding of an exception or non-vectored interrupt to a shadow set is done by writing to the ESS field of the SRSCtl
register. When an exception or interrupt occurs, the value of SRSCtlgg is copied to SRSCtlpgg, and SRSCtlcgg is set

to the value taken from the appropriate source. On an ERET, the value of SRSCtlpgs is copied back into SRSCtlqgg to

restore the shadow set of the mode to which control returns. More precisely, the rules for updating the fields in the
SRSCtl register on an interrupt or exception are as follows:

1. No field in the SRSCtl register is updated if any of the following conditions are true. In this case, steps 2 and 3
are skipped.

» The exception is one that sets Statusgg, : NMI or cache error.

e The exception causes entry into EJTAG Debug Mode

b StatusBEV =1
o StatUSEXL =1

2. SRSCthSS is COpied to SRSCtlpSS

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 103

GPR Shadow Registers

3. SRSCltlegg is updated from one of the following sources:

» The appropriate field of the SRSMap register, based on IPL, if the exception is an interrupt, Causep, = 1,
IntCtly,gg = 0, Config3yg,c = 0, and Config3,,,; = 1. These are the conditions for a vectored interrupt.

* The EICSS field of the SRSCtl register if the exception is an interrupt, Cause;y = 1, IntCtly,s5 = 0, and
Config3yg c = 1. These are the conditions for a vectored EIC interrupt.

» The ESS field of the SRSCtl register in any other case. This is the condition for a non-interrupt exception, or
a non-vectored interrupt.

Similarly, the rules for updating the fields in the SRSCtI register at the end of an exception or interrupt are as follows:
1. No field in the SRSCtl register is updated if any of the following conditions is true. In this case, step 2 is skipped.
* A DERET is executed
* An ERET is executed with Statusgg, = 1 or Statusggy = 1
2. SRSCltlpgg is copied to SRSCtlgg

These rules have the effect of preserving the SRSCtl register in any case of a nested exception or one which occurs
before the processor has been fully initialize (Statusggy = 1).

Privileged software may switch the current shadow set by writing a new value into SRSCtlpgg, loading EPC with a
target address, and doing an ERET.

7.2 Support Instructions

104

Table 7.1 Instructions Supporting Shadow Sets

Mnemonic Function MIPS64 Only?
RDPGPR | Read GPR From Previous Shadow Set No
WRPGPR | Write GPR to Shadow Set No

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

Chapter 8

CPO Hazards

8.1 Introduction

Because resources controlled via Coprocessor 0 affect the operation of various pipeline stages of a MIPS32/
microMIPS32 processor, manipulation of these resources may produce results that are not detectable by subsequent
instructions for some number of execution cycles. When no hardware interlock exists between one instruction that
causes an effect that is visible to a second instruction, a CP0 hazard exists.

In Release 1 of the MIPS32® Architecture, CP0 hazards were relegated to implementation-dependent cycle-based
solutions, primarily based on the SSNOP instruction. Since that time, it has become clear that this is an insufficient
and error-prone practice that must be addressed with a firm compact between hardware and software. As such, new
instructions have been added to Release 2 of the architecture which act as explicit barriers that eliminate hazards. To
the extent that it was possible to do so, the new instructions have been added in such a way that they are backward-
compatible with existing MIPS processors.

8.2 Types of Hazards

In privileged software, there are two different types of hazards: execution hazards and instruction hazards. Both are
defined below.

Implementations using Release 1 of the architecture should refer to their Implementation documentation for the
required instruction “spacing” that is required to eliminate these hazards.

Note that, for superscalar MIPS implementations, the number of instructions issued per cycle may be greater than
one, and thus that the duration of the hazard in instructions may be greater than the duration in cycles. It is for this
reason that MIPS32 Release 1 defines the SSNOP instruction to convert instruction issues to cycles in a superscalar
design.

8.2.1 Possible Execution Hazards

Execution hazards are those created by the execution of one instruction, and seen by the execution of another instruc-
tion. Table 8.1 lists the possible execution hazards that might exist when there are no hardware interlocks.

Table 8.1 Possible Execution Hazards

Producer - Consumer Hazard On

Hazards Related to the TLB

MTCO - TLBR, EntryHi
TLBWI,
TLBWR

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 105

CPO Hazards

106

Table 8.1 Possible Execution Hazards (Continued)

Producer - Consumer Hazard On
MTCO — TLBWI, EntryLo0,
TLBWR EntryLol,
Index,
PageMask,
PageGrain
MTCO — TLBWR Wired
MTCO — TLBP, EntryHiasip
Load or Store Instruction
MTCO — Load/store affected by new EntryHiasp,
state WatchHi,
WatchLo,
Config
TLBP - MFCO, TLBWI Index
TLBR - MFCO EntryHi,
EntryLoO,
EntryLol,
PageMask
TLBWI, — TLBP, TLB entry
TLBWR TLBR,
Load/store using new TLB
entry
Hazards Related to Exceptions or Interrupts
MTCO — Coprocessor instruction Statuscy
execution depends on the
new value of Statuscy
MTCO - ERET DEPC,
EPC,
ErrorEPC,
Status
MTCO - Interrupted Instruction Causep,
Cause)y,
Compare,
Count,
PerfCnt Control;g,
PerfCnt Counter,
Statusg,
Statusy
EBase
SRSCitl
SRSMap
El, DI - Interrupted Instruction Status,g,
Statusy
Other Hazards
LL - MFCO LLAddr
MTCO — CACHE PageGrain
CACHE - MFCO TagLo

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

8.3 Hazard Clearing Instructions and Events

Table 8.1 Possible Execution Hazards (Continued)

Producer

- Consumer

Hazard On

MTCO

- MFCO

any CoProcessor 0 register

8.2.2 Possible Instruction Hazards

Instruction hazards are those created by the execution of one instruction, and seen by the instruction fetch of another

instruction. Table 8.2 lists the possible instruction hazards when there are no hardware interlocks.

Table 8.2 Possible Instruction Hazards

tion stream

Producer - Consumer Hazard On
Hazards Related to the TLB
MTCO — Instruction fetch seeing the new value EntryHiagp,
WatchHi,
WatchLo
Config
MTCO — Instruction fetch seeing the new value Status
(including a change to ERL followed by
an instruction fetch from the useg seg-
ment)
TLBWI, — Instruction fetch using new TLB entry TLB entry
TLBWR
Hazards Related to Writing the Instruction Stream or Modifying an Instruction Cache
Entry
Instructionstream — Instruction fetch seeing the new instruc- Cache entries
writes tion stream
CACHE — Instruction fetch seeing the new instruc- Cache entries

Other Hazards

MTCO

RDPGPR
WRPGPR

SRSCtlpgg®

1. This is not precisely a hazard on the instruction fetch. Rather it is a hazard on a modifi-
cation to the previous GPR context field, followed by a previous-context reference to
the GPRs. It is considered an instruction hazard rather than an execution hazard because
some implementation may require that the previous GPR context be established early in
the pipeline, and execution hazards are not meant to cover this case.

8.3 Hazard Clearing Instructions and Events

Table 8.3 lists the instructions designed to eliminate hazards.

Table 8.3 Hazard Clearing Instructions

Mnemonic

Function

Supported
Architecture

DERET

Clear both execution and instruction hazards

EJTAG

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

107

CPO Hazards

Table 8.3 Hazard Clearing Instructions (Continued)

Supported
Mnemonic Function Architecture
EHB Clear execution hazard Release 2
onwards
ERET Clear both execution and instruction hazards All

IRET Clear both execution and instruction hazards when not MCU ASE
chaining to another interrupt.

JALR.HB | Clear both execution and instruction hazards Release 2
onwards

JR.HB Clear both execution and instruction hazards Release 2
onwards

SSNOP Superscalar No Operation Release 1
onwards

sYNCI! | Synchronize caches after instruction stream write Release 2
onwards

1. SYNCI synchronizes caches after an instruction stream write, and before execution of that
instruction stream. As such, it is not precisely a coprocessor 0 hazard, but is included here
for completeness.

DERET, ERET, and SSNOP are available in Release 1 of the Architecture; EHB, JALR.HB, JR.HB, and SYNCI
were added in Release 2 of the Architecture. In both Release 1 and Release 2 of the Architecture, DERET and ERET
clear both execution and instruction hazards and they are the only timing-independent instructions which will do this
in both releases of the architecture.

Even though DERET and ERET clear hazards between the execution of the instruction and the target instruction
stream, an execution hazard may still be created between a write of the DEPC, EPC, ErrorEPC, or Status registers and
the DERET or ERET instruction.

In addition, an exception or interrupt also clears both execution and instruction hazards between the instruction that
created the hazard and the first instruction of the exception or interrupt handler. Said another way, no hazards remain
visible by the first instruction of an exception or interrupt handler.

8.3.1 MIPS32 Instruction Encoding

The EHB instruction is encoded using a variant of the NOP/SSNOP encoding. This encoding was chosen for compat-
ibility with the Release 1 SSNOP instruction, such that existing software may be modified to be compatible with both
Release 1 and Release 2 implementations. See the EHB instruction description for additional information.

The JALR.HB and JR.HB instructions are encoding using bit 10 of the hint field of the JALR and JR instructions.
These encodings were chosen for compatibility with existing MIPS implementations, including many which pre-date
the MIPS32 architecture. Because a pipeline flush clears hazards on most early implementations, the JALR.HB or
JR.HB instructions can be included in existing software for backward and forward compatibility. See the JALR.HB
and JR.HB instructions for additional information.

The SYNCI instruction is encoded using a new encoding of the REGIMM opcode. This encoding was chosen

because it causes a Reserved Instruction exception on all Release 1 implementations. As such, kernel software run-
ning on processors that don’t implement Release 2 can emulate the function using the CACHE instruction.

108 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

8.3 Hazard Clearing Instructions and Events

8.3.2 microMIPS32 Instruction Encoding

The EHB and SSNOP instructions are encoded using a variant of the NOP encoding. See the EHB and SSNOP
instruction description for additional information.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 109

CPO Hazards

110 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

Chapter 9

Coprocessor 0 Registers

The Coprocessor 0 (CPO) registers provide the interface between the ISA and the PRA. Each register is discussed
below, with the registers presented in numerical order, first by register number, then by select field number.

9.1 Coprocessor 0 Register Summary

Table 9.1 lists the CPO registers in numerical order. The individual registers are described later in this document. If
the compliance level is qualified (e.g., “Required (TLB MMU)”), it applies only if the qualifying condition is true.
The Sel column indicates the value to be used in the field of the same name in the MFC0 and MTCO instructions.

Table 9.1 Coprocessor 0 Registers in Numerical Order

Register
Number Sell | Register Name Function Reference Compliance Level
0 0 Index Index into the TLB array Section 9.4 on page Required (TLB
119 MMU); Optional (Oth-
ers)
0 1 MVPControl Per-processor register containing global MIPS®MT Module Required (MIPS MT
MIPS® MT configuration data Specification Module); Optional
(Others)
0 2 MVPConf0 Per-processor multi-VPE dynamic configu- | MIPS®MT Module Required (MIPS MT
ration information Specification Module); Optional
(Others)
0 3 MVPConfl Per-processor multi-VPE dynamic configu- | MIPS®MT Module Optional
ration information Specification
1 0 Random Randomly generated index into the TLB Section 9.6 onpage | Required (TLB MMU)
array 123 Optional (Others)
(Pre-Release 6);
Required
(Release 6)
1 1 VPEControl Per-VPE register containing relatively vol- | MIPS®MT Module Required (MIPS MT
atile thread configuration data Specification Module); Optional
(Others)
1 2 VPEConf0 Per-VPE multi-thread configuration infor- | MIPS®MT Module Required (MIPS MT
mation Specification Module); Optional
(Others)
1 3 VPEConfl Per-VPE multi-thread configuration infor- | MIPS®MT Module Optional
mation Specification
1 4 YQMask Per-VPE register defining which YIELD | MIPS®MT Module Required (MIPS MT
qualifier bits may be used without generat- | Specification Module); Optional
ing an exception (Others)

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

111

Coprocessor 0 Registers

Table 9.1 Coprocessor 0 Registers in Numerical Order (Continued)

Register
Number Sell Register Name Function Reference Compliance Level

1 5 VPESchedule Per-VPE register to manage scheduling of | MIPS®MT Module Optional
a VPE within a processor Specification

1 6 VPEScheFBack | Per-VPE register to provide scheduling MIPS®MT Module Optional
feedback to software Specification

1 7 VPEOpt Per-VPE register to provide control over | MIPS®MT Module Optional
optional features, such as cache partition- | Specification
ing control

2 0 EntryLo0 Low-order portion of the TLB entry for Section 9.7 on page Required (TLB
even-numbered virtual pages 125 MMU); Optional (Oth-

ers)

2 1 TCStatus Per-TC status information, including cop- | MIPS®MT Module Required (MIPS MT
ies of thread-specific bits of Status and Specification Module); Optional
EntryHi registers. (Others)

2 2 TCBind Per-TC information about TC ID and VPE | MIPS®MT Module Required (MIPS MT
binding Specification Module); Optional

(Others)
2 3 TCRestart Per-TC value of restart instruction address | MIPS®MT Module Required (MIPS MT
for the associated thread of execution Specification Module); Optional
(Others)
2 4 TCHalt Per-TC register controlling Halt state of TC | MIPS®MT Module Required (MIPS MT
Specification Module); Optional
(Others)

2 5 TCContext Per-TC read/write storage for operating MIPS®MT Module Required (MIPS MT

system use Specification Module); Optional
(Others)

2 6 TCSchedule Per-TC register to manage scheduling of a | MIPS®MT Module Optional
TC Specification

2 7 TCScheFBack Per-TC register to provide scheduling feed- | MIPS®MT Module Optional
back to software Specification

3 0 EntryLol Low-order portion of the TLB entry for Section 9.7 on page Required (TLB
odd-numbered virtual pages 125 MMU); Optional (Oth-

ers)

3 7 TCOpt Per-TC register to provide control over MIPS®MT Module Optional
optional features, such as cache partition- | Specification
ing control

4 0 Context Pointer to page table entry in memory Section 9.9 on page Required (TLB

137 MMU); Optional (Oth-
ers)

4 1 ContextConfig Context register configuration SmartMIPS ASE Spec- | Required (SmartMIPS

ification and Section ASE); Optional (Oth-
9.10 on page 141 ers)

4 2 UserLocal User information that can be written by Section 9.11 on page Recommended
privileged software and read via RDHWR | 143 (Release 2)
register 29. If the processor implements the
MIPS® MT Module, this is a per-TC regis- Required (Release 6)
ter.

112

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

Table 9.1 Coprocessor 0 Registers in Numerical Order (Continued)

9.1 Coprocessor 0 Register Summary

Register
Number Sell Register Name Function Reference Compliance Level

4 3 XContext register configuration in 64-bit Reserved
implementations

5 0 PageMask Control for variable page size in TLB Section 9.13 on page Required (TLB
entries 147 MMU); Optional (Oth-

ers)
5 1 PageGrain Control for small page support Section 9.14 on page | Required (SmartMIPS
151 and SmartMIPS ASE); Optional
ASE Specification (Release 2)

5 2 SegCtl0 Programmable Control for Segments 0 & 1 | Section 9.15 on page Optional
157

5 3 SegCtll Programmable Control for Segments 2 & 3 | Section 9.16 on page Optional
157

5 4 SegCtl2 Programmable Control for Segments 4 & 5 | Section 9.17 on page Optional
157

5 5 PWBase Page Table Base Address for Hardware Section 9.18 on page Optional
Page Walker 161

5 6 PWField Bit indices of pointers for Hardware Page | Section 9.19 on page Optional
Walker 161

5 7 PWSize Size of pointers for Hardware Page Walker | Section 9.20 on page Optional

164

6 0 Wired Controls the number of fixed (“wired”) Section 9.21 on page Required (TLB
TLB entries 169 MMU); Optional (Oth-

ers)

6 1 SRSConf0 Per-VPE register indicating and optionally | MIPS®MT Module Required (MIPS MT
controlling shadow register set configura- | Specification Module); Optional
tion (Others)

6 2 SRSConfl Per-VPE register indicating and optionally | MIPS®MT Module Optional
controlling shadow register set configura- | Specification
tion

6 3 SRSConf2 Per-VPE register indicating and optionally | MIPS®MT Module Optional
controlling shadow register set configura- | Specification
tion

6 4 SRSConf3 Per-VPE register indicating and optionally | MIPS®MT Module Optional
controlling shadow register set configura- | Specification
tion

6 5 SRSConf4 Per-VPE register indicating and optionally | MIPS®MT Module Optional
controlling shadow register set configura- | Specification
tion

6 6 PWCtI HW Page Walker Control Section 9.22 on page Optional

171

7 0 HWREna Enables access viathe RDHWR instruction | Section 9.23 on page | Required (Release 2)
to selected hardware registers 175

7 1-7 Reserved for future extensions Reserved

8 0 BadVAddr Reports the address for the most recent Section 9.24 on page Required
address-related exception 177

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

113

Coprocessor 0 Registers

Table 9.1 Coprocessor 0 Registers in Numerical Order (Continued)

Register
Number Sell Register Name Function Reference Compliance Level
8 1 BadInstr Reports the instruction which caused the Section 9.25 on page | Optional (Pre-Release
most recent exception. 179 6)
Required (Release 6)
8 2 BadlInstrP Reports the branch instruction if a delay Section 9.26 on page | Optional (Pre-Release
slot caused the most recent exception. 181 6)
Required (Release 6)
9 0 Count Processor cycle count Section 9.27 on page Required
183
9 6-7 Available for implementation-dependent | Section 9.28 on page |implementation-depen-
user 183 dent
10 0 EntryHi High-order portion of the TLB entry Section 9.29 on page Required (TLB
185 MMU); Optional (Oth-
ers)
10 4 GuestCtl1 GuestID of virtualized Guest MIPS® VZE Module | Required (MIPS VZE
Specification Module; Optional
(Others)
10 5 GuestCtl2 Guest Interrupt Control MIPS® VZE Module | Required (MIPS VZE
Specification Module; Optional
(Others)
10 6 GuestCtl3 Guest Shadow Register Set Control MIPS® VZE Module | Required (MIPS VZE
Specification Module; Optional
(Others)
11 0 Compare Timer interrupt control Section 9.30 on page Required
187
11 4 GuestCtIOExt Extension of GuestCtl0 MIPS® VZE Module | Required (MIPS VZE
Specification Module; Optional
(Others)
11 6-7 Available for implementation-dependent Section 9.31 on page |implementation-depen-
user 187 dent
12 0 Status Processor status and control Section 9.32 on page Required
189
12 1 IntCtl Interrupt system status and control Section 9.33 on page | Required (Release 2)
199
12 2 SRSCtl Shadow register set status and control Section 9.34 on page | Required (Release 2)
203
12 3 SRSMap Shadow set IPL mapping Section 9.35 on page Required (Release 2
207 and shadow sets imple-
mented)
12 4 View_IPL Contiguous view of IM and IPL fields. MIPS® MCU ASE Required (MIPS MCU
Specification ASE); Optional (Oth-
ers)
12 5 SRSMap2 Shadow set IPL mapping MIPS® MCU ASE Required (MIPS MCU
Specification ASE); Optional (Oth-
ers)

114

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

Table 9.1 Coprocessor 0 Registers in Numerical Order (Continued)

9.1 Coprocessor 0 Register Summary

Register
Number Sell Register Name Function Reference Compliance Level
12 6 GuestCtl0 Control of Virtualized Guest OS MIPS® VZE Module | Required (MIPS VZE
Specification Module); Optional
(Others)
12 7 GTOffset Guest Timer Offset MIPS® VZE Module | Required (MIPS VZE
Specification Module); Optional
(Others)
13 0 Cause Cause of last general exception Section 9.36 on page Required
209
13 4 View_RIPL Contiguous view of IP and RIPL fields. MIPS® MCU ASE Required (MIPS MCU
Specification ASE); Optional (Oth-
ers)
13 5 NestedExc Nested exception Support - EXL, ERL val- | Section 9.37 on page Optional
ues at current exception 215
14 0 EPC Program counter at last exception Section 9.38 on page Required
217
14 2 NestedEPC Nested exception Support - Program Coun- | Section 9.39 on page Optional
ter at current exception 219
15 0 PRId Processor identification and revision Section 9.40 on page Required
221
15 1 EBase Exception vector base register Section 9.41 on page | Required (Release 2)
223
15 2 CDMMBase Common Device Memory Map Base Section 9.42 on page Optional
register 227
15 3 CMGCRBase Coherency Manager Global Control Regis- | Section 9.43 on page Optional
ter Base register 229
16 0 Config Configuration register Section 9.45 on page Required
233
16 1 Configl Configuration register 1 Section 9.46 on page Required
237
16 2 Config2 Configuration register 2 Section 9.47 on page Optional
241
16 3 Config3 Configuration register 3 Section 9.48 on page Optional
245
16 3 Configd Configuration register 4 Section 9.49 on page Optional
253
16 4 Configh Configuration register 5 Section 9.50 on page Optional
259
16 6-7 Available for implementation-dependent | Section 9.51 on page |implementation-depen-
user 267 dent
17 0 LLAddr Load linked address Section 9.52 on page Optional
269
18 0-n | WatchLo Watchpoint address Section 9.55 on page Optional
279

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

115

Coprocessor 0 Registers

Table 9.1 Coprocessor 0 Registers in Numerical Order (Continued)

Register
Number Sell Register Name Function Reference Compliance Level
19 0-n | WatchHi Watchpoint control Section 9.56 on page Optional
281
20 0 XContext in 64-bit implementations Reserved
21 all Reserved for future extensions. Reserved
22 all Available for implementation-dependent | Section 9.57 on page |implementation-depen-
use 283 dent
23 0 Debug EJTAG Debug register EJTAG Specification Optional
23 1 TraceControl PDtrace control register PDtrace Specification Optional
23 2 TraceControl2 PDtrace control register PDtrace Specification Optional
23 3 UserTraceDatal | PDtrace control register PDtrace Specification Optional
23 4 TracelBPC PDtrace control register PDtrace Specification Optional
23 5 TraceDBPC PDtrace control register PDtrace Specification Optional
23 6 Debug2 EJTAG Debug? register EJTAG Specification Optional
24 0 DEPC Program counter at last EJTAG debug EJTAG Specification Optional
exception
24 2 TraceContol3 PDtrace control register PDtrace Specification Optional
24 3 UserTraceData2 | PDtrace control register PDtrace Specification Optional
25 0-n | PerfCnt Performance counter interface Section 9.61 on page Recommended
291
26 0 ErrCitl Parity/ECC error control and status Section 9.62 on page Optional
295
27 0-3 | CacheErr Cache parity error control and status Section 9.63 on page Optional
297
28 even |TaglLo Low-order portion of cache tag interface | Section 9.64 on page Required (Cache)
selects 299
28 odd |DataLo Low-order portion of cache data interface | Section 9.65 on page Optional
selects 301
29 even | TagHi High-order portion of cache tag interface | Section 9.66 on page Required (Cache)
selects 303
29 odd | DataHi High-order portion of cache data interface | Section 9.67 on page Optional
selects 305
30 0 ErrorEPC Program counter at last error Section 9.68 on page Required
307
31 0 DESAVE EJTAG debug exception save register EJTAG Specification Optional
31 2-7 | KScratchn Scratch Registers for Kernel Mode Section 9.70 on page Pre-Release 6:
311 Optional; KScratchl at
select 2 and KScratch2
at select 3 are recom-
mended.
Release 6: Required.

1. Any select (Sel) value not explicitly noted as available for implementation-dependent use is reserved for future use by the Architec-

ture.

116

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.2 Notation

9.2 Notation

For each register described below, field descriptions include the read/write properties of the field, and the reset state
of the field. For the read/write properties of the field, the following notation is used:

Table 9.2 Read/Write Bit Field Notation

Read/Write
Notation Hardware Interpretation Software Interpretation
R/W A field in which all bits are readable and writable by software and, potentially, by hardware.

Hardware updates of this field are visible by software read. Software updates of this field are visi-

ble by hardware read.

If the Reset State of this field is “Undefined”, either software or hardware must initialize the value

before the first read will return a predictable value. This should not be confused with the formal

definition of UNDEFINED behavior.

R A field which is either static or is updated only | A field to which the value written by software is

by hardware. ignored by hardware. Software may write any

If the Reset State of this field is either “0”, “Pre- | value to this field without affecting hardware

set”, or “Externally Set”, hardware initializes behavior. Software reads of this field return the

this field to zero or to the appropriate state, last value updated by hardware.

respectively, on powerup. The term “Preset” is | If the Reset State of this field is “Undefined”,

used to suggest that the processor establishes the | software reads of this field result in an UNPRE-

appropriate state, whereas the term “Externally | DICTABLE value except after a hardware

Set” is used to suggest that the state is estab- update done under the conditions specified in

lished via an external source (e.g., personality | the description of the field.

pins or initialization bit stream). These terms are

suggestions only, and are not intended to act as a

requirement on the implementation.

If the Reset State of this field is “Undefined”,

hardware updates this field only under those

conditions specified in the description of the

field.

0 A field which hardware does not update, and for | A field to which the value written by software

which hardware can assume a zero value. must be zero. Software writes of non-zero val-
ues to this field may result in UNDEFINED
behavior of the hardware. Software reads of this
field return zero as long as all previous software
writes are zero.
If the Reset State of this field is “Undefined”,
software must write this field with zero before it
is guaranteed to read as zero.

9.3 Writing CPU Registers

With certain restrictions, software may assume that it can validly write the value read from a coprocessor 0 register
back to that register without having unintended side effects. This rule means that software can read a register, modify
one field, and write the value back to the register without having to consider the impact of writes to other fields. Pro-

cessor designers should take this into consideration when using coprocessor 0 register fields that are reserved for

implementations and make sure that the use of these bits is consistent with software assumptions.

The most significant exception to this rule is a situation in which the processor modifies the register between the soft-

ware read and write, such as might occur if an exception or interrupt occurs between the read and write. Software

must guarantee that such an event does not occur.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

117

Coprocessor 0 Registers

Release 6 limits the number of cases where software can cause UNDEFINED or UNPREDICTABLE behavior. For
example, in Release 6, for writes to a defined COPO register field that may have reserved encodings, writes of unsup-
ported values cause the write to be ignored by hardware. This means that no field in the COPO register is modified
unless all fields meet the conditions for writing. An exception to this rule is that if a field is reserved, then a write of a
non-zero value to the reserved field is ignored but by itself does not cause the entire write to be dropped.

118 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.4 Index Register (CPO Register 0, Select 0)

9.4 Index Register (CPO Register 0, Select 0)

Compliance Level: Required for TLB-based MMUSs; Optional otherwise.

The Index register is a 32-bit read/write register which contains the index used to access the TLB for TLBP, TLBR,
and TLBWI instructions. The width of the index field is implementation-dependent as a function of the humber of
TLB entries that are implemented. The minimum value for TLB-based MMUs is Ceiling(Log2(TLBEntries)). For
example, six bits are required for a TLB with 48 entries).

For Pre-Release 6: The operation of the processor is UNDEFINED if a value greater than or equal to the number of
TLB entries is written to the Index register.

For Release 6: Hardware leaves the Index field unchanged if a value greater than, or equal to, the number of TLB
entries is written to the Index register.

Figure 9.1 shows the format of the Index register; Table 9.3 describes the Index register fields.

Figure 9.1 Index Register Format
31 n n-1 0

P 0 Index

Table 9.3 Index Register Field Descriptions

Fields
Name Bits Description Read/Write | Reset State | Compliance
P 31 Probe Failure. Hardware writes this bit during execution R Undefined Required
of the TLBP instruction to indicate whether a TLB (Pre-Release 6)
match occurred. Release 6 requires that this bit be R/W
to allow software to set the bit to 1 after a TLBP has R/W
cleared the bit. Implementations may use P=0to causea | (Release 6)
TLBWR to write to a TLB entry other than that indexed
by the Index field. Hardware ignores a write of 0 to this
bit.
Encoding Meaning
0 A match occurred, and the Index field
contains the index of the matching
entry
1 No match occurred and the Index field
is UNPREDICTABLE
0 30.n | Must be written as zero; returns zero on read. 0 0 Reserved

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 119

Table 9.3 Index Register Field Descriptions (Continued)

Fields
Name Bits Description Read/Write | Reset State | Compliance
Index n-1..0 | TLB index. Software writes this field to provide the R/W Undefined Required

index to the TLB entry referenced by the TLBR and
TLBW!I instructions.

Hardware writes this field with the index of the match-
ing TLB entry during execution of the TLBP instruction.
If the TLBP fails to find a match, the contents of this
field are UNPREDICTABLE.

120 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.5 VPControl (CPO Register 0, Select 4)

9.5 VPControl (CPO Register 0, Select 4)

Compliance Level: Required. if Release 6 Virtual Processor based Multi-threading supported (i.e., Config5,,=1).

CPO Virtual Processor Control register provides control and configuration support for Release 6 multi-threading.

Figure 9.2 shows the format of the VPControl register; Table 9.4 describes the VPControl register fields.

Figure 9.2 VPControl Register Format
31 12 1 8 7 0

0 DIS

Table 9.4 VPControl Register Field Descriptions

Fields
Read/
Name Bits Description Write Reset State | Compliance
0 31:1 0 0 0 Reserved
DIS 0 For a VP that reads VPControl all other VPs on the R 0 Required

core have been disabled if VPControlpg=1.

A DVP instruction executed on this virtual processor has
disabled fetch on all other virtual processors in the physi-
cal core. An EVP instruction is the only means to subse-
quently clear DIS.

See definition of Release 6 multi-threading DVP and EVP
instructions for supporting information.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 121

122 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.6 Random Register (CPO Register 1, Select 0)

9.6 Random Register (CPO Register 1, Select 0)

Compliance Level: Required for TLB-based MMUs; Optional otherwise. Pre-Release 6 only; deprecated in Release

6.

The Random register is a read-only register whose value is used to index the TLB during a TLBWR instruction. The
width of the Random field is calculated in the same manner as that described for the Index register above.

The value of the register varies between an upper and lower bound as follow:

» Alower bound is set by the number of TLB entries reserved for exclusive use by the operating system (the con-
tents of the Wired register). The entry indexed by the Wired register is the first entry available to be written by a
TLB Write Random operation.

» Anupper bound is set by the total number of TLB entries minus 1.

Within the required constraints of the upper and lower bounds, the manner in which the processor selects values for
the Random register is implementation-dependent.

The processor initializes the Random register to the upper bound on a Reset Exception, and when the Wired register is

written.

Figure 9.3 shows the format of the Random register; Table 9.5 describes the Random register fields.

Figure 9.3 Random Register Format

31 n n-1 0
0 Random
Table 9.5 Random Register Field Descriptions
Fields
Read/
Name Bits Description Write Reset State Compliance

0 31l.n Must be written as zero; returns zero on read. 0 0 Reserved

Random n-1..0 | TLB Random Index R TLB Entries - 1 Required

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

123

124 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.7 EntryLoO, EntryLol (CPO Registers 2 and 3, Select 0)

9.7 EntryLoO, EntryLol (CPO Registers 2 and 3, Select 0)

Compliance Level: EntryLo0 is Required for a TLB-based MMU; Optional otherwise.
Compliance Level: EntryLol is Required for a TLB-based MMU; Optional otherwise.

The pair of EntryLo registers act as the interface between the TLB and the TLBP, TLBR, TLBWI, and TLBWR
instructions. EntryLoO holds the entries for even pages and EntryLo1 holds the entries for odd pages.

Software may determine the value of PABITS by writing all ones to the EntryLo0O or EntryLo1 registers and reading the
value back. Bits read as “1” from the PFN field allow software to determine the boundary between the PFN and Fill
fields to calculate the value of PABITS.

The contents of the EntryLo0O and EntryLo1 registers are not defined after an address error exception, and some fields
may be modified by hardware during the address-error exception sequence. Software writes to the EntryHi register
(via MTCO) do not cause the implicit update of address-related fields in the BadVAddr or Context registers.

For Release 1 of the Architecture, Figure 9-4 shows the format of the EntryLo0O and EntryLo1 registers; Table 9.6
describes the EntryLoO and EntryLol register fields.

For Release 2 of the Architecture, Figure 9-5 shows the format of the EntryLo0O and EntryLo1 registers; Table 9.7
describes the EntryLoO and EntryLol register fields. Release 2 of the architecture added support for physical address
spaces beyond 36 bits in range and support for 1 kB pages.

For Release 3 of the Architecture, Figure 9-6 shows the format of the EntryLoO and EntryLo1 registers; Table 9.9
describes the EntryLoO and EntryLo1 register fields. Release 3 of the architecture added support for Read-Inhibit and
Execute-Inhibit page protection bits. In Release 5 of the Architecture, EntryLo0 and EntryLo1 registers may be option-
ally extended by 32 bits to support a physical address size greater than 36 bits. A 36-bit PAE is supported in the base
architecture; the capability of providing greater than a 36-bit PA in MIPS32 is termed Extended Physical Address
(XPA). The practical lower limit of XPA is 40 bits, while the natural upper limit is 59 bits, as determined by the
MIPS64 Architecture. The size of XPA within the range of 37 bits and 59 bits is implementation-dependent.

Software can access the 32-bit extension with the new MTHCO and MFHCO instructions defined in Release 5.

Software can detect support for XPA and for the EntryLoO and EntryLo1 formats shown in Figure 9-7 by reading
Config3| ps. Software can enable XPA using PageGraing| pa.

Figure 9-4 EntryLoO, EntryLol Register Format in Release 1 of the Architecture

31 30 29 6 5 3 2 1 0

Fill PFN C DIV|G

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 125

Table 9.6 EntryLoO, EntryLol Register Field Descriptions in Release 1 of the Architecture

Fields
Read /

Name Bits Description Write Reset State Compliance

Fill 31..30 These bits are ignored on write and return zero on read. R 0 Required
The boundaries of this field change as a function of the
value of PABITS. See Table 9.8 for more information.

PFN 29..6 Page Frame Number. Corresponds to bits PABITS-1..12 R/W Undefined Required
of the physical address, where PABITS is the width of the
physical address in bits. The boundaries of this field
change as a function of the value of PABITS. See Table
9.8 for more information.

C 5.3 Cacheability and Coherency Attribute of the page. See R/W Undefined Required
Table 9.12 below.

D 2 “Dirty” bit, indicating that the page is writable. If this bit R/W Undefined Required
is a one, stores to the page are permitted. If this bit is a
zero, stores to the page cause a TLB Modified exception.
Kernel software may use this bit to implement paging
algorithms that require knowing which pages have been
written. If this bit is always zero when a page is initially
mapped, the TLB Modified exception that results on any
store to the page can be used to update kernel data struc-
tures that indicate that the page was actually written.

\% 1 Valid bit, indicating that the TLB entry, and thus the vir- R/W Undefined Required
tual page mapping are valid. If this bit is a one, accesses
to the page are permitted. If this bit is a zero, accesses to
the page cause a TLB Invalid exception.

G 0 Global bit. On a TLB write, the logical AND of the G R/W Undefined Required (TLB
bits from both EntryLoO and EntryLol becomes the G MMU)

bit in the TLB entry. If the TLB entry G bit is a one,
ASID comparisons are ignored during TLB matches. On
a read from a TLB entry, the G bits of both EntryLo0O
and EntryLo1 reflect the state of the TLB G bit.

Figure 9-5 EntryLoO, EntryLol Register Format in Release 2 of the Architecture
31 30 29 6 5 3 2 1 O

Fill PFN C DIV|G

126 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.7 EntryLoO, EntryLol (CPO Registers 2 and 3, Select 0)

Table 9.7 EntryLoO, EntryLol Register Field Descriptions in Release 2 of the Architecture

Fields
Read /
Name Bits Description Write Reset State Compliance

Fill 31..30 These bits are ignored on write and return zero on read. R 0 Required
The boundaries of this field change as a function of the
value of PABITS. See Table 9.8 for more information.

PFN 29..6 Page Frame Number. This field contains the physical R/W Undefined Required
page number corresponding to the virtual page.

If the processor is enabled to support 1 kB pages
(Config3gp = 1 and PageGrainggp = 1), the PFN field
corresponds to bits 33..10 of the physical address (the
field is shifted left by 2 bits relative to the Release 1 def-
inition to make room for PAy; 1q).

If the processor is not enabled to support 1 kB pages
(Config3gp = 0 or PageGrainggp = 0), the PFN field
corresponds to bits 35..12 of the physical address.

The boundaries of this field change as a function of the
value of PABITS. See Table 9.8 for more information.

C 5.3 The definition of this field is unchanged from Release 1. R/W Undefined Required
See Table 9.6 above and Table 9.12 below.

D 2 The definition of this field is unchanged from Release 1. R/W Undefined Required
See Table 9.6 above.

\Y 1 The definition of this field is unchanged from Release 1. R/W Undefined Required
See Table 9.6 above.

G 0 The definition of this field is unchanged from Release 1. R/W Undefined Required (TLB
See Table 9.6 above. MMU)

Table 9.8 shows the movement of the Fill and PFN fields as a function of 1 kB page support enabled, and the value of
PABITS. Note that in implementations of Release 1 of the Architecture, there is no support for 1 kB pages, so only the
first row of the table applies to Release 1.

Table 9.8 EntryLo Field Widths as a Function of PABITS

1kB Corresponding EntryLo Field Bit Ranges
Page
Support Release 2
Enabled? PABITS Value Fill Field PFN Field Required?
No 36 > PABITS > 12 31..(30-(36-PABITS)) (29-(36-PABITS))..6 No
Example: Example:
31..30if PABITS = 36 29..6 if PABITS = 36
31..7 if PABITS = 13 6..6 if PABITS = 13
EntryL0gg ¢ = PAgs 12

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 127

Table 9.8 EntryLo Field Widths as a Function of PABITS (Continued)

1kB Corresponding EntryLo Field Bit Ranges
Page
Support Release 2
Enabled? PABITS Value Fill Field PFN Field Required?
Yes 34> PABITS > 10 31..(30-(34-PABITS)) (29-(34-PABITS))..6 Yes
Example: Example:
31..30if PABITS =34 29..6 if PABITS = 34
31.7if PABITS =11 6..6 if PABITS = 11
Entl’yL029 6 = PA33 10

Figure 9-6 EntryLoO, EntryLol Register Format in Release 3 of the Architecture
31 30 29 6 5 3 2 1 O

RI| XI PFN C D V|G

Table 9.9 EntryLoO, EntryLol Register Field Descriptions in Release 3 of the Architecture

Fields
Read /
Name Bits Description Write Reset State Compliance

Fill 31..30 These bits are ignored on write and return zero on read. R 0 Required if RI
The boundaries of this field change as a function of the and Xl fields are
value of PABITS. See Table 9.8 for more information. not imple-

mented.

RI 31 Read Inhibit. If this bit is set in a TLB entry, an attempt, R/W 0 Required by
other than a MIPS16 PC-relative load, to read data on SmartMIPS
the virtual page causes a TLB Invalid or a TLBRI excep- ASE; Optional
tion, even if the V (Valid) bit is set. The RI bit is writable otherwise
only if the RIE bit of the PageGrain register is set. If
the RIE bit of PageGrain is not set, the RI bit of If not imple-
EntryLoO/EntryLo1 is set to zero on any write to the mented, this bit
register, regardless of the value written. location is part

of the Fill field.
This bit is optional and its existence is denoted by the
Config3gy; or Config3g) register fields.

128 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.7 EntryLoO, EntryLol (CPO Registers 2 and 3, Select 0)

Table 9.9 EntryLoO, EntryLol Register Field Descriptions in Release 3 of the Architecture

Fields
Read /
Name Bits Description Write Reset State Compliance
Xl 30 Execute Inhibit. If this bit is set in a TLB entry, an R/W 0 Required by
attempt to fetch an instruction or to load MIPS16 PC-rel- SmartMIPS
ative data from the virtual page causes a TLB Invalid or ASE; Optional
a TLBXI exception, even if the V (Valid) bit is set. The otherwise
Xl bit is writable only if the XIE bit of the PageGrain
register is set. If the XIE bit of PageGrain is not set, the If not imple-
X1 bit of EntryLoO/EntryLo1l is set to zero on any write mented, this bit
to the register, regardless of the value written. location is part
of the Fill field.
This bit is optional and its existence is denoted by the
Config3gyx or Config3g)\ register fields.
PFN 29..6 Page Frame Number. This field contains the physical R/W Undefined Required
page number corresponding to the virtual page.
If the processor is enabled to support 1 kB pages
(Config3gp = 1 and PageGrainggp = 1), the PFN field
corresponds to bits 33..10 of the physical address (the
field is shifted left by 2 bits relative to the Release 1 def-
inition to make room for PA{; 10).
If the processor is not enabled to support 1 kB pages
(Config3gp = 0 or PageGrainggp = 0), the PFN field
corresponds to bits 35..12 of the physical address.
The boundaries of this field change as a function of the
value of PABITS. See Table 9.8 for more information.
C 5.3 The definition of this field is unchanged from Release 1. R/W Undefined Required
See Table 9.6 above and Table 9.12 below.
D 2 The definition of this field is unchanged from Release 1. R/W Undefined Required
See Table 9.6 above.
\Y 1 The definition of this field is unchanged from Release 1. R/W Undefined Required
See Table 9.6 above.
G 0 The definition of this field is unchanged from Release 1. R/W Undefined Required (TLB
See Table 9.6 above. MMU)
Figure 9-7 applies to Table 9.10, specifically to MIPS32 support for XPA (PA > 36 bits), and it shows the natural
upper limit of XPA. If only 40-bit XPA is supported, the most-significant bit of PENX is EntryLo0[35] and
EntryLo1[35].
Figure 9-7 EntryLoO, EntryLol Register Format in Release 5
63 55 54 36 35 32
Fill PENX
RI| XI PFN D V|G
31 30 29 6 5 3 2 1 0

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

129

Table 9.10 EntryLoO, EntryLo1 Register Field Descriptions in Release 5 of the Architecture

Fields
Read /
Name Bits Description Write Reset State Compliance

Fill 63..55 These bits are ignored on write and return zero on read. R 0 Required for
The boundaries of this field change as a function of the XPA; Optional
value of PABITS. otherwise

PENX 54..32 Page Frame Number Extension. If the processor is RIW Undefined Required for
enabled to support XPA (Config3| ps =1 and XPA,; Optional

PageGraing pa =1) this field is concatenated with the otherwise

PFN field to form the full page frame number corre-
sponding to the physical address, thereby providing up
to 59 bits of physical address.

If the processor is enabled to support 1 kB pages
(Config3sp = 1 and PageGrainggp =1), the combined
PFNX || PEN fields corresponds to bits PABITS-1..10 of
the physical address (the field is shifted left by 2 bits rel-
ative to the Release 1 definition to make room for

PA11 10)-

If the processor is not enabled to support 1 kB pages
(Config3gp = 0 or PageGrainggp = 0), the combined

PFNX || PFN fields corresponds to 0b0O || bits
PABITS-1..12 of the physical address (the field is
unshifted and the upper two bits must be written as
Zero).

The boundaries of this field change as a function of the
value of PABITS. See Table 9.11 for more information.
If support for large physical addresses is not enabled
(Config3| ps = 0 or PageGraing| pa = 0), these bits are

ignored on write and return 0 on read, thereby providing
full backward compatibility with implementations of
Release 1 of the Architecture.

To ensure backward compatibility with pre-Release 5
software that does not support XPA, MTCO is required to
zero out the extension bits if ConfigSyyyy=1.

RI 31 Read Inhibit. If this bit is set in a TLB entry, an attempt, R/W 0 Required by
other than a MIPS16 PC-relative load, to read data on SmartMIPS
the virtual page causes a TLB Invalid or a TLBRI excep- ASE; Optional
tion, even if the V (Valid) bit is set. The RI bit is writable otherwise
only if the RIE bit of the PageGrain register is set. If
the RIE bit of PageGrain is not set, the RI bit of
EntryLoO/EntryLol is set to zero on any write to the
register, regardless of the value written.

This bit is optional and its existence is denoted by the
Config3ry; or Config3g) register fields.

If not implemented, then reads of this field return 0.

130 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.7 EntryLoO, EntryLol (CPO Registers 2 and 3, Select 0)

Table 9.10 EntryLoO, EntryLol Register Field Descriptions in Release 5 of the Architecture

Fields

Name

Bits

Description

Read /
Write

Reset State

Compliance

Xl

30

Execute Inhibit. If this bit is set in a TLB entry, an
attempt to fetch an instruction or to load MIPS16 PC-rel-
ative data from the virtual page causes a TLB Invalid or
a TLBXI exception, even if the V (Valid) bit is set. The
Xl bit is writable only if the XIE bit of the PageGrain
register is set. If the XIE bit of PageGrain is not set, the
Xl bit of EntryLoO/EntryLo1l is set to zero on any write
to the register, regardless of the value written.

This bit is optional and its existence is denoted by the
Config3ryx; or Config3g)\ register fields.

If not implemented, then reads of this field return 0.

RIW

0

Required by
SmartMIPS
ASE; Optional
otherwise

PFN

29..6

Page Frame Number. This field contains the physical
page number corresponding to the virtual page

If the processor is enabled to support 1 kB pages
(Config3sp = 1 and PageGrainggp = 1), the PFN field
corresponds to bits 33..10 of the physical address (the
field is shifted left by 2 bits relative to the Release 1 def-
inition to make room for PA{; 10).

If the processor is not enabled to support 1 kB pages
(Config3sp = 0 or PageGrainggp = 0), the PFN field
corresponds to bits 35..12 of the physical address.

The boundaries of this field change as a function of the
value of PABITS.

R/IW

Undefined

Required

5.3

The definition of this field is unchanged from Release 1.

RIW

Undefined

Required

The definition of this field is unchanged from Release 1.

RIW

Undefined

Required

The definition of this field is unchanged from Release 1.

RIW

Undefined

Required

O <|O|O

The definition of this field is unchanged from Release 1.

R/W

Undefined

Required (TLB
MMU)

Table 9.11 shows the movement of the Fill, PENX, and PFN fields as a function of 1 kB page support enabled, and the
value of PABITS, in Release 5. Note that in implementations of the Architecture, PABITS can never be larger than 36
bits and there is no support for 1 kB pages, so only the second row of the table applies in Release 1.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

131

Table 9.11 EntryLo Field Widths as a Function of PABITS in Release 5

1 kB Page Corresponding EntryLo Field Bit Ranges
Support Required
Enabled? PABITS Value Fill Field PFNX Field PFN Field Release
No 59 > PABITS > 36 63..(55-(59-PABITS)) (54-(59-PABITS))..32 29..6 Release 5
Example: Example: EntryLoyg ¢ = PAgs 12
63..55 if PABITS =59 54..32 if PABITS =59
63..33 if PABITS = 37 32..32if PABITS =37
EntryLosy 32 = PAsg 36
36 > PABITS > 12 63..(32-(36-PABITS)) Displaced by the Fill (29-(36-PABITYS))..6 Release 1
Example: Field Example:
63..32 if PABITS = 36 29..6 if PABITS = 36
63..32 & 29..7 if 6..6 if PABITS = 13
PABITS = 13 Entryl_Ozg 6 = PA35 12
Yes 59 > PABITS > 34 63..(57-(59-PABITS)) (56-(59-PABITS))..32 29..6 Release 5
Example: Example: EntryLoyg g = PAs3 19
63..57 if PABITS = 59 56..32 if PABITS = 59
63..33 if PABITS = 35 33..32 if PABITS = 35
EntryLosg 32 = PAsg 34
34 > PABITS > 10 63..(32-(34-PABITS)) Displaced by the Fill (29-(34-PABITS))..6 Release 2
Example: Field Example:
63..32 if PABITS = 34 29..6 if PABITS =34
63..32 & 29..7 if 6..6 if PABITS = 11
PABITS = 11 EntryL029 6= PA33 10

132

Programming Note:

In implementations of Release 2 of the Architecture (and any release prior to Release 6), thePFNX (Release 5 for
MIPS32) and PFN fields of both the EntryLoO and EntryLo1 registers must be written with zero, and the TLB must be
flushed before each instance in which the value of the PageGrain register is changed. This operation must be carried
out while running in an unmapped address space. The operation of the processor is UNDEFINED if this sequence is
not done.

For Release 6, this is not a requirement because support for EntryHlgyny iS mandatory. Instead, software must invali-
date the TLB entries explicitly using TLBWI with EntryHIgpnyy=1.

Table 9.12 lists the encoding of the C field of the EntryLo0O and EntryLo1 registers and the KO field of the Config reg-
ister. An implementation may choose to implement a subset of the cache coherency attributes shown, but must imple-
ment at least encodings 2 and 3 such that software can always depend on these encodings working appropriately.

In other cases of Pre-Release 6 implementations, the operation of the processor is UNDEFINED if software uses a
TLB mapping (either for an instruction fetch or for a load/store instruction) that was created with a C field encoding
which is RESERVED for the implementation. In Release 6, hardware must ignore writes of unsupported values of the
C field for the implementation.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.7 EntryLoO, EntryLol (CPO Registers 2 and 3, Select 0)

Table 9.12 lists the required and optional encodings for the cacheability and coherency attributes.

Table 9.12 Cacheability and Coherency Attributes

Cacheability and Coherency Attributes
C(5:3) value With Historical Usage Compliance
0 « Available for implementation-dependent use Optional
1 ¢ Available for implementation-dependent use Optional
2 ¢ Uncached Required
3 e Cacheable Required
4 ¢ Available for implementation-dependent use Optional
5 « Available for implementation-dependent use Optional
6 « Available for implementation-dependent use Optional
7 « Available for implementation-dependent use Optional

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

133

134 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.8 Global Number Register (COPO Register 3, Select 1)

9.8 Global Number Register (COPO Register 3, Select 1)

Compliance Level: Optional Release 6

The Global Number register is required if a Release 6 core implements multi-threading.

The unique name of a virtual processor (VPNum; see COPO EBASE) in a cluster can be derived from the contents of
this register by one of the two methods described below. The method must be uniformly applied to all virtual proces-
sors in the system.

e VPNum = CoreNum + VPId. This method allows for contiguous numbering of virtual processors in a cluster
with heterogenous multi-threading (cores with different thread counts).

* VPNum = CoreNum X Max-VP or VPId, where Max-VP is the maximum virtual processor count in any core in
a cluster. This results in non-contiguous numbering of virtual processors in a cluster.

See Table 9.14 for examples.

The naming convention is hierarchical. The unique name of a virtual processor in the system is ClusterNum.VVPNum.

The fields where indicated can be externally programmable. This allows for reallocation of software threads from vir-

tual processor to virtual processor by reassigning the VPNum to the virtual processor.

ClusterNum is optional and only required in a system that supports clusters of cores.

Figure 9.8 shows the format of the Global Number register; Table 9.13 describes the Global Number register fields.

Figure 9.8 Global Number Register Format

31 20 19 16 15 12 11 8 0
Reserved ClusterNum Reserved CoreNum VPId
Table 9.13 Global Number Register Field Descriptions
Fields
Name Bits Description Read/Write | Reset State | Compliance
0 31:20 Reserved. 0 0 Reserved
ClusterNum 19:16 A unique number asssigned to a cluster of cores in the sys- R Preset by hard- Optional
tem. Reserved if clustering is not implemented. ware or exter-
Unimplemented bits in the field are not writeable; reads nally set
return 0.
This field is read-only, but can be preset, or optionally can
be programmed by a register external to COPO through a
memory mapped register.
0 15:12 Reserved. 0 0 Reserved

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

135

Table 9.13 Global Number Register Field Descriptions (Continued)

Fields
Name Bits Description Read/Write | Reset State | Compliance
CoreNum 11:8 A unique number assigned to a physical core in a cluster. R Preset by hard- Required
Unimplemented bits in the field are not writeable; reads ware or exter-
return 0. nally set
This field is read-only, but can be preset, or optionally can
be programmed by a register external to COPO through a
memory mapped register.
VPId 7:0 A unique number assigned to a virtual processor in a core. R Preset by hard- Required
Unimplemented bits in the field are not writeable; reads ware or exter-
return 0. The number of unimplemented bits is dependent nally set
on whether contiguous or non-contiguous numbering is
supported. If contiguous, then VPId size equals
ceiling (log, (total VP count in cluster)).
If non-contiguous, then VVPId size equals
log2 (maximum VP cont of any core).
This field is read-only, but can be preset, or optionally can
be programmed by a register external to COPO through a
memory mapped register.
Table 9.14 Deriving Unique VPNum
Contiguous Numbering Non-Contiguous Numbering
CoreNum # of VPs VPId VPNum VPId VPNum

0 4 0,1,2,3 0,1,2,3 0,1,2,3 0,1,2,3

1 2 3,4 4,5 0,1 4,5

2 1 4 6 0 8

3 4 4,5,6,7 7,8,9 10 0,123 12,13, 14,15

136

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.9 Context Register (CPO Register 4, Select 0)

9.9 Context Register (CPO Register 4, Select 0)

Compliance Level: Required for TLB-based MMUSs; Optional otherwise.

The Context register is a read/write register containing a pointer to an entry in the page table entry (PTE) array. This
array is an operating system data structure that stores virtual-to-physical translations. During a TLB miss, the operat-
ing system loads the TLB with the missing translation from the PTE array. The Context register duplicates some of
the information provided in the BadVAddr register.

If Config3c1x1c =0 and Config3g)y, =0 then the Context register is organized in such a way that the operating system

can directly reference a 16-byte structure in memory that describes the mapping. For PTE structures of other sizes,
the content of this register can be used by the TLB refill handler after appropriate shifting and masking.

If Config3ctxTc =0 and Config3gy, =0 then a TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes
bits VA3, 13 of the virtual address to be written into the BadVPN2 field of the Context register. The PTEBase field is
written and used by the operating system.

The BadVPN?2 field of the Context register is not defined after an address error exception and this field may be modi-
fied by hardware during the address error exception sequence.

Figure 9.9 shows the format of the Context Register when Config3c1yxtc =0 and Config3gy, =0; Table 9.15 describes
the Context register fields Config3ctxtc =0 and Config3gy; =0.

Figure 9.9 Context Register Format when Config3ctxtc=0 and Config3gy=0

31 23 22 4 3 0
PTEBase BadVPN2 0
Table 9.15 Context Register Field Descriptions when Config3ctxtc=0 and Config3gy=0
Fields
Read /
Name Bits Description Write Reset State Compliance
PTEBase 31..23 This field is for use by the operating system and is R/W Undefined Required
normally written with a value that allows the operat-
ing system to use the Context Register as a pointer
into the current PTE array in memory.
BadVPN2 22.4 This field is written by hardware on a TLB exception. R Undefined Required
It contains bits VAg; 13 of the virtual address that
caused the exception.
0 3.0 Must be written as zero; returns zero on read. 0 0 Reserved

If Config3cTxTc =1 or Config3gy =1 then the pointer implemented by the Context register can point to any power-of-
two-sized PTE structure within memory. This allows the TLB refill handler to use the pointer without additional

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 137

shifting and masking steps. Depending on the value in the ContextConfig register, it may point to an 8-byte pair of 32-
bit PTEs within a single-level page table scheme, or to a first level page directory entry in a two-level lookup scheme.

If Config3crxrc =1 or Config3gy =1 then the a TLB exception (Refill, Invalid, or Modified) causes bits VAz1.37_((x-
v)-1) to be written to a variable range of bits “(X-1):Y” of the Context register, where this range corresponds to the

contiguous range of set bits in the ContextConfig register. Bits 31:X are R/W to software, and are unaffected by the
exception. Bits Y-1:0 are unaffected by the exception. If X =23 and Y =4, i.e. bits 22:4 are set in ContextConfig, the
behavior is identical to the standard MIPS32 Context register (bits 22:4 are filled with VA3;.13). Although the fields

have been made variable in size and interpretation, the MIPS32 nomenclature is retained. Bits 31:X are referred to as
the PTEBase field, and bits X-1:Y are referred to as BadVPN2.

If Config3gy; =1 then Bits Y-1:0 will always read as 0.

The value of the Context register is UNPREDICTABLE following a modification of the contents of the
ContextConfig register.

Figure 9.10 shows the format of the Context Register when Config3c1xtc =1 or Config3gy, =1; Table 9.16 describes
the Context register fields Config3ctytc =1 or Config3gy =1.

Figure 9.10 Context Register Format when Config3ctxtc=1 or Config3gy=1
31 X X1 Y Y1 0

PTEBase BadVPN2 0

Table 9.16 Context Register Field Descriptions when Config3ctxtc=1 or Config3gy=1

Fields
Read / Reset
Name Bits Description Write State Compliance
PTEBase | Variable, 31:X where | This field is for use by the operating system R/W Undefined Required
Xin {31..0}. and is normally written with a value that
May be null. allows the operating system to use the
Context Register as a pointer to an array of
data structures in memory corresponding to
the address region containing the virtual
address which caused the exception.
BadVPN2 | Variable, (X-1):Y This field is written by hardware on a TLB R Undefined Required
where exception. It contains bits VAgy.31.((x-v)-1) Of
Xin {32..1} and the virtual address that caused the exception.
Y in {31..0}.
May be null.

138 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.9 Context Register (CPO Register 4, Select 0)

Table 9.16 Context Register Field Descriptions when Config3ctxtc=1 or Config3gyy=1 (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
0 Variable, (Y-1):0 Must be written as zero; returns zero on read. R 0 (if R) Reserved
where or or
Y in {31:1}. R/W Undefined
May be null. (if R/W)
(RIW
only
allowed
for
Config3
ctxt=1)

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 139

140 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.10 ContextConfig Register (CPO Register 4, Select 1)

9.10 ContextConfig Register (CPO Register 4, Select 1)

Compliance Level: Optional.

The ContextConfig register defines the bits of the Context register into which the high order bits of the virtual address
causing a TLB exception will be written, and how many bits of that virtual address will be extracted. Bits above the
selected field of the Context register are R/W to software and serve as the PTEBase field. Bits below the selected field
of the Context register will be unaffected by TLB exceptions.

The field to contain the virtual address index is defined by a single block of contiguous non-zero bits within the
ContextConfig register’s Virtuallndex field. Any zero bits to the right of the least-significant one bit cause the corre-
sponding Context register bits to be unaffected by TLB exceptions. Any zero bits to the left of the most- significant
one bit cause the corresponding Context register bits to be R/W to software and unaffected by TLB exceptions.

If Config3g), is set, then any zero bits to the right of the least significant one bit causes the corresponding Context reg-
ister bits to be read as zero.

It is permissible to implement a subset of the ContextConfig register, in which some number of bits are read-only and
set to one or zero as appropriate. Software can determine whether a specific setting is implemented by writing that
value into the register and reading back the register value. If the read value matches the original written value exactly,
then the setting is supported. It is implementation specific what value is read back when the setting is not imple-
mented except that the read value does not match the original written value. All implementations of the ContextConfig
register must allow for the emulation of the MIPS32/microMIPS32 fixed Context register configuration.

This paragraph describes restrictions on how the ContextConfig register may be programmed. The set bits of
ContextConfig define the BadVvPN2 field within the Config register. The BadVPN2 field cannot contain address bits
which are used to index a memory location within the even-odd page pairs used by the JTLB entries. This limits the
least significant writable bit within ContextConfig to the bits that represents BadVPN2 of the smallest implemented
page size. For example, if the smallest implemented page size is 4 kB, virtual address bit 13 is the least significant bit
of the BadVPN2 field. Another example: if 1 kB was the smallest implemented page size then the least significant
writable bit within ContextConfig would correspond to virtual address bit 11.

A value of all zeroes means that the full 32 bits of the Context register are R/W for software and unaffected by TLB
exceptions.

The ContextConfig register is optional and its existence is denoted by the Config3ctxc Or Config3g), register fields.

Figure 9.11 shows the formats of the ContextConfig Register; Table 9.17 describes the ContextConfig register fields.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 141

Figure 9.11 ContextConfig Register Format
31 0

Virtuallndex

Table 9.17 ContextConfig Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
VirtualIndex 31:0 A mask of 0 to 32 contiguous 1 bits in this field causes R/W 0x007ffffo Required

the corresponding bits of the Context register to be writ-
ten with the high-order bits of the virtual address causing
a TLB exception.

Behavior of the processor is UNDEFINED if non-con-
tiguous 1 bits are written into the register field.

Table 9.18 describes some useful ContextConfig values.

Table 9.18 Recommended ContextConfig Values

Page Table
Value Organization Page Size PTE Size Compliance
0x007ffffo Single Level 4K 64 bits/page REQUIRED
0x007ffff8 Single Level 2K 32 bits/page RECOMMENDED

142 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.11 UserlLocal Register (CPO Register 4, Select 2)

9.11 UserLocal Register (CPO Register 4, Select 2)

Compliance Level: Pre-Release 6: Recommended.
Release 6: Required

The UserLocal register is a read-write register that is not interpreted by the hardware and conditionally readable via
the RDHWR instruction.

If the MIPS® MT Module is implemented, the UserLocal register is instantiated per TC.

Prior to Release 6, this register only exists if the Config3 g, register field is set.
For Release 6, this register is mandatory, and Config3 g, must be 1.

Figure 9.12 shows the format of the UserLocal register; Table 9.19 describes the UserLocal register fields.

Figure 9.12 UserLocal Register Format

31 0
UserInformation
Table 9.19 UserLocal Register Field Descriptions
Fields
Read/
Name Bits Description Write Reset State | Compliance
UserInfor- 31..0 This field contains software information that is not inter- R/W Undefined Required
mation preted by the hardware.

Programming Notes

Privileged software may write this register with arbitrary information and make it accessible to unprivileged software
via register 29 (ULR) of the RDHWR instruction. To do so, bit 29 of the HWREna register must be set to a 1 to enable
unprivileged access to the register. In some operating environments, the UserlLocal register contains a pointer to a
thread-specific storage block that is obtained via the RDHWR register.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 143

144 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.12 Debug ContextID (CPO Register 4, Select 4)

9.12 Debug ContextID (CPO Register 4, Select 4)

Compliance Level: Reserved Pre-Release 6; Optional Release 6.

Debug ContextID is programmed by the kernel to provide a process specific tag to be incorporated into MIPS specific
hardware debug related mechanisms, examples being trace, PC-sample and breakpoint. The value programmed
would typically be unique to a process and as such saved/restored on a process context switch, but may be any sup-
plemental information that can assist debug.

Other than being factored into debug hardware, writes to this register do not have any side-effects on processor oper-
ation. Nor is this register to be used to observe side-effects of processor operation.

This register is also not defined as part of the EJTAG Specification i.e., it is not part of the set of DRSEG registers
accessible when Debugp,~1. It is accessible in kernel-mode when Debugp,~0.

This register may be present only if Configig,=1. However, it is not a requirement the register be present if
Configlgp=1.

Figure 9.13 shows the format of the Debug ContextID register; Table 9.20 describes the Debug ContextID register
fields.

Figure 9.13 Debug ContextID Register Format

1D

Table 9.20 Debug ContextID Register Field Descriptions

Fields

Read/
Name Bits Description Write Reset State | Compliance
ID 31:0 Provides a process specific tag specifically for use in hard- R/W Undefined Required

ware debug mechanisms. May be used by kernel software
to inject any supplemental information for debug pur-
poses.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

145

146 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.13 PageMask Register (CPO Register 5, Select 0)

9.13 PageMask Register (CPO Register 5, Select 0)

Compliance Level: Required for TLB-based MMUSs; Optional otherwise.

The PageMask register is a read/write register used for reading from and writing to the TLB. It holds a comparison
mask that sets the variable page size for each TLB entry, as shown in Table 9.22. Figure 9.14 shows the format of the
PageMask register; Table 9.21 describes the PageMask register fields.

Release 6 removes support for 1 kB pages. Release 6 also introduces optional support for small page sizes, whereas
prior to Release 6, all page sizes from 4 kB on must be supported up to the maximum page size for the implementa-
tion; however, the range of supported pages must be continuous.

Figure 9.14 PageMask Register Format

31 29 28 13 12 11 10 0
0 Mask MaskX 0
Table 9.21 PageMask Register Field Descriptions
Fields
Read /
Name Bits Description Write Reset State Compliance
Mask 28..13 The Mask field is a bit mask in which a “1” bit RIW Undefined Required

indicates that the corresponding bit of the virtual
address should not participate in the TLB match.
Release 6 makes optional the support for small
page sizes from 4 kB onwards. Corresponding
bits for pages disabled in the implementation
must be read-only 1. For example, if 4 kB pages
are disallowed, PageMask[14:13] is read-only
1s. Software can determine the range of sup-
ported pages by writing all 1s to determine the
most-significant bits that are read-only 0, and
writing all Os to determine least-significant bits
that are read-only 1s within PageMaskpask-

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™

Privileged Resource Architecture, Rev. 6.02

147

Table 9.21 PageMask Register Field Descriptions (Continued)

Fields
Read /

Name Bits Description Write Reset State Compliance

MaskX 12.11 In Release 2 of the Architecture (and subsequent R/W 0 Required (Release
releases), the MaskX field is an extension to the (See Description) 2)

Mask field to support 1 kB pages with definition
and action analogous to that of the Mask field, R 0 Reserved
defined above. (Release 6)
If 1 kB pages are enabled (Config3gp = 1 and
PageGrainggp = 1), these bits are writable and
readable, and their values are copied to and from
the TLB entry on a TLB write or read, respec-
tively.

If 1 kB pages are not enabled (Config3gp = 0 or
PageGrainggp = 0), these bits are not writable,

return zero on read, and the effect on the TLB
entry on a write is as if they were written with
the value 0b11.

In Release 1 of the Architecture, these bits must
be written as zero, return zero on read, and have
no effect on the virtual address translation.
Release 6 disallows 1 kB pages. This field is
read-only 0 from Release 6 onwards.

0 31..29, Ignored on write; returns zero on read. R 0 Required

10..0

Table 9.22 Values for the Mask and MaskX! Fields of the PageMask Register

Page Size Values for Mask field
(Isb of value is located at Values for MaskXxt
PageMask3) field
1 kB 0x0 0x0
4 kB 0x0 0x3
16 kB 0x3 0x3
64 kB OxF 0x3
256 kB Ox3F 0x3
1 MB OXFF 0x3
4 MB Ox3FF 0x3
16 MB OXFFF 0x3
64 MB Ox3FFF 0x3

148 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.13 PageMask Register (CPO Register 5, Select 0)

Table 9.22 Values for the Mask and MaskX! Fields of the PageMask Register (Continued)

Page Size Values for Mask field
(Isb of value is located at Values for MaskXxt
PageMask3) field
256 MB OXFFFF 0x3

1. PageMasky, 11 = PageMaskyaskx exists only on implementations of Release 2 of the architec-
ture and are treated as if they had the value Ob11 if 1K pages are not enabled (Config3gp = 0 or
PageGrainggp = 0). In Release 6, these bits are reserved.

It is implementation-dependent how many of the encodings described in Table 9.22 are implemented. All processors
must implement the 4 kB page size (prior to Release 6). If a particular page size encoding is not implemented by a
processor, a read of the PageMask register must return zeros in all bits that correspond to encodings that are not
implemented, thereby potentially returning a value different than that written by software. Release 6 requires that
unsupported pages from 4 kB onwards have their corresponding bits read-only 1s up to the minimum supported page
size.

Software may determine which page sizes are supported by writing all ones to the PageMask register, then reading
the value back. If a pair of bits reads back as ones, the processor implements that page size.

For Pre-Release 6: The operation of the processor is UNDEFINED if software writes the Mask field with a value
other than one of those listed in Table 9.22, even if the hardware returns a different value on read. Hardware may
depend on this requirement in implementing hardware structures

For Release 6: Hardware ignores writes of illegal or unsupported values to the Mask field as defined in Table 9.22. A
write of all 1s remains consistent with Pre-Release 6 behavior.

Config3gp Programming Note:

In implementations of Release 2 (and subsequent releases prior to Release 6) of the Architecture, the MaskX field of
the PageMask register must be written with Ob11 and the TLB must be flushed before each instance in which the
value of the PageGrain register is changed. This operation must be carried out while running in an unmapped address
space. The operation of the processor is UNDEFINED if this sequence is not done.

For Release 6, this is not a requirement because support for EntryHig,ny IS mandatory. Instead, software must invali-
date the TLB entries explicitly using TLBWI with EntryHigpny=1.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 149

150 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.14 PageGrain Register (CPO Register 5, Select 1)

9.14 PageGrain Register (CPO Register 5, Select 1)

Compliance Level: Required for implementations of Release 2 (and subsequent releases) of the Architecture that
include TLB-based MMUs and support 1 kB pages, the XI/RI TLB protection bits, multiple types of Machine Check
exceptions; Required for SmartMIPS™ ASE; Required for XPA (Config3 pa=1); Optional otherwise.

The PageGrain register is a read/write register used for enabling 1 kB page support, the XI/RI TLB protection bits,
reporting the type of Machine Check exception, and Extended Physical Addressing. The PageGrain register is pres-
ent in both the SmartMIPS™ ASE and in Release 2 (and subsequent releases) of the Architecture. As such, the
description below only describes the fields relevant to Release 2 of the Architecture. In implementations of both
Release 2 of the Architecture and the SmartMIPS™ ASE, the ASE definitions take precedence. Figure 9-15 shows
the format of the PageGrain register; Table 9.23 describes the PageGrain register fields.

Figure 9-15 PageGrain Register Format

31 30 29 28 27 26 25 13 12 8 7 5 0
RIE | XIE |ELPA|ESP|IEC| S32 0 ASE 0 MCCause
Table 9.23 PageGrain Register Field Descriptions
Fields
Read /
Name Bits Description Write Reset State | Compliance
RIE 31 Read Inhibit Enable. R/W or R 0 Required by
- - (Pre-Release 6)| (Pre-Release 6) | SmartMIPS
Encoding Meaning .
ASE;
0 RI bit of the EntryLo0 and EntryLol R 1 otherwise,
registers is disabled and not writeable (Release 6) (Release 6) optional
by software. (Pre-Release 6)
1 RI pit of Fhe EntryLoO and EntryLol Required
registers is enabled. (Release 6)

This bit is optional. The existence of this bit is denoted
by either the SM or RXI bits in Config3. If this bit is not
settable, then the RI bit in the EntryLo* registers is not

implemented.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

151

Table 9.23 PageGrain Register Field Descriptions (Continued)

Fields
Read /
Name Bits Description Write Reset State | Compliance
XIE 30 Execute Inhibit Enable. R/W or R 0 Required by
(Pre-Release 6)| (Pre-Release 6) SmartMIPS
- - ASE; other-
Encoding Meaning R 1 wise, optional
0 X1 bit of the EntryLoO and EntryLol (Release 6) (Release 6) | (Pre-Release 6)
registers is disabled and not writeable .
by software. Required
(Release 6)
1 Xl bit of the EntryLoO and EntryLol
registers is enabled.
This bit is optional. The existence of this bit is denoted
by either the SM or RXI bits in the Config3 register. If
this bit is not settable, the XI bit in the EntryLo* registers
is not implemented.
ASE 12..8 These fields are control features of the SmartMIPS™ 0 0 Required
ASE and are not used in implementations of Release 2 of
the Architecture unless such an implementation also
implements the SmartMIPS™ ASE.
ELPA 29 Enables support for large physical addresses. R/W 0 Required
- - (Release 5)
Encoding Meaning
0 Large physical address support is not
enabled
1 Large physical address support is
enabled (XPA)

If this bit is a 1, the following changes occur to Copro-

cessor 0 registers:

e The PFNX field of the EntryLoO and EntryLo1 regis-
ters is writable and concatenated with the PFN field to
form the full page frame number.

« Access to optional COPO registers with PA extension,
LLAddr, TagLo is defined.

If this bit is a 0 and Config3 pa =1, then writes to above

registers or fields are ignored and reads return 0.

ELPA is only writeable in a Release 5 implementation

that support XPA i.e., Config3 pp = 1.

For implementations prior to Release 5 of the Architec-

ture, this bit returns zero on read.

152

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.14 PageGrain Register (CPO Register 5, Select 1)

Table 9.23 PageGrain Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read /
Write

Reset State

Compliance

ESP

28

Enables support for 1 kB pages.

Encoding Meaning

0 1 kB page support is not enabled

1 1 kB page support is enabled

If this bit is a 1, the following changes occur to copro-

cessor O registers:

¢ The PFN field of the EntryLoO and EntryLol regis-
ters holds the physical address down to bit 10 (the
field is shifted left by 2 bits from the Release 1 defini-
tion).

e The MaskX field of the PageMask register is writ-
able and is concatenated to the right of the Mask field
to form the “don’t care” mask for the TLB entry.

e The VPN2X field of the EntryHi register is writable
and bits 12..11 of the virtual address.

e The virtual address translation algorithm is modified
to reflect the smaller page size.

If Config3gp = 0, 1 kB pages are not implemented, and

this bit is ignored on write and returns zero on read.

R/W

0

Required

IEC

27

Enables unique exception codes for the Read-Inhibit and
Execute-Inhibit exceptions.

Encoding Meaning

0 Read-Inhibit and Execute-Inhibit
exceptions both use the TLBL excep-
tion code.

1 Read-Inhibit exceptions use the
TLBRI exception code.
Execute-Inhibit exceptions use the
TLBXI exception code

For implementations which follow the SmartMIPS ASE,
this bit is ignored by the hardware, meaning the
Read-Inhibit and Execute-Inhibit exceptions can only
use the TLBL exception code.

R/W
(Pre-Release 6)

0
(Pre-Release 6)

1
(Release 6)

Required

Must be written as zero; returns zero on read.

Reserved

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

153

Table 9.23 PageGrain Register Field Descriptions (Continued)

Fields
Read /
Name Bits Description Write Reset State | Compliance
MCCause 4.0 Machine Check Cause . Only valid after a Machine R 0 Optional if
Check Exception. multiple types
- - of Machine
Encoding Meaning Check are sup-
0 No Machine Check Reported portefd.; Other-
- — wise not
1 Multiple Hit in TLB(S). needed.
2 Multiple Hits in TLB(s) for specula-

tive accesses. The value in EPC might
not point to the faulting instruction.

3 For Dual VTLB and FTLB. A page
with EntryHigny=0 is written into
FTLB and PageMask is not set to a
pagesize that is supported by the
FTLB.

4 For Dual VTLB and FTLB. A page
with EntryHigyny=0 is written into
FTLB but the VPN2 field is not con-
sistent with the TLB set selected by
the Index register.

5 For Hardware Page Table Walker and
Dual Page Mode of Directory Level
PTEs - first PTE accessed from mem-
ory has PTEVId bit set but second
PTE accessed from memory does not
have PTEVId bit set.

6 For Hardware Page Table Walker and
derived Huge Page size is power-of-4
but Dual Page mode not implemented.

24-31 Implementation specific

Others Reserved

Programming Note:

In implementations of Release 2 (and any release prior to Release 6) of the Architecture, the following fields must be
written with the specified values, and the TLB must be flushed before each instance in which the value of the
PageGrain register is changed. This operation must be carried out while running in an unmapped address space. The
operation of the processor is UNDEFINED if this sequence is not done.

For Release 6: This is not a requirement because support for EntryHigyny 1S mandatory. Instead, software must inval-
idate the TLB entries explicitly using TLBW!I and the properties of EntryHigpny

Field Required Value
EntryLoOpgp, EntryLolpgy 0
EntryLOOPFNx, EntryLolpgnx 0

154 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.14 PageGrain Register (CPO Register 5, Select 1)

Field Required Value
PageMasKpjaskx Ob11
EntryHiypnox 0

Note also that if PageGrain is changed, a hazard may be created between the instruction that writes PageGrain and a
subsequent CACHE instruction. This hazard must be cleared using the EHB instruction.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 155

156 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.15 SegCtI0 (CPO Register 5, Select 2)

9.15 SegCtl0 (CPO Register 5, Select 2)
9.16 SegCtll (CPO Register 5, Select 3)

9.17 SegCtl2 (CPO Register 5, Select 4)

Compliance Level: Required for programmable memory segmentation; Optional otherwise.

The Segmentation Control registers allow configuring the memory segmentation system. If implemented, the Seg-
mentation Configurations are always active.

The address space is split into six segments. The behavior of each region is controlled by a Segment Configuration.
See Section 4.10 “Segmentation Control”.

Segmentation Control allows address-specific behaviors defined by the Privileged Resource Architecture to be modi-
fied or disabled.

The Segmentation Control registers are instantiated per-VPE in an MT Module processor.
The existence of the Segmentation Control registers is denoted by the SC field within the Config3 register.

The EntryHi EHINV TLB invalidate feature is required by Segmentation Control. The legacy software method of rep-
resenting an invalid TLB entry by using an unmapped address value is nhot guaranteed to work.

Figure 9.16 shows the format of the SegCtl0 Register.

Figure 9.16 SegCtl0 Register Format (CPO Register 5, Select 2)
31 16 15 0

CFG1 CFGO

Table 9.24 SegCtl0O Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
CFG1 31..16 Segment Configuration 1, see Table 9.27 R/IW Implementa-
tion Depen-
CFGO 15..0 Segment Configuration 0, see Table 9.27 R/W dent

Figure 9.17 shows the format of the SegCtl1 Register.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 157

Figure 9.17 SegCtl1l Register Format (CPO Register 5, Select 3)
31 16 15 0

CFG3 CFG 2

Table 9.25 SegCtl1 Register Field Descriptions

Fields
Read /
Name Bits Description Write Reset State
CFG3 31..16 Segment Configuration 3, see Table 9.27 R/IW Implementa-
- - tion Depen-
CFG 2 15..0 Segment Configuration 2, see Table 9.27 R/W dent
Figure 9.18 shows the format of the SegCtl2 Register.
Figure 9.18 SegCtl2 Register Format (CPO Register 5, Select 4)
31 16 15 0
CFG5 CFG 4
Table 9.26 SegCtl2 Register Field Descriptions
Fields
Read /
Name Bits Description Write Reset State
CFG5 31..16 Segment Configuration 5, see Table 9.27 R/W Implementa-
- - tion Depen-
CFG 4 15..0 Segment Configuration 4, see Table 9.27 R/W dent

Table 9.27 describes the CFG (Segment Configuration) fields defined in all CFG fields of the Segmentation Control

registers.
Table 9.27 CFG (Segment Configuration) Field Description
Fields
Read /
Name Bits Description Write Compliance
PA 15..9 Physical address bits for Segment, for use when R/W Required
unmapped. See Section 4.10 “Segmentation Control”.
This field is provisioned to support mapping of up to a
36-bit physical address.

0 8.7 Reserved. RO Required
AM 6.4 Access control mode. See Table 9.28. R/W Required
EU 3 Error condition behavior. Segment becomes unmapped R/W Required

and uncached when Statusgg =1.

158 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.17 SegCtl2 (CPO Register 5, Select 4)

Table 9.27 CFG (Segment Configuration) Field Description (Continued)

Fields
Read /
Name Bits Description Write Compliance
C 2.0 Cache coherency attribute, for use when unmapped. As R/W Required

defined by base architecture. See Table 9.12 on page 133
for the encoding of this field. For Release 6, writes of
unsupported values leave the field unmodified, whereas
in Release 5, such a write may result in UNDEFINED
behavior.

Table 9.28 describes the access control modes specifiable in the CFG,y, field.

Table 9.28 Segment Configuration Access Control Modes

Action when referenced from Operating
Mode
Supervisor Kernel
Mode User mode mode mode Description
UK 000 Address Error | Address Error | Unmapped | Kernel-only unmapped region
e.g. kseg0, ksegl
MK 001 Address Error | Address Error Mapped Kernel-only mapped region
e.g. kseg3
MSK 010 Address Error Mapped Mapped Supervisor and kernel mapped region
e.g. ksseg, sseg
MUSK 011 Mapped Mapped Mapped User, supervisor and kernel mapped region
e.g. useg, kuseg, suseg
MUSUK 100 Mapped Mapped Unmapped | Used to implement a fully-mapped flat address space
in user and supervisor modes, with unmapped
regions which appear in kernel mode.
USK 101 Address Error | Unmapped Unmapped | Supervisor and kernel unmapped region
e.g. sseg in a fixed mapping TLB.
UUSK 111 Unmapped Unmapped Unmapped | Unrestricted unmapped region

Table 9.29 describes a configuration of Segmentation Control equivalent to legacy fixed partitioning. This is a rec-
ommended reset configuration for conformance with legacy fixed segmentation.

Table 9.29 Segment Configuration legacy reset state

CFG Segment AM PA C EU
0 kseg3 MK Undefined Undefined 0
1 ksseg, sseg MSK Undefined Undefined 0
2 ksegl UK 0x000 2 0
3 kseg0 UK 0x000 3 0
4 kuseg, suseg, useg MUSK 0x002 Undefined 1
5 kuseg, suseg, useg MUSK 0x000 Undefined 1

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 159

Table 9.30 describes the partitioning of the microMIPS32 Address Space and the virtual address range mapped by
each Segment Configuration (CFG).

Table 9.30 Segment Configuration partitioning of MIPS32 address space

CFG Virtual Address range Equivalent Segment name(s)

0 OxFFFF FFFF kseg3
through
0xE000 0000

1 OxDFFF FFFF ksseg, sseg
through
0xC000 0000

2 OXBFFF FFFF ksegl
through
0xA000 0000

3 OxX9FFF FFFF ksegO
through
0x8000 0000

4 0x7FFF FFFF kuseg, useg, suseg
through
0x4000 0000

5 O0x3FFF FFFF
through
0x0000 0000

160 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.18 PWBase Register (CP0O Register 5, Select 5)

9.18 PWBase Register (CPO Register 5, Select 5)
Compliance Level: Required for the hardware page walker feature.
The PWBase register contains the Page Table Base virtual address, used as the starting point for hardware page table
walking. It is used in combination with the PWField and PWSize registers.
The PWBase register is instantiated per-VPE in an MT Module processor.
The existence of this register is denoted when Config3py,=1.
The operation of page table walking is described in Section 4.12 “Hardware Page Table Walker”.
Figure 9.19 shows the format of the PWBase register; Table 9.31 describes the PWBase register fields.
Figure 9.19 PWBase Register Format
31 0
PWBase
Table 9.31 PWBase Register Field Descriptions
Fields
Read / Reset
Name Bits Description Write State Compliance
PWBase 31..0 Page Table Base address pointer R/W 0 Required
9.19 PWField Register (CPO Register 5, Select 6)

Compliance Level: Required for the hardware page walker feature.

The PWField register configures hardware page table walking for TLB refills. It is used in combination with the
PWBase and PWSize registers.

The hardware page walker feature supports multi-level page tables - up to four directory levels plus one page table
level. The lowest level of any page table system is an array of Page Table Entries (PTEs). This array is known as a
Page Table (PT) and is indexed using bits from the faulting address. A single-level page table system contains only a
single Page Table.

A multi-level page table system forms a tree structure - the lowest (leaf) elements of which are Page Table Entries.
Levels above the lowest Page Table level are known as Directories. A directory consists of an array of pointers. Each
pointer in a directory is either to another directory or to a Page Table.

The Page Table and the Directories are indexed by bits extracted from the faulting address. The PWBase register con-
tains the base address of the first Directory or Page Table which will be accessed. The PWSize register specifies the
number of index bits to be used for each level. The PWField register specifies the location of the index fields in the
faulting address.

This register only exists if Config3py=1.

The PWField register is instantiated per-VPE in an MT Module processor.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 161

If a synchronous exception condition is detected on a read operation during hardware page-table walking, the auto-
mated process is aborted and a TLB Refill exception is taken.

Figure 9.20 shows the formats of the PWField Register; Table 9.32 describes the PWField register fields.

162 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.19 PWField Register (CPO Register 5, Select 6)

Figure 9.20 PWField Register Format

31 30 29 24 23 18 17 12 11 6 5 0
0 GDI uDlI MDI PTI PTEI
Table 9.32 PWField Register Field Descriptions
Fields
Read /
Name Bits Description Write Reset State | Compliance
0 31..30 | Must be written as zero; returns zero on read. RO 0 Required

GDI 29..24 | Global Directory index. Least significant bit of the index R/W 0 Required when
field extracted from the faulting address, which is used to (Pre-Release 6) | PWSizegpwy
index into the Global Directory. The number of index bits 12 is implemented
is specified by PWSizegpy (Release 6)

Release 6: Entire write is dropped if the write value to this
field is less than 12.

uDlI 23..18 | Upper Directory index. Least significant bit of the index R/W 0 Required when
field extracted from the faulting address, which is used to (Pre-Release 6) | PWSizeypw
index into the Upper Directory. The number of index bits 12 is implemented
is specified by PWSizeypw. (Release 6)

Release 6: Entire write is dropped if the write value to this
field is less than 12.

MDI 17.12 | Middle Directory index. Least significant bit of the index R/W 0 Required when
field extracted from the faulting address, which is used to (Pre-Release 6) | PWSizeypw
index into the Middle Directory. The number of index bits 12 is implemented
is specified by PWSizeppy- (Release 6)

Release 6: Entire write is dropped if the write value to this
field is less than 12.

PTI 11.6 Page Table index. Least significant bit of the index field R/W 0 Required
extracted from the faulting address, which is used to index (Pre-Release 6)
into the Page Table. The number of index bits is specified 12
by PWSizepy. (Release 6)

Release 6: Entire write is dropped if the write value to this
field is less than 12.

If PTI is not a power of four, the pagesize is downgraded
to the nearest power of four.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

163

Table 9.32 PWField Register Field Descriptions (Continued)

Fields
Read /
Name Bits Description Write Reset State | Compliance
PTEI 5.0 Page Table Entry shift. R/IW 2 Required

Specifies the logical right shift and rotation which will be
applied to Page Table Entry values loaded by hardware
page table walking.

The entire PTE is logically right shifted by PTEI-2 bits
first. The purpose of this shift is to remove the SW-only
bits from what will be written into the TLB entry. Then the
two least-significant bits of the shifted value are rotated
into position for the Rl and XI protection bit locations
within the TLB entry.

A value of 2 means rotate the right-most two bits into the
RI1/XI bit positions for the TLB entry.

A value of 3 means logical shift right by one bit the entire
PTE and then rotate the right-most twobits into the RI/XI
positions for the TLB entry. A value of 4 means logical
shift right by two bits the entire PTE and then rotate the
right-most two bits into the RI/XI positions for the TLB
entry.

For Pre-Release 6, the values of 1 and 0 are RESERVED
and should not be used; the operation of the HW Page
Walker is UNPREDICTABLE for these cases.

For Release 6, a write of an unsupported value leaves the
register unmodified. Values of 0,1 are unsupported, 2 is
required, and all other values are optional and implemen-
tation-specific.

Software can discover the available values by writing this
field. If the requested shift value is not available, PTEI
will remain unchanged.

9.20

164

Note that the PTEI field can be incorrectly programmed so that the entire PFN, C, V, G TLB fields are overwritten
with zeros by the logical right shift operation. The intention of this facility is to only remove the SW-only bits of the
PTE from the value which will be later written into the TLB.

PWSize Register (CPO Register 5, Select 7)

Compliance Level: Required for the hardware page walk feature.

The PWSize register configures hardware page table walking for TLB refills. It is used in combination with the
PWBase and PWField registers.

The operation of page table walking is described in Section 4.12 “Hardware Page Table Walker”.
The hardware page walk feature supports multi-level page tables - up to three directory levels plus one page table

level. The lowest level of any page table system is an array of Page Table Entries (PTEs). This array is known as a

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.20 PWSize Register (CPO Register 5, Select 7)

Page Table (PT) and is indexed using bits from the faulting address. A single-level page table system contains only a
single Page Table.

A multi-level page table system forms a tree structure - the lowest (leaf) elements of which are Page Table Entries.
Levels above the lowest Page Table level are known as Directories. A directory consists of an array of pointers. Each
pointer in a directory is either to another directory or to a Page Table.

The Page Table and the Directories are indexed by bits extracted from the faulting address BadVAddr. The PWBase
register contains the base address of the first Directory or Page Table which will be accessed. The PWSize register
specifies the number of index bits to be used for each level. The PWField register specifies the location of the index
fields in BadVAddr.

Index values used to access Directories are multiplied by the native pointer size for the refill. For 32-bit addressing,

the native pointer size is 32 bits (2 bit left shift). The index value used to access the Page Table is multiplied by the
native pointer size. An additional multiplier (left shift value) can be specified using the PWSizeptgyy field. This

allows space to be allocated in the Page Table structure for software-managed fields.
This register only exists if Config3py,=1.

The PWSize register is instantiated per-VPE in an MT Module processor.

Figure 9.21 shows the formats of the PWSize Register; Table 9.33 describes the PWSize register fields.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 165

Figure 9.21 PWSize Register Format
31 30 29 24 23 18 17 12 11 6 5 0

0 |PS GDW ubw MDW PTW PTEW

Table 9.33 PWSize Register Field Descriptions

Fields
Read /

Name Bits Description Write Reset State | Compliance

0 31 Must be written as zero; returns zero on read. 0 0 Required

PS 0 Pointer Size - this is only used by the 64-bit architectures. R 0 Required
For the 32-bit architectures, this bit is fixed to 0.

GDW 29..24 | Global Directory index width. R/W 0 Recommended

Value Meaning

0 No read is performed using Global
Directory index.

Non-zero | Number of bits to be extracted from
BadVAddr to create an index into the
Global Directory. The least significant
bit of the field is specified by
PWFie'dGD|.

ubw 23..18

C

pper Directory index width. R/W 0 Recommended

Value Meaning

0 No read is performed using Upper
Directory index.

Non-zero | Number of bits to be extracted from
BadVAddr to create an index into the
Upper Directory. The least significant
bit of the field is specified by
PWFieIdUD|.

MDW 17..12 | Middle Directory index width. R/W 0 Recommended

Value Meaning

0 No read is performed using Middle
Directory index.

Non-zero | Number of bits to be extracted from
BadVAddr to create an index into the
Middle Directory. The least signifi-
cant bit of the field is specified by
PWFieIdMD|.

166 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.20 PWSize Register (CPO Register 5, Select 7)

Table 9.33 PWSize Register Field Descriptions (Continued)

Fields
Read /
Name Bits Description Write Reset State | Compliance
PTW 11..6 Page Table index width. R/W 0 Required
Value 0 meaning has changed for Release 6. (Pre-Release 6)
X 1
Value Meaning (Release 6)
0 Pre-Release 6: UNPREDICTABLE
Release 6: Write of 0 is ignored; entire
write is dropped.
Non-zero | Number of bits to be extracted from
BadVAddr to create an index into the
Page Table. The least significant bit of
the field is specified by PWFieldpT.
PTEW 5..0 Specifies the left shift applied to the Page Table index, in R/W 0 Required
addition to the shift required to account for the native data
size of the machine.
The set of available shifts is implementation-dependent.
Software can discover the available values by writing this
field. If the requested shift value is not available, PTEW
will be written as zero. A shift of one must be imple-
mented.
Table 9.34 describes valid PWSize pgprgy and PWCtly,gepg settings.
Table 9.34 PS/PTEW Usage
_ . Pointer Directory Non-Leaf Leaf PTE Suggested
PWSizeps | PWCtlpygepg | PWSizeptew | Addressing | Pointer Size | PTE Size Size Use Case
0 0 0 32 bits 32 bits N/A 32 bits 32-bit
0 0 1 32 bits 32 bits N/A 64 bits 32-bit with
PA>32bits
0 1 0 32 bits 32 bits 32 bits 32 bits 32-bit with
Huge Pages
0 1 1 32 bits 64 bits! 64 bits 64 bits 32-bit with
Huge Pages
& PA>32 bits
N/A N/A >1 Not supported

1. The “Directory Pointer Size” column denotes how many bytes of memory is used for each pointer in the directory lev-
els. If this size is larger than the pointer itself, the pointer uses the least significant bytes.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

167

168 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.21 Wired Register (CP0 Register 6, Select 0)

9.21 Wired Register (CP0 Register 6, Select 0)

Compliance Level: Required for TLB-based MMUs: Optional otherwise.

The Wired register is a read/write register that specifies the boundary between the wired and random entries in the
TLB as shown in Figure 9.22.

Figure 9.22 Wired And Random Entries In The TLB

Entry TLBSize-1 A
: =
' Q
! e
. =
. <
: (=
Wired Register — > Entry 10 L
: 4
']
' =
Ent;'y 0

The width of the Wired field is calculated in the same manner as that described for the Index register. Wired entries are
fixed, non-replaceable entries which are not overwritten by a TLBWR instruction. Wired entries can be overwritten by
a TLBWTI instruction.

The Wired register is set to zero by a Reset Exception. Writing the Wired register causes the Random register to reset
to its upper bound.

The operation of the processor is UNDEFINED if a value greater than or equal to the number of TLB entries is writ-
ten to the Wired register.

Release 6 adds the Limit field. The intent of a non-zero value for this field is to place a limit on the number of wired
entries in a TLB such that non-wired entries may be shared in a common physical TLB by multiple VPEs (as defined
in the Multi-threading (MT) Module, Volume IV-f), or Guests and Root (see the Virtualization Module, Volume I'V-i).
For Release 6, if the Limit field is greater than 0, and a value greater than Limit is written to the Wired field, then the
write is ignored.

A Reset Exception does not impact the state of Limit.

In Release 6, the Random register is no longer supported.

Figure 9.22 shows the format of the Wired register; Table 9.35 describes the Wired register fields.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 169

IMAGINATION TECHNOLOGIES PROPRIETARY / RESTRICTED CONFIDENTIAL - HEIGHTENED STANDARD OF CARE REQUIRED AS PER CONTRACT

170

31

Figure 9.23 Wired Register Format

m m-1 16 15

Limit

Wired

Table 9.35 Wired Register Field Descriptions

Fields

Name

Bits

Description

Read/
Write

Reset State

Compliance

0

3l.m

Must be written as zero; returns zero on read.
The size of this field is determined by Limit.

0

0

Reserved

Limit

m-1..16

TLB wired limit - see table below.

Wired entries are only applicable to a variable-sized
TLB, such as when Configyt =1 or 4. A fixed-size TLB
in the case of Configy,t =4 does not have wired entries.
Limit may alternatively be programmed but only as
specified by the contents of an implementation-depen-
dent register i.e., this capability is not architecturally
visible.

Attempting to write a value greater than Limit into the
Wired field causes the write to be dropped.

Encoding Meaning

0 Pre Release 6 compatibility.

The maximum number of wired
entries may be equal to the number of
TLB entries minus one.

The field is reserved i.e., writes are
ignored, reads return 0s.

>0 The maximum number of wired
entries, which must be less than the
number of TLB entries minus one.
The number of wired entries is imple-
mentation-dependent and is equal to

Limit.

Preset by hard-
ware

Required
(Release 6)

15..n

Must be written as zero; returns zero on read.
The size of this field is determined by Wired.

Reserved

Wired

n-1..0

TLB wired boundary

RIW

Required

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.22 PWCtl Register (CPO Register 6, Select 6)

9.22 PWCt| Register (CPO Register 6, Select 6)

Compliance Level: Required for the hardware page walker feature.

The PWCtl register configures hardware page table walking for TLB refills. It is used in combination with the
PWBase, PWField and PWSize registers.

Hardware page table walking is disabled when PWCtlp\g,=0.

The hardware page walker feature supports multi-level page tables - up to four directory levels plus one page table
level. The lowest level of any page table system is an array of Page Table Entries (PTEs). This array is known as a
Page Table (PT) and is indexed using bits from the faulting address. A single-level page table system contains only a
single Page Table.

A multi-level page table system forms a tree structure - the lowest (leaf) elements of which are Page Table Entries.
Levels above the lowest Page Table level are known as Directories. A directory consists of an array of pointers. Each
pointer in a directory is either to another directory or to a Page Table.

The Page Table and the Directories are indexed by bits extracted from the faulting address BadVAddr. The PWBase
register contains the base address of the first Directory or Page Table which will be accessed. The PWSize register
specifies the number of index bits to be used for each level. The PWField register specifies the location of the index
fields in BadVvAddr.

The existence of this register is denoted when Config3p\y=1.

The PWField register is instantiated per-VPE in an MT Module processor.

Figure 9.24 shows the formats of the PWCtl Register; Table 9.36 describes the PWCtl register fields.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 171

Figure 9.24 PWCt|l Register Format
31 30 7 6 5..0

PWEn Reserved DPH | HugePg Psn

Table 9.36 PWCt| Register Field Descriptions

Fields
Read / Reset

Name Bits Description Write State Compliance

PWEn 31 Hardware Page Table walker enable R/W 0 Required
If this bit is set, then the Hardware Page Table is enabled.

- 30..8 Reserved, Must be written as zero; returns zero on read. RO 0 Required

DPH 7 Dual Page format of Huge Page support. This bitisonly | R or R/W 0 Required
used when HugePg=1.

If DPH bit is set, then a Huge Page PTE can represent a
power-of-4 memory region or a 2x power-of-4 memory

region. For the first case, one PTE is used for even TLB
page and the adjacent PTE is used for the odd PTE. For

the latter case, the Hardware will synthesize the physical
addresses for both the even and odd TLB pages from the
single PTE entry.

If DPH bit is clear, then a Huge Page PTE can only repre-
sent a region that is 2 x power-of-4 in size. For this case,
the Hardware will synthesize the physical addresses for
both the even and odd TLB pages from the single PTE

entry.

HugePg 6 Huge Page PTE supported in Directory levels. If this bitis | R or R/W 0 Required
set, then Huge Page PTE in non-leaf table (i.e., directory
level) is supported.

PSn 5:0 Bit position of PTEvId in Huge Page PTE. Only used R/W 0 Required
when HugePqg field is set.

172

If the implementation supports Huge Pages, then Software enables Huge Pages by setting PWCtlygepg=1. Software
can disable Huge Pages by setting PWCtlpygepg = 0. An implementation that does not support Huge Pages is required
to hardwire PWCtlyqetpg = 0 read-only. Software can determine Huge Page support by writing 1 to PWClyyygepg, if @
following read returns 0, then Huge Page support is not implemented.

The PWCtIPsn field is provisioned at 6 bits, allowing a starting bit position for PTEvId up to bit 64 in the PTE. An

implementation may choose to support a more limited range by hardwiring an implementation defined number of the
high order bits of PWCtlp, to 0. Software can determine the supported range by writing ones to PWCtIPsn then read-

ing.

For non-Leaf

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.22 PWCtl Register (CPO Register 6, Select 6)

Table 9.37 describes how the HugePg field is used to denote whether Huge Pages are supported or not.

Table 9.37 HugePg Field and Huge Page configurations

Type of Entry

Rsvd Field in Non-

PTEpTEvig=1 means Huge Page

PTEptEyq NOt Used

PWCTL hugepg Non-Leaf Leaf leaf entry Comment
0 Always Pointer Always PTE X No Huge-Page Support
PTEpTEVI¢ NOt USEd
PTEPTEVld not used
1 PTEpTgv1g=0 means Pointer Always PTE Must be 0 Huge-Page Support

Table 9.38 describes how Huge Pages are represented in the Directory Levels.

Table 9.38 Huge Page representation in Directory Levels

Size of Huge Page

PWCTLppy

Power of 4

non-Power of 4

Comment

0

Not Allowed

Allowed

If encountered, HW Page Walker
aborts and TLB Refill exception
is taken.

Even TLB page and Odd TLB
page entries both derived from
single PTE

Huge-Page region can
only be 2x power-of-4

Allowed

Two PTEs are read from mem-
ory by the HW Page Walker to

Allowed

Even TLB page and Odd TLB
page entries both derived from

Huge-Page region can be

any power-of-
(either power of 4
power-of-4)

TLB page entries.

be used for the Even and Odd

single PTE

2
or 2x

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

173

174 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.23 HWREna Register (CPO Register 7, Select 0)

9.23 HWREnNa Register (CP0 Register 7, Select 0)

Compliance Level: Required (Release 2).

The HWREna register contains a bit mask that determines which hardware registers are accessible via the RDHWR
instruction when that instruction is executed in a mode in which coprocessor 0 is not enabled.

Release 6 adds access to CP0O PerfCnt and Config5yyp-

Figure 9.25 shows the format of the HWREna Register; Table 9.39 describes the HWREna register fields.

Figure 9.25 HWREna Register Format
31 30 29 4 3 0

Impl Mask

Table 9.39 HWREnNa Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
31..30 Impl These bits enable access to the implementation- R/W 0 Optional - Reserved

dependent hardware registers 31 and 30. for Implementations

If a register is not implemented, the corresponding bit
returns a zero and is ignored on write.

If a register is implemented, access to that register is
enabled if the corresponding bit in this field isa 1 and
disabled if the corresponding bit is a 0.

Mask 29..0 Each bit in this field enables access by the RDHWR R/W 0 Required
instruction to a particular hardware register (which
may not be an actual register).

If RDHWR register ‘n’ is not implemented, bit ‘n’ of
this field returns a zero and is ignored on a write.

If RDHWR register ‘n’ is implemented, access to the
register is enabled if bit ‘n’ in this field is a 1 and dis-
abled if bit ‘n’ of this field isa 0.

See the RDHWR instruction for a list of valid hard-
ware registers.

Table 9.40 lists the RDHWR registers, and register
number ‘n’ corresponds to bit ‘n” in this field.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 175

176

Table 9.40 RDHWR Register Numbers

Register
Number Mnemonic Description Compliance
CPUNum | Number of the CPU on which the program is currently running. This register Required
0 provides read access to the coprocessor 0 EBasecpynum field.
SYNCI_Step | Address step size to be used with the SYNCI instruction. See that instruction’s Required
description for the use of this value. In the typical implementation, this value
1 should be zero if there are no caches in the system which must be synchronize
(either because there are no caches, or because the instruction cache tracks
writes to the data cache). In other cases, the return value should be the smallest
line size of the caches that must be synchronize.
’ CcC High-resolution cycle counter. This register provides read access to the copro- Required
cessor 0 Count Register.
CCRes Resolution of the CC register. This value denotes the number of cycles Required
between update of the register. For example:
CCRes Value Meaning
3 1 CC register increments every CPU cycle
2 CC register increments every second CPU cycle
3 CC register increments every third CPU cycle
etc.
PerfCnt Performance Counter Pair. Even sel selects the Control register, while odd sel | Required if any
4 selects the Counter register in the pair. PerfCntregister
is implemented
(Release 6)
XNP Indicates support for Release 6 Double-Width LLX/SCX family of instruc- Required
tions. If set to 1, then LLX/SCX family of instructions is not present, other- (Release 6)
5 wise present in the implementation. In absence of hardware support for
double-width or extended atomics, user software may emulate the instruction’s
behavior through other means. See Config5yyp.
6-28 These registers numbers are reserved for future architecture use. Access Reserved
results in a Reserved Instruction Exception.
ULR User Local Register. This register provides read access to the coprocessor 0 Required if the
29 UserLocal register, if it is implemented. In some operating environments, the | UserLocal reg-
UserLocal register is a pointer to a thread-specific storage block. In Release 6, | ister is imple-
the UserLocal register is required. mented
These register numbers are reserved for implementation-dependent use. If they Optional
30-31 - . : .
are not implemented, access results in a Reserved Instruction Exception.

Using the HWREna register, privileged software may select which of the hardware registers are accessible via the
RDHWR instruction. In doing so, a register may be virtualized at the cost of handling a Reserved Instruction Excep-
tion, interpreting the instruction, and returning the virtualized value. For example, if it is not desirable to provide
direct access to the Count register, access to that register may be individually disabled and the return value can be vir-
tualized by the operating system.

Software may determine which registers are implemented by writing all ones to the HWREna register, then reading
the value back. If a bit reads back as a one, the processor implements that hardware register.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.24 BadVAddr Register (CPO Register 8, Select 0)

9.24 BadVAddr Register (CPO Register 8, Select 0)

Compliance Level: Required.

The BadVAddr register is a read-only register that captures the most recent virtual address that caused one of the fol-
lowing exceptions:

* Address error (AdEL or AJES)
e TLB Refill

* TLB Invalid (TLBL, TLBS)

» TLB Modified

The BadVAddr register does not capture address information for cache or bus errors, or for Watch exceptions, since
none is an addressing error.

Figure 9.26 shows the format of the BadVAddr register; Table 9.41 describes the BadVAddr register fields.

Figure 9.26 BadVAddr Register Format
31 0

BadVAddr

Table 9.41 BadVAddr Register Field Descriptions

Fields
Read/
Name Bits Description Write Reset State | Compliance
BadVAddr 31..0 Bad virtual address R Undefined Required

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 177

178 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.25 BadlInstr Register (CPO Register 8, Select 1)

9.25 BadInstr Register (CPO Register 8, Select 1)

Compliance Level: Pre-Release 6 - Optional

Release 6 - Required

The Badlnstr register is a read-only register that capture the most recent instruction which caused one of the following

exceptions:

* Instruction validity

Coprocessor Unusable, Reserved Instruction

» Execution Exception

Integer Overflow, Trap, System Call, Breakpoint, Floating-Point, Coprocessor 2 exception

» Addressing

Address Error, TLB Refill, TLB Invalid, TLB Read Inhibit, TLB Execute Inhibit, TLB Modified

The BadInstr register is provided to allow acceleration of instruction emulation. The Badinstr register is only set by
exceptions which are synchronous to an instruction. The BadInstr register is not set by Interrupts, NMI, Machine
check, Bus Error or Cache Error exceptions. The Badinstr register is not set by Watch or EJTAG exceptions.

When a synchronous exception occurs for which there is no valid instruction word (for example TLB Refill - Instruc-
tion Fetch), the value stored in BadInstr is UNPREDICTABLE.

Presence of the Badinstr register is indicated by the Config3g, bit set to 1. The Badinstr register is instantiated per-
VPE in an MT Module processor. For Release 6, the Config3g, bit must always be set to 1.

Figure 9.27 shows the proposed format of the Badinstr register; Table 9.42describes the Badinstr register fields.

Figure 9.27 Badlnstr Register Format

31 0
Badlnstr
Table 9.42 BadInstr Register Field Descriptions
Fields
Read / Reset

Name Bits Description Write State Compliance

Badlnstr 31:0 Faulting instruction word. R Undefined Optional
Instruction words smaller than 32 bits are placed in bits (Pre-Release 6)

15:0, with bits 31:16 containing zero.
Required
(Release 6)

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 179

180 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.26 BadInstrP Register (CPO Register 8, Select 2)

9.26 BadInstrP Register (CPO Register 8, Select 2)

Compliance Level: Pre-Release 6 - Optional
Release 6 - Required

The BadinstrP register is used in conjunction with the Badinstr register. The BadInstrP register contains the prior
branch instruction, when the faulting instruction is in a branch delay slot.

The BadinstrP register is updated for these exceptions:
* Instruction validity
Coprocessor Unusable, Reserved Instruction
» Execution Exception
Integer Overflow, Trap, System Call, Breakpoint, Floating-Point, Coprocessor 2 exception
» Addressing
Address Error, TLB Refill, TLB Invalid, TLB Read Inhibit, TLB Execute Inhibit, TLB Modified
The BadinstrP register is provided to allow acceleration of instruction emulation. The BadInstrP register is only set by
exceptions which are synchronous to an instruction. The BadInstrP register is not set by Interrupts, NMI, Machine

check, Bus Error or Cache Error exceptions. The Badinstr register is not set by Watch or EJTAG exceptions.

When a synchronous exception occurs and the faulting instruction is not in a branch delay slot, then the value stored
in BadInstrP is UNPREDICTABLE.

Presence of the BadInstrP register is indicated by the Config3gp bit set to 1. The BadinstrP register is instantiated per-
VPE in an MT Module processor. For Release 6, the Config3gp bit must be set to 1.

Figure 9.28 shows the proposed format of the BadinstrP register; Table 9.43describes the BadinstrP register fields.

Figure 9.28 BadInstrP Register Format

BadlInstrP

Table 9.43 BadlInstrP Register Field Descriptions

Fields
Read / Reset

Name Bits Description Write State Compliance

BadlInstrP 31:0 Prior branch instruction. R Undefined Optional
Instruction words smaller than 32 bits are placed in bits (Pre-Release 6)

15:0, with bits 31:16 containing zero.
Required
(Release 6)

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 181

182 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.27 Count Register (CPO Register 9, Select 0)

9.27 Count Register (CPO Register 9, Select 0)

Compliance Level: Required.

The Count register acts as a timer, incrementing at a constant rate, whether or not an instruction is executed, retired,
or any forward progress is made through the pipeline. The rate at which the counter increments is implementation-
dependent, and is a function of the pipeline clock of the processor, not the issue width of the processor.

The Count register can be written for functional or diagnostic purposes, including at reset or to synchronize proces-
Sors.

The Count register can also be read via RDHWR register 2.

Figure 9.29 shows the format of the Count register; Table 9.44 describes the Count register fields.

Figure 9.29 Count Register Format
31 0

Count

Table 9.44 Count Register Field Descriptions

Fields
Read/
Name Bits Description Write Reset State | Compliance
Count 31..0 Interval counter R/W Undefined Required

9.28 Reserved for Implementations (CPO Register 9, Selects 6 and 7)

Compliance Level: Implementation-dependent.

CPO register 9, Selects 6 and 7 are reserved for implementation-dependent use and are not defined by the architecture.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 183

184 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.29 EntryHi Register (CPO Register 10, Select 0)

9.29 EntryHi Register (CPO Register 10, Select 0)

Compliance Level: Required for TLB-based MMU; Optional otherwise.
The EntryHi register contains the virtual address match information used for TLB read, write, and access operations.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VA3, 13 of the virtual address to be writ-

ten into the VPN2 field of the EntryHi register. An implementation of Release 2 of the Architecture which supports 1

kB pages also writes VA, 11 into the VPN2X field of the EntryHi register. A TLBR instruction writes the EntryHi reg-
ister with the corresponding fields from the selected TLB entry. The ASID field is written by software with the current
address space identifier value and is used during the TLB comparison process to determine TLB match.

Because the ASID field is overwritten by a TLBR instruction, software must save and restore the value of ASID
around use of the TLBR. This is especially important in TLB Invalid and TLB Modified exceptions, and in other
memory management software.

In Release 3 of the architecture, the VPN2 field of the TLB entry can be optionally invalidated. When this is done, the
invalidated entry is ignored on address match for memory accesses. One method of invalidating the VPN2 field is the
use of the EHINV field with the TLBWI instruction. This field exists if Config4, is set to a value of 2 or 3. This field
is overwritten by a TLBR instruction, so software must save and restore the value of the EHINV field around the use
of the TLBR instruction. This is especially important for the subsequent usage of TLBW!1 instructions.

The VPNX2 and VPN2 fields of the EntryHi register are not defined after an address error exception and these fields
may be modified by hardware during the address error exception sequence.Software writes of the EntryHi register (via
MTCO) do not cause the implicit write of address-related fields in the BadVAddr or Context registers.

Figure 9.30 shows the format of the EntryHi register; Table 9.45 describes the EntryHi register fields.

Figure 9.30 EntryHi Register Format

31 13 12 11 10 8 7 0
EH
VPN2 VPN2X ASIDX ASID
INV
Table 9.45 EntryHi Register Field Descriptions
Fields
Read / Reset
Name Bits Description Write State Compliance
VPN2 31..13 | VA3, 13 of the virtual address (virtual page number / 2). R/W Undefined Required
This field is written by hardware on a TLB exception or on
a TLB read, and is written by software before a TLB write.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 185

Table 9.45 EntryHi Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
VPN2X 12.11 | In Release 2 of the Architecture (and subsequent releases), R/W 0 Required (Release 2
the VPN2X field is an extension to the VPN2 field to sup- and 1 kB Page Sup-
port 1 kB pages. These bits are not writable by either hard- port)
ware or software unless Config3gp = 1 and
PageGrainggp = 1. If enabled for write, this field con-
tains VA, 11 of the virtual address and is written by hard-
ware on a TLB exception or on a TLB read, and is by
software before a TLB write.
If writes are not enabled, and in implementations of
Release 1 of the Architecture, this field must be written
with zero and returns zeros on read.
EHINV 10 TLB HW Invalidate R/W 0 Optional (Release 3).
Required for TLBWI
If Config4g > 1, and this bit is set, the TLBWI instruc- hardware invalidate
tion will invalidate the VPN2 field of the selected TLB support, or if
entry. Config4|E=2 or 3.
If Config4|g > 1, a TLBR instruction will update this field
withe the VPNZ2 invalid bit of the read TLB entry. Required (Release 6)
ASIDX 9.8 If Config4ag = 1 then these bits extend the ASID field. If If Required
Config4p | Configdpag=
If Config4ag = 0 then Must be written as zero; returns g=1then 1then
zero on read. R/W Undefined
else 0 else 0
ASID 7.0 Address space identifier. This field is written by hardware R/W Undefined Required (TLB
on a TLB read and by software to establish the current MMU)
ASID value for TLB write and against which TLB refer-
ences match each entry’s TLB ASID field.

Programming Note:

In implementations of Release 2 (and any subsequent releases prior to Release 6) of the Architecture, the VPN2X field
of the EntryHi register must be written with zero and the TLB must be flushed before each instance in which the value
of the PageGrain register is changed. This operation must be carried out while running in an unmapped address

space. The operation of the processor is UNDEFINED if this sequence is not done.

For Release 6, this is not a requirement because support for EntryHigyy IS mandatory. Instead, software must invali-

date the TLB entries explicitly using TLBW!I with EntryHigpyny=1.

186

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.30

9.30 Compare Register (CPO Register 11, Select 0)

Compare Register (CPO Register 11, Select 0)

Compliance Level: Required.

The Compare register acts in conjunction with the Count register to implement a timer and timer interrupt function.
The Compare register maintains a stable value and does not change on its own.

When the value of the Count register equals the value of the Compare register, an interrupt request is made. In
Release 1 of the architecture, this request is combined in an implementation-dependent way with hardware interrupt 5
to set interrupt bit IP(7) in the Cause register. In Release 2 (and subsequent releases) of the Architecture, the presence
of the interrupt is visible to software via the Causer, bit and is combined in an implementation-dependent way with a
hardware or software interrupt. For Vectored Interrupt Mode, the interrupt is at the level specified by the IntCtl|pT,

field.
For diagnostic purposes, the Compare register is a read/write register. In normal use however, the Compare register is

write-only. Writing a value to the Compare register, as a side effect, clears the timer interrupt. Figure 9.31 shows the
format of the Compare register; Table 9.46 describes the Compare register fields.

Figure 9.31 Compare Register Format

31 0
Compare
Table 9.46 Compare Register Field Descriptions
Fields
Read / Reset
Name Bits Description Write State Compliance
Compare 31..0 Interval count compare value R/W Undefined Required
Programming Note:
In Release 2 of the Architecture, the EHB instruction can be used to make interrupt state changes visible when the
Compare register is written. See 6.1.2.1 “Software Hazards and the Interrupt System” on page 82.
9.31 Reserved for Implementations (CPO Register 11, Selects 6 and 7)

Compliance Level: Implementation-dependent.

CPO register 11, Selects 6 and 7 are reserved for implementation-dependent use and are not defined by the architec-
ture.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 187

188 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.32 Status Register (CP Register 12, Select 0)

9.32 Status Register (CP Register 12, Select 0)

Compliance Level: Required.

The Status register is a read/write register that contains the operating mode, interrupt enabling, and the diagnostic
states of the processor. Fields of this register combine to create operating modes for the processor. See “MIPS32 and
microMIPS32 Operating Modes” on page 21 for a discussion of operating modes, and “Interrupts” on page 71 for a
discussion of interrupt modes.

Figure 9.33 shows the format of the Status register for Pre-Release 6; Figure 9.33 shows the format of the Status reg-
ister for Release 6; Table 9.47 describes the Status register fields.

Figure 9.32 Status Register Format for Pre-Release 6

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 10 9 8 7 6 5 4 3 2 1 0
CU3..CUO |RP|FR| RE| MX| 0 |BEV|TS|SR|NMI|ASE| Impl IM7..1M2 IM1..IMO 0 UM|RO|ERL|EXL| IE
IPL KSU

Figure 9.33 Status Register Format for Release 6

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 0 9 8 7 6 5 4 3 2 1 0
%%31 RW| 0 |FR| 0 |MX| 0 |[BEV| 0 |SRINMI|ASE| Impl IM7..IM2 IM1..IMO 0 UM|RO|ERL EXL| IE
IPL KSU

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 189

Table 9.47 Status Register Field Descriptions

Fields

Name

Bits

Description

Read /
Write

Reset
State

Compliance

CU (CU3..
Cu0)

31..28

Controls access to coprocessors 3. 2. 1, and 0, respec-
tively:

Encoding Meaning

0 Access not allowed

1 Access allowed

Coprocessor 0 is always usable when the processor is run-
ning in Kernel Mode or Debug Mode, independent of the
state of the CUO bit.

In Release 2 (and subsequent releases) of the Architecture,
and for 64-bit implementations of Release 1 of the Archi-
tecture, execution of all floating-point instructions, includ-
ing those encoded with the COP1X opcode, is controlled
by the CUT enable. CU3 is no longer used and is reserved
for future use by the Architecture.

If there is no provision for connecting a coprocessor, the
corresponding CU bit must be ignored on write and read
as zero.

R'W

Undefined

Required for all
implemented
COprocessors
(Pre-Release 6)

CU (CU3..
cu1)

31..29

Controls access to coprocessors 3. 2, and 1, respectively:

Encoding Meaning

0 Access not allowed

1 Access allowed

In Release 2 (and subsequent releases) of the Architecture,
and for 64-bit implementations of Release 1 of the Archi-
tecture, execution of all floating-point instructions, includ-
ing those encoded with the COP1X opcode, is controlled
by the CUT enable. CU3 is no longer used and is reserved
for future use by the Architecture.

If there is no provision for connecting a coprocessor, the
corresponding CU bit must be ignored on write and read
as zero.

R'W

Undefined

Required for all
implemented
coprocessors

(Release 6)

RW

Read/write field. This bit can be written by software with-
out side-effects. A use case is for the kernel to set this bit

to signify that the exception condition is due to user code,
prior to saving Status to the stack in memory.

R'W

Undefined

Required
(Release 6)

Enables reduced power mode on some implementations.
The specific operation of this bit is implementation-depen-
dent.

If this bit is not implemented, it must be ignored on write
and read as zero. If this bit is implemented, the reset state
must be zero so that the processor starts at full perfor-
mance.

R'W

Optional
(Pre-Release 6)

This bit must be written as zero; returns zero on read.

Reserved

(Release 6)

190 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.32 Status Register (CP Register 12, Select 0)

Table 9.47 Status Register Field Descriptions (Continued)

In Release 1 of the Architecture, only MIPS64 processors

could implement a 64-bit floating-point unit. In Release 2

of the Architecture (and subsequent releases), both 32-bit

and 64-bit processors can implement a 64-bit floating-

point unit. As of Release 5 of the Architecture, if floating-

point is implemented then FR = 1 is required. |.e. the 64-

bit FPU, with the FR = 1 64-bit FPU register model, is

required. The FR = 0 32-bit FPU register model continues

to be required.

Release 6 disallows bi-modal support for both 32-bit and

64-bit FPU register models in a 64-bit FPU; i.e., FR is

read-only. See below for more details.

This bit must be ignored on write and read as zero under

the following conditions:

« No floating-point unit is implemented

¢ Ina MIPS32 implementation of Release 1 of the Archi-
tecture

 In an implementation of Release 2 of the Architecture
(and subsequent releases) in which a 64-bit floating-
point unit is not implemented

This bit must be ignored on write and read as 1 for an

implementation of Release 6 of the Architecture (and sub-

sequent releases) in which a 64-bit floating-point unit is

implemented.

Release 6 allows implementation of a 32-bit FPU with sin-

gle precision support only. In this case, FR=0, although

this does not imply even-odd pairing of 32-bit registers

because FIRp, =0.

Certain combinations of the FR bit and other state or oper-

ations can cause UNPREDICTABLE behavior. See “64-

bit FPR Enable” on page 22 for a discussion of these com-

binations.

When software changes the value of this bit, the contents

of the floating-point registers are UNPREDICTABLE.

Fields
Read / Reset
Name Bits Description Write State Compliance
FR 26 This bit is used to control the floating-point register mode R/W Undefined Required
for 64-bit floating-point units: (Pre-Release 6)
Encoding Meaning R 10

0 Floating-point registers can contain (Release 6)
any 32-bit datatype. 64-bit datatypes
are stored in even-odd pairs of regis-
ters.

1 Floating-point registers can contain
any datatype

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

191

Table 9.47 Status Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
RE 25 Used to enable reverse-endian memory references while R/W Undefined Optional
the processor is running in user mode: (Pre-Release 6)
Encoding Meaning
0 User mode uses configured endianness
1 User mode uses reversed endianness
Neither Debug Mode nor Kernel Mode nor Supervisor
Mode references are affected by the state of this bit.
If this bit is not implemented, it must be ignored on write
and read as zero.
0 25 This bit must be written as zero; returns zero on read. 0 0 Reserved
(Release 6)
MX 24 Enables access to MDMX™ and MIPS® DSP resources | R if the proces- | 0 if the pro- Optional
on processors implementing one of these ASEs. If neither | sor imple- cessor imple-
the MDMX nor the MIPS DSP Module is implemented, | ments neither | ments
this bit must be ignored on write and read as zero. the MDMX neither the
Encoding Meaning nor the MIPS | MDMX nor
DSP Modules; |the MIPS
0 Access not allowed otherwise R/W | DSP Mod-
1 Access allowed ules; other-
wise
Undefined
BEV 22 Controls the location of exception vectors: R/W 1 Required
Encoding Meaning
0 Normal
1 Bootstrap
See “Exception Vector Locations” on page 84 for details.

192

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.32 Status Register (CP Register 12, Select 0)

Table 9.47 Status Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read /
Write

Reset
State

Compliance

TSt

21

Indicates that the TLB has detected a match on multiple
entries. It is implementation-dependent whether this
detection occurs at all, on a write to the TLB, or an access
to the TLB. In Release 2 of the Architecture (and sub-
sequent releases), multiple TLB matches may only
be reported on a TLB write. When such a detection
occurs, the processor initiates a machine check exception
and sets this bit. It is implementation-dependent whether
this condition can be corrected by software. If the condi-
tion can be corrected, this bit should be cleared by soft-
ware before resuming normal operation.

See “TLB Initialization” on page 33 for a discussion of
software TLB initialization used to avoid a machine check
exception during processor initialization.

If this bit is not implemented, it must be ignored on write
and read as zero.

Software should not write a 1 to this bit when its value is a
0, thereby causing a 0-to-1 transition. If such a transition is
caused by software, it is UNPREDICTABLE whether
hardware ignores the write, accepts the write with no side
effects, or accepts the write and initiates a machine check
exception.

R/IW

Required if the
processor detects
and reports a
match on multi-
ple TLB entries
(Pre-Release 6)

21

This bit must be written as zero; returns zero on read.

Reserved
(Release 6)

SR

20

Indicates that the entry through the reset exception vector
was due to a Soft Reset:

Encoding

0 Not Soft Reset (NMI or Reset)
1 Soft Reset

Meaning

If this bit is not implemented, it must be ignored on write
and read as zero.

For Pre-Release 6, software should not write a 1 to this bit
when its value is a 0, thereby causing a 0-to-1 transition. If
such a transition is caused by software, it is UNPRE-
DICTABLE whether hardware ignores or accepts the
write.

For Release 6, hardware ignores a write of 1.

RIW

1 for Soft
Reset; 0 oth-
erwise

Required if Soft
Reset is imple-
mented

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

193

Table 9.47 Status Register Field Descriptions (Continued)

Fields

Name Bits

Description

Read /
Write

Reset
State

Compliance

NMI 19

Indicates that the entry through the reset exception vector
was due to an NMI exception:

Encoding

0 Not NMI (Soft Reset or Reset)
1 NMI

Meaning

If this bit is not implemented, it must be ignored on write
and read as zero.

For Pre-Release 6, software should not write a 1 to this bit
when its value is a 0, thereby causing a 0-to-1 transition. If
such a transition is caused by software, it is UNPRE-
DICTABLE whether hardware ignores or accepts the
write.

For Release 6, hardware ignores a write of 1.

R/W

1 for NMI; 0
otherwise

Required if NMI
is implemented

ASE 18

This bit is reserved for the MCU ASE.
If MCU ASE is not implemented, then this bit must be
written as zero; returns zero on read.

0if MCU ASE
is not imple-
mented

0if MCU
ASE is not
implemented

Required for
MCU ASE; other-
wise Reserved

Impl 17..16

These bits are implementation-dependent and are not
defined by the architecture. If they are not implemented,
they must be ignored on write and read as zero.

Undefined

Optional

IM7..1M2 15..10

Interrupt Mask: Controls the enabling of each of the hard-
ware interrupts. Refer to “Interrupts” on page 71 for a
complete discussion of enabled interrupts.

Encoding Meaning

0 Interrupt request disabled

1 Interrupt request enabled

In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Config3yg c = 1),
these bits take on a different meaning and are interpreted
as the IPL field, described below.

R/W

Undefined

Required

IPL 15..10

Interrupt Priority Level.

In implementations of Release 2 of the Architecture (and
subsequent releases) in which EIC interrupt mode is
enabled (Config3yg ¢ = 1), this field is the encoded
(0..63) value of the current IPL. An interrupt will be sig-
naled only if the requested IPL is higher than this value.
If EIC interrupt mode is not enabled (Config3ygc = 0),

these bits take on a different meaning and are interpreted
as the IM7..IM2 bits, described above.

R/W

Undefined

Optional (Release
2 and EIC inter-
rupt mode only)

194

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.32 Status Register (CP Register 12, Select 0)

Table 9.47 Status Register Field Descriptions (Continued)

Fields
Read / Reset

Name Bits Description Write State Compliance

IM1..IMO 9.8 Interrupt Mask: Controls the enabling of each of the soft- R/W Undefined Required
ware interrupts. Refer to “Interrupts” on page 71 for a
complete discussion of enabled interrupts.

Encoding Meaning

0 Interrupt request disabled
1 Interrupt request enabled

In implementations of Release 2 of the Architecture in
which EIC interrupt mode is enabled (Config3yg|c = 1),
these bits are writable, but have no effect on the interrupt
system.

0 75 Must be written as zero; returns zero on read. R 0 Reserved

KSU 4.3 If Supervisor Mode is implemented, the encoding of this R/W Undefined | Required if

field denotes the base operating mode of the processor. Supervisor Mode
See “MIPS32 and microMIPS32 Operating Modes” on is implemented,;
page 21 for a full discussion of operating modes. The Optional other-
encoding of this field is shown below. The meaning of wise

encoding 0b11 has changed for Release 6.

Encoding Meaning

0b00 Base mode is Kernel Mode

0b01 Base mode is Supervisor Mode

0b10 Base mode is User Mode

0Ob11 Reserved. For Pre-Release 6, the oper-
ation of the processor is UNDE-
FINED if this value is written to the

KSU field. For Release 6, hardware
ignores a write of this value.

Note: This field overlaps the UM and RO fields, described
below.

UM 4 If Supervisor Mode is not implemented, this bit denotes R/W Undefined Required
the base operating mode of the processor. See “MIPS32

and microMIPS32 Operating Modes” on page 21 for a full
discussion of operating modes. The encoding of this bit is:

Encoding Meaning

0 Base mode is Kernel Mode

1 Base mode is User Mode

Note: This bit overlaps the KSU field, described above.

RO 3 If Supervisor Mode is not implemented, this bit is R 0 Reserved
reserved. This bit must be ignored on write and read as
zero.

Note: This bit overlaps the KSU field, described above.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 195

Table 9.47 Status Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
ERL 2 Error Level; Set by the processor when a Reset, Soft R/W 1 Required
Reset, NMI or Cache Error exception are taken.
Encoding Meaning
0 Normal level
1 Error level
When ERL is set:
» The processor is running in kernel mode
» Hardware and software interrupts are disabled
» The ERET instruction will use the return address held in
ErrorEPC instead of EPC
« Segment kuseg is treated as an unmapped and uncached
region. See “Address Translation for the kuseg Segment
when StatusERL = 1” on page 31. This allows main
memory to be accessed in the presence of cache errors.
The operation of the processor is UNDEFINED if the
ERL bit is set while the processor is executing instruc-
tions from kuseg.
EXL 1 Exception Level; Set by the processor when any exception R/W Undefined Required
other than Reset, Soft Reset, NMI or Cache Error excep-
tion are taken.
Encoding Meaning
0 Normal level
1 Exception level
When EXL is set:
» The processor is running in Kernel Mode
« Hardware and software interrupts are disabled.
« TLB Refill exceptions use the general exception vector
instead of the TLB Refill vector.
» EPC, Causegp and SRSCtl (implementations of Release
2 of the Architecture only) will not be updated if
another exception is taken
IE 0 Interrupt Enable: Acts as the master enable for software R/W Undefined Required
and hardware interrupts:
Encoding Meaning
0 Interrupts are disabled
1 Interrupts are enabled
In Release 2 of the Architecture (and subsequent releases),
this bit may be modified separately via the DI and EI
instructions.

1. The TS bit originally indicated a “TLB Shutdown” condition in which circuits detected multiple TLB matches and shutdown the TLB
to prevent physical damage. In newer designs, multiple TLB matches do not cause physical damage to the TLB structure, so the TS bit
retains its name, but is simply an indicator to the machine check exception handler that multiple TLB matches were detected and
reported by the processor.

196 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.32 Status Register (CP Register 12, Select 0)

Programming Note:

In Release 2 of the Architecture, the EHB instruction can be used to make interrupt state changes visible when the IM,
IPL, ERL, EXL, or IE fields of the Status register are written. See “Software Hazards and the Interrupt System” on
page 82.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 197

198 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.33 IntCtl Register (CPO Register 12, Select 1)

9.33 IntCtl Register (CPO Register 12, Select 1)

Compliance Level: Required (Release 2).

The IntCtl register controls the expanded interrupt capability added in Release 2 of the Architecture, including vec-
tored interrupts and support for an external interrupt controller. This register does not exist in implementations of
Release 1 of the Architecture.

Figure 9.34 shows the format of the IntCtl register; Table 9.48 describes the IntCtl register fields.

Figure 9.34 IntCtl Register Format
31 29 28 26 25 23 22 14 13 10 9 5 4 0

IPTI IPPCI IPFDC MCU ASE 0000 VS 0

Table 9.48 IntCtl Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
IPTI 31..29 For Interrupt Compatibility and Vectored Interrupt modes, R Preset by Required

this field specifies the IP number to which the Timer Inter- hardware or

rupt request is merged, and allows software to determine Externally

whether to consider Causer, for a potential interrupt. Set

Hardware
Encoding IP bit Interrupt Source

2 2 HWO0
3 3 HW1
4 4 HW?2
5 5 HW3
6 6 HW4
7 7 HWS5

The value of this field is UNPREDICTABLE if External
Interrupt Controller Mode is both implemented and
enabled. The external interrupt controller is expected to
provide this information for that interrupt mode.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 199

Table 9.48 IntCtl Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read /
Write

Reset
State

Compliance

IPPCI

28..26

For Interrupt Compatibility and Vectored Interrupt modes,
this field specifies the IP number to which the Perfor-
mance Counter Interrupt request is merged, and allows
software to determine whether to consider Causepc, fora

potential interrupt.

Hardware
Interrupt Source

HWO
HW1
HW2
HW3
HW4
HW5S

Encoding IP bit

2

~N o o b~ Ww
~N ool b~ WD

The value of this field is UNPREDICTABLE if External
Interrupt Controller Mode is both implemented and
enabled. The external interrupt controller is expected to
provide this information for that interrupt mode.

If performance counters are not implemented (Configlpc

=0), this field returns zero on read.

R

Preset by
hardware or
Externally
Set

Optional (Per-
formance
Counters
Implemented)

IPFDC

25.23

For Interrupt Compatibility and Vectored Interrupt modes,
this field specifies the IP number to which the Fast Debug
Channel Interrupt request is merged, and allows software

to determine whether to consider Causegp for a poten-

tial interrupt.

Hardware
Interrupt Source
HWO
HW1
HW2
HW3
HW4
HW5

Encoding IP bit

2

~N oo b~ w
~No gl wN

The value of this field is UNPREDICTABLE if External
Interrupt Controller Mode is both implemented and
enabled. The external interrupt controller is expected to
provide this information for that interrupt mode.

If EJTAG FDC is not implemented, this field returns zero
on read.

Preset by
hardware or
Externally
Set

Optional
(EJTAG Fast
Debug Chan-
nel Imple-
mented)

MCU ASE

22.14

These bits are reserved for the MicroController ASE.

If that ASE is not implemented, must be written as zero;
returns zero on read.

Reserved

200

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.33 IntCtl Register (CPO Register 12, Select 1)

Table 9.48 IntCtl Register Field Descriptions (Continued)

Fields
Read / Reset

Name Bits Description Write State Compliance

0 .10 Must be written as zero; returns zero on read. 0 0 Reserved

VS 9.5 Vector Spacing. If vectored interrupts are implemented (as R/W 0 Optional
denoted by Config3y,n; or Config3y/gc), this field speci-

fies the spacing between vectored interrupts.

Spacing Between Vectors

Encoding (hex) (decimal)

0x00 0x000 0
0x01 0x020 32
0x02 0x040 64
0x04 0x080 128
0x08 0x100 256
0x10 0x200 512

All other values are reserved. For Pre-Release 6, the oper-
ation of the processor is UNDEFINED if a reserved value
is written to this field. For Release 6, hardware ignores
writes of reserved values.

If neither EIC interrupt mode nor VI mode are imple-
mented (Config3yg c = 0 and Config3y,; = 0), this field

is ignored on write and reads as zero.

0 4.0 Must be written as zero; returns zero on read. 0 0 Reserved

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 201

202 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.34 SRSCtl Register (CPO Register 12, Select 2)

9.34 SRSCt| Register (CPO Register 12, Select 2)
Compliance Level: Required (Release 2).
The SRSCtl register controls the operation of GPR shadow sets in the processor. This register does not exist in imple-
mentations of the architecture prior to Release 2.
Figure 9.35 shows the format of the SRSCtl register; Table 9.49 describes the SRSCtl register fields.
Figure 9.35 SRSCtl Register Format
31 30 29 26 25 22 21 18 17 16 15 12 11 10 9 6 5 4 3 0
0 0 0 0 0
00 HSS 0000 EICSS 00 ESS 00 PSS 00 CSS
Table 9.49 SRSCtl Register Field Descriptions
Fields
Read / Reset
Name Bits Description Write State Compliance
0 31..30 Must be written as zeros; returns zero on read. 0 0 Reserved
HSS 29..26 Highest Shadow Set. This field contains the highest R Preset by Required
shadow set number that is implemented by this processor. hardware
A value of zero in this field indicates that only the normal
GPRs are implemented. A non-zero value in this field
indicates that the implemented shadow sets are numbered
0. n, where n is the value of the field.
The value in this field also represents the highest value
that can be written to the ESS, EICSS, PSS, and CSS fields
of this register, or to any of the fields of the SRSMap reg-
ister. The operation of the processor is UNDEFINED if a
value larger than the one in this field is written to any of
these other values.
0 25..22 Must be written as zeros; returns zero on read. 0 Reserved
EICSS 21..18 EIC interrupt mode shadow set. If Config3yg|cis 1 (EIC R Undefined | Required (EIC
interrupt mode is enabled), this field is loaded from the interrupt mode
external interrupt controller for each interrupt request and only)
is used in place of the SRSMap register to select the cur-
rent shadow set for the interrupt.
See “External Interrupt Controller Mode” on page 78 for a
discussion of EIC interrupt mode. If Config3ygc is 0,
this field must be written as zero, and returns zero on read.
0 17..16 Must be written as zeros; returns zero on read. 0 0 Reserved

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

203

Table 9.49 SRSCtl Register Field Descriptions (Continued)

Fields
Read / Reset

Name Bits Description Write State Compliance

ESS 15..12 Exception Shadow Set. This field specifies the shadow set R/W 0 Required
to use on entry to Kernel Mode caused by any exception
other than a vectored interrupt.

The operation of the processor is UNDEFINED if soft-
ware writes a value into this field that is greater than the
value in the HSS field.

0 11..10 Must be written as zeros; returns zero on read. 0 0 Reserved

PSS 9..6 Previous Shadow Set. If GPR shadow registers are imple- R/W 0 Required
mented, and with the exclusions noted in the next para-
graph, this field is copied from the CSS field when an
exception or interrupt occurs. An ERET instruction copies
this value back into the CSS field if Statusggy, = 0.

This field is not updated on any exception which sets
Statusgg, to 1 (i.e., NMI or cache error), an entry into
EJTAG Debug mode, or any exception or interrupt that
occurs with Statusgy; = 1, or Statusggy = 1.

The operation of the processor is UNDEFINED if soft-
ware writes a value into this field that is greater than the
value in the HSS field.

0 5.4 Must be written as zeros; returns zero on read. 0 0 Reserved

CSS 3.0 Current Shadow Set. If GPR shadow registers are imple- R 0 Required
mented, this field is the number of the current GPR set.
With the exclusions noted in the next paragraph, this field
is updated with a new value on any interrupt or exception,
and restored from the PSS field on an ERET. Table 9.50
describes the various sources from which the CSS field is
updated on an exception or interrupt.

This field is not updated on any exception which sets
Statusgg_to 1 (i.e., NMI or cache error), an entry into
EJTAG Debug mode, or any exception or interrupt that
occurs with Statusgy) =1, or Statusggy = 1. Neither is it
updated on an ERET with Statusgg, = 1 or Statusggy =
1.

The value of CSS can be changed directly by software
only by writing the PSS field and executing an ERET
instruction.

Table 9.50 Sources for new SRSCtlsgg on an Exception or Interrupt

Exception Type Condition SRSCtlcss Source Comment

Exception All SRSCtlgsg

Non-Vectored Inter- Causep, =0 SRSCtlgss Treat as exception
rupt

204 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.34 SRSCtl Register (CPO Register 12, Select 2)

Table 9.50 Sources for new SRSCtlsgg on an Exception or Interrupt (Continued)

Exception Type

Condition

SRSCtlcgg Source

Comment

Vectored Interrupt

Cause, =1 and
Config3y/gic =0 and
Config3v|nt =1

SRSMapVectNum
x4+3 . .VectNumx4

Source is internal map register

Vectored EIC Inter-
rupt

Cause, =1 and
Config3VE|C =1

SRSCtlg css

Source is external interrupt
controller.

Programming Note:

A software change to the PSS field creates an instruction hazard between the write of the SRSCtI register and the use
of a RDPGPR or WRPGPR instruction. This hazard must be cleared with a JR.HB or JALR.HB instruction as
described in “Hazard Clearing Instructions and Events” on page 107. A hardware change to the PSS field as the result
of interrupt or exception entry is automatically cleared for the execution of the first instruction in the interrupt or

exception handler.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

205

206 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.35 SRSMap Register (CPO Register 12, Select 3)

9.35 SRSMap Register (CPO Register 12, Select 3)

Compliance Level: Required in Release 2 (and subsequent releases) of the Architecture if Additional Shadow Sets
and Vectored Interrupt Mode are Implemented

The SRSMap register contains 8 4-bit fields that provide the mapping from an vector number to the shadow set num-
ber to use when servicing such an interrupt. The values from this register are not used for a non-interrupt exception,
or a non-vectored interrupt (Causey, = 0 or IntCtly,g = 0). In such cases, the shadow set number comes from SRSCt-

lgss.

If SRSCtlygs is zero, the results of a software read or write of this register are UNPREDICTABLE.

The operation of the processor is UNDEFINED if a value is written to any field in this register that is greater than the
value of SRSCtlygs.

The SRSMap register contains the shadow register set numbers for vector numbers 7..0. The same shadow set num-
ber can be established for multiple interrupt vectors, creating a many-to-one mapping from a vector to a single
shadow register set number.

Figure 9.36 shows the format of the SRSMap register; Table 9.51 describes the SRSMap register fields.

Figure 9.36 SRSMap Register Format

31 28 27 24 23 20 19 16 15 12 11 8 3 0
SSv7 SSVé6 SSV5 SSv4 SSv3 SSV2 SSV1 SSVO0
Table 9.51 SRSMap Register Field Descriptions
Fields Read / Reset
Name Bits Description Write State Compliance
SSv7 31..28 Shadow register set number for Vector Number 7 R/W 0 Required
SSV6 27..24 Shadow register set number for Vector Number 6 R/W 0 Required
SSV5 23..20 Shadow register set number for Vector Number 5 R/W 0 Required
SSv4 19..16 Shadow register set number for Vector Number 4 R/W 0 Required
SSV3 15..12 Shadow register set number for Vector Number 3 R/W 0 Required
SSv2 11.8 Shadow register set number for Vector Number 2 R/W 0 Required
SSV1 7.4 Shadow register set number for Vector Number 1 R/W 0 Required
SSV0 3.0 Shadow register set number for Vector Number 0 R/W 0 Required

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

207

208 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.36 Cause Register (CPO Register 13, Select 0)

9.36 Cause Register (CPO Register 13, Select 0)

Compliance Level: Required.

The Cause register primarily describes the cause of the most recent exception. In addition, fields also control soft-
ware interrupt requests and the vector through which interrupts are dispatched. With the exception of the IP; g, DC,
IV, and WP fields, all fields in the Cause register are read-only. Release 2 of the Architecture added optional support
for an External Interrupt Controller (EIC) interrupt mode, in which IP; , are interpreted as the Requested Interrupt
Priority Level (RIPL).

Figure 9.37 shows the format of the Cause register; Table 9.52 describes the Cause register fields.

31 30 29 28 27 26 25 24

Figure 9.37 Cause Register Format

23 22 21 20 17 15

10

9 8

7

6

BD|TI| CE

DC

PCI| ASE

WP |FDCI| 000 ASE 1P9..1P2

IP1..1PO

Exc Code 0

ASE RIPL

Table 9.52 Cause Register Field Descriptions

Fields

Name

Bits

Description

Read /
Write

Reset
State

Compliance

BD

31

Indicates whether the last exception taken occurred in a
branch delay slot:

Encoding Meaning

0 Not in delay slot
1 In delay slot

The processor updates BD only if Statusgy; was zero
when the exception occurred.

R

Undefined

Required

TI

30

Timer Interrupt. In an implementation of Release 2 of the
Architecture, this bit denotes whether a timer interrupt is
pending (analogous to the IP bits for other interrupt
types):
Encoding

Meaning

0 No timer interrupt is pending

1 Timer interrupt is pending

In an implementation of Release 1 of the Architecture, this
bit must be written as zero and returns zero on read.

Undefined

Required (Release
2)

CE

29..28

Coprocessor unit number referenced when a Coprocessor
Unusable exception is taken. This field is loaded by hard-
ware on every exception, but is UNPREDICTABLE for
all exceptions except for Coprocessor Unusable.

Undefined

Required

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

209

Table 9.52 Cause Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read /
Write

Reset
State

Compliance

DC

27

Disable Count register. In some power-sensitive applica-
tions, the Count register is not used but may still be the
source of some noticeable power dissipation. This bit
allows the Count register to be stopped in such situations.

Encoding Meaning

0 Enable counting of Count register

1 Disable counting of Count register

In an implementation of Release 1 of the Architecture, this
bit must be written as zero, and returns zero on read.

RIW

0

Required (Release
2)

PCI

26

Performance Counter Interrupt. In an implementation of
Release 2 of the Architecture (and subsequent releases),
this bit denotes whether a performance counter interrupt is
pending (analogous to the IP bits for other interrupt types):

Encoding
0 No performance counter interrupt is

pending

1 Performance counter interrupt is pend-

ing

Meaning

In an implementation of Release 1 of the Architecture, or
if performance counters are not implemented (Configlpc
= 0), this bit must be written as zero and returns zero on
read.

Undefined

Required (Release
2 and perfor-
mance counters
implemented)

ASE

25:24,17:16

These bits are reserved for the MCU ASE.
If MCU ASE is not implemented, these bits return zero on
reads and must be written with zeros.

Required for
MCU ASE; Oth-
erwise Reserved

23

Indicates whether an interrupt exception uses the general
exception vector or a special interrupt vector:

Encoding Meaning

0 Use the general exception vector
(0x180)

1 Use the special interrupt vector
(0x200)

In implementations of Release 2 of the architecture (and
subsequent releases), if the Cause)y, is 1 and Statusggy is
0, the special interrupt vector represents the base of the
vectored interrupt table.

R/W

Undefined

Required

210

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.36 Cause Register (CPO Register 13, Select 0)

Table 9.52 Cause Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read /
Write

Reset
State

Compliance

WP

22

Indicates that a watch exception was deferred because
Statusgy or Statusgg, were a one at the time the watch

exception was detected. This bit both indicates that the
watch exception was deferred, and causes the exception to
be initiated once Statusgy; and Statusgg_are both zero.

As such, software must clear this bit as part of the watch
exception handler to prevent a watch exception loop.

For Pre-Release 6, software should not write a 1 to this bit
when its value is a 0, thereby causing a 0-to-1 transition. If
such a transition is caused by software, it is UNPRE-
DICTABLE whether hardware ignores the write, accepts
the write with no side effects, or accepts the write and ini-
tiates a watch exception once Statusgy; and Statusgg|

are both zero.

For Release 6, hardware ignores a write of 1.

If watch registers are not implemented, this bit must be
ignored on write and read as zero.

RIW

Undefined

Required if watch
registers are
implemented

FDCI

21

Fast Debug Channel Interrupt. This bit denotes whether a
FDC interrupt is pending:

Encoding Meaning

0 No FDC interrupt is pending
1 FDC interrupt is pending

Undefined

Required

1P7..1P2

15..10

Indicates an interrupt is pending:

Bit Name Meaning
15 IP7 Hardware interrupt 5
14 IP6 Hardware interrupt 4
13 IP5 Hardware interrupt 3
12 IP4 Hardware interrupt 2
11 1P3 Hardware interrupt 1
10 1P2 Hardware interrupt 0

In implementations of Release 1 of the Architecture, timer
and performance-counter interrupts are combined in an
implementation-dependent way with hardware interrupt 5.
In implementations of Release 2 of the Architecture (and
subsequent releases) in which EIC interrupt mode is not
enabled (Config3ygc = 0), timer and performance coun-
ter interrupts are combined in an implementation-depen-
dent way with any hardware interrupt. If EIC interrupt
mode is enabled (Config3y/g|c = 1), these bits take on a

different meaning and are interpreted as the RIPL field,
described below.

Undefined

Required

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

211

Table 9.52 Cause Register Field Descriptions (Continued)

Fields
Read / Reset

Name Bits Description Write State Compliance

RIPL .10 Requested Interrupt Priority Level. R Undefined | Optional (Release
In implementations of Release 2 of the Architecture (and 2 and EIC inter-
subsequent releases) in which EIC interrupt mode is rupt mode only)
enabled (Config3yg|c = 1), this field is the encoded
(0..63) value of the requested interrupt. A value of zero
indicates that no interrupt is requested.

If EIC interrupt mode is not enabled (Config3ygc = 0),

these bits take on a different meaning and are interpreted
as the IP..IP2 bits, described above.

IP1..IPO 9.8 Controls the request for software interrupts: R/W Undefined Required

Bit Name Meaning

9 IP1 Request software interrupt 1
8 IPO Request software interrupt 0

An implementation of Release 2 of the Architecture (and
subsequent releases) which also implements EIC interrupt
mode exports these bits to the external interrupt controller
for prioritization with other interrupt sources.

ExcCode 6..2 Exception code - see Table 9.53 R Undefined Required

0 20..16, 7, | Must be written as zero; returns zero on read. 0 0 Reserved
1..0

Table 9.53 Cause Register ExcCode Field

Exception Code Value
Decimal Hexadecimal Mnemonic Description

0 0x00 Int Interrupt

1 0x01 Mod TLB modification exception

2 0x02 TLBL TLB exception (load or instruction fetch)

3 0x03 TLBS TLB exception (store)

4 0x04 AdEL Address error exception (load or instruction fetch)

5 0x05 AdES Address error exception (store)

6 0x06 IBE Bus error exception (instruction fetch)

7 0x07 DBE Bus error exception (data reference: load or store)

8 0x08 Sys Syscall exception

9 0x09 Bp Breakpoint exception. If EJTAG is implemented and an SDBBP
instruction is executed while the processor is running in EJTAG
Debug Mode, this value is written to the Debugpgyccode field to
denote an SDBBP in Debug Mode.

10 0x0a RI Reserved instruction exception

11 0x0b CpuU Coprocessor Unusable exception

212 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.36 Cause Register (CPO Register 13, Select 0)

Table 9.53 Cause Register ExcCode Field (Continued)

Exception Code Value
Decimal Hexadecimal Mnemonic Description
12 0x0c Ov Avrithmetic Overflow exception
13 0x0d Tr Trap exception
14 0x0e MSAFPE MSA Floating-Point exception
15 0xof FPE Floating-Point exception
16-17 0x10-0x11 - Available for implementation-dependent use
18 0x12 C2E Reserved for precise Coprocessor 2 exceptions
19 0x13 TLBRI TLB Read-Inhibit exception
20 0x14 TLBXI TLB Execution-Inhibit exception
21 0x15 MSADis MSA Disabled exception
22 0x16 MDMX Previously MDMX Unusable Exception (MDMX ASE). MDMX
deprecated with Revision 5.
23 0x17 WATCH Reference to WatchHi/WatchLo address
24 0x18 MCheck Machine check
25 0x19 Thread Thread Allocation, Deallocation, or Scheduling Exceptions (MIPS®
MT Module)
26 Oxla DSPDis DSP Module State Disabled exception
(MIPS® DSP Module)
27 0x1b GE Virtualized Guest Exception
28-29 Ox1c - 0x1d - Reserved
30 Oxle CacheErr Cache error. In normal mode, a cache error exception has a dedi-
cated vector and the Cause register is not updated. If EJTAG is
implemented and a cache error occurs while in Debug Mode, this
code is written to the Debugpgyccoge field to indicate that re-entry to
Debug Mode was caused by a cache error.
31 Ox1f - Reserved

Programming Note:

In Release 2 of the Architecture (and the subsequent releases), the EHB instruction can be used to make interrupt state
changes visible when the IP; o field of the Cause register is written. See “Software Hazards and the Interrupt

System” on page 82.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 213

214 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.37 NestedExc (CPO Register 13, Select 5)

9.37 NestedExc (CPO Register 13, Select 5)

Compliance Level: Optional.

The Nested Exception (NestedExc) register is a read-only register containing the values of Statusgy, and Statusgg,
prior to acceptance of the current exception.

This register is part of the Nested Fault feature, existence of the register can be determined by reading the
Config5yFexists Dit.

Figure 9.38 shows the format of the NestedExc register; Table 9.54 describes the NestedExc register fields.

Figure 9.38 NestedExc Register Format
31 3 2 1 0

0 ERL|EXL| O

Table 9.54 NestedExc Register Field Descriptions

Fields
Read / Reset

Name Bits Description Write State Compliance

0 31.3 Reserved, read as 0. RO 0 Required

ERL 2 Value of Statusgg, prior to acceptance of current excep- R Undefined Required
tion.

Updated by all exceptions that would set either Statusgy
or Statusgg, . Not updated by Debug exceptions.

EXL 1 Value of Statusgy, prior to acceptance of current excep- R Undefined Required
tion.

Updated by exceptions which would update EPC if
Statusgy_is not set (MCheck, Interrupt, Address Error,

all TLB exceptions, Bus Error, CopUnusable, Reserved
Instruction, Overflow, Trap, Syscall, FPU, etc.). For these
exception types, this register field is updated regardless of
the value of Statusgy .

Not updated by exception types which update ErrorEPC -
(Reset, Soft Reset, NMI, Cache Error). Not updated by
Debug exceptions.

0 0 Reserved, read as 0. RO 0 Required

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 215

216 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.38 Exception Program Counter (CPO Register 14, Select 0)

9.38 Exception Program Counter (CPO Register 14, Select 0)

Compliance Level: Required.

The Exception Program Counter (EPC) is a read/write register that contains the address at which processing resumes
after an exception has been serviced. All bits of the EPC register are significant and must be writable.

Unless the EXL bit in the Status register is already a 1, the processor writes the EPC register when an exception
occurs.

» For synchronous (precise) exceptions, EPC contains either:
» the virtual address of the instruction that was the direct cause of the exception, or

» the virtual address of the immediately preceding branch or jump instruction, when the exception causing
instruction is in a branch delay slot, and the Branch Delay bit in the Cause register is set.

» For asynchronous (imprecise) exceptions, EPC contains the address of the instruction at which to resume execu-
tion.

The processor reads the EPC register as the result of execution of the ERET instruction.

Software may write the EPC register to change the processor resume address and read the EPC register to determine
at what address the processor will resume.

Figure 9.39 shows the format of the EPC register; Table 9.55 describes the EPC register fields.

Figure 9.39 EPC Register Format
31 0

EPC

Table 9.55 EPC Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
EPC 31.0 Exception Program Counter RIW Undefined Required

9.38.1 Special Handling of the EPC Register in Processors that Implement MIPS16e
ASE or microMIPS32 Base Architecture

In processors that implement the MIPS16e ASE or microMIPS32 base architecture, the EPC register requires special
handling.

When the processor writes the EPC register, it combines the address at which processing resumes with the value of
the ISA Mode register:

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 217

EPC ¢ resumePC;; ; || ISAMode,
“resumePC” is the address at which processing resumes, as described above.

When the processor reads the EPC register, it distributes the bits to the PC and ISAMode registers:

PC ¢ EPCy; 4 || O
ISAMode ¢ EPC,

Software reads of the EPC register simply return to a GPR the last value written with no interpretation. Software
writes to the EPC register store a new value which is interpreted by the processor as described above.

218 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.39 Nested Exception Program Counter (CPO Register 14, Select 2)

9.39 Nested Exception Program Counter (CPO Register 14, Select 2)

Compliance Level: Optional.

The Nested Exception Program Counter (NestedEPC) is a read/write register with the same behavior as the EPC reg-
ister except that:

* The NestedEPC register ignores the value of Statusgy, and is therefore updated on the occurrence of any excep-
tion, including nested exceptions.

* The NestedEPC register is not used by the ERET/DERET/IRET instructions. Software is required to copy the
value of the NestedEPC register to the EPC register if it is desired to return to the address stored in NestedEPC.

This register is part of the Nested Fault feature, existence of the register can be determined by reading the
Config5nFexists Dit.

Figure 9.40 shows the format of the NestedEPC register; Table 9.56 describes the NestedEPC register fields.

Figure 9.40 NestedEPC Register Format
31 0

NestedEPC

Table 9.56 NestedEPC Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
NestedEPC 31..0 Nested Exception Program Counter R/W Undefined Required

Updated by exceptions which would update EPC if
Statusgy_is not set (MCheck, Interrupt, Address Error,

all TLB exceptions, Bus Error, CopUnusable, Reserved
Instruction, Overflow, Trap, Syscall, FPU, etc.). For these
exception types, this register field is updated regardless of
the value of Statusgy; .

Not updated by exception types which update ErrorEPC -
(Reset, Soft Reset, NMI, Cache Error).
Not updated by Debug exceptions.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 219

220 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.40 Processor Identification (CPO Register 15, Select 0)

9.40 Processor ldentification (CPO Register 15, Select 0)

Compliance Level: Required.

The Processor Identification (PRId) register is a 32 bit read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification and revision level of the processor. Figure 9.41 shows
the format of the PRId register; Table 9.57 describes the PRId register fields.

Figure 9.41 PRId Register Format
31 24 23 16 15 8 7 0

Company Options Company ID Processor ID Revision

Table 9.57 PRId Register Field Descriptions

Fields
Read / Reset

Name Bits Description Write State Compliance

Company 31..24 | Available to the designer or manufacturer of the processor R Preset by Optional

Options for company-dependent options. The value in this field is hardware
not specified by the architecture. If this field is not imple-
mented, it must read as zero.

Company ID | 23..16 | ldentifies the company that designed or manufactured the R Preset by Required
processor. hardware
Software can distinguish a MIPS32/microMIPS32 or
MIPS64/microMIPS64 processor from one implementing
an earlier MIPS ISA by checking this field for zero. If it is
non-zero the processor implements the MIPS32/
microMIPS32 or MIPS64/microMIPS64 Architecture.
Company IDs are assigned by MIPS Technologies when a
MIPS32/microMIPS32 or MIPS64/microMIPS64 license
is acquired. The encodings in this field are:

Encoding Meaning

0 Not a MIPS32/microMIPS32 or
MIPS64/microMIPS64 processor
1 MIPS Technologies, Inc.

2-255 Contact MIPS Technologies, Inc. for
the list of Company ID assignments

Processor ID 15..8 Identifies the type of processor. This field allows software R Preset by Required
to distinguish between various processor implementations hardware
within a single company, and is qualified by the Compa-
nyID field, described above. The combination of the Com-
panyID and ProcessorID fields creates a unique number
assigned to each processor implementation.

Revision 7.0 Specifies the revision number of the processor. This field R Preset by Optional
allows software to distinguish between one revision and hardware
another of the same processor type. If this field is not
implemented, it must read as zero.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 221

Software should not use the fields of this register to infer configuration information about the processor. Rather, the
configuration registers should be used to determine the capabilities of the processor. Programmers who identify cases
in which the configuration registers are not sufficient, requiring them to revert to check on the PRId register value,
should send email to support@mips.com, reporting the specific case.

222 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.41 EBase Register (CP0O Register 15, Select 1)

9.41 EBase Register (CPO Register 15, Select 1)

Compliance Level: Required (Release 2).

The EBase register is a read/write register containing the base address of the exception vectors used when Statusggy

equals 0, and a read-only CPU number value that may be used by software to distinguish different processors in a
multi-processor system.

The EBase register provides the ability for software to identify the specific processor within a multi-processor sys-
tem, and allows the exception vectors for each processor to be different, especially in systems composed of heteroge-
neous processors. Bits 31..12 of the EBase register are concatenated with zeros to form the base of the exception
vectors when Statusggy is 0. The exception vector base address comes from the fixed defaults (see 6.2.2 “Exception

Vector Locations” on page 84) when Statusggy is 1, or for any EJTAG Debug exception. The reset state of bits 31..12

of the EBase register initialize the exception base register to 0x8000. 0000, providing backward compatibility with
Release 1 implementations.

If the write-gate bit is not implemented, bits 31..30 of the EBase register are fixed with the value 0b10, and the addi-
tion of the base address and the exception offset is done inhibiting a carry between bit 29 and bit 30 of the final excep-
tion address. The combination of these two restrictions forces the final exception address to be in the ksegO or ksegl
unmapped virtual address segments. For cache error exceptions, bit 29 is forced to a 1 in the ultimate exception base
address so that this exception always runs in the ksegl unmapped, uncached virtual address segment.

The operation of the EBase register can be optionally extended to allow the upper bits of the Exception Base field to
be written. This allows exception vectors to be placed anywhere in the address space. To ensure backward compati-
bility with MIPS32, the write-gate bit must be set before the upper bits can be changed. For the write-gate case, the
full set of bits 31..12 are used to compute the vector location. Software can detect the existence of the write-gate by
writing one to that bit position and checking if the bit was set.

The addition of the base address and the exception offset is performed inhibiting a carry between bits 29 and 30 of the
final exception address.

If the value of the exception base register is to be changed, this must be done with Statusggy, equal 1. The operation of
the processor is UNDEFINED if the Exception Base field is written with a different value when Statusggy, is 0.

Release 6 reuses the field CPUNum if multithreading is implemented.

Figure 9.42 shows the format of the EBase register if the write-gate is not implemented. ; Table 9.58 describes the
EBase register fields.

Figure 9.42 EBase Register Format
31 30 29 12 11 10 9 0

110 Exception Base 00 CPUNum

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 223

Table 9.58 EBase Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
1 31 This bit is ignored on write and returns one on read. R 1 Required
0 30 This bit is ignored on write and returns zero on read. R 0 Required
Exception 29..12 In conjunction with bits 31..30, this field specifies the base R/IW 0 Required
Base address of the exception vectors when Statusggy, is zero.

0 11..10 Must be written as zero; returns zero on read. 0 0 Reserved
CPUNum 9.0 This field specifies the number of the CPU in a multi-pro- R Preset by Required

cessor system and can be used by software to distinguish a hardware

particular processor from the others. The value in this field or Exter-

is set by inputs to the processor hardware when the proces- nally Set

sor is implemented in the system environment. In a single
processor system, this value should be set to zero.

This field can also be read through RDHWR register 0.

In Release 6 of the architecture, with multi-threading sup-
ported, CPUNum is replaced by VPNum to indicate the
virtual processor number. See Section 9.8, "Global
Number Register (COPO Register 3, Select 1)," for usage.
In the absence of multi-threading, CPUNum can be used
as defined.

Figure 9.43 shows the format of the EBase register if the write-gate is implemented. Table 9.59 describes the EBase
register fields.

Figure 9.43 EBase Register Format
31 12 11 10 9 0

Exception Base WG| 0 CPUNum

Table 9.59 EBase Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
Exception 31..12 This field specifies the base address of the exception vec- R/W 0x80000 Required
Base tors when Statusggy is zero.

Bits 31..30 can be written only when WG is set. When
WG is zero, these bits are unchanged on write.

WG 11 Write gate. Bits 31..30 are unchanged on writes to EBase R/W 0 Required
when WG=0 in the value being written. The WG bit must
be set true in the written value to change the values of bits
31..30.

224 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.41 EBase Register (CP0O Register 15, Select 1)

Table 9.59 EBase Register Field Descriptions (Continued)

is set by inputs to the processor hardware when the proces-
sor is implemented in the system environment. In a single
processor system, this value should be set to zero.

This field can also be read via RDHWR register 0.

In Release 6 of the architecture, with multi-threading sup-
ported, CPUNum is replaced by VPNum to indicate the
virtual processor number. See Section 9.8, "Global
Number Register (COPO Register 3, Select 1)," for usage.
In the absence of multi-threading, CPUNum can be used
as defined.

Fields
Read / Reset
Name Bits Description Write State Compliance
0 10 Must be written as zero; returns zero on read. RO 0 Reserved
CPUNum 9.0 This field specifies the number of the CPU in a multi-pro- R Preset or Required
cessor system and can be used by software to distinguish a Externally
particular processor from the others. The value in this field Set

Programming Note:

Software must set EBase;5_1, to zero in all bit positions less than or equal to the most-significant bit in the vector off-

set. This situation can only occur when a vector offset greater than OxFFF is generated when an interrupt occurs with
VI or EIC interrupt mode enabled. The operation of the processor is UNDEFINED if this condition is not met. Table
9.60 shows the conditions under which each EBase bit must be set to zero. VN represents the interrupt vector number
as described in Table 6.4 and the bit must be set to zero if any of the relationships in the row are true. No EBase bits
must be set to zero if the interrupt vector spacing is 32 (or zero) bytes.

Table 9.60 Conditions Under Which EBase15..12 Must Be Zero

Interrupt Vector Spacing in Bytes (IntCtlvsl)
EBase bit 32 64 128 256 512
15 None None None None VN = 63
14 None None VN > 62 VN > 31
13 None VN = 60 VN =30 VN2> 15
12 VN > 56 VN > 28 VN > 14 VN >7

1. See Table 9.48 on page 199

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

225

226 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.42 CDMMBase Register (CPO Register 15, Select 2)

9.42 CDMMBase Register (CPO Register 15, Select 2)

Compliance Level: Optional.

The 36-bit physical base address for the Common Device Memory Map facility is defined by this register. This regis-
ter only exists if Config3cppm 1S Set to one.

For devices that implement multiple VPEs, access to this register is controlled by the VPEConfOy,p register field. If
the MVP bit is cleared, a read to this register returns all zeros and a write to this register is ignored.

Figure 9.44 has the format of the CDMMBase register, and Table 9.61 describes the register fields.

Figure 9.44 CDMMBase Register

31 11 10 9 8 0
CDMM_UPPER_ADDR |EN| cl | CDMMSize

Table 9.61 CDMMBase Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
CDMM_UP 31:11 Bits 35:15 of the base physical address of the memory R/W Undefined Required
PER_ADDR mapped registers.

The number of implemented physical address bits is
implementation specific. For the unimplemented address
bits - writes are ignored, returns zero on read.

EN 10 Enables the CDMM region. R/W 0 Required
If this bit is cleared, memory requests to this address
region go to regular system memory. If this bit is set,
memory requests to this region go to the CDMM logic

Encoding Meaning

0 CDMM Region is disabled.
1 CDMM Region is enabled.

Cl 9 If set to 1, this indicates that the first 64-byte Device Reg- R Preset Optional
ister Block of the CDMM is reserved for additional regis-
ters which manage CDMM region behavior and are not 10
device registers.

CDMMSize 8:0 This field represents the number of 64-byte Device Regis- R Preset Required
ter Blocks are instantiated in the core.

Encoding Meaning
0 1DRB
1 2 DRBs
2 3 DRBs

511 512 DRBs

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 227

228 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.43 CMGCRBase Register (CPO Register 15, Select 3)

9.43 CMGCRBase Register (CP0O Register 15, Select 3)

Compliance Level: Optional.

The 36-bit physical base address for the memory-mapped Coherency Manager Global Configuration Register space
is reflected by this register. This register only exists if Config3cpgcr iS Set to one.

On devices that implement the MIPS MT Module, this register is instantiated once per processor.
Figure 9.45 has the format of the CMGCRBase register, and Table 9.62 describes the register fields.

Figure 9.45 CMGCRBase Register

31 1 10 0
CMGCR_BASE_ADDR 0

Table 9.62 CMGCRBase Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
CMGCR_B 31:11 Bits 35:15 of the base physical address of the memory- R Preset by Required
ASE_ADDR mapped Coherency Manager GCR registers. hardware
(IP Configu-
This register field reflects the value of the GCR_BASE ration Value)
field within the memory-mapped Coherency Manager
GCR Base Register.
The number of implemented physical address bits is
implementation specific. For the unimplemented address
bits - writes are ignored, returns zero on read.
0 10:0 Must be written as zero; returns zero on read 0 0 Reserved

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 229

230 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.44 BEVVA Register (CP0O Register 15, Select 4)

9.44 BEVVA Register (CPO Register 15, Select 4)

Compliance Level: Required. if Release 5 Enhanced Virtual Addressing is supported (i.e., Config5gy,=1).

The BEVVA register is a read-only register that captures the virtual address used to specify the Boot Exception Vec-
tor when it is programmable as required to support Release 5 Enhanced Virtual Addressing (EVA). In addition, it can
be used to determine the size of the BEV Overlay which overlaps with BEV. The BEV Overlay is a configurable vir-
tual address range that overlays kernel unmapped segment(s) in order to map to a configurable physical address.

The purpose of this register is to provide software visibility into BEV since the address is pin configurable i.e., not
settable through COPO. It is optional for an implementation to allow programmability of the pins through a memory-
mapped register external to the core, otherwise the pins may be hardwired to a non-legacy value.

For a 32-bit implementation that supports both legacy and EVA address maps, it is required to support two configu-
rable overlays, for unmapped cached and uncached addresses. For an implementation that supports only EVA, one
overlay is sufficient to map a virtual address within the range of the overlay to an implementation-dependent physical
address. Where two are supported, the implementation must guarantee BEVVA corresponds to the single overlay that
is in effect in EVA mode, as software requires a means to read the programmable BEV.

Figure 9.46 shows the format of the BEVVA register; Table 9.63 describes the BEVVA register fields.

Figure 9.46 BEVVA Register Format
31 27 20 19 12 8 7 0

Base 0 Mask

Table 9.63 BEVVA Register Field Descriptions

Fields
Read/
Name Bits Description Write Reset State | Compliance

Base 31..12 Boot Exception Vector (BEV) Virtual Address R Externally set Required
The BEV address is aligned on a 4KB boundary within the or Preset by
BEV overlay which is a minimum of 1MB and maximum hardware
of 256MB in size.

0 11:8 0 0 0 Reserved

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 231

Table 9.63 BEVVA Register Field Descriptions

Fields
Read/
Name Bits Description Write Reset State | Compliance
Mask 7:0 Mask to define the size of the overlay. R Externally set Required
Applies to bits 27:20 of Base, that is, or Preset by
BEV_Overlay[31:20] = BEVVA[31:20] & (Oxf || ~Mask) hardware

Mask is encoded as follows to define size of overlay:
8’b00000000 - 1 MB

8’b00000001 - 2 MB

8’b00000011 - 4 MB

8’b00000111 - 8 MB

8’b00001111 - 16 MB

8’b00011111 - 32 MB

8’b00111111 - 64 MB

8’b01111111 - 128 MB

8’b11111111 - 256MB

An encoding other than that shown above is not supported
and causes UNDEFINED results.

232 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.45 Configuration Register (CPO Register 16, Select 0)

9.45 Configuration Register (CPO Register 16, Select 0)

Compliance Level: Required.

The Config register specifies various configuration and capabilities information. Most of the fields in the Config reg-
ister are initialized by hardware during the Reset Exception process, or are constant. Three fields, K23, KU, and KO,
must be initialized by software in the reset exception handler.

Figure 9.47 shows the format of the Config register; Table 9.64 describes the Config register fields.

Figure 9.47 Config Register Format

31 30 28 27 25 24 16 15 14 13 12 10 7 6 4 3 2 0
M K23 KU Impl BE| AT AR MT 0 VI KO
Table 9.64 Config Register Field Descriptions
Fields
Read /
Name Bits Description Write Reset State Compliance
M 31 Denotes that the Config1l register is implemented at a R 1 Required

select field value of 1.

K23 30:28 | For processors that implement a Fixed Mapping MMU, R/W Undefined for Optional
this field specifies the kseg2 and kseg3 cacheability and processors with a
coherency attribute. For processors that do not implement Fixed Mapping
a Fixed Mapping MMU, this field reads as zero and is MMU; 0 other-
ignored on write. wise
See “Alternative MMU Organizations” on page 313 for a
description of the Fixed Mapping MMU organization.
See Table 9.12 on page 133 for the encoding of this field.
For Release 6, writes of unsupported values are ignored.

KU 27:25 | For processors that implement a Fixed Mapping MMU, R/W Undefined for Optional
this field specifies the kuseg cacheability and coherency processors with a
attribute. For processors that do not implement a Fixed Fixed Mapping
Mapping MMU, this field reads as zero and is ignored on MMU; 0 other-
write. wise
See “Alternative MMU Organizations” on page 313 for a
description of the Fixed Mapping MMU organization.
See Table 9.12 on page 133 for the encoding of this field.
For Release 6, writes of unsupported values are ignored.

Impl 24:16 | This field is reserved for implementations. Refer to the Undefined Optional
processor specification for the format and definition of
this field

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

233

Table 9.64 Config Register Field Descriptions (Continued)

Fields
Read /
Name Bits Description Write Reset State Compliance
BE 15 Indicates the endian mode in which the processor is run- R Preset by hard- Required
ning: ware or Exter-
Encoding Meaning nally Set
0 Little endian
1 Big endian
AT 14:13 | Architecture Type implemented by the processor. R Preset by Required
hardware
For Release 3, encoding values of 0-2, denotes address
and register width (32-bit or 64-bit).
The implemented instruction sets (MIPS32/64 and/or
microMIPS32/64) are denoted by the ISA register field of
Config3.
Encoding Meaning
0 MIPS32 or microMIPS32
1 MIPS64 or microMIPS64 with access
only to 32-bit compatibility segments
2 MIPS640r microMIPS64 with access
to all address segments
3 Reserved
AR 12:10 | MIPS32 Architecture revision level. R Preset by Required
hardware

microMIPS32 Architecture revision level is denoted by
the MMAR field of Config3. If Config3 register is not
implemented then microMIPS is not implemented.

If the ISA field of Config3 is one, then MIPS32 is not
implemented and this field is not used.
Encoding 2 is new for Release 6.

Encoding Meaning

0 Release 1

1 Release 2 or Release 3 or Release 5
All features introduced in Release 3
and Release 5 are optional and detect-
able through Config3 or other register
fields.

2 Release 6

3-7 Reserved

234

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.45 Configuration Register (CPO Register 16, Select 0)

Table 9.64 Config Register Field Descriptions (Continued)

Fields
Read /
Name Bits Description Write Reset State Compliance
MT 9:7 MMU Type: R Preset by Required
hardware
Encoding Meaning

0 None

1 Standard TLB (See “TLB
Organization” on page 32)

2 BAT (See “Block Address Translation”
on page 317)

3 Fixed Mapping (See “Fixed Mapping
MMU” on page 313)
Dual VTLB and FTLB (See “Dual

4 Variable-Page-Size and Fixed-Page-
Size TLBs” on page 319)

0 6:4 Must be written as zero; returns zero on read. 0 Reserved
VI 3 Virtual instruction cache (using both virtual indexing and R Preset by Required
virtual tags): hardware

Encoding Meaning
0 Instruction Cache is not virtual
1 Instruction Cache is virtual
KO 2:0 Kseg0 cacheability and coherency attribute. See Table R/W Undefined Required
9.12 on page 133 for the encoding of this field.
For Release 6, writes of unsupported values are ignored.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

235

236 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.46 Configuration Register 1 (CPO Register 16, Select 1)

9.46 Configuration Register 1 (CPO Register 16, Select 1)

Compliance Level: Required.

The Config1l register is an adjunct to the Config register and encodes additional capabilities information. All fields in
the Configl register are read-only.

The I-Cache and D-Cache configuration parameters include encodings for the number of sets per way, the line size,
and the associativity. The total cache size for a cache is therefore:

Cache Size = Associativity * Line Size * Sets Per Way
If the line size is zero, there is no cache implemented.

Figure 9.48 shows the format of the Configl register; Table 9.65 describes the Configl register fields.

Figure 9.48 Configl Register Format
31 30 25 24 2221 1918 1615 1312 109 7 6 5 4 3 2 1 0
\M\ MMU Size - 1 \ IS \ IL \ IA \ DS \ DL \ DA \cz\MD\Pc\WR\CA\EP\FP\

Table 9.65 Configl Register Field Descriptions

Fields
Read/
Name Bits Description Write Reset State | Compliance
M 31 This bit is reserved to indicate that a Config2 register R Preset by Required
is present. If the Config2 register is not implemented, hardware
this bit should read as a 0. If the Config2 register is
implemented, this bit should read as a 1.
MMU 30..25 | Number of entries in the TLB minus one. The values 0 R Preset by Required
Size-1 through 63 in this field correspond to 1 to 64 TLB hardware
entries. The value zero is implied by Configy,t having
a value of ‘none’.
IS 24:22 I=cache sets per way: R Preset by Required
hardware
Encoding Meaning
0 64
1 128
2 256
3 512
4 1024
5 2048
6 4096
7 32

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 237

Table 9.65 Configl Register Field Descriptions (Continued)

Fields
Read/
Name Bits Description Write Reset State | Compliance

IL 21:19 I-cache line size: R Preset by Required
hardware

Encoding Meaning

0 No I-Cache present
4 bytes

8 bytes

16 bytes

32 bytes

64 bytes

128 bytes

Reserved

N[~ |W[N|F

1A 18:16 I-cache associativity: R Preset by Required
hardware

Encoding Meaning

0 Direct mapped

2-way

3-way

4-way

5-way

6-way

7-way

Nfoflos~s|[fwN|F

8-way

DS 15:13 D-cache sets per way: R Preset by Required
hardware

Encoding Meaning
0 64

128

256

512

1024

2048

4096

32

N|lojlo|l~|lwW|IN|F

238 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.46 Configuration Register 1 (CPO Register 16, Select 1)

Table 9.65 Configl Register Field Descriptions (Continued)

Fields
Read/
Name Bits Description Write Reset State | Compliance
DL 12:10 D-cache line size: R Preset by Required
hardware
Encoding Meaning
0 No D-Cache present
1 4 bytes
2 8 bytes
3 16 bytes
4 32 bytes
5 64 bytes
6 128 bytes
7 Reserved
DA 9:7 D-cache associativity: R Preset by Required
hardware
Encoding Meaning
0 Direct mapped
1 2-way
2 3-way
3 4-way
4 5-way
5 6-way
6 7-way
7 8-way
Cc2 6 Coprocessor 2 implemented: R Preset by Required
hardware
Encoding Meaning
0 No coprocessor 2 implemented
1 Coprocessor 2 implements
This bit indicates not only that the processor contains
support for Coprocessor 2, but that such a coprocessor
is attached.
MD 5 Used to denote MDMX ASE implemented on a R 0 Required
MIPS64/microMIPS64 processor. Not used on a
MIPS32/microMIPS32 processor.
This bit indicates not only that the processor contains
support for MDMX, but that such a processing ele-
ment is attached.
MDMX is deprecated in Release 5 and cannot be
implemented when the MSA Module is implemented.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 239

Table 9.65 Configl Register Field Descriptions (Continued)

Fields
Read/
Name Bits Description Write Reset State | Compliance

PC 4 Performance Counter registers implemented: R Preset by Required
hardware

Encoding Meaning

No performance counter registers

0 implemented

1 Performance counter registers implemented

WR 3 Watch registers implemented: R Preset by Required
hardware

Encoding Meaning

0 No watch registers implemented

1 Watch registers implemented

CA 2 Code compression (MIPS16e) implemented: R Preset by Required
hardware

Encoding Meaning
0 MIPS16e not implemented
1 MIPS16e implemented

EP 1 EJTAG implemented: R Preset by Required
hardware

Encoding Meaning
0 No EJTAG implemented
1 EJTAG implemented

FP 0 FPU implemented: R Preset by Required
hardware

Encoding Meaning
0 No FPU implemented

1 FPU implemented

This bit indicates not only that the processor contains
support for a floating-point unit, but that such a unit is
attached.

If an FPU is implemented, the capabilities of the FPU
can be read from the capability bits in the FIR CP1
register.

240 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.47 Configuration Register 2 (CPO Register 16, Select 2)

9.47 Configuration Register 2 (CPO Register 16, Select 2)

Compliance Level: Required if a level 2 or level 3 cache is implemented, or if the Config3 register is required;

Optional otherwise. In Release 6, presence of Config2 is dependent on Config5, 5.

The Config2 register encodes level 2 and level 3 cache configurations.

Figure 9.49 shows the format of the Config2 register; Table 9.66 describes the Config2 register fields.

Figure 9.49 Config2 Register Format

31 30 28 27 24 23 20 19 16 15 12 11 8 7 3 0
M TU TS TL TA SuU SS SL SA
Table 9.66 Config2 Register Field Descriptions
Fields
Read / Reset
Name Bits Description Write State Compliance
M 31 This bit is reserved to indicate that a Config3 register is R Preset by Required
present. If the Config3 register is not implemented, this hardware
bit should read as a 0. If the Config3 register is imple-
mented, this bit should read as a 1.
TU 30:28 | Implementation-specific tertiary cache control or status R/W Preset by Optional
bits. If this field is not implemented it should read as zero hardware
and be ignored on write.
TS 27:24 | Tertiary cache sets per way: R Preset by Required
Encoding Sets Per Way hardware
0 64
1 128
2 256
3 512
4 1024
5 2048
6 4096
7 8192
8-15 Reserved

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

241

Table 9.66 Config2 Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
TL 23:20 | Tertiary cache line size: R Preset by Required
Encoding Line Size hardware
0 No cache present
1 4
2 8
3 16
4 32
5 64
6 128
7 256
8-15 Reserved
TA 19:16 | Tertiary cache associativity: R Preset by Required
Encoding Associativity hardware
0 Direct Mapped
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8-15 Reserved
SuU 15:12 | Implementation-specific secondary cache control or status R/W Preset by Optional
bits. If this field is not implemented it should read as zero hardware
and be ignored on write.
SS 11:8 Secondary cache sets per way: R Preset by Required
Encoding Sets Per Way hardware
0 64
1 128
2 256
3 512
4 1024
5 2048
6 4096
7 8192
8-15 Reserved

242 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.47 Configuration Register 2 (CPO Register 16, Select 2)

Table 9.66 Config2 Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
SL 7:4 Secondary cache line size: R Preset by Required
Encoding Line Size hardware
0 No cache present
1 4
2 8
3 16
4 32
5 64
6 128
7 256
8-15 Reserved
SA 3:0 Secondary cache associativity: R Preset by Required
Encoding Associativity hardware
0 Direct Mapped
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8-15 Reserved

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

243

244 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.48 Configuration Register 3 (CPO Register 16, Select 3)

9.48 Configuration Register 3 (CPO Register 16, Select 3)

Compliance Level: Required if any optional feature described by this register is implemented: Release 2 of the
Architecture, the SmartMIPS™ ASE, or trace logic; Optional otherwise.

The Config3 register encodes additional capabilities. All fields in the Config3 register are read-only.

Release 5 adds Config3, py to allow software to determine the presence of XPA (>36-bit PA support).

Figure 9-50 shows the format of the Config3 register; Table 9.67 describes the Config3 register fields.

31 30 29 28

Figure 9-50 Config3 Register Format

27 26 25 24 23 22 21 2019 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
CM M M| ISA U D D ¢ V|V
G S B B \% L RIS S ! L E| I b
M| 0 A S |PWE 2 ipLw | MMAR | u On | ISA X| P X|T|P SP| M |MT|SM| TL
C P C VA C | Exc R P I | n
R P |]2 p TIL|A clt M
0 P C
n
Table 9.67 Config3 Register Field Descriptions
Fields
Name Bits Description Read/Write Reset State Compliance
M 31 This bit is reserved to indicate that a Config4 register is R Preset by hard- Required
present. If the Config4 register is not implemented, this ware
bit should read as a 0. If the Config4 register is imple-
mented, this bit should read as a 1.
0 30 Must be written as zero; returns zeros on read. 0 0 Reserved
CMGCR 29 Coherency Manager memory-mapped Global Configu- R Preset by hard- Required for
ration Register Space is implemented. ware Coherent Mul-
. . tiple
Encoding Meaning Core
0 CM GCR space is not implemented implementa-
— tions that use
1 CM GCR space is implemented the Coherency
Manager.
MSAP 28 MIPS SIMD Architecture (MSA) is implemented. R Preset by hard- Required
Encoding Meaning ware
0 MSA Module not implemented
1 MSA Module is implemented

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

245

Table 9.67 Config3 Register Field Descriptions (Continued)

Fields
Name Bits Description Read/Write Reset State Compliance
BP 27 BadlInstrP register implemented. This bit indicates R Preset by hard- Required
whether the faulting prior branch instruction word regis- ware
ter is present. Release 6: BadInstrP is always imple- (Pre-Release 6)
mented.
- - 1
Encoding Meaning (Release 6)
0 BadInstrP register not implemented
1 BadInstrP register implemented
Bl 26 BadlInstr register implemented. This bit indicates R Preset by hard- Required
whether the faulting instruction word register is present. ware
Release 6: BadlInstr is always implemented. (Pre-Release 6)
Encoding Meaning 1
0 Badlnstr register not implemented (Release 6)
1 BadlInstr register implemented
SC 25 Segment Control implemented. This bit indicates R Preset by hard- Required
whether the Segment Control registers SegCtlO, ware
SegCtl1 and SegCtl2 are present.
Encoding Meaning
0 Segment Control not implemented
1 Segment Control is implemented
PW 24 HardWare Page Table Walk implemented. This bit indi- R Preset by hard- Required
cates whether the Page Table Walking registers ware
PWBase, PWField and PWSize are present.
Encoding Meaning
0 Page Table Walking not implemented
1 Page Table Walking is implemented
\4 23 Virtualization Module implemented. This bit indicates R Preset by hard- Required
whether the Virtualization Module is implemented. ware
Encoding Meaning
0 Virtualization Module not imple-
mented
1 Virtualization Module is implemented

246 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.48 Configuration Register 3 (CPO Register 16, Select 3)

Table 9.67 Config3 Register Field Descriptions (Continued)

Fields
Name Bits Description Read/Write Reset State Compliance
IPLW 22:21 | Width of Status|p| and Causeg;p_ fields: R Preset by hard- Required if
: : ware MCU ASE is
Encoding Meaning implemented
0 IPL and RIPL fields are 6-bits in
width.
1 IPL and RIPL fields are 8-bits in
width.
Others Reserved.
If the IPL field is 8-bits in width, bits 18 and 16 of
Status are used as the most-significant bit and second
most-significant bit, respectively, of that field.
If the RIPL field is 8-bits in width, bits 17 and 16 of
Cause are used as the most-significant bit and second
most-significant bit, respectively, of that field.
MMAR 20:18 | microMIPS32 Architecture revision level. R Preset by hard- Required if
ware microMIPS is
MIPS32 Architecture revision level is denoted by the implemented
AR field of Config.
Encoding Meaning
0 Release3
1-7 Reserved
If the ISA field of Config3 is zero, microMIPS32 is not
implemented and this field is not used.
MCU 17 MIPS® MCU ASE is implemented. R Preset by hard- Required if
Encodi Meani ware MCU ASE is
ncoding eaning implemented
0 MCU ASE is not implemented.
1 MCU ASE is implemented
ISAONnExc 16 Reflects the Instruction Set Architecture used after vec- RW if both Undefined Required if
toring to an exception. Affects all exceptions whose off- | instruction sets microMIPS is
sets are relative to EBase. are imple- implemented
; : mented; Preset
Encoding Meaning if only micro-
0 MIPS32is used on entrance to an MIPS is imple-
exception vector. mented.
1 microMIPS is used on entrance to an
exception vector.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

247

Table 9.67 Config3 Register Field Descriptions (Continued)

Fields
Name Bits Description Read/Write Reset State Compliance
ISA 15:14 | Indicates Instruction Set Availability. R Preset by hard- Required if
ware microMIPS is
implemented
Encoding Meaning P
0 Only MIPS32 Instruction Set is imple-
mented.
1 Only microMIPS32 is implemented.
2 Both MIPS32and microMIPS32 ISAs
are implemented. MIPS32 ISA used
when coming out of reset.
3 Both MIPS32and microMIPS32 ISAs
are implemented. microMIPS32 ISA
used when coming out of reset.
ULRI 13 Pre-Release 6: UserLocal register implemented. This R Preset by hard- Required
bit indicates whether the UserLocal Coprocessor 0 reg- ware
ister is implemented. Release 6: UserLocal is always (Pre-Release 6)
implemented.
- - 1
Encoding Meaning (Release 6)
0 UserLocal register is not imple-
mented
1 UserLocal register is implemented
RXI 12 Pre-Release 6: Indicates whether the RIE and XIE bits R Preset by hard- Required
exist within the PageGrain register. Release 6: The RIE ware
and XIE bits are always implemented (Pre-Release 6)
Encoding Meaning 1
0 The RIE and XIE bits are not imple- (Release 6)
mented within the PageGrain regis-
ter.
1 The RIE and XIE bits are imple-
mented within the PageGrain regis-
ter.

248

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.48 Configuration Register 3 (CPO Register 16, Select 3)

Table 9.67 Config3 Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read/Write

Reset State

Compliance

DSP2P

11

MIPS® DSP Module Revision 2 implemented. This bit
indicates whether Revision 2 of the MIPS DSP Module
is implemented.

Encoding Meaning

0 Revision 2 of the MIPS DSP Module
is not implemented

1 Revision 2 of the MIPS DSP Module
is implemented

R

Preset by hard-
ware

Required

DSPP

10

MIPS® DSP Module implemented. This bit indicates
whether the MIPS DSP Module is implemented.

Encoding Meaning

0 MIPS DSP Module is not implemented

1 MIPS DSP Module is implemented

Preset by hard-
ware

Required

CTXTC

ContextConfig registers is implemented and the width
of the BadVVPN2 field within the Config register register
depends on the contents of the ContextConfig register.

Encoding Meaning

0 ContextConfig is not implemented.

1 ContextConfig is implemented and is
used for the Configgaqypn2 field.

Preset by hard-
ware

Required

ITL

MIPS® IFlowtrace " mechanism implemented. This bit
indicates whether the MIPS IFlowTrace is implemented.

Encoding Meaning

0 MIPS IFlowTrace is not implemented

1 MIPS IFlowTrace is implemented

Preset by hard-
ware

Required
(Release 2.1
Only)

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 249

Table 9.67 Config3 Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read/Write

Reset State

Compliance

LPA

7

Large Physical Address support is implemented, and the

PageGrain register existsThe following Coprocessor 0

fields and associated control are present if this bit is a 1:

« Modifications to EntryLoO and EntryLo1 to support
physical addresses larger than 36 bits i.e., the XPA
feature of Release 5.

» Modifications to other optional COPO registers with
PA: LLAddr, TagLo.

* PageGrain

. COHfigSMVH

The following instructions or modified behavior are

required:

« MTHCO, MFHCO for access to extensions.

* MTCO modification to zero-writeable extensions.

For implementations prior to Release 5 of the Architec-

ture, this bit returns zero on read.

R

Preset by hard-
ware

Required
(Release 5)

VEIC

Support for an external interrupt controller is imple-
mented.

Encoding Meaning

0 Support for EIC interrupt mode is not
implemented

1 Support for EIC interrupt mode is
implemented

For implementations of Release 1 of the Architecture,
this bit returns zero on read.

This bit indicates not only that the processor contains
support for an external interrupt controller, but that such
a controller is attached.

Preset by hard-
ware

Required
(Release 2
Only)

Vint

Vectored interrupts implemented. This bit indicates
whether vectored interrupts are implemented.

Encoding Meaning

0 Vector interrupts are not implemented

1 Vectored interrupts are implemented

For implementations of Release 1 of the Architecture,
this bit returns zero on read.

Preset by hard-
ware

Required
(Release 2
Only)

250 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.48 Configuration Register 3 (CPO Register 16, Select 3)

Table 9.67 Config3 Register Field Descriptions (Continued)

Fields
Name Bits Description Read/Write Reset State Compliance
SP 4 Small (1 kB) page support is implemented, and the R Preset by hard- Required
PageGrain register exists ware (Release 2
Only)
Encoding Meaning
0 Small page support is not imple-
mented
1 Small page support is implemented
For implementations of Release 1 of the Architecture,
this bit returns zero on read.
CDMM 3 Common Device Memory Map implemented. This bit R Preset by hard- Required
indicates whether the CDMM is implemented. ware
Encoding Meaning
0 CDMM is not implemented
1 CDMM is implemented
MT 2 MIPS® MT Module implemented. This bit indicates R Preset by hard- Required
whether the MIPS MT Module is implemented. ware
Encoding Meaning
0 MIPS MT Module is not implemented
1 MIPS MT Module is implemented
For Release 6 and after, this bit must be 0.
SM 1 SmartMIPS™ ASE implemented. This bit indicates R Preset by hard- Required
whether the SmartMIPS ASE is implemented. ware (Pre-Release 6)
. . (Pre-Release 6)
Encoding Meaning
0 SmartMIPS ASE is not implemented
1 SmartMIPS ASE is implemented
SM 1 SmartMIPS™ ASE not implemented. R 0 Reserved
(Release 6) (Release 6)
TL 0 Trace Logic implemented. This bit indicates whether PC R Preset by hard- Required
or data trace is implemented. ware
Encoding Meaning
0 Trace logic is not implemented
1 Trace logic is implemented

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 251

252 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.49 Configuration Register 4 (CPO Register 16, Select 4)

9.49 Configuration Register 4 (CPO Register 16, Select 4)

Compliance Level: Required if any optional feature described by this register is implemented: Release 2 of the
Architecture; Optional otherwise.

The Config4 register encodes additional capabilities.
The number of page-pair entries within the FTLB = decode(FTLBSets) * decode(FTLBWays).

The number of page-pair entries accessible in the VTLB is defined by concatenating Config4y 1| gsizeext @Nd
Configlpmusize- Modifying VTLB size can be used to allow software to reserve high index slots in the VTLB.

Figure 9.52 shows the format of the Config4 register; Table 9.68 describes the Config4 register fields.

Figure 9.51 Config4 Register Format (Pre-Release 6)

31 30 29 28 27 24 23 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
M| IE AE| VTLBSizeExt KSerExist MMU Definition Depends on MMUExtDef
ExtDef
If MMUEXxtDef=3 0 FTLB FTLBWays FTLBSets
PageSize
If MMUEXxtDef=2 000 FTLB FTLBWays FTLBSets
PageSize
If MMUEXxtDef=1 000000 MMUSizeExt
If MMUEXxtDef=0 00000000000000

Figure 9.52 Config4 Register Format (Release 6)

31 30 29 28 27 24 23 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
. . FTLB
M| IE |AE| VTLBSizeExt KScrExist Reserved PageSize FTLBWays FTLBSets

Table 9.68 Config4 Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
M 31 This bit is reserved to indicate that a Config5 register is R Preset by Required

present. If the Config5 register is not implemented, this hardware
bit should read as a 0. If the Config5 register is imple-
mented, this bit should read as a 1.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 253

Table 9.68 Config4 Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
IE 30:29 | TLB invalidate instruction support/configuration. R Preset by | Required for TLBINV,
hardware | TLBINVF,
. . EntryHigpny
Encoding Meaning These features must be
00 TLBINV, TLBINVF, EntryHigyyny implemented if Segmenta-
not supported by hardware. In Release tion Control is imple-
6, this field is reserved:; i.e., TLBINV mented.
and TLBINVF must be supported in These features are recom-
Release 6 implementations. mended for FTLB/VTLB
01 Reserved. MMUs.
10 TLBIN_/, TLBINVF supported. Always Required for
EntryHigy Ny supported. Refer to Vol- implementations with
ume 11 for the full description of these TLBs; i.e., Configyt=1 or
instructions. 4. (Release 6)
TLBINV* instructions operate on one
TLB entry.
11 TLBINV, TLBINVF supported.
EntryHigyny supported. Refer to Vol-
ume 11 for the full description of these
instructions.
TLBINV* instructions operate on
entire MMU.
AE 28 If this bit is set, then EntryHIagp is extended to 10 bits. R Preset by Required
hardware
VTLB- 27:24 | Applicable only if ConfigMT = 1 or 4; otherwise, R Preset by
SizeExt reserved. hardware
Pre-Release 6: If Config4ymuextDef = 3 this field is con- Required if
catenated to the left of the most-significant bit of the Config4pmuextDef =3
Configlpmusize field to indicate the size of the VTLB. (Pre-Release 6)
Release 6: This field is always concatenated to the left of Required if
the most-significant bit of the Config1yyusize- Configyr=1or 4
(Release 6)

254

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.49 Configuration Register 4 (CPO Register 16, Select 4)

Table 9.68 Config4 Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read /
Write

Reset
State

Compliance

KScr
Exist

23:16

Indicates how many scratch registers are available to ker-
nel-mode software within COPO Register 31.

Each bit represents a select for Coproecessor0 Register 31.
Bit 16 represents Select 0, Bit 23 represents Select 7.

If the bit is set, the associated scratch register is imple-
mented and available for kernel-mode software.

For Release 6, bits 2-7 are always 1 because KScratch1-6
must be implemented.

Scratch registers meant for other purposes are not repre-
sented in this field. For example, if EJTAG is imple-
mented, Bit 16 is preset to zero even though DESAVE
register is implemented at Select 0. Select 1 is reserved for
future debug purposes and should not be used as a kernel
scratch register, so bit 17 is preset to zero.

R

Preset by
hardware

Required if Kernel Scratch
Registers are available

MMU
Ext
Def

15:14

MMU Extension Definition.
Defines how Config4[13:0] is to be interpreted.

Encoding Meaning

0 Reserved.
Config4[12:0] - Must be written as
Zeros, returns zeros on read.

Config4[7:0] used as MMUSizeExt.

Config4[3:0] used as FTLBSets.
Config4[7:4] used as FTLBWays.
Config4[10:8] used as FTLBPageSize.

3 FTLB and VTLB supported.
Config4[3:0] used as FTLBSets.
Config4[7:4] used as FTLBWays.
Config4[12:8] used as FTLBPageSize.
Config4[27:24] used as VTLBSizeExt.

Preset by
hardware

Required
(Pre-Release 6)

MMU
Ext
Def

15:14

In Release 6, these bits are reserved.

Preset by
hardware

Reserved
(Release 6)

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

255

Table 9.68 Config4 Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
FTLB 10:8 Indicates the Page Size of the FTLB Array Entries. RW if Preset by Required if MMUEXt-
Page Size Encodin Page Size multiple | hardware, Def=2
9 9 FTLB | chosenvalue (Pre-Release 6)
0 1 kB page- | is implemen-
1 4 kB sizesare | tation spe-
5 16 KB imple- cific
mented
3 64 kB
4 256 kB Rifonly
° 1ep FTLB
6 4GB pagesize
7 Reserved is imple-
mented.

Implementations are allowed to implement any subset of
these sizes, even a subset of only one pagesize. Software
can detect if a FTLB page size is implemented by writing
the desired size into this register field. If the size is imple-
mented, the register field is updated to the desired encod-
ing. If the size is not implemented, the register field value
is not changed.

The FTLB must be flushed of any valid entries before this
register field value is changed by software. The FTLB
behavior is UNDEFINED if there are valid FTLB entries
which were not all programmed using a common page
size.

256 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.49 Configuration Register 4 (CPO Register 16, Select 4)

Table 9.68 Config4 Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
FTLB 12:8 Indicates the Page Size of the FTLB Array Entries. RIW if Preset by Required if MMUEXt-
Page Size Encodin Page Size multiple | hardware, Def=3
9 9 FTLB | chosenvalue (Pre-Release 6)
0 1 kB page- | is implemen-
1 4 kB sizesare | tationspe- | Required if Configyt =4
5 16 KB imple- cific (Release 6)
mented
3 64 kB
4 256 kB Rifonly
6 4 MB pagesize
7 16 MB is imple-
8 64 MB mented.
9 256 MB
10 1GB
1 4GB
12 16 GB
13 64 GB
14 256 GB
15 1TB
16 4TB
17 16 TB
18 64 TB
19 256 TB

Implementations are allowed to implement any subset of
these sizes, even a subset of only one page size. Software
can detect if an FTLB page size is implemented by writing
the desired size into this register field. If the size is imple-
mented, the register field is updated to the desired encod-
ing. If the size is not implemented, the register field value
is not changed.

The FTLB must be flushed of any valid entries before this
register field value is changed by software. The FTLB
behavior is UNDEFINED if there are valid FTLB entries
which were not all programmed using a common page
size.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

257

Table 9.68 Config4 Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
FTLB 7:4 Indicates the Set Associativity of the FTLB Array. R Presetby | Required if MMUgipei=2
Ways Encoding Associativity hardware (Pre-Release 6)
0 2 Required if Configyr=4
1 3 (Release 6)
2 4
3 5
4 6
5 7
6 8
7-15 Reserved
FTLB 3:0 Indicates the number of Sets per Way within the FTLB R Preset by Required if MMUEXt-
Sets Array. hardware Def=2
(Pre-Release 6)
Encoding Sets per Way Required if Configyr=4
0 1 (Release 6)
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
1 2048
12 4096
13 8192
14 16384
15 32768
MMU- 7:0 If Config4pmuexiDef = 1 then this field is an extension of R Preset by Required if MMUEXt-
SizeExt Configlymusize-1 field. hardware Def=1
(Pre-Release 6)
This field is concatenated to the left of the most-signifi-
cant bit to the MMUSize-1 field to indicate the size of the
TLB-1.

258 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.50 Configuration Register 5 (CPO Register 16, Select 5)

9.50 Configuration Register 5 (CPO Register 16, Select 5)

Compliance Level: Required if any optional feature described by this register is implemented: Release 3 of the
Architecture; Optional otherwise.

The Config5 register encodes additional capabilities:

Figure 9.53 shows the format of the Config5 register; Table 9.69 describes the Config5 register fields.

31 30 29 28

Cache Error exception vector control.

Segmentation Control legacy compatibility.

Existence of EVA instructions (for example, LBE).

Existence of the User Mode FP Register mode-changing facility (UFR).
Existence of the Nested Fault feature (NestedExc, NestedEPC).
Existence of COP0 MAAR and MAARI (MRP).

Support for additional LL/SC instruction handling capabilities (LLB).
Existence of MTHCO and MFHCO instructions (MHV).

Kernel control over non-kernel execution of SDBBP (SBRI).

Existence of Config2 (L2 and L3 cache configurations) in COPO (L2C).
Support for COPQ capabilities related to multi-threading (VP).

Support for trap and emulate capability for floating-point (FRE/UFE).
Support for software reset-based Endian switching (DEC).

Determine presence of Release 6 LLX/SCX family of instructions (XNP).

Figure 9.53 Config5 Register Format
27 26 13 12 11 10 9 8 7 6 5 4 3

0

M| K |CV| EVA

MSAEn 0 XNP| 0| DEC| L2C | UFE| FRE | VP | SBRI | MVH |LLB| MRP

UFR

NFEXists

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

259

Table 9.69 Config5 Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance

M 31 This bit is reserved to indicate that as yet undefined con- R Preset by Required
figuration registers are present. With the current architec- hardware
tural definition, this bit should always read as a 0.

K 30 Enable/disable Configyg, Configy,, Configk,s Cache R/W 0 Required for
Coherency Attribute control if Segmentation Control is Segmentation
implemented.! Control.

(Referto4.1.4
on page 26)
Encoding Meaning
0 Configkg, Configk, Configkas
enabled.
1 Configk0, Configyk, Configy,s dis-
abled.
cv 29 Cache Error Exception Vector control. Disables logic forc- R/W 0 Required for
ing use of kseg1l region in the event of a Cache Error Segmentation
exception when Statusggy=0. Control.
- - (Referto4.1.4
Encoding Meaning on page 26)
0 On Cache Error exception, vector
address bits 31..29 forced to place
vector in ksegl.
1 On Cache Error exception, vector
address uses full EBase value for bits
31..29.
EVA 28 Enhanced Virtual Addressing instructions implemented R Preset by Optional
hardware
MSAEnN 27 MIPS SIMD Architecture (MSA) Enable. R/W 0 Required if
Encodi Meani MSA Module
ncoding eaning is imple-
0 MSA instructions and registers are mented.
disabled. Executing a MSA instruc-
tion causes a MSA Disabled excep-
tion.
1 MSA instructions and registers are
enabled.
0 26:13 | Returns zeros on read. RO 0 Reserved

260

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.50 Configuration Register 5 (CPO Register 16, Select 5)

Table 9.69 Configh Register Field Descriptions (Continued)

Fields
Read / Reset

Name Bits Description Write State Compliance

XNP 13 Extended LL/SC family of instructions Not Present. R Preset by Required
The LLX/SCX family of instructions is required for hardware (Release 6)
Release 6 Double-Width atomic support. This support is
provided by extending the capability of legacy LL/SC
instructions.

Encoding Meaning

0 LLX/SCX instruction family sup-
ported

1 LLX/SCX instruction family not sup-
ported

0 12 Returns zero on read. RO 0 Reserved

DEC 11 Dual Endian Capability R Preset by Required
Determines endian capability of processor. hardware (Release 6)
If both modes are supported, then the processor will ini-
tially boot in little-endian mode always. Thereafter, soft-
ware can force a change in endian mode by setting a bit in
a memory-mapped external register. The endian mode
change will only take effect on subsequent reset. For cur-
rent endian state, software should read Configgg.

Encoding Meaning

0 Only Little-Endian mode supported.
Any implementation must support Lit-
tle-endian mode.

1 Both Little and Big-Endian modes
supported.

L2C 10 Indicates presence of COPO Config2. R Preset by Required
hardware (Release 6)

Encoding Meaning

0 Config2 present. Software can read
Config2 to determine L2/L3 cache
configuration.

1 Config2 not present. Replaced by
memory mapped register that software
can read instead.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 261

Table 9.69 Configh Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read /
Write

Reset
State

Compliance

UFE

9

Enable for user mode access to Config5ggg . User mode
can conditionally access ConfigSgrg using CTC1 and
CFCL1 instructions.

Encoding Meaning

0 An attempt by user to read/write
Config5grg causes a Reserved

Instruction exception.

1 User is allowed to write ConfigSgrg

(only) using CTC1, and read
Config5grg (only) using CFC1.

A kernel can access Config5 using MTCO/MFCO.
Config5ygg applies also to kernel use of CFC1/CTCL1.

Config5ygg is reserved if: FIRgrgp is 0 or Configlgp=0.

R/W

0

Optional
(Release 5)

FRE

Enable for user mode to emulate Statusgg=0 handling on
an FPU with Statusgr hardwired to 1. User mode can con-
ditionally access Configsgrg using CTC1 and CFC1
instructions.

Release 5 requires that Statuspg=1 when the MSA Module

is enabled. Release 6 eliminates the Statusgg=0. If Statu-
sure=0, then effective FRE always equals 0.

Encoding Meaning
0 Instructions impacted by ConfigSggre
do not generate additional exception
conditions.
1 The following instructions cause a

Reserved Instruction exception:

- All single-precision FP arithmetic
instructions.

- All LWC1/LWXC1/MTC1 instruc-
tions.

- All SWC1/SWXC1/MFC1 instruc-
tions.

Release 5 and 6 COP1 branches are not affected by
ConfigSFRE .

LWXC1/SWXC1 instructions are removed in Release 6.
Config5gge is reserved if FIRgrgp is 0, or Configlgp=0.

RIW

Optional
(Release 5)

262

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.50 Configuration Register 5 (CPO Register 16, Select 5)

Table 9.69 Configh Register Field Descriptions (Continued)

Fields
Read / Reset

Name Bits Description Write State Compliance

VP 7 Virtual Processor. This bit is reserved for pre-Release 6. R Preset by Optional
The value of this bit must be the same for all virtual pro- hardware (Release 6)
cessors in a physical core. This bit determines if multi-
threading is supported in a Release 6 implementation.
Note that Config3),r must be 0 for Release 6 and after.
The new Release 6 multi-threading features replace the
existing Multi-threading Module.

Encoding Meaning

0 No multi-threading support. There is
only one virtual core/physical core.
There are no COPO or ISA extensions
for multi-threading.

1 Multi-threading features supported.
This includes CP0O Global Number
register (reg = 3, sel = 1), instructions
DVP/EVP, changes to EBASE to sup-
port virtual core numbering.

SBRI 6 SDBBP instruction Reserved Instruction control. R/W 0 Required
The purpose of this field is to restrict availability of (Release 6)
SDBBP to kernel mode operation. It prevents user (and
supervisor) code from entering Debug mode using
SDBBP.

Encoding Meaning

0 SDBBP instruction executes as
defined prior to Release 6

1 SDBBP instruction can only be exe-
cuted in kernel mode. User (or super-
visor, if supported) execution of
SDBBP will cause a Reserved Instruc-
tion exception.

MVH 5 Move To/From High COPO (MTHCO/MFHCO) instruc- R Preset by Required for
tions are implemented. hardware XPA

Currently these instructions are only required for (Release 5)
Extended Physical Addressing (XPA).

Encoding Meaning

0 MTHCO and MFHCO are not sup-
ported. COPO extensions do not exist.

1 MTHCO and MFHCO are supported.
Extensions to 32-bit COPO registers
exist.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 263

Table 9.69 Configh Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
LLB 4 Load-Linked Bit (LLB) is present in COP0O LLAddr. R Preset by Required if
hardware LLAddr is
Features enabled by Config5, | g =1 are recommended if implemented
Virtualization is supported, i.e., Config3,,=1. (Release 5)
In Release 6, Config5, | g is read-only 1. R 1 Required
(Release 6)
Encoding Meaning
0 No new support added. Hardware is
pre-Release 5 LL/SC compatible.
1 Additional support exists:
e ERETNC instruction added.
e CPO LLAddr | g is mandatory.
 LLbitis software accessible through
LLAddr[0].
e SC instruction behavior is modi-
fied.
MRP 3 COPO Memory Accessibility Attribute Registers, MAAR R Preset by Required if
and MAARI, are present. hardware MAAR(I)
implemented
- - (Release 5)
Encoding Meaning
0 MAAR and MAARI not present.
1 MAAR and MAARI present.
Software may program these registers
to apply additional attributes to fetch/
load/store access to memory/IO
address ranges.
UFR 2 This feature allows user-mode access to Statusgg using R/W if 0 Optional in
CTC1 and CFC1 instructions. FIRyrrp =1 (Release 5)
else 07
Encoding Meaning R 0 Reserved
= = (Release 6)
0 User-mode FR instructions not allowed.
1 User-mode FR instructions allowed.
NF 0 Indicates that the Nested Fault feature exists. R Preset Required if the
Exists Nested Fault
The Nested Fault feature allows recognition of faulting feature exists.
behavior within an exception handler.

1. Note on Config5y, Segment CCA determination: Table 9.69 below shows which field determines the CCA of a segment when
Config5x=0 or Config5x=1, on implementations with/without a TLB, when the region is accessed unmapped.

2. Configbygg is R/W if an FPU is present, and if the User-mode FR changing feature is present, i.e. if FIRggp is set. Otherwise
Config5ygg is 0.

264 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.50 Configuration Register 5 (CPO Register 16, Select 5)

Table 9.70 SegCtl0x Segment CCA Determination

Segment Configbx=0 Configbx=0 Configbg=1
No TLB With TLB
0 Configka3 Undefined* SegCtl0¢
1 Configka3 Undefined* SegCtl0¢;
2 SegCtllc, SegCtllc, SegCtllc,
3 Configkg Configkg SegCtllcs
4 Configky Undefined* SegCtl2¢,
5 Configky Undefined* SegCtl2cs

1. Note: Reset state of these regions is mapped on implementations containing a
TLB. Software must set Config5x=1 if it is programming any of these segments to

be used as unmapped on an implementation containing a TLB.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 265

266 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.51 Reserved for Implementations (CPO Register 16, Selects 6 and 7)

9.51 Reserved for Implementations (CPO Register 16, Selects 6 and 7)

Compliance Level: Implementation Dependent.

CPO register 16, Selects 6 and 7 are reserved for implementation-dependent use and is not defined by the architecture.
In order to use CPO register 16, Selects 6 and 7, it is not necessary to implement CPO register 16, Selects 2 through 5
only to set the M bit in each of these registers. That is, if the Config2 and Config3 registers are not needed for the
implementation, they need not be implemented just to provide the M bits.

The architecture only defines the use of the M bits for presence detection of Selects 1 to 5.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 267

268 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.52 Load Linked Address (CPO Register 17, Select 0)

Compliance Level: Optional prior to Release 5. Required in Release 5 if Config5, | g=1. Required in Release 6.

9.52 Load Linked Address (CPO Register 17, Select 0)

The LLAddr register contains relevant bits of the physical address read by the most recent Load Linked instruction.

This register is implementation-dependent, is for diagnostic purposes only, and serves no function during normal

operation.

If XPA, a Releaseb feature that permits a PA size larger than 36 bits, is supported, is extended to support up to a 59-bit
PA, as specified in the MIPS64 LLAddr instruction definition. The number of additional bits supported is a function
of the physical address size. Any high-order bits greater than bit 31 of this register are accessed with MTHCO and

MFHCO instructions.

Release 5 also provides software with the ability to read and clear the LLbit, which is set when an LL instruction is
executed. The presence of LLB in LLAddr in Release 5 can be detected by software through Config5, | g.

In Release 6, Config5 | g is read-only 1, and CPO LLAddr is required.

Figure 9-54 shows the format of the LLAddr register and Table 9.71 describes the LLAddr register fields for
pre-Release 5 implementations.

Figure 9-55 shows the format of the LLAddr register; Table 9.72 describes the LLAddr register fields.

Figure 9-54 LLAddr Register Format (pre Release 5)

31 0
PAddr
Table 9.71 LLAddr Register Field Descriptions (pre Release 5)
Fields
Read / Reset
Name Bits Description Write State Compliance
PAddr 31..0 This field encodes the physical address read by the most R Undefined Optional
recent Load Linked instruction. The format of this regis-
ter is implementation-dependent, and an implementation
may implement as many of the bits or format the address
in any way that it finds convenient.
Figure 9-55 LLAddr Register Format (Release 5 and after)
63 1 0
LLB

PAddr

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

269

Table 9.72 LLAddr Register Field Descriptions (Release 5 and after)

Fields
Read / Reset

Name Bits Description Write State Compliance

PAddr 63..1 This field encodes the physical address read by the most R Undefined Optional
recent Load Linked instruction. The format of this regis- (Release 5)
ter is implementation-dependent, and an implementation
may implement as many of the bits or format the address Required
in any way that it finds convenient. (Release 6)
LLAddr[1] is always aligned to PA[5], which implies
that PAddr is always 32-byte aligned.
In Release 5 implementations that do not support XPA
(Config3 pa = 0), this field represents up to 36 bits of
PA. LLAddr is then equivalent to a 32-bit register with
LLAddr[31] equal to PA[35].
If Config3| pa = 1, then up to a 59-bit PA can be sup-
ported with LLAddr[54] = PA[59].
The number of physical address bits is implementation-
specific. For the unimplemented address bits, writes are
ignored and reads return zero.

LLB 0 LLbit. R/W 0 Required if
LLB is set when the LL instruction is executed. The SC Config5| | g=1
instructions and other hardware events may clear LLB. (Release 5)
This field allows the LLbit to be software accessible.
LLB can be cleared by software but cannot be set. Required

(Release 6)

270 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.53 Memory Accessibility Attribute Register (CPO Register 17, Select 1)

9.53 Memory Accessibility Attribute Register (CPO Register 17, Select 1)

Compliance Level: Optional (Release 5)

The MAAR register is a read/write register included in Release 5 of the architecture that defines the accessibility attri-
butes of physical address regions. In particular, MAAR defines whether an instruction fetch or data load can specula-
tively access a memory region within the physical address bounds specified by MAAR.

If the MAAR function yields a valid attribute, it will only override any equivalent attribute determined through other
means, if it provides a more conservative outcome. For example, if the MMU vyields a cacheable CCA, but MAAR
yields a speculate attribute set to 0, then the access should not speculate as determined by the MAAR result. Similarly,
if the MMU yields an uncacheable CCA, but MAAR yields a speculate attribute set to 1, then the access should not
speculate.

In Release 5, the CCA of a access now defines speculation, along with MAAR. An access with a cacheable CCA is
allowed to speculate. An access with uncacheable CCA is not allowed to speculate unless the uncacheable CCA=7
(UCA) is used. The final speculative attribute is a combination of the CCA and MAAR as described above.

The address range specified by a MAAR may be used to specify an attribute for any region of the address space,
whether memory (DRAM) or memory-mapped 1/0.

MAAR is impacted by Extended Physical Addressing (XPA), a Release 5 feature, if included. If XPA is supported,
then MAAR must be extended by additional physical address bits. To maintain atomicity of the write to an extended
MAAR, two valid bits, VL and VH, are required. The use of both bits is conditional on PageGraing| pa. While a write

to the upper half of the extended could precede the write to the lower half to maintain atomicity, the required property
of MTCO to zero out extended PA bits prevents software from using this method.

It is recommended that Release 5 implementations of the architecture include the MAAR feature to allow architectural
instead of implementation-dependent definition of speculation.

The Release 5 specification of MAAR requires that MAAR registers be paired, i.e., one specifies an upper bounds of
the address range, and the other the lower bound. Future extensions to this specification may allow the flexibility of
not pairing registers to allow fewer registers to be implemented with contiguous address ranges but different attribute

types.

MAAR must be implemented in conjunction with MAARI (MAAR Index, CPO Register 17, Sel 2). MAARI must be ini-
tialized with the appropriate MAARI register number before the MAAR is accessed with an MTCO or MFCO. An EHB
instruction is required to be placed between the write to MAAR Index and subsequent execution of MTCO or MFCO
that specifies MAAR.

The presence of MAAR can be detected by software through Config5yrp.

Figure 9-56 shows the format of the MAAR register; Table 9.73 describes the MAAR register fields.
Operation:

The pseudocode below shows a 3-pair MAAR implementation to determine speculation. It is recommended that
implementations follow this description to enable portable software. As described, software must set the logical valid
to 1 of each register of the pair to enable a MAAR pair. It may, however, clear any one logical valid of the pair to inval-
idate the whole MAAR pair. Once both logical valids are set to 1, hardware factors in the speculate attribute of only
the upper MAAR register with even index. The logical valid is determined as described in the pseudo-code below.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 271

272

speculateccy <~ 0 // default is not to speculate

// Modify speculate attribute as per CCA of memory access (Release 5)

// Release 5: cached CCA and UCA speculates

if ((CCA == “cached”) or (CCA == “uncached-accelerated(UCA)"))
speculateqey < 1

endif

// Now factor in MAAR
MAARmatch <« 0
speculateyaag < 1
// Example of 40-bit PA is 64KB aligned
PA Align < PA[39:16]
for (i=0; i<6; i=i+2) // assume 3 pairs
//Factor in XPA {Extended Physical Addressing}
(MAAR[i]ly = MAAR[ily;, and (MAARI[i]yy or not PageGraingip,)
(MAAR[i+1]y = MAAR[i+1]y; and (MAAR[i+1]yy or not PageGraingspa)
if (MAAR[ily, = MAARI[i+1l]y // both logical valids must be set to 1
if ((MAAR[i] [35:12] >= PA Align) && // upper bound
(MAAR[i+1] [35:12] <= PA Align)) // lower bound
speculateyaagr < speculateyag and MAAR[i]g
MAARmatch « 1
endif
endif
endfor

// if no MAAR is valid, or no MAAR match occurs, then speculateyasg < O,
speculate <« speculateypar, and speculatecsy and MAARmatch

Programming Notes:

The purpose of MAAR is to control speculation on load or fetch access to memory and 10 address. A load is consid-
ered speculative if it accesses memory prior to its being the oldest instsruction to retire. A fetch typically always spec-
ulates on access to memory, while never speculating to 10. For implementations that support load or fetch
speculation, support and initialization of MAAR is a requirement.

MAAR, as defined, has the following properties.

» Ifall MAAR instaces are invalid, then no speculation is allowed. This allows the MAAR initialization to occur at
any point of time without the risk of execution speculative (bad path) loads or fetches from issuing to 10
addresses, with the tradeoff possibly being lower performance.

» Ifany MAAR region enables speculation, accesses to physical addresses outside this MAAR region must be
non-speculative, unless the physical address of the access matches against a MAAR region with speculation
enabled. This access then can speculate.

* MAAR overlap is allowed. This allows non-speculative MAAR regions to overlap a speculative MAAR region. For
example, with this property, a non-speculative region can be overlayed on a speculative DRAM region with the
use of just two MAAR pairs.

For software to enable a speculative region out of reset, it first should initialize MAAR[31:0], then MAAR[63:32],
assuming XPA is supported and to be enabled.

Software must follow the described method for reprogramming the state of a MAAR pair. The example assumes XPA
is supported.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.53 Memory Accessibility Attribute Register (CPO Register 17, Select 1)

Disable the MAAR pair by clearing MAARy, and MAAR\,. Access to the MAAR region become non-speculative.

Program PageGraing| pa as needed.

Set MAAR,, along with other fields in MAAR[31:0].

Initialize MAAR[63:32] if XPA is enabled.

Figure 9-56 MAAR Register Format

63 62 56 55 32
VH 0 ADDR
31 12 11 2 1 0
ADDR 0 S |VL
Table 9.73 MAAR Register Field Descriptions
Fields
Name Bits Description Read/Write | Reset State | Compliance
VH 63 Valid, high 32 bits. R/W 0 Required if
XPA sup-
- - ported; other-
Encoding Meaning wise, Reserved.
0 MAAR[63:32] is not valid and should
not modify behavior of any instruction
fetch or data load.
1 MAAR([63:32] is valid and can modify
behavior of any instruction fetch or
data load that falls within the range of
addresses specified by the MAAR reg-
ister pair.
If XPA is supported and enabled, both VL and VH must be
factored in determining whether a MAAR register is valid:
MAARy = MAARy, and (MAARyy or not
PageWGrainELpA)
If either valid bit (as calculated above) of the MAAR reg-
ister pair is set to 0, the pair is assumed invalid and does
not modify behavior of a memory access. Thus, software
can clear one valid in one register of the MAAR pair to
invalidate the MAAR comparison.
0] 62:56 Reserved. Writes are ignored, read as 0. R 0 Required

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

273

Table 9.73 MAAR Register Field Descriptions (Continued)

Fields

Name

Bits

Description

Read/Write

Reset State

Compliance

ADDR

55:12

Address bounds.

ADDR must always specify a physical address.

MAAR regions are at least 64 kB-aligned, and thus the
least-significant bit of ADDR is equal to PA[16].

If the register specifies the upper bound, then any sourced
address must be less than or equal to ADDR.

If the register specifies the lower bound, then any sourced
address must be greater than or equal to ADDR.

See MAAR Index (CPO Register 17, Select 2) for the
method of determining which register is upper or lower in
a pair.

MAAR[12] = PA[16]. This allows a 32-bit MAAR to spec-
ify 36 bits of PA, where MAAR[31] = PA[35].

If XPA is included, then ADDR can be extended to a max-
imum of 59 physical address bits. Treat unused PA bits as
reserved. For this purpose, the MAAR register must be
extended by up to an additional 32 bits, accessible by
MTHCO0 and MFHCO, which are defined in Release 5. An
implementation that does not support XPA is limited to a
32-bit MAAR register.

RIW

Undefined

Required

15:2

Reserved. Writes are ignored, read as 0.

0

Required

Speculate.

If an access is qualified as non-speculative, it must be the
oldest unretired instruction in the processor before being
allowed to access memory or memory-mapped regions.

Encoding Meaning

0 Instruction fetch or data load/store that
matches MAAR register pair address
range is never allowed to speculatively
access address range.

1 Instruction fetch or data load/store that

matches MAAR register pair address
range may be allowed to speculate.

MAAR regions are allowed to overlap. The cumulative
speculative attribute for overlapping regions is determined
by ANDing individual valid MAAR pair speculation attri-
butes.

R/W

Undefined

Required

274

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.53 Memory Accessibility Attribute Register (CPO Register 17, Select 1)

Table 9.73 MAAR Register Field Descriptions (Continued)

Fields
Name Bits Description Read/Write | Reset State | Compliance
VL 0 Valid, Low 32 bits. R/W 0 Required
Encoding Meaning
0 MAAR register is not valid and should

not modify the behavior of any instruc-
tion fetch or data load/store.

1 MAAR register is valid and may mod-
ify behavior of any instruction fetch or
data load/store that falls within the
range of addresses specified by the
MAAR register pair.

If XPA is supported and enabled, both VL and VH must be
factored in determining whether a MAAR register is valid:
MAARy = MAARy, and (MAARyy or not
PageGraing pp)

If either valid bit of the MAAR register pair is set to 0,
then the pair is assumed invalid and thus will not modify
the behavior of any memory access. Software may thus
clear one valid bit in one register of the MAAR pair to
invalidate the MAAR comparison.

Table 9.74 shows how the valid attribute for a MAAR pair is determined from the cumulative individual MAAR regis-
ter valids.

Table 9.74 Valid Determination for MAAR Pair

MAARi]y
whereiis even | MAAR[i+1]y Result
0 0 Result is invalid
0 1 Result is invalid
1 0 Result is invalid
1 1 Result is valid

Table 9.75 shows how the speculate attribute for a MAAR pair is determined by the cumulative individual speculate
attributes.

Table 9.75 Speculate Determination for MAAR Pair

MAAR]i]g
where i is even

MAAR[i+1]g

Result

1

011

Valid access may speculate

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 275

Table 9.75 Speculate Determination for MAAR Pair (Continued)

MAAR(i]s
where i is even | MAAR[i+1]g Result

0 0/1 Valid access may never speculate

276 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.54 Memory Accessibility Attribute Register Index (CPO Register 17, Select 2)

9.54 Memory Accessibility Attribute Register Index (CPO Register 17, Select 2)

Compliance Level: Optional (Release 5)

MAAR Index is used in conjunction with an implementation that supports MAAR registers (CPO Register 17, Select
1). Multiple MAAR registers may be implemented - MAAR Index is used to specify a MAAR register number that may
be accessed by software with an MTCO or MFCO instruction.

MAAR Index is always required if MAAR (CPO Register 17, Select 1) is supported. This is because MAAR registers are
paired in Release 5, and thus there is always more than one MAAR register.

Prior to access by MTCO or MFCO, software must set MAARI|ypex O the appropriate value.

Figure 9.57 shows the format of the MAAR Index register; Table 9.76 describes the MAAR Index register fields.

The presence of MAARI can be detected by software through Config5yrp.

Figure 9.57 MAARI Index Register Format

63 6 5 2 1 0
0 INDEX
Table 9.76 MAARI Index Register Field Descriptions
Fields
Name Bits Description Read/Write | Reset State | Compliance
0 31:6 Reserved. Writes are ignored, read as 0. R 0 Required
INDEX 5:0 MAAR Index R/W Undefined Required

The number of MAAR registers is greater than 1. INDEX
specifies the MAAR register to access.

MAAR registers are paired. The least-significant bit of
INDEX is encoded as follows to indicate which register of
the pair is being accessed.

Encoding Meaning
0 This register specifies the upper address
bound of the MAAR register pair.
1 This register specifies the lower address
bound of the MAAR register pair.

The number of MAAR registers included is implementa-
tion-dependent but must be an even number in Release 5.
Software may write all ones to INDEX to determine the
maximum value supported. Other than the all ones, if the
value written is not supported, then INDEX is unchanged
from its previous value. The register range is always con-
tiguous and starts at value 0.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 277

278 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.55 WatchLo Register (CPO Register 18)

9.55 WatchLo Register (CPO Register 18)

Compliance Level: Optional.

The WatchLo and WatchHi registers together provide the interface to a watchpoint debug facility which initiates a
watch exception if an instruction or data access matches the address specified in the registers. As such, they duplicate
some functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zero in the
Status register. If either bit is a one, the WP bit is set in the Cause register, and the watch exception is deferred until
both the EXL and ERL bits are zero.

An implementation may provide zero or more pairs of WatchLo and WatchHi registers, referencing them via the select
field of the MTCO/MFCO instructions, and each pair of Watch registers may be dedicated to a particular type of refer-
ence (e.g., instruction or data). Software may determine if at least one pair of WatchLo and WatchHi registers are
implemented via the WR bit of the Config1 register. See the discussion of the M bit in the WatchHi register description
below.

The WatchLo register specifies the base virtual address and the type of reference (instruction fetch, load, store) to
match. If a particular Watch register only supports a subset of the reference types, the unimplemented enables must be
ignored on write and return zero on read. Software may determine which enables are supported by a particular Watch
register pair by setting all three enables bits and reading them back to see which ones were actually set.

It is implementation-dependent whether a data watch is triggered by a prefetch, CACHE, or SYNCI (Release 2 and
subsequent releases only) instruction whose address matches the Watch register address match conditions.For micro-
MIPS implementations, it is implementation-dependent whether a match occurs if the second half-word overlaps a
watched address and the first half-word does not overlap with the watched address.

Figure 9.58 shows the format of the WatchLo register; Table 9.77 describes the WatchLo register fields.

Figure 9.58 WatchLo Register Format
31 3 2 1 0

VAddr I R|W

Table 9.77 WatchLo Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
VAddr 31.3 This field specifies the virtual address to match. Note that R/IW Undefined Required
this is a doubleword address, since bits [2:0] are used to
control the type of match.
| 2 If this bit is one, watch exceptions are enabled for instruc- R/IW 0 Optional

tion fetches that match the address and are actually issued
by the processor (speculative instructions never cause
Watch exceptions).

If this bit is not implemented, writes to it must be ignored,
and reads must return zero.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 279

Table 9.77 WatchLo Register Field Descriptions (Continued)

Fields
Read / Reset

Name Bits Description Write State Compliance

R 1 If this bit is one, watch exceptions are enabled for loads R/IW 0 Optional
that match the address.

For the purposes of the MIPS16e PC-relative load instruc-
tions, the PC-relative reference is considered to be a data,
rather than an instruction reference. That is, the watch-
point is triggered only if this bitis a 1.

If this bit is not implemented, writes to it must be ignored,
and reads must return zero.

w 0 If this bit is one, watch exceptions are enabled for stores R/W 0 Optional
that match the address.

If this bit is not implemented, writes to it must be ignored,
and reads must return zero.

280 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.56 WatchHi Register (CPO Register 19)

9.56 WatchHi Register (CPO Register 19)

Compliance Level: Optional.

The WatchLo and WatchHi registers together provide the interface to a watchpoint debug facility which initiates a
watch exception if an instruction or data access matches the address specified in the registers. As such, they duplicate
some functions of the EJTAG debug solution. Watch exceptions are taken only if the EXL and ERL bits are zero in the
Status register. If either bit is a one, the WP bit is set in the Cause register, and the watch exception is deferred until
both the EXL and ERL bits are zero.

An implementation may provide zero or more pairs of WatchLo and WatchHi registers, referencing them via the select
field of the MTCO/MFCO instructions, and each pair of Watch registers may be dedicated to a particular type of refer-
ence (e.g., instruction or data). Software may determine if at least one pair of WatchLo and WatchHi registers are
implemented via the WR bit of the Config1 register. If the M bit is one in the WatchHi register reference with a select
field of ‘n’, another WatchHi/WatchLo pair is implemented with a select field of ‘n+1’.

The WatchHi register contains information that qualifies the virtual address specified in the WatchLo register: an
ASID, a G(lobal) bit, an optional address mask, and three bits (I, R, and W) that denote the condition that caused the
watch register to match. If the G bit is one, any virtual address reference that matches the specified address will cause
a watch exception. If the G bit is a zero, only those virtual address references for which the ASID value in the
WatchHi register matches the ASID value in the EntryHi register cause a watch exception. The optional mask field
provides address masking to qualify the address specified in WatchLo.

The |, R, and W bits are set by the processor when the corresponding watch register condition is satisfied and indicate
which watch register pair (if more than one is implemented) and which condition matched. When set by the proces-
sor, each of these bits remain set until cleared by software. All three bits are “write one to clear”, such that software
must write a one to the bit in order to clear its value. The typical way to do this is to write the value read from the
WatchHi register back to WatchHi. In doing so, only those bits which were set when the register was read are cleared
when the register is written back.

Figure 9.59 shows the format of the WatchHi register; Table 9.78 describes the WatchHi register fields.

Figure 9.59 WatchHi Register Format
31 30 29 28272625 24 23 16 15 12 11 3 2 1 0

M G|wM| 0 |EAS ASID 0 Mask I |R|W

Table 9.78 WatchHi Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
M 31 If this bit is one, another pair of WatchHi/WatchLo regis- R Preset Required
ters is implemented at an MTCO or MFCO select field
value of ‘n+1’

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 281

Table 9.78 WatchHi Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance

G 30 If this bit is one, any address that matches that specified in R/W Undefined Required
the WatchLo register will cause a watch exception. If this
bit is zero, the ASID field of the WatchHi register must
match the ASID field of the EntryHi register to cause a
watch exception.

WM 29:28 | Reserved for Virtualization Module. 0 0 Reserved
EAS 25:24 | If Config4 g = 1 then these bits extend the ASID field of If If Required
this register. Config4, | Configdag =
g=1then 1then
If Configdag = 0 then Must be written as zero; returns R/W Undefined
zero on read. else 0 else 0
ASID 23..16 | ASID value which is required to match that in the EntryHi RIW Undefined Required
register if the G bit is zero in the WatchHi register.
Mask 11..3 Optional bit mask that qualifies the address in the R/W Undefined Optional
WatchLo register. If this field is implemented, any bit in
this field that is a one inhibits the corresponding address
bit from participating in the address match.
If this field is not implemented, writes to it must be
ignored, and reads must return zero.
Software may determine how many mask bits are imple-
mented by writing ones the this field and then reading
back the result.

| 2 This bit is set by hardware when an instruction fetch con- wicC Undefined | Required (Release
dition matches the values in this watch register pair. When 2)
set, the bit remains set until cleared by software, which is
accomplished by writing a 1 to the bit.

R 1 This bit is set by hardware when a load condition matches wicC Undefined | Required (Release
the values in this watch register pair. When set, the bit 2)
remains set until cleared by software, which is accom-
plished by writing a 1 to the bit.

w 0 This bit is set by hardware when a store condition matches wicC Undefined | Required (Release
the values in this watch register pair. When set, the bit 2)
remains set until cleared by software, which is accom-
plished by writing a 1 to the bit.

0 27..26, | Must be written as zero; returns zero on read. 0 0 Reserved

15..12

282 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.57 Reserved for Implementations (CPO Register 22, all Select values)

9.57 Reserved for Implementations (CPO Register 22, all Select values)

Compliance Level: Implementation Dependent.

CPO register 22 is reserved for implementation-dependent use and is not defined by the architecture.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 283

284 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.58 Debug Register (CPO Register 23, Select 0)

9.58 Debug Register (CPO Register 23, Select 0)

Compliance Level: Optional.

The Debug register is part of the EJTAG specification. Refer to that specification for the format and description of
this register.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 285

286 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.59 Debug?2 Register (CPO Register 23, Select 6)

9.59 Debug?2 Register (CPO Register 23, Select 6)

Compliance Level: Optional.

The Debug? register is part of the EJTAG specification. Refer to that specification for the format and description of
this register.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 287

288 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.60 DEPC Register (CPO Register 24)

9.60 DEPC Register (CPO Register 24)

Compliance Level: Optional.

The DEPC register is a read-write register that contains the address at which processing resumes after a debug excep-
tion has been serviced. It is part of the EJTAG specification and the reader is referred there for the format and descrip-
tion of the register. All bits of the DEPC register are significant and must be writable.

When a debug exception occurs, the processor writes the DEPC register with,

» the virtual address of the instruction that was the direct cause of the exception, or

e the virtual address of the immediately preceding branch or jump instruction, when the exception causing instruc-
tion is in a branch delay slot, and the Branch Delay bit in the Cause register is set.

The processor reads the DEPC register as the result of execution of the DERET instruction.

Software may write the DEPC register to change the processor resume address and read the DEPC register to deter-
mine at what address the processor will resume.

9.60.1 Special Handling of the DEPC Register in Processors That Implement the
MIPS16e ASE or microMIPS32 Base Architecture

In processors that implement the MIPS16e ASE or the microMIPS32 base architecture, the DEPC register requires
special handling.

When the processor writes the DEPC register, it combines the address at which processing resumes with the value of
the ISA Mode register:

DEPC ¢ resumePC;; ; || ISAMode,
“resumePC” is the address at which processing resumes, as described above.

When the processor reads the DEPC register, it distributes the bits to the PC and ISA Mode registers:

PC & DEPCy; 4 || ©
ISAMode ¢ DEPC,

Software reads of the DEPC register simply return to a GPR the last value written with no interpretation. Software
writes to the DEPC register store a new value which is interpreted by the processor as described above.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 289

290 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.61 Performance Counter Register (CPO Register 25)

9.61 Performance Counter Register (CPO Register 25)

Compliance Level: Recommended.

The Architecture supports implementation-dependent performance counters that provide the capability to count
events or cycles for use in performance analysis. If performance counters are implemented, each performance counter
consists of a pair of registers: a 32-bit control register and a 32-bit counter register. To provide additional capability,
multiple performance counters may be implemented.

Performance counters can be configured to count implementation-dependent events or cycles under a specified set of
conditions that are determined by the control register for the performance counter. The counter register increments
once for each enabled event. When the most-significant bit of the counter register is a one (the counter overflows), the
performance counter optionally requests an interrupt. In implementations of Release 1 of the Architecture, this inter-
rupt is combined in a implementation-dependent way with hardware interrupt 5. In Release 2 of the Architecture,
pending interrupts from all performance counters are ORed together to become the PCI bit in the Cause register, and
are prioritized as appropriate to the interrupt mode of the processor. Counting continues after a counter register over-
flow whether or not an interrupt is requested or taken.

Each performance counter is mapped into even-odd select values of the PerfCnt register: Even selects access the con-
trol register and odd selects access the counter register. Table 9.79 shows an example of two performance counters
and how they map into the select values of the PerfCnt register.

Table 9.79 Example Performance Counter Usage of the PerfCnt CP0O Register

Performance | PerfCnt Register
Counter Select Value PerfCnt Register Usage
0 PerfCnt, Select 0 Control Register 0
PerfCnt, Select 1 Counter Register 0
1 PerfCnt, Select 2 Control Register 1
PerfCnt, Select 3 Counter Register 1

More or less than two performance counters are also possible, extending the select field in the obvious way to obtain
the desired number of performance counters. Software may determine if at least one pair of Performance Counter
Control and Counter registers is implemented via the PC bit in the Configl register. If the M bit is one in the Perfor-
mance Counter Control register referenced via a select field of ‘n’, another pair of Performance Counter Control and
Counter registers is implemented at the select values of ‘n+2’ and ‘n+3’.

The Control Register associated with each performance counter controls the behavior of the performance counter.

Figure 9.60 shows the format of the Performance Counter Control Register; Table 9.80 describes the Performance
Counter Control Register fields.

Figure 9.60 Performance Counter Control Register Format

31 30 29 25 24 23 22 16 15 14 1 10 5 4 3 2 1 0
0 PC
M| 0 Impl EC ™ EventExt Event IE| U| S| K| EXL

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 291

Table 9.80 Performance Counter Control Register Field Descriptions

Fields

Name Bits

Description

Read /
Write

Reset
State

Compliance

M 31

If this bit is a one, another pair of Performance Counter
Control and Counter registers is implemented at an MTCO
or MFCO select field value of ‘n+2” and ‘n+3’.

R

Preset by
hardware

Required

Reserved for MIPS64/microMIPS64 processor. Unused
on a MIPS32/microMIPS32 processor.

Preset by
hardware

Required

Impl 29:25

This field is implementation-dependent and is not speci-
fied by the architecture.

If not used by the implementation, must be written as zero;
returns zero on read.

Undefined

0 if not used
by the imple-
mentation

Optional

EC 24..23

Reserved for Virtualization Module.

0

Reserved

0 22..16

Must be written as zero; returns zero on read

0

Reserved

PCTD 15

Performance Counter Trace Disable.

The PDTrace facility (revision 6.00 and higher) has the
ability to trace Performance Counter in its output. This bit
is used to disable the specified performance counter from
being traced when performance counter trace is enabled
and a performance counter trace event is triggered.

Encoding Meaning

0 Tracing is enabled for this counter.

1 Tracing is disabled for this counter.

RW

0

Required if
PDTrace Perfor-
mance Counter
Tracing feature is
implemented.

EventExt 14..11

In some implementations which support more than the 64
encodings possible in the 6-bit Event field, the EventExt
field acts as an extension to the Event field. In such
instances the event selection is the concatenation of the
two fields, i.e., EventExt|Event.

The actual field width is implementation-dependent. Any
bits that are not implemented read as zero and are ignored
on write.

RW

Undefined

Optional

Event 10.5

Selects the event to be counted by the corresponding
Counter Register. The list of events is implementation-
dependent, but typical events include cycles, instructions,
memory reference instructions, branch instructions, cache
and TLB misses, etc.

Implementations that support multiple performance coun-
ters allow ratios of events, e.g., cache miss ratios if cache
miss and memory references are selected as the events in
two counters

R/IW

Undefined

Required

292

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.61 Performance Counter Register (CPO Register 25)

Table 9.80 Performance Counter Control Register Field Descriptions (Continued)

Fields
Read / Reset

Name Bits Description Write State Compliance

IE 4 Interrupt Enable. Enables the interrupt request when the R/W 0 Required
corresponding counter overflows (the most-significant bit
of the counter is one. This is bit 31 for a 32-bit wide coun-
ter or bit 63 of a 64-bit wide counter, denoted by the W bit
in this register).

Note that this bit simply enables the interrupt request. The
actual interrupt is still gated by the normal interrupt masks
and enable in the Status register.

Encoding Meaning

0 Performance counter interrupt disabled

1 Performance counter interrupt enabled

U 3 Enables event counting in User Mode. Refer to Section R/W Undefined Required
3.4 “User Mode” on page 22 for the conditions under
which the processor is operating in User Mode.

Encoding Meaning

0 Disable event counting in User Mode

1 Enable event counting in User Mode

S 2 Enables event counting in Supervisor Mode (for those pro- R/W Undefined Required
cessors that implement Supervisor Mode). Refer to Sec-
tion 3.3 “Supervisor Mode” on page 21 for the conditions
under which the processor is operating in Supervisor
mode.

If the processor does not implement Supervisor Mode, this
bit must be ignored on write and return zero on read.

Encoding Meaning

0 Disable event counting in Supervisor
Mode

1 Enable event counting in Supervisor
Mode

K 1 Enables event counting in Kernel Mode. Unlike the usual R/IW Undefined Required
definition of Kernel Mode as described in Section

3.2 “Kernel Mode” on page 21, this bit enables event
counting only when the EXL and ERL bits in the Status
register are zero.

Encoding Meaning

0 Disable event counting in Kernel
Mode

1 Enable event counting in Kernel Mode

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 293

Table 9.80 Performance Counter Control Register Field Descriptions (Continued)

Fields
Read / Reset
Name Bits Description Write State Compliance
EXL 0 Enables event counting when the EXL bit in the Status R/IW Undefined Required
register is one and the ERL bit in the Status register is
zero.
Encoding Meaning
0 Disable event counting while EXL =1,
ERL=0
1 Enable event counting while EXL =1,
ERL=0

Counting is never enabled when the ERL bit in the Status
register or the DM bit in the Debug register is one.

294

The Counter Register associated with each performance counter increments once for each enabled event. Figure 9.61
shows the format of the Performance Counter Counter Register; Table 9.81 describes the Performance Counter Coun-

ter Register fields.

Figure 9.61 Performance Counter Counter Register Format
31 0

Event Count

Table 9.81 Performance Counter Counter Register Field Descriptions

Fields
Read/
Name Bits Description Write Reset State | Compliance
Event 31..0 Increments once for each event that is enabled by the R/IW Undefined Required
Count corresponding Control Register. When the most-signifi-

cant bit is one, a pending interrupt request is ORed with
those from other performance counters and indicated by
the PCI bit in the Cause register.

Programming Note:

In Release 2 of the Architecture, the EHB instruction can be used to make interrupt state changes visible when the IE
field of the Control register or the Event Count Field of the Counter register are written. See SECTION
6.1.2.1 “Software Hazards and the Interrupt System” on page 82.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.62 ErrCtl Register (CP0O Register 26, Select 0)

9.62 ErrCtl Register (CPO Register 26, Select 0)

Compliance Level: Optional.

The ErrCtl register provides an implementation-dependent diagnostic interface with the error detection mechanisms
implemented by the processor. This register has been used in previous implementations to read and write parity or
ECC information to and from the primary or secondary cache data arrays in conjunction with specific encodings of
the Cache instruction or other implementation-dependent method. The exact format of the ErrCtl register is imple-

mentation-dependent and not specified by the architecture. Refer to the processor specification for the format of this
register and a description of the fields.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 295

296 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.63 CacheErr Register (CPO Register 27, Select 0)

9.63 CacheErr Register (CPO Register 27, Select 0)

Compliance Level: Optional.

The CacheErr register provides an interface with the cache error detection logic that may be implemented by a pro-
Cessor.

The exact format of the CacheErr register is implementation-dependent and not specified by the architecture. Refer to
the processor specification for the format of this register and a description of the fields.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 297

298 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.64 TagLo Register (CPO Register 28, Select 0, 2)

9.64 TagLo Register (CPO Register 28, Select 0, 2)

Compliance Level: Required if a cache is implemented; Optional otherwise.

The TagLo and TagHi registers are read/write registers that act as the interface to the cache tag array. The Index Store
Tag and Index Load Tag operations of the CACHE instruction use the TagLo and TagHi registers as the source or sink
of tag information, respectively.

The exact format of the TagLo and TagHi registers is implementation-dependent. Refer to the processor core specifi-
cation for the format of this register and a description of the register fields. However, in all implementations. software
must be able to write zeros into the TagLo and TagHi registers, and then use the Index Store Tag cache operation to
initialize the cache tags to a valid state at power-up.If there is support for XPA (PA > 36 bits), the PTagLo field is
extended to support up to a 59-bit PA, as specified in the MIPS64 definition. The number of additional bits supported
is a function of the implemented physical address size. XPA is a Release 5 feature.

It is implementation-dependent whether there is a single TagLo register that acts as the interface to all caches, or a
dedicated TagLo register for each cache. If multiple TagLo registers are implemented, they occupy the even select val-
ues for this register encoding, with select 0 addressing the instruction cache and select 2 addressing the data cache.
Whether individual TagLo registers are implemented or not for each cache, processors must accept a write of zero to
select 0 and select 2 of TagLo as part of the software process of initializing the cache tags at powerup.

Figure 9-62 Example TagLo Register Format
31 8 7 6 5 4 3 2 1 0

PTagLo PState| L | Impl 0 P

Table 9.82 Example TagLo Register Field Descriptions

Fields
Read/
Name Bits Description Write Reset State | Compliance
PTagLo 31..8 Specifies the upper address bits of the cache tag. Refer R/W Undefined Optional
to the processor-specific description for the detailed
definition. With a page size of 4 kBs, the field as
shown can contain a physical address of up to 36 bits.
PState 7:6 Specifies the state bits for the cache tag. Refer to the R/W Undefined Optional
processor-specific description for the detailed defini-
tion.
L 5 Specifies the lock bit for the cache tag. Refer to the R/W Undefined Optional
processor-specific description for the detailed defini-
tion.
Impl 4:3 This field is reserved for implementations. Undefined Optional
0 2:1 Must be written as zero; returns zero on read. 0 0 Reserved

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 299

Table 9.82 Example TagLo Register Field Descriptions (Continued)

Fields
Read/
Name Bits Description Write Reset State | Compliance
P 0 Specifies the parity bit for the cache tag. Refer to the RIW Undefined Optional
processor-specific description for the detailed defini-
tion.

300 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.65 Datalo Register (CPO Register 28, Select 1, 3)

9.65 Datalo Register (CPO Register 28, Select 1, 3)

Compliance Level: Optional.

The DatalLo and DataHi registers are registers that act as the interface to the cache data array and are intended for
diagnostic operation only. The Index Load Tag operation of the CACHE instruction reads the corresponding data val-
ues into the DataLo and DataHi registers.

The exact format and operation of the DataLo and DataHi registers is implementation-dependent. Refer to the proces-
sor specification for the format of this register and a description of the fields.

It is implementation-dependent whether there is a single DatalLo register that acts as the interface to all caches, or a

dedicated DataLo register for each cache. If multiple DatalLo registers are implemented, they occupy the odd select
values for this register encoding, with select 1 addressing the instruction cache and select 3 addressing the data cache.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 301

302 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.66 TagHi Register (CPO Register 29, Select 0, 2)

9.66 TagHi Register (CPO Register 29, Select 0, 2)

Compliance Level: Required if a cache is implemented; Optional otherwise.

The TagLo and TagHi registers are read/write registers that act as the interface to the cache tag array. The Index Store
Tag and Index Load Tag operations of the CACHE instruction use the TagLo and TagHi registers as the source or sink
of tag information, respectively.

The exact format of the TagLo and TagHi registers is implementation-dependent. Refer to the processor specification
for the format of this register and a description of the fields. However, software must be able to write zeros into the
TagLo and TagHi registers and the use the Index Store Tag cache operation to initialize the cache tags to a valid state
at powerup.

It is implementation-dependent whether there is a single TagHi register that acts as the interface to all caches, or a
dedicated TagHi register for each cache. If multiple TagHi registers are implemented, they occupy the even select val-
ues for this register encoding, with select 0 addressing the instruction cache and select 2 addressing the data cache.
Whether individual TagHi registers are implemented or not for each cache, processors must accept a write of zero to
select 0 and select 2 of TagHi as part of the software process of initializing the cache tags at powerup.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 303

304 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.67 DataHi Register (CPO Register 29, Select 1, 3)

9.67 DataHi Register (CPO Register 29, Select 1, 3)

Compliance Level: Optional.

The DatalLo and DataHi registers are registers that act as the interface to the cache data array and are intended for
diagnostic operation only. The Index Load Tag operation of the CACHE instruction reads the corresponding data val-
ues into the DataLo and DataHi registers.

The exact format and operation of the DataLo and DataHi registers is implementation-dependent. Refer to the proces-
sor specification for the format of this register and a description of the fields.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 305

306 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.68 ErrorEPC (CPO Register 30, Select 0)

9.68 ErrorEPC (CPO Register 30, Select 0)

Compliance Level: Required.

The ErrorEPC register is a read-write register, similar to the EPC register, at which processing resumes after a Reset,
Soft Reset, Nonmaskable Interrupt (NMI) or Cache Error exceptions (collectively referred to as error exceptions).
Unlike the EPC register, there is no corresponding branch delay slot indication for the ErrorEPC register. All bits of
the ErrorEPC register are significant and must be writable.

When an error exception occurs, the processor writes the ErrorEPC register with:

» the virtual address of the instruction that was the direct cause of the exception, or

e the virtual address of the immediately preceding branch or jump instruction when the error causing instruction is
in a branch delay slot.

The processor reads the ErrorEPC register as the result of execution of the ERET instruction.

Software may write the ErrorEPC register to change the processor resume address and read the ErrorEPC register to
determine at what address the processor will resume

Figure 9.63 shows the format of the ErrorEPC register; Table 9.83 describes the ErrorEPC register fields.

Figure 9.63 ErrorEPC Register Format
31 0

ErrorEPC

Table 9.83 ErrorEPC Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
ErrorEPC 31..0 Error Exception Program Counter R/W Undefined Required

9.68.1 Special Handling of the ErrorEPC Register in Processors That Implement the

MIPS16e ASE or microMIPS32 Base Architecture

In processors that implement the MIPS16e ASE or microMIPS32 base architecture, the ErrorEPC register requires
special handling.

When the processor writes the ErrorEPC register, it combines the address at which processing resumes with the value
of the ISA Mode register:

ErrorEPC ¢ resumePC;; , | ISAMode,

“resumePC” is the address at which processing resumes, as described above.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 307

When the processor reads the ErrorEPC register, it distributes the bits to the PC and ISAMode registers:

PC ¢ ErrorEPCy; 4 || O
ISAMode ¢ ErrorEPC,

Software reads of the ErrorEPC register simply return to a GPR the last value written with no interpretation. Software
writes to the ErrorEPC register store a new value which is interpreted by the processor as described above.

308 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.69 DESAVE Register (CPO Register 31)

9.69 DESAVE Register (CPO Register 31)

Compliance Level: Optional.

The DESAVE register is part of the EJTAG specification. Refer to that specification for the format and description of
this register.

The DESAVE register is meant to be used solely while in Debug Mode. If kernel mode software uses this register, it
would conflict with debugging kernel mode software. For that reason, it is strongly recommended that kernel mode
software not use this register. If the KScratch* registers are implemented, kernel software can use those registers.
(For Release 6, the KScratch* registers are mandatory.)

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 309

310 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

9.70 KScratchn Registers (CPO Register 31, Selects 2 to 7)

9.70 KScratchn Registers (CPO Register 31, Selects 2 to 7)

Compliance Level: Pre-Release 6 - Optional, KScratchl and KScratch?2 at selects 2, 3 are recommended.
Release 6 - Required.

The KScratchn registers are read/write registers available for scratch pad storage by kernel mode software. These reg-
isters are 32bits in width for 32-bit processors and 64bits for 64-bit processors.

The existence of these registers is indicated by the KScrExist field within the Config4 register.
The KScrExist field specifies which of the selects are populated with a kernel scratch register.

Debug Mode software should not use these registers, instead debug software should use the DESAVE register. If
EJTAG is implemented, select 0 should not be used for a KScratch register. Select 1 is being reserved for future debug
use and should not be used for a KScratch register.

Figure 9.64 KScratchn Register Format
31 0

Data

Table 9.84 KScratchn Register Field Descriptions

Fields
Read / Reset
Name Bits Description Write State Compliance
Data 31:0 Scratch pad data saved by kernel software. R/IW Undefined Optional
(Pre-Release 6)
Required
(Release 6)

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 311

312 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

Appendix A

Alternative MMU Organizations

The main body of this specification describes the TLB-based MMU organization. This appendix describes other

potential MMU organizations.

A.l Fixed Mapping MMU

As an alternative to the full TLB-based MMU, the MIPS32/microMIPS32 Architecture supports a lightweight mem-
ory management mechanism with fixed virtual-to-physical address translation, and no memory protection beyond

what is provided by the address error checks required of all MMUs. This may be useful for those applications which
do not require the capabilities of a full TLB-based MMU.

A.1.1 Fixed Address Translation

Address translation using the Fixed Mapping MMU is done as follows:

* Kseg0 and Ksegl addresses are translated in an identical manner to the TLB-based MMU: they both map to the
low 512MB of physical memory.

* Useg/Suseg/Kuseg addresses are mapped by adding 1GB to the virtual address when the ERL bit is zero in the

Status register, and are mapped using an identity mapping when the ERL bit is one in the Status register.

» Sseg/Ksseg/Kseg2/Kseg3 addresses are mapped using an identity mapping.

Supervisor Mode is not supported with a Fixed Mapping MMU.

Table A.1 lists all mappings from virtual to physical addresses. Note that address error checking is still done before

the translation process. Therefore, an attempt to reference kseg0 from User Mode still results in an address error
exception, just as it does with a TLB-based MMU.

Table A.1 Physical Address Generation from Virtual Addresses

Generates Physical Address
Segment Name | Virtual Address Statusgg. =0 Statusgg =1
useg 0x0000 0000 0x4000 0000 0x0000 0000
suseg through through through
kuseg 0x7FFF FFFF 0xBFFF FFFF 0x7FFF FFFF
kseg0 0x8000 0000 0x0000 0000
through through
Ox9FFF FFFF 0x1FFF FFFF
0xA000 0000 0x0000 0000
ksegl through through
OxBFFF FFFF 0x0x1FFF FFFF

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

313

Alternative MMU Organizations

Table A.1 Physical Address Generation from Virtual Addresses (Continued)

Segment Name

Virtual Address

Generates Physical Address

StatUSERL =0

Statusgg, =1

sseg 0xCO000 0000 0xC000 0000
ksseg through through

kseg2 O0xDFFF FFFF O0XDFFF FFFF
kseg3 0xE000 0000 0xE000 0000

through
OxFFFF FFFF

through
O0xFFFF FFFF

Note that this mapping means that physical addresses 0x2000 0000 through 0x3FFF FFFF are inaccessible
when the ERL bit is off in the Status register, and physical addresses 0x8000 0000 through 0xBFFF FFFF are
inaccessible when the ERL bit is on in the Status register.

Figure A.1 shows the memory mapping when the ERL bit in the Status register is zero; Figure A.2 shows the memory
mapping when the ERL bit is one.

314 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

Figure A.1 Memory Mapping when ERL =0

A.1 Fixed Mapping MMU

OxFFFF FFFF

0xE000 0000
0xDFFF FFFF

0xC000 0000
OxBFFF FFFF

0xA000 0000
0x9FFF FFFF

0x8000 0000
0x7FFF FFFF

0x0000 0000

kseg3

kseg2
ksseg
sseg

ksegl

kseg0

kuseg
suseg
useg

kseg3 Mapped OxFFFF
0xE000
kseg2 0xDFFF
ksseg
sseg Mapped
0xC000
kuseg 0xBFFF
suseg
useg
Mapped
0x4000
Unmapped 0x3FFF
0x2000
kseg0 0x1FFF
ksegl
Mapped
0x0000

FFFF

0000
FFFF

0000
FFFF

0000
FFFF

0000
FFFF

0000

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

315

Alternative MMU Organizations

Figure A.2 Memory Mapping when ERL =1

OxFFFF FFFF

0xE000 0000

kseg3

0xDFFF FFFF

0xC000 0000

kseg2
ksseg
sseg

kseg3
Mapped

0xBFFF FFFF

0xA000 0000

ksegl

kseg2

ksseg

sseg
Mapped

O0x9FFF FFFF

0x8000 0000

kseg0

0x7FFF FFFF

0x0000 0000

kuseg
suseg
useg

Unmapped

kuseg

suseg

useg
Mapped

kseg0
ksegl
Mapped

OxFFFF FFFF

0xE000 0000
0xDFFF FFFF

0xC000 0000

0xBFFF FFFF

0x8000 0000
0x7FFF FFFF

0x0000 0000

A.1.2 Cacheability Attributes

Because the TLB provided the cacheability attributes for the kuseg, kseg2, and kseg3 segments, some mechanism is
required to replace this capability when the fixed mapping MMU is used. Two additional fields are added to the
Config register whose encoding is identical to that of the K0 field. These additions are the K23 and KU fields which
control the cacheability of the kseg2/kseg3 and the kuseg segments, respectively. Note that when the ERL bit is on in
the Status register, kuseg data references are always treated as uncacheable references, independent of the value of
the KU field. The operation of the processor is UNDEFINED if the ERL bit is set while the processor is executing

instructions from kuseg.

316 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

IMAGINATION TECHNOLOGIES PROPRIETARY / RESTRICTED CONFIDENTIAL - HEIGHTENED STANDARD OF CARE REQUIRED AS PER CONTRACT

A.2 Block Address Translation

The cacheability attributes for kseg0 and ksegl are provided in the same manner as for a TLB-based MMU: the
cacheability attribute for kseg0 comes from the KO field of Config, and references to ksegl are always uncached.

Figure A.3 shows the format of the additions to the Config register; Table A.2 describes the new Config register fields.

Figure A.3 Config Register Additions

31 30 28 27 25 24 16 15 14 13 12 10 9 7 6 4 3 2 0
M| KB | KU | 0 BE| AT| AR | MT | 0 |VI| Ko |
Table A.2 Config Register Field Descriptions

Fields
Read/
Name Bits Description Write Reset State | Compliance

K23 30:28 | Kseg2/Kseg3 cacheability and coherency attribute. See R/W Undefined Required
Table 9.12 on page 133 for the encoding of this field.

KU 27:25 | Kuseg cacheability and coherency attribute when R/W Undefined Required
Statusgg, is zero. See Table 9.12 on page 133 for the
encoding of this field.

A.1.3 Changes to the CPO Register Interface

Relative to the TLB-based address translation mechanism, the following changes are necessary to the CPO register
interface:

e The Index, Random, EntryLoO, EntryLol, Context, PageMask, Wired, and EntryHi registers are no longer required
and may be removed. Pre-Release 6, the effects of a read or write to these registers are UNDEFINED. For
Release 6, writes to these registers are ignored, reads return 0 as if the registers were Reserved for Architecture.

e« The TLBWR, TLBWI, TLBP, and TLBR instructions are no longer required and must cause a Reserved Instruc-
tion Exception.

A.2 Block Address Translation

This section describes the architecture for a block address translation (BAT) mechanism that reuses much of the hard-
ware and software interface that exists for a TLB-Based virtual address translation mechanism. This mechanism has

the following features:

» It preserves as much as possible of the TLB-Based interface, both in hardware and software.
» It provides independent base-and-bounds checking and relocation for instruction references and data references.

» It provides optional support for base-and-bounds relocation of kseg2 and kseg3 virtual address regions.

A.2.1 BAT Organization

The BAT is an indexed structure which is used to translate virtual addresses. It contains pairs of instruction/data
entries which provide the base-and-bounds checking and relocation for instruction references and data references,
respectively. Each entry contains a page-aligned bounds virtual page number, a base page frame number (whose

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 317

Alternative MMU Organizations

width is implementation-dependent), a cache coherence field (C), a dirty (D) bit, and a valid (V) bit. Figure A.4
shows the logical arrangement of a BAT entry.

Figure A.4 Contents of a BAT Entry

BoundsVPN

BasePFN C D|V

The BAT is indexed by the reference type and the address region to be checked as shown in Table A.3.

Table A.3 BAT Entry Assignments

Reference
Entry Index Type Address Region
0 Instruction useg/kuseg
1 Data
2 Instruction kseg2
3 Data (or kseg2 and kseg3)
4 Instruction kseg3
5 Data

Entries 0 and 1 are required. Entries 2, 3, 4 and 5 are optional and may be implemented as necessary to address the
needs of the particular implementation. If entries for kseg2 and kseg3 are not implemented, it is implementation-
dependent how, if at all, these address regions are translated. One alternative is to combine the mapping for kseg2 and
kseg3 into a single pair of instruction/data entries. Software may determine how many BAT entries are implemented
by looking at the MMU Size field of the Config1l register.

A.2.2 Address Translation

When a virtual address translation is requested, the BAT entry that is appropriate to the reference type and address
region is read. If the virtual address is greater than the selected bounds address, or if the valid bit is off in the entry, a
TLB Invalid exception of the appropriate reference type is initiated. If the reference is a store and the D bit is off in
the entry, a TLB Modified exception is initiated. Otherwise, the base PFN from the selected entry, shifted to align
with bit 12, is added to the virtual address to form the physical address. The BAT process can be described as follows:

i « SelectIndex (reftype, va)

bounds < BAT [ilpounasven | | 112

pfn <« BAT[i]p,geprn

c « BAT[i].

d « BAT[ilp

v « BATI[ily

if (va > bounds) or (v = 0) then
InitiateTLBInvalidException (reftype)

endif

if (d = 0) and (reftype = store) then
InitiateTLBModifiedException ()

endif

pa « va + (pfn || 0'?)

318 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

A.3 Dual Variable-Page-Size and Fixed-Page-Size TLBs
Making all addresses out-of-bounds can only be done by clearing the valid bit in the BAT entry. Setting the bounds
value to zero leaves the first virtual page mapped.

A.2.3 Changes to the CPO Register Interface

Relative to the TLB-based address translation mechanism, the following changes are necessary to the CPO register
interface:

e The Index register is used to index the BAT entry to be read or written by the TLBWI and TLBR instructions.
e The EntryHi register is the interface to the BoundsVPN field in the BAT entry.

e The EntryLoO register is the interface to the BasePFN and C, D, and V fields of the BAT entry. The register has
the same format as for a TLB-based MMU.

e The Random, EntryLol, Context, PageMask, and Wired registers are eliminated. Pre-Release 6 the effects of a
read or write to these registers are UNDEFINED. For Release 6, writes to these registers are ignored, reads
return O as if the registers were Reserved for Architecture.

e The TLBP and TLBWR instructions are unnecessary. The TLBWI and TLBR instructions reference the BAT

entry whose index is contained in the Index register. The effects of executing a TLBP or TLBWR are UNDE-
FINED, but processors should signal a Reserved Instruction Exception.

A.3 Dual Variable-Page-Size and Fixed-Page-Size TLBs

Most MIPS CPU cores implement a fully associative Joint TLB. Unfortunately, such fully-associative structures can
be slow, can require a large amount of logic components to implement and can dissipate a lot of power. The number
of entries for a fully associative array that can be practically implemented is not large.

In high performance systems, it is desirable to minimize the frequency of TLB misses. In small and low-cost systems,
it is desirable to keep the implementation costs of a TLB to a minimum. This section describes an optional alternative
MMU configuration which decreases the implementation costs of a small TLB as well as allows for a TLB that can
map a very large number of pages to be reasonably implemented.

A.3.1 MMU Organization

This alternative MMU configuration uses two TLB structures.
1. This first TLB is called the Fixed-Page-Size TLB or the FTLB.
« Atany one time, all entries within the FTLB use a shared, common page size.
e The FTLB is not fully-associative, but rather set associative.
e The number of ways per set is implementation specific.
e The number of sets is implementation specific.

» The common page size is also implementation specific.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 319

Alternative MMU Organizations

» The common page size is allowed to be software configurable. The choice of the common page size is done
once for the entire FTLB, not on a per-entry basis. This configuration by software can only be done after a
full flush/initialization of the FTLB, before there are any valid entries within the FTLB. Implementations are
also allowed to support only one page size for the FTLB - in that case, the FTLB page size is fixed by hard-
ware and not software configurable.

« The EHINV TLB invalidate feature is required for FTLB implementation. The legacy method of using
reserved address values to represent invalid TLB entries is not guaranteed to work where the implementation
can limit what addresses are allowable at a specific TLB index.

2. The second TLB is called the Variable-Page-Size TLB or the VTLB.

» The choice of page size is done on a per-entry basis. That is, one VTLB entry can use a page size that is dif-
ferent from the size used by another VTLB entry.

» The VTLB is fully-associative.

» The number of entries is implementation specific.

» The set of allowable page sizes for VTLB entries is implementation specific.
Just as for the JTLB, both the FTLB and VTLB are shared between the instruction stream and the data stream. For
address translation, the virtual address is presented to both the FTLB and VTLB in parallel. Entries in both structures
are accessed in parallel to search for the physical address.

The use of two TLB structures has these benefits:

» The implementation costs of building a set-associative TLB with many entries can be much less than that of
implementing a large fully-associative TLB.

» The existence of a VTLB retains the capability of using large pages to map large sections of physical memory
without consuming a large number of entries in the FTLB.

Random replacement of pages in the MMU happens mainly in the FTLB. In most operating systems, on-demand pag-
ing only uses one page size so the FTLB is sufficient for this purpose. Some of the address bits of the specified virtual
address are used to index into the FTLB as appropriate for the chosen FTLB array size. The method of choosing
which FTLB way to modify is implementation specific.

The VTLB is very similar to the JTLB. The CO_PageMask register is used to program the page size used for a partic-
ular VTLB entry.

The configuration of the FTLB is reflected in the FTLB fields within the new Config4 register. The size of the VTLB
is reflected in the Configlppvusize-1 field. The presence of the dual FTLB and VTLB is denoted by the value of 0x4 in

Configyt register field. These registers are described in “Changes to the COPO Registers” on page 323.

Most implementations would choose to build a VTLB with a smaller number of entries and a FTLB with a larger
number of entries. This combination allows for many on-demand fixed-sized pages as well as for a small number of
large address blocks to be simultaneously mapped by the MMU.

320 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

A.3 Dual Variable-Page-Size and Fixed-Page-Size TLBs

A.3.2 Programming Interface

The software programming interface used for the fully-associative JTLB is maintained as much as possible to
decrease the amount of software porting.

Also for that purpose, each entry in the FTLB as well as the VTLB use one tag (VPN2) to map two physical pages
(PFN), just as in the JTLB. The entries in either array are accessed through the CO_EntryHi and CO_EntryLo0/1 regis-
ters.

Entries in either array (FTLB or VTLB) can be accessed with the TLBWI and TLBWR instructions.

The PageMask register is used to set the page size for the VTLB entries. This register is also used to choose which
array (FTLB or VTLB) to write for the TLBWR instruction.

For the rest of this section, the following parameters are used:
3. FPageSize - the page size used by the FTLB entries

4. FSetSize - Number of entries in one way of the FTLB.

5. FWays - Number of ways within a set of the FTLB.

6. VIndex - Number of entries in the VTLB.

For the CO_Index, the CO_Wired registers, the TLBP, TLBR and TLBW!I instructions; the VTLB occupies indices 0 to
VIndex-1. The FTLB occupies indices VIndex to Vindex + (FSetSize * FWays)-1.

The TLBP instruction produces a value which can be used by the TLBW!I instruction without modification by soft-
ware. When referring to the FTLB, the value is the concatenation of the selected FTLB way and set, and incremented
by the size of the VTLB. For example, {selected FTLB Way, selected FTLB Set} + VIndex.

If CO_PageMask is set to the page size used by the FTLB, the TLBWR instruction modifies entries within the FTLB
or the VTLB. It is implementation specific whether the VTLB will be modified for this case.

How the FTLB set-associative array is indexed is implementation specific. In any indexing scheme, the least signifi-
cant address bit that can be used for indexing is log,(FPageSize)+1. The number of index bits needed to select the

correct set within the FTLB array is log,(FSetSize).

Since the FTLB array can be modified through the TLBWI instruction, it is possible for software to choose an inap-
propriate FTLB index value for the specified virtual address. In this case, it is implementation specific whether a
Machine Check exception is generated for the TLBWI instruction.

The EHINV TLB entry invalidate feature is required for a FTLB. Since it is implementation defined as to whether a
particular FTLB index value can be used for a specific virtual address, the legacy method of representing an invalid
TLB entry by using a predefined address value is not guaranteed to work.

The method of choosing which FTLB way to modify is implementation specific.

If CO_PageMask is not set to the page size used by the FTLB, the TLBWR instruction modifies entries within the
VTLB. The VTLB entry to be written is specified by the log,(VIndex) least significant bits of the CO_Random regis-

ter value.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 321

Alternative MMU Organizations

322

For both the TLBWR and TLBW!I instruction, it is implementation specific whether both (FTLB and VTLB) arrays
are checked for duplicate or overlapping entries and whether a Machine Check exception is generated for these cases.

A.3.2.1 Example with chosen FTLB and VTLB sizes

As an example, let’s assume an implementation chooses these values:
1. FPageSize - 4 kB used by the FTLB entries
2. FSetSize - 128 in one way of the FTLB.

3. FWays - 4 ways within a set of the FTLB. (The FTLB has (128 sets x 4 ways/set) 512 entries, capable of map-
ping (512 entries x 2 pages/entry x 4 kB/page) 4MB of address space simultaneously.

4, ViIndex - 8 entries in the VTLB.

For the CO_Index, the CO_Wired registers, the TLBP, TLBR and TLBW!I instructions; the VTLB occupies indices 0 to
7. The FTLB occupies indices 8 to 519.

The FTLB entries have a VPN2 field which starts at virtual address bit 12.

The least significant virtual address bit that can be used for FTLB indexing is virtual address 13. To index the FTLB
set-associative array, 7 index bits are needed.

In this simple example, the design uses contiguous virtual address bits directly for indexing the FTLB (it does not cre-
ate a hash for the FTLB indexing). The FTLB set-associative array is indexed using virtual address bits 19:13. The
TLBWR instruction uses these address bits held in CO_EntryHi.

In this simple example, the design uses a cycle counter of 2 bits for way selection within the FTLB.

The Random register field within CO_Random is 3 bits wide to select the entry within the VTLB.

A.3.3 Changes to the TLB Instructions

TLBP
Both the VTLB and the FTLB are probed in parallel for the specified virtual address.
If the address hits in the VTLB, CO_Index specifies the entry within the VTLB (a value within 0 to VVIndex-1).
If the address hits in the FTLB, CO_Index specifies the entry within the FTLB (a value within Vindex to VIn-
dex+(FSetSize * FWays)-1). Which bits are used to encode the selected FTLB set as opposed to which bits are
used to encode the selected FTLB way is implementation specific, but must match what is expected by the
TLBWI instruction implementation. CO_PageMask reflects the page size used by the FTLB.

TLBR
Either a VTLB entry or a FTLB entry is read depending on the specified index in CO_Index.

Index values of 0 to VIndex-1 access the VTLB. Index values VIndex to VIndex+(FSetSize * FWays)-1 access
the FTLB.

TLBWI

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

A.3 Dual Variable-Page-Size and Fixed-Page-Size TLBs

Either the VTLB or FTLB entry is written depending on the specified index in CO_Index.

Index values of 0 to VIndex-1 access the VTLB. Index values VIndex to VIndex+(FSetSize * FWays)-1 access
the FTLB.

It is implementation specific if the hardware checks the VPN2 field of CO_EntryHi is appropriate for the specified
set within the FTLB. The implementation may generate a machine-check exception if the VPN2 field is not
appropriate for the specified set.

It is implementation-specific if the hardware checks both arrays (FTLB and VVTLB) for valid duplicate or over-
lapping entries and if the hardware signals a Machine Check exception for these cases.

TLBWR
Either the VTLB or FTLB entry is written depending on the specified page size in CO_PageMask.

If CO_PageMask is set to any page size other than that used by the FTLB, the TLBWR instruction modifies a
VTLB entry. The VTLB entry is specified by the Random register field within CO_Random.

If CO_PageMask is set to the page size used by the FTLB, the TLBWR modifies either a FTLB entry or a VLTB
entry. It is implementation specific which array is modified. The FTLB set-associative array is indexed in an
implementation-specific manner.

The method of selecting which FTLB way to modify is implementation specific.

It is implementation specific if the hardware checks both arrays (FTLB and VTLB) for valid duplicate or over-
lapping entries and if the hardware signals a Machine Check exception for these cases.

A.3.4 Changes to the COPO Registers

CO0_Config4 (CPO Register 16, Select 4)

A new register introduced to reflect the FTLB configuration. Configdpmmuexipef Fegister field must be set to a

value of 2 or 3 to reflect that the Dual VTLB and FTLB configuration is implemented. If either Config4 is not
implemented or the Config4ypmuextpet field is not fixed to 2 or 3, the Dual VTLB/FTLB configuration is not

implemented.

If Configdpmuextpet IS fixed to a value of 2 or 3, the FTLBPageSize, FTLBWays and FTLBSets fields reflect the

FTLB configuration. Please refer to “Configuration Register 4 (CP0 Register 16, Select 4)” on page 253 for more
detail on this register.

For Release 6, ConfigdpmmuEextpef 1S reserved; see the description for the Config4 register.

CO0_Configl (CPO Register 16, Select 1)

If Config4pmuextpef IS fixed to a value of 2 or 3, the MMUSize-1 register field is redefined to reflect only the size
of the VTLB.

CO0_Config (CPO Register 16, Select 0)

If Configy is fixed to a value of 4, the implemented MMU Type is the dual FTLB and VTLB configuration.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 323

Alternative MMU Organizations

CO0_Index (CPO Register 0, Select 0)

If Configdpmmuextpet IS fixed to a value of 2 or 3, the register is redefined in this way:

The value held in the Index field can refer to either an entry in the FTLB or the VTLB. Index values of 0 to
VIndex-1 access the VTLB. Index values VIndex to VIndex+(FSetSize * FWays)-1 access the FTLB.
Which bits in the register field which encode the FTLB set as opposed to which bits encode the FTLB way is
implementation specific, but must match what is expected by the TLBWI instruction implementation.
CO0_Random (CPO Register 1, Select 0)
For Release 6, this register has been deprecated.

If Configdpmmuextpet IS fixed to a value of 2 or 3, the register is redefined in this way:

If the value in CO_PageMask is not set to the page-size used by the FTLB, and a TLBWR instruction is exe-
cuted, a VTLB entry is modified. The Random register field is used to select the VTLB entry which is mod-
ified.

If the value in CO_PageMask is set to the page-size used by the FTLB, and a TLBWR instruction is exe-
cuted, a FTLB entry or a VTLB entry is modified. It is implementation specific whether the CO_RANDOM
register is used to select the FTLB entry.

The upper bound of the Random register field value is VVIndex.

CO0_Wired (CPO Register 6, Select 0)

If Configdpmmuextpet IS fixed to a value of 2 or 3, the Wired register field can only hold a value of VIndex-1 or
less. That is, only VTLB entries can be wired down.

CO0_PageMask (CPO Register 5, Select 0)

If Configdpmmuextpet IS fixed to a value of 2 or 3, the register is redefined in this way:

The Mask and MaskX field values determine whether the VTLB or the FTLB is modified by a TLBWR
instruction.

The Mask and MaskX register fields do not affect the TLB address match operation for FTLB entries. The
page size used by the FTLB entries are specified by the Configdrpagesize register field.

The software writeable bits in the Mask and MaskX fields reflect what page sizes are available in the VTLB.
These fields do not reflect the page sizes which are available in the FTLB.

A.3.5 Software Compatibility

One of the main software visible changes introduced by this alternative MMU are the values reported in the CO_Index
register. Previously, it was just a simple linear index. For this alternative MMU configuration, the value reflects both
a selected way as well as a selected set when a FTLB entry is specified.

324 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

A.3 Dual Variable-Page-Size and Fixed-Page-Size TLBs

Fortunately, this Index value isn’t frequently generated by software nor read by software. Instead, the contents of the
CO0_Index register is generated by hardware upon a TLBP instruction. Software then just issues the TLBWI instruc-
tion once the CO_EnLo* registers have been appropriately modified.

Another software visible change is that the MMUSize-1 field no longer reports the entire MMU size. For TLB initial-
ization and TLB flushing, the contents of ConfigLypmusize-1, CONfig4rT Bways and Configder psets register fields must
all be read to calculate the entire number of TLB entries that must be initialized. TLB initialization and flushing are
the only times software needs to generate an Index value to write into the CO_Index register.

Only the VTLB entries may be wired down. This limitation is due to using some of the EntryHi VPN2 bits to index
the FTLB array.

If a page using the FTLB page-size is to be wired down, that page must be programmed into the VTLB using the
TLBWI instruction, as the TLBWR instruction would only access the FTLB in that situation and could not access any
wired-down TLB entry. The TLBWI instruction is normally used for wired-down pages, so this restriction should not
affect existing software.

The EHINV TLB entry invalidate feature is required for a FTLB. Since it is implementation-defined as to whether a
particular FTLB index value can be used for a specific virtual address, the legacy method of representing an invalid
TLB entry by using a predefined address value is not guaranteed to work.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 325

Alternative MMU Organizations

326 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

Appendix B

Revision History

Revision Date

Description

0.92 January 20, 2001 Internal review copy of reorganized and updated architecture documentation.

0.95 March 12, 2001 Clean up document for external review release

1.00 August 29, 2002 Update based on review feedback:

Change ProbEn to ProbeTrap in the EJTAG Debug entry vector location discussion.

Add cache error and EJTAG Debug exceptions to the list of exceptions that do not go through
the general exception processing mechanism.

Fix incorrect branch offset adjustment in general exception processing pseudo code to deal
with extended MIPS16e instructions.

Add Config,, to denote an instruction cache with both virtual indexing and virtual tags.
Correct XContext register description to note that both BadVPN2 and R fields are UNPRE-
DICTABLE after an address error exception.

Note that Supervisor Mode is not supported with a Fixed Mapping MMU.

Define TagLo bits 4..3 as implementation-dependent.

Describe the intended usage model differences between Reset and Soft Reset Exceptions.
Correct the minimum number of TLB entries to be 3, not 2, and show an example of the need
for 3.

Modify the description of PageMask and the TLB lookup process to acknowledge the fact
that not all implementations may support all page sizes.

1.90 September 1, 2002 Update the specification with the changes introduced in Release 2 of the Architecture. Changes
in this revision include:

The following new Coprocessor 0 registers were added: EBase, HWREna, IntCtl, PageGrain,
SRSCtl, SRSMap.

The following Coprocessor 0 registers were modified: Cause, Config, Config2, Config3,
EntryHi, EntryLo0, EntryLol, PageMask, PerfCnt, Status, WatchHi, WatchLo.

The descriptions of Virtual memory, exceptions, and hazards have been updated to reflect the
changes in Release 2.

A chapter on GPR shadow registers has been added.

The chapter on CPO hazards has been completely rewritten to reflect the Release 2 changes.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 327

Revision History

Revision Date Description

2.00 June 9, 2003 Complete the update to include Release 2 changes. These include:

» Make bits 12..11 of the PageMask register power up zero and be gated by 1K page enable.
This eliminates the problem of having these bits set to 0b11 on a Release 2 chip in which ker-
nel software has not enabled 1K page support.

 Correct the address of the cache error vector when the BEV bit is 1. It should be
0xBFC0.0300,. not 0xBFCO0.0200.

« Correct the introduction to shadow registers to note that the SRSCtl register is not updated at
the end of an exception in which Statusggy, = 1.

 Clarify that a MIPS16e PC-relative load reference is a data reference for the purposes of the
Watch registers.

« Add note about a hardware interrupt being deasserted between the time that the processor
detects the interrupt request and the time that the software interrupt handler runs. Software
must be prepared for this case and simply dismiss the interrupt via an ERET.

* Add restriction that software must set EBase;5 1, to zero in all bit positions less than or equal
to the most significant bit in the vector offset. This is only required in certain combinations of
vector number and vector spacing when using V1 or EIC Interrupt modes.

» Add suggested software TLB init routine which reduced the probability of triggering a
machine check.

2.50 July 1, 2005 Changes in this revision:
« Correct the encoding table description for the Causepc) bit to indicate that the bit controls

the performance counter, not the timer interrupt.

 Correct the figure Interrupt Generation for External Interrupt Controller Interrupt Mode to
show Causep; ¢ going to the EIC, rather than Status;p;

» Update all files to FrameMaker 7.1.

» Update reset exception list to reflect missing Release 2 reset requirements.

« Define bits 31..30 in the HWREna register as access enables for the implementation-depen-
dent hardware registers 31 and 30.

« Add definition for Coprocessor 0 Enable to Operating Modes chapter.

» Add K23 and KU fields to main Config register definition as a pointer to the Fixed Mapping
MMU appendix.

» Add specific note about the need to implement all shadow sets between 0 and HSS - no holes
are allowed.

» Change the hazard from a software write to the SRSCtlpgg field and a RDPGPR and WRP-
GPR and instruction hazard vs. an execution hazard.

« Correct the pseudo-code in the cache error exception description to reflect the Release 2
change that introduced EBase.

» Document that EHB clears instruction state change hazards for writes to interrupt-related
fields in the Status, Cause, Compare, and PerfCnt registers.

« Note that implementation-dependent bits in the Status and Config registers should be
defined in such a way that standard boot software will run, and that software which preserves
the value of the field when writing the registers will also run correctly.

» With Release 2 of the Architecture the FR bit in the Status register should be a R/W bit, not a
R bit.

« Improve the organization of the CP0 hazards table, and document that DERET, ERET, and
exceptions and interrupts clear all hazards before the instruction fetch at the target instruction.

e Add list of MIPS® MT CPO registers and MIPS MT and MIPS® DSP present bits in the
Config3 register.

328 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

Revision Date Description

2.60 June 25, 2008 Changes in this revision:
» Add the UserLocal register and access to it via the RDHWR instruction.
» Operating Modes - footnote about ksseg/sseg
» COP3 no longer usable for customer extensions
« EIC Mode allows VectorNum != RIPL
* CPORegs Table - added missing EJTAG & PDTrace Registers
e CO_DatalLo/Hi are actually R/W
» Hazards table - added a bunch of missing ones
 Various typos fixed.

2.61 August 01, 2008 « In the Status register description, the ERL behavior description was incorrect in saying only
29 bits of kuseg becomes uncached and unmapped.
2.62 January 2,009 » CCRes is accessed through $3 not $4 - HWENA register affected.
e PCTD bit added to CO_PerfCil.
2.70 January 22,2009 MIPS Technologies-only release for internal review:

» Added CPO Reg 31, Select 2 & 3 as kernel scratch registers.

» Added VTLB/FTLB optional MMU configuration to Appendix A and Config4 register for
these new MMU configurations

* Added CDMM chapter, CDMMBase COPO Register, CDMM bit in CO_Config3, FDCI bit
in CO_Cause register and IPFDC field in IntCtl register.

2.71 January 28,2009 MIPS Technologies-only release for internal review:
» EIC mode - revision 2.70, was actually missing the new option of EIC driving an explicit vec-
tor offset (not using VectorNumbers).
« Clarified the text and diagrams for the 3 EIC options - RIPL=VectorNum, Explicit \ector-
Num; Explicit VectorOffset.

2.72 April 20, 2009 MIPS Technologies-only release for internal review:
* Table was incorrectly saying ECRpyohEen Selected debug exception Vector. Changed to

EcRProbTrap-

» Added MIPS Technologies traditional meanings for CCA values.

» Added list of COP2 instruction to COPUnusable Exception description.

« Added statement that only uncached access is allowed to CDMM region.

» Updated Exception Handling Operation pseudo-code for EIC Option_3 (EIC sends entire vec-
tor).

2.73 April 22, 2009 MIPS Technologies-only release for internal review:
 Fixed comments for ASE.

2.74 June 03, 2009 MIPS Technologies-only release for internal review:
¢ Added CDMM Enable Bit in CDMMBase COPO register
» Reserved CCA values can be used to init TLB; just can’t be used for mapping.

2.75 June 12, 2009 MIPS Technologies-only release for internal review:
+ CDMMBase_Upper_Address Field doesn’t have a fixed reset value.
Added DSP State Disabled Exception to CO_Cause Exception Type table.

FTLB and VTLB MMU configuration denoted by 0x4 in Configyt

Added TLBP -> TLBWI hazard
Added KScrExist field in Config4.

2.80 July 20, 2009

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 329

Revision History

Revision Date Description

2.81 September 22, 2009 MIPS Technologies-only release for internal review:
» ContextConfig Register description added.
» Context Register description updated for SmartMIPS behavior.
» EntryLo* register descriptions updated for Rl & XI bits.
e TLB description and pseudo-code updated for Rl & XI bits.
» PageMask register updated for RIE and XIE bits.
 Config3 register updated for CTXTC and RXI bits.
* Reserve MCU ASE bits in CO_Cause and CO_Status.
« Clean up description for KScratch registers - selects 2&3 are recommended, but additional
scratch registers are allowed.

2.82 January 19,2010 MIPS Technologies-only release for internal review:
» Added Debug? register.
3.00 March 8, 2010 ¢ RI/XI feature moved from SmartMIPS ASE.

* microMIPS features added

* MCU ASE features added.

« Xl and RI exceptions can be programmed to use their own exception codes instead of using
TLBL code.

» Xl and RI can be independently implemented as XIE and RIE bits are allowed to be Read-
Only.

* TCOpt Register added to CO Register list.

» Added encoding (0x7) for 32 sets for one cache way.

3.05 July 07, 2010 * CMGCRBase register added.
» Lower bits of CO_Context register allowed to be write-able if Config3.CTXTC=1 and
Config3.SM=0.
3.10 July 27, 2010 Explain the limits of the BadVPN2 field within Context register and the relationships with the

writable bits within ContextConfig register.

3.11 April 24, 2011 MIPS Technologies-only release for internal review:
* FPR registers are UNPREDICTABLE after change of Status.FR bit.
» 1004K did not support CCA=0
» Config4 - KScratch Registers, mention that select 1 is reserved for future debugger use.
» Context Register - the bit subscripts describing which VA bits go into the BadVPN2 field was
incorrect for the case when the ContextConfig register is used. The correct VA bits are 31:31-
((X-Y)-1) for MIPS32.

3.12 April 28, 2011 » Changes for 64-bit architectures, no changes for 32-bit architectures.

3.13 November 10, 2011 MIPS Technologies-only release for internal review:
» Nested Exception handling support. Config5 register added.

3.14 February 17,2012 MIPS Technologies-only release for internal review:
» Segmentation Control, EVA scheme added:
a) Adds SegCfg0, SegCfgl, SegCfg2 registers
b) SegCtl - Modifies EBase, Config3.
* TLB Invalidate feature.

3.50 September 20, 2012 « Added Badinstr & BadlInstrP registers.
* Added extended ASID field in EntryHi and WatchHi.
» Added Hardware Page Table Walking Feature

3.51 October 2, 2012 MIPS Technologies-only release for internal review:
» Hardware Page Table Walker - previous description wasn’t fully correct. PTEVId bit is only
used for Directory PTE entries as leaf PTE entries are always loaded from memory.
* Added TLB init routine for SegmentationControl/EVA.

330 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

Revision Date Description

3.52 November 12, 2012 < SegCtl Overlay segment(s) are available in kernelmode. Re-iterate that.

* FTLB/VTLB - if PageMask set to FTLB size, allowed to modify VTLB.

 implementation-dependent whether Watch Registers match on 2nd half of microMIPS
instruction.

» Hardware Page Table Walker - give example of 4-byte PTE.

» Hardware Page Table Walker - added option so Directory PTE entries can represent power-of-
4 memory region, using Dual Page Method.

 Optional PageGrain.MCCause field to record different types of Machine Check Exceptions.

5.00 December 14, 2012 « R5 changes - include MSA and Virtualization registers and control bits in Register table.
* R5 changes - include MSA and Virtualization exceptions in Cause exception types.
* R5 changes - MT and DSP ASEs -> Modules
* R5 changes - MDMX now deprecated.
e “Preset” -> “Preset by hardware”

5.01 December 16, 2012 « No technical content change:
« Update cover logos
« Update copyright text

5.02 April 2012 * R5 changes: FR=1 64-bit FPU register model required is required, if floating-point is sup-
ported. Section 3.5.2 64-bit FPR Enable. Table 9.41 Status Register Field Descriptions, FR
(floating-point register mode) bit.

» R5 extension: Table 9.57 Config Register Field Descriptions, AR bit (Architecture revision
level). AR=1 indicates Release 2 or Release 3 or Release 5. Like Release 3, all features intro-
duced in Release 5 are optional.

« Correction: Table 9.59 BPG, Big Pages feature, not supported in MIPS32, only in MIPS64

5.03 September 9, 2013 + Update document template

5.04 September 29, 2013 MAAR initial version
* Add MAAR, MAARI and Config5.MRP
 Table 1.1 typo. Speculate=1 should not contain comment about oldest in machine. Meaning-
ful to Speculate=0. Moved outside sub-table.
« Added a condition to sw write of MAARI.Index - write of all 1s returns the largest value sup-
ported.

5.04 November 12, 2013 XPA initial Version.

* Add extended EntryLo0/1, LLAddr, TagLo, CDMMBase, CMGCRBase

» PageGrain.ELPA, Config3.LPA, Config5.MVH

» Remove comment about SW having to initialize the extension bits (of EntryLo,TagLo) if
PageGrain.ELPA=0. HW had been asked to reset to 0, but the current POR solution is for
mtcO to O out the extension bits that are writable. HW is responsible for zeroing out read-only
bits on operation that updates the bits.

* Remove CDMMBase and CMGCRBase from list of COPO registers requiring extensions.
The two registers support up to 36b PA which is sufficient for their purpose. Less testing.

» Add a config bit, Config5.MVH, for mth/mfhc0. Since mth/mfhcO may be used indepen-
dently of XPA in the future, it is easier for software to query one bit instead of multiple. Fur-
ther Config3.LPA=1 on 64-bit HW need not mean mthcO/mfhcO are implemented.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 331

Revision History

Revision Date Description

6.00 March 31, 2014 * Removed Random register.

* Removed Statusgp bit.

* Removed Statustg bit.

» Coprocessor 0 UserLocal, BidInstr, BadlnstrP, and KScratchn bits now are required.

« Index: If value greater than, or equal to, the number of TLB entries is written, HW leaves this
register unchanged.

* EntryLoc: HW must ignore writes of unsupported values of this field.

» UserlLocal: now required, and Config3, g, must be 1.

« PageMask: HW ignores writes of unsupported values to the Mask field.

» PageGrain, EntryLo0/1, PageMask, EntryHi: no longer required to write specified values
to certain fields and flush TLB before changing a value in this register. SW must now must
invalidate TLB entries explicitly using TLBWI.

* PWField: writing unsupported values to this register leaves it unmodified.

* PWSizepy,: write of 0 value is ignored.

* PWSizeptg,: write of unsupported value does not modify register.

» Wired: hardware ignores writes of unsupported values to the Wired field.

» Wired: added a required Limit bit field.

* RDHWRy_Rg: now required.

< Badinstr: now required.

» BadInstrP: now required.

 Statuscy: change in field size.

 Status bit 28: new name and changed functionality.

 Status bit 27: new name and changed functionality.

* Status bit 25 and bit 21: now reserved.

* Statusgg and Statusy,;: HW ignores a write of 1; ; now R/WO (see Table 9.2).

 Statuskgy: HW ignores a write of the value.

* IntCtlys: HW ignores writes of reserved values.

o Causeyyp: HW ignores a write of 1; now R/WO (see Table 9.2).

» Configar: now required. Also, encoding 2 has changed.

» Config3gp and Config3g,: must now be 1.

» Cofig3y g and Cofig3ryx,: now required.

» Config4: format and functionality has changed significantly.

» Configbggg,: new field.

« KScratchn: now required.

» Configko/k2s/ku, SegCtin, CFGn¢: hardware ignores writes of unsupported values to the C
field.

» COPOIndex: Clarification - h/w clears Indexp while s/w can only set to 1.

¢ COPO PWFieldeE|

Reset value changed to 2.

Clarified that 0,1 values are illegal, 2 is required, all other values are optional and
implementation-specific.

PTEI will be unchanged if an unsupported value is written.

332 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

Revision Date Description

6.01 October 17,2014 » Added Global Number register for R6 multi-threading support.
+ Added Config5y,p for R6 multi-threading support.
» Added Modeless Evil Twin support: Config5rg/FrE-
» Made minor change to reset state of PWSizep.

« Made minor changes to reset state in all fields of PWField; added clarifications to
» Added Config5, o to detect presence of L2 Config2 in COPO.
* Modified PageMask to eliminate 1 kB pages; added optional small page support.
« EBaseCPUNum: in Release 6 with multi-threading, this is replaced by VPNum.
e Updated CPO MAAR.

Default is not to speculate

If an address is to speculate, it must be specified by MAAR.

Addresses outside of the MAAR range cannot speculate.
» Updated COPO LLAddr and Config5, | g to indicated both the LLAddr and LLB fields are

mandatory for R6.

* Added Config5pgc/ces for endian switching capability.

6.02 July 10, 2015 » Added CP0O BEVVA, DebugContextID (new)
« Added CPO VPControl for MT (new)
» Updated HWREna with PerfCtr, XNP capabilities (new)
» Updated Config5 - rm CES and added XNP.

MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02 333

Revision History

334 MIPS® Architecture For Programmers Vol. lll: MIPS32® / microMIPS32™ Privileged Resource Architecture, Rev. 6.02

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

