
Revision 0.04
April 27, 2018

Public

MIPS® Architecture Extension: nanoMIPS32™
DSP Technical Reference Manual

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCI, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

1

Contents

Chapter 1: About This Book .. 2
1.1: Typographical Conventions ... 2

1.1.1: Italic Text.. 2
1.1.2: Bold Text .. 2
1.1.3: Courier Text ... 2

1.2: UNPREDICTABLE and UNDEFINED ... 2
1.2.1: UNPREDICTABLE... 3
1.2.2: UNDEFINED .. 3
1.2.3: UNSTABLE .. 3

1.3: Special Symbols in Pseudocode Notation... 4
1.4: Notation for Register Field Accessibility .. 7
1.5: For More Information ... 9

Chapter 2: Guide to the Instruction Set.. 10
2.1: Understanding the Instruction Fields ... 10

2.1.1: Instruction Fields .. 12
2.1.2: Instruction Descriptive Name and Mnemonic... 12
2.1.3: Format Field ... 12
2.1.4: Purpose Field ... 13
2.1.5: Description Field .. 13
2.1.6: Restrictions Field.. 13
2.1.7: Availability and Compatibility Fields ... 14
2.1.8: Operation Field... 14
2.1.9: Exceptions Field... 15
2.1.10: Programming Notes and Implementation Notes Fields.. 15

2.2: Operation Section Notation and Functions.. 15
2.2.1: Instruction Execution Ordering... 16
2.2.2: Pseudocode Functions... 16

2.3: Op and Function Subfield Notation.. 28
2.4: FPU Instructions .. 29

Chapter 3: The nanoMIPS® DSP Application Specific Extension to the nanoMIPS32® Architecture
30

3.1: Base Architecture Requirements... 30
3.2: Compliance and Subsetting... 30
3.3: Introduction to the nanoMIPS® DSP Module .. 30
3.4: DSP Applications and their Requirements .. 31
3.5: Fixed-Point Data Types ... 31
3.6: Saturating Math ... 33
3.7: Conventions Used in the Instruction Mnemonics .. 34
3.8: Effect of Endian-ness on Register SIMD Data .. 35
3.9: Additional Register State for the DSP Module... 36
3.10: Software Detection of the DSP Module ... 38
3.11: Exception Table for the DSP Module .. 39
3.12: DSP Module Instructions that Read and Write the DSPControl Register.. 39
3.13: Arithmetic Exceptions .. 40

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

2

Chapter 4: nanoMIPS® DSP Module Instruction Summary .. 41
4.1: The nanoMIPS® DSP Module Instruction Summary... 41

Chapter 5: Instruction Encoding ... 57
5.1: Instruction Bit Encoding... 57

Chapter 6: The MIPS® DSP Module Instruction Set .. 58
6.1: Compliance and Subsetting... 58
6.2: DSP Module Specific Pseudocode Functions ... 58

6.2.1: ValidateAccessToDSPResources() ... 58
6.2.2: ValidateAccessToDSP2Resources() ... 59

ABSQ_S.PH.. 60
ABSQ_S.QB.. 62
ABSQ_S.W.. 64
ADDQ[_S].PH.. 66
ADDQ_S.W ... 68
ADDQH[_R].PH... 70
ADDQH[_R].W .. 72
ADDSC.. 74
ADDU[_S].PH.. 76
ADDU[_S].QB.. 78
ADDWC... 80
ADDUH[_R].QB... 82
BALIGN ... 84
BITREV ... 86
BPOSGE32C... 88
CMP.cond.PH.. 90
CMPGDU.cond.QB ... 92
CMPGU.cond.QB.. 94
CMPU.cond.QB... 96
DPA.W.PH... 98
DPAQ_S.W.PH ... 100
DPAQ_SA.L.W.. 102
DPAQX_S.W.PH... 104
DPAQX_SA.W.PH... 106
DPAU.H.QBL... 108
DPAU.H.QBR.. 110
DPAX.W.PH .. 112
DPS.W.PH... 114
DPSQ_S.W.PH ... 116
DPSQ_SA.L.W.. 118
DPSQX_S.W.PH... 120
DPSQX_SA.W.PH... 122
DPSU.H.QBL... 124
DPSU.H.QBR.. 126
DPSX.W.PH .. 128
EXTP... 130
EXTPDP.. 132
EXTPDPV.. 134
EXTPV... 136
EXTR[_RS].W ... 138
EXTR_S.H... 140
EXTRV[_RS].W... 142

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

3

EXTRV_S.H .. 144
INSV.. 146
LBUX... 148
LHX ... 150
LWX... 152
MADD.. 154
MADDU ... 156
MAQ_S[A].W.PHL... 158
MAQ_S[A].W.PHR .. 160
MFHI.. 162
MFLO .. 164
MODSUB... 166
MSUB.. 168
MSUBU ... 170
MTHI.. 172
MTHLIP ... 174
MTLO .. 176
MUL[_S].PH .. 178
MULEQ_S.W.PHL... 180
MULEQ_S.W.PHR .. 182
MULEU_S.PH.QBL ... 184
MULEU_S.PH.QBR... 186
MULQ_RS.PH... 188
MULQ_RS.W... 190
MULQ_S.PH.. 192
MULQ_S.W ... 194
MULSA.W.PH.. 196
MULSAQ_S.W.PH .. 198
MULT... 200
MULTU.. 202
PACKRL.PH.. 204
PICK.PH.. 206
PICK.QB.. 208
PRECEQ.W.PHL... 210
PRECEQ.W.PHR .. 212
PRECEQU.PH.QBL .. 214
PRECEQU.PH.QBLA.. 216
PRECEQU.PH.QBR.. 218
PRECEQU.PH.QBRA ... 220
PRECEU.PH.QBL ... 222
PRECEU.PH.QBLA... 224
PRECEU.PH.QBR... 226
PRECEU.PH.QBRA .. 228
PRECR.QB.PH.. 230
PRECR_SRA[_R].PH.W ... 232
PRECRQ.PH.W... 234
PRECRQ.QB.PH... 236
PRECRQU_S.QB.PH.. 238
PRECRQ_RS.PH.W.. 240
PREPEND... 242
RADDU.W.QB... 244
RDDSP.. 246
REPL.PH... 248

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

4

REPL.QB... 250
REPLV.PH... 252
REPLV.QB .. 254
SHILO.. 256
SHILOV ... 258
SHLL[_S].PH... 260
SHLL.QB ... 262
SHLLV[_S].PH... 264
SHLLV.QB... 266
SHLLV_S.W .. 268
SHLL_S.W... 270
SHRA[_R].QB.. 272
SHRA[_R].PH.. 274
SHRAV[_R].PH ... 276
SHRAV[_R].QB ... 278
SHRAV_R.W... 280
SHRA_R.W ... 282
SHRL.PH... 284
SHRL.QB... 286
SHRLV.PH .. 288
SHRLV.QB .. 290
SUBQ[_S].PH.. 292
SUBQ_S.W ... 294
SUBQH[_R].PH... 296
SUBQH[_R].W... 298
SUBU[_S].PH.. 300
SUBU[_S].QB.. 302
SUBUH[_R].QB... 304
WRDSP... 306

Appendix A: Endian-Agnostic Reference to Register Elements.. 308
A.1: Using Endian-Agnostic Instruction Names.. 308
A.2: Mapping Endian-Agnostic Instruction Names to DSP Module Instructions... 308

Appendix B: Revision History ... 311

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

1

List of Figures

Figure 2.1: Example of Instruction Description ... 11
Figure 2.2: Example of Instruction Fields.. 12
Figure 2.3: Example of Instruction Descriptive Name and Mnemonic .. 12
Figure 2.4: Example of Instruction Format .. 12
Figure 2.5: Example of Instruction Purpose.. 13
Figure 2.6: Example of Instruction Description ... 13
Figure 2.7: Example of Instruction Restrictions .. 14
Figure 2.8: Example of Instruction Operation ... 15
Figure 2.9: Example of Instruction Exception ... 15
Figure 2.10: Example of Instruction Programming Notes ... 15
Figure 2.11: COP_LW Pseudocode Function... 16
Figure 2.12: COP_LD Pseudocode Function.. 16
Figure 2.13: COP_SW Pseudocode Function .. 17
Figure 2.14: COP_SD Pseudocode Function ... 17
Figure 2.15: CoprocessorOperation Pseudocode Function.. 17
Figure 2.16: MisalignedSupport Pseudocode Function .. 18
Figure 2.17: AddressTranslation Pseudocode Function ... 18
Figure 2.18: LoadMemory Pseudocode Function ... 19
Figure 2.19: StoreMemory Pseudocode Function .. 19
Figure 2.20: Prefetch Pseudocode Function... 20
Figure 2.21: SyncOperation Pseudocode Function .. 20
Figure 2.22: ValueFPR Pseudocode Function.. 21
Figure 2.23: StoreFPR Pseudocode Function .. 21
Figure 2.24: CheckFPException Pseudocode Function ... 22
Figure 2.25: FPConditionCode Pseudocode Function.. 23
Figure 2.26: SetFPConditionCode Pseudocode Function .. 23
Figure 2.27: Are64BitFPOperationsEnabled Pseudocode Function... 23
Figure 2.28: IsCoprocessorEnabled PseudocodeFunction... 24
Figure 2.29: IsCoprocessor2 Pseudocode Function... 24
Figure 2.30: IsEJTAGImplemented Pseudocode Function... 24
Figure 2.31: IsFloatingPointImplemented Pseudocode Function ... 25
Figure 2.32: sign_extend Pseudocode Functions... 26
Figure 2.33: memory_address Pseudocode Function .. 27
Figure 2.34: Instruction Fetch Implicit memory_address Wrapping.. 27
Figure 2.35: AddressTranslation implicit memory_address Wrapping.. 27
Figure 2.36: SignalException Pseudocode Function .. 27
Figure 2.37: SignalDebugBreakpointException Pseudocode Function .. 28
Figure 2.38: SignalDebugModeBreakpointException Pseudocode Function.. 28
Figure 2.39: NullifyCurrentInstruction PseudoCode Function... 28
Figure 2.40: PolyMult Pseudocode Function .. 28
Figure 3.1: Computing the Value of a Fixed-Point (Q7) Number .. 33
Figure 3.2: A Paired-Half (PH) Representation in a GPR for the microMIPS32 Architecture 34
Figure 3.3: A Quad-Byte (QB) Representation in a GPR for the nanoMIPS32 Architecture................................... 35
Figure 3.4: Operation of MULQ_RS.PH rd, rs, rt .. 35
Figure 3.5: MIPS® DSP Module Control Register (DSPControl) Format .. 36
Figure 3.6: Config3 Register Format .. 38
Figure 3.7: CP0 Status Register Format .. 38

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

2

Figure 6.1: ValidateAccessToDSPResource Pseudocode Function... 58
Figure 6.2: ValidateAccessToDSP2Resources Pseudocode Function... 59
Figure 6.3: Operation of the INSV Instruction ... 146
Figure A.1: The Endian-Independent PHL and PHR Elements in a GPR for the microMIPS32 Architecture....... 309
Figure A.2: The Big-Endian PH0 and PH1 Elements in a GPR for the microMIPS32 Architecture 309
Figure A.3: The Little-Endian PH0 and PH1 Elements in a GPR for the microMIPS32 Architecture.................... 309
Figure A.4: The Endian-Independent QBL and QBR Elements in a GPR for the microMIPS32 Architecture 310
Figure A.5: The Endian-Independent QBLA and QBRA Elements in a GPR for the microMIPS32 Architecture.. 310

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

1

List of Tables

Table 1.1: Symbols Used in Instruction Operation Statements... 4
Table 1.2: Read/Write Register Field Notation ... 7
Table 2.1: AccessLength Specifications for Loads/Stores.. 20
Table 3.1: Data Size of DSP Applications.. 31
Table 3.2: The Value of a Fixed-Point Q31 Number ... 31
Table 3.3: The Limits of Q15 and Q31 Representations... 32
Table 3.4: MIPS® DSP Module Control Register (DSPControl) Field Descriptions ... 36
Table 3.5: Instructions that set the ouflag bits in DSPControl... 37
Table 3.7: Exception Table for the DSP Module... 39
Table 3.6: Cause Register ExcCode Field.. 39
Table 3.8: Instructions that Read/Write Fields in DSPControl .. 40
Table 4.1: List of Instructions in nanoMIPS® DSP Module in Arithmetic Sub-class ... 41
Table 4.2: List of Instructions in nanoMIPS® DSP Module in GPR-Based Shift Sub-class.................................... 44
Table 4.3: List of Instructions in nanoMIPS® DSP Module in Multiply Sub-class... 46
Table 4.4: List of Instructions in MIPS® DSP Module in Bit/ Manipulation Sub-class .. 51
Table 4.5: List of Instructions in MIPS® DSP Module in Compare-Pick Sub-class .. 51
Table 4.6: List of Instructions in MIPS® DSP Module in Accumulator and DSPControl Access Sub-class 53
Table 4.7: List of Instructions in MIPS® DSP Module in Indexed-Load Sub-class ... 55
Table 4.8: List of Instructions in MIPS® DSP Module in Branch Sub-class.. 56
Table 5.1: Symbols Used in the Instruction Encoding Tables... 57

Chapter 1

2

About This Book

This chapter describes the terminology and conventions for describing features of the MIPS® Architecture such as
instructions and control and status registers.

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fonts in this book.

1.1.1 Italic Text

• is used for emphasis

• is used for bits, fields, and registers that are important from a software perspective (for instance, address bits
used by software, and programmable fields and registers), and various floating point instruction formats, such as
S and D

• is used for the memory access types, such as cached and uncached

1.1.2 Bold Text

• represents a term that is being defined

• is used for bits and fields that are important from a hardware perspective (for instance, register bits, which are
not programmable but accessible only to hardware)

• is used for ranges of numbers; the range is indicated by an ellipsis. For instance, 5..1 indicates numbers
5 through 1

• is used to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the pro-
cessor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions in

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

3

a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register). Unpriv-
ileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and unprivileged
software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause a result to be generated or not. If a result is gener-
ated, it is UNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

• Implementations of operations generating UNPREDICTABLE results must not depend on any data source
(memory or internal state) which is inaccessible in the current processor mode

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
is inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

• UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

• UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which
there is no exit other than powering down the processor). The assertion of any of the reset signals must restore
the processor to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDICTABLE values, software may depend on the fact that a sampling of an UNSTABLE value results in a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABLE values have one implementation restriction:

• Implementations of operations generating UNSTABLE results must not depend on any data source (memory or
internal state) which is inaccessible in the current processor mode

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

4

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described using a high-level language pseudocode resem-
bling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning

 Assignment

, ≠ Tests for equality and inequality

 Bit string concatenation

xy A y-bit string formed by y copies of the single-bit value x

b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the
binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default base is 10.

0bn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).

0xn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).

xy z Selection of bits y through z of bit string x. Little-endian bit notation (rightmost bit is 0) is used. If y is less
than z, this expression is an empty (zero length) bit string.

x.bit[y] Bit y of bitstring x. Alternative to the traditional MIPS notation xy.

x.bits[y..z] Selection of bits y through z of bit string x. Alternative to the traditional MIPS notation xy z.

x.byte[y] Byte y of bitstring x. Equivalent to the traditional MIPS notation x8*y+7 8*y.

x.bytes[y..z] Selection of bytes y through z of bit string x. Alternative to the traditional MIPS notation x8*y+7 8*z

x halfword[y]
x.word[i]

x.doubleword[i]

Similar extraction of particular bitfields (used in e.g., MSA packed SIMD vectors).

x.bit31, x.byte0, etc. Examples of abbreviated form of x.bit[y], etc. notation, when y is a constant.

x fieldy Selection of a named subfield of bitstring x, typically a register or instruction encoding.
More formally described as “Field y of register x”.
For example, FIR.D = “the D bit of the Coprocessor 1 Floating-point Implementation Register (FIR)”.

,  2’s complement or floating point arithmetic: addition, subtraction

*,  2’s complement or floating point multiplication (both used for either)

div 2’s complement integer division

mod 2’s complement modulo

 Floating point division

 2’s complement less-than comparison

 2’s complement greater-than comparison

 2’s complement less-than or equal comparison

≥ 2’s complement greater-than or equal comparison

nor Bitwise logical NOR

xor Bitwise logical XOR

and Bitwise logical AND

or Bitwise logical OR

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

5

not Bitwise inversion

&& Logical (non-Bitwise) AND

<< Logical Shift left (shift in zeros at right-hand-side)

>> Logical Shift right (shift in zeros at left-hand-side)

GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers

GPR[x] CPU general-purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR[x] is a short-hand notation for SGPR[SRSCtlCSS, x].

SGPR[s,x] In Release 2 of the Architecture and subsequent releases, multiple copies of the CPU general-purpose regis-
ters may be implemented. SGPR[s,x] refers to GPR set s, register x.

FPR[x] Floating Point operand register x

FCC[CC] Floating Point condition code CC. FCC[0] has the same value as COC[1].
Release 6 removes the floating point condition codes.

FPR[x] Floating Point (Coprocessor unit 1), general register x

CPR[z,x,s] Coprocessor unit z, general register x, select s

CP2CPR[x] Coprocessor unit 2, general register x

CCR[z,x] Coprocessor unit z, control register x

CP2CCR[x] Coprocessor unit 2, control register x

COC[z] Coprocessor unit z condition signal

Xlat[x] Translation of the MIPS16e GPR number x into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (0  Little-Endian, 1  Big-Endian). Specifies the endianness of
the memory interface (see LoadMemory and StoreMemory pseudocode function descriptions) and the endi-
anness of Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0  Little-Endian, 1  Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and is implemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRRE and User mode).

LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when a linked load occurs and is tested by the conditional store. It is cleared, during other CPU operation,
when a store to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

6

I:,
I+n:,
I-n:

This occurs as a prefix to Operation description lines and functions as a label. It indicates the instruction
time during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
time label of I. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections
labeled with the instruction time, relative to the current instruction I, in which the effect of that pseudocode
appears to occur. For example, an instruction may have a result that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in a section labeled I+1.
The effect of pseudocode statements for the current instruction labeled I+1 appears to occur “at the same
time” as the effect of pseudocode statements labeled I for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for
different instructions that occur “at the same time,” there is no defined order. Programs must not depend on a
particular order of evaluation between such sections.

PC The Program Counter value. During the instruction time of an instruction, this is the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction time is determined by assign-
ing a value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.
In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the restart
address into a GPR on a jump-and-link or branch-and-link instruction, or into a Coprocessor 0 register on an
exception. Release 6 adds PC-relative address computation and load instructions. The PC value contains a
full 32-bit address, all of which are significant during a memory reference.

ISA Mode In processors that implement the MIPS16e Application Specific Extension or the microMIPS base architec-
tures, the ISA Mode is a single-bit register that determines in which mode the processor is executing, as fol-
lows:

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on a jump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 phys-

ical address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes.

FP32RegistersMode Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). It is optional if the FPU has
32 64-bit FPRs in which 64-bit data types are stored in any FPR.

microMIPS64 implementations have a compatibility mode in which the processor references the FPRs as if it
were a microMIPS32 implementation. In such a case FP32RegisterMode is computed from the FR bit in the
Status register. If this bit is a 0, the processor operates as if it had 32, 32-bit FPRs. If this bit is a 1, the proces-
sor operates with 32 64-bit FPRs.

The value of FP32RegistersMode is computed from the FR bit in the Status register.

InstructionInBranchDe-
laySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch
or jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the value is
false if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which
is not executed in the delay slot of a branch or jump.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions

1 The processor is executing MIIPS16e or microMIPS
instructions

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

7

1.4 Notation for Register Field Accessibility

In this document, the read/write properties of register fields use the notations shown in Table 1.1.

SignalException(excep-
tion, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
parameter as an exception-specific argument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

Table 1.2 Read/Write Register Field Notation

Read/Write
Notation Hardware Interpretation Software Interpretation

R/W A field in which all bits are readable and writable by software and, potentially, by hardware.
Hardware updates of this field are visible by software read. Software updates of this field are visible by
hardware read.
If the Reset State of this field is ‘‘Undefined’’, either software or hardware must initialize the value before
the first read will return a predictable value. This should not be confused with the formal definition of
UNDEFINED behavior.

R A field which is either static or is updated only by
hardware.
If the Reset State of this field is either ‘‘0’’, ‘‘Pre-
set’’, or ‘‘Externally Set’’, hardware initializes this
field to zero or to the appropriate state, respectively,
on powerup. The term ‘‘Preset’’ is used to suggest
that the processor establishes the appropriate state,
whereas the term ‘‘Externally Set’’ is used to sug-
gest that the state is established via an external
source (e.g., personality pins or initialization bit
stream). These terms are suggestions only, and are
not intended to act as a requirement on the imple-
mentation.
If the Reset State of this field is ‘‘Undefined’’, hard-
ware updates this field only under those conditions
specified in the description of the field.

A field to which the value written by software is
ignored by hardware. Software may write any value
to this field without affecting hardware behavior.
Software reads of this field return the last value
updated by hardware.
If the Reset State of this field is ‘‘Undefined’’, soft-
ware reads of this field result in an UNPREDICT-
ABLE value except after a hardware update done
under the conditions specified in the description of
the field.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

8

R0 R0 = reserved, read as zero, ignore writes by soft-
ware.

Hardware ignores software writes to an R0 field.
Neither the occurrence of such writes, nor the val-
ues written, affects hardware behavior.

Hardware always returns 0 to software reads of R0
fields.

The Reset State of an R0 field must always be 0.

If software performs an mtc0 instruction which
writes a non-zero value to an R0 field, the write to
the R0 field will be ignored, but permitted writes to
other fields in the register will not be affected.

Architectural Compatibility: R0 fields are reserved,
and may be used for not-yet-defined purposes in
future revisions of the architecture.

When writing an R0 field, current software should
only write either all 0s, or, preferably, write back the
same value that was read from the field.

Current software should not assume that the value
read from R0 fields is zero, because this may not be
true on future hardware.

Future revisions of the architecture may redefine an
R0 field, but must do so in such a way that software
which is unaware of the new definition and either
writes zeros or writes back the value it has read from
the field will continue to work correctly.

Writing back the same value that was read is guaran-
teed to have no unexpected effects on current or
future hardware behavior. (Except for non-atomicity
of such read-writes.)

Writing zeros to an R0 field may not be preferred
because in the future this may interfere with the oper-
ation of other software which has been updated for
the new field definition.

0 Release 6
Release 6 legacy “0” behaves like R0 - read as zero, nonzero writes ignored.

Legacy “0” should not be defined for any new control register fields; R0 should be used instead.

HW returns 0 when read.
HW ignores writes.

Only zero should be written, or, value read from reg-
ister.

pre-Release 6
pre-Release 6 legacy “0” - read as zero, nonzero writes UNDEFINED

A field which hardware does not update, and for
which hardware can assume a zero value.

A field to which the value written by software must
be zero. Software writes of non-zero values to this
field may result in UNDEFINED behavior of the
hardware. Software reads of this field return zero as
long as all previous software writes are zero.
If the Reset State of this field is ‘‘Undefined’’, soft-
ware must write this field with zero before it is guar-
anteed to read as zero.

Table 1.2 Read/Write Register Field Notation (Continued)

Read/Write
Notation Hardware Interpretation Software Interpretation

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

9

1.5 For More Information

MIPS processor manuals and additional information about MIPS products can be found at http://www.mips.com.

.

.

R/W0 Like R/W, except that writes of non-zero to a R/W0 field are ignored.
E.g. Status.NMI

Hardware may set or clear an R/W0 bit.

Hardware ignores software writes of nonzero to an
R/W0 field. Neither the occurrence of such writes,
nor the values written, affects hardware behavior.

Software writes of 0 to an R/W0 field may have an
effect.

Hardware may return 0 or nonzero to software
reads of an R/W0 bit.

If software performs an mtc0 instruction which
writes a non-zero value to an R/W0 field, the write
to the R/W0 field will be ignored, but permitted
writes to other fields in the register will not be
affected.

Software can only clear an R/W0 bit.

Software writes 0 to an R/W0 field to clear the field.

Software writes nonzero to an R/W0 bit in order to
guarantee that the bit is not affected by the write.

Table 1.2 Read/Write Register Field Notation (Continued)

Read/Write
Notation Hardware Interpretation Software Interpretation

Chapter 2

10

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical
order in the tables at the beginning of the next chapter.

2.1 Understanding the Instruction Fields

Figure 2.1 shows an example instruction. Following the figure are descriptions of the fields listed below:

• “Instruction Fields” on page 12

• “Instruction Descriptive Name and Mnemonic” on page 12

• “Format Field” on page 12

• “Purpose Field” on page 13

• “Description Field” on page 13

• “Restrictions Field” on page 13

• “Operation Field” on page 14

• “Exceptions Field” on page 15

• “Programming Notes and Implementation Notes Fields” on page 15

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

12

2.1.1 Instruction Fields

Fields encoding the instruction word are shown in register form at the top of the instruction description. The follow-
ing rules are followed:

• The values of constant fields and the opcode names are listed in uppercase (SPECIAL and ADD in Figure 2.2).
Constant values in a field are shown in binary below the symbolic or hexadecimal value.

• All variable fields are listed with the lowercase names used in the instruction description (rs, rt, and rd in Figure
2.2).

• Fields that contain zeros but are not named are unused fields that are required to be zero (bits 10:6 in Figure 2.2).
If such fields are set to non-zero values, the operation of the processor is UNPREDICTABLE.

Figure 2.2 Example of Instruction Fields

2.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown in Figure
2.3.

Figure 2.3 Example of Instruction Descriptive Name and Mnemonic

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
given in the Format field. If the instruction definition was later extended, the architecture levels at which it was
extended and the assembler formats for the extended definition are shown in their order of extension (for an example,
see C.cond fmt). The MIPS architecture levels are inclusive; higher architecture levels include all instructions in pre-
vious levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the
extended architecture.

Figure 2.4 Example of Instruction Format

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields.

The architectural level at which the instruction was first defined, for example “MIPS32” is shown at the right side of
the page. Instructions introduced at different times by different ISA family members, are indicated by markings such
as “MIPS64, MIPS32 Release 2”. Instructions removed by particular architecture release are indicated in the Avail-
ability section.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0
00000

ADD
100000

6 5 5 5 5 6

rs rt rd

Add Word ADD

Format: ADD fd,rs,rt MIPS32

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

13

There can be more than one assembler format for each architecture level. Floating point operations on formatted data
show an assembly format with the actual assembler mnemonic for each valid value of the fmt field. For example, the
ADD fmt instruction lists both ADD.S and ADD.D.

The assembler format lines sometimes include parenthetical comments to help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

The term decoded_immediate is used if the immediate field is encoded within the binary format but the assembler for-
mat uses the decoded value. The term left_shifted_offset is used if the offset field is encoded within the binary format
but the assembler format uses value after the appropriate amount of left shifting.

2.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Figure 2.5 Example of Instruction Purpose

2.1.5 Description Field

If a one-line symbolic description of the instruction is feasible, it appears immediately to the right of the Description
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation.

Figure 2.6 Example of Instruction Description

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU general-purpose register specified by the
instruction field rt. “FPR fs” is the floating point operand register specified by the instruction field fs. “CP1 register
fd” is the coprocessor 1 general register specified by the instruction field fd. “FCSR” is the floating point Control /
Status register.

2.1.6 Restrictions Field

The Restrictions field documents any possible restrictions that may affect the instruction. Most restrictions fall into
one of the following six categories:

• Valid values for instruction fields (for example, see floating point ADD.fmt)

• ALIGNMENT requirements for memory addresses (for example, see LW)

Purpose: Add Word

To add 32-bit integers. If an overflow occurs, then trap.

Description: GPR[rd]  GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit
result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination
register is not modified and an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is placed into GPR rd.

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

14

• Valid values of operands (for example, see ALNV.PS)

• Valid operand formats (for example, see floating point ADD.fmt)

• Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards
for which some processors do not have hardware interlocks (for example, see MUL).

• Valid memory access types (for example, see LL/SC)

Figure 2.7 Example of Instruction Restrictions

2.1.7 Availability and Compatibility Fields

The Availability and Compatibility sections are not provided for all instructions. These sections list considerations
relevant to whether and how an implementation may implement some instructions, when software may use such
instructions, and how software can determine if an instruction or feature is present. Such considerations include:

• Some instructions are not present on all architecture releases. Sometimes the implementation is required to
signal a Reserved Instruction exception, but sometimes executing such an instruction encoding is architec-
turally defined to give UNPREDICTABLE results.

• Some instructions are available for implementations of a particular architecture release, but may be provided
only if an optional feature is implemented. Control register bits typically allow software to determine if the
feature is present.

• Some instructions may not behave the same way on all implementations. Typically this involves behavior
that was UNPREDICTABLE in some implementations, but which is made architectural and guaranteed con-
sistent so that software can rely on it in subsequent architecture releases.

• Some instructions are prohibited for certain architecture releases and/or optional feature combinations.

• Some instructions may be removed for certain architecture releases. Implementations may then be required
to signal a Reserved Instruction exception for the removed instruction encoding; but sometimes the instruc-
tion encoding is reused for other instructions.

All of these considerations may apply to the same instruction. If such considerations applicable to an instruction are
simple, the architecture level in which an instruction was defined or redefined in the Format field, and/or the Restric-
tions section, may be sufficient; but if the set of such considerations applicable to an instruction is complicated, the
Availability and Compatibility sections may be provided.

2.1.8 Operation Field

The Operation field describes the operation of the instruction as pseudocode in a high-level language notation resem-
bling Pascal. This formal description complements the Description section; it is not complete in itself because many
of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Restrictions:

None

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

15

Figure 2.8 Example of Instruction Operation

See 2.2 “Operation Section Notation and Functions” on page 15 for more information on the formal notation used
here.

2.1.9 Exceptions Field

The Exceptions field lists the exceptions that can be caused by Operation of the instruction. It omits exceptions that
can be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by asyn-
chronous external events such as an Interrupt. Although a Bus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship
between load and store instructions and external error indications, like Bus Error, are dependent upon the implemen-
tation.

Figure 2.9 Example of Instruction Exception

An instruction may cause implementation-dependent exceptions that are not present in the Exceptions section.

2.1.10 Programming Notes and Implementation Notes Fields

The Notes sections contain material that is useful for programmers and implementors, respectively, but that is not
necessary to describe the instruction and does not belong in the description sections.

Figure 2.10 Example of Instruction Programming Notes

2.2 Operation Section Notation and Functions

In an instruction description, the Operation section uses a high-level language notation to describe the operation per-
formed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described below.

This section presents information about the following topics:

• “Instruction Execution Ordering” on page 16

• “Pseudocode Functions” on page 16

Operation:

temp  (GPR[rs]31||GPR[rs]31..0) + (GPR[rt]31||GPR[rt]31..0)
if temp32  temp31 then

SignalException(IntegerOverflow)
else

GPR[rd]  temp
endif

Exceptions:

Integer Overflow

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

16

2.2.1 Instruction Execution Ordering

Each of the high-level language statements in the Operations section are executed sequentially (except as constrained
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both.

These functions are defined in this section, and include the following:

• “Coprocessor General Register Access Functions” on page 16

• “Memory Operation Functions” on page 17

• “Floating Point Functions” on page 20

• “Instruction Mode Checking Functions” on page 23

• “Miscellaneous Functions” on page 27

2.2.2.1 Coprocessor General Register Access Functions

Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between coprocessor
general registers and the rest of the system. What a coprocessor does with a word or doubleword supplied to it and
how a coprocessor supplies a word or doubleword is defined by the coprocessor itself. This behavior is abstracted
into the functions described in this section.

2.2.2.1.1 COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with a word from memory during a
load word operation. The action is coprocessor-specific. The typical action would be to store the contents of mem-
word in coprocessor general register rt.

Figure 2.11 COP_LW Pseudocode Function

COP_LW (z, rt, memword)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */

endfunction COP_LW

2.2.2.1.2 COP_LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory
during a load doubleword operation. The action is coprocessor-specific. The typical action would be to store the con-
tents of memdouble in coprocessor general register rt.

Figure 2.12 COP_LD Pseudocode Function

COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memdouble: 64-bit doubleword value supplied to the coprocessor.

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

17

/* Coprocessor-dependent action */

endfunction COP_LD

2.2.2.1.3 COP_SW

The COP_SW function defines the action taken by coprocessor z to supply a word of data during a store word opera-
tion. The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in
coprocessor general register rt.

Figure 2.13 COP_SW Pseudocode Function

dataword  COP_SW (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
dataword: 32-bit word value

/* Coprocessor-dependent action */

endfunction COP_SW

2.2.2.1.4 COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store dou-
bleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the low-
order doubleword in coprocessor general register rt.

Figure 2.14 COP_SD Pseudocode Function

datadouble  COP_SD (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
datadouble: 64-bit doubleword value

/* Coprocessor-dependent action */

endfunction COP_SD

2.2.2.1.5 CoprocessorOperation

The CoprocessorOperation function performs the specified Coprocessor operation.

Figure 2.15 CoprocessorOperation Pseudocode Function

CoprocessorOperation (z, cop_fun)

/* z: Coprocessor unit number */
/* cop_fun: Coprocessor function from function field of instruction */

/* Transmit the cop_fun value to coprocessor z */

endfunction CoprocessorOperation

2.2.2.2 Memory Operation Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for a little-endian
ordering this is the least-significant byte.

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

18

In the Operation pseudocode for load and store operations, the following functions summarize the handling of virtual
addresses and the access of physical memory. The size of the data item to be loaded or stored is passed in the Access-
Length field. The valid constant names and values are shown in Table 2.1. The bytes within the addressed unit of
memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined directly
from the AccessLength and the two or three low-order bits of the address.

2.2.2.2.1 Misaligned Support

MIPS processors originally required all memory accesses to be naturally aligned. MSA (the MIPS SIMD Architec-
ture) supported misaligned memory accesses for its 128 bit packed SIMD vector loads and stores, from its introduc-
tion in MIPS Release 5. Release 6 requires systems to provide support for misaligned memory accesses for all
ordinary memory reference instructions: the system must provide a mechanism to complete a misaligned memory ref-
erence for this instruction, ranging from full execution in hardware to trap-and-emulate.

The pseudocode function MisalignedSupport encapsulates the version number check to determine if misalignment is
supported for an ordinary memory access.

Figure 2.16 MisalignedSupport Pseudocode Function

predicate  MisalignedSupport ()
return Config.AR ≥ 2 // Architecture Revision 2 corresponds to MIPS Release 6.

end function

See Appendix B, “Misaligned Memory Accesses” on page 511 for a more detailed discussion of misalignment,
including pseudocode functions for the actual misaligned memory access.

2.2.2.2.2 AddressTranslation

The AddressTranslation function translates a virtual address to a physical address and its cacheability and coherency
attribute, describing the mechanism used to resolve the memory reference.

Given the virtual address vAddr, and whether the reference is to Instructions or Data (IorD), find the corresponding
physical address (pAddr) and the cacheability and coherency attribute (CCA) used to resolve the reference. If the vir-
tual address is in one of the unmapped address spaces, the physical address and CCA are determined directly by the
virtual address. If the virtual address is in one of the mapped address spaces then the TLB or fixed mapping MMU
determines the physical address and access type; if the required translation is not present in the TLB or the desired
access is not permitted, the function fails and an exception is taken.

Figure 2.17 AddressTranslation Pseudocode Function

(pAddr, CCA)  AddressTranslation (vAddr, IorD, LorS)

/* pAddr: physical address */
/* CCA: Cacheability&Coherency Attribute,the method used to access caches*/
/* and memory and resolve the reference */

/* vAddr: virtual address */
/* IorD: Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

2.2.2.2.3 LoadMemory

The LoadMemory function loads a value from memory.

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

19

This action uses cache and main memory as specified in both the Cacheability and Coherency Attribute (CCA) and
the access (IorD) to find the contents of AccessLength memory bytes, starting at physical location pAddr. The data is
returned in a fixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address
and the AccessLength indicate which of the bytes within MemElem need to be passed to the processor. If the memory
access type of the reference is uncached, only the referenced bytes are read from memory and marked as valid within
the memory element. If the access type is cached but the data is not present in cache, an implementation-specific size
and alignment block of memory is read and loaded into the cache to satisfy a load reference. At a minimum, this
block is the entire memory element.

Figure 2.18 LoadMemory Pseudocode Function

MemElem  LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */
/* width is the same size as the CPU general-purpose register, */
/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */
/* respectively. */
/* CCA: Cacheability&CoherencyAttribute=method used to access caches */
/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */
/* pAddr: physical address */
/* vAddr: virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadMemory

2.2.2.2.4 StoreMemory

The StoreMemory function stores a value to memory.

The specified data is stored into the physical location pAddr using the memory hierarchy (data caches and main mem-
ory) as specified by the Cacheability and Coherency Attribute (CCA). The MemElem contains the data for an aligned,
fixed-width memory element (a word for 32-bit processors, a doubleword for 64-bit processors), though only the
bytes that are actually stored to memory need be valid. The low-order two (or three) bits of pAddr and the AccessLen-
gth field indicate which of the bytes within the MemElem data should be stored; only these bytes in memory will
actually be changed.

Figure 2.19 StoreMemory Pseudocode Function

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* AccessLength: Length, in bytes, of access */
/* MemElem: Data in the width and alignment of a memory element. */
/* The width is the same size as the CPU general */
/* purpose register, either 4 or 8 bytes, */
/* aligned on a 4- or 8-byte boundary. For a */
/* partial-memory-element store, only the bytes that will be*/
/* stored must be valid.*/
/* pAddr: physical address */
/* vAddr: virtual address */

endfunction StoreMemory

2.2.2.2.5 Prefetch

The Prefetch function prefetches data from memory.

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

20

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may
increase performance but must not change the meaning of the program or alter architecturally visible state.

Figure 2.20 Prefetch Pseudocode Function

Prefetch (CCA, pAddr, vAddr, DATA, hint)

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* pAddr: physical address */
/* vAddr: virtual address */
/* DATA: Indicates that access is for DATA */
/* hint: hint that indicates the possible use of the data */

endfunction Prefetch

Table 2.1 lists the data access lengths and their labels for loads and stores.

2.2.2.2.6 SyncOperation

The SyncOperation function orders loads and stores to synchronize shared memory.

This action makes the effects of the synchronizable loads and stores indicated by stype occur in the same order for all
processors.

Figure 2.21 SyncOperation Pseudocode Function

SyncOperation(stype)

/* stype: Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

2.2.2.3 Floating Point Functions

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are inter-
preted to form a formatted value. If an FPR contains a value in some format, rather than unformatted contents from a
load (uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).

Table 2.1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning

DOUBLEWORD 7 8 bytes (64 bits)

SEPTIBYTE 6 7 bytes (56 bits)

SEXTIBYTE 5 6 bytes (48 bits)

QUINTIBYTE 4 5 bytes (40 bits)

WORD 3 4 bytes (32 bits)

TRIPLEBYTE 2 3 bytes (24 bits)

HALFWORD 1 2 bytes (16 bits)

BYTE 0 1 byte (8 bits)

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

21

2.2.2.3.1 ValueFPR

The ValueFPR function returns a formatted value from the floating point registers.

Figure 2.22 ValueFPR Pseudocode Function

value  ValueFPR(fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in SWC1 and SDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

valueFPR  FPR[fpr]

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode  0)

if (fpr0  0) then
valueFPR  UNPREDICTABLE

else
valueFPR  FPR[fpr1]31..0  FPR[fpr]31..0

endif
else

valueFPR  FPR[fpr]
endif

L:
if (FP32RegistersMode  0) then

valueFPR  UNPREDICTABLE
else

valueFPR  FPR[fpr]
endif

DEFAULT:
valueFPR  UNPREDICTABLE

endcase
endfunction ValueFPR

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored into CP1
registers by a computational or move operation. This binary representation is visible to store or move-from instruc-
tions. Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a
different format.

2.2.2.3.2 StoreFPR

Figure 2.23 StoreFPR Pseudocode Function

StoreFPR (fpr, fmt, value)

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

22

/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* value: The formattted value to be stored into the FPR */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in LWC1 and LDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

FPR[fpr]  value

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode  0)

if (fpr0  0) then
UNPREDICTABLE

else
FPR[fpr]  UNPREDICTABLE32  value31..0
FPR[fpr1]  UNPREDICTABLE32  value63..32

endif
else

FPR[fpr]  value
endif

L:
if (FP32RegistersMode  0) then

UNPREDICTABLE
else

FPR[fpr]  value
endif

endcase

endfunction StoreFPR

2.2.2.3.3 CheckFPException

The pseudocode shown below checks for an enabled floating point exception and conditionally signals the exception.

Figure 2.24 CheckFPException Pseudocode Function

CheckFPException()

/* A floating point exception is signaled if the E bit of the Cause field is a 1 */
/* (Unimplemented Operations have no enable) or if any bit in the Cause field */
/* and the corresponding bit in the Enable field are both 1 */

if ((FCSR17  1) or
((FCSR16..12 and FCSR11..7)  0))) then

SignalException(FloatingPointException)
endif

endfunction CheckFPException

2.2.2.3.4 FPConditionCode

The FPConditionCode function returns the value of a specific floating point condition code.

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

23

Figure 2.25 FPConditionCode Pseudocode Function

tf FPConditionCode(cc)

/* tf: The value of the specified condition code */

/* cc: The Condition code number in the range 0..7 */

if cc = 0 then
FPConditionCode  FCSR23

else
FPConditionCode  FCSR24+cc

endif

endfunction FPConditionCode

2.2.2.3.5 SetFPConditionCode

The SetFPConditionCode function writes a new value to a specific floating point condition code.

Figure 2.26 SetFPConditionCode Pseudocode Function

SetFPConditionCode(cc, tf)
if cc = 0 then

FCSR  FCSR31..24 || tf || FCSR22..0
else

FCSR  FCSR31..25+cc || tf || FCSR23+cc..0
endif

endfunction SetFPConditionCode

2.2.2.4 Instruction Mode Checking Functions

2.2.2.4.1 Are64BitFPOperationsEnabled

The Are64BitFPOperationsEnabled function is used to determine if a 64-bit floating point instruction may be exe-
cuted (and conversely, whether a Reserved Instruction exception should be signaled). On a Release 1 processor, such
operations are never enabled and this function returns 0. On a Release 2 processor, which supports a 64-bit FPU on a
32-bit processors (and therefore, on a 64-bit processor running with 64-bit operations disabled), the function simply
checks the F64 bit in the FIR register.

Figure 2.27 Are64BitFPOperationsEnabled Pseudocode Function

enabled  Are64BitFPOperationsEnabled()

/* enabled: true if 64-bit floating point operations are enabled; */
/* false if they are not */

if (ArchitectureRevision()  2) then
Are64BitFPOperationsEnabled  FIRF64

else
Are64BitFPOperationsEnabled  0

endif

endfunction Are64FPBitOperationsEnabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

24

2.2.2.4.2 IsCoprocessorEnabled

The IsCoprocessorEnabled function is used to determine if access is available to one of the four coprocessors. This is
primarily done by looking at the value of the appropriate CU bit in the Status register, but complicated by the fact
that access to coprocessor 0 is also enabled if the processor is running in Kernel Mode or Debug Mode.

Figure 2.28 IsCoprocessorEnabled PseudocodeFunction

enabled  IsCoprocessorEnabled(z)

/* enabled: true if the coprocessor is enabled; false if it is not */

/* z: The coprocessor unit number in the range 0..3 */

case z of
0:

IsCoprocessorEnabled 
(StatusKSU  0b00) or (DebugDM  1) or
(StatusEXL  1) or (StatusERL  1)

1:
IsCoprocessorEnabled  (StatusCU1  1)

2:
IsCoprocessorEnabled  (StatusCU2  1)

3:
IsCoprocessorEnabled  (StatusCU3  1)

endcase

endfunction IsCoprocessorEnabled

2.2.2.4.3 IsCoprocessor2Implemented

The IsCoprocessor2Implemented function is used to determine if coprocessor 2 is implemented. This is determined
by the state of the C2 bit in the Config1 register.

Figure 2.29 IsCoprocessor2 Pseudocode Function

impl  IsCoprocessor2Implemented()

/* impl: true if coprocessor 2 is implemented; false if it is not */

IsCoprocessor2Implemented  Config1C2

endfunction IsCoprocessor2Implemented

2.2.2.4.4 IsEJTAGImplemented

The IsEJTAGImplemented function is used to determine if EJTAG is implemented by the processor. This is deter-
mined by the state of the EP bit in the Config1 register.

Figure 2.30 IsEJTAGImplemented Pseudocode Function

impl  IsEJTAGImplemented()

/* impl: true if EJTAG is implemented; false if it is not */

IsEJTAGImplemented  Config1EP

endfunction IsEJTAGImplemented

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

25

2.2.2.4.5 IsFloatingPointImplemented

The IsFloatingPointImplemented function is used to determine if floating point is implemented by the processor and,
additionally, whether a particular floating point datatype is implemented. Whether floating point is implemented at all
is determined by the state of the FP bit in the Config1 register. The determination of whether a particular datatype is
implemented is done by looking at the architecture of the chip (MIPS32 or MIPS64, as determined by the AT field in
the Config register), and the state of the S, D, and PS bits in the FIR coprocessor 1 register.

Figure 2.31 IsFloatingPointImplemented Pseudocode Function

impl  IsFloatingPointImplemented(fmt)

/* impl: true if floating point is implemented; false if it is not */

/* fmt: The floating point datatype to be checked:/
/* 0: Determine if any floating point datatype is implemented */
/* S, D, W, L, PS: Determine if a specific datatype is */
/* implemented

if Config1FP = 0 then
IsFloatingPointImplemented  0

else
case fmt of

0:
IsFloatingPointImplemented  

S:
IsFloatingPointImplemented  FIRS

W:
IsFloatingPointImplemented 

(((ArchitectureRevision() = 1) and FIRS)
or

((ArchitectureRevision()  2) and FIRW))

D:
IsFloatingPointImplemented  FIRD

L: /* L datatype is valid on a MIPS64 Release 1 implementation */
/* or on a Release 2 implementation with the L bit set in FIR */
IsFloatingPointImplemented 

(((ArchitectureRevision() = 1) and
((ConfigAT = 1) or (Config1AT = 2)))

or
((ArchitectureRevision()  2) and FIRL))

PS:
IsFloatingPointImplemented  FIRPS and

(((ArchitectureRevision() = 1) and
((ConfigAT = 1) or (Config1AT = 2)))

or
(ArchitectureRevision()  2))

endcase
endif

endfunction IsFloatingPointImplemented

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

26

2.2.2.5 Pseudocode Functions Related to Sign and Zero Extension

2.2.2.5.1 Sign extension and zero extension in pseudocode

Much pseudocode uses a generic function sign_extend without specifying from what bit position the extension is
done, when the intention is obvious. E.g. sign_extend(immediate16) or sign_extend(disp9).

However, sometimes it is necessary to specify the bit position. For example, sign_extend(temp31..0) or the

more complicated (offset15)
GPRLEN-(16+2) || offset || 02.

The explicit notation sign_extend.nbits(val) or sign_extend(val,nbits) is suggested as a simpli-
fication. They say to sign extend as if an nbits-sized signed integer. The width to be sign extended to is usually appar-
ent by context, and is usually GPRLEN, 32 or 64 bits. The previous examples then become.

sign_extend(temp31..0)
= sign_extend.32(temp)

and
(offset15)

GPRLEN-(16+2) || offset || 02

= sign_extend.16(offset)<<2

Note that sign_extend.N(value) extends from bit position N-1, if the bits are numbered 0..N-1 as is typical.

The explicit notations sign_extend.nbits(val) or sign_extend(val,nbits) is used as a simplifica-
tion. These notations say to sign extend as if an nbits-sized signed integer. The width to be sign extended to is usually
apparent by context, and is usually GPRLEN, 32 or 64 bits.

Figure 2.32 sign_extend Pseudocode Functions
sign_extend.nbits(val) = sign_extend(val,nbits) /* syntactic equivalents */

function sign_extend(val,nbits)
return (valnbits-1)

GPRLEN-nbits || valnbits-1..0
end function

The earlier examples can be expressed as
(offset15)

GPRLEN-(16+2) || offset || 02

= sign_extend.16(offset) << 2)

and
sign_extend(temp31..0)
= sign_extend.32(temp)

Similarly for zero_extension, although zero extension is less common than sign extension in the MIPS ISA.

Floating point may use notations such as zero_extend.fmt corresponding to the format of the FPU instruction.
E.g. zero_extend.S and zero_extend.D are equivalent to zero_extend.32 and zero_extend.64.

Existing pseudocode may use any of these, or other, notations.

2.2.2.5.2 memory_address

The pseudocode function memory_address performs mode-dependent address space wrapping for compatibility
between MIPS32 and MIPS64. It is applied to all memory references. It may be specified explicitly in some places,
particularly for new memory reference instructions, but it is also declared to apply implicitly to all memory refer-
ences as defined below. In addition, certain instructions that are used to calculate effective memory addresses but
which are not themselves memory accesses specify memory_address explicitly in their pseudocode.

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

27

Figure 2.33 memory_address Pseudocode Function
function memory_address(ea)

return ea
end function

On a 32-bit CPU, memory_address returns its 32-bit effective address argument unaffected.

In addition to the use of memory_address for all memory references (including load and store instructions, LL/
SC), Release 6 extends this behavior to control transfers (branch and call instructions), and to the PC-relative address
calculation instructions (ADDIUPC, AUIPC, ALUIPC). In newer instructions the function is explicit in the pseudo-
code.

Implicit address space wrapping for all instruction fetches is described by the following pseudocode fragment which
should be considered part of instruction fetch:

Figure 2.34 Instruction Fetch Implicit memory_address Wrapping
PC  memory_address(PC)
(instruction_data, length)  instruction_fetch(PC)
/* decode and execute instruction */

Implicit address space wrapping for all data memory accesses is described by the following pseudocode, which is
inserted at the top of the AddressTranslation pseudocode function:

Figure 2.35 AddressTranslation implicit memory_address Wrapping
(pAddr, CCA)  AddressTranslation (vAddr, IorD, LorS)

vAddr  memory_address(vAddr)

In addition to its use in instruction pseudocode,

2.2.2.6 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

2.2.2.6.1 SignalException

The SignalException function signals an exception condition.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.36 SignalException Pseudocode Function

SignalException(Exception, argument)

/* Exception: The exception condition that exists. */
/* argument: A exception-dependent argument, if any */

endfunction SignalException

2.2.2.6.2 SignalDebugBreakpointException

The SignalDebugBreakpointException function signals a condition that causes entry into Debug Mode from non-
Debug Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

28

Figure 2.37 SignalDebugBreakpointException Pseudocode Function

SignalDebugBreakpointException()

endfunction SignalDebugBreakpointException

2.2.2.6.3 SignalDebugModeBreakpointException

The SignalDebugModeBreakpointException function signals a condition that causes entry into Debug Mode from
Debug Mode (i.e., an exception generated while already running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.38 SignalDebugModeBreakpointException Pseudocode Function

SignalDebugModeBreakpointException()

endfunction SignalDebugModeBreakpointException

2.2.2.6.4 NullifyCurrentInstruction

The NullifyCurrentInstruction function nullifies the current instruction.

The instruction is aborted, inhibiting not only the functional effect of the instruction, but also inhibiting all exceptions
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullification
kills the instruction in the delay slot of the branch likely instruction.

Figure 2.39 NullifyCurrentInstruction PseudoCode Function

NullifyCurrentInstruction()

endfunction NullifyCurrentInstruction

2.2.2.6.5 PolyMult

The PolyMult function multiplies two binary polynomial coefficients.

Figure 2.40 PolyMult Pseudocode Function

PolyMult(x, y)
temp  0
for i in 0 .. 31

if xi = 1 then
temp  temp xor (y(31-i)..0 || 0

i)
endif

endfor

PolyMult  temp

endfunction PolyMult

2.3 Op and Function Subfield Notation

In some instructions, the instruction subfields op and function can have constant 5- or 6-bit values. When reference is
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction,
op=COP1 and function=ADD. In other cases, a single field has both fixed and variable subfields, so the name con-
tains both upper- and lowercase characters.

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

29

2.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfields in an instruction format (such as fs, ft, imme-
diate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in upper-
case.

For the sake of clarity, an alias is sometimes used for a variable subfield in the formats of specific instructions. For
example, rs=base in the format for load and store instructions. Such an alias is always lowercase since it refers to a
variable subfield.

Bit encodings for mnemonics are given in Volume I, in the chapters describing the CPU, FPU, MDMX, and MIPS16e
instructions.

See “Op and Function Subfield Notation” on page 28 for a description of the op and function subfields.

Chapter 3

30

The nanoMIPS® DSP Application Specific Extension to the
nanoMIPS32® Architecture

3.1 Base Architecture Requirements

The Release 6 nanoMIPS DSP Module requires the implementation of the Release 6 nanoMIPS baseline architecture
for support, specifically the Instruction Set and Privileged Resource Architectures.

3.2 Compliance and Subsetting

Instruction subsetting is not allowed for any version of the DSP Module.

3.3 Introduction to the nanoMIPS® DSP Module

This document contains a complete specification of the DSP Module for the nanoMIPS32TM architecture. Statements
about DSP Module include MIPS DSP Rev1/2/3 and nanoMIPS DSP except where noted. The table entries in
Chapter 4, “nanoMIPS® DSP Module Instruction Summary” on page 41 contain notations which flag the Rev2
instructions, and changes related to nanoMIPS; this information is also available in the per instruction pages. The
extensions comprises new integer instructions and new state that includes new HI-LO accumulator pairs and a
DSPControl register. 32-bit and 64-bit versions of the DSP Module exist which can be included with 32-bit and 64-bit
versions of the baseline architecture, respectively.

The Module has been designed to benefit a wide range of DSP, multimedia, and DSP-like algorithms. The perfor-
mance increase from these extensions can be used to integrate DSP-like functionality into MIPS cores used in a SOC
(System on Chip), potentially reducing overall system cost. The Module includes many of the typical features found
in other integer-based DSP extensions, for example, support for operations on fractional data types and register SIMD
(Single Instruction Multiple Data) operations such as add, subtract, multiply, shift, etc. In addition, the extensions
includes some key features that efficiently address specific problems often encountered in DSP applications. These
include, for example, support for complex multiplication, variable bit insertion and extraction, and the implementa-
tion and use of virtual circular buffers.

This chapter contains a basic overview of the principles behind DSP application processing and the data types and
structures needed to efficiently process such applications. Chapter 4, “nanoMIPS® DSP Module Instruction
Summary” on page 41, contains a list of all the instructions in the DSP Module arranged by function type. Chapter 5,
“Instruction Encoding” on page 57, describes the position of the new instructions in the MIPS instruction opcode
map. The rest of the specification contains a complete list of all the instructions that comprise the DSP Module, and
serves as a quick reference guide to all the instructions. Finally, various Appendix chapters describe how to imple-
ment and use the DSP Module instructions in some common algorithms and inner loops.

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

31

3.4 DSP Applications and their Requirements

The DSP Module has been designed specifically to improve the performance of a set of DSP and DSP-like applica-
tions. Table 3.1 shows these application areas sorted by the size of the data operands typically preferred by that appli-
cation for internal computations. For example, raw audio data is usually signed 16-bit, but 32-bit internal calculations
are often necessary for high quality audio. (Typically, an internal precision of about 28 bits may be all that is required
which can be achieved using a fractional data type of the appropriate width.) There is some cross-over in some cases,
which are not explicitly listed here. For example, some hand-held consumer devices may use lower precision internal
arithmetic for audio processing, that is, 16-bit internal data formats may be sufficient for the quality required for
hand-held devices.

3.5 Fixed-Point Data Types

Typical implementations of DSP algorithms use fractional fixed-point arithmetic, for reasons of size, cost, and power
efficiency. Unlike floating-point arithmetic, fractional fixed-point arithmetic assumes that the position of the decimal
point is fixed with respect to the bits representing the fractional value in the operand. To understand this type of arith-
metic further, please consult DSP textbooks or other references that are easily available on the internet.

Fractional fixed-point data types are often referred to using Q format notation. The general form for this notation is
Qm.n, where Q designates that the data is in fractional fixed-point format, m is the number of bits used to designate
the twos complement integer portion of the number, and n is the number of bits used to designate the twos comple-
ment fractional part of the number. Because the twos complement number is signed, the number of bits required to
express a number is m+n+1, where the additional bit is required to denote the sign. In typical usage, it is very com-
mon for m to be zero. That is, only fractional bits are represented. In this case, a Q notation of the form Q0.n is abbre-
viated to Qn.

For example, a 32-bit word can be used to represent data in Q31 format, which implies one (left-most) sign bit fol-
lowed by the binary point and then 31 bits representing the fractional data value. The interpretation of the 32 bits of
the Q31 representation is shown in Table 3.2. Negative values are represented using the twos-complement of the
equivalent positive value. This format can represent numbers in the range of -1.0 to +0.999999999.... Similarly a
16-bit halfword can be used to represent data in Q15 format, which implies one sign bit followed by 15 fractional bits
that represent a value between -1.0 and +0.9999....

Table 3.2 The Value of a Fixed-Point Q31 Number

Table 3.1 Data Size of DSP Applications

In/Out Data Size Internal Data Size Applications

8 bits 8/16 bits • Printer image processing.
• Still JPEG processing.
• Moving video processing

16 bits 16 bits • Voice Processing. For example, G.723.1, G.729, G.726, echo cancellation,
noise cancellation, channel equalization, etc.

• Soft modem processing. For example V.92.
• General DSP processing. For example, filters, correlation, convolution, etc.

16/24 bits 32 bits • Audio decoding and encoding. For example, MP3, AAC, SRS TruSurround,
Dolby Digital Decoder, Pro Logic II, etc.

+
-

2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15 2-16 2-17 2-18 2-19 2-20 2-21 2-22 2-23 2-24 2-25 2-26 2-27 2-28 2-29 2-30 2-31

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

32

Table 3.3 shows the limits of the Q15 and the Q31 representations. Note that the value -1.0 can be represented
exactly, but the value +1.0 cannot. For practical purposes, 0x7FFFFFFF is used to represent 1.0 inexactly. Thus, the
multiplication of two values where both are -1 will result in an overflow since there is no representation for +1 in
fixed-point format. Saturating instructions must check for this case and prevent the overflow by clamping the result to
the maximal representable value. Instructions in the DSP Module that operate on fractional data types include a “Q”
in the instruction mnemonic; the assumed size of the instruction operands is detailed in the instruction description.

Given a fixed-point representation, we can compute the corresponding decimal value by using bit weights per posi-
tion as shown in Figure 3.1 for a hypothetical Q7 format number representation with 8 total bits.

DSP applications often, but not always, prefer to saturate the result after an arithmetic operation that causes an over-
flow or underflow. For operations on signed values, saturation clamps the result to the smallest negative or largest
positive value in the case of underflow and overflow, respectively. For operations on unsigned values, saturation
clamps the result to either zero or the maximum positive value.

Table 3.3 The Limits of Q15 and Q31 Representations

Fixed-Point
Representation Definition

Hexadecimal
Representation

Decimal
Equivalent

Q15 minimum -215/215 0x8000 -1.0

Q15 maximum (215-1)/215 0x7FFF 0.999969482421875

Q31 minimum -231/231 0x80000000 -1.0

Q31 maximum (231-1)/231 0x7FFFFFFF 0.9999999995343387126922607421875

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

33

Figure 3.1 Computing the Value of a Fixed-Point (Q7) Number

3.6 Saturating Math

Many of the DSP Module arithmetic instructions provide optional saturation of the results, as detailed in each instruc-
tions description.

Saturation of fixed-point addition, subtraction, or shift operations that result in an underflow or overflow requires
clamping the result value to the closest available fixed-point value representable in the given number of result bits.
For operations on unsigned values, underflow is clamped to zero, and overflow to the largest positive fixed-point
value. For operations on signed values, underflow is clamped to the minimum negative fixed-point value and over-
flow to the maximum positive value.

Saturation of fractional fixed-point multiplication operations clamps the result to the maximum representable
fixed-point value when both input multiplicands are equal to the minimum negative value of -1.0, which is indepen-
dent of the Q format used.

-20 2-1bit 2-2 2-3 2-4 2-5 2-6 2-7

Example
0 1 1 0 0 1 0 0

decimal
value is

value

weights

 2-1 + 2-2 + 2-5

= 0.5 + 0.25 + 0.03125
 = 0.78125

binary

Example
0 0 1 1 0 0 0 0

decimal
value is

value

 2-2 + 2-3

= 0.25 + 0.125
 = 0.375

binary

Example
1 0 0 0 0 0 0 0

decimal
value is

value

 -20

= -1.0

binary

Example
1 0 1 0 1 0 0 0

decimal
value is

value

 -20 + 2-2 + 2-4

= -1.0 + 0.25 + 0.0625
 = -0.6875

binary

Example
0 1 1 1 1 1 1 1

decimal
value is

value

 2-1 + 2-2+ 2-3+ 2-4

= 0.5 + 0.25 + 0.125 + 0.0625
binary

maximum positive value

+ 2-5+ 2-6+ 2-7

+ 0.03125 + 0.01562 + 0.00781
= 0.99218

maximum negative value

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

36

at the lowest memory address is loaded into the left-most (most-significant) 8 bits of the 64-bit register. In a lit-
tle-endian processor, the same byte value is loaded into the right-most (least-significant) 8 bits of the register.

In general, if the byte elements are numbered 0-7 according to their order in memory, in a big-endian configuration,
element 0 is at the most-significant end and element 7 is at the least-significant end. In a little-endian configuration,
the order is reversed. This effect applies to all the sizes of data when they are in SIMD format.

To avoid dealing with the endian-ness issue directly, the instructions in the DSP Module simply refer to the left and
right elements of the register when it is required to specify a subset of the elements. This issue can quite easily be
dealt with in the assembler or user code using suitably defined mnemonics that use the appropriate instruction for a
given endian-ness of the processor. A description of how to do this is specified in Appendix A.

3.9 Additional Register State for the DSP Module

The DSP Module adds four new registers. The operating system is required to recognize the presence of the DSP
Module and to include these additional registers in context save and restore operations.

• Three additional HI-LO registers to create a total of four accumulator registers. Many common DSP computations
involve accumulation, e.g., convolution. DSP Module instructions that target the accumulators use two bits to
specify the destination accumulator, with the zero value referring to the original accumulator of the MIPS archi-
tecture.

Release 6 of the MIPS Architecture moves the accumulators into the DSP Module for use as a DSP resource
exclusively.

• A new control register, DSPControl, is used to hold extra state bits needed for efficient support of the new instruc-
tions. Figure 3.5 illustrates the bits in this register. Table 3.4 describes the use of the various bits and the instruc-
tions that refer to the fields. Table 3.5 lists the instructions that affect the DSPControl register ouflag field.

Figure 3.5 MIPS® DSP Module Control Register (DSPControl) Format

31 28 27 24 23 16 15 14 13 12 7 6 5 0

0 ccond ouflag 0 EFI c scount 0 pos

Table 3.4 MIPS® DSP Module Control Register (DSPControl) Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

0 31:28, 15 Not used in the nanoMIPS32 architecture, but
these are reserved bits since they are used in
the nanoMIPS64 architecture. Must be written
as zero; returns zero on read.

0 0 Required

ccond 27:24 Condition code bits set by vector comparison
instructions and used as source selectors by
PICK instructions. The vector element size
determines the number of bits set by a compar-
ison (1, 2, or 4); bits not set are UNPRE-
DICTABLE after the comparison.

R/W 0 Required

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

37

The bits of the overflow flag (ouflag) field in the DSPControl register are set by a number of instructions. These bits
are sticky and can be reset only by an explicit write to these bits in the register (using the WRDSP instruction). The
table below shows which bits can be set by which instructions and under what conditions.

ouflag 23:16 Overflow/underflow indication bits set when
the result(s) of specific instructions (listed in
Table 3.5) caused, or, if optional saturation has
been used, would have caused overflow or
underflow.

R/W 0 Required

EFI 14 Extract Fail Indicator. This bit is set to 1 when
one of the extraction instructions (EXTP,
EXTPV, EXTPDP, or EXTPDP) fails. Failure
occurs when there are insufficient bits to
extract, i.e., when the value of the pos field in
the DSPControl register is less than the size
argument specified in the instruction. This bit
is not sticky—the bit is set or reset after each
extraction operation.

R/W 0 Required

c 13 Carry bit set and used by a special add instruc-
tion used to implement a 64-bit addition across
two GPRs in a nanoMIPS32 implementation.
Instruction ADDSC sets the bit and instruction
ADDWC uses this bit.

R/W 0 Required

scount 12:7 This field is used by the INSV instruction to
specify the size of the bit field to be inserted.

R/W 0 Required

pos 5:0 This field is used by the variable insert instruc-
tion INSV to specify the position to insert bits.
It is also used to indicate the extract position
for the EXTP, EXTPV, EXTPDP, and EXTPD-
PVinstructions. The decrement pos (DP) vari-
ants of these instructions decrement the value
of the pos field by the amount size+1 after the
extraction completes successfully.
The MTHLIP instruction increments the value
of pos by 32 after copying the value of LO to
HI.

R/W 0 Required

Table 3.5 Instructions that set the ouflag bits in DSPControl

Bit Number Instructions That Set This Bit

16 Instructions that set this bit when the destination is accumulator (HI-LO pair) zero and an operation over-
flow or underflow occurs are: DPAQ_S, DPAQ_SA, DPSQ_S, DPSQ_SA, MAQ_S, MAQ_SA, and
MULSAQ_S, DPAQX_S, DPAQX_SA, DPSQX_S, DPSQX_SA.

17 Instructions as above, when the destination is accumulator (HI-LO pair) one.

18 Instructions as above, when the destination is accumulator (HI-LO pair) two.

Table 3.4 MIPS® DSP Module Control Register (DSPControl) Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

38

3.10 Software Detection of the DSP Module

Bit 10 in the config3 CP0 register, “DSP Present” (DSPP), is used to indicate the presence of the DSP Module Rev1,
and bit 11, “DSP Rev2 Present,” (DSP2P), the presence of the DSP Module Rev2, as shown in Figure 3.6. Valid DSP
Module Rev2 implementations set both DSPP and DSP2P bits: the condition of DSP2P set and DSPP unset is invalid.
Software may read the DSPP, DSP2P bits of the Config3 CP0 register to check whether this processor has imple-
mented the DSP Module Rev1 and DSP Module Rev2.

Release 6 of the MIPS Architecture moves the accumulators into the DSP Module for use as a DSP resource exclu-
sively, and introduces the compact branch BPOSGE32C, for which DSP Module Rev3 is required. An implementa-
tion supports Rev3 if CP0 Config3DSPP=1 and Config3DSP2P=1 and ConfigAR>=2.

Software must read Config3MMAR to determine if Release 6 nanoMIPS is supported. If CP0 Config3DSPP=1 and
Config3DSP2P=1 and Config3MMAR>=3, then Release 6 nanoMIPS DSP is supported.

Any attempt to execute DSP Module instructions must cause a Reserved Instruction Exception if DSPP, and DSP2P
are not indicating the presence of the appropriate DSP Module implementation. The DSPP and DSP2P bits are fixed
by the hardware implementation and are read-only for software.

Figure 3.6 Config3 Register Format

The “DSP Module Enable” (DSPEn) bit—the MX bit, bit 24 in the CP0 Status register as shown in Figure 3.7—is
used to enable access to the extra instructions defined by the DSP Module as well as enabling four modified move
instructions (MTLO/HI and MFLO/HI) that provide access to the three additional accumulators ac1, ac2, and ac3.
Executing a DSP Module instruction or one of the four modified move instructions when DSPEn is set to zero causes
a DSP State Disabled Exception and results in exception code 26 in the CP0 Cause register. This allows the OS to do
lazy context-switching. Table 3.6 shows the Cause Register exception code fields.

Figure 3.7 CP0 Status Register Format

19 Instructions as above, when the destination is accumulator (HI-LO pair) three.

20 Instructions that on an overflow/underflow will set this bit are: ABSQ_S, ADD, ADD_S, ADDQ,
ADDQ_S, ADDU, ADDU_S, ADDWC, SUB, SUB_S, SUBQ, SUBQ_S, SUBU, and SUBU_S.

21 Instructions that on an overflow/underflow will set this bit are: MUL, MUL_S, MULEQ_S, MULEU_S,
MULQ_RS, and MULQ_S.

22 Instructions that on an overflow/underflow will set this bit are: PRECRQ_RS, PRECRQU_RS, SHLL,
SHLL_S, SHLLV, and SHLLV_S.

23 Instructions that on an overflow/underflow will set this bit are: EXTR, EXTR_S, EXTR_RS, EXTRV,
EXTRV_RS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DSP2P DSPP

31 25 24 23 0

MX

Table 3.5 Instructions that set the ouflag bits in DSPControl

Bit Number Instructions That Set This Bit

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

39

3.11 Exception Table for the DSP Module

Table 3.7 shows the exceptions caused when a DSP Module or DSP Module Rev2 instruction, MTLO/HI or
MFLO/HI, or any other instruction such as an CorExtend instruction attempts to access the new DSP Module state,
that is, ac1, ac2, or ac3, or the DSPControl register, and all other possible exceptions that relate to the DSP Module.

Implementation Note: Any implementation of the DSP Module must not read or write ac1, ac2, or ac3 if StatusMX=0
for any instruction which might be interpreted as having a field which encodes an accumulator number. Such instruc-
tions include:

• DSP Module Rev1, Rev2 instructions

• MADD, MADDU, MSUB, MSUBU, MULT OR MULTU from the base instruction set.

• MADDP, MFLHXU, MTLHX, MULTP, or PPERM from the SmartMIPS® ASE instruction set.

3.12 DSP Module Instructions that Read and Write the DSPControl Register

Many DSP Module instructions read and write the DSPControl register, some explicitly and some implicitly. Like
other register resource in the architecture, it is the responsibility of the hardware implementation to ensure that appro-
priate execution dependency barriers are inserted and the pipeline stalled for read-after-write dependencies and other
data dependencies that may occur. Table 3.8 lists the DSP Module instructions that can read and write the DSPControl

Table 3.6 Cause Register ExcCode Field

Exception Code Value

Mnemonic DescriptionDecimal Hexadecimal

26 16#1a DSPDis DSP Module State Disabled Exception

Table 3.7 Exception Table for the DSP Module

Config3DSP2P Config3DSPP StatusMX

Exception for
DSP Module Rev2

(or Greater)
Instructions

Exception for DSP
Module Rev1
Instructions

0 0  Reserved Instruction

0 1 0 Reserved Instruction DSP Module State Dis-
abled

0 1 1 Reserved Instruction None

1 1 0 DSP Module State Disabled

1 1 1 None

1 1 0 DSP Module State Disabled

1 1 1 None

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

40

register and the bits or fields in the register that they read or write.

3.13 Arithmetic Exceptions

Under no circumstances do any of the DSP Module instructions cause an arithmetic exception. Other exceptions are
possible, for example, the indexed load instruction can cause an address exception. The specific exceptions caused by
the different instructions are listed in the per-instruction description pages.

Table 3.8 Instructions that Read/Write Fields in DSPControl

Instruction Read/Write DSPControl Field (Bits)

WRDSP W All (31:0)

EXTPDP, EXTPDPV,MTHLIP W pos (5:0)

ADDSC W c (13)

EXTP, EXTPV, EXTPDP, EXTPDPV W EFI (14)

See Table 3.5 W ouflag (23:16)

CMP, CMPU, and CMPGDU variants W ccond (27:24)

RDDSP R All (31:0)

BPOSGE32C, EXTP, EXTPV, EXTPDP, EXTP-
DPV, INSV

R pos (5:0)

INSV R scount (12:7)

ADDWC R c (13)

PICK variants R ccond (27:24)

Chapter 4

41

nanoMIPS® DSP Module Instruction Summary

4.1 The nanoMIPS® DSP Module Instruction Summary

The tables in this chapter list all the instructions in the DSP Module. For operation details about each instruction,
refer to the per-page descriptions. In each table, the column entitled “Writes GPR / ac / DSPControl”, indicates the
explicit write performed by each instruction. This column indicates the writing of a field in the DSPControl register
other than the ouflag field (which is written by a large number of instructions as a side-effect).

All instructions from the first version of the MIPS® DSP Module onwards are included in the nanoMIPS DSP Mod-
ule unless explictly stated otherwise. Release 6 nanoMIPS deprecates BPOSGE32, and replaces PREPEND,
BALIGN, LBUX, LHX, LWX by instructions in the baseline nanoMIPS Instruction Set as indicated in the table
below.

Table 4.1 List of Instructions in nanoMIPS® DSP Module in Arithmetic Sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

ADDQ.PH rd,rs,rt
ADDQ_S.PH rd,rs,rt

Pair Q15 Pair Q15 GPR VoIP
SoftM

Element-wise addition of two vectors of Q15
fractional values, with optional saturation.

ADDQ_S.W rd,rs,rt Q31 Q31 GPR Audio Add two Q31 fractional values with saturation.

ADDU.QB rd,rs,rt
ADDU_S.QB rd,rs,rt

Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR Video Element-wise addition of unsigned byte val-
ues, with optional unsigned saturation.

ADDUH.QB rd,rs,rt
ADDUH_R.QB rd,rs,rt

Introduced in DSP-R2.

Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR Video Element-wise addition of vectors of four
unsigned byte values, halving each result by
right-shifting by one bit position. Results may
be optionally rounded up in the least-signifi-
cant bit.

ADDU.PH rd,rs,rt
ADDU_S.PH rd,rs,rt

Introduced in DSP-R2.

Pair
Unsigned
Halfword

Pair
Unsigned
Halfword

GPR Video Element-wise addition of vectors of two
unsigned halfword values, with optional satu-
ration on overflow.

ADDQH.PH rd,rs,rt
ADDQH_R.PH rd,rs,rt

Introduced in DSP-R2.

Pair Signed
Halfword

Pair Signed
Halfword

GPR Misc Element-wise addition of vectors of two
signed halfword values, halving each result
with right-shifting by one bit position. Results
may be optionally rounded up in the least-sig-
nificant bit.

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

42

ADDQH.W rd,rs,rt
ADDQH_R.W rd,rs,rt

Introduced in DSP-R2.

Signed
Word

Signed
Word

GPR Misc Add two signed word values, halving the result
with right-shifting by one bit position. Result
may be optionally rounded up in the least-sig-
nificant bit.

SUBQ.PH rd,rs,rt
SUBQ_S.PH rd,rs,rt

Pair Q15 Pair Q15 GPR VoIP Element-wise subtraction of two vectors of
Q15 fractional values, with optional satura-
tion.

SUBQ_S.W rd,rs,rt Q31 Q31 GPR Audio Subtraction with Q31 fractional values, with
saturation.

SUBU.QB rd,rs,rt
SUBU_S.QB rd,rs,rt

Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR Video Element-wise subtraction of unsigned byte
values, with optional unsigned saturation.

SUBUH.QB rd,rs,rt
SUBUH_R.QB rd,rs,rt

Introduced in DSP-R2.

Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR Video Element-wise subtraction of unsigned byte
values, shifting the results right one bit posi-
tion (halving). The results may be optionally
rounded up by adding 1 to each result at the
most-significant discarded bit position before
shifting.

SUBU.PH rd,rs,rt
SUBU_S.PH rd,rs,rt

Introduced in DSP-R2.

Pair
Unsigned
Halfword

Pair
Unsigned
Halfword

GPR Video Element-wise subtraction of vectors of two
unsigned halfword values, with optional satu-
ration on overflow.

SUBQH.PH rd,rs,rt
SUBQH_R.PH rd,rs,rt

Introduced in DSP-R2.

Pair Signed
Halfword

Pair Signed
Halfword

GPR Misc Element-wise subtraction of vectors of two
signed halfword values, halving each result
with right-shifting by one bit position. Results
may be optionally rounded up in the least-sig-
nificant bit.

SUBQH.W rd,rs,rt
SUBQH_R.W rd,rs,rt

Introduced in DSP-R2.

Signed
Word

Signed
Word

GPR Misc Subtract two signed word values, halving the
result with right-shifting by one bit position.
Result may be optionally rounded up in the
least-significant bit.

ADDSC rd,rs,rt Signed
Word

Signed
Word

GPR &
DSPControl

Audio Add two signed words and set the carry bit in
the DSPControl register.

ADDWC rd,rs,rt Signed
Word

Signed
Word

GPR Audio Add two signed words with the carry bit from
the DSPControl register.

MODSUB rd,rs,rt Signed
Word

Signed
Word

GPR Misc Modulo addressing support: update a byte
index into a circular buffer by subtracting a
specified decrement (in bytes) from the index,
resetting the index to a specified value if the
subtraction results in underflow.

Table 4.1 List of Instructions in nanoMIPS® DSP Module in Arithmetic Sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

43

RADDU.W.QB rd,rs Quad
Unsigned
Byte

Unsigned
Word

GPR Misc Reduce (add together) the 4 unsigned byte val-
ues in rs, zero-extending the sum to 32 bits
before writing to the destination register. For
example, if all 4 input values are 0x80 (deci-
mal 128), then the result in rd is 0x200 (deci-
mal 512).

ABSQ_S.QB rd,rt

Introduced in DSP-R2.

Quad Q7 Quad Q7 GPR Misc Find the absolute value of each of four Q7
fractional byte elements in the source register,
saturating values of -1.0 to the maximum posi-
tive Q7 fractional value.

ABSQ_S.PH rd,rt Pair Q15 Pair Q15 GPR Misc Find the absolute value of each of two Q15
fractional halfword elements in the source reg-
ister, saturating values of -1.0 to the maximum
positive Q15 fractional value.

ABSQ_S.W rd,rt Q31 Q31 GPR Misc Find the absolute value of the Q31 fractional
element in the source register, saturating the
value -1.0 to the maximum positive Q31 frac-
tional value.

PRECR.QB.PH rd,rs,rt

Introduced in DSP-R2.

Two Pair
Integer
Halfwords

Four Inte-
ger Bytes

GPR Misc Reduce the precision of four signed integer
halfword input values by discarding the eight
most-significant bits from each to create four
signed integer byte output values. The two
halfword values from register rs are used to
create the two left-most byte results, allowing
an endian-agnostic implementation.

PRECRQ.QB.PH rd,rs,rt 2 Pair Q15 Quad Byte GPR Misc Reduce the precision of four Q15 fractional
input values by truncation to create four Q7
fractional output values. The two Q15 values
from register rs are written to the two
left-most byte results, allowing an
endian-agnostic implementation.

PRECR_SRA.PH.W
rt,rs,sa
PRECR_SRA_R.PH.W
rt,rs,sa

Introduced in DSP-R2.

Two Inte-
ger Words

Pair Integer
Halfword

GPR Misc Reduce the precision of two integer word val-
ues to create a pair of integer halfword values.
Each word value is first shifted right arithmeti-
cally by sa bit positions, and optionally
rounded up by adding 1 at the most-significant
discard bit position. The 16 least-significant
bits of each word are then written to the corre-
sponding halfword elements of destination
register rt.

Table 4.1 List of Instructions in nanoMIPS® DSP Module in Arithmetic Sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

44

PRECRQ.PH.W rd,rs,rt
PRECRQ_RS.PH.W
rd,rs,rt

2 Q31 Pair half-
word

GPR Misc Reduce the precision of two Q31 fractional
input values by truncation to create two Q15
fractional output values. The Q15 value
obtained from register rs creates the left-most
result, allowing an endian-agnostic implemen-
tation. Results may be optionally rounded up
and saturated before being written to the desti-
nation.

PRECRQU_S.QB.PH
rd,rs,rt

2 Pair Q15 Quad
Unsigned
Byte

GPR Misc Reduce the precision of four Q15 fractional
values by saturating and truncating to create
four unsigned byte values.

PRECEQ.W.PHL rd,rt
PRECEQ.W.PHR rd,rt

Q15 Q31 GPR Misc Expand the precision of a Q15 fractional value
to create a Q31 fractional value by adding 16
least-significant bits to the input value.

PRECEQU.PH.QBL rd,rt
PRECEQU.PH.QBR rd,rt
PRECEQU.PH.QBLA
rd,rt
PRECEQU.PH.QBRA
rd,rt

Unsigned
Byte

Q15 GPR Video Expand the precision of two unsigned byte
values by prepending a sign bit and adding
seven least-significant bits to each to create
two Q15 fractional values.

PRECEU.PH.QBL rd,rt
PRECEU.PH.QBR rd,rt
PRECEU.PH.QBLA rd,rt
PRECEU.PH.QBRA rd,rt

Unsigned
Byte

Unsigned
halfword

GPR Video Expand the precision of two unsigned byte
values by adding eight least-significant bits to
each to create two unsigned halfword values.

Table 4.2 List of Instructions in nanoMIPS® DSP Module in GPR-Based Shift Sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

SHLL.QB rd, rt, sa
SHLLV.QB rd, rt, rs

Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR Misc Element-wise left shift of eight signed bytes.
Zeros are inserted into the bits emptied by the
shift. The shift amount is specified by the three
least-significant bits of sa or rs.

SHLL.PH rd, rt, sa
SHLLV.PH rd, rt, rs
SHLL_S.PH rd, rt, sa
SHLLV_S.PH rd, rt, rs

Pair Signed
halfword

Pair Signed
halfword

GPR Misc Element-wise left shift of two signed half-
words, with optional saturation on overflow.
Zeros are inserted into the bits emptied by the
shift. The shift amount is specified by the four
least-significant bits of sa or rs.

Table 4.1 List of Instructions in nanoMIPS® DSP Module in Arithmetic Sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

45

SHLL_S.W rd, rt, sa
SHLLV_S.W rd, rt, rs

Signed
Word

Signed
Word

GPR Misc Left shift of a signed word, with saturation on
overflow. Zeros are inserted into the bits emp-
tied by the shift. The shift amount is specified
by the five least-significant bits of sa or rs.
Use the microMIPS32 instructions SLL or
SLLV for non-saturating shift operations.

SHRL.QB rd, rt, sa
SHRLV.QB rd, rt, rs

Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR Video Element-wise logical right shift of four byte
values. Zeros are inserted into the bits emptied
by the shift. The shift amount is specified by
the three least-significant bits of sa or rs.

SHRL.PH rd, rt, sa
SHRLV.PH rd, rt, rs

Introduced in DSP-R2.

Pair Half-
words

Pair Half-
words

GPR Video Element-wise logical right shift of two half-
word values. Zeros are inserted into the bits
emptied by the shift. The shift amount is spec-
ified by the four least-significant bits of rs or
the sa argument.

SHRA.QB rd,rt,sa
SHRA_R.QB rd,rt,sa
SHRAV.QB rd,rt,rs
SHRAV_R.QB rd,rt,rs

Introduced in DSP-R2.

Quad Byte Quad Byte GPR Misc Element-wise arithmetic (sign preserving)
right shift of four byte values. Optional round-
ing may be performed, adding 1 at the
most-significant discard bit position. The shift
amount is specified by the three least-signifi-
cant bits of rs or by the argument sa.

SHRA.PH rd, rt, sa
SHRAV.PH rd, rt, rs
SHRA_R.PH rd, rt, sa
SHRAV_R.PH rd, rt, rs

Pair Signed
halfword

Pair Signed
halfword

GPR Misc Element-wise arithmetic (sign preserving)
right shift of two halfword values. Optionally,
rounding may be performed, adding 1 at the
most-significant discard bit position. The shift
amount is specified by the four least-signifi-
cant bits of rs or by the argument sa.

SHRA_R.W rd, rt, sa
SHRAV_R.W rd, rt, rs

Signed
Word

Signed
Word

GPR Video Arithmetic (sign preserving) right shift of a
word value. Optionally, rounding may be per-
formed, adding 1 at the most-significant dis-
card bit position. The shift amount is specified
by the five least-significant bits of rs or the
argument sa.

Table 4.2 List of Instructions in nanoMIPS® DSP Module in GPR-Based Shift Sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

46

Table 4.3 List of Instructions in nanoMIPS® DSP Module in Multiply Sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

MULEU_S.PH.QBL
rd,rs,rt
MULEU_S.PH.QBR
rd,rs,rt

Pair
Unsigned
Byte, Pair
Unsigned
Halfword,

Pair
Unsigned
Halfword

GPR Still
Image

Element-wise multiplication of two unsigned
byte values from register rs with two unsigned
halfword values from register rt. Each 24-bit
product is truncated to 16 bits, with saturation
if the product exceeds 0xFFFF, and written to
the corresponding element in the destination
register.

MULQ_RS.PH rd,rs,rt Pair Q15 Pair Q15 GPR Misc Element-wise multiplication of two Q15 frac-
tional values to create two Q15 fractional
results, with rounding and saturation. After
multiplication, each 32-bit product is rounded
up by adding 0x00008000, then truncated to
create a Q15 fractional value that is written to
the destination register. If both multiplicands
are -1.0, the result is saturated to the maximum
positive Q15 fractional value.
To stay compliant with the base architecture,
this instruction leaves the base HI-LO pair
UNPREDICTABLE after the operation. The
other DSP Module accumulators ac1-ac3 are
untouched.

MULEQ_S.W.PHL
rd,rs,rt
MULEQ_S.W.PHR
rd,rs,rt

Pair Q15 Q31 GPR VoIP Multiplication of two Q15 fractional values,
shifting the product left by 1 bit to create a
Q31 fractional result. If both multiplicands are
-1.0 the result is saturated to the maximum
positive Q31 value.
To stay compliant with the base architecture,
this instruction leaves the base HI-LO pair
UNPREDICTABLE after the operation. The
other DSP Module accumulators ac1-ac3
must beare untouched.

DPAU.H.QBL
DPAU.H.QBR

Pair Bytes Halfword Acc Image Dot-product accumulation. Two pairs of corre-
sponding unsigned byte elements from source
registers rt and rs are separately multiplied,
and the two 16-bit products are then summed
together. The summed products are then added
to the accumulator.

DPSU.H.QBL
DPSU.H.QBR

Pair Bytes Halfword Acc Image Dot-product subtraction. Two pairs of corre-
sponding unsigned byte elements from source
registers rt and rs are separately multiplied,
and the two 16-bit products are then summed
together. The summed products are then sub-
tracted from the accumulator.

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

47

DPA.W.PH ac,rs,rt

Introduced in DSP-R2.

Pair Signed
Halfword

Pair Signed
Halfword

ac VoIP /
SoftM

Dot-product accumulation. The two pairs of
corresponding signed integer halfword values
from source registers rt and rs are separately
multiplied to create two separate integer word
products. The products are then summed and
accumulated into the specified accumulator.

DPAX.W.PH ac,rs,rt

Introduced in DSP-R2.

Pair Signed
Halfword

Double-
word

ac VoIP Dot-product with crossed operands and accu-
mulation. The two crossed pairs of signed inte-
ger halfword values from source registers rt
and rs are separately multiplied to create two
separate integer word products. The products
are then summed and accumulated into the
specified accumulator.

DPAQ_S.W.PH ac,rs,rt Pair Q15 Q32.31 ac VoIP /
SoftM

Dot-product accumulation. Two pairs of corre-
sponding Q15 fractional values from source
registers rt and rs are separately multiplied and
left-shifted 1 bit to create two Q31 fractional
products. For each product, if both multipli-
cands are equal to -1.0 the product is clamped
to the maximum positive Q31 fractional value.
The products are then summed, and the sum is
then sign extended to the width of the accumu-
lator and accumulated into the specified accu-
mulator.
This instruction may be used to compute the
imaginary component of a 16-bit complex
multiplication operation after first swapping
the operands to place them in the correct order.

DPAQX_S.W.PH ac,rs,rt

Introduced in DSP-R2.

Pair Signed
Halfword

Q32.31 ac VoIP Dot-product with saturating fractional multi-
plication and using crossed operands, with a
final accumulation. The two crossed pairs of
signed fractional halfword values from source
registers rt and rs are separately multiplied to
create two separate fractional word products.
The products are then summed and accumu-
lated into the specified accumulator.

DPAQX_SA.W.PH ac,rs,rt

Introduced in DSP-R2.

Pair Signed
Halfword

Q32.31 ac VoIP Dot-product with saturating fractional multi-
plication and using crossed operands, with a
final saturating accumulation. The two crossed
pairs of signed fractional halfword values from
source registers rt and rs are separately multi-
plied to create two separate fractional word
products. The products are then summed and
accumulated with saturation into the specified
accumulator.

Table 4.3 List of Instructions in nanoMIPS® DSP Module in Multiply Sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

48

DPS.W.PH ac,rs,rt

Introduced in DSP-R2.

Pair Signed
Halfword

Double-
word

ac VoIP /
SoftM

Dot-product subtraction. The two pairs of cor-
responding signed integer halfword values
from source registers rt and rs are separately
multiplied to create two separate integer word
products. The products are then summed and
subtracted from the specified accumulator.

DPSX.W.PH ac,rs,rt

Introduced in DSP-R2.

Pair Signed
Halfword

Q32.31 ac VoIP Dot-product with crossed operands and sub-
traction. The two crossed pairs of signed inte-
ger halfword values from source registers rt
and rs are separately multiplied to create two
separate integer word products. The products
are then summed and subtracted into the speci-
fied accumulator.

DPSQ_S.W.PH ac,rs,rt Pair Q15 Q32.31 ac VoIP /
SoftM

Dot-product subtraction. Two pairs of corre-
sponding Q15 fractional values from source
registers rt and rs are separately multiplied and
left-shifted 1 bit to create two Q31 fractional
products. For each product, if both multipli-
cands are equal to -1.0 the product is clamped
to the maximum positive Q31 fractional value.
The products are then summed, and the sum is
then sign extended to the width of the accumu-
lator and subtracted from the specified accu-
mulator.
This instruction may be used to compute the
imaginary component of a 16-bit complex
multiplication operation after first swapping
the operands to place them in the correct order.

DPSQX_S.W.PH ac,rs,rt

Introduced in DSP-R2.

Pair Signed
Halfword

Q32.31 ac VoIP Dot-product with saturating fractional multi-
plication and using crossed operands, with a
final subtraction. The two crossed pairs of
signed fractional halfword values from source
registers rt and rs are separately multiplied to
create two separate fractional word products.
The products are then summed and subtracted
from the specified accumulator.

DPSQX_SA.W.PH ac,rs,rt

Introduced in DSP-R2.

Pair Signed
Halfword

Q32.31 ac VoIP Dot-product with saturating fractional multi-
plication and using crossed operands, with a
final saturating subtraction. The two crossed
pairs of signed fractional halfword values from
source registers rt and rs are separately multi-
plied to create two separate fractional word
products. The products are then summed and
subtracted with saturation into the specified
accumulator.

Table 4.3 List of Instructions in nanoMIPS® DSP Module in Multiply Sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

49

MULSAQ_S.W.PH
ac,rs,rt

Pair Q15 Q32.31 ac SoftM Complex multiplication step. Performs ele-
ment-wise fractional multiplication of the two
Q15 fractional values from registers rt and rs,
subtracting one product from the other to cre-
ate a Q31 fractional result that is added to
accumulator ac. The intermediate products are
saturated to the maximum positive Q31 frac-
tional value if both multiplicands are equal to
-1.0.

DPAQ_SA.L.W ac,rs,rt Q31 Q63 ac Audio Fractional multiplication of two Q31 fractional
values to produce a Q63 fractional product. If
both multiplicands are -1.0 the product is satu-
rated to the maximum positive Q63 fractional
value. The product is then added to accumula-
tor ac. If the addition results in overflow or
underflow, the accumulator is saturated to the
maximum positive or minimum negative
value.

DPSQ_SA.L.W ac,rs,rt Q31 Q63 ac Audio Fractional multiplication of two Q31 fractional
values to produce a Q63 fractional product. If
both multiplicands are -1.0 the product is satu-
rated to the maximum positive Q63 fractional
value. The product is then subtracted from
accumulator ac. If the addition results in over-
flow or underflow, the accumulator is satu-
rated to the maximum positive or minimum
negative value.

MAQ_S.W.PHL ac,rs,rt
MAQ_S.W.PHR ac,rs,rt

Q15 Q32.31 ac SoftM Fractional multiply-accumulate. The product
of two Q15 fractional values is sign extended
to the width of the accumulator and added to
accumulator ac. The intermediate product is
saturated to the maximum positive Q31 frac-
tional value if both multiplicands are equal to
-1.0.

MAQ_SA.W.PHL ac,rs,rt
MAQ_SA.W.PHR ac,rs,rt

Q15 Q31 ac speech Fractional multiply-accumulate with satura-
tion after accumulation. The product of two
Q15 fractional values is sign extended to the
width of the accumulator and added to accu-
mulator ac. The intermediate product is satu-
rated to the maximum positive Q31 fractional
value if both multiplicands are equal to -1.0.
If the accumulation results in overflow or
underflow, the accumulator value is saturated
to the maximum positive or minimum negative
Q31 fractional value.

Table 4.3 List of Instructions in nanoMIPS® DSP Module in Multiply Sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

50

MUL.PH rd,rs,rt
MUL_S.PH rd,rs,rt

Introduced in DSP-R2.

Pair Signed
Halfword

Pair Signed
Halfword

GPR speech Element-wise multiplication of two vectors of
signed integer halfwords, writing the 16
least-significant bits of each 32-bit product to
the corresponding element of the destination
register. Optional saturation clamps each
16-bit result to the maximum positive or mini-
mum negative value if the product cannot be
accurately represented in 16 bits.

MULQ_S.PH rd,rs,rt

Introduced in DSP-R2.

Pair Q15 Pair Q15 GPR speech Element-wise multiplication of two vectors of
Q15 fractional halfwords, writing the 16
most-significant bits of each Q31-format prod-
uct to the corresponding element of the desti-
nation register. Each result is saturated to the
maximum positive Q15 value if both multipli-
cands were equal to -1.0 (0x8000 hexadeci-
mal).

MULQ_S.W rd,rs,rt

Introduced in DSP-R2.

Q31 Q31 GPR speech Fractional multiplication of two Q31 format
words to create a Q63 format result that is
truncated by discarding the 32 least-significant
bits before being written to the destination reg-
ister. The result is saturated to the maximum
positive Q31 value if both multiplicands were
equal to -1.0 (0x80000000 hexadecimal).

MULQ_RS.W rd,rs,rt

Introduced in DSP-R2.

Q31 Q31 GPR speech Multiplication of two Q31 fractional words to
create a Q63-format intermediate product that
is rounded up by adding a 1 at bit position 31.
The 32 most-significant bits of the rounded
result are then written to the destination regis-
ter. If both multiplicands were equal to -1.0
(0x80000000 hexadecimal), rounding is not
performed and the result is clamped to the
maximum positive Q31 value before being
written to the destination.

MULSA.W.PH ac,rs,rt

Introduced in DSP-R2.

Pair Signed
Halfword

Double-
word

ac speech Element-wise multiplication of two vectors of
signed integer halfwords to create two 32-bit
word intermediate results. The right intermedi-
ate result is subtracted from the left intermedi-
ate result, and the resulting sum is
accumulated into the specified accumulator.

MADD ac,rs,rt
MADDU ac,rs,rt
MSUB ac,rs,rt
MSUBU ac,rs,rt
MULT ac,rs,rt
MULTU ac,rs,rt

Word Double-
word

ac Misc Allows these instructions to target accumula-
tors ac1, ac2, and ac3 (in addition to the orig-
inal ac0 destination).

Table 4.3 List of Instructions in nanoMIPS® DSP Module in Multiply Sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

51

Table 4.4 List of Instructions in MIPS® DSP Module in Bit/ Manipulation Sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

BITREV rd,rt Unsigned
Word

Unsigned
Word

GPR Audio /
FFT

Reverse the order of the 16 least-significant
bits of register rt, writing the result to register
rd. The 16 most-significant bits are set to zero.

INSV rt,rs Unsigned
Word

Unsigned
Word

GPR Misc Like the Release 2 INS instruction, except that
the 5 bits for pos and size values are obtained
from the DSPControl register. size =
scount[14:10], and pos = pos[20:16].

REPL.QB rd,imm
REPLV.QB rd,rt

Byte Quad Byte GPR Video /
Misc

Replicate a signed byte value into the four byte
elements of register rd. The byte value is given
by the 8 least-significant bits of the specified
10-bit immediate constant or by the 8
least-significant bits of register rt.

REPL.PH rd,imm
REPLV.PH rd,rt

Signed
halfword

Pair Signed
halfword

GPR Misc Replicate a signed halfword value into the two
halfword elements of register rd. The halfword
value is given by the 16 least-significant bits of
register rt, or by the value of the 10-bit imme-
diate constant, sign-extended to 16 bits.

Table 4.5 List of Instructions in MIPS® DSP Module in Compare-Pick Sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

CMPU.EQ.QB rs,rt
CMPU.LT.QB rs,rt
CMPU.LE.QB rs,rt

Quad
Unsigned
Byte

Quad
Unsigned
Byte

DSPControl Video Element-wise unsigned comparison of the four
unsigned byte elements of rs and rt, recording
the boolean comparison results to the four
right-most bits in the ccond field of the
DSPControl register.

CMPGDU.EQ.QB rd,rs,rt
CMPGDU.LT.QB rd,rs,rt
CMPGDU.LE.QB rd,rs,rt

Introduced in DSP-R2.

Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR
DSPControl

Video Element-wise unsigned comparison of the four
right-most unsigned byte elements of rs and rt,
recording the boolean comparison results to
the four least-significant bits of register rd and
to the four right-most bits in the ccond field of
the DSPControl register.

CMPGU.EQ.QB rd,rs,rt
CMPGU.LT.QB rd,rs,rt
CMPGU.LE.QB rd,rs,rt

Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR Video Element-wise unsigned comparison of the four
right-most unsigned byte elements of rs and rt,
recording the boolean comparison results to
the four least-significant bits of register rd.

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

52

CMP.EQ.PH rs,rt
CMP.LT.PH rs,rt
CMP.LE.PH rs,rt

Pair Signed
halfword

Pair Signed
halfword

DSPControl Misc Element-wise signed comparison of the two
halfword elements of rs and rt, recording the
boolean comparison results to the two
right-most bits in the ccond field of the
DSPControl register.

PICK.QB rd,rs,rt Quad
Unsigned
Byte

Quad
Unsigned
Byte

GPR Video Element-wise selection of unsigned bytes from
the four bytes of registers rs and rt into the
corresponding elements of register rd, based
on the value of the four right-most bits of the
ccond field in the DSPControl register. If the
corresponding ccond bit is 1, the byte value is
copied from register rs, otherwise it is copied
from rt.

PICK.PH rd,rs,rt Pair Signed
halfword

Pair Signed
halfword

GPR Misc Element-wise selection of signed halfwords
from the two halfwords in registers rs and rt
into the corresponding elements of register rd,
based on the value of the two right-most bits of
the ccond field in the DSPControl register. If
the corresponding ccond bit is 1, the halfword
value is copied from register rs, otherwise it is
copied from rt.

APPEND rt,rs,sa

Introduced in DSP-R2.

Two Words Word GPR Misc Shifts the 32-bit word in register rt left by sa
bits, inserting the sa least-significant bits from
register rs into the bit positions emptied by the
shift. The 32-bit result is then written to regis-
ter rt.

PREPEND rt,rs,sa

Introduced in DSP-R2.

Replaced by EXTW in
baseline nanoMIPS ISA.

Two Words Word GPR Misc Shifts the 32-bit word in register rt right by sa
bits, inserting the sa least-significant bits from
register rs into the bit positions emptied by the
shift. The 32-bit result is then written to regis-
ter rt.

BALIGN rt,rs,bp

Introduced in DSP-R2.

Replaced by EXTW in
baseline nanoMIPS ISA.

Two Words Word GPR Misc Packs bp bytes from register rt and (4-bp)
bytes from register rs into a 32-bit word and
writes it to register rt.

PACKRL.PH rd,rs,rt Pair Signed
Halfwords

Pair Signed
Halfword

GPR Misc Pack two halfwords taken from registers rs
and rt into destination register rd.

Table 4.5 List of Instructions in MIPS® DSP Module in Compare-Pick Sub-class (Continued)

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

53

Table 4.6 List of Instructions in MIPS® DSP Module in Accumulator and DSPControl Access Sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

EXTR.W rt,ac,shift
EXTR_R.W rt,ac,shift
EXTR_RS.W rt,ac,shift

Q63 Q31 GPR Misc Extract a Q31 fractional value from the 32
least-significant bits of 64-bit accumulator ac.
The accumulator value may be shifted right
logically by shift bits prior to the extraction,
and the extracted value may be optionally
rounded or rounded and saturated before being
written to register rt.
The shift argument value ranges from 0 to 31.
The optional rounding step adds 1 at the
most-significant bit position discarded by the
shift. The optional saturation clamps the
extracted value to the maximum positive Q31
value if the rounding step results in overflow.

EXTR_S.H rt,ac,shift Q63 Q15 GPR Misc Extract a Q15 fractional value from the 16
least-significant bits of 64-bit accumulator ac.
The accumulator value may be shifted right
logically by shift bits prior to the extraction,
and the extracted value is saturated before
being written to register rt.
The shift argument value ranges from 0 to 31.
The saturation clamps the extracted value to
the maximum positive or minimum negative
Q15 value if the shifted accumulator value
cannot be represented accurately as a Q15 for-
mat value.

EXTRV_S.H rt,ac,rs Q63 Q15 GPR Misc Extract a Q15 fractional value from the 16
least-significant bits of 64-bit accumulator ac.
The accumulator value may be shifted right
logically by shift bits prior to the extraction,
and the extracted value is saturated before
being written to register rt.
The shift argument ranges from 0 to 31 and is
given by the five least-significant bits of regis-
ter rs. The saturation clamps the extracted
value to the maximum positive or minimum
negative Q15 value if the shifted accumulator
value cannot be represented accurately as a
Q15 format value.

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

54

EXTRV.W rt,ac,rs
EXTRV_R.W rt,ac,rs
EXTRV_RS.W rt,ac,rs

Q63 Q31 GPR Misc Extract a Q31 fractional value from the 32
least-significant bits of 64-bit accumulator ac.
The accumulator value may be shifted right
logically by shift bits prior to the extraction,
and the extracted value may be optionally
rounded or rounded and saturated before being
written to register rt.
The shift argument value is provided by the
five least-significant bits of rs and ranges from
0 to 31. The optional rounding step adds 1 at
the most-significant bit position discarded by
the shift. The optional saturation clamps the
extracted value to the maximum positive Q31
value if the rounding step results in overflow.

EXTP rt,ac,size
EXTPV rt,ac,rs
EXTPDP rt,ac,size
EXTPDPV rt,ac,rs

Unsigned
DWord

Unsigned
Word

GPR /
DSPControl

Audio /
Video

Extract a set of size+1 contiguous bits from
accumulator ac, right-justifying and
sign-extending the result to 32 bits before writ-
ing the result to register rt.
The position of the left-most bit to extract is
given by the value of the pos field in the
DSPControl register (see Appendix A for
details). The number of bits (less one) to
extract is provided either by the size immedi-
ate operand or by the five least-significant bits
of rs.
The EXTPDP and EXTPDPV instructions also
decrement the pos field by size+1 to facilitate
sequential bit field extraction operations.

SHILO ac,shift
SHILOV ac,rs

Unsigned
DWord

Unsigned
DWord

ac Misc Shift accumulator ac left or right by the speci-
fied number of bits, writing the shifted value
back to the accumulator. The signed shift argu-
ment is specified either by the immediate oper-
and shift or by the six least-significant bits of
register rs. A negative shift argument results in
a right shift of up to 32 bits, and a positive shift
argument results in a left shift of up to 31 bits.

MTHLIP rs, ac Unsigned
Word

Unsigned
Word

ac /
DSPControl

Audio /
Video

Copy the LO register of the specified accumu-
lator to the HI register, copy rs to LO, and
increment the pos field in DSPcontrol by 32.

MFHI/MFLO/MTHI/MT
LO

Unsigned
Word

Unsigned
Word

GPR/ac Misc Copy an unsigned word to or from the speci-
fied accumulator HI or LO register to the spec-
ified GPR.

Table 4.6 List of Instructions in MIPS® DSP Module in Accumulator and DSPControl Access Sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

55

WRDSP rt,mask Unsigned
Word

Unsigned
Word

DSPControl Misc Overwrite specific fields in the DSPControl
register using the corresponding bits from the
specified GPR. Bits in the mask argument cor-
respond to specific fields in DSPControl; a
value of 1 causes the corresponding
DSPControl field to be overwritten using the
corresponding bits in rt, otherwise the field is
unchanged.

RDDSP rt,mask Unsigned
Word

Unsigned
Word

GPR Misc Copy the values of specific fields in the
DSPControl register to the specified GPR.
Bits in the mask argument correspond to spe-
cific fields in DSPControl; a value of 1 causes
the corresponding DSPControl field to be
copied to the corresponding bits in rt, other-
wise the bits in rt are unchanged.

Table 4.7 List of Instructions in MIPS® DSP Module in Indexed-Load Sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

LBUX rd,index(base)

Replaced by LBUX in
baseline nanoMIPS ISA.

- Unsigned
byte

GPR Misc Index byte load from address base+(index).
Loads the byte in the low-order bits of the des-
tination register and zero-extends the result.

LHX rd,index(base)

Replaced by LHX in
baseline nanoMIPS ISA.

- Signed
halfword

GPR Misc Index halfword load from address
base+(index). Loads the halfword in the
low-order bits of the register and sign-extends
the result.

LWX rd, index(base)

Replaced by LWX in
baseline nanoMIPS ISA.

- Signed
Word

GPR Misc Indexed word load from address base+(index).

Table 4.6 List of Instructions in MIPS® DSP Module in Accumulator and DSPControl Access Sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

56

Table 4.8 List of Instructions in MIPS® DSP Module in Branch Sub-class

Instruction
Mnemonics

Input
Data
Type

Output
Data
Type

 Writes
GPR / ac /

DSPControl App Description

BPOSGE32 offset
Deprecated in
nanoMIPS DSP.

BPOSGE32C offset
Introduced in DSP-R3.

- - - Audio /
Video

Branch if the pos value is greater than or equal
to integer 32.

Chapter 5

57

Instruction Encoding

The opcode map for DSP instructions is under development and will be made
available in a subsequent non-preliminary release.

5.1 Instruction Bit Encoding

This chapter describes the bit encoding tables used for the MIPS DSP ASE. Table 5.1 describes the meaning of the
symbols used in the tables. These tables only list the instruction encoding for the MIPS DSP ASE instructions. See
Volumes I and II of this multi-volume set for a full encoding of all instructions.

Table 5.1 Symbols Used in the Instruction Encoding Tables

Symbol Meaning

 Operation or field codes marked with this symbol are reserved for future use. Executing such an instruction must
cause a Reserved Instruction Exception.

 (Also italic field name.) Operation or field codes marked with this symbol denotes a field class. The instruction
word must be further decoded by examining additional tables that show values for another instruction field.

 Operation or field codes marked with this symbol represent a valid encoding for a higher-order MIPS ISA level.
Executing such an instruction must cause a Reserved Instruction Exception.

 Operation or field codes marked with this symbol are available to licensed MIPS partners. To avoid multiple
conflicting instruction definitions, MIPS Technologies will assist the partner in selecting appropriate encoding if
requested by the partner. The partner is not required to consult with MIPS Technologies when one of these
encoding is used. If no instruction is encoded with this value, executing such an instruction must cause a
Reserved Instruction Exception (SPECIAL2 encoding or coprocessor instruction encoding for a coprocessor to
which access is allowed) or a Coprocessor Unusable Exception (coprocessor instruction encoding for a copro-
cessor to which access is not allowed).

 Field codes marked with this symbol represent an EJTAG support instruction and implementation of this encod-
ing is optional for each implementation. If the encoding is not implemented, executing such an instruction must
cause a Reserved Instruction Exception. If the encoding is implemented, it must match the instruction encoding
as shown in the table.

 Operation or field codes marked with this symbol are reserved for MIPS Application Specific Extensions. If the
ASE is not implemented, executing such an instruction must cause a Reserved Instruction Exception.

 Operation or field codes marked with this symbol are obsolete and will be removed from a future revision of the
MIPS32 ISA. Software should avoid using these operation or field codes.

 Operation or field codes marked with this symbol are valid for Release 2 implementations of the architecture.
Executing such an instruction in a Release 1 implementation must cause a Reserved Instruction Exception.

Chapter 6

58

The MIPS® DSP Module Instruction Set

6.1 Compliance and Subsetting

There are no instruction subsets allowed for the MIPS DSP Module —all instructions must be implemented with all
data format types as shown. Instructions are listed in alphabetical order, with a secondary sort on data type format
from narrowest to widest, i.e., quad byte, paired halfword, and word.

6.2 DSP Module Specific Pseudocode Functions

This section defines the pseudocode functions that are specific to the DSP Module and DSP Module Rev2. These
functions are used in the Operation section of each DSP Module instruction description.

6.2.1 ValidateAccessToDSPResources()

The ValidateAccessToDSPResoures function is used to determine if access is available to the DSP Module resources.
This is done by looking at the state of the DSPP bit in Config3 and MX bit in the Status register.

Figure 6.1 ValidateAccessToDSPResource Pseudocode Function

ValidateAccessToDSPResources()

/* The function does not return if an exception is signaled */

/* If DSP is not implemented by the processor, a Reserved */
/* Instruction exception is signaled */
if (Config3DSPP = 0) then

SignalException(ReservedInstruction)
endif

case StatusMX of

/* MX off */
1#0:

SignalException(DSPDisabled)

/* MX on */
1#1:

/* Access allowed to DSP Module resources */
endcase

endfunction ValidateAccessToDSPResources

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

59

6.2.2 ValidateAccessToDSP2Resources()

The ValidateAccessToDSP2Resources function is used to determine if access is available to the DSP Module Rev2
resources. This is done by checking the state of the DSP2P bit (DSP Rev2 Present, bit 11 in the Config3 CPO regis-
ter), and the MX bit in the Status register.

Figure 6.2 ValidateAccessToDSP2Resources Pseudocode Function

ValidateAccessToDSP2Resources()

/* The function does not return if an exception is signaled */

/* If DSP Module Rev2 is not implemented by the processor, a */
/* Reserved Instruction exception is signaled */
if ((Config3DSP2P = 0) or (Config3DSPP = 0)) then

SignalException(ReservedInstruction)
endif

case StatusMX of

/* MX off */
1#0:

SignalException(DSPDisabled)

/* MX on */
1#1:

/* Access allowed to DSP Module Rev2 resources */
endcase

endfunction ValidateAccessToDSP2Resources

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

60

ABSQ_S.PH IFind Absolute Value of Two Fractional Halfwords

Format: ABSQ_S.PH rt, rs DSP

Purpose: Find Absolute Value of Two Fractional Halfwords

Find the absolute value of each of a pair of Q15 fractional halfword values with 16-bit saturation.

Description: rt  sat16(abs(rs31..16)) || sat16(abs(rs15..0))

For each value in the pair of Q15 fractional halfword values in register rs, the absolute value is found and written to
the corresponding Q15 halfword in re gister rt. If either input value is the minimum Q15 value (-1.0 in deci mal,
0x8000 in hexadecimal), the corresponding result is saturated to 0x7FFF.

This instruction sets bit 20 in the DSPControl register in the ouflag field if either input value was saturated.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB15..0  satAbs16(GPR[rs]31..16)
tempA15..0  satAbs16(GPR[rs]15..0)
GPR[rt]31..0  tempB15..0 || tempA15..0

function satAbs16(a15..0)
if (a15..0 = 0x8000) then

DSPControlouflag:20  1
temp15..0  0x7FFF

else
if (a15 = 1) then

temp15..0  -a15..0
else

temp15..0  a15..0
endif

endif
return temp15..0

endfunction satAbs16

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 9 8 6 5 3 2 0

P32A
001000 rt rs 0001000 100 111 111

6 5 5 7 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

61

ABSQ_S.PH IFind Absolute Value of Two Fractional Halfwords

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

62

ABSQ_S.QB IFind Absolute Value of Four Fractional Byte Values

Format: ABSQ_S.QB rt, rs DSP-R2

Purpose: Find Absolute Value of Four Fractional Byte Values

Find the absolute value of four fractional byte vector elements with saturation.

Description: rt  sat8(abs(rs31..24)) || sat8(abs(rs23..16)) || sat8(abs(rs15..8)) ||

sat8(abs(rs7..0))

For each value in the four Q7 fractional byte elements in register rs, the absolute value is found and written to the cor-
responding byte in register rt. If either input value is the minimum Q7 value (-1.0 in decimal, 0x80 in hexadecimal),
the corresponding result is saturated to 0x7F.s

This instruction sets bit 20 in ouflag field of the DSPControl register if any input value was saturated.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSP2Resources()
tempD7..0  abs8(GPR[rs]31..24)
tempC7..0  abs8(GPR[rs]23..16)
tempB7..0  abs8(GPR[rs]15..8)
tempA7..0  abs8(GPR[rs]7..0)
GPR[rt]31..0  tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

function abs8(a7..0)
if (a7..0 = 0x80) then

DSPControlouflag:20  1
temp7..0  0x7F

else
if (a7 = 1) then

temp7..0  -a7..0
else

temp7..0  a7..0
endif

endif
return temp7..0

endfunction abs8

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 9 8 6 5 3 2 0

P32A
001000 rt rs 0000000 100 111 111

6 5 5 7 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

63

ABSQ_S.QB IFind Absolute Value of Four Fractional Byte Values

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

64

ABSQ_S.W IFind Absolute Value of Fractional Word

Format: ABSQ_S.W rt, rs DSP

Purpose: Find Absolute Value of Fractional Word

Find the absolute value of a fractional Q31 value with 32-bit saturation.

Description: rt  sat32(abs(rs31..0))

The absolute value of the Q31 fractional value in register rs is found and written to destination register rt. If the input
value is the m inimum Q31 value (-1.0 in decimal, 0x80000000 in hexadecimal), the result is saturated to
0x7FFFFFFF before being sign-extended and written to register rt.

This instruction sets bit 20 in the DSPControl register in the ouflag field if the input value was saturated.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
temp31..0  satAbs32(GPR[rs]31..0)
GPR[rt]31..0  temp31..0

function satAbs32(a31..0)
if (a31..0 = 0x80000000) then

DSPControlouflag:20  1
temp31..0  0x7FFFFFFF

else
if (a31 = 1) then

temp31..0  -a31..0
else

temp31..0  a31..0
endif

endif
return temp31..0

endfunction satAbs32

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 9 8 6 5 3 2 0

P32A
001000 rt rs 0010000 100 111 111

6 5 5 7 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

65

ABSQ_S.W IFind Absolute Value of Fractional Word

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

66

ADDQ[_S].PH Add Fractional Halfword Vectors

Format: ADDQ[_S].PH
ADDQ.PH rd, rs, rt DSP
ADDQ_S.PH rd, rs, rt DSP

Purpose: Add Fractional Halfword Vectors

Element-wise addition of two vectors of Q15 fractional values to produce a vector of Q15 fractional results, with
optional saturation.

Description: rd  sat16(rs31..16 + rt31..16) || sat16(rs15..0 + rt15..0)

Each of the tw o fractional halfword elements in re gister rt are added to the corresponding fractional halfword ele-
ments in register rs.

For the non-saturating version of the instruction, the result of each addition is written into the corresponding element
in register rd. If the addition results in overflow or underflow, the result modulo 2 is written to the corresponding ele-
ment in register rd.

For the saturating version of the instruction, signed saturating arithmetic is performed, where an overflow is clamped
to the largest representable v alue (0x7FFF he xadecimal) and an underflow to the sm allest representable value
(0x8000 hexadecimal) before being written to the destination register rd.

For each instruction, if either of the individual additions result in underflow, overflow, or saturation, a 1 is written to
bit 20 in the DSPControl register in the ouflag field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ADDQ.PH:
ValidateAccessToDSPResources()
tempB15..0  add16(GPR[rs]31..16 , GPR[rt]31..16)
tempA15..0  add16(GPR[rs]15..0 , GPR[rt]15..0)
GPR[rd]31..0  tempB15..0 || tempA15..0

ADDQ_S.PH:
ValidateAccessToDSPResources()
tempB15..0  satAdd16(GPR[rs]31..16 , GPR[rt]31..16)
tempA15..0  satAdd16(GPR[rs]15..0 , GPR[rt]15..0)
GPR[rd]31..0  tempB15..0 || tempA15..0

function add16(a15..0, b15..0)
temp16..0  (a15 || a15..0) + (b15 || b15..0)
if (temp16  temp15) then

DSPControlouflag:20  1
endif

31 26 25 21 20 16 15 11 10 9 3 2 0

ADDQ.PH

P32A
001000 rt rs rd 0 0000001 101

ADDQ_S.PH

P32A
001000 rt rs rd 1 0000001 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

67

ADDQ[_S].PH Add Fractional Halfword Vectors

return temp15..0
endfunction add16

function satAdd16(a15..0, b15..0)
temp16..0  (a15 || a15..0) + (b15 || b15..0)
if (temp16  temp15) then

if (temp16 = 0) then
temp15..0  0x7FFF

else
temp15..0  0x8000

endif
DSPControlouflag:20  1

endif
return temp15..0

endfunction satAdd16

Exceptions:

Reserved Instruction, DSP Disabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

68

ADDQ_S.W Add Fractional Words

Format: ADDQ_S.W rd, rs, rt DSP

Purpose: Add Fractional Words

Addition of two Q31 fractional values to produce a Q31 fractional result, with saturation.

Description: rd  sat32(rs31..0 + rt31..0)

The Q31 fractional word in register rt is added to the corresponding fractional word in register rs. The result is then
written to the destination register rd.

Signed saturating arithmetic is used, where an overflow is clamped to the largest representable value (0x7FFFFFFF
hexadecimal) and an un derflow to the smallest representable value (0x80000000 hexadecimal) before being sign-
extended and written to the destination register rd.

If the addition results in underflow, overflow, or saturation, a 1 is written to bit 20 in the DSPControl register within
the ouflag field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
temp31..0  satAdd32(GPR[rs]31..0 , GPR[rt]31..0)
GPR[rd]31..0  temp31..0

function satAdd32(a31..0, b31..0)
temp32..0  (a31 || a31..0) + (b31 || b31..0)
if (temp32  temp31) then

if (temp32 = 0) then
temp31..0  0x7FFFFFFF

else
temp31..0  0x80000000

endif
DSPControlouflag:20  1

endif
return temp31..0

endfunction satAdd32

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 9 3 2 0

P32A
001000 rt rs rd x 1100000 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

69

ADDQ_S.W Add Fractional Words

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

70

ADDQH[_R].PH Add Fractional Halfword Vectors And Shift Right to Halve Results

Format: ADDQH[_R].PH
ADDQH.PH rd, rs, rt DSP-R2
ADDQH_R.PH rd, rs, rt DSP-R2

Purpose: Add Fractional Halfword Vectors And Shift Right to Halve Results

Element-wise fractional addition of halfword vectors, with a right shift by one bit to halve each result, with optional
rounding.

Description: rd  round((rs31..16 + rt31..16) >> 1) || round((rs15..0 + rt15..0) >> 1)

Each element from the two halfword values in register rs is added to the corresponding halfword element in register rt
to create an interim 17-bit result.

In the non-rounding instruction variant, each interim result is then shifted right by one bit before being written to the
corresponding halfword element of destination register rd.

In the rounding version of the instruction, a v alue of 1 is added at the least-significant bit position of each interim
result; the interim result is then right-shifted by one bit and written to the destination register.

This instruction does not modify the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ADDQH.PH
ValidateAccessToDSP2Resources()
tempB15..0  rightShift1AddQ16(GPR[rs]31..16 , GPR[rt]31..16)
tempA15..0  rightShift1AddQ16(GPR[rs]15..0 , GPR[rt]15..0)
GPR[rd]31..0  tempB15..0 || tempA15..0

ADDQH_R.PH
ValidateAccessToDSP2Resources()
tempB15..0  roundRightShift1AddQ16(GPR[rs]31..16 , GPR[rt]31..16)
tempA15..0  roundRightShift1AddQ16(GPR[rs]15..0 , GPR[rt]15..0)
GPR[rd]31..0  tempB15..0 || tempA15..0

function rightShift1AddQ16(a15..0 , b15..0)
temp16..0  ((a15 || a15..0) + (b15 || b15..0))
return temp16..1

endfunction rightShift1AddQ16

function roundRightShift1AddQ16(a15..0 , b15..0)
temp16..0  ((a15 || a15..0) + (b15 || b15..0))
temp16..0  temp16..0 + 1

31 26 25 21 20 16 15 11 10 9 3 2 0

ADDQH.PH

P32A
001000 rt rs rd 0 0001001 101

ADDQH_R.PH

P32A
001000 rt rs rd 1 0001001 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

71

ADDQH[_R].PH Add Fractional Halfword Vectors And Shift Right to Halve Results

return temp16..1
endfunction roundRightShift1AddQ16

Exceptions:

Reserved Instruction, DSP Disabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

72

ADDQH[_R].W Add Fractional Words And Shift Right to Halve Results

Format: ADDQH[_R].W
ADDQH.W rd, rs, rt DSP-R2
ADDQH_R.W rd, rs, rt DSP-R2

Purpose: Add Fractional Words And Shift Right to Halve Results

Fractional addition of word vectors, with a right shift by one bit to halve the result, with optional rounding.

Description: rd  round((rs31..0 + rt31..0) >> 1)

The word in register rs is added to the word in register rt to create an interim 33-bit result.

In the non-rounding instruction variant, the interim result is then shifted right by one bit before being written to the
destination register rd.

In the rounding version of the instruction, a value of 1 is added at the least-si gnificant bit position of the int erim
result; the interim result is then right-shifted by one bit and written to the destination register.

This instruction does not modify the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ADDQH.W
ValidateAccessToDSP2Resources()
tempA31..0  rightShift1AddQ32(GPR[rs]31..0 , GPR[rt]31..0)
GPR[rd]31..0  tempA31..0

ADDQH_R.W
ValidateAccessToDSP2Resources()
tempA31..0  roundRightShift1AddQ32(GPR[rs]31..0 , GPR[rt]31..0)
GPR[rd]31..0  tempA31..0

function rightShift1AddQ32(a31..0 , b31..0)
temp32..0  ((a31 || a31..0) + (b31 || b31..0))
return temp32..1

endfunction rightShift1AddQ32

function roundRightShift1AddQ32(a31..0 , b31..0)
temp32..0  ((a31 || a31..0) + (b31 || b31..0))
temp32..0  temp32..0 + 1
return temp32..1

endfunction roundRightShift1AddQ32

31 26 25 21 20 16 15 11 10 9 3 2 0

ADDQH.W

P32A
001000 rt rs rd 0 0010001 101

ADDQH_R.W

P32A
001000 rt rs rd 1 0010001 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

73

ADDQH[_R].W Add Fractional Words And Shift Right to Halve Results

Exceptions:

Reserved Instruction, DSP Disabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

74

ADDSC Add Signed Word and Set Carry Bit

Format: ADDSC rd, rs, rt DSP

Purpose: Add Signed Word and Set Carry Bit

Add two signed 32-bit values and set the carry bit in the DSPControl register if the addition generates a carry-out bit.

Description: DSPControl[c],rd  rs + rt

The 32-bit signed value in register rt is added to the 32-bit signed value in register rs. The result is then written into
register rd. The carry bit result out of the addition operation is written to bit 13 (the c field) of the DSPControl register.

This instruction does not modify the ouflag field in the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

Operation:

ValidateAccessToDSPResources()
temp32..0  (0 || GPR[rs]31..0) + (0 || GPR[rt]31..0)
DSPControlc:13  temp32
GPR[rd]31..0  temp31..0

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

Note that this is really two’s complement (modulo) arithmetic on the two integer values, where the overflow is pre-
served in architectural state. The ADDWC instruction can be used to do an add using this carry bit. These instructions
are provided in the MIPS32 ISA to support 64-bit addition and subtraction using two pairs of 32-bit GPRs to hold
each 64-bit value. In the MIPS64 ISA, 64-bit addition and subtraction can be performed directly, without requiring
the use of these instructions.

31 26 25 21 20 16 15 11 10 9 3 2 0

P32A
001000 rt rs rd x 1110000 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

75

ADDSC Add Signed Word and Set Carry Bit

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

76

ADDU[_S].PH IUnsigned Add Integer Halfwords

Format: ADDU[_S].PH
ADDU.PH rd, rs, rt DSP-R2
ADDU_S.PH rd, rs, rt DSP-R2

Purpose: Unsigned Add Integer Halfwords

Add two pairs of unsigned integer halfwords, with optional saturation.

Description: rd  sat16(rs31..16 + rt31..16) || sat16(rs15..0 + rt15..0)

The two unsigned integer halfword elements in register rt are added to the corresponding unsigned integer halfword
elements in register rs.

For the non-saturating version of the instruction, the result modulo 65,536 is written into the corresponding element
in register rd.

For the saturating version of the instruction, the addition is performed using unsigned saturating arithmetic. Results
that overflow are clamped to the lar gest representable value (65,535 decimal, 0xFFFF hexadecimal) before bei ng
written to the destination register rd.

For either instruction, if any of the individual additions result in overflow or saturation, a 1 is written to bit 20 in the
DSPControl register within the ouflag field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ADDU.PH
ValidateAccessToDSP2Resources()
tempB15..0  addU16(GPR[rs]31..16 , GPR[rt]31..16)
tempA15..0  addU16(GPR[rs]15..0 , GPR[rt]15..0)
GPR[rd]31..0  tempB15..0 || tempA15..0

ADDU_S.PH
ValidateAccessToDSP2Resources()
tempB15..0  satAddU16(GPR[rs]31..16 , GPR[rt]31..16)
tempA15..0  satAddU16(GPR[rs]15..0 , GPR[rt]15..0)
GPR[rd]31..0  tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 9 3 2 0

ADDU.PH

P32A
001000 rt rs rd 0 0100001 101

ADDU_S.PH

P32A
001000 rt rs rd 1 0100001 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

77

ADDU[_S].PH IUnsigned Add Integer Halfwords

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

78

ADDU[_S].QB IUnsigned Add Quad Byte Vectors

Format: ADDU[_S].QB
ADDU.QB rd, rs, rt DSP
ADDU_S.QB rd, rs, rt DSP

Purpose: Unsigned Add Quad Byte Vectors

Element-wise addition of two vectors of unsigned byte values to prod uce a vector of unsigned byte result s, with
optional saturation.

Description: rd  sat8(rs31..24 + rt31..24) || sat8(rs23..16 + rt23..16) || sat8(rs15..8 +

rt15..8) || sat8(rs7..0 + rt7..0)

The four byte elements in register rt are added to the corresponding byte elements in register rs.

For the non-saturating version of the instruction, the result modulo 256 is written into the corresponding element in
register rd.

For the saturating version of the instruction, the addition is performed using unsigned saturating arithmetic. Results
that overflow are clamped to the largest representable value (255 decimal, 0xFF hexadecimal) before being written to
the destination register rd.

For either instruction, if any of the individual additions result in overflow or saturation, a 1 is written to bit 20 in the
DSPControl register within the ouflag field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ADDU.QB:
ValidateAccessToDSPResources()
tempD7..0  addU8(GPR[rs]31..24 , GPR[rt]31..24)
tempC7..0  addU8(GPR[rs]23..16 , GPR[rt]23..16)
tempB7..0  addU8(GPR[rs]15..8 , GPR[rt]15..8)
tempA7..0  addU8(GPR[rs]7..0 , GPR[rt]7..0)
GPR[rd]31..0  tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

ADDU_S.QB:
ValidateAccessToDSPResources()
tempD7..0  satAddU8(GPR[rs]31..24 , GPR[rt]31..24)
tempC7..0  satAddU8(GPR[rs]23..16 , GPR[rt]23..16)
tempB7..0  satAddU8(GPR[rs]15..8 , GPR[rt]15..8)
tempA7..0  satAddU8(GPR[rs]7..0 , GPR[rt]7..0)
GPR[rd]31..0  tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

function addU8(a7..0, b7..0)
temp8..0  (0 || a7..0) + (0 || b7..0)

31 26 25 21 20 16 15 11 10 9 3 2 0

ADDU.QB

P32A
001000 rt rs rd 0 0011001 101

ADDU_S.QB

P32A
001000 rt rs rd 1 0011001 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

79

ADDU[_S].QB IUnsigned Add Quad Byte Vectors

if (temp8 = 1) then
DSPControlouflag:20  1

endif
return temp7..0

endfunction addU8

function satAddU8(a7..0, b7..0)
temp8..0  (0 || a7..0) + (0 || b7..0)
if (temp8 = 1) then

temp7..0  0xFF
DSPControlouflag:20  1

endif
return temp7..0

endfunction satAddU8

Exceptions:

Reserved Instruction, DSP Disabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

80

ADDWC IAdd Word with Carry Bit

Format: ADDWC rd, rs, rt DSP

Purpose: Add Word with Carry Bit

Add two signed 32-bit values with the carry bit in the DSPControl register.

Description: rd  rs + rt + DSPControlc:13

The 32-bit value in register rt is added to the 32-bit value in register rs and the carry bit in the DSPControl register.
The result is then written to destination register rd.

If the addition results in either overflow or underflow, this instruction writes a 1 to bi t 20 in the ouflag field of the
DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

Operation:

ValidateAccessToDSPResources()
temp32..0  (GPR[rs]31 || GPR[rs]31..0) + (GPR[rt]31 || GPR[rt]31..0) + (0

32 ||
DSPControlc:13)
if (temp32  temp31) then

DSPControlouflag:20  1
endif
GPR[rd]31..0  temp31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 9 3 2 0

P32A
001000 rt rs rd x 1111000 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

81

ADDWC IAdd Word with Carry Bit

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

82

ADDUH[_R].QB IUnsigned Add Vector Quad-Bytes And Right Shift to Halve Results

Format: ADDUH[_R].QB
ADDUH.QB rd, rs, rt DSP-R2
ADDUH_R.QB rd, rs, rt DSP-R2

Purpose: Unsigned Add Vector Quad-Bytes And Right Shift to Halve Results

Element-wise unsigned additi on of unsigned byte v ectors, with right shift by one bi t to ha lve each result, with
optional rounding.

Description rd  round((rs31..24 + rt31..24)>>1) || round((rs23..16 + rt23..16)>>1) ||

round((rs15..8 + rt15..8)>>1) || round((rs7..0 + rt7..0)>>1)

Each element from the four unsigned byte values in register rs is added to the corresponding unsigned byte element in
register rt to create an unsigned interim result.

In the non-rounding instruction variant, each interim result is then shifted right by one bit before being written to the
corresponding unsigned byte element of destination register rd.

In the rounding version of the instruction, a v alue of 1 is added at the least-significant bit position of each interim
result before being right-shifted by one bit and written to the destination register.

This instruction does not modify the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ADDUH.QB
ValidateAccessToDSPResources()
tempD7..0  rightShift1AddU8(GPR[rs]31..24 , GPR[rt]31..24)
tempC7..0  rightShift1AddU8(GPR[rs]23..16 , GPR[rt]23..16)
tempB7..0  rightShift1AddU8(GPR[rs]15..8 , GPR[rt]15..8)
tempA7..0  rightShift1AddU8(GPR[rs]7..0 , GPR[rt]7..0)
GPR[rd]31..0  tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

ADDUH_R.QB
ValidateAccessToDSPResources()
tempD7..0  roundRightShift1AddU8(GPR[rs]31..24 , GPR[rt]31..24)
tempC7..0  roundRightShift1AddU8(GPR[rs]23..16 , GPR[rt]23..16)
tempB7..0  roundRightShift1AddU8(GPR[rs]15..8 , GPR[rt]15..8)
tempA7..0  roundRightShift1AddU8(GPR[rs]7..0 , GPR[rt]7..0)
GPR[rd]31..0  tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

function rightShift1AddU8(a7..0 , b7..0)
temp8..0  ((0 || a7..0) + (0 || b7..0))

31 26 25 21 20 16 15 11 10 9 3 2 0

ADDUH.QB

P32A
001000 rt rs rd 0 0101001 101

ADDUH_R.QB

P32A
001000 rt rs rd 1 0101001 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

83

ADDUH[_R].QB IUnsigned Add Vector Quad-Bytes And Right Shift to Halve Results

return temp8..1
endfunction rightShift1AddU8

function roundRightShift1AddU8(a7..0 , b7..0)
temp8..0  ((0 || a7..0) + (0 || b7..0))
temp8..0  temp8..0 + 1
return temp8..1

endfunction roundRightShift1AddU8

Exceptions:

Reserved Instruction, DSP Disabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

84

BALIGN IByte Align Contents from Two Registers

Format: BALIGN rt, rs, bp DSP-R2
EXTW rt, rs, rt, 8*(4-bp) Replaced with EXTW in nanoMIPS

Purpose: Byte Align Contents from Two Registers

Create a word result by combining a specified number of bytes from each of two source registers.

Description: rt  (rt << 8*bp) || (rs >> 8*(4-bp))

The 32-bit word in register rt is left-shifted as a 32-bit value by bp byte positions, and the right-most word in register
rs is right-shifted as a 32-bit value by (4-bp) byte positions. The shifted values are then or-ed together to create a 32-
bit result that is written to destination register rt.

The argument bp is pr ovided by the i nstruction, and i s interpreted as an unsigned two-bit integer taking values
between zero and three.

Restrictions:

No data-dependent exceptions are possible.

Operation:

ValidateAccessToDSP2Resources()
if (bp1..0 = 0) or (bp1..0 = 2) then

GPR[rt]31..0  UNPREDICTABLE
else

temp31..0  (GPR[rt]31..0 << (8*bp1..0)) || (GPR[rs]31..0 >> (8*(4-bp1..0)))
GPR[rt]31..0 = temp31..0

endif

Implementation Notes:

When bp is equal to zero, no left-shift is performed. When bp is equal to two, the result is equivalent to a PACKRL
operation when the destination register is identical to the first source register. The assembler is expected to map these
two variants of the BALIGN instructions to the appropriate equivalents. The only valid values of bp that the hardware
must implement are when bp is equal to 1 and 3. If this instruction is passed through to the hardware with bp value
equal to 0 or 2, the result is UNPREDICTABLE.

Exceptions:

Reserved Instruction, DSP Disabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

85

BALIGN IByte Align Contents from Two Registers

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

86

BITREV Bit-Reverse Halfword

Format: BITREV rt, rs DSP

Purpose: Bit-Reverse Halfword

To reverse the order of the bits of the least-significant halfword in the specified register.

Description: rt  rs0..15

The right-most halfword value in register rs is bit-reversed into the right-most halfword position in the destination
register rt. The 16 most-significant bits of the destination register are zero-filled.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
temp15..0  GPR[rs]0..15
GPR[rt]31..0  016 || temp15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 9 8 6 5 3 2 0

001000 rt rs 0011000 100 111 111
6 5 5 7 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

87

BITREV Bit-Reverse Halfword

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

88

BPOSGE32C IBranch on Greater Than or Equal To Value 32 in DSPControl Pos Field

Format: BPOSGE32C offset DSP-R3

Purpose: Branch on Greater Than or Equal To Value 32 in DSPControl Pos Field

Perform a PC-relative branch if the value of the pos field in the DSPControl register is greater than or equal to 32.

Description: if (DSPControlpos:5..0 >= 32) then goto PC+offset

First, the offset argument is left-shifted by one bit to form a 17-bit signed integer value. This value is added to the
address of the instruction immediately following the branch to form a target branch address. Then, if the value of the
pos field of the DSPControl register is greater than or equal to 32, the branch is taken and execution begins from the
target address.

Restrictions:

Any instruction may be placed at PC + 4, where PC is that of the branch. An exception on such an instruction does not
affect CP0 CAUSEBD, and CP0 EPC is that of instruction in slot after branch.

Availability:

This instruction is introduced by and required as of Revision 3 of the DSP Module.

Operation:

I: ValidateAccessToDSPResources()
se_offsetGPRLEN..0  (offset15)

GPRLEN-17 || offset15..0 || 0
1

branch_condition  (DSPControlpos:5..0 >= 32 ? 1 : 0)
I+1: if (branch_condition = 1) then

PCGPRLEN..0  PCGPRLEN..0 + se_offsetGPRLEN..0
endif

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

With the 17-bit signed instruction offset, the conditional branch range is 64 Kbytes. Use jump (J) or jump register
(JR) instructions to branch to addresses outside of this range.

31 26 25 21 20 16 15 14 13 1 0

P32A
100010 x 00100 01 s[13:1] s

[14]

6 5 5 2 13 1

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

89

BPOSGE32C IBranch on Greater Than or Equal To Value 32 in DSPControl Pos Field

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

90

CMP.cond.PH ICompare Vectors of Signed Integer Halfword Values

Format: CMP.cond.PH
CMP.EQ.PH rs, rt DSP
CMP.LT.PH rs, rt DSP
CMP.LE.PH rs, rt DSP

Purpose: Compare Vectors of Signed Integer Halfword Values

Perform an element-wise comparison of two vectors of two signed integer halfwords, recording the resu lts of the
comparison in condition code bits.

Description: DSPControlccond:25..24  (rs31..16 cond rt31..16) || (rs15..0 cond rt15..0)

The two signed integer halfword elements in register rs are compared with the corresponding signed integer halfword
element in register rt. The two 1-bit boolean comparison results are written to bits 24 and 25 of the DSPControl regis-
ter’s 4-bit condition code field. The v alues of t he two remaining condition code bi ts (bits 26 t hrough 27 of the
DSPControl register) are UNPREDICTABLE.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

CMP.EQ.PH
ValidateAccessToDSPResources()
ccB  GPR[rs]31..16 EQ GPR[rt]31..16
ccA  GPR[rs]15..0 EQ GPR[rt]15..0
DSPControlccond:25..24  ccB || ccA
DSPControlccond:27..26  UNPREDICTABLE

CMP.LT.PH
ValidateAccessToDSPResources()
ccB  GPR[rs]31..16 LT GPR[rt]31..16
ccA  GPR[rs]15..0 LT GPR[rt]15..0
DSPControlccond:25..24  ccB || ccA
DSPControlccond:27..26  UNPREDICTABLE

CMP.LE.PH
ValidateAccessToDSPResources()
ccB  GPR[rs]31..16 LE GPR[rt]31..16
ccA  GPR[rs]15..0 LE GPR[rt]15..0
DSPControlccond:25..24  ccB || ccA
DSPControlccond:27..26  UNPREDICTABLE

31 26 25 21 20 16 15 10 9 3 2 0

CMP.EQ.PH

P32A
0010000 rt rs x 0000000 101

CMP.LE.PH

P32A
0010000 rt rs x 0010000 101

CMP.LT.PH

P32A
0010000 rt rs x 0001000 101

6 5 5 6 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

91

CMP.cond.PH ICompare Vectors of Signed Integer Halfword Values

Exceptions:

Reserved Instruction, DSP Disabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

92

CMPGDU.cond.QB ICompare Unsigned Vector of Four Bytes and Write Result to GPR and DSPControl

Format: CMPGDU.cond.QB
CMPGDU.EQ.QB rd, rs, rt DSP-R2
CMPGDU.LT.QB rd, rs, rt DSP-R2
CMPGDU.LE.QB rd, rs, rt DSP-R2

Purpose: Compare Unsigned Vector of Four Bytes and Write Result to GPR and DSPControl

Compare two vectors of four unsigned bytes each, reco rding the comparison results in condition code bits that are
written to both the specified destination GPR and the condition code bits in the DSPControl register.

Description: DSPControl[ccond]27..24  (rs31..24 cond rt31..24) || (rs23..16 cond rt23..16) ||

(rs15..8 cond rt15..8) || (rs7..0 cond rt7..0);

rd  0(GPRLEN-4) || DSPControl[ccond]27..24

Each of the unsigned byte elements in register rs are compared with the corresponding unsigned byte elements in reg-
ister rt. The four 1-bit boolean comparison results are written to the four least-significant bits of destination register
rd and to bits 24 through 27 of the DSPControl register’s 4-bit condition code field. The remaining bits in destination
register rd are set to zero.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

CMPGDU.EQ.QB
ValidateAccessToDSP2Resources()
ccD  GPR[rs]31..24 EQ GPR[rt]31..24
ccC  GPR[rs]23..16 EQ GPR[rt]23..16
ccB  GPR[rs]15..8 EQ GPR[rt]15..8
ccA  GPR[rs]7..0 EQ GPR[rt]7..0
DSPControlcc:27..24  ccD || ccC || ccB || ccA
GPR[rd]31..0  0(GPRLEN-4) || ccD || ccC || ccB || ccA

CMPGDU.LT.QB
ValidateAccessToDSP2Resources()
ccD  GPR[rs]31..24 LT GPR[rt]31..24
ccC  GPR[rs]23..16 LT GPR[rt]23..16
ccB  GPR[rs]15..8 LT GPR[rt]15..8
ccA  GPR[rs]7..0 LT GPR[rt]7..0
DSPControlcc:27..24  ccD || ccC || ccB || ccA
GPR[rd]31..0  0(GPRLEN-4) || ccD || ccC || ccB || ccA

31 26 25 21 20 16 15 11 10 9 3 2 0

CMPGDU.EQ.QB

P32A
001000 rt rs rd x 0110000 101

CMPGDU.LE.QB

P32A
001000 rt rs rd x 1000000 101

CMPGDU.LT.QB

P32A
001000 rt rs rd x 0111000 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

93

CMPGDU.cond.QB ICompare Unsigned Vector of Four Bytes and Write Result to GPR and DSPControl

CMPGDU.LE.QB
ValidateAccessToDSP2Resources()
ccD  GPR[rs]31..24 LE GPR[rt]31..24
ccC  GPR[rs]23..16 LE GPR[rt]23..16
ccB  GPR[rs]15..8 LE GPR[rt]15..8
ccA  GPR[rs]7..0 LE GPR[rt]7..0
DSPControlcc:27..24  ccD || ccC || ccB || ccA
GPR[rd]31..0  0(GPRLEN-4) || ccD || ccC || ccB || ccA

Exceptions:

Reserved Instruction, DSP Disabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

94

CMPGU.cond.QB ICompare Vectors of Unsigned Byte Values and Write Results to a GPR

Format: CMPGU.cond.QB
CMPGU.EQ.QB rd, rs, rt DSP
CMPGU.LT.QB rd, rs, rt DSP
CMPGU.LE.QB rd, rs, rt DSP

Purpose: Compare Vectors of Unsigned Byte Values and Write Results to a GPR

Perform an element-wise comparison of two vectors of unsigned bytes, recording the results of the comparison in
condition code bits that are written to the specified GPR.

Description: rd  (rs31..24 cond rt31..24) || (rs23..16 cond rt23..16) || (rs15..8 cond rt15..8)

|| (rs7..0 cond rt7..0)

Each of the unsigned byte elements in register rs are compared with the corresponding unsigned byte elements in reg-
ister rt. The four 1-bit boolean comparison results are written to the four least-significant bits of destination register
rd. The remaining bits in rd are set to zero.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

CMPGU.EQ.QB
ValidateAccessToDSPResources()
ccD  GPR[rs]31..24 EQ GPR[rt]31..24
ccC  GPR[rs]23..16 EQ GPR[rt]23..16
ccB  GPR[rs]15..8 EQ GPR[rt]15..8
ccA  GPR[rs]7..0 EQ GPR[rt]7..0
GPR[rd]31..0  0(GPRLEN-4) || ccD || ccC || ccB || ccA

CMPGU.LT.QB
ValidateAccessToDSPResources()
ccD  GPR[rs]31..24 LT GPR[rt]31..24
ccC  GPR[rs]23..16 LT GPR[rt]23..16
ccB  GPR[rs]15..8 LT GPR[rt]15..8
ccA  GPR[rs]7..0 LT GPR[rt]7..0
GPR[rd]31..0  0(GPRLEN-4) || ccD || ccC || ccB || ccA

CMPGU.LE.QB
ValidateAccessToDSPResources()
ccD  GPR[rs]31..24 LE GPR[rt]31..24
ccC  GPR[rs]23..16 LE GPR[rt]23..16

31 26 25 21 20 16 15 11 10 9 3 2 0

CMPGU.EQ.QB

P32A
001000 rt rs rd x 0011000 101

CMPGU.LE.QB

P32A
001000 rt rs rd x 0101000 101

CMPGU.LT.QB

P32A
001000 rt rs rd x 0100000 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

95

CMPGU.cond.QB ICompare Vectors of Unsigned Byte Values and Write Results to a GPR

ccB  GPR[rs]15..8 LE GPR[rt]15..8
ccA  GPR[rs]7..0 LE GPR[rt]7..0
GPR[rd]31..0  0(GPRLEN-4) || ccD || ccC || ccB || ccA

Exceptions:

Reserved Instruction, DSP Disabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

96

CMPU.cond.QB ICompare Vectors of Unsigned Byte Values

Format: CMPU.cond.QB
CMPU.EQ.QB rs, rt DSP
CMPU.LT.QB rs, rt DSP
CMPU.LE.QB rs, rt DSP

Purpose: Compare Vectors of Unsigned Byte Values

Perform an element-wise comparison of two vectors of unsigned bytes, recording the results of the comparison in
condition code bits.

Description: DSPControlccond:27..24  (rs31..24 cond rt31..24) || (rs23..16 cond rt23..16) ||

(rs15..8 cond rt15..8) || (rs7..0 cond rt7..0)

Each of the unsigned byte elements in register rs are compared with the corresponding unsigned byte elements in reg-
ister rt. The four 1-bit boolean comparison results are written to bits 24 through 27 of the DSPControl register’s 4-bit
condition code field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

CMPU.EQ.QB
ValidateAccessToDSPResources()
ccD  GPR[rs]31..24 EQ GPR[rt]31..24
ccC  GPR[rs]23..16 EQ GPR[rt]23..16
ccB  GPR[rs]15..8 EQ GPR[rt]15..8
ccA  GPR[rs]7..0 EQ GPR[rt]7..0
DSPControlccond:27..24  ccD || ccC || ccB || ccA

CMPU.LT.QB
ValidateAccessToDSPResources()
ccD  GPR[rs]31..24 LT GPR[rt]31..24
ccC  GPR[rs]23..16 LT GPR[rt]23..16
ccB  GPR[rs]15..8 LT GPR[rt]15..8
ccA  GPR[rs]7..0 LT GPR[rt]7..0
DSPControlccond:27..24  ccD || ccC || ccB || ccA

CMPU.LE.QB
ValidateAccessToDSPResources()
ccD  GPR[rs]31..24 LE GPR[rt]31..24
ccC  GPR[rs]23..16 LE GPR[rt]23..16

31 26 25 21 20 16 15 11 10 9 3 2 0

CMPU.EQ.QB

P32A
001000 rt rs x x 1001000 101

CMPU.LE.QB

P32A
001000 rt rs x x 1011000 101

CMPU.LT.QB

P32A
001000 rt rs x x 1010000 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

97

CMPU.cond.QB ICompare Vectors of Unsigned Byte Values

ccB  GPR[rs]15..8 LE GPR[rt]15..8
ccA  GPR[rs]7..0 LE GPR[rt]7..0
DSPControlccond:27..24  ccD || ccC || ccB || ccA

Exceptions:

Reserved Instruction, DSP Disabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

98

DPA.W.PH IDot Product with Accumulate on Vector Integer Halfword Elements

Format: DPA.W.PH ac, rs, rt DSP-R2

Purpose: Dot Product with Accumulate on Vector Integer Halfword Elements

Generate the dot-product of two integer halfword vector elements using full-size intermediate products and then accu-
mulate into the specified accumulator register.

Description: ac  ac + ((rs31..16 * rt31..16) + (rs15..0 * rt15..0))

Each of the two halfword integer values from register rt is multiplied with the corresponding halfword element from
register rs to create two integer word results. These two products are summed to generate a dot-product result, which
is then accumulated into the specified 64-bit HI/LO accumulator, creating a 64-bit integer result.

The value of ac selects an accumulator numbe red from 0 to 3. When ac=0, this refers to the original HI/LO register
pair of the MIPS32 architecture.

This instruction does not set any bits of the ouflag field in the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSP2Resources()
tempB31..0  (GPR[rs]31..16 * GPR[rt]31..16)
tempA31..0  (GPR[rs]15..0 * GPR[rt]15..0)
dotp32..0  (tempB31 || tempB31..0) + (tempA31 || tempA31..0)
acc63..0  (HI[ac]31..0 || LO[ac]31..0) + ((dotp32)

31 || dotp32..0)
(HI[ac]31..0 || LO[ac]31..0)  acc63..32 || acc31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs ac 00 000 010 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

99

DPA.W.PH IDot Product with Accumulate on Vector Integer Halfword Elements

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

100

DPAQ_S.W.PH IDot Product with Accumulation on Fractional Halfword Elements

Format: DPAQ_S.W.PH ac, rs, rt DSP

Purpose: Dot Product with Accumulation on Fractional Halfword Elements

Element-wise multiplication of two vectors of fractional halfword elements and accumulation of the accumulated 32-
bit intermediate products into the specified 64-bit accumulator register, with saturation.

Description: ac  ac + (sat32(rs31..16 * rt31..16) + sat32(rs15..0 * rt15..0))

Each of the two Q15 fractional word values from registers rt and rs are multiplied together, and the results left-shifted
by one bit position to generate two Q31 fractional format intermediate products. If both multiplicands for either of the
multiplications are equal to -1.0 (0x8000 hexadecimal), the resulting intermediate product is saturated to the maxi-
mum positive Q31 fractional value (0x7FFFFFFF hexadecimal).

The two intermediate products are then sign-extended and summed to generate a 64-bit, Q32.31 fractional format dot-
product result that is accumulated in to the specified 64-bit HI/LO accumulator to produce a f inal Q32.31 fractional
result.

The value of ac can range from 0 to 3; a v alue of 0 refers to the original HI/LO register pair of the MIPS32 architec-
ture.

If saturation occurs as a resul t of a half word multiplication, a 1 is wr itten to one o f bits 16 through 19 of the
DSPControl register, within the ouflag field. The value of ac determines which of these bits is set: bit 16 corresponds
to ac0, bit 17 to ac1, bit 18 to ac2, and bit 19 to ac3.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB31..0  multiplyQ15Q15(ac, GPR[rs]31..16, GPR[rt]31..16)
tempA31..0  multiplyQ15Q15(ac, GPR[rs]15..0, GPR[rt]15..0)
dotp63..0  ((tempB31)

32 || tempB31..0) + ((tempA31)
32 || tempA31..0)

tempC63..0  (HI[ac]31..0 || LO[ac]31..0) + dotp63..0
(HI[ac]31..0 || LO[ac]31..0)  tempC63..32 || tempC31..0

function multiplyQ15Q15(acc1..0, a15..0, b15..0)
if (a15..0 = 0x8000) and (b15..0 = 0x8000) then

temp31..0  0x7FFFFFFF
DSPControlouflag:16+acc  1

else
temp31..0  (a15..0 * b15..0) << 1

endif
return temp31..0

endfunction multiplyQ15Q15

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs ac 00 001 010 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

101

DPAQ_S.W.PH IDot Product with Accumulation on Fractional Halfword Elements

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

102

DPAQ_SA.L.W IDot Product with Accumulate on Fractional Word Element

Format: DPAQ_SA.L.W ac, rs, rt DSP

Purpose: Dot Product with Accumulate on Fractional Word Element

Multiplication of two fractional word elements, accumulating the product to the specified 64-bit accumulator register,
with saturation.

Description: ac  sat64(ac + sat32(rs31..0 * rt31..0))

The two right-most Q31 fractional word values from registers rt and rs are multiplied together and the result left-
shifted by one bit position to generate a 64-bit, Q63 fractional format intermediate product. If both multiplicands are
equal to -1.0 (0x80000000 hexadecimal), the intermediate product is saturated to the max imum positive Q63 frac-
tional value (0x7FFFFFFFFFFFFFFF hexadecimal).

The intermediate product is then added to the specified 64-bit HI/LO accumulator, creating a Q63 fractional result. If
the accumulation results in overflow or underflow, the accumulator is saturated to either the maximum positi ve or
minimum negative Q63 fractional value (0x8000000000000000 hexadecimal), respectively.

The value of ac can range from 0 to 3; a v alue of 0 refers to the original HI/LO register pair of the MIPS32 architec-
ture.

If saturation occurs, a 1 is written to one of bits 16 through 19 of the DSPControl register, within the ouflag field. The
value of ac determines which of these bits is set: bit 16 corresponds to ac0, bit 17 to ac1, bit 18 to ac2, and bit 19 to
ac3.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
dotp63..0  multiplyQ31Q31(ac, GPR[rs]31..0, GPR[rt]31..0)
temp64..0  HI[ac]31 || HI[ac]31..0 || LO[ac]31..0
temp64..0  temp64..0 + dotp63..0
if (temp64  temp63) then

if (temp64 = 1) then
temp63..0  0x8000000000000000

else
temp63..0  0x7FFFFFFFFFFFFFFF

endif
DSPControlouflag:16+ac  1

endif
(HI[ac]31..0 || LO[ac]31..0)  temp63..32 || temp31..0

function multiplyQ31Q31(acc1..0, a31..0, b31..0)
if ((a31..0 = 0x80000000) and (b31..0 = 0x80000000)) then

temp63..0  0x7FFFFFFFFFFFFFFF
DSPControlouflag:16+acc  1

else
temp63..0  (a31..0 * b31..0) << 1

endif

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs ac 01 001 010 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

103

DPAQ_SA.L.W IDot Product with Accumulate on Fractional Word Element

return temp63..0
endfunction multiplyQ31Q31

Exceptions:

Reserved Instruction, DSP Disabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

104

DPAQX_S.W.PH ICross Dot Product with Accumulation on Fractional Halfword Elements

Format: DPAQX_S.W.PH ac, rs, rt DSP-R2

Purpose: Cross Dot Product with Accumulation on Fractional Halfword Elements

Element-wise cross multipli cation of two vectors of fractional halfword elements and accumu lation of the 32-bit
intermediate products into the specified 64-bit accumulator register, with saturation.

Description: ac  ac + (sat32(rs31..16 * rt15..0) + sat32(rs15..0 * rt31..16))

The left Q15 fractional word value from registers rt is multiplied with the right halfword element from register rs and
the result left-shifted by one bit position to generate a Q31 fractional format intermediate product. Similarly, the right
Q15 fractional word value from registers rt is multiplied with the left halfword element from register rs and the result
left-shifted by one bit position to generate a Q31 fractional format intermediate product. If both multiplicands for
either of the multiplications are equal to -1.0 (0x8000 hexadecimal), the resulting intermediate product is saturated to
the maximum positive Q31 fractional value (0x7FFFFFFF hexadecimal).

The two intermediate products are then sign-extended and summed to generate a 64-bit, Q32.31 fractional format dot-
product result that is accumulated in to the specified 64-bit HI/LO accumulator to produce a f inal Q32.31 fractional
result.

The value of ac can range from 0 to 3; a v alue of 0 refers to the original HI/LO register pair of the MIPS32 architec-
ture.

If saturation occurs as a resul t of a half word multiplication, a 1 is wr itten to one o f bits 16 through 19 of the
DSPControl register, within the ouflag field. The value of ac determines which of these bits is set: bit 16 corresponds
to ac0, bit 17 to ac1, bit 18 to ac2, and bit 19 to ac3.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB31..0  multiplyQ15Q15(ac, GPR[rs]31..16, GPR[rt]15..0)
tempA31..0  multiplyQ15Q15(ac, GPR[rs]15..0, GPR[rt]31..16)
dotp63..0  ((tempB31)

32 || tempB31..0) + ((tempA31)
32 || tempA31..0)

tempC63..0  (HI[ac]31..0 || LO[ac]31..0) + dotp63..0
(HI[ac]31..0 || LO[ac]31..0)  tempC63..32 || tempC31..0

function multiplyQ15Q15(acc1..0, a15..0, b15..0)
if (a15..0 = 0x8000) and (b15..0 = 0x8000) then

temp31..0  0x7FFFFFFF
DSPControlouflag:16+acc  1

else
temp31..0  (a15..0 * b15..0) << 1

endif
return temp31..0

endfunction multiplyQ15Q15

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs ac 10 001 010 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

105

DPAQX_S.W.PH ICross Dot Product with Accumulation on Fractional Halfword Elements

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

106

DPAQX_SA.W.PH ICross Dot Product with Accumulation on Fractional Halfword Elements

Format: DPAQX_SA.W.PH ac, rs, rt DSP-R2

Purpose: Cross Dot Product with Accumulation on Fractional Halfword Elements

Element-wise cross multipli cation of two vectors of fractional halfword elements and accumu lation of the 32-bit
intermediate products into the specified 64-bit accumulator register, with saturation of the accumulator.

Description: ac  sat32(ac + (sat32(rs31..16 * rt15..0) + sat32(rs15..0 * rt31..16)))

The left Q15 fractional word value from registers rt is multiplied with the right halfword element from register rs and
the result left-shifted by one bit position to generate a Q31 fractional format intermediate product. Similarly, the right
Q15 fractional word value from registers rt is multiplied with the left halfword element from register rs and the result
left-shifted by one bit position to generate a Q31 fractional format intermediate product. If both multiplicands for
either of the multiplications are equal to -1.0 (0x8000 hexadecimal), the resulting intermediate product is saturated to
the maximum positive Q31 fractional value (0x7FFFFFFF hexadecimal).

The two intermediate products are then sign-extended and summed to generate a 64-bit, Q32.31 fractional format dot-
product result that is accumulated into the specified 64-bit HI/LO accumulator to produce a Q32.31 fractional result. If
this result is larger than or equal to +1.0, or smaller than -1.0, it is saturated to the Q31 range.

The value of ac can range from 0 to 3; a v alue of 0 refers to the original HI/LO register pair of the MIPS32 architec-
ture.

If saturation occurs as a result of halfword multiplication or accumulation, a 1 is written to one of bits 16 through 19
of the DSPControl register, within the ouflag field. The value of ac determines which of these bits is set: bit 16 corre-
sponds to ac0, bit 17 to ac1, bit 18 to ac2, and bit 19 to ac3.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB31..0  multiplyQ15Q15(ac, GPR[rs]31..16, GPR[rt]15..0)
tempA31..0  multiplyQ15Q15(ac, GPR[rs]15..0, GPR[rt]31..16)
dotp63..0  ((tempB31)

32 || tempB31..0) + ((tempA31)
32 || tempA31..0)

tempC63..0  (HI[ac]31..0 || LO[ac]31..0) + dotp63..0
if (tempC63 = 0) and (tempC62..31  0) then

tempC63..0 = 0
32 || 0x7FFFFFFF

DSPControlouflag:16+acc  1
endif
if (tempC63 = 1) and (tempC62..31  132) then

tempC63..0 = 1
32 || 0x80000000

DSPControlouflag:16+acc  1
endif
(HI[ac]31..0 || LO[ac]31..0)  tempC63..32 || tempC31..0

function multiplyQ15Q15(acc1..0, a15..0, b15..0)
if (a15..0 = 0x8000) and (b15..0 = 0x8000) then

temp31..0  0x7FFFFFFF
DSPControlouflag:16+acc  1

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs ac 11 001 010 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

107

DPAQX_SA.W.PH ICross Dot Product with Accumulation on Fractional Halfword Elements

else
temp31..0  (a15..0 * b15..0) << 1

endif
return temp31..0

endfunction multiplyQ15Q15

Exceptions:

Reserved Instruction, DSP Disabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

108

DPAU.H.QBL IDot Product with Accumulate on Vector Unsigned Byte Elements

Format: DPAU.H.QBL ac, rs, rt DSP

Purpose: Dot Product with Accumulate on Vector Unsigned Byte Elements

Element-wise multiplication of the two left-most elements of the four elements of each of two vectors of unsigned
bytes, accumulating the sum of the products into the specified 64-bit accumulator register.

Description: ac  ac + zero_extend((rs31..24 * rt31..24) + (rs23..16 * rt23..16))

The two left-most elements of the four unsigned byte elements of each of registers rt and rs are multiplied together
using unsigned arithmetic to generate two 16-bit unsigned intermediate products. The intermediate products are then
zero-extended to 64 bits and accumulated into the specified 64-bit HI/LO accumulator.

The value of ac can range from 0 to 3; a v alue of 0 refers to the original HI/LO register pair of the MIPS32 architec-
ture.

This instruction does not set any bits in the ouflag field in the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB15..0  multiplyU8U8(GPR[rs]31..24, GPR[rt]31..24)
tempA15..0  multiplyU8U8(GPR[rs]23..16, GPR[rt]23..16)
dotp63..0  (048 || tempB15..0) + (0

48 || tempA15..0)
tempC63..0  (HI[ac]31..0 || LO[ac]31..0) + dotp63..0
(HI[ac]31..0 || LO[ac]31..0)  tempC63..32 || tempC31..0

function multiplyU8U8(a7..0, b7..0)
temp17..0  (0 || a7..0) * (0 || b7..0)
return temp15..0

endfunction multiplyU8U8

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs ac 10 000 010 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

109

DPAU.H.QBL IDot Product with Accumulate on Vector Unsigned Byte Elements

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

110

DPAU.H.QBR IDot Product with Accumulate on Vector Unsigned Byte Elements

Format: DPAU.H.QBR ac, rs, rt DSP

Purpose: Dot Product with Accumulate on Vector Unsigned Byte Elements

Element-wise multiplication of the two right-most elements of the four elements of each of two vectors of unsigned
bytes, accumulating the sum of the products into the specified 64-bit accumulator register.

Description: ac  ac + zero_extend((rs15..8 * rt15..8) + (rs7..0 * rt7..0))

The two right-most elements of the four unsigned byte elements of each of registers rt and rs are multiplied together
using unsigned arithmetic to generate two 16-bit unsigned intermediate products. The intermediate products are then
zero-extended to 64 bits and accumulated into the specified 64-bit HI/LO accumulator.

The value of ac can range from 0 to 3; a v alue of 0 refers to the original HI/LO register pair of the MIPS32 architec-
ture.

This instruction does not set any bits in the ouflag field in the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB15..0  multiplyU8U8(GPR[rs]15..8, GPR[rs]15..8)
tempA15..0  multiplyU8U8(GPR[rs]7..0, GPR[rs]7..0)
dotp63..0  (048 || tempB15..0) + (0

48 || tempA15..0)
tempC63..0  (HI[ac]31..0 || LO[ac]31..0) + dotp63..0
(HI[ac]31..0 || LO[ac]31..0)  tempC63..32 || tempC31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs ac 11 000 010 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

111

DPAU.H.QBR IDot Product with Accumulate on Vector Unsigned Byte Elements

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

112

DPAX.W.PH ICross Dot Product with Accumulate on Vector Integer Halfword Elements

Format: DPAX.W.PH ac, rs, rt DSP-R2

Purpose: Cross Dot Product with Accumulate on Vector Integer Halfword Elements

Generate the cross dot-product of two integer halfword vector elements using full-size intermediate products and then
accumulate into the specified accumulator register.

Description: ac  ac + ((rs31..16 * rt15..0) + (rs15..0 * rt31..16))

The left halfword integer value from register rt is multiplied with the right halfword element from register rs to create
an integer word result. Similarly, the right halfword integer value from register rt is multiplied with the left halfword
element from register rs to create the second integer word result. These two products are summed to generate the dot-
product result, which is then accumulated into the specified 64-bit HI/LO accumulator, creating a 64-bit integer result.

The value of ac selects an accumulator numbe red from 0 to 3. When ac=0, this refers to the original HI/LO register
pair of the MIPS32 architecture.

This instruction will not set any bits of the ouflag field in the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB31..0  (GPR[rs]31..16 * GPR[rt]15..0)
tempA31..0  (GPR[rs]15..0 * GPR[rt]31..16)
dotp32..0  ((tempB31) || tempB31..0) + ((tempA31) || tempA31..0)
acc63..0  (HI[ac]31..0 || LO[ac]31..0) + ((dotp32)

31 || dotp32..0)
(HI[ac]31..0 || LO[ac]31..0)  acc63..32 acc31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs ac 01 000 010 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

113

DPAX.W.PH ICross Dot Product with Accumulate on Vector Integer Halfword Elements

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

114

DPS.W.PH IDot Product with Subtract on Vector Integer Half-Word Elements

Format: DPS.W.PH ac, rs, rt DSP-R2

Purpose: Dot Product with Subtract on Vector Integer Half-Word Elements

Generate the dot-product of two integer halfword vector elements using full-size intermediate products and then sub-
tract from the specified accumulator register.

Description: ac  ac - ((rs31..16 * rt31..16) + (rs15..0 * rt15..0))

Each of the two halfword integer values from register rt is multiplied with the corresponding halfword element from
register rs to create tw o integer word results. These two products are summed to generate the dot-product result,
which is then subtracted from the specified 64-bit HI/LO accumulator, creating a 64-bit integer result.

The value of ac selects an accumulator numbe red from 0 to 3. When ac=0, this refers to the original HI/LO register
pair of the MIPS32 architecture.

This instruction will not set any bits of the ouflag field in the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSP2Resources()
tempB31..0  (GPR[rs]31..16 * GPR[rt]31..16)
tempA31..0  (GPR[rs]15..0 * GPR[rt]15..0)
dotp32..0  ((tempB31) || tempB31..0) + ((tempA31) || tempA31..0)
acc63..0  (HI[ac]31..0 || LO[ac]31..0) - ((dotp32)

31 || dotp32..0)
(HI[ac]31..0 || LO[ac]31..0)  acc63..32 || acc31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs ac 00 010 010 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

115

DPS.W.PH IDot Product with Subtract on Vector Integer Half-Word Elements

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

116

DPSQ_S.W.PH IDot Product with Subtraction on Fractional Halfword Elements

Format: DPSQ_S.W.PH ac, rs, rt DSP

Purpose: Dot Product with Subtraction on Fractional Halfword Elements

Element-wise multiplication of two vectors of fractional halfword elements and subtraction of the accumulated 32-bit
intermediate products from the specified 64-bit accumulator register, with saturation.

Description: ac  ac - (sat32(rs31..16 * rt31..16) + sat32(rs15..0 * rt15..0))

Each of the two Q15 fractional word values from registers rt and rs are multiplied together, and the results left-shifted
by one bit position to generate two Q31 fractional format intermediate products. If both multiplicands for either of the
multiplications are equal to -1.0 (0x8000 hexadecimal), the resulting intermediate product is saturated to the maxi-
mum positive Q31 fractional value (0x7FFFFFFF hexadecimal).

The two intermediate products are then sign-extended and summed to generate a 64-bit, Q32.31 fractional format dot-
product result that i s subtracted from the specified 64-bit HI/LO accumulator to produce a f inal Q32.31 fractional
result.

The value of ac can range from 0 to 3; a v alue of 0 refers to the original HI/LO register pair of the MIPS32 architec-
ture.

If saturation occurs as a resul t of a half word multiplication, a 1 is wr itten to one o f bits 16 through 19 of the
DSPControl register, within the ouflag field. The value of ac determines which of these bits is set: bit 16 corresponds
to ac0, bit 17 to ac1, bit 18 to ac2, and bit 19 to ac3.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB31..0  multiplyQ15Q15(ac, GPR[rs]31..16, GPR[rt]31..16)
tempA31..0  multiplyQ15Q15(ac, GPR[rs]15..0, GPR[rt]15..0)
dotp63..0  ((tempB31)

32 || tempB31..0) + ((tempA31)
32 || tempA31..0)

tempC63..0  (HI[ac]31..0 || LO[ac]31..0) - dotp63..0
(HI[ac]31..0 || LO[ac]31..0)  tempC63..32 || tempC31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs ac 00 011 010 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

117

DPSQ_S.W.PH IDot Product with Subtraction on Fractional Halfword Elements

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

118

DPSQ_SA.L.W IDot Product with Subtraction on Fractional Word Element

Format: DPSQ_SA.L.W ac, rs, rt DSP

Purpose: Dot Product with Subtraction on Fractional Word Element

Multiplication of two fractional word elements, subtracting the accumulated product from the specified 64-bit accu-
mulator register, with saturation.

Description: ac  sat64(ac - sat32(rs31..0 * rt31..0))

The two right-most Q31 fractional word values from registers rt and rs are multiplied together and the resul t left-
shifted by one bit position to generate a 64-bit Q63 fractional format intermediate product. If both multiplicands are
equal to -1.0 (0x80000000 hexadecimal), the intermediate product is saturated to the max imum positive Q63 frac-
tional value (0x7FFFFFFFFFFFFFFF hexadecimal).

The intermediate product is then subtracted from the specified 64-bit HI/LO accumulator, creating a Q63 fractional
result. If the accumulation results in overflow or underflow, the accumulator is saturated to either the maximum posi-
tive or minimum negative Q63 fractional value (0x8000000000000000 hexadecimal), respectively.

The value of ac can range from 0 to 3; a v alue of 0 refers to the original HI/LO register pair of the MIPS32 architec-
ture.

If saturation occurs, a 1 is written to one of bits 16 through 19 of the DSPControl register, within the ouflag field. The
value of ac determines which of these bits is set: bit 16 corresponds to ac0, bit 17 to ac1, bit 18 to ac2, and bit 19 to
ac3.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
dotp63..0  multiplyQ31Q31(ac, GPR[rs]31..0, GPR[rt]31..0)
temp64..0  HI[ac]31 || HI[ac]31..0 || LO[ac]31..0
temp64..0  temp - dotp63..0
if (temp64  temp63) then

if (temp64 = 1) then
temp63..0  0x8000000000000000

else
temp63..0  0x7FFFFFFFFFFFFFFF

endif
DSPControlouflag:16+ac  1

endif
(HI[ac]31..0 || LO[ac]31..0)  temp63..32 || temp31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs ac 01 011 010 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

119

DPSQ_SA.L.W IDot Product with Subtraction on Fractional Word Element

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

120

DPSQX_S.W.PH ICross Dot Product with Subtraction on Fractional Halfword Elements

Format: DPSQX_S.W.PH ac, rs, rt DSP-R2

Purpose: Cross Dot Product with Subtraction on Fractional Halfword Elements

Element-wise cross multiplication of two vectors of fractional halfword elements and subtraction of the accumulated
32-bit intermediate products from the specified 64-bit accumulator register, with saturation.

Description: ac  ac - (sat32(rs31..16 * rt15..0) + sat32(rs15..0 * rt31..16))

The left Q15 fractional word value from registers rt is multiplied with the right halfword element from register rs and
the result left-shifted by one bit position to generate a Q31 fractional format intermediate product. Similarly, the right
Q15 fractional word value from registers rt is multiplied with the left halfword element from register rs and the result
left-shifted by one bit position to generate a Q31 fractional format intermediate product. If both multiplicands for
either of the multiplications are equal to -1.0 (0x8000 hexadecimal), the resulting intermediate product is saturated to
the maximum positive Q31 fractional value (0x7FFFFFFF hexadecimal).

The two intermediate products are then sign-extended and summed to generate a 64-bit, Q32.31 fractional format dot-
product result that i s subtracted from the specified 64-bit HI/LO accumulator to produce a f inal Q32.31 fractional
result.

The value of ac can range from 0 to 3; a v alue of 0 refers to the original HI/LO register pair of the MIPS32 architec-
ture.

If saturation occurs as a resul t of a half word multiplication, a 1 is wr itten to one o f bits 16 through 19 of the
DSPControl register, within the ouflag field. The value of ac determines which of these bits is set: bit 16 corresponds
to ac0, bit 17 to ac1, bit 18 to ac2, and bit 19 to ac3.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB31..0  multiplyQ15Q15(ac, GPR[rs]31..16, GPR[rt]15..0)
tempA31..0  multiplyQ15Q15(ac, GPR[rs]15..0, GPR[rt]31..16)
dotp63..0  ((tempB31)

32 || tempB31..0) + ((tempA31)
32 || tempA31..0)

tempC63..0  (HI[ac]31..0 || LO[ac]31..0) - dotp63..0
(HI[ac]31..0 || LO[ac]31..0)  tempC63..32 || tempC31..0

function multiplyQ15Q15(acc1..0, a15..0, b15..0)
if (a15..0 = 0x8000) and (b15..0 = 0x8000) then

temp31..0  0x7FFFFFFF
DSPControlouflag:16+acc  1

else
temp31..0  (a15..0 * b15..0) << 1

endif
return temp31..0

endfunction multiplyQ15Q15

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs ac 10 011 010 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

121

DPSQX_S.W.PH ICross Dot Product with Subtraction on Fractional Halfword Elements

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

122

DPSQX_SA.W.PH ICross Dot Product with Subtraction on Fractional Halfword Elements

Format: DPSQX_SA.W.PH ac, rs, rt DSP-R2

Purpose: Cross Dot Product with Subtraction on Fractional Halfword Elements

Element-wise cross multiplication of two vectors of fractional halfword elements and subtraction of the accumulated
32-bit intermediate products from the specified 64-bit accumulator register, with saturation of the accumulator.

Description: ac  sat32(ac - (sat32(rs31..16 * rt15..0) + sat32(rs15..0 * rt31..16)))

The left Q15 fractional word value from registers rt is multiplied with the right halfword element from register rs and
the result left-shifted by one bit position to generate a Q31 fractional format intermediate product. Similarly, the right
Q15 fractional word value from registers rt is multiplied with the left halfword element from register rs and the result
left-shifted by one bit position to generate a Q31 fractional format intermediate product. If both multiplicands for
either of the multiplications are equal to -1.0 (0x8000 hexadecimal), the resulting intermediate product is saturated to
the maximum positive Q31 fractional value (0x7FFFFFFF hexadecimal).

The two intermediate products are then sign-extended and summed to generate a 64-bit, Q32.31 fractional format dot-
product result that is subtracted from the specified 64-bit HI/LO accumulator to produce a Q32.31 fractional result. If
this result is larger than or equal to +1.0, or smaller than -1.0, it is saturated to the Q31 range.

The value of ac can range from 0 to 3; a v alue of 0 refers to the original HI/LO register pair of the MIPS32 architec-
ture.

If saturation occurs as a result of halfword multiplication or accumulation, a 1 is written to one of bits 16 through 19
of the DSPControl register, within the ouflag field. The value of ac determines which of these bits is set: bit 16 corre-
sponds to ac0, bit 17 to ac1, bit 18 to ac2, and bit 19 to ac3.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB31..0  multiplyQ15Q15(ac, GPR[rs]31..16, GPR[rt]15..0)
tempA31..0  multiplyQ15Q15(ac, GPR[rs]15..0, GPR[rt]31..16)
dotp63..0  ((tempB31)

32 || tempB31..0) + ((tempA31)
32 || tempA31..0)

tempC63..0  (HI[ac]31..0 || LO[ac]31..0) - dotp63..0
if (tempC63 = 0) and (tempC62..31  0) then

tempC63..0 = 0
32 || 0x7FFFFFFF

DSPControlouflag:16+acc  1
endif
if (tempC63 = 1) and (tempC62..31  132) then

tempC63..0 = 1
32 || 0x80000000

DSPControlouflag:16+acc  1
endif
(HI[ac]31..0 || LO[ac]31..0)  tempC63..32 || tempC31..0

function multiplyQ15Q15(acc1..0, a15..0, b15..0)
if (a15..0 = 0x8000) and (b15..0 = 0x8000) then

temp31..0  0x7FFFFFFF
DSPControlouflag:16+acc  1

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs ac 11 011 010 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

123

DPSQX_SA.W.PH ICross Dot Product with Subtraction on Fractional Halfword Elements

else
temp31..0  (a15..0 * b15..0) << 1

endif
return temp31..0

endfunction multiplyQ15Q15

Exceptions:

Reserved Instruction, DSP Disabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

124

DPSU.H.QBL IDot Product with Subtraction on Vector Unsigned Byte Elements

Format: DPSU.H.QBL ac, rs, rt DSP

Purpose: Dot Product with Subtraction on Vector Unsigned Byte Elements

Element-wise multiplication of two left-most elements from the four elements of each of two vectors of unsigned
bytes, subtracting the sum of the products from the specified 64-bit accumulator register.

Description: ac  ac - zero_extend((rs31..24 * rt31..24) + (rs23..16 * rt23..16))

The two left-most elements of the four unsigned byte elements of each of registers rt and rs are multiplied together
using unsigned arithmetic to generate two 16-bit unsigned intermediate products. The intermediate products are then
zero-extended to 64 bits and subtracted from the specified 64-bit HI/LO accumulator. The result of the subtraction is
written back to the specified 64-bit HI/LO accumulator.

The value of ac can range from 0 to 3; a v alue of 0 refers to the original HI/LO register pair of the MIPS32 architec-
ture.

This instruction does not set any bits in the ouflag field in the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB15..0  multiplyU8U8(GPR[rs]31..24, GPR[rt]31..24)
tempA15..0  multiplyU8U8(GPR[rs]23..16, GPR[rt]23..16)
dotp63..0  (048 || tempB15..0) + (0

48 || tempA15..0)
tempC63..0  (HI[ac]31..0 || LO[ac]31..0) - dotp63..0
(HI[ac]31..0 || LO[ac]31..0)  tempC63..32 || tempC31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs ac 10 010 010 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

125

DPSU.H.QBL IDot Product with Subtraction on Vector Unsigned Byte Elements

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

126

DPSU.H.QBR IDot Product with Subtraction on Vector Unsigned Byte Elements

Format: DPSU.H.QBR ac, rs, rt DSP

Purpose: Dot Product with Subtraction on Vector Unsigned Byte Elements

Element-wise multiplication of the two right-most elements of the four elements of each of two vectors of unsigned
bytes, subtracting the sum of the products from the specified 64-bit accumulator register.

Description: ac  ac - zero_extend((rs15..8 * rt15..8) + (rs7..0 * rt7..0))

The two right-most elements of the four unsigned byte elements of each of registers rt and rs are multiplied together
using unsigned arithmetic to generate two 16-bit unsigned intermediate products. The intermediate products are then
zero-extended to 64 bits and subtracted from the specified 64-bit HI/LO accumulator.

The value of ac can range from 0 to 3; a v alue of 0 refers to the original HI/LO register pair of the MIPS32 architec-
ture.

This instruction does not set any bits in the ouflag field in the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB15..0  multiplyU8U8(GPR[rs]15..8, GPR[rt]15..8)
tempA15..0  multiplyU8U8(GPR[rs]7..0, GPR[rt]7..0)
dotp63..0  (048 || tempB15..0) + (0

48 || tempA15..0)
tempC63..0  (HI[ac]31..0 || LO[ac]31..0) - dotp63..0
(HI[ac]31..0 || LO[ac]31..0)  tempC63..32 || tempC31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs ac 11 010 010 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

127

DPSU.H.QBR IDot Product with Subtraction on Vector Unsigned Byte Elements

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

128

DPSX.W.PH ICross Dot Product with Subtract on Vector Integer Halfword Elements

Format: DPSX.W.PH ac, rs, rt DSP-R2

Purpose: Cross Dot Product with Subtract on Vector Integer Halfword Elements

Generate the cross dot-product of two integer halfword vector elements using full-size intermediate products and then
subtract from the specified accumulator register.

Description: ac  ac - ((rs31..16 * rt15..0) + (rs15..0 * rt31..16))

The left halfword integer value from register rt is multiplied with the right halfword element from register rs to create
an integer word result. Similarly, the right halfword integer value from register rt is multiplied with the left halfword
element from register rs to create the second integer word result. These two products are summed to generate the dot-
product result, which is then subtracted from the specified 64-bit HI/LO accumulator, creating a 64-bit integer result.

The value of ac selects an accumulator numbe red from 0 to 3. When ac=0, this refers to the original HI/LO register
pair of the MIPS32 architecture.

This instruction will not set any bits of the ouflag field in the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB31..0  (GPR[rs]31..16 * GPR[rt]15..0)
tempA31..0  (GPR[rs]15..0 * GPR[rt]31..16)
dotp32..0  ((tempB31) || tempB31..0) + ((tempA31) || tempA31..0)
acc63..0  (HI[ac]31..0 || LO[ac]31..0) - ((dotp32)

31 || dotp32..0)
(HI[ac]31..0 || LO[ac]31..0)  acc63..32 acc31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs ac 01 010 010 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

129

DPSX.W.PH ICross Dot Product with Subtract on Vector Integer Halfword Elements

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

130

EXTP IExtract Fixed Bitfield From Arbitrary Position in Accumulator to GPR

Format: EXTP rt, ac, size DSP

Purpose: Extract Fixed Bitfield From Arbitrary Position in Accumulator to GPR

Extract size+1 contiguous bits from a 64-bit accumulator from a position specified in the DSPControl register, writing
the bits to a GPR with zero-extension.

Description: rt  zero_extend(acpos..pos-size)

A set of size+1 contiguous bits are extracted from an arbitrary position in accumulator ac, zero-extended to 32 bits,
and then written to register rt.

The bit position, start_pos, of the first bit of the contiguous set to extract is specified by the pos field in bits 0 through
5 of the DSPControl register. The last bit in the set is start_pos - size, where size is specified in the instruction.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS32 archi-
tecture. After the execution of this instruction, accumulator ac remains unmodified.

If , the extraction is valid, otherwise the extraction is invalid and is said to have failed. The
value of the destination register is UNPREDICTABLE when the extraction is invalid. Upon an invalid extraction this
instruction writes a 1 to bit 14, the Extract Failed Indicator (EFI) bit of the DSPControl register, and 0 otherwise.

The values of bits 0 to 5 in the pos field of the DSPControl register are unchanged by this instruction.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
start_pos5..0  DSPControlpos:5..0
if (start_pos - (size+1) >= -1) then

tempsize..0  (HI[ac]31..0 || LO[ac]31..0)start_pos..start_pos-size
temp31..0  0(32-(size+1)) || tempsize..0
GPR[rt]31..0  temp31..0
DSPControlEFI:14  0

else
DSPControlEFI:14  1
GPR[rt]  UNPREDICTABLE

endif

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt size ac 10 011 001 111 111

6 5 5 2 2 3 3 3 3

start_pos size 1+ – 1–

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

131

EXTP IExtract Fixed Bitfield From Arbitrary Position in Accumulator to GPR

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

132

EXTPDP IExtract Fixed Bitfield From Arbitrary Position in Accumulator to GPR and Decrement Pos

Format: EXTPDP rt, ac, size DSP

Purpose: Extract Fixed Bitfield From Arbitrary Position in Accumulator to GPR and Decrement Pos

Extract size+1 contiguous bits from a 64-bit accumulator from a position specified in the DSPControl register, writing
the bits to a GPR with zero-extension and modifying the extraction position.

Description: rt  zero_extend(acpos..pos-size) ; DSPControlpos:5..0 -= (size+1)

A set of size+1 contiguous bits are extracted from an arbitrary position in accumulator ac, zero-extended to 32 bits,
then written to register rt.

The bit position, start_pos, of the first bit of the contiguous set to extract is specified by the pos field in bits 0 through
5 of the DSPControl register. The position of the last bit in the extracted set is start_pos - size, where the size argu-
ment is specified in the instruction.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS32 archi-
tecture. After the execution of this instruction, accumulator ac remains unmodified.

If , the extraction is valid and the value of the pos field in the DSPControl register is decre-
mented by size+1. Otherwise, the extraction is invalid and is said to have failed. The value of the destination register
is UNPREDICTABLE when the extraction is invalid, and the value of the pos field in the DSPControl register (bits 0
through 5) is not modified.

Upon an invalid extraction this instruction writes a 1 to bit 14, the Extract Failed Indicator (EFI) bit of the DSPControl
register, and 0 otherwise.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
start_pos5..0  DSPControlpos:5..0
if (start_pos - (size+1) >= -1) then

tempsize..0  (HI[ac]31..0 || LO[ac]31..0)start_pos..start_pos-size
GPR[rt]  0(GPRLEN-(size+1)) || tempsize..0
DSPControlpos:5..0  DSPControlpos:5..0 - (size + 1)
DSPControlEFI:14  0

else
DSPControlEFI:14  1
GPR[rt]  UNPREDICTABLE

endif

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt size ac 11 011 001 111 111

6 5 5 2 2 3 3 3 3

start_pos size 1+ – 1–

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

133

EXTPDP IExtract Fixed Bitfield From Arbitrary Position in Accumulator to GPR and Decrement Pos

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

134

EXTPDPV IExtract Variable Bitfield From Arbitrary Position in Accumulator to GPR and Decrement Pos

Format: EXTPDPV rt, ac, rs DSP

Purpose: Extract Variable Bitfield From Arbitrary Position in Accumulator to GPR and Decrement Pos

Extract a fixed number of contiguous bits from a 64-bit accumulator from a position specified in the DSPControl reg-
ister, writing the bits to a GPR with zero-extension and modifying the extraction position.

Description: rt  zero_extend(acpos..pos-GPR[rs][4:0]) ; DSPControlpos:5..0 -= (GPR[rs]4..0+1)

A fixed number of contiguous bits are extracted from an arb itrary position in accumulator ac, zero-extended to 32
bits, then written to destination register rt. The number of bits extracted is size+1, where size is specified by the five
least-significant bits in r egister rs, interpreted as a f ive-bit unsigned integer. The remaining bits in register rs are
ignored.

The bit position, start_pos, of the first bit of the contiguous set to extract is specified by the pos field in bits 0 through
5 of the DSPControl register. The position of the last bit in the extracted set is start_pos - size.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS32 archi-
tecture. After the execution of this instruction, accumulator ac remains unmodified.

If , the extraction is valid and the value of the pos field in the DSPControl register is decre-
mented by size+1. Otherwise, the extraction is invalid and is said to have failed. The value of the destination register
is UNPREDICTABLE when the extraction is invalid, and the value of the pos field in the DSPControl register (bits 0
through 5) is not modified.

Upon an invalid extraction this instruction writes a 1 to bit 14, the Extract Failed Indicator (EFI) bit of the DSPControl
register, and 0 otherwise.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
start_pos5..0  DSPControlpos:5..0
size4..0  GPR[rs]4..0
if (start_pos - (size+1) >= -1) then

tempsize..0  (HI[ac]31..0 || LO[ac]31..0)start_pos..start_pos-size
GPR[rt]  0(GPRLEN-(size+1)) || tempsize..0
DSPControlpos:5..0  DSPControlpos:5..0 - (size + 1)
DSPControlEFI:14  0

else
DSPControlEFI:14  1
GPR[rt]  UNPREDICTABLE

endif

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs ac 11 100 010 111 111

6 5 5 2 2 3 3 3 3

start_pos size 1+ – 1–

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

135

EXTPDPV IExtract Variable Bitfield From Arbitrary Position in Accumulator to GPR and Decrement Pos

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

136

EXTPV IExtract Variable Bitfield From Arbitrary Position in Accumulator to GPR

Format: EXTPV rt, ac, rs DSP

Purpose: Extract Variable Bitfield From Arbitrary Position in Accumulator to GPR

Extract a variable number of contiguous bits from a 64-bit accumulator from a position specified in the DSPControl
register, writing the bits to a GPR with zero-extension.

Description: rt  zero_extend(acpos..pos-rs[4:0])

A variable number of contiguous bits are extracted from an arbitrary position in accumulator ac, zero-extended to 32
bits, then written to register rt. The number of bits extracted is size+1, where size is specified by the five least-signifi-
cant bits in register rs, interpreted as a five-bit unsigned integer. The remaining bits in register rs are ignored.

The position of the first bit of the contiguous set to extract, start_pos, is specified by the pos field in bits 0 through 5
of the DSPControl register. The position of the last bit in the contiguous set is start_pos - size.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS32 archi-
tecture. After the execution of this instruction, accumulator ac remains unmodified.

An extraction is valid if ; otherwise, the extraction is invalid and is said to have failed. The
value of the destination register is UNPREDICTABLE when the extraction is invalid. Upon an invalid extraction this
instruction writes a 1 to bit 14, the Extract Failed Indicator (EFI) bit of the DSPControl register, and 0 otherwise.

The values of bits 0 to 5 in the pos field of the DSPControl register are unchanged by this instruction.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
start_pos5..0  DSPControlpos:5..0
size4..0  GPR[rs]4..0
if (start_pos - (size+1) >= -1) then

tempsize..0  (HI[ac]31..0 || LO[ac]31..0)start_pos..start_pos-size
GPR[rt]  0(GPRLEN-(size+1)) || tempsize..0
DSPControlEFI:14  0

else
DSPControlEFI:14  1
GPR[rt]  UNPREDICTABLE

endif

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs ac 10 100 010 111 111

6 5 5 2 2 3 3 3 3

start_pos size 1+ – 1–

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

137

EXTPV IExtract Variable Bitfield From Arbitrary Position in Accumulator to GPR

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

138

EXTR[_RS].W IExtract Word Value With Right Shift From Accumulator to GPR

Format: EXTR[_RS].W
EXTR.W rt, ac, shift DSP
EXTR_R.W rt, ac, shift DSP
EXTR_RS.W rt, ac, shift DSP

Purpose: Extract Word Value With Right Shift From Accumulator to GPR

Extract a word value from a 64-bit accumulator to a GPR with right shift, and with optional rounding or rounding and
saturation.

Description: rt  sat32(round(ac >> shift))

The value in accumulator ac is shifted right by shift bits with sign extension (arithmetic shift right). The 32 least-sig-
nificant bits of the shifted value are then written to the destination register rs.

The rounding variant of the instruction adds a 1 at the most-significant discarded bit position. The 32 least-significant
bits of the rounded result are then written to the destination register.

The rounding and saturating variant of the i nstruction adds a 1 at the most-significant discarded bit position. If the
rounding operation results in an overflow, the shifted value is clamped to the maximum positive Q31 fractional value
(0x7FFFFFFF hexadecimal). The rounded and saturated result is then written to the destination register.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS32 archi-
tecture. After the execution of this instruction, ac remains unmodified.

For all variants of the instruction, including EXTR.W, bit 23 of the DSPControl register is set to 1 if either of the
rounded or non-rounded calculation results in overflow or saturation.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

EXTR.W
ValidateAccessToDSPResources()
temp64..0  _shiftShortAccRightArithmetic(ac, shift)
if ((temp64..32  0) and (temp64..32  0x1FFFFFFFF)) then

DSPControlouflag:23  1
endif
GPR[rt]31..0  temp32..1
temp64..0  temp + 1
if ((temp64..32  0) and (temp64..32  0x1FFFFFFFF)) then

DSPControlouflag:23  1

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

EXTR.W

P32A
001000 rt shift ac 00 111 001 111 111

EXTR_R.W

P32A
001000 rt shift ac 01 111 001 111 111

EXTR_RS.W

P32A
001000 rt shift ac 10 111 001 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

139

EXTR[_RS].W IExtract Word Value With Right Shift From Accumulator to GPR

endif

EXTR_R.W
ValidateAccessToDSPResources()
temp64..0  _shiftShortAccRightArithmetic(ac, shift)
if ((temp64..32  0) and (temp64..32  0x1FFFFFFFF)) then

DSPControlouflag:23  1
endif
temp64..0  temp + 1
if ((temp64..32  0) and (temp64..32  0x1FFFFFFFF)) then

DSPControlouflag:23  1
endif
GPR[rt]31..0  temp32..1

EXTR_RS.W
ValidateAccessToDSPResources()
temp64..0  _shiftShortAccRightArithmetic(ac, shift)
if ((temp64..32  0) and (temp64..32  0x1FFFFFFFF)) then

DSPControlouflag:23  1
endif
temp64..0  temp + 1
if ((temp64..32  0) and (temp64..32  0x1FFFFFFFF)) then

if (temp64 = 0) then
temp32..1  0x7FFFFFFF

else
temp32..1  0x80000000

endif
DSPControlouflag:23  1

endif
GPR[rt]31..0  temp32..1

function _shiftShortAccRightArithmetic(ac1..0, shift4..0)
if (shift4..0 = 0) then

temp64..0  (HI[ac]31..0 || LO[ac]31..0 || 0)
else

temp64..0  ((HI[ac]31)
shift || HI[ac]31..0 || LO[ac]31..shift-1)

endif
return temp64..0

endfunction _shiftShortAccRightArithmetic

Exceptions:

Reserved Instruction, DSP Disabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

140

EXTR_S.H IExtract Halfword Value From Accumulator to GPR With Right Shift and Saturate

Format: EXTR_S.H rt, ac, shift DSP

Purpose: Extract Halfword Value From Accumulator to GPR With Right Shift and Saturate

Extract a halfword value from a 64-bit accumulator to a GPR with right shift and saturation.

Description: rt  sat16(ac >> shift)

The value in the 64-bit accumulator ac is shifted right by shift bits with sign extension (arithmetic shift right). The 64-
bit value is then saturated to 16-bits, sign extended to 32 bits, and written to the destination register rt. The shift argu-
ment is provided in the instruction.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS32 archi-
tecture. After the execution of this instruction, ac remains unmodified.

This instruction sets bit 23 of the DSPControl register in the ouflag field if the operation results in saturation.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
temp63..0  shiftShortAccRightArithmetic(ac, shift)
if (temp63..0 > 0x0000000000007FFF) then

temp31..0  0x00007FFF
DSPControlouflag:23  1

else if (temp63..0 < 0xFFFFFFFFFFFF8000) then
temp31..0  0xFFFF8000
DSPControlouflag:23  1

endif
GPR[rt]31..0  temp31..0

function shiftShortAccRightArithmetic(ac1..0, shift4..0)
sign  HI[ac]31
if (shift = 0) then

temp63..0  HI[ac]31..0 || LO[ac]31..0
else

temp63..0  signshift || ((HI[ac]31..0 || LO[ac]31..0) >> shift)
endif
if (sign  temp31) then

DSPControlouflag:23  1
endif
return temp63..0

endfunction shiftShortAccRightArithmetic

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt shift ac 11 111 001 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

141

EXTR_S.H IExtract Halfword Value From Accumulator to GPR With Right Shift and Saturate

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

142

EXTRV[_RS].W IExtract Word Value With Variable Right Shift From Accumulator to GPR

Format: EXTRV[_RS].W
EXTRV.W rt, ac, rs DSP
EXTRV_R.W rt, ac, rs DSP
EXTRV_RS.W rt, ac, rs DSP

Purpose: Extract Word Value With Variable Right Shift From Accumulator to GPR

Extract a word value from a 64-bit accumulator to a GPR with variable right shift, and with optional rounding or
rounding and saturation.

Description: rt  sat32(round(ac >> rs5..0))

The value in accumulator ac is shifted right by shift bits with sign extension (arithmetic shift right). The lower 32 bits
of the shifted value are then written to the destination register rt. The number of bits to shift is given by the five least-
significant bits of register rs; the remaining bits of rs are ignored.

The rounding variant of the instruction adds a 1 at the most-significant discarded bit position. The 32 least-significant
bits of the rounded result are then written to the destination register.

The rounding and saturating variant of the i nstruction adds a 1 at the most-significant discarded bit position. If the
rounding operation results in an overflow, the shifted value is clamped to the maximum positive Q31 fractional value
(0x7FFFFFFF hexadecimal). The rounded and saturated result is then written to the destination register.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS32 archi-
tecture. After the execution of this instruction, ac remains unmodified.

For all variants of the instruction, including EXTRV.W, bit 23 of th e DSPControl register is set to 1 if either of the
rounded or non-rounded calculation results in overflow or saturation.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

EXTRV.W
ValidateAccessToDSPResources()
temp64..0  _shiftShortAccRightArithmetic(ac, GPR[rt]4..0)
if ((temp64..32  0) and (temp64..32  0x1FFFFFFFF)) then

DSPControlouflag:23  1
endif
GPR[rt]31..0  temp32..1
temp64..0  temp + 1
if ((temp64..32  0) and (temp64..32  0x1FFFFFFFF)) then

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

EXTRV.W

P32A
001000 rt rs ac 00 111 010 111 111

EXTRV_R.W

P32A
001000 rt rs ac 01 111 010 111 111

EXTRV_RS.W

P32A
001000 rt rs ac 10 111 010 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

143

EXTRV[_RS].W IExtract Word Value With Variable Right Shift From Accumulator to GPR

DSPControlouflag:23  1
endif

EXTRV_R.W
ValidateAccessToDSPResources()
temp64..0  _shiftShortAccRightArithmetic(ac, GPR[rt]4..0)
if ((temp64..32  0) and (temp64..32  0x1FFFFFFFF)) then

DSPControlouflag:23  1
endif
temp64..0  temp + 1
if ((temp64..32  0) and (temp64..32  0x1FFFFFFFF)) then

DSPControlouflag:23  1
endif
GPR[rt]31..0  temp32..1

EXTRV_RS.W
ValidateAccessToDSPResources()
temp64..0  _shiftShortAccRightArithmetic(ac, GPR[rt]4..0)
if ((temp64..32  0) and (temp64..32  0x1FFFFFFFF)) then

DSPControlouflag:23  1
endif
temp64..0  temp + 1
if ((temp64..32  0) and (temp64..32  0x1FFFFFFFF)) then

if (temp64 = 0) then
temp32..1  0x7FFFFFFF

else
temp32..1  0x80000000

endif
DSPControlouflag:23  1

endif
GPR[rt]31..0  temp32..1

Exceptions:

Reserved Instruction, DSP Disabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

144

EXTRV_S.H IExtract Halfword Value Variable From Accumulator to GPR With Right Shift and Saturate

Format: EXTRV_S.H rt, ac, rs DSP

Purpose: Extract Halfword Value Variable From Accumulator to GPR With Right Shift and Saturate

Extract a halfword value from a 64-bit accumulator to a GPR with right shift and saturation.

Description: rt  sat16(ac >> rs4..0)

The value in the 64-bit accumulator ac is shifted right by shift bits with sign extension (arithmetic shift right). The 64-
bit value is then saturated to 16-bits and sign-extended to 32 bits before being written to the destination register rt.
The five least-significant bits of register rs provide the shift argument, interpreted as a five-bit unsigned integer; the
remaining bits in rs are ignored.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS32 archi-
tecture. After the execution of this instruction, ac remains unmodified.

This instruction sets bit 23 of the DSPControl register in the ouflag field if the operation results in saturation.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
shift4..0  GPR[rs]4..0
temp31..0  shiftShortAccRightArithmetic(ac, shift)
if (temp63..0 > 0x0000000000007FFF) then

temp31..0  0x00007FFF
DSPControl23  1

else if (temp63..0 < 0xFFFFFFFFFFFF8000) then
temp31..0  0xFFFF8000
DSPControl23  1

endif
GPR[rt]31..0  temp31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs ac 11 111 010 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

145

EXTRV_S.H IExtract Halfword Value Variable From Accumulator to GPR With Right Shift and Saturate

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

147

INSV IInsert Bit Field Variable

if (lsb > msb) then
UNPREDICTABLE

endif
GPR[rt]31..0  GPR[rt]31..msb+1 || GPR[rs]msb-lsb..0 || GPR[rt]lsb-1..0

Exceptions:

Reserved Instruction, DSP Disabled

Implementation Notes

The destination of this instruction is register rt because that register is used as both a source and destination of the
instruction. Since m ost implementations have potential critical paths around source register decode, and ty pically
decode registers rs and rt as source registers, the instruction is defined with the destination as register rt instead of
register rd to minimize the impact on source register decode.

One implementation method is to shift the register rs value left by lsb bits and merge that value into the register rt
value based on a merge mask. The merge mask has a 1 in every bit position from which the corresponding output bit
comes from register rs and a 0 in every bit position from which the corresponding output bit comes from register rt.
The mask can be calculated by subtracting two constants generated from the fields of the instruction, as follows:

k1  032-lsb-1 || 1 || 0lsb

k2  (033-(msb+2) || 1 || 0msb+1)31..0
merge_mask  k2 - k1

Some implementations may choose to use the ALU to calculate the merge_mask in parallel with shifting the register
rs value to the left, then using the merge_mask to bit-select from the register rt value or the shifted register rs value.

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

148

LBUX ILoad Unsigned Byte Indexed

Format: LBUX rd, index(base) DSP
LBUX rd, rs(rt) Replaced with LBUX in nanoMIPS

Purpose: Load Unsigned Byte Indexed

To load a byte from memory as an unsigned value, using indexed addressing.

Description: rd  memory[base+index]

The contents of GPR index is added to the contents of GPR base to form an effective address. The contents of the 8-
bit byte at the memory location specified by the aligned effective address are fetched, zero-extended to the GPR reg-
ister length and placed in GPR rd.

Restrictions:

None.

Operation:

ValidateAccessToDSPResources()
vAddr31..0  GPR[index]31..0 + GPR[base]31..0
(pAddr, CCA)  AddressTranslation(vAddr, DATA, LOAD)
pAddr  pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
memwordGPRLEN..0  LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
GPR[rd]31..0  zero_extend(memword7..0)

Exceptions:

Reserved Instruction, DSP Disabled, TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

149

LBUX ILoad Unsigned Byte Indexed

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

150

LHX ILoad Halfword Indexed

Format: LHX rd, index(base) DSP
LHX rd, rs(rt) Replaced with LHX in nanoMIPS

Purpose: Load Halfword Indexed

To load a halfword value from memory as a signed value, using indexed addressing.

Description: rd  memory[base+index]

The contents of GPR index is added to the contents of GPR base to form an effective address. The contents of the 16-
bit halfword at the memory location specified by the aligned effective address are fetched, sign-extended to the length
of the destination GPR, and placed in GPR rd.

Restrictions:

The effective address must be naturally-aligned. If the least-significant bit of the ef fective address is non-zero, an
Address Error exception occurs.

Operation:

ValidateAccessToDSPResources()
vAddr31..0  GPR[index]31..0 + GPR[base]31..0
if (vAddr0  0) then

SignalException(AddressError)
endif
(pAddr, CCA)  AddressTranslation(vAddr, DATA, LOAD)
halfwordGPRLEN..0  LoadMemory(CCA, HALFWORD, pAddr, vAddr, DATA)
GPR[rd]31..0  sign_extend(halfword15..0)

Exceptions:

Reserved Instruction, DSP Disabled, TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

151

LHX ILoad Halfword Indexed

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

152

LWX ILoad Word Indexed

Format: LWX rd, index(base) DSP
LWX rd, rs(rt) Replaced with LWX in nanoMIPS

Purpose: Load Word Indexed

To load a word value from memory as a signed value, using indexed addressing.

Description: rd  memory[base+index]

The contents of GPR index is added to the contents of GPR base to form an effective address. The contents of the 32-
bit word at the memory location specified by the aligned effective address are fetched and placed in GPR rd.

Restrictions:

The effective address must be naturally-aligned. If either of the two least-significant bits of the address are non-zero,
an Address Error exception occurs.

Operation:

ValidateAccessToDSPResources()
vAddr31..0  GPR[index]31..0 + GPR[base]31..0
if (vAddr1..0  0

2) then
SignalException(AddressError)

endif
(pAddr, CCA)  AddressTranslation(vAddr, DATA, LOAD)
memwordGPRLEN..0  LoadMemory(CCA, WORD, pAddr, vAddr, DATA)
GPR[rd]31..0  memword31..0

Exceptions:

Reserved Instruction, DSP Disabled, TLB Refill, TLB Invalid, Bus Error, Address Error, Watch

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

153

LWX ILoad Word Indexed

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

154

MADD IMultiply Word and Add to Accumulator

Format: MADD ac, rs, rt DSP

Purpose: Multiply Word and Add to Accumulator

To multiply two 32-bit integer words and add the 64-bit result to the specified accumulator.

Description: (HI[ac]||LO[ac])  (HI[ac]||LO[ac]) + (rs31..0 * rt31..0)

The 32-bit signed integer word in register rs is multiplied by the corresponding 32-bit signed integer word in register
rt to produce a 64-bit result. The 64-bit product is added to the specified 64-bit accumulator.

These special registers HI and LO are specified by the value of ac. When ac=0, this refers to the original HI/LO register
pair of the MIPS32 architecture.

In Release 6 of the MIPS Architecture, accumulators are eliminated from MIPS32.

No arithmetic exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

if ((ac  0) or (ConfigAR  ) then
ValidateAccessToDSP2Resources()

endif
temp63..0  ((GPR[rs]31)

32 || GPR[rs]31..0) * ((GPR[rt]31)
32 || GPR[rt]31..0)

acc63..0  (HI[ac]31..0 || LO[ac]31..0) + temp63..0
(HI[ac]31..0 || LO[ac]31..0)  acc63..32 || acc31..0

Exceptions:

Reserved Instruction, DSP Disabled

Implementation Notes:

Processors which implement a multiplier array which is not square (for example, 32 x 16), and which therefore has an
operation latency which is data dependent, should assume that the shorter operand is in register rt.

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not af fect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in register rt. This may reduce
the latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs ac 00 101 010 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

155

MADD IMultiply Word and Add to Accumulator

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

156

MADDU IMultiply Unsigned Word and Add to Accumulator

Format: MADDU ac, rs, rt DSP

Purpose: Multiply Unsigned Word and Add to Accumulator

To multiply two 32-bit unsigned integer words and add the 64-bit result to the specified accumulator.

Description: (HI[ac]||LO[ac])  (HI[ac]||LO[ac]) + (rs31..0 * rt31..0)

The 32-bit unsigned integer word in register rs is multiplied by the corresponding 32-bit unsigned integer word in
register rt to produce a 64-bit result. The 64-bit product is added to the specified 64-bit accumulator.

These special registers HI and LO are specified by the value of ac. When ac=0, this refers to the original HI/LO register
pair of the MIPS32 architecture.

In Release 6 of the MIPS Architecture, accumulators are eliminated from MIPS32.

No arithmetic exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

if ((ac  0) or (ConfigAR  ) then
ValidateAccessToDSP2Resources()

endif
temp64..0  (032 || GPR[rs]31..0) * (0

32 || GPR[rt]31..0)
acc63..0  (HI[ac]31..0 || LO[ac]31..0) + temp63..0
(HI[ac]31..0 || LO[ac]31..0)  acc63..32 || acc31..0

Exceptions:

Reserved Instruction, DSP Disabled

Implementation Notes:

Processors which implement a multiplier array which is not square (for example, 32 x 16), and which therefore has an
operation latency which is data dependent, should assume that the shorter operand is in register rt.

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not af fect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in register rt. This may reduce
the latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs ac 01 101 010 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

157

MADDU IMultiply Unsigned Word and Add to Accumulator

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

158

MAQ_S[A].W.PHL IMultiply with Accumulate Single Vector Fractional Halfword Element

Format: MAQ_S[A].W.PHL
MAQ_S.W.PHL ac, rs, rt DSP
MAQ_SA.W.PHL ac, rs, rt DSP

Purpose: Multiply with Accumulate Single Vector Fractional Halfword Element

To multiply one pair of elements from two vectors of fractional halfword values using full-sized intermediate prod-
ucts and accumulate the result into the specified 64-bit accumulator, with optional saturating accumulation.

Description: ac  sat32(ac + sat32(rs31..16 * rt31..16))

The left-most Q15 fractional halfword values from the paired halfword vectors in each of registers rt and rs are mul-
tiplied together, and the product left-shifted by o ne bit po sition to gen erate a Q31 fractional format intermediate
result. If both multiplicands are equal to -1.0 in Q15 fractional format (0x8000 hexadecimal), the intermediate result
is saturated to the maximum positive Q31 fractional value (0x7FFFFFFF hexadecimal). The in termediate result is
then sign-extended and accumulated into accumulator ac to generate a 64-bit Q32.31 fractional format result.

In the saturating accumulation variant of this instruction, if the accumulati on of the intermediate product with the
accumulator results in a value that cannot be represented as a Q31 fractional format value, the accumulator is satu-
rated to either the maximum positive Q31 fractional format value (0x7FFFFFFF hexadecimal) or the minimum nega-
tive Q31 fractional format value (0x80000000), sign-extended to 64 bits.

The value of ac can range from 0 to 3; a v alue of 0 refers to the original HI/LO register pair of the MIPS32 architec-
ture.

If overflow or saturation occurs, a 1 is wri tten to one of bits 16 through 19 of the DSPControl register, within the
ouflag field. The value of ac determines which of these bits is set: bit 16 corresponds to ac0, bit 17 to ac1, bit 18 to
ac2, and bit 19 to ac3.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

MAQ_S.W.PHL
ValidateAccessToDSPResources()
tempA31..0  multiplyQ15Q15(ac, GPR[rs]31..16, GPR[rt]31..16)
tempB63..0  (HI[ac]31..0 || LO[ac]31..0) + ((tempA31)

32 || tempA31..0)
(HI[ac]31..0 || LO[ac]31..0)  tempB63..32 || tempB31..0

MAQ_SA.W.PHL
ValidateAccessToDSPResources()
tempA31..0  multiplyQ15Q15(ac, GPR[rs]31..16, GPR[rt]31..16)
tempA31..0  sat32AccumulateQ31(ac, temp)
tempB63..0  (tempA31)

32 || tempA31..0
(HI[ac]31..0 || LO[ac]31..0)  tempB63..32 || tempB31..0

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

MAQ_S.W.PHL

P32A
001000 rt rs ac 0 1 101 001 111 111

MAQ_SA.W.PHL

P32A
001000 rt rs ac 1 1 101 001 111 111

6 5 5 2 1 1 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

159

MAQ_S[A].W.PHL IMultiply with Accumulate Single Vector Fractional Halfword Element

function sat32AccumulateQ31(acc1..0, a31..0)
signA  a31
temp63..0  HI[acc]31..0 || LO[acc]31..0
temp63..0  temp + ((signA)

32 || a31..0)
if (temp32  temp31) then

if (temp32 = 0) then
temp31..0  0x80000000

else
temp31..0  0x7FFFFFFF

endif
DSPControlouflag:16+acc  1

endif
return temp31..0

endfunction sat32AccumulateQ31

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

The MAQ_SA version of the instruction is useful for compliance with some ITU speech processing codecs that
require a 32-bit saturation after every multiply-accumulate operation.

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

160

MAQ_S[A].W.PHR IMultiply with Accumulate Single Vector Fractional Halfword Element

Format: MAQ_S[A].W.PHR
MAQ_S.W.PHR ac, rs, rt DSP
MAQ_SA.W.PHR ac, rs, rt DSP

Purpose: Multiply with Accumulate Single Vector Fractional Halfword Element

To multiply one pair of elements from two vectors of fractional halfword values using full-sized intermediate prod-
ucts and accumulate the result into the specified 64-bit accumulator, with optional saturating accumulation.

Description: ac  sat32(ac + sat32(rs15..0 * rt15..0))

The right-most Q15 fr actional halfword values from each of the re gisters rt and rs are multiplied together and the
product left-shifted by one bit position to generate a Q31 fractional format intermediate result. If both multiplicands
are equal to -1.0 in Q15 fractional format (0x8000 hexadecimal), the intermediate result is saturated to the maximum
positive Q31 fractional value (0x7FFFFFFF hexadecimal). The intermediate result is then sign-extended and accumu-
lated into accumulator ac to generate a 64-bit Q32.31 fractional format result.

In the saturating accumulation variant of this instruction, if the accumulati on of the intermediate product with the
accumulator results in a value that cannot be represented as a Q31 fractional format value, the accumulator is satu-
rated to either the maximum positive Q31 fractional format value (0x7FFFFFFF hexadecimal) or the minimum nega-
tive Q31 fractional format value (0x80000000), sign-extended to 64 bits.

The value of ac can range from 0 to 3; a v alue of 0 refers to the original HI/LO register pair of the MIPS32 architec-
ture.

If overflow or saturation occurs, a 1 is wri tten to one of bits 16 through 19 of the DSPControl register, within the
ouflag field. The value of ac determines which of these bits is set: bit 16 corresponds to ac0, bit 17 to ac1, bit 18 to
ac2, and bit 19 to ac3.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

MAQ_S.W.PHR
ValidateAccessToDSPResources()
tempA31..0  multiplyQ15Q15(ac, GPR[rs]15..0, GPR[rt]15..0)
tempB63..0  (HI[ac]31..0 || LO[ac]31..0) + ((tempA31)

32 || tempA31..0)
(HI[ac]31..0 || LO[ac]31..0)  tempB63..32 || tempB31..0

MAQ_SA.W.PHR
ValidateAccessToDSPResources()
tempA31..0  multiplyQ15Q15(ac, GPR[rs]15..0, GPR[rt]15..0)
tempA31..0  sat32AccumulateQ31(ac, temp)
tempB63..0  (tempA31)

32 || tempA31..0
(HI[ac]31..0 || LO[ac]31..0)  tempB63..32 || tempB31..0

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

MAQ_S.W.PHR

P32A
001000 rt rs ac 0 0 101 001 111 111

MAQ_SA.W.PHR

P32A
001000 rt rs ac 1 0 101 001 111 111

6 5 5 2 1 1 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

161

MAQ_S[A].W.PHR IMultiply with Accumulate Single Vector Fractional Halfword Element

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

The MAQ_SA version of the instruction is useful for compliance with some ITU speech processing codecs that
require a 32-bit saturation after every multiply-accumulate operation.

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

162

MFHI IMove from HI register

Format: MFHI rs, ac DSP

Purpose: Move from HI register

To copy the special purpose HI register to a GPR.

Description: rs  HI[ac]

The HI part of accumulator ac is copied to the general-purpose register rs. The HI part of the accumulator is defined
to be bits 32 through 63 of the DSP Module accumulator register.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS32 archi-
tecture.

In Release 6 of the MIPS Architecture, accumulators are eliminated from MIPS32.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

if ((ac  0) or (ConfigAR  ) then
ValidateAccessToDSPResources()

endif
GPR[rs]31..0  HI[ac]31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt x ac 00 000 001 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

163

MFHI IMove from HI register

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

164

MFLO IMove from LO register

Format: MFLO rt, ac DSP

Purpose: Move from LO register

To copy the special purpose LO register to a GPR.

Description: rt  LO[ac]

The LO part of accumulator ac is copied to the general-purpose register rt. The LO part of the accumulator is defined
to be bits 0 through 31 of the DSP Module accumulator register.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS32 archi-
tecture.

In Release 6 of the MIPS Architecture, accumulators are eliminated from MIPS32.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

if ((ac  0) or (ConfigAR  ) then
ValidateAccessToDSPResources()

endif
GPR[rt]31..0  LO[ac]31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt x ac 01 000 001 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

165

MFLO IMove from LO register

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

166

MODSUB IModular Subtraction on an Index Value

Format: MODSUB rd, rs, rt DSP

Purpose: Modular Subtraction on an Index Value

Do a modular subtraction on a specified index value, using the specified decrement and modular roll-around values.

Description: rd  (GPR[rs]==0 ? zero_extend(GPR[rt]23..8) : GPR[rs] - GPR[rt]7..0)

The 32-bit value in register rs is compared to the value zero. If it is zero, then the index value has reached the bottom
of the buffer and must be rolled back around to the top of the buffer. The index value of the top element of the buffer
is obtained from bits 8 through 23 in register rt; this value is zero-extended to 32 bits and written to destination regis-
ter rd.

If the value of register rs is not zero, then it is simply decremented by the size of the elements in the buffer. The size
of the elements, in bytes, is specified by bits 0 through 7 of register rt, interpreted as an unsigned integer.

This instruction does not modify the ouflag field in the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
decr7..0  GPR[rt]7..0
lastindex15..0  GPR[rt]23..8
if (GPR[rs]31..0 = 0x00000000) then

GPR[rd]31..0  0(GPRLEN-16) || lastindex15..0
else

GPR[rd]31..0  GPR[rs]31..0 - decr7..0
endif

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 9 3 2 0

P32A
001000 rt rs rd x 1010010 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

167

MODSUB IModular Subtraction on an Index Value

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

168

MSUB IMultiply Word and Subtract from Accumulator

Format: MSUB ac, rs, rt DSP

Purpose: Multiply Word and Subtract from Accumulator

To multiply two 32-bit integer words and subtract the 64-bit result from the specified accumulator.

Description: (HI[ac]||LO[ac])  (HI[ac]||LO[ac]) - (rs31..0 * rt31..0)

The 32-bit signed integer word in register rs is multiplied by the corresponding 32-bit signed integer word in register
rt to produce a 64-bit result. The 64-bit product is subtracted from the specified 64-bit accumulator.

These special registers HI and LO are specified by the value of ac. When ac=0, this refers to the original HI/LO register
pair of the MIPS32 architecture.

In Release 6 of the MIPS Architecture, accumulators are eliminated from MIPS32.

No arithmetic exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

if ((ac  0) or (ConfigAR  ) then
ValidateAccessToDSP2Resources()

endif
temp63..0  ((GPR[rs]31)

32 || GPR[rs]31..0) * ((GPR[rt]31)
32 || GPR[rt]31..0)

acc63..0  (HI[ac]31..0 || LO[ac]31..0) - temp63..0
(HI[ac]31..0 || LO[ac]31..0)  acc63..32 ||acc31..0

Exceptions:

Reserved Instruction, DSP Disabled

Implementation Notes:

Processors which implement a multiplier array which is not square (for example, 32 x 16), and which therefore has an
operation latency which is data dependent, should assume that the shorter operand is in register rt.

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not af fect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in register rt. This may reduce
the latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs ac 10 101 010 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

169

MSUB IMultiply Word and Subtract from Accumulator

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

170

MSUBU IMultiply Unsigned Word and Add to Accumulator

Format: MSUBU ac, rs, rt DSP

Purpose: Multiply Unsigned Word and Add to Accumulator

To multiply two 32-bit unsigned integer words and subtract the 64-bit result from the specified accumulator.

Description: (HI[ac]||LO[ac])  (HI[ac]||LO[ac]) - (rs31..0 * rt31..0)

The 32-bit unsigned integer word in register rs is multiplied by the corresponding 32-bit unsigned integer word in
register rt to produce a 64-bit result. The 64-bit product is subtracted from the specified 64-bit accumulator.

These special registers HI and LO are specified by the value of ac. When ac=0, this refers to the original HI/LO register
pair of the MIPS32 architecture.

In Release 6 of the MIPS Architecture, accumulators are eliminated from MIPS32.

No arithmetic exception occurs under any circumstances.

Restrictions:

None

This instruction does not provide the capability of writing directly to a target GPR.

Operation:

if ((ac  0) or (ConfigAR  ) then
ValidateAccessToDSP2Resources()

endif
temp64..0  (032 || GPR[rs]31..0) * (0

32 || GPR[rt]31..0)
acc63..0  (HI[ac]31..0 || LO[ac]31..0) - temp63..0
(HI[ac]31..0 || LO[ac]31..0)  acc63..32 ||acc31..0

Exceptions:

Reserved Instruction, DSP Disabled

Implementation Notes:

Processors which implement a multiplier array which is not square (for example, 32 x 16), and which therefore has an
operation latency which is data dependent, should assume that the shorter operand is in register rt.

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not af fect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in register rt. This may reduce
the latency of the instruction on those processors which implement data-dependent instruction latencies.

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs ac 11 101 010 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

171

MSUBU IMultiply Unsigned Word and Add to Accumulator

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

172

MTHI IMove to HI register

Format: MTHI rs, ac DSP

Purpose: Move to HI register

To copy a GPR to the special purpose HI part of the specified accumulator register.

Description: HI[ac]  GPR[rs]

The source register rs is copied to the HI part of accumulator ac. The HI part of the accumulator is def ined to be bits
32 to 63 of the DSP Module accumulator register.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS32 archi-
tecture.

In Release 6 of the MIPS Architecture, accumulators are eliminated from MIPS32.

Restrictions:

A computed result written to the HI/LO pair by DIV, DIVU, DDIV, DDIVU, DMULT, DMULTU, MULT, or MULTU
must be read by MF HI or MFLO before a new result can be wr itten into either HI or LO. Note that this restriction
only applies to the original HI/LO accumulator pair, and does not apply to the new accumulators, ac1, ac2, and ac3.

If an MTHI instruction is executed following one of these arithmetic instructions, but before an M FLO or MFHI
instruction, the contents of LO are UNPREDICTABLE. The following example shows this illegal situation:

MULT r2,r4 # start operation that will eventually write to HI,LO
... # code not containing mfhi or mflo
MTHI r6
... # code not containing mflo
MFLO r3 # this mflo would get an UNPREDICTABLE value

Operation:

if ((ac  0) or (ConfigAR  ) then
ValidateAccessToDSPResources()

endif
HI[ac]31..0  GPR[rs]31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 x rs ac 10 000 001 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

173

MTHI IMove to HI register

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

174

MTHLIP ICopy LO to HI and a GPR to LO and Increment Pos by 32

Format: MTHLIP rs, ac DSP

Purpose: Copy LO to HI and a GPR to LO and Increment Pos by 32

Copy the LO part of an accumulator to the HI part, copy a GPR to LO, and increment the pos field in the DSPControl
register by 32.

Description: ac  LO[ac]31..0 || GPR[rs]31..0 ; DSPControlpos:5..0 += 32

The 32 least-significant bits of the specified accumulator are copied to the most-significant 32 bits of the same accu-
mulator. Then the 32 least-significant bits of register rs are copied to the least-significant 32 bits of the accumulator.
The instruction then increments the value of bits 0 through 5 of the DSPControl register (the pos field) by 32.

The result of this instruction is UNPREDICTABLE if the value of the pos field before the execution of the instruc-
tion is greater than 32.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS32 archi-
tecture.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempA31..0  GPR[rs]31..0
tempB31..0  LO[ac]31..0
(HI[ac]31..0 || LO[ac]31..0)  tempB31..0 || tempA31..0
oldpos5..0  DSPControlpos:5..0
if (oldpos5..0 > 32) then

DSPControlpos:5..0  UNPREDICTABLE
else

DSPControlpos:5..0  oldpos5..0 + 32
endif

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 x rs ac 00 001 001 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

175

MTHLIP ICopy LO to HI and a GPR to LO and Increment Pos by 32

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

176

MTLO IMove to LO register

Format: MTLO rs, ac DSP

Purpose: Move to LO register

To copy a GPR to the special purpose LO part of the specified accumulator register.

Description: LO[ac]  GPR[rs]

Thesource register rs is copied to the LO part of accumulator ac. The LO part of the accumulator is defined to be bits
0 to 32 of the DSP Module accumulator register.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS32 archi-
tecture.

In Release 6 of the MIPS Architecture, accumulators are eliminated from MIPS32.

Restrictions:

A computed result written to the HI/LO pair by DIV, DIVU, DDIV, DDIVU, DMULT, DMULTU, MULT, or MULTU
must be read by MF HI or MFLO before a new result can be wr itten into either HI or LO. Note that this restriction
only applies to the original HI/LO accumulator pair, and does not apply to the new accumulators, ac1, ac2, and ac3.

If an MTHI instruction is executed following one of these arithmetic instructions, but before an M FLO or MFHI
instruction, the contents of LO are UNPREDICTABLE. The following example shows this illegal situation:

MULT r2,r4 # start operation that will eventually write to HI,LO
... # code not containing mfhi or mflo
MTHI r6
... # code not containing mflo
MFLO r3 # this mflo would get an UNPREDICTABLE value

Operation:

if ((ac  0) or (ConfigAR  ) then
ValidateAccessToDSPResources()

endif
LO[ac]31..0  GPR[rs]31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 x rs ac 11 000 001 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

177

MTLO IMove to LO register

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

178

MUL[_S].PH IMultiply Vector Integer HalfWords to Same Size Products

Format: MUL[_S].PH
MUL.PH rd, rs, rt DSP-R2
MUL_S.PH rd, rs, rt DSP-R2

Purpose: Multiply Vector Integer HalfWords to Same Size Products

Multiply two vector halfword values.

Description: rd  (rs31..16 * rt31..16) || (rs15..0 * rt15..0)

Each of the two integer halfword elements in register rs is multiplied by the corresponding integer halfword element
in register rt to create a 32-bit signed integer intermediate result.

In the non-saturation version of the instruction, the 16 least-significant bits of each 32-bit intermediate result are writ-
ten to the corresponding vector element in destination register rd.

In the saturating version of the instruction, intermediate results that cannot be represented in 16 bits are clipped to
either the maximum positive 16-bit value (0x7FFF hexadecimal) or the minimum negative 16-bit value (0x8000 hexa-
decimal), depending on the sign of the intermediate result. The saturated results are then written to the destination
register.

To stay compliant with the base architecture, this instruction leaves the base HI/LO pair (accumulator ac0) UNPRE-
DICTABLE after the operation completes. The other DSP Module accumulators, ac1, ac2, and ac3, are unchanged.

In the saturating instruction variant, if either multiplication results in an overflow or underflow, the instruction writes
a 1 to bit 21 in the ouflag field in the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

MUL.PH
ValidateAccessToDSPResources()
tempB31..0  MultiplyI16I16(GPR[rs]31..16, GPR[rt]31..16)
tempA31..0  MultiplyI16I16(GPR[rs]15..0, GPR[rt]15..0)
GPR[rd]31..0  tempB15..0 || tempA15..0
HI31..0  UNPREDICTABLE
LO31..0  UNPREDICTABLE

MUL_S.PH
ValidateAccessToDSPResources()
tempB31..0  sat16MultiplyI16I16(GPR[rs]31..16, GPR[rt]31..16)
tempA31..0  sat16MultiplyI16I16(GPR[rs]15..0, GPR[rt]15..0)
GPR[rd]31..0  tempB15..0 || tempA15..0
HI31..0  UNPREDICTABLE

31 26 25 21 20 16 15 11 10 9 3 2 0

MUL.PH

P32A
001000 rt rs rd 0 0000101 101

MUL_S.PH

P32A
001000 rt rs rd 1 0000101 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

179

MUL[_S].PH IMultiply Vector Integer HalfWords to Same Size Products

LO31..0  UNPREDICTABLE

function MultiplyI16I16(a15..0, b15..0)
temp31..0  a15..0 * b15..0
if (temp31..0 > 0x7FFF) or (temp31..0 < 0xFFFF8000) then

DSPControlouflag:21  1
endif
return temp15..0

endfucntion MultiplyI16I16

function satMultiplyI16I16(a15..0, b15..0)
temp31..0  a15..0 * b15..0
if (temp31..0 > 0x7FFF) then

temp31..0  0x00007FFF
DSPControlouflag:21  1

else
if (temp31..0 < 0xFFFF8000) then

temp31..0  0xFFFF8000
DSPControlouflag:21  1

endif
endif
return temp15..0

endfucntion satMultiplyI16I16

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

The base MIPS32 architecture states that upon the after a GPR-targeting multiply instruction such as MUL, the con-
tents of HI and LO are UNPREDICTABLE. To stay compliant with the base ar chitecture, this multiply instruction
states the same requirement. But this requirement does not apply to the new accumulators ac1-ac3 and hence a pro-
grammer must save the value in ac0 (which is the same as HI and LO) across a GPR-targeting multiply instruction, it
needed, while the values in ac1-ac3 do not need to be saved.

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

180

MULEQ_S.W.PHL IMultiply Vector Fractional Left Halfwords to Expanded Width Products

Format: MULEQ_S.W.PHL rd, rs, rt DSP

Purpose: Multiply Vector Fractional Left Halfwords to Expanded Width Products

Multiply two Q15 fractional halfword values to produce a Q31 fractional word result, with saturation.

Description: rd  sat32(rs31..16 * rt31..16)

The left-most Q15 fractional halfword value from the paired halfword vector in register rs is multiplied by the corre-
sponding Q15 fractional halfword value from register rt. The result is left-shifted one bit position to create a Q31 for-
mat result and written into the destination register rd. If both input values are -1.0 in Q15 format (0x8000 in
hexadecimal) the resu lt is clam ped to the m aximum positive Q31 fractional value (0x7FFFFFFF in h exadecimal)
before being written to the destination register.

To stay compliant with the base architecture, this instruction leaves the base HI/LO pair (accumulator ac0) UNPRE-
DICTABLE after the operation completes. The other DSP Module accumulators, ac1, ac2, and ac3 are unmodified.

If the result is saturated, this instruction writes a 1 to bit 21 in the ouflag field of the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
temp31..0  multiplyQ15Q15ouflag21(GPR[rs]31..16, GPR[rt]31..16)
GPR[rd]31..0  temp31..0
HI[0]31..0  UNPREDICTABLE
LO[0]31..0  UNPREDICTABLE

function multiplyQ15Q15ouflag21(a15..0, b15..0)
if (a15..0 = 0x8000) and (b15..0 = 0x8000) then

temp31..0  0x7FFFFFFF
DSPControlouflag:21  1

else
temp31..0  (a15..0 * b15..0) << 1

endif
return temp31..0

endfunction multiplyQ15Q15ouflag21

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

The base MIPS32 architecture states that after a GPR-targeting multiply instruction such as MUL, the contents of reg-
isters HI and LO are UNPREDICTABLE. To maintain compliance with the base arch itecture this multiply instruc-
tion, MULEQ_S.W.PHL, has the same requirement. Software must save and restore the ac0 register if the previous
value in the ac0 register is needed following the MULEQ_S.W.PHL instruction.

Note that the requirement on HI and LO does not apply to the new accumulator registers ac1, ac2, and ac3; as a result

31 26 25 21 20 16 15 11 10 9 3 2 0

P32A
001000 rt rs rd x 0000100 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

181

MULEQ_S.W.PHL IMultiply Vector Fractional Left Halfwords to Expanded Width Products

the values in these accumulators need not be saved.

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

182

MULEQ_S.W.PHR IMultiply Vector Fractional Right Halfwords to Expanded Width Products

Format: MULEQ_S.W.PHR rd, rs, rt DSP

Purpose: Multiply Vector Fractional Right Halfwords to Expanded Width Products

Multiply two Q15 fractional halfword values to produce a Q31 fractional word result, with saturation.

Description: rd  sat32(rs15..0 * rt15..0)

The right-most Q15 fractional halfword value from register rs is multiplied by the corresponding Q15 fractional half-
word value from register rt. The result is left-shifted one bit position to create a Q31 format result and written into the
destination register rd. If both input values are -1.0 in Q15 format (0x8000 in hexadecimal) the result is clamped to
the maximum positive Q31 fractional value (0x7FFFFFFF in hexadecimal) before being written to the destination
register.

To stay compliant with the base architecture, this instruction leaves the base HI/LO pair (accumulator ac0) UNPRE-
DICTABLE after the operation completes. The other DSP Module accumulators, ac1, ac2, and ac3 are unmodified.

If the result is saturated, this instruction writes a 1 to bit 21 in the ouflag field of the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
temp31..0  multiplyQ15Q15ouflag21(GPR[rs]15..0, GPR[rt]15..0)
GPR[rd]31..0  temp31..0
HI[0]31..0  UNPREDICTABLE
LO[0]31..0  UNPREDICTABLE

function multiplyQ15Q15ouflag21(a15..0, b15..0)
if (a15..0 = 0x8000) and (b15..0 = 0x8000) then

temp31..0  0x7FFFFFFF
DSPControlouflag:21  1

else
temp31..0  (a15..0 * b15..0) << 1

endif
return temp31..0

endfunction multiplyQ15Q15ouflag21

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

The base MIPS32 architecture states that after a GPR-targeting multiply instruction such as MUL, the contents of reg-
isters HI and LO are UNPREDICTABLE. To maintain compliance with the base arch itecture this multiply instruc-
tion, MULEQ_S.W.PHR, has the same requirement. Software must save and restore the ac0 register if the previous
value in the ac0 register is needed following the MULEQ_S.W.PHR instruction.

31 26 25 21 20 16 15 11 10 9 3 2 0

P32A
001000 rt rs rd x 0001100 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

183

MULEQ_S.W.PHR IMultiply Vector Fractional Right Halfwords to Expanded Width Products

Note that the requirement on HI and LO does not apply to the new accumulator registers ac1, ac2, and ac3; as a result
the values in these accumulators need not be saved.

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

184

MULEU_S.PH.QBL IMultiply Unsigned Vector Left Bytes by Halfwords to Halfword Products

Format: MULEU_S.PH.QBL rd, rs, rt DSP

Purpose: Multiply Unsigned Vector Left Bytes by Halfwords to Halfword Products

Multiply two left-most unsigned byte vector elements in a byte vector by two unsigned halfword vector elements to
produce two unsigned halfword results, with saturation.

Description: rd  sat16(rs31..24 * rt31..16) || sat16(rs23..16 * rt15..0)

The two left-most unsigned byte elements in a four-element byte vector in register rs are multiplied as unsigned inte-
ger values with the four corresponding unsigned halfword elements from register rt. The eight most-significant bits of
each 24-bit result are discarded, and the remaining 16 least-significant bits are written to the corresponding elements
in halfword vector register rd. The instruction saturates the result to the maximum positive value (0xFFFF hexadeci-
mal) if any of the discarded bits from each intermediate result are non-zero.

To stay compliant with the base architecture, this instruction leaves the base HI/LO pair (accumulator ac0) UNPRE-
DICTABLE after the operation completes. The other DSP Module accumulators, ac1, ac2, and ac3 are unmodified.

If either result is saturated this instruction writes a 1 to bit 21 in the DSPControl register in the ouflag field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB15..0  multiplyU8U16(GPR[rs]31..24, GPR[rt]31..16)
tempA15..0  multiplyU8U16(GPR[rs]23..16, GPR[rt]15..0)
GPR[rd]31..0  tempB15..0 || tempA15..0
HI[0]31..0  UNPREDICTABLE
LO[0]31..0  UNPREDICTABLE

function multiplyU8U16(a7..0, b15..0)
temp25..0  (0 || a) * (0 || b)
if (temp25..16> 0x00) then

temp25..0  010 || 0xFFFF
DSPControlouflag:21  1

endif
return temp15..0

endfunction multiplyU8U16

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

The base MIPS32 architecture states that after a GPR-targeting multiply instruction such as MUL, the contents of reg-
isters HI and LO are UNPREDICTABLE. To maintain compliance with the base arch itecture this multiply instruc-
tion, MULEU_S.PH.QBL, has the same requirement. Software must save and restore the ac0 register if the previous
value in the ac0 register is needed following the MULEU_S.PH.QBL instruction.

31 26 25 21 20 16 15 11 10 9 3 2 0

P32A
001000 rt rs rd x 0010010 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

185

MULEU_S.PH.QBL IMultiply Unsigned Vector Left Bytes by Halfwords to Halfword Products

Note that the requirement on HI and LO does not apply to the new accumulator registers ac1, ac2, and ac3; as a result
the values in these accumulators need not be saved.

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

186

MULEU_S.PH.QBR IMultiply Unsigned Vector Right Bytes with halfwords to Half Word Products

Format: MULEU_S.PH.QBR rd, rs, rt DSP

Purpose: Multiply Unsigned Vector Right Bytes with halfwords to Half Word Products

Element-wise multiplication of unsigned byte elements with corresponding unsigned halfword elements, with satura-
tion.

Description: rd  sat16(rs15..8 * rt31..16) || sat16(rs7..0 * rt15..0)

The two r ight-most unsigned byte elements in a four-element byte vector in register rs are multiplied as unsigned
integer values with the corresponding right-most 16-bit unsigned values from register rt. Each result is clipped to pre-
serve the 16 l east-significant bits and written back into the respective halfword element positions in the destination
register rd. The instruction saturates the result to the maximum positive value (0xFFFF hexadecimal) if any of the
clipped bits are non-zero.

To stay compliant with the base architecture, this instruction leaves the base HI/LO pair (accumulator ac0) UNPRE-
DICTABLE after the operation completes. The other DSP Module accumulators, ac1, ac2, and ac3 must be unmod-
ified.

This instruction writes a 1 to bit 21 in the ouflag field in the DSPControl register if either multiplication results in sat-
uration.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB15..0  multiplyU8U16(GPR[rs]15..8, GPR[rt]31..16)
tempA15..0  multiplyU8U16(GPR[rs]7..0, GPR[rt]15..0)
GPR[rd] tempB15..0 || tempA15..0
HI[0]31..0  UNPREDICTABLE
LO[0]31..0  UNPREDICTABLE

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

The base MIPS32 architecture states that after a GPR-targeting multiply instruction such as MUL, the contents of reg-
isters HI and LO are UNPREDICTABLE. To maintain compliance with the base arch itecture this multiply instruc-
tion, MULEU_S.PH.QBR, has the same requirement. Software must save and restore the ac0 register if the previous
value in the ac0 register is needed following the MULEU_S.PH.QBR instruction.

Note that the requirement on HI and LO does not apply to the new accumulator registers ac1, ac2, and ac3; as a result
the values in these accumulators need not be saved.

31 26 25 21 20 16 15 11 10 9 3 2 0

P32A
001000 rt rs rd x 0011010 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

187

MULEU_S.PH.QBR IMultiply Unsigned Vector Right Bytes with halfwords to Half Word Products

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

188

MULQ_RS.PH IMultiply Vector Fractional Halfwords to Fractional Halfword Products

Format: MULQ_RS.PH rd, rs, rt DSP

Purpose: Multiply Vector Fractional Halfwords to Fractional Halfword Products

Multiply Q15 fractional halfword vector elements with rounding and saturation to produce two Q15 fractional half-
word results.

Description: rd  rndQ15(rs31..16 * rt31..16) || rndQ15(rs15..0 * rt15..0)

The two Q15 fractional halfword elements from register rs are separately multiplied by the corresponding Q15 frac-
tional halfword elements from register rt to pr oduce 32-bit intermediate results. Each intermediate result is left -
shifted by one bit position to produce a Q31 fractional value, then rounded by adding 0x00008000 hexadecimal. The
rounded intermediate result is then truncated to a Q15 fr actional value and written to the corresponding position in
destination register rd.

If the two input values to either multiplication are both -1.0 (0x8000 in hexadecimal), the final halfword result is sat-
urated to the maximum positive Q15 value (0x7FFF in hexadecimal) and rounding and truncation are not performed.

To stay compliant with the base architecture, this instruction leaves the base HI/LO pair (accumulator ac0) UNPRE-
DICTABLE after the operation completes. The other DSP Module accumulators, ac1, ac2, and ac3 must be unmod-
ified.

If either result is saturated this instruction writes a 1 to bit 21 in the DSPControl register in the ouflag field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB15..0  rndQ15MultiplyQ15Q15(GPR[rs]31..16, GPR[rt]31..16)
tempA15..0  rndQ15MultiplyQ15Q15(GPR[rs]15..0, GPR[rt]15..0)
GPR[rd]31..0  tempB15..0 || tempA15..0
HI[0]31..0  UNPREDICTABLE
LO[0]31..0  UNPREDICTABLE

function rndQ15MultiplyQ15Q15(a15..0, b15..0)
if (a15..0 = 0x8000) and (b15..0 = 0x8000) then

temp31..0  0x7FFF0000
DSPControlouflag:21  1

else
temp31..0  (a15..0 * b15..0) << 1
temp31..0  temp31..0 + 0x00008000

endif
return temp31..16

endfunction rndQ15MultiplyQ15Q15

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 9 3 2 0

P32A
001000 rt rs rd x 0100010 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

189

MULQ_RS.PH IMultiply Vector Fractional Halfwords to Fractional Halfword Products

Programming Notes:

The base MIPS32 architecture states that after a GPR-targeting multiply instruction such as MUL, the contents of reg-
isters HI and LO are UNPREDICTABLE. To maintain compliance with the base architecture, this multiply instruc-
tion, MULQ_RS.PH, has the same requirement. Software must save and restore the ac0 register if the previous value
in the ac0 register is needed following the MULQ_RS.PH instruction.

Note that the requirement on HI and LO does not apply to the new accumulator registers ac1, ac2, and ac3; as a result,
the values in these accumulators need not be saved.

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

190

MULQ_RS.W IMultiply Fractional Words to Same Size Product with Saturation and Rounding

Format: MULQ_RS.W rd, rs, rt DSP-R2

Purpose: Multiply Fractional Words to Same Size Product with Saturation and Rounding

Multiply fractional Q31 word values, with saturation and rounding.

Description: rd  round(sat32(rs31..0 * rt31..0))

The Q31 fractional format words in registers rs and rt are multiplied together and the product shifted left by one bit
position to create a 64-bit fractional format intermediate result. The intermediate result is rounded up by adding a 1 at
bit position 31, and then truncated by discarding the 32 least-significant bits to create a 32-bit fractional format result.
The result is then written to destination register rd.

If both input multiplicands are equal to -1 (0x80000000 hexadecimal), rounding is not performed and the maximum
positive Q31 fractional format value (0x7FFFFFFF hexadecimal) is written to the destination register.

To stay compliant with the base architecture, this instruction leaves the base HI/LO pair (accumulator ac0) UNPRE-
DICTABLE after the operation completes. The other DSP Module accumulators, ac1, ac2, and ac3, are unchanged.

This instruction, on an overflow or underflow of the operation, writes a 1 to bit 21 in the DSPControl register in the
ouflag field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSP2Resources()
if (GPR[rs]31..0 = 0x80000000) and (GPR[rt]31..0 = 0x80000000) then

temp63..0  0x7FFFFFFF00000000
DSPControlouflag:21  1

else
temp63..0  (GPR[rs]31..0 * GPR[rt]31..0) << 1
temp63..0  temp63..0 + (0

32 || 0x80000000)
endif
GPR[rd]31..0  temp63..32
HI[0]31..0  UNPREDICTABLE
LO[0]31..0  UNPREDICTABLE

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

The base MIPS32 architecture states that after a GPR-targeting multiply instruction such as MUL, the contents of reg-
isters HI and LO are UNPREDICTABLE. To maintain compliance with the base architecture, this multiply instruc-
tion, MULQ_RS.W, has the same requirement. Software must save and restore the ac0 register if the previous value
in the ac0 register is needed following the MULQ_RS.W instruction.

Note that the requirement on HI and LO does not apply to the new accumulator registers ac1, ac2, and ac3; as a result,
the values in these accumulators need not be saved.

31 26 25 21 20 16 15 11 10 9 3 2 0

P32A
001000 rt rs rd x 0110010 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

191

MULQ_RS.W IMultiply Fractional Words to Same Size Product with Saturation and Rounding

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

192

MULQ_S.PH IMultiply Vector Fractional Half-Words to Same Size Products

Format: MULQ_S.PH rd, rs, rt DSP-R2

Purpose: Multiply Vector Fractional Half-Words to Same Size Products

Multiply two vector fractional Q15 values to create a Q15 result, with saturation.

Description: rd  sat16(rs31..16 * rt31..16) || sat16(rs15..0 * rt15..0)

The two vector fractional Q15 values in register rs are multiplied with the corresponding elements in register rt to
produce two 32-bit products. Each product is left-shifted by one bit position to create a Q31 fractional word interme-
diate result. The two 32-bit intermediate results are then each truncated by discarding the 16 least-significant bits of
each result, and the resulting Q15 fractional format halfwords are then written to the corresponding positions in desti-
nation register rd. For each halfword result, if both input multiplicands are equal to -1 (0x8000 hexadecimal), the final
halfword result is saturated to the maximum positive Q15 value (0x7FFF hexadecimal).

To stay compliant with the base architecture, this instruction leaves the base HI/LO pair (accumulator ac0) UNPRE-
DICTABLE after the operation completes. The other D SP Module accumulators , ac1, ac2, and ac3, must be
untouched.

This instruction, on an overflow or underflow of any one of the two vector operation, writes bit 21 in the ouflag field
in the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSP2Resources()
tempB31..0  sat16MultiplyQ15Q15(GPR[rs]31..16, GPR[rt]31..16)
tempA31..0  sat16MultiplyQ15Q15(GPR[rs]15..0, GPR[rt]15..0)
GPR[rd]31..0  tempB15..0 || tempA15..0
HI[0]31..0  UNPREDICTABLE
LO[0]31..0  UNPREDICTABLE

function sat16MultiplyQ15Q15(a15..0, b15..0)
if (a15..0 = 0x8000) and (b15..0 = 0x8000) then

temp31..0  0x7FFF0000
DSPControlouflag:21  1

else
temp31..0  (a15..0 * b15..0)
temp31..0  (temp30..0 || 0)

endif
return temp31..16

endfunction sat16MultiplyQ15Q15

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

The base MIPS32 architecture states that after a GPR-targeting multiply instruction such as MUL, the contents of reg-

31 26 25 21 20 16 15 11 10 9 3 2 0

P32A
001000 rt rs rd x 0101010 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

193

MULQ_S.PH IMultiply Vector Fractional Half-Words to Same Size Products

isters HI and LO are UNPREDICTABLE. To maintain compliance with the base architecture, this multiply instruc-
tion, MULQ_S.PH, has the same requirement. Software must save and restore the ac0 register if the previous value in
the ac0 register is needed following the MULQ_S.PH instruction.

Note that the requirement on HI and LO does not apply to the new accumulator registers ac1, ac2, and ac3; as a result,
the values in these accumulators need not be saved.

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

194

MULQ_S.W IMultiply Fractional Words to Same Size Product with Saturation

Format: MULQ_S.W rd, rs, rt DSP-R2

Purpose: Multiply Fractional Words to Same Size Product with Saturation

Multiply two Q31 fractional format word values to create a fractional Q31 result, with saturation.

Description: rd  sat32(rs31..0 * rt31..0)

The Q31 fractional format words in registers rs and rt are multiplied together to create a 64-bit fractional format inter-
mediate result. The intermediate result is left-shifted by one bit position, and then truncated by d iscarding the 32
least-significant bits to create a Q31 fractional format result. This result is then written to destination register rd.

If both input multiplicands are equal to -1 (0x80000000 hexadecimal), the product is clipped to the maximum positive
Q31 fractional format value (0x7FFFFFFF hexadecimal), and written to the destination register.

To stay compliant with the base architecture, this instruction leaves the base HI/LO pair (accumulator ac0) UNPRE-
DICTABLE after the operation completes. The other DSP Module accumulators, ac1, ac2, and ac3, are unchanged.

This instruction, on an overflow or underflow of the operation, writes a 1 to bit 21 in the DSPControl register in the
ouflag field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSP2Resources()
if (GPR[rs]31..0 = 0x80000000) and (GPR[rt]31..0 = 0x80000000) then

temp63..0  0x7FFFFFFF00000000
DSPControlouflag:21  1

else
temp63..0  (GPR[rs]31..0 * GPR[rt]31..0) << 1

endif
GPR[rd]31..0  temp63..32
HI[0]31..0  UNPREDICTABLE
LO[0]31..0  UNPREDICTABLE

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

The base MIPS32 architecture states that after a GPR-targeting multiply instruction such as MUL, the contents of reg-
isters HI and LO are UNPREDICTABLE. To maintain compliance with the base architecture, this multiply instruc-
tion, MULQ_S.W, has the same requirement. Software must save and restore the ac0 register if the previous value in
the ac0 register is needed following the MULQ_S.W instruction.

Note that the requirement on HI and LO does not apply to the new accumulator registers ac1, ac2, and ac3; as a result,
the values in these accumulators need not be saved.

31 26 25 21 20 16 15 11 10 9 3 2 0

P32A
001000 rt rs rd x 0111010 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

195

MULQ_S.W IMultiply Fractional Words to Same Size Product with Saturation

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

196

MULSA.W.PH IMultiply and Subtract Vector Integer Halfword Elements and Accumulate

Format: MULSA.W.PH ac, rs, rt DSP-R2

Purpose: Multiply and Subtract Vector Integer Halfword Elements and Accumulate

To multiply and s ubtract two integer vector elements using full-size intermediate pr oducts, accumulating the result
into the specified accumulator.

Description: ac  ac + ((rs31..16 * rt31..16) - (rs15..0 * rt15..0))

Each of the two halfword integer elements from register rt are multiplied by the corresponding elements in rs to cre-
ate two word results. The right-most result is subtracted from the left-most result to generate the intermediate result,
which is then added to the specified 64-bit accumulator.

The value of ac selects an accumulator numbe red from 0 to 3. When ac=0, this refers to the original HI/LO register
pair of the MIPS32 architecture.

This instruction does not set any bits of the ouflag field in the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the result is UNPREDICTABLE and the values
of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSP2Resources()
tempB31..0  (GPR[rs]31..16 * GPR[rt]31..16)
tempA31..0  (GPR[rs]15..0 * GPR[rt]15..0)
dotp32..0  ((tempB31) || tempB31..0) - ((tempA31) || tempA31..0)
acc63..0  (HI[ac]31..0 || LO[ac]31..0) + ((dotp32)

31 || dotp32..0)
(HI[ac]31..0 || LO[ac]31..0)  acc63..32 || acc31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs ac 10 110 010 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

197

MULSA.W.PH IMultiply and Subtract Vector Integer Halfword Elements and Accumulate

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

198

MULSAQ_S.W.PH IMultiply And Subtract Vector Fractional Halfwords And Accumulate

Format: MULSAQ_S.W.PH ac, rs, rt DSP

Purpose: Multiply And Subtract Vector Fractional Halfwords And Accumulate

Multiply and subtract two Q15 fractional halfword vector elements using full-size intermediate products, accumulat-
ing the result from the specified accumulator, with saturation.

Description: ac  ac + (sat32(rs31..16 * rt31..16) - sat32(rs15..0 * rt15..0))

The two corresponding Q15 fractional values from registers rt and rs are multiplied together and left-shifted by 1 bit
to generate two Q31 fractional format intermediate products. If the input multiplicands to either of the multiplications
are both -1.0 (0x8000 hexadecimal), the intermediate result is saturated to 0x7FFFFFFF hexadecimal.

The two intermediate products (named left and right) are summed with alternating sign to create a sum-of-products,
i.e., the sign of the right product is negated before summation. The sum-of-products is then sign-extended to 64 bits
and accumulated into the specified 64-bit accumulator, producing a Q32.31 result.

The value of ac can range from 0 to 3; a v alue of 0 refers to the original HI/LO register pair of the MIPS32 architec-
ture.

If saturation occurs, a 1 is written to one of bits 16 through 19 of the DSPControl register, within the ouflag field. The
value of ac determines which of these bits is set: bit 16 corresponds to ac0, bit 17 to ac1, bit 18 to ac2, and bit 19 to
ac3.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB31..0  multiplyQ15Q15(ac, rs31..16, rt31..16)
tempA31..0  multiplyQ15Q15(ac, rs15..0, rt15..0)
dotp63..0  ((tempB31)

32 || tempB31..0) - ((tempA31)
32 || tempA31..0)

tempC63..0  (HI[ac]31..0 || LO[ac]31..0) + dotp63..0
(HI[ac]31..0 || LO[ac]31..0)  tempC63..32 || tempC31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs ac 11 110 010 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

199

MULSAQ_S.W.PH IMultiply And Subtract Vector Fractional Halfwords And Accumulate

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

200

MULT IMultiply Word

Format: MULT ac, rs, rt DSP

Purpose: Multiply Word

To multiply two 32-bit signed integers, writing the 64-bit result to the specified accumulator.

Description: ac  rs31..0 * rt31..0

The 32-bit signed integer value in register rt is multiplied by the corresponding 32-bit signed integer value in register
rs, to produce a 64-bit result that is written to the specified accumulator register.

The value of ac selects an accumulator numbe red from 0 to 3. When ac=0, this refers to the original HI/LO register
pair of the MIPS32 architecture.

In Release 6 of the MIPS Architecture, accumulators are eliminated from MIPS32.

No arithmetic exception occurs under any circumstances.

Restrictions:

None

Operation:

if ((ac  0)or (ConfigAR  ) then
ValidateAccessToDSP2Resources()

endif
temp63..0  ((GPR[rs]31)

32 || GPR[rs]31..0) * ((GPR[rt31)
32 || GPR[rt]31..0)

(HI[ac]31..0 || LO[ac]31..0)  temp63..32 || temp31..0

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not af fect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in register rt. This may reduce
the latency of the instruction on those processors which implement data-dependent instruction latencies.

Implementation Note:

Processors which implement a multiplier array which is not square (for example, 32 x 16), and which therefore has an
operation latency which is data dependent, should assume that the shorter operand is in register rt.

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs ac 00 110 010 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

201

MULT IMultiply Word

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

202

MULTU IMultiply Unsigned Word

Format: MULTU ac, rs, rt DSP

Purpose: Multiply Unsigned Word

To multiply 32-bit unsigned integers, writing the 64-bit result to the specified accumulator.

Description: ac  rs31..0 * rt31..0

The 32-bit unsigned integer value in register rt is multiplied by the corresponding 32-bit unsigned integer value in reg-
ister rs, to produce a 64-bit unsigned result that is written to the specified accumulator register.

The value of ac selects an accumulator numbe red from 0 to 3. When ac=0, this refers to the original HI/LO register
pair of the MIPS32 architecture.

In Release 6 of the MIPS Architecture, accumulators are eliminated from MIPS32.

No arithmetic exception occurs under any circumstances.

Restrictions:

None

Operation:

if ((ac  0) or (ConfigAR  ) then
ValidateAccessToDSP2Resources()

endif
temp64..0  (032 || GPR[rs]31..0) * (0

32 || GPR[rt]31..0)
(HI[ac]31..0 || LO[ac]31..0)  temp63..32 || temp31..0

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

In some processors the integer multiply operation may proceed asynchronously and allow other CPU instructions to
execute before it is complete. An attempt to read LO or HI before the results are written interlocks until the results are
ready. Asynchronous execution does not af fect the program result, but offers an opportunity for performance
improvement by scheduling the multiply so that other instructions can execute in parallel.

Programs that require overflow detection must check for it explicitly.

Where the size of the operands are known, software should place the shorter operand in register rt. This may reduce
the latency of the instruction on those processors which implement data-dependent instruction latencies.

Implementation Note:

Processors which implement a multiplier array which is not square (for example, 32 x 16), and which therefore has an
operation latency which is data dependent, should assume that the shorter operand is in register rt.

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs ac 01 110 010 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

203

MULTU IMultiply Unsigned Word

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

204

PACKRL.PH IPack a Vector of Halfwords from Vector Halfword Sources

Format: PACKRL.PH rd, rs, rt DSP

Purpose: Pack a Vector of Halfwords from Vector Halfword Sources

Pick two elements for a halfword vector using the right halfword and left halfword respectively from the two source
registers.

Description: rd  rs15..0 || rt31..16

The right halfword element from register rs and the left halfword from register rt are packed into the two halfword
positions of the destination register rd.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB15..0  GPR[rs]15..0
tempA15..0  GPR[rt]31..16
GPR[rd]31..0  tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 9 3 2 0

P32A
001000 rt rs rd x 0110101 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

205

PACKRL.PH IPack a Vector of Halfwords from Vector Halfword Sources

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

206

PICK.PH IPick a Vector of Halfword Values Based on Condition Code Bits

Format: PICK.PH rd, rs, rt DSP

Purpose: Pick a Vector of Halfword Values Based on Condition Code Bits

Select two halfword elements from either of two source registers based on condition code bits, writing the selected
elements to the destination register.

Description: rd  pick(cc25,rs31..16,rt31..16) || pick(cc24,rs15..0,rt15..0)

The two right-most condition code bits in the DSPControl register are used to select halfword values from the corre-
sponding element of either source register rs or source register rt. If the value of the corresponding condition code bit
is 1, then the halfword value is selected from register rs; otherwise, it is selected from rt. The selected halfwords are
written to the destination register rd.

Restrictions:

No data-dependent exceptions are possible.

The operands must be in the specif ied format. If they are not, the results are UNPREDICTABLE and the values of
the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB15..0  (DSPControlccond:25 = 1 ? GPR[rs]31..16 : GPR[rt]31..16)
tempA15..0  (DSPControlccond:24 = 1 ? GPR[rs]15..0 : GPR[rt]15..0)
GPR[rd]31..0  tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 9 3 2 0

P32A
001000 rt rs rd x 1000101 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

207

PICK.PH IPick a Vector of Halfword Values Based on Condition Code Bits

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

208

PICK.QB IPick a Vector of Byte Values Based on Condition Code Bits

Format: PICK.QB rd, rs, rt DSP

Purpose: Pick a Vector of Byte Values Based on Condition Code Bits

Select four byte elements from either of two source registers based on condition code bits, writing the selected ele-
ments to the destination register.

Description: rd  pick(cc27,rs31..24,rt31..24) || pick(cc26,rs23..16,rt23..16) ||

pick(cc25,rs15..8,rt15..8) || pick(cc24,rs7..0,rt7..0)

Four condition code bits in the DSPControl register are used to select byte values from the corresponding byte ele-
ment of either source register rs or source register rt. If the value of the corresponding condition code bit is 1, then the
byte value is selected from register rs; otherwise, it is selected from rt. The selected bytes are written to the destina-
tion register rd.

Restrictions:

No data-dependent exceptions are possible.

The operands must be in the specif ied format. If they are not, the results are UNPREDICTABLE and the values of
the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempD7..0  (DSPControlccond:27 = 1 ? GPR[rs]31..24 : GPR[rt]31..24)
tempC7..0  (DSPControlccond:26 = 1 ? GPR[rs]23..16 : GPR[rt]23..16)
tempB7..0  (DSPControlccond:25 = 1 ? GPR[rs]15..8 : GPR[rt]15..8)
tempA7..0  (DSPControlccond:24 = 1 ? GPR[rs]7..0 : GPR[rt]7..0)
GPR[rd]31..0  tempD7..0|| tempC7..0 || tempB7..0 || tempA7..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 9 3 2 0

P32A
001000 rt rs rd x 0111101 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

209

PICK.QB IPick a Vector of Byte Values Based on Condition Code Bits

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

210

PRECEQ.W.PHL IPrecision Expand Fractional Halfword to Fractional Word Value

Format: PRECEQ.W.PHL rt, rs DSP

Purpose: Precision Expand Fractional Halfword to Fractional Word Value

Expand the precision of a Q15 fractional value taken from the left element of a paired halfword vector to create a Q31
fractional word value.

Description: rt  expand_prec(rs31..16)

The left Q15 fractional halfword value from the paired halfword vector in register rs is expanded to a Q31 fractional
value and written to destination register rt. The precision expansion is achieved by appending 16 least-significant zero
bits to the original halfword value to generate the 32-bit fractional value.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
temp31..0  GPR[rs]31..16 || 0

16

GPR[rt]31..0  temp31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 9 8 6 5 3 2 0

P32A
001000 rt rs 0101000 100 111 111

6 5 5 7 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

211

PRECEQ.W.PHL IPrecision Expand Fractional Halfword to Fractional Word Value

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

212

PRECEQ.W.PHR IPrecision Expand Fractional Halfword to Fractional Word Value

Format: PRECEQ.W.PHR rt, rs DSP

Purpose: Precision Expand Fractional Halfword to Fractional Word Value

Expand the precision of a Q15 fractional value taken from the right element of a paired halfword vector to create a
Q31 fractional word value.

Description: rt  expand_prec(rs15..0)

The right Q15 fractional halfword value from the paired halfword vector in register rs is expanded to a Q31 fractional
value and written to destination register rt. The precision expansion is achieved by appending 16 least-significant zero
bits to the original halfword value to generate the 32-bit fractional value.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
temp31..0  GPR[rs]15..0 || 0

16

GPR[rt]31..0  temp31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 9 8 6 5 3 2 0

P32A
001000 rt rs 0110000 100 111 111

6 5 5 7 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

213

PRECEQ.W.PHR IPrecision Expand Fractional Halfword to Fractional Word Value

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

214

PRECEQU.PH.QBL IPrecision Expand two Unsigned Bytes to Fractional Halfword Values

Format: PRECEQU.PH.QBL rt, rs DSP

Purpose: Precision Expand two Unsigned Bytes to Fractional Halfword Values

Expand the precision of two unsigned byte values taken from the two left-most elements of a quad byte vector to cre-
ate two Q15 fractional halfword values.

Description: rt  expand_prec(rs31..24) || expand_prec(rs23..16)

The two left-most unsigned integer byte values from the four byte elements in register rs are expanded to create two
Q15 fractional values that are then written to destination register rt. The precision expansion is achieved by pre-pend-
ing a single zero bit (for positive sign) to the original byte value and appending seven least-significant zeros to gener-
ate each 16-bit fractional value.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB15..0  01 || GPR[rs]31..24 || 0

7
tempA15..0  01 || GPR[rs]23..16 || 0

7
GPR[rt]31..0  tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 9 8 6 5 3 2 0

P32A
001000 rt rs 0111000 100 111 111

6 5 5 7 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

215

PRECEQU.PH.QBL IPrecision Expand two Unsigned Bytes to Fractional Halfword Values

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

216

PRECEQU.PH.QBLA IPrecision Expand two Unsigned Bytes to Fractional Halfword Values

Format: PRECEQU.PH.QBLA rt, rs DSP

Purpose: Precision Expand two Unsigned Bytes to Fractional Halfword Values

Expand the precision of two unsigned byte values taken from the two left-alternate aligned elements of a quad byte
vector to create two Q15 fractional halfword values.

Description: rt  expand_prec(rs31..24) || expand_prec(rs15..8)

The two left-alternate aligned unsigned integer byte values from the four byte elements in register rs are expanded to
create two Q15 fractional values that are then written to destination register rt. The precision expansion is achieved by
pre-pending a single zero bit (for positive sign) to the original byte value and appending seven least-significant zeros
to generate each 16-bit fractional value.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB15..0  01 || GPR[rs]31..24 || 0

7
tempA15..0  01 || GPR[rs]15..8 || 0

7
GPR[rt]31..0  tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 9 8 6 5 3 2 0

P32A
001000 rt rs 0111001 100 111 111

6 5 5 7 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

217

PRECEQU.PH.QBLA IPrecision Expand two Unsigned Bytes to Fractional Halfword Values

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

218

PRECEQU.PH.QBR IPrecision Expand two Unsigned Bytes to Fractional Halfword Values

Format: PRECEQU.PH.QBR rt, rs DSP

Purpose: Precision Expand two Unsigned Bytes to Fractional Halfword Values

Expand the precision of two unsigned byte values taken from the two right-most elements of a quad byte vector to
create two Q15 fractional halfword values.

Description: rt  expand_prec(rs15..8) || expand_prec(rs7..0)

The two right-most unsigned integer byte values from the four byte elements in register rs are expanded to create two
Q15 fractional values that are then written to destination register rt. The precision expansion is achieved by pre-pend-
ing a single zero bit (for positive sign) to the original byte value and appending seven least-significant zeros to gener-
ate each 16-bit fractional value.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB15..0  01 || GPR[rs]15..8 || 0

7
tempA15..0  01 || GPR[rs]7..0 || 0

7
GPR[rt]31..0  tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 9 8 6 5 3 2 0

P32A
001000 rt rs 1001000 100 111 111

6 5 5 7 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

219

PRECEQU.PH.QBR IPrecision Expand two Unsigned Bytes to Fractional Halfword Values

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

220

PRECEQU.PH.QBRA IPrecision Expand two Unsigned Bytes to Fractional Halfword Values

Format: PRECEQU.PH.QBRA rt, rs DSP

Purpose: Precision Expand two Unsigned Bytes to Fractional Halfword Values

Expand the precision of two unsigned byte values taken from the two right-alternate aligned elements of a quad byte
vector to create two Q15 fractional halfword values.

Description: rt  expand_prec(rs23..16) || expand_prec(rs7..0)

The two right-alternate aligned unsigned integer byte values from the four byte elements in register rs are expanded
to create two Q15 fractional values that are then written to destination register rt. The precision expansion is achieved
by pre-pending a single zero bit (for positive sign) to the origi nal byte value and appending seven least-significant
zeros to generate each 16-bit fractional value.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB15..0  01 || GPR[rs]23..16 || 0

7
tempA15..0  01 || GPR[rs]7..0 || 0

7
GPR[rt]31..0  tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 9 8 6 5 3 2 0

P32A
001000 rt rs 1001001 100 111 111

6 5 5 7 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

221

PRECEQU.PH.QBRA IPrecision Expand two Unsigned Bytes to Fractional Halfword Values

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

222

PRECEU.PH.QBL IPrecision Expand Two Unsigned Bytes to Unsigned Halfword Values

Format: PRECEU.PH.QBL rt, rs DSP

Purpose: Precision Expand Two Unsigned Bytes to Unsigned Halfword Values

Expand the precision of two unsigned byte values taken from the two left-most elements of a quad byte vector to cre-
ate two unsigned halfword values.

Description: rt  expand_prec8u16(rs31..24) || expand_prec8u16(rs23..16)

The two left-most unsigned integer byte values from the four byte elements in register rs are expanded to create two
unsigned halfword values that are then written to destination register rt. The precision expansion is achieved by pre-
pending eight most-significant zeros to each original value to generate each 16 bit unsigned value.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB15..0  08 || GPR[rs]31..24
tempA15..0  08 || GPR[rs]23..16
GPR[rt]31..0  tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 9 8 6 5 3 2 0

P32A
001000 rt rs 1011000 100 111 111

6 5 5 7 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

223

PRECEU.PH.QBL IPrecision Expand Two Unsigned Bytes to Unsigned Halfword Values

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

224

PRECEU.PH.QBLA IPrecision Expand Two Unsigned Bytes to Unsigned Halfword Values

Format: PRECEU.PH.QBLA rt, rs DSP

Purpose: Precision Expand Two Unsigned Bytes to Unsigned Halfword Values

Expand the precision of two unsigned integer byte values taken from the two left-alternate aligned positions of a quad
byte vector to create four unsigned halfword values.

Description: rt  expand_prec8u16(rs31..24) || expand_prec8u16(rs15..8)

The two left-alternate aligned unsigned integer byte values from the four right-most byte elements in register rs are
each expanded to unsigned halfword values and written to destination register rt. The precision expansion is achieved
by pre-pending eight most-significant zero bits to the original byte v alue to generate each 16 bit unsigned halfw ord
value.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB15..0  08 || GPR[rs]31..24
tempA15..0  08 || GPR[rs]15..8
GPR[rt]31..0  tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 9 8 6 5 3 2 0

P32A
001000 rt rs 1011001 100 111 111

6 5 5 7 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

225

PRECEU.PH.QBLA IPrecision Expand Two Unsigned Bytes to Unsigned Halfword Values

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

226

PRECEU.PH.QBR IPrecision Expand two Unsigned Bytes to Unsigned Halfword Values

Format: PRECEU.PH.QBR rt, rs DSP

Purpose: Precision Expand two Unsigned Bytes to Unsigned Halfword Values

Expand the precision of two unsigned integer byte values taken from the two right-most elements of a quad byte vec-
tor to create two unsigned halfword values.

Description: rt  expand_prec8u16(rs15..8) || expand_prec8u16(rs7..0)

The two right-most unsigned integer byte values from the four byte elements in register rs are expanded to create two
unsigned halfword values that are then written to destination register rt. The precision expansion is achieved by pre-
pending eight most-significant zero bits to each original value to generate each 16 bit halfword value.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB15..0  08 || GPR[rs]15..8
tempA15..0  08 || GPR[rs]7..0
GPR[rt]31..0  tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 9 8 6 5 3 2 0

P32A
001000 rt rs 1101000 100 111 111

6 5 5 7 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

227

PRECEU.PH.QBR IPrecision Expand two Unsigned Bytes to Unsigned Halfword Values

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

228

PRECEU.PH.QBRA IPrecision Expand Two Unsigned Bytes to Unsigned Halfword Values

Format: PRECEU.PH.QBRA rt, rs DSP

Purpose: Precision Expand Two Unsigned Bytes to Unsigned Halfword Values

Expand the precision of two unsigned byte values taken from the two right-alternate aligned positions of a quad byte
vector to create two unsigned halfword values.

Description: rt  expand_prec8u16(rs23..16) || expand_prec8u16(rs7..0)

The two right-alternate aligned unsigned integer byte values from the four byt e elements in re gister rs are each
expanded to unsigned halfword values and written to destination register rt. The precision expansion is achieved by
pre-pending eight most-s ignificant zero b its to the original byte value to gene rate each 16 bit unsigned halfword
value.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB15..0  08 || GPR[rs]23..16
tempA15..0  08 || GPR[rs]7..0
GPR[rt]31..0  tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 9 8 6 5 3 2 0

P32A
001000 rt rs 1101001 100 111 111

6 5 5 7 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

229

PRECEU.PH.QBRA IPrecision Expand Two Unsigned Bytes to Unsigned Halfword Values

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

230

PRECR.QB.PH IPrecision Reduce Four Integer Halfwords to Four Bytes

Format: PRECR.QB.PH rd, rs, rt DSP-R2

Purpose: Precision Reduce Four Integer Halfwords to Four Bytes

Reduce the precision of four integer halfwords to four byte values.

Description: rd  rs23..16 || rs7..0 || rt23..16 || rt7..0

The 8 least-significant bits from each of the two integer halfword values in registers rs and rt are taken to produce
four byte-sized results that are w ritten to the four byte elements in destination register rd. The two bytes values
obtained from rs are written to the two left-most destination byte elements, and the two b ytes obtained from rt are
written to the two right-most destination byte elements.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSP2Resources()
tempD7..0  GPR[rs]23..16
tempC7..0  GPR[rs]7..0
tempB7..0  GPR[rt]23..16
tempA7..0  GPR[rt]7..0
GPR[rd]31..0  tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 9 3 2 0

P32A
001000 rt rs rd x 0001101 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

231

PRECR.QB.PH IPrecision Reduce Four Integer Halfwords to Four Bytes

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

232

PRECR_SRA[_R].PH.W IPrecision Reduce Two Integer Words to Halfwords after a Right Shift

Format: PRECR_SRA[_R].PH.W
PRECR_SRA.PH.W rt, rs, sa DSP-R2
PRECR_SRA_R.PH.W rt, rs, sa DSP-R2

Purpose: Precision Reduce Two Integer Words to Halfwords after a Right Shift

Do an arithmetic right shift of two integer words with optional rounding, and then reduce the precision to halfwords.

Description: rt  (round(rt>>shift))15..0 || (round(rs>>shift))15..0

The two words in registers rs and rt are right shifted arithmetically by the specified shift amount sa to create interim
results. The 16 least-significant bits of each interim result are then written to the corresponding elements of destina-
tion register rt.

In the rounding version of the instruction, a value of 1 is added at the most-significant discarded bit position after the
shift is performed. The 16 l east-significant bits of each interim result are then written to the corresponding elements
of destination register rt.

The shift amount sa is interpreted as a five-bit unsigned integer taking values between 0 and 31.

This instruction does not write any bits of the ouflag field in the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

PRECR_SRA.PH.W
ValidateAccessToDSP2Resources()
if (sa4..0 = 0) then

tempB15..0  GPR[rt]15..0
tempA15..0  GPR[rs]15..0

else
tempB15..0  ((GPR[rt]31)

sa || GPR[rt]31..sa)
tempA15..0  ((GPR[rs]31)

sa || GPR[rs]31..sa)
endif
GPR[rt]31..0  tempB15..0 || tempA15..0

PRECR_SRA_R.PH.W
ValidateAccessToDSP2Resources()
if (sa4..0 = 0) then

tempB16..0  (GPR[rt]15..0 || 0)
tempA16..0  (GPR[rs]15..0 || 0)

else
tempB32..0  ((GPR[rt]31)

sa || GPR[rt]31..sa-1) + 1
tempA32..0  ((GPR[rs]31)

sa || GPR[rs]31..sa-1) + 1
endif

31 26 25 21 20 16 15 11 10 9 3 2 0

PRECR_SRA.PH.W

P32A
001000 rt rs sa 0 1111001 101

PRECR_SRA_R.PH.W

P32A
001000 rt rs sa 1 1111001 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

233

PRECR_SRA[_R].PH.W IPrecision Reduce Two Integer Words to Halfwords after a Right Shift

GPR[rt]31..0  tempB16..1 || tempA16..1

Exceptions:

Reserved Instruction, DSP Disabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

234

PRECRQ.PH.W IPrecision Reduce Fractional Words to Fractional Halfwords

Format: PRECRQ.PH.W rd, rs, rt DSP

Purpose: Precision Reduce Fractional Words to Fractional Halfwords

Reduce the precision of two fractional words to produce two fractional halfword values.

Description: rd  rt31..16 || rs31..16

The 16 most-significant bits from each of the Q31 fractional word values in registers rs and rt are written to destina-
tion register rd, creating a vector of two Q15 fractional values. The fractional word from the rs register is used to cre-
ate the left-most Q15 fractional value in rd, and the fractional word from the rt register is used to create the right-most
Q15 fractional value.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB15..0  GPR[rs]31..16
tempA15..0  GPR[rt]31..16
GPR[rd]31..0  tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 9 3 2 0

P32A
001000 rt rs rd x 0011101 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

235

PRECRQ.PH.W IPrecision Reduce Fractional Words to Fractional Halfwords

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

236

PRECRQ.QB.PH IPrecision Reduce Four Fractional Halfwords to Four Bytes

Format: PRECRQ.QB.PH rd, rs, rt DSP

Purpose: Precision Reduce Four Fractional Halfwords to Four Bytes

Reduce the precision of four fractional halfwords to four byte values.

Description: rd  rs31..24 || rs15..8 || rt31..24 || rt15..8

The four Q15 fractional values in registers rs and rt are truncated by dropping the eight least significant bits from
each value to produce four fractional byte values. The four fractional byte values are written to the four byte elements
of destination register rd. The two values obtained from register rt are placed in the two right-most byte positions in
the destination register, and the two values obtained from register rs are placed in the two remaining byte positions.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempD7..0  GPR[rs]31..24
tempC7..0  GPR[rs]15..8
tempB7..0  GPR[rt]31..24
tempA7..0  GPR[rt]15..8
GPR[rd]31..0  tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 9 3 2 0

P32A
001000 rt rs rd x 0010101 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

237

PRECRQ.QB.PH IPrecision Reduce Four Fractional Halfwords to Four Bytes

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

238

PRECRQU_S.QB.PH IPrecision Reduce Fractional Halfwords to Unsigned Bytes With Saturation

Format: PRECRQU_S.QB.PH rd, rs, rt DSP

Purpose: Precision Reduce Fractional Halfwords to Unsigned Bytes With Saturation

Reduce the precision of four fractional halfwords with saturation to produce four unsigned byte values, with satura-
tion.

Description: rd  sat(reduce_prec(rs31..16)) || sat(reduce_prec(rs15..0)) ||

sat(reduce_prec(rt31..16)) || sat(reduce_prec(rt15..0))

The four Q15 fractional halfwords from registers rs and rt are used to create four unsigned byte values that are written
to corresponding elements of destination register rd. The two halfwords from the rs register and the tw o halfwords
from the rt register are used to create the four unsigned byte values.

Each unsigned byte value is created from the Q15 fractional halfword input value after first examining the sign and
magnitude of the halfword. If the sign of the halfword value is positive and the value is greater than 0x7F80 hexadec-
imal, the result is clamped to the maximum positive 8-bit value (255 decimal, 0xFF hexadecimal). If the sign of the
halfword value is negative, the result is clamped to the minimum positive 8-bit value (0 decimal, 0x00 hexadecimal).
Otherwise, the sign bit is discarded from the input and the result is taken from the eight most-significant bits that
remain.

If clamping was needed to produce any of the unsigned output values, bit 22 of the DSPControl register is set to 1.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempD7..0  sat8ReducePrecision(GPR[rs]31..16)
tempC7..0  sat8ReducePrecision(GPR[rs]15..0)
tempB7..0  sat8ReducePrecision(GPR[rt]31..16)
tempA7..0  sat8ReducePrecision(GPR[rt]15..0)
GPR[rd]31..0  tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

function sat8ReducePrecision(a15..0)
sign  a15
mag14..0  a14..0
if (sign = 0) then

if (mag14..0 > 0x7F80) then
temp7..0  0xFF
DSPControlouflag:22  1

else
temp7..0  mag14..7

endif
else

temp7..0  0x00
DSPControlouflag:22  1

endif
return temp7..0

endfunction sat8ReducePrecision

31 26 25 21 20 16 15 11 10 9 3 2 0

P32A
001000 rt rs rd x 0101101 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

239

PRECRQU_S.QB.PH IPrecision Reduce Fractional Halfwords to Unsigned Bytes With Saturation

Exceptions:

Reserved Instruction, DSP Disabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

240

PRECRQ_RS.PH.W IPrecision Reduce Fractional Words to Halfwords With Rounding and Saturation

Format: PRECRQ_RS.PH.W rd, rs, rt DSP

Purpose: Precision Reduce Fractional Words to Halfwords With Rounding and Saturation

Reduce the precision of two fractional words to produce two fractional halfword values, with rounding and saturation.

Description: rd  truncQ15SatRound(rs31..0) || truncQ15SatRound(rt31..0)

The two Q31 fractional word values in each of registers rs and rt are used to create two Q15 fractional halfword val-
ues that are written to the two halfword elements in destination register rd. The fractional word from the rs register is
used to create the left-most Q15 fractional halfword result in rd, and the fractional word from the rt register is used to
create the right-most halfword value.

Each input Q31 fractional value is rounded and saturated before being truncated to create the Q15 fractional halfword
result. First, the value 0x00008000 is added to the input Q31 value to round even, creating an interim rounded result.
If this addition causes overflow, the in terim rounded result is saturated to the maximum Q31 value (0x7FFFFFFF
hexadecimal). Then, the 16 least-significant bits of the interim rounded and saturated result are discarded and the 16
most-significant bits are written to the destination register in the appropriate position.

If either of the rounding operations results in overflow and saturation, a 1 is written to bit 22 in the DSPControl regis-
ter within the ouflag field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempB15..0  trunc16Sat16Round(GPR[rs]31..0)
tempA15..0  trunc16Sat16Round(GPR[rt]31..0)
GPR[rd]31..0  tempB15..0 || tempA15..0

function trunc16Sat16Round(a31..0)
temp32..0  (a31 || a31..0) + 0x00008000
if (temp32  temp31) then

temp32..0  0 || 0x7FFFFFFF
DSPControlouflag:22  1

endif
return temp31..16

endfunction trunc16Sat16Round

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 9 3 2 0

P32A
001000 rt rs rd x 0100101 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

241

PRECRQ_RS.PH.W IPrecision Reduce Fractional Words to Halfwords With Rounding and Saturation

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

242

PREPEND IRight Shift and Prepend Bits to the MSB

Format: PREPEND rt, rs, sa DSP-R2
EXTW rt, rs, rt, sa Replaced with EXTW in nanoMIPS

Purpose: Right Shift and Prepend Bits to the MSB

Logically right-shift the first source register, replacing the bits emptied by the shift with bits from the source register.

Description: rt  rssa-1..0 || (rt >> sa)

The word value in register rt is logically right-shifted by the specified shift amount sa, and sa bits from the least-sig-
nificant positions of register rs are written into the sa most-significant bits emptied by the shift. The result is then
written to destination register rt.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSP2Resources()
if (sa4..0 = 0) then

temp31..0  GPR[rt]31..0
else

temp31..0  (GPR[rs]sa-1..0 || GPR[rt]31..sa)
endif
GPR[rt]31..0 = temp31..0

Exceptions:

Reserved Instruction, DSP Disabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

243

PREPEND IRight Shift and Prepend Bits to the MSB

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

244

RADDU.W.QB IUnsigned Reduction Add Vector Quad Bytes

Format: RADDU.W.QB rt, rs DSP

Purpose: Unsigned Reduction Add Vector Quad Bytes

Reduction add of four unsigned byte values in a vector register to produce an unsigned word result.

Description: rt  zero_extend(rs31..24 + rs23..16 + rs15..8 + rs7..0)

The unsigned byte elements in register rs are added together as unsigned 8-bit values, and the result is zero extended
to a word and written to register rt.

Restrictions:

No data-dependent exceptions are possible.

The operands must be in the specif ied format. If they are not, the results are UNPREDICTABLE and the values of
the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
temp9..0  (02 || GPR[rs]31..24) + (0

2 || GPR[rs]23..16) + (0
2 || GPR[rs]15..8) +

(02 || GPR[rs]7..0)
GPR[rt]31..0  0(GPRLEN-10) || temp9..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 9 8 6 5 3 2 0

P32A
001000 rt rs 1111000 100 111 111

6 5 5 7 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

245

RADDU.W.QB IUnsigned Reduction Add Vector Quad Bytes

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

246

RDDSP IRead DSPControl Register Fields to a GPR

Format: RDDSP
RDDSP rt, mask DSP
RDDSP rt Assembly Idiom

Purpose: Read DSPControl Register Fields to a GPR

To copy selected fields from the special-purpose DSPControl register to the specified GPR.

Description: rt  select(mask, DSPControl)

Selected fields in the special register DSPControl are copied into the corresponding bits of destination register rt.
Each of bits 0 through 5 of the mask operand corresponds to a specific field in the DSPControl register. A mask bit
value of 1 indicates that the bits from the corresponding field in DSPControl will be copied into the same bit positions
in register rt, and a mask bit value of 0 indicates that the corresponding bit positions in rt will be set to zer o. Bits 6
through 9 of the mask operand are ignored.

The table below shows the correspondence between the bits in the mask operand and the fields in the DSPControl reg-
ister; mask bit 0 is the least-significant bit in mask.

For example, to copy only the bits from the scount field in DSPControl, the value of the mask operand used will be 2
decimal (0x02 hexadecimal). After execution of the instruction, bits 7 through 12 of register rt will have the value of
bits 7 through 12 from the scount field in DSPControl. The remaining bits in register rt will be set to zero.

The one-operand version of the instruction provides a convenient assembly idiom that allows the programmer to read
all fields in the DSPControl register into the destination register, i.e., it is equivalent to specifying a mask value of 31
decimal (0x1F hexadecimal).

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
temp31..0  032

if (mask0 = 1) then
temp5..0  DSPControlpos:5..0

endif
if (mask1 = 1) then

temp12..7  DSPControlscount:12..7
endif
if (mask2 = 1) then

temp13  DSPControlc:13
endif
if (mask3 = 1) then

temp23..16  DSPControlouflag:23..16

31 26 25 21 20 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt mask 00 011 001 111 111

6 5 7 2 3 3 3 3

Bit 31 24 23 16 15 14 13 12 7 6 5 0

DSPControl
field ccond ouflag 0 EFI C scount pos

Mask bit 4 3 5 2 1 0

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

247

RDDSP IRead DSPControl Register Fields to a GPR

endif
if (mask4 = 1) then

temp27..24  DSPControlccond:27..24
endif
if (mask5 = 1) then

temp14  DSPControlefi:14
endif

GPR[rt]31..0  temp31..0

Exceptions:

Reserved Instruction, DSP Disabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

248

REPL.PH IReplicate Immediate Integer into all Vector Element Positions

Format: REPL.PH rd, immediate DSP

Purpose: Replicate Immediate Integer into all Vector Element Positions

Replicate a sign-extended, 10-bit signed immediate integer value into the two halfwords in a halfword vector.

Description: rd  sign_extend(immediate) || sign_extend(immediate)

The specified 10-bit signed immediate integer value is sign-extended to 16 bits and replicated into the two halfword
positions in destination register rd.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
temp15..0  (immediate9)

6 || immediate9..0
GPR[rd]31..0  temp15..0 || temp15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 11 10 9 3 2 0

P32A
001000 rt s x 0000111 101

6 5 10 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

249

REPL.PH IReplicate Immediate Integer into all Vector Element Positions

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

250

REPL.QB IReplicate Immediate Integer into all Vector Element Positions

Format: REPL.QB rt, immediate DSP

Purpose: Replicate Immediate Integer into all Vector Element Positions

Replicate a immediate byte into all elements of a quad byte vector.

Description: rt  immediate || immediate || immediate || immediate

The specified 8-bit signed immediate value is replicated into the four byte elements of destination register rt.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
temp7..0  immediate7..0
GPR[rt]31..0  temp7..0 || temp7..0 || temp7..0 || temp7..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt u x 010 111 111 111

6 5 8 1 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

251

REPL.QB IReplicate Immediate Integer into all Vector Element Positions

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

252

REPLV.PH IReplicate a Halfword into all Vector Element Positions

Format: REPLV.PH rt, rs DSP

Purpose: Replicate a Halfword into all Vector Element Positions

Replicate a variable halfword into the elements of a halfword vector.

Description: rt  (rs15..0 || rs15..0)

The halfword value in register rs is replicated into the two halfword elements of destination register rt.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
temp15..0  GPR[rs]15..0
GPR[rt]31..0  temp15..0 || temp15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 9 8 6 5 3 2 0

P32A
001000 rt rs 0000001 100 111 111

6 5 5 7 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

253

REPLV.PH IReplicate a Halfword into all Vector Element Positions

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

254

REPLV.QB IReplicate Byte into all Vector Element Positions

Format: REPLV.QB rt, rs DSP

Purpose: Replicate Byte into all Vector Element Positions

Replicate a variable byte into all elements of a quad byte vector.

Description: rt  rs7..0 || rs7..0 || rs7..0 || rs7..0

The byte value in register rs is replicated into the four byte elements of destination register rt.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
temp7..0  GPR[rs]7..0
GPR[rt]31..0  temp7..0 || temp7..0 || temp7..0 || temp7..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 9 8 6 5 3 2 0

P32A
001000 rt rs 0001001 100 111 111

6 5 5 7 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

255

REPLV.QB IReplicate Byte into all Vector Element Positions

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

256

SHILO IShift an Accumulator Value Leaving the Result in the Same Accumulator

Format: SHILO ac, shift DSP

Purpose: Shift an Accumulator Value Leaving the Result in the Same Accumulator

Shift the HI/LO paired value in a 64-bit accumulator either left or right, leaving the result in the same accumulator.

Description: ac  (shift >= 0) ? (ac >> shift) : (ac << -shift)

The HI/LO register pair is treated as a single 64-bit accumulator that is shifted logically by shift bits, with the result of
the shift written back to the source accumulator. The shift argument is a six-bit signed integer value: a positive argu-
ment results in a right shift of up to 31 bits, and a negative argument results in a left shift of up to 32 bits.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS32 archi-
tecture.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
sign  shift5
shift5..0  (sign = 0 ? shift5..0 : -shift5..0)
if (shift5..0 = 0) then

temp63..0  (HI[ac]31..0 || LO[ac]31..0)
else

if (sign = 0) then
temp63..0  0shift || ((HI[ac]31..0 || LO[ac]31..0) >> shift)

else
temp63..0  ((HI[ac]31..0 || LO[ac]31..0) << shift) || 0

shift

endif
endif
(HI[ac]31..0 || LO[ac]31..0)  temp63..32 || temp31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 22 21 16 15 14 13 10 9 3 2 0

P32A
001000 x s ac x 0000011 101

6 4 6 2 4 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

257

SHILO IShift an Accumulator Value Leaving the Result in the Same Accumulator

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

258

SHILOV IVariable Shift of Accumulator Value Leaving the Result in the Same Accumulator

Format: SHILOV ac, rs DSP

Purpose: Variable Shift of Accumulator Value Leaving the Result in the Same Accumulator

Shift the HI/LO paired value in an accumulator either left or right by the amount specified in a GPR, leaving the result
in the same accumulator.

Description: ac  (GPR[rs]6..0 >= 0) ? (ac >> GPR[rs]6..0) : (ac << -GPR[rs]6..0)

The HI/LO register pair is treated as a single 64-bit accumulator that is shifted logically by shift bits, with the result of
the shift written back to the source accumulator. The shift argument is provided by the six least-significant bits of reg-
ister rs; the remaining bits of rs are ignored. The shift argument is interpreted as a six-bit signed integer: a positive
argument results in a right shift of up to 31 bits, and a negative argument results in a left shift of up to 32 bits.

The value of ac can range from 0 to 3. When ac=0, this refers to the original HI/LO register pair of the MIPS32 archi-
tecture.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
sign  GPR[rs]5
shift5..0  (sign = 0 ? GPR[rs]5..0 : -GPR[rs]5..0)
if (shift5..0 = 0) then

temp63..0  (HI[ac]31..0 || LO[ac]31..0)
else

if (sign = 0) then
temp63..0  0shift || ((HI[ac]31..0 || LO[ac]31..0) >> shift)

else
temp63..0  ((HI[ac]31..0 || LO[ac]31..0) << shift) || 0

shift

endif
endif
(HI[ac]31..0 || LO[ac]31..0)  temp63..32 || temp31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 x rs ac 01 001 001 111 111

6 5 5 2 2 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

259

SHILOV IVariable Shift of Accumulator Value Leaving the Result in the Same Accumulator

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

260

SHLL[_S].PH IShift Left Logical Vector Pair Halfwords

Format: SHLL[_S].PH
SHLL.PH rt, rs, sa DSP
SHLL_S.PH rt, rs, sa DSP

Purpose: Shift Left Logical Vector Pair Halfwords

Element-wise shift of two independent halfwords in a vector data type by a fixed number of bits, with optional satura-
tion.

Description: rt  sat16(rs31..16 << sa) || (rs15..0 << sa)

The two halfword values in register rs are each independently shifted left, inserting zeros into the least-significant bit
positions emptied by the shift. In the saturating version of the instruction, if the shift results in an overflow the inter-
mediate result is saturated to either the maximum positive or the minimum negative 16-bit value, depending on the
sign of the original unshifted value. The two independent results are then written to the corresponding halfword ele-
ments of destination register rt.

This instruction writes a 1 to bi t 22 in the DSPControl register in the ouflag field if any of the left shift operations
results in an overflow or saturation.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

SHLL.PH
ValidateAccessToDSPResources()
tempB15..0  shift16Left(GPR[rs]31..16, sa)
tempA15..0  shift16Left(GPR[rs]15..0, sa)
GPR[rt]31..0  tempB15..0 || tempA15..0

SHLL_S.PH
ValidateAccessToDSPResources()
tempB15..0  sat16ShiftLeft(GPR[rs]31..16, sa)
tempA15..0  sat16ShiftLeft(GPR[rs]15..0, sa)
GPR[rt]31..0  tempB15..0 || tempA15..0

function shift16Left(a15..0, s3..0)
if (s3..0 = 0) then

temp15..0  a15..0
else

sign  a15
temp15..0  (a15-s..0 || 0

s)
discart15..0  (sign(16-s) || a14..14-(s-1))
if ((discart15..0  0x0000) and (discard15..0  0xFFFF)) then

31 26 25 21 20 16 15 11 10 9 3 2 0

SHLL.PH

P32A
001000 rt rs sa 00 1110110 101

SHLL_S.PH

P32A
001000 rt rs sa 10 1110110 101

6 5 5 4 2 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

261

SHLL[_S].PH IShift Left Logical Vector Pair Halfwords

DSPControlouflag:22  1
endif

endif
return temp15..0

endfunction shift16Left

function sat16ShiftLeft(a15..0, s3..0)
if (s3..0 = 0) then

temp15..0  a15..0
else

sign  a15
temp15..0  (a15-s..0 || 0

s)
discard15..0  (sign(16-s) || a14..14-(s-1))
if ((discard15..0  0x0000) and (discard15..0  0xFFFF)) then

temp15..0  (sign = 0 ? 0x7FFF : 0x8000)
DSPControlouflag:22  1

endif
endif
return temp15..0

endfunction sat16ShiftLeft

Exceptions:

Reserved Instruction, DSP Disabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

262

SHLL.QB IShift Left Logical Vector Quad Bytes

Format: SHLL.QB rt, rs, sa DSP

Purpose: Shift Left Logical Vector Quad Bytes

Element-wise left shift of four independent bytes in a vector data type by a fixed number of bits.

Description: rt  (rs31..24 << sa) || (rs23..16 << sa) || (rs15..8 << sa) || (rs7..0 << sa)

The four byte values in register rs are each independently shifted left by sa bits and the sa least significant bits of each
value are set to zero. The four independent results are then written to the corresponding byte elements of destination
register rt.

This instruction writes a 1 to bi t 22 in the DSPControl register in the ouflag field if any of the left shift operations
results in an overflow.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempD7..0  shift8Left(GPR[rs]31..24, sa2..0)
tempC7..0  shift8Left(GPR[rs]23..16, sa2..0)
tempB7..0  shift8Left(GPR[rs]15..8, sa2..0)
tempA7..0  shift8Left(GPR[rs]7..0, sa2..0)
GPR[rt]31..0  tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

function shift8Left(a7..0, s2..0)
if (s2..0 = 0) then

temp7..0  a7..0
else

sign  a7
temp7..0  (a7-s..0 || 0

s)
discard7..0  (sign(8-s) || a6..6-(s-1))
if (discard7..0  0x00) then

DSPControlouflag:22  1
endif

endif
return temp7..0

endfunction shift8Left

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 9 8 6 5 3 2 0

P32A
001000 rt rs sa 0 100 001 111 111

6 5 5 3 1 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

263

SHLL.QB IShift Left Logical Vector Quad Bytes

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

264

SHLLV[_S].PH IShift Left Logical Variable Vector Pair Halfwords

Format: SHLLV[_S].PH
SHLLV.PH rd, rt, rs DSP
SHLLV_S.PH rd, rt, rs DSP

Purpose: Shift Left Logical Variable Vector Pair Halfwords

Element-wise left shift of the two right-most independent halfwords in a vector data type by a variable number of bits,
with optional saturation.

Description: rd  sat16(rt31..16 << rs3..0) || sat16(rt15..0 << rs3..0)

The two halfword values in register rt are each independently shifted left by shift bits, inserting zeros into the least-
significant bit positions emptied by the shift. In the saturating version of the instruction, if the shift results in an over-
flow the int ermediate result is satur ated to eit her the maximum positive or the minimum negative 16-bit value,
depending on the sign of the original unshifted value. The two independent results are then written to the correspond-
ing halfword elements of destination register rd.

The four least-significant bits of rs provide the shift value, interpreted as a four-bit unsigned integer; the remaining
bits of rs are ignored.

This instruction writes a 1 to bit 22 in th e DSPControl register in the oufl ag field if any of the left shift operations
results in an overflow or saturation.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

SHLLV.PH
ValidateAccessToDSPResources()
tempB15..0  shift16Left(GPR[rt]31..16, GPR[rs]3..0)
tempA15..0  shift16Left(GPR[rt]15..0, GPR[rs]3..0)
GPR[rd]31..0  tempB15..0 || tempA15..0

SHLLV_S.PH
ValidateAccessToDSPResources()
tempB15..0  sat16ShiftLeft(GPR[rt]31..16, GPR[rs]3..0)
tempA15..0  sat16ShiftLeft(GPR[rt]15..0, GPR[rs]3..0)
GPR[rd]31..0  tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 9 3 2 0

SHLLV.PH

P32A
001000 rt rs rd 0 1110001 101

SHLLV_S.PH

P32A
001000 rt rs rd 1 1110001 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

265

SHLLV[_S].PH IShift Left Logical Variable Vector Pair Halfwords

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

266

SHLLV.QB IShift Left Logical Variable Vector Quad Bytes

Format: SHLLV.QB rd, rt, rs DSP

Purpose: Shift Left Logical Variable Vector Quad Bytes

Element-wise left shift of four independent bytes in a vector data type by a variable number of bits.

Description: rd  (rt31..24 << rs2..0) || (rt23..16 << rs2..0) || (rt15..8 << rs2..0) || (rt7..0

<< rs2..0)

The four byte values in register rt are each independently shifted left by sa bits, inserting zeros into the least-signifi-
cant bit positions emptied by the shift. The four independent results are then written to the corresponding byte ele-
ments of destination register rd.

The three least-significant bits of rs provide the shift value, interpreted as a three-bit unsigned integer; the remaining
bits of rs are ignored.

This instruction writes a 1 to bi t 22 in the DSPControl register in the ouflag field if any of the left shift operations
results in an overflow.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempD7..0  shift8Left(GPR[rt]31..24, GPR[rs]2..0)
tempC7..0  shift8Left(GPR[rt]23..16, GPR[rs]2..0)
tempB7..0  shift8Left(GPR[rt]15..8, GPR[rs]2..0)
tempA7..0  shift8Left(GPR[rt]7..0, GPR[rs]2..0)
GPR[rd]31..0  tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 9 3 2 0

P32A
001000 rt rs rd x 1110010 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

267

SHLLV.QB IShift Left Logical Variable Vector Quad Bytes

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

268

SHLLV_S.W IShift Left Logical Variable Vector Word

Format: SHLLV_S.W rd, rt, rs DSP

Purpose: Shift Left Logical Variable Vector Word

A left shift of the word in a vector data type by a variable number of bits, with optional saturation.

Description: rd  sat32(rt31..0 << rs4..0)

The word element in register rt is shifted left by shift bits, inserting zeros into the least-significant bit positions emp-
tied by the shift. If the shift results in an overflow the intermediate result is saturated to either the maximum positive
or the minimum negative 32-bit value, depending on the sign of the original unshifted value.

The shifted result is then written to destination register rd.

The five least-significant bits of rs are used as the shift value, interpreted as a five-bit unsigned integer; the remaining
bits of rs are ignored.

This instruction writes a 1 to bit 22 in the DSPControl register in the ouflag field if either of the left shift operations
results in an overflow or saturation.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
temp31..0  sat32ShiftLeft(GPR[rt]31..0, GPR[rs]4..0)
GPR[rd]31..0  temp31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 9 3 2 0

P32A
001000 rt rs rd x 1111010 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

269

SHLLV_S.W IShift Left Logical Variable Vector Word

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

270

SHLL_S.W IShift Left Logical Word with Saturation

Format: SHLL_S.W rt, rs, sa DSP

Purpose: Shift Left Logical Word with Saturation

To execute a left shift of a word with saturation by a fixed number of bits.

Description: rt  sat32(rs << sa)

The 32-bit word in register rs is shifted left by sa bits, with zeros inserted into the bit positions emptied by the shift. If
the shift results in a signed overflow, the shifted result is saturated to either the maximum positive (hexadecimal
0x7FFFFFFF) or minimum negative (hexadecimal 0x80000000) 32-bit value, depending on the sign of the original
unshifted value. The shifted result is then written to destination register rt.

The instruction’s sa field specifies the shift value, interpreted as a five-bit unsigned integer.

If the shift operation results in an overflow and saturation, this instruction writes a 1 to bit 22 of the DSPControl reg-
ister within the ouflag field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
temp31..0  sat32ShiftLeft(GPR[rs]31..0, sa4..0)
GPR[rt]31..0  temp31..0

function sat32ShiftLeft(a13..0, s4..0)
if (s = 0) then

temp31..0  a
else

sign  a31
temp31..0  (a31-s..0 || 0

s)
discard31..0  (sign(32-s) || a30..30-(s-1))
if ((discard31..0  0x00000000) and (discard31..0  0xFFFFFFFF)) then

temp31..0  (sign = 0 ? 0x7FFFFFFF : 0x80000000)
DSPControlouflag:22  1

endif
endif
return temp31..0

endfunction sat32ShiftLeft

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

To do a logical left shift of a word in a register without saturation, use the MIPS32 SLL instruction.

31 26 25 21 20 16 15 11 10 9 3 2 0

P32A
001000 rt rs sa x 1111110 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

271

SHLL_S.W IShift Left Logical Word with Saturation

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

272

SHRA[_R].QB IShift Right Arithmetic Vector of Four Bytes

Format: SHRA[_R].QB
SHRA.QB rt, rs, sa DSP-R2
SHRA_R.QB rt, rs, sa DSP-R2

Purpose: Shift Right Arithmetic Vector of Four Bytes

To execute an arithmetic right shift on four independent bytes by a fixed number of bits.

Description: rt  round(rs31..24 >> sa) || round(rs23..16 >> sa) || round(rs15..8 >> sa) ||

round(rs7..0 >> sa)

The four byte elements in register rs are each shifted right arithmetically by sa bits, then written to the corresponding
vector elements in destination register rt. The sa argument is interpreted as an unsigned three-bit integer taking values
from zero to seven.

In the rounding variant of the instruction, a value of 1 is added at the most significant discarded bit position of each
result prior to writing the rounded result to the destination register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

SHRA.QB
ValidateAccessToDSP2Resources()
tempD7..0  (GPR[rs]31)

sa || GPR[rs]31..24+sa)
tempC7..0  (GPR[rs]23)

sa || GPR[rs]23..16+sa)
tempB7..0  (GPR[rs]15)

sa || GPR[rs]15..8+sa)
tempA7..0  (GPR[rs]7)

sa || GPR[rs]7..sa)
GPR[rt]31..0  tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

SHRA_R.QB
ValidateAccessToDSP2Resources()
if (sa2..0 = 0) then

tempD7..0  GPR[rs]31..24
tempC7..0  GPR[rs]23..16
tempB7..0  GPR[rs]15..8
tempA7..0  GPR[rs]7..0

else
tempD8..0  (GPR[rs]31)

sa || GPR[rs]31..24+sa-1) + 1
tempC8..0  (GPR[rs]23)

sa || GPR[rs]23..16+sa-1) + 1
tempB8..0  (GPR[rs]15)

sa || GPR[rs]15..8+sa-1) + 1
tempA8..0  (GPR[rs]7)

sa || GPR[rs]7..sa-1) + 1
endif
GPR[rt]31..0  tempD8..1 || tempC8..1 || tempB8..1 || tempA8..1

31 26 25 21 20 16 15 13 12 11 9 8 6 5 3 2 0

SHRA.QB

P32A
001000 rt rs sa 0 000 111 111 111

SHRA_R.QB

P32A
001000 rt rs sa 1 000 111 111 111

6 5 5 3 1 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

273

SHRA[_R].QB IShift Right Arithmetic Vector of Four Bytes

endif

Exceptions:

Reserved Instruction, DSP Disabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

274

SHRA[_R].PH IShift Right Arithmetic Vector Pair Halfwords

Format: SHRA[_R].PH
SHRA.PH rt, rs, sa DSP
SHRA_R.PH rt, rs, sa DSP

Purpose: Shift Right Arithmetic Vector Pair Halfwords

Element-wise arithmetic right-shift of two independent halfwords in a vector data type by a fixed number of bits, with
optional rounding.

Description: rt  rnd16(rs31..16 >> sa) || rnd16(rs15..0 >> sa)

The two halfword values in register rt are each independently shifted right by sa bits, with each value’s original sign
bit duplicated into the sa most-significant bits emptied by the shift.

In the non-rounding variant of this instruction, the two independent results are then written to the corresponding half-
word elements of destination register rd.

In the rounding variant of the instruction, a 1 is added at the most-significant discarded bit position before the results
are written to destination register rd.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

SHRA.PH
ValidateAccessToDSPResources()
tempB15..0  shift16RightArithmetic(GPR[rs]31..16, sa)
tempA15..0  shift16RightArithmetic(GPR[rs]15..0, sa)
GPR[rt]31..0  tempB15..0 || tempA15..0

SHRA_R.PH
ValidateAccessToDSPResources()
tempB15..0  rnd16ShiftRightArithmetic(GPR[rs]31..16, sa)
tempA15..0  rnd16ShiftRightArithmetic(GPR[rs]15..0, sa)
GPR[rt]31..0  tempB15..0 || tempA15..0

function shift16RightArithmetic(a15..0, s3..0)
if (s3..0 = 0) then

temp15..0  a15..0
else

sign  a15
temp15..0  (signs || a15..s)

endif
return temp15..0

endfunction shift16RightArithmetic

31 26 25 21 20 16 15 12 11 10 9 3 2 0

SHRA.PH

P32A
001000 rt rs sa x 0 1100110 101

SHRA_R.PH

P32A
001000 rt rs sa x 1 1100110 101

6 5 5 4 1 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

275

SHRA[_R].PH IShift Right Arithmetic Vector Pair Halfwords

function rnd16ShiftRightArithmetic(a15..0, s3..0)
if (s3..0 = 0) then

temp16..0  (a15..0 || 0)
else

sign  a15
temp16..0  (signs || a15..s-1)

endif
temp16..0  temp + 1
return temp16..1

endfunction rnd16ShiftRightArithmetic

Exceptions:

Reserved Instruction, DSP Disabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

276

SHRAV[_R].PH IShift Right Arithmetic Variable Vector Pair Halfwords

Format: SHRAV[_R].PH
SHRAV.PH rd, rt, rs DSP
SHRAV_R.PH rd, rt, rs DSP

Purpose: Shift Right Arithmetic Variable Vector Pair Halfwords

Element-wise arithmetic right shift of two independent halfwords in a vector data type by a variable number of bits,
with optional rounding.

Description: rd  rnd16(rt31..16 >> rs3..0) || rnd16(rt15..0 >> rs3..0)

The two halfword values in register rt are each independently shifted right, with each value’s original sign bit dupli-
cated into the most-significant bits emptied by the shift. In the non-rounding variant of this instruction, the two inde-
pendent results are then written to the corresponding halfword elements of destination register rd.

In the rounding variant of this instruction, a 1 is added at the most-significant discarded bit position before the results
are written to destination register rd.

The shift amount sa is given by the four least-significant bits of register rs; the remaining bits of rs are ignored.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

SHRAV.PH
ValidateAccessToDSPResources()
tempB15..0  shift16RightArithmetic(GPR[rt]31..16, GPR[rs]3..0)
tempA15..0  shift16RightArithmetic(GPR[rt]15..0, GPR[rs]3..0)
GPR[rd]31..0  tempB15..0 || tempA15..0

SHRAV_R.PH
ValidateAccessToDSPResources()
tempB15..0  rnd16ShiftRightArithmetic(GPR[rt]31..16, GPR[rs]3..0)
tempA15..0  rnd16ShiftRightArithmetic(GPR[rt]15..0, GPR[rs]3..0)
GPR[rd]31..0  tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 9 3 2 0

SHRAV.PH

P32A
001000 rt rs rd 0 0110001 101

SHRAV_R.PH

P32A
001000 rt rs rd 1 0110001 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

277

SHRAV[_R].PH IShift Right Arithmetic Variable Vector Pair Halfwords

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

278

SHRAV[_R].QB IShift Right Arithmetic Variable Vector of Four Bytes

Format: SHRAV[_R].QB
SHRAV.QB rd, rt, rs DSP-R2
SHRAV_R.QB rd, rt, rs DSP-R2

Purpose: Shift Right Arithmetic Variable Vector of Four Bytes

To execute an arithmetic right shift on four independent bytes by a variable number of bits.

Description: rd  round(rt31..24 >> rs2..0) || round(rt23..16 >> rs2..0) || round(rt15..8 >>

rs2..0) || round(rt7..0 >> rs2..0)

The four byte elements in register rt are each shifted right arithmetically by sa bits, then written to the corresponding
byte elements in destination register rd. The sa argument is provided by the three least-significant bits of register rs,
interpreted as an unsigned three-bit integer taking values from zero to seven. The remaining bits of rs are ignored.

In the rounding variant of the instruction, a value of 1 is added at the most significant discarded bit position of each
result prior to writing the rounded result to the destination register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

SHRAV.QB
ValidateAccessToDSP2Resources()
sa2..0  GPR[rs]2..0
if (sa2..0 = 0) then

tempD7..0  GPR[rt]31..24
tempC7..0  GPR[rt]23..16
tempB7..0  GPR[rt]15..8
tempA7..0  GPR[rt]7..0

else
tempD7..0  (GPR[rt]31)

sa || GPR[rt]31..24+sa)
tempC7..0  (GPR[rt]23)

sa || GPR[rt]23..16+sa)
tempB7..0  (GPR[rt]15)

sa || GPR[rt]15..8+sa)
tempA7..0  (GPR[rt]7)

sa || GPR[rt]7..sa)
endif
GPR[rd]31..0  tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

SHRAV_R.QB
ValidateAccessToDSP2Resources()
sa2..0  GPR[rs]2..0
if (sa2..0 = 0) then

tempD8..0  (GPR[rt]31..24 || 0)
tempC8..0  (GPR[rt]23..16 || 0)

31 26 25 21 20 16 15 11 10 9 3 2 0

SHRAV.QB

P32A
001000 rt rs rd 0 0111001 101

SHRAV_R.QB

P32A
001000 rt rs rd 1 0111001 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

279

SHRAV[_R].QB IShift Right Arithmetic Variable Vector of Four Bytes

tempB8..0  (GPR[rt]15..8 || 0)
tempA8..0  (GPR[rt]7..0 || 0)

else
tempD8..0  (GPR[rt]31)

sa || GPR[rt]31..24+sa-1) + 1
tempC8..0  (GPR[rt]23)

sa || GPR[rt]23..16+sa-1) + 1
tempB8..0  (GPR[rt]15)

sa || GPR[rt]15..8+sa-1) + 1
tempA8..0  (GPR[rt]7)

sa || GPR[rt]7..sa-1) + 1
endif
GPR[rd]31..0  tempD8..1 || tempC8..1 || tempB8..1 || tempA8..1

Exceptions:

Reserved Instruction, DSP Disabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

280

SHRAV_R.W IShift Right Arithmetic Variable Word with Rounding

Format: SHRAV_R.W rd, rt, rs DSP

Purpose: Shift Right Arithmetic Variable Word with Rounding

Arithmetic right shift with rounding of a signed 32-bit word by a variable number of bits.

Description: rd  rnd32(rt31..0 >> rs4..0)

The word value in register rt is shifted right, with the value’s original sign bit duplicated into the most-significant bits
emptied by the shift. A 1 is then added at the most-significant discarded bit position before the result is written to des-
tination register rd.

The shift amount sa is given by the five least-significant bits of register rs; the remaining bits of rs are ignored.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
temp31..0  rnd32ShiftRightArithmetic(GPR[rt]31..0, GPR[rs]4..0)
GPR[rd]31..0  temp31..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 9 3 2 0

P32A
001000 rt rs rd x 1011010 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

281

SHRAV_R.W IShift Right Arithmetic Variable Word with Rounding

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

282

SHRA_R.W IShift Right Arithmetic Word with Rounding

Format: SHRA_R.W rt, rs, sa DSP

Purpose: Shift Right Arithmetic Word with Rounding

To execute an arithmetic right shift with rounding on a word by a fixed number of bits.

Description: rt  rnd32(rs31:0 >> sa)

The word in register rs is shifted right by sa bits, and the sign bit is duplicated into the sa bits emptied by the shift.
The shifted result is then rounded by adding a 1 bi t to the most-significant discarded bit. The rounded result is then
written to the destination register rt.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
temp31..0  rnd32ShiftRightArithmetic(GPR[rt]31..0, sa4..0)
GPR[rt]31..0  temp32..1

function rnd32ShiftRightArithmetic(a31..0, s4..0)
if (s4..0 = 0) then

temp32..0  (a31..0 || 0)
else

sign  a31
temp32..0  (signs || a31..s-1)

endif
temp32..0  temp + 1
return temp32..1

endfunction rnd32ShiftRightArithmetic

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

To do an arithmetic right shift of a word in a register without rounding, use the MIPS32 SRA instruction.

31 26 25 21 20 16 15 11 10 9 3 2 0

P32A
001000 rt rs sa x 1011110 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

283

SHRA_R.W IShift Right Arithmetic Word with Rounding

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

284

SHRL.PH IShift Right Logical Two Halfwords

Format: SHRL.PH rt, rs, sa DSP-R2

Purpose: Shift Right Logical Two Halfwords

To execute a right shift of two independent halfwords in a vector data type by a fixed number of bits.

Description: rt  (rs31..16 >> sa) || (rs15..0 >> sa)

The two halfwords in register rs are independently logically shifted right, inserting zeros into the bit positions emp-
tied by the shift. The two halfword results are then written to the corresponding halfword elements in destination reg-
ister rt.

The shift amount is provided by the sa field, which is interpreted as a four bit unsigned integer taking values between
0 and 15.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSP2Resources()
tempB15..0  0sa || GPR[rs]31..sa+16
tempA15..0  0sa || GPR[rs]15..sa
GPR[rt]31..0  tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs sa 001 111 111 111

6 5 5 4 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

285

SHRL.PH IShift Right Logical Two Halfwords

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

286

SHRL.QB IShift Right Logical Vector Quad Bytes

Format: SHRL.QB rt, rs, sa DSP

Purpose: Shift Right Logical Vector Quad Bytes

Element-wise logical right shift of four independent bytes in a vector data type by a fixed number of bits.

Description: rt  rs31..24 >> sa) || (rs23..16 >> sa) || (rs15..8 >> sa) || (rs7..0 >> sa)

The four byte values in register rs are each independently shifted right by sa bits and the sa most-significant bits of
each value are set to zero. The four independent results are then written to the corresponding byte elements of destina-
tion register rt.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempD7..0  shift8Right(GPR[rs]31..24, sa)
tempC7..0  shift8Right(GPR[rs]23..16, sa)
tempB7..0  shift8Right(GPR[rs]15..8, sa)
tempA7..0  shift8Right(GPR[rs]7..0, sa)
GPR[rt]31..0  tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

function shift8Right(a7..0, s2..0)
if (s2..0 = 0) then

temp7..0  a7..0
else

temp7..0  (0s || a7..s)
endif
return temp7..0

endfunction shift8Right

Exceptions:

Reserved Instruction, DSP Disabled

Programming Notes:

To do a logical left shift of a word in a register without saturation, use the MIPS32 SLL instruction.

31 26 25 21 20 16 15 12 11 9 8 6 5 3 2 0

P32A
001000 rt rs sa 1 100 001 111 111

6 5 5 4 3 3 3 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

287

SHRL.QB IShift Right Logical Vector Quad Bytes

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

288

SHRLV.PH IShift Variable Right Logical Pair of Halfwords

Format: SHRLV.PH rd, rt, rs DSP-R2

Purpose: Shift Variable Right Logical Pair of Halfwords

To execute a right shift of two independent halfwords in a vector data type by a variable number of bits.

Description: rd  (rt31..16 >> rs3..0) || (rt15..0 >> rs3..0)

The two halfwords in register rt are independently logically shifted right, inserting zeros into the bit positions emptied
by the shift. The two halfword results are then written to the corresponding halfword elements in destination register
rd.

The shift amount is provided by the four least-significant bits of register rs, which is interpreted as a four bit unsigned
integer taking values between 0 and 15. The remaining bits of rs are ignored.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSP2Resources()
sa3..0  GPR[rs]3..0
tempB15..0  0sa || GPR[rt]31..sa+16
tempA15..0  0sa || GPR[rt]15..sa
GPR[rd]31..0  tempB15..0 || tempA15..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 9 3 2 0

P32A
001000 rt rs rd x 1100010 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

289

SHRLV.PH IShift Variable Right Logical Pair of Halfwords

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

290

SHRLV.QB IShift Right Logical Variable Vector Quad Bytes

Format: SHRLV.QB rd, rt, rs DSP

Purpose: Shift Right Logical Variable Vector Quad Bytes

Element-wise logical right shift of four independent bytes in a vector data type by a variable number of bits.

Description: rd  (rt31..24 >> rs2..0) || (rt23..16 >> rs2..0) || (rt15..8 >> rs2..0) || (rt7..0

>> rs2..0)

The four byte values in register rt are each independently shifte d right, inserting zeros into the most-significant bit
positions emptied by the shift. The four independent results are then written to the corresponding byte elements of
destination register rd.

The three least-significant bits of rs provide the shift value, interpreted as an unsigned integer; the remaining bits of rs
are ignored.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
tempD7..0  shift8Right(GPR[rt]31..24, GPR[rs]2..0)
tempC7..0  shift8Right(GPR[rt]23..16, GPR[rs]2..0)
tempB7..0  shift8Right(GPR[rt]15..8, GPR[rs]2..0)
tempA7..0  shift8Right(GPR[rt]7..0, GPR[rs]2..0)
GPR[rd]31..0  tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 9 3 2 0

P32A
001000 rt rs rd x 1101010 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

291

SHRLV.QB IShift Right Logical Variable Vector Quad Bytes

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

292

SUBQ[_S].PH ISubtract Fractional Halfword Vector

Format: SUBQ[_S].PH
SUBQ.PH rd, rs, rt DSP
SUBQ_S.PH rd, rs, rt DSP

Purpose: Subtract Fractional Halfword Vector

Element-wise subtraction of one vector of Q15 fractional halfword values from another to produce a vector of Q15
fractional halfword results, with optional saturation.

Description: rd  sat16(rs31..16 - rt31..16) || sat16(rs15..0 - rt15..0)

The two fractional halfwords in register rt are subtracted from the corresponding fractional halfword elements in reg-
ister rs.

For the non-saturating version of this instruction, each result is written to the corresponding element in register rd. In
the case of overflow or underflow, the result modulo 2 is written to register rd.

For the saturating version of the instruction, the subtraction is performed using signed saturating arithmetic. If the
operation results in an o verflow or an un derflow, the result is clamped to e ither the largest representable value
(0x7FFF hexadecimal) or the smallest representable value (0x8000 hexadecimal), respectively, before being written
to the destination register rd.

For both instructions, if any of the individual subtractions result in underflow, overflow, or saturation, a 1 is written to
bit 20 in the DSPControl register within the ouflag field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

SUBQ.PH:
ValidateAccessToDSPResources()
tempB15..0  subtract16(GPR[rs]31..16 , GPR[rt]31..16)
tempA15..0  subtract16(GPR[rs]15..0 , GPR[rt]15..0)
GPR[rd]31..0  tempB15..0 || tempA15..0

SUBQ_S.PH:
ValidateAccessToDSPResources()
tempB15..0  sat16Subtract(GPR[rs]31..16 , GPR[rt]31..16)
tempA15..0  sat16Subtract(GPR[rs]15..0 , GPR[rt]15..0)
GPR[rd]31..0  tempB15..0 || tempA15..0

function subtract16(a15..0, b15..0)
temp16..0  (a15 || a15..0) - (b15 || b15..0)
if (temp16  temp15) then

DSPControlouflag:20  1
endif

31 26 25 21 20 16 15 11 10 9 3 2 0

SUBQ.PH

P32A
001000 rt rs rd 0 1000001 101

SUBQ_S.PH

P32A
001000 rt rs rd 1 1000001 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

293

SUBQ[_S].PH ISubtract Fractional Halfword Vector

return temp15..0
endfunction subtract16

function sat16Subtract(a15..0, b15..0)
temp16..0  (a15 || a15..0) - (b15|| b15..0)
if (temp16  temp15) then

if (temp16 = 0) then
temp  0x7FFF

else
temp  0x8000

endif
DSPControlouflag:20  1

endif
return temp15..0

endfunction sat16Subtract

Exceptions:

Reserved Instruction, DSP Disabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

294

SUBQ_S.W ISubtract Fractional Word

Format: SUBQ_S.W rd, rs, rt DSP

Purpose: Subtract Fractional Word

One Q31 fractional word is subtracted from another to produce a Q31 fractional result, with saturation.

Description: rd  sat32(rs31..0 - rt31..0)

The Q31 fractional word in register rt is subtracted from the corresponding fractional word in register rs, and the 32-
bit result is written to destination register rd. The subtraction is performed using signed saturating arithmetic. If the
operation results in an o verflow or an un derflow, the result is clamped to e ither the largest representable value
(0x7FFFFFFF hexadecimal) or the smallest representable value (0x80000000 hexadecimal), respectively, before
being sign-extended and written to the destination register rd.

If the subtraction results in underflow, overflow, or saturation, a 1 is written to bit 20 in the DSPControl register within
the ouflag field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
temp31..0  sat32Subtract(GPR[rs]31..0 , GPR[rt]31..0)
GPR[rd]31..0  temp31..0

function sat32Subtract(a31..0, b31..0)
temp32..0  (a31 || a31..0) - (b31 || b31..0)
if (temp32  temp31) then

if (temp32 = 0) then
temp31..0  0x7FFFFFFF

else
temp31..0  0x80000000

endif
DSPControlouflag:20  1

endif
return temp31..0

endfunction sat32Subtract

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 9 3 2 0

P32A
001000 rt rs rd x 1101000 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

295

SUBQ_S.W ISubtract Fractional Word

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

296

SUBQH[_R].PH ISubtract Fractional Halfword Vectors And Shift Right to Halve Results

Format: SUBQH[_R].PH
SUBQH.PH rd, rs, rt DSP-R2
SUBQH_R.PH rd, rs, rt DSP-R2

Purpose: Subtract Fractional Halfword Vectors And Shift Right to Halve Results

Element-wise fractional subtr action of halfw ord vectors, with a right shift by one bit to halve each result, with
optional rounding.

Description: rd  round((rs31..16 - rt31..16) >> 1) || round((rs15..0 - rt15..0) >> 1)

Each element from the tw o halfword values in register rt is subtracted from the corresponding halfword element in
register rs to create an interim 17-bit result.

In the non-rounding instruction variant, each interim result is then shifted right by one bit before being written to the
corresponding halfword element of destination register rd.

In the rounding version of the instruction, a v alue of 1 is added at the least-significant bit position of each interim
result; the interim result is then right-shifted by one bit and written to the destination register.

This instruction does not modify the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ADDQH.PH
ValidateAccessToDSP2Resources()
tempB15..0  rightShift1SubQ16(GPR[rs]31..16 , GPR[rt]31..16)
tempA15..0  rightShift1SubQ16(GPR[rs]15..0 , GPR[rt]15..0)
GPR[rd]31..0  tempB15..0 || tempA15..0

ADDQH_R.PH
ValidateAccessToDSP2Resources()
tempB15..0  roundRightShift1SubQ16(GPR[rs]31..16 , GPR[rt]31..16)
tempA15..0  roundRightShift1SubQ16(GPR[rs]15..0 , GPR[rt]15..0)
GPR[rd]31..0  tempB15..0 || tempA15..0

function rightShift1SubQ16(a15..0 , b15..0)
temp16..0  ((a15 || a15..0) - (b15 || b15..0))
return temp16..1

endfunction rightShift1SubQ16

function roundRightShift1SubQ16(a15..0 , b15..0)
temp16..0  ((a15 || a15..0) - (b15 || b15..0))
temp16..0  temp16..0 + 1

31 26 25 21 20 16 15 11 10 9 3 2 0

SUBQH.PH

P32A
001000 rt rs rd 0 1001001 101

SUBQH_R.PH

P32A
001000 rt rs rd 1 1001001 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

297

SUBQH[_R].PH ISubtract Fractional Halfword Vectors And Shift Right to Halve Results

return temp16..1
endfunction roundRightShift1SubQ16

Exceptions:

Reserved Instruction, DSP Disabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

298

SUBQH[_R].W ISubtract Fractional Words And Shift Right to Halve Results

Format: SUBQH[_R].W
SUBQH.W rd, rs, rt DSP-R2
SUBQH_R.W rd, rs, rt DSP-R2

Purpose: Subtract Fractional Words And Shift Right to Halve Results

Fractional subtraction of word vectors, with a right shift by one bit to halve the result, with optional rounding.

Description: rd  round((rs31..0 - rt31..0) >> 1)

The word in register rt is subtracted from the word in register rs to create an interim 33-bit result.

In the non-rounding instruction variant, the interim result is then shifted right by one bit before being written to the
destination register rd.

In the rounding version of the instruction, a value of 1 is added at the least-si gnificant bit position of the int erim
result; the interim result is then right-shifted by one bit and written to the destination register.

This instruction does not modify the DSPControl register.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ADDQH.W
ValidateAccessToDSP2Resources()
tempA31..0  rightShift1SubQ32(GPR[rs]31..0 , GPR[rt]31..0)
GPR[rd]31..0  tempA31..0

ADDQH_R.W
ValidateAccessToDSP2Resources()
tempA31..0  roundRightShift1SubQ32(GPR[rs]31..0 , GPR[rt]31..0)
GPR[rd]31..0  tempA31..0

function rightShift1SubQ32(a31..0 , b31..0)
temp32..0  ((a31 || a31..0) - (b31 || b31..0))
return temp32..1

endfunction rightShift1SubQ32

function roundRightShifttSubQ32(a31..0 , b31..0)
temp32..0  ((a31 || a31..0) - (b31 || b31..0))
temp32..0  temp32..0 + 1
return temp32..1

endfunction roundRightShift1SubQ32

31 26 25 21 20 16 15 11 10 9 3 2 0

SUBQH.W

P32A
001000 rt rs rd 0 1010001 101

SUBQH_R.W

P32A
001000 rt rs rd 1 1010001 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

299

SUBQH[_R].W ISubtract Fractional Words And Shift Right to Halve Results

Exceptions:

Reserved Instruction, DSP Disabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

300

SUBU[_S].PH ISubtract Unsigned Integer Halfwords

Format: SUBU[_S].PH
SUBU.PH rd, rs, rt DSP-R2
SUBU_S.PH rd, rs, rt DSP-R2

Purpose: Subtract Unsigned Integer Halfwords

Element-wise subtraction of pairs of unsigned integer halfwords, with optional saturation.

Description: rd  sat16(rs31..16 - rt31..16) || sat16(rs15..0 - rt15..0)

The two unsigned integer halfwords in register rs are subtracted from the corresponding unsigned integer halfwords
in register rt. The unsigned results are then written to the corresponding element in destination register rd.

In the saturating version of the instruction, if either subtraction results in an underflow the result is clamped to the
minimum unsigned integer halfword value (0x0000 hexadecimal), before being written to the destination register rd.

For both instruction variants, if either subtraction causes an underflow the instruction writes a 1 t o bit 20 in the
DSPControl register in the ouflag field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

SUBU.PH
ValidateAccessToDSP2Resources()
tempB15..0  subtractU16U16(GPR[rt]31..16 , GPR[rs]31..16)
tempA15..0  subtractU16U16(GPR[rt]15..0 , GPR[rs]15..0)
GPR[rd]31..0  tempB15..0 || tempA15..0

SUBU_S.PH
ValidateAccessToDSPResources()
tempB15..0  satU16SubtractU16U16(GPR[rt]31..16 , GPR[rs]31..16)
tempA15..0  satU16SubtractU16U16(GPR[rt]15..0 , GPR[rs]15..0)
GPR[rd]31..0  tempB15..0 || tempA15..0

function subtractU16U16(a15..0, b15..0)
temp16..0  (0 || a15..0) - (0 || b15..0)
if (temp16 = 1) then

DSPControlouflag:20  1
endif
return temp15..0

endfunction subtractU16U16

31 26 25 21 20 16 15 11 10 9 3 2 0

SUBU.PH

P32A
001000 rt rs rd 0 1100001 101

SUBU_S.PH

P32A
001000 rt rs rd 1 1100001 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

301

SUBU[_S].PH ISubtract Unsigned Integer Halfwords

function satU16SubtractU16U16(a15..0, b15..0)
temp16..0  (0 || a15..0) - (0 || b15..0)
if (temp16 = 1) then

temp15..0  0x0000
DSPControlouflag:20  1

endif
return temp15..0

endfunction satU16SubtractU16U16

Exceptions:

Reserved Instruction, DSP Disabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

302

SUBU[_S].QB ISubtract Unsigned Quad Byte Vector

Format: SUBU[_S].QB
SUBU.QB rd, rs, rt DSP
SUBU_S.QB rd, rs, rt DSP

Purpose: Subtract Unsigned Quad Byte Vector

Element-wise subtraction of one vector of unsigned byte values from another to produce a vector of unsigned byte
results, with optional saturation.

Description: rd  sat8(rs31..24 - rt31..24) || sat8(rs23..16 - rt23..16) || sat8(rs15..8 -

rt15..8) || sat8(rs7..0 - rt7..0)

The four byte elements in rt are subtracted from the corresponding byte elements in register rs.

For the non-saturating version of the instruction, the result modulo 256 is written into the corresponding position in
register rd.

For the saturating version of the instruction the subtraction is performed using unsigned saturating arithmetic. If the
subtraction results in underflow, the value is clamped to the smallest representable value (0 decimal, 0x00 hexadeci-
mal) before being written to the destination register rd.

For each instruction, if any of the individual subtractions result in underflow or saturation, a 1 is written to bit 20 in
the DSPControl register within the ouflag field.

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

SUBU.QB:
ValidateAccessToDSPResources()
tempD7..0  subtractU8(GPR[rs]31..24 , GPR[rt]31..24)
tempC7..0  subtractU8(GPR[rs]23..16 , GPR[rt]23..16)
tempB7..0  subtractU8(GPR[rs]15..8 , GPR[rt]15..8)
tempA7..0  subtractU8(GPR[rs]7..0 , GPR[rt]7..0)
GPR[rd]31..0  tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

SUBU_S.QB:
ValidateAccessToDSPResources()
tempD7..0  satU8Subtract(GPR[rs]31..24 , GPR[rt]31..24)
tempC7..0  satU8Subtract(GPR[rs]23..16 , GPR[rt]23..16)
tempB7..0  satU8Subtract(GPR[rs]15..8 , GPR[rt]15..8)
tempA7..0  satU8Subtract(GPR[rs]7..0 , GPR[rt]7..0)
GPR[rd]31..0  tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

function subtractU8(a7..0, b7..0)
temp8..0  (0 || a7..0) - (0 || b7..0)

31 26 25 21 20 16 15 11 10 9 3 2 0

SUBU.QB

P32A
001000 rt rs rd 0 1011001 101

SUBU.QB

P32A
001000 rt rs rd 1 1011001 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

303

SUBU[_S].QB ISubtract Unsigned Quad Byte Vector

if (temp8 = 1) then
DSPControlouflag:20  1

endif
return temp7..0

endfunction subtractU8

function satU8Subtract(a7..0, b7..0)
temp8..0  (0 || a7..0) - (0 || b7..0)
if (temp8 = 1) then

temp7..0  0x00
DSPControlouflag:20  1

endif
return temp7..0

endfunction satU8Subtract

Exceptions:

Reserved Instruction, DSP Disabled

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

304

SUBUH[_R].QB ISubtract Unsigned Bytes And Right Shift to Halve Results

Format: SUBUH[_R].QB
SUBUH.QB rd, rs, rt DSP-R2
SUBUH_R.QB rd, rs, rt DSP-R2

Purpose: Subtract Unsigned Bytes And Right Shift to Halve Results

Element-wise subtraction of two vectors of unsigned bytes, with a one-bit right shift to halve results and optional
rounding.

Description: rd  round((rs31..24 - rt31..24)>>1) || round((rs23..16 - rt23..16)>>1) ||

round((rs15..8 - rt15..8)>>1) || round((rs7..0 - rt7..0)>>1)

The four unsigned byte values in register rt are subtracted from the corresponding unsigned byte values in register rs.
Each unsigned result is then halved by shifting right by one bit position. The byte results are then written to the corre-
sponding elements of destination register rd.

In the rounding variant of the instruction, a value of 1 is added to the result of each subtraction at the discarded bit
position before the right shift.

The results of this instruction never overflow; no bits of the ouflag field in the DSPControl register are written.

Restrictions:

No data-dependent exceptions are possible.

The operands must be a value in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

SUBUH.QB
ValidateAccessToDSPResources()
tempD7..0  ((0 || GPR[rs]31..24) - (0 || GPR[rt]31..24)) >> 1
tempC7..0  ((0 || GPR[rs]23..16) - (0 || GPR[rt]23..16)) >> 1
tempB7..0  ((0 || GPR[rs]15..8) - (0 || GPR[rt]15..8)) >> 1
tempA7..0  ((0 || GPR[rs]7..0) - (0 || GPR[rt]7..0)) >> 1
GPR[rd]31..0  tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

SUBUH_R.QB
ValidateAccessToDSPResources()
tempD7..0  ((0 || GPR[rs]31..24) - (0 || GPR[rt]31..24) + 1) >> 1
tempC7..0  ((0 || GPR[rs]23..16) - (0 || GPR[rt]23..16) + 1) >> 1
tempB7..0  ((0 || GPR[rs]15..8) - (0 || GPR[rt]15..8) + 1) >> 1
tempA7..0  ((0 || GPR[rs]7..0) - (0 || GPR[rt]7..0) + 1) >> 1
GPR[rd]31..0  tempD7..0 || tempC7..0 || tempB7..0 || tempA7..0

Exceptions:

Reserved Instruction, DSP Disabled

31 26 25 21 20 16 15 11 10 9 3 2 0

SUBUH.QB

P32A
001000 rt rs rd 0 1101001 101

SUBUH_R.QB

P32A
001000 rt rs rd 1 1101001 101

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

305

SUBUH[_R].QB ISubtract Unsigned Bytes And Right Shift to Halve Results

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

306

WRDSP IWrite Fields to DSPControl Register from a GPR

Format: WRDSP
WRDSP rt, mask DSP
WRDSP rt Assembly Idiom

Purpose: Write Fields to DSPControl Register from a GPR

To copy selected fields from the specified GPR to the special-purpose DSPControl register.

Description: DSPControl  select(mask, GPR[rt])

Selected fields in the special register DSPControl are overwritten with the corresponding bits from the source GPR rt.
Each of bits 0 through 5 of the mask operand corresponds to a specific field in the DSPControl register. A mask bit
value of 1 indicates that the field will be overwritten using the bits from the same bit positions in register rt, and a
mask bit value of 0 indicates that the corresponding field will be unchanged. Bits 6 through 9 of the mask operand are
ignored.

The table below shows the correspondence between the bits in the mask operand and the fields in the DSPControl reg-
ister; mask bit 0 is the least-significant bit in mask.

For example, to overwrite only the scount field in DSPControl, the value of the mask operand used will be 2 decimal
(0x02 hexadecimal). After execution of the instruction, the scount field in DSPControl will have the value of bits 7
through 12 of the specified source register rt and the remaining bits in DSPControl are unmodified.

The one-operand version of the instruction provides a convenient assembly idiom that allows the programmer to write
all the allowable fields in the DSPControl register from the source GPR, i.e. , it is equivalent to specifying a mask
value of 31 decimal (0x1F hexadecimal).

Restrictions:

No data-dependent exceptions are possible.

The operands must be values in the specified format. If they are not, the results are UNPREDICTABLE and the val-
ues of the operand vectors become UNPREDICTABLE.

Operation:

ValidateAccessToDSPResources()
newbits31..0  032

overwrite31..0  0xFFFFFFFF
if (mask0 = 1) then

overwrite5..0  06

newbits5..0  GPR[rt]5..0
endif
if (mask1 = 1) then

overwrite12..7  06

newbits12..7  GPR[rt]12..7
endif
if (mask2 = 1) then

overwrite13  0

31 26 25 21 20 14 13 12 11 9 8 6 5 3 2 0

P32A
001000 rt mask 01 011 001 111 111

6 5 7 2 3 3 3 3

Bit 31 24 23 16 15 14 13 12 7 6 5 0

DSPControl
field ccond ouflag 0 EFI C scount pos

Mask bit 4 3 5 2 1 0

MIPS® Architecture Extension: nanoMIPS32™ DSP Technical Reference Manual — Revision 0.04

307

WRDSP IWrite Fields to DSPControl Register from a GPR

newbits13  GPR[rt]13
endif
if (mask3 = 1) then

overwrite23..16  08

newbits23..16  GPR[rt]23..16
endif
if (mask4 = 1) then

overwrite31..24  08

newbits31..24  GPR[rt]31..24
endif
if (mask5 = 1) then

overwrite14  0
newbits14  GPR[rt]14

endif

DSPControl  DSPControl and overwrite31..0
DSPControl  DSPControl or new31..0

Exceptions:

Reserved Instruction, DSP Disabled

Appendix A

308

Endian-Agnostic Reference to Register Elements

A.1 Using Endian-Agnostic Instruction Names

Certain instructions being proposed in the Module only operate on a subset of the operands in the register. In most
cases, this is simply the left (L) or right (R) half of the register. Some instructions refer to the left alternating (LA) or
right alternating (RA) elements of the register. But this type of reference does not take the endian-ness of the proces-
sor and memory into account. Since the DSP Module instructions do not take the endian-ness into account and simply
use the left or right part of the register, this section describes a method by which users can take advantage of
user-defined macros to translate the given instruction to the appropriate one for a given processor endian-ness.

An example is given below that uses actual element numbers in the mnemonics to be endian-agnostic.

In the microMIPS32 architecture, the following conventions could be used:

• PH0 refers to halfword element 0 (from a pair in the specified register).

• PH1 refers to halfword element 1.

• QB01 refers to byte elements 0 and 1 (from a quad in the specified register).

• QB23 refers to byte elements 2 and 3.

• QB02 refers to (even) byte elements 0 and 2.

• QB13 refers to (odd) byte elements 1 and 3.

The even and odd subsets are mainly used in storing, computing on, and loading complex numbers that have a real
and imaginary part. If the real and imaginary parts of a complex number are stored in consecutive memory locations,
then computations that involve only the real or only the imaginary parts must first extract these to a different register.
This can most effectively be done using the even and odd formats of the relevant operations.

Note that these mnemonics are translated by the assembler to underlying real instructions that operate on absolute ele-
ment positions in the register based on the endian-ness of the processor.

A.2 Mapping Endian-Agnostic Instruction Names to DSP Module Instruc-
tions

To illustrate this process, we will use one instruction as an example. This can be repeated for all the relevant instruc-
tions in the Module.

Appendix B

311

Revision History

Vertical change bars in the left page margin note the location of changes to this document since its last release.

NOTE: Change bars on figure titles are used to denote a potential change in the figure itself.

Version Date Comments

0.01 August 30, 2017 Initial revision.

0.02 November 17, 2017 Updated cover and formatting.

0.03 March 26, 2018 • Fixed bits and typo in ADDQH_R.H
• Fixed broken cross references in the Overview chapter.

0.04 April 27, 2018 Changed confidentiality level to Public.

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

