
Revision 1.17
April 27, 2018

Public

MIPS® Architecture Extension: nanoMIPS32®
Multithreading Technical Reference Manual

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCI, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

3

Table of Contents

Chapter 1: About This Book .. 9
1.1: Typographical Conventions ... 9

1.1.1: Italic Text.. 9
1.1.2: Bold Text .. 9
1.1.3: Courier Text ... 9

1.2: UNPREDICTABLE and UNDEFINED ... 9
1.2.1: UNPREDICTABLE... 10
1.2.2: UNDEFINED .. 10
1.2.3: UNSTABLE .. 10

1.3: Special Symbols in Pseudocode Notation... 11
1.4: Notation for Register Field Accessibility .. 14
1.5: For More Information ... 16

Chapter 2: Guide to the Instruction Set.. 17
2.1: Understanding the Instruction Fields ... 17

2.1.1: Instruction Fields .. 19
2.1.2: Instruction Descriptive Name and Mnemonic... 19
2.1.3: Format Field ... 19
2.1.4: Purpose Field ... 20
2.1.5: Description Field .. 20
2.1.6: Restrictions Field.. 20
2.1.7: Availability and Compatibility Fields ... 21
2.1.8: Operation Field... 21
2.1.9: Exceptions Field... 22
2.1.10: Programming Notes and Implementation Notes Fields.. 22

2.2: Operation Section Notation and Functions.. 22
2.2.1: Instruction Execution Ordering... 23
2.2.2: Pseudocode Functions... 23

2.2.2.1: Coprocessor General Register Access Functions.. 23
2.2.2.2: Memory Operation Functions ... 24
2.2.2.3: Floating Point Functions ... 27
2.2.2.4: Instruction Mode Checking Functions .. 30
2.2.2.5: Pseudocode Functions Related to Sign and Zero Extension ... 33
2.2.2.6: Miscellaneous Functions .. 34

2.3: Op and Function Subfield Notation.. 35
2.4: FPU Instructions .. 36

Chapter 3: Introduction to the MIPS® MT Architecture Extension .. 37
3.5: Background ... 37
3.6: Definitions and General Description .. 37

Chapter 4: MIPS® MT Multi-Threaded Execution and Exception Model ... 39
4.1: Multi-Threaded Execution.. 39
4.2: MIPS® MT Exception Model ... 39
4.3: New Exception Conditions... 39
4.4: New Exception Priority .. 40
4.5: Interrupts ... 41
4.6: Bus Error Exceptions... 42
4.7: Cache Error Exceptions... 42
4.8: EJTAG Debug Exceptions... 42

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

4

4.9: Shadow Register Sets ... 42

Chapter 5: MIPS® MT Instructions.. 43
5.1: New Instructions .. 43

DMT... 44
DVPE... 46
EMT... 48
EVPE... 50
FORK .. 52
MFTR .. 54
MTTR .. 58
YIELD.. 62

Chapter 6: MIPS® MT Privileged Resource Architecture.. 64
6.1: Privileged Resource Architecture for MIPS® MT .. 64
6.2: MVPControl Register (CP0 Register 0, Select 1) .. 66
6.3: MVPConf0 Register (CP0 Register 0, Select 2) .. 68
6.4: MVPConf1 Register (CP0 Register 0, Select 3) .. 69
6.5: VPEControl Register (CP0 Register 1, Select 1)... 70
6.6: VPEConf0 Register(CP0 Register 1, Select 2).. 71
6.7: VPEConf1 Register(CP0 Register 1, Select 3).. 73
6.8: YQMask Register (CP0 Register 1, Select 4).. 74
6.9: VPESchedule Register (CP0 Register 1, Select 5) ... 75
6.10: VPEScheFBack Register (CP0 Register 1, Select 6).. 76
6.11: VPEOpt Register(CP0 Register 1, Select 7) ... 77
6.12: TCStatus Register (CP0 Register 2, Select 1) .. 79
6.13: TCBind Register (CP0 Register 2, Select 2) ... 81
6.14: TCRestart Register (CP0 Register 2, Select 3) ... 82
6.15: TCHalt Register (CP0 Register 2, Select 4) .. 83
6.16: TCContext Register (CP0 Register 2, Select 5) .. 84
6.17: TCSchedule Register (CP0 Register 2, Select 6).. 85
6.18: TCScheFBack Register (CP0 Register 2, Select 7) .. 86
6.19: TCOpt Register(CP0 Register 3, Select 7).. 87
6.20: SRSConf0 (CP0 Register 6, Select 1)... 89
6.21: SRSConf1 (CP0 Register 6, Select 2)... 91
6.22: SRSConf2 (CP0 Register 6, Select 3)... 92
6.23: SRSConf3 (CP0 Register 6, Select 4)... 93
6.24: SRSConf4 (CP0 Register 6, Select 5)... 94
6.25: Modifications to Existing MIPS® Privileged Resource Architecture .. 95

6.25.1: SRSCtl Register ... 95
6.25.2: Cause Register .. 95
6.25.3: Machine Check Exceptions.. 95
6.25.4: Debug Register .. 95
6.25.5: EBase Register .. 95
6.25.6: Config1 Register .. 95
6.25.7: Config3 Register .. 96
6.25.8: LLAddr Register ... 96

6.26: Thread State as a Function of Privileged Resource State... 96
6.27: Thread Allocation and Initialization Without FORK.. 96
6.28: Thread Termination and Deallocation without YIELD.. 97
6.29: Multi-threading and Coprocessors... 97

Chapter 7: MIPS® MT Restrictions on MIPS32 Implementation... 98
7.1: WAIT Instructions .. 98
7.2: SC Instructions .. 98
7.3: LL Instructions ... 98

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

5

7.4: SYNC Instructions ... 98

Chapter 8: Multiple Virtual Processors in MIPS® MT.. 99
8.1: Multi-VPE Processors.. 99
8.2: Reset and Virtual Processor Configuration ... 99
8.3: MIPS® MT and Cache Configuration .. 101

Chapter 9: Data-Driven Scheduling of MIPS® MT Threads .. 102
9.1: Gating Storage ... 102

Chapter 10: EJTAG and MIPS® MT ... 103
10.2: EJTAG Debug Resources ... 103
10.3: Debug Exception Handling .. 103

Appendix A: Inter-Thread Communication Storage .. 105
A.1: Basic Concepts ... 105
A.2: An ITC Storage Reference Model ... 105
A.3: Multiprocessor/Multicore ITC .. 107
A.4: Interaction with EJTAG Debug Facilities... 107

Appendix B: Revision History ... 108

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

6

List of Figures

Figure 2.1: Example of Instruction Description ... 18
Figure 2.2: Example of Instruction Fields.. 19
Figure 2.3: Example of Instruction Descriptive Name and Mnemonic .. 19
Figure 2.4: Example of Instruction Format .. 19
Figure 2.5: Example of Instruction Purpose.. 20
Figure 2.6: Example of Instruction Description ... 20
Figure 2.7: Example of Instruction Restrictions .. 21
Figure 2.8: Example of Instruction Operation ... 22
Figure 2.9: Example of Instruction Exception ... 22
Figure 2.10: Example of Instruction Programming Notes ... 22
Figure 2.11: COP_LW Pseudocode Function... 23
Figure 2.12: COP_LD Pseudocode Function.. 23
Figure 2.13: COP_SW Pseudocode Function .. 24
Figure 2.14: COP_SD Pseudocode Function ... 24
Figure 2.15: CoprocessorOperation Pseudocode Function.. 24
Figure 2.16: MisalignedSupport Pseudocode Function .. 25
Figure 2.17: AddressTranslation Pseudocode Function ... 25
Figure 2.18: LoadMemory Pseudocode Function ... 26
Figure 2.19: StoreMemory Pseudocode Function .. 26
Figure 2.20: Prefetch Pseudocode Function... 27
Figure 2.21: SyncOperation Pseudocode Function .. 27
Figure 2.22: ValueFPR Pseudocode Function.. 28
Figure 2.23: StoreFPR Pseudocode Function .. 28
Figure 2.24: CheckFPException Pseudocode Function ... 29
Figure 2.25: FPConditionCode Pseudocode Function.. 30
Figure 2.26: SetFPConditionCode Pseudocode Function .. 30
Figure 2.27: Are64BitFPOperationsEnabled Pseudocode Function... 30
Figure 2.28: IsCoprocessorEnabled PseudocodeFunction... 31
Figure 2.29: IsCoprocessor2 Pseudocode Function... 31
Figure 2.30: IsEJTAGImplemented Pseudocode Function... 31
Figure 2.31: IsFloatingPointImplemented Pseudocode Function ... 32
Figure 2.32: sign_extend Pseudocode Functions... 33
Figure 2.33: memory_address Pseudocode Function .. 34
Figure 2.34: Instruction Fetch Implicit memory_address Wrapping.. 34
Figure 2.35: AddressTranslation implicit memory_address Wrapping.. 34
Figure 2.36: SignalException Pseudocode Function .. 34
Figure 2.37: SignalDebugBreakpointException Pseudocode Function .. 35
Figure 2.38: SignalDebugModeBreakpointException Pseudocode Function.. 35
Figure 2.39: NullifyCurrentInstruction PseudoCode Function... 35
Figure 2.40: PolyMult Pseudocode Function .. 35
Figure 6.1: MVPControl Register Format .. 66
Figure 6.2: MVPConf0 Register Format .. 68
Figure 6.3: MVPConf1 Register Format .. 69
Figure 6.4: VPEControl Register Format .. 70
Figure 6.5: VPEConf0 Register Format ... 71
Figure 6.6: VPEConf1 Register Format ... 73
Figure 6.7: YQMask Register Format .. 74
Figure 6.8: VPESchedule Register Format ... 75
Figure 6.9: VPEScheFBack Register Format ... 76
Figure 6.10: VPEOpt Register Format ... 77

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

7

Figure 6.11: TCStatus Register Format ... 79
Figure 6.12: TCBind Register Format .. 81
Figure 6.13: TCRestart Register Format .. 82
Figure 6.14: TCHalt Register Format ... 83
Figure 6.15: TCContext Register Format .. 84
Figure 6.16: TCSchedule Register Format ... 85
Figure 6.17: TCScheFBack Register Format .. 86
Figure 6.18: TCOpt Register Format ... 87
Figure 6.19: SRSConf0 Register Format ... 89
Figure 6.20: SRSConf1 Register Format ... 91
Figure 6.21: SRSConf2 Register Format ... 92
Figure 6.22: SRSConf3 Register Format ... 93
Figure 6.23: SRSConf4 Register Format ... 94

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

8

List of Tables

Table 1.1: Symbols Used in Instruction Operation Statements... 11
Table 1.2: Read/Write Register Field Notation ... 14
Table 2.1: AccessLength Specifications for Loads/Stores.. 27
Table 4.1: Priority of Exceptions in MIPS® MT... 40
Table 5.1: MFTR Source Decode ... 54
Table 5.2: MTTR Destination Decode... 58
Table 6.1: MIPS® MT PRA ... 64
Table 6.2: MVPControl Register Field Descriptions.. 66
Table 6.3: MVPConf0 Register Field Descriptions.. 68
Table 6.4: MVPConf1 Register Field Descriptions.. 69
Table 6.5: VPEControl Register Field Descriptions .. 70
Table 6.6: VPEConf0 Register Field Descriptions .. 71
Table 6.7: VPEConf1 Register Field Descriptions .. 73
Table 6.8: YQMask Register Field Descriptions ... 74
Table 6.9: VPEOpt Register Field Descriptions .. 77
Table 6.10: TCStatus Register Field Descriptions .. 79
Table 6.11: TCBind Register Field Descriptions ... 81
Table 6.12: TCRestart Register Field Descriptions... 82
Table 6.13: TCHalt Register Field Descriptions.. 83
Table 6.14: TCOpt Register Field Descriptions... 87
Table 6.15: SRSConf0 Register Field Descriptions .. 89
Table 6.16: SRSConf1 Register Field Descriptions .. 91
Table 6.17: SRSConf2 Register Field Descriptions .. 92
Table 6.18: SRSConf3 Register Field Descriptions .. 93
Table 6.19: SRSConf4 Register Field Descriptions .. 94
Table 6.20: MIPS® MT Thread Exception .. 95
Table 6.21: New Config3 Fields for MIPS® MT .. 96
Table 6.22: TC State as Function of MIPS® MT PRA State... 96
Table 8.1: Dynamic Virtual Processor Configuration Options... 100
Table A.1: ITC Reference Cell Views ... 105

Chapter 1

9

About This Book

This chapter describes the terminology and conventions for describing features of the MIPS® Architecture such as
instructions and control and status registers.

1.1 Typographical Conventions

This section describes the use of italic, bold and courier fonts in this book.

1.1.1 Italic Text

• is used for emphasis

• is used for bits, fields, and registers that are important from a software perspective (for instance, address bits
used by software, and programmable fields and registers), and various floating point instruction formats, such as
S and D

• is used for the memory access types, such as cached and uncached

1.1.2 Bold Text

• represents a term that is being defined

• is used for bits and fields that are important from a hardware perspective (for instance, register bits, which are
not programmable but accessible only to hardware)

• is used for ranges of numbers; the range is indicated by an ellipsis. For instance, 5..1 indicates numbers
5 through 1

• is used to emphasize UNPREDICTABLE and UNDEFINED behavior, as defined below.

1.1.3 Courier Text

Courier fixed-width font is used for text that is displayed on the screen, and for examples of code and instruction
pseudocode.

1.2 UNPREDICTABLE and UNDEFINED

The terms UNPREDICTABLE and UNDEFINED are used throughout this book to describe the behavior of the pro-
cessor in certain cases. UNDEFINED behavior or operations can occur only as the result of executing instructions in

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

10

a privileged mode (i.e., in Kernel Mode or Debug Mode, or with the CP0 usable bit set in the Status register). Unpriv-
ileged software can never cause UNDEFINED behavior or operations. Conversely, both privileged and unprivileged
software can cause UNPREDICTABLE results or operations.

1.2.1 UNPREDICTABLE

UNPREDICTABLE results may vary from processor implementation to implementation, instruction to instruction,
or as a function of time on the same implementation or instruction. Software can never depend on results that are
UNPREDICTABLE. UNPREDICTABLE operations may cause a result to be generated or not. If a result is gener-
ated, it is UNPREDICTABLE. UNPREDICTABLE operations may cause arbitrary exceptions.

UNPREDICTABLE results or operations have several implementation restrictions:

• Implementations of operations generating UNPREDICTABLE results must not depend on any data source
(memory or internal state) which is inaccessible in the current processor mode

• UNPREDICTABLE operations must not read, write, or modify the contents of memory or internal state which
is inaccessible in the current processor mode. For example, UNPREDICTABLE operations executed in user
mode must not access memory or internal state that is only accessible in Kernel Mode or Debug Mode or in
another process

• UNPREDICTABLE operations must not halt or hang the processor

1.2.2 UNDEFINED

UNDEFINED operations or behavior may vary from processor implementation to implementation, instruction to
instruction, or as a function of time on the same implementation or instruction. UNDEFINED operations or behavior
may vary from nothing to creating an environment in which execution can no longer continue. UNDEFINED opera-
tions or behavior may cause data loss.

UNDEFINED operations or behavior has one implementation restriction:

• UNDEFINED operations or behavior must not cause the processor to hang (that is, enter a state from which
there is no exit other than powering down the processor). The assertion of any of the reset signals must restore
the processor to an operational state

1.2.3 UNSTABLE

UNSTABLE results or values may vary as a function of time on the same implementation or instruction. Unlike
UNPREDICTABLE values, software may depend on the fact that a sampling of an UNSTABLE value results in a
legal transient value that was correct at some point in time prior to the sampling.

UNSTABLE values have one implementation restriction:

• Implementations of operations generating UNSTABLE results must not depend on any data source (memory or
internal state) which is inaccessible in the current processor mode

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

11

1.3 Special Symbols in Pseudocode Notation

In this book, algorithmic descriptions of an operation are described using a high-level language pseudocode resem-
bling Pascal. Special symbols used in the pseudocode notation are listed in Table 1.1.

Table 1.1 Symbols Used in Instruction Operation Statements

Symbol Meaning

 Assignment

, ≠ Tests for equality and inequality

 Bit string concatenation

xy A y-bit string formed by y copies of the single-bit value x

b#n A constant value n in base b. For instance 10#100 represents the decimal value 100, 2#100 represents the
binary value 100 (decimal 4), and 16#100 represents the hexadecimal value 100 (decimal 256). If the "b#"
prefix is omitted, the default base is 10.

0bn A constant value n in base 2. For instance 0b100 represents the binary value 100 (decimal 4).

0xn A constant value n in base 16. For instance 0x100 represents the hexadecimal value 100 (decimal 256).

xy z Selection of bits y through z of bit string x. Little-endian bit notation (rightmost bit is 0) is used. If y is less
than z, this expression is an empty (zero length) bit string.

x.bit[y] Bit y of bitstring x. Alternative to the traditional MIPS notation xy.

x.bits[y..z] Selection of bits y through z of bit string x. Alternative to the traditional MIPS notation xy z.

x.byte[y] Byte y of bitstring x. Equivalent to the traditional MIPS notation x8*y+7 8*y.

x.bytes[y..z] Selection of bytes y through z of bit string x. Alternative to the traditional MIPS notation x8*y+7 8*z

x halfword[y]
x.word[i]

x.doubleword[i]

Similar extraction of particular bitfields (used in e.g., MSA packed SIMD vectors).

x.bit31, x.byte0, etc. Examples of abbreviated form of x.bit[y], etc. notation, when y is a constant.

x fieldy Selection of a named subfield of bitstring x, typically a register or instruction encoding.
More formally described as “Field y of register x”.
For example, FIR.D = “the D bit of the Coprocessor 1 Floating-point Implementation Register (FIR)”.

,  2’s complement or floating point arithmetic: addition, subtraction

*,  2’s complement or floating point multiplication (both used for either)

div 2’s complement integer division

mod 2’s complement modulo

 Floating point division

 2’s complement less-than comparison

 2’s complement greater-than comparison

 2’s complement less-than or equal comparison

≥ 2’s complement greater-than or equal comparison

nor Bitwise logical NOR

xor Bitwise logical XOR

and Bitwise logical AND

or Bitwise logical OR

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

12

not Bitwise inversion

&& Logical (non-Bitwise) AND

<< Logical Shift left (shift in zeros at right-hand-side)

>> Logical Shift right (shift in zeros at left-hand-side)

GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers

GPR[x] CPU general-purpose register x. The content of GPR[0] is always zero. In Release 2 of the Architecture,
GPR[x] is a short-hand notation for SGPR[SRSCtlCSS, x].

SGPR[s,x] In Release 2 of the Architecture and subsequent releases, multiple copies of the CPU general-purpose regis-
ters may be implemented. SGPR[s,x] refers to GPR set s, register x.

FPR[x] Floating Point operand register x

FCC[CC] Floating Point condition code CC. FCC[0] has the same value as COC[1].
Release 6 removes the floating point condition codes.

FPR[x] Floating Point (Coprocessor unit 1), general register x

CPR[z,x,s] Coprocessor unit z, general register x, select s

CP2CPR[x] Coprocessor unit 2, general register x

CCR[z,x] Coprocessor unit z, control register x

CP2CCR[x] Coprocessor unit 2, control register x

COC[z] Coprocessor unit z condition signal

Xlat[x] Translation of the MIPS16e GPR number x into the corresponding 32-bit GPR number

BigEndianMem Endian mode as configured at chip reset (0  Little-Endian, 1  Big-Endian). Specifies the endianness of
the memory interface (see LoadMemory and StoreMemory pseudocode function descriptions) and the endi-
anness of Kernel and Supervisor mode execution.

BigEndianCPU The endianness for load and store instructions (0  Little-Endian, 1  Big-Endian). In User mode, this
endianness may be switched by setting the RE bit in the Status register. Thus, BigEndianCPU may be com-
puted as (BigEndianMem XOR ReverseEndian).

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is available in User mode only,
and is implemented by setting the RE bit of the Status register. Thus, ReverseEndian may be computed as
(SRRE and User mode).

LLbit Bit of virtual state used to specify operation for instructions that provide atomic read-modify-write. LLbit is
set when a linked load occurs and is tested by the conditional store. It is cleared, during other CPU operation,
when a store to the location would no longer be atomic. In particular, it is cleared by exception return instruc-
tions.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

13

I:,
I+n:,
I-n:

This occurs as a prefix to Operation description lines and functions as a label. It indicates the instruction
time during which the pseudocode appears to “execute.” Unless otherwise indicated, all effects of the current
instruction appear to occur during the instruction time of the current instruction. No label is equivalent to a
time label of I. Sometimes effects of an instruction appear to occur either earlier or later — that is, during the
instruction time of another instruction. When this happens, the instruction operation is written in sections
labeled with the instruction time, relative to the current instruction I, in which the effect of that pseudocode
appears to occur. For example, an instruction may have a result that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation description that writes the result
register in a section labeled I+1.
The effect of pseudocode statements for the current instruction labeled I+1 appears to occur “at the same
time” as the effect of pseudocode statements labeled I for the following instruction. Within one pseudocode
sequence, the effects of the statements take place in order. However, between sequences of statements for
different instructions that occur “at the same time,” there is no defined order. Programs must not depend on a
particular order of evaluation between such sections.

PC The Program Counter value. During the instruction time of an instruction, this is the address of the instruc-
tion word. The address of the instruction that occurs during the next instruction time is determined by assign-
ing a value to PC during an instruction time. If no value is assigned to PC during an instruction time by any
pseudocode statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16e instruc-
tion) or 4 before the next instruction time. A taken branch assigns the target address to the PC during the
instruction time of the instruction in the branch delay slot.
In the MIPS Architecture, the PC value is only visible indirectly, such as when the processor stores the restart
address into a GPR on a jump-and-link or branch-and-link instruction, or into a Coprocessor 0 register on an
exception. Release 6 adds PC-relative address computation and load instructions. The PC value contains a
full 32-bit address, all of which are significant during a memory reference.

ISA Mode In processors that implement the MIPS16e Application Specific Extension or the microMIPS base architec-
tures, the ISA Mode is a single-bit register that determines in which mode the processor is executing, as fol-
lows:

In the MIPS Architecture, the ISA Mode value is only visible indirectly, such as when the processor stores a
combined value of the upper bits of PC and the ISA Mode into a GPR on a jump-and-link or branch-and-link
instruction, or into a Coprocessor 0 register on an exception.

PABITS The number of physical address bits implemented is represented by the symbol PABITS. As such, if 36 phys-

ical address bits were implemented, the size of the physical address space would be 2PABITS = 236 bytes.

FP32RegistersMode Indicates whether the FPU has 32-bit or 64-bit floating point registers (FPRs). It is optional if the FPU has
32 64-bit FPRs in which 64-bit data types are stored in any FPR.

microMIPS64 implementations have a compatibility mode in which the processor references the FPRs as if it
were a microMIPS32 implementation. In such a case FP32RegisterMode is computed from the FR bit in the
Status register. If this bit is a 0, the processor operates as if it had 32, 32-bit FPRs. If this bit is a 1, the proces-
sor operates with 32 64-bit FPRs.

The value of FP32RegistersMode is computed from the FR bit in the Status register.

InstructionInBranchDe-
laySlot

Indicates whether the instruction at the Program Counter address was executed in the delay slot of a branch
or jump. This condition reflects the dynamic state of the instruction, not the static state. That is, the value is
false if a branch or jump occurs to an instruction whose PC immediately follows a branch or jump, but which
is not executed in the delay slot of a branch or jump.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

Encoding Meaning

0 The processor is executing 32-bit MIPS instructions

1 The processor is executing MIIPS16e or microMIPS
instructions

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

14

1.4 Notation for Register Field Accessibility

In this document, the read/write properties of register fields use the notations shown in Table 1.1.

SignalException(excep-
tion, argument)

Causes an exception to be signaled, using the exception parameter as the type of exception and the argument
parameter as an exception-specific argument). Control does not return from this pseudocode function—the
exception is signaled at the point of the call.

Table 1.2 Read/Write Register Field Notation

Read/Write
Notation Hardware Interpretation Software Interpretation

R/W A field in which all bits are readable and writable by software and, potentially, by hardware.
Hardware updates of this field are visible by software read. Software updates of this field are visible by
hardware read.
If the Reset State of this field is ‘‘Undefined’’, either software or hardware must initialize the value before
the first read will return a predictable value. This should not be confused with the formal definition of
UNDEFINED behavior.

R A field which is either static or is updated only by
hardware.
If the Reset State of this field is either ‘‘0’’, ‘‘Pre-
set’’, or ‘‘Externally Set’’, hardware initializes this
field to zero or to the appropriate state, respectively,
on powerup. The term ‘‘Preset’’ is used to suggest
that the processor establishes the appropriate state,
whereas the term ‘‘Externally Set’’ is used to sug-
gest that the state is established via an external
source (e.g., personality pins or initialization bit
stream). These terms are suggestions only, and are
not intended to act as a requirement on the imple-
mentation.
If the Reset State of this field is ‘‘Undefined’’, hard-
ware updates this field only under those conditions
specified in the description of the field.

A field to which the value written by software is
ignored by hardware. Software may write any value
to this field without affecting hardware behavior.
Software reads of this field return the last value
updated by hardware.
If the Reset State of this field is ‘‘Undefined’’, soft-
ware reads of this field result in an UNPREDICT-
ABLE value except after a hardware update done
under the conditions specified in the description of
the field.

Table 1.1 Symbols Used in Instruction Operation Statements (Continued)

Symbol Meaning

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

15

R0 R0 = reserved, read as zero, ignore writes by soft-
ware.

Hardware ignores software writes to an R0 field.
Neither the occurrence of such writes, nor the val-
ues written, affects hardware behavior.

Hardware always returns 0 to software reads of R0
fields.

The Reset State of an R0 field must always be 0.

If software performs an mtc0 instruction which
writes a non-zero value to an R0 field, the write to
the R0 field will be ignored, but permitted writes to
other fields in the register will not be affected.

Architectural Compatibility: R0 fields are reserved,
and may be used for not-yet-defined purposes in
future revisions of the architecture.

When writing an R0 field, current software should
only write either all 0s, or, preferably, write back the
same value that was read from the field.

Current software should not assume that the value
read from R0 fields is zero, because this may not be
true on future hardware.

Future revisions of the architecture may redefine an
R0 field, but must do so in such a way that software
which is unaware of the new definition and either
writes zeros or writes back the value it has read from
the field will continue to work correctly.

Writing back the same value that was read is guaran-
teed to have no unexpected effects on current or
future hardware behavior. (Except for non-atomicity
of such read-writes.)

Writing zeros to an R0 field may not be preferred
because in the future this may interfere with the oper-
ation of other software which has been updated for
the new field definition.

0 Release 6
Release 6 legacy “0” behaves like R0 - read as zero, nonzero writes ignored.

Legacy “0” should not be defined for any new control register fields; R0 should be used instead.

HW returns 0 when read.
HW ignores writes.

Only zero should be written, or, value read from reg-
ister.

pre-Release 6
pre-Release 6 legacy “0” - read as zero, nonzero writes UNDEFINED

A field which hardware does not update, and for
which hardware can assume a zero value.

A field to which the value written by software must
be zero. Software writes of non-zero values to this
field may result in UNDEFINED behavior of the
hardware. Software reads of this field return zero as
long as all previous software writes are zero.
If the Reset State of this field is ‘‘Undefined’’, soft-
ware must write this field with zero before it is guar-
anteed to read as zero.

Table 1.2 Read/Write Register Field Notation (Continued)

Read/Write
Notation Hardware Interpretation Software Interpretation

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

16

1.5 For More Information

MIPS processor manuals and additional information about MIPS products can be found at http://www.mips.com.

.

.

R/W0 Like R/W, except that writes of non-zero to a R/W0 field are ignored.
E.g. Status.NMI

Hardware may set or clear an R/W0 bit.

Hardware ignores software writes of nonzero to an
R/W0 field. Neither the occurrence of such writes,
nor the values written, affects hardware behavior.

Software writes of 0 to an R/W0 field may have an
effect.

Hardware may return 0 or nonzero to software
reads of an R/W0 bit.

If software performs an mtc0 instruction which
writes a non-zero value to an R/W0 field, the write
to the R/W0 field will be ignored, but permitted
writes to other fields in the register will not be
affected.

Software can only clear an R/W0 bit.

Software writes 0 to an R/W0 field to clear the field.

Software writes nonzero to an R/W0 bit in order to
guarantee that the bit is not affected by the write.

Table 1.2 Read/Write Register Field Notation (Continued)

Read/Write
Notation Hardware Interpretation Software Interpretation

Chapter 2

17

Guide to the Instruction Set

This chapter provides a detailed guide to understanding the instruction descriptions, which are listed in alphabetical
order in the tables at the beginning of the next chapter.

2.1 Understanding the Instruction Fields

Figure 2.1 shows an example instruction. Following the figure are descriptions of the fields listed below:

• “Instruction Fields” on page 19

• “Instruction Descriptive Name and Mnemonic” on page 19

• “Format Field” on page 19

• “Purpose Field” on page 20

• “Description Field” on page 20

• “Restrictions Field” on page 20

• “Operation Field” on page 21

• “Exceptions Field” on page 22

• “Programming Notes and Implementation Notes Fields” on page 22

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

19

2.1.1 Instruction Fields

Fields encoding the instruction word are shown in register form at the top of the instruction description. The follow-
ing rules are followed:

• The values of constant fields and the opcode names are listed in uppercase (SPECIAL and ADD in Figure 2.2).
Constant values in a field are shown in binary below the symbolic or hexadecimal value.

• All variable fields are listed with the lowercase names used in the instruction description (rs, rt, and rd in Figure
2.2).

• Fields that contain zeros but are not named are unused fields that are required to be zero (bits 10:6 in Figure 2.2).
If such fields are set to non-zero values, the operation of the processor is UNPREDICTABLE.

Figure 2.2 Example of Instruction Fields

2.1.2 Instruction Descriptive Name and Mnemonic

The instruction descriptive name and mnemonic are printed as page headings for each instruction, as shown in Figure
2.3.

Figure 2.3 Example of Instruction Descriptive Name and Mnemonic

2.1.3 Format Field

The assembler formats for the instruction and the architecture level at which the instruction was originally defined are
given in the Format field. If the instruction definition was later extended, the architecture levels at which it was
extended and the assembler formats for the extended definition are shown in their order of extension (for an example,
see C.cond fmt). The MIPS architecture levels are inclusive; higher architecture levels include all instructions in pre-
vious levels. Extensions to instructions are backwards compatible. The original assembler formats are valid for the
extended architecture.

Figure 2.4 Example of Instruction Format

The assembler format is shown with literal parts of the assembler instruction printed in uppercase characters. The
variable parts, the operands, are shown as the lowercase names of the appropriate fields.

The architectural level at which the instruction was first defined, for example “MIPS32” is shown at the right side of
the page. Instructions introduced at different times by different ISA family members, are indicated by markings such
as “MIPS64, MIPS32 Release 2”. Instructions removed by particular architecture release are indicated in the Avail-
ability section.

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0
00000

ADD
100000

6 5 5 5 5 6

rs rt rd

Add Word ADD

Format: ADD fd,rs,rt MIPS32

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

20

There can be more than one assembler format for each architecture level. Floating point operations on formatted data
show an assembly format with the actual assembler mnemonic for each valid value of the fmt field. For example, the
ADD fmt instruction lists both ADD.S and ADD.D.

The assembler format lines sometimes include parenthetical comments to help explain variations in the formats (once
again, see C.cond.fmt). These comments are not a part of the assembler format.

The term decoded_immediate is used if the immediate field is encoded within the binary format but the assembler for-
mat uses the decoded value. The term left_shifted_offset is used if the offset field is encoded within the binary format
but the assembler format uses value after the appropriate amount of left shifting.

2.1.4 Purpose Field

The Purpose field gives a short description of the use of the instruction.

Figure 2.5 Example of Instruction Purpose

2.1.5 Description Field

If a one-line symbolic description of the instruction is feasible, it appears immediately to the right of the Description
heading. The main purpose is to show how fields in the instruction are used in the arithmetic or logical operation.

Figure 2.6 Example of Instruction Description

The body of the section is a description of the operation of the instruction in text, tables, and figures. This description
complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU general-purpose register specified by the
instruction field rt. “FPR fs” is the floating point operand register specified by the instruction field fs. “CP1 register
fd” is the coprocessor 1 general register specified by the instruction field fd. “FCSR” is the floating point Control /
Status register.

2.1.6 Restrictions Field

The Restrictions field documents any possible restrictions that may affect the instruction. Most restrictions fall into
one of the following six categories:

• Valid values for instruction fields (for example, see floating point ADD.fmt)

• ALIGNMENT requirements for memory addresses (for example, see LW)

Purpose: Add Word

To add 32-bit integers. If an overflow occurs, then trap.

Description: GPR[rd]  GPR[rs] + GPR[rt]

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit
result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination
register is not modified and an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is placed into GPR rd.

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

21

• Valid values of operands (for example, see ALNV.PS)

• Valid operand formats (for example, see floating point ADD.fmt)

• Order of instructions necessary to guarantee correct execution. These ordering constraints avoid pipeline hazards
for which some processors do not have hardware interlocks (for example, see MUL).

• Valid memory access types (for example, see LL/SC)

Figure 2.7 Example of Instruction Restrictions

2.1.7 Availability and Compatibility Fields

The Availability and Compatibility sections are not provided for all instructions. These sections list considerations
relevant to whether and how an implementation may implement some instructions, when software may use such
instructions, and how software can determine if an instruction or feature is present. Such considerations include:

• Some instructions are not present on all architecture releases. Sometimes the implementation is required to
signal a Reserved Instruction exception, but sometimes executing such an instruction encoding is architec-
turally defined to give UNPREDICTABLE results.

• Some instructions are available for implementations of a particular architecture release, but may be provided
only if an optional feature is implemented. Control register bits typically allow software to determine if the
feature is present.

• Some instructions may not behave the same way on all implementations. Typically this involves behavior
that was UNPREDICTABLE in some implementations, but which is made architectural and guaranteed con-
sistent so that software can rely on it in subsequent architecture releases.

• Some instructions are prohibited for certain architecture releases and/or optional feature combinations.

• Some instructions may be removed for certain architecture releases. Implementations may then be required
to signal a Reserved Instruction exception for the removed instruction encoding; but sometimes the instruc-
tion encoding is reused for other instructions.

All of these considerations may apply to the same instruction. If such considerations applicable to an instruction are
simple, the architecture level in which an instruction was defined or redefined in the Format field, and/or the Restric-
tions section, may be sufficient; but if the set of such considerations applicable to an instruction is complicated, the
Availability and Compatibility sections may be provided.

2.1.8 Operation Field

The Operation field describes the operation of the instruction as pseudocode in a high-level language notation resem-
bling Pascal. This formal description complements the Description section; it is not complete in itself because many
of the restrictions are either difficult to include in the pseudocode or are omitted for legibility.

Restrictions:

None

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

22

Figure 2.8 Example of Instruction Operation

See 2.2 “Operation Section Notation and Functions” on page 22 for more information on the formal notation used
here.

2.1.9 Exceptions Field

The Exceptions field lists the exceptions that can be caused by Operation of the instruction. It omits exceptions that
can be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions that can be caused by asyn-
chronous external events such as an Interrupt. Although a Bus Error exception may be caused by the operation of a
load or store instruction, this section does not list Bus Error for load and store instructions because the relationship
between load and store instructions and external error indications, like Bus Error, are dependent upon the implemen-
tation.

Figure 2.9 Example of Instruction Exception

An instruction may cause implementation-dependent exceptions that are not present in the Exceptions section.

2.1.10 Programming Notes and Implementation Notes Fields

The Notes sections contain material that is useful for programmers and implementors, respectively, but that is not
necessary to describe the instruction and does not belong in the description sections.

Figure 2.10 Example of Instruction Programming Notes

2.2 Operation Section Notation and Functions

In an instruction description, the Operation section uses a high-level language notation to describe the operation per-
formed by each instruction. Special symbols used in the pseudocode are described in the previous chapter. Specific
pseudocode functions are described below.

This section presents information about the following topics:

• “Instruction Execution Ordering” on page 23

• “Pseudocode Functions” on page 23

Operation:
temp  (GPR[rs]31||GPR[rs]31..0) + (GPR[rt]31||GPR[rt]31..0)
if temp32  temp31 then

SignalException(IntegerOverflow)
else

GPR[rd]  temp
endif

Exceptions:

Integer Overflow

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

23

2.2.1 Instruction Execution Ordering

Each of the high-level language statements in the Operations section are executed sequentially (except as constrained
by conditional and loop constructs).

2.2.2 Pseudocode Functions

There are several functions used in the pseudocode descriptions. These are used either to make the pseudocode more
readable, to abstract implementation-specific behavior, or both.

These functions are defined in this section, and include the following:

• “Coprocessor General Register Access Functions” on page 23

• “Memory Operation Functions” on page 24

• “Floating Point Functions” on page 27

• “Instruction Mode Checking Functions” on page 30

• “Miscellaneous Functions” on page 34

2.2.2.1 Coprocessor General Register Access Functions

Defined coprocessors, except for CP0, have instructions to exchange words and doublewords between coprocessor
general registers and the rest of the system. What a coprocessor does with a word or doubleword supplied to it and
how a coprocessor supplies a word or doubleword is defined by the coprocessor itself. This behavior is abstracted
into the functions described in this section.

2.2.2.1.1 COP_LW

The COP_LW function defines the action taken by coprocessor z when supplied with a word from memory during a
load word operation. The action is coprocessor-specific. The typical action would be to store the contents of mem-
word in coprocessor general register rt.

Figure 2.11 COP_LW Pseudocode Function

COP_LW (z, rt, memword)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memword: A 32-bit word value supplied to the coprocessor

/* Coprocessor-dependent action */

endfunction COP_LW

2.2.2.1.2 COP_LD

The COP_LD function defines the action taken by coprocessor z when supplied with a doubleword from memory
during a load doubleword operation. The action is coprocessor-specific. The typical action would be to store the con-
tents of memdouble in coprocessor general register rt.

Figure 2.12 COP_LD Pseudocode Function

COP_LD (z, rt, memdouble)
z: The coprocessor unit number
rt: Coprocessor general register specifier
memdouble: 64-bit doubleword value supplied to the coprocessor.

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

24

/* Coprocessor-dependent action */

endfunction COP_LD

2.2.2.1.3 COP_SW

The COP_SW function defines the action taken by coprocessor z to supply a word of data during a store word opera-
tion. The action is coprocessor-specific. The typical action would be to supply the contents of the low-order word in
coprocessor general register rt.

Figure 2.13 COP_SW Pseudocode Function

dataword  COP_SW (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
dataword: 32-bit word value

/* Coprocessor-dependent action */

endfunction COP_SW

2.2.2.1.4 COP_SD

The COP_SD function defines the action taken by coprocessor z to supply a doubleword of data during a store dou-
bleword operation. The action is coprocessor-specific. The typical action would be to supply the contents of the low-
order doubleword in coprocessor general register rt.

Figure 2.14 COP_SD Pseudocode Function

datadouble  COP_SD (z, rt)
z: The coprocessor unit number
rt: Coprocessor general register specifier
datadouble: 64-bit doubleword value

/* Coprocessor-dependent action */

endfunction COP_SD

2.2.2.1.5 CoprocessorOperation

The CoprocessorOperation function performs the specified Coprocessor operation.

Figure 2.15 CoprocessorOperation Pseudocode Function

CoprocessorOperation (z, cop_fun)

/* z: Coprocessor unit number */
/* cop_fun: Coprocessor function from function field of instruction */

/* Transmit the cop_fun value to coprocessor z */

endfunction CoprocessorOperation

2.2.2.2 Memory Operation Functions

Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the smallest byte
address of the bytes that form the object. For big-endian ordering this is the most-significant byte; for a little-endian
ordering this is the least-significant byte.

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

25

In the Operation pseudocode for load and store operations, the following functions summarize the handling of virtual
addresses and the access of physical memory. The size of the data item to be loaded or stored is passed in the Access-
Length field. The valid constant names and values are shown in Table 2.1. The bytes within the addressed unit of
memory (word for 32-bit processors or doubleword for 64-bit processors) that are used can be determined directly
from the AccessLength and the two or three low-order bits of the address.

2.2.2.2.1 Misaligned Support

MIPS processors originally required all memory accesses to be naturally aligned. MSA (the MIPS SIMD Architec-
ture) supported misaligned memory accesses for its 128 bit packed SIMD vector loads and stores, from its introduc-
tion in MIPS Release 5. Release 6 requires systems to provide support for misaligned memory accesses for all
ordinary memory reference instructions: the system must provide a mechanism to complete a misaligned memory ref-
erence for this instruction, ranging from full execution in hardware to trap-and-emulate.

The pseudocode function MisalignedSupport encapsulates the version number check to determine if misalignment is
supported for an ordinary memory access.

Figure 2.16 MisalignedSupport Pseudocode Function

predicate  MisalignedSupport ()
return Config.AR ≥ 2 // Architecture Revision 2 corresponds to MIPS Release 6.

end function

See Appendix B, “Misaligned Memory Accesses” on page 511 for a more detailed discussion of misalignment,
including pseudocode functions for the actual misaligned memory access.

2.2.2.2.2 AddressTranslation

The AddressTranslation function translates a virtual address to a physical address and its cacheability and coherency
attribute, describing the mechanism used to resolve the memory reference.

Given the virtual address vAddr, and whether the reference is to Instructions or Data (IorD), find the corresponding
physical address (pAddr) and the cacheability and coherency attribute (CCA) used to resolve the reference. If the vir-
tual address is in one of the unmapped address spaces, the physical address and CCA are determined directly by the
virtual address. If the virtual address is in one of the mapped address spaces then the TLB or fixed mapping MMU
determines the physical address and access type; if the required translation is not present in the TLB or the desired
access is not permitted, the function fails and an exception is taken.

Figure 2.17 AddressTranslation Pseudocode Function

(pAddr, CCA)  AddressTranslation (vAddr, IorD, LorS)

/* pAddr: physical address */
/* CCA: Cacheability&Coherency Attribute,the method used to access caches*/
/* and memory and resolve the reference */

/* vAddr: virtual address */
/* IorD: Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

2.2.2.2.3 LoadMemory

The LoadMemory function loads a value from memory.

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

26

This action uses cache and main memory as specified in both the Cacheability and Coherency Attribute (CCA) and
the access (IorD) to find the contents of AccessLength memory bytes, starting at physical location pAddr. The data is
returned in a fixed-width naturally aligned memory element (MemElem). The low-order 2 (or 3) bits of the address
and the AccessLength indicate which of the bytes within MemElem need to be passed to the processor. If the memory
access type of the reference is uncached, only the referenced bytes are read from memory and marked as valid within
the memory element. If the access type is cached but the data is not present in cache, an implementation-specific size
and alignment block of memory is read and loaded into the cache to satisfy a load reference. At a minimum, this
block is the entire memory element.

Figure 2.18 LoadMemory Pseudocode Function

MemElem  LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a natural alignment. The */
/* width is the same size as the CPU general-purpose register, */
/* 32 or 64 bits, aligned on a 32- or 64-bit boundary, */
/* respectively. */
/* CCA: Cacheability&CoherencyAttribute=method used to access caches */
/* and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */
/* pAddr: physical address */
/* vAddr: virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadMemory

2.2.2.2.4 StoreMemory

The StoreMemory function stores a value to memory.

The specified data is stored into the physical location pAddr using the memory hierarchy (data caches and main mem-
ory) as specified by the Cacheability and Coherency Attribute (CCA). The MemElem contains the data for an aligned,
fixed-width memory element (a word for 32-bit processors, a doubleword for 64-bit processors), though only the
bytes that are actually stored to memory need be valid. The low-order two (or three) bits of pAddr and the AccessLen-
gth field indicate which of the bytes within the MemElem data should be stored; only these bytes in memory will
actually be changed.

Figure 2.19 StoreMemory Pseudocode Function

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* AccessLength: Length, in bytes, of access */
/* MemElem: Data in the width and alignment of a memory element. */
/* The width is the same size as the CPU general */
/* purpose register, either 4 or 8 bytes, */
/* aligned on a 4- or 8-byte boundary. For a */
/* partial-memory-element store, only the bytes that will be*/
/* stored must be valid.*/
/* pAddr: physical address */
/* vAddr: virtual address */

endfunction StoreMemory

2.2.2.2.5 Prefetch

The Prefetch function prefetches data from memory.

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

27

Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken may
increase performance but must not change the meaning of the program or alter architecturally visible state.

Figure 2.20 Prefetch Pseudocode Function

Prefetch (CCA, pAddr, vAddr, DATA, hint)

/* CCA: Cacheability&Coherency Attribute, the method used to access */
/* caches and memory and resolve the reference. */
/* pAddr: physical address */
/* vAddr: virtual address */
/* DATA: Indicates that access is for DATA */
/* hint: hint that indicates the possible use of the data */

endfunction Prefetch

Table 2.1 lists the data access lengths and their labels for loads and stores.

2.2.2.2.6 SyncOperation

The SyncOperation function orders loads and stores to synchronize shared memory.

This action makes the effects of the synchronizable loads and stores indicated by stype occur in the same order for all
processors.

Figure 2.21 SyncOperation Pseudocode Function

SyncOperation(stype)

/* stype: Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

2.2.2.3 Floating Point Functions

The pseudocode shown in below specifies how the unformatted contents loaded or moved to CP1 registers are inter-
preted to form a formatted value. If an FPR contains a value in some format, rather than unformatted contents from a
load (uninterpreted), it is valid to interpret the value in that format (but not to interpret it in a different format).

Table 2.1 AccessLength Specifications for Loads/Stores

AccessLength Name Value Meaning

DOUBLEWORD 7 8 bytes (64 bits)

SEPTIBYTE 6 7 bytes (56 bits)

SEXTIBYTE 5 6 bytes (48 bits)

QUINTIBYTE 4 5 bytes (40 bits)

WORD 3 4 bytes (32 bits)

TRIPLEBYTE 2 3 bytes (24 bits)

HALFWORD 1 2 bytes (16 bits)

BYTE 0 1 byte (8 bits)

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

28

2.2.2.3.1 ValueFPR

The ValueFPR function returns a formatted value from the floating point registers.

Figure 2.22 ValueFPR Pseudocode Function

value  ValueFPR(fpr, fmt)

/* value: The formattted value from the FPR */

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */
/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in SWC1 and SDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

valueFPR  FPR[fpr]

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode  0)

if (fpr0  0) then
valueFPR  UNPREDICTABLE

else
valueFPR  FPR[fpr1]31..0  FPR[fpr]31..0

endif
else

valueFPR  FPR[fpr]
endif

L:
if (FP32RegistersMode  0) then

valueFPR  UNPREDICTABLE
else

valueFPR  FPR[fpr]
endif

DEFAULT:
valueFPR  UNPREDICTABLE

endcase
endfunction ValueFPR

The pseudocode shown below specifies the way a binary encoding representing a formatted value is stored into CP1
registers by a computational or move operation. This binary representation is visible to store or move-from instruc-
tions. Once an FPR receives a value from the StoreFPR(), it is not valid to interpret the value with ValueFPR() in a
different format.

2.2.2.3.2 StoreFPR

Figure 2.23 StoreFPR Pseudocode Function

StoreFPR (fpr, fmt, value)

/* fpr: The FPR number */
/* fmt: The format of the data, one of: */
/* S, D, W, L, PS, */

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

29

/* OB, QH, */
/* UNINTERPRETED_WORD, */
/* UNINTERPRETED_DOUBLEWORD */
/* value: The formattted value to be stored into the FPR */

/* The UNINTERPRETED values are used to indicate that the datatype */
/* is not known as, for example, in LWC1 and LDC1 */

case fmt of
S, W, UNINTERPRETED_WORD:

FPR[fpr]  value

D, UNINTERPRETED_DOUBLEWORD:
if (FP32RegistersMode  0)

if (fpr0  0) then
UNPREDICTABLE

else
FPR[fpr]  UNPREDICTABLE32  value31..0
FPR[fpr1]  UNPREDICTABLE32  value63..32

endif
else

FPR[fpr]  value
endif

L:
if (FP32RegistersMode  0) then

UNPREDICTABLE
else

FPR[fpr]  value
endif

endcase

endfunction StoreFPR

2.2.2.3.3 CheckFPException

The pseudocode shown below checks for an enabled floating point exception and conditionally signals the exception.

Figure 2.24 CheckFPException Pseudocode Function

CheckFPException()

/* A floating point exception is signaled if the E bit of the Cause field is a 1 */
/* (Unimplemented Operations have no enable) or if any bit in the Cause field */
/* and the corresponding bit in the Enable field are both 1 */

if ((FCSR17  1) or
((FCSR16..12 and FCSR11..7)  0))) then

SignalException(FloatingPointException)
endif

endfunction CheckFPException

2.2.2.3.4 FPConditionCode

The FPConditionCode function returns the value of a specific floating point condition code.

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

30

Figure 2.25 FPConditionCode Pseudocode Function

tf FPConditionCode(cc)

/* tf: The value of the specified condition code */

/* cc: The Condition code number in the range 0..7 */

if cc = 0 then
FPConditionCode  FCSR23

else
FPConditionCode  FCSR24+cc

endif

endfunction FPConditionCode

2.2.2.3.5 SetFPConditionCode

The SetFPConditionCode function writes a new value to a specific floating point condition code.

Figure 2.26 SetFPConditionCode Pseudocode Function

SetFPConditionCode(cc, tf)
if cc = 0 then

FCSR  FCSR31..24 || tf || FCSR22..0
else

FCSR  FCSR31..25+cc || tf || FCSR23+cc..0
endif

endfunction SetFPConditionCode

2.2.2.4 Instruction Mode Checking Functions

2.2.2.4.1 Are64BitFPOperationsEnabled

The Are64BitFPOperationsEnabled function is used to determine if a 64-bit floating point instruction may be exe-
cuted (and conversely, whether a Reserved Instruction exception should be signaled). On a Release 1 processor, such
operations are never enabled and this function returns 0. On a Release 2 processor, which supports a 64-bit FPU on a
32-bit processors (and therefore, on a 64-bit processor running with 64-bit operations disabled), the function simply
checks the F64 bit in the FIR register.

Figure 2.27 Are64BitFPOperationsEnabled Pseudocode Function

enabled  Are64BitFPOperationsEnabled()

/* enabled: true if 64-bit floating point operations are enabled; */
/* false if they are not */

if (ArchitectureRevision()  2) then
Are64BitFPOperationsEnabled  FIRF64

else
Are64BitFPOperationsEnabled  0

endif

endfunction Are64FPBitOperationsEnabled

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

31

2.2.2.4.2 IsCoprocessorEnabled

The IsCoprocessorEnabled function is used to determine if access is available to one of the four coprocessors. This is
primarily done by looking at the value of the appropriate CU bit in the Status register, but complicated by the fact
that access to coprocessor 0 is also enabled if the processor is running in Kernel Mode or Debug Mode.

Figure 2.28 IsCoprocessorEnabled PseudocodeFunction

enabled  IsCoprocessorEnabled(z)

/* enabled: true if the coprocessor is enabled; false if it is not */

/* z: The coprocessor unit number in the range 0..3 */

case z of
0:

IsCoprocessorEnabled 
(StatusKSU  0b00) or (DebugDM  1) or
(StatusEXL  1) or (StatusERL  1)

1:
IsCoprocessorEnabled  (StatusCU1  1)

2:
IsCoprocessorEnabled  (StatusCU2  1)

3:
IsCoprocessorEnabled  (StatusCU3  1)

endcase

endfunction IsCoprocessorEnabled

2.2.2.4.3 IsCoprocessor2Implemented

The IsCoprocessor2Implemented function is used to determine if coprocessor 2 is implemented. This is determined
by the state of the C2 bit in the Config1 register.

Figure 2.29 IsCoprocessor2 Pseudocode Function

impl  IsCoprocessor2Implemented()

/* impl: true if coprocessor 2 is implemented; false if it is not */

IsCoprocessor2Implemented  Config1C2

endfunction IsCoprocessor2Implemented

2.2.2.4.4 IsEJTAGImplemented

The IsEJTAGImplemented function is used to determine if EJTAG is implemented by the processor. This is deter-
mined by the state of the EP bit in the Config1 register.

Figure 2.30 IsEJTAGImplemented Pseudocode Function

impl  IsEJTAGImplemented()

/* impl: true if EJTAG is implemented; false if it is not */

IsEJTAGImplemented  Config1EP

endfunction IsEJTAGImplemented

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

32

2.2.2.4.5 IsFloatingPointImplemented

The IsFloatingPointImplemented function is used to determine if floating point is implemented by the processor and,
additionally, whether a particular floating point datatype is implemented. Whether floating point is implemented at all
is determined by the state of the FP bit in the Config1 register. The determination of whether a particular datatype is
implemented is done by looking at the architecture of the chip (MIPS32 or MIPS64, as determined by the AT field in
the Config register), and the state of the S, D, and PS bits in the FIR coprocessor 1 register.

Figure 2.31 IsFloatingPointImplemented Pseudocode Function

impl  IsFloatingPointImplemented(fmt)

/* impl: true if floating point is implemented; false if it is not */

/* fmt: The floating point datatype to be checked:/
/* 0: Determine if any floating point datatype is implemented */
/* S, D, W, L, PS: Determine if a specific datatype is */
/* implemented

if Config1FP = 0 then
IsFloatingPointImplemented  0

else
case fmt of

0:
IsFloatingPointImplemented  

S:
IsFloatingPointImplemented  FIRS

W:
IsFloatingPointImplemented 

(((ArchitectureRevision() = 1) and FIRS)
or

((ArchitectureRevision()  2) and FIRW))

D:
IsFloatingPointImplemented  FIRD

L: /* L datatype is valid on a MIPS64 Release 1 implementation */
/* or on a Release 2 implementation with the L bit set in FIR */
IsFloatingPointImplemented 

(((ArchitectureRevision() = 1) and
((ConfigAT = 1) or (Config1AT = 2)))

or
((ArchitectureRevision()  2) and FIRL))

PS:
IsFloatingPointImplemented  FIRPS and

(((ArchitectureRevision() = 1) and
((ConfigAT = 1) or (Config1AT = 2)))

or
(ArchitectureRevision()  2))

endcase
endif

endfunction IsFloatingPointImplemented

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

33

2.2.2.5 Pseudocode Functions Related to Sign and Zero Extension

2.2.2.5.1 Sign extension and zero extension in pseudocode

Much pseudocode uses a generic function sign_extend without specifying from what bit position the extension is
done, when the intention is obvious. E.g. sign_extend(immediate16) or sign_extend(disp9).

However, sometimes it is necessary to specify the bit position. For example, sign_extend(temp31..0) or the

more complicated (offset15)
GPRLEN-(16+2) || offset || 02.

The explicit notation sign_extend.nbits(val) or sign_extend(val,nbits) is suggested as a simpli-
fication. They say to sign extend as if an nbits-sized signed integer. The width to be sign extended to is usually appar-
ent by context, and is usually GPRLEN, 32 or 64 bits. The previous examples then become.

sign_extend(temp31..0)
= sign_extend.32(temp)

and
(offset15)

GPRLEN-(16+2) || offset || 02

= sign_extend.16(offset)<<2

Note that sign_extend.N(value) extends from bit position N-1, if the bits are numbered 0..N-1 as is typical.

The explicit notations sign_extend.nbits(val) or sign_extend(val,nbits) is used as a simplifica-
tion. These notations say to sign extend as if an nbits-sized signed integer. The width to be sign extended to is usually
apparent by context, and is usually GPRLEN, 32 or 64 bits.

Figure 2.32 sign_extend Pseudocode Functions
sign_extend.nbits(val) = sign_extend(val,nbits) /* syntactic equivalents */

function sign_extend(val,nbits)
return (valnbits-1)

GPRLEN-nbits || valnbits-1..0
end function

The earlier examples can be expressed as
(offset15)

GPRLEN-(16+2) || offset || 02

= sign_extend.16(offset) << 2)

and
sign_extend(temp31..0)
= sign_extend.32(temp)

Similarly for zero_extension, although zero extension is less common than sign extension in the MIPS ISA.

Floating point may use notations such as zero_extend.fmt corresponding to the format of the FPU instruction.
E.g. zero_extend.S and zero_extend.D are equivalent to zero_extend.32 and zero_extend.64.

Existing pseudocode may use any of these, or other, notations.

2.2.2.5.2 memory_address

The pseudocode function memory_address performs mode-dependent address space wrapping for compatibility
between MIPS32 and MIPS64. It is applied to all memory references. It may be specified explicitly in some places,
particularly for new memory reference instructions, but it is also declared to apply implicitly to all memory refer-
ences as defined below. In addition, certain instructions that are used to calculate effective memory addresses but
which are not themselves memory accesses specify memory_address explicitly in their pseudocode.

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

34

Figure 2.33 memory_address Pseudocode Function
function memory_address(ea)

return ea
end function

On a 32-bit CPU, memory_address returns its 32-bit effective address argument unaffected.

In addition to the use of memory_address for all memory references (including load and store instructions, LL/
SC), Release 6 extends this behavior to control transfers (branch and call instructions), and to the PC-relative address
calculation instructions (ADDIUPC, AUIPC, ALUIPC). In newer instructions the function is explicit in the pseudo-
code.

Implicit address space wrapping for all instruction fetches is described by the following pseudocode fragment which
should be considered part of instruction fetch:

Figure 2.34 Instruction Fetch Implicit memory_address Wrapping
PC  memory_address(PC)
(instruction_data, length)  instruction_fetch(PC)
/* decode and execute instruction */

Implicit address space wrapping for all data memory accesses is described by the following pseudocode, which is
inserted at the top of the AddressTranslation pseudocode function:

Figure 2.35 AddressTranslation implicit memory_address Wrapping
(pAddr, CCA)  AddressTranslation (vAddr, IorD, LorS)

vAddr  memory_address(vAddr)

In addition to its use in instruction pseudocode,

2.2.2.6 Miscellaneous Functions

This section lists miscellaneous functions not covered in previous sections.

2.2.2.6.1 SignalException

The SignalException function signals an exception condition.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.36 SignalException Pseudocode Function

SignalException(Exception, argument)

/* Exception: The exception condition that exists. */
/* argument: A exception-dependent argument, if any */

endfunction SignalException

2.2.2.6.2 SignalDebugBreakpointException

The SignalDebugBreakpointException function signals a condition that causes entry into Debug Mode from non-
Debug Mode.

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

35

Figure 2.37 SignalDebugBreakpointException Pseudocode Function

SignalDebugBreakpointException()

endfunction SignalDebugBreakpointException

2.2.2.6.3 SignalDebugModeBreakpointException

The SignalDebugModeBreakpointException function signals a condition that causes entry into Debug Mode from
Debug Mode (i.e., an exception generated while already running in Debug Mode).

This action results in an exception that aborts the instruction. The instruction operation pseudocode never sees a
return from this function call.

Figure 2.38 SignalDebugModeBreakpointException Pseudocode Function

SignalDebugModeBreakpointException()

endfunction SignalDebugModeBreakpointException

2.2.2.6.4 NullifyCurrentInstruction

The NullifyCurrentInstruction function nullifies the current instruction.

The instruction is aborted, inhibiting not only the functional effect of the instruction, but also inhibiting all exceptions
detected during fetch, decode, or execution of the instruction in question. For branch-likely instructions, nullification
kills the instruction in the delay slot of the branch likely instruction.

Figure 2.39 NullifyCurrentInstruction PseudoCode Function

NullifyCurrentInstruction()

endfunction NullifyCurrentInstruction

2.2.2.6.5 PolyMult

The PolyMult function multiplies two binary polynomial coefficients.

Figure 2.40 PolyMult Pseudocode Function

PolyMult(x, y)
temp  0
for i in 0 .. 31

if xi = 1 then
temp  temp xor (y(31-i)..0 || 0

i)
endif

endfor

PolyMult  temp

endfunction PolyMult

2.3 Op and Function Subfield Notation

In some instructions, the instruction subfields op and function can have constant 5- or 6-bit values. When reference is
made to these instructions, uppercase mnemonics are used. For instance, in the floating point ADD instruction,
op=COP1 and function=ADD. In other cases, a single field has both fixed and variable subfields, so the name con-
tains both upper- and lowercase characters.

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

36

2.4 FPU Instructions

In the detailed description of each FPU instruction, all variable subfields in an instruction format (such as fs, ft, imme-
diate, and so on) are shown in lowercase. The instruction name (such as ADD, SUB, and so on) is shown in upper-
case.

For the sake of clarity, an alias is sometimes used for a variable subfield in the formats of specific instructions. For
example, rs=base in the format for load and store instructions. Such an alias is always lowercase since it refers to a
variable subfield.

Bit encodings for mnemonics are given in Volume I, in the chapters describing the CPU, FPU, MDMX, and MIPS16e
instructions.

See “Op and Function Subfield Notation” on page 35 for a description of the op and function subfields.

Chapter 3

37

Introduction to the MIPS® MT Architecture Extension

3.5 Background

Multi-threading, or the concurrent presence of multiple active threads or contexts of execution on the same CPU, is an
increasingly widely-used technique for tolerating memory and execution latency and for getting higher utilization out
of processor functional units. The MIPS® Multi-threading (MT) Module is an extension to the nanoMIPS32TM Archi-
tecture which provides a framework for multi-threading the MIPS processor architecture.

3.6 Definitions and General Description

A thread context, for the purposes of this document, is a collection of processor state necessary to describe the state of
execution of an instruction stream in the nanoMIPS32 Instruction Set Architecture. It includes a set of general pur-
pose registers (GPRs), the MIPS Hi/Lo multiplier result registers, some internal representation of a program counter,
and some associated nanoMIPS32 privileged system coprocessor (CP0) state, specifically:

• The CU3..CU0, MX, and KSU fields of the CP0 Status register

• The ASID field of the CP0 EntryHi register.

• The SSt and OffLine fields of the EJTAG Debug register.

• The CP0 UserLocal register, if implemented.

A thread context also contains some new privileged resource state, to allow software to manage the new multi-thread-
ing capabilities. Thread Context will be abbreviated as TC, both in the interests of brevity, and to minimize the confu-
sion between a TC as state/storage and a thread of execution as a sequence of instructions.

A processor context is a larger collection of processor state, which includes at least one TC, but also the CP0 and sys-
tem state necessary to describe an instantiation of the full nanoMIPS32 Privileged Resource Architecture.

The MIPS MT Module allows two distinct, but not mutually-exclusive, multi-threading capabilities. A single MIPS
processor or core can contain some number of Virtual Processing Elements (VPEs), each of which supports at least
one thread context. To software, an N VPE processor looks like an N-way symmetric multiprocessor. All legacy
nanoMIPS32 read-write CP0 state must be implemented per-VPE. This allows existing SMP-capable operating sys-
tems to manage the set of VPEs, which transparently share the processor’s execution units and other resources. A pro-
cessor or core implementing multiple MIPS MT VPEs is referred to as a Virtual Multiprocessor, or VMP.

Each VPE can also contain some number of TCs beyond the single TC implicitly required by the base architecture.
Multi-threaded VPEs require explicit operating system support, but with such support they provide a lightweight,
fine-grained multi-threaded programming model wherein threads can be created and destroyed, without operating
system intervention in the typical cases, using new FORK and YIELD instructions, and where system service threads
can be scheduled in response to external events with zero interrupt latency.

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

38

A TC may be in one of two allocation states, free or activated. A free TC has no valid content and cannot be sched-
uled to issue instructions. An activated TC will be scheduled according to the implemented policies to fetch and
issue instructions from its program counter. Only activated TCs may be scheduled. Only free TCs may be allocated to
create new threads. Allocation and deallocation of TCs may be done explicitly by privileged software, or automati-
cally via FORK and YIELD instructions that can be executed in user mode. Only TCs which have been explicitly des-
ignated as Dynamically Allocatable (DA) may be allocated or deallocated by FORK and YIELD.

An activated TC may be running or blocked. A running TC will fetch and issue instructions according to the thread
scheduling policy in effect for the processor. Any or all running TCs may have instructions in the pipeline of a proces-
sor at a given point of time, but it is not knowable to software precisely which ones. A blocked TC is one which has
issued an instruction which performs an explicit synchronization that has not yet been satisfied. While a running, acti-
vated TC may be stalled momentarily due to functional unit delays, memory load dependencies, or scheduling rules,
its instruction stream will advance on its own within the limitations of the pipeline implementation. The instruction
stream of a blocked TC cannot advance without some change in system state being effected by another thread or by
external hardware, and as such it may remain blocked for an unbounded period of time.

Independently of whether it is free or activated, a TC may be halted. A halted TC is inhibited from being allocated by
a FORK instruction, even if free, and inhibited from fetching and issuing instructions, even if activated. Only a TC in
a halted state is guaranteed to be stable as seen by other TCs. Multi-threaded execution may be temporarily inhibited
on a VPE due to exceptions or explicit software interventions, but the activated threads that are inhibited in such cases
are considered to be suspended, rather than implicitly halted. A suspended thread is inhibited from any action which
might cause exceptions or otherwise change global VPE privileged resource state, but, unlike a halted thread, it may
still have instructions active in the pipeline, and its internal TC state, including GPR values, may still be unstable.

And independently of whether an activated TC is halted, it will not be scheduled to fetch or issue if it has been set
offline by code executing in EJTAG Debug mode, via the OffLine bit of the Debug register (see the EJTAG specifica-
tion).

If executing in a sufficiently privileged mode, one TC can access another TC’s register state, via new instructions to
move to/from the registers of a “target” TC.

To allow for fine-grain synchronization of cooperating threads, an inter-thread communication (ITC) memory space
can be created in virtual memory, with gating-storage semantics that allow threads to be blocked on loads or stores
until data has been produced or consumed by other threads. These gating storage semantics can also be applied to I/O
devices such as FIFOs to provide a data-driven execution model.

The thread creation/destruction and synchronization capabilities function without operating system intervention in
the general case, but the resources they manipulate are all virtualizable via an operating system. This allows the exe-
cution of multi-threaded programs with more “virtual” threads than there are TCs on a VPE, and for the migration of
threads to balance load in multiprocessor systems. At any particular point in its execution, a thread is bound to a par-
ticular TC on a particular VPE. The number of that TC provides a unique identifier at that point in time. But context
switching and migration can cause a single sequential thread of execution to have a series of different TCs, possibly
on a series of different VPEs.

Dynamic binding of TCs, TLB entries, and other resources to multiple VPEs on the same processor can be performed
in a special processor configuration state. By default, one VPE of each processor enters its reset vector as if it were a
standard nanoMIPS32 core.

Chapter 4

39

MIPS® MT Multi-Threaded Execution and Exception Model

4.1 Multi-Threaded Execution

The MIPS Multi-threading Module does not impose any particular implementation or scheduling model on the
execution of parallel threads and VPEs. Scheduling may be round-robin, time-sliced to an arbitrary granularity, or
simultaneous. An implementation must not, however, allow a thread which is blocked or suspended by an external or
software dependency to monopolize any shared processor resource which could produce a hardware deadlock.

4.2 MIPS® MT Exception Model

All multiple threads executing on a single VPE share the same system coprocessor, the same TLB, and the same vir-
tual address space. Each TC has an independent Kernel/Supervisor/User state and ASID for the purposes of instruc-
tion decode and memory access. When an exception of any kind is taken, all TCs of the affected VPE other than the
one taking the exception are stopped and suspended until the EXL and ERL bits of the Status word are cleared, or, in
the case of an EJTAG Debug exception, the Debug state is exited. Debug exceptions have the broader effect of sus-
pending the TCs of other VPEs of the processor as well. See Section 10.3 “Debug Exception Handling”. All sources
of additional synchronous exceptions must be quiesced before the exception handler begins execution. If simultane-
ous exception conditions occur across multiple threads, only a single exception, one with the highest relative priority,
will be dispatched to a handler. The others will be deferred until EXL/ERL or the Debug state are cleared, and the
associated instructions replayed.

Implementations which pre-fetch instructions for suspended TCs must not use the exception values of ERL, EXL, or
DM for instruction fetches for the suspended TCs. If fetching is to continue for the suspended threads, per-TC copies
of the pre-suspension state of these bits must be used.

Exception handlers for synchronous exceptions caused by the execution of an instruction stream, such as TLB miss
and floating-point exceptions, are executed using the GPRs of the TC associated with the instruction stream, unless
they are configured to be executed using a Shadow Register Set. When an unmasked asynchronous exception, such as
an interrupt, is raised to a VPE, it is implementation-dependent which eligible TC is used to execute the exception
handler, but TCs can be selectively exempted from use by asynchronous exception handlers.

Imprecise, synchronous exceptions are not permitted on a MIPS MT processor. All exceptions are either precise and
synchronous, or asynchronous.

Each exception is associated with an activated TC, even if shadow register sets are used to run the exception handler.
This associated TC is referenced whenever a SRSCtl PSS value of 0 is used by RDPGPR and WRPGPR instructions
executed by the exception handler.

4.3 New Exception Conditions

The Multi-threading Module introduces 6 new exception conditions.

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

40

• Thread Overflow condition, where a TC allocation request cannot be satisfied.

• Thread Underflow condition, where the termination and deallocation of a thread leaves no dynamically allocat-
able TCs activated on a VPE.

• Invalid Qualifier condition, where a YIELD instruction specifies an invalid condition for resuming execution.

• Gating Storage exception condition, where implementation-dependent logic associated with gating or
inter-thread communication (ITC) storage requires software intervention.

• YIELD Scheduler exception condition, where a valid YIELD instruction would have caused a rescheduling of a
TC, and the YIELD Intercept bit is set.

• GS Scheduler exception, where a Gating Storage load or store would have blocked and caused a rescheduling of
a TC, and the GS Intercept bit is set.

These exception conditions are mapped to a single new Thread exception. They can be distinguished based on the
CP0 VPEControl EXCPT field value when the exception is raised.

4.4 New Exception Priority

The Thread exception groups together a number of possible exception conditions which can be detected at different
stages of a processor pipeline. Thus, different Thread exception conditions may have different priorities relative to
other nanoMIPS32 exceptions. The following table describes where Thread exceptions fit in to the nanoMIPS32 pri-
ority scheme.

Table 4.1 Priority of Exceptions in MIPS® MT

Exception Description Type

Reset The Cold Reset signal was asserted to the processor Asynchronous
ResetSoft Reset The Reset signal was asserted to the processor

Debug Single Step An EJTAG Single Step occurred. Prioritized above other exceptions,
including asynchronous exceptions, so that one can single-step into
interrupt (or other asynchronous) handlers.

Synchronous
Debug

Debug Interrupt An EJTAG interrupt (EjtagBrk or DINT) was asserted. Asynchronous
DebugImprecise Debug Data Break An imprecise EJTAG data break condition was asserted.

Nonmaskable Interrupt (NMI) The NMI signal was asserted to the processor. Asynchronous

Machine Check An internal inconsistency was detected by the processor.

Interrupt An enabled interrupt occurred.

Deferred Watch A watch exception, deferred because EXL was one when the excep-
tion was detected, was asserted after EXL went to zero.

Debug Instruction Break An EJTAG instruction break condition was asserted. Prioritized
above instruction fetch exceptions to allow break on illegal instruc-
tion addresses.

Synchronous
Debug

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

41

4.5 Interrupts

In general, the binding of hardware interrupts to VPEs is implementation-dependent. Interrupt inputs to a processor
may be presented in common to all VPEs, leaving it up to software whether any or all VPEs enable and service a

Watch - Instruction fetch A watch address match was detected on an instruction fetch. Priori-
tized above instruction fetch exceptions to allow watch on illegal
instruction addresses.

Synchronous

Address Error - Instruction fetch A non-word-aligned address was loaded into PC.

TLB Refill - Instruction fetch A TLB miss occurred on an instruction fetch.

TLB Invalid - Instruction fetch The valid bit was zero in the TLB entry mapping the address refer-
enced by an instruction fetch.

Cache Error - Instruction fetch A cache error occurred on an instruction fetch.

Bus Error - Instruction fetch A bus error occurred on an instruction fetch.

SDBBP An EJTAG SDBBP instruction was executed. Synchronous
Debug

Instruction Validity Exceptions An instruction could not be completed because it was not allowed
access to the required resources, or was illegal: Coprocessor Unus-
able, Reserved Instruction. If both exceptions occur on the same
instruction, the Coprocessor Unusable Exception takes priority over
the Reserved Instruction Exception.

Synchronous

Execution Exception An instruction-based exception occurred: Integer overflow, trap, sys-
tem call, breakpoint, floating point, coprocessor 2 exception.
The Overflow, Underflow, Invalid Qualifier, and YIELD Sched-
uler cases of Thread Exceptions are all Execution Exceptions.

Precise Debug Data Break A precise EJTAG data break on load/store (address match only) or a
data break on store (address+data match) condition was asserted.
Prioritized above data fetch exceptions to allow break on illegal data
addresses.

Synchronous
Debug

Watch - Data access A watch address match was detected on the address referenced by a
load or store. Prioritized above data fetch exceptions to allow watch
on illegal data addresses.

Synchronous

Address error - Data access An unaligned address, or an address that was inaccessible in the cur-
rent processor mode was referenced, by a load or store instruction

TLB Refill - Data access A TLB miss occurred on a data access

TLB Invalid - Data access The valid bit was zero in the TLB entry mapping the address refer-
enced by a load or store instruction

TLB Modified - Data access The dirty bit was zero in the TLB entry mapping the address refer-
enced by a store instruction

Cache Error - Data access A cache error occurred on a load or store data reference Synchronous
or

Asynchronous
Bus Error - Data access A bus error occurred on a load or store data reference

Thread - GS Scheduler A blocking access to Gating Storage was detected with GS Sched-
uler Intercept enabled

Synchronous

Thread - Gating Storage Gating Storage has indicated an exception condition Synchronous

Precise Debug Data Break A precise EJTAG data break on load (address+data match only) con-
dition was asserted. Prioritized last because all aspects of the data
fetch must complete in order to do data match.

Synchronous
Debug

Table 4.1 Priority of Exceptions in MIPS® MT (Continued)

Exception Description Type

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

42

given interrupt. A processor may also provide distinct interrupt signals per supported VPE, and/or extend the External
Interrupt Controller (EIC) interface to express a VPE identifier in addition to the Exception Vector Offset and Shadow
Set Number.

The exception to the above is the hardware interrupt generated by the Count/Compare registers. This logic must be
replicated per-VPE, and interrupt events associated with the Count/Compare values of a specific VPE result in inter-
rupt requests only to that VPE.

Depending on the implementation, Performance Counter interrupts may be local to a VPE or “broadcast” to all VPEs
of a processor.

Software interrupts IP1 and IP0 must by default be local to a VPE.

4.6 Bus Error Exceptions

Bus error exceptions on instruction fetch (IBE) in a MIPS MT processor are synchronous and must be precise as per
Section 4.2 “MIPS® MT Exception Model”. Bus errors on load/store operations (DBE) are considered to be impre-
cise and are therefore non-maskable asynchronous exceptions delivered to the VPE where the operation was issued.
A DBE exception may thus be taken by a TC other than the one which issued the failing operation. A per-TC TBE bit
is defined to allow exception handlers to determine which TC(s) were associated with the failed bus transaction (see
Section 6.13 “TCBind Register (CP0 Register 2, Select 2)”).

If a DBE results from an operation that was combined across VPEs, a DBE exception must be delivered to all VPEs
affected. Where the origin of the failure cannot be determined, all VPEs in a processor must take a DBE exception.

Implementations may provide additional bus error diagnostic information in implementation-dependent CP0 register
fields. The DBE state, including the per-TC TBE state, should be analyzed in the context of this information.

4.7 Cache Error Exceptions

Cache memories may be shared between multiple VPEs on a virtual multiprocessor. In the event of a cache parity or
other data integrity error, all VPEs sharing the cache may be affected, and all must take a Cache Error exception. It is
the responsibility of software to coordinate any diagnostics or re-initialization of the shared cache, communicating by
means other than cached storage.

4.8 EJTAG Debug Exceptions

EJTAG Debug exceptions override MIPS MT scheduling and TC management. See Section 10.3 “Debug Exception
Handling”.

4.9 Shadow Register Sets

MIPS MT optionally allows TCs to be assigned for use as Shadow Register Set (SRS) storage. This is accomplished
by writing the TC number into a programmable field of one of the SRSConf registers (see Section 6.20 “SRSConf0
(CP0 Register 6, Select 1)”). A TC assigned for use as SRS storage must never be Activated, nor may it be pro-
grammed to be Dynamically Allocatable. Because SRS management and control is performed on a per-VPE basis,
with only a single SRSCtl register per VPE, multi-threading should never be explicitly re-enabled in an exception
handler which executes using an SRS.

Chapter 5

43

MIPS® MT Instructions

5.1 New Instructions

The MIPS MT Module contains 8 new instructions.

FORK and YIELD control thread allocation, deallocation, and scheduling, and are available in all execution modes
if implemented and enabled.

MFTR and MTTR are system coprocessor (Cop0) instructions available to privileged system software for managing
thread state.

EMT and DMT are privileged Cop0 instructions for enabling and disabling multi-threaded operation of a VPE.

EVPE and DVPE are privileged Cop0 instructions for enabling and disabling multi-VPE operation of a processor.

These instructions will cause a Reserved Instruction exception if executed by a processor not implementing the
MIPS MT Module.

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

44

DMT Disable Multi-Threaded Execution

Format: DMT MIPS MT
DMT rt

Purpose: Disable Multi-Threaded Execution

To return the previous value of the VPEControl register (see Section 6.5) and disable multi-threaded execution. If
DMT is specified without an argument, GPR r0 is implied, which discards the previous value of the VPEControl reg-
ister.

Description: GPR[rt]  VPEControl; VPEControlTE  0

The current value of the VPEControl register is loaded into general register rt. The Threads Enable (TE) bit in the
VPEControl register is then cleared, suspending concurrent execution of instruction streams other than that which
issues the DMT. This is independent of any per-TC halted state.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations that do not implement the MT Module, this instruction results in a Reserved Instruction Excep-
tion.

Operation:

This operation specification is for the general multi-threading enable/disable operation, with the sc (set/clear) field as
a variable. The individual instructions EMT and DMT have a specific value for the sc field.

if IsCoprocessorEnabled(0) then
if Config3MT then

data  VPEControl
GPR[rt]  data
VPEControlTE  sc

else
SignalException(ReservedInstruction)

endif
else

SignalException(CoprocessorUnusable, 0)
endif

Exceptions:

Coprocessor Unusable
Reserved Instruction (Implementations that do not include the MT Module)

Implementation Notes:

DMT accesses a COP0 register and assumes a hard-coded value of rd=1 and sel=1 for VPEControl.

The sc field indicates whether the operation is a bit clear or set, as follows:

The general description of the final operation provided by this operation (with Coprocessor Unusable and Reserved

31 26 25 21 20 16 15 14 13 11 10 9 3 2 0

001000 rt 00001 00 001
sc
0

1010110 000

6 5 5 2 3 1 7 3

sc Operation

0 Clear bit specified by the pos field

1 Set bit specified by the pos field

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

45

DMT Disable Multi-Threaded Execution

Instruction exception checks excluded for clarity) is:

data  CPR[0,rd, sel]
GPR[rt]  data
CPR[0, rd, sel]pos  sc

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading VPEControl into a GPR,
clearing the TE bit to create a temporary value in a second GPR, and writing that value back to VPEControl. Unlike
the multiple instruction sequence, however, the DMT instruction does not consume a temporary register, and cannot
be aborted by an interrupt or exception.

The effect of a DMT instruction may not be instantaneous. An instruction hazard barrier, e.g., JR.HB, is required to
guarantee that all other threads have been suspended. If a DMT instruction is followed in the same instruction stream
by an MFC0 or MFTR from the VPEControl register, a JALR.HB, JR.HB, EHB, or ERET instruction must be issued
between the DMT and the read of VPEControl to guarantee that the new state of TE will be accessed by the read.

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

46

DVPE Disable Virtual Processor Execution

Format: DVPE MIPS MT
DVPE rt

Purpose: Disable Virtual Processor Execution

To return the previous value of the MVPControl register (see Section 6.2) and disable multi-VPE execution. If DVPE
is specified without an argument, GPR r0 is implied, which discards the previous value of the MVPControl register.

Description: GPR[rt]  MVPControl; MVPControlEVP  0

The current value of the MVPControl register is loaded into general register rt. The Enable Virtual Processors (EVP)
bit in the MVPControl register is then cleared, suspending concurrent execution of instruction streams other than the
instruction stream that issues the DVPE.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

If the VPE executing the instruction is not a Master VPE, with the MVP bit of the VPEConf0 register set, the EVP bit
is unchanged by the instruction.

In implementations that do not implement the MT Module, this instruction results in a Reserved Instruction Excep-
tion.

Operation:

This operation specification is for the general VPE enable/disable operation, with the sc (set/clear) field as a variable.
The individual instructions EVPE and DVPE have a specific value for the sc field.

if IsCoprocessorEnabled(0) then
if Config3MT then

data  MVPControl
GPR[rt]  data
if(VPEConf0MVP = 1) then

MVPControlEVP  sc
endif

else
SignalException(ReservedInstruction)

endif
else

SignalException(CoprocessorUnusable, 0)
endif

Exceptions:

Coprocessor Unusable
Reserved Instruction (Implementations that do not include the MT Module)

31 26 25 21 20 16 15 14 13 11 10 9 3 2 0

001000 rt 00000 00 001
sc
0

1010110 000

6 5 5 2 3 1 7 3

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

47

DVPE Disable Virtual Processor Execution

Implementation Notes:

DVPE accesses a COP0 register and assumes a hard-coded value of rd=0 and sel=1 for MVPControl.

The sc field indicates whether the operation is a bit clear or set, as follows:

The general description of the final operation provided by this operation (with Coprocessor Unusable and Reserved
Instruction exception checks excluded for clarity) is:

data  CPR[0,rd, sel]
GPR[rt]  data
CPR[0, rd, sel]pos  sc

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading MVPControl into a GPR,
clearing the EVP bit to create a temporary value in a second GPR, and writing that value back to MVPControl. Unlike
the multiple instruction sequence, however, the DVPE instruction does not consume a temporary register, and cannot
be aborted by an interrupt or exception, nor by the scheduling of a different instruction stream.

The effect of a DVPE instruction may not be instantaneous. An instruction hazard barrier, e.g., JR.HB, is required to
guarantee that all other TCs have been suspended.

If a DVPE instruction is followed in the same instruction stream by an MFC0 or MFTR from the MVPControl register,
a JALR.HB, JR.HB, EHB, or ERET instruction must be issued between the DVPE and the read of MVPControl to
guarantee that the new state of EVP will be accessed by the read.

sc Operation

0 Clear bit specified by the pos field

1 Set bit specified by the pos field

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

48

EMT Enable Multi-Threaded Execution

Format: EMT MIPS MT
EMT rt

Purpose: Enable Multi-Threaded Execution

To return the previous value of the VPEControl register (see Section 6.5) and to enable multi-threaded execution. If
EMT is specified without an argument, GPR r0 is implied, which discards the previous value of the VPEControl reg-
ister.

Description: GPR[rt]  VPEControl; VPEControlTE  1

The current value of the VPEControl register is loaded into general register rt. The Threads Enable (TE) bit in the
VPEControl register is then set, allowing multiple instruction streams to execute concurrently.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In implementations that do not implement the MT Module, this instruction results in a Reserved Instruction Excep-
tion.

Operation:

This operation specification is for the general multi-threading enable/disable operation, with the sc (set/clear) field as
a variable. The individual instructions EMT and DMT have a specific value for the sc field.

if IsCoprocessorEnabled(0) then
if Config3MT then

data  VPEControl
GPR[rt]  data
VPEControlTE  sc

else
SignalException(ReservedInstruction)

endif
else

SignalException(CoprocessorUnusable, 0)
endif

Exceptions:

Coprocessor Unusable
Reserved Instruction (Implementations that do not include the MT Module)

Implementation Notes:

EMT accesses a COP0 register and assumes a hard-coded value of rd=1 and sel=1 for VPEControl.

The sc field indicates whether the operation is a bit clear or set, as follows:

The general description of the final operation provided by this operation (with Coprocessor Unusable and Reserved

31 26 25 21 20 16 15 14 13 11 10 9 3 2 0

001000 rt 00001 00 001
sc
1

1010110 000

6 5 5 2 3 1 7 3

sc Operation

0 Clear bit specified by the pos field

1 Set bit specified by the pos field

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

49

EMT Enable Multi-Threaded Execution

Instruction exception checks excluded for clarity) is:

data  CPR[0,rd, sel]
GPR[rt]  data
CPR[0, rd, sel]pos  sc

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading VPEControl into a GPR,
setting the TE bit to create a temporary value in a second GPR, and writing that value back to VPEControl. Unlike the
multiple instruction sequence, however, the EMT instruction does not consume a temporary register, and cannot be
aborted by an interrupt or exception.

If an EMT instruction is followed in the same instruction stream by an MFC0 or MFTR from the VPEControl register,
a JALR.HB, JR.HB, EHB, or ERET instruction must be issued between the EMT and the read of VPEControl to guar-
antee that the new state of TE will be accessed by the read.

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

50

EVPE Enable Virtual Processor Execution

Format: EVPE MIPS MT
EVPE rt

Purpose: Enable Virtual Processor Execution

To return the previous value of the MVPControl register (see Section 6.2) and enable multi-VPE execution. If EVPE is
specified without an argument, GPR r0 is implied, which discards the previous value of the MVPControl register.

Description: GPR[rt]  MVPControl; MVPControlEVP  1

The current value of the MVPControl register is loaded into general register rt. The Enable Virtual Processors (EVP)
bit in the MVPControl register is then set, enabling concurrent execution of instruction streams on all non-inhibited
Virtual Processing Elements (VPEs) on a processor.

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

If the VPE executing the instruction is not a Master VPE, with the MVP bit of the VPEConf0 register set, the EVP bit
is unchanged by the instruction.

In implementations that do not implement the MT Module, this instruction results in a Reserved Instruction Excep-
tion.

Operation:

This operation specification is for the general VPE enable/disable operation, with the sc (set/clear) field as a variable.
The individual instructions EVPE and DVPE have a specific value for the sc field.

if IsCoprocessorEnabled(0) then
if Config3MT then

data  MVPControl
GPR[rt]  data
if(VPEConf0MVP = 1) then

MVPControlEVP  sc
endif

else
SignalException(ReservedInstruction)

endif
else

SignalException(CoprocessorUnusable, 0)
endif

Exceptions:

Coprocessor Unusable
Reserved Instruction (Implementations that do not include the MT Module)

31 26 25 21 20 16 15 14 13 11 10 9 3 2 0

001000 rt 00000 00 001
sc
1

1010110 000

6 5 5 2 3 1 7 3

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

51

EVPE Enable Virtual Processor Execution

Implementation Notes:

EVPE accesses a COP0 register and assumes a hard-coded value of rd=0 and sel=1 for MVPControl.

The sc field indicates whether the operation is a bit clear or set, as follows:

The general description of the final operation provided by this operation (with Coprocessor Unusable and Reserved
Instruction exception checks excluded for clarity) is:

data  CPR[0,rd, sel]
GPR[rt]  data
CPR[0, rd, sel]pos  sc

Programming Notes:

The effects of this instruction are identical to those accomplished by the sequence of reading MVPControl into a GPR,
setting the EVP bit to create a temporary value in a second GPR, and writing that value back to MVPControl. Unlike
the multiple instruction sequence, however, the EVPE instruction does not consume a temporary register, and cannot
be aborted by an interrupt or exception, nor by the scheduling of a different instruction stream.

If an EVPE instruction is followed in the same instruction stream by an MFC0 or MFTR from the MVPControl regis-
ter, a JALR.HB, JR.HB, EHB, or ERET instruction must be issued between the EVPE and the read of MVPControl to
guarantee that the new state of EVP will be accessed by the read.

sc Operation

0 Clear bit specified by the pos field

1 Set bit specified by the pos field

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

52

FORK Allocate and Schedule a New Thread

Format: FORK rd, rs, rt MIPS MT

Purpose: Allocate and Schedule a New Thread

To cause a thread context to be allocated and associated with a new instruction stream.

Description: NewThread's GPR[rd]  GPR[rt], NewThread's TCRestart  GPR[rs]

The FORK instruction causes a free dynamically allocatable thread context (TC) to be allocated and activated on the
issuing VPE. It takes two operand values from GPRs. The rs value is used as the starting fetch address and execution
mode for the new thread. The rt value is copied into GPR rd of the new TC. The TCStatus register of the new TC is
set up as a function of the FORKing TC as described in Section 6.12. If the UserLocal register is implemented, the
UserLocal value of the FORKing TC is also copied to the new TC. The newly allocated TC will begin executing
instructions according to the implemented scheduling policy if and when multi-threaded execution is otherwise
enabled.

Restrictions:

If no free, non-halted, dynamically allocatable TC is available for the fork, a Thread Exception is raised for the FORK
instruction, with the VPEControl.EXCPT CP0 register field set to 1 to indicate the Thread Overflow case.

Processors which implement only a single TC per VPE may implement FORK by simply raising the Thread Excep-
tion and indicating the Overflow.

Any exceptions associated with the virtual address passed in rs will be taken by the new thread of execution.

Operation:

if Config3MT = 1 then
success  0
for t in 0...MVPConf0PTC

if TC[t].TCBindCurVPE = TCBindCurVPE then
if (TC[t].TCStatusDA = 1)

and (TC[t].TCHaltH = 0)
and (TC[t].TCStatusA = 0)
and (success = 0) then

TC[t].TCRestart  GPR[rs]
TC[t].GPR[rd]  GPR[rt]
if (Config3ULRI = 1) then

TC[t].UserLocal  UserLocal
endif
activated  1
priorcu  TC[t].TCStatusTCU3..TCU0
priormx  TC[t].TCStatusTMX
priorixmt  TC[t].TCStatusIXMT
TC[t].TCStatus = priorcu || priormx || StatusFR || 0

5 || 1 ||
ImpDep4

|| 1 || 0 || activated|| StatusKSU || priorixmt
|| 02 || TCStatusTASID

success  1
endif

endif
endfor
if success = 0

VPEControlEXCPT  1
SignalException(Thread)

31 26 25 21 20 16 15 11 10 9 3 2 0

001000 rt rs rd x 1000101 000

6 5 5 5 1 7 3

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

53

FORK Allocate and Schedule a New Thread

endif
else

SignalException(ReservedInstruction)
endif

Exceptions:

Reserved Instruction
Thread

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

54

MFTR Move from Thread Context

Format: MFTR rt, rs, u, sel, h MIPS MT

See also the Idiom(s) column of Table 5.1.

Purpose: Move from Thread Context

To move the contents of a register within a targeted thread context or VPE into a general register of the current thread.

Description: GPR[rt]  TC[VPEControlTargTC][u,rs,sel,h]

The contents of the register specified are loaded into general register rt. The target context to be read is determined by
the value of the TargTC field of the CP0 VPEControl register (see Section 6.5). The register to be read within the
selected context is determined by the value in the rs operand register, in conjunction with the u and sel bits of the
MFTR instruction, according to table Table 5.1. If the register to be read is instantiated per-processor or per-VPE,
rather than per-TC, the register selected is that of the processor within which the target TC is instantiated, or the VPE
to which the target TC is bound (see Section 6.13), respectively.

Coprocessor 1 and 2 registers and DSP accumulators referenced by the MFTR instruction are those bound to the tar-
get TC. The TCUx bits and TMX bit of the target TC’s TCStatus register are ignored.

If the selected register is not implemented on the processor, or otherwise not accessible to the TC that issued the
MFTR, as in the case of references to TCs and coprocessor resources bound to other VPEs when the VPE executing
the MFTR does not have MVP set in VPConfig0, the resulting rt value is -1.

Release 5 adds the instruction MFTHC0.

The Idiom(s) column in Table 5.1 specifies the assembler idiom that is used to express an access to the particular reg-
ister.

31 26 25 21 20 16 15 11 10 9 4 3 2 0

001000 rt rs sel u 100011 h 000

6 5 5 5 1 6 1 3

Table 5.1 MFTR Source Decode

u Value sel Value Register Selected Idiom(s)

0 n Coprocessor 0 Register number rs, sel = sel
h=0 signifies MFTC0, while h=1 signifies MFTHC0

MFTC0 rt, rs
MFTHC0 rt, rs (Release 5)

MFTC0 rt, rs, sel
MFTHC0 rt, rs, sel (Release 5)

1 0 GPR[rs] MFTGPR rt, rs

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

55

MFTR Move from Thread Context

The selected value is written into the target register rt. If the precision of the source register is less than the precision
of the target GPR, the value is sign-extended.

The h bit of the instruction word selects the high-order half of the source register in instances where the source is a
register of greater precision than the target GPR.

Restrictions:

An MFTR instruction where the target TC is not in a Halted state (i.e., TCHalt.H is not set), or where a TC other than
the one issuing the MFTR is active in the target VPE on a reference to a per-VPE CP0 register, may result in an
UNSTABLE value.

1 1 rs Value Selection

0 Lo Register / Lo component of DSP Accumulator 0 MFTLO rt

MFTLO rs, ac0

1 Hi Register / Hi component of DSP Accumulator 0 MFTHI rt

MFTHI rt, ac0

2 ACX Register / ACX component of Accumulator 0 MFTACX rt

MFTACX rt, ac0

4 Lo component of DSP Accumulator 1 MFTLO rt, ac1

5 Hi component of DSP Accumulator 1 MFTHI rt, ac1

6 Reserved for ACX of DSP Accumulator 1 MFTACX rt, ac1

8 Lo component of DSP Accumulator 2 MFTLO rt, ac2

9 Hi component of DSP Accumulator 2 MFTHI rt, ac2

10 Reserved for ACX of DSP Accumulator 2 MFTACX rt, ac2

12 Lo component of DSP Accumulator 3 MFTLO rt, ac3

13 Hi component of DSP Accumulator 3 MFTHI rt, ac3

14 Reserved for ACX of DSP Accumulator 3 MFTACX rt, ac3

16 DSPControl register MFTDSP rt

Other Values of rs, Reserved, Unpredictable

1 2 FPR[rs] MFTC1 rt, ft

MFTHC1 rt, ft

1 3 FPCR[rs] CFTC1 rt, ft

1 4 Cop2 Data[n], where n is composed by concatenating rx with rs,
with rx providing the most significant bits.

1 5 Cop2 Control[n], where n is composed by concatenating rx with
rs, with rx providing the most significant bits.

1 >5 Reserved, Unpredictable

Table 5.1 MFTR Source Decode (Continued)

u Value sel Value Register Selected Idiom(s)

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

56

MFTR Move from Thread Context

If the target TC is blocked but not halted, then the thread issuing the MFTR instruction may be blocked indefinitely.
This is due to the target TC waiting on an external event that may never happen. It is recommended that the
TCStatusRNST bit of the target TC be checked before issuing the MFTR instruction.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

In any implementation with Floating-Point-Unit, if TCStatusTFR is set so the effective FPR width matches the GPR
width, a MFTR instruction targetting one of the FPRs with h=1 will cause UNPREDICTABLE results.

Operation:

if IsCoprocessorEnabled(0) then
if VPEConf0MVP = 0 and (TC[VPEControlTargTC].TCBindCurVPE  TCBindCurVPE) then

data  -1
else if VPEControlTargTC > MVPConf0PTC then

data  -1
else if u = 0 then

data  TC[VPEControlTargTC].CPR[0,rs,sel]
else

if h = 1 then
topbit  63
bottombit  32

else
topbit  31
bottombit  0

endif
case sel

0: data  TC[VPEControlTargTC].GPR[rs]topbit..bottombit
1: case rs

0: data  TC[VPEControlTargTC].Lo
1: data  TC[VPEControlTargTC].Hi
2: data  TC[VPEControlTargTC].ACX
4: data  TC[VPEControlTargTC].DSPLo[1]
5: data  TC[VPEControlTargTC].DSPHi[1]
6: data  TC[VPEControlTargTC].DSPACX[1]
8: data  TC[VPEControlTargTC].DSPLo[2]
9: data  TC[VPEControlTargTC].DSPHI[2]
10:data  TC[VPEControlTargTC].DSPACX[2]
12 data  TC[VPEControlTargTC].DSPLo[3]
13:data  TC[VPEControlTargTC].DSPHi[3]
14:data  TC[VPEControlTargTC].DSPACX[3]
16:data  TC[VPEControlTargTC].DSPControl
otherwise: data  UNPREDICTABLE
2: if ((ConfigAT = 0 and StatusFR = 0) or

 (ConfigAT = 1 or ConfigAT = 2))
// GPR and FPR widths match
if (h = 0)

data  TC[VPEControlTargTC].FPR[rs]
else

UNPREDICTABLE
endif

elseif (ConfigAT = 0 and StatusFR = 1)
// 32-bit GPRs and 64-bit FPRs
data  TC[VPEControlTargTC].FPR[rs]topbit..bottombit

endif
3: data  TC[VPEControlTargTC].FPCR[rs]
4: data  TC[VPEControlTargTC].CP2CPR[rx||rs]topbit..bottombit
5: data  TC[VPEControlTargTC].CP2CCR[rx||rs]topbit..bottombit
otherwise: data  UNPREDICTABLE

endif

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

57

MFTR Move from Thread Context

if h = 1 then
data  data63..32

endif
GPR[rt]  data31..0

else
SignalException(CoprocessorUnusable, 0)

endif

Exceptions:

Coprocessor Unusable
Reserved Instruction

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

58

MTTR Move to Thread Context

Format: MTTR rt, rs, u, sel, h MIPS MT

See also Idiom(s) column of Table 5.2.

Purpose: Move to Thread Context

To move the contents of a general register of the current thread into a register within a targeted thread context.

Description: TC[VPEControlTargTC][u,rs,sel,h]  GPR[rt]

The contents of the rt register specified are written into a register of an arbitrary thread context (TC) or virtual proces-
sor (VPE).

The target context to be written is determined by the value of the TargTC field of the CP0 VPEControl register (see
Section 6.5). The register to be written within the selected context is determined by the value in the rs operand
register, in conjunction with the u and sel bits of the MTTR instruction, according to Table 5.2. If the register to be
written is instantiated per-processor or per-VPE, rather than per-TC, the register selected is that of the processor
within which the target TC is instantiated, or the VPE to which the target TC is bound (see “6.13 TCBind Register
(CP0 Register 2, Select 2)” on page 81), respectively.

Coprocessor 1 and 2 registers and DSP accumulators referenced by the MTTR instruction are those bound to the tar-
get TC. The TCUx bits and TMX bit of the target TC’s TCStatus register are ignored.

If the selected register is not implemented on the processor, or otherwise not accessible to the TC issuing the MTTR,
as in the case of references to TCs and coprocessor resources bound to other VPEs when the VPE executing the
MTTR does not have MVP set in VPConfig0, MTTR has no effect.

Release 5 adds the MTTHC0 instruction.

The Idiom(s) column in Table 5.2 specifies the assembler idiom that is used to express an access to the particular reg-
ister.

31 26 25 21 20 16 15 11 10 9 4 3 2 0

001000 rt rs sel u 100111 h 000

6 5 5 5 1 6 1 3

Table 5.2 MTTR Destination Decode

u Value sel Value Register Selected Idiom(s)

0 n Coprocessor 0 Register number rs, sel = sel
h=0 signifies MTTC0, while h=1 signifies MTTHC0

MTTC0 rt, rs
MTTHC0 rt, rs (Release 5)

MTTC0 rt, rs, sel
MTTHC0 rt, rs, sel (Release 5)

1 0 GPR[rt] MTTGPR rt, rs

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

59

MTTR Move to Thread Context

The h bit of the instruction word selects the high-order half of the target register in instances where the target is a reg-
ister of greater precision than the source GPR. The source value is not sign-extended on an MTTR operation.

Restrictions:

The effect on a TC that is not in a Halted state (i.e., TCHalt.H is 0) of an MTTR instruction targeting that TC may be
transient and unstable, but MTTRs setting a TCHalt H bit are always effective until overridden by another MTTR.

Processor state following an MTTR instruction modifying a per-VPE CP0 register is UNPREDICTABLE if a TC
other than the one issuing the MTTR is concurrently active on the targeted VPE.

If the target TC is blocked but not halted, then the thread issuing the MTTR instrution may be blocked indefinitely.

1 1 rs Value Selection

0 Lo Register / Lo component of DSP Accumulator 0 MTTLO rt

MTTLO rt, ac0

1 Hi Register / Hi component of DSP Accumulator 0 MTTHI rt

MTTHI rt, ac0

2 ACX Register / ACX component of Accumulator 0 MTTACX rt

MTTACX rt ac0

4 Lo component of DSP Accumulator 1 MTTLO rt, ac1

5 Hi component of DSP Accumulator 1 MTTHI rt, ac1

6 Reserved for ACX of DSP Accumulator 1 MTTACX rt, ac1

8 Lo component of DSP Accumulator 2 MTTLO rt, ac2

9 Hi component of DSP Accumulator 2 MTTHI rt, ac2

10 Reserved for ACX of DSP Accumulator 2 MTTACX rt, ac2

12 Lo component of DSP Accumulator 3 MTTLO rt, ac3

13 Hi component of DSP Accumulator 3 MTTHI rt, ac3

14 Reserved for ACX of DSP Accumulator 3 MTTACX rt, ac3

16 DSPControl register MTTDSP rt

Other Values of rs, Reserved

1 2 FPR[rs] MTTC1 rt, ft

MTTHC1 rt, ft

1 3 FPCR[rs] CTTC1 rt, ft

1 4 Cop2 Data[n], where n is composed by concatenating rx with rs,
with rx providing the most significant bits.

1 5 Cop2 Control[n], where n is composed by concatenating rx with
rs, with rx providing the most significant bits.

1 >5 Reserved

Table 5.2 MTTR Destination Decode (Continued)

u Value sel Value Register Selected Idiom(s)

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

60

MTTR Move to Thread Context

This is due to the target TC waiting on an external event that may never happen. It is recommended that the
TCStatusRNST bit of the target TC be checked before issuing the MTTR instruction.

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

If the target register is a Floating-Point Control register, hardware must not generate a Floating-Point Exception due
to any value written into Floating Point Exception Cause Field by the MTTR instruction.

In any implementation with Floating-Point-Unit, if TCStatusTFR is set so the effective FPR width matches the GPR
width, a MFTR instruction targeting one of the FPRs with h=1 will cause UNPREDICTABLE results.

Operation:

if IsCoprocessorEnabled(0) then
if VPEConf0MVP = 0 and (TC[VPEControlTargTC].TCBindCurVPE  TCBindCurVPE) then

NOOP
else if VPEControlTargTC > MVPConf0PTC then

NOOP
else

if h = 1 then
topbit  63
bottombit  32

else
topbit  31
bottombit  0

endif
if u = 0 then

TC[VPEControlTargTC].CPR[0,rs,sel]topbit..bottombit  GPR[rt]
else

case sel
0: TC[VPEControlTargTC].GPR[rs]  GPR[rt]topbit..bottombit
1: case rs

0: TC[VPEControlTargTC].Lo  GPR[rt]
1: TC[VPEControlTargTC].Hi  GPR[rt]
2: TC[VPEControlTargTC].ACX  GPR[rt]
4: TC[VPEControlTargTC].DSPLo[1]  GPR[rt]
5: TC[VPEControlTargTC].DSPHi[1]  GPR[rt]
6: TC[VPEControlTargTC].DSPACX[1]  GPR[rt]
8: TC[VPEControlTargTC].DSPLo[2]  GPR[rt]
9: TC[VPEControlTargTC].DSPHi[2]  GPR[rt]
10:TC[VPEControlTargTC].DSPACX[2]  GPR[rt]
12:TC[VPEControlTargTC].DSPLo[3]  GPR[rt]
13:TC[VPEControlTargTC].DSPHi[3]  GPR[rt]
14:TC[VPEControlTargTC].DSPACX[3]  GPR[rt]
16:TC[VPEControlTargTC].DSPControl  GPR[rt]
otherwise: UNPREDICTABLE

2: if ((ConfigAT = 0 and StatusFR = 0) or
 (ConfigAT = 1 or ConfigAT = 2))
// GPR and FPR widths match
if (h = 0)

TC[VPEControlTargTC].FPR[rs]  GPR[rt]
else

UNPREDICTABLE
endif

elseif (ConfigAT = 0 and StatusFR = 1)
// 32-bit GPRs and 64-bit FPRs
TC[VPEControlTargTC].FPR[rs]topbit..bottombit  GPR[rt]

endif
3: TC[VPEControlTargTC].FPCR[rs]  GPR[rt]
4: TC[VPEControlTargTC].CP2CPR[rx||rs]topbit..bottombit  GPR[rt]

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

61

MTTR Move to Thread Context

5: TC[VPEControlTargTC].CP2CCR[rx||rs]topbit..bottombit  GPR[rt]
otherwise: UNPREDICTABLE

endif
endif

else
SignalException(CoprocessorUnusable, 0)

endif

Exceptions:

Coprocessor Unusable
Reserved Instruction

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

62

YIELD Conditionally Deschedule or Deallocate the Current Thread

Format: YIELD rt, rs MIPS MT
yield rs

Purpose: Conditionally Deschedule or Deallocate the Current Thread

To suspend the current thread of execution, and conditionally deallocate the associated thread context.

Description:

The YIELD instruction takes a single input operand value from a GPR rs. This value is a descriptor of the circum-
stances under which the issuing thread should be rescheduled.

If GPR rs is zero, the thread is not to be rescheduled at all, and it is instead deallocated and its associated TC storage
freed for allocation by a subsequent FORK issued by some other thread.

If GPR rs is negative one (-1), the thread remains eligible for scheduling at the next opportunity, but invokes the pro-
cessor’s scheduling logic and relinquishes the CPU for any other threads which ought to execute first according to the
implemented scheduling policy.

If GPR rs is negative two (-2), the processor’s scheduling logic is not invoked, and the only effect of the instruction is
to retrieve the rt value (see below).

All other negative values of the rs register are reserved for future architectural definition by MIPS.

Positive values of rs are treated as a vector of YIELD qualifier (YQ) bits which describe an implementation-depen-
dent set of external or internal core signal conditions under which the YIELDing thread is to be rescheduled. Up to 31
bits of YIELD qualifier state may be supported by a processor, but implementations may provide fewer. To be usable,
a YIELD qualifier bit must be enabled in the YQMask register (see Section 6.8).

If no set bit of rs matches with a set, enabled YQ bit, the TC is blocked until one or more active bits of enabled YQ
input match corresponding rs bits. If and when one or more bits match, the TC resumes a running state, and may be
rescheduled for execution in accordance with the thread scheduling policy in effect.

The rt output operand specifies a GPR which is to receive a result value. This result contains the bit vector of YQ
inputs values enabled by the YQMask register at the time the YIELD completes. Thus, any YQ state that can be waited
upon by a YIELD with a positive rs value can also be polled via a YIELD with an rs value of -1 or -2. The value of
any rt bits that do not correspond to set bits in the YQMask register is implementation-dependent, typically 0. A zero
value of the rt operand field, selecting GPR 0, indicates that no result value is desired.

Implementation Notes:

The writeback of the destination register should be scheduled only when it is known that the YIELD is not blocked.
Accesses to the register via MTTR or MFTR targeting a TC blocked on a YIELD should not be blocked by a depen-
dency on the YIELD completion.

Restrictions:

Bits 15:10 must be set to 0 by software. Hardware must ignore these bits.

If a positive rs value includes a set bit that is not also set in the YQMask register, a Thread exception is raised for the
YIELD instruction, with the EXCPT field of the VPEControl register set to 2 to indicate the Invalid Qualifier case.

If no non-halted dynamically allocatable TC would be activated after a YIELD whose rs value is 0, a Thread excep-
tion is raised for the YIELD instruction, with the EXCPT field of the VPEControl register set to 0 to indicate the
Thread Underflow case.

If the processor’s scheduling logic would be invoked as a consequence of an otherwise unexceptional YIELD, one
whose rs value is 0 (excluding the Underflow case), -1, or positive (excluding the Invalid Qualifier case), and both the

31 26 25 21 20 16 15 10 9 3 2 0

001000 rt rs x 1001101 000

6 5 5 6 7 3

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

63

YIELD Conditionally Deschedule or Deallocate the Current Thread

YSI bit of VPEControl and the DT bit of TCStatus are set, a Thread exception is raised for the YIELD instruction, with
the VPEControl EXCPT field set to 4 to indicate the YIELD Scheduler case.

If multi-threaded operation is unsupported, a Reserved Instruction Exception is raised for the YIELD instruction.

Processor behavior is UNPREDICTABLE if a YIELD instruction is placed in a branch or jump delay slot.

Operation:

if Config3MT = 1 then
if GPR[rs] = 0 then

ok  0
for t in 0...MVPConf0PTC

if (TC[t].TCBindCurVPE = TCBindCurVPE)
 and (TC[t].TCBindCurTC  TCBindCurTC)
 and (TC[t].TCStatusDA = 1)
 and (TC[t].TCHaltH = 0)
 and (TC[t].TCStatusA = 1) then

ok  1
endif

endfor
if ((ok = 1) and not ((VPEControlYSI = 1) and (TCStatusDT = 1))) then

TCStatusA  0
else

VPEControlEXCPT  0
SignalException(Thread)

endif
else if GPR[rs] > 0 then

if (GPR[rs] and (not YQMask))  0 then
VPEControlEXCPT  2
SignalException(Thread)

else
SetThreadRescheduleCondition(GPR[rs] and YQMask)

endif
endif
if GPR[rs]  -2 then

if (VPEControlYSI = 1) and (TCStatusDT = 1) then
VPEControlEXCPT  4
SignalException(Thread)

else
ScheduleOtherThreads()

endif
endif
if rt  0 then

GPR[rt]  GetThreadRescheduleCondition()
endif

else
SignalException(ReservedInstruction)

endif

Exceptions:

Reserved Instruction
Thread

Chapter 6

64

MIPS® MT Privileged Resource Architecture

6.1 Privileged Resource Architecture for MIPS® MT

Table 6.1 summarizes the system coprocessor privileged resources associated with the MIPS MT Module.

Table 6.1 MIPS® MT PRA

Register Name
New or

Modified

CP0
Register
Number

Register
Select

Number Description

MVPControl New 0 1 Per-Processor register containing global MIPS MT con-
figuration data. See Section 6.2.

MVPConf0 New 0 2 Per-Processor multi-VPE dynamic configuration infor-
mation. See Section 6.3.

MVPConf1 New 0 3 Optional Per-Processor multi-VPE dynamic configura-
tion information. See Section 6.4

VPEControl New 1 1 Per-VPE register containing relatively volatile thread con-
figuration data. See Section 6.5.

VPEConf0 New 1 2 Per-VPE multi-thread configuration information. See Sec-
tion 6.6.

VPEConf1 New 1 3 Per-VPE multi-thread configuration information. See Sec-
tion 6.7.

YQMask New 1 4 Per-VPE register defining which YIELD qualifier bits
may be used without generating an exception. See Section
6.8

VPESchedule New 1 5 Optional Per-VPE register to manage scheduling of a
VPE within a processor. See Section 6.9.

VPEScheFBack New 1 6 Optional Per-VPE register to provide scheduling feedback
to software. See Section 6.10.

VPEOpt New 1 7 Optional Per-VPE register to provide control over
optional features, such as cache partitioning control. See
Section 6.11

TCStatus New 2 1 Per-TC status information, includes copies of thread-spe-
cific bits of Status and EntryHi registers. See Section 6.12

TCBind New 2 2 Per-TC information about TC ID and VPE binding. See
Section 6.13

TCRestart New 2 3 Per-TC value of restart instruction address for the associ-
ated thread of execution. See Section 6.14

TCHalt New 2 4 Per-TC register controlling Halt state of TC. See Section
6.15.

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

65

TCContext New 2 5 Per-TC Read/Write Storage for OS use. See Section 6.16.

TCSchedule New 2 6 Optional Per-TC register to manage scheduling of a TC.
See Section 6.17.

TCScheFBack New 2 7 Optional Per-TC register to provide scheduling feedback
to software. See Section 6.18.

TCOpt New 3 7 Optional Per-TC register to provide control over optional
features, such as cache partitioning control. See Section
6.19

SRSConf0 New 6 1 Per-VPE register indicating and optionally controlling
shadow register set configuration. See Section 6.20.

SRSConf1 New 6 2 Optional Per-VPE register indicating and optionally con-
trolling shadow register set configuration. See Section
6.21.

SRSConf2 New 6 3 Optional Per-VPE register indicating and optionally con-
trolling shadow register set configuration. See Section
6.22.

SRSConf3 New 6 4 Optional Per-VPE register indicating and optionally con-
trolling shadow register set configuration. See Section
6.23.

SRSConf4 New 6 5 Optional Per-VPE register indicating and optionally con-
trolling shadow register set configuration. See Section
6.24.

SRSCtl Modified 12 2 Previously hard-wired field now optionally “soft”, and a
function of the SRSConf registers. See Section 6.20.

Cause Modified 13 0 New Cause code. See Section 6.25.2.

EBase Modified 15 1 Distinct CPUNum value required per VPE. See Section
6.25.5.

Config3 Modified 16 3 Fields added to describe and control MT Module configu-
ration. See Section 6.25.7.

Debug Modified 23 0 Register accessed by MFTR/MTTR as being per-TC, with
distinct SSt and OffLine values. See Sections 6.25.4 and
10.2.

Table 6.1 MIPS® MT PRA (Continued)

Register Name
New or

Modified

CP0
Register
Number

Register
Select

Number Description

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

66

6.2 MVPControl Register (CP0 Register 0, Select 1)

Compliance Level: Required for MIPS MT.

The MVPControl register is instantiated per-processor, and provides an interface for global control and configuration
of a multi-VPE MIPS MT core.

Figure 6.1 shows the format of the MVPControl register; Table 6.2 describes the MVPControl register fields.

Figure 6.1 MVPControl Register Format
31 18 17 16 15 4 3 2 1 0

0 Impl 0 CPA STLB VPC EVP

Table 6.2 MVPControl Register Field Descriptions

Fields

Description

Read/Write
Reset
State ComplianceName Bits MVP=0 MVP=1

0 31:18 Must be written as zero; return zero on read. 0 0 Reserved

Impl 17:16 This field is reserved for implementations. Refer to the
processor specification for the format and definition of
this field.

Undefined Optional

0 15:4 Must be written as zero; return zero on read. 0 0 Reserved

CPA 3 Cache Partitioning Active. If set, the IWX and DWX fields
of the VPEOpt register and/or the IWX and DWX fields of
the TCOpt register control the allocation of cache lines as
described in Sections 6.11 amd 6.19. If clear, the IWX and
DWX fields of both registers are ignored.

R R/W 0 Optional

STLB 2 Share TLBs. Modifiable only if the VPC bit was set prior
to the write to the register of a new value. When set, the
full complement of TLBs of a processor is shared by all
VPEs on the processor having access to the TLB, regard-
less of the programming of the Config1 MMU_Size regis-
ter fields.
When STLB is set:
• The virtual address and ASID spaces are unified across

all VPEs sharing the TLB.
• The TLB logic must ensure that a TLBWR instruction

can never write to a TLB entry which corresponds to the
valid Index register value of any VPE sharing the TLB.

• TLBWRs may have UNPREDICTABLE results if
there are fewer total unwired TLB entries than there are
operational VPEs sharing the TLB.

• TLBWRs may have UNPREDICTABLE results if the
Wired register values are not identical across all VPEs
sharing the TLB.

• If Segmentation Control is used, all of the SegCtl regis-
ters to be programmed identically across the VPEs.

When not in use for TLB maintenance, software should
leave the Index register set to an invalid value, with the P
bit set, for all VPEs having TLB access.

R if VPC = 0,
R/W if VPC = 1

0 Optional

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

67

So long as the EVP bit is zero, no thread scheduling will be performed by the processor. On a processor reset, only the
reset thread, TC 0, will execute. If EVP is cleared by software, only the thread which issued the DVPE or MTC0
instruction which cleared the bit will issue further instructions. All other TCs of the processor are suspended (see Sec-
tion 3.6).

The effect of clearing EVP in software may not be instantaneous. An instruction hazard barrier, e.g., JR.HB, is
required to guarantee that all other VPEs have been quiesced.

The STLB bit affects only VPEs using a TLB MMU. The operation of VPEs using FMT MMUs is unaffected.

For nanoMIPS32-compatible software operation, all MMU_Size fields must indicate the size of the shared TLB when
STLB is set. This may either be done automatically by hardware, or, on processors implementing configurable
MMU_Size, by software rewriting the MMU_Size fields of the Config1 registers of the affected VPEs to the correct
value while the processor has the VPC bit set. When STLB is set, the restriction that the sum of Config1 MMU_Size
fields not exceed the total number of configurable TLB entry pairs as indicated by the PTLBE field of the MVPConf0
register no longer applies. If TLB entries are not otherwise dynamically configurable, i.e., PTLBE is zero, hardware
must automatically maintain the correct MMU_Size values according to the value of STLB.

Programming Notes

The TLB should always be flushed of valid entries between any setting or clearing of STLB and the first subsequent
TLB-mapped memory reference.

VPC 1 Indicates that Processor is in a VPE Configuration State.
When VPC is set, some normally “Preset” configuration
register fields become writable, to allow for dynamic con-
figuration of processor resources (See Section 8.2).
Writable by software only if the VPEConf0 MVP bit is
set for the VPE issuing the modifying instruction.
Processor behavior is UNDEFINED if VPC and EVP are
both in a set state at the same time.

R R/W 0 Required if
run-time VPE
configuration

supported

EVP 0 Enable Virtual Processors. Modifiable only if the
VPEConf0 MVP bit is set for the VPE issuing the modi-
fying instruction. Set by EVPE instruction and cleared by
DVPE instruction. If set, all activated VPEs (see Section
6.6) on a processor fetch and execute independently. If
cleared, only a single instruction stream on a single VPE
can run.

R R/W 0 Required

Table 6.2 MVPControl Register Field Descriptions (Continued)

Fields

Description

Read/Write
Reset
State ComplianceName Bits MVP=0 MVP=1

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

68

6.3 MVPConf0 Register (CP0 Register 0, Select 2)

Compliance Level: Required.

The MVPConf0 Register is instantiated per-processor. It contains configuration information for dynamic multi-VPE
processor configuration. All fields in the MVPConf0 register are read-only.

Figure 6.2 shows the format of the MVPConf0 register; Table 6.3 describes the MVPConf0 register fields.

Figure 6.2 MVPConf0 Register Format
31 30 29 28 27 26 25 16 15 14 13 10 9 8 7 0

M TCP TLBS GS PCP 0 PTLBE TCA 0 PVPE 0 PTC

Table 6.3 MVPConf0 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

M 31 This bit indicates that a MVPConf1 register (see Section
6.4) is present. If the MVPConf1 register is not imple-
mented, this bit should read as a 0. If the MVPConf1 reg-
ister is implemented, this bit should read as a 1.

R Preset by
hardware

Required

TCP 30 Programmable Cache Partitioning per TC. If set, indicates
that the allocation behavior of the “ways” of the primary
instruction and data caches can be controlled via the
TCOpt register’s IWX and DWX fields. See Section 6.19.

R Preset by
hardware

Required

TLBS 29 TLB Sharable. If set, indicates that TLB sharing amongst
all VPEs of a VMP is possible. TLB sharing is enabled by
the STLB bit of the MVPControl register. See Section 6.2.

R Preset by
hardware

Required

GS 28 Gating Storage Support present. If set, indicates that the
processor is configured to support gating storage opera-
tions. See Section 9.1.

R Preset by
hardware

Required

PCP 27 Programmable Cache Partitioning per VPE. If set, indi-
cates that the allocation behavior of the “ways” of the pri-
mary instruction and data caches can be controlled via the
VPEOpt register’s IWX and DWX fields. See Section 6.11.

R Preset by
hardware

Required

PTLBE 25:16 Total processor complement of allocatable TLB entry
pairs. See Section 8.2. If TLB configuration is fixed,
PTLBE is zero.

R Preset by
hardware

Required

TCA 15 TCs Allocatable. If set, TCs may be assigned to VPEs by
writing the CurVPE field of each TC’s TCBind register
while the VPC bit of MVPControl is set. See Section 6.13.

R Preset by
hardware

Required

PVPE 13:10 Total processor complement of VPE contexts - 1. Valid
VPE numbers are from 0 to PVPE, inclusive.

R Preset by
hardware

Required

PTC 7:0 Total processor complement of TCs - 1. Valid TC numbers
are from zero to PTC, inclusive.

R Preset by
hardware

Required

0 30, 26, 14,
9:8

Reserved. Reads as zero, must be written as zero. R 0 Reserved

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

69

6.4 MVPConf1 Register (CP0 Register 0, Select 3)

Compliance Level: Optional.

The MVPConf1 register is optionally instantiated per processor. It indicates the coprocessor and UDI resources
available for dynamic allocation to VPEs. All fields in the MVPConf1 register are read-only.

Figure 6.3 shows the format of the MVPConf1 register; Table 6.4 describes the MVPConf1 register fields.

Figure 6.3 MVPConf1 Register Format

Allocatable resources can be bound to specific VPEs, as described in Section 8.2.

31 30 29 28 27 20 19 18 17 10 9 8 7 0

C1M C1F 0 PCX 0 PCP2 0 PCP1

Table 6.4 MVPConf1 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

C1M 31 Allocatable CP1 coprocessors are media-extension capa-
ble

R Preset by
hardware

Required

C1F 30 Allocatable CP1 coprocessors are floating-point capable R Preset by
hardware

Required

PCX 27:20 Total processor complement of CorExtend™ UDI state
instantiations available, for UDI blocks with persistent
state.

R Preset by
hardware

Required

PCP2 17:10 Total processor complement of integrated and allocatable
Coprocessor 2 contexts

R Preset by
hardware

Required

PCP1 7:0 Total processor complement of integrated and allocatable
FP/MDMX Coprocessors contexts

R Preset by
hardware

Required

0 29:28,
19:18,

9:8

Reserved. Reads as zero, must be written as zero. R 0 Reserved

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

70

6.5 VPEControl Register (CP0 Register 1, Select 1)

Compliance Level: Required for MIPS MT.

The VPEControl register is instantiated per VPE as part of the system coprocessor.

Figure 6.4 shows the format of the VPEControl register; Table 6.5 describes the VPEControl register fields.

Figure 6.4 VPEControl Register Format

So long as the TE bit is zero, no thread scheduling will be performed by the VPE. On a processor reset, only the reset
thread, TC 0, will execute. If TE is cleared by software, only the thread which issued the DMT or MTC0 instruction
which cleared the bit will issue further instructions. All other TCs of the VPE are suspended (see Section 3.6).

The effect of clearing TE in software may not be instantaneous. An instruction hazard barrier, e.g., JR.HB, is required
to guarantee that all other threads have been quiesced.

31 22 21 20 19 18 16 15 14 8 7 0

0 YSI GSI 0 EXCPT TE 0 TargTC

Table 6.5 VPEControl Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

YSI 21 YIELD Scheduler Intercept. If set, and the TCStatus DT
bit is also set, valid YIELD instructions that could other-
wise cause a rescheduling cause a Thread exception with a
YIELD Scheduler Exception sub-code (see below).

R/W 0 Required

GSI 20 Gating Storage Scheduler Intercept. If set, and the
TCStatus DT bit is also set, Gating Storage load and store
operations that would otherwise block the issuing TC
cause a Thread exception with a GS Scheduler Exception
sub-code (see below).

R/W 0 Required

EXCPT 18:16 Exception sub-code
of most recently dis-
patched Thread
exception

Value Meaning R Undefined Required

0 Thread Underflow

1 Thread Overflow

2 Invalid YIELD Qualifier

3 Gating Storage Exception

4 YIELD Scheduler Excep-
tion

5 GS Scheduler Exception

6-7 Reserved

TE 15 Threads Enabled. Set by EMT instruction, cleared by
DMT instruction. If set, multiple TCs may be simulta-
neously active. If cleared, only one thread may execute on
the VPE.

R/W 0 Required

TargTC 7:0 TC number to be used on MTTR and MFTR instructions. R/W Undefined Required

0 31:22,
19,14:8

Must be written as zero; return zero on read. 0 0 Reserved

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

71

6.6 VPEConf0 Register(CP0 Register 1, Select 2)

Compliance Level: Required for MIPS MT.

The VPEConf0 register is instantiated per VPE. It indicates the activation state and privilege level of the VPE. All
fields in the VPEConf0 register are read-only in normal execution, but the MVP and VPA fields are writable while the
MVP bit is set for the VPE performing the modification.

Figure 6.5 shows the format of the VPEConf0 register; Table 6.6 describes the VPEConf0 register fields.

Figure 6.5 VPEConf0 Register Format
31 30 29 28 21 20 19 18 17 16 15 2 1 0

M 0 XTC 0 TCS SCS DCS ICS 0 MVP VPA

Table 6.6 VPEConf0 Register Field Descriptions

Fields

Description

Read/Write
Reset
State ComplianceName Bits MVP=0 MVP=1

M 31 This bit is reserved to indicate that a VPEConf1 register is
present. If the VPEConf1 register is not implemented,
this bit should read as a 0. If the VPEConf1 register is
implemented, this bit should read as a 1.

R Preset by
hardware

Required

XTC 28:21 Exclusive TC. Set by hardware when execution is
restricted within a VPE to a single TC, due to EXL/ERL
being set in the Status register, or TE being cleared in the
VPEControl register, this field contains the TC number of
the TC eligible to run. Read by hardware when the VPA bit
is written set by software. For cross-VPE initialization,
XTC is writable by MTTR if the issuing VPE has MVP set
and the target VPE has VPA clear.

R R/W (if
VPA not
set for
target)

0 for VPE 0,
Undefined

for all others

Required

TCS 19 Tertiary Cache Shared. Indicates that the tertiary cache
described in the Config2 register is shared with at least
one other VPE.

R Preset by
hardware

Required

SCS 18 Secondary Cache Shared. Indicates that the secondary
cache described in the Config2 register is shared with at
least one other VPE.

R Preset by
hardware

Required

DCS 17 Data Cache Shared. Indicates that the primary data cache
described in the Config1 register is shared with at least
one other VPE.

R Preset by
hardware

Required

ICS 16 Instruction Cache Shared. Indicates that the primary
instruction cache described in the Config1 register is
shared with at least one other VPE.

R Preset by
hardware

Required

MVP 1 Master Virtual Processor. If set, the VPE can access the
registers of other VPEs of the same VMP, using
MTTR/MFTR, and can modify the contents of the
MVPControl and VPEConf0 registers, thus acquiring the
capability to manipulate and configure other VPEs sharing
the same processor (see Section 8.2).

R R/W 1 for VPE 0,
0 for all oth-

ers

Required

VPA 0 Virtual Processor Activated. If set, the VPE will schedule
threads and execute instructions so long as the EVP bit of
the MVPControl register enables multi-VPE execution.

R R/W 1 for VPE 0,
0 for all oth-

ers

Required

0 30:29, 20,
15:2

Reserved. Reads as zero, must be written as zero. R 0 Reserved

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

72

The XTC field is set by hardware on an exception setting EXL or ERL of the Status register, or on an MTC0 or DMT
instruction clearing the TE bit of VPEControl. It may be set by software if and only if both MVP of the writing VPE is
set and VPA of the written VPE is clear, which implies a cross-VPE MTTR operation. It is read by hardware when
VPA is set, and if the initial state of the VPE is such that only one activated TC may issue, i.e., if EXL or ERL are set,
or TE is clear, the TC designated by the XTC field will be the TC selected for exclusive execution on the VPE. This
allows initialization of one VPE by another, such that the initialized VPE can begin execution in an exception or sin-
gle-threaded state, and the full context save/restore of one VPE by another, even if the target VPE is in an exception
or single-threaded state.

Implementations may set the XTC field on the clearing of the EVP field of the MVPControl register by MTC0 or
DVPE instructions if this simplifies the design, but given that XTC’s utility is in cross-VPE references (a TC running
single-threaded in a VPE can always determine its identity by reading its own TCBind register), and given that no
other VPEs can be executing when EVP is set, it is not particularly useful and is not required.

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

73

6.7 VPEConf1 Register(CP0 Register 1, Select 3)

Compliance Level: Optional.

The VPEConf1 register is instantiated per VPE. It indicates the coprocessor and UDI resources available to the VPE.
All fields in the VPEConf1 register are read-only in normal operation, but may be writable while the MVPControl VPC
bit is set. See Section 8.2.

Figure 6.6 shows the format of the VPEConf1 register; Table 6.7 describes the VPEConf1 register fields.

Figure 6.6 VPEConf1 Register Format
31 28 27 20 19 18 17 10 9 8 7 0

0 NCX 0 NCP2 0 NCP1

Table 6.7 VPEConf1 Register Field Descriptions

Fields

Description

Read/Write
Reset
State ComplianceName Bits VPC=0 VPC=1

NCX 27:20 Number of CorExtend™ UDI state instantiations avail-
able, for UDI blocks with persistent state.

R R/W Preset by
hardware

Required

NCP2 17:10 Number of Coprocessor 2 contexts available. R R/W Preset by
hardware

Required

NCP1 7:0 Number of Coprocessor 1 contexts available. R R/W Preset by
hardware

Required

0 31:28,
19:18, 9:8

Reserved. Reads as zero, must be written as zero. R 0 Reserved

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

74

6.8 YQMask Register (CP0 Register 1, Select 4)

Compliance Level: Required for MIPS MT.

The YQMask register is instantiated per VPE.

Figure 6.7 shows the format of the YQMask register; Table 6.8 describes the YQMask register fields.

Figure 6.7 YQMask Register Format

The YQMask register allows software control over values used to select external qualifier states for YIELD instruc-
tions. If a YIELD instruction has a positive value of its rs parameter, and any bit that is set in rs is not also set in
YQMask, a Thread exception is raised on the YIELD instruction, with the VPEControl EXCPT field set to 3 to indicate
the illegal qualifier condition.

If a processor implementation supports fewer than 31 qualifier state inputs, the YQMask bits corresponding to unim-
plemented inputs should be hard-wired to zero, so that attempts to suspend pending an impossible state are certain to
cause an exception to be raised.

31 30 0

0 Mask

Table 6.8 YQMask Register Field Descriptions

Fields

Description
Read/Wr

ite
Reset
State ComplianceName Bits

Mask 30:0 Bit vector which determines which values may be used as
external state qualifiers by YIELD instructions.

R/W 0 Required

0 31 Must be written as zero; return zero on read. 0 0 Reserved

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

75

6.9 VPESchedule Register (CP0 Register 1, Select 5)

Compliance Level: Optional.

The VPESchedule register is optional, and is instantiated per-VPE.

Figure 6.8 shows the format of the VPESchedule register.

Figure 6.8 VPESchedule Register Format

The Scheduler Hint is a per-VPE value whose interpretation is scheduler implementation-dependent. For example, it
could encode a description of the overall requested issue bandwidth for the associated VPE, or it could encode a pri-
ority level.

A VPESchedule register value of zero is the default, and should result in a well-behaved default scheduling of the
associated VPE.

The VPESchedule register and the TCSchedule register create a hierarchy of issue bandwidth allocation. The set of
VPESchedule registers assigns bandwidth to VPEs as a proportion of the total available on a processor or core, while
the TCSchedule register can only assign bandwidth to threads as a function of that which is available to the VPE con-
taining the thread.

31 0

Scheduler Hint

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

76

6.10 VPEScheFBack Register (CP0 Register 1, Select 6)

Compliance Level: Optional.

The VPEScheFBack register is an optional, per-VPE register.

Figure 6.9 shows the format of the VPEScheFBack register.

Figure 6.9 VPEScheFBack Register Format

The Scheduler Feedback is a per-VPE feedback value from scheduler hardware to software, whose interpretation is
scheduler implementation-dependent. For example, it might encode the total number of instructions retired in the
instruction streams on the associated VPE since the last time the value was cleared by software.

31 0

Scheduler Feedback

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

77

6.11 VPEOpt Register(CP0 Register 1, Select 7)

Compliance Level: Optional.

The VPEOpt register is instantiated per VPE. It provides control over optional per-VPE capabilities, such as cache
“way” allocation management.

Figure 6.10 shows the format of the VPEOpt register; Table 6.9 describes the VPEOpt register fields.

Figure 6.10 VPEOpt Register Format
31 16 15 8 7 0

0 IWX7..IWX0 DWX7..DWX0

Table 6.9 VPEOpt Register Field Descriptions

Fields

Description
Reset
State ComplianceName Bits

IWX7
..

IWX0

15:8 Instruction cache way exclusion mask. If programmable cache partition-
ing is supported by the processor (see Section 6.3) and enabled in the
MVPControl register (see Section 6.2), a VPE can exclude an arbitrary
subset of the first 8 ways of the primary instruction cache from allocation
by the cache controller on behalf of the VPE. The existence of this regis-
ter field is denoted by the PCP field of the MVPConf0 register.

0 Optional

Bit Name Meaning

15 IWX7 If set, I-cache way 7 will not be allocated for the VPE

14 IWX6 If set, I-cache way 6 will not be allocated for the VPE

13 IWX5 If set, I-cache way 5 will not be allocated for the VPE

12 IWX4 If set, I-cache way 4 will not be allocated for the VPE

11 IWX3 If set, I-cache way 3 will not be allocated for the VPE

10 IWX2 If set, I-cache way 2 will not be allocated for the VPE

9 IWX1 If set, I-cache way 1 will not be allocated for the VPE

8 IWX0 If set, I-cache way 0 will not be allocated for the VPE

DWX7..DW
X0

7:0 Data cache way exclusion mask. If programmable cache partitioning is
supported by the processor (see Section 6.3) and enabled in the
MVPControl register (see Section 6.2), a VPE can exclude an arbitrary
subset of the first 8 ways of the primary data cache from allocation by the
cache controller on behalf of the VPE. The existence of this register field
is denoted by the PCP field of the MVPConf0 register.

0 Optional

Bit Name Meaning

7 DWX7 If set, D-cache way 7 will not be allocated for the VPE

6 DWX6 If set, D-cache way 6 will not be allocated for the VPE

5 DWX5 If set, D-cache way 5 will not be allocated for the VPE

4 DWX4 If set, D-cache way 4 will not be allocated for the VPE

3 DWX3 If set, D-cache way 3 will not be allocated for the VPE

2 DWX2 If set, D-cache way 2 will not be allocated for the VPE

1 DWX1 If set, D-cache way 1 will not be allocated for the VPE

0 DWX0 If set, D-cache way 0 will not be allocated for the VPE

0 31:16 Reserved. Reads as zero, must be written as zero. 0 Reserved

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

78

The IWX and DWX bits inhibit allocation of cache lines in the specified way. They do not prevent fetches and loads
by the VPE from hitting in those lines if the requested physical address is present, nor do they prevent stores from
modifying the contents of a line already present in the cache.

If fewer than 8 ways are implemented by a processor’s instruction or data cache, the IWX and DWX bits correspond-
ing to unimplemented cache ways may be implemented as read-only (RO) zero bits.

Behavior of the processor is UNDEFINED if references are made to cached address spaces by a VPE which has
excluded all implemented cache ways from allocation.

Whether or not a cache line in a way that is excluded from allocation by a VPE can be locked by a CACHE instruc-
tion issued by that VPE is implementation-dependent.

If per-TC cache partitioning is also also used (through the use of the TCOpt register), care must be taken not to exclude
all ways of the cache through the usage of both per-VPE cache partitioning and per-TC cache partitioning.

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

79

6.12 TCStatus Register (CP0 Register 2, Select 1)

Compliance Level: Required for MIPS MT.

The TCStatus register is instantiated per TC as part of the system coprocessor.

Figure 6.11 shows the format of the TCStatus register; Table 6.10 describes the TCStatus register fields.

Figure 6.11 TCStatus Register Format
31 28 27 26 25 24 23 22 21 20 19 16 15 14 13 12 11 10 9 8 7 0

TCU3..TCU0 TMX TFR 0 RNST 0 TDS DT Impl DA 0 A TKSU IXMT 0 TASID

Table 6.10 TCStatus Register Field Descriptions

Fields

Description
Read /
Write

Reset
State Fork State ComplianceName Bits

TCU
(TCU3..
TCU0)

31:28 Controls access of a TC to coprocessors 3,2,1, and 0
respectively. Status bits CU3..CU0 are identical to
TCStatus bits TCU3..TCU0 of the thread referencing
that Status with an MFC0 operation. The modification
of either must be visible in both.

R/W Undefined Unchanged
by FORK

Required

TMX 27 Controls access of a TC to extended media processing
state, such as MDMX and DSP Module accumulators.
Status bit MX is identical to TCStatus bit TMX of the
thread referencing that Status with an MFC0 operation.
The modification of either must be visible in both.

R/W 0 Unchanged
by FORK

Required for
MDMX and

DSP Modules

TFR 26 TC Floating-Point Regis-
ter Mode for
Multi-threaded 64-bit
FPU.

Value Meaning R/W Undefined Copied from
forking
thread

Required if
64-bit MT-FPU
is implemented0 FPRs can only

hold 32-bit data
values. 64-bit data
values held in
even-odd pairs of
FPRs.

1 FPRs can hold
either 32-bit or
64-bit data values

RNST 24:23 Run State of TC. Indi-
cates the Running vs.
Blocked state of the TC
(see Section 3.6) and the
reason for blockage.
Value is stable only if TC
is Halted and examined
by another TC using an
MFTR operation.

Value Meaning R 0 0 Required

0 Running

1 Blocked on WAIT

2 Blocked on
YIELD

3 Blocked on Gat-
ing Storage

TDS 21 Thread stopped in branch Delay Slot. If a TC is Halted
such that the next instruction to issue would be an
instruction in a branch delay slot, the TCRestart regis-
ter will contain the address of the branch instruction,
and the TDS bit will be set. Otherwise TDS is cleared on
a Halt, or on a software write to the TCRestart register.

R 0 0 Required

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

80

The (T)CUx, (T)MX, and (T)KSU fields of the TCStatus and Status registers always display the correct state. That is,
if the field is written via TCStatus, the new value may be read via Status, and vice-versa. Similarly, the (T)ASID field
of the TCStatus and EntryHi always display the same current value for the TC.

DT 20 Dirty TC. This bit is set by hardware whenever an
instruction is retired using the associated TC, and on
successful dispatch of the TC via a FORK instruction.
The setting of DT by the retirement of instructions is
inhibited if the instructions are issued with the EXL or
ERL bits of Status set, or with the processor in Debug
mode.

R/W 0 1 Required

Impl 19:16 These bits are implementation-dependent and are not
defined by the architecture. If they are not implemented,
they must be ignored on write and read as zero

Impl. Dep. Impl. Dep. Impl. Dep. Optional

DA 15 Dynamic Allocation enable. If set, TC may be allo-
cated/deallocated/scheduled by the FORK and YIELD
instructions.

R/W 0 FORK allo-
cate only

possible if
DA = 1

Required

A 13 Thread Activated. Set automatically when a FORK
instruction allocates the TC, and cleared automatically
when a YIELD $0 instruction deallocates it.

R/W 1 for TC
0, 0 for all

others.

1 Required

TKSU 12:11 Defined as per the Status register KSU field. This is the
per-TC Kernel/Supervisor/User state. The Status KSU
field is identical to the TCStatus TKSU field of the
thread referencing Status. The modification of either
must be visible in both.

R/W Undefined Copied from
forking
thread

Required

IXMT 10 Interrupt Exempt. If set, the associated TC will not be
used to handle Interrupt exceptions. Debug Interrupt
exceptions are not affected.

R/W 0 Unchanged
by FORK

Required

TASID 7:0 Defined as per the EntryHi register ASID field. This is
the per-TC ASID value. The EntryHi ASID is identical
to the TCStatus TASID of the thread referencing
EntryHi with an MFC0 operation. The modification of
either must be visible in both.

R/W if
TLB

imple-
mented;

0 if TLB
not imple-

mented

Undefined Copied from
forking
thread

Required if
TLB imple-

mented.,
Reserved other-

wise

0 25, 22, 14,
9:8

Must be written as zero; return zero on read. 0 0 0 Reserved

Table 6.10 TCStatus Register Field Descriptions

Fields

Description
Read /
Write

Reset
State Fork State ComplianceName Bits

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

81

6.13 TCBind Register (CP0 Register 2, Select 2)

Compliance Level: Required for MIPS MT.

The TCBind register is instantiated per TC as part of the system coprocessor.

Figure 6.12 shows the format of the TCBind register; Table 6.11 describes the TCBind register fields.

Figure 6.12 TCBind Register Format

In reconfigurable MIPS MT processors, the binding of TCs to VPEs is managed via the CurVPE field of TCBind. If
TC assignment to VPEs is configurable, the CurVPE fields of all TCs in the processor are writable if the VPC bit of
the MVPControl register is set. At all other times, CurVPE is a read-only indication of which VPE contains the TC.
Software can thus determine on which VPE it is running by executing an MFC0 instruction from TCBind and inspect-
ing CurVPE. While implementations may allow for it under well-defined circumstances, behavior of a processor may
be UNPREDICTABLE if software executing on a given TC changes its own VPE binding “on the fly”.

31 29 28 21 20 18 17 16 4 3 0

0 CurTC A0 TBE 0 CurVPE

Table 6.11 TCBind Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

CurTC 28:21 Indicates the number (index) of the TC. R TC # Required

A0 20:18 Architecturally zero-valued field providing least-signifi-
cant bits when a TCBind value is shifted right to be used
as a scaled index into arrays of 32 or 64-bit values.

R 0 Required

TBE 17 TC Bus Error. Set by hardware when a transaction causing
a bus error is identified as resulting from a load or store
issued by the TC. Implementations may set the TBE bits of
multiple TCs on a single DBE exception if multiple mem-
ory requests to the same memory location or cache line
from the different TCs were merged. Implementations
may generate bus error exceptions without setting a TBE
bit if it is not possible to associate the failing transaction
with a particular TC.

R/W 0 Required

CurVPE 3:0 Indicates and controls the binding of the TC to a VPE.
Field is optionally Read/Write only when the VPC bit of
the MVPControl register is set.

R or R/W 0 for TC 0,
preset by

hardware for
all others

Required

0 31:29,
16:4

Must be written as zero; return zero on read. 0 0 Reserved

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

82

6.14 TCRestart Register (CP0 Register 2, Select 3)

Compliance Level: Required for MIPS MT.

The TCRestart register is instantiated per-TC, with the same width as the processor GPRs.

Figure 6.13 shows the format of the TCRestart register. Table 6.12 describes the TCRestart register fields.

Figure 6.13 TCRestart Register Format

When a TC is in a Halted state, a read of the TCRestart register returns the instruction address at which the TC will
start execution when it is restarted. The TCRestart register can be written while the associated TC is in a Halted state
to change the address at which the TC will restart.

Reading the TCRestart register of a non-Halted TC will return the UNSTABLE address of some instruction that the
TC was executing in the past, but which may no longer be valid. Writing the TCRestart register of a non-Halted TC
will result in an UNDEFINED TC state.

In the case of branch and jump instructions with architectural delay slots, the restart address will advance beyond the
address of the branch or jump instruction only after the instruction in the delay slot has been retired. If halted between
the execution of a branch and the associated delay slot instruction, the branch delay slot is indicated by the TDS bit of
the TCStatus register (see Section 6.12).

Software writes to the TCRestart register cause the TDS bit of the TCStatus register to be cleared. If a software write
of the TCRestart register of a TC intervenes between the execution of an LL instruction and an SC instruction on the
target TC, the SC operation must fail.

When the processor writes the TCRestart register, it combines the address at which the TC will resume execution with
the value of the ISAMode register:

TCRestart  resumePC31..1  ISAMode0

“resumePC” is the address at which the TC will resume execution, as described above.

When the processor reads the TCRestart register, it distributes the bits to the PC and ISAMode registers:

PC  TCRestart31..1  0
ISAMode  TCRestart0

Software reads of the TCRestart register simply return to a GPR the last value written with no interpretation. Software
writes to the TCRestart register store a new value which is interpreted by the processor as described above.

31 0

Restart Address

Table 6.12 TCRestart Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

Restart
Address

31..0 Address at which execution of the TC is restarted. R/W Undefined Required

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

83

6.15 TCHalt Register (CP0 Register 2, Select 4)

Compliance Level: Required for MIPS MT.

The TCHalt register is instantiated per TC as part of the system coprocessor.

Figure 6.14 shows the format of the TCHalt register; Table 6.13 describes the TCHalt register fields.

Figure 6.14 TCHalt Register Format

Writing a one to the Halted bit of an activated TC causes the associated thread to cease fetching instructions and to set
its Restart Address in the TCRestart register (see Section 6.14) to the address of the next instruction to be issued. If
the instruction stream associated with the TC is blocked waiting on a response from Gating Storage (see Chapter 9,
“Data-Driven Scheduling of MIPS® MT Threads” on page 102), the load or store is aborted, and the TC resolves to a
state where the TCRestart register and TDS field of the TCStatus register (see Section 6.12) reflect a restart at the
blocked load or store. If the TC is blocked on a WAIT or YIELD instruction, it resolves to a stable restart state. If the
TC was blocked at the time it is Halted, the RNST field of TCStatus indicates the blocked state, and the reason for
blocking, even if that reason was an operation aborted by the Halt. Writing a zero to the Halted bit of an activated TC
allows the associated thread of execution to be scheduled, fetching and executing as indicated by TCRestart. A one in
the Halted bit (TCHalt.H) of a TC prevents that TC from being allocated and activated by a FORK instruction.

Any fetched/decoded but unissued instruction state associated with a TC must be discarded when a TC is Halted by a
write to its TCHalt register.

The effect of writing a one to the Halted bit of a TC may not be instantaneous. An instruction hazard barrier, e.g.,
JR.HB, is required to guarantee that the target thread has been fully halted. As MFTR semantics (see MFTR) require
that a halted TC have stable state, the hazard barrier must assure that all long-latency operations have completed, or at
least appear to have completed to software (e.g., GPRs scoreboarded to ensure that MFTRs receive only the correct
and final value).

31 1 0

0 H

Table 6.13 TCHalt Register Field Descriptions

Fields

Description
Read /
Write Reset State ComplianceName Bits

H 0 Thread Halted. When set, the associated thread has been
halted and cannot be allocated, activated, or scheduled.

R/W 0 for TC 0,
1 for all others

Required

0 31:1 Must be written as zero; return zero on read. 0 0 Reserved

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

84

6.16 TCContext Register (CP0 Register 2, Select 5)

Compliance Level: Required for MIPS MT.

The TCContext register is instantiated per-TC, with the same width as the processor GPRs.

Figure 6.15 shows the format of the TCContext register.

Figure 6.15 TCContext Register Format

TCContext is purely a software read/write register, usable by the operating system as a pointer to thread-specific
storage, e.g., a thread context save area.

31 0

Thread Context Value

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

85

6.17 TCSchedule Register (CP0 Register 2, Select 6)

Compliance Level: Optional.

The TCSchedule register is optional, but when implemented must be implemented per-TC.

Figure 6.16 shows the format of the TCSchedule register.

Figure 6.16 TCSchedule Register Format

The Scheduler Hint is a per-TC value whose interpretation is scheduler implementation-dependent. For example, it
could encode a description of the requested issue bandwidth for the associated thread, as in the VPESchedule register,
or it could encode a priority level.

A TCSchedule register value of zero is the default, and should result in a well-behaved default scheduling of the
associated thread.

The VPESchedule register and the TCSchedule register create a hierarchy of issue bandwidth allocation. The set of
VPESchedule registers assigns bandwidth to VPEs as a proportion of the total available on a processor or core, while
the TCSchedule register can only assign bandwidth to threads as a function of that which is available to the VPE con-
taining the thread.

31 0

Scheduler Hint

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

86

6.18 TCScheFBack Register (CP0 Register 2, Select 7)

Compliance Level: Optional.

The TCScheFBack register is optional, but when implemented must be implemented per-TC.

Figure 6.17 shows the format of the TCScheFBack register.

Figure 6.17 TCScheFBack Register Format

The Scheduler Feedback is a per-TC feedback value from scheduler hardware to software, whose interpretation is
scheduler implementation-dependent. For example, it might encode the number of instructions retired in the instruc-
tion stream corresponding to the TC since the last time the value was cleared by software.

31 0

Scheduler Feedback

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

87

6.19 TCOpt Register(CP0 Register 3, Select 7)

Compliance Level: Optional.

The TCOpt register is instantiated per TC. It provides control over optional per-TC capabilities, such as cache “way”
allocation management.

Figure 6.18 shows the format of the TCOpt register; Table 6.14 describes the TCOpt register fields.

Figure 6.18 TCOpt Register Format
31 16 15 8 7 0

0 IWX7..IWX0 DWX7..DWX0

Table 6.14 TCOpt Register Field Descriptions

Fields

Description
Reset
State ComplianceName Bits

IWX7
..

IWX0

15:8 Instruction cache way exclusion mask. If programmable cache partition-
ing is supported by the processor (see Section 6.3) and enabled in the
MVPControl register (see Section 6.2), a TC can exclude an arbitrary
subset of the first 8 ways of the primary instruction cache from allocation
by the cache controller on behalf of the TC. The existence of this register
field is denoted by the TCP field of the MVPConf0 register.

0 Optional

Bit Name Meaning

15 IWX7 If set, I-cache way 7 will not be allocated for the TC

14 IWX6 If set, I-cache way 6 will not be allocated for the TC

13 IWX5 If set, I-cache way 5 will not be allocated for the TC

12 IWX4 If set, I-cache way 4 will not be allocated for the TC

11 IWX3 If set, I-cache way 3 will not be allocated for the TC

10 IWX2 If set, I-cache way 2 will not be allocated for the TC

9 IWX1 If set, I-cache way 1 will not be allocated for the TC

8 IWX0 If set, I-cache way 0 will not be allocated for the TC

DWX7..DW
X0

7:0 Data cache way exclusion mask. If programmable cache partitioning is
supported by the processor (see Section 6.3) and enabled in the
MVPControl register (see Section 6.2), a TC can exclude an arbitrary
subset of the first 8 ways of the primary data cache from allocation by the
cache controller on behalf of the TC. The existence of this register field is
denoted by the TCP field of the MVPConf0 register.

0 Optional

Bit Name Meaning

7 DWX7 If set, D-cache way 7 will not be allocated for the TC

6 DWX6 If set, D-cache way 6 will not be allocated for the TC

5 DWX5 If set, D-cache way 5 will not be allocated for the TC

4 DWX4 If set, D-cache way 4 will not be allocated for the TC

3 DWX3 If set, D-cache way 3 will not be allocated for the TC

2 DWX2 If set, D-cache way 2 will not be allocated for the TC

1 DWX1 If set, D-cache way 1 will not be allocated for the TC

0 DWX0 If set, D-cache way 0 will not be allocated for the TC

0 31:16 Reserved. Reads as zero, must be written as zero. 0 Reserved

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

88

The IWX and DWX bits inhibit allocation of cache lines in the specified way. They do not prevent fetches and loads
by the TC from hitting in those lines if the requested physical address is present, nor do they prevent stores from mod-
ifying the contents of a line already present in the cache.

If fewer than 8 ways are implemented by a processor’s instruction or data cache, the IWX and DWX bits correspond-
ing to unimplemented cache ways may be implemented as read-only (RO) zero bits.

Behavior of the processor is UNDEFINED if references are made to cached address spaces by a TC which has
excluded all implemented cache ways from allocation.

Whether or not a cache line in a way that is excluded from allocation by a TC can be locked by a CACHE instruction
issued by that TC is implementation-dependent.

If per-VPE cache partitioning is also also used (through the use of the VPEOpt register), care must be taken not to
exclude all ways of the cache through the usage of both per-VPE cache partitioning and per-TC cache partitioning.

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

89

6.20 SRSConf0 (CP0 Register 6, Select 1)

Compliance Level: Required for MIPS MT.

The SRSConf0 register is instantiated per VPE. It indicates the binding of TCs or other GPR resources to Shadow
Register Sets 1 through 3.

Figure 6.19 shows the format of the SRSConf0 register; Table 6.15 describes the SRSConf0 register fields.

Figure 6.19 SRSConf0 Register Format

Each SRSx field of the SRSConf0 register identifies which GPR will be used for references to Shadow Register Set x.
There is no field for SRS0, as “Shadow Set 0” is taken in MIPS MT to mean the GPR set of the TC associated with
entry into an exception handler. An SRSx field value may be hard-wired to all-ones (0x3ff) to indicate that the proces-
sor logic does not support the associated SRS number. If any SRS numbers are uninstantiated, they should be in a
contiguous range starting from the highest number, i.e., SRS3 may be uninstantiated while SRS2 and SRS1 are instan-
tiated, but SRS1 must be instantiated if SRS2 is instantiated. The M bit should only be set, and the SRSConf1 register
should only be implemented, if all three SRSx fields of SRSConf0 are instantiated.

Instantiated SRSx fields may be hard-wired or programmable. Hard wired fields represent dedicated shadow sets that
are statically configured into the VPE, and contain distinct unsigned values greater than the total complement of TCs
on a processor, but less than 0x3fe. Programmable SRSx fields have a reset value of 0x3fe. A value of 0x3ff or 0x3fe
in an SRSx field means that SRS x is invalid. The HSS field of the SRSCtl register always indicates the number of the
highest numbered valid SRS, i.e., one less than x for the lowest numbered invalid SRSx field. A programmable entry
may be made valid by writing a value less than 0x3fe into it. A TC is assigned for its GPRs to be used as a Shadow
Register set by writing the number of the TC, zero extended, into the SRSx field corresponding to the shadow set
number for which the TC is to be used. Only a TC bound to a VPE may be used as an SRS on that VPE. If the
CurVPE field of the TCBind register of a TC being assigned to an SRS is does not contain the number of the VPE
associated with the SRSConf0...4 register being programmed, the SRSx field is not updated. The effect of writing an
SRSx value greater than the number of the highest numbered TC on a processor is implementation-dependent.

Behavior of the processor is UNDEFINED in the face of exceptions and FORK instructions if a TC is assigned to
Shadow Register use when the DA bit is set in its TCStatus register.

Behavior of the processor is UNDEFINED if writing an invalid SRSx field value causes the SRSCtl HSS field to take
on a value that is less than the current value of the SRSCtl CSS or PSS fields. Behavior of the processor is UNDE-
FINED under exceptions if the SRSCtl HSS field takes on a value less than the SRSCtl ESS field. Behavior of the pro-

31 30 29 20 19 10 9 0

M 0 SRS3 SRS2 SRS1

Table 6.15 SRSConf0 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

M 31 If set, SRSConf1 register is implemented. If clear, no
more than 3 shadow sets may be configured.

R Preset by
hardware

Required

SRS3 29:20 GPR set to be used if CSS = 3. See below for encoding. RW or R Preset by
hardware

Required

SRS2 19:10 GPR set to be used if CSS = 2. See below for encoding. RW or R Preset by
hardware

Required

SRS1 9:0 GPR set to be used if CSS = 1. See below for encoding. RW or R Preset by
hardware

Required

0 30 Reserved. Reads as zero, must be written as zero. R 0 Reserved

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

90

cessor is UNDEFINED under EIC interrupts if the SRSCtl HSS field takes on a value less than the SRSCtl EICSS
field. Software must thus take care to modify the ESS and EISS fields as necessary prior to de-allocating a TC from
SRS service.

A TC may be reclaimed from use as a shadow set by writing some other value, possibly 0x3fe, into the SRSx field
which had contained the TC’s number.

At no time should the same value, other than the values 0x3ff and 0x3fe, be present more than one distinct SRSx field.

The sequence of shadow set numbers to be used by software is a monotonically increasing sequence starting with
zero. To assure correct and backward-compatible software operation, there must be no invalid (0x3ff/0x3fe) SRSx
field at a lower x index than that of a valid SRSx field.

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

91

6.21 SRSConf1 (CP0 Register 6, Select 2)

Compliance Level: Optional.

The SRSConf1 register is instantiated per VPE. It indicates the binding of TCs or other GPR resources to Shadow
Register Sets 4 through 6.

Figure 6.20 shows the format of the SRSConf1 register; Table 6.16 describes the SRSConf1 register fields.

Figure 6.20 SRSConf1 Register Format

Each SRSx field of the SRSConf1 register identifies which GPR will be used for references to Shadow Register Set x.
An SRSx field value may be hard-wired to all-ones (0x3ff) to indicate that the processor logic does not support the
associated SRS number. If any SRS numbers are uninstantiated, they should be in a contiguous range starting from
the highest number, i.e., SRS6 may be uninstantiated while SRS5 and SRS4 are instantiated, but SRS4 must be instan-
tiated if SRS5 is instantiated. The M bit should only be set, and the SRSConf2 register should only be implemented, if
all three SRSx fields of SRSConf1 are instantiated.

The semantics and encodings of the SRSx fields of the SRSConf1 register are the same as those of the SRSConf0 reg-
ister, except in that they are applied to Shadow Register Sets 4 through 6. See Section 6.20.

31 30 29 20 19 10 9 0

M 0 SRS6 SRS5 SRS4

Table 6.16 SRSConf1 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

M 31 If set, SRSConf2 register is implemented. If clear, no
more than 6 shadow sets may be configured.

R Preset by
hardware

Required

SRS6 29:20 GPR set to be used if CSS = 6. See below for encoding. RW or R Preset by
hardware

Required

SRS5 19:10 GPR set to be used if CSS = 5. See below for encoding. RW or R Preset by
hardware

Required

SRS4 9:0 GPR set to be used if CSS = 4. See below for encoding. RW or R Preset by
hardware

Required

0 30 Reserved. Reads as zero, must be written as zero. R 0 Reserved

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

92

6.22 SRSConf2 (CP0 Register 6, Select 3)

Compliance Level: Optional.

The SRSConf2 register is instantiated per VPE. It indicates the binding of TCs or other GPR resources to Shadow
Register Sets 7 through 9.

Figure 6.21 shows the format of the SRSConf2 register; Table 6.17 describes the SRSConf2 register fields.

Figure 6.21 SRSConf2 Register Format

Each SRSx field of the SRSConf2 register identifies which GPR will be used for references to Shadow Register Set x.
An SRSx field value may be hard-wired to all-ones (0x3ff) to indicate that the processor logic does not support the
associated SRS number. If any SRS numbers are uninstantiated, they should be in a contiguous range starting from
the highest number, i.e., SRS9 may be uninstantiated while SRS8 and SRS7 are instantiated, but SRS7 must be instan-
tiated if SRS8 is instantiated. The M bit should only be set, and the SRSConf3 register should only be implemented, if
all three SRSx fields of SRSConf2 are instantiated.

The semantics and encodings of the SRSx fields of the SRSConf2 register are the same as those of the SRSConf0 reg-
ister, except in that they are applied to Shadow Register Sets 7 through 9. See Section 6.20.

31 30 29 20 19 10 9 0

M 0 SRS9 SRS8 SRS7

Table 6.17 SRSConf2 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

M 31 If set, SRSConf3 register is implemented. If clear, no
more than 9 shadow sets may be configured.

R Preset by
hardware

Required

SRS9 29:20 GPR set to be used if CSS = 9. See below for encoding. RW or R Preset by
hardware

Required

SRS8 19:10 GPR set to be used if CSS = 8. See below for encoding. RW or R Preset by
hardware

Required

SRS7 9:0 GPR set to be used if CSS = 7. See below for encoding. RW or R Preset by
hardware

Required

0 30 Reserved. Reads as zero, must be written as zero. R 0 Reserved

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

93

6.23 SRSConf3 (CP0 Register 6, Select 4)

Compliance Level: Optional.

The SRSConf3 register is instantiated per VPE. It indicates the binding of TCs or other GPR resources to Shadow
Register Sets 10 through 12.

Figure 6.22 shows the format of the SRSConf3 register; Table 6.18 describes the SRSConf3 register fields.

Figure 6.22 SRSConf3 Register Format

Each SRSx field of the SRSConf3 register identifies which GPR will be used for references to Shadow Register Set x.
An SRSx field value may be hard-wired to all-ones (0x3ff) to indicate that the processor logic does not support the
associated SRS number. If any SRS numbers are uninstantiated, they should be in a contiguous range starting from
the highest number, i.e., SRS12 may be uninstantiated while SRS11 and SRS10 are instantiated, but SRS10 must be
instantiated if SRS11 is instantiated. The M bit should only be set, and the SRSConf4 register should only be imple-
mented, if all three SRSx fields of SRSConf3 are instantiated.

The semantics and encodings of the SRSx fields of the SRSConf3 register are the same as those of the SRSConf0 reg-
ister, except in that they are applied to Shadow Register Sets 10 through 12. See Section 6.20.

31 30 29 20 19 10 9 0

M 0 SRS12 SRS11 SRS10

Table 6.18 SRSConf3 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

M 31 If set, SRSConf4 register is implemented. If clear, no
more than 9 shadow sets may be configured.

R Preset by
hardware

Required

SRS12 29:20 GPR set to be used if CSS = 12. See below for encoding. RW or R Preset by
hardware

Required

SRS11 19:10 GPR set to be used if CSS = 11. See below for encoding. RW or R Preset by
hardware

Required

SRS10 9:0 GPR set to be used if CSS = 10. See below for encoding. RW or R Preset by
hardware

Required

0 30 Reserved. Reads as zero, must be written as zero. R 0 Reserved

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

94

6.24 SRSConf4 (CP0 Register 6, Select 5)

Compliance Level: Optional.

The SRSConf4 register is instantiated per VPE. It indicates the binding of TCs or other GPR resources to Shadow
Register Sets 13 through 15.

Figure 6.23 shows the format of the SRSConf4 register; Table 6.19 describes the SRSConf4 register fields.

Figure 6.23 SRSConf4 Register Format

Each SRSx field of the SRSConf4 register identifies which GPR will be used for references to Shadow Register Set x.
An SRSx field value may be hard-wired to all-ones (0x3ff) to indicate that the processor logic does not support the
associated SRS number. If any SRS numbers are uninstantiated, they should be in a contiguous range starting from
the highest number, i.e., SRS15 may be uninstantiated while SRS14 and SRS13 are instantiated, but SRS13 must be
instantiated if SRS14 is instantiated.

The semantics and encodings of the SRSx fields of the SRSConf4 register are the same as those of the SRSConf0 reg-
ister, except in that they are applied to Shadow Register Sets 13 through 15. See Section 6.20.

31 30 29 20 19 10 9 0

0 SRS15 SRS14 SRS13

Table 6.19 SRSConf4 Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

SRS15 29:20 GPR set to be used if CSS = 15. See below for encoding. RW or R Preset by
hardware

Required

SRS14 19:10 GPR set to be used if CSS = 14. See below for encoding. RW or R Preset by
hardware

Required

SRS13 9:0 GPR set to be used if CSS = 13. See below for encoding. RW or R Preset by
hardware

Required

0 31,30 Reserved. Reads as zero, must be written as zero. R 0 Reserved

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

95

6.25 Modifications to Existing MIPS® Privileged Resource Architecture

The Multi-threading Module modifies some elements of the existing nanoMIPS32 PRA.

6.25.1 SRSCtl Register

The HSS field value can change at run-time if an implementation allows TCs to be assigned to SRSs via the
SRSConf0-SRSConf4 registers. The HSS value tracks the highest valid SRSx field of an SRSConf register. Software
must ensure that the HSS field does not take on a value that makes the value of any of the PSS, CSS, ESS, or EISS
fields of the SRSCtl register illegal (see Section 6.20).

A zero value in the PSS or CSS field of the SRSCtl register indicates that the previous or current “shadow set” is not a
built-in SRS or a TC register file allocated to a Shadow Set, but is in fact the register set belonging to the TC servicing
the exception, whose number can be found in the CurTC field of the TCBind register, as read with an MFC0 instruc-
tion by the exception handler.

6.25.2 Cause Register

There is a new Cause register ExcCode value required for the Thread exceptions

6.25.3 Machine Check Exceptions

A MIPS MT processor does not generate Machine Check exceptions on duplicate TLB entries. Duplicate entries must
be detected and suppressed on TLB writes, without causing an exception.

6.25.4 Debug Register

On a MIPS MT processor, the SSt and OffLine fields of the EJTAG Debug register are instantiated per-TC. All other
read/write fields are implemented per-VPE. See Section 10.2.

6.25.5 EBase Register

Each VPE sees a distinct value in the CPUNum field of the EBase register.

6.25.6 Config1 Register

The normally read-only MMU_Size, C2, MD, and FP fields of the Config1 register may be modifiable by software
while a processor is in a configuration state, as defined by the VPC bit of the MVPControl register (see Section 8.2).

Table 6.20 MIPS® MT Thread Exception

Exception Code Value

Mnemonic DescriptionDecimal Hexadecimal

25 16#19 Thread Thread Allocation, Deallocation, or Scheduling Exceptions

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

96

6.25.7 Config3 Register

A new Config3 register field is defined to express and control the availability of the MIPS MT Module.

6.25.8 LLAddr Register

It is implementation-dependent whether the LLAddr register is implemented per-TC or per VPE.

6.26 Thread State as a Function of Privileged Resource State

The following table summarizes the TC state definitions of Section 3.6 in terms of the associated Module privileged
resource state.

6.27 Thread Allocation and Initialization Without FORK

The procedure for an operating system to create a thread “by hand” would be:

1. Execute a DMT to stop other threads from executing and possibly FORKing or Halting threads.

2. Execute a JR.HB to ensure that other threads have quiesced.

3. Identify an available TC by setting the TargTC field of the VPEControl register to successive values from 0 to
PTC, reading the TCBind registers with an MFTR instruction to identify those belonging to the same VPE (those
having the same value in the TCBind CurVPE field as the current “parent” thread), and reading their TCStatus
and TCHalt registers with MFTR instructions. A free TC will have neither the H bit of TCHalt nor the Activated
bit of TCStatus set, as per Table 6.22. TCs that have been assigned for use as shadow register storage must be
skipped in this search.

4. Perform an MTTR of a value of 1 to the selected TC’s TCHalt register to prevent it being allocated by another
thread.

5. Execute an EMT instruction to re-enable multi-threading.

6. Copy any desired GPRs or other program state into the selected TC using MTTR instructions.

7. Write the desired starting execution address into the thread’s restart address register using an MTTR instruction
to the selected TC’s TCRestart register.

Table 6.21 New Config3 Fields for MIPS® MT

Field

Description
Read /
Write

Reset
StateName Bit

MT 2 Indicates that the MT Module is implemented on the proces-
sor.

R Preset

Table 6.22 TC State as Function of MIPS® MT PRA State

TCHalt.H TCStatus.A TCStatus.RNST TC State

1 x x Halted

0 0 x Free

0 1 0 Activated Running

0 1 >0 Blocked

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

97

8. Write a value with a 1 in the Activated bit position to the selected TCStatus register using an MTTR instruction.

9. Write a value of zero into the selected TCHalt register using an MTTR instruction.

The newly allocated thread will then be schedulable. The steps of executing DMT and EMT can be skipped if EXL or
ERL are known to be set during the procedure, as they implicitly inhibit multi-threaded execution.

6.28 Thread Termination and Deallocation without YIELD

The procedure for an operating system to terminate the current thread would be:

1. Write a value with EXL = 0, ERL = 0, and KSU = 0 to the Status register using MTC0, setting Kernel mode for
the retiring TC and removing the inhibition of multi-threaded execution due to EXL/ERL.

2. Write a value with zero in the Activated bit position to the TCStatus register, using a standard MTC0 instruction.

One thread, running in a privileged mode, could also terminate another, using MTTR instructions, but it would pres-
ent an additional problem to the OS to determine which TC should be deallocated and at what point the state of the
thread’s computation is stable.

6.29 Multi-threading and Coprocessors

Coprocessors attached to a multi-threaded VPE may have a single context, which must be shared among processor
threads, or it may have multiple contexts, such that distinct instruction streams executing concurrently from multiple
TCs can likewise have concurrent use of coprocessor resources. A “multi-threaded” coprocessor, with multiple copro-
cessor contexts, need not have the same number of contexts as the VPE to which it is attached has TCs. For VPE to
use a coprocessor, some mapping, which may or may not be dynamic, must exist between a TC and an associated
coprocessor context. This could be an implicit 1:1 or many-to-one mapping, an even/odd or other hash mapping, or a
programmable mapping. A coprocessor context is bound to a TC if a mapping exists from the TC to the coprocessor
context, and access to the coprocessor context by the TC’s instruction stream is mediated by the CU bit of the TC.
Coprocessor instructions in the instruction stream associated with the TC reference the bound coprocessor context.

The mechanisms by which coprocessor contexts are bound to TCs are implementation-dependent. It is possible for a
coprocessor context to be bound to multiple TCs, as in the case where a single coprocessor context is implemented
with a many-to-one mapping from all TCs of a VPE. In such configurations, it is the responsibility of software to
coordinate the use of the shared resource by managing the state of CU bits.

The Coprocessor Usable bits CU3..0 are instantiated per TC, and are also visible as the TCU3..0 bits of the TCStatus
register (see Section 6.12) of each TC. Access to the coprocessor context bound to a TC is granted to instructions exe-
cuting on that TC only if the CU/TCU bit corresponding to the coprocessor is set, otherwise a Coprocessor Unusable
exception is delivered to the TC. The FORK operation preserves the CUx values of each TC, so that bindings between
coprocessor contexts and TCs can be preserved across FORK/YIELD 0 thread instantiations.

Coprocessor context state is accessible via MFTR and MTTR instructions which target the TC to which the coproces-
sor context is bound (see MFTR, MTTR). MFTR and MTTR access is unaffected by the state of CU bits, neither
those of the TC issuing the MFTR/MTTR (which control access to coprocessors bound to that TC only), nor those of
the target TC. Any exceptions enabled, unmasked, or created by MTTR operations on a coprocessor context must be
serviced at some appropriate point by the TC to which the coprocessor context is bound, not the TC issuing the
MTTR.

While the means of binding coprocessor contexts to thread contexts are coprocessor-specific, a multi-threaded copro-
cessor must provide sufficient means for diagnostic and operating system software to access selectively any context
instantiated on the coprocessor.

Chapter 7

98

MIPS® MT Restrictions on MIPS32 Implementation

7.1 WAIT Instructions

The nanoMIPS32 ISA allows for implementation-dependent semantics of the WAIT instruction. MIPS MT adds the
restriction that a WAIT issued by one TC does not shut down the processor or VPE if other TCs are still in a Running
state.

7.2 SC Instructions

nanoMIPS32 SC instruction semantics may be extended by MIPS MT gating storage implementations to support
“try” operations. See Section A.2 for an example. Gating storage is not cacheable, so LL/SC sequences to gating stor-
age would normally have UNPREDICTABLE results in the MIPS32 architecture. MIPS MT gating storage exten-
sions may overload the normal LL/SC semantics, such that the reported success or failure of a conditional store
operation is completely independent of any prior LL instructions and/or stores to coherent cacheable (or otherwise
“synchronizable”) memory.

Any write of the per-TC TCRestart CP0 register clears the LLBit. Any write of that register between the execution of
a LL instruction and a SC instruction on the target TC, will cause the SC write operation to fail. When a TC is
re-assigned to another software thread, the new thread does not inherit the previous state of the LLBit.

7.3 LL Instructions

nanoMIPS32 LL /SC instruction semantics are extended. If per-TC resources are made available within an implemen-
tation, it is allowed to have one LL/SC RMW sequence in progress at any one time for each TC. If the implementation
does not allow one LL/SC RMW sequence per TC, it must preclude live-lock of LL/SC sequences among the multi-
ple TCs.

7.4 SYNC Instructions

For the MT Module, Cacheability and Coherency Attribute 3, named “Cacheable”, is considered coherent among the
different threads. For this reason, the ordering and completion rules defined by the SYNC instruction apply to
load/store instructions using CCA=3.

Chapter 8

99

Multiple Virtual Processors in MIPS® MT

8.1 Multi-VPE Processors

A core or processor may implement multiple VPEs sharing resources such as functional units. Each VPE sees its own
instantiation of the nanoMIPS32 instruction and privileged resource architecture. Each sees its own register file or TC
array, its own CP0 system coprocessor, and its own set of TLB entries. Two VPEs on the same processor can be oper-
ated by the same systems software as for a 2-CPU cache-coherent SMP multiprocessor. While each VPE on a proces-
sor has a distinct set of CP0 resources, these sets of resources need not be identical. Each must have a minimum
complement as defined by those privileged resources which are required by the architecture, but some may have
more. The privileged resources of at least one VPE per processor (VPE 0) reset to a sane reset state as per the
nanoMIPS32 privileged resource architecture specification.

Each VPE on a processor sees a distinct value in the EBase.CPUNum CP0 register field, as if it were a distinct core in
a multi-core SoC.

Processor architectural resources such as TC and TLB storage and coprocessors may be statically bound to VPEs in a
hard-wired configuration, or they may be configured dynamically in a processor supporting the necessary configura-
tion capability.

8.2 Reset and Virtual Processor Configuration

To be backward compatible with the nanoMIPS32 PRA, a configurably multi-threaded//multi-VPE processor must
have a sane and nanoMIPS32-compatible default TC/VPE configuration at reset, that of a single active VPE with a
single activated TC.

A VPE has the ability to access and directly manipulate another VPE’s processor resources, or to enable or disable
another VPE’s execution, only if it is a “Master” VPE, designated by having the VPEConf0.MVP bit set (see Section
6.6). At reset, only one VPE may have the MVP bit set, though implementations may allow it to be set for other VPEs
as part of post-reset software configuration. If its MVP bit is set, a VPE may:

• Read and write per-TC registers of TCs bound to other VPEs by using MFTR/MTTR instructions with appropri-
ate values in the TargTC field of VPEControl (see Section 6.5).

• Read and write per-VPE registers of other VPEs by using MFTR/MTTR instructions with values in TargTC that
correspond to TCs bound to the target VPE (see Section 6.13).

• Set or clear the EVP bit of the global MVPControl register (see Section 6.2) using MTC0 or DVPE/EVPE instruc-
tions.

• Set or clear the VPA bit of the per-VPE VPEConf0 registers using MTTR instructions to put VPEs on or off-line.

• Set or clear the MVP bit of other VPEs using MTTR instructions, or clear the local VPE’s MVP bit using MTC0.

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

100

• Set the VPC bit of MVPControl, if it is implemented, allowing reconfiguration of processor hardware resources
and capabilities.

• Set the XTC field of VPEConf0 of other VPEs (see Section 6.6) using MTTR instructions. MVP may also enable
the modification of XTC of the local VPE’s VPEConf0 register using MTC0 instructions, but such a modification
of a running VPE is unsafe and should not be done by software.

If this capability is ignored, as by legacy software, the processor will behave as per specification for the default con-
figuration.

Modification of one VPE’s state by another is only guaranteed safe if the EVP bit has been cleared and a hazard bar-
rier executed. This applies to both per-VPE state and per-TC state of TCs outside the scope of the modifying TC.

Setting the MVPControl.VPC (Virtual Processor Configuration) bit puts the processor into a configuration state in
which the contents of certain normally read-only “preset” fields of Config and other registers become writable. Imple-
mentations may impose restrictions on configuration-state instruction streams; e.g., they may be forbidden to use
cached or TLB-mapped memory addresses.

The total number of VPEs is encoded in the MVPConf0.PVPE field. VPEs are numbered from 0 to MVPConf0.PVPE.
A “Master” VPE may select another VPE as a target of an MFTR or MTTR operation by selecting (or setting up) a
TC bound to the target VPE, and using that TC as the target of the MFTR/MTTR. If VPC is set, the normally
read-only register fields outlined in Table 8.1 can potentially be modified by writing to them with MTTR instructions.

Not all of the above configuration parameters need be configurable. For example, the number of TLB entries per VPE
may be fixed, FPUs may be pre-allocated and hard-wired per VPE, etc. Statically assigned resources are reflected in
the reset-time values in the Config, Config1, VPEConf, and TCBind registers. The existence of dynamically assignable
resources is indicated in the MVPConf0 and MVPConf1 registers, and these resources are assigned to VPEs by writing
new values to the Config and VPConf registers that reflect the allocation of resources. In the event that an implemen-
tation cannot provide the resource allocation or configuration implied by a write to one of the per-VPE configurable
fields (e.g., if TLB entries are assignable only in blocks of 4, and an attempt is made to allocate 18 entry pairs to a
VPE), a subsequent read will reflect the actual resource configuration. If a field containing a quantitative value is
written to an implementation which cannot support that value, the implementation will set and subsequently return a
supported value. It is recommended that the value be as close to the requested value as the implementation can pro-
vide.

A VPE is enabled for execution by setting the VPEConf0.VPA activation bit with an MTTR to that register.

Table 8.1 Dynamic Virtual Processor Configuration Options

Register Field Meaning Indicator of Configurability

Config1 MMU_Size Number of TLB Entry Pairs MVPConf0 PTLBE > 0

Config1 C2 Coprocessor 2 Present MVPConf1 PCP2 > 0

Config1 MD Media Accelerator Present MVPConf1 PCP1 > 0 and MVPConf1
C1M = 1

Config1 FP FPU Present MVPConf1 PCP1 > 0 and MVPConf1 C1F
= 1

MVPControl STLB TLB Shared across VPES MVPConf0 TLBS = 1

VPEConf1 NCP1 Number of FP/Media Coprocessor contexts
available

MVPConf1 PCP1 > 0

VPEConf1 NCP2 Number of Coprocessor 2 Contexts avail-
able

MVPConf1 PCP2 > 0

VPEConf1 NCX Number of CorExtend Contexts available MVPConf1 PCx > 0

TCBind CurVPE VPE binding of TC MVPConf0 TCA = 1

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

101

The configuration state is exited by clearing MVPControl.VPC, which makes the configuration register fields
read-only with their new values. Multi-VPE execution is enabled by setting MVPControl.EVP, either explicitly or via
an EVPE instruction. This causes all Activated VPEs to begin fetching and executing concurrently. If a VPE’s MVP
bit is cleared, the VPC and EVP bits can no longer be manipulated by that VPE. If MVP is cleared for all VPEs, the
processor configuration is effectively frozen until the next processor reset. If MVP remains set, an operating system
may re-enter the configuration mode by clearing EVP (to stop other VPEs from running concurrently) and again set-
ting the VPC bit.

8.3 MIPS® MT and Cache Configuration

Whether or not cache tags and data can be shared between VPEs is implementation-dependent. Simultaneous
line-locking by multiple VPEs sharing a cache may result in undesirable behavior. Sharing of virtually tagged caches
by multiple VPEs implies that a VPE number or other unique VPE tag must be concatenated with the ASID in the
cache tags. Cache errors in shared caches must be signalled to all VPEs sharing the cache (see Section 4.7).

CACHE instruction operations in MIPS MT processors must be atomic with respect to concurrent threads of execu-
tion; e.g., a load from one TC must not be allowed to reference a memory location between its invalidation in the
cache and its write-back to memory due to a writeback-invalidate CACHE instruction from another TC.

Chapter 9

102

Data-Driven Scheduling of MIPS® MT Threads

Multithreaded execution models lend themselves to data-driven algorithms, where the availability or absence of data
in a storage or I/O location determines whether or not an instruction stream can advance. This paradigm requires
some architectural and nanoarchitectural support.

9.1 Gating Storage

Gating Storage is an attribute of memory which may optionally be supported by processors implementing the MT
Module. The user-mode load/store semantics of gating storage are identical with those of normal memory, except that
completion of the operation may be blocked for unbounded periods of time. The distinguishing feature of gating stor-
age is that outstanding load or store operations can be aborted and restarted. It is a TLB-mediated property of a virtual
page whether or not a location is treated as gating storage. Gating storage support may be restricted to certain ranges
of physical addresses, and may require special page attributes in some implementations, but any mapped virtual page
may resolve to gating storage.

When a load or store operation is performed on gating storage, no instructions beyond the load/store in program order
are allowed to alter the software-visible state of the system until a load result, a store confirmation, or an exception is
returned from storage. An exception returned by gating storage logic in response to a load or store is delivered as a
Thread exception on the load or store, with a value of 3 in the EXCPT field of the VPEControl register to indicate the
Gating Storage exception (see Section 4.3). In the event that an exception is taken using the TC of an instruction
stream which is blocked on a load/store to gating storage, whether or not that exception originates from the gating
storage logic, or in the event where such a thread is halted by setting the H bit of the TCHalt register of the associated
TC, the pending load/store operation is aborted.

If both the GSI bit of the VPEControl register and the DT bit of the TCStatus register are set when a load or store
operation from the associated VPE is determined to be blocked by gating storage, a Thread exception is delivered on
the load/store, preempting the memory operation, with a value of 5 in the EXCPT field of VPEControl to indicate a
GS Scheduler exception, which allows a software scheduler to take control of the VPE and override the default hard-
ware scheduling logic. The conditioning of GSI by the DT bit allows software to explicitly allow a blocking gating
storage reference to be resumed without causing an exception, by clearing DT before restarting the TC.

When a load or store is aborted, the abort is signalled to the storage subsystem, such that the operation can unambig-
uously either complete or be abandoned without any side-effects. If a load operation is abandoned, any hardware
interlocks on the load dependence are released, so that the destination register can be used as an operand source, with
its pre-load value.

On an exception resulting in an aborted and abandoned load/store, the program counter as seen by the EPC register
and the branch delay state as seen by the Cause.BD bit are set so that the execution of an ERET by the instruction
stream associated with the TC, or a clearing of the TC halted state, will cause a re-issue of the gating load/store.

Gating storage accesses are never cached, and multiple stores to a gating storage address are never merged by a pro-
cessor.

Chapter 10

103

EJTAG and MIPS® MT

10.2 EJTAG Debug Resources

The MIPS EJTAG resources are instantiated per VPE, with the exception of the Debug register. The SSt and OffLine
bits of the Debug register are instantiated per TC. MFC0s and MTC0s of the Debug register reference the SSt and
OffLine bit values corresponding to the bits of the TC issuing the MFC0, with the rest of the register field values
being those of the VPE to which the issuing TC is bound. MFTRs and MTTRs of the Debug register of the target TC
reference the Debug register as seen by the target TC: the SSt and OffLine bits are those of the target TC, and the rest
of the register field values are those of the VPE to which the target TC is bound at the time the MFTR/MTTR is
issued.

The SSt bit state is unaffected by a FORK instruction.

It is implementation-dependent whether EJTAG hardware breakpoint facilities are instantiated per-VPE or shared. If
they are shared, however, the associated Debug exceptions must be delivered to the VPE containing the TC which
triggered the breakpoint.

10.3 Debug Exception Handling

EJTAG Debug exception handling overrides the basic thread scheduling mechanisms of MIPS MT. When a Debug
exception occurs, all thread scheduling is suspended across all VPEs of a processor until Debug mode is cleared. The
XTC fields of the VPEConf0 registers are not affected. If a TC is executing in Debug mode, its Activated and Halted
states are ignored, as are the effects of any DMT or DVPE instruction issued by another TC which may have caused it
to be suspended. This concerns mostly asynchronous Debug exceptions (see below), but it also resolves any races
between a TC being Halted or de-Activated by the action of another TC and the dispatch of a synchronous Debug
exception. A DERET by an otherwise Halted TC is an implicit instruction hazard barrier, so that even if the first
instruction dispatched by the multi-threading scheduler is an MFTR access to the Halted TC, the per-TC state is sta-
ble.

So long as any VPE is running in Debug mode, asynchronous Debug exception requests, e.g., DINT, are ignored by
all VPEs of a processor.

If the SSt bit of a TC is set, a Debug exception will be taken by that TC after any non-Debug mode instruction is exe-
cuted. Other TCs with SSt cleared are scheduled and issue instructions normally according to the scheduling policy in
force. Global single-step operation of a VPE can be achieved by setting SSt for all TCs.

Debug exceptions from data-value EJTAG hardware breakpoints are treated as asynchronous exceptions by a MIPS
MT processor, as imprecise synchronous exceptions are not permitted.

Asynchronous Debug exceptions such as DINT and data-value breakpoints may be serviced by any TC that is bound
to the VPE taking the exception, as the hardware implementation sees fit. This includes TCs that are otherwise
Halted, non-Activated, off-line via the Debug register OffLine bit or bound for use as shadow register sets. This

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

104

allows an EJTAG debugger to get control of VPEs that are otherwise locked-up due to programming errors that result
in no schedulable TCs on the VPE.

While entry into Debug mode does not affect any software-visible MIPS MT state, execution in Debug mode confers
privilege equivalent to the MVP bit being set in the VPEConf0 register.

Appendix A

105

Inter-Thread Communication Storage

Inter-Thread Communication (ITC) Storage is a Gating Storage capability which provides an alternative to
Load-Linked/Store-Conditional synchronization for fine-grained multi-threading. It is invisible to the instruction set
architecture, as it is manipulated by loads and stores, but it is visible to the Privileged Resource Architecture.

A.1 Basic Concepts

As described in the Gating Storage chapter of this specification, the fundamental property of Gating Storage is that it
synchronizes execution streams. Loads and stores to/from gating storage may block unless and until the state of the
storage location corresponds to some set of required conditions for completion. A blocked load or store can be pre-
cisely aborted if necessary, and restarted by the controlling operating system if appropriate.

The main chapters of this specification goes no further in defining Gating Storage semantics. This appendix describes
a reference ITC storage model, an instance of Gating Storage which provides lightweight support for a number of
standard interprocessor and interprocess communication and synchronization primitives.

References to memory pages which map to ITC storage resolve not to main memory, but to a gating store with special
attributes. Each page maps a set of 1 to 32 64-bit storage locations, called cells, each of which can be accessed in one
of 16 ways, called views, using standard load and store instructions. The view is encoded in the low order (and
untranslated) bits 6:3 of the generated memory address, such that the successive views of a cell correspond to succes-
sive 64-bit-aligned addresses.

A.2 An ITC Storage Reference Model

In the MIPS MT ITC reference model, each cell of the ITC store has Empty and Full boolean states associated with it
in addition to the data value of the cell. The cell views are then defined by Table A.1.

Table A.1 ITC Reference Cell Views

Address Bits
6:3 Value ITC Storage Behavior

2#0000 Bypass. Loads and stores do not block, and do not affect Empty/Full states.

2#0001 Control. Read or Write of Status/Control Information:

Data Bit(s) Meaning

0 If set, cell is Empty and will block on an attempt to load as synchronized storage.

1 If set, cell is Full and will block on an attempt to store as synchronized storage.

15:2 Reserved for future architectural definition

63:16 Implementation Dependent State

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

106

Each storage cell could thus be described by the C structure:

struct {
uint64 bypass_cell;
uint64 ctl_cell;
uint64 ef_sync_cell;
uint64 ef_try_cell;
uint64 pv_sync_cell;
uint64 pv_try_cell;
uint64 res_arch[10];

} ITC_cell;

Where all of the defined elements except ctl_cell reference the same underlying storage. implementation-dependent
views may reference additional per-cell state. References to the cell storage may have access types of less than the
cell data width (e.g., LW, LH, LB), with the same Empty/Full and semaphore protocols being enforced on a

2#0010 Empty/Full Synchronized view. Loads will cause the issuing thread to block if cell is Empty, and
set the Empty state on returning the last available load value. Stores will block if the cell is Full,
and set the Full state on the cell accepting the last possible store value. Minimally, a cell can con-
tain a single value.

2#0011 Empty/Full “Try” view. Loads will return a value of zero if cell is Empty, regardless of the actual
data contained. Otherwise load behavior is same as in Empty/Full Synchronized view. Normal
stores to Full locations through the E/F Try view fail silently to update the contents of the cell,
rather than block the thread of execution. SC (Store Conditional) instructions referencing the E/F
Try view will indicate success or failure based solely upon whether the ITC store succeeds or fails
due to the Full state. Otherwise store behavior is same as in Empty/Full Synchronized view.

2#0100 P/V Synchronized view. Loads return the current cell data value if the value is non-zero, and
cause an atomic post-decrement of the cell value. If the cell value is zero, loads block until the cell
takes a non-zero value. Stores cause an atomic increment of the cell value, up to a maximal value
at which they saturate, regardless of the register value stored. P/V loads and stores do not modify
the Empty and Full bits, both of which should be cleared as part of cell initialization for P/V sema-
phore use.
The width of the incremented/decremented field within the ITC cell need not be the full 32 or
64-bit width of the cell. It must, however, implement at least 15 bits of unsigned value. Bits more
significant than the width of the incremented/decremented field are ignored for the purposes of
computing zero/non-zero values in P/V operations.

2#0101 P/V “Try” view. Loads return the current cell data value, even if zero. If the load value is
non-zero, an atomic post-decrement is performed on the cell value. Stores cause a saturating
atomic increment of the cell value, as described for the P/V Synchronized view, and cannot fail.
Loads and stores do not modify the Empty and Full bits, both of which should be cleared as part of
cell initialization for P/V semaphore use.

2#0110 Architecturally Reserved View 0

2#0111 Architecturally Reserved View 1

2#1000 Architecturally Reserved View 2

2#1001 Architecturally Reserved View 3

2#1010 Architecturally Reserved View 4

2#1011 Architecturally Reserved View 5

2#1100 Architecturally Reserved View 6

2#1101 Architecturally Reserved View 7

2#1110 Architecturally Reserved View 8

2#1111 Architecturally Reserved View 9

Table A.1 ITC Reference Cell Views

Address Bits
6:3 Value ITC Storage Behavior

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

107

per-access basis. Store/Load pairs of the same data type to a given ITC address will always reference the same data,
but the byte and halfword ordering within words, and the word ordering within 64-bit doublewords, may be imple-
mentation and endianness-dependent, i.e., a SW followed by a LB from the same ITC address is not guaranteed to be
portable. The effect of writing less than the implemented width of the control view of an ITC cell is implementa-
tion-dependent, and such stores may have UNPREDICTABLE results.

While the design of ITC storage allows references to be expressed in terms of C language constructs, compiler opti-
mizations may generate sequences that break ITC protocols, and great care must be taken if ITC is directly referenced
as “memory” in a high-level language.

Systems which do not support 64-bit loads and stores need not implement all 64 bits of each ITC cell as storage. If
only 32 bits of storage are instantiated per cell, it must be visible in the least significant 32-bit word of each view,
regardless of the endinanness of the processor. The results of referencing the most significant 32 bits of such a cell

view are implementation-dependent. These requirements can be satisfied by ignoring the 22 bit of the address on each
access. In this way a C language cast from a uint64 to a uint32 reference will acquire the data in both big-endian and
little-endian CPU configurations.

Empty and Full bits are distinct so that decoupled multi-entry data buffers, such as FIFOs can be mapped into ITC
storage.

ITC storage can be saved and restored by copying the {bypass_cell, ctl_cell} pair to and from general storage. In the
case of multi-entry FIFO data buffers, each cell must be read using and Empty/Full view until the Control view shows
the cell to be Empty to drain the buffer on a copy. The FIFI state can then be restored by performing a series of
Empty/Full stores to an equivalent FIFO cell, starting in an Empty state. Implementations may provide depth counters
in the implementation-specific bits of the Control view to optimize this process.

The “Try” view exploits the ability of the standard MIPS32 SC instructions to indicate failure of a store operation.
The behavior of conditional stores to non-Try ITC views is implementation-dependent.

A.3 Multiprocessor/Multicore ITC

ITC storage may be strictly local to a processor/core or it may be shared across multiple processors. The “physical
address space” of shared ITC storage should be consistent across all processors sharing the storage. Processors or
cores designed for uniprocessor applications need not export a physical interface to the ITC storage, and can treat it as
a processor-internal resource.

A.4 Interaction with EJTAG Debug Facilities

The Debug state of a processor is not visible to ITC storage logic, and no exceptions are made for Debug mode execu-
tion. If a load or store is issued by a processor in Debug mode to an ITC cell view which stalls, the processor is effec-
tively halted until an exception of sufficiently high priority is delivered to the processor.

Appendix B

108

Revision History

In the left hand page margins of this document you may find vertical change bars to note the location of significant
changes to this document since its last release. Significant changes are defined as those which you should take note of
as you use the MIPS IP. Changes to correct grammar, spelling errors or similar may or may not be noted with change
bars. Change bars will be removed for changes which are more than one revision old.

 Please note: Limitations on the authoring tools make it difficult to place change bars on changes to figures. Change
bars on figure titles are used to denote a potential change in the figure itself. Certain parts of this document (Instruc-
tion set descriptions, EJTAG register definitions) are references to Architecture specifications, and the change bars
within these sections indicate alterations since the previous version of the relevant Architecture document.

Revision Date Description

1.00 September 28, 2005 First official release

1.01 July 28, 2006 Converted to nB1.01 template.

1.02 January 25, 2007 Clarify Status.IXMT definition and converge MIPS64 and MIPS32 semantics
for MFTR and MTTR.

1.04 June 25, 2008 • Add UserLocal to set of non-MIPS MT CP0 resources replicated per TC,
and add copy of UserLocal to FORK semantics.

• Section 5 - Write of TCRestart register clears LLBit.
• Section 5 - multiple LL/SC RMW sequences allowed for multi-TC imple-

mentations.
• Section 5 - SYNC instruction applies to load/store instructions using CCA3

1.05 June 25, 2009 • VPEOpt Table 4.9 - the DWX bits were mislabeled as IWX.
• Added warnings on using MTTR, MFTR instructions on non-HALTED

TCs - might stall indefinitely.

1.06 April 05, 2010 • Make Gating Storage text less MT specific, can be also used by MP systems
as well.

• Added “About This Book” and “Guide to ISA” chapters.
• Added TCOpt Register.
• nanoMIPS edits.

1.10 December 14, 2012 • TCSTatus.TFR bit is inherited from Forking thread.
• R5 changes - MT ASE now MT Module
• MVPControl.STLB - all VPEs now use same SegCtl programmed values

when using Shared TLB.
• Add restrictions to MTTR and MFTR instructions when dealing with 64-bit

FPU. Clean-up of pseudo-code when dealing with 32/64-bit FPRs.

1.11 December 16, 2012 • No Technical content changed:
• Update logos on Cover page
• Update copyright text.

1.12 July 16, 2013 • New cover page and legal text.

1.13 August 30, 2017 • New cover page and legal text.
• Updated page template.
• Updated DMT/EMT and DVPE/EVPE for nanoMIPS,

MIPS® Architecture Extension: nanoMIPS32® Multithreading Technical Reference Manual — Revision 1.17

109

1.14 January 29, 2018 • MFTR rt, rs, u, sel, h (rt is destination)
• MTTR rt, rs, u, sel, h (rt may be destination, rs is source)
• YIELD rt, rs (rt is destination)

1.15 February 20, 2018 • MFTR: fixed typo in the opcode table
• MTTR: exchanged rs and rt in the pseudocode to be consistent with

MD01247

1.16 March 26, 2018 • Updated the Yield instruction.

1.17 April 27, 2018 • Changed confidentiality level to Public.

Revision Date Description

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

