
 

 

 

 

 

 

 

 

AAnnddeeSSttaarr™™  

IInnssttrruuccttiioonn  SSeett  AArrcchhiitteeccttuurree  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Document Number：MA0100-013 

Issued：May 2009 

Copyright© 2007-2009 Andes Technology Corporation. 

All rights reserved 

 



   

AndeStar_ISA_v1.3                Andes Technology Confidential                         I 

Revision History 

Revision 

Number 

Revision 

Date 

Author Revised 

Chapters/Sections 

Description 

V1.3 5/5/2009 CH/Wilson  1. Added LBUP/SBUP 

instructions. 

V1.2 12/31/2008 CH/Wilson  1. Added Baseline V2 instructions. 

V1.1 6/13/2008 CH/Wilson  1. Added N10 latency information. 

2. Added Reduced Register 

configuration description. 

V1.0RB 2/25/2008 CH/Wilson  Added DIV/DIVS instructions 

V 1.0 6/5/2007 CH/Wilson  First version 



   

AndeStar_ISA_v1.3                Andes Technology Confidential                         II 

Table of Contents 

Revision History .................................................................................................................. I 

Table of Contents ................................................................................................................ II 

List of Tables..................................................................................................................... IX 

List of Figures ................................................................................................................... XI 

Preface..............................................................................................................................XII 

Chapter 1 Introduction................................................................................................. 1 

1.1 32/16-Bit ISA.............................................................................................. 2 

1.2 Data Types................................................................................................... 2 

1.3 Registers...................................................................................................... 2 

1.3.1 Reduced Register configuration option .............................................. 5 

1.4 Instruction Classes ...................................................................................... 6 

1.5 Instruction Encoding................................................................................... 6 

1.5.1 32-Bit Instruction Format ................................................................... 6 

1.5.2 16-Bit Instruction Format ................................................................... 8 

1.6 Miscellaneous ............................................................................................. 8 

Chapter 2 32-Bit Baseline Instruction ......................................................................... 9 

2.1 Data-processing Instructions......................................................................11 

2.2 Load and Store Instructions ...................................................................... 13 

2.3 Jump and Branch Instructions................................................................... 16 

2.4 Privilege Resource Access Instructions .................................................... 18 

2.5 Miscellaneous Instructions........................................................................ 19 

Chapter 3 16-Bit Baseline Instruction ....................................................................... 22 

3.1 32-bit Instruction Mapping ....................................................................... 23 

Chapter 4 16/32-Bit Baseline Version 2 Instruction .................................................. 27 

4.1 16-bit Baseline V2 instructions................................................................. 28 

4.2 32-bit Baseline V2 instructions................................................................. 29 

Chapter 5 32-bit ISA Extensions ............................................................................... 31 

5.1 Performance Extension V1 Instructions ................................................... 32 

5.2 Performance Extension V2 Instructions ................................................... 33 

5.3 32-bit String Extension ............................................................................. 34 

Chapter 6 Coprocessor Instructions........................................................................... 35 

Chapter 7 Detail Instruction Description................................................................... 37 

7.1 32-bit Baseline instructions....................................................................... 38 



   

AndeStar_ISA_v1.3                Andes Technology Confidential                         III 

ADD (Addition) ................................................................................................ 39 

ADDI (Add Immediate) .................................................................................... 40 

AND (Bit-wise Logical And)............................................................................ 41 

ANDI (And Immediate) .................................................................................... 42 

BEQ (Branch on Equal) .................................................................................... 43 

BEQZ (Branch on Equal Zero) ......................................................................... 44 

BGEZ (Branch on Greater than or Equal to Zero)............................................ 45 

BGEZAL (Branch on Greater than or Equal to Zero and Link) ....................... 46 

BGTZ (Branch on Greater than Zero) .............................................................. 47 

BLEZ (Branch on Less than or Equal to Zero)................................................. 48 

BLTZ (Branch on Less than Zero) .................................................................... 49 

BLTZAL (Branch on Less than Zero and Link) ............................................... 50 

BNE (Branch on Not Equal) ............................................................................. 51 

BNEZ (Branch on Not Equal Zero) .................................................................. 52 

BREAK (Breakpoint)........................................................................................ 53 

CCTL (Cache Control)...................................................................................... 54 

CMOVN (Conditional Move on Not Zero) ...................................................... 64 

CMOVZ (Conditional Move on Zero).............................................................. 65 

DIV (Unsigned Integer Divide) ........................................................................ 66 

DIVS (Signed Integer Divide) .......................................................................... 67 

DPREF/DPREFI (Data Prefetch)...................................................................... 69 

DSB (Data Serialization Barrier) ...................................................................... 73 

IRET (Interruption Return) ............................................................................... 76 

ISB (Instruction Serialization Barrier).............................................................. 78 

ISYNC (Instruction Data Coherence Synchronization).................................... 80 

J (Jump)............................................................................................................. 84 

JAL (Jump and Link) ........................................................................................ 85 

JR (Jump Register)............................................................................................ 86 

JR.xTOFF (Jump Register and Translation OFF)............................................. 87 

JRAL (Jump Register and Link) ....................................................................... 89 

JRAL.xTON (Jump Register and Link and Translation ON) ........................... 90 

LB (Load Byte) ................................................................................................. 92 

LBI (Load Byte Immediate).............................................................................. 94 

LBS (Load Byte Signed)................................................................................... 96 

LBSI (Load Byte Signed Immediate) ............................................................... 98 

LH (Load Halfword) ....................................................................................... 100 



   

AndeStar_ISA_v1.3                Andes Technology Confidential                         IV 

LHI (Load Halfword Immediate).................................................................... 102 

LHS (Load Halfword Signed)......................................................................... 104 

LHSI (Load Halfword Signed Immediate) ..................................................... 106 

LLW (Load Locked Word).............................................................................. 108 

LMW (Load Multiple Word) ...........................................................................111 

LW (Load Word) ..............................................................................................115 

LWI (Load Word Immediate)...........................................................................117 

LWUP (Load Word with User Privilege Translation) ......................................119 

MADD32 (Multiply and Add to Data Low) ................................................... 121 

MADD64 (Multiply and Add Unsigned)........................................................ 122 

MADDS64 (Multiply and Add Signed).......................................................... 123 

MFSR (Move From System Register) ............................................................ 124 

MFUSR (Move From User Special Register)................................................. 125 

MOVI (Move Immediate)............................................................................... 128 

MSUB32 (Multiply and Subtract to Data Low) ............................................. 129 

MSUB64 (Multiply and Subtract Unsigned) .................................................. 130 

MSUBS64 (Multiply and Subtract Signed) .................................................... 131 

MSYNC (Memory Data Coherence Synchronization) ................................... 132 

MTSR (Move To System Register) ................................................................ 135 

MTUSR (Move To User Special Register) ..................................................... 136 

MUL (Multiply Word to Register) .................................................................. 139 

MULT32 (Multiply Word to Data Low) ......................................................... 140 

MULT64 (Multiply Word Unsigned).............................................................. 141 

MULTS64 (Multiply Word Signed)................................................................ 142 

NOP (No Operation) ....................................................................................... 143 

NOR (Bit-wise Logical Nor) .......................................................................... 144 

OR (Bit-wise Logical Or) ............................................................................... 145 

ORI (Or Immediate)........................................................................................ 146 

RET (Return from Register) ........................................................................... 147 

RET.xTOFF (Return from Register and Translation OFF)............................. 148 

ROTR (Rotate Right)...................................................................................... 150 

ROTRI (Rotate Right Immediate) .................................................................. 151 

SB (Store Byte) ............................................................................................... 152 

SBI (Store Byte Immediate)............................................................................ 154 

SCW (Store Conditional Word) ...................................................................... 156 

SEB (Sign Extend Byte) ................................................................................. 160 



   

AndeStar_ISA_v1.3                Andes Technology Confidential                         V 

SEH (Sign Extend Halfword) ......................................................................... 161 

SETEND (Set data endian) ............................................................................. 162 

SETGIE (Set global interrupt enable)............................................................. 163 

SETHI (Set High Immediate) ......................................................................... 164 

SH (Store Halfword) ....................................................................................... 165 

SHI (Store Halfword Immediate).................................................................... 167 

SLL (Shift Left Logical) ................................................................................. 169 

SLLI (Shift Left Logical Immediate).............................................................. 170 

SLT (Set on Less Than)................................................................................... 171 

SLTI (Set on Less Than Immediate) ............................................................... 172 

SLTS (Set on Less Than Signed) .................................................................... 173 

SLTSI (Set on Less Than Signed Immediate)................................................. 174 

SMW (Store Multiple Word) .......................................................................... 175 

SRA (Shift Right Arithmetic).......................................................................... 179 

SRAI (Shift Right Arithmetic Immediate)...................................................... 180 

SRL (Shift Right Logical)............................................................................... 181 

SRLI (Shift Right Logical Immediate) ........................................................... 182 

STANDBY (Wait For External Event)............................................................ 183 

SUB (Subtraction)........................................................................................... 185 

SUBRI (Subtract Reverse Immediate)............................................................ 186 

SVA (Set on Overflow Add) ........................................................................... 187 

SVS (Set on Overflow Subtract)..................................................................... 188 

SW (Store Word)............................................................................................. 189 

SWI (Store Word Immediate) ......................................................................... 191 

SWUP (Store Word with User Privilege Translation)..................................... 193 

SYSCALL (System Call)................................................................................ 195 

TEQZ (Trap if equal 0) ................................................................................... 196 

TNEZ (Trap if not equal 0) ............................................................................. 197 

TLBOP (TLB Operation)................................................................................ 198 

TRAP (Trap exception)................................................................................... 205 

WSBH (Word Swap Byte within Halfword) .................................................. 206 

XOR (Bit-wise Logical Exclusive Or)............................................................ 207 

XORI (Exclusive Or Immediate) .................................................................... 208 

ZEB (Zero Extend Byte) ................................................................................. 209 

ZEH (Zero Extend Halfword)......................................................................... 210 

7.2 32-bit Performance Extension instructions..............................................211 



   

AndeStar_ISA_v1.3                Andes Technology Confidential                         VI 

ABS (Absolute)............................................................................................... 212 

AVE (Average with Rounding) ....................................................................... 213 

BCLR (Bit Clear)............................................................................................ 214 

BSET (Bit Set) ................................................................................................ 215 

BTGL (Bit Toggle).......................................................................................... 216 

BTST (Bit Test)............................................................................................... 217 

CLIP (Clip Value) ........................................................................................... 218 

CLIPS (Clip Value Signed)............................................................................. 219 

CLO (Count Leading Ones)............................................................................ 220 

CLZ (Count Leading Zeros) ........................................................................... 221 

MAX (Maximum)........................................................................................... 222 

MIN (Minimum) ............................................................................................. 223 

7.3 32-bit Performance Extension Version 2 instructions............................. 224 

BSE (Bit Stream Extraction)........................................................................... 225 

BSP (Bit Stream Packing)............................................................................... 231 

PBSAD (Parallel Byte Sum of Absolute Difference) ..................................... 237 

PBSADA (Parallel Byte Sum of Absolute Difference Accum) ...................... 238 

7.4 32-bit STRING Extension instructions................................................... 239 

7.5 16-bit Baseline instructions..................................................................... 240 

ADD (Add Register) ....................................................................................... 241 

ADDI (Add Immediate) .................................................................................. 242 

BEQS38 (Branch on Equal Implied R5)......................................................... 243 

BEQZ38 (Branch on Equal Zero) ................................................................... 244 

BEQZS8 (Branch on Equal Zero Implied R15).............................................. 245 

BNES38 (Branch on Not Equal Implied R5).................................................. 246 

BNEZ38 (Branch on Not Equal Zero) ............................................................ 247 

BNEZS8 (Branch on Not Equal Zero Implied R15)....................................... 248 

BREAK16 (Breakpoint).................................................................................. 249 

J8 (Jump Immediate)....................................................................................... 250 

JR5 (Jump Register)........................................................................................ 251 

JRAL5 (Jump Register and Link) ................................................................... 252 

LBI333 (Load Byte Immediate Unsigned) ..................................................... 253 

LHI333 (Load Halfword Immediate Unsigned) ............................................. 254 

LWI333 (Load Word Immediate).................................................................... 256 

LWI37 (Load Word Immediate with Implied FP)........................................... 258 

LWI450 (Load Word Immediate).................................................................... 260 



   

AndeStar_ISA_v1.3                Andes Technology Confidential                         VII 

MOV55 (Move Register)................................................................................ 261 

MOVI55 (Move Immediate)........................................................................... 262 

NOP16 (No Operation) ................................................................................... 263 

RET5 (Return from Register) ......................................................................... 264 

SBI333 (Store Byte Immediate)...................................................................... 265 

SEB33 (Sign Extend Byte) ............................................................................. 266 

SEH33 (Sign Extend Halfword) ..................................................................... 267 

SHI333 (Store Halfword Immediate).............................................................. 268 

SLLI333 (Shift Left Logical Immediate)........................................................ 270 

SLT45 (Set on Less Than Unsigned) .............................................................. 271 

SLTI45 (Set on Less Than Unsigned Immediate)........................................... 272 

SLTS45 (Set on Less Than Signed) ................................................................ 273 

SLTSI45 (Set on Less Than Signed Immediate)............................................. 274 

SRAI45 (Shift Right Arithmetic Immediate).................................................. 275 

SRLI45 (Shift Right Logical Immediate) ....................................................... 276 

SUB (Subtract Register) ................................................................................. 277 

SUBI (Subtract Immediate) ............................................................................ 278 

SWI333 (Store Word Immediate) ................................................................... 279 

SWI37 (Store Word Immediate with Implied FP) .......................................... 281 

SWI450 (Store Word Immediate) ................................................................... 283 

X11B33 (Extract the Least 11 Bits) ................................................................ 284 

XLSB33 (Extract LSB)................................................................................... 285 

ZEB33 (Zero Extend Byte)............................................................................. 286 

ZEH33 (Zero Extend Halfword)..................................................................... 287 

7.6 16-bit and 32-bit Baseline Version 2 instructions ................................... 288 

ADDI10S (Add Immediate with Implied Stack Pointer)................................ 289 

LWI37SP (Load Word Immediate with Implied SP) ...................................... 290 

SWI37SP (Store Word Immediate with Implied SP) ...................................... 292 

ADDI.gp (GP-implied Add Immediate) ......................................................... 294 

DIVR (Unsigned Integer Divide to Registers)................................................ 295 

DIVSR (Signed Integer Divide to Registers).................................................. 297 

LBI.gp (GP-implied Load Byte Immediate)................................................... 299 

LBSI.gp (GP-implied Load Byte Signed Immediate)..................................... 300 

LBUP (Load Byte with User Privilege Translation) ....................................... 301 

LHI.gp (GP-implied Load Halfword Immediate) ........................................... 302 

LHSI.gp (GP-implied Load Signed Halfword Immediate)............................. 303 



   

AndeStar_ISA_v1.3                Andes Technology Confidential                         VIII 

LMWA (Load Multiple Word with Alignment Check) ................................... 304 

LWI.gp (GP-implied Load Word Immediate) ................................................. 309 

MADDR32 (Multiply and Add to 32-bit Register)......................................... 310 

MSUBR32 (Multiply and Subtract from 32-bit Register) ...............................311 

MULR64 (Multiply Word Unsigned to Registers) ......................................... 312 

MULSR64 (Multiply Word Signed to Registers) ........................................... 313 

SBI.gp (GP-implied Store Byte Immediate) ................................................... 315 

SBUP (Store Byte with User Privilege Translation) ....................................... 316 

SHI.gp (GP-implied Store Halfword Immediate) ........................................... 317 

SMWA (Store Multiple Word with Alignment Check) ................................... 318 

SWI.gp (GP-implied Store Word Immediate)................................................. 323 

Chapter 8 Instruction Latency for AndesCore Implementations ............................. 324 

8.1 N12 Implementation ............................................................................... 325 

8.1.1 Instruction Latency due to Resource Dependency.......................... 325 

8.1.2 Cycle Penalty due to N12 Pipeline Control Mishaps Recovery ..... 329 

8.2 N10 Implementation ............................................................................... 330 

8.2.1 Dependency-related Instruction Latency ........................................ 330 

8.2.2 Self-stall-related Instruction Latency.............................................. 333 

8.2.3 Cycle Penalty due to N10 Pipeline Control Mishap Recover......... 334 

8.2.4 Cycle Penalty due to Resource Contention..................................... 336 

Chapter 9 AndesCore N12 implementation............................................................. 337 

9.1 CCTL Instruction .................................................................................... 338 

9.2 STANDBY Instruction............................................................................ 338 

Chapter 10 AndesCore N1213 Hardcore Implementation Restriction...................... 339 

10.1 Instruction Restriction............................................................................. 340 

10.2 ISYNC Instruction Note ......................................................................... 340 

 



   

AndeStar_ISA_v1.3                Andes Technology Confidential                         IX 

List of Tables 

Table 1  Andes General Purpose Registers ................................................................... 3 

Table 2  Andes User Special Registers ......................................................................... 4 

Table 3  Andes Status Registers.................................................................................... 4 

Table 4  Registers for Reduced Register Configuration ............................................... 5 

Table 5  ALU Instruction with Immediate (Baseline) .................................................11 

Table 6  ALU Instruction (Baseline)............................................................................11 

Table 7  Shifter Instruction (Baseline) ........................................................................ 12 

Table 8  Multiply Instruction (Baseline) ..................................................................... 12 

Table 9  Divide Instructions ........................................................................................ 13 

Table 10  Load / Store Addressing Mode.................................................................... 13 

Table 11  Load / Store Instruction (Baseline) ............................................................. 13 

Table 12  Load / Store Instruction (Baseline) ............................................................. 14 

Table 13  Load / Store Instruction (Baseline) ............................................................. 15 

Table 14  Load / Store Instruction (Baseline) ............................................................. 15 

Table 15  Load / Store Multiple Word Instruction (Baseline)..................................... 16 

Table 16  Load / Store Instruction for Atomic Updates (Baseline)............................. 16 

Table 17  Load / Store Instructions with User-mode Privilege................................... 16 

Table 18  Jump Instruction (Baseline) ........................................................................ 16 

Table 19  Branch Instruction (Baseline) ..................................................................... 17 

Table 20  Branch with link Instruction (Baseline) ...................................................... 17 

Table 21  Read/Write System Registers (Baseline) .................................................... 18 

Table 22  Jump Register with System Register Update (Baseline) ............................ 18 

Table 23  MMU Instruction (Baseline) ....................................................................... 18 

Table 24  Conditional Move (Baseline) ...................................................................... 19 

Table 25  Synchronization Instruction (Baseline)....................................................... 19 

Table 26  Prefetch Instruction (Baseline).................................................................... 19 

Table 27  NOP Instruction (Baseline) ......................................................................... 20 

Table 28  Serialization Instruction (Baseline)............................................................. 20 

Table 29  Exception Generation Instruction (Baseline) .............................................. 20 

Table 30  Special Return Instruction (Baseline) ......................................................... 20 

Table 31  Cache Control Instruction (Baseline).......................................................... 20 

Table 32  Miscellaneous Instructions (Baseline) ........................................................ 20 

Table 33  Move Instruction (16-Bit) ........................................................................... 23 



   

AndeStar_ISA_v1.3                Andes Technology Confidential                         X 

Table 34  Add/Sub Instruction with Immediate (16-Bit) ............................................ 23 

Table 35  Add/Sub Instruction (16-Bit) ...................................................................... 23 

Table 36  Shift Instruction with Immediate (16-Bit) .................................................. 23 

Table 37  Bit Field Mask Instruction with Immediate (16-Bit) .................................. 23 

Table 38  Load / Store Instruction (16-Bit)................................................................. 24 

Table 39  Load/Store Instruction with Implied FP (16-Bit) ........................................ 25 

Table 40  Branch and Jump Instruction (16-Bit) ........................................................ 25 

Table 41  Compare and Branch Instruction (16-Bit) .................................................. 25 

Table 42  Misc. Instruction (16-Bit) ........................................................................... 26 

Table 43  ALU Instructions......................................................................................... 28 

Table 44  Load/Store Instruction................................................................................. 28 

Table 45  ALU Instructions......................................................................................... 29 

Table 46  Multiply and Divide Instructions ................................................................ 29 

Table 47  Load/Store Instructions ............................................................................... 30 

Table 48  ALU Instruction (Extension) ...................................................................... 32 

Table 49  Performance Extension V2 Instructions...................................................... 33 

Table 51  CCTL SubType Encoding ........................................................................... 54 

Table 52  CCTL SubType Definitions ........................................................................ 55 

Table 53  Group 0 MFUSR definitions..................................................................... 125 

Table 54  Group 1 MFUSR definitions..................................................................... 125 

Table 55  Group 2 MFUSR definitions..................................................................... 126 

Table 56  MSYNC SubType definitions ................................................................... 132 

Table 57  Group 0 MTUSR definitions..................................................................... 136 

Table 58  Group 1 MTUSR definitions..................................................................... 136 

Table 59  Group 2 MTUSR definitions..................................................................... 137 

Table 60  STANDBY instruction SubType definitions............................................. 183 

Table 61  TLBOP SubType Definitions .................................................................... 198 

Table 62  N12 Implementation of CCTL instruction ................................................ 338 

 



   

AndeStar_ISA_v1.3                Andes Technology Confidential                         XI 

List of Figures 

Figure 1. Index type format for Ra of CCTL instruction ......................................... 58 

Figure 2. State diagram of the lock flag of a cache line controlled by CCTL.......... 63 

Figure 3. Basic BSE operation with Rb(30) == 0 .................................................. 226 

Figure 4. Basic BSE operation with Rb(30) == 1 .................................................. 227 

Figure 5. BSE operation extracting all remaining bits with Rb(30) == 0. ............. 227 

Figure 6. BSE operation with the “underflow” condition with Rb(30) == 0. ........ 228 

Figure 7. Basic BSP operation................................................................................ 232 

Figure 8. BSP operation with Rb(30) == 1 ............................................................ 233 

Figure 9. BSP operation filling up Rt. .................................................................... 233 

Figure 10. BSP operation with the “overflow” condition. ............................... 234 

 



   

AndeStar_ISA_v1.3                Andes Technology Confidential                         XII 

Preface 

This preface describe the contents of this manual 

 

About this manual 

This manual provide the information about AndeStar™ instruction set architecture 

and all information contains in this document is subject to change without notice 

Version of AndeStar™ ISA manual 

This manual is version 1.3. 

Contact information 

Please contact Andes Technology Corporation by email at support@andestech.com or on 

the Internet at www.andestech.com for support. 

Copyright notice 

© 2007-2009 Andes Technology Corporation. All rights reserved. 

AndeStar™ ISA contains certain confidential information of Andes Technology 

Corporation. Use of this copyright notice is precautionary and does not imply publication 

or disclosure. No part of this publication may be reproduced, transmitted, transcribed, 

stored in a retrieval system, or translated into any language in any form by any means 

without the written permission of Andes Technology Corporation. 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction   

AndeStar_ISA_v1.3                Andes Technology Confidential                         1 

Chapter 1    

Introduction 

 

This chapter describes overview of AndeStar instruction set and contains the following 

sections 

 

             1.1  32/16-Bit ISA on page 2 
 
             1.2  Data Types on page 2 
 
             1.3  Registers on page 2 
 
             1.4  Instruction Classes on page 6 
 
             1.5  Instruction Encoding on page 6 
 

1.6 Miscellaneous on page 8 



Introduction   

AndeStar_ISA_v1.3                Andes Technology Confidential                         2 

 

1.1   32/16-Bit ISA 

In order to achieve optimal system performance, code density and power efficiency, a set 

of mixed-length (32/16-bit) instructions has been implemented for Andes ISA. 

 

The Andes 32/16-bit mixed-length ISA has the following features: 

 

1. The 32-bit and 16-bit instructions can be freely mixed in a program. 

2. The 16-bit instructions are a frequently used subset of 32-bit instructions. 

3. No 32/16-bit mode switching performance penalty when executing mixed 

32-bit and 16-bit instructions. 

4. The 32/16-bit mixed-length ISA is in a big-endian format. 

5. The ISA is a RISC-style register-based instruction set. 

6. 5-bit register index in 32-bit instruction format. 

7. 5/4/3-bit register index in 16-bit instruction format. 

8. The ISA provides hardware acceleration for a mixed-endian environment. 

 

 

1.2   Data Types 

Andes ISA supports the following data types: 

 1. Integer 

  - Bit (1-bit, b) 

  - Byte (8-bit, B) 

  - Halfword (16-bit, H) 

  - Word (32-bit, W) 

  

  

1.3   Registers 

As a whole, the Andes instructions can access thirty-two 32-bit General Purpose Registers 

(GPR) and four 32-bit User Special Registers (USR). The four 32-bit USRs can be 

combined into two 64-bit registers and used to store 32-bit multiplication results. The 



Introduction   

AndeStar_ISA_v1.3                Andes Technology Confidential                         3 

GPRs will be named from r0 to r31. And the USRs will be named d0.lo, d0.hi, d1.lo, and 

d1.hi. 

 

For the Andes 16-bit instructions, a register index can be 5-bit, 4-bit, or 3-bit. So the 3-bit 

and 4-bit register operand field can only access a subset of the thirty-two GPRs. The 3-bit 

and 4-bit register subsets and its index-number to register-number mappings are listed in 

the following table (Table 1) along with the software usage convention used by Andes 

tool chains. 

 

Table 1  Andes General Purpose Registers 

Register 32/16-bit (5) 16-bit (4) 16-bit (3) Comments 

r0 a0 h0 o0  

r1 a1 h1 o1  

r2 a2 h2 o2  

r3 a3 h3 o3  

r4 a4 h4 o4  

r5 a5 h5 o5 Implied register for beqs38 and 

bnes38 

r6 s0 h6 o6 Saved by callee 

r7 s1 h7 o7 Saved by callee 

r8 s2 h8  Saved by callee 

r9 s3 h9  Saved by callee 

r10 s4 h10  Saved by callee 

r11 s5 h11  Saved by callee 

r12 s6   Saved by callee 

r13 s7   Saved by callee 

r14 s8   Saved by callee 

r15 ta   Temporary register for assembler 

Implied register for slt(s|i)45, 

b[eq|ne]zs8 

r16 t0 h12  Saved by caller 

r17 t1 h13  Saved by caller 

r18 t2 h14  Saved by caller 

r19 t3 h15  Saved by caller 

r20 t4   Saved by caller 



Introduction   

AndeStar_ISA_v1.3                Andes Technology Confidential                         4 

r21 t5   Saved by caller 

r22 t6   Saved by caller 

r23 t7   Saved by caller 

r24 t8   Saved by caller 

r25 t9   Saved by caller 

r26 p0   Reserved for Privileged-mode use. 

r27 p1   Reserved for Privileged-mode use 

r28 s9/fp   Frame Point / Saved by callee 

r29 gp   Global Pointer 

r30 lp   link pointer 

r31 sp   Stack Pointer 

 

The four USRs can only be accessed by the 32-bit instructions. 

 

Table 2  Andes User Special Registers 

Register 32-bit Instr. 16-bit Instr. Comments 

D0 d0.{hi, lo} N/A For multiplication and division 

related instructions (64-bit) 

D1 d1.{hi, lo} N/A For multiplication and division 

related instructions (64-bit) 

 

The Andes ISA assumes an implied Program Counter (PC) which records the address of 

the currently executing instruction. And the value of this implied PC can not be read but 

can be changed by using the control flow instructions. To provide hardware acceleration 

for accessing mixed-endian data in memory, the Andes ISA assumes an implied endian 

mode bit (PSW.BE) which affects the endian behavior of the load/store instructions. This 

implied endian mode bit can not be read but can be changed by using the SETEND 

instruction. 

 

Table 3  Andes Status Registers 

Register 32-bit Instr. 16-bit Instr. Comments 

PC implied implied Affected by control flow 

instructions 

PSW.BE implied implied Affected by SETEND instruction. 

 



Introduction   

AndeStar_ISA_v1.3                Andes Technology Confidential                         5 

1.3.1   Reduced Register configuration option 

 

For small systems which are more sensitive to cost, AndeStar ISA architecture provides a 

configuration option to reduce the total number of general registers to 16. In this 

“Reduced Register” configuration, the general registers that can be used by instructions 

are defined in Table 4. Notice that in the table, r11-r14, and r16-r27 have been removed. 

 

In this Reduced Register configuration, if any of the unimplemented register is used in an 

instruction, a Reserved Instruction exception will be generated. 

 

 

Table 4  Registers for Reduced Register Configuration 

Register 32/16-bit (5) 16-bit (4) 16-bit (3) Comments 

r0 a0 h0 o0  

r1 a1 h1 o1  

r2 a2 h2 o2  

r3 a3 h3 o3  

r4 a4 h4 o4  

r5 a5 h5 o5 Implied register for beqs38 and 

bnes38 

r6 s0 h6 o6 Saved by callee 

r7 s1 h7 o7 Saved by callee 

r8 s2 h8  Saved by callee 

r9 s3 h9  Saved by callee 

r10 s4 h10  Saved by callee 

r15 ta   Temporary register for assembler 

Implied register for slt(s|i)45, 

b[eq|ne]zs8 

r28 fp   Frame pointer / Saved by callee 

r29 gp   Global pointer 

r30 lp   Link pointer 

r31 sp   Stack pointer 

 

 



Introduction   

AndeStar_ISA_v1.3                Andes Technology Confidential                         6 

1.4   Instruction Classes 

The Andes ISA can be classified into the following classes: 

 1. Baseline Instructions 

  - 32-Bit Baseline 

  - 16-Bit Baseline 

 2. Extension Instructions 

  - Performance Extension 

 

 

1.5   Instruction Encoding 

Bit [31] of a 32-bit instruction and Bit [15] of a 16-bit instruction is used to distinguish 

between 32-bit and 16-bit instructions: 

 Bit [31] = 0 => 32-bit instructions 

 Bit [15] = 1 => 16-bit instructions 

 

1.5.1   32-Bit Instruction Format 

A typical 32-bit instruction contains three fields: 

 

0 30:25 (6) 24:0 (25) 

 Bit [31] = 0 => 32-bit ISA 

 Bit [30:25] => OPC [5:0] 

 Bit [24:0] => Operand / Immediate / Sub-op 

 

The 32-bit instruction formats and the meaning of each filed are described below: 

 

� Type-0 Instruction Format 

0 opc_6 {sub_1, imm_24} 

 

� Type-1 Instruction Format 

0 opc_6 rt_5 imm_20 

0 opc_6 rt_5 sub_4 imm_16 



Introduction   

AndeStar_ISA_v1.3                Andes Technology Confidential                         7 

 

� Type-2 Instruction Format 

0 opc_6 rt_5 ra_5 imm_15 

0 opc_6 rt_5 ra_5 {sub_1, imm_14} 

 

� Type-3 Instruction Format 

0 opc_6 rt_5 ra_5 rb_5 sub_10 

0 opc_6 rt_5 ra_5 imm_5 sub_10 

 

� Type-4 Instruction Format 

0 opc_6 rt_5 ra_5 rb_5 rd_5 sub_5 

0 opc_6 rt_5 ra_5 imm1_5 imm2_5 sub_5 

 

� opc_6: 6-bit opcode 

� rt_5: target register in 5-bit index register set 

� ra_5: source register in 5-bit index register set 

� rb_5: source register in 5-bit index register set 

� rd_5: destination register in 5-bit index register set 

� sub_10: 10-bit sub-opcode 

� sub_5: 5-bit sub-opcode 

� sub_4: 4-bit sub-opcode 

� sub_2: 2-bit sub-opcode 

� sub_1: 1-bit sub-opcode 

� imm_24: 24-bit immediate value, for unconditional jump instructions (J, JAL). The 

immediate value is used as the lower 24-bit offset of same 32MB memory block (new 

PC[31:0] = {current PC[31:25], imm_24, 1’b0} 

� imm_20: 20-bit immediate value. Sign-extended to 32-bit for MOVI operations. 

� imm_16: signed PC relative address displacement for branch instructions. 

� imm_15: 15-bit immediate value. Zero extended to 32-bit for unsigned operations, 

while sign extended to 32-bit for signed operations. 

� imm_14: signed PC relative address displacement for branch instructions. 

� imm_5, imm1_5, imm2_5: 5-bit unsigned count value or index value 

 

For the detailed decoding information, please refer to the individual chapters. 

 



Introduction   

AndeStar_ISA_v1.3                Andes Technology Confidential                         8 

1.5.2   16-Bit Instruction Format 

Please see the “16-Bit Baseline Instructions” chapter for more information. 

 

 

1.6   Miscellaneous 

� Instruction addressing is Halfword aligned 

� Integer branch instructions will NOT use conditional codes (use GPR instead) 

� Branch/Jump types 

  - Branch on Registers 

  - Branch destination 

   - PC + Immediate Offset 

  - Jump destination 

   - PC + Immediate Offset 

   - Register 

  - Branch/Jump and link 

� The immediate values of load/store word/halfword are shifted. 

  - lw rt, imm(ra), addr=ra+(imm << 2) 

  - lh rt, imm(ra), addr=ra+(imm << 1) 

� Register Remapping for 16-bit instructions 

  - 32 registers (32-bit instructions) -> 32/16/8 registers (16-bit instructions) 

 



32-Bit Baseline Instructions   

AndeStar_ISA_v1.3                Andes Technology Confidential                         9 

Chapter 2    

32-Bit Baseline Instruction 

This chapter describes 32bit baseline instructions, including Data-processing instructions, 

Load and Store instructions, Jump and Branch Instructions, Privileged Resource Access 

Instructions and Miscellaneous Instructions and contains the following sections 

 

              2.1  Data-processing instructions on page 11 

              2.2  Load and Store Instructions on page 13 

              2.3  Jump and Branch Instructions on page 16 

              2.4  Privileged Resource Access Instructions on page 18 

              2.5  Miscellaneous Instructions on page 19  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



32-Bit Baseline Instructions   

AndeStar_ISA_v1.3                Andes Technology Confidential                         10 

The 32-bit baseline instruction set can be cataloged as follows: 

 1. Data-processing: (with Register or Immediate) 

� Basic ALU  :  ADD, SUB, AND, NOR, OR, XOR… 

� Shifter   :  ROTR, SLL, SRL, SRA… 

� Compare   :  SLT, SLTS 

� Set constant  :  SETHI, MOVI 

� Multiply (& Add) :  MUL, MULT64, MADD64… 

� Divide   :  DIV, DIVS 

 

 2. Load and Store: 

� 5 types of load element:  

� Word 

� Unsigned Halfword and Signed Halfword 

� Unsigned Byte and Signed Byte 

� 3 types of store element:  

� Word 

� Halfword 

� Byte 

� 2 types of address calculation: 

� Register + Immediate 

� Register + (Register << shift) 

� 2 types of addressing mode: 

� Regular (After-Increment) and no base register upate 

� Before-Increment and base register update 

� Additional features: 

� Load/Store multiple word    : LMW, SMW 

� Load/Store word for atomic operation  : LLW, SCW 

� Load/Store word with user mode privilege : LWUP, SWUP 

 

 3. Jump and Branch: 

� Unconditional jump   : J, JR 

� Unconditional function call jump : JAL, JRAL 

� Unconditional function return : RET 

� Conditional branch    : BEQ, BNE, BEQZ, BNEZ 

� Conditional function call branch : BGEZAL, BLTZAL 

 



32-Bit Baseline Instructions   

AndeStar_ISA_v1.3                Andes Technology Confidential                         11 

 4. Privileged Resource Access: 

� System control : MFSR, MTSR 

� TLB management : TLBOP 

    

 5. Miscellaneous: 

� Conditional move  : CMOVZ, CMOVN 

� Synchronization  : MSYNC, ISYNC 

� Prefetch    : DPREF, DPREFI 

� No operation   : NOP 

� Serialization   : ISB, DSB 

� Exception generation : SYSCALL, BREAK… 

� Special return   : IRET, RET.TOFF, RET.ITOFF 

� Cache control   : CCTL 

� Miscellaneous   : SETEND, SETGIE, STANDBY 

 

2.1   Data-processing Instructions 

 

Table 5  ALU Instruction with Immediate (Baseline) 

Mnemonic Instruction Operation 

ADDI   rt5, ra5, imm15s Add Immediate rt5 = ra5 + SE(imm15s) 

SUBRI  rt5, ra5, imm15s Subtract Reverse 

Immediate 

rt5 = SE(imm15s) – ra5 

ANDI   rt5, ra5, imm15u And Immediate rt5 = ra5 && ZE(imm15u) 

ORI     rt5, ra5, imm15u Or Immediate rt5 = ra5 || ZE(imm15u) 

XORI   rt5, ra5, imm15u Exclusive Or Immediate rt5 = ra5 ^ ZE(imm15u) 

SLTI    rt5, ra5, imm15s Set on Less Than Immediate rt5 = (ra5 (unsigned)< SE(imm15s)) ? 1 : 0 

SLTSI   rt5, ra5, imm15s Set on Less Than Signed 

Immediate 

rt5 = (ra5 (signed)< SE(imm15s)) ? 1 : 0 

MOVI    rt5, imm20s Move Immediate rt5 = SE(imm20s) 

SETHI   rt5, imm20u Set High Immediate rt5 = {imm20u, 12’b0} 

 

Table 6  ALU Instruction (Baseline) 

Mnemonic Instruction Operation 

ADD     rt5, ra5, rb5 Add rt5 = ra5 + rb5 



32-Bit Baseline Instructions   

AndeStar_ISA_v1.3                Andes Technology Confidential                         12 

SUB     rt5, ra5, rb5 Subtract rt5 = ra5 - rb5 

AND     rt5, ra5, rb5 And rt5 = ra5 && rb5 

NOR     rt5, ra5, rb5 Nor rt5 = ~(ra5 || rb5) 

OR      rt5, ra5, rb5 Or rt5 = ra5 || rb5 

XOR     rt5, ra5, rb5 Exclusive Or rt5 = ra5 ^ rb5 

SLT     rt5, ra5, rb5 Set on Less Than rt5 = (ra5 (unsigned)< rb5) ? 1 : 0 

SLTS    rt5, ra5, rb5 Set on Less Than Signed rt5 = (ra5 (signed)< rb5) ? 1 : 0 

SVA     rt5, ra5, rb5 Set on Overflow Add rt5 = ((ra5 + rb5) overflow)? 1 : 0 

SVS     rt5, ra5, rb5 Set on Overflow Subtract rt5 = ((ra5 - rb5) overflow))? 1 : 0 

SEB     rt5, ra5 Sign Extend Byte rt5 = SE(ra5[7:0]) 

SEH     rt5, ra5 Sign Extend Halfword rt5 = SE(ra5[15:0]) 

ZEB     rt5, ra5 

(alias of ANDI  rt5, ra5, 

0xFF) 

Zero Extend Byte rt5 = ZE(ra5[7:0]) 

ZEH     rt5, ra5 Zero Extend Halfword rt5 = ZE(ra5[15:0]) 

WSBH  rt5, ra5 Word Swap Byte within 

Halfword 

rt5 = {ra5[23:16], ra5[31:24], ra5[7:0], 

ra5[15:8]} 

 

Table 7  Shifter Instruction (Baseline) 

Mnemonic Instruction Operation 

SLLI   rt5, ra5, imm5u Shift Left Logical 

Immediate 

rt5 = ra5 << imm5u 

SRLI   rt5, ra5, imm5u Shift Right Logical 

Immediate 

rt5 = ra5 (logic)>> imm5u 

SRAI   rt5, ra5, imm5u Shift Right Arithmetic 

Immediate 

rt5 = ra5 (arith)>> imm5u 

ROTRI  rt5, ra5, imm5u Rotate Right Immediate rt5 = ra5 >>| imm5u 

SLL    rt5, ra5, rb5 Shift Left Logical rt5 = ra5 << rb5(4,0) 

SRL    rt5, ra5, rb5 Shift Right Logical rt5 = ra5 (logic)>> rb5(4,0) 

SRA    rt5, ra5, rb5 Shift Right Arithmetic rt5 = ra5 (arith)>> rb5(4,0) 

ROTR   rt5, ra5, rb5 Rotate Right rt5 = ra5 >>| rb5(4,0) 

 

Table 8  Multiply Instruction (Baseline) 

Mnemonic Instruction Operation 

MUL     rt5, ra5, rb5 Multiply Word to Register rt5 = ra5 * rb5 



32-Bit Baseline Instructions   

AndeStar_ISA_v1.3                Andes Technology Confidential                         13 

MULTS64  d1, ra5, rb5 Multiply Word Signed d1 = ra5 (signed)* rb5 

MULT64   d1, ra5, rb5 Multiply Word d1 = ra5 (unsigned)* rb5 

MADDS64  d1, ra5, rb5 Multiply and Add Signed d1 = d1 + ra5 (signed)* rb5 

MADD64   d1, ra5, rb5 Multiply and Add d1 = d1 + ra5 (unsigned)* rb5 

MSUBS64  d1, ra5, rb5 Multiply and Subtract Signed d1 = d1 - ra5 (signed)* rb5 

MSUB64   d1, ra5, rb5 Multiply and Subtract d1 = d1 - ra5 (unsigned)* rb5 

MULT32   d1, ra5, rb5 Multiply Word d1.LO = ra5 * rb5 

MADD32   d1, ra5, rb5 Multiply and Add d1.LO = d1.LO + ra5 * rb5 

MSUB32   d1, ra5, rb5 Multiply and Subtract d1.LO = d1.LO - ra5 * rb5 

MFUSR    rt5, USR Move From User Special Register rt5 = USReg[USR] 

MTUSR    rt5, USR Move To User Special Register USReg[USR] = rt5 

 

Table 9  Divide Instructions 

Mnemonic Instruction Operation 

DIV   Dt, ra5, rb5 Unsigned Integer Divide Dt.L = ra5 (unsigned) / rb5; 

Dt.H = ra5 (unsigned) mod / rb5; 

DIVS  Dt, ra5, rb5 Signed Integer Divide Dt.L = ra5 (signed) / rb5; 

Dt.H = ra5 (signed) / rb5; 

 

 

 

2.2   Load and Store Instructions 

 

Table 10  Load / Store Addressing Mode 

Mode Operand Type Index Left Shift (0-3 bits) Before Increment with Base Update 

1 Base Register + Immediate No No 

2 Base Register + Immediate No Yes 

3 Base Register + Register Yes No 

4 Base Register + Register Yes Yes 

 

Table 11  Load / Store Instruction (Baseline) 

Mnemonic Instruction Operation 

LWI   rt5, [ra5 + (imm15s << Load Word Immediate address = ra5 + SE(imm15s << 2) 



32-Bit Baseline Instructions   

AndeStar_ISA_v1.3                Andes Technology Confidential                         14 

2)] rt5 = Word-memory(address) 

LHI   rt5, [ra5 + (imm15s << 

1)] 

Load Halfword Immediate address = ra5 + SE(imm15s << 1) 

rt5 = ZE(Halfword-memory(address)) 

LHSI  rt5, [ra5 + (imm15s << 

1)] 

Load Halfword Signed 

Immediate 

address = ra5 + SE(imm15s << 1) 

rt5 = SE(Halfword-memory(address)) 

LBI   rt5, [ra5 + imm15s] Load Byte Immediate address = ra5 + SE(imm15s) 

rt5 = ZE(Byte-memory(address)) 

LBSI  rt5, [ra5 + imm15s] Load Byte Signed 

Immediate 

address = ra5 + SE(imm15s) 

rt5 = SE(Byte-memory(address)) 

SWI   rt5, [ra5 + (imm15s 

<< 2)] 

Store Word Immediate address = ra5 + SE(imm15s << 2) 

Word-memory(address) = rt5 

SHI   rt5, [ra5 + (imm15s << 

1)] 

Store Halfword Immediate address = ra5 + SE(imm15s << 1) 

Halfword-memory(address) = rt5[15:0] 

SBI   rt5, [ra5 + imm15s] Store Byte Immediate address = ra5 + SE(imm15s) 

Byte-memory(address) = rt5[7:0] 

 

Table 12  Load / Store Instruction (Baseline) 

Mnemonic Instruction Operation 

LWI.bi   rt5, [ra5], 

           (imm15s << 2) 

Load Word Immediate with 

Post Increment 

rt5 = Word-memory(ra5) 

ra5 = ra5 + SE(imm15s << 2) 

LHI.bi   rt5, [ra5], 

           (imm15s << 1) 

Load Halfword Immediate 

with Post Increment 

rt5 = ZE(Halfword-memory(ra5)) 

ra5 = ra5 + SE(imm15s << 1) 

LHSI.bi  rt5, [ra5], 

           (imm15s << 1) 

Load Halfword Signed 

Immediate with Post 

Increment 

rt5 = SE(Halfword-memory(ra5)) 

ra5 = ra5 + SE(imm15s << 1) 

LBI.bi    rt5, [ra5], 

           imm15s 

Load Byte Immediate with 

Post Increment 

rt5 = ZE(Byte-memory(ra5)) 

ra5 = ra5 + SE(imm15s) 

LBSI.bi  rt5, [ra5], 

           imm15s 

Load Byte Signed 

Immediate with Post 

Increment 

rt5 = SE(Byte-memory(ra5)) 

ra5 = ra5 + SE(imm15s) 

SWI.bi   rt5, [ra5], 

           (imm15s << 2) 

Store Word Immediate with 

Post Increment 

Word-memory(ra5) = rt5 

ra5 = ra5 + SE(imm15s << 2) 

SHI.bi    rt5, [ra5], 

           (imm15s << 1) 

Store Halfword Immediate 

with Post Increment 

Halfword-memory(ra5) = rt5[15:0] 

ra5 = ra5 + SE(imm15s << 1) 

SBI.bi    rt5, [ra5], Store Byte Immediate with Byte-memory(ra5) = rt5[7:0] 



32-Bit Baseline Instructions   

AndeStar_ISA_v1.3                Andes Technology Confidential                         15 

           imm15s Post Increment ra5 = ra5 + SE(imm15s) 

 

Table 13  Load / Store Instruction (Baseline) 

Mnemonic Instruction Operation 

LW   rt5, [ra5 + (rb5 << sv)] Load Word address = ra5 + (rb5 << sv) 

rt5 = Word-memory(address) 

LH   rt5, [ra5 + (rb5 << sv)] Load Halfword address = ra5 + (rb5 << sv) 

rt5 = ZE(Halfword-memory(address)) 

LHS  rt5, [ra5 + (rb5 << sv)] Load Halfword Signed address = ra5 + (rb5 << sv) 

rt5 = SE(Halfword-memory(address)) 

LB   rt5, [ra5 + (rb5 << sv)] Load Byte address = ra5 + (rb5 << sv) 

rt5 = ZE(Byte-memory(address)) 

LBS  rt5, [ra5 + (rb5 << sv)] Load Byte Signed address = ra5 + (rb5 << sv) 

rt5 = SE(Byte-memory(address)) 

SW   rt5, [ra5 + (rb5 << sv)] Store Word address = ra5 + (rb5 << sv) 

Word-memory(address) = rt5 

SH   rt5, [ra5 + (rb5 << sv)] Store Halfword address = ra5 + (rb5 << sv) 

Halfword-memory(address) = rt5[15:0] 

SB   rt5, [ra5 + (rb5 << sv)] Store Byte address = ra5 + (rb5 << sv) 

Byte-memory(address) = rt5[7:0] 

 

Table 14  Load / Store Instruction (Baseline) 

Mnemonic Instruction Operation 

LW.bi   rt5, [ra5], 

           rb5<<sv 

Load Word with Post 

Increment 

rt5 = Word-memory(ra5) 

ra5 = ra5 + (rb5 << sv) 

LH.bi   rt5, [ra5], 

           rb5<<sv 

Load Halfword with Post 

Increment 

rt5 = ZE(Halfword-memory(ra5)) 

ra5 = ra5 + (rb5 << sv) 

LHS.bi  rt5, [ra5], 

           rb5<<sv 

Load Halfword Signed with 

Post Increment 

rt5 = SE(Halfword-memory(ra5)) 

ra5 = ra5 + (rb5 << sv) 

LB.bi    rt5, [ra5], 

           rb5<<sv 

Load Byte with Post 

Increment 

rt5 = ZE(Byte-memory(ra5)) 

ra5 = ra5 + (rb5 << sv) 

LBS.bi  rt5, [ra5], 

           rb5<<sv 

Load Byte Signed with Post 

Increment 

rt5 = SE(Byte-memory(ra5)) 

ra5 = ra5 + (rb5 << sv) 

SW.bi   rt5, [ra5], 

           rb5<<sv 

Store Word with Post 

Increment 

Word-memory(ra5) = rt5 

ra5 = ra5 + (rb5 << sv) 



32-Bit Baseline Instructions   

AndeStar_ISA_v1.3                Andes Technology Confidential                         16 

SH.bi    rt5, [ra5], 

           rb5<<sv 

Store Halfword with Post 

Increment 

Halfword-memory(ra5) = rt5[15:0] 

ra5 = ra5 + (rb5 << sv) 

SB.bi    rt5, [ra5], 

           rb5<<sv 

Store Byte with Post 

Increment 

Byte-memory(ra5) = rt5[7:0] 

ra5 = ra5 + (rb5 << sv) 

 

Table 15  Load / Store Multiple Word Instruction (Baseline) 

Mnemonic Instruction Operation 

LMW.{b|a}{i|d}{m?} Rb5, 

[Ra5], Re5, Enable4 

Load Multiple Word (before/after; 

in/decrement; update/no-update base) 

See page 111 for details. 

SMW.{b|a}{i|d}{m?} Rb5, 

[Ra5], Re5, Enable4 

Store Multiple Word (before/after; 

in/decrement; update/no-update base) 

See page 175 for details. 

 

Table 16  Load / Store Instruction for Atomic Updates (Baseline) 

Mnemonic Instruction Operation 

LLW  rt5, [ra5 + ( rb5 << sv)] Load Locked Word  

SCW  rt5, [ra5 + (rb5 << sv)] Store Condition Word  

 

Table 17  Load / Store Instructions with User-mode Privilege 

Mnemonic Instruction Operation 

LWUP  rt5, [ra5 + (rb5 << sv)] Load Word with 

User-mode Privilege 

Translation 

Equavalent to LW instruction but with the 

user mode privilege address translation. 

See page 119 for details. 

SWUP  rt5, [ra5 + (rb5 << sv)] Store Word with 

User-mode Privilege 

Translation 

Equavalent to SW instruction but with the 

user mode privilege address translation. 

See page 193 for details. 

 

 

 

2.3   Jump and Branch Instructions 

 

Table 18  Jump Instruction (Baseline) 

Mnemonic Instruction Operation 

J        imm24s Jump PC = PC + SE(imm24s << 1) 



32-Bit Baseline Instructions   

AndeStar_ISA_v1.3                Andes Technology Confidential                         17 

JAL      imm24s Jump and Link LP = next sequential PC (PC + 4); 

PC = PC + SE(imm24s << 1) 

JR        rb5 Jump Register PC = rb5 

RET      rb5 Return from Register PC = rb5 

JRAL   rb5 

JRAL   rt5, rb5 

Jump Register and Link jaddr = rb5; 

LP = PC + 4; or rt5 = PC + 4; 

PC = jaddr; 

 

Table 19  Branch Instruction (Baseline) 

Mnemonic Instruction Operation 

BEQ   rt5, ra5, imm14s Branch on Equal ( 2 

Register ) 

PC = (rt5 == ra5)? (PC + SE(imm14s << 

1)) : (PC + 4) 

BNE   rt5, ra5, imm14s Branch on Not Equal ( 2 

Register ) 

PC = (rt5 =! ra5)? (PC + SE(imm14s << 

1)) : (PC + 4) 

BEQZ  rt5, imm16s Branch on Equal Zero PC = (rt5==0)? (PC + SE(imm16s << 1)) : 

(PC + 4) 

BNEZ  rt5, imm16s Branch on Not Equal Zero PC = (rt5 =! 0)? (PC + SE(imm16s << 1)) : 

(PC + 4) 

BGEZ  rt5, imm16s Branch on Greater than or 

Equal to Zero 

PC = (rt5 (signed)>= 0)? (PC + 

SE(imm16s << 1)) : (PC + 4) 

BLTZ  rt5, imm16s Branch on Less than Zero PC = (rt5 (signed)< 0)? (PC + 

sign-ext(imm16s << 1)) : (PC + 4) 

BGTZ  rt5, imm16s Branch on Greater than 

Zero 

PC = (rt5 (signed)> 0)? (PC + SE(imm16s 

<< 1)) : (PC + 4) 

BLEZ  rt5, imm16s Branch on Less than or 

Equal to Zero 

PC = (rt5 (signed)<= 0)? (PC + 

SE(imm16s << 1)) : (PC + 4) 

 

Table 20  Branch with link Instruction (Baseline) 

Mnemonic Instruction Operation 

   

BGEZAL rt5, imm16s Branch on Greater than or 

Equal to Zero and Link 

LP = next sequential PC (PC + 4); 

PC = (rt5 (signed)>= 0)? (PC + 

SE(imm16s << 1)), (PC + 4); 

BLTZAL rt5, imm16s Branch on Less than Zero 

and Link 

LP = next sequential PC (PC +4); 

PC = (rt5 (signed)< 0)? (PC + SE(imm16s 



32-Bit Baseline Instructions   

AndeStar_ISA_v1.3                Andes Technology Confidential                         18 

<< 1)), (PC + 4); 

 

 

2.4   Privilege Resource Access Instructions 

 

 Table 21  Read/Write System Registers (Baseline) 

Mnemonic Instruction Operation 

MFSR    rt5, SRIDX Move from System 

Register 

rt5 = SR[SRIDX] 

MTSR    rt5, SRIDX  Move to System Register SR[SRIDX] = rt5 

 

Table 22  Jump Register with System Register Update (Baseline) 

Mnemonic Instruction Operation 

JR.ITOFF  rb5 Jump Register and Instruction 

Translation OFF 

PC = rb5; 

PSW.IT = 0; 

JR.TOFF  rb5  Jump Register and Translation 

OFF 

PC = rb5; 

PSW.IT = 0, PSW.DT = 0; 

JRAL.ITON   rb5 

JRAL.ITON   rt5, rb5 

Jump Register and Link and 

Instruction Translation ON 

jaddr = rb5; 

LP = PC+4 or rt5 = PC+4; 

PC = jaddr; 

PSW.IT = 1; 

JRAL.TON   rb5 

JRAL.TON   rt5, rb5 

Jump Register and Link and 

Translation ON 

jaddr = rb5; 

LP = PC+4 or rt5 = PC+4; 

PC = jaddr; 

PSW.IT = 1, PSW.DT = 1; 

 

 

Table 23  MMU Instruction (Baseline) 

Mnemonic Instruction Operation 

TLBOP   Ra, 

          TargetRead (TRD) 

Read targeted TLB entry  

TLBOP   Ra, 

         TargetWrite (TWR) 

Write targeted TLB entry  

TLBOP   Ra, Write PTE into a TLB entry  



32-Bit Baseline Instructions   

AndeStar_ISA_v1.3                Andes Technology Confidential                         19 

          RWrite (RWR) 

TLBOP   Ra, 

       RWriteLock (RWLK) 

Write PTE into a TLB entry 

and lock 

 

TLBOP   Ra, 

          Unlock (UNLK) 

Unlock a TLB entry  

TLBOP   Rt, Ra, 

          Probe (PB) 

Probe TLB entry  

TLBOP   Ra, 

          Invalidate (INV) 

Invalidate TLB entries Invalidate the TLB entry containing VA 

stored in Rx. 

TLBOP   FlushAll (FLUA) Flush all TLB entries except 

locked entries 

 

LD_VLPT Load VLPT page table 

(optional instruction) 

Load VLPT page table which always goes 

through data TLB translation. On TLB 

miss, generate Double TLB miss exception 

 

2.5   Miscellaneous Instructions 

 

Table 24  Conditional Move (Baseline) 

Mnemonic Instruction Operation 

CMOVZ   rt5, ra5, rb5 Conditional Move on Zero rt5 = ra5 if (rb5 == 0) 

CMOVN   rt5, ra5, rb5 Conditional Move on Not 

Zero 

rt5 = ra5 if (rb5 != 0) 

 

Table 25  Synchronization Instruction (Baseline) 

Mnemonic Instruction Operation 

MSYNC Memory Synchronize Synchronize Shared Memory 

ISYNC Instruction Synchronize Synchronize Caches to Make Instruction 

Stream Writes Effective 

 

Table 26  Prefetch Instruction (Baseline) 

Mnemonic Instruction Operation 

DPREFI  [ra5 + imm15s] Data Prefetch Immediate  

DPREF   [ra5 + (rb5 << si)] Data Prefetch  

 



32-Bit Baseline Instructions   

AndeStar_ISA_v1.3                Andes Technology Confidential                         20 

Table 27  NOP Instruction (Baseline) 

Mnemonic Instruction Operation 

NOP 

(alias of SRLI  R0, R0, 0) 

No Operation No Operation 

 

 Table 28  Serialization Instruction (Baseline) 

Mnemonic Instruction Operation 

DSB Data Serialization Barrier  

ISB Instruction Serialization 

Barrier 

 

 

Table 29  Exception Generation Instruction (Baseline) 

Mnemonic Instruction Operation 

BREAK Breakpoint  

SYSCALL System Call  

TRAP Trap Always  

TEQZ Trap on Equal Zero  

TNEZ Trap on Not Equal Zero  

 

Table 30  Special Return Instruction (Baseline) 

Mnemonic Instruction Operation 

IRET Interruption Return Return from Interruption (exception or 

interrupt). Please see page 76. 

RET.ITOFF   Rb5 Return and turn off instruction 

address translation 

PC = Rb5, PSW.IT = 0 

(page 148) 

RET.TOFF   Rb5 Return and turn off address 

translation (instruction/data) 

PC = Rb5, PSW.IT = 0, PSW.DT = 0 

(page 148) 

 

Table 31  Cache Control Instruction (Baseline) 

Mnemonic Instruction Operation 

CCTL Cache Control Read, write, and control cache states. 

Please see page 54. 

 

Table 32  Miscellaneous Instructions (Baseline) 

Mnemonic Instruction Operation 



32-Bit Baseline Instructions   

AndeStar_ISA_v1.3                Andes Technology Confidential                         21 

SETEND.B 

SETEND.L 

Atomic set or clear of 

PSW.BE bit 

PSW.BE = 1; // SETEND.B 

PSW.BE = 0; // SETEND.L 

SETGIE.E 

SETGIE.D 

Atomic set or clear of 

PSW.GIE bit 

PSW.GIE = 1; // SETGIE.E 

PSW.GIE = 0; // SETGIE.D 

STANDBY Wait for External Event Enter standby state and wait for external 

event. Please see page 183. 

  

 



16-Bit Baseline Instructions   

AndeStar_ISA_v1.3                Andes Technology Confidential                         22 

Chapter 3     

16-Bit Baseline Instruction 

This chapter describes 16bit baseline instructions and contains the following sections 

 

                  3.1  32-bit instruction Mapping on page 23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



16-Bit Baseline Instructions   

AndeStar_ISA_v1.3                Andes Technology Confidential                         23 

The Andes 16-bit instruction set is a subset of the 32-bit instruction set. So every 16-bit 

instruction can be properly mapped onto a corresponding 32-bit instruction. The 

mappings are listed in the next section. 

 

3.1   32-bit Instruction Mapping 

Table 33  Move Instruction (16-Bit) 

Mnemonic Instruction 32-Bit Operation 

MOVI55  rt5, imm5s Move Immediate MOVI        rt5, SE(imm5s) 

MOV55   rt5, ra5 Move ADDI/ORI    rt5, ra5, 0 

 

Table 34  Add/Sub Instruction with Immediate (16-Bit) 

Mnemonic Instruction 32-Bit Operation 

ADDI45   rt4, imm5u Add Word Immediate ADDI     rt5, rt5, ZE(imm5u) 

ADDI333  rt3, ra3, imm3u Add Word Immediate ADDI     rt5, ra5, ZE(imm3u) 

SUBI45   rt4, imm5u Subtract Word Immediate ADDI     rt5, rt5, NEG(imm5u) 

SUBI333  rt3, ra3, imm3u Subtract Word Immediate ADDI     rt5, ra5, NEG(imm3u) 

 

Table 35  Add/Sub Instruction (16-Bit) 

Mnemonic Instruction 32-Bit Operation 

ADD45   rt4, rb5 Add Word ADD      rt5, rt5, rb5 

ADD333  rt3, ra3, rb3 Add Word ADD      rt5, ra5, rb5 

SUB45   rt4, rb5 Subtract Word SUB       rt5, rt5, rb5 

SUB333  rt3, ra3, rb3 Subtract Word SUB       rt5, ra5, rb5 

 

Table 36  Shift Instruction with Immediate (16-Bit) 

Mnemonic Instruction 32-Bit Operation 

SRAI45   rt4, imm5u Shift Right Arithmetic 

Immediate 

SRAI   rt5, rt5, imm5u 

SRLI45    rt4, imm5u Shift Right Logical Immediate SRLI    rt5, rt5, imm5u 

SLLI333   rt3, ra3, imm3u Shift Left Logical Immediate SLLI    rt5, ra5, ZE(imm3u) 

 

Table 37  Bit Field Mask Instruction with Immediate (16-Bit) 

Mnemonic Instruction 32-Bit Operation 



16-Bit Baseline Instructions   

AndeStar_ISA_v1.3                Andes Technology Confidential                         24 

BFMI333   rt3, ra3, imm3u Bit Field Mask Immediate 

 

 

 

ZEB33  rt3, ra3 

  (BFMI333   rt3, ra3, 0) 

Zero Extend Byte ZEB     rt5, ra5 

ZEH33  rt3, ra3 

  (BFMI333   rt3, ra3, 1) 

Zero Extend Halfword ZEH     rt5, ra5 

SEB33  rt3, ra3 

  (BFMI333   rt3, ra3, 2) 

Sign Extend Byte SEB     rt5, ra5 

SEH33  rt3, ra3 

  (BFMI333   rt3, ra3, 3) 

Sign Extend Halfword SEH     rt5, ra5 

Extension Set (Non-Baseline) 

XLSB33  rt3, ra3 

(BFMI333   rt3, ra3, 4) 

Extract LSB ANDI    rt5, ra5, 1 

X11B33  rt3, ra3 

(BFMI333   rt3, ra3, 5) 

Extract the least 11 Bits ANDI   rt5, ra5, 0x7ff 

 

Table 38  Load / Store Instruction (16-Bit) 

Mnemonic Instruction 32-Bit Operation 

LWI450     rt4, [ra5] Load Word Immediate LWI    rt5, [ra5+0] 

LWI333     rt3, [ra_3+ 

              imm3u] 

Load Word Immediate LWI    rt5, [ra5+ZE(imm3u)] 

LWI333.bi   rt3, [ra_3], 

              imm3u 

Load Word Immediate with 

Post-increment 

LWI.bi   rt5, [ra5], ZE(imm3u) 

LHI333    rt3, [ra_3+ 

              imm3u] 

Load Halfword Immediate LHI    rt5, [ra5+ZE(imm3u)] 

LBI333    rt3, [ra_3+ 

              imm3u] 

Load Byte Immediate LBI    rt5, [ra5+ZE(imm3u)] 

SWI450    rt4, [ra5] Store Word Immediate SWI    rt5, [ra5+0] 

SWI333    rt3, [ra_3+ 

              imm3u] 

Store Word Immediate SWI    rt5, [ra5+ZE(imm3u)] 

SWI333.bi  rt3, [ra_3], 

              imm3u 

Store Word Immediate with 

Post-increment 

SWI.bi   rt5, [ra5], ZE(imm3u) 

SHI333    rt3, [ra_3+ 

              imm3u] 

Store Halfword Immediate SHI     rt5, [ra5+ZE(imm3u)] 

SBI333    rt3, [ra_3+ Store Byte Immediate SBI     rt5, [ra5+ZE(imm3u)] 



16-Bit Baseline Instructions   

AndeStar_ISA_v1.3                Andes Technology Confidential                         25 

              imm3u] 

 

Table 39  Load/Store Instruction with Implied FP (16-Bit) 

Mnemonic Instruction 32-Bit Operation 

LWI37    rt3, [fp+imm7u] Load Word with Implied FP LWI    rt5, [fp+ZE(imm7u)] 

SWI37    rt3, [fp+imm7u] Store Word with Implied FP SWI    rt5, [fp+ZE(imm7u)] 

 

Table 40  Branch and Jump Instruction (16-Bit) 

Mnemonic Instruction 32-Bit Operation 

   

BEQS38   rt3, imm8s Branch on Equal (implied 

r5) 

BEQ       rt5, r5, SE(imm8s) 

(next sequential PC = PC + 2) 

BNES38   rt3, imm8s Branch on Not Equal 

(implied r5) 

BNE       rt5, r5, SE(imm8s) 

(next sequential PC = PC + 2) 

BEQZ38   rt3, imm8s Branch on Equal Zero BEQZ      rt5, SE(imm8s) 

(next sequential PC = PC + 2) 

BNEZ38   rt3, imm8s Branch on Not Equal Zero BNEZ      rt5, SE(imm8s) 

(next sequential PC = PC + 2) 

J8         imm8s Jump Immediate J           SE(imm8s) 

JR5        rb5 Jump Register JR          rb5 

RET5      rb5 Return from Register RET        rb5 

JRAL5     rb5 Jump Register and Link JRAL       rb5 

 

Table 41  Compare and Branch Instruction (16-Bit) 

Mnemonic Instruction 32-Bit Operation 

SLTI45     ra4, imm5u Set on Less Than Unsigned 

Immediate 

SLTI      r15, ra5, ZE(imm5u) 

SLTSI45    ra4, imm5u Set on Less Than Signed 

Immediate 

SLTSI     r15, ra5, ZE(imm5u) 

SLT45      ra4, rb5 Set on Less Than Unsigned SLT       r15, ra5, rb5 

SLTS45     ra4, rb5 Set on Less Than Signed SLTS      r15, ra5, rb5 

BEQZS8    imm8s Branch on Equal Zero 

(implied r15) 

BEQZ      r15, SE(imm8s) 

(next sequential PC = PC + 2) 

BNEZS8    imm8s Branch on Not Equal Zero 

(implied r15) 

BNEZ      r15, SE(imm8s) 

(next sequential PC = PC + 2) 



16-Bit Baseline Instructions   

AndeStar_ISA_v1.3                Andes Technology Confidential                         26 

 

Table 42  Misc. Instruction (16-Bit) 

Mnemonic Instruction 32-Bit Operation 

BREAK16 Breakpoint BREAK 

NOP16 

(alias of SRLI45  R0,0) 

No Operation NOP 

 

 



16/32-Bit Baseline V2 Instructions   

AndeStar_ISA_v1.3                Andes Technology Confidential                         27 

Chapter 4    

16/32-Bit Baseline Version 2 Instruction 

Several new 16/32-bit instructions are added to the Baseline instruction set. This new set 

of Baseline instructions is defined as Baseline version 2 instruction set to distinguish with 

the original Baseline instruction set. 

 

These new instructions are summarized in the following sections. 

 

                  4.1  16-bit Baseline V2 instruction on page 28 

                  4.2  32-bit Baseline V2 instruction on page 29 

 

 



16/32-Bit Baseline V2 Instructions   

AndeStar_ISA_v1.3                Andes Technology Confidential                         28 

4.1   16-bit Baseline V2 instructions 

Table 43  ALU Instructions 

Mnemonic Instruction 32-Bit Operation 

ADDI10.sp  imm10s Add Immediate with 

implied stack pointer 

ADDI        sp, sp, SE(imm10s) 

 

Table 44  Load/Store Instruction 

Mnemonic Instruction 32-Bit Operation 

LWI37.sp  rt3, [+ (imm7u << 

2)] 

Load word Immediate with 

implied SP 

LWI 3T5(Rt3), [SP + ZE(imm7u << 2)] 

SWI37.sp  rt3, [+ (imm7u << 

2)] 

Store word Immediate with 

implied SP 

SWI 3T5(Rt3), [SP + ZE(imm7u << 2)] 

 



16/32-Bit Baseline V2 Instructions   

AndeStar_ISA_v1.3                Andes Technology Confidential                         29 

4.2   32-bit Baseline V2 instructions 

Table 45  ALU Instructions 

Mnemonic Instruction Operation 

ADDI.gp  rt5, imm19s GP-implied Add Immediate rt5 = gp + SE(imm19s) 

 

 

Table 46  Multiply and Divide Instructions 

Mnemonic Instruction Operation 

MULR64  rt5, ra5, rb5 Multiply unsigned word to 

registers 

res = ra5 (unsigned)* rb5; 

if (PSW.BE == 1) { 

(rt5_even, rt5_odd) = res; 

} else { 

(rt5_odd, rt5_even) = res; 

} 

MULSR64  rt5, ra5, rb5 Multiply signed word to 

registers 

res = ra5 (signed)* rb5; 

if (PSW.BE == 1) { 

(rt5_even, rt5_odd) = res; 

} else { 

(rt5_odd, rt5_even) = res; 

} 

MADDR32  rt5, ra5, rb5 Multiply and add to 32-bit 

register 

res = ra5 * rb5 ; 

rt5 = rt5 + res(31,0); 

MSUBR32  rt5, ra5, rb5 Multiply and subtract from 

32-bit register 

res = ra5 * rb5 ; 

rt5 = rt5 - res(31,0); 

DIVR  rt5, rs5, ra5, rb5 Unsigned integer divide to 

registers 

rt5 = Floor(ra5 (unsigned) / rb5); 

rs5 = ra5 (unsigned) mod rb5; 

DIVSR  rt5, rs5, ra5, rb5 Signed integer divide to 

registers 

rt5 = Floor(ra5 (signed) / rb5); 

rs5 = ra5 (signed) mod rb5; 

 

 

 

 

 

 



16/32-Bit Baseline V2 Instructions   

AndeStar_ISA_v1.3                Andes Technology Confidential                         30 

 

Table 47  Load/Store Instructions 

Mnemonic Instruction 32-Bit Operation 

LBI.gp   rt5, [+ imm19s] GP-implied Load unsigned 

Byte Immediate 

address = gp + SE(imm19s) 

rt5 = ZE(Byte-memory(address)) 

LBSI.gp   rt5, [+ imm19s] GP-implied Load signed 

Byte Immediate  

address = gp + SE(imm19s) 

rt5 = SE(Byte-memory(address)) 

LHI.gp   rt5, [+ (imm18s << 

1)] 

GP-implied Load unsigned 

Halfword Immediate 

address = gp + SE(imm18s << 1) 

rt5 = ZE(Halfword-memory(address)) 

LHSI.gp   rt5, [+ (imm18s 

<< 1)] 

GP-implied Load signed 

Halfword Immediate 

address = gp + SE(imm18s << 1) 

rt5 = SE(Halfword-memory(address)) 

LWI.gp   rt5, [+ (imm17s << 

2)] 

GP-implied Load Word 

Immediate 

address = gp + SE(imm17s << 2) 

rt5 = Word-memory(address) 

SBI.gp   rt5, [+ imm19s] GP-implied Store Byte 

Immediate 

address = gp + SE(imm19s) 

Byte-memory(address) = rt5[7:0] 

SHI.gp   rt5, [+ (imm18s << 

1)] 

GP-implied Store Halfword 

Immediate 

address = gp + SE(imm18s << 1) 

Halfword-memory(address) = rt5[15:0] 

SWI.gp   rt5, [+ (imm17s << 

2)] 

GP-implied Store Word 

Immediate 

address = gp + SE(imm17s << 2) 

Word-memory(address) = rt5 

LMWA.{b| a}{i | d}{m?} rb5, 

[ra5], re5, Enable4 

Load multiple word with 

alignment check 

Please see page 304 for details. 

SMWA.{b| a}{i | d}{m?} rb5, 

[ra5], re5, Enable4 

Store multiple word with 

alignment check 

Please see page 318 for details. 

LBUP Rt, [Ra + (Rb << sv)] Load Byte with User 

Privilege 

Equivalent to LB instruction but with the 

user mode privilege address translation. 

See page 301 for details. 

SBUP Rt, [Ra + (Rb << sv)] Store Byte with User 

Privilege 

Equivalent to SB instruction but with the 

user mode privilege address translation. 

See page 316 for details. 

 

 

 

 



32-bit ISA Extensions   

AndeStar_ISA_v1.3                Andes Technology Confidential                         31 

Chapter 5      

32-bit ISA Extensions 

This chapter describes instructions of various 32-bit ISA extensions and contains the 

following sections 

 

                  5.1  Performance Extension V1 instructions on page 32 

                  5.2  Performance Extension V2 instructions on page 33 

                  5.3  String Extension instructions on page 34 

 

                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



32-bit ISA Extensions   

AndeStar_ISA_v1.3                Andes Technology Confidential                         32 

5.1   Performance Extension V1 Instructions 

The performance extension version 1 instructions are used to optimize high level 

language (C / C++) performance. The instructions in this extension are summarized in the 

following sections. 

 

 

Table 48  ALU Instruction (Extension) 

Mnemonic Instruction Operation 

ABS     rt5, ra5 Absolute with Register rt5 = | ra5 | 

AVE     rt5, ra5, rb5 Average two signed 

integers with rounding 

rt5 = (ra5 + rb5 + 1) (arith) >> 1 (page 

213)  

MAX    rt5, ra5, rb5 Return the Larger rt5 = signed-max (ra5, rb5) 

MIN     rt5, ra5, rb5 Return the Smaller rt5 = signed-min (ra5, rb5) 

BSET    rt5, ra5, imm_5 Bit Set rt5 = ra5 || (1 << imm_5) 

BCLR    rt5, ra5, imm_5 Bit Clear rt5 = (ra5 && ~(1 << imm_5)) 

BTGL    rt5, ra5, imm_5 Bit Toggle rt5 = ra5 ^ (1 << imm_5) 

BTST    rt5, ra5, imm_5 Bit Test rt5 = (ra5 && (1 << imm_5))? 1 : 0 

CLIPS     rt5, ra5, imm_5 Clip Value Signed rt5 = (ra5 > 2imm5-1)? 2imm5-1 : ((ra5 < 

-2imm5)? -2imm5 : ra5) 

CLIP      rt5, ra5, imm_5 Clip Value rt5 = (ra5 > 2imm5-1)? 2imm5-1 : ((ra5 < 0)? 

0 : ra5) 

CLZ     rt5, ra5 Counting Leading Zeros in 

Word 

rt5 = COUNT_ZERO_FROM_MSB(ra5) 

CLO    rt5, ra5 Counting Leading Ones in 

Word 

rt5 = COUNT_ONE_FROM_MSB(ra5) 

  



32-bit ISA Extensions   

AndeStar_ISA_v1.3                Andes Technology Confidential                         33 

5.2   Performance Extension V2 Instructions 

The performance extension version 2 instructions are used to optimize multimedia 

encoding/decoding processing related applications. The instructions in this extension are 

summarized in the following sections. 

 

 

Table 49  Performance Extension V2 Instructions. 

Mnemonic Instruction Operation 

BSE     rt5, ra5, rb5 Bitstream Extraction rt5 = Bitstream_Extract(ra5, rb5) 

Please see page 225 for details. 

BSP     rt5, ra5, rb5 Bitstream Packing rt5 = Bitstream_Packing(ra5, rb5) 

Please see page 231 for details. 

PBSAD    rt5, ra5, rb5 Parallel Byte Sum of 

Absolute Difference 

a = ABS(ra5(7,0) – rb5(7,0)); 

b = ABS(ra5(15,8) – rb5(15,8)); 

c = ABS(ra5(23,16) – rb5(23,16)); 

d = ABS(ra5(31,24) – rb5(31,24)); 

rt5 = a + b + c + d; 

PBSADA   rt5, ra5, rb5 Parallel Byte Sum of 

Absolute Difference 

Accumulate 

a = ABS(ra5(7,0) – rb5(7,0)); 

b = ABS(ra5(15,8) – rb5(15,8)); 

c = ABS(ra5(23,16) – rb5(23,16)); 

d = ABS(ra5(31,24) – rb5(31,24)); 

rt5 = rt5 + a + b + c + d; 

 

 

 

 

 



32-bit ISA Extensions   

AndeStar_ISA_v1.3                Andes Technology Confidential                         34 

5.3   32-bit String Extension 

The String Extension instructions are use to optimize text and string processing related 

algorithms. These instructions will be released in the future. 

 

 
 



Coprocessor Instructions   

AndeStar_ISA_v1.3                Andes Technology Confidential                         35 

Chapter 6      

Coprocessor Instructions 

The Coprocessor ISA extension will be released in the future. 

 

 

 

 

 

 

 

 

 



Coprocessor Instructions   

AndeStar_ISA_v1.3                Andes Technology Confidential                         36 

Coprocessors may perform the following instructions: 

 1. Move General Purpose to Coprocessor Register 

 2. Move Coprocessor to General Purpose Register 

 3. Load Coprocessor Register 

 4. Store Coprocessor Register 

 5. Coprocessor Data Operation 

 

Current version does not support Coprocessor instructions 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         37 

Chapter 7      

Detail Instruction Description 

This chapter describes the detail description of each AndeStar instruction and contains the 

following sections 

 

               7.1  32-bit Baseline instructions on page 38 

               7.2  32-bit Performance extension instructions on page 211 

               7.3  32-bit String extension instructions on page 239 

               7.4  16-bit Baseline instructions on page 240 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         38 

7.1   32-bit Baseline instructions 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         39 

ADD (Addition) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19     15 14      10 9        5 4     0 

0 ALU_1 

100000 

Rt Ra Rb 00000 ADD 

00000 

 

Syntax:  ADD Rt, Ra, Rb 

Purpose: Add the content of two registers. 

Description: The content of Ra is added with the content of Rb. And the result is written to 

Rt. 

Operations: 

Rt = Ra + Rb; 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         40 

ADDI (Add Immediate) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19      15 14                                 0 

0 ADDI 

101000 

Rt Ra imm15s 

 

Syntax:  ADDI Rt, Ra, imm15s 

Purpose: Add the content of a register with a signed constant. 

Description: The content of Ra is added with the sign-extended imm15s. And the result is 

written to Rt. 

Operations: 

Rt = Ra + SE(imm15s); 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         41 

AND (Bit-wise Logical And) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19     15 14      10 9        5 4     0 

0 ALU_1 

100000 

Rt Ra Rb 00000 AND 

00010 

 

Syntax:  AND Rt, Ra, Rb 

Purpose: Doing a bit-wise logical AND operation on the content of two registers. 

Description: The content of Ra is combined with the content of Rb using a bit-wise logical 

AND operation. And the result is written to Rt. 

Operations: 

Rt = Ra & Rb; 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         42 

ANDI (And Immediate) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19      15 14                                 0 

0 ANDI 

101010 

Rt Ra imm15u 

 

Syntax:  ANDI Rt, Ra, imm15u 

Purpose: Bit-wise AND of the content of a register with an unsigned constant. 

Description: The content of Ra is bit-wise ANDed with the zero-extended imm15u. And 

the result is written to Rt. 

Operations: 

Rt = Ra & ZE(imm15u); 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         43 

BEQ (Branch on Equal) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19      15 14       13                     0 

0 BR1 

100110 

Rt Ra BEQ 

0 

imm14s 

 

Syntax:  BEQ Rt, Ra, imm14s 

Purpose: It is used for conditional PC-relative branching based on the result of comparing 

the contents of two registers. 

Description: If the content of Rt is equal to the content of Ra, then branch to the target 

address of adding the current instruction address with the sign-extended (imm14s << 1) 

value. The branch range is ± 16K bytes. 

Operations: 

if (Rt == Ra) { 

PC = PC + SE(imm14s << 1); 

} 

 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         44 

BEQZ (Branch on Equal Zero) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19      16 15                        0 

0 BR2 

100111 

Rt BEQZ 

0010 

imm16s 

 

Syntax:  BEQZ Rt, imm16s 

Purpose: It is used for conditional PC-relative branching based on the result of comparing 

the content of a register with zero. 

Description: If the content of Rt is equal to zero, then branch to the target address of 

adding the current instruction address with the sign-extended (imm16s << 1) value. The 

branch range is ± 64K bytes. 

Operations: 

if (Rt == 0) { 

PC = PC + SE(imm16s << 1); 

} 

 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         45 

BGEZ (Branch on Greater than or Equal to Zero) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19      16 15                        0 

0 BR2 

100111 

Rt BGEZ 

0100 

imm16s 

 

Syntax:  BGEZ Rt, imm16s 

Purpose: It is used for conditional PC-relative branching based on the result of comparing 

the content of a register with zero. 

Description: If the content of Rt, treated as a signed integer, is greater than or equal to zero, 

then branch to the target address of adding the current instruction address with the 

sign-extended (imm16s << 1) value. The branch range is ± 64K bytes. 

Operations: 

if (Rt >= 0) { 

PC = PC + SE(imm16s << 1); 

} 

 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         46 

BGEZAL (Branch on Greater than or Equal to Zero and Link) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19      16 15                        0 

0 BR2 

100111 

Rt BGEZAL 

1100 

imm16s 

 

Syntax:  BGEZAL Rt, imm16s 

Purpose: It is used for conditional PC-relative function call branching based on the result 

of comparing the content of a register with zero. 

Description: If the content of Rt, treated as a signed integer, is greater than or equal to zero, 

then branch to the target address of adding the current instruction address with the 

sign-extended (imm16s << 1) value. The branch range is ± 64K bytes. The program 

address of the next sequential instruction (PC+4) is written to R30 (Link Pointer register) 

unconditionally for function call return purpose. 

Operations: 

R30 = PC + 4; 

if (Rt >= 0) { 

PC = PC + SE(imm16s << 1); 

} 

 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         47 

BGTZ (Branch on Greater than Zero) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19      16 15                        0 

0 BR2 

100111 

Rt BGTZ 

0110 

imm16s 

 

Syntax:  BGTZ Rt, imm16s 

Purpose: It is used for conditional PC-relative branching based on the result of comparing 

the content of a register with zero. 

Description: If the content of Rt, treated as a signed integer, is greater than zero, then 

branch to the target address of adding the current instruction address with the 

sign-extended (imm16s << 1) value. The branch range is ± 64K bytes. 

Operations: 

if (Rt > 0) { 

PC = PC + SE(imm16s << 1); 

} 

 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         48 

BLEZ (Branch on Less than or Equal to Zero) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19      16 15                        0 

0 BR2 

100111 

Rt BLEZ 

0111 

imm16s 

 

Syntax:  BLEZ Rt, imm16s 

Purpose: It is used for conditional PC-relative branching based on the result of comparing 

the content of a register with zero. 

Description: If the content of Rt, treated as a signed integer, is less than or equal to zero, 

then branch to the target address of adding the current instruction address with the 

sign-extended (imm16s << 1) value. The branch range is ± 64K bytes. 

Operations: 

if (Rt <= 0) { 

PC = PC + SE(imm16s << 1); 

} 

 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         49 

BLTZ (Branch on Less than Zero) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19      16 15                        0 

0 BR2 

100111 

Rt BLTZ 

0101 

imm16s 

 

Syntax:  BLTZ Rt, imm16s 

Purpose: It is used for conditional PC-relative branching based on the result of comparing 

the content of a register with zero. 

Description: If the content of Rt, treated as a signed integer, is less than zero, then branch 

to the target address of adding the current instruction address with the sign-extended 

(imm16s << 1) value. The branch range is ± 64K bytes. 

Operations: 

if (Rt < 0) { 

PC = PC + SE(imm16s << 1); 

} 

 

Exceptions: None 

Privilege level: All 

Note:  



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         50 

BLTZAL (Branch on Less than Zero and Link) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19      16 15                        0 

0 BR2 

100111 

Rt BLTZAL 

1101 

imm16s 

 

Syntax:  BLTZAL Rt, imm16s 

Purpose: It is used for conditional PC-relative function call branching based on the result 

of comparing the content of a register with zero. 

Description: If the content of Rt, treated as a signed integer, is less than zero, then branch 

to the target address of adding the current instruction address with the sign-extended 

(imm16s << 1) value. The branch range is ± 64K bytes. The program address of the next 

sequential instruction (PC+4) is written to R30 (Link Pointer register) unconditionally for 

function call return purpose. 

Operations: 

R30 = PC + 4; 

if (Rt < 0) { 

PC = PC + SE(imm16s << 1); 

} 

 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         51 

BNE (Branch on Not Equal) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19      15 14       13                     0 

0 BR1 

100110 

Rt Ra BNE 

1 

imm14s 

 

Syntax:  BNE Rt, Ra, imm14s 

Purpose: It is used for conditional PC-relative branching based on the result of comparing 

the contents of two registers. 

Description: If the content of Rt is not equal to the content of Ra, then branch to the target 

address of adding the current instruction address with the sign-extended (imm14s << 1) 

value. The branch range is ± 16K bytes. 

Operations: 

if (Rt != Ra) { 

PC = PC + SE(imm14s << 1); 

} 

 

Exceptions: None 

Privilege level: All 

Note:  



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         52 

BNEZ (Branch on Not Equal Zero) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19      16 15                        0 

0 BR2 

100111 

Rt BNEZ 

0011 

imm16s 

 

Syntax:  BNEZ Rt, imm16s 

Purpose: It is used for conditional PC-relative branching based on the result of comparing 

the content of a register with zero. 

Description: If the content of Rt is not equal to zero, then branch to the target address of 

adding the current instruction address with the sign-extended (imm16s << 1) value. The 

branch range is ± 64K bytes. 

Operations: 

if (Rt != 0) { 

PC = PC + SE(imm16s << 1); 

} 

 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         53 

BREAK (Breakpoint) 

Format: 

 

31 30     25 24      20 19                           5 4           0 

0 MISC 

110010 

00000 SWID BREAK 

01010 

 

Syntax:  BREAK SWID 

Purpose: It is used to generate a Breakpoint exception. 

Description: 

BREAK instruction will unconditionally generate a Breakpoint exception and transfer 

control to the Breakpoint exception handler. The 15-bits SWID is used by software as a 

parameter to distinguish different breakpoint features and usages. 

Operations: 

 Generate_Exception(Breakpoint); 

 

Exceptions: Breakpoint 

 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         54 

CCTL (Cache Control) 

Format: 

 

31 30     25 24      20 19      15 14    11 10 9      5 4       0 

0 MISC 

110010 

Rt/Rb Ra 0000 level SubType CCTL 

00001 

 

Syntax:  CCTL Ra, SubType 

CCTL Ra, SubType, level  (VA writeback or invalidate operation) 

CCTL Rt, Ra, SubType   (Cache read operation) 

CCTL Rb, Ra, SubType   (Cache write operation) 

CCTL L1D_INVALALL  (Cache invalidate all operation) 

Purpose: Perform various operations on processor caches. This instruction is typically 

used by software to maintain cache coherence for shared memory. 

Description:  

 

This instruction is used to perform cache control operations based on the SubType field. 

The definition and encoding for the SubType field are listed in the following tables. Some 

CCTL operations can be used with user privilege to assist in coherence and 

synchronization management. Some CCTL cache read operations has an additional 

destination register Rt. And some CCTL write operation has an additional source register 

Rb. Although defined, certain SubType encodings of the cache control instruction are 

optional to implement. And execution of an unimplemented optional cache control 

operation will cause a Reserved Instruction exception. Similarly, execution of an 

undefined SubType encoding of this instruction will cause a Reserved Instruction 

exception as well. For the “level” field, please see “multi-level cache management 

operation” in page 60. 

 

Table 50  CCTL SubType Encoding 

SubType bit 4-3 

0 1 2 3 

00 01 10 11 bit 2-0 

L1D_IX L1D_VA L1I_IX L1I_VA 

0 000 L1D_IX_INVAL L1D_VA_INVAL L1I_IX_INVAL L1I_VA_INVAL 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         55 

1 001 L1D_IX_WB L1D_VA_WB - - 

2 010 L1D_IX_WBINVAL L1D_VA_WBINVAL - - 

3 011 L1D_IX_RTAG L1D_VA_FILLCK L1I_IX_RTAG L1I_VA_FILLCK 

4 100 L1D_IX_RWD L1D_VA_ULCK L1I_IX_RWD L1I_VA_ULCK 

5 101 L1D_IX_WTAG - L1I_IX_WTAG - 

6 110 L1D_IX_WWD - L1I_IX_WWD - 

7 111 L1D_INVALALL - - - 

 

Table 51  CCTL SubType Definitions 

Mnemonics Operation 

(Category) 

Ra Type Rt?/Rb? User 

Privilege 

Compliance 

L1D_IX_INVAL Invalidate 

L1D cache 

(A) 

Index -/- - Required 

L1D_VA_INVAL Invalidate 

L1D cache 

(A) 

VA -/- Yes Required 

L1D_IX_WB Write Back 

L1D cache 

(B) 

Index -/- - Required 

L1D_VA_WB Write Back 

L1D cache 

(B) 

VA -/- Yes Required 

L1D_IX_WBINVAL Write Back & 

Invalidate 

L1D cache 

(C) 

Index -/- - Optional 

L1D_VA_WBINVAL Write Back & 

Invalidate 

L1D cache 

(C) 

VA -/- Yes Optional 

L1D_VA_FILLCK Fill and Lock 

L1D cache 

(D) 

VA -/- - Optional 

L1D_VA_ULCK unlock L1D VA -/- - Optional 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         56 

cache 

(E) 

L1D_IX_RTAG Read tag L1D 

cache 

(F) 

Index Yes/- - Optional 

L1D_IX_RWD Read word 

data L1D 

cache 

(G) 

Index/w Yes/-  Optional 

L1D_IX_WTAG Write tag 

L1D cache* 

(H) 

Index -/Yes - Optional 

L1D_IX_WWD Write word 

data L1D 

cache* 

(I) 

Index/w -/Yes - Optional 

L1D_INVALALL Invalidate All 

L1D cache 

(J) 

N/A -/- - Optional 

L1I_VA_FILLCK Fill and Lock 

L1I cache 

(D) 

VA -/- - Optional 

L1I_VA_ULCK unlock L1I 

cache 

(E) 

VA -/- - Optional 

L1I_IX_INVAL Invalidate L1I 

cache 

(A) 

Index -/- - Required 

L1I_VA_INVAL Invalidate L1I 

cache 

(A) 

VA -/- Yes Required 

L1I_IX_RTAG Read tag L1I 

cache 

(F) 

Index Yes/- - Optional 

L1I_IX_RWD Read word Index/w Yes/-  Optional 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         57 

data L1I 

cache 

(G) 

L1I_IX_WTAG Write tag L1I 

cache 

(H) 

Index -/Yes - Optional 

L1I_IX_WWD Write word 

data L1I 

cache 

(I) 

Index/w -/Yes - Optional 

 

*Note: The “Write word data L1D cache” operation may be omitted by an implementation 

since its effect can be achieved using store instructions after the CCTL “Write tag L1D 

cache” operation and a “Data Serialization Barrier” instruction. 

 

The content of the register Ra is used to find the correct cache location for the cache 

operation. It is used in the following two ways: 

 

Ra Type Usage 

Index The content of Ra is used directly as a (Index, Way) pair to access the 

cache location without going through any translation mechanism. The 

real format for the (Index, Way) pair in the content of Ra is per cache 

implementation-dependent. However, it should have a general form 

shown in Figure 1. Software could discover the real format by consulting 

the ICM CFG (cr1) and DCM_CFG (cr2) Configuration Registers in the 

Andes processor core. 

Index/w The content of Ra is used directly as a (Index, Way, Word) triple to access 

the cache location without going through any translation. The “Word” 

means a 4-bytes word in the cache line pointed to by the (Index, Way) 

pair. The remaining description is similar to the “Index” type above. 

VA The content of Ra is used as a virtual address to access the cache. The 

address goes through the same address translation mechanism in the 

processor pipeline as the address of a load/store instruction for D cache 

or an instruction fetch for I cache. And the specified operation is only 

performed if the address hits in the corresponding cache. If the cache is 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         58 

missed, no specific operation is performed. 

 

 

Figure 1. Index type format for Ra of CCTL instruction 

 

 

The operations of the cache control instruction can be grouped and described in the 

following categories: 

A. Invalidate cache block 

This operation unlocks the cache line and sets the state of the cache line to invalid. It is 

implementation-dependent on how this instruction affects other states of the cache 

line such as “way selection”. 

B. Write back cache block 

If the cache line state is valid and dirty in a write-back cache, this operation writes the 

cache line back to memory. It does not affect the lock state of the cache line. 

C. Write back & invalidate cache block 

If the cache line state is valid and dirty in a write-back cache, this operation writes the 

cache line back to memory, and then performs a cache block invalidating operation 

described in (A). 

D. Fill and Lock cache block 

If the desired cache line is not present in the cache, this operation fills the cache line 

into the cache and then sets the lock state of the cache line. If the desired cache line is 

present in the cache, only the lock state will be set. A locked cache line will not be 

replaced when a cache miss/fill event happens. A locked cache line can only be 

unlocked using a cache invalidate or unlock operation. Since this cache line lock 

operation is defined under the implementation assumption of a multi-way 

set-associative cache, the support of this operation is implementation dependent. And 

if this instruction is supported for a multi-way set-associative cache, only up to 

Index Way 

Words in Cache Block 

(WCB) 

0 A B C 

A = Log2(WCB) + 2 

B = Log2(Cache size / # of ways) 

C = Ceiling(Log2(Cache size)) 

2 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         59 

“way-1” cache lines in a cache set can be locked using this instruction. If software 

wants to get a predictable behavior, care must be taken to avoid locking more than 

“way-1” cache lines in a cache set. If “way” cache lines in a cache set are all locked 

by software, and if ICALCK/DCALCK of Cache Control system register is 0, then it 

is IMPLEMENTATION-DEPENDENT on when an exception will be generated. 

E. Unlock cache block 

This operation clears the lock state of the cache if the desired cache line is present in 

the cache. 

F. Read tag from cache 

This operation reads the contents of a cache line tag into a general register Rt. The tag 

format is implementation-dependent. A reference format is illustrated as follows. 

 

31                23 22 21                 2 1 0 

ignored dirty PA(31,12) valid lock 

 

The content of Ra specifies the index and way of the target cache line. 

G. Read data word from cache 

This operation reads a 4-bytes word from a cache line into a general register Rt. The 

endian format of this operation should depend on the value of PSW.BE. The content 

of Ra specifies the index, way, and word of the target cache line. 

H. Write tag to cache 

This operation writes the cache line tag from a general register Rb. The tag format is 

implementation-dependent. A reference format is illustrated as follows. 

 

31                23 22 21                 2 1 0 

ignored dirty PA(31,12) valid lock 

 

The content of Ra specifies the index and way of the target cache line. 

I. Write word data to cache 

This operation writes a 4-byte word in a general register Rb into a target cache line. 

The endian format of this operation should depend on the value of PSW.BE. The 

content of Ra specifies the index, way, and word of the target cache line. 

J. Invalidate All cache block 

This operation unlocks all of the cache lines and sets the state of all of the cache lines 

to invalid. It is implementation-dependent on how this instruction affects other states 

of the cache line such as “way selection”. 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         60 

 

� Multi-level cache management operation 

For a system with multiple levels of caches, it would be more convenient for 

software to manage a cache block if the software can control whether a CCTL 

write-back or invalidate operation is applied to just the first level cache or to other 

higher levels of caches as well. This has the benefit that software can use just one 

CCTL instruction to affect all levels of caches without using separate instructions to 

manage each level of cache individually. 

 

To enable this, all of the CCTL instructions with VA writeback or VA invalidate 

related operations have two flavors to indicate if the operation is applied to all 

levels of caches or only one level. The two flavors are as follows: 

 

 All level operation: “CCTL Ra, SubType, alevel” 

 One level operation: “CCTL Ra, SubType, 1level”  

 

The following SubTypes have these two flavors. 

 

L1D_VA_INVAL 

L1D_VA_WB 

L1D_VA_WBINVAL 

L1I_VA_INVAL 

 

For all other CCTL SubTypes, the “level” encoding will be a “Don’t care” field. 

 

For software to make sure the completeness of the “all level” operations, a 

“MSYNC all” instruction needs to be used after the “all level” operations to 

guarantee that any instructions after the “MSYNC all” will see the effects 

completed by the “all level” operations. 

 

For a system with one level of caches, the “all level” flavor behaves the same as the 

“one level” operation. 

 

Programming Constraints: 

1. CCTL  Ra, L1D_VA_WB, alevel: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         61 

This instruction guarantees to write back a dirty cache line of L1 cache to 

memory. 

 

2. CCTL  Ra, L1D_VA_INVAL, alevel: 

This instruction will invalidate cache lines of different size in different levels of a 

cache hierarchy. So to use this instruction, a programmer needs to first make sure 

writing back all data in a cache line unit aligned to the largest cache line size in 

the cache hierarchy unless the programmer is sure that portion of the cache unit 

covering the largest cache line size, when not written back, contain no dirty data. 

 

 

Operations: 

 

If (SubType is not supported) 

 Exception(Reserved Instruction); 

If (RaType(SubType) == VA) { 

 VA = (Ra); 

 PA = AddressTranslation(VA); 

 VA_cache_control(SubType, PA, level); 

} else { 

 {Idx,way,word} = (Ra) 

 If (Op(SubType) == CacheTagRead) { 

  Rt = Idx_cache_tag_read(SubType, Idx, way); 

 } else if (Op(SubType) == CacheDataRead) { 

  Rt = Idx_cache_data_read(SubType, Idx, way, word); 

 } else if (Op(SubType) == CacheWrite) { 

  Idx_cache_write(SubType, Rb, Idx, way, word); 

} else { 

  Idx_cache_control(SubType, Idx, way); 

 } 

} 

 

Exceptions: 

 TLB fill exception, Non-Leaf PTE not present exception, Leaf PTE not present 

exception, Read protection violation exception, TLB VLPT miss exception, Imprecise bus 

error exception, Reserved instruction exception, Privileged Instruction. 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         62 

 

When executed under the user operating mode, the following four CCTL subtypes will 

generate exceptions if the page access permission is not setup correctly. 

 

CCTL Subtypes Required Permission 

under user mode 

Generated exception 

L1D_VA_INVAL Read Data write protection violation 

L1D_VA_WB Write Data write protection violation 

L1D_VA_WBINVAL Write Data write protection violation 

L1I_VA_INVAL Read Data read protection violation 

 

When executed under the superuser operating mode, all the CCTL subtypes will not 

generate exceptions due to the page read/write/execute permission. 

 

As for the checking and generation of page modified exception and access bit exception, 

the following table lists the expected behaviors: 

 

CCTL 

Subtypes 

Page modified 

exception 

under all mode 

Access bit 

exception 

under all mode 

Non-executable page 

exception under all mode 

L1D_* Ignore Ignore N/A 

L1I_* Ignore Ignore Ignore 

 

Privilege level: Depends on operation types. 

Note:  

(1) A CCTL instruction should operate on the specified cache regardless of the cache 

enable/disable control bits in the Cache Control register provided the specified cache 

is implemented. 

(2) All non-instruction-fetch-related exceptions generated by a CCTL instruction should 

have the INST field of the ITYPE register set to 0. 

(3) For normal run time operations (thus excluding CCTL write tag operation), the state 

transition of the lock flag of a cache line affected by a CCTL instruction is illustrated 

in the following diagram: 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         63 

Figure 2. State diagram of the lock flag of a cache line controlled by CCTL. 

 

 

unlock 

lock 

Fill & Lock 
Unlock or 

Invalidate 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         64 

CMOVN (Conditional Move on Not Zero) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19     15 14      10 9        5 4     0 

0 ALU_1 

100000 

Rt Ra Rb 00000 CMOVN 

11011 

 

Syntax:  CMOVN Rt, Ra, Rb 

Purpose: Move the content of a register based on a condition stored in a register. 

Description: If the content of Rb is not equal to zero, then move the content of Ra into Rt. 

Operations: 

if (Rb != 0) { 

Rt = Ra; 

}  

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         65 

CMOVZ (Conditional Move on Zero) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19     15 14      10 9        5 4     0 

0 ALU_1 

100000 

Rt Ra Rb 00000 CMOVZ 

11010 

 

Syntax:  CMOVZ Rt, Ra, Rb 

Purpose: Move the content of a register based on a condition stored in a register. 

Description: If the content of Rb is equal to zero, then move the content of Ra into Rt. 

Operations: 

if (Rb == 0) { 

Rt = Ra; 

}  

Exceptions: None 

Privilege level: All 

Note: 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         66 

DIV (Unsigned Integer Divide) 

Type: 32-Bit Baseline Optional 

Format: 

 

31 30    25 24   22 21 20 19     15 14      10 9     6 5     0 

0 ALU_2 

100001 

000 Dt 0 Ra Rb 0000 DIV 

101111 

 

Syntax:  DIV Dt, Ra, Rb 

Purpose: Divide the unsigned integer contents of two 32-bit registers. 

Description: Divide the 32-bit content of Ra with the 32-bit content of Rb. The 32-bit 

quotient result is written to Dt.LO register and the 32-bit remainder result is written to 

Dt.HI register. The contents of Ra and Rb are treated as unsigned integers. 

 

If the content of Rb is zero, an Arithmetic exception will be generated if the IDIVZE bit 

of the INT_MASK register is 1, which enables exception generation for the 

“Divide-By-Zero” condition. 

  

Operations: 

If (Rb != 0) { 

quotient = Floor(CONCAT(1`b0,Ra) / CONCAT(1`b0,Rb)); 

remainder = CONCAT(1`b0,Ra) mod CONCAT(1`b0,Rb); 

Dt.LO = quotient; 

Dt.HI = remainder; 

} else if (INT_MASK.IDIVZE == 0) { 

Dt.LO = 0; 

Dt.HI = 0; 

} else { 

Generate_Exception(Arithmetic); 

} 

 

Exceptions: Arithmetic 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         67 

DIVS (Signed Integer Divide) 

Type: 32-Bit Baseline Optional 

Format: 

 

31 30    25 24   22 21 20 19     15 14      10 9     6 5     0 

0 ALU_2 

100001 

000 Dt 0 Ra Rb 0000 DIVS 

101110 

 

Syntax:  DIVS Dt, Ra, Rb 

Purpose: Divide the signed integer contents of two 32-bit registers. 

Description: Divide the 32-bit content of Ra with the 32-bit content of Rb. The 32-bit 

quotient result is written to Dt.LO register and the 32-bit remainder result is written to 

Dt.HI register. The contents of Ra and Rb are treated as signed integers. 

 

If the content of Rb is zero, an Arithmetic exception will be generated if the IDIVZE bit 

of the INT_MASK register is 1, which enables exception generation for the 

“Divide-By-Zero” condition. If the quotient overflows, an Arithmetic exception will 

always be generated. The overflow condition is as follows: 

� Positive quotient > 0x7FFF FFFF (When Ra = 0x80000000 and Rb = 

0xFFFFFFFF) 

  

Operations: 

If (Rb != 0) { 

quotient = Floor(Ra / Rb); 

if (IsPositive(quotient) && quotient > 0x7FFFFFFF) { 

Generate_Exception(Arithmetic); 

}  

remainder = Ra mod Rb 

Dt.LO = quotient; 

Dt.HI = remainder; 

} else if (INT_MASK.IDIVZE == 0) { 

Dt.LO = 0; 

Dt.HI = 0; 

} else { 

Generate_Exception(Arithmetic); 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         68 

} 

 

Exceptions: Arithmetic 

Privilege level: All 

Note: 

 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         69 

DPREF/DPREFI (Data Prefetch) 

Format: 

DPREF 

31 30     25 24 23      20 19       15 14    10 9  8 7           0 

0 MEM 

011100 

0 SubType Ra Rb shift2 DPREF 

00010011 

 

DPREFI 

31 30     25 24 23      20 19      15 14                           0 

0 DPREFI 

010011 

d SubType Ra imm15s 

 

Syntax:  DPREF SubType, [Ra + (Rb << shift2)] 

 DPREFI.d SubType, [Ra + (imm15s.000)] 

 DPREFI.w SubType, [Ra + (imm15s.00)] 

Purpose: Hint to move data from memory into data caches in advance before the actual 

load or store operations to reduce memory access latency. 

Description:  

The effective byte address calculated from the data prefetch instruction (DPREF/DPREFI) 

is used by an implementation to take an implementation-dependent action which is 

expected to increase performance by moving the memory line containing the address from 

memory into data caches in advance. However, an implementation may decide to do 

nothing at any stage by treating this instruction as a NOP. As a hint, this instruction should 

not generate any observable results or any exceptions which alter the behavior of a 

program (e.g. an address exception which leads to OS aborting the program.) Note that the 

“cache line write” hint subtype may be an exception from the above statement. Please see 

the detailed subtype descriptions followed. 

 

For this instruction to be effective in increasing performance, the data prefetch instruction 

should be implemented non-blocking to overlap with other instructions. And the actual 

number of cache lines and memory hierarchies affected are implementation-dependent. 

 

The effective byte address for DPREF is Ra+(Rb<<shift2) where shift2 is a 2-bits shift 

amount for Rb. 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         70 

The effective byte address for DPREFI is defined in two flavors, one for word and one for 

double word. The double word flavor has a byte address of Ra+SignExtend(imm15s.000) 

where imm15s represents an 8-byte-double-word offset. This coarser-grain immediate 

offset will not sacrifice the data prefetching performance since most of the cache block 

moves between the memory and data cache is greater than 8 bytes. The word flavor has a 

byte address of Ra+SignExtend(imm15s.00) where imm15s represents a 4-byte-word 

offset. This finer-grain immediate offset may give hardware a chance to optimize the data 

prefetch instruction by sub-blocking the data cache and filling the critical word of a 

prefetched cache line first. These two flavors are distinguished by the “d” bit (bit 24) in the 

instruction encoding as follows: 

“d” bit Meaning 

0 DPREFI.w 

1 DPREFI.d 

 

The SubType field of this instruction is used as a hint to tell hardware the intended use of 

the prefetched data, so that the hardware implementation may use different prefetch 

schemes to optimize the performance. The definition of the SubType field is listed in the 

following table. 

 

Sub 

Type 

Mnemonics Hint Descripton 

0 SRD Single Read The data will be read for only once. (i.e. no 

temporal locality) 

1 MRD Multiple Read The data will be read multiple times. (i.e. 

has temporal locality) 

2 SWR Single Write The data will be written for only once. (i.e. 

no temporal locality) 

3 MWR Multiple Write The data will be written multiple times. 

(i.e. has temporal locality) 

4 PTE PTE Preload Preload page translation information into 

TLB. 

5 CLWR Cache Line 

Write 

The whole cache line will be written by 

store instructions. If the cache line is in the 

data cache and is permitted for writing, the 

processor will do nothing. If the cache line 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         71 

is in the data cache but is not permitted for 

writing, the processor may request the 

write permission for the cache line. If the 

cache line is not in the data cache, the 

cache line may be allocated in the data 

cache with all zero data and write 

permission. This instruction may alter 

memory states of the cache line if the 

program fails to write the whole cache line 

with new data later. And the final memory 

states will be UNPREDICTABLE in this 

case depending on cache hit or miss when 

this instruction is issued. This memory 

states altering characteristic is 

implementation-dependent. 

6-15 - Imp-dep Implementation dependent 

 

The data prefetch instruction will not prefetch memory locations with uncached attribute. 

 

Operations: 

 VA = Ra+(Rb << shift2); // DPREF 

VA = Ra+(imm15s.000);   // DPREFI.d 

VA = Ra+(imm15s.00);    // DPREFI.w 

PA_found = MMU_Search(VA); 

If (PA_found) { 

  (PA, attribute) = MMU_Translate(VA); 

  Data_Prefetch(PA, attribute, hint); 

} else if (hint == “TLB preload”) 

  TLB_Preload(VA); 

 

Exceptions: 

 None, (Implementation-dependent: imprecise Cache error or imprecise Bus error) 

 

Privilege level: All 

Note: 

(1) The effective address of this data prefetch instruction does not need to be aligned to 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         72 

any data type boundary (e.g. word-aligned) since the address is used to indicate a 

cache line rather than a specific data type. 

(2) This data prefetch instruction does not generate any exception. And if a hardware 

page table walker is implemented, it is suggested that this instruction should not 

generate any hardware page table walk memory access as well. 

(3) This data prefetch instruction may be used ahead of the real memory access 

instruction and be generated unguarded inside a loop. So it is very likely that a data 

prefetch instruction may generate an address which is outside of legal data range. 

Generating hardware page table walk memory access on a data prefetch instruction 

with such data address will cause unnecessary execution penalty which deter the 

usability of this instruction. 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         73 

DSB (Data Serialization Barrier) 

Format: 

 

31 30     25 24      20 19                           5 4           0 

0 MISC 

110010 

00000 000000000000000 DSB 

01000 

 

Syntax: DSB 

Purpose: It is used to serialize a read-after-write data dependency for certain 

architecture/hardware states updates which affect data processing related operations. It 

guarantees a modified architecture or hardware state can be seen by any following 

dependent data operations. 

Description:  

 

This instruction blocks the execution of any subsequent instructions until all previously 

modified architecture/hardware states can be observed by subsequent dependent data 

operations in a pipelined processor. This instruction is not needed to serialize general 

register states which are serialized by hardware. For user programs, an endian mode 

change operation (SETEND) requires a DSB instruction to make sure the endian change is 

seen by any following load/store instructions. Other than this case, all uses of DSB are in 

privileged programs for managing system states. 

 

Operations: 

 

Serialize_Data_States() 

 

Exceptions: None 

Privilege level: All 

Note: 

 

1. The following table lists some of the state writers and readers where DSB is needed 

between them in order for the readers to get the expected new value/behaviors. 

 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         74 

State Writer Reader Value 

System register MTSR MFSR New SR value 

PSW.BE SETEND load/store New endian state 

PSW.DT MTSR load/store New translation 

behavior 

PSW.GIE/ SIM/ 

H5IM-H0IM 

MTSR following 

instructions 

Interrupt behavior 

PSW.GIE SETGIE following 

instructions 

New global 

interrupt enable 

state 

PSW.INTL MTSR following 

instructions 

Interruption stack 

behavior 

D$ line valid CCTL L1D (sub=inval, 

WB&inval, WR tag) 

load/store D$ hit/miss 

  CCTL L1D 

(sub=RD tag) 

Tag valid 

DTLB TLBOP RWR/ RWLK/ 

TWR 

load/store Data PA 

 TLBOP FLUA/INV load/store TLB miss 

 TLBOP TWR TLBOP TRD TLB entry data 

CACHE_CTL 

(DC_ENA) 

MTSR load/store D$ enable/disable 

behavior 

DLMB (EN) MTSR load/store Data local memory 

access behavior 

L1_PPTB MTSR load/store HPTWK behavior 

TLB_ACC_XXX TLBOP TRD MFSR TLB read out 

DMA channel 

selection 

(DMA_CHNSEL) 

MTSR DMA_CHNSEL MTSR/MFSR 

DMA channel 

registers 

New DMA channel 

number 

 

2. PSW.GIE is defined to control if an asynchronous interrupt can be inserted in 

between two instructions or not. So when we say that an instruction will observe an 

updated PSW.GIE value, we mean that the updated PSW.GIE value will affect if the 

instruction and its next instruction can be interrupted or not. Based on this definition, 

the DSB instruction after a PSW.GIE update operation will not guaranteed itself to 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         75 

observe the updated PSW.GIE value and may observe the old PSW.GIE value. So if 

the PSW.GIE is being updated to 0 to disable interrupt, an interrupt can still be 

inserted between the DSB and the immediate following instruction (inst1). The DSB 

instruction only guarantees that the following instructions after it (inst1, inst2, etc.) 

will observe the updated PSW.GIE value to be 0, thus preventing any interrupt 

inserted between the immediate following instruction (inst1) and its next instruction 

(inst2), and onward. 

 

setgie.d 

dsb 

inst1 

inst2 

 

In addition to PSW.GIE, the same definition also works for the following interrupt 

masking fields: 

INT_MASK.SIM 

INT_MASK.H5IM-H0IM 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         76 

IRET (Interruption Return) 

Format: 

 

31 30     25 24      20 19                           5 4           0 

0 MISC 

110010 

00000 000000000000000 IRET 

00100 

 

Syntax: IRET 

Purpose: It is used to return from interruption to the instruction and states when the 

processor was being interrupted. 

Description: The main function of the IRET instruction is to conditionally update (pop) 

the system register and program counter stack such that the processor behavior after the 

IRET instruction will return to a state when the processor was being interrupted. To be 

more specific, the following states will be updated based on interruption level (INTL) 

conditions: 

 

� For INTL=0, 1 

PC ← IPC 

PSW ← IPSW 

 

� For INTL=2 

PC ← IPC 

IPC ← P_IPC 

PSW ← IPSW 

IPSW ← P_IPSW 

EVA ← P_EVA 

P0 ← P_P0 

P1 ← P_P1 

ITYPE ← P_ITYPE 

EXCI ← P_EXCI 

 

� For INTL=3 

PC ← OIPC 

PSW.INTL ← 2 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         77 

Since these processor states update will affect processor fetching and data processing 

behaviors, in addition to the register stack update, instruction and data serialization 

operations are also included in the IRET instruction such that any instruction or instruction 

fetching after the IRET will guarantee to see the newly updated processor states caused by 

the IRET instruction. 

 

Operations: 

 

If (PSW.INTL==0 or PSW.INTL ==1 or PSW.INTL==2) { 

PC = IPC; 

PSW = IPSW; 

If (PSW.INTL==2) { 

IPC = P_IPC; 

IPSW = P_IPSW; 

EVA = P_EVA; 

P0 = P_P0; 

P1 = P_P1; 

ITYPE = P_ITYPE; 

EXCI = P_EXCI; 

} 

} else { 

PC = OIPC; 

PSW.INTL = 2; 

} 

Serialize_Data_States() 

Serialize_Instruction_States() 

 

Exceptions: Privileged Instruction 

Privilege level: Superuser and above 

Note: 

 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         78 

ISB (Instruction Serialization Barrier) 

Format: 

 

31 30     25 24      20 19                           5 4           0 

0 MISC 

110010 

00000 000000000000000 ISB 

01001 

 

Syntax: ISB 

Purpose: It is used to serialize a read-after-write data dependency for certain 

architecture/hardware states updates which affect instruction fetching related operations. It 

also serializes all architecture/hardware states updates that are serialized by a DSB 

instruction. It guarantees a modified architecture or hardware state can be seen by any 

following dependent instruction fetching operations and data processing operations. 

 

Description:  

 

This instruction blocks the execution of any subsequent instructions until all previously 

modified architecture/hardware states can be observed by subsequent dependent (1) 

instruction fetching operations and (2) data processing operations that are serialized by a 

DSB instruction in a pipelined processor. This instruction is not needed to serialize general 

register states which are serialized by hardware. 

 

The interruption return instruction (IRET) includes implicit ISB operation (including data 

serialization). So using either IRET or ISB instruction will achieve the expected instruction 

and data serialization behavior. 

 

Operations: 

 

Serialize_Data_States() 

Serialize_Instruction_States() 

 

Exceptions: None 

Privilege level: All 

Note: 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         79 

The following table lists some of the state writers and readers where ISB is needed between 

them in order for the readers to get the expected new value/behaviors. 

 

State Writer Reader Value 

PSW.IT MTSR Instruction fetch Instruction translation 

behavior 

ITLB TLBOP RWR/ 

RWLK/ TWR 

Instruction fetch Instruction PA 

 TLBOP FLUA/ 

INV 

Instruction fetch TLB miss 

I$ line 

valid/data 

ISYNC Instruction fetch New instruction data 

I$ line valid CCTL L1I 

(sub=inval) 

Instruction fetch I$ miss 

I$ line valid/tag CCTL L1I 

(sub=WR tag) 

CCTL L1I (sub=Rd 

tag) 

I$ hit 

I$ line data CCTL L1I 

(sub=WR word) 

CCTL L1I (sub=RD 

word) 

Instruction data 

Memory MSYNC Instruction fetch New instruction data 

CACHE_CTL 

(IC_ENA) 

MTSR Instruction fetch I$ enable/disable 

behavior 

ILMB (EN) MTSR Instruction fetch Instruction local memory 

access behavior 

L1_PPTB MTSR Instruction fetch HPTWK behavior 

IVB MTSR Instruction fetch Interruption behavior 

 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         80 

ISYNC (Instruction Data Coherence Synchronization) 

Format: 

 

31 30     25 24      20 19                           5 4           0 

0 MISC 

110010 

Ra 000000000000000 ISYNC 

01101 

 

Syntax: ISYNC Ra 

Purpose: Make sure instruction data updated in the cache line address specified by Ra can 

be observed by the instruction fetch event performed after an instruction serialization 

barrier instruction (ISB or IRET). 

 

Description:  

 

This instruction is used to guarantee that any instruction data updated before this 

instruction can be properly observed by an instruction fetch event after an instruction 

serialization barrier instruction. This instruction alleviates the Andes architecture 

implementation from implementing coherence logic between instruction and data caches in 

order to handle self-modifying code. 

 

Software is required to use this instruction and the correct instruction sequence, after 

generating new instruction data, to synchronize the updated data between I and D caches in 

order to correctly execute the newly modified instruction later defined after an instruction 

serialization barrier instruction. If this instruction and the correct instruction sequence are 

not used in the above situation, the Andes implementation may still fetch and execute the 

old instruction data after any period of time. 

 

After updating instruction data, this instruction initiates a data cache write-back operation 

and an instruction cache invalidating operation. And particularly, this instruction 

guarantees that the data write back operation has an address space access order (relative 

to this processor) BEFORE any subsequent instruction fetch operation (including 

speculative fetches) to the same cache-line address. The subsequent instruction 

serialization barrier instruction ensures that all instructions following it are re-fetched into 

the processor execution unit. 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         81 

The content of Ra specifies the virtual address of the data cache line which contains the 

instruction data. It goes through the same address mapping mechanism as those associated 

with load and store instructions. Thus, address translation and protection exceptions could 

happen for this instruction. 

 

Operation: 

VA = (Ra) 

PA = AddressTranslation(VA) 

SynchronizeAllCaches(PA) 

 

Exceptions: 

TLB fill exception, Non-Leaf PTE not present exception, Leaf PTE not present exception, 

Read protection violation exception, TLB VLPT miss exception, Imprecise bus error 

exception, Machine check exception 

 

Privilege level: All 

 

Notes: 

1. If this instruction affects a locked cache line in the instruction cache, the affected 

cache line will be unlocked. 

2. The processor behavior is UNPREDICTABLE if the VA of this instruction points to 

any cache line that contains instructions between this instruction and the next 

instruction serialization barrier instruction. 

3. The effective address of this instruction does not need to be aligned to any data type 

boundary (e.g. word-aligned) since the address is used to indicate a cache line rather 

than a specific data type. Thus, no Data Alignment Check exception is generated for 

this instruction. 

4. The correct instruction sequence for writing or updating any code data that will be 

executed afterwards is as follows, except for AndesCore N1213 hardcore: 

N1213_43U1H 

 

UPD_LOOP: 

// preparing new code data in Ra 

...... 

// preparing new code address in Rb, Rc 

...... 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         82 

// writing new code data 

store Ra,[Rb,Rc] 

// looping control 

...... 

bne UPD_LOOP 

ISYNC_LOOP: 

// preparing new code address in Rd 

isync Rd 

// looping control 

bne ISYNC_LOOP 

isb 

// execution of new code data can be started from here 

...... 

 

For AndesCore N12 hardcore (N1213_43U1H), the correct instruction sequence is as 

follows: 

 

UPD_LOOP: 

// preparing new code data in Ra 

...... 

// preparing new code address in Rb, Rc 

...... 

// writing new code data 

store Ra,[Rb,Rc] 

// looping control 

...... 

bne Rb,Re,UPD_LOOP 

WB_LOOP: 

// preparing new code address in Rd 

isync Rd (or cctl Rd, L1D_VA_WB) 

// looping control 

bne Rd,Re,WB_LOOP 

msync 

isb 

ICACHE_INV_LOOP: 

// preparing new code address in Rf 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         83 

cctl Rf, L1I_VA_INVAL 

// looping control 

bne Rf,Re,ICACHE_INV_LOOP 

isb 

// execution of new code data can be started from here 

...... 

 

 

 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         84 

J (Jump) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24 23                                             0 

0 JI 

100100 

J 

0 

imm24s 

 

Syntax:  J imm24s 

Purpose: Unconditional branch relative to current instruction. 

Description: Branch unconditionally to a PC-relative region defined by sign-extended 

(imm24s <<1) where the final branch address is half-word aligned. The branch range is ± 

16M bytes. 

Operations: 

PC = PC + SE(imm24s << 1); 

 

Exceptions: None 

Privilege level: All 

Note:  

The assembled/disassembled instruction format displayed by tools may be different than 

the encoding syntax shown here, please consult the assembly programming guide 

or disassembler manual to get the correct meaning of the displayed syntax. 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         85 

JAL (Jump and Link) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24 23                                             0 

0 JI 

100100 

JAL 

1 

imm24s 

 

Syntax:  JAL imm24s 

Purpose: Unconditional function call relative to current instruction. 

Description: Branch unconditionally to a PC-relative region defined by sign-extended 

(imm24s <<1) where the final branch address is half-word aligned. The branch range is ± 

16M bytes. The program address of the next sequential instruction (PC+4) is written to 

R30 (Link Pointer register) for function call return purpose. 

Operations: 

R30 = PC + 4; 

PC = PC + SE(imm24s << 1); 

 

Exceptions: None 

Privilege level: All 

Note:  

The assembled/disassembled instruction format displayed by tools may be different than 

the encoding syntax shown here, please consult the assembly programming guide 

or disassembler manual to get the correct meaning of the displayed syntax. 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         86 

JR (Jump Register) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24          15 14      10 9    8 7    6 5 4      0 

0 JREG 

100101 

0000000000 Rb DT/IT 

00 

00 JR hint 

0 

JR 

00000 

 

Syntax:  JR Rb 

Purpose: Unconditional branch to an instruction address stored in a register. 

Description: Branch unconditionally to an instruction address stored in Rb. The JR hint 

field is used to distinguish this instruction from the RET instruction which has the same 

architecture behavior but different software usages. 

Operations: 

PC = Rb; 

 

Exceptions: None 

Privilege level: All 

Note:  



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         87 

JR.xTOFF (Jump Register and Translation OFF) 

Type: 32-Bit Baseline (with MMU configuration) 

Format: 

JR.ITOFF 

31 30        25 24          15 14      10 9   8 7    6 5 4      0 

0 JREG 

100101 

0000000000 Rb DT/IT 

01 

00 JR hint 

0 

JR 

00000 

 

JR.TOFF 

31 30        25 24          15 14      10 9   8 7    6 5 4      0 

0 JREG 

100101 

0000000000 Rb DT/IT 

11 

00 JR hint 

0 

JR 

00000 

 

Syntax:  JR.[T | IT]OFF Rb 

Purpose: Unconditional branch to an instruction address stored in a register and turn off 

address translation for the target instruction. 

Description: Branch unconditionally to an instruction address stored in Rb and also clears 

the IT (and DT if included) field of the Processor Status Word (PSW) system register to 

turn off the instruction (and data if included) address translation process in the memory 

management unit. This instruction guarantees that fetching of the target instruction will see 

PSW.IT as 0 (and PSW.DT as 0 if included), thus will not go through the address 

translation process. The JR hint field is used to distinguish this instruction from the 

RET.xTOFF instruction which has the same architecture behavior but different software 

usages. 

Operations: 

PC = Rb; 

PSW.IT = 0; 

if (INST(9) == 1) { 

PSW.DT = 0; 

} 

 

Exceptions: Privileged Instruction, Reserved Instruction (for non-MMU configuration) 

Privilege level: Superuser and above 

Note: This instruction is used in an interruption handler or privileged code in a translated 

address space to return to a place which is in a non-translated address space. Please see 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         88 

JRAL.xTON instruction for the reverse process of coming from a non-translated address 

space to a translated address space. 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         89 

JRAL (Jump Register and Link) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19    15 14      10 9  8 7    5 4      0 

0 JREG 

100101 

Rt 00000 Rb DT/IT 

00 

000 JRAL 

00001 

 

Syntax:  JRAL Rb (implied Rt == R30, Link Pointer register) 

 JRAL Rt, Rb 

Purpose: Unconditional function call to an instruction address stored in a register. 

Description: Branch unconditionally to an instruction address stored in Rb. The program 

address of the next sequential instruction (PC+4) is written to Rt for function call return 

purpose. 

Operations: 

jaddr = Rb; 

Rt = PC + 4; 

PC = jaddr; 

 

Exceptions: None 

Privilege level: All 

Note:  



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         90 

JRAL.xTON (Jump Register and Link and Translation ON) 

Type: 32-Bit Baseline (with MMU configuration) 

Format: 

JRAL.ITON 

31 30        25 24      20 19    15 14      10 9  8 7    5 4      0 

0 JREG 

100101 

Rt 00000 Rb DT/IT 

01 

000 JRAL 

00001 

 

JRAL.TON 

31 30        25 24      20 19    15 14      10 9  8 7    5 4      0 

0 JREG 

000101 

Rt 00000 Rb DT/IT 

11 

000 JRAL 

00001 

 

 

Syntax:  JRAL.[T | IT]ON Rb (implied Rt == R30, Link Pointer register) 

 JRAL.[T | IT]ON Rt, Rb 

  

Purpose: Unconditional function call to an instruction address stored in a register and turn 

on address translation for the target instruction. 

Description: Branch unconditionally to an instruction address stored in Rb and also sets 

the IT (and DT if included) fields of the Processor Status Word (PSW) system register to 

turn on the instruction (and data if included) address translation process in the memory 

management unit. The program address of the next sequential instruction (PC+4) is written 

to Rt for function call return purpose. This instruction guarantees that fetching of the target 

instruction will see PSW.IT as 1 (and PSW.DT as 1 if included), thus will go through the 

address translation process. 

Operations: 

jaddr = Rb 

Rt = PC + 4; 

PC = jaddr; 

PSW.IT = 1; 

if (INST(9) == 1) { 

PSW.DT = 1; 

} 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         91 

Exceptions: Privileged Instruction, Reserved Instruction (for non-MMU configuration) 

Privilege level: Superuser and above 

Note: This instruction is used in an interruption handler or privileged code in a 

non-translated address space to jump to a function which is in a translated address space. 

Please see JR.xTOFF/RET.xTOFF instruction for the reverse process of returning from a 

translated address space to a non-translated address space. 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         92 

LB (Load Byte) 

Type: 32-Bit Baseline 

Format: 

 

LB 

31 30     25 24      20 19       15 14     10 9  8 7         0 

0 MEM 

011100 

Rt Ra Rb sv LB 

00000000 

 

LB.bi 

31 30     25 24      20 19       15 14     10 9  8 7         0 

0 MEM 

011100 

Rt Ra Rb sv LB.bi 

00000100 

 

 

Syntax:  LB Rt, [Ra + (Rb << sv)] 

 LB.bi Rt, [Ra], (Rb << sv) 

Purpose: To load a zero-extended 8-bit byte from memory into a general register. 

Description: This instruction loads a zero-extended byte from the memory into the general 

register Rt. Two different forms are used to specify the memory address. The regular form 

uses Ra + (Rb << sv) as its memory address while the .bi form uses Ra. For the .bi form, the 

Ra register will be updated with the Ra + (Rb << sv) value after the memory load operation. 

And UNPREDICTABLE result will be written to Rt if Rt is specified as equal to Ra in 

the instruction format.  

 

Operations: 

Addr = Ra + (Rb << sv); 

If (.bi form) { 

Vaddr = Ra; 

} else { 

Vaddr = Addr; 

} 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, LOAD); 

If (Excep_status == NO_EXCEPTION) { 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         93 

Bdata(7,0) = Load_Memory(PAddr, Byte, Attributes); 

Rt = Zero_Extend(Bdata(7,0)); 

If (.bi form) { Ra = Addr; } 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         94 

LBI (Load Byte Immediate) 

Type: 32-Bit Baseline 

Format: 

 

LBI 

31 30        25 24      20 19      15 14                            0 

0 LBI 

000000 

Rt Ra imm15s 

 

LBI.bi 

31 30        25 24      20 19      15 14                            0 

0 LBI.bi 

000100 

Rt Ra imm15s 

 

 

Syntax:  LBI Rt, [Ra + imm15s] 

 LBI.bi Rt, [Ra], imm15s 

Purpose: To load a zero-extended 8-bit byte from memory into a general register. 

Description: This instruction loads a zero-extended byte from the memory into the general 

register Rt. Two different forms are used to specify the memory address. The regular form 

uses Ra + SE(imm15s) as its memory address while the .bi form uses Ra. For the .bi form, 

the Ra register will be updated with the Ra + SE(imm15s) value after the memory load 

operation. And UNPREDICTABLE result will be written to Rt if Rt is specified as equal 

to Ra in the instruction format. Note that imm15s is treated as a signed integer. 

 

Operations: 

Addr = Ra + Sign_Extend(imm15s); 

If (.bi form) { 

Vaddr = Ra; 

} else { 

Vaddr = Addr; 

} 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, LOAD); 

If (Excep_status == NO_EXCEPTION) { 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         95 

Bdata(7,0) = Load_Memory(PAddr, BYTE, Attributes); 

Rt = Zero_Extend(Bdata(7,0)); 

If (.bi form) { Ra = Addr; } 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error. 

Privilege level: All 

Note: 

1. “LBI R0, [R0+0]” baseline version 2 special behavior: 

This instruction will become a Reserved instruction when the INT_MASK.ALZ 

(INT_MASK[29]) is set to one. INT_MASK is also named as ir14. This special 

behavior can be used to debug a system. When this special behavior is used, compiler 

and assembler should avoid generating this instruction. 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         96 

LBS (Load Byte Signed) 

Type: 32-Bit Baseline 

Format: 

 

LBS 

31 30     25 24      20 19       15 14     10 9  8 7         0 

0 MEM 

011100 

Rt Ra Rb sv LBS 

00010000 

 

LBS.bi 

31 30     25 24      20 19       15 14     10 9  8 7         0 

0 MEM 

011100 

Rt Ra Rb sv LBS.bi 

00010100 

 

 

Syntax:  LBS Rt, [Ra + (Rb << sv)] 

 LBS.bi Rt, [Ra], (Rb << sv) 

Purpose: To load a sign-extended 8-bit byte from memory into a general register. 

Description: This instruction loads a sign-extended byte from the memory into the general 

register Rt. Two different forms are used to specify the memory address. The regular form 

uses Ra + (Rb << sv) as its memory address while the .bi form uses Ra. For the .bi form, the 

Ra register will be updated with the Ra + (Rb << sv) value after the memory load operation. 

And UNPREDICTABLE result will be written to Rt if Rt is specified as equal to Ra in 

the instruction format. 

 

Operations: 

Addr = Ra + (Rb << sv); 

If (.bi form) { 

Vaddr = Ra; 

} else { 

Vaddr = Addr; 

} 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, LOAD); 

If (Excep_status == NO_EXCEPTION) { 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         97 

Bdata(7,0) = Load_Memory(PAddr, Byte, Attributes); 

Rt = Sign_Extend(Bdata(7,0)); 

If (.bi form) { Ra = Addr; } 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         98 

LBSI (Load Byte Signed Immediate) 

Type: 32-Bit Baseline 

Format: 

 

LBI 

31 30        25 24      20 19      15 14                            0 

0 LBSI 

010000 

Rt Ra imm15s 

 

LBI.bi 

31 30        25 24      20 19      15 14                            0 

0 LBSI.bi 

010100 

Rt Ra imm15s 

 

 

Syntax:  LBSI Rt, [Ra + imm15s] 

 LBSI.bi Rt, [Ra], imm15s 

Purpose: To load a sign-extended 8-bit byte from memory into a general register. 

Description: This instruction loads a sign-extended byte from the memory into the general 

register Rt. Two different forms are used to specify the memory address. The regular form 

uses Ra + SE(imm15s) as its memory address while the .bi form uses Ra. For the .bi form, 

the Ra register will be updated with the Ra + SE(imm15s) value after the memory load 

operation. And UNPREDICTABLE result will be written to Rt if Rt is specified as equal 

to Ra in the instruction format. Note that imm15 is treated as a signed integer. 

 

Operations: 

Addr = Ra + Sign_Extend(imm15s); 

If (.bi form) { 

Vaddr = Ra; 

} else { 

Vaddr = Addr; 

} 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, LOAD); 

If (Excep_status == NO_EXCEPTION) { 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         99 

Bdata(7,0) = Load_Memory(PAddr, BYTE, Attributes); 

Rt = Sign_Extend(Bdata(7,0)); 

If (.bi form) { Ra = Addr; } 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         100 

LH (Load Halfword) 

Type: 32-Bit Baseline 

Format: 

 

LH 

31 30     25 24      20 19       15 14     10 9  8 7         0 

0 MEM 

011100 

Rt Ra Rb sv LH 

00000001 

 

LH.bi 

31 30     25 24      20 19       15 14     10 9  8 7         0 

0 MEM 

011100 

Rt Ra Rb sv LH.bi 

00000101 

 

 

Syntax:  LH Rt, [Ra + (Rb << sv)] 

 LH.bi Rt, [Ra], (Rb << sv) 

Purpose: To load a zero-extended 16-bit halfword from memory into a general register. 

Description: This instruction loads a zero-extended halfword from the memory into the 

general register Rt. Two different forms are used to specify the memory address. The 

regular form uses Ra + (Rb << sv) as its memory address while the .bi form uses Ra. For 

the .bi form, the Ra register will be updated with the Ra + (Rb << sv) value after the 

memory load operation. And UNPREDICTABLE result will be written to Rt if Rt is 

specified as equal to Ra in the instruction format. 

 

The memory address has to be halfword-aligned. Otherwise, a Data Alignment Check 

exception will be generated. 

 

Operations: 

Addr = Ra + (Rb << sv); 

If (.bi form) { 

Vaddr = Ra; 

} else { 

Vaddr = Addr; 

} 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         101 

if (!Halfword_Aligned(Vaddr)) { 

Generate_Exception(Data_alignment_check); 

} 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, LOAD); 

If (Excep_status == NO_EXCEPTION) { 

Hdata(15,0) = Load_Memory(PAddr, HALFWORD, Attributes); 

Rt = Zero_Extend(Hdata(15,0)); 

If (.bi form) { Ra = Addr; } 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error, Data alignment check. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         102 

LHI (Load Halfword Immediate) 

Type: 32-Bit Baseline 

Format: 

 

LHI 

31 30        25 24      20 19      15 14                            0 

0 LHI 

000001 

Rt Ra imm15s 

 

LHI.bi 

31 30        25 24      20 19      15 14                            0 

0 LHI.bi 

000101 

Rt Ra imm15s 

 

 

Syntax:  LHI Rt, [Ra + (imm15s << 1)] 

 LHI.bi Rt, [Ra], (imm15s << 1) 

(imm15s is a halfword offset. In assembly programming, always write a byte offset.) 

Purpose: To load a zero-extended 16-bit halfword from memory into a general register. 

Description: This instruction loads a zero-extended halfword from the memory into the 

general register Rt. Two different forms are used to specify the memory address. The 

regular form uses Ra + SE(imm15s << 1) as its memory address while the .bi form uses Ra. 

For the .bi form, the Ra register will be updated with the Ra + SE(imm15s << 1) value after 

the memory load operation. And UNPREDICTABLE result will be written to Rt if Rt is 

specified as equal to Ra in the instruction format. Note that imm15s is treated as a signed 

integer. 

 

The memory address has to be half-word-aligned. Otherwise, a Data Alignment Check 

exception will be generated. 

 

Operations: 

Addr = Ra + Sign_Extend(imm15s << 1); 

If (.bi form) { 

Vaddr = Ra; 

} else { 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         103 

Vaddr = Addr; 

} 

if (!Halfword_Aligned(Vaddr)) { 

Generate_Exception(Data_alignment_check); 

} 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, LOAD); 

If (Excep_status == NO_EXCEPTION) { 

Hdata(15,0) = Load_Memory(PAddr, HALFWORD, Attributes); 

Rt = Zero_Extend(Hdata(15,0)); 

If (.bi form) { Ra = Addr; } 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error, Data alignment check. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         104 

LHS (Load Halfword Signed) 

Type: 32-Bit Baseline 

Format: 

 

LHS 

31 30     25 24      20 19       15 14     10 9  8 7         0 

0 MEM 

011100 

Rt Ra Rb sv LHS 

00010001 

 

LHS.bi 

31 30     25 24      20 19       15 14     10 9  8 7         0 

0 MEM 

011100 

Rt Ra Rb sv LHS.bi 

00010101 

 

 

Syntax:  LHS Rt, [Ra + (Rb << sv)] 

 LHS.bi Rt, [Ra], (Rb << sv) 

Purpose: To load a sign-extended 16-bit halfword from memory into a general register. 

Description: This instruction loads a sign-extended halfword from the memory into the 

general register Rt. Two different forms are used to specify the memory address. The 

regular form uses Ra + (Rb << sv) as its memory address while the .bi form uses Ra. For 

the .bi form, the Ra register will be updated with the Ra + (Rb << sv) value after the 

memory load operation. And UNPREDICTABLE result will be written to Rt if Rt is 

specified as equal to Ra in the instruction format. 

 

The memory address has to be halfword-aligned. Otherwise, a Data Alignment Check 

exception will be generated. 

 

Operations: 

Addr = Ra + (Rb << sv); 

If (.bi form) { 

Vaddr = Ra; 

} else { 

Vaddr = Addr; 

} 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         105 

if (!Halfword_Aligned(Vaddr)) { 

Generate_Exception(Data_alignment_check); 

} 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, LOAD); 

If (Excep_status == NO_EXCEPTION) { 

Hdata(15,0) = Load_Memory(PAddr, HALFWORD, Attributes); 

Rt = Sign_Extend(Hdata(15,0)); 

If (.bi form) { Ra = Addr; } 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error, Data alignment check. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         106 

LHSI (Load Halfword Signed Immediate) 

Type: 32-Bit Baseline 

Format: 

 

LHSI 

31 30        25 24      20 19      15 14                            0 

0 LHSI 

010001 

Rt Ra imm15s 

 

LHSI.bi 

31 30        25 24      20 19      15 14                            0 

0 LHSI.bi 

010101 

Rt Ra imm15s 

 

 

Syntax:  LHSI Rt, [Ra + (imm15s << 1)] 

 LHSI.bi Rt, [Ra], (imm15s << 1) 

(imm15s is a halfword offset. In assembly programming, always write a byte offset.) 

Purpose: To load a sign-extended 16-bit halfword from memory into a general register. 

Description: This instruction loads a sign-extended halfword from the memory into the 

general register Rt. Two different forms are used to specify the memory address. The 

regular form uses Ra + SE(imm15s << 1) as its memory address while the .bi form uses Ra. 

For the .bi form, the Ra register will be updated with the Ra + SE(imm15s << 1) value after 

the memory load operation. And UNPREDICTABLE result will be written to Rt if Rt is 

specified as equal to Ra in the instruction format. Note that imm15s is treated as a signed 

integer. 

 

The memory address has to be half-word-aligned. Otherwise, a Data Alignment Check 

exception will be generated. 

 

Operations: 

Addr = Ra + Sign_Extend(imm15s << 1); 

If (.bi form) { 

Vaddr = Ra; 

} else { 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         107 

Vaddr = Addr; 

} 

if (!Halfword_Aligned(Vaddr)) { 

Generate_Exception(Data_alignment_check); 

} 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, LOAD); 

If (Excep_status == NO_EXCEPTION) { 

Hdata(15,0) = Load_Memory(PAddr, HALFWORD, Attributes); 

Rt = Sign_Extend(Hdata(15,0)); 

If (.bi form) { Ra = Addr; } 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error, Data alignment check. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         108 

LLW (Load Locked Word) 

Format: 

 

31 30     25 24      20 19       15 14    10 9  8 7         0 

0 MEM 

011100 

Rt Ra Rb sv LLW 

00011000 

 

Syntax: LLW Rt, [Ra + (Rb << sv)] 

Purpose: It is used as a primitive to perform atomic read-modify-write operations. 

Description: The LLW and SCW instructions are basic interlocking primitives to perform 

an atomic read (load-locked), modify, and write (store-conditional) sequence. 

 

   LLW Rx 

   … Modifying Rx 

   SCW Rx 

   BEQZ Rx 

 

A LLW instruction begins the sequence and a SCW instruction completes the sequence. If 

this sequence can be performed without any intervening interruption or an interfering write 

from another processor or I/O module, then the SCW instruction succeeds. Otherwise the 

SCW instruction fails and the program has to retry the sequence. There can only be one 

such active read-modify-write sequence exists per processor at any one time. And if a new 

LLW instruction is issued before an active sequence is completed by a SCW instruction, 

the new LLW instruction will start a new sequence which replaces the previous sequence.  

 

The LLW instruction loads an aligned 32-bit word from a word-aligned memory address 

calculated by adding Ra and (Rb << sv). The word from memory is loaded into register Rt. 

When a LLW instruction is executed without generating any exceptions, the processor 

remembers the loaded physical word address (Locked Physical Address) and sets a 

per-processor lock flag. 

 

If the lock flag is still set when a SCW instruction is executed and the stored physical 

address is the same as the aligned address of the remembered LLW physical address, the 

store happens; otherwise, the store does not occur. And the success or failure status is 

stored back into the source register (Please see SCW instruction description for detailed 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         109 

definition.) 

 

The per-processor lock flag is cleared if the following events happen: 

� Any execution of an IRET instruction. 

� A coherent store is completed by another processor or coherent I/O module to the 

“Lock Region” containing the Locked Physical Address. The definition of the 

“Lock Region” is an aligned power-of-2 bytes memory region and its exact size 

is implementation-dependent, but within the range of at least 4-byte and at most 

the default minimum page size. The coherency is enforced either by hardware 

coherent mechanisms or by software using CCTL instructions on this processor 

through an interrupt mechanism. The coherent store event can be caused by a 

regular store, a store_conditional, and DPREF/Cache-Line-Write instructions. 

� The completion of a SCW instruction on all success or fail conditions. 

 

If there is a memory access or CCTL instruction between the execution of LLW and SCW, 

the SCW may fail or success. Portable software should avoid putting memory access or 

CCTL instructions between the execution of LLW and SCW instructions. (For example, a 

store word operation to the same physical address of the Locked Physical Address.) 

 

Operations: 

 

VA = Ra + Rb; 

If (VA(1,0) != 0) { 

Generate_Exception(Data_alignment_check); 

} 

(PA, Attributes) = Address_Translation(VA, PSW.DT); 

Excep_status = Page_Exception(Attributes, UserMode, LOAD); 

If (Excep_status == NO_EXCEPTION) { 

Rt = Load_Memory(PA, WORD, Attributes); 

Locked_Physical_Address = PA; 

Lock_Flag = 1; 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: Alignment check, TLB fill, Non-leaf PTE not present, Leaf PTE not present, 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         110 

Read protection, Page modified, Access bit, TLB VLPT miss, Machine error. 

Privilege level: All 

Usage (Note): 

 

A very long instruction sequence between LLW and SCW may always fail the SCW 

instruction due to periodic timer interrupt. Software should take this into consideration 

when constructing LLW and SCW instruction sequences. 

 

Additional Software Constraints: 

 

For N1213 hardcore N1213_43U1HA0 (CPU_VER==0x0C010003), additional software 

constraints must be followed to ensure correct LLW/SCW operations. 

� If LLW/SCW are used in an interruption handler, it must be followed that 

� Execution of a LLW instruction must lead to execution of a SCW instruction. 

UPREDICTABLE result may happen if execution of a LLW instruction 

eventually leads to execution of an IRET instruction without going through a 

SCW instruction. 

 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         111 

LMW (Load Multiple Word) 

Format: 

 

31 30     25 24    20 19    15 14  10 9    6 5 4 3 2 1 0 

0 LSMW 

011101 

Rb Ra Re Enable4 LMW 

0 

b:0 

a:1 

i:0 

d:1 

m 00 

 

Syntax: LMW.{b| a}{i | d}{m?} Rb, [Ra], Re, Enable4 

 

Purpose: Load multiple 32-bit words from sequential memory locations into multiple 

registers. 

Description: load multiple 32-bit words from sequential memory addresses specified by 

the base address register Ra and the {b | a}{i | d} options into a continuous range or 

a subset of general-purpose registers specified by a registers list formed by Rb, Re, 

and the four-bit Enable4 field as follows. 

<Registers List> = a range from [Rb, Re] and a list from <Enable4> 

 

� {i | d} option specifies the direction of the address change. {i} generates 

increasing addresses from Ra and {d} generates decreasing addresses from Ra. 

� {b | a} option specifies the way how the first address is generated. {b} use the 

contents of Ra as the first memory load address. {a} use either Ra+4 or Ra-4 for 

the {i | d} option respectively as the first memory load address. 

� {m?} option, if it is specified, indicates that the base address register will be 

updated to the value computed in the following formula at the completion of this 

instruction. 

TNReg = Total number of registers loaded 

Updated value = Ra + (4 * TNReg) for {i} option 

Updated value = Ra – (4 * TNReg) for {d} option 

 

� [Rb, Re] specifies a range of registers which will be loaded by this instruction. 

Rb(4,0) specifies the first register number in the continuous register range and 

Re(4,0) specifies the last register number in this register range. In addition to the 

range of registers, <Enable4(3,0)> specifies the load of 4 individual registers 

from R28 to R31 (s9/fp, gp, lp, sp) which have special calling convention usage. 

The exact mapping of Enable4(3,0) bits and registers is as follows: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         112 

Bits Enable4(3) 

Format(9) 

Enable4(2) 

Format(8) 

Enable4(1) 

Format(7) 

Enable4(0) 

Format(6) 

Registers R28 R29 R30 R31 

 

� Several constraints are imposed for the <Registers List>: 

� If [Rb(4,0), Re(4,0)] specifies at least one register: 

� Rb(4,0) <= Re(4,0) AND 

� 0 <= Rb(4,0), Re(4,0) < 28 

� If [Rb(4,0), Re(4,0)] specifies no register at all: 

� Rb(4,0) == Re(4,0) = 0b11111 AND 

� Enable4(3,0) != 0b0000 

� If these constraints are not met, UNPREDICTABLE result will happen to 

the contents of all registers after this instruction. 

� The registers are loaded in sequence from matching memory locations. That is, 

the lowest-numbered register is loaded from the lowest memory address while 

the highest-numbered register is loaded from the highest memory address. 

� If the base address register update {m?} option is specified while the base 

address register Ra is also specified in the <Register Specification>, there are 

two source values for the final content of the base address register Ra. In this 

case, the final value of Ra is UNPREDICTABLE. And the rest of the loaded 

registers should have values as if the base address register update {m?} option 

is not specified. 

� This instruction can handle aligned/unaligned memory address. 

 

Operation: 

TNReg = Count_Registers(register_list); 

if (“bi”) { 

B_addr = Ra; 

E_addr = Ra + (TNReg * 4) – 4; 

} elseif (“ai”) { 

B_addr = Ra + 4; 

E_addr = Ra + (TNReg * 4); 

} elseif (“bd”) { 

B_addr = Ra – (TNReg * 4) + 4; 

E_addr = Ra; 

} else { // “ad” 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         113 

B_addr = Ra – (TNReg * 4); 

E_addr = Ra – 4 

} 

VA = B_addr; 

for (i = 0 to 31) { 

if (register_list[i] == 1) { 

(PA, Attributes) = Address_Translation(VA, PSW.DT); 

Excep_status = Page_Exception(Attributes, UserMode, LOAD); 

If (Excep_status == NO_EXCEPTION) { 

Ri = Load_Memory(PA, Word, Attributes); 

VA = VA + 4; 

} else { 

Generate_Exception(Excep_status); 

} 

} 

} 

if (“im”) { 

Ra = Ra + (TNReg * 4); 

} else { // “dm” 

Ra = Ra – (TNReg * 4); 

} 

Exception: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error. 

� If the base register update is not specified, the base register value is unchanged. 

This applies even if the instruction loaded its own base register and the memory 

access to load the base register occurred earlier than the exception event. For 

example, suppose the instruction is  

LMW.bd  R2, [R4], R4, 0b0000 

And the implementation loads R4, then R3, and finally R2. If an exception 

occurs on any of the accesses, the value in the base register R4 of the instruction 

is unchanged. 

� If the base register update is specified, the value left in the base register is 

unchanged. 

� If the instruction loads only one general-purpose register, the value in that 

register is unchanged. 

� If the instruction loads more than one general-purpose register, 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         114 

UNPREDICTABLE values are left in destination registers which are not the base 

register of the instruction. 

Interruption: Whether this instruction is interruptible or not is 

implementation-dependent. 

Privilege Level: all 

Note:  

(1) LMW and SMW instructions do not guarantee atomicity among individual memory 

access operations. And they do not guarantee single access to a memory location 

during the execution either. Any I/O access that has side-effects other than simple 

stable memory-like access behavior should not use these two instructions. 

(2) The memory access order among the words accessed by LMW/SMW is not defined 

here and should be implementation-dependent. However, the more likely access order 

implemented by an implementation is: 

� For LMW/SMW.i : increasing memory addresses from base address. 

� For LMW/SMW.d: decreasing memory addresses from base address. 

(3) The memory access order within an un-aligned word accessed is not defined here and 

should be implementation-dependent. However, the more likely access order 

implemented by an implementation is: 

� For LMW/SMW.i: the aligned low address of the word and then the aligned 

high address of the word. If an interruption occurs, the EVA register will 

contain the starting low address of the un-aligned word or . 

� For LMW/SMW.d: the aligned high address of the word and then the aligned 

low address of the word. If an interruption occurs, the EVA register will contain 

“base un-aligned address + 4” of the first word or the starting low address of 

the remaining decreasing memory word. 

(4) Based on the more likely access order of (2) and (3), upon interruption, the EVA 

register for un-aligned LMW/SMW will more likely have the following value: 

� For LMW/SMW.i: the starting low addresses of the accessed words or “Ra + 

(TNReg * 4)” where TNReg represents the total number of registers loaded or 

stored. 

� For LMW/SMW.d: the starting low addresses of the accessed words or “Ra + 

4”. 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         115 

LW (Load Word) 

Type: 32-Bit Baseline 

Format: 

 

LW 

31 30     25 24      20 19       15 14     10 9  8 7         0 

0 MEM 

011100 

Rt Ra Rb sv LW 

00000010 

 

LW.bi 

31 30     25 24      20 19       15 14     10 9  8 7         0 

0 MEM 

011100 

Rt Ra Rb sv LW.bi 

00000110 

 

 

Syntax:  LW Rt, [Ra + (Rb << sv)] 

 LW.bi Rt, [Ra], (Rb << sv) 

Purpose: To load a 32-bit word from memory into a general register. 

Description: This instruction loads a word from the memory into the general register Rt. 

Two different forms are used to specify the memory address. The regular form uses Ra + 

(Rb << sv) as its memory address while the .bi form uses Ra. For the .bi form, the Ra 

register will be updated with the Ra + (Rb << sv) value after the memory load operation. 

And UNPREDICTABLE result will be written to Rt if Rt is specified as equal to Ra in 

the instruction format. 

 

The memory address has to be word-aligned. Otherwise, a Data Alignment Check 

exception will be generated. 

 

Operations: 

Addr = Ra + (Rb << sv); 

If (.bi form) { 

Vaddr = Ra; 

} else { 

Vaddr = Addr; 

} 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         116 

if (!Word_Aligned(Vaddr)) { 

Generate_Exception(Data_alignment_check); 

} 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, LOAD); 

If (Excep_status == NO_EXCEPTION) { 

Wdata(31,0) = Load_Memory(PAddr, WORD, Attributes); 

Rt = Wdata(31,0); 

If (.bi form) { Ra = Addr; } 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error, Data alignment check. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         117 

LWI (Load Word Immediate) 

Type: 32-Bit Baseline 

Format: 

 

LWI 

31 30        25 24      20 19      15 14                            0 

0 LWI 

000010 

Rt Ra imm15s 

 

LWI.bi 

31 30        25 24      20 19      15 14                            0 

0 LWI.bi 

000110 

Rt Ra imm15s 

 

 

Syntax:  LWI Rt, [Ra + (imm15s << 2)] 

 LWI.bi Rt, [Ra], (imm15s << 2) 

(imm15s is a word offset. In assembly programming, always write a byte offset.) 

Purpose: To load a 32-bit word from memory into a general register. 

Description: This instruction loads a word from the memory into the general register Rt. 

Two different forms are used to specify the memory address. The regular form uses Ra + 

SE(imm15s << 2) as its memory address while the .bi form uses Ra. For the .bi form, the 

Ra register will be updated with the Ra + SE(imm15s << 2) value after the memory load 

operation. And UNPREDICTABLE result will be written to Rt if Rt is specified as equal 

to Ra in the instruction format. Note that imm15s is treated as a signed integer. 

 

The memory address has to be word-aligned. Otherwise, a Data Alignment Check 

exception will be generated. 

 

Operations: 

Addr = Ra + Sign_Extend(imm15s << 2); 

If (.bi form) { 

Vaddr = Ra; 

} else { 

Vaddr = Addr; 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         118 

} 

if (!Word_Aligned(Vaddr)) { 

Generate_Exception(Data_alignment_check); 

} 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, LOAD); 

If (Excep_status == NO_EXCEPTION) { 

Wdata(31,0) = Load_Memory(PAddr, WORD, Attributes); 

Rt = Wdata(31,0); 

If (.bi form) { Ra = Addr; } 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error, Data alignment check. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         119 

LWUP (Load Word with User Privilege Translation) 

Type: 32-Bit Baseline 

Format: 

 

31 30     25 24      20 19       15 14     10 9  8 7         0 

0 MEM 

011100 

Rt Ra Rb sv LWUP 

00100010 

 

Syntax:  LWUP Rt, [Ra + (Rb << sv)] 

Purpose: To load a 32-bit word from memory into a general register with the user mode 

privilege address translation. 

Description: This instruction loads a word from the memory address Ra + (Rb << sv) into 

the general register Rt with the user mode privilege address translation regardless of the 

current processor operation mode (i.e. PSW.POM) and the current data address 

translation state (i.e. PSW.DT). The memory address has to be word-aligned. Otherwise, a 

Data Alignment Check exception will be generated. 

 

Operations: 

Vaddr = Ra + (Rb << sv); 

if (!Word_Aligned(Vaddr)) { 

Generate_Exception(Data_alignment_check); 

} 

(PAddr, Attributes) = Address_Translation(Vaddr, TRANSLATE); 

Excep_status = Page_Exception(Attributes, UserMode, LOAD); 

If (Excep_status == NO_EXCEPTION) { 

Wdata(31,0) = Load_Memory(PAddr, WORD, Attributes); 

Rt = Wdata(31,0); 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error, Data alignment check. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         120 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         121 

MADD32 (Multiply and Add to Data Low) 

Type: 32-Bit Baseline 

Format: 

 

31 30    25 24   22 21 20 19     15 14      10 9     6 5       0 

0 ALU_2 

100001 

000 Dt 0 Ra Rb 0000 MADD32 

110011 

 

Syntax:  MADD32 Dt, Ra, Rb 

Purpose: Multiply the contents of two 32-bit registers and add the lower 32-bit 

multiplication result with the lower 32-bit content of a 64-bit data register. The final result 

is written back to the lower 32-bit of the 64-bit data register. 

Description: Multiply the 32-bit content of Ra with the 32-bit content of Rb. The lower 

32-bit multiplication result is added with the content of Dt.LO 32-bit data register. And the 

final result is written back to Dt.LO data register. The contents of Ra and Rb can be either 

signed or unsigned integers. 

Operations: 

Mresult = Ra * Rb; 

Dt.LO = Dt.LO + Mresult(31,0); 

 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         122 

MADD64 (Multiply and Add Unsigned) 

Type: 32-Bit Baseline 

Format: 

 

31 30    25 24   22 21 20 19     15 14      10 9     6 5       0 

0 ALU_2 

100001 

000 Dt 0 Ra Rb 0000 MADD64 

101011 

 

Syntax:  MADD64 Dt, Ra, Rb 

Purpose: Multiply the unsigned integer contents of two 32-bit registers and add the 

multiplication result with the content of a 64-bit data register. The final result is written 

back to the 64-bit data register. 

Description: Multiply the 32-bit content of Ra with the 32-bit content of Rb. The 64-bit 

multiplication result is added with the content of Dt data register. And the final result is 

written back to Dt data register. The contents of Ra and Rb are treated as unsigned integers. 

Operations: 

Mresult = CONCAT(1`b0,Ra) * CONCAT(1`b0,Rb); 

Dt = Dt + Mresult(63,0); 

 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         123 

MADDS64 (Multiply and Add Signed) 

Type: 32-Bit Baseline 

Format: 

 

31 30    25 24   22 21 20 19     15 14      10 9     6 5       0 

0 ALU_2 

100001 

000 Dt 0 Ra Rb 0000 MADDS64 

101010 

 

Syntax:  MADDS64 Dt, Ra, Rb 

Purpose: Multiply the signed integer contents of two 32-bit registers and add the 

multiplication result with the content of a 64-bit data register. The final result is written 

back to the 64-bit data register. 

Description: Multiply the 32-bit content of Ra with the 32-bit content of Rb. The 64-bit 

multiplication result is added with the content of Dt data register. And the final result is 

written back to Dt data register. The contents of Ra and Rb are treated as signed integers. 

Operations: 

Mresult = Ra * Rb; 

Dt = Dt + Mresult(63,0); 

 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         124 

MFSR (Move From System Register) 

Format: 

 

31 30     25 24     20 19                    10 9        5 4         0 

0 MISC 

110010 

Rt SRIDX 00000 MFSR 

00010 

 

Syntax:  MFSR Rt, SRIDX 

Purpose: It is used to move the content of a system register into a general register. 

Description: 

The content of the system register specified by the SRIDX will be moved into the general 

register Rt. 

Operations: 

 GR[Rt] = SR[SRIDX]; 

 

Exceptions: Privileged Instruction 

 

Privilege level: Superuser and above 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         125 

MFUSR (Move From User Special Register) 

Type: 32-Bit Baseline 

Format: 

 

31 30    25 24    20 19    15 14      10 9     6 5       0 

0 ALU_2 

100001 

Rt USR Group 0000 MFUSR 

100000 

 

Syntax:  MFUSR Rt, USR_Name (= USR, Group) 

Purpose: Move the content of a User Special Register to a general register. 

Description: The content of a User Special Register specified by USR and Group is 

moved into a general register Rt. The USR definition is defined in the following tables.  

 

Table 52  Group 0 MFUSR definitions 

Group USR value User Special Register 

0 0 D0.LO 

0 1 D0.HI 

0 2 D1.LO 

0 3 D1.HI 

0 30-4 Reserved 

0 31 PC 

(The PC value of this instruction) 

 

Reading of group 1 registers in USER mode requires permission from PRIVILEGED 

mode resources (i.e. PRUSR_ACC_CTL register). If the reading permission is not 

enabled in USER mode, reading such a register will generate Privileged Instruction 

exception. Privileged software should provide means for a user mode program to request 

such access permission. Reading of reserved registers will cause Reserved Instruction 

exception. Please check Andes Privileged Architecture specification for detailed 

definitions of Group 1 USR registers. 

 

Table 53  Group 1 MFUSR definitions 

Group USR value User Special Register 

1 0 DMA_CFG 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         126 

1 1 DMA_GCSW 

1 2 DMA_CHNSEL 

1 3 DMA_ACT 

(Write only register, Read As Zero) 

1 4 DMA_SETUP 

1 5 DMA_ISADDR 

1 6 DMA_ESADDR 

1 7 DMA_TCNT 

1 8 DMA_STATUS 

1 9 DMA_2DSET 

1 10-24 Reserved 

1 25 DMA_2DSCTL 

1 26-31 Reserved 

 

Reading of group 2 registers in USER mode requires permission from PRIVILEGED 

mode resources (i.e. PRUSR_ACC_CTL register). If the reading permission is not 

enabled in USER mode, reading such a register will generate Privileged Instruction 

exception. Privileged software should provide means for a user mode program to request 

such access permission. Reading of reserved registers will cause Reserved Instruction 

exception. Please check Andes Privileged Architecture specification for detailed 

definitions of Group 2 USR registers. 

 

Table 54  Group 2 MFUSR definitions 

Group USR value User Special Register 

2 0 PFMC0 

2 1 PFMC1 

2 2 PFMC2 

2 3 Reserved 

2 4 PFM_CTL  

2 5-31 Reserved 

 

 

Operations: 

Rt = User_Special_Register[Group][USR]; 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         127 

Exceptions: Privileged Instruction, Reserved Instruction 

Privilege level: All 

Note:  

1. For PC register, there is no corresponding “MTUSR  Rt, PC” instruction. 

2. PC-relative memory access operation can be synthesized using the following code 

sequences: 

L1:  mfusr Ra, PC 

L2:  lwi Rs, [Ra + (offset relative to L1)] 

 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         128 

MOVI (Move Immediate) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19                                           0 

0 MOVI 

100010 

Rt imm20s 

 

Syntax:  MOVI Rt, imm20s 

Purpose: To initialize a register with a constant. 

Description: Move the sign-extended imm20s into general register Rt. 

Operations: 

Rt = SE(imm20s); 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         129 

MSUB32 (Multiply and Subtract to Data Low) 

Type: 32-Bit Baseline 

Format: 

 

31 30    25 24   22 21 20 19     15 14      10 9     6 5       0 

0 ALU_2 

100001 

000 Dt 0 Ra Rb 0000 MSUB32 

110101 

 

Syntax:  MSUB32 Dt, Ra, Rb 

Purpose: Multiply the contents of two 32-bit registers and subtract the lower 32-bit 

multiplication result from the lower 32-bit content of a 64-bit data register. The final result 

is written back to the lower 32-bit of the 64-bit data register. 

Description: Multiply the 32-bit content of Ra with the 32-bit content of Rb. The lower 

32-bit multiplication result is subtracted from the content of Dt.LO 32-bit data register. 

And the final result is written back to Dt.LO data register. The contents of Ra and Rb can be 

either signed or unsigned integers. 

Operations: 

Mresult = Ra * Rb; 

Dt.LO = Dt.LO - Mresult(31,0); 

 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         130 

MSUB64 (Multiply and Subtract Unsigned) 

Type: 32-Bit Baseline 

Format: 

 

31 30    25 24   22 21 20 19     15 14      10 9     6 5       0 

0 ALU_2 

100001 

000 Dt 0 Ra Rb 0000 MSUB64 

101101 

 

Syntax:  MSUB64 Dt, Ra, Rb 

Purpose: Multiply the unsigned integer contents of two 32-bit registers and subtract the 

multiplication result from the content of a 64-bit data register. The final result is written 

back to the 64-bit data register. 

Description: Multiply the 32-bit content of Ra with the 32-bit content of Rb. The 64-bit 

multiplication result is subtracted from the content of Dt data register. And the final result 

is written back to Dt data register. The contents of Ra and Rb are treated as unsigned 

integers. 

Operations: 

Mresult = CONCAT(1`b0,Ra) * CONCAT(1`b0,Rb); 

Dt = Dt - Mresult(63,0); 

 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         131 

MSUBS64 (Multiply and Subtract Signed) 

Type: 32-Bit Baseline 

Format: 

 

31 30    25 24   22 21 20 19     15 14      10 9     6 5       0 

0 ALU_2 

100001 

000 Dt 0 Ra Rb 0000 MSUBS64 

101100 

 

Syntax:  MSUBS64 Dt, Ra, Rb 

Purpose: Multiply the signed integer contents of two 32-bit registers and subtract the 

multiplication result from the content of a 64-bit data register. The final result is written 

back to the 64-bit data register. 

Description: Multiply the 32-bit content of Ra with the 32-bit content of Rb. The 64-bit 

multiplication result is subtracted from the content of Dt data register. And the final result 

is written back to Dt data register. The contents of Ra and Rb are treated as signed integers. 

Operations: 

Mresult = Ra * Rb; 

Dt = Dt - Mresult(63,0); 

 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         132 

MSYNC (Memory Data Coherence Synchronization) 

Format: 

 

31 30     25 24      20 19                 8 7       5 4           0 

0 MISC 

110010 

00000 000000000000 SubType MSYNC 

01100 

 

Syntax: MSYNC SubType 

Purpose: This is a collection of Memory Barrier operations to ensure completion (locally 

or globally) of certain phase of memory load/store operations. This instruction is used to 

order loads and stores for synchronizing memory accesses between two and more Andes 

cores or an Andes core and the other Direct Memory Access agent. 

 

Description:  

This instruction is used for any non-strongly ordered load and store operations where 

software wants to ensure certain memory access order from these operations assuming that 

the hardware implementation will not automatically ensure the required ordering behavior. 

Hardware implementation is free to enforce more ordering behavior. And in such a case, 

this instruction becomes a NOP. 

 

The following table lists the MSYNC SubType definitions: 

 

Table 55  MSYNC SubType definitions 

SubType Name 

0 All 

1 Store 

2 - 7 Reserved 

 

If a Reserved SubType is used in this instruction, a Reserved Instruction Exception will be 

generated. 

 

1. SubType 0, All: 

For an implementation which does not support coherent caches, this operation ensures that 

all loads and non-dirty stores before this instruction completes before all loads and stores 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         133 

after this instruction can start. Non-dirty store includes non-cacheable store, and cacheable 

store which has been written back implicitly or explicitly. 

 

For an implementation which support coherent caches, this operation ensures that all loads 

and stores before this instruction completes before all loads and stores after this instruction 

can start. 

 

Completeness for a load means the destination register is written. Completeness for a store 

means the stored value is visible to all memory access agents in the system. 

 

This operation does not enforce any ordering between load and store instructions and 

instruction fetches. 

 

2. SubType 1, Store: 

For an implementation which does not support coherent caches, this operation ensures that 

all non-dirty stores before this instruction completes before all loads and stores after this 

instruction can start. Non-dirty store includes non-cacheable store, and cacheable store 

which has been written back implicitly or explicitly. 

 

For an implementation which support coherent caches, this operation ensures that all stores 

before this instruction completes before all loads and stores after this instruction can start. 

 

Completeness for a store means the stored value is visible to all memory access agents in 

the system. 

 

This operation does not enforce any ordering between load and store instructions and 

instruction fetches. 

 

Operation: 

If (SubType is not supported) { 

 Reserved_Instruction_Exception() 

} else { 

MemoryDataSynchronization(SubType) 

} 

 

Exceptions: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         134 

Reserved instruction exception 

 

Privilege level: All 

 

Notes: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         135 

MTSR (Move To System Register) 

Format: 

 

31 30     25 24     20 19                    10 9        5 4         0 

0 MISC 

110010 

Ra SRIDX 00000 MTSR 

00011 

 

Syntax:  MTSR Ra, SRIDX 

Purpose: It is used to move the content of a general register into a system register. 

Description: 

The content of the general register Ra will be moved into the system register specified by 

the SRIDX. 

Operations: 

 SR[SRIDX] = GR[Ra]; 

 

Exceptions: Privileged Instruction 

 

Privilege level: Superuser and above 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         136 

MTUSR (Move To User Special Register) 

Type: 32-Bit Baseline 

Format: 

 

31 30    25 24    20 19    15 14      10 9     6 5       0 

0 ALU_2 

100001 

Rt USR Group 0000 MFUSR 

100001 

 

Syntax:  MTUSR Rt, USR_Name (= USR, Group) 

Purpose: Move the content of a general register to a User Special Register. 

Description: The content of a general register Rt is moved into a User Special Register 

specified by USR and Group. The USR definition is defined in the following tables. 

 

Table 56  Group 0 MTUSR definitions 

Group USR value User Special Register 

0 0 D0.LO 

0 1 D0.HI 

0 2 D1.LO 

0 3 D1.HI 

0 4-31 Reserved 

 

Writing of group 1 registers in USER mode requires permission from PRIVILEGED 

mode resources (i.e. PRUSR_ACC_CTL register). If the writing permission is not 

enabled in USER mode, writing such a register will generate Privileged Instruction 

exception. Privileged software should provide means for a user mode program to request 

such access permission. Writing of reserved registers will cause Reserved Instruction 

exception. Please check Andes Privileged Architecture specification for detailed 

definitions of Group 1 USR registers. The data dependency serializations of group 1 

registers between MTUSR DMA_CHNSEL and MTUSR <Channel register> or between 

MTUSR and MFUSR requires DSB instruction inserted in the middle. Please see Andes 

Privileged Architecture specification for more details. 

 

Table 57  Group 1 MTUSR definitions 

Group USR value User Special Register 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         137 

1 0 DMA_CFG 

(Read only, Write ignored) 

1 1 DMA_GCSW 

(Read only, Write ignored) 

1 2 DMA_CHNSEL 

1 3 DMA_ACT 

1 4 DMA_SETUP 

1 5 DMA_ISADDR 

1 6 DMA_ESADDR 

1 7 DMA_TCNT 

1 8 DMA_STATUS 

(Read only, Write ignored) 

1 9 DMA_2DSET 

1 10-24 Reserved 

1 25 DMA_2DSCTL 

1 26-31 Reserved 

 

Writing of group 2 registers in USER mode requires permission from PRIVILEGED 

mode resources (i.e. PRUSR_ACC_CTL register). If the writing permission is not 

enabled in USER mode, writing such a register will generate Privileged Instruction 

exception. Privileged software should provide means for a user mode program to request 

such access permission. Writing of reserved registers will cause Reserved Instruction 

exception. Please check Andes Privileged Architecture specification for detailed 

definitions of Group 2 USR registers. The data dependency serializations of group 2 

registers between MTUSR PFM_CTL and MTUSR <PFMCx register> or between 

MTUSR and MFUSR requires DSB instruction inserted in the middle. Please see Andes 

Privileged Architecture specification for more details. 

 

Table 58  Group 2 MTUSR definitions 

Group USR value User Special Register 

2 0 PFMC0 

2 1 PFMC1 

2 2 PFMC2 

2 3 Reserved 

2 4 PFM_CTL 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         138 

2 5-31 Reserved 

 

 

Operations: 

User_Special_Register[Group][USR] = Rt; 

 

Exceptions: Privileged Instruction, Reserved Instruction 

Privilege level: All 

Note: 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         139 

MUL (Multiply Word to Register) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19     15 14      10 9        6 5     0 

0 ALU_2 

100001 

Rt Ra Rb 0000 MUL 

100100 

 

Syntax:  MUL Rt, Ra, Rb 

Purpose: Multiply the contents of two registers and write the result to a register. 

Description: Multiply the 32-bit content of Ra with the 32-bit content of Rb. The lower 

32-bit of the multiplication result is written to Rt. The contents of Ra and Rb can be signed 

or unsigned numbers. 

Operations: 

Mresult = Ra * Rb; 

Rt = Mresult(31,0); 

 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         140 

MULT32 (Multiply Word to Data Low) 

Type: 32-Bit Baseline 

Format: 

 

31 30    25 24   22 21 20 19     15 14      10 9     6 5     0 

0 ALU_2 

100001 

000 Dt 0 Ra Rb 0000 MULT32 

110001 

 

Syntax:  MULT32 Dt, Ra, Rb 

Purpose: Multiply the contents of two 32-bit registers and write the result to the lower 

32-bit of a 64-bit data register. 

Description: Multiply the 32-bit content of Ra with the 32-bit content of Rb. The lower 

32-bit multiplication result is written to Dt.LO 32-bit data register. The contents of Ra and 

Rb can be either signed or unsigned integers. 

Operations: 

Mresult = Ra * Rb; 

Dt.LO = Mresult(31,0); 

 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         141 

MULT64 (Multiply Word Unsigned) 

Type: 32-Bit Baseline 

Format: 

 

31 30    25 24   22 21 20 19     15 14      10 9     6 5     0 

0 ALU_2 

100001 

000 Dt 0 Ra Rb 0000 MULT64 

101001 

 

Syntax:  MULT64 Dt, Ra, Rb 

Purpose: Multiply the unsigned integer contents of two 32-bit registers and write the result 

to a 64-bit data register. 

Description: Multiply the 32-bit content of Ra with the 32-bit content of Rb. The 64-bit 

multiplication result is written to Dt data register. The contents of Ra and Rb are treated as 

unsigned integers. 

Operations: 

Mresult = CONCAT(1`b0,Ra) * CONCAT(1`b0,Rb); 

Dt = Mresult(63,0); 

 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         142 

MULTS64 (Multiply Word Signed) 

Type: 32-Bit Baseline 

Format: 

 

31 30    25 24   22 21 20 19     15 14      10 9     6 5     0 

0 ALU_2 

100001 

000 Dt 0 Ra Rb 0000 MULTS64 

101000 

 

Syntax:  MULTS64 Dt, Ra, Rb 

Purpose: Multiply the signed integer contents of two 32-bit registers and write the result to 

a 64-bit data register. 

Description: Multiply the 32-bit content of Ra with the 32-bit content of Rb. The 64-bit 

multiplication result is written to Dt data register. The contents of Ra and Rb are treated as 

signed integers. 

Operations: 

Mresult = Ra * Rb; 

Dt = Mresult(63,0); 

 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         143 

NOP (No Operation) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19     15 14      10 9        5 4     0 

0 ALU_1 

100000 

NOP 

00000 

NOP 

00000 

NOP 

00000 

00000 SRLI 

01001 

 

Syntax:  NOP 

Purpose: Perform no operation. 

Description: Do nothing. This instruction is aliased to “SRLI R0,R0,0”, but will be 

treated by an implementation as a true NOP. 

Operations: 

; 

Exceptions: None 

Privilege level: All 

Note: 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         144 

NOR (Bit-wise Logical Nor) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19     15 14      10 9        5 4     0 

0 ALU_1 

100000 

Rt Ra Rb 00000 NOR 

00101 

 

Syntax:  NOR Rt, Ra, Rb 

Purpose: Doing a bit-wise logical NOR operation on the content of two registers. 

Description: The content of Ra is combined with the content of Rb using a bit-wise logical 

NOR operation. And the result is written to Rt. 

Operations: 

Rt = ~(Ra | Rb); 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         145 

OR (Bit-wise Logical Or) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19     15 14      10 9        5 4     0 

0 ALU_1 

100000 

Rt Ra Rb 00000 OR 

00100 

 

Syntax:  OR Rt, Ra, Rb 

Purpose: Doing a bit-wise logical OR operation on the content of two registers. 

Description: The content of Ra is combined with the content of Rb using a bit-wise logical 

OR operation. And the result is written to Rt. 

Operations: 

Rt = Ra | Rb; 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         146 

ORI (Or Immediate) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19      15 14                                 0 

0 ORI 

101100 

Rt Ra imm15u 

 

Syntax:  ORI Rt, Ra, imm15u 

Purpose: Bit-wise OR of the content of a register with an unsigned constant. 

Description: The content of Ra is bit-wise ORed with the zero-extended imm15u. And the 

result is written to Rt. 

Operations: 

Rt = Ra | ZE(imm15u); 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         147 

RET (Return from Register) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24          15 14      10 9   8 7    6 5 4      0 

0 JREG 

100101 

0000000000 Rb DT/IT 

00 

00 RET 

1 

JR 

00000 

 

Syntax:  RET Rb 

Purpose: Unconditional function call return to an instruction address stored in a register. 

Description: Branch unconditionally to an instruction address stored in Rb. Note that the 

architecture behavior of this instruction is the same as the JR instruction. But software 

will use this instruction instead of JR for function call return purpose. This facilitates 

software’s need to distinguish the two different usages which is helpful in call stack 

backtracing applications. Distinguishing a function return jump from a regular jump will 

also help on implementation performance (e.g. return address prediction). 

Operations: 

PC = Rb; 

 

Exceptions: None 

Privilege level: All 

Note:  



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         148 

RET.xTOFF (Return from Register and Translation OFF) 

Type: 32-Bit Baseline (with MMU configuration) 

Format: 

RET.ITOFF 

31 30        25 24          15 14      10 9    8 7    6 5 4      0 

0 JREG 

100101 

0000000000 Rb DT/IT 

01 

00 RET 

1 

JR 

00000 

 

RET.TOFF 

31 30        25 24          15 14      10 9    8 7    6 5 4      0 

0 JREG 

100101 

0000000000 Rb DT/IT 

11 

00 RET 

1 

JR 

00000 

 

Syntax:  RET.[T | IT]OFF Rb 

Purpose: Unconditional function call return to an instruction address stored in a register 

and turn off address translation for the target instruction. 

Description: Branch unconditionally to an instruction address stored in Rb and also clears 

the IT (and DT if included) field of the Processor Status Word (PSW) system register to 

turn off the instruction (and data if included) address translation process in the memory 

management unit. This instruction guarantees that fetching of the target instruction will see 

PSW.IT as 0 (and PSW.DT as 0 if included), thus will not go through the address 

translation process. Note that the architecture behavior of this instruction is the same as 

the JR.xTOFF instruction. But software will use this instruction instead of JR.xTOFF for 

function call return purpose. This facilitates software’s need to distinguish the two 

different usages which is helpful in call stack backtracing applications. Distinguishing a 

function return jump from a regular jump will also help on implementation performance 

(e.g. return address prediction). 

Operations: 

PC = Rb; 

PSW.IT = 0; 

if (INST(9) == 1) { 

PSW.DT = 0; 

} 

 

Exceptions: Privileged Instruction, Reserved Instruction (for non-MMU configuration) 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         149 

Privilege level: Superuser and above 

Note: This instruction is used in an interruption handler or privileged code in a translated 

address space to return to a place which is in a non-translated address space. Please see 

JRAL.xTON instruction for the reverse process of coming from a non-translated address 

space to a translated address space. 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         150 

ROTR (Rotate Right) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19     15 14      10 9        5 4     0 

0 ALU_1 

100000 

Rt Ra Rb 00000 ROTR 

01111 

 

Syntax:  ROTR Rt, Ra, Rb 

Purpose: Perform right rotation operation on the content of a register. 

Description: The content of Ra is right-rotated. The rotation amount is specified by the 

low-order 5-bits of the Rb register. And the result is written to Rt. 

Operations: 

ra = Rb(4,0); 

Rt = CONCAT(Ra(ra-1,0), Ra(31,ra)); 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         151 

ROTRI (Rotate Right Immediate) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19     15 14      10 9        5 4     0 

0 ALU_1 

100000 

Rt Ra imm5u 00000 ROTRI 

01011 

 

Syntax:  ROTRI Rt, Ra, imm5u 

Purpose: Perform right rotation operation on the content of a register. 

Description: The content of Ra is right-rotated. The rotation amount is specified by the 

imm5u constant. And the result is written to Rt. 

Operations: 

Rt = CONCAT(Ra(imm5u-1,0), Ra(31,imm5u)); 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         152 

SB (Store Byte) 

Type: 32-Bit Baseline 

Format: 

 

SB 

31 30     25 24      20 19       15 14     10 9  8 7         0 

0 MEM 

011100 

Rt Ra Rb sv SB 

00001000 

 

SB.bi 

31 30     25 24      20 19       15 14     10 9  8 7         0 

0 MEM 

011100 

Rt Ra Rb sv SB.bi 

00001100 

 

 

Syntax:  SB Rt, [Ra + (Rb << sv)] 

 SB.bi Rt, [Ra], (Rb << sv) 

Purpose: To store an 8-bit byte from a general register into memory. 

Description: The least-significant 8-bit byte in the general register Rt is stored to the 

memory. Two different forms are used to specify the memory address. The regular form 

uses Ra + (Rb << sv) as its memory address while the .bi form uses Ra. For the .bi form, the 

Ra register will be updated with the Ra + (Rb << sv) value after the memory store 

operation. 

 

Operations: 

Addr = Ra + (Rb << sv); 

If (.bi form) { 

Vaddr = Ra; 

} else { 

Vaddr = Addr; 

} 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, UserMode, STORE); 

If (Excep_status == NO_EXCEPTION) { 

Store_Memory(PAddr, BYTE, Attributes, Rt(7,0)); 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         153 

If (.bi form) { Ra = Addr; } 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         154 

SBI (Store Byte Immediate) 

Type: 32-Bit Baseline 

Format: 

 

SBI 

31 30        25 24      20 19      15 14                            0 

0 SBI 

001000 

Rt Ra imm15s 

 

SBI.bi 

31 30        25 24      20 19      15 14                            0 

0 SBI.bi 

001100 

Rt Ra imm15s 

 

 

Syntax:  SBI Rt, [Ra + imm15s] 

 SBI.bi Rt, [Ra], imm15s 

Purpose: To store an 8-bit byte from a general register into a memory location. 

Description: The least-significant 8-bit byte in the general register Rt is stored to the 

memory location. Two different forms are used to specify the memory address. The regular 

form uses Ra + SE(imm15s) as its memory address while the .bi form uses Ra. For the .bi 

form, the Ra register will be updated with the Ra + SE(imm15s) value after the memory 

store operation. Note that imm15s is treated as a signed integer. 

 

Operations: 

Addr = Ra + Sign_Extend(imm15s); 

If (.bi form) { 

Vaddr = Ra; 

} else { 

Vaddr = Addr; 

} 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, UserMode, STORE); 

If (Excep_status == NO_EXCEPTION) { 

Store_Memory(PAddr, BYTE, Attributes, Rt(7,0)); 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         155 

If (.bi form) { Ra = Addr; } 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         156 

SCW (Store Conditional Word) 

Format: 

 

31 30     25 24      20 19       15 14    10 9  8 7         0 

0 MEM 

011100 

Rt Ra Rb sv SCW 

00011001 

 

Syntax: SCW Rt, [Ra + (Rb << sv)] 

Purpose: It is used as a primitive to perform atomic read-modify-write operations. 

Description: The LLW and SCW instructions are basic interlocking primitives to perform 

an atomic read (load-locked), modify, and write (store-conditional) sequence. 

 

   LLW Rx 

   Modify Rx 

   SCW Rx 

   BEQZ Rx 

 

A LLW instruction begins the sequence and A SCW instruction completes the sequence. If 

this sequence can be performed without any intervening interruption or an interfering write 

from another processor or I/O module, then the SCW instruction succeeds. Otherwise the 

SCW instruction fails and the program has to retry the sequence. There can only be one 

such active read-modify-write sequence exists per processor at any one time. And if a new 

LLW instruction is issued before an active sequence is completed by a SCW instruction, 

the new LLW instruction will start a new sequence which replaces the previous sequence.  

 

The SCW instruction conditionally stores a 32-bit word from register Rt to a word-aligned 

memory address calculated by adding Ra and (Rb << sv). If all the following conditions 

are true, then the memory store operation happens. And a result of 1 is written to the 

general register Rt to indicate a success status. 

 

� The Lock_Flag is 1 (Note: any exception generated by the SCW instruction will 

clear the Lock_Flag) 

� The word-aligned store physical address is the same as the aligned address of the 

Locked_Physical_Address generated by the previous LLW instruction. 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         157 

If the Lock_Flag is 0, then the store operation will not be performed. And a result of 0 is 

written to the general register Rt to indicate a fail status. 

 

If the word-aligned store physical address is not the same as the aligned address of the 

Locked_Physical_Address generated by the previous LLW instruction, then whether the 

store operation will be performed or not is implementation-dependent (i.e. 

UNPREDICTABLE). However, the final success or fail status will be consistent with the 

implementation’s action. 

 

The per-processor lock flag is cleared if the following events happen: 

� Any execution of an IRET instruction. 

� A coherent store is completed by another processor or coherent I/O module to the 

“Lock Region” containing the Locked Physical Address. The definition of the 

“Lock Region” is an aligned power-of-2 bytes memory region and its exact size 

is implementation-dependent, but within the range of at least 4-byte and at most 

the default minimum page size. The coherency is enforced either by hardware 

coherent mechanisms or by software using CCTL instructions on this processor 

through an interrupt mechanism. The coherent store event can be caused by a 

regular store, a store_conditional, and DPREF/Cache-Line-Write instructions. 

� The completion of a SCW instruction on all success or fail conditions. 

 

If there is a memory access or CCTL instruction between the execution of LLW and SCW, 

the SCW may fail or success. Portable software should avoid putting memory access or 

CCTL instructions between the execution of LLW and SCW instructions. (For example, a 

store word operation to the same physical address of the Locked Physical Address.) 

 

Operations: 

 

VA = Ra + Rb; 

If (VA(1,0) != 0) { 

Generate_Exception(Data_alignment_check); 

} 

(PA, Attributes) = Address_Translation(VA, PSW.DT); 

Excep_status = Page_Exception(Attributes, UserMode, STORE); 

If (Excep_status == NO_EXCEPTION) { 

If (Lock_Flag == 1) 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         158 

If (PA == Locked_Physical_Address) { 

 Store_Memory(PA, Attributes, Rt); 

 Rt = 1; 

} else { 

Implementation-dependent for success or fail; 

} 

} else { 

 Rt = 0; 

} 

Lock_Flag = 0; 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: Alignment check, TLB fill, Non-leaf PTE not present, Leaf PTE not present, 

Write protection, Page modified, Access bit, TLB VLPT miss. 

Privilege level: All 

Usage Note: 

 

A very long instruction sequence between LLW and SCW may always fail the SCW 

instruction due to periodic timer interrupt. Software should take this into consideration 

when constructing LLW and SCW instruction sequences. 

 

Implementation Note: Since SCW instruction is defined to conditionally execute in the 

memory system, depending on the cache coherence design in the memory system, an 

implementation may need to prevent SCW from being invalidated by any interruption 

during the period after the SCW request has entered the memory system until the 

success/fail status has returned from the memory system to complete the SCW 

instruction. 

 

For an implementation with a non-coherent cache system, an internal and an external 

flags may be needed to implement the “lock” state. For such a system, the success or fail 

of SCW instruction is determined by either both flags or internal flag alone. The 

conditions based on different memory attributes are summarized as follows.  

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         159 

 Cacheable 

 

Non-cacheable 

Write-back Write-through 

Success/fail 

determined by 

Internal and 

external flags 

Internal flag Internal flag 

 

Notice that if the memory location that SCW operates on is cacheable, only the internal 

flag is used and the external flag will be ignored. 

 

Additional Software Constraints: 

 

For N1213 hardcore N1213_43U1HA0 (CPU_VER==0x0C010003), additional software 

constraints must be followed to ensure correct LLW/SCW operations. 

� If LLW/SCW are used in an interruption handler, it must be followed that 

� Execution of a LLW instruction must lead to execution of a SCW instruction. 

UPREDICTABLE result may happen if execution of a LLW instruction 

eventually leads to execution of an IRET instruction without going through a 

SCW instruction. 

 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         160 

SEB (Sign Extend Byte) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19     15 14                  5 4     0 

0 ALU_1 

100000 

Rt Ra 0000000000 SEB 

10000 

 

Syntax:  SEB Rt, Ra 

Purpose: Sign-extend the least-significant-byte of a register. 

Description: The least-significant-byte of Ra is sign-extended. And the result is written to 

Rt. 

Operations: 

Rt = SE(Ra(7,0));  

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         161 

SEH (Sign Extend Halfword) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19     15 14                  5 4     0 

0 ALU_1 

100000 

Rt Ra 0000000000 SEH 

10001 

 

Syntax:  SEH Rt, Ra 

Purpose: Sign-extend the least-significant-halfword of a register. 

Description: The least-significant-halfword of Ra is sign-extended. And the result is 

written to Rt. 

Operations: 

Rt = SE(Ra(15,0));  

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         162 

SETEND (Set data endian) 

Format: 

 

31 30     25 24    21 20 19                    10 9      5 4    0 

0 MISC 

110010 

0000 BE PSW_IDX 

0010000000 

SETEND 

00001 

MTSR 

00011 

 

Syntax:  SETEND.B (Set data endian to big endian) 

SETEND.L (Set data endian to little endian) 

Purpose: It is used to control the data endian mode in the PSW register. 

Description: 

This instruction has two flavors. The SETEND.B will set the data endian mode to 

big-endian while the SETEND.L will set the data endian mode to little-endian. Note that 

this instruction can be used in user mode. The BE bit in this instruction encoding 

distinguishes these two flavors. 

 

BE Flavor 

0 SETEND.L 

1 SETEND.B 

 

Operations: 

SR[PSW].BE = 1;  // SETEND.B 

SR[PSW].BE = 0;  // SETEND.L 

 

Exceptions: None 

 

Privilege level: All 

Note: 

� A DSB instruction must follow a SETEND instruction to guarantee that any 

subsequent load/store instruction can observe the just updated PSW.BE value.  

 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         163 

SETGIE (Set global interrupt enable) 

Format: 

 

31 30     25 24    21 20 19                    10 9      5 4    0 

0 MISC 

110010 

0000 EN PSW_IDX 

0010000000 

SETGIE 

00010 

MTSR 

00011 

 

Syntax:  SETGIE.E (Enable global interrupt) 

SETGIE.D (Disable global interrupt) 

Purpose: It is used to control the global interrupt enable bit in the PSW register. 

Description: 

This instruction has two flavors. The SETGIE.E will enable the global interrupt while the 

SETGIE.D will disable the global interrupt. The EN bit in this instruction encoding 

distinguishes these two flavors. 

 

EN Flavor 

0 SETGIE.D 

1 SETGIE.E 

 

Operations: 

 SR[PSW].GIE = 1;  // SETGIE.E 

    SR[PSW].GIE = 0;  // SETGIE.D 

 

Exceptions: None 

 

Privilege level: Superuser and above 

Note: 

� A DSB instruction must follow a SETGIE instruction to guarantee that any 

subsequent instruction can observe the just updated PSW.GIE value for the external 

interrupt interruption behavior.  

 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         164 

SETHI (Set High Immediate) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19                                           0 

0 SETHI 

100011 

Rt imm20u 

 

Syntax:  SETHI Rt, imm20u 

Purpose: To initialize the high portion of a register with a constant. 

Description: Move the imm20u into the upper 20-bits of general register Rt. The lower 

12-bits of Rt will be filled with 0. 

Operations: 

Rt = imm20u << 12; 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         165 

SH (Store Halfword) 

Type: 32-Bit Baseline 

Format: 

 

SH 

31 30     25 24      20 19       15 14     10 9  8 7         0 

0 MEM 

011100 

Rt Ra Rb sv SH 

00001001 

 

SH.bi 

31 30     25 24      20 19       15 14     10 9  8 7         0 

0 MEM 

011100 

Rt Ra Rb sv SH.bi 

00001101 

 

 

Syntax:  SH Rt, [Ra + (Rb << sv)] 

 SH.bi Rt, [Ra], (Rb << sv) 

Purpose: To store a 16-bit halfword from a general register into memory. 

Description: The least-significant 16-bit halfword in the general register Rt is stored to the 

memory. Two different forms are used to specify the memory address. The regular form 

uses Ra + (Rb << sv) as its memory address while the .bi form uses Ra. For the .bi form, the 

Ra register will be updated with the Ra + (Rb << sv) value after the memory store 

operation. 

The memory address has to be halfword-aligned. Otherwise, a Data Alignment Check 

exception will be generated. 

 

Operations: 

Addr = Ra + (Rb << sv); 

If (.bi form) { 

Vaddr = Ra; 

} else { 

Vaddr = Addr; 

} 

if (!Halfword_Aligned(Vaddr)) { 

Generate_Exception(Data_alignment_check); 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         166 

} 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, UserMode, STORE); 

If (Excep_status == NO_EXCEPTION) { 

Store_Memory(PAddr, HALFWORD, Attributes, Rt(15,0)); 

If (.bi form) { Ra = Addr; } 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error, Data alignment check. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         167 

SHI (Store Halfword Immediate) 

Type: 32-Bit Baseline 

Format: 

 

SHI 

31 30        25 24      20 19      15 14                            0 

0 SHI 

001001 

Rt Ra imm15s 

 

SHI.bi 

31 30        25 24      20 19      15 14                            0 

0 SHI.bi 

001101 

Rt Ra imm15s 

 

 

Syntax:  SHI Rt, [Ra + (imm15s << 1)] 

 SHI.bi Rt, [Ra], (imm15s << 1) 

(imm15s is a halfword offset. In assembly programming, always write a byte offset.) 

Purpose: To store a 16-bit halfword from a general register into memory. 

Description: The least-significant 16-bit halfword in the general register Rt is stored to the 

memory. Two different forms are used to specify the memory address. The regular form 

uses Ra + SE(imm15s << 1) as its memory address while the .bi form uses Ra. For the .bi 

form, the Ra register will be updated with the Ra + SE(imm15s << 1) value after the 

memory store operation. Note that imm15s is treated as a signed integer. 

The memory address has to be half-word-aligned. Otherwise, a Data Alignment Check 

exception will be generated. 

 

Operations: 

Addr = Ra + Sign_Extend(imm15s << 1); 

If (.bi form) { 

Vaddr = Ra; 

} else { 

Vaddr = Addr; 

} 

if (!Halfword_Aligned(Vaddr)) { 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         168 

Generate_Exception(Data_alignment_check); 

} 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, UserMode, STORE); 

If (Excep_status == NO_EXCEPTION) { 

Store_Memory(PAddr, WORD, Attributes, Rt(15,0)); 

If (.bi form) { Ra = Addr; } 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error, Data alignment check. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         169 

SLL (Shift Left Logical) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19     15 14      10 9        5 4     0 

0 ALU_1 

100000 

Rt Ra Rb 00000 SLL 

01100 

 

Syntax:  SLL Rt, Ra, Rb 

Purpose: Perform logical left shift operation on the content of a register. 

Description: The content of Ra is left-shifted logically, that is, the shifted out bits are filled 

with zero. The shift amount is specified by the low-order 5-bits of the Rb register. And the 

result is written to Rt. 

Operations: 

sa = Rb(4,0); 

Rt = CONCAT(Ra(31-sa,0), sa`b0); 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         170 

SLLI (Shift Left Logical Immediate) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19     15 14      10 9        5 4     0 

0 ALU_1 

100000 

Rt Ra imm5u 00000 SLLI 

01000 

 

Syntax:  SLLI Rt, Ra, imm5u 

Purpose: Perform logical left shift operation on the content of a register. 

Description: The content of Ra is left-shifted logically, that is, the shifted out bits are filled 

with zero. The shift amount is specified by the imm5u constant. And the result is written to 

Rt. 

Operations: 

Rt = CONCAT(Ra(31-imm5u,0), imm5u`b0); 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         171 

SLT (Set on Less Than) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19     15 14      10 9        5 4     0 

0 ALU_1 

100000 

Rt Ra Rb 00000 SLT 

00110 

 

Syntax:  SLT Rt, Ra, Rb 

Purpose: Unsigned comparison between the contents of two registers. 

Description: If the content of Ra is less than (unsigned comparison) the content of Rb, a 

result of 1 is written to Rt; otherwise, a result of 0 is written to Rt. 

Operations: 

if (CONCAT(1`b0, Ra) < CONCAT(1`b0, Rb)) {  

Rt = 1; 

else { 

  Rt = 0; 

} 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         172 

SLTI (Set on Less Than Immediate) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19      15 14                                 0 

0 SLTI 

101110 

Rt Ra imm15s 

 

Syntax:  SLTI Rt, Ra, imm15s 

Purpose: Unsigned comparison between the content of a register and a signed constant. 

Description: The content of Ra is unsigned-compared with a sign-extended imm15s. If the 

content of Ra is less than the sign-extended imm15s, the result of 1 will be written to Rt; 

otherwise, the result of 0 will be written to Rt. The sign-extended imm15s will generate an 

unsigned constant in the following range: 

[232-1, 232-214] and [214-1, 0] 

Operations: 

Rt = (Ra (unsigned)< SE(imm15s)) ? 1 : 0; 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         173 

SLTS (Set on Less Than Signed) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19     15 14      10 9        5 4     0 

0 ALU_1 

100000 

Rt Ra Rb 00000 SLTS 

00111 

 

Syntax:  SLTS Rt, Ra, Rb 

Purpose: Signed comparison between the contents of two registers. 

Description: If the content of Ra is less than (signed comparison) the content of Rb, a 

result of 1 is written to Rt; otherwise, a result of 0 is written to Rt. 

Operations: 

if (Ra < Rb) {  

Rt = 1; 

else { 

  Rt = 0; 

} 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         174 

SLTSI (Set on Less Than Signed Immediate) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19      15 14                                 0 

0 SLTSI 

101111 

Rt Ra imm15s 

 

Syntax:  SLTSI Rt, Ra, imm15s 

Purpose: Signed comparison between the content of a register and a constant. 

Description: The content of Ra is signed-compared with the sign-extended imm15s. If the 

content of Ra is less than the sign-extended imm15s, the result of 1 will be written to Rt; 

otherwise, the result of 0 will be written to Rt. The sign-extended imm15s will generate a 

signed constant in the following range: 

[214-1, 0] and [-1, -214] 

Operations: 

Rt = (Ra (signed)< SE(imm15s)) ? 1 : 0; 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         175 

SMW (Store Multiple Word) 

Format: 

 

31 30     25 24    20 19    15 14  10 9    6 5 4 3 2 1 0 

0 LSMW 

011101 

Rb Ra Re Enable4 SMW 

1 

b:0 

a:1 

i:0 

d:1 

m 00 

 

Syntax: SMW.{b | a}{i | d}{m?} Rb, [Ra], Re, Enable4 

Purpose: Store multiple 32-bit words from multiple registers into sequential memory 

locations. 

Description: Store multiple 32-bit words from a range or a subset of source 

general-purpose registers to sequential memory addresses specified by the base 

address register Ra and the {b | a}{i | d} options. The source registers are specified 

by a registers list formed by Rb, Re, and the four-bit Enable4 field as follows. 

<Registers List> = a range from {Rb, Re} and a list from <Enable4> 

 

� {i | d} option specifies the direction of the address change. {i} generates 

increasing addresses from Ra and {d} generates decreasing addresses from Ra. 

� {b | a} option specifies the way how the first address is generated. {b} use the 

contents of Ra as the first memory store address. {a} use either Ra+4 or Ra-4 for 

the {i | d} option respectively as the first memory store address. 

� {m?} option, if it is specified, indicates that the base address register will be 

updated to the value computed in the following formula at the completion of this 

instruction. 

TNReg = Total number of registers stored 

Updated value = Ra + (4 * TNReg) for {i} option 

Updated value = Ra – (4 * TNReg) for {d} option 

 

� [Rb, Re] specifies a range of registers whose contents will be stored by this 

instruction. Rb(4,0) specifies the first register number in the continuous register 

range and Re(4,0) specifies the last register number in this register range. In 

addition to the range of registers, <Enable4(3,0)> specifies the store of 4 

individual registers from R28 to R31 (s9/fp, gp, lp, sp) which have special 

calling convention usage. The exact mapping of Enable4(3,0) bits and registers 

is as follows: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         176 

Bits Enable4(3) 

Format(9) 

Enable4(2) 

Format(8) 

Enable4(1) 

Format(7) 

Enable4(0) 

Format(6) 

Registers R28 R29 R30 R31 

 

�  

� Several constraints are imposed for the <Registers List>: 

� If [Rb, Re] specifies at least one register: 

� Rb(4,0) <= Re(4,0) AND 

� 0 <= Rb(4,0), Re(4,0) < 28 

� If [Rb, Re] specifies no register at all: 

� Rb(4,0) == Re(4,0) = 0b11111 AND 

� Enable4(3,0) != 0b0000 

� If these constraints are not met, UNPREDICTABLE result will happen to 

the contents of the memory range pointed to by the base register and the 

base register itself if the {m?} option is specified after this instruction. 

� The register is stored in sequence to matching memory locations. That is, the 

lowest-numbered register is stored to the lowest memory address while the 

highest-numbered register is stored to the highest memory address. 

� If the base address register Ra is specified in the <Registers Specification>, the 

value stored to the memory from the register Ra is the Ra value before this 

instruction is executed. 

� This instruction can handle aligned/unaligned memory address. 

 

Operation: 

TNReg = Count_Registers(register_list); 

if (“bi”) { 

B_addr = Ra; 

E_addr = Ra + (TNReg * 4) – 4; 

} elseif (“ai”) { 

B_addr = Ra + 4; 

E_addr = Ra + (TNReg * 4); 

} elseif (“bd”) { 

B_addr = Ra – (TNReg * 4) + 4; 

E_addr = Ra; 

} else { // “ad” 

B_addr = Ra – (TNReg * 4); 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         177 

E_addr = Ra – 4 

} 

VA = B_addr; 

for (i = 0 to 31) { 

if (register_list[i] == 1) { 

(PA, Attributes) = Address_Translation(VA, PSW.DT); 

Excep_status = Page_Exception(Attributes, UserMode, STORE); 

If (Excep_status == NO_EXCEPTION) { 

Store_Memory(PA, Word, Attributes, Ri); 

VA = VA + 4; 

} else { 

Generate_Exception(Excep_status); 

} 

} 

} 

if (“im”) { 

Ra = Ra + (TNReg * 4); 

} else { // “dm” 

Ra = Ra – (TNReg * 4); 

} 

 

Exception: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error. 

� The base register value is left unchanged on an exception event, no matter 

whether the base register update is specified or not. 

 

Interruption: Whether this instruction is interruptible or not is 

implementation-dependent. 

 

Privilege Level: all 

Note:  

(1) LMW and SMW instructions do not guarantee atomicity among individual memory 

access operations. And they do not guarantee single access to a memory location 

during the execution either. Any I/O access that has side-effects other than simple 

stable memory-like access behavior should not use these two instructions. 

(2) The memory access order among the words accessed by LMW/SMW is not defined 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         178 

here and should be implementation-dependent. However, the more likely access order 

implemented by an implementation is: 

� For LMW/SMW.i : increasing memory addresses from base address. 

� For LMW/SMW.d: decreasing memory addresses from base address. 

(3) The memory access order within an un-aligned word accessed is not defined here and 

should be implementation-dependent. However, the more likely access order 

implemented by an implementation is: 

� For LMW/SMW.i: the aligned low address of the word and then the aligned 

high address of the word. If an interruption occurs, the EVA register will 

contain the starting low address of the un-aligned word or . 

� For LMW/SMW.d: the aligned high address of the word and then the aligned 

low address of the word. If an interruption occurs, the EVA register will contain 

“base un-aligned address + 4” of the first word or the starting low address of 

the remaining decreasing memory word. 

(4) Based on the more likely access order of (2) and (3), upon interruption, the EVA 

register for un-aligned LMW/SMW will more likely have the following value: 

� For LMW/SMW.i: the starting low addresses of the accessed words or “Ra + 

(TNReg * 4)” where TNReg represents the total number of registers loaded or 

stored. 

� For LMW/SMW.d: the starting low addresses of the accessed words or “Ra + 

4”. 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         179 

SRA (Shift Right Arithmetic) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19     15 14      10 9        5 4     0 

0 ALU_1 

100000 

Rt Ra Rb 00000 SRA 

01110 

 

Syntax:  SRA Rt, Ra, Rb 

Purpose: Perform arithmetic right shift operation on the content of a register. 

Description: The content of Ra is right-shifted arithmetically, that is, the shifted out bits 

are filled with the sign-bit Ra(31). The shift amount is specified by the low-order 5-bits of 

the Rb register. And the result is written to Rt. 

Operations: 

sa = Rb(4,0); 

Rt = CONCAT(sa`bRa(31), Ra(31,sa)); 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         180 

SRAI (Shift Right Arithmetic Immediate) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19     15 14      10 9        5 4     0 

0 ALU_1 

100000 

Rt Ra imm5u 00000 SRAI 

01010 

 

Syntax:  SRAI Rt, Ra, imm5u 

Purpose: Perform arithmetic right shift operation on the content of a register. 

Description: The content of Ra is right-shifted arithmetically, that is, the shifted out bits 

are filled with sign-bit Ra(31). The shift amount is specified by the imm5u constant. And 

the result is written to Rt. 

Operations: 

Rt = CONCAT(imm5u`bRa(31), Ra(31,imm5u)); 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         181 

SRL (Shift Right Logical) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19     15 14      10 9        5 4     0 

0 ALU_1 

100000 

Rt Ra Rb 00000 SRL 

01101 

 

Syntax:  SRL Rt, Ra, Rb 

Purpose: Perform logical right shift operation on the content of a register. 

Description: The content of Ra is right-shifted logically, that is, the shifted out bits are 

filled with zero. The shift amount is specified by the low-order 5-bits of the Rb register. 

And the result is written to Rt. 

Operations: 

sa = Rb(4,0); 

Rt = CONCAT(sa`b0, Ra(31,sa)); 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         182 

SRLI (Shift Right Logical Immediate) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19     15 14      10 9        5 4     0 

0 ALU_1 

100000 

Rt Ra imm5u 00000 SRLI 

01001 

 

Syntax:  SRLI Rt, Ra, imm5u 

Purpose: Perform logical right shift operation on the content of a register. 

Description: The content of Ra is right-shifted logically, that is, the shifted out bits are 

filled with zero. The shift amount is specified by the imm5u constant. And the result is 

written to Rt. 

Operations: 

Rt = CONCAT(imm5u`b0, Ra(31,imm5u)); 

Exceptions: None 

Privilege level: All 

Note: “SRLI R0,R0,0” will be aliased to NOP and treated by an implementation as 

NOP. 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         183 

STANDBY (Wait For External Event) 

Format: 

 

31 30      25 24      20 19                       10 9      7 6   5 4           0 

0 MISC 

110010 

00000 0000000000 000 SubType STANDBY 

00000 

* N12 implementation for this instruction, please refer to chapter 9.2 

Syntax:  STANDBY SubType (= no_wake_grant, wake_grant) 

Purpose: It is used for a core to enter a standby state while waiting for external events to 

happen. 

Description: This instruction puts the core and its associating structures into an 

implementation-dependent low power standby mode where the instruction execution stops 

and most of the pipeline clocks can be disabled. The core has to enter the standby mode 

after all external memory and I/O accesses have been completed. 

 

In general, the core leaves the standby mode when an external event happens that needs the 

core’s attention. However, to facilitate the need for an external power manager to control 

the clock frequency and voltage, the wakeup action may need the external power 

manager’s consent. Thus two flavors of STANDBY instruction are defined to distinguish 

the different usages. The SubType field definitions are listed as follows. 

 

Table 59  STANDBY instruction SubType definitions 

 

SubType Mnemonic Wakeup Condition 

0 no_wake_grant The STANDBY instruction immediately monitors and 

accepts a wakeup event (e.g external interrupt) to leave the 

standby mode without waiting for a wakeup_consent 

notification from an external agent. 

1 wake_grant The STANDBY instruction waits for a wakeup_consent 

notification from an external agent (e.g. power 

management unit) before monitoring and accepting a 

wakeup_event (e.g. external interrupt) to leave the standby 

mode. 

2 wait_done The STANDBY instruction waits for a wakeup_consent 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         184 

notification from an external agent (e.g. power 

management unit). When the wakeup_consent notification 

arrives, the core leaves the standby mode immediately. 

 

The wakeup external events include interrupt (regardless of masking condition), debug 

request, wakeup signal, reset etc. And the instruction execution restarts either from the 

instruction following the STANDBY instruction or from the enabled interrupt handler 

which cause the core to leave the standby mode. When entering an interrupt handler, the 

IPC system register will have the address of the instruction following the STANDBY 

instruction. 

 

An implementation can export the standby state to an external agent such as a 

power/energy controller to further regulate the clock or the voltage of the processor core 

for maximum energy savings. However, if any such clock or voltage regulation causes any 

core/memory state loss, software is responsible to preserve the needed states before the 

core enters standby mode. And if such state loss has happened, the only sensible way to 

bring the core into action is through a reset event. 

 

Operations: 

Enter_Standby(); 

Exceptions: None 

Privilege level: The behaviors of STANDBY under different processor operating modes 

are listed in the following table. 

 

Privilege Level SubType encoding SubType behavior 

0 0 

1 0 

User 

2 0 

0 0 

1 1 

Superuser 

2 2 

 

Note: 

 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         185 

SUB (Subtraction) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19     15 14      10 9        5 4     0 

0 ALU_1 

100000 

Rt Ra Rb 00000 SUB 

00001 

 

Syntax:  SUB Rt, Ra, Rb 

Purpose: Subtract the content of two registers. 

Description: The content of Rb is subtracted from the content of Ra. And the result is 

written to Rt. 

Operations: 

Rt = Ra - Rb; 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         186 

SUBRI (Subtract Reverse Immediate) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19      15 14                                 0 

0 SUBRI 

101001 

Rt Ra imm15s 

 

Syntax:  SUBRI Rt, Ra, imm15s 

Purpose: Subtract the content of a register from a signed constant. 

Description: The content of Ra is subtracted from the sign-extended imm15s. And the 

result is written to Rt. 

Operations: 

Rt = SE(imm15s) - Ra; 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         187 

SVA (Set on Overflow Add) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19     15 14      10 9        5 4     0 

0 ALU_1 

100000 

Rt Ra Rb 00000 SVA 

11000 

 

Syntax:  SVA Rt, Ra, Rb 

Purpose: Generate overflow status on adding the contents of two registers. 

Description: If adding the contents of Ra and Rb results in 32-bit 2’s complement 

arithmetic overflow condition, a result of 1 is written to Rt; otherwise, a result of 0 is 

written to Rt. 

Operations: 

value = CONCAT(Ra(31), Ra(31,0)) + CONCAT(Rb(31), Rb(31,0));  

if (value(32) != value(31)) { 

  Rt = 1; 

else { 

  Rt = 0; 

} 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         188 

SVS (Set on Overflow Subtract) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19     15 14      10 9        5 4     0 

0 ALU_1 

100000 

Rt Ra Rb 00000 SVS 

11001 

 

Syntax:  SVS Rt, Ra, Rb 

Purpose: Generate overflow status on subtracting the contents of two registers. 

Description: If subtracting the contents of Ra and Rb results in 32-bit 2’s complement 

arithmetic overflow condition, a result of 1 is written to Rt; otherwise, a result of 0 is 

written to Rt. 

Operations: 

value = CONCAT(Ra(31), Ra(31,0)) - CONCAT(Rb(31), Rb(31,0));  

if (value(32) != value(31)) { 

  Rt = 1; 

else { 

  Rt = 0; 

} 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         189 

SW (Store Word) 

Type: 32-Bit Baseline 

Format: 

 

SW 

31 30     25 24      20 19       15 14     10 9  8 7         0 

0 MEM 

011100 

Rt Ra Rb sv SW 

00001010 

 

SW.bi 

31 30     25 24      20 19       15 14     10 9  8 7         0 

0 MEM 

011100 

Rt Ra Rb sv SW.bi 

00001110 

 

 

Syntax:  SW Rt, [Ra + (Rb << sv)] 

 SW.bi Rt, [Ra], (Rb << sv) 

Purpose: To store a 32-bit word from a general register into memory. 

Description: This instruction stores a word from the the general register Rt into the 

memory. Two different forms are used to specify the memory address. The regular form 

uses Ra + (Rb << sv) as its memory address while the .bi form uses Ra. For the .bi form, the 

Ra register will be updated with the Ra + (Rb << sv) value after the memory store 

operation. 

The memory address has to be word-aligned. Otherwise, a Data Alignment Check 

exception will be generated. 

 

Operations: 

Addr = Ra + (Rb << sv); 

If (.bi form) { 

Vaddr = Ra; 

} else { 

Vaddr = Addr; 

} 

if (!Word_Aligned(Vaddr)) { 

Generate_Exception(Data_alignment_check); 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         190 

} 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, UserMode, STORE); 

If (Excep_status == NO_EXCEPTION) { 

Store_Memory(PAddr, WORD, Attributes, Rt); 

If (.bi form) { Ra = Addr; } 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error, Data alignment check. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         191 

SWI (Store Word Immediate) 

Type: 32-Bit Baseline 

Format: 

 

SWI 

31 30        25 24      20 19      15 14                            0 

0 SWI 

001010 

Rt Ra imm15s 

 

SWI.bi 

31 30        25 24      20 19      15 14                            0 

0 SWI.bi 

001110 

Rt Ra imm15s 

 

 

Syntax:  SWI Rt, [Ra + (imm15s << 2)] 

 SWI.bi Rt, [Ra], (imm15s << 2) 

(imm15s is a word offset. In assembly programming, always write a byte offset.) 

Purpose: To store a 32-bit word from a general register into memory. 

Description: This instruction stores a word from the general register Rt into the memory. 

Two different forms are used to specify the memory address. The regular form uses Ra + 

SE(imm15s << 2) as its memory address while the .bi form uses Ra. For the .bi form, the 

Ra register will be updated with the Ra + SE(imm15s << 2) value after the memory store 

operation. Note that imm15s is treated as a signed integer. 

The memory address has to be word-aligned. Otherwise, a Data Alignment Check 

exception will be generated. 

 

Operations: 

Addr = Ra + Sign_Extend(imm15s << 2); 

If (.bi form) { 

Vaddr = Ra; 

} else { 

Vaddr = Addr; 

} 

if (!Word_Aligned(Vaddr)) { 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         192 

Generate_Exception(Data_alignment_check); 

} 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, UserMode, STORE); 

If (Excep_status == NO_EXCEPTION) { 

Store_Memory(PAddr, WORD, Attributes, Rt); 

If (.bi form) { Ra = Addr; } 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error, Data alignment check. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         193 

SWUP (Store Word with User Privilege Translation) 

Type: 32-Bit Baseline 

Format: 

 

31 30     25 24      20 19       15 14     10 9  8 7         0 

0 MEM 

011100 

Rt Ra Rb sv SWUP 

00101010 

 

Syntax:  SWUP Rt, [Ra + (Rb << sv)] 

Purpose: To store a 32-bit word from a general register into memory with the user mode 

privilege address translation. 

Description: This instruction stores a word from the general register Rt into the memory 

address Ra + (Rb << sv) with the user mode privilege address translation regardless of the 

current processor operation mode (i.e. PSW.POM) and the current data address 

translation state (i.e. PSW.DT). The memory address has to be word-aligned. Otherwise, a 

Data Alignment Check exception will be generated. 

 

Operations: 

Vaddr = Ra + (Rb << sv); 

if (!Word_Aligned(Vaddr)) { 

Generate_Exception(Data_alignment_check); 

} 

(PAddr, Attributes) = Address_Translation(Vaddr, TRANSLATE); 

Excep_status = Page_Exception(Attributes, UserMode, STORE); 

If (Excep_status == NO_EXCEPTION) { 

Store_Memory(PAddr, WORD, Attributes, Rt); 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error, Data alignment check. 

Privilege level: All 

Note: 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         194 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         195 

SYSCALL (System Call) 

Format: 

 

31 30     25 24      20 19                           5 4           0 

0 MISC 

110010 

00000 SWID SYSCALL 

01011 

 

Syntax:  SYSCALL SWID 

Purpose: It is used to generate a System Call exception. 

Description: 

SYSCALL instruction will unconditionally generate a System Call exception and transfer 

control to the System Call exception handler. The 15-bits SWID is used by software as a 

parameter to distinguish different system call services. 

Operations: 

 Generate_Exception(System_Call); 

 

Exceptions: System Call 

 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         196 

TEQZ (Trap if equal 0) 

Format: 

 

31 30     25 24      20 19                           5 4           0 

0 MISC 

110010 

Ra SWID TEQZ 

00110 

 

Syntax:  TEQZ Ra, SWID 

Purpose: It is used to generate a conditional Trap exception. 

Description: 

TEQZ instruction will generate a Trap exception and transfer control to the Trap exception 

handler if the content of Ra is equal to 0. The 15-bits SWID is used by software as a 

parameter to distinguish different trap features and usages. 

Operations: 

 If (GR[Ra] == 0) 

Generate_Exception(Trap); 

 

Exceptions: Trap 

 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         197 

TNEZ (Trap if not equal 0) 

Format: 

 

31 30     25 24      20 19                           5 4           0 

0 MISC 

110010 

Ra SWID TNEZ 

00111 

 

Syntax:  TNEZ Ra, SWID 

Purpose: It is used to generate a conditional Trap exception. 

Description: 

TNEZ instruction will generate a Trap exception and transfer control to the Trap exception 

handler if the content of Ra is not equal to 0. The 15-bits SWID is used by software as a 

parameter to distinguish different trap features and usages. 

Operations: 

 If (GR[Ra] != 0) 

Generate_Exception(Trap); 

 

Exceptions: Trap 

 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         198 

TLBOP (TLB Operation) 

Format: 

 

31 30     25 24      20 19      15 14    10 9      5 4       0 

0 MISC 

110010 

Rt Ra 00000 SubType TLBOP 

01110 

 

Syntax: TLBOP  Ra, SubType 

TLBOP  Rt, Ra, PB (TLB probe operation) 

TLBOP  FLUA (TLB flush all operation) 

Purpose: Perform various operations on processor TLB. This instruction is typically used 

by software to manage page table entry (PTE) information in TLB. 

Description:  

 

This instruction is used to perform TLB control operations based on the SubType field. The 

definition and encoding for the SubType field is listed in the following table. Depending on 

the SubType, different TLBOP instructions have different number of operands from 0 to 

2. 

 

Table 60  TLBOP SubType Definitions 

SubType Mnemonics Operation Rt?/Ra? 

0 TargetRead (TRD) Read targeted TLB entry -/Ra 

1 TargetWrite (TWR) Write targeted TLB entry -/Ra 

2 RWrite (RWR) Write a hardware-determined TLB entry -/Ra 

3 RWriteLock (RWLK) Write a hardware-determined TLB entry 

and lock 

-/Ra 

4 Unlock (UNLK) Unlock a TLB entry -/Ra 

5 Probe (PB) Probe TLB entry information Rt/Ra 

6 Invalidate (INV) Invalidate TLB entries except locked 

entries 

-/Ra 

7 FlushAll (FLUA) Flush all TLB entries except locked 

entries 

-/- 

 

The operations of the cache control instruction can be grouped and described in the 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         199 

following categories: 

a. TLB Target Read 

Syntax: TLBOP  Ra,TargetRead 

This operation reads a specified entry in the software-visible portion of the TLB 

structure. The specified entry is indicated by the Ra register. The read result is 

placed in the TLB_VPN, TLB_DATA, and TLB_MISC registers. 

The TLB entry number for a non-fully-associative N sets K ways TLB cache is as 

follows: 

 

31     log2(N*K) Log2(N*K)-1     log2(N) Log2(N)-1         0 

Ignored Way number Set number 

 

The normal instruction sequence of performing the TLB Target Read operation is as 

follows: 

 
 

Important: Since the TLB_MISC register contains the current process’s Context ID 

and Access Page Size information, any use of this instruction is required to 

save/restore the TLB_MISC register if you want the current process to run correctly 

immediately after this operation. 

 

b. TLB Target Write 

Syntax: TLBOP  Ra,TargetWrite 

This operation writes a specified entry in the software-visible portion of the TLB 

structure. The specified entry is indicated by the Ra register. The other write 

operands are in the TLB_VPN, TLB_DATA, and TLB_MISC registers.  

The TLB entry number for the non-fully-associative N sets K ways TLB cache is as 

follows: 

31     log2(N*K) Log2(N*K)-1     log2(N) Log2(N)-1         0 

Ignored Way number Set number 

 

movi    Ra, TLB_rd_entry // prepare read entry number 

tlbop   Ra, TRD    // read TLB 

dsb       // data serialization barrier 

mfsr    Ry, TLB_VPN     // move read result to reg 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         200 

If the selected target entry is locked, this instruction will overwrite the locked entry 

and clear the locked flag. 

The normal instruction sequence of performing the TLB Target Write operation is as 

follows: 

 

 

c. TLB Random Write (HW-determined way in a set) 

Syntax: TLBOP  Ra,RWrite 

This operation writes a hardware-determined random TLB way in a set determined 

by the VA (in TLB_VPN) and page size (in TLB_MISC) in the software-visible 

portion of the TLB structure. The general register Ra contains the data that is going 

to write into the TLB_DATA portion of the TLB structure. The other write operands 

are in the TLB_VPN and TLB_MISC registers. 

  

If all the ways in the specified set is all locked during the write operation of this 

instruction, depending on the setting in the TBALCK field of the MMU Control 

system register (MMU_CTL), this operation may generate a precise or an imprecise 

“Data Machine Error” exception. Note that the default value of the TBALCK is to 

generate the exception. 

 

The normal instruction sequence of performing the TLB Random Write operation is 

as follows: 

mtsr Ra, TLB_VPN // may not needed 

mtsr Rb, TLB_DATA // prepare PPN, etc. 

mtsr Rc, TLB_MISC // may not needed 

dsb       // data serialization barrier 

        // may not needed (imp-dep) 

movi Rd, TLB_wr_entry // prepare write index 

tlbop Rd, TWR    // idx TLB write 

isb       // inst serialization barrier 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         201 

 
  

d. TLB Random Write and Lock 

Syntax: TLBOP  Ra,RWriteLock 

This operation is similar to TLB Random Write operation to write a 

hardware-determined random TLB way in a set determined by the VA (in TLB_VPN) 

and page size (in TLB_MISC) in the software-visible portion of the TLB structure. 

In addition to the write operation, this instruction also locks the TLB entry. 

  

If all the ways in the specified set is all locked during the write operation of this 

instruction, depending on the setting in the TBALCK field of the MMU Control 

system register (MMU_CTL), this operation may generate a precise or an imprecise 

“Data Machine Error” exception. Note that the default value of the TBALCK is to 

generate the exception. 

 

 

e. TLB Unlock 

Syntax: TLBOP  Ra,Unlock 

This operation unlocks a TLB entry if the VA in the general register Ra matches the 

VPN of a set determined by the VA (in Ra) and page size (in TLB_MISC). 

 

f. TLB Probe 

Syntax: TLBOP  Rt,Ra,Probe 

This operation searches all TLB structures (software-visible and software-invisible) 

for a specified VA and generates an entry number where the VA matches the VPN in 

that entry. The search result is written into the general register Rt. The search VA is 

specified in the general register Ra. The result that stored in Rt has the following 

format: 

 

… // TLB fill exception 

// TLB_VPN & TLB_MISC has been preset 

…    // Preparing PTE address in Rb 

lw  Ra, [Rb] 

tlbop Ra, RWR  // Ra contains PPN, etc. 

iret/isb   // inst serialization barrier 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         202 

31 30 29 28                   n n-1         0 

NF HW SW Reserved Entry # 

 

If the VA can be found in the software-visible part of the TLB, the “sw” bit will be 

set. If the VA can be found in the software-invisible part of the TLB, the “hw” bit 

will be set. And if the VA cannot be found in either the software-visible or 

software-invisible part of the TLB, the “nf” bit will be set. 

 

The TLB entry number for the non-fully-associative N sets K ways TLB cache is as 

follows: 

Log2(N*K)-1     log2(N) Log2(N)-1         0 

Way number Set number 

 

The normal instruction sequence of performing the TLB probe operation is as 

follows: 

 
 

If this instruction encounters a multiple match condition when searching the TLB, a 

precise “Data Machine Error” exception will be generated. 

 

g. TLB Invalidate VA 

Syntax: TLBOP  Ra,Invalidate 

This operation flushes the TLB entry that contains the VA in the Ra register and the 

page size specified in the TLB_MISC register (software-visible and 

software-invisible) except the locked TLB entries. The match condition also 

involves the “G” bit of a PTE entry and the CID field of the TLB_MISC register. 

 

Their matching logic is as follows: 

� If “G” is asserted, CID is not part of the match condition. 

� If “G” is not asserted, CID is part of the match condition. 

 

 

 

tlbop Rt, Ra, PB    // VA is in Ra 

<Examine> Rt 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         203 

The normal instruction sequence for this operation is as follows: 

 

 
Note that this TLB invalidate operation may flush more pages than the exact number 

of pages which contain this VA, up to flushing the entire TLB structure. And the 

exact behavior is implementation-dependent. 

 

If this instruction encounters a multiple match condition when searching the TLB, 

all matched entries should be invalidated and no “Data Machine Error” exception 

will be generated. 

 

h. TLB Invalidate All 

Syntax: TLBOP  FlushAll 

This operation invalidates all TLB entries (software-visible and software-invisible) 

except the locked TLB entries. 

The normal instruction sequence for this operation is as follows: 

 

Operations: 

 

If (SubType is not supported) 

 Exception(Reserved Instruction); 

If (Op(SubType) == TargetRead) { 

Entry_Addr = Ra; 

 {TLB_VPN, TLB_DATA, TLB_MISC} = 

 TLB_Entry_Read(Entry_Addr); 

} else if (OP(SubType) == TargetWrite) { 

Entry_Addr = Ra 

TLB_Entry_Write(Entry_Addr, TLB_VPN, TLB_DATA, TLB_MISC); 

tlbop FLUA // TLB invalidate All 

isb    // Inst serialization barrier 

// prepare VA in Ra 

… 

tlbop  Ra,INV // Invalidate TLB entries containing VA 

isb    // inst serialization barrier 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         204 

} else if (OP(SubType) == RWrite) { 

TLB_Write(TLB_VPN, Ra, TLB_MISC, nolock); 

} else if (OP(SubType) == RWriteLock) { 

TLB_Write(TLB_VPN, Ra, TLB_MISC, lock); 

} else if (OP(SubType) == Unlock) { 

{found, Entry} = TLB_Search(Ra); 

if (found) { 

TLB_Unlock(Entry); 

} 

} else if (OP(SubType) == Probe) { 

{found, Entry} = TLB_Search(Ra); 

Rt = {found, Entry}; 

} else if (OP(SubType) == Invalidate) { 

{found, Entry} = TLB_Search(Ra); 

if (found) { 

TLB_Invalidate(Entry); 

} 

} else if (OP(SubType) == FlushAll) { 

Foreach TLB_Entry { 

if (Is_Not_Locked(TLB_Entry)) { 

TLB_Invalidate(TLB_Entry); 

} 

} 

} 

 

Exceptions: 

 Privileged Instruction, Imprecise Machine Error 

 

Privilege level: Superuser and above 

Note: 

(1) All non-instruction-fetch-related exceptions generated by a TLBOP instruction should 

have the INST field of the ITYPE register set to 0. 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         205 

TRAP (Trap exception) 

Format: 

 

31 30     25 24      20 19                           5 4           0 

0 MISC 

110010 

00000 SWID TRAP 

00101 

 

Syntax:  TRAP SWID 

Purpose: It is used to generate an unconditional Trap exception. 

Description: 

TRAP instruction will unconditionally generate a Trap exception and transfer control to the 

Trap exception handler. The 15-bits SWID is used by software as a parameter to 

distinguish different trap features and usages. 

Operations: 

 Generate_Exception(Trap); 

 

Exceptions: Trap 

 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         206 

WSBH (Word Swap Byte within Halfword) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19     15 14                  5 4     0 

0 ALU_1 

100000 

Rt Ra 0000000000 WSBH 

10100 

 

Syntax:  WSBH Rt, Ra 

Purpose: Swap the bytes within each halfword of a register. 

Description: The bytes within each halfword of Ra is swapped. And the result is written to 

Rt. 

 

 

Operations: 

Rt = CONCAT(Ra(23,16),Ra(31,24),Ra(7,0),Ra(15,8));  

Exceptions: None 

Privilege level: All 

Note: 

 

0 

0 7 

1 

8 15 

2 

16 23 

3 

24 31 

1 

0 7 

0 

8 15 

3 

16 23 

2 

24 31 

Rt 

Ra 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         207 

XOR (Bit-wise Logical Exclusive Or) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19     15 14      10 9        5 4     0 

0 ALU_1 

100000 

Rt Ra Rb 00000 XOR 

00011 

 

Syntax:  XOR Rt, Ra, Rb 

Purpose: Doing a bit-wise logical Exclusive OR operation on the content of two registers. 

Description: The content of Ra is combined with the content of Rb using a bit-wise logical 

exclusive OR operation. And the result is written to Rt. 

Operations: 

Rt = Ra ^ Rb; 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         208 

XORI (Exclusive Or Immediate) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19      15 14                                 0 

0 XORI 

101011 

Rt Ra imm15u 

 

Syntax:  XORI Rt, Ra, imm15u 

Purpose: Bit-wise exclusive OR of the content of a register with an unsigned constant. 

Description: The content of Ra is bit-wise exclusive ORed with the zero-extended 

imm15u. And the result is written to Rt. 

Operations: 

Rt = Ra ^ ZE(imm15u); 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         209 

ZEB (Zero Extend Byte) 

Type: 32-Bit Baseline Pseudo OP 

Alias of:  ANDI   Rt, Ra, 0xFF 

Syntax:  ZEB Rt, Ra 

Purpose: Zero-extend the least-significant-byte of a register. 

Description: The least-significant-byte of Ra is zero-extended. And the result is written to 

Rt. 

Operations: 

Rt = ZE(Ra(7,0));  

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         210 

ZEH (Zero Extend Halfword) 

Type: 32-Bit Baseline 

Format: 

 

31 30        25 24      20 19     15 14                  5 4     0 

0 ALU_1 

100000 

Rt Ra 0000000000 ZEH 

10011 

 

Syntax:  ZEH Rt, Ra 

Purpose: Zero-extend the least-significant-halfword of a register. 

Description: The least-significant-halfword of Ra is zero-extended. And the result is 

written to Rt. 

Operations: 

Rt = ZE(Ra(15,0));  

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         211 

7.2   32-bit Performance Extension 

instructions 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         212 

ABS (Absolute) 

Type: 32-Bit Performance Extension 

Format: 

 

31 30        25 24      20 19     15 14                  6 5        0 

0 ALU_2 

100001 

Rt Ra 000000000 ABS 

000011 

 

 

Syntax:  ABS Rt, Ra 

Purpose: Get the absolute value of a signed integer in a general register. 

Description: This instruction calculates the absolute value of a signed integer stored in Ra. 

The result is written to Rt. 

Operations: 

if (Ra >= 0) { 

Rt = Ra; 

} else { 

Rt = -Ra; 

} 

 

Exceptions: None 

Privilege level: All 

Note:  



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         213 

AVE (Average with Rounding) 

Type: 32-Bit Performance Extension 

Format: 

 

31 30          25 24      20 19      15 14       10 9        6 5        0 

0 ALU_2 

100001 

Rt Ra Rb 0000 AVE 

000010 

 

 

Syntax:  AVE Rt, Ra, Rb 

Purpose: Calculate the average of the contents of two general registers. 

Description: This instruction calculates the average value of two signed integers stored in 

Ra and Rb and rounds up a half-integer result to the nearest integer. The result is written to 

Rt. 

Operations: 

Sum = CONCAT(Ra(31),Ra(31,0)) + CONCAT(Rb(31),Rb(31,0)) + 1; 

Rt = Sum(32,1); 

 

Exceptions: None 

Privilege level: All 

Note:  



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         214 

BCLR (Bit Clear) 

Type: 32-Bit Performance Extension 

Format: 

 

31 30          25 24      20 19      15 14       10 9        6 5        0 

0 ALU_2 

100001 

Rt Ra imm5u 0000 BCLR 

001001 

 

 

Syntax:  BCLR Rt, Ra, imm5u 

Purpose: Clear an individual one bit from the content of a general register 

Description: This instruction clears an individual one bit from the value stored in Ra. The 

bit position is specified by the imm5u value. The cleared result is written to Rt. 

Operations: 

onehot = 1 << imm5u; 

Rt = Ra & ~onehot; 

 

Exceptions: None 

Privilege level: All 

Note:  

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         215 

BSET (Bit Set) 

Type: 32-Bit Performance Extension 

Format: 

 

31 30          25 24      20 19      15 14       10 9        6 5        0 

0 ALU_2 

100001 

Rt Ra imm5u 0000 BSET 

001000 

 

 

Syntax:  BSET Rt, Ra, imm5u 

Purpose: Set an individual one bit from the content of a general register 

Description: This instruction sets an individual one bit from the value stored in Ra. The bit 

position is specified by the imm5u value. The modified result is written to Rt. 

Operations: 

onehot = 1 << imm5u; 

Rt = Ra | onehot; 

 

Exceptions: None 

Privilege level: All 

Note:  



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         216 

BTGL (Bit Toggle) 

Type: 32-Bit Performance Extension 

Format: 

 

31 30          25 24      20 19      15 14       10 9        6 5        0 

0 ALU_2 

100001 

Rt Ra imm5u 0000 BTGL 

001010 

 

 

Syntax:  BTGL Rt, Ra, imm5u 

Purpose: Toggle an individual one bit from the content of a general register 

Description: This instruction toggles an individual one bit from the value stored in Ra. The 

bit position is specified by the imm5u value. The modified result is written to Rt. 

Operations: 

onehot = 1 << imm5u; 

Rt = Ra ^ onehot; 

 

Exceptions: None 

Privilege level: All 

Note:  



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         217 

BTST (Bit Test) 

Type: 32-Bit Performance Extension 

Format: 

 

31 30          25 24      20 19      15 14       10 9        6 5        0 

0 ALU_2 

100001 

Rt Ra imm5u 0000 BTST 

001011 

 

 

Syntax:  BTST Rt, Ra, imm5u 

Purpose: Test an individual one bit from the content of a general register 

Description: This instruction tests an individual one bit from the value stored in Ra. The 

bit position is specified by the imm5u value. If the bit is set, the result of one is written to Rt. 

If the bit is cleared, the result of zero is written to Rt. 

Operations: 

onehot = 1 << imm5u; 

Rt = Ra & onehot; 

if (Rt == 0) { 

Rt = 0; 

} else { 

Rt = 1; 

} 

 

Exceptions: None 

Privilege level: All 

Note:  

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         218 

CLIP (Clip Value) 

Type: 32-Bit Performance Extension 

Format: 

 

31 30          25 24      20 19      15 14       10 9        6 5        0 

0 ALU_2 

100001 

Rt Ra imm5u 0000 CLIP 

000101 

 

 

Syntax:  CLIP Rt, Ra, imm5u 

Purpose: Limit the signed integer of a register into an unsigned range. 

Description: This instruction limits the signed integer stored in Ra into an unsigned 

integer range between 2imm5u-1 and 0. The limited result is written to Rt. For example, if 

imm5u is 0, the result should be always 0. If Ra is negative, then the result is 0 as well. 

Operations: 

if (Ra > 2imm5u-1) { 

Rt = 2imm5u-1; 

} else if (Ra < 0) { 

Rt = 0; 

} else { 

Rt = Ra; 

} 

 

Exceptions: None 

Privilege level: All 

Note:  



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         219 

CLIPS (Clip Value Signed) 

Type: 32-Bit Performance Extension 

Format: 

 

31 30          25 24      20 19      15 14       10 9        6 5        0 

0 ALU_2 

100001 

Rt Ra imm5u 0000 CLIPS 

000100 

 

 

Syntax:  CLIPS Rt, Ra, imm5u 

Purpose: Limit the signed integer of a register into a signed range. 

Description: This instruction limits the signed integer stored in Ra into a signed integer 

range between 2imm5u-1 and -2imm5u. The limited result is written to Rt. For example, if 

imm5u is 3, the result should be between 7 and -8. 

Operations: 

if (Ra > 2imm5u-1) { 

Rt = 2imm5u-1; 

} else if (Ra < -2imm5u) { 

Rt = -2imm5u; 

} else { 

Rt = Ra; 

} 

 

Exceptions: None 

Privilege level: All 

Note:  

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         220 

CLO (Count Leading Ones) 

Type: 32-Bit Performance Extension 

Format: 

 

31 30        25 24      20 19     15 14                  6 5        0 

0 ALU_2 

100001 

Rt Ra 000000000 CLO 

000110 

 

 

Syntax:  CLO Rt, Ra 

Purpose: Count the number of successive ones leading from the most significant bit of a 

general register.. 

Description: Starting from the most significant bit (bit 31)of Ra, count the number of 

successive ones. The result is written to Rt. For example, if bit 31 of Ra is 0, the result is 0. 

If Ra has a value of 0xFFFFFFFF, then the result should be 32. 

Operations: 

cnt = 0; 

for (i = 31 to 0) { 

if (Ra(i) == 0) { 

break; 

} else { 

cnt = cnt + 1; 

} 

} 

Rt = cnt; 

 

Exceptions: None 

Privilege level: All 

Note:  



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         221 

CLZ (Count Leading Zeros) 

Type: 32-Bit Performance Extension 

Format: 

 

31 30        25 24      20 19     15 14                  6 5        0 

0 ALU_2 

100001 

Rt Ra 000000000 CLZ 

000111 

 

 

Syntax:  CLZ Rt, Ra 

Purpose: Count the number of successive zeros leading from the most significant bit of a 

general register.. 

Description: Starting from the most significant bit (bit 31)of Ra, count the number of 

successive zeros. The result is written to Rt. For example, if bit 31 of Ra is 1, the result is 0. 

If Ra has a value of 0, then the result should be 32. 

Operations: 

cnt = 0; 

for (i = 31 to 0) { 

if (Ra(i) == 1) { 

break; 

} else { 

cnt = cnt + 1; 

} 

} 

Rt = cnt; 

 

Exceptions: None 

Privilege level: All 

Note:  

 

 

 

 

 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         222 

 

MAX (Maximum) 

Type: 32-Bit Performance Extension 

Format: 

 

31 30          25 24      20 19      15 14       10 9        6 5        0 

0 ALU_2 

100001 

Rt Ra Rb 0000 MAX 

000000 

 

 

Syntax:  MAX Rt, Ra, Rb 

Purpose: Get the larger value of the contents of two general registers. 

Description: This instruction compares two signed integers stored in Ra and Rb and picks 

the larger value as the result. The result is written to Rt. 

Operations: 

if (Ra >= Rb) { 

Rt = Ra; 

} else { 

Rt = Rb; 

} 

 

Exceptions: None 

Privilege level: All 

Note:  



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         223 

MIN (Minimum) 

Type: 32-Bit Performance Extension 

Format: 

 

31 30          25 24      20 19      15 14       10 9        6 5        0 

0 ALU_2 

100001 

Rt Ra Rb 0000 MIN 

000001 

 

 

Syntax:  MIN Rt, Ra, Rb 

Purpose: Get the smaller value of the contents of two general registers. 

Description: This instruction compares two signed integers stored in Ra and Rb and picks 

the smaller value as the result. The result is written to Rt. 

Operations: 

if (Ra >= Rb) { 

Rt = Rb; 

} else { 

Rt = Ra; 

} 

 

Exceptions: None 

Privilege level: All 

Note:  

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         224 

7.3   32-bit Performance Extension Version 2 

instructions 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         225 

BSE (Bit Stream Extraction) 

 

Type: 32-bit Performance Extension Version 2 

Format:  

 

31 30       25 24     20 19    15 14      10 9       6 5         0 

0 ALU_2 

100001 

Rt Ra Rb 0000 BSE 

001100 

 

 

Syntax: BSE Rt, Ra, Rb 

Purpose: It is used to extract a number of bits from a register for bit stream extraction. 

Description: 

BSE instruction extracts a number of bits (1 to 32) from register Ra into lower bits of 

register Rt. If Rb(30), acted as an “underflow” flag, is 0 the non-occupied bits in Rt will 

be filled with 0, otherwise the non-occupied bits in Rt will be untouched. The number of 

bits extracted is specified in Rb(12,8)+1, and the distance between Ra(31) and the 

starting MSB bit position of the extracted bits in Ra is specified in Rb(4,0). After the bits 

are extracted, Rb(4,0) is incremented to be the distance between Ra(31) and the (LSB-1) 

bit position of the just extracted bits in Ra, making successive BSE extractions flowing 

from bit-31 to bit-0 in Ra. You can view Rb(4,0) as the number of bits that has already 

been extracted from Ra starting from Ra(31).  

 

Although the non-occupied bits in Rt is untouched if Rb(30) is equal to 1, the Rb(12,8) 

will be updated with Rb(20,16) which should contain the old Rb(12,8) before the 

underflow condition. (Please see description below.) 

 

The extraction operation with Rb(30) equal to 0 is illustrated in Figure 3 and with Rb(30) 

eaual to 1 is illustrated in Figure 4. 

 

If the sum of Rb(4,0) (=N) and Rb(12,8) (=M) is equal to 31, then all remaining M+1 bits 

in Ra will be extracted, and Rb(5,0) will be set to 0x20 in preparation for the next bit 

stream BSE extraction. In addition, Rb(31), acted as a bitstream register “refill” flag, will 

be set to 1. This is illustrated in Figure 5. Note that setting Rb(5) to 1 is used for 

re-adjusting the Rb(4,0) if some bits that has been extracted will be re-extracted again. 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         226 

 

If the sum of Rb(4,0) (=N) and Rb(12,8) (=M) is greater than 31, then all remaining 32-N 

bits in Ra will be extracted to Rt(M,M+N-31), and Rt(M+N-32,0) will be filled with 0. In 

this case, Rb(5,0) will be set to 0x20 and Rb(12,8) will be set to M+N-32, in preparation 

for the next bit stream BSE extraction. In addition, Rb(31), acted as a bitstream register 

“refill” flag, will be set to 1, Rb(30), acted as an “underflow” flag, will be set to 1 

indicating that not all required bits are extracted, and the old Rb(12,8) will be saved in 

Rb(20,16) for recovery after the underflow processing. This is illustrated in Figure 6. 

 

If register number Rt is equal to register number Rb, since both registers will be updated 

to different data, UNPREDICTABLE result will be written to the register. 

 

Figure 3. Basic BSE operation with Rb(30) == 0 

 

 

Ra Rb(4,0): b31 to start

N = Rb(4,0)

031

N

0Rt

+ Rb(12,8) + 1

Rb(4,0)

< 32

Rb(12,8): length-1

0 0

Rb31

0 0

Rb30

Rb31 Rb30Rb31 Rb30
 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         227 

Figure 4. Basic BSE operation with Rb(30) == 1 

 

 

 

Figure 5. BSE operation extracting all remaining bits with Rb(30) == 0. 

 

 

Ra

031

0Rt

+ Rb(12,8) + 1

Rb(5,0)

== 32

1 0

0 0

Rb31 Rb30Rb31 Rb30

Rb31 Rb30Rb31 Rb30

N = Rb(4,0)

N

Rb(12,8): length-1

Rb(4,0): b31 to start

32

 

Ra Rb(4,0): b31 to start

N = Rb(4,0)

031

N = 0

No change if Rb(31)==1Rt

+ Rb(12,8) + 1

Rb(4,0)

< 32

Rb(12,8): length-1

0 0

Rb31

1 1

Rb30

Rb31 Rb30Rb31 Rb30 Rb(12,8)

Rb(20,16)

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         228 

Figure 6. BSE operation with the “underflow” condition with Rb(30) == 0. 

 
 

Operations: 

M = Rb[12:8]; 

if (Rb[30] == 0) { 

Len = M + 1; 

Rt[31:Len] = 0; 

} 

N = Rb[4:0]; 

D = M + N; 

Rb[7:5] = 1; 

if (31 > D) {                  // normal condition 

Rb[4:0] = D + 1; 

Rb[31] = 0; 

Rt[M:0] = Ra[31-N:31-N-M]; 

if (Rb[30] == 1) { 

Rb[12:8] = Rb[20:16]; 

Rb[15:13] = 0; 

} 

Rb[30] = 0; 

else if (31 == D) {           // empty condition 

Rb[4:0] = 0; 

Rb[30] = 0; 

Ra

031

N

0Rt

Rb(5,0)

> 32

0 1 1

0 0

Rb31 Rb30Rb31 Rb30

N = Rb(4,0)

Rb(4,0): b31 to start

Rb(12,8): length-1

+ Rb(12,8) + 1

32

Rb(20,16)

Rb(12,8)

Rb(12,8)

M+N-32

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         229 

Rb[31] = 1; 

Rt[M:0] = Ra[M:0]; 

} else if (31 < D) {          // underflow condition 

Rb[20:16] = M; 

Rb[12:8] = D - 32; 

Rb[4:0] = 0; 

Rb[30] = 1; 

Rb[31] = 1; 

Rt[M:M+N-31] = Ra[31-N:0]; 

Rt[M+N-32:0] = 0; 

} 

 

Exceptions: None 

 

Privilege level: All 

Note:  

1. A normal multiple-bits extraction that follows can be performed using several 

baseline instructions: 

� R4 is the bit stream register (i.e. Ra). 

� R2 is the number of bits to be extracted (i.e. Rb(12,8)+1). 

� R1 is the distance from MSB of the bit stream register to the starting bit 

position of the extraction (i.e. Rb(4,0)). 

 

sll r3, r4, r1       // squeez out msb 

subri r5, r2, 32     // calculate lsb squeeze count 

srl r3, r3, r5       // squeeze out lsb 

add r1, r1, r2       // move pointer to starting bit 

 

So this instruction will save at least 3 instructions when compared to a normal extraction 

flow. 

 

Following is an example Huffman decoding loop code using the BSE instruction: 

 

  LW Ra,[BitStream],4 # load 32b from BitStream 

L1: Prepare Rb 

 L2: BSE Rt,Ra,Rb 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         230 

  BGTZ Rb,LOOKUP       # branch if no refill 

LW Ra,[BitStream],4 # load 32b from BitStream 

BTST Rk,Rb,30        # 1 if underflow 

BNEZ Rk, L2          # branch if underflow 

 LOOKUP: Load Huffman table with index Rt 

  If end of code word { 

Get the decoded data 

Re-adjust Rb(4,0) if necessary 

} 

Adjust Rb(12,8) if necessary 

  J L2 

 

2. BSP instructions can be used to update the Rb(12,8) and Rb(4,0) values. 

3. Adjustment of Rb(4,0) value can be performed using basic addition and subtraction. 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         231 

BSP (Bit Stream Packing) 

 

Type: 32-bit Performance Extension Version 2 

Format:  

 

31 30       25 24     20 19    15 14      10 9       6 5         0 

0 ALU_2 

100001 

Rt Ra Rb 0000 BSP 

001101 

 

 

Syntax: BSP Rt, Ra, Rb 

Purpose: It is used to insert a number of bits to a register for bit stream packing. 

Description: 

BSP instruction inserts a number of bits (1 to 32) from lower bits of register Ra (LSB side) 

into register Rt. The number of bits inserted is specified in Rb(12,8)+1, and the distance 

from Rt(31) to the MSB bit position of the inserted bits in Rt is specified in Rb(4,0). 

After the bits are inserted, Rb(4,0) is incremented to be the distance from Rt(31) to the 

(LSB-1) bit position of the just inserted bits in Rt, making successive BSP insertions 

flowing from bit-31 to bit-0 in Rt. This is illustrated in Figure 7. 

 

If the sum of Rb(4,0) (=N) and Rb(12,8) (=M) is smaller than 31, and the Rb(30) is 1, 

indicating that a previous BSP operation is “overflowed”, in addition to the usual packing 

operation, Rb(12,8) will be updated with Rb(20,16) which stores the original packing 

length before the overflow condition. (See description below.) This is illustrated in Figure 

8. 

 

If the sum of Rb(4,0) (=N) and Rb(12,8) (=M) is equal to 31, then all M+1 bits in Ra will 

be inserted to Rt and fill up all bits in Rt, and Rb(5,0) will be set to 0x20 in preparation 

for the next bit stream BSP packing operation. In addition, Rb(31), acted as a bitstream 

register “output” flag, will be set to 1. This is illustrated in Figure 9. 

 

If the sum of Rb(4,0) (=N) and Rb(12,8) (=M) is greater than 31, the remaining number 

of bits in Rt is not enough to accommodate the number of bits needed packing in Ra. In 

this case, only 32-N bits will be inserted from Ra to Rt and the remaining M+N-31 bits in 

Ra will need to be inserted in the next BSP instruction. In this case, Rb(5,0) will be set to 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         232 

0x20 and Rb(12,8) will be set to M+N-32, in preparation for the next bit stream BSP 

packing operation. In addition, Rb(31), acted as a bitstream register “output” flag, will be 

set to 1, R(30), acted as an “overflow” flag, will be set to 1 indicating that not all required 

bits are packed; and the old Rb(12,8) will be saved in Rb(20,16) for recovery after the 

overflow condition has been resolved. This is illustrated in Figure 10. 

 

If register number Rt is equal to register number Rb, since both registers will be updated 

to different data, UNPREDICTABLE result will be written to the register. 

 

Figure 7. Basic BSP operation 

 

 

N = Rb(4,0)

Rt

031

N

Ra

+ Rb(12,8) + 1

Rb(4,0)

< 32

0 0

x 0

Rb31 Rb30Rb31 Rb30

Rb31 Rb30Rb31 Rb30

Rb(12,8): length-1

Rb(4,0): b31 to start

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         233 

Figure 8. BSP operation with Rb(30) == 1 

 

 

 

Figure 9. BSP operation filling up Rt. 

 

 

N = Rb(4,0)

Rt

031

N

Ra

+ Rb(12,8) + 1

Rb(4,0)

< 32

0 0

1 1

Rb31 Rb30Rb31 Rb30

Rb31 Rb30Rb31 Rb30

Rb(12,8): length-1

Rb(4,0): b31 to start

Rb(12,8)

Rb(20,16)

 

N = Rb(4,0)

Rt

031

N

Ra

+ Rb(12,8) + 1

Rb(5,0)

== 32

1 0

0 0

Rb31 Rb30Rb31 Rb30

Rb31 Rb30Rb31 Rb30

Rb(12,8): length-1

Rb(4,0): b31 to start

32

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         234 

Figure 10. BSP operation with the “overflow” condition. 

 
 

Operations: 

M = Rb[12:8]; 

N = Rb[4:0]; 

D = M + N; 

Rb[7:5] = 1; 

if (31 > D) {                  // normal condition 

Rb[4:0] = D + 1; 

Rb[31] = 0; 

Rt[31-N:31-N-M] = Ra[M:0]; 

if (Rb[30] == 1) { 

Rb[12:8] = Rb[20:16]; 

Rb[15:13] = 0; 

} 

Rb[30] = 0; 

} else if (31 == D) {           // full condition 

Rb[4:0] = 0; 

Rb[30] = 0; 

Rb[31] = 1; 

Rt[M:0] = Ra[M:0]; 

} else if (31 < D) {            // overflow condition 

Rb[20:16] = M; 

N = Rb(4,0)

Rt

031

N

Ra

+ Rb(12,8) + 1

Rb(5,0)

> 32

1 1

0 0

Rb31 Rb30Rb31 Rb30

Rb31 Rb30Rb31 Rb30

Rb(12,8): length-1

Rb(4,0): b31 to start

32

Rb(20,16)

Rb(12,8)

Rb(12,8)

M+N-32

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         235 

Rb[12:8] = D - 32; 

Rb[4:0] = 0; 

Rb[30] = 1; 

Rb[31] = 1; 

Rt[31-N:0] = Ra[M:M+N-31]; 

} 

 

Exceptions: None 

 

Privilege level: All 

Note:  

1. A normal multiple-bit packing operation that follows can be performed using several 

baseline instructions: 

� R4 contains the bits for packing (i.e. Ra). 

� R5 is the bit stream register (i.e. Rt) 

� R2 contains the number of bits for packing (i.e. Rb(12,8)+1). 

� R1 is the distance from MSB of the bit stream register to the starting bit 

position of the packing operation (i.e. Rb(4,0)). 

 

subri r3, r2, 32 

sll r3, r4, r3 

srl r3, r3, r1 

or r5, r5, r3 

 

So this instruction will save at least 3 instructions when compared to a normal 

bit-packing flow. 

 

Following is an example Huffman encoding loop code using the BSP instruction: 

 

 L1: Prepare Rb 

  Prepare code word in Ra 

 L2: BSP Rt,Ra,Rb 

  BGTZ Rb,L1         # branch if no output 

SW Rt,[BitStream],4 # store 32b to BitStream 

  BTST Rt,Rb,30     # 1 if overflow 

  BNEZ Rt,L2 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         236 

  J L1 

 

2. BSP instructions can be used to update the Rb(12,8) and Rb(4,0) values. 

3. Adjustment of Rb(4,0) value can be performed using basic addition and subtraction. 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         237 

PBSAD (Parallel Byte Sum of Absolute Difference) 

Type: 32-bit Performance Extension Version 2 

Format: 

 

31 30     25 24     20 19      15 14       10 9       5 4        0 

0 SIMD 

111000 

Rt Ra Rb 00000 PBSAD 

00000 

 

Syntax: PBSAD Rt, Ra, Rb 

Purpose: Calculate the sum of absolute difference of four unsigned 8-bit data elements. 

Description: The four un-signed 8-bit elements of Ra are subtracted from the four 

unsigned 8-bit elements of Rb. The absolute value of each difference is added together 

and the result is written to Rt. 

 

Operations: 

a(7,0) = ABS(Ra(7,0) – Rb(7,0)); 

b(7,0) = ABS(Ra(15,8) – Rb(15,8)); 

c(7,0) = ABS(Ra(23,16) – Rb(23,16)); 

d(7,0) = ABS(Ra(31,24) – Rb(31,24)); 

Rt = a(7,0) + b(7,0) + c(7,0) + d(7,0);  

 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         238 

PBSADA (Parallel Byte Sum of Absolute Difference Accum) 

Type: 32-bit Performance Extension Version 2 

Format: 

 

31 30     25 24     20 19      15 14       10 9       5 4        0 

0 SIMD 

111000 

Rt Ra Rb 00000 PBSADA 

00001 

 

Syntax:  PBSADA Rt, Ra, Rb 

Purpose: Calculate the sum of absolute difference of four unsigned 8-bit data elements 

and accumulate it into a register. 

Description: The four un-signed 8-bit elements of Ra are subtracted from the four 

unsigned 8-bit elements of Rb. The absolute value of each difference is added together 

along with the content of Rt. The accumulated result is written back to Rt. 

 

Operations: 

a(7,0) = ABS(Ra(7,0) – Rb(7,0)); 

b(7,0) = ABS(Ra(15,8) – Rb(15,8)); 

c(7,0) = ABS(Ra(23,16) – Rb(23,16)); 

d(7,0) = ABS(Ra(31,24) – Rb(31,24)); 

Rt = Rt + a(7,0) + b(7,0) + c(7,0) + d(7,0);  

 

Exceptions: None 

Privilege level: All 

Note: 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         239 

7.4   32-bit STRING Extension instructions 

 

This STRING extension is currently reserved for Andes Technology internal use. It will 

be released in the future. 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         240 

7.5   16-bit Baseline instructions 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         241 

ADD (Add Register) 

Type: 16-Bit Baseline 

Format: 

ADD333 

15 14           9 8    6 5   3 2   0 

1 ADD333 

001100 

Rt3 Ra3 Rb3 

 

ADD45 

15 14           9 8      5 4        0 

1 ADD45 

000100 

Rt4 Rb5 

 

Syntax:  ADD333 Rt3, Ra3, Rb3 

ADD45 Rt4, Rb5 

32-bit Equivalent: ADD  3T5(Rt3), 3T5(Ra3), 3T5(Rb3) // ADD333 

ADD  4T5(Rt4), 4T5(Rt4), Rb5 // ADD45 

Purpose: It is used to add the contents of two registers. 

Description: For ADD333, the contents of Ra3 and Rb3 are added. And the result is 

written to Rt3. For ADD45, the contents of Rt4 and Rb5 are added. And the result is written 

to the source register Rt4. 

Operations: 

Rt3 = Ra3 + Rb3; // ADD333 

Rt4 = Rt4 + Rb5; // ADD45 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         242 

ADDI (Add Immediate) 

Type: 16-Bit Baseline 

Format: 

ADDI333 

15 14           9 8    6 5   3 2   0 

1 ADDI333 

001110 

Rt3 Ra3 imm3u 

 

ADDI45 

15 14           9 8      5 4        0 

1 ADDI45 

000110 

Rt4 imm5u 

 

Syntax:  ADDI333 Rt3, Ra3, imm3u 

ADDI45 Rt4, imm5u 

32-bit Equivalent: ADDI  3T5(Rt3), 3T5(Ra3), ZE(imm3u) // ADDI333 

ADDI  4T5(Rt4), 4T5(Rt4), ZE(imm5u) // ADDI45 

Purpose: It is used to add a zero-extended immediate into the content of a register.  

Description: For ADDI333, the zero-extended 3-bit immediate “imm3u” is added to the 

content of Ra3. And the result is written to Rt3. For ADDI45, the zero-extended 5-bit 

immediate is added to the content of Rt4. And the result is written to the source register 

Rt4.  

Operations: 

Rt3 = Ra3 + ZE(imm3u); // ADDI333 

Rt4 = Rt4 + ZE(imm5u); // ADDI45 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         243 

BEQS38 (Branch on Equal Implied R5) 

Type: 16-Bit Baseline 

Format: 

 

15 14        11 10      8 7          0 

1 BEQS38 

1010 

Rt3 

(#Rt3 != 5) 

imm8s 

 

Syntax:  BEQS38 Rt3, imm8s 

32-bit Equivalent: BEQ  3T5(Rt3), R5, SE(imm8s) 

(next sequential PC = PC + 2) 

Purpose: It is used for conditional PC-relative branching based on the result of comparing 

the contents of a register with the content of the implied R5. 

Description: If the content of the implied register R5 is equal to the content of Rt3 

(#Rt3 != 5), then branch to the target address of adding the current instruction address with 

the sign-extended (imm8s << 1) value. The branch range is ± 256 bytes. 

Operations: 

TAddr = PC + Sign_Extend(imm8s << 1); 

If (R5 == Rt3) { 

PC = TAddr; 

} 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         244 

BEQZ38 (Branch on Equal Zero) 

Type: 16-Bit Baseline 

Format: 

 

15 14        11 10      8 7          0 

1 BEQZ38 

1000 

Rt3 imm8s 

 

Syntax:  BEQZ38 Rt3, imm8s 

32-bit Equivalent: BEQZ  3T5(Rt3), SE(imm8s) 

(next sequential PC = PC + 2) 

Purpose: It is used for conditional PC-relative branching based on the result of comparing 

the content of a register with zero. 

Description: If the content of Rt3 is equal to zero, then branch to the target address of 

adding the current instruction address with the sign-extended (imm8s << 1) value. The 

branch range is ± 256 bytes. 

Operations: 

TAddr = PC + Sign_Extend(imm8s << 1); 

If (Rt3 == 0) { 

PC = TAddr; 

} 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         245 

BEQZS8 (Branch on Equal Zero Implied R15) 

Type: 16-Bit Baseline 

Format: 

 

15 14          8 7          0 

1 BEQZS8 

1101000 

imm8s 

 

Syntax:  BEQZS8 imm8s 

32-bit Equivalent: BEQZ  R15, SE(imm8s) 

(next sequential PC = PC + 2) 

Purpose: It is used for conditional PC-relative branching based on the result of comparing 

the content of R15 with zero. 

Description: If the content of R15 is equal to zero, then branch to the target address of 

adding the current instruction address with the sign-extended (imm8s << 1) value. The 

branch range is ± 256 bytes. 

Operations: 

TAddr = PC + Sign_Extend(imm8s << 1); 

If (R15 == 0) { 

PC = TAddr; 

} 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         246 

BNES38 (Branch on Not Equal Implied R5) 

Type: 16-Bit Baseline 

Format: 

 

15 14        11 10      8 7          0 

1 BNES38 

1011 

Rt3 

(#Rt3 != 5) 

imm8s 

 

Syntax:  BNES38 Rt3, imm8s 

32-bit Equivalent: BNE  3T5(Rt3), R5, SE(imm8s) 

(next sequential PC = PC + 2) 

Purpose: It is used for conditional PC-relative branching based on the result of comparing 

the content of a register with the content of the implied R5. 

Description: If the content of the implied register R5 is not equal to the content of Rt3 

(#Rt3 != 5), then branch to the target address of adding the current instruction address with 

the sign-extended (imm8s << 1) value. The branch range is ± 256 bytes. 

Operations: 

TAddr = PC + Sign_Extend(imm8s << 1); 

If (R5 != Rt3) { 

PC = TAddr; 

} 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         247 

BNEZ38 (Branch on Not Equal Zero) 

Type: 16-Bit Baseline 

Format: 

 

15 14        11 10      8 7          0 

1 BNEZ38 

1001 

Rt3 imm8s 

 

Syntax:  BNEZ38 Rt3, imm8s 

32-bit Equivalent: BNEZ  3T5(Rt3), SE(imm8s) 

(next sequential PC = PC + 2) 

Purpose: It is used for conditional PC-relative branching based on the result of comparing 

the content of a register with zero. 

Description: If the content of Rt3 is not equal to zero, then branch to the target address of 

adding the current instruction address with the sign-extended (imm8s << 1) value. The 

branch range is ± 256 bytes. 

Operations: 

TAddr = PC + Sign_Extend(imm8s << 1); 

If (Rt3 != 0) { 

PC = TAddr; 

} 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         248 

BNEZS8 (Branch on Not Equal Zero Implied R15) 

Type: 16-Bit Baseline 

Format: 

 

15 14          8 7          0 

1 BNEZS8 

1101001 

imm8s 

 

Syntax:  BNEZS8 imm8s 

32-bit Equivalent: BNEZ  R15, SE(imm8s) 

(next sequential PC = PC + 2) 

Purpose: It is used for conditional PC-relative branching based on the result of comparing 

the content of R15 with zero. 

Description: If the content of R15 is not equal to zero, then branch to the target address of 

adding the current instruction address with the sign-extended (imm8s << 1) value. The 

branch range is ± 256 bytes. 

Operations: 

TAddr = PC + Sign_Extend(imm8s << 1); 

If (R15 != 0) { 

PC = TAddr; 

} 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         249 

BREAK16 (Breakpoint) 

Type: 16-Bit Baseline 

Format: 

 

15 14            9 8               0 

1 BREAK16 

110101 

SWID9 

 

Syntax:  BREAK16 SWID9 

32-bit Equivalent:  BREAK ZE(SWID9) 

Purpose: It is used to generate a Breakpoint exception. 

Description: 

BREAK16 instruction will unconditionally generate a Breakpoint exception and transfer 

control to the Breakpoint exception handler. The 9-bits SWID is used by software as a 

parameter to distinguish different breakpoint features and usages. 

Operations: 

 Generate_Exception(Breakpoint); 

 

Exceptions: Breakpoint 

 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         250 

J8 (Jump Immediate) 

Type: 16-Bit Baseline 

Format: 

 

15 14           8 7            0 

1 J8 

1010101 

imm8s 

 

Syntax:  J8 imm8s 

32-bit Equivalent: J  SE(imm8s) 

Purpose: It is used for unconditional PC-relative branching. 

Description: Jump unconditionally to the target address of adding the current instruction 

address with the sign-extended (imm8s << 1) value. The branch range is ± 256 bytes. 

Operations: 

TAddr = PC + Sign_Extend(imm8s << 1); 

PC = TAddr; 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         251 

JR5 (Jump Register) 

Type: 16-Bit Baseline 

Format: 

 

15 14                 5 4        0 

1 JR5 

1011101000 

Rb5 

 

Syntax:  JR5 Rb5 

32-bit Equivalent: JR  Rb5 

Purpose: It is used for unconditional branching to an address stored in a general register. 

Description: Jump unconditionally to the target address stored in the register Rb5. 

Operations: 

TAddr = Rb5; 

PC = TAddr; 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         252 

JRAL5 (Jump Register and Link) 

Type: 16-Bit Baseline 

Format: 

 

15 14                 5 4        0 

1 JRAL5 

1011101001 

Rb5 

 

Syntax:  JRAL5 Rb5 

32-bit Equivalent: JRAL  Rb5 

(R30 = PC + 2) 

Purpose: It is used for unconditional branching to a function call. 

Description: Jump unconditionally to the target address stored in the register Rb5. And the 

next sequential address (PC + 2) of the current instruction is written to R30. 

Operations: 

TAddr = Rb5; 

R30 = PC + 2; 

PC = TAddr; 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         253 

LBI333 (Load Byte Immediate Unsigned) 

Type: 16-Bit Baseline 

Format: 

 

15 14        9 8     6 5      3 2          0 

1 LBI333 

010011 

Rt3 Ra3 imm3u 

 

Syntax:  LBI333 Rt3, [Ra3, imm3u] 

32-bit Equivalent: LBI  3T5(Rt3), [3T5(Ra3), ZE(imm3u)] 

Purpose: It is used to load a zero-extended 8-bit byte from memory into a general register. 

Description: This instruction loads a byte from the memory address specified by adding 

the content of Ra3 with the zero-extended imm3u value. The loaded byte is zero-extended 

to the width of the general register and then written into Rt3. 

Operations: 

VAddr = Ra3 + Zero_Extend(imm3u); 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, LOAD); 

If (Excep_status == NO_EXCEPTION) { 

Bdata(7,0) = Load_Memory(PAddr, BYTE, Attributes); 

Rt3 = Zero_Extend(Bdata(7,0)); 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         254 

LHI333 (Load Halfword Immediate Unsigned) 

Type: 16-Bit Baseline 

Format: 

 

15 14        9 8     6 5      3 2          0 

1 LHI333 

010010 

Rt3 Ra3 imm3u 

 

Syntax:  LHI333 Rt3, [Ra3 + (imm3u << 1)] 

32-bit Equivalent: LHI  3T5(Rt3), [3T5(Ra3) + ZE((imm3u << 1))] 

(imm3u is a halfword offset. In assembly programming, always write a byte offset.) 

Purpose: It is used to load a zero-extended 16-bit halfword from memory into a general 

register. 

Description: This instruction loads a halfword from the memory address specified by 

adding the content of Ra3 with the zero-extended (imm3u << 1) value. The loaded 

halfword is zero-extended to the width of the general register and then written into Rt3. 

Notice that imm3u is a halfword-aligned offset. 

The memory address has to be halfword-aligned. Otherwise, a Data Alignment Check 

exception will be generated. 

 

Operations: 

VAddr = Ra3 + Zero_Extend((imm3u << 1)); 

if (!Halfword_Aligned(Vaddr)) { 

Generate_Exception(Data_alignment_check); 

} 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, LOAD); 

If (Excep_status == NO_EXCEPTION) { 

Hdata(15,0) = Load_Memory(PAddr, HALFWORD, Attributes); 

Rt3 = Zero_Extend(Hdata(15,0)); 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         255 

Page modified, Access bit, TLB VLPT miss, Machine error, Data alignment check. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         256 

LWI333 (Load Word Immediate) 

Type: 16-Bit Baseline 

Format: 

LWI333 

15 14        9 8     6 5      3 2          0 

1 LWI333 

010000 

Rt3 Ra3 imm3u 

 

LWI333.bi 

15 14        9 8     6 5      3 2          0 

1 LWI333.bi 

010001 

Rt3 Ra3 imm3u 

 

 

Syntax:  LWI333 Rt3, [Ra3 + (imm3u << 2)] 

LWI333.bi Rt3, [Ra3], (imm3u << 2) 

32-bit Equivalent: LWI 3T5(Rt3), [3T5(Ra3) + ZE(imm3u << 2)] 

LWI.bi 3T5(Rt3), [3T5(Ra3)], ZE(imm3u << 2) 

(imm3u is a word offset. In assembly programming, always write a byte offset.) 

Purpose: It is used to load a 32-bit word from memory into a general register. 

Description: This instruction loads a word from the memory into the general register Rt3. 

Two different forms are used to specify the memory address. The regular form uses Ra3 + 

ZE(imm3u << 2) as its memory address while the .bi form uses Ra3. For the .bi form, the 

Ra3 register will be updated with the Ra3 + ZE(imm3u << 2) value after the memory load 

operation. 

The memory address has to be word-aligned. Otherwise, a Data Alignment Check 

exception will be generated. 

 

Operations: 

Addr = Ra3 + Zero_Extend((imm3u << 2)); 

If (.bi form) { 

Vaddr = Ra3; 

} else { 

Vaddr = Addr; 

} 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         257 

if (!Word_Aligned(Vaddr)) { 

Generate_Exception(Data_alignment_check); 

} 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, LOAD); 

If (Excep_status == NO_EXCEPTION) { 

Wdata(31,0) = Load_Memory(PAddr, WORD, Attributes); 

Rt3 = Wdata(31,0); 

If (.bi form) { Ra3 = Addr; } 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error, Data alignment check. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         258 

LWI37 (Load Word Immediate with Implied FP) 

Type: 16-Bit Baseline 

Format: 

 

15 14    11 10  8 7 6         0 

1 XWI37 

0111 

Rt3 LWI37 

0 

imm7u 

 

Syntax:  LWI37 Rt3, [FP + (imm7u << 2)] 

32-bit Equivalent: LWI 3T5(Rt3), [FP + ZE(imm7u << 2)] 

(imm7u is a word offset. In assembly programming, always write a byte offset.) 

Purpose: It is used to load a 32-bit word from memory into a general register. 

Description: This instruction loads a word from the memory into the general register Rt3. 

The memory address is specified by adding the implied FP (i.e. R28) register with the 

zero-extended (imm7u << 2) value. Notice that the imm7u is a word-aligned offset. 

The memory address has to be word-aligned. Otherwise, a Data Alignment Check 

exception will be generated. 

 

Operations: 

VAddr = FP (i.e. R28) + Zero_Extend(imm7u << 2); 

if (!Word_Aligned(Vaddr)) { 

Generate_Exception(Data_alignment_check); 

} 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, LOAD); 

If (Excep_status == NO_EXCEPTION) { 

Wdata(31,0) = Load_Memory(PAddr, WORD, Attributes); 

Rt3 = Wdata(31,0); 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error, Data alignment check. 

Privilege level: All 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         259 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         260 

LWI450 (Load Word Immediate) 

Type: 16-Bit Baseline 

Format: 

 

15 14        9 8        5 4         0 

1 LWI450 

011010 

Rt4 Ra5 

 

Syntax:  LWI450 Rt4, [Ra5] 

32-bit Equivalent: LWI 4T5(Rt4), [Ra5 + 0] 

Purpose: It is used to load a 32-bit word from memory into a general register. 

Description: This instruction loads a word from the memory into the general register Rt4. 

The memory address is specified in Ra5. 

The memory address has to be word-aligned. Otherwise, a Data Alignment Check 

exception will be generated. 

 

Operations: 

VAddr = Ra5; 

if (!Word_Aligned(Vaddr)) { 

Generate_Exception(Data_alignment_check); 

} 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, LOAD); 

If (Excep_status == NO_EXCEPTION) { 

Wdata(31,0) = Load_Memory(PAddr, WORD, Attributes); 

Rt4 = Wdata(31,0); 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error, Data alignment check. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         261 

MOV55 (Move Register) 

Type: 16-Bit Baseline 

Format: 

 

15 14          10 9       5 4         0 

1 MOVI55 

00000 

Rt5 Ra5 

 

Syntax:  MOVI55  Rt5, Ra5 

32-bit Equivalent: ADDI/ORI  Rt5, Ra5, 0 

Purpose: It is used to move contents between general-purpose registers. 

Description: The content of Ra5 is moved into Rt5. 

Operations: 

Rt5 = Ra5; 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         262 

MOVI55 (Move Immediate) 

Type: 16-Bit Baseline 

Format: 

 

15 14          10 9       5 4         0 

1 MOVI55 

00001 

Rt5 imm5s 

 

Syntax:  MOVI55  Rt5, imm5s 

32-bit Equivalent: MOVI  Rt5, SE(imm5s) 

Purpose: It is used to move a sign-extended immediate into a general-purpose register. 

Description: The sign-extended 5-bit immediate “imm5s” is moved into Rt5. 

Operations: 

Rt5 = Sign_Extend(imm5s); 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         263 

NOP16 (No Operation) 

Type: 16-Bit Baseline 

Format: 

 

15 14           9 8      5 4        0 

1 SRLI45 

001001 

NOP16 

0000 

NOP16 

00000 

 

Syntax:  NOP16 

(SRLI45 R0, 0) 

32-bit Equivalent: NOP 

(SRL R0, R0, 0) 

Purpose: It is used to do no operation. It may be used to align program code for any 

specific purpose. 

Description: This instruction is aliased to “SRLI45  R0, 0” instruction in hardware. 

Operations: 

None 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         264 

RET5 (Return from Register) 

Type: 16-Bit Baseline 

Format: 

 

15 14                 5 4        0 

1 RET5 

1011101100 

Rb5 

 

Syntax:  RET5 Rb5 

32-bit Equivalent: RET  Rb5 

Purpose: It is used for unconditional function call return to an address stored in a general 

register. 

Description: Jump unconditionally to the target address stored in the register Rb5. Note 

that the architecture behavior of this instruction is the same as the JR5 instruction. But 

software will use this instruction instead of JR5 for function call return purpose. This 

facilitates software’s need to distinguish the two different usages which is helpful in call 

stack backtracing applications. Distinguishing a function return jump from a regular jump 

will also help on implementation performance (e.g. return address prediction). 

Operations: 

TAddr = Rb5; 

PC = TAddr; 

Exceptions: None 

Privilege level: All 

Note: 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         265 

SBI333 (Store Byte Immediate) 

Type: 16-Bit Baseline 

Format: 

 

15 14        9 8     6 5      3 2          0 

1 SBI333 

010111 

Rt3 Ra3 imm3u 

 

Syntax:  SBI333 Rt3, [Ra3 + imm3u] 

32-bit Equivalent: SBI  3T5(Rt3), [3T5(Ra3) + ZE(imm3u)] 

Purpose: It is used to store an 8-bit byte from a general register into a memory location. 

Description: The least-significant 8-bit byte in the general register Rt3 is stored to the 

memory location whose address is specified by adding the content of Ra3 with the 

zero-extended imm3u value. 

Operations: 

VAddr = Ra3 + Zero_Extend(imm3u); 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, STORE); 

If (Excep_status == NO_EXCEPTION) { 

Store_Memory(PAddr, BYTE, Attributes, Rt3(7,0)); 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         266 

SEB33 (Sign Extend Byte) 

Type: 16-Bit Baseline 

Format: 

 

15 14           9 8      6 5     3 2     0 

1 BFMI333 

001011 

Rt3 Ra3 SEB33 

010 

 

Syntax:  SEB33 Rt3, Ra3 

32-bit Equivalent: SEB  3T5(Rt3), 3T5(Ra3) 

Purpose: It is used to sign-extend the least-significant byte of Ra3 and the result is written 

to Rt3. 

Description: The least-significant byte of Ra3 is sign-extended to the width of a general 

register. And the result is written to the register Rt3. 

Operations: 

Rt3 = Sign_Extend(Ra3(7,0)); 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         267 

SEH33 (Sign Extend Halfword) 

Type: 16-Bit Baseline 

Format: 

 

15 14           9 8      6 5     3 2     0 

1 BFMI333 

001011 

Rt3 Ra3 SEH33 

011 

 

Syntax:  SEH33 Rt3, Ra3 

32-bit Equivalent: SEH  3T5(Rt3), 3T5(Ra3) 

Purpose: It is used to sign-extend the least-significant halfword of Ra3 and the result is 

written to Rt3. 

Description: The least-significant halfword of Ra3 is sign-extended to the width of a 

general register. And the result is written to the register Rt3. 

Operations: 

Rt3 = Sign_Extend(Ra3(15,0)); 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         268 

SHI333 (Store Halfword Immediate) 

Type: 16-Bit Baseline 

Format: 

 

15 14        9 8     6 5      3 2          0 

1 SHI333 

010110 

Rt3 Ra3 imm3u 

 

Syntax:  SHI333 Rt3, [Ra3 + (imm3u << 1)] 

32-bit Equivalent: SHI  3T5(Rt3), [3T5(Ra3) + ZE(imm3u << 1)] 

(imm3u is a halfword offset. In assembly programming, always write a byte offset.) 

Purpose: It is used to store a 16-bit halfword from a general register into a memory 

location. 

Description: The least-significant 16-bit halfword in the general register Rt3 is stored to 

the memory location whose address is specified by adding the content of Ra3 with the 

zero-extended (imm3u << 1) value. Notice that imm3u is a halfword-aligned offset. 

The memory address has to be halfword-aligned. Otherwise, a Data Alignment Check 

exception will be generated. 

 

Operations: 

VAddr = Ra3 + Zero_Extend(imm3u << 1); 

if (!Halfword_Aligned(Vaddr)) { 

Generate_Exception(Data_alignment_check); 

} 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, STORE); 

If (Excep_status == NO_EXCEPTION) { 

Store_Memory(PAddr, HALFWORD, Attributes, Rt3(15,0)); 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error, Data alignment check. 

Privilege level: All 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         269 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         270 

SLLI333 (Shift Left Logical Immediate) 

Type: 16-Bit Baseline 

Format: 

 

15 14           9 8    6 5   3 2   0 

1 SLLI333 

001010 

Rt3 Ra3 imm3u 

 

Syntax:  SLLI333 Rt3, Ra3, imm3u 

32-bit Equivalent: SLLI  3T5(Rt3), 3T5(Ra3), ZE(imm3u) 

Purpose: It is used to left-shift a register content to a fixed number of bits in the range of 0 

to 7. 

Description: The content of Ra3 is shifted left by a fixed number of bits between 0 and 7 

specified by the “imm3u”. And zero will be shifted in to fill the shifted-out bits. 

The shifted result is written to Rt3. 

Operations: 

Rt3 = Ra3 << imm3u; // or 

Rt3 = Ra3(31-imm3u,0).Dupliate(0, imm3u); 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         271 

SLT45 (Set on Less Than Unsigned) 

Type: 16-Bit Baseline 

Format: 

 

15 14          9 8          5 4        0 

1 SLT45 

110001 

Ra4 Rb5 

 

Syntax:  SLT45 Ra4, Rb5 

32-bit Equivalent: SLT  R15, 4T5(Ra4), Rb5 

Purpose: It is used to set a result on R15 for an unsigned less-than comparison. 

Description: This instruction compares the contents of Ra4 and Rb5 as unsigned integers. 

If Ra4 is less than Rb5, then R15 will be written with 1; otherwise, R15 will be written with 

0. 

Operations: 

If (Ra4 (unsigned)< Rb5) { 

R15 = 1; 

} else { 

R15 = 0; 

} 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         272 

SLTI45 (Set on Less Than Unsigned Immediate) 

Type: 16-Bit Baseline 

Format: 

 

15 14          9 8          5 4        0 

1 SLTI45 

110011 

Ra4 imm5u 

 

Syntax:  SLTI45 Ra4, imm5u 

32-bit Equivalent: SLTI  R15, 4T5(Ra4), ZE(imm5u) 

Purpose: It is used to set a result on R15 for an unsigned less-than comparison. 

Description: This instruction compares the contents of Ra4 and a zero-extended imm5u as 

unsigned integers. If Ra4 is less than the zero-extended imm5u, then R15 will be written 

with 1; otherwise, R15 will be written with 0. 

Operations: 

If (Ra4 (unsigned)< Zero_Extend(imm5u)) { 

R15 = 1; 

} else { 

R15 = 0; 

} 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         273 

SLTS45 (Set on Less Than Signed) 

Type: 16-Bit Baseline 

Format: 

 

15 14          9 8          5 4        0 

1 SLTS45 

110000 

Ra4 Rb5 

 

Syntax:  SLTS45 Ra4, Rb5 

32-bit Equivalent: SLTS  R15, 4T5(Ra4), Rb5 

Purpose: It is used to set a result on R15 for a signed less-than comparison. 

Description: This instruction compares the contents of Ra4 and Rb5 as signed integers. If 

Ra4 is less than Rb5, then R15 will be written with 1; otherwise, R15 will be written with 0. 

Operations: 

If (Ra4 (signed)< Rb5) { 

R15 = 1; 

} else { 

R15 = 0; 

} 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         274 

SLTSI45 (Set on Less Than Signed Immediate) 

Type: 16-Bit Baseline 

Format: 

 

15 14          9 8          5 4        0 

1 SLTSI45 

110010 

Ra4 imm5u 

 

Syntax:  SLTSI45 Ra4, imm5u 

32-bit Equivalent: SLTSI  R15, 4T5(Ra4), ZE(imm5u) 

Purpose: It is used to set a result on R15 for a signed less-than comparison. 

Description: This instruction compares the contents of Ra4 and a zero-extended imm5u as 

signed integers. If Ra4 is less than the zero-extended imm5u, then R15 will be written with 

1; otherwise, R15 will be written with 0. 

Operations: 

If (Ra4 (signed)< Zero_Extend(imm5u)) { 

R15 = 1; 

} else { 

R15 = 0; 

} 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         275 

SRAI45 (Shift Right Arithmetic Immediate) 

Type: 16-Bit Baseline 

Format: 

 

15 14           9 8      5 4        0 

1 SRAI45 

001000 

Rt4 imm5u 

 

Syntax:  SRAI45 Rt4, imm5u 

32-bit Equivalent: SRAI  4T5(Rt4), 4T5(Rt4), imm5u 

Purpose: It is used to right-shift a register content arithmetically (i.e. maintaining the sign 

of the original value) to a fixed number of bits in the range of 0 to 31. 

Description: The content of Rt4 is shifted right by a fixed number of bits between 0 and 31 

specified by the “imm5u”. And the sign bit of Rt4, i.e. Rt4(31), will be duplicated to fill the 

shifted-out bits. The shifted result is written to the source register Rt4. 

Operations: 

Rt4 = Rt4 (sign)>> imm5u; // or 

Rt4 = Duplicate(Rt4(31), imm5u).Rt4(31,imm5u); 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         276 

SRLI45 (Shift Right Logical Immediate) 

Type: 16-Bit Baseline 

Format: 

 

15 14           9 8      5 4        0 

1 SRLI45 

001001 

Rt4 imm5u 

 

Syntax:  SRLI45 Rt4, imm5u 

32-bit Equivalent: SRLI  4T5(Rt4), 4T5(Rt4), imm5u 

Purpose: It is used to right-shift a register content logically (i.e. filling in zeros at the 

shifted-out bits) to a fixed number of bits in the range of 0 to 31. 

Description: The content of Rt4 is shifted right by a fixed number of bits between 0 and 31 

specified by the “imm5u”. And the shifted-out bits will be filled with zeros. The shifted 

result is written to the source register Rt4. 

Operations: 

Rt4 = Rt4 (0)>> imm5u; // or 

Rt4 = Duplicate(0, imm5u).Rt4(31,imm5u); 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         277 

SUB (Subtract Register) 

Type: 16-Bit Baseline 

Format: 

SUB333 

15 14           9 8    6 5   3 2   0 

1 SUB333 

001101 

Rt3 Ra3 Rb3 

 

SUB45 

15 14           9 8      5 4        0 

1 SUB45 

000101 

Rt4 Rb5 

 

Syntax:  SUB333 Rt3, Ra3, Rb3 

SUB45 Rt4, Rb5 

32-bit Equivalent: SUB  3T5(Rt3), 3T5(Ra3), 3T5(Rb3) // SUB333 

SUB  4T5(Rt4), 4T5(Rt4), Rb5 // SUB45 

Purpose: It is used to subtract the contents of two registers. 

Description: For SUB333, the content of Rb3 is subtracted from Ra3. And the result is 

written to Rt3. For SUB45, the content of Rb5 is subtracted from Rt4. And the result is 

written to the source register Rt4. 

Operations: 

Rt3 = Ra3 - Rb3; // SUB333 

Rt4 = Rt4 - Rb5; // SUB45 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         278 

SUBI (Subtract Immediate) 

Type: 16-Bit Baseline 

Format: 

SUBI333 

15 14           9 8    6 5   3 2   0 

1 SUBI333 

001111 

Rt3 Ra3 imm3u 

 

SUBI45 

15 14           9 8      5 4        0 

1 SUBI45 

000111 

Rt4 imm5u 

 

Syntax:  SUBI333 Rt3, Ra3, imm3u 

SUBI45 Rt4, imm5u 

32-bit Equivalent: ADDI  3T5(Rt3), 3T5(Ra3), NEG(imm3u) // SUBI333 

ADDI  4T5(Rt4), 4T5(Rt4), NEG(imm5u) // SUBI45 

Purpose: It is used to subtract a zero-extended immediate from the content of a register. 

Description: For SUBI333, the zero-extended 3-bit immediate “imm3u” is subtracted 

from the content of Ra3. And the result is written to Rt3. For SUBI45, the zero-extended 

5-bit immediate is subtracted from the content of Rt4. And the result is written to the source 

register Rt4. 

Operations: 

Rt3 = Ra3 - ZE(imm3u); // SUBI333 

Rt4 = Rt4 - ZE(imm5u); // SUBI45 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         279 

SWI333 (Store Word Immediate) 

Type: 16-Bit Baseline 

Format: 

SWI333 

15 14        9 8     6 5      3 2          0 

1 SWI333 

010100 

Rt3 Ra3 imm3u 

 

SWI333.bi 

15 14        9 8     6 5      3 2          0 

1 SWI333.bi 

010101 

Rt3 Ra3 imm3u 

 

 

Syntax:  SWI333 Rt3, [Ra3 + (imm3u << 2)] 

SWI333.bi Rt3, [Ra3], (imm3u << 2) 

32-bit Equivalent: SWI 3T5(Rt3), [3T5(Ra3) + ZE(imm3u << 2)] 

SWI.bi 3T5(Rt3), [3T5(Ra3)], ZE(imm3u << 2) 

(imm3u is a word offset. In assembly programming, always write a byte offset.) 

Purpose: It is used to store a 32-bit word from a general register into memory. 

Description: This instruction stores a word from the general register Rt3 into the memory. 

Two different forms are used to specify the memory address. The regular form uses Ra3 + 

ZE(imm3u << 2) as its memory address while the .bi form uses Ra3. For the .bi form, the 

Ra3 register will be updated with the Ra3 + ZE(imm3u << 2) value after the memory store 

operation. 

The memory address has to be word-aligned. Otherwise, a Data Alignment Check 

exception will be generated. 

 

Operations: 

Addr = Ra3 + Zero_Extend((imm3u << 2)); 

If (.bi form) { 

Vaddr = Ra3; 

} else { 

Vaddr = Addr; 

} 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         280 

if (!Word_Aligned(Vaddr)) { 

Generate_Exception(Data_alignment_check); 

} 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, STORE); 

If (Excep_status == NO_EXCEPTION) { 

Store_Memory(PAddr, WORD, Attributes, Rt3); 

If (.bi form) { Ra3 = Addr; } 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error, Data alignment check. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         281 

SWI37 (Store Word Immediate with Implied FP) 

Type: 16-Bit Baseline 

Format: 

 

15 14    11 10  8 7 6         0 

1 XWI37 

0111 

Rt3 SWI37 

1 

imm7u 

 

Syntax:  SWI37 Rt3, [FP + (imm7u << 2)] 

32-bit Equivalent: SWI 3T5(Rt3), [FP + ZE(imm7u << 2)] 

(imm7u is a word offset. In assembly programming, always write a byte offset.) 

Purpose: It is used to store a 32-bit word from a general register into memory. 

Description: This instruction stores a word from the general register Rt3 into the memory. 

The memory address is specified by adding the implied FP (i.e. R28) register with the 

zero-extended (imm7u << 2) value. Notice that the imm7u is a word-aligned offset. 

The memory address has to be word-aligned. Otherwise, a Data Alignment Check 

exception will be generated. 

 

Operations: 

VAddr = FP (i.e. R28) + Zero_Extend(imm7u << 2); 

if (!Word_Aligned(Vaddr)) { 

Generate_Exception(Data_alignment_check); 

} 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, STORE); 

If (Excep_status == NO_EXCEPTION) { 

Store_Memory(PAddr, WORD, Attributes, Rt3); 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error, Data alignment check. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         282 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         283 

SWI450 (Store Word Immediate) 

Type: 16-Bit Baseline 

Format: 

 

15 14        9 8        5 4         0 

1 SWI450 

011011 

Rt4 Ra5 

 

Syntax:  SWI450 Rt4, [Ra5] 

32-bit Equivalent: SWI 4T5(Rt4), [Ra5 + 0] 

Purpose: It is used to store a 32-bit word from a general register into memory. 

Description: This instruction stores a word from the general register Rt4 into the memory. 

The memory address is specified in Ra5. 

The memory address has to be word-aligned. Otherwise, a Data Alignment Check 

exception will be generated. 

 

Operations: 

VAddr = Ra5; 

if (!Word_Aligned(Vaddr)) { 

Generate_Exception(Data_alignment_check); 

} 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, STORE); 

If (Excep_status == NO_EXCEPTION) { 

Store_Memory(PAddr, WORD, Attributes, Rt4); 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error, Data alignment check. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         284 

X11B33 (Extract the Least 11 Bits) 

Type: 16-Bit Extension 

Format: 

 

15 14           9 8      6 5     3 2     0 

1 BFMI333 

001011 

Rt3 Ra3 X11B33 

101 

 

Syntax:  X11B33 Rt3, Ra3 

32-bit Equivalent: ANDI  3T5(Rt3), 3T5(Ra3), 0x7FF 

Purpose: It is used to extract the least-significant 11 bits of Ra3 and the result is written to 

Rt3. 

Description: The least-significant 11 bits of Ra3 is extracted. And the result is written to 

the register Rt3. 

Operations: 

Rt3 = Ra3 & 0x7FF; 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         285 

XLSB33 (Extract LSB) 

Type: 16-Bit Extension 

Format: 

 

15 14           9 8      6 5     3 2     0 

1 BFMI333 

001011 

Rt3 Ra3 XLSB33 

100 

 

Syntax:  XLSB33 Rt3, Ra3 

32-bit Equivalent: ANDI  3T5(Rt3), 3T5(Ra3), 0x1 

Purpose: It is used to extract the least-significant bit of Ra3 and the result is written to Rt3. 

Description: The least-significant bit of Ra3 is extracted. And the result is written to the 

register Rt3. 

Operations: 

Rt3 = Ra3 & 0x1; 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         286 

ZEB33 (Zero Extend Byte) 

Type: 16-Bit Baseline 

Format: 

 

15 14           9 8      6 5     3 2     0 

1 BFMI333 

001011 

Rt3 Ra3 ZEB33 

000 

 

Syntax:  ZEB33 Rt3, Ra3 

32-bit Equivalent: ANDI  3T5(Rt3), 3T5(Ra3), 0xFF 

Purpose: It is used to zero-extend the least-significant byte of Ra3 and the result is written 

to Rt3. 

Description: The least-significant byte of Ra3 is zero-extended to the width of a general 

register. And the result is written to the register Rt3. 

Operations: 

Rt3 = Zero_Extend(Ra3(7,0)); 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         287 

ZEH33 (Zero Extend Halfword) 

Type: 16-Bit Baseline 

Format: 

 

15 14           9 8      6 5     3 2     0 

1 BFMI333 

001011 

Rt3 Ra3 ZEH33 

001 

 

Syntax:  ZEH33 Rt3, Ra3 

32-bit Equivalent: ZEH  3T5(Rt3), 3T5(Ra3) 

Purpose: It is used to zero-extend the least-significant halfword of Ra3 and the result is 

written to Rt3. 

Description: The least-significant halfword of Ra3 is zero-extended to the width of a 

general register. And the result is written to the register Rt3. 

Operations: 

Rt3 = Zero_Extend(Ra3(15,0)); 

Exceptions: None 

Privilege level: All 

Note: 

 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         288 

7.6   16-bit and 32-bit Baseline Version 2 

instructions 

 

These Baseline Version 2 instructions are added to improve code density. 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         289 

ADDI10S (Add Immediate with Implied Stack Pointer) 

Type: 16-Bit Baseline Version 2 

Format: 

ADDI10S 

15 14           10 9                      0 

1 ADDI10S 

11011 

imm10s 

 

Syntax:  ADDI10.sp imm10s 

32-bit Equivalent: ADDI  r31, r31, SE(imm10s) 

Purpose: It is used to add a sign-extended immediate into the content of the stack pointer 

register (R31).  

Description: The sign-extended 10-bit immediate “imm10s” is added to the content of 

R31 (stack pointer). And the result is written back to R31. 

Operations: 

R31 = R31 + SE(imm10s);  

 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         290 

LWI37SP (Load Word Immediate with Implied SP) 

Type: 16-Bit Baseline Version 2 

Format: 

 

15 14      11 10     8 7 6             0 

1 XWI37SP 

1110 

Rt3 LWI37SP 

0 

imm7u 

 

Syntax:  LWI37.sp Rt3, [+ (imm7u << 2)] 

32-bit Equivalent: LWI 3T5(Rt3), [SP + ZE(imm7u << 2)] 

(imm7u is a word offset. In assembly programming, always write a byte offset.) 

Purpose: It is used to load a 32-bit word from memory into a general register. 

Description: This instruction loads a word from the memory into the general register Rt3. 

The memory address is specified by adding the implied SP (i.e. R31) register with the 

zero-extended (imm7u << 2) value. Notice that the imm7u is a word-aligned offset. 

The memory address has to be word-aligned. Otherwise, a Data Alignment Check 

exception will be generated. 

 

Operations: 

VAddr = SP (i.e. R31) + Zero_Extend(imm7u << 2); 

if (!Word_Aligned(Vaddr)) { 

Generate_Exception(Data_alignment_check); 

} 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, LOAD); 

If (Excep_status == NO_EXCEPTION) { 

Wdata(31,0) = Load_Memory(PAddr, WORD, Attributes); 

Rt3 = Wdata(31,0); 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error, Data alignment check. 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         291 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         292 

SWI37SP (Store Word Immediate with Implied SP) 

Type: 16-Bit Baseline Version 2 

Format: 

 

15 14      11 10     8 7 6            0 

1 XWI37SP 

1110 

Rt3 SWI37SP 

1 

imm7u 

 

Syntax:  SWI37.sp Rt3, [+ (imm7u << 2)] 

32-bit Equivalent: SWI 3T5(Rt3), [SP + ZE(imm7u << 2)] 

(imm7u is a word offset. In assembly programming, always write a byte offset.) 

Purpose: It is used to store a 32-bit word from a general register into memory. 

Description: This instruction stores a word from the general register Rt3 into the memory. 

The memory address is specified by adding the implied SP (i.e. R31) register with the 

zero-extended (imm7u << 2) value. Notice that the imm7u is a word-aligned offset. 

The memory address has to be word-aligned. Otherwise, a Data Alignment Check 

exception will be generated. 

 

Operations: 

VAddr = SP (i.e. R31) + Zero_Extend(imm7u << 2); 

if (!Word_Aligned(Vaddr)) { 

Generate_Exception(Data_alignment_check); 

} 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, STORE); 

If (Excep_status == NO_EXCEPTION) { 

Store_Memory(PAddr, WORD, Attributes, Rt3); 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error, Data alignment check. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         293 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         294 

ADDI.gp (GP-implied Add Immediate) 

Type: 32-Bit Baseline version 2 

Format: 

 

31 30        25 24      20 19 18                                           0 

0 SBGP 

011111 

Rt 1 

ADDI 

imm19s 

 

 

Syntax:  ADDI.gp Rt, imm19s 

Purpose: Add the content of the implied GP (R29) register with a signed constant. 

Description: The content of Gp (R29) is added with the sign-extended imm19s. And the 

result is written to Rt. The imm19s value will cover a range of 512K byte region relative 

to the location pointed to by the GP register. 

 

Operations: 

Rt = R29 + SE(imm19s); 

 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         295 

DIVR (Unsigned Integer Divide to Registers) 

Type: 32-Bit Baseline Version 2 

Format: 

 

31 30        25 24      20 19     15 14      10 9        5 4     0 

0 ALU_1 

100000 

Rt Ra Rb Rs DIVR 

10111 

 

Syntax:  DIVR Rt, Rs, Ra, Rb 

Purpose: Divide the unsigned integer content of one register with the unsigned integer 

content of another register. 

Description: Divide the 32-bit content of Ra with the 32-bit content of Rb. The 32-bit 

quotient result is written to Rt. And the 32-bit remainder result is written to Rs. The 

contents of Ra and Rb are treated as unsigned integers. 

 

If the content of Rb is zero, an Arithmetic exception will be generated if the IDIVZE bit 

of the INT_MASK register is 1, which enables exception generation for the 

“Divide-By-Zero” condition. 

  

Operations: 

If (Rb != 0) { 

quotient = Floor(CONCAT(1`b0,Ra) / CONCAT(1`b0,Rb)); 

remainder = CONCAT(1`b0,Ra) mod CONCAT(1`b0,Rb); 

Rt = quotient; 

Rs = remainder; 

} else if (INT_MASK.IDIVZE == 0) { 

Rt = 0; 

Rs = 0; 

} else { 

Generate_Exception(Arithmetic); 

} 

 

Exceptions: Arithmetic 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         296 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         297 

DIVSR (Signed Integer Divide to Registers) 

Type: 32-Bit Baseline Optional 

Format: 

 

31 30        25 24      20 19     15 14      10 9        5 4     0 

0 ALU_1 

100000 

Rt Ra Rb Rs DIVSR 

10110 

 

Syntax:  DIVSR Rt, Rs, Ra, Rb 

Purpose: Divide the signed integer content of one register with the signed integer content 

of another register. 

Description: Divide the 32-bit content of Ra with the 32-bit content of Rb. The 32-bit 

quotient result is written to Rt. And the 32-bit remainder result is written to Rs. The 

contents of Ra and Rb are treated as signed integers. 

 

If the content of Rb is zero, an Arithmetic exception will be generated if the IDIVZE bit 

of the INT_MASK register is 1, which enables exception generation for the 

“Divide-By-Zero” condition. If the quotient overflows, an Arithmetic exception will 

always be generated. The overflow condition is as follows: 

� Positive quotient > 0x7FFF FFFF (When Ra = 0x80000000 and Rb = 

0xFFFFFFFF) 

  

Operations: 

If (Rb != 0) { 

quotient = Floor(Ra / Rb); 

if (IsPositive(quotient) && quotient > 0x7FFFFFFF) { 

Generate_Exception(Arithmetic); 

}  

remainder = Ra mod Rb 

Rt = quotient; 

Rs = remainder; 

} else if (INT_MASK.IDIVZE == 0) { 

Rt = 0; 

Rs = 0; 

} else { 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         298 

Generate_Exception(Arithmetic); 

} 

 

Exceptions: Arithmetic 

Privilege level: All 

Note: 

 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         299 

LBI.gp (GP-implied Load Byte Immediate) 

Type: 32-Bit Baseline version 2 

Format: 

 

31 30        25 24      20 19 18                                            0 

0 LBGP 

010111 

Rt 0 

LBI 

imm19s 

 

 

Syntax:  LBI.gp Rt, [+ imm19s] 

Purpose: To load a zero-extended 8-bit byte from memory into a general register. 

Description: This instruction loads a zero-extended byte from the memory into the general 

register Rt. The memory address is specified by the implied GP register (R29) plus a 

sign-extended imm19s value. The imm19s value will cover a range of 512K byte region 

relative to the location pointed to by the GP register. 

 

Operations: 

Vaddr = R29 + Sign_Extend(imm19s); 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, LOAD); 

If (Excep_status == NO_EXCEPTION) { 

Bdata(7,0) = Load_Memory(PAddr, BYTE, Attributes); 

Rt = Zero_Extend(Bdata(7,0)); 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         300 

LBSI.gp (GP-implied Load Byte Signed Immediate) 

Type: 32-Bit Baseline version 2 

Format: 

 

31 30        25 24      20 19 18                                            0 

0 LBGP 

010111 

Rt 1 

LBSI 

imm19s 

 

 

Syntax:  LBSI.gp Rt, [+ imm19s] 

Purpose: To load a sign-extended 8-bit byte from memory into a general register. 

Description: This instruction loads a sign-extended byte from the memory into the general 

register Rt. The memory address is specified by the implied GP register (R29) plus a 

sign-extended imm19s value. The imm19s value will cover a range of 512K byte region 

relative to the location pointed to by the GP register. 

 

Operations: 

Vaddr = R29 + Sign_Extend(imm19s); 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, LOAD); 

If (Excep_status == NO_EXCEPTION) { 

Bdata(7,0) = Load_Memory(PAddr, BYTE, Attributes); 

Rt = Sign_Extend(Bdata(7,0)); 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error. 

Privilege level: All 

Note: 

 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         301 

LBUP (Load Byte with User Privilege Translation) 

Type: 32-Bit Baseline version 2 

Format: 

 

31 30     25 24      20 19       15 14     10 9  8 7         0 

0 MEM 

011100 

Rt Ra Rb sv LBUP 

00100000 

 

Syntax:  LBUP Rt, [Ra + (Rb << sv)] 

Purpose: To load a zero-extended 8-bit byte from memory into a general register with the 

user mode privilege address translation. 

Description: This instruction loads a zero-extended byte from the memory address Ra + 

(Rb << sv) into the general register Rt with the user mode privilege address translation 

regardless of the current processor operation mode (i.e. PSW.POM) and the current data 

address translation state (i.e. PSW.DT). 

 

Operations: 

Vaddr = Ra + (Rb << sv); 

(PAddr, Attributes) = Address_Translation(Vaddr, TRANSLATE); 

Excep_status = Page_Exception(Attributes, USER_MODE, LOAD); 

If (Excep_status == NO_EXCEPTION) { 

Bdata(7,0) = Load_Memory(PAddr, Byte, Attributes); 

Rt = Zero_Extend(Bdata(7,0)); 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error. 

Privilege level: All 

Note: 

 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         302 

LHI.gp (GP-implied Load Halfword Immediate) 

Type: 32-Bit Baseline version 2 

Format: 

 

31 30        25 24      20 19  18 17                                            0 

0 HWGP 

011110 

Rt 00 

LHI 

imm18s 

 

 

Syntax:  LHI.gp Rt, [+ (imm18s << 1)] 

(imm18s is a halfword offset. In assembly programming, always write a byte offset.) 

Purpose: To load a zero-extended 16-bit halfword from memory into a general register. 

Description: This instruction loads a zero-extended halfword from the memory into the 

general register Rt. The memory address is specified by the implied GP register (R29) 

plus a sign-extended (imm18s << 1) value. The (imm18s << 1) value will cover a range 

of 512K byte region relative to the location pointed to by the GP register. 

 

Operations: 

Vaddr = R29 + Sign_Extend(imm18s << 1); 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, LOAD); 

If (Excep_status == NO_EXCEPTION) { 

Hdata(15,0) = Load_Memory(PAddr, HALFWORD, Attributes); 

Rt = Zero_Extend(Hdata(15,0)); 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         303 

LHSI.gp (GP-implied Load Signed Halfword Immediate) 

Type: 32-Bit Baseline version 2 

Format: 

 

31 30        25 24      20 19   18 17                                            0 

0 HWGP 

011110 

Rt 01 

LHSI 

imm18s 

 

 

Syntax:  LHSI.gp Rt, [+ (imm18s << 1)] 

(imm18s is a halfword offset. In assembly programming, always write a byte offset.) 

Purpose: To load a sign-extended 16-bit halfword from memory into a general register. 

Description: This instruction loads a sign-extended halfword from the memory into the 

general register Rt. The memory address is specified by the implied GP register (R29) 

plus a sign-extended (imm18s << 1) value. The (imm18s << 1) value will cover a range 

of 512K byte region relative to the location pointed to by the GP register. 

 

Operations: 

Vaddr = R29 + Sign_Extend(imm18s << 1); 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, LOAD); 

If (Excep_status == NO_EXCEPTION) { 

Hdata(15,0) = Load_Memory(PAddr, HALFWORD, Attributes); 

Rt = Sign_Extend(Hdata(15,0)); 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         304 

LMWA (Load Multiple Word with Alignment Check) 

Type: 32-bit Baseline Version 2 

Format: 

LMWA 

31 30     25 24    20 19    15 14  10 9    6 5 4 3 2 1 0 

0 LSMW 

011101 

Rb Ra Re Enable4 LMW 

0 

b:0 

a:1 

i:0 

d:1 

m 01 

 

Syntax:  LMWA.{b| a}{i | d}{m?} Rb, [Ra], Re, Enable4 

Purpose: Load multiple 32-bit words from sequential memory locations into multiple 

registers. 

Description: load multiple 32-bit words from sequential memory addresses specified by 

the base address register Ra and the {b | a}{i | d} options into a continuous range or 

a subset of general-purpose registers specified by a registers list formed by Rb, Re, 

and the four-bit Enable4 field as follows. 

<Registers List> = a range from [Rb, Re] and a list from <Enable4> 

 

� {b | a} option specifies the way how the first address is generated. {b} use the 

contents of Ra as the first memory load address. {a} use either Ra+4 or Ra-4 for 

the {i | d} option respectively as the first memory load address. 

� {i | d} option specifies the direction of the address change. {i} generates 

increasing addresses from Ra and {d} generates decreasing addresses from Ra. 

� {m?} option, if it is specified, indicates that the base address register will be 

updated to the value computed in the following formula at the completion of this 

instruction. 

TNReg = Total number of registers loaded 

Updated value = Ra + (4 * TNReg) for {i} option 

Updated value = Ra – (4 * TNReg) for {d} option 

 

� [Rb, Re] specifies a range of registers which will be loaded by this instruction. 

Rb(4,0) specifies the first register number in the continuous register range and 

Re(4,0) specifies the last register number in this register range. In addition to the 

range of registers, <Enable4(3,0)> specifies the load of 4 individual registers 

from R28 to R31 (s9/fp, gp, lp, sp) which have special calling convention usage. 

The exact mapping of Enable4(3,0) bits and registers is as follows: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         305 

Bits Enable4(3) 

Format(9) 

Enable4(2) 

Format(8) 

Enable4(1) 

Format(7) 

Enable4(0) 

Format(6) 

Registers R28 R29 R30 R31 

 

� Several constraints are imposed for the <Registers List>: 

� If [Rb(4,0), Re(4,0)] specifies at least one register: 

� Rb(4,0) <= Re(4,0) AND 

� 0 <= Rb(4,0), Re(4,0) < 28 

� If [Rb(4,0), Re(4,0)] specifies no register at all: 

� Rb(4,0) == Re(4,0) = 0b11111 AND 

� Enable4(3,0) != 0b0000 

� If these constraints are not met, UNPREDICTABLE result will happen to 

the contents of all registers after this instruction. 

� The registers are loaded in sequence from matching memory locations with one 

exception. That is, the lowest-numbered register is loaded from the lowest 

memory address while the highest-numbered register is loaded from the highest 

memory address with the following exception. 

� The matching memory locations of R28 (fp) and R31 (sp) are swapped. 

That is, the memory locations for R28-R31 are as follows. 

 

Note that the load sequence of this instruction involving R28 and R31 is 

different from the load/store sequence of LMW/SMW. 

� If the base address register update {m?} option is specified while the base 

address register Ra is also specified in the <Register Specification>, there are 

two source values for the final content of the base address register Ra. In this 

case, the final value of Ra is UNPREDICTABLE. And the rest of the loaded 

registers should have values as if the base address register update {m?} option 

is not specified. 

� This instruction can only handle word-aligned memory address. 

 

R28   ------ High memory location 

R30 

R29 

R31   ------ Low memory location 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         306 

Operation: 

TNReg = Count_Registers(register_list); 

if (“bi”) { 

B_addr = Ra; 

E_addr = Ra + (TNReg * 4) – 4; 

} elseif (“ai”) { 

B_addr = Ra + 4; 

E_addr = Ra + (TNReg * 4); 

} elseif (“bd”) { 

B_addr = Ra – (TNReg * 4) + 4; 

E_addr = Ra; 

} else { // “ad” 

B_addr = Ra – (TNReg * 4); 

E_addr = Ra – 4 

} 

VA = B_addr; 

if (!word-aligned(VA)) { 

Generate_Exception(Data_Alignment_Check); 

} 

for (i = 0 to 27, 31, 29, 30, 28) { 

if (register_list[i] == 1) { 

(PA, Attributes) = Address_Translation(VA, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, LOAD); 

If (Excep_status == NO_EXCEPTION) { 

Ri = Load_Memory(PA, Word, Attributes); 

VA = VA + 4; 

} else { 

Generate_Exception(Excep_status); 

} 

} 

} 

if (“im”) { 

Ra = Ra + (TNReg * 4); 

} else { // “dm” 

Ra = Ra – (TNReg * 4); 

} 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         307 

Exception: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error, Data alignment check. 

� If the base register update is not specified, the base register value is unchanged. 

This applies even if the instruction loaded its own base register and the memory 

access to load the base register occurred earlier than the exception event. For 

example, suppose the instruction is  

LMW.bd  R2, [R4], R4, 0b0000 

And the implementation loads R4, then R3, and finally R2. If an exception 

occurs on any of the accesses, the value in the base register R4 of the instruction 

is unchanged. 

� If the base register update is specified, the value left in the base register is 

unchanged. 

� If the instruction loads only one general-purpose register, the value in that 

register is unchanged. 

� If the instruction loads more than one general-purpose register, 

UNPREDICTABLE values are left in destination registers which are not the base 

register of the instruction. 

Interruption: Whether this instruction is interruptible or not is 

implementation-dependent. 

Privilege Level: all 

Note:  

(5) LMW and SMW instructions do not guarantee atomicity among individual memory 

access operations. And they do not guarantee single access to a memory location 

during the execution either. Any I/O access that has side-effects other than simple 

stable memory-like access behavior should not use these two instructions. 

(6) The memory access order among the words accessed by LMW/SMW is not defined 

here and should be implementation-dependent. However, the more likely access order 

implemented by an implementation is: 

� For LMW/SMW.i : increasing memory addresses from base address. 

� For LMW/SMW.d: decreasing memory addresses from base address. 

(7) The memory access order within an un-aligned word accessed is not defined here and 

should be implementation-dependent. However, the more likely access order 

implemented by an implementation is: 

� For LMW/SMW.i: the aligned low address of the word and then the aligned 

high address of the word. If an interruption occurs, the EVA register will 

contain the starting low address of the un-aligned word or . 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         308 

� For LMW/SMW.d: the aligned high address of the word and then the aligned 

low address of the word. If an interruption occurs, the EVA register will contain 

“base un-aligned address + 4” of the first word or the starting low address of 

the remaining decreasing memory word. 

(8) Based on the more likely access order of (2) and (3), upon interruption, the EVA 

register for un-aligned LMW/SMW will more likely have the following value: 

� For LMW/SMW.i: the starting low addresses of the accessed words or “Ra + 

(TNReg * 4)” where TNReg represents the total number of registers loaded or 

stored. 

� For LMW/SMW.d: the starting low addresses of the accessed words or “Ra + 

4”. 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         309 

LWI.gp (GP-implied Load Word Immediate) 

Type: 32-Bit Baseline version 2 

Format: 

 

31 30        25 24      20 19   17 16                                            0 

0 HWGP 

011110 

Rt 110 

LWI 

imm17s 

 

 

Syntax:  LWI.gp Rt, [+ (imm17s << 2)] 

(imm17s is a word offset. In assembly programming, always write a byte offset.) 

Purpose: To load a 32-bit word from memory into a general register. 

Description: This instruction loads a 32-bit word from the memory into the general 

register Rt. The memory address is specified by the implied GP register (R29) plus a 

sign-extended (imm17s << 2) value. The (imm17s << 2) value will cover a range of 512K 

byte region relative to the location pointed to by the GP register. 

 

Operations: 

Vaddr = R29 + Sign_Extend(imm17s << 2); 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, LOAD); 

If (Excep_status == NO_EXCEPTION) { 

Wdata(31,0) = Load_Memory(PAddr, WORD, Attributes); 

Rt = Wdata(31,0); 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         310 

MADDR32 (Multiply and Add to 32-bit Register) 

Type: 32-Bit Baseline Version 2 

Format: 

 

31 30          25 24      20 19      15 14       10 9        6 5          0 

0 ALU_2 

100001 

Rt Ra Rb 0001 

GPR 

MADD32 

110011 

 

Syntax:  MADDR32 Rt, Ra, Rb 

Purpose: Multiply the contents of two 32-bit registers and add the lower 32-bit 

multiplication result with the 32-bit content of a destination register. The final result is 

written back to the destination register. 

Description: Multiply the 32-bit content of Ra with the 32-bit content of Rb. The lower 

32-bit multiplication result is added with the content of Rt. And the final result is written 

back to Rt. The contents of Ra and Rb can be either signed or unsigned integers. 

Operations: 

Mresult = Ra * Rb; 

Rt = Rt + Mresult(31,0); 

 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         311 

MSUBR32 (Multiply and Subtract from 32-bit Register) 

Type: 32-Bit Baseline Version 2 

Format: 

 

31 30          25 24      20 19      15 14       10 9        6 5          0 

0 ALU_2 

100001 

Rt Ra Rb 0001 

GPR 

MSUB32 

110101 

 

Syntax:  MSUBR32 Rt, Ra, Rb 

Purpose: Multiply the contents of two 32-bit registers and subtract the lower 32-bit 

multiplication result from the 32-bit content of a destination register. The final result is 

written back to the destination register. 

Description: Multiply the 32-bit content of Ra with the 32-bit content of Rb. The lower 

32-bit multiplication result is subtracted from the content of Rt. And the final result is 

written back to Rt. The contents of Ra and Rb can be either signed or unsigned integers. 

Operations: 

Mresult = Ra * Rb; 

Rt = Rt - Mresult(31,0); 

 

Exceptions: None 

Privilege level: All 

Note: 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         312 

MULR64 (Multiply Word Unsigned to Registers) 

Type: 32-Bit Baseline Version 2 

Format: 

 

31 30          25 24      20 19      15 14       10 9        6 5          0 

0 ALU_2 

100001 

Rt Ra Rb 0001 

GPR 

MULT64 

101001 

 

Syntax:  MULR64 Rt, Ra, Rb 

Purpose: Multiply the unsigned integer contents of two 32-bit registers and write the 

64-bit result to an even/odd pair of 32-bit registers. 

Description: Multiply the 32-bit content of Ra with the 32-bit content of Rb. The 64-bit 

multiplication result is written to an even/odd pair of registers containing Rt. Rt(4,1) index 

d determines the even/odd pair group of the two registers. Specifically, the register pair 

includes register 2d and 2d+1. How the register pair contains the 64-bit result depends on 

the current data endian. When the data endian is big, the even register of the pair contains 

the high 32-bit of the result and the odd register of the pair contains the low 32-bit of the 

result. When the data endian is little, the odd register of the pair contains the high 32-bit 

of the result and the even register of the pair contains the low 32-bit of the result. 

 

The contents of Ra and Rb are treated as unsigned integers. 

Operations: 

Mresult = CONCAT(1`b0,Ra) * CONCAT(1`b0,Rb); 

If (PSW.BE == 1) { 

R[Rt(4,1).0(0)](31,0) = Mresult(63,32); 

R[Rt(4,1).1(0)](31,0) = Mresult(31,0); 

} else { 

R[Rt(4,1).1(0)](31,0) = Mresult(63,32); 

R[Rt(4,1).0(0)](31,0) = Mresult(31,0); 

} 

 

Exceptions: None 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         313 

MULSR64 (Multiply Word Signed to Registers) 

Type: 32-Bit Baseline Version 2 

Format: 

 

31 30          25 24      20 19      15 14       10 9        6 5          0 

0 ALU_2 

100001 

Rt Ra Rb 0001 

GPR 

MULTS64 

101000 

 

Syntax:  MULSR64 Rt, Ra, Rb 

Purpose: Multiply the signed integer contents of two 32-bit registers and write the 64-bit 

result to an even/odd pair of 32-bit registers. 

Description: Multiply the 32-bit content of Ra with the 32-bit content of Rb. The 64-bit 

multiplication result is written to an even/odd pair of registers containing Rt. Rt(4,1) index 

d determines the even/odd pair group of the two registers. Specifically, the register pair 

includes register 2d and 2d+1. How the register pair contains the 64-bit result depends on 

the current data endian. When the data endian is big, the even register of the pair contains 

the high 32-bit of the result and the odd register of the pair contains the low 32-bit of the 

result. When the data endian is little, the odd register of the pair contains the high 32-bit 

of the result and the even register of the pair contains the low 32-bit of the result. 

 

The contents of Ra and Rb are treated as signed integers. 

Operations: 

Mresult = Ra * Rb; 

If (PSW.BE == 1) { 

R[Rt(4,1).0(0)](31,0) = Mresult(63,32); 

R[Rt(4,1).1(0)](31,0) = Mresult(31,0); 

} else { 

R[Rt(4,1).1(0)](31,0) = Mresult(63,32); 

R[Rt(4,1).0(0)](31,0) = Mresult(31,0); 

} 

 

Exceptions: None 

Privilege level: All 

Note: 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         314 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         315 

SBI.gp (GP-implied Store Byte Immediate) 

Type: 32-Bit Baseline version 2 

Format: 

 

31 30        25 24      20 19 18                                            0 

0 SBGP 

011111 

Rt 0 

SBI 

imm19s 

 

 

Syntax:  SBI.gp Rt, [+ imm19s] 

Purpose: To store an 8-bit byte from a general register into a memory location. 

Description: The least-significant 8-bit byte in the general register Rt is stored to the 

memory location. The memory address is specified by the implied GP register (R29) plus 

a sign-extended imm19s value. The imm19s value will cover a range of 512K byte region 

relative to the location pointed to by the GP register. 

 

Operations: 

Vaddr = R29 + Sign_Extend(imm19s); 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, STORE); 

If (Excep_status == NO_EXCEPTION) { 

Store_Memory(PAddr, BYTE, Attributes, Rt(7,0)); 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error. 

Privilege level: All 

Note: 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         316 

SBUP (Store Byte with User Privilege Translation) 

Type: 32-Bit Baseline version 2 

Format: 

 

31 30     25 24      20 19       15 14     10 9  8 7         0 

0 MEM 

011100 

Rt Ra Rb sv SBUP 

00101000 

 

Syntax:  SB Rt, [Ra + (Rb << sv)] 

Purpose: To store an 8-bit byte from a general register into memory with the user mode 

privilege address translation. 

Description: The least-significant 8-bit byte in the general register Rt is stored to the 

memory Ra + (Rb << sv) with the user mode privilege address translation regardless of 

the current processor operation mode (i.e. PSW.POM) and the current data address 

translation state (i.e. PSW.DT). 

Operations: 

Vaddr = Ra + (Rb << sv); 

(PAddr, Attributes) = Address_Translation(Vaddr, TRANSLATE); 

Excep_status = Page_Exception(Attributes, USER_MODE, STORE); 

If (Excep_status == NO_EXCEPTION) { 

Store_Memory(PAddr, BYTE, Attributes, Rt(7,0)); 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error 

Privilege level: All 

Note: 

 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         317 

SHI.gp (GP-implied Store Halfword Immediate) 

Type: 32-Bit Baseline version 2 

Format: 

 

31 30        25 24      20 19  18 17                                            0 

0 HWGP 

011110 

Rt 10 

SHI 

imm18s 

 

 

Syntax:  SHI.gp Rt, [+ (imm18s << 1)] 

(imm18s is a halfword offset. In assembly programming, always write a byte offset.) 

Purpose: To store a 16-bit halfword from a general register into a memory location. 

Description: The least-significant 16-bit halfword in the general register Rt is stored to the 

memory location. The memory address is specified by the implied GP register (R29) plus 

a sign-extended (imm18s << 1) value. The (imm18s << 1) value will cover a range of 

512K byte region relative to the location pointed to by the GP register. 

 

Operations: 

Vaddr = R29 + Sign_Extend(imm18s << 1); 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, STORE); 

If (Excep_status == NO_EXCEPTION) { 

Store_Memory(PAddr, HALFWORD, Attributes, Rt(15,0)); 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error. 

Privilege level: All 

Note: 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         318 

SMWA (Store Multiple Word with Alignment Check) 

Type: 32-bit Baseline Version 2 

Format: 

SMWA 

31 30     25 24    20 19    15 14  10 9    6 5 4 3 2 1 0 

0 LSMW 

011101 

Rb Ra Re Enable4 SMW 

1 

b:0 

a:1 

i:0 

d:1 

m 01 

 

Syntax:  SMWA.{b | a}{i | d}{m?} Rb, [Ra], Re, Enable4 

Purpose: Store multiple 32-bit words from multiple registers into sequential memory 

locations. 

Description: Store multiple 32-bit words from a range or a subset of source 

general-purpose registers to sequential memory addresses specified by the base 

address register Ra and the {b | a}{i | d} options. The source registers are specified 

by a registers list formed by Rb, Re, and the four-bit Enable4 field as follows. 

<Registers List> = a range from {Rb, Re} and a list from <Enable4> 

 

� {b | a} option specifies the way how the first address is generated. {b} use the 

contents of Ra as the first memory store address. {a} use either Ra+4 or Ra-4 for 

the {i | d} option respectively as the first memory store address. 

� {i | d} option specifies the direction of the address change. {i} generates 

increasing addresses from Ra and {d} generates decreasing addresses from Ra. 

� {m?} option, if it is specified, indicates that the base address register will be 

updated to the value computed in the following formula at the completion of this 

instruction. 

TNReg = Total number of registers stored 

Updated value = Ra + (4 * TNReg) for {i} option 

Updated value = Ra – (4 * TNReg) for {d} option 

 

� [Rb, Re] specifies a range of registers whose contents will be stored by this 

instruction. Rb(4,0) specifies the first register number in the continuous register 

range and Re(4,0) specifies the last register number in this register range. In 

addition to the range of registers, <Enable4(3,0)> specifies the store of 4 

individual registers from R28 to R31 (s9/fp, gp, lp, sp) which have special 

calling convention usage. The exact mapping of Enable4(3,0) bits and registers 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         319 

is as follows: 

Bits Enable4(3) 

Format(9) 

Enable4(2) 

Format(8) 

Enable4(1) 

Format(7) 

Enable4(0) 

Format(6) 

Registers R28 R29 R30 R31 

 

� Several constraints are imposed for the <Registers List>: 

� If [Rb, Re] specifies at least one register: 

� Rb(4,0) <= Re(4,0) AND 

� 0 <= Rb(4,0), Re(4,0) < 28 

� If [Rb, Re] specifies no register at all: 

� Rb(4,0) == Re(4,0) = 0b11111 AND 

� Enable4(3,0) != 0b0000 

� If these constraints are not met, UNPREDICTABLE result will happen to 

the contents of the memory range pointed to by the base register and the 

base register itself if the {m?} option is specified after this instruction. 

� The register is stored in sequence to matching memory locations with one 

exception. That is, the lowest-numbered register is stored to the lowest memory 

address while the highest-numbered register is stored to the highest memory 

address with the following exception. 

� The matching memory locations of R28 (fp) and R31 (sp) are swapped. 

That is, the memory locations for R28-R31 are as follows. 

 

Note that the load sequence of this instruction involving R28 and R31 is 

different from the load/store sequence of LMW/SMW. 

� If the base address register Ra is specified in the <Registers Specification>, the 

value stored to the memory from the register Ra is the Ra value before this 

instruction is executed. 

� This instruction can only handle word-aligned memory address. 

 

Operation: 

R28   ------ High memory location 

R30 

R29 

R31   ------ Low memory location 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         320 

TNReg = Count_Registers(register_list); 

if (“bi”) { 

B_addr = Ra; 

E_addr = Ra + (TNReg * 4) – 4; 

} elseif (“ai”) { 

B_addr = Ra + 4; 

E_addr = Ra + (TNReg * 4); 

} elseif (“bd”) { 

B_addr = Ra – (TNReg * 4) + 4; 

E_addr = Ra; 

} else { // “ad” 

B_addr = Ra – (TNReg * 4); 

E_addr = Ra – 4 

} 

VA = B_addr; 

if (!word-aligned(VA)) { 

Generate_Exception(Data_Alignment_Check); 

} 

for (i = 0 to 27, 31, 29, 30, 28) { 

if (register_list[i] == 1) { 

(PA, Attributes) = Address_Translation(VA, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, STORE); 

If (Excep_status == NO_EXCEPTION) { 

Store_Memory(PA, Word, Attributes, Ri); 

VA = VA + 4; 

} else { 

Generate_Exception(Excep_status); 

} 

} 

} 

if (“im”) { 

Ra = Ra + (TNReg * 4); 

} else { // “dm” 

Ra = Ra – (TNReg * 4); 

} 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         321 

Exception: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error, Data alignment check. 

� The base register value is left unchanged on an exception event, no matter 

whether the base register update is specified or not. 

 

Interruption: Whether this instruction is interruptible or not is 

implementation-dependent. 

 

Privilege Level: all 

Note:  

(5) LMW and SMW instructions do not guarantee atomicity among individual memory 

access operations. And they do not guarantee single access to a memory location 

during the execution either. Any I/O access that has side-effects other than simple 

stable memory-like access behavior should not use these two instructions. 

(6) The memory access order among the words accessed by LMW/SMW is not defined 

here and should be implementation-dependent. However, the more likely access order 

implemented by an implementation is: 

� For LMW/SMW.i : increasing memory addresses from base address. 

� For LMW/SMW.d: decreasing memory addresses from base address. 

(7) The memory access order within an un-aligned word accessed is not defined here and 

should be implementation-dependent. However, the more likely access order 

implemented by an implementation is: 

� For LMW/SMW.i: the aligned low address of the word and then the aligned 

high address of the word. If an interruption occurs, the EVA register will 

contain the starting low address of the un-aligned word or . 

� For LMW/SMW.d: the aligned high address of the word and then the aligned 

low address of the word. If an interruption occurs, the EVA register will contain 

“base un-aligned address + 4” of the first word or the starting low address of 

the remaining decreasing memory word. 

(8) Based on the more likely access order of (2) and (3), upon interruption, the EVA 

register for un-aligned LMW/SMW will more likely have the following value: 

� For LMW/SMW.i: the starting low addresses of the accessed words or “Ra + 

(TNReg * 4)” where TNReg represents the total number of registers loaded or 

stored. 

� For LMW/SMW.d: the starting low addresses of the accessed words or “Ra + 

4”. 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         322 

 

 



Detail Instruction Description  

AndeStar_ISA_v1.3                Andes Technology Confidential                         323 

SWI.gp (GP-implied Store Word Immediate) 

Type: 32-Bit Baseline version 2 

Format: 

 

31 30        25 24      20 19   17 16                                            0 

0 HWGP 

011110 

Rt 111 

SWI 

imm17s 

 

 

Syntax:  SWI.gp Rt, [+ (imm17s << 2)] 

(imm17s is a word offset. In assembly programming, always write a byte offset.) 

Purpose: To store a 32-bit word from a general register into a memory location. 

Description: The 32-bit word in the general register Rt is stored to the memory location. 

The memory address is specified by the implied GP register (R29) plus a sign-extended 

(imm17s << 2) value. The (imm17s << 2) value will cover a range of 512K byte region 

relative to the location pointed to by the GP register. 

 

Operations: 

Vaddr = R29 + Sign_Extend(imm17s << 2); 

(PAddr, Attributes) = Address_Translation(Vaddr, PSW.DT); 

Excep_status = Page_Exception(Attributes, PSW.POM, STORE); 

If (Excep_status == NO_EXCEPTION) { 

Store_Memory(PAddr, WORD, Attributes, Rt(31,0)); 

} else { 

Generate_Exception(Excep_status); 

} 

 

Exceptions: TLB fill, Non-leaf PTE not present, Leaf PTE not present, Read protection, 

Page modified, Access bit, TLB VLPT miss, Machine error. 

Privilege level: All 

Note: 

 

 

 



AndesCore Instruction Latency                                                   

AndeStar_ISA_v1.3                Andes Technology Confidential                         324 

Chapter 8    

Instruction Latency for AndesCore 

Implementations 

This chapter lists the instruction latency information for AndesCore families and contains 

the following sections 

 

                 8.1  N12 family implementation on page 325 

                 8.2  N10 family implementation on page 330 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



AndesCore Instruction Latency                                                   

AndeStar_ISA_v1.3                Andes Technology Confidential                         325 

8.1   N12 Implementation 

8.1.1   Instruction Latency due to Resource Dependency 

 

This section describes the AndesCore N12 instruction latency between a producer 

instruction and a corresponding consumer instruction. This information is useful for 

compiler optimization. 

 

Terminology 

� Producer: an instruction that produces a new register state. 

� Consumer: an instruction that consumes the new register state produced by a 

producer. 

� Latency: the minimum number of cycles between the completion of a producer and 

that of a consumer. Assuming a producer and a corresponding consumer cannot 

complete at the same time, the smallest possible latency is 1. 

� Bubble: the minimum number of extra cycles that exceeds the smallest possible 

latency (i.e. 1) between the completion of a producer and that of a consumer. Thus it 

is equal to (latency – 1). 

 

Producer/Consumer Instruction Group 

� Producer/Consumer Instruction Group 

 

Producer 

/Consumer 

Group 

Instructions Note 

ALU ADDI, SUBRI, ANDI, ORI, XORI, SLTI, SLTSI, 

MOVI, STEHI, ADD, SUB, AND, OR, NOR, 

XOR, SLT, SLTS, SVA, SVS, SEB, SHE, ZEB, 

ZEH, WSBH, CMOVZ, CMOVN, SLLI, SRLI, 

SRAI, ROTRI, SLL, SRL, SRA, ROTR 

result in general 

register R; sources 

from general register 

R 

MUL MUL result in general 

register R 

M2D MULTS64, MULT64, MULT32, MADDS64, 

MADD64, MSUBS64, MSUB64, MADD32, 

result in accumulator 

register D 



AndesCore Instruction Latency                                                   

AndeStar_ISA_v1.3                Andes Technology Confidential                         326 

MSUB32 

 

� Unique Producer Instruction Group 

 

Producer 

Group 

Instructions Note 

LD_D LWI[.bi], LHI[.bi], LHSI[.bi], LBI[.bi], LBSI[.bi], 

LW[.bi], LH[.bi], LHS[.bi], LB[.bi], LBS[.bi], 

LWUP, LLW 

Load instructions 

which have the data 

register as the 

produced state 

LD_A LWI.bi, LHI.bi, LHSI.bi, LBI.bi, LBSI.bi, LW.bi, 

LH.bi, LHS.bi, LB.bi, LBS.bi 

Load instructions 

which have the base 

address register as 

the produced state 

SCW SCW  

MISC_E2 MFUSR, MFSR, JAL, JRAL, BGEZAL, 

BLTZAL 

 

DIV DIV, DIVS  

 

 

� Unique Consumer Instruction Group 

 

Consumer 

Group 

Instructions Note 

ST_D SWI[.bi], SHI[.bi], SBI[.bi], SW[.bi], SH[.bi], 

SB[.bi], SWUP, SCW 

Store instructions 

which have the data 

register as the 

consumed state 

MEM_A LWI[.bi], LHI[.bi], LHSI[.bi], LBI[.bi], LBSI[.bi], 

LW[.bi], LH[.bi], LHS[.bi], LB[.bi], LBS[.bi], 

LWUP, LLW, LMW, SWI[.bi], SHI[.bi], SBI[.bi], 

SW[.bi], SH[.bi], SB[.bi], SWUP, SCW, SMW, 

DPREF, DPREFI 

LD/ST instructions 

which have the base 

address register as 

the consumed state 

BR JR, RET, JRAL, BEQ, BNE, BEQZ, BNEZ, 

BGEZ, BLTZ, BGTZ, BLEZ, BGEZAL, 

 



AndesCore Instruction Latency                                                   

AndeStar_ISA_v1.3                Andes Technology Confidential                         327 

BLTZAL 

MFUSR MFUSR  

MISC_E1 TLBOP TRD, TLBOP TWR, TLBOP RWR, 

TLBOP RWLK, TLBOP UNLK, TLBOP PB, 

TLBOP INV, CCTL, ISYNC, MTSR, MTUSR 

 

 

 

In AndesCore N12, most of a producer and corresponding consumer have a latency of 1. 

Only cases need special attention, or deviate from this general rule of thumb will be 

described below. 

 

No Producer Consumer Latency 

Dependency on general register Rx 

1 ALU, ST_D, BR 2 

2 

LD_D 

MUL, M2D, MEM_A, MISC_E1 3 

3 ALU, ST_D, BR 2 

4 

MUL 

MUL, M2D, MEM_A, MISC_E1 3 

5 ALU, MISC_E2 MUL, M2D, MEM_A, MISC_E1 2 

5b* LD_A MUL, M2D, MEM_A, MISC_E1 2 

6 ALU, ST_D, BR 3 

7 

SCW 

MUL, M2D, MEM_A, MISC_E1 2 

Dependency on accumulator register Dx or multiplication E1 resource 

8 M2D M2D, MFUSR 2 

9 DIV All Dx consumer Variable 

(32 – 

CLZ(ra)) + 

3 

For the following LMW related producers, assumes LMW loading N registers: 

Aligned LMW 

Dependency on the highest-numbered register in register list for LMW.i or 

Dependency on the lowest-numbered register in register list for LMW.d 

10 ALU, ST_D, BR N+1 

11 

LMW.i or LMW.d 

base not in list, 

LMW.i or LMW.d 

base is the 

MUL, M2D, MEM_A, MISC_E1 N+2 



AndesCore Instruction Latency                                                   

AndeStar_ISA_v1.3                Andes Technology Confidential                         328 

dependency reg, 

LMW.im or LWM.dm 

 

Dependency NOT on the highest-numbered register in register list for LMW.i or 

Dependency NOT on the lowest-numbered register in register list for LMW.d 

12 ALU, ST_D, BR N 

13 

LMW.i or LMW.d 

base not in list, 

LMW.im 

MUL, M2D, MEM_A, MISC_E1 N+1 

Fixed latency despite dependency relationship 

14 LMW.i base in list, 

but not 

highest-numbered 

reg, 

LMW.d base in list, 

but not 

lowest-numbered reg 

ALL N+3 

Un-Aligned LMW 

15 Rule 9-13 Rule 9-13 (Rule 9-13 

latency)+1 

 

* Rule 5b exists when the configuration flag “NDS_POSTWRITE_E1_BYPASS” is 

turned off. Turning on configuration flag “NDS_POSTWRITE_E1_BYPASS” will 

make all LD_A consumers to have a latency of 1. 

 

 

The following instructions have a fixed latency without considering any resource 

dependency relationships. 

 

Instruction Latency 

RET (correct target prediction) 3 

DSB 5 

ISB, IRET 10 

DIV, DIVS Variable (3 – 34) 

[i.e. 3+floor(log2(abs(Rb)))] 

TLBOP Invalidate VA 10 



AndesCore Instruction Latency                                                   

AndeStar_ISA_v1.3                Andes Technology Confidential                         329 

TLBOP Invalidate All 98 

DPREF/DPREFI (miss dcache) 4 

Instruction Latency 

RET (correct target prediction) 3 

DSB 3 

ISB, IRET 10 

TLBOP Invalidate VA 10 

TLBOP Invalidate All 98 

DPREF/DPREFI (miss dcache) 4 

 

8.1.2   Cycle Penalty due to N12 Pipeline Control 

Mishaps Recovery 

 

This section describes the AndesCore N12 pipeline execution cycle penalties caused by 

recovering certain unlucky events. 

 

Event Type Penalty 

(Bubble) 

un-aligned 32-bit instruction fetch after pipeline start/flush 1 

branch mis-prediction 5/6 

uTLB miss/MTLB hit on small page PTE 4 

uTLB miss/MTLB hit on large page PTE 6 

uTLB miss/MTLB miss/HPTWK prefetch buffer hit 

(no large page in use) 

7 

uTLB miss/MTLB miss/HPTWK prefetch buffer hit 

(with large page in use) 

9 

 

 



AndesCore Instruction Latency                                                   

AndeStar_ISA_v1.3                Andes Technology Confidential                         330 

8.2   N10 Implementation 

 

8.2.1   Dependency-related Instruction Latency 

 

This section describes the AndesCore N10 instruction latency between a producer 

instruction and a corresponding consumer instruction. This information is useful for 

compiler optimization. 

 

Terminology 

� Producer: an instruction that produces a new register state. 

� Consumer: an instruction that consumes the new register state produced by a 

producer. 

� Latency: the minimum number of cycles between the completion of a producer and 

that of a consumer. Assuming a producer and a corresponding consumer cannot 

complete at the same time, the smallest possible latency is 1. 

� Bubble: the minimum number of extra cycles that exceeds the smallest possible 

latency (i.e. 1) between the completion of a producer and that of a consumer. Thus it 

is equal to (latency – 1). 

 

Producer/Consumer Instruction Groups 

� Producer/Consumer Instruction Group 

 

Producer 

/Consumer 

Group 

Instructions Note 

ALU ADDI, SUBRI, ANDI, ORI, XORI, SLTI, SLTSI, 

MOVI, STEHI, ADD, SUB, AND, OR, NOR, 

XOR, SLT, SLTS, SVA, SVS, SEB, SHE, ZEB, 

ZEH, WSBH, CMOVZ, CMOVN, SLLI, SRLI, 

SRAI, ROTRI, SLL, SRL, SRA, ROTR 

result in general 

register R; sources 

from general register 

R 

MUL MUL result in general 

register R 

M2D MULTS64, MULT64, MULT32, MADDS64, result in accumulator 



AndesCore Instruction Latency                                                   

AndeStar_ISA_v1.3                Andes Technology Confidential                         331 

MADD64, MSUBS64, MSUB64, MADD32, 

MSUB32 

register D 

 

� Unique Producer Instruction Group 

 

Producer Group Instructions Note 

LD_D LWI[.bi], LHI[.bi], LHSI[.bi], LBI[.bi], 

LBSI[.bi], LW[.bi], LH[.bi], LHS[.bi], LB[.bi], 

LBS[.bi], LWUP, LLW 

Load instructions 

which have the data 

register as the 

produced state 

MFUSR_GR MFUSR GR � D Result in general 

register R 

SCW SCW Generate 

success/fail status in 

general register R 

DIV DIV, DIVS  

LMW_iHdL_nup LMW.i with dependency on the 

highest-numbered register in register list, 

LMW.d with dependency on the 

lowest-numbered register in register list, and 

both have no base register update. 

 

 

� Unique Consumer Instruction Group 

 

Consumer 

Group 

Instructions Note 

ST_D_!bi SWI, SHI, SBI, SW, SH, SB, SWUP, SCW Store instructions 

which have the data 

register as the 

consumed state 

ST_D_bi SWI.bi, SHI.bi, SBI.bi, SW.bi, SH.bi, SB.bi Store instructions 

which have the data 

register as the 

consumed state 

MEM_A_!bi LWI, LHI, LHSI, LBI, LBSI, LW, LH, LHS, LD/ST instructions 



AndesCore Instruction Latency                                                   

AndeStar_ISA_v1.3                Andes Technology Confidential                         332 

LB, LBS, LWUP, LLW, LMW, SWI, SHI, SBI, 

SW, SH, SB, SWUP, SCW, SMW, DPREF, 

DPREFI 

(non-bi form) which 

have the base 

address registers 

(R1 or R2) as the 

consumed state 

MEM_A_bi_R1 LWI.bi, LHI.bi, LHSI.bi, LBI.bi, LBSI.bi, 

LW.bi, LH.bi, LHS.bi, LB.bi, LBS.bi, SWI.bi, 

SHI.bi, SBI.bi, SW.bi, SH.bi, SB.bi 

LD/ST instructions 

(bi form) which 

have the base 

address register R1 

as the consumed 

state 

MEM_A_bi_R2 LWI.bi, LHI.bi, LHSI.bi, LBI.bi, LBSI.bi, 

LW.bi, LH.bi, LHS.bi, LB.bi, LBS.bi, SWI.bi, 

SHI.bi, SBI.bi, SW.bi, SH.bi, SB.bi 

LD/ST instructions 

(bi form) which 

have the base 

address register R2 

as the consumed 

state 

BR JR, RET, JRAL, BEQ, BNE, BEQZ, BNEZ, 

BGEZ, BLTZ, BGTZ, BLEZ, BGEZAL, 

BLTZAL 

 

MISC TLBOP TRD, TLBOP TWR, TLBOP RWR, 

TLBOP RWLK, TLBOP UNLK, TLBOP PB, 

TLBOP INV, CCTL, ISYNC, MTSR, MTUSR 

Consumes general 

register R 

 

 

In AndesCore N10, most of a producer and corresponding consumer have a latency of 1. 

Only cases need special attention, or deviate from this general rule of thumb will be 

described below. 

 

 

Latency No Producer Consumer 

2R1W 3R2W 

1  

LD_D, MUL, 

MFUSR_GR, 

MEM_A_!bi, 

MEM_A_bi_R1, 

ALU, MUL, BR, MISC 

2 2 



AndesCore Instruction Latency                                                   

AndeStar_ISA_v1.3                Andes Technology Confidential                         333 

2 MEM_A_bi_R2 1 2 

3 ST_D_!bi 1 1 

4 

LMW_iHdL_nup* 

ST_D_bi 2 1 

5 MEM_A_!bi, 

MEM_A_bi_R1, 

ALU, MUL, BR, MISC 

3 3 

6 MEM_A_bi_R2 2 3 

7 ST_D_!bi 2 2 

8 

 

 

SCW 

ST_D_bi 3 2 

 

* Note that this dependency latency does not include the fixed self-stalling latency 

described in the next section for the LMW instructions. 

 

 

8.2.2   Self-stall-related Instruction Latency 

 

The following instructions have a fixed latency caused by self-stalling without 

considering any resource dependency relationships for all register file configurations. 

 

Instruction / Instruction Category Latency 

RET (correct target prediction) 1 

DSB 3 

ISB, IRET 5 

MUL (Slow config) 18 

M2D (Slow config) 20 

DIV, DIVS Variable (4 – 35) 

[i.e. 4+floor(log2(abs(Rb)))] 

LSMW1_A N 

LSMW2_A N+1 

LSMW1_U N+1 

LSMW2_U N+2 

TLBOP Invalidate VA 3 

TLBOP Invalidate All 65 

 



AndesCore Instruction Latency                                                   

AndeStar_ISA_v1.3                Andes Technology Confidential                         334 

Note: 

(1) All LMW/SMW instructions here are loading N registers. 

(2) LSMW1_A denotes a LMW/SMW instruction with no base register update, and 

accessing word-aligned addresses. 

(3) LSMW2_A denotes a LMW/SMW instruction with base register update, and 

accessing word-aligned addresses. 

(4) LSMW1_U denotes a LMW/SMW instruction with no base register update, and 

accessing word-unaligned addresses. 

(5) LSMW2_U denotes a LMW/SMW instruction with base register update, and 

accessing word-unaligned addresses. 

(6) M2D indicates instructions in the instruction group described in the previous section. 

(7) MUL and M2D of the “fast configuration” has a latency of 1. 

 

 

The following instructions have a fixed latency caused by self-stalling without 

considering any resource dependency relationships for the 2R1W register file 

configuration. 

 

Instruction Latency 

Load.bi 2 

Store(.bi) [R+R] 2 

 

 

 

8.2.3   Cycle Penalty due to N10 Pipeline Control 

Mishap Recover 

 

This section describes the AndesCore N10 pipeline execution cycle penalties caused by 

recovering certain unlucky events. 

 

Event Type Penalty 

(Bubble) 

un-aligned 32-bit instruction fetch after pipeline start/flush 1 



AndesCore Instruction Latency                                                   

AndeStar_ISA_v1.3                Andes Technology Confidential                         335 

branch mis-prediction 2 

uTLB miss/MTLB hit on small page PTE 4 

uTLB miss/MTLB hit on large page PTE 6 

uTLB miss/MTLB miss/HPTWK prefetch buffer hit 

(no large page in use) 

7 

uTLB miss/MTLB miss/HPTWK prefetch buffer hit 

(with large page in use) 

9 

 

 



AndesCore Instruction Latency                                                   

AndeStar_ISA_v1.3                Andes Technology Confidential                         336 

8.2.4   Cycle Penalty due to Resource Contention 

 

This section describes the cycle penalties, caused by resource contention, of instructions 

after a data prefetch instruction if the data prefetch instruction missed cache. The 

following instructions will incur additional cycle penalties if they follow the data prefetch 

instruction too closely. 

 

Instruction 

(cause resource contention with a previous missed DPREF) 

LD/ST instructions 

CCTL (D-type) 

ISYNC 

MSYNC 

 

The number of cycle penalties depends on the current state of LSU which represents 

different levels of LSU resource contention. 

 

 LSU FSM state Penalty (Bubble) 

IDLE 0 

FILL 2 

DRAIN/WB M+1-N 

Others 1 

 

Note: 

(1)   M means the number of the words in a cache line. 

(2)   N means the number of the instructions between the data prefetch instruction and 

the instruction in the above instruction table. 

(3)   The cycle penalty of M+1-N is the worst case scenario assuming that the N 

instructions in (2) do not cause pipeline stall. 

 

 

 

 

 



AndesCore Instruction Latency                                                   

AndeStar_ISA_v1.3                Andes Technology Confidential                         337 

Chapter 9    

 AndesCore N12 implementation  

This chapter describes CCTL and STANDBY instruction implementated in AndesCore 

N12 family and contains the following sections 

 

            9.1  CCTL instruction on page 337 

            9.2  STANDBY instruction on page 338 

 

 



AndesCore Instruction Latency                                                   

AndeStar_ISA_v1.3                Andes Technology Confidential                         338 

9.1   CCTL Instruction 

All CCTL subtype operations implemented by AndesCore N12 implementation are 

shown in the following table with a LIGHT GREEN background. And four defined 

optional operations are not implemented (shown in the table as a CLEAR background). 

 

Table 61  N12 Implementation of CCTL instruction 

SubType bit 4-3 

0 1 2 3 

00 01 10 11 bit 2-0 

L1D_IX L1D_VA L1I_IX L1I_VA 

0 000 L1D_IX_INVAL L1D_VA_INVAL L1I_IX_INVAL L1I_VA_INVAL 

1 001 L1D_IX_WB L1D_VA_WB - - 

2 010 L1D_IX_WBINVAL L1D_VA_WBINVAL - - 

3 011 L1D_IX_RTAG L1D_VA_FILLCK L1I_IX_RTAG L1I_VA_FILLCK 

4 100 L1D_IX_RWD L1D_VA_ULCK L1I_IX_RWD L1I_VA_ULCK 

5 101 L1D_IX_WTAG - L1I_IX_WTAG - 

6 110 L1D_IX_WWD - L1I_IX_WWD - 

7 111 L1D_INVALALL - - - 

 

9.2   STANDBY Instruction 

In AndesCore N12 implementation, software interrupt in IVIC mode will not wakeup a 

core which has entered the STANDBY mode. 

 

 

 

 

 



AndesCore N1213 Hardcore Implementation Restriction   

AndeStar_ISA_v1.3                Andes Technology Confidential                         339 

Chapter 10    

AndesCore N1213 Hardcore 

Implementation Restriction 

 

This chapter describes N1213 Hardcore ( N1213_43U1H) implementation restriction and 

contains the following sections 

 

            10.1  Instruction Restriction on page 340 

            10.2  ISYNC Instruction Note on page 340 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



AndesCore N1213 Hardcore Implementation Restriction   

AndeStar_ISA_v1.3                Andes Technology Confidential                         340 

10.1   Instruction Restriction 

 

The following instructions are not implemented by N1213 hardcore (CPU_VER == 

0x0C010003):, Part number N1213_43U1H 

 

DIV/DIVS 

STANDBY wait_done 

MFUSR Rt, PC 

MFUSR Rt, USR, Group 1 and Group 2 

MTUSR Rt, USR, Group 1 and Group2 

 

10.2   ISYNC Instruction Note 

The correct instruction sequence for writing or updating any code data that will be 

executed afterwards for AndesCore N1213 hardcore (N1213_43U1H) is as follows: 

 

UPD_LOOP: 

// preparing new code data in Ra 

...... 

// preparing new code address in Rb, Rc 

...... 

// writing new code data 

store Ra,[Rb,Rc] 

// looping control 

...... 

bne Rb,Re,UPD_LOOP 

WB_LOOP: 

// preparing new code address in Rd 

isync Rd (or cctl Rd, L1D_VA_WB) 

// looping control 

bne Rd,Re,WB_LOOP 

msync 

isb 

ICACHE_INV_LOOP: 



AndesCore N1213 Hardcore Implementation Restriction   

AndeStar_ISA_v1.3                Andes Technology Confidential                         341 

// preparing new code address in Rf 

cctl Rf, L1I_VA_INVAL 

// looping control 

bne Rf,Re,ICACHE_INV_LOOP 

isb 

// execution of new code data can be started from here 

...... 

 

 

Please see the ISYNC instruction note for other implementations. 

 

 



  

                 

Proprietary Notice 

Words and logos marked with ™ are registered trademarks or trademarks owned by Andes Technology 

Corporation, except as otherwise stated below in this proprietary notice.  Other brands and names 

mentioned herein may be the trademarks of their respective owners. 

Copyright© 2007-2009 Andes Technology Corporation.  All rights reserved. 

 

AndeStar™ ISA Manual contains certain confidential information of Andes Technology Corporation.  

Use of this copyright notice is precautionary and does not imply publication or disclosure.  No part of this 

publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into 

any language in any form by any means without the written permission of Andes Technology 

Corporation. 

Confidentiality status 

This document is Preliminary. This document has no restriction on distribution. 

Feedback on this Manual  

If you have any problems with this Manual, Please contact Andes Technology Corporation by email at 

support@andestech.com                                                                          

or on the Internet at www.andestech.com for support giving: 

� the document title  

� the document number  

� the page number(s) to which your comments apply  

� a concise explanation of the problem 

General suggestions for improvements are also welcome. 

 

mailto:support@andestech.com
http://www.andestech.com/

	Revision History
	Table of Contents
	List of Tables
	List of Figures
	Preface
	Chapter 1   Introduction
	1.1   32/16-Bit ISA
	1.2   Data Types
	1.3   Registers
	1.3.1   Reduced Register configuration option

	1.4   Instruction Classes
	1.5   Instruction Encoding
	1.5.1   32-Bit Instruction Format
	1.5.2   16-Bit Instruction Format

	1.6   Miscellaneous

	Chapter 2   32-Bit Baseline Instruction
	2.1   Data-processing Instructions
	2.2   Load and Store Instructions
	2.3   Jump and Branch Instructions
	2.4   Privilege Resource Access Instructions
	2.5   Miscellaneous Instructions

	Chapter 3    16-Bit Baseline Instruction
	3.1   32-bit Instruction Mapping

	Chapter 4   16/32-Bit Baseline Version 2 Instruction
	4.1   16-bit Baseline V2 instructions
	4.2   32-bit Baseline V2 instructions

	Chapter 5    32-bit ISA Extensions
	5.1   Performance Extension V1 Instructions
	5.2   Performance Extension V2 Instructions
	5.3   32-bit String Extension

	Chapter 6    Coprocessor Instructions
	Chapter 7    Detail Instruction Description
	7.1   32-bit Baseline instructions
	ADD (Addition)
	ADDI (Add Immediate)
	AND (Bit-wise Logical And)
	ANDI (And Immediate)
	BEQ (Branch on Equal)
	BEQZ (Branch on Equal Zero)
	BGEZ (Branch on Greater than or Equal to Zero)
	BGEZAL (Branch on Greater than or Equal to Zero and Link)
	BGTZ (Branch on Greater than Zero)
	BLEZ (Branch on Less than or Equal to Zero)
	BLTZ (Branch on Less than Zero)
	BLTZAL (Branch on Less than Zero and Link)
	BNE (Branch on Not Equal)
	BNEZ (Branch on Not Equal Zero)
	BREAK (Breakpoint)
	CCTL (Cache Control)
	CMOVN (Conditional Move on Not Zero)
	CMOVZ (Conditional Move on Zero)
	DIV (Unsigned Integer Divide)
	DIVS (Signed Integer Divide)
	DPREF/DPREFI (Data Prefetch)
	DSB (Data Serialization Barrier)
	IRET (Interruption Return)
	ISB (Instruction Serialization Barrier)
	ISYNC (Instruction Data Coherence Synchronization)
	J (Jump)
	JAL (Jump and Link)
	JR (Jump Register)
	JR.xTOFF (Jump Register and Translation OFF)
	JRAL (Jump Register and Link)
	JRAL.xTON (Jump Register and Link and Translation ON)
	LB (Load Byte)
	LBI (Load Byte Immediate)
	LBS (Load Byte Signed)
	LBSI (Load Byte Signed Immediate)
	LH (Load Halfword)
	LHI (Load Halfword Immediate)
	LHS (Load Halfword Signed)
	LHSI (Load Halfword Signed Immediate)
	LLW (Load Locked Word)
	LMW (Load Multiple Word)
	LW (Load Word)
	LWI (Load Word Immediate)
	LWUP (Load Word with User Privilege Translation)
	MADD32 (Multiply and Add to Data Low)
	MADD64 (Multiply and Add Unsigned)
	MADDS64 (Multiply and Add Signed)
	MFSR (Move From System Register)
	MFUSR (Move From User Special Register)
	MOVI (Move Immediate)
	MSUB32 (Multiply and Subtract to Data Low)
	MSUB64 (Multiply and Subtract Unsigned)
	MSUBS64 (Multiply and Subtract Signed)
	MSYNC (Memory Data Coherence Synchronization)
	MTSR (Move To System Register)
	MTUSR (Move To User Special Register)
	MUL (Multiply Word to Register)
	MULT32 (Multiply Word to Data Low)
	MULT64 (Multiply Word Unsigned)
	MULTS64 (Multiply Word Signed)
	NOP (No Operation)
	NOR (Bit-wise Logical Nor)
	OR (Bit-wise Logical Or)
	ORI (Or Immediate)
	RET (Return from Register)
	RET.xTOFF (Return from Register and Translation OFF)
	ROTR (Rotate Right)
	ROTRI (Rotate Right Immediate)
	SB (Store Byte)
	SBI (Store Byte Immediate)
	SCW (Store Conditional Word)
	SEB (Sign Extend Byte)
	SEH (Sign Extend Halfword)
	SETEND (Set data endian)
	SETGIE (Set global interrupt enable)
	SETHI (Set High Immediate)
	SH (Store Halfword)
	SHI (Store Halfword Immediate)
	SLL (Shift Left Logical)
	SLLI (Shift Left Logical Immediate)
	SLT (Set on Less Than)
	SLTI (Set on Less Than Immediate)
	SLTS (Set on Less Than Signed)
	SLTSI (Set on Less Than Signed Immediate)
	SMW (Store Multiple Word)
	SRA (Shift Right Arithmetic)
	SRAI (Shift Right Arithmetic Immediate)
	SRL (Shift Right Logical)
	SRLI (Shift Right Logical Immediate)
	STANDBY (Wait For External Event)
	SUB (Subtraction)
	SUBRI (Subtract Reverse Immediate)
	SVA (Set on Overflow Add)
	SVS (Set on Overflow Subtract)
	SW (Store Word)
	SWI (Store Word Immediate)
	SWUP (Store Word with User Privilege Translation)
	SYSCALL (System Call)
	TEQZ (Trap if equal 0)
	TNEZ (Trap if not equal 0)
	TLBOP (TLB Operation)
	TRAP (Trap exception)
	WSBH (Word Swap Byte within Halfword)
	XOR (Bit-wise Logical Exclusive Or)
	XORI (Exclusive Or Immediate)
	ZEB (Zero Extend Byte)
	ZEH (Zero Extend Halfword)

	7.2   32-bit Performance Extension instructions
	ABS (Absolute)
	AVE (Average with Rounding)
	BCLR (Bit Clear)
	BSET (Bit Set)
	BTGL (Bit Toggle)
	BTST (Bit Test)
	CLIP (Clip Value)
	CLIPS (Clip Value Signed)
	CLO (Count Leading Ones)
	CLZ (Count Leading Zeros)
	MAX (Maximum)
	MIN (Minimum)

	7.3   32-bit Performance Extension Version 2 instructions
	BSE (Bit Stream Extraction)
	BSP (Bit Stream Packing)
	PBSAD (Parallel Byte Sum of Absolute Difference)
	PBSADA (Parallel Byte Sum of Absolute Difference Accum)

	7.4   32-bit STRING Extension instructions
	7.5   16-bit Baseline instructions
	ADD (Add Register)
	ADDI (Add Immediate)
	BEQS38 (Branch on Equal Implied R5)
	BEQZ38 (Branch on Equal Zero)
	BEQZS8 (Branch on Equal Zero Implied R15)
	BNES38 (Branch on Not Equal Implied R5)
	BNEZ38 (Branch on Not Equal Zero)
	BNEZS8 (Branch on Not Equal Zero Implied R15)
	BREAK16 (Breakpoint)
	J8 (Jump Immediate)
	JR5 (Jump Register)
	JRAL5 (Jump Register and Link)
	LBI333 (Load Byte Immediate Unsigned)
	LHI333 (Load Halfword Immediate Unsigned)
	LWI333 (Load Word Immediate)
	LWI37 (Load Word Immediate with Implied FP)
	LWI450 (Load Word Immediate)
	MOV55 (Move Register)
	MOVI55 (Move Immediate)
	NOP16 (No Operation)
	RET5 (Return from Register)
	SBI333 (Store Byte Immediate)
	SEB33 (Sign Extend Byte)
	SEH33 (Sign Extend Halfword)
	SHI333 (Store Halfword Immediate)
	SLLI333 (Shift Left Logical Immediate)
	SLT45 (Set on Less Than Unsigned)
	SLTI45 (Set on Less Than Unsigned Immediate)
	SLTS45 (Set on Less Than Signed)
	SLTSI45 (Set on Less Than Signed Immediate)
	SRAI45 (Shift Right Arithmetic Immediate)
	SRLI45 (Shift Right Logical Immediate)
	SUB (Subtract Register)
	SUBI (Subtract Immediate)
	SWI333 (Store Word Immediate)
	SWI37 (Store Word Immediate with Implied FP)
	SWI450 (Store Word Immediate)
	X11B33 (Extract the Least 11 Bits)
	XLSB33 (Extract LSB)
	ZEB33 (Zero Extend Byte)
	ZEH33 (Zero Extend Halfword)

	7.6   16-bit and 32-bit Baseline Version 2 instructions
	ADDI10S (Add Immediate with Implied Stack Pointer)
	LWI37SP (Load Word Immediate with Implied SP)
	SWI37SP (Store Word Immediate with Implied SP)
	ADDI.gp (GP-implied Add Immediate)
	DIVR (Unsigned Integer Divide to Registers)
	DIVSR (Signed Integer Divide to Registers)
	LBI.gp (GP-implied Load Byte Immediate)
	LBSI.gp (GP-implied Load Byte Signed Immediate)
	LBUP (Load Byte with User Privilege Translation)
	LHI.gp (GP-implied Load Halfword Immediate)
	LHSI.gp (GP-implied Load Signed Halfword Immediate)
	LMWA (Load Multiple Word with Alignment Check)
	LWI.gp (GP-implied Load Word Immediate)
	MADDR32 (Multiply and Add to 32-bit Register)
	MSUBR32 (Multiply and Subtract from 32-bit Register)
	MULR64 (Multiply Word Unsigned to Registers)
	MULSR64 (Multiply Word Signed to Registers)
	SBI.gp (GP-implied Store Byte Immediate)
	SBUP (Store Byte with User Privilege Translation)
	SHI.gp (GP-implied Store Halfword Immediate)
	SMWA (Store Multiple Word with Alignment Check)
	SWI.gp (GP-implied Store Word Immediate)


	Chapter 8   Instruction Latency for AndesCore Implementations
	8.1   N12 Implementation
	8.1.1   Instruction Latency due to Resource Dependency
	8.1.2   Cycle Penalty due to N12 Pipeline Control Mishaps Recovery

	8.2   N10 Implementation
	8.2.1   Dependency-related Instruction Latency
	8.2.2   Self-stall-related Instruction Latency
	8.2.3   Cycle Penalty due to N10 Pipeline Control Mishap Recover
	8.2.4   Cycle Penalty due to Resource Contention


	Chapter 9   AndesCore N12 implementation
	9.1   CCTL Instruction
	9.2   STANDBY Instruction

	Chapter 10   AndesCore N1213 Hardcore Implementation Restriction
	10.1   Instruction Restriction
	10.2   ISYNC Instruction Note


