
101 Innovation Drive
San Jose, CA 95134
www.altera.com

NIIDPXHB-1.0

Handbook

Nios II DPX Datapath Processor

Document last updated for Altera Complete Design Suite version:
Document publication date:

11.0
May 2011

Subscribe

Nios II DPX Datapath Processor Handbook

http://www.altera.com
https://www.altera.com/servlets/subscriptions/alert?id=NIIDPXHB

Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

© 2011 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX are Reg. U.S. Pat.
& Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries. All other trademarks and service marks are the property of their respective
holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance
with Altera’s standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or
liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera
customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or
services.

http://www.altera.com/common/legal.html

May 2011 Altera Corporation
Contents
Section I. Nios II DPX Hardware Reference

Chapter 1. Nios II DPX Architecture
Reading Prerequisites . 1–1
Installation Directory Structure . 1–2
Functional Blocks . 1–3

Multithreaded Processor . 1–4
Message Interface Unit . 1–10
Reset Controller . 1–14
Debug Unit . 1–15
Debug Statistics Collector . 1–16

Nios II DPX Clock Domains . 1–18
Nios II DPX Processor Reset Signals . 1–19

Reset Sequence with Debugger . 1–20
Reset Considerations when Designing Outside of Qsys . 1–21

Nios II DPX Processor Interfaces . 1–21
Interfaces . 1–21
Memory Addressing and Byte Order . 1–37

Nios II DPX Datapath Processor Dual-Core Configuration . 1–41
Loading Nios II DPX Software in a Deployed System . 1–42

Chapter 2. Instantiating the Nios II DPX Datapath Processor
Instantiating for a Qsys System . 2–1

Parameter Settings . 2–1
Instantiating for a Stand-Alone System . 2–10
Nios II DPX Context Address Adapter . 2–10

Chapter 3. System Verification
RTL Simulation . 3–1

Simulation Model, Testbench and Initialization Files . 3–1
Create a Simulation Script for ModelSim . 3–2
Record Suitable Waveforms . 3–2

Performance Monitoring . 3–2
Packet Debug . 3–3

Debug Flag Bit . 3–3
PEs and the Debug Flag . 3–4
Using Debug Flag Breakpoint Capability . 3–4

Hardware PE Debug . 3–6

Additional Information
Document Revision History . Info–1
How to Contact Altera . Info–1
Typographic Conventions . Info–1

Section II. Nios II DPX Software Development

Chapter 4. Overview of the Nios II DPX MTP
Nios II DPX Datapath Processor Handbook

iv Contents
The MTP in the Context of the Nios II DPX Datapath Processor . 4–1
Event-Driven Processing . 4–1
Nios II DPX Multithreading . 4–2
Dual-Processor Configurations . 4–2
Nios II DPX Programming Considerations . 4–3

Memory and I/O . 4–3
The Nios II DPX Debug Interface . 4–3
Exception Controller . 4–4

The Nios II DPX Software Development Environment . 4–4
The Nios II SBT Development Flow . 4–4
Nios II DPX Programs . 4–5
Finding Nios II EDS Files . 4–7

Chapter 5. Software Programming Model
Overview of the Nios II DPX MTP . 5–1
The Event-Driven Programming Model . 5–1

Tasks, PE Messages and Events . 5–1
Context Data . 5–4

Nios II DPX Registers . 5–4
General-purpose Registers . 5–4
Extension Registers . 5–5
Control Registers . 5–6
Extended Control Registers . 5–7

Developing Software Tasks for the Datapath Processor . 5–10
The Nios II DPX Task ID . 5–10
Sending PE Messages Between Tasks . 5–11
Writing Task Code . 5–11
The Null Task ID . 5–14
Resource Sharing . 5–14
Task-Related Instructions . 5–14

Context Management . 5–16
Creating a Context . 5–16
Maintaining the CID Free List . 5–17

Data Ordering with the DPX Datapath Processor . 5–17
Sequence Number Reordering . 5–18
CID Ordering . 5–18

Using the Nios II DPX Extension Registers . 5–19
Accessing Extension Registers . 5–20

Nios II DPX Memory Model . 5–20
Physical Memory Access . 5–20
Memory Organization . 5–21

Advanced Topics . 5–23
Sending Multiple PE Messages . 5–23
Spawning a New Task . 5–23
Avoiding System Deadlock . 5–24

Exception Processing . 5–26
Reset Exceptions . 5–27
Break Exceptions . 5–28
Instruction-Related Exceptions . 5–28

Instruction Set Categories . 5–30
Data Transfer Instructions . 5–30
Bit Manipulation Instructions . 5–31
Arithmetic Instructions . 5–31
Move Instructions . 5–32
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Contents v
Comparison Instructions . 5–32
Shift and Rotate Instructions . 5–33
Message Passing Instructions . 5–33
Program Control Instructions . 5–34
Thread Control Instructions . 5–35
Other Control Instructions . 5–35
No-operation Instruction . 5–35
Potential Unimplemented Instructions . 5–35

Chapter 6. Getting Started with the Graphical User Interface
Introduction to the Nios II DPX Debugging Environment . 6–1
Getting Started . 6–2

The Nios II SBT for Eclipse Workbench . 6–2
Creating a Project . 6–3
Navigating the Project . 6–5
Building the Project . 6–6
Configuring the FPGA . 6–6
Debug Setup . 6–6
Debugging the Project . 6–9
Working with Stand-Alone Systems . 6–14
Running a Nios II DPX System with ModelSim . 6–16

Makefiles and the Nios II SBT for Eclipse . 6–17
Eclipse Source Management . 6–17
User Source Management . 6–19
BSP Source Management . 6–20

Using the BSP Editor . 6–20
Tcl Scripting and the Nios II BSP Editor . 6–20
Starting the Nios II BSP Editor . 6–20
The Nios II BSP Editor Screen Layout . 6–21
The Command Area . 6–21
The Console Area . 6–25
Exporting a Tcl Script . 6–26
Creating a New BSP . 6–26
BSP Validation Errors . 6–27
Configuring Component Search Paths . 6–27

Importing a Command-Line Project . 6–28
Road Map . 6–28
Import a Command-Line C Application . 6–29
Import a Supporting Project . 6–29
User-Managed Source Files . 6–30

Packaging a Library for Reuse . 6–30
Creating the User Library . 6–30
Using the Library . 6–31

Memory Initialization Files . 6–31
Managing Toolchains in Eclipse . 6–32
Eclipse Usage Notes . 6–32

Thread-Specific Breakpoints . 6–32
DSF Disassembly View Required . 6–33
Configuring Application and Library Properties . 6–33
Configuring BSP Properties . 6–33
Exclude from Build Not Supported . 6–33
Selecting the Correct Launch Configuration Type . 6–34
Renaming Nios II DPX MTP Projects . 6–34
Running Shell Scripts from the SBT for Eclipse . 6–34
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

vi Contents
Must Use Nios II Build Configuration . 6–35
CDT Limitations . 6–35

Chapter 7. Getting Started from the Command Line
Advantages of the Command Line . 7–1
Outline of the Nios II SBT Command-Line Interface . 7–1

Utilities . 7–2
The nios2-bsp Script . 7–2
Tcl Commands . 7–2
Tcl Scripts . 7–2
The Nios II Command Shell . 7–2

Scripting Basics . 7–2
Creating a BSP with a Script . 7–3
Creating an Application Project with a Script . 7–4

Running make . 7–5
Creating Memory Initialization Files . 7–5

Chapter 8. Understanding the Nios II DPX Board Support Package
Nios II DPX Software Development Tools . 8–1

The Nios II DPX GNU Toolchain . 8–1
newlib for the Nios II DPX MTP . 8–2
Using the Nios II Software Build Tools . 8–2

The Lightweight Hardware Abstraction Layer (LWHAL) . 8–2
Startup Code . 8–3
Stack . 8–3
Device Drivers . 8–3
Differences from newlib . 8–4
Software Tasks . 8–5
Minimal Character-Mode API . 8–6
Managing Memory Usage with the LWHAL . 8–7
Custom Device Drivers for the LWHAL . 8–7
Exception Handling . 8–8
Break Handler . 8–9

Nios II DPX BSP Creation . 8–9
LWHAL BSP Files and Folders . 8–9
Linker Map Validation . 8–14

Specifying BSP Defaults for the Nios II DPX MTP . 8–14
Top Level Tcl Script for BSP Defaults . 8–15
Specifying the Default stdio Device . 8–16
Specifying the Default Memory Map . 8–16
Using Individual Default Tcl Procedures . 8–17

Hardware Requirements . 8–17
Lightweight HAL Function Reference . 8–17

LWHAL Function Macros . 8–18
LWHAL Functions . 8–19
LWHAL Extended Instruction Macros . 8–20
LWHAL Driver Functions . 8–22

Lightweight HAL Standard Types . 8–24
Creating a BSP for a Stand-Alone System . 8–25

Creating a BSP from the Command Line . 8–25
Creating a BSP with the BSP Editor . 8–25

Chapter 9. Nios II DPX MTP Instruction Set and Application Binary Interface
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Contents vii
The Nios II DPX MTP Instruction Set . 9–1
Instruction Formats . 9–1
Instruction Encodings . 9–5
Assembler Pseudo-Instructions . 9–9
Assembler Macros . 9–10
Nios II DPX MTP Instruction Set Reference . 9–11
Nios II DPX Extended Instruction Set Reference . 9–104

The Nios II DPX MTP Application Binary Interface . 9–112
Data Types . 9–112
Memory Alignment . 9–112
Register Usage . 9–112
Stacks . 9–114
Arguments and Return Values . 9–119
DWARF-2 Definition . 9–121
Object Files . 9–121
Relocation . 9–121
Development Environment . 9–123

Chapter 10. SBT Reference for the Nios II DPX MTP
Nios II Software Build Tools Utilities . 10–1

Logging Levels . 10–2
Setting Values . 10–2
Utility and Script Summary . 10–3
nios2-app-generate-makefile . 10–4
nios2-bsp-create-settings . 10–6
nios2-bsp-generate-files . 10–8
nios2-bsp-query-settings . 10–9
nios2-bsp-update-settings . 10–11
nios2-lib-generate-makefile . 10–13
nios2-bsp-editor . 10–15
nios2-app-update-makefile . 10–16
nios2-lib-update-makefile . 10–19
nios2-swexample-create . 10–22
nios2-elf-insert . 10–23
nios2-elf-query . 10–24
nios2-bsp . 10–25
nios2-bsp-console . 10–27

Settings . 10–28
Overview of BSP Settings . 10–28
Overview of Component and Driver Settings . 10–29
Settings Reference . 10–30

Application and User Library Makefile Variables . 10–39
Application Makefile Variables . 10–39
User Library Makefile Variables . 10–41
Standard Build Flag Variables . 10–42

Tcl Commands . 10–42
Tcl Command Environments . 10–42
Tcl Commands for BSP Settings . 10–42
Tcl Commands for BSP Generation Callbacks . 10–69
Tcl Commands for Drivers and Packages . 10–77

Path Names . 10–84
Command Arguments . 10–85
Object File Directory Tree . 10–86
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

viii Contents
Additional Information
Document Revision History . Info–1
How to Contact Altera . Info–1
Typographic Conventions . Info–1
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

May 2011 Altera Corporation

NIIDPXHB-HR-2.0

© 2011 Altera Corporation. Al
QUARTUS and STRATIX are
All other trademarks and serv
www.altera.com/common/le
accordance with Altera’s stand
without notice. Altera assume
service described herein excep
version of device specification

101 Innovation Drive
San Jose, CA 95134
www.altera.com
Section I. Nios II DPX Hardware
Reference
The Nios® II DPX Hardware Reference section of the Nios II DPX Datapath Processor
Handbook provides information about Nios II DPX hardware topics.

This section includes the following chapters:

■ Chapter 1, Nios II DPX Architecture

■ Chapter 2, Instantiating the Nios II DPX Datapath Processor

■ Chapter 3, System Verification
Nios II DPX Datapath Processor Handbook

l rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS,
Reg. U.S. Pat. & Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries.
ice marks are the property of their respective holders as described at
gal.html. Altera warrants performance of its semiconductor products to current specifications in
ard warranty, but reserves the right to make changes to any products and services at any time

s no responsibility or liability arising out of the application or use of any information, product, or
t as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest
s before relying on any published information and before placing orders for products or services.

http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook.pdf
http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook.pdf
http://www.altera.com/common/legal.html
http://www.altera.com

I–2 Section I: Nios II DPX Hardware Reference
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

May 2011 Altera Corporation
1. Nios II DPX Architecture
The Nios II DPX datapath processor is a multithreaded, programmable, soft processor
core optimized for control, scheduling, and processing of datapaths. The processor
allows parallel processing of multiple blocks of data while maintaining the context of
each data block.

The Nios II DPX datapath processor is optimized for datapath applications, such as
packet processing, by conserving resources and eliminating sources of
nondeterministic behavior that impair real-time performance. The processor is a
processing element (PE) within an Altera® event-driven datapath processing system
in Altera FPGAs.

f For information about Altera event-driven datapath processing, refer to the Altera
Event-Driven Datapath Processing Design Handbook.

The Nios II DPX datapath processor offers the following features:

■ Highly-predictable pipeline suitable for real-time applications

■ Event-driven architecture with hardware support for efficient use of hardware
acceleration

■ Extended Nios II instruction set architecture (ISA), allowing use of the Nios II
embedded design suite

■ Optimized hardware with high fMAX and low resource usage

Reading Prerequisites
This handbook assumes you are familiar with the terminology and concepts (such as
event-driven processing, contexts, tasks, and messages) presented in the Altera
Event-Driven Datapath Processing Design Handbook.

An understanding of the Avalon Streaming (Avalon-ST) and Avalon
Memory-Mapped (Avalon-MM) interfaces, presented in the Avalon Interface
Specifications, is also helpful.
Nios II DPX Datapath Processor Handbook

http://www.altera.com/literature/hb/nios2dpx/hb_datapath_processing.pdf
http://www.altera.com/literature/hb/nios2dpx/hb_datapath_processing.pdf
http://www.altera.com/literature/hb/nios2dpx/hb_datapath_processing.pdf
http://www.altera.com/literature/hb/nios2dpx/hb_datapath_processing.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

1–2 Chapter 1: Nios II DPX Architecture
Installation Directory Structure
Installation Directory Structure
Figure 1–1 shows the directory structure for the Nios II DPX datapath processor cores
and microcores. The path to the folders shown is <Quartus II installation directory>/
ip/altera/event_driven_processing.

Figure 1–1. Nios II DPX Datapath Processor Installation Directories
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 1: Nios II DPX Architecture 1–3
Functional Blocks
Functional Blocks
Figure 1–2 shows a simplified Nios II DPX datapath processor block diagram.

The Nios II DPX datapath processor has the following key functional blocks:

■ Multithreaded processor (MTP)—A hardware-multithreaded processor based on
the Nios II instruction set architecture. The MTP instructions are stored in an
instruction memory that is contained within the Nios II DPX datapath processor.

■ Message interface unit (MIU)—The MIU sends, receives, and manages messages
using Avalon-ST PE message interfaces. The MIU translates received messages
into work scheduled onto the MTP threads in the form of software tasks. The MIU
also allows the MTP to delegate work to other PEs by managing and sending
Avalon-ST PE messages.

■ Debug unit—The debug unit manages standard processor-level debug features,
such as loading executable software, setting breakpoints, single stepping, and
accessing registers for software tasks executing on the MTP.

■ Statistics collector—The statistics collector provides access to various statistics
gathered by the MIU and MTP at run time. The monitoring done to obtain these
statistics is performed non-intrusively and is constantly updated at run time,
facilitating run-time system-monitoring and system-debug capability.

■ Reset controller—The reset controller controls system reset requests and internal
processor core soft resets.

Figure 1–2. Simplified Nios II DPX Datapath Processor Block Diagram

Input
Context

Registers

Output
Context

Registers

Task
Table

S S

Message In
Sink

MM

Fixed-
Latency

Data
Master

Variable-
Latency

Data
Master

Message
Interface Unit

Debug
Unit

S

JTAG PHY

Instruction
Memory

Internal
Context

Registers

Multithreaded
Processor

CID free-list

General
Purpose
Registers

Task Scheduler

Input
Context
Register

Slave

Output
Context
Register

Slave

Debug
Statistics

Message Out
Source

CID Request
Source

Transmit
Logic

Receive
Logic

Data Control

RX Msg
Queue

Sequence
Number
Reorder

FIFO

Transmit
Message
Registers

Receive
Message
Registers

CID
Reorder

FIFO

Debug
Slave

Reset
Controller

Thread
Information
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

1–4 Chapter 1: Nios II DPX Architecture
Functional Blocks
1 The Nios II DPX datapath processor is highly configurable. For configuration options,
refer to Chapter 2, Instantiating the Nios II DPX Datapath Processor.

The following sections describe the functional blocks of the Nios II DPX datapath
processor.

Multithreaded Processor
The MTP is the processing core within the Nios II DPX processor. The MTP includes
the following features:

■ Hardware multithreading, with eight hardware threads

■ Big-endian processor

■ Highly-predictable real-time operation, without instruction cache, data cache, or
external interrupts

■ Single and dual MTP core configurations

Figure 1–3 shows the MTP functional blocks.

The following sections describe the functional blocks of the MTP.

Figure 1–3. Nios II DPX MTP Block Diagram

Instruction
Decoder

External Memory
Data Master

Branch

Program
Counter

Instruction
Memory

General Purpose
Registers

ALU

TX
Message
Registers

RX
Message
Registers

Internal Context
Registers

Input Context
Registers

Output Context
Registers

Extension Registers

Control/Extended
Control Registers

Task RAM
(Accessed by

MIU)
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 1: Nios II DPX Architecture 1–5
Functional Blocks
ALU
The arithmetic logic unit (ALU) executes the following types of instructions:

■ Arithmetic

■ Logic

■ Shift

■ Control operation

f For a complete list and description of instructions, refer to the Nios II DPX MTP
Instruction Set and Application Binary Interface chapter in the Nios II DPX Software
Development section of the Nios II DPX Datapath Processor Handbook.

Register File
The Nios II DPX processor register file includes the following types of registers:

■ General-purpose registers—Serve as temporary registers for the software task
program.

■ Extension registers—Hold message data arguments and context-specific data for
software running on the MTP.

■ Control registers—Provide thread-specific information to the software tasks.

■ Extended control registers—Hold message control information for software tasks.

The following sections give a general description of each type of register.

f For additional information about these registers, refer to the Programming Model
chapter in the Nios II DPX Software Development section of the Nios II DPX Datapath
Processor Handbook.

General Purpose Registers

The MTP contains eight general-purpose register banks, each containing 32
general-purpose registers named r0 through r31. Each bank is associated with a
thread. The processor switches general-purpose register banks automatically,
transparent to the software executed by a thread. When a software task executing on a
thread completes and another software task starts on the same thread, the contents of
the general-purpose registers are undefined.

Extension Registers

The MTP contains a user-defined number of extension register banks. Each bank
consists of a configurable number of registers assigned to different purposes. The
maximum number of extension registers in each bank is 32, namely r32 through r63.
The processor switches extension register banks automatically, transparent to the
software executed by a thread. Contents of extension register banks remain intact
throughout the life of the context or message.

The MTP threads have access to the following extension registers:

■ RX message registers

■ TX message registers

■ Internal context registers
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-02.pdf
http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-02.pdf
http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-02.pdf

1–6 Chapter 1: Nios II DPX Architecture
Functional Blocks
■ Input context registers

■ Output context registers

The number of each kind of extension register is configurable. The Nios II DPX
processor supports the extension register configurations shown in Table 2–2 on
page 2–2.

The input and output context registers share the same register numbers. This sharing
is possible because the Nios II DPX toolchain uses the fact that the input context
registers are read-only registers and the output context registers are write-only
registers to point read and write instructions to the correct register bank. The same
scenario is also true for the RX and TX message registers.

1 Keep Table 2–2 on page 2–2 in mind when configuring your message format. The
maximum number of data arguments that the Nios II DPX datapath processor can
send or receive in an Avalon-ST PE message is determined by the number of RX and
TX message registers. For more information about the message format, refer to the
Message Format chapter of the Altera Event-Driven Datapath Processing Design Handbook.

The following sections describe the types of extension registers.

RX Message Registers

RX message registers are banks of 32-bit registers used to pass message data
arguments from the MIU to software tasks running in the MTP. You specify the
number of banks of RX message registers in your processor with the Number of
receive IDs parameter when instantiating the Nios II DPX processor. For more
information, refer to “Message Interface Unit Tab” on page 2–4.

Each bank of RX message registers corresponds to an RXID. When a thread
accesses an RX message register, the correct RX message register bank is implicitly
indexed by the RXID currently associated with the thread. RX message registers
are read-only. Reading them from a given task provides access to the arguments
associated with the message that started that task. The registers remain valid for
the duration of the software task unless an rxfree instruction releases the
associated RXID. For more information, refer to “RX Message Flow” on
page 1–12.

TX Message Registers

TX message registers are banks of 32-bit registers used to pass message data
arguments from software tasks running in the MTP to the MIU. You specify the
number of banks of TX message registers in your processor with the Number of
transmit IDs parameter when instantiating the Nios II DPX processor. For more
information, refer to “Message Interface Unit Tab” on page 2–4.

Each bank of TX message registers corresponds to an TXID. When a thread
accesses an TX message register, the correct TX message register bank is implicitly
indexed by the TXID currently associated with the thread. TX message registers
are write-only. Writing them from a given task stores the arguments associated
with the next message sent by that task. For more information, refer to “TX
Message Flow” on page 1–12.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2dpx/hb_datapath_processing.pdf

Chapter 1: Nios II DPX Architecture 1–7
Functional Blocks
Internal Context Registers

Internal context registers are banks of 32-bit registers local to the MTP and serve
as context-specific persistent storage. You specify the number of banks of internal
context registers in your processor with the Number of context IDs parameter
when instantiating the Nios II DPX processor. For more information, refer to
“Message Interface Unit Tab” on page 2–4.

Each bank of context registers corresponds to a context ID (CID). When a thread
accesses a context register, the correct context register bank is implicitly indexed
by the CID currently associated with the thread. This applies to internal, input,
and output context registers.

Software tasks can access only the internal context register bank that corresponds
to the CID associated with the running task. All tasks processing messages with
the same CID have access to the same bank of internal context registers.

1 There is also an advanced option that uses the number of threads to
determine the number of banks of internal context registers. For more
information, refer to the Context register indexing mode parameter in
“Advanced Options Tab” on page 2–9. When thread ID is used, all software
tasks running on the same thread have access to the same bank of internal
context registers.

Input Context Registers

Input context registers are banks of 32-bit registers used to pass context data into
the Nios II DPX processor. You specify the number of banks of input context
registers in your processor with the Number of context IDs parameter when
instantiating the Nios II DPX processor. For more information, refer to“Message
Interface Unit Tab” on page 2–4.

Software tasks can access only the input context register bank that corresponds to
the CID associated with the running task, and the access is read-only. The MTP
uses an Avalon-MM slave interface to receive input context register data. For
more information, refer to “Input Context Register Interface” on page 1–25.

Output Context Registers

Output context registers are banks of 32-bit registers used to pass context data out
of the Nios II DPX processor. You specify the number of banks of output context
registers in your processor with the Number of context IDs parameter when
instantiating the Nios II DPX processor. For more information, refer to “Message
Interface Unit Tab” on page 2–4.

Software tasks can access only the output context register bank that corresponds
to the CID associated with the running task, and the access is write-only. The MTP
uses an Avalon-MM slave interface to send output context register data. For more
information, refer to “Output Context Register Interface” on page 1–29.

Control Registers

The MTP has two control registers available to software tasks, cpuid and threadnum.

f For more information, refer to the Programming Model chapter in the Nios II DPX
Software Development section of the Nios II DPX Datapath Processor Handbook.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-02.pdf
http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-02.pdf

1–8 Chapter 1: Nios II DPX Architecture
Functional Blocks
Extended Control Registers

The Nios II DPX uses extended control registers to inspect control information in
received messages and modify control information in transmitted messages.
Extended control resisters can be per-processor or per-thread registers.

f For more information, refer to the Programming Model chapter in the Nios II DPX
Software Development section of the Nios II DPX Datapath Processor Handbook.

Memory
This section describes the memory within the Nios II DPX processor and the external
memory dependencies.

Instruction Memory

Software instructions run from internal on-chip instruction memory. This instruction
memory has a fixed access time of two cycles. The application code can be preloaded
into the instruction memory, or loaded into the processor from the debugger or using
the debug access slave. The instruction memory is read by the MTP and read and
written by external modules such as the Nios II DPX debugger.

Data Memory

Each Nios II DPX MTP exports an Avalon-MM fixed-latency data master and an
optional Avalon-MM variable-latency data master interface, for attaching data
memory used by load and store instructions.

1 For a dual-core Nios II DPX datapath processor, there are two fixed-latency and
optionally two variable-latency data masters, one per MTP. For more information,
refer to “Nios II DPX Datapath Processor Dual-Core Configuration” on page 1–41.

Memory attached to the Avalon-MM fixed-latency data master must have read
latency of two cycles and zero wait-state reads and writes. Memory connected to the
Avalon-MM variable-latency data master must assert appropriate Avalon-MM control
signals for data transfers.

1 Loads and stores performed to variable-latency memory can result in thread stalls.
For more information, refer to “Threading Model” on page 1–9.

The fixed-latency master must have exclusive access to any connected slaves. Because
memory mapped systems where multiple masters connect to a single slave require
arbitration, and arbitration might apply backpressure to one of the masters, the
variable-latency data master must be used if a slave is shared between masters.

The fixed-latency data master has an associated address range that you configure
when instantiating the Nios II DPX datapath processor. Loads and stores within range
are initiated over the fixed-latency data master; loads and stores not in this range are
initiated over the variable-latency data master if enabled.

You can partition memory with the optional thread information interface described in
“Thread Information Interface” on page 1–35. For example, you can partition memory
to automatically index into the data memory based on the current thread number.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-02.pdf
http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-02.pdf

Chapter 1: Nios II DPX Architecture 1–9
Functional Blocks
Task Address Table

The task address table is internal on-chip memory in the Nios II DPX processor that
contains the starting addresses of each software task in instruction memory. The MIU
uses the task address table similar to an interrupt vector table to look up the software
task starting address associated with each received message. The table can be loaded
when the device is programmed as part of the SRAM Object File (.sof), or loaded by
the host or debugger before releasing the Nios II MTP from reset. External modules
can write to, and read from, the task address table.

Interrupts and Exceptions
The Nios II DPX processor does not support external interrupts, and only excepts a
limited set of exceptions. The processor can generate the following exceptions:

■ Illegal instruction exception

■ Unsupported instruction exception

■ Debug exception

f For a complete list and description of possible exceptions, refer to “Exception
Processing” in the Software Programming Model chapter of the Nios II DPX Software
Development section of the Nios II DPX Datapath Processor Handbook.

Threading Model
The MTP implements hardware threads that essentially appear to the software as
multiple independent processors. The type of threading model is sometimes called
barrel multithreading or interleaved multithreading. The MTP has eight hardware
threads. Each thread has its own bank of general-purpose registers and program
counter (PC). From a software perspective, each thread is its own processor that
operates independently.

Figure 1–4 illustrates a single thread running on the MTP as it progresses through the
MTP pipeline.

Figure 1–4. Single Thread Running on Eight-Thread MTP
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-02.pdf
http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-02.pdf

1–10 Chapter 1: Nios II DPX Architecture
Functional Blocks
An instruction moves through the processor's pipeline advancing by one pipeline
stage each clock cycle. However, unlike a traditional processor, the next instruction in
the program does not follow directly afterward. Instead, the next instruction enters
the pipeline eight clock cycles later. The eight-cycle gap eliminates the need for
pipeline-stalling logic, eliminates the need for forwarding-control logic, and allows
the processor to run at a higher frequency than would otherwise be possible.

By providing each thread its own independent context of execution, including
general-purpose registers and program counter, the eight-cycle gap per thread allows
each pipeline stage to process instructions from multiple threads.

Figure 1–5 illustrates eight threads running concurrently on an MTP core. The eight
threads (essentially separate software programs), share the processor's pipeline and
appear to run concurrently.

Instructions for a given thread are only issued every eight clock cycles, and eight
threads share the pipeline. Thus, if the Nios II DPX processor clock is 400 MHz, the
MTP can support eight threads, each thread effectively running at 50 MHz.

This threading technique means that the MTP has no stalls, other than load or store
instructions accessing variable-latency data memory, and has no hazards or need for a
branch predictor. All instructions are executed within a single thread cycle (eight
clock cycles), except for load and store instructions that access variable-latency data
memory. If a load or store instruction stalls, the stalled instruction is revisited eight
clock cycles later and in the meantime the other seven threads operate normally. A
stalled instruction in one thread does not impact execution of the other threads.

Message Interface Unit
The main functions of the MIU are:

■ Receive and manage buffering of incoming messages

■ Schedule threads on the MTP to execute tasks requested by the messages

Figure 1–5. Eight Threads Running on Eight-Thread MTP
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 1: Nios II DPX Architecture 1–11
Functional Blocks
■ Transmit messages generated by the tasks executing on the MTP, applying flow
control as requested by the MTP tasks

■ Manage and allocate CIDs requested by external entities

The following sections describe the functional aspects of the MIU from a
message-flow perspective. You might find Figure 1–2 on page 1–3 helpful to
understand the MIU functionality.

Register Usage
When the MIU receives a message, the MIU assigns an available bank of RX message
registers, an available bank of TX message registers, and the associated RXID and
TXID identifiers to the message. Software tasks read data arguments for the incoming
message from the RX message registers, and store data arguments for the task’s
outgoing message in the TX message registers. Tasks that send more than one
message can also request a bank of TX message registers for each message sent.

The RX message registers and TX message registers appear as extension registers to
the software, as described in “Extension Registers” on page 1–5. The RXID associated
with a message is freed when a task processing the received message executes an exit
or rxfree instruction. The TXID becomes unavailable to the task creating the sent
message when the task executes a snd or sndi instruction.

Once freed by the MIU, the RXID, TXID, and the associated message register banks
can be used for storing new message data.

1 Each task must send a message (execute a snd or sndi instruction). Failure to do so
results in the TXID assigned to that task never being freed.

When CIDs are used, the task has access to three additional banks of extension
registers, namely, input context registers, output context registers, and internal
context registers. The CID, contained within a message's control information, is used
to select these banks of registers. External PEs load context specific information into
the input context registers for software tasks to read using the “Input Context Register
Interface” on page 1–25. The software task loads context specific information in the
output context registers, which can be read by external PEs using the “Output Context
Register Interface” on page 1–29.

CID Usage
The MIU maintains a list of available CIDs. You configure the number of contexts
using the Number of context IDs parameter when instantiating the Nios II DPX
datapath processor.

f For information about contexts, refer to the Introduction to Altera Event-Driven
Datapath Processing chapter of the Altera Event-Driven Datapath Processing Design
Handbook.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

http://www.altera.com/literature/hb/nios2dpx/hb_datapath_processing.pdf
http://www.altera.com/literature/hb/nios2dpx/hb_datapath_processing.pdf

1–12 Chapter 1: Nios II DPX Architecture
Functional Blocks
Typically when new input data enters the system, the input PE requests a CID from
the Nios II DPX processor using the “CID Request Interface” on page 1–24, which sets
up a context for the data with the CID granted by the processor. The CID is associated
with the input data and stays associated through message passing for the life of the
data's processing. The MIU uses the CID contained within a message to schedule
processing of the context data by software tasks on the MTP.

Once all messages pertaining to a context are processed, a software task must free the
CID for reuse.

If a software task needs to send more than one message, the task can request
additional CIDs using the cidalloc instruction. You enable additional CID allocation
capability with the Context ID allocation support parameter when instantiating the
Nios II DPX datapath processor. For more information, refer to “Message Interface
Unit Tab” on page 2–4.

RX Message Flow
When the MIU receives a message, the MIU copies the data arguments from the
message into the RX message registers so the data is available to the software task.
The MIU then copies the control information from the message to the RX message
queue for scheduling. This control information contains a task ID which is used to
schedule the appropriate software task to process the message.

The MIU uses an Avalon-ST PE message sink interface to receive Avalon-ST PE
messages. For more information, refer to “RX Message Interface” on page 1–22.

Task Address Table and Thread Scheduling
The MIU uses a block of memory that contains a task address table. The table maps
the task ID values carried in incoming messages to starting addresses of software
tasks that execute on the MTP threads. The task address table can be pre-initialized
when the device is programmed, or uploaded through the debugger or the debug
access slave.

On arrival of a message in the RX message queue, the MIU looks up the software
task's starting address in the task address table using the task ID from the message,
and looks for an idle thread. On detecting an idle thread, the MIU passes the starting
address of the software task routine to the PC of the idle thread, and the MTP thread
executes the software task requested in the incoming message. On completion, the
hardware thread goes to an idle state and is again available to be scheduled to execute
a new software task.

TX Message Flow
Software tasks executing on the MTP initiate message sending. The software task
supplies the following message control information to the MIU:

■ The ID of the destination PE

■ The ID of the task to be performed by the destination PE

■ The number of data arguments loaded in the TX message registers

■ Options controlling the flow of the message, used internally by the Nios II DPX
processor
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 1: Nios II DPX Architecture 1–13
Functional Blocks
On receiving instruction from the MTP, the MIU places the message's control
information for transmission in a transmit queue. From the transmit queue, control
flows in one or more of the following ways:

■ To the CID message reorder buffer in the Nios II DPX processor, described in
“Context ID Ordering” on page 1–13.

■ To the sequence number message reorder buffer in the Nios II DPX processor,
described in “Sequence Number Ordering” on page 1–14.

■ Out of the Nios II DPX processor using the TX message interface, described in “TX
Message Interface” on page 1–23.

■ To a null message, which does nothing.

Which route the flow takes is determined by parameters you select when you
instantiate the processor, and the options the software task specifies when initiating
the message with the snd or sndi instruction. For more information, refer to “TX
Message Ordering”.

The MIU uses an Avalon-ST PE message source interface to send Avalon-ST PE
messages from the Nios II DPX processor. For more information, refer to “TX Message
Interface” on page 1–23.

TX Message Ordering
The Nios II DPX processor offers the two optional methods for maintaining message
order. When ordering is needed, the Nios II DPX can order messages using either or
both of the following methods:

■ Context ID ordering—Typically controls data flowing out of the entire system

■ Sequence number ordering—Controls data flowing out of the processor

Context ID Ordering

Because Altera event-driven datapath processing allows for parallel processing of
contexts to improve efficiency, it is possible for a context initiated at a later time to
finish prior to a context initiated earlier. The optional CID ordering enforcement
ensures that the output of the system is maintained in strict order, based on the CID.
You enable CID ordering with the Context ID ordering enforcement parameter when
instantiating the Nios II DPX processor. For more information, refer to “Message
Interface Unit Tab” on page 2–4.

When CID ordering enforcement is enabled, software tasks specify which messages
are CID ordered. Normally, CID ordering is applied to only one message per context,
typically the message going to the output PE, and thus maintains the order of the
contexts going in and out of the entire system.

f For more information about software task sending options, refer to the snd instruction
in the MTP Instruction Set and Application Binary Interface chapter in the Nios II DPX
Software Development section of the Nios II DPX Datapath Processor Handbook.

The MIU moves a message flagged for CID ordering from the transmit queue to the
CID message reorder buffer. The message remains in the system and is not passed to
the output PE until all transmit messages with earlier-issued CIDs are processed.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-02.pdf
http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-02.pdf

1–14 Chapter 1: Nios II DPX Architecture
Functional Blocks
Sequence Number Ordering

Because the Nios II datapath processor allows for parallel execution of software tasks
to improve efficiency, it is possible for messages coming into the processor at a later
time to finish processing prior to messages that entered earlier. The optional sequence
number ordering ensures that all messages generated by the processor leave in the
same order that their corresponding messages arrived. You enable sequence number
ordering with the Sequence number ordering enforcement parameter when
instantiating the Nios II DPX processor. For more information, refer to “Message
Interface Unit Tab” on page 2–4.

When sequence number ordering is enabled, the MIU assigns a sequence number to
each message received. When the MTP initiates an outgoing message, the MIU moves
the message into the sequence number message reorder buffer. The message remains
in the buffer until all transmit messages with earlier-issued sequence numbers are
processed, at which time the MIU sends the message out of the Nios II DPX processor
using the TX message interface, described in “TX Message Interface” on page 1–23.

1 Software tasks can send more than a single message. For such software tasks, you
must ensure that only one message is sequence number ordered. All other messages
sent by the task must bypass sequence number ordering. For more information about
software task sending options, refer to the snd instruction in the MTP Instruction Set
and Application Binary Interface chapter in the Nios II DPX Software Development section
of the Nios II DPX Datapath Processor Handbook.

Reset Controller
The Nios II DPX processor contains a reset controller that coordinates system reset
requests and an internal processor soft reset. These resets are accessible through the
debug access slave.

Table 1–1 lists the memory map for the reset controller.

The system reset request signal and processor soft reset are de-asserted at power-up.
The processor soft reset must be asserted only while the system reset request signal is
asserted, and remains asserted until explicitly de-asserted by the debugger or other
external circuitry. For more information, refer to “Nios II DPX Processor Reset
Signals” on page 1–19.

Table 1–1. Reset Controller Memory Map

Byte Offset Access Description

0x0000 Read/Write
Bit 0 controls the system_reset_request_n reset signal output. Set
the bit to 1 to assert a system reset. Set the bit to 0 to release the
system reset.

0x0004 Read/Write Bit 0 controls the processor soft reset. Set the bit to 1 to trigger
processor soft reset. Set the bit to 0 to release the processor soft reset.

0x0008 Read
Bit 0 contains the system reset state.

Bit 1 contains the processor soft reset state.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-02.pdf

Chapter 1: Nios II DPX Architecture 1–15
Functional Blocks
Debug Unit
The Nios II DPX datapath processor contains a debug unit that provides common
debug capability such as hardware breakpoints and single stepping. It also provides
high-level operations such as reading and writing to registers, instruction memory
and data memory.

f For more information about debug capability, refer to the Getting Started with the
Graphical User Interface chapter in the Nios II DPX Software Development section of the
Nios II DPX Datapath Processor Handbook.

Debug Unit Configuration Options
You enable or disable the debug unit, the internal JTAG PHY, and the Avalon-MM
slave debug interface when instantiating the Nios II DPX processor. For more
information, refer to “Nios II DPX Datapath Processor Tab” on page 2–1.

For designs with the debug unit omitted, the task address table, data memory, and
instruction memory must be initialized as part of the .sof file or by an external entity
through the Avalon-MM slave debug interface.

When instantiating multiple Nios II DPX datapath processors, it might be desirable to
omit the internal JTAG PHY. As an alternative, connect an external JTAG PHY that is
shared by the multiple Nios II DPX datapath processor instances.

Debug Interface Memory Map
Enabling the Avalon-MM slave debug interface, allows an external Avalon-MM
master to access the instruction RAM, task address table, statistics information, and
reset controller register. The debug access slave presents 23 bits of address with a span
of 0x00500000 bits. You expose the interface with the Enable debug access slave
interface parameter when instantiating the Nios II DPX processor. For more
information, refer to “Nios II DPX Datapath Processor Tab” on page 2–1.

Table 1–2 lists the memory map for the debug slave access.

1 The debug unit (or other external configuration circuitry) has access to instruction
memory and the task address table. Update these memory areas only when the MTP
is held in soft reset. Updating the instructions or task table while threads are running
can produce unpredictable results.

Table 1–2. Debug Access Slave Memory Map

Byte Offset End Span Limit Description

0x00000000 2INST_ADDR_BITS –1 2INST_ADDR_BITS 4 MB Instruction RAM

0x00400000 0x00400000 + 2TASK_ADDR_WIDTH – 1 2TASK_ADDR_WIDTH 16,384 entries Task address table

0x00402000 0x00402007 8 8 bytes Reset controller

0x00404000 2STATS_ADDR_BITS –1 2STATS_ADDR_BITS 16 KB Statistics

0x00408000 0x004fffff 0x00018000 — Reserved
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-02.pdf

1–16 Chapter 1: Nios II DPX Architecture
Functional Blocks
Debug Statistics Collector
Nios II DPX datapath processor implements non-intrusive statistics counters to aid in
system debugging and monitoring. These counters are accessible over the
Avalon-MM slave debug interface.

Table 1–3 shows the memory map for the statistics counters, starting at offset
0x00401000 in the debug interface memory map (shown in Table 1–2).

Table 1–3. Statistics Counters Memory Map (Part 1 of 3)

Byte
Offset Statistic Type Statistic Description

0x0000 Counter MTP instruction
execution counters

32-bit counters, categorized by instruction type per thread, count the
number of instructions executed. Each instruction type in the following
list contains eight 32-bit counters, one for each thread:

■ 0x0000—Load instruction counters

■ 0x0020—Store instruction counters

■ 0x0040—Arithmetic and logic instruction counters

■ 0x0060—Compare and branch instruction counters

■ 0x0080—Debug instruction counters

■ 0x00A0—Exit instruction counters

■ 0x00C0—Send instruction counters

■ 0x00E0—Other instruction counters

0x0100 Counter

CID usage counters

or

MTP instruction
execution counters

For single-core Nios II DPX datapath processor configurations, the
32-bit counters count the number of times tasks run for each CID up to
64 CIDs.

For dual-core Nios II DPX datapath processor configurations, the 32-bit
counters count the number of instructions executed on the eight
threads of the second MTP core. (Refer to previous row’s description.)

0x0200 Counter Input task ID usage
counter

32-bit counters count the number of times tasks are executed for each
input task ID up to 64 task IDs.

0x0300 Counter Output task ID usage
counter

32-bit counters count the number of messages sent for each output
task ID up to 64 task IDs.

0x0400 Counter Task ticks monitor
32-bit counters count thread cycles (that is, clock cycles / 8) taken for
running a task from start to completion for each task ID up to 64 task
IDs. These counters are not cumulative; they count only the last run.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 1: Nios II DPX Architecture 1–17
Functional Blocks
0x0500 Level,
reset-on-read CID ticks monitor

32-bit indicators report the number of thread cycles (that is, clock
cycles / 8) taken for executing the task for the message with CID 0, the
last time a task executed. Monitoring the duration of processing for CID
0 is equivalent to monitoring the duration for any single CID. The
collected data is representative of the time taken to process a single
data item. Each item in the following list contains one 32-bit indicator:

■ 0x0500—Current value

■ 0x0504—Latched level value

■ 0x0508—Latched minimum value

■ 0x050A—Latched maximum value

Reading offset 0x0500 resets the minimum and maximum values. To
preserve the minimum and maximum values, use the indicator at offset
0x0D00.

0x0510 Level,
reset-on-read Free CID FIFO level

32-bit indicators monitor the CID free list level. Each item in the
following list contains one 32-bit indicator:

■ 0x0510—Current value

■ 0x0514—Latched level value

■ 0x0518—Latched minimum value

■ 0x051A—Latched maximum value

Reading offset 0x0510 resets the minimum and maximum values. To
preserve the minimum and maximum values, use the indicator at offset
0x0D10.

0x0520 Level,
reset-on-read

RX message queue
level

32-bit indicators monitor the RX message queue level. Each item in the
following list contains one 32-bit indicator:

■ 0x0520—Current value

■ 0x0524—Latched level value

■ 0x0528—Latched minimum value

■ 0x052A—Latched maximum value

Reading offset 0x0520 resets the minimum and maximum values. To
preserve the minimum and maximum values, use the indicator at offset
0x0D20.

0x0540 Level,
reset-on-read CID reorder level

32-bit indicators monitor the CID reorder queue fill level. Each item in
the following list contains one 32-bit indicator:

■ 0x0540—Current value

■ 0x0544—Latched level value

■ 0x0548—Latched minimum value

■ 0x054A—Latched maximum value

Reading offset 0x0540 resets the minimum and maximum values. To
preserve the minimum and maximum values, use the indicator at offset
0x0D40.

0x0D00 Level CID ticks monitor Same as 0x0500 except reading the current value does not reset
minimum and maximum values.

Table 1–3. Statistics Counters Memory Map (Part 2 of 3)

Byte
Offset Statistic Type Statistic Description
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

1–18 Chapter 1: Nios II DPX Architecture
Nios II DPX Clock Domains
Nios II DPX Clock Domains
Table 1–4 shows the clock domains for the Nios II DPX processor, along with the clock
signal name and interfaces in each domain. Each domain operates independently
with cross-clocking logic between domains. For information about each interface,
refer to “Nios II DPX Processor Interfaces” on page 1–21.

0x0D10 Level Free CID level Same as 0x0510 except reading the current value does not reset
minimum and maximum values.

0x0D20 Level RX message queue
level

Same as 0x0520 except reading the current value does not reset
minimum and maximum values.

0x0D40 Level CID reorder level Same as 0x0540 except reading the current value does not reset
minimum and maximum values.

Table 1–3. Statistics Counters Memory Map (Part 3 of 3)

Byte
Offset Statistic Type Statistic Description

Table 1–4. Nios II DPX Clock Domains

Domain Clock Signal Interfaces

Message message_clk
RX message interface, TX message interface, CID request
interface

Input context register context_in_clk Input context register interface

Output context register context_out_clk Output context register interface

MTP cpu_clk Fixed- and variable-latency data masters

Debug debug_clk Debug interface
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 1: Nios II DPX Architecture 1–19
Nios II DPX Processor Reset Signals
Nios II DPX Processor Reset Signals
Figure 1–6 shows an example reset block diagram for a Nios II DPX datapath
processor instantiated in Qsys.

Table 1–5 shows the external resets associated with Nios II DPX datapath processor.
All resets can be asserted asynchronously but must be de-asserted synchronous to
their clock domains.

Figure 1–6. Example Reset Block Diagram

User System Top -Level

Qsys
System

Nios II DPX

System
Reset

Request

CPU
Reset

Msg
Reset

CRi
Reset

CRo
Reset

CPU
Soft

Reset

Reset
Synchronizers
(automatically

Inserted by Qsys)

PLL
Lock

System
Reset

Nios II DPX Reset
Controller
MicroCore

S

Qsys reset
controller

S
External
Intelligent Host
Or Bootloader

M

Debug
Channel and

Transacto

M

Key

async_rst

QD

clk

Debug
Reset

Table 1–5. Nios II DPX Datapath Processor Reset Signals

Clock Signal Direction Description

cpu_rst_n input This reset is associated with the MTP clock domain and must be de-asserted
synchronous to cpu_clk signal.

message_rst_n input This reset is associated with the message clock domain and must be de-asserted
synchronous to the message_clk signal.

context_in_rst_n input This reset is associated with the input context register clock domain and must be
de-asserted synchronous to context_in_clk signal.

context_out_rst_n input This reset is associated with the output context register clock domain and must be
de-asserted synchronous to context_out_clk signal.

debug_rst_n Input This reset is driven by the debug channel and is associated with the debug clock
domain.

reset_request_n Output This reset is controlled through reset controller. The reset signal is synchronous to
debug_clk signal.

cpu_soft_reset internal
This reset is controlled through reset controller. The reset must be asserted while the
system_reset_request_n signal is asserted and after asserting other Nios II DPX
processor reset signals.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

1–20 Chapter 1: Nios II DPX Architecture
Nios II DPX Processor Reset Signals
The processor soft reset prevents the MTP from fetching instructions, which allows
the debugger (or an external host) to configure the Nios II DPX processor elements
such as the task address table and instruction memory. The processor soft reset must
be asserted only while the system reset request signal is asserted.

Reset Sequence with Debugger
Figure 1–7 shows a sample timing diagram for the example Qsys system shown in
Figure 1–6.

The following list describes the initial state of the system:

■ System reset is asserted.

■ PLL lock is not asserted.

■ All Nios II DPX processor reset input signals are asserted.

■ reset_request_n and cpu_soft_reset signals are not asserted.

The following sequence of events occurs at the lettered points in Figure 1–7 when the
system starts up:

A. System reset is de-asserted.

B. PLL lock is achieved.

C. Once system reset is de-asserted and PLL lock is achieved, the debug channel
releases the debug reset synchronous to the debug clock, allowing the host to
configure the debugger, including reading debug core status and ID registers, and
setting hardware breakpoints.

With the system reset de-asserted, the PLL lock achieved, and the
reset_request_n signal de-asserted, releasing the debug reset results in
de-asserting all other Nios II DPX processor reset signals. Because all reset inputs
are de-asserted, the Nios II DPX MTP starts fetching instructions and the debugger
can be configured.

Figure 1–7. Reset Sequence
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 1: Nios II DPX Architecture 1–21
Nios II DPX Processor Interfaces
D. The debugger writes to the reset controller to assert the reset_request_n signal.
Asserting the reset_request_n signal causes assertion of all Nios II DPX processor
reset input signals through external logic, typically inserted by Qsys. The
debug_rst_n signal remains de-asserted preserving the debug unit's state.

E. The debugger asserts cpu_soft_reset through the reset controller.

F. The debugger de-asserts the reset_request_n signal through the reset controller,
while keeping the cpu_soft_reset signal asserted. This prevents the MTP from
fetching and executing instructions, allowing the debugger to configure the
system and the Nios II DPX processor instruction memory and task address table.

G. Once configured, the debugger de-asserts the cpu_soft_reset signal allowing the
MTP to fetch instructions and begin operating normally.

Reset Considerations when Designing Outside of Qsys
When designing a system outside of Qsys, you must manually create all the logic
shown in Figure 1–6 as part of your top-level design. Consider the following points
when designing outside of Qsys:

■ All resets must be de-asserted synchronous to their clock domains.

■ External logic must ensure that all reset domains are carefully managed. For
example, resetting the MTP domain (the cpu_reset signal) without resetting the
MIU domain (the message_reset signal) can leave the system in an indeterminate
state.

■ The processor soft reset can only be asserted when asserting system reset request
and processor reset.

■ If the system requires configuration on power up, external logic must perform an
appropriate startup sequence similar to the following example:

a. Assert all resets on power-up.

b. De-assert all reset input signals once PLL lock is achieved.

c. Assert system reset request and processor soft reset in the reset controller.

d. De-assert reset request in the reset controller, and configure the system and
Nios II DPX processor.

e. De-assert processor soft reset.

Nios II DPX Processor Interfaces
This section describe the interfaces of the Nios II DPX datapath processor.

Interfaces
The Nios II DPX datapath processor has the following interfaces:

■ RX message interface—Avalon-ST sink interface allows receiving Avalon-ST PE
messages.

■ TX message source interface—Avalon-ST source interface allows transmission of
Avalon-ST PE messages.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

1–22 Chapter 1: Nios II DPX Architecture
Nios II DPX Processor Interfaces
■ CID Request interface—Allows an external entity, typically the input PE, to
request CIDs when generating a message for a new context.

■ Input context register interface—Write-only Avalon-MM slave interface allows an
external entity to write context-specific data into the input context registers.

■ Output context register interface—Read-only Avalon-MM slave interface allows
an external entity to retrieve context-specific data from the output context
registers.

■ Fixed- and variable-latency data masters—Allow the MTP to fetch data from
external memory referenced by your software tasks.

■ Thread information interface—Provides context specific information to partition
data memory for context-specific accesses over the fixed- and variable-latency
data masters.

■ Avalon-MM slave debug interface—Allows an external Avalon-MM master to
access the following modules within the Nios II DPX processor:

■ Instruction RAM for code download and configuration in systems without
debug enabled

■ Task address table

■ Statistics

■ Reset controller registers

■ Avalon-ST debug interfaces—Allow the Avalon-ST JTAG PHY to connect to the
debug module.

■ Debug channel in—Avalon-ST sink interface

■ Debug channel out—Avalon-ST source interface

RX Message Interface
The RX message interface is an Avalon-ST sink with zero ready latency operating in
the message clock domain. In your system, connect the interface to a message
interconnect or directly to the message interface of another PE.

Table 1–6 lists the RX message interface signals.

Table 1–6. RX Message Interface Signals

Signal (1) Width (Bits) Direction Description

ready 1 Output De-asserted by sink to prohibit a transfer.

valid 1 Input Asserted to activate a bus cycle.

startofpacket 1 Input Asserted on the first cycle of a packet.

endofpacket 1 Input Asserted on the last cycle of a packet.

data
RX message control
word width + 32 Input Message's data and control contents.

Notes to Table 1–6:

(1) In the RTL code, these signals have a message_in_ prefix.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 1: Nios II DPX Architecture 1–23
Nios II DPX Processor Interfaces
The upper bits of the data signal contain the control word. The control word is held
constant for the duration of the transfer. The control word layout is configurable when
instantiating the Nios II DPX datapath processor. For more information, refer to
“External Interfaces (advanced) Tab” on page 2–6.

The lower 32 bits of the data signal contain a 32-bit data argument. Data arguments
are loaded sequentially in the RX message registers starting from offset 0 and
transferred one argument per beat. The extension registers configuration, described in
“Extension Registers” on page 1–5, determines the maximum number of data
arguments to transfer.

Figure 1–8 shows the RX message interface timing.

TX Message Interface
The TX message interface is an Avalon-ST source with zero ready latency operating in
the message clock domain. In your system, connect the interface to a message
interconnect or directly to the message interface of another PE.

Table 1–7 lists the TX message interface signals.

The upper bits of the data signal contain the control word. The control word is held
constant for duration of the transfer. The control word layout is configurable when
instantiating the Nios II DPX datapath processor. For more information, refer to
“External Interfaces (advanced) Tab” on page 2–6.

Figure 1–8. RX Message Interface Timing Diagram

Table 1–7. TX Message Interface Signals

Signal (1) Width (Bits) Direction Description

ready 1 Input De-asserted by sink to prohibit a transfer.

valid 1 Output Asserted to activate a bus cycle.

startofpacket 1 Output Asserted on the first cycle of a packet.

endofpacket 1 Output Asserted on the last cycle of a packet.

data
TX message control
word width + 32 Output Message's data and control contents.

Notes to Table 1–7:

(1) In the RTL code, these signals have a message_out_ prefix.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

1–24 Chapter 1: Nios II DPX Architecture
Nios II DPX Processor Interfaces
The lower 32 bits of the data signal contain a 32-bit data argument. Data arguments
are loaded sequentially in the TX message registers starting from offset 0 and
transferred one argument per beat. The extension registers configuration, described in
“Extension Registers” on page 1–5, determines the maximum number of data
arguments to transfer. The actual number of data arguments to transfer is specified by
software as an argument in the snd and sndi instructions.

f For more information about software task sending options, refer to the snd instruction
in the MTP Instruction Set and Application Binary Interface chapter in the Nios II DPX
Software Development section of the Nios II DPX Datapath Processor Handbook.

Figure 1–9 shows the TX message interface timing.

CID Request Interface
The CID request interface is an Avalon-ST source with zero ready latency operating in
the message clock domain. The input PE uses this interface to request a CID to assign
to incoming data. This interface only exists when Number of context IDs is greater
than zero. For more information, refer to “Message Interface Unit Tab” on page 2–4.

Table 1–8 lists the CID request interface signals.

Figure 1–9. TX Message Interface Timing Diagram

Table 1–8. CID Request Interface Signals

Signal Width (Bits) Direction Description

cid_request_ready 1 Input Asserted to request a CID.

cid_request_valid 1 Output Asserted when CIDs are available. When de-asserted, no CIDs are
available.

cid_request_data
log2(number
of CIDs) Output This signal provides the CID value. This signal is only valid when

cid_request_valid is asserted.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-02.pdf
http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-02.pdf

Chapter 1: Nios II DPX Architecture 1–25
Nios II DPX Processor Interfaces
Figure 1–10 shows the CID request interface timing.

Input Context Register Interface
The input context register interface is a write-only Avalon-MM slave with zero wait
states operating in the input context register clock domain. In a typical system,
connect the interface to an Avalon-MM master port on your input PE.

This interface only exists when your extension register configuration includes input
context registers. For more information, refer to “Nios II DPX Datapath Processor
Tab” on page 2–1.

1 The input context register interface is configured as a byte-invariant big-endian
interface. For more information, refer to “Memory Addressing and Byte Order” on
page 1–37.

There is one bank of input context registers per CID. The extension registers
configuration, described in “Extension Registers” on page 1–5, determines the
number of registers per bank, with a maximum of 16 registers per bank. A 7-bit wide
byte address used to access the registers within each bank allows access to up to 128
bytes of input context register data. 128 bytes is more address space than is needed by
any of the extension register configurations, thus, allows for possible expansion in
future versions of the Nios II DPX datapath processor.

The input context register interface can support up to 128 bytes of input context
register storage. The register address is word-oriented. Therefore, the possible register
address widths are as shown in Table 1–9.

Figure 1–10. CID Request Interface Timing Diagram

Table 1–9. Input Context Register Address Widths

<CIDataWidth> (1) <CIRegAddrWidth> (2)

32 5

64 4

128 3

Notes to Table 1–9:

(1) <CIDataWidth> represents the number of bits in each input context register.
(2) <CIRegAddrWidth> represents the number of address bits required to address an input context register.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

1–26 Chapter 1: Nios II DPX Architecture
Nios II DPX Processor Interfaces
Table 1–10 lists the input context register interface signals.

The width of the input context register data bus determines how many 32-bit registers
at are accessible in the context_in_writedata signal in any one bus cycle. The
context_in_address signal determines which registers are accessed. Because the
input context register interface is configured as a byte-invariant big-endian interface,
the data on the context_in_writedata signal is byte swapped when the hardware
writes the data into the CRi registers. The following sections describe the three data
bus width options.

Table 1–10. Input Context Register Interface Signals

Signal Width (Bits) Direction Description

context_in_address
<CIDW> + <CIRegAddrWidth>

(1) (2) Input

This signal addresses the input context
registers (CRi). The MSBs contain a CID
and identify a bank of registers. The LSBs
identify the offset to the registers within
the bank.

context_in_write 1 Input

This signal indicates that the address and
data phase of a write cycle are in progress,
and that the context_in_address,
context_in_byteenable, and
context_in_writedata signals are all
valid.

context_in_byteenable
<CIDataWidth> / 8

(3) Input

This signal is used with write byte masks
during write cycles only. Writes to any
particular byte lane are ignored if the byte
enable is not asserted. The MTP treats the
input context registers as 32-bit registers
and only does 32-bit reads.

context_in_writedata
<CIDataWidth> = 32, 64, or 128

(3) Input

This signal supplies the data for a write
cycle. The data is valid only when the
context_in_write signal is asserted. At
other times, the data can change and is
ignored.

Notes to Table 1–10:

(1) <CIDW> represents the number of bits in a CID, calculated as log2(<number of CIDs>).
(2) <CIRegAddrWidth> represents the number of address bits required to address an input context register.

<CIRegAddrWidth> is defined in Table 1–9.
(3) <CIDataWidth> is determined by the Width of input context register data bus parameter, described in “Message Interface Unit Tab” on

page 2–4.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 1: Nios II DPX Architecture 1–27
Nios II DPX Processor Interfaces
Input Context Register Data Width = 32

When the width of input context register data bus is 32 bits, registers are accessed one
at a time. The least significant five bits of the context_in_address signal point to the
register to access from the specified context. Table 1–11 shows how the 32-bit data lane
maps to the CRi registers, where x is the value contained in
context_in_address[4:0]. The byte-enable signal, context_in_byteenable, can be
used to select individual bytes to update within the selected register.

The bit arrangement of the context_in_address signal with a 32-bit data bus is shown
in Table 1–12.

Input Context Register Data Width = 64

When the width of input context register data bus is 64 bits, registers are accessed two
at a time. The least significant four bits of context_in_address form an index to a pair
of registers for the specified context. Table 1–13 shows how the two 32-bit sections of
the 64-bit data lanes map to the CRi registers, where x is the value contained in
context_in_address[3:0]. For example, for context_in_address[3:0] = 0, the
context registers selected are CRi0 and CRi1. For context_in_address[3:0] = 1, the
context registers selected are CRi2 and CRi3. The byte-enable signal,
context_in_byteenable, can be used to select individual bytes to update within the
selected pair of registers.

Table 1–11. 32-Bit Data Lane Mapping

Byte Lane Context Register

context_in_writedata[7:0] CRi<x>[31:24]

context_in_writedata[15:8] CRi<x>[23:16]

context_in_writedata[23:16] CRi<x>[15:8]

context_in_writedata[31:24] CRi<x>[7:0]

Table 1–12. context_in_address with 32-Bit Words

<C
ID

W
>

+
5

... 5 4 ... 0

CID Register number

Table 1–13. 64-Bit Data Lane Mapping

Byte Lane Context Register

context_in_writedata[7:0] CRi<2x+1>[31:24]

context_in_writedata[15:8] CRi<2x+1>[23:16]

context_in_writedata[23:16] CRi<2x+1>[15:8]

context_in_writedata[31:24] CRi<2x+1>[7:0]

context_in_writedata[39:32] CRi<2x>[31:24]

context_in_writedata[47:40] CRi<2x>[23:16]

context_in_writedata[55:48] CRi<2x>[15:8]

context_in_writedata[63:56] CRi<2x>[7:0]
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

1–28 Chapter 1: Nios II DPX Architecture
Nios II DPX Processor Interfaces
The bit arrangement of the context_in_address signal with a 64-bit data bus is shown
in Table 1–14.

Input Context Register Data Width = 128

When the width of input context register data bus is 128 bits, registers are accessed
four at a time. The least significant three bits of context_in_address form an index to
a quartet of registers for the specified context. Table 1–15 shows how the four 32-bit
lanes of the 128-bit data bus map to the input context registers, where x is the value
contained in context_in_address[2:0]. For example, for context_in_address[2:0]
= 0, the context registers selected are CRi0, CRi1, CRi2, and CRi3. For
context_in_address [2:0] = 1, the context registers selected are CRi4, CRi5, CRi6, and
CRi7. The byte-enable signal, context_in_byteenable, can be used to select individual
bytes to update within the selected quartet of registers.

Table 1–14. context_in_address with 64-Bit Words

<C
ID

W
>

+
4

... 4 3 ... 0

CID (Register
number) / 2

Table 1–15. 128-Bit Data Lane Mapping

Byte Lane Context Register

context_in_writedata[7:0] CRi<4x+3>[31:24]

context_in_writedata[15:8] CRi<4x+3>[23:16]

context_in_writedata[23:16] CRi<4x+3>[15:8]

context_in_writedata[31:24] CRi<4x+3>[7:0]

context_in_writedata[39:32] CRi<4x+2>[31:24]

context_in_writedata[47:40] CRi<4x+2>[23:16]

context_in_writedata[55:48] CRi<4x+2>[15:8]

context_in_writedata[63:56] CRi<4x+2>[7:0]

context_in_writedata[71:64] CRi<4x+1>[31:24]

context_in_writedata[79:72] CRi<4x+1>[23:16]

context_in_writedata[87:80] CRi<4x+1>[15:8]

context_in_writedata[95:88] CRi<4x+1>[7:0]

context_in_writedata[103:96] CRi<4x>[31:24]

context_in_writedata[111:104] CRi<4x>[23:16]

context_in_writedata[119:112] CRi<4x>[15:8]

context_in_writedata[127:120] CRi<4x>[7:0]
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 1: Nios II DPX Architecture 1–29
Nios II DPX Processor Interfaces
The bit arrangement of the context_in_address signal with a 128-bit data bus is
shown in Table 1–16.

Input Context Register Interface Timing

Figure 1–11 shows the input context register interface timing.

Output Context Register Interface
The output context register interface is a read-only Avalon-MM slave with a two-cycle
read latency and zero wait states operating in the output context register clock
domain. In a typical system, connect the interface to the Avalon-MM master port on
your output PE.

This interface only exists when your extension register configuration includes output
context registers. For more information, refer to “Nios II DPX Datapath Processor
Tab” on page 2–1.

1 The output context register interface is configured as a byte-invariant big-endian
interface. For more information, refer to “Memory Addressing and Byte Order” on
page 1–37.

There is one bank of output context registers per CID. The extension registers
configuration, described in “Extension Registers” on page 1–5, determines the
number of registers per bank, with a maximum of 16 registers per bank. A 7-bit wide
byte address used to access the registers within each bank allows access to up to 128
bytes of output context register data. 128 bytes is more address space than is needed
by any of the extension register configurations, thus, allows for possible expansion in
future versions of the Nios II DPX datapath processor.

Table 1–16. context_in_address with 128-Bit Words

<C
ID

W
>

+
3

... 3 2 ... 0

CID
(Register
number)

/ 4

Figure 1–11. Input Context Register Timing Diagram
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

1–30 Chapter 1: Nios II DPX Architecture
Nios II DPX Processor Interfaces
The output context register interface can support up to 128 bytes of output context
register storage. The register address is word-oriented. Therefore, the possible register
address widths are as shown in Table 1–17.

Table 1–18 lists the output context register interface signals.

The width of output context register data bus determines how many 32-bit registers
are accessible in the context_out_readdata signal in any one bus cycle. The
context_out_address signal determines which registers are accessed. Because the
output context register interface is configured as a byte-invariant big-endian interface,
the data on the context_out_readdata signal is byte swapped when the hardware
writes the data into the CRo registers. The following sections describe the three data
bus width options.

Table 1–17. Output Context Register Address Widths

<CODataWidth> (1) <CORegAddrWidth> (2)

32 5

64 4

128 3

Notes to Table 1–9:

(1) <CODataWidth> represents the number of bits in each output context register.
(2) <CORegAddrWidth> represents the number of address bits required to address an output context register.

Table 1–18. Output Context Register Interface Signals

Signal Width (Bits) Direction Description

context_out_address
<CIDW> + <CORegAddrWidth>

(1) (2) Input

This signal addresses the output context
registers (CRo). The MSBs contain a CID
and select a bank of registers, and the
LSBs select the register within the bank.

context_out_read 1 Input

This signal initiates a read request from an
Avalon-MM master. This signal can be
permanently asserted because the output
context register interface has a two-cycle
read latency and zero wait states.

context_out_readdata
<CODataWidth> = 32, 64, or 128

(3) Output This signal supplies the data from the
addressed output context register.

Notes to Table 1–18:

(1) <CIDW> represents the number of bits in a CID, calculated as log2(<number of CIDs>).
(2) <CORegAddrWidth> represents the number of address bits required to address an output context register.

<CORegAddrWidth> is defined in Table 1–17.
(3) <CODataWidth> is determined by the Width of output context register data bus parameter, described in “Message Interface Unit Tab” on

page 2–4.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 1: Nios II DPX Architecture 1–31
Nios II DPX Processor Interfaces
Output Context Register Data Width = 32

When the width of output context register data bus is 32 bits, registers are accessed
one at a time. The least significant five bits of the context_out_address signal point to
the register to access from the specified context. Table 1–19 shows how the 32-bit data
lane maps to the CRo registers, where x is the value contained in
context_out_address[4:0].

The bit arrangement of the context_out_address signal with a 32-bit data bus is
shown in Table 1–20.

Output Context Register Data Width = 64

When the width of output context register data bus is 64 bits, registers are accessed
two at a time. The least significant four bits of context_out_address form an index to
a pair of registers for the specified context. Table 1–21 shows how the two 32-bit
sections of the 64-bit data lanes map to the CRo registers, where x is the value
contained in context_out_address[3:0]. For example, for
context_out_address[3:0] = 0, the context registers selected are CRo0 and CRo1. For
context_out_address[3:0] = 1, the context registers selected are CRo2 and CRo3.

Table 1–19. 32-Bit Data Lane Mapping

Byte Lane Context Register

context_out_readdata[7:0] CRo<x>[31:24]

context_out_readdata[15:8] CRo<x>[23:16]

context_out_readdata[23:16] CRo<x>[15:8]

context_out_readdata[31:24] CRo<x>[7:0]

Table 1–20. context_out_address with 32-Bit Words

<C
ID

W
>

+
5

... 5 4 ... 0

CID Register number

Table 1–21. 64-Bit Data Lane Mapping

Byte Lane Context Register

context_out_readdata[7:0] CRo<2x+1>[31:24]

context_out_readdata[15:8] CRo<2x+1>[23:16]

context_out_readdata[23:16] CRo<2x+1>[15:8]

context_out_readdata[31:24] CRo<2x+1>[7:0]

context_out_readdata[39:32] CRo<2x>[31:24]

context_out_readdata[47:40] CRo<2x>[23:16]

context_out_readdata[55:48] CRo<2x>[15:8]

context_out_readdata[63:56] CRo<2x>[7:0]
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

1–32 Chapter 1: Nios II DPX Architecture
Nios II DPX Processor Interfaces
The bit arrangement of the context_out_address signal with a 64-bit data bus is
shown in Table 1–22.

Output Context Register Data Width = 128

When the width of output context register data bus is 128 bits, registers are accessed
four at a time. The least significant three bits of context_out_address form an index
to a quartet of registers for the specified context. Table 1–23 shows how the four 32-bit
lanes of the 128-bit data bus map to the output context registers, where x is the value
contained in context_out_address[2:0]. For example, for
context_out_address[2:0] = 0, the context registers selected are CRo0, CRo1, CRo2,
and CRo3. For context_out_address[2:0] = 1, the context registers selected are CRo4,
CRo5, CRo6, and CRo7.

Table 1–22. context_out_address with 64-Bit Words

<C
ID

W
>

+
4

... 4 3 ... 0

CID (Register
number) / 2

Table 1–23. 128-Bit Data Lane Mapping

Byte Lane Context Register

context_out_readdata[7:0] CRo<4x+3>[31:24]

context_out_readdata[15:8] CRo<4x+3>[23:16]

context_out_readdata[23:16] CRo<4x+3>[15:8]

context_out_readdata[31:24] CRo<4x+3>[7:0]

context_out_readdata[39:32] CRo<4x+2>[31:24]

context_out_readdata[47:40] CRo<4x+2>[23:16]

context_out_readdata[55:48] CRo<4x+2>[15:8]

context_out_readdata[63:56] CRo<4x+2>[7:0]

context_out_readdata[71:64] CRo<4x+1>[31:24]

context_out_readdata[79:72] CRo<4x+1>[23:16]

context_out_readdata[87:80] CRo<4x+1>[15:8]

context_out_readdata[95:88] CRo<4x+1>[7:0]

context_out_readdata[103:96] CRo<4x>[31:24]

context_out_readdata[111:104] CRo<4x>[23:16]

context_out_readdata[119:112] CRo<4x>[15:8]

context_out_readdata[127:120] CRo<4x>[7:0]
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 1: Nios II DPX Architecture 1–33
Nios II DPX Processor Interfaces
The bit arrangement of the context_out_address signal with a 128-bit data bus is
shown in Table 1–24.

Output Context Register Interface Timing

Figure 1–12 shows the output context register interface timing. The context_out_read
signal is permanently asserted.

Fixed-Latency Data Master Interface
The fixed-latency data master interface is an Avalon-MM master with a two-cycle
read latency giving the MTP access to data memory and operates in the MTP clock
domain. In your system, connect this interface directly to each fixed-latency
peripheral and the data memory for the Nios II DPX processor.

1 The fixed-latency data master interface is configured as a byte-invariant big-endian
interface. For more information, refer to “Memory Addressing and Byte Order” on
page 1–37.

Table 1–25 lists the fixed-latency data master interface signals. The fixed-latency data
master does not have waitrequest and readdatavalid signals and instead expects the
readdata signal to be returned two cycles after the request is initiated.

Table 1–24. context_out_address with 128-Bit Words

<C
ID

W
>

+
3

... 3 2 ... 0

CID
(Register
number)

/ 4

Figure 1–12. Output Context Register Timing Diagram

Table 1–25. Fixed-Latency Data Master Interface Signals (Part 1 of 2)

Signal (1) Width (Bits) Direction Description

read 1 Output Indicates that the address phase of a read cycle is in progress and that the
address signal is valid. The data phase is exactly two cycles later.

write 1 Output Indicates that the address phase of a write cycle is in progress and that the
address, byteenable, and data signals are valid.

address Variable Output Byte address for the read or write signal.

readdata 32 Input Data supplied by the memory controller for read operations. The data phase is
exactly two cycles after the read signal is asserted.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

1–34 Chapter 1: Nios II DPX Architecture
Nios II DPX Processor Interfaces
This interface can be used in conjunction with the “Thread Information Interface” on
page 1–35 to partition memory for context-specific accesses.

1 Having multiple threads or processors accessing the same peripherals might create
contention. To avoid contention, consider using a mutex core or partitioning memory
based on thread or CID using the thread information interface.

Variable-Latency Data Master Interface
The variable-latency data master interface is an Avalon-MM master giving the MTP
access to data memory and operates in the MTP clock domain.

1 The variable-latency data master interface is configured as a byte-invariant big-endian
interface. For more information, refer to “Memory Addressing and Byte Order” on
page 1–37.

Table 1–26 lists the variable-latency data master interface signals.

This interface can be used in conjunction with the “Thread Information Interface” on
page 1–35 to partition memory for context-specific accesses.

writedata 32 Output
Supplies the write data for a write cycle. The data is valid only when the write
signal is asserted. At other times, the data can change and the signal must be
ignored.

byteenable 4 Output Byte masks for write cycles only. The memory controller must ignore writes for
a lane that does not have the corresponding byteenable signal asserted.

Note to Table 1–25:

(1) In the RTL code, these signals have a fixed_latency_data_master_ prefix.

Table 1–25. Fixed-Latency Data Master Interface Signals (Part 2 of 2)

Signal (1) Width (Bits) Direction Description

Table 1–26. Variable-Latency Data Master Interface Signals

Signal (1) Width (Bits) Direction Description

read 1 Output Indicates that the address phase of a read cycle is in progress and that the
address signal is valid.

write 1 Output Indicates that the address phase of a write cycle is in progress and that the
address, byteenable, and data signals are valid.

address Variable Output Byte address for the read or write signal.

waitrequest 1 Input Asserted by connected slaves or message interconnect to stall a read or write
operation.

readdatavalid 1 Input Indicates valid data has arrived.

readdata 32 Input Data supplied by the memory controller for read operations.

writedata 32 Output
Supplies the write data for a write cycle. The data is valid only when the write
signal is asserted. At other times, the data can change and the signal must be
ignored.

byteenable 4 Output Byte masks for write cycles only. The memory controller must ignore writes
for a lane that does not have the corresponding byteenable signal asserted.

Notes to Table 1–26:

(1) In the RTL code, these signals have a variable_latency_data_master_ prefix.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 1: Nios II DPX Architecture 1–35
Nios II DPX Processor Interfaces
Thread Information Interface
The thread information interface provides the thread number, CID, RXID, and TXID
associated with the software task performing a data access over the fixed- or
variable-latency data master. This information can be used to partition data memory
into segments based on context-specific information.

Table 1–27 lists the thread information interface signals.

The data on the threadinfo_data signal is arranged from the highest data pins to the
lowest as thread number, CID, RXID and TXID. The information is aligned on bit
boundaries defined by their widths when instantiating the Nios II DPX processor. For
more information, refer to “Message Interface Unit Tab” on page 2–4.

The variable-latency data master and fixed-latency data master have a corresponding
thread information interface.

Avalon-MM Debug Access Slave Interface
This interface is an Avalon-MM slave interface operating in the debug clock domain
that allows an external Avalon-MM master to access the debug addresses described in
“Debug Unit” on page 1–15. This interface only exists when Enable debug access
slave interface is on. For more information, refer to “Nios II DPX Datapath Processor
Tab” on page 2–1.

Table 1–27. Thread Information Interface Signals

Signal Width Direction Description

threadinfo_data Variable Output
Provides the thread number, CID, RXID, and TXID
associated with the software task performing a data
access.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

1–36 Chapter 1: Nios II DPX Architecture
Nios II DPX Processor Interfaces
Table 1–28 lists the debug access slave interface signals.

Avalon-ST Debug Interfaces
These debug interfaces are Avalon-ST interfaces operating in the debug clock domain
that allow multiple Nios II DPX datapath processors to connect to a single JTAG PHY
external to the Nios II DPX processor. These interfaces only exist when Enable
internal JTAG PHY is off and Enable debug unit is on. For more information, refer to
“Nios II DPX Datapath Processor Tab” on page 2–1.

Table 1–29 lists the debug channel in Avalon-ST sink interface signals.

Table 1–28. Avalon-MM Debug Access Slave Interface Signals

Signal (1) Width (Bits) Direction Description

read 1 Input Indicates that the address phase of a read cycle is in progress and that the
address signal is valid. The data phase is exactly two cycles later.

write 1 Input Indicates that the address phase of a write cycle is in progress and that the
address, byteenable, and data signals are valid.

address 21 Input Byte address for the read or write signal.

waitrequest 1 Output Asserted by connected slaves or message interconnect to stall a read or write
operation.

readdatavalid 1 Output Indicates valid data has arrived.

readdata 32 Output Data supplied by the memory controller for read operations. The data phase is
exactly two cycles after the read signal is asserted.

writedata 32 Input
Supplies the write data for a write cycle. The data is valid only when the write
signal is asserted. At other times, the data can change and the signal must be
ignored.

byteenable 4 Input Byte masks for write cycles only. The memory controller must ignore writes
for a lane that does not have the corresponding byteenable signal asserted.

Note to Table 1–28:

(1) In the RTL code, these signals have a debug_access_slave_ prefix.

Table 1–29. Avalon-ST Debug Channel In Interface Signals

Signal (1) Width (Bits) Direction Description

ready 1 Output De-asserted by source to prohibit a transfer.

valid 1 Input Asserted to activate a bus cycle.

channel 1 (2 in dual core) Input

When 0, selects Avalon packets to
transactions converter. When 1, selects
processor debug unit 1. When 2, selects
processor debug unit 2.

sop 1 Input Asserted on the first cycle of a packet.

eop 1 Input Asserted on the last cycle of a packet.

data 8 Input Message's data and control contents.

Notes to Table 1–29:

(1) In the RTL code, these signals have a debug_in_ prefix.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 1: Nios II DPX Architecture 1–37
Nios II DPX Processor Interfaces
Table 1–30 lists the debug channel out Avalon-ST source interface signals.

Memory Addressing and Byte Order
Information in this section applies to the following Nios II DPX datapath processor
interfaces:

■ “Input Context Register Interface” on page 1–25

■ “Output Context Register Interface” on page 1–29

■ “Fixed-Latency Data Master Interface” on page 1–33

■ “Variable-Latency Data Master Interface” on page 1–34

The memory-mapped interfaces on the Nios II DPX datapath processor follow the
Avalon-MM interface specification. The specification requires that a descending bit
order is used, with data bits 7 down to 0 representing byte offset 0 of any master or
slave port. This type of interface is often called little endian. Table 1–31 shows the byte
lane addresses for the Avalon-MM protocol.

f For more information about bit and byte ordering with Avalon-MM interfaces, refer to
the Avalon-MM Byte Ordering Considerations chapter of the Embedded Design Handbook.

The Nios II DPX datapath processor is commonly used in networking applications,
and network protocols are typically big-endian. For example, Table 1–32 shows an
extract from an IPv4 header.

Table 1–30. Avalon-ST Debug Channel Out Interface Signals

Signal (1) Width (Bits) Direction Description

ready 1 Input De-asserted by sink to prohibit a transfer.

valid 1 Output Asserted to activate a bus cycle.

channel 1 (2 in dual core) Output

When 0, selects Avalon packets to
transactions converter. When 1, selects
processor debug unit 1. When 2, selects
processor debug unit 2.

sop 1 Output Asserted on the first cycle of a packet.

eop 1 Output Asserted on the last cycle of a packet.

data 8 Output Message's data and control contents.

Notes to Table 1–30:

(1) In the RTL code, these signals have a debug_out_ prefix.

Table 1–31. Byte Lane Addresses for the Avalon-MM Protocol

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Address 3 Address 2 Address 1 Address 0

Table 1–32. Example IPv4 Header (Part 1 of 2)

Byte Address Description Sample Data

0 Version 0x45

1 DSCP 0x00
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

http://www.altera.com/literature/hb/nios2/MM_byte_ordering.pdf

1–38 Chapter 1: Nios II DPX Architecture
Nios II DPX Processor Interfaces
The ordering of the IPv4 header bytes poses a potential problem. When the software
view of memory from within the Nios II DPX matches the Avalon-MM interface view,
word and halfword access to this IPv4 packet would provide byte-swapped results.

The code and comments in Example 1–1 show the results of reading the example IPv4
header using a little endian processor, such as the Nios II processor.

To avoid this problem, the Nios II DPX datapath processor employs a byte-invariant
big-endian implementation, often referred to as BE-8. The Nios II DPX processor
provides an Avalon-MM compliant bus interface, but word and halfword accesses
swap the bytes in hardware.

The following code and code comments show the results of reading the example IPv4
header using a big-endian processor, such as the Nios II DPX datapath processor:

Read version (byte read from address 0 to r1)
ldb r1, 0(r0) # r1 = 0x45 CORRECT

Read total length (halfword read from address 2 to r2)
ldh r2, 2(r0) # r2 = 0x0100 CORRECT

Read source address (word read from address 12 to r3)
ldw r3, 12(r0) # r3 = 0xC0A80001 CORRECT

Table 1–33 shows the mapping between software accesses and Avalon-MM byte lanes
using the Nios II DPX datapath processor.

2 Total length (MS) 0x01

3 Total length (LS) 0x00

...

12 Source address (MS) 0xC0

13 Source address 0xA8

14 Source address 0x00

15 Source address (LS) 0x01

Example 1–1. Reading IPv4 Header with Little Endian Processor

Read version (byte read from address 0 to r1)
ldb r1, 0(r0) # r1 = 0x45 CORRECT

Read total length (halfword read from address 2 to r2)
ldh r2, 2(r0) # r2 = 0x0001 BACKWARDS

Read source address (word read from address 12 to r3)
ldw r3, 12(r0) # r3 = 0x0100A8C0 BACKWARDS

Table 1–33. Big-Endian Mapping (Part 1 of 2)

Instruction 31:24 23:16 15:8 7:0

//0xA0 -> 0
stb r1, 0(r0)

0xA0

//0xA1 -> 1
stb r2, 1(r0)

0xA1

Table 1–32. Example IPv4 Header (Part 2 of 2)

Byte Address Description Sample Data
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 1: Nios II DPX Architecture 1–39
Nios II DPX Processor Interfaces
Figure 1–13 shows a conceptual view of byte, halfword, and word memory accesses
using the Nios II DPX processor. The byte swapping shown occurs in hardware
between the Avalon-MM interface and the software representation.

//0xA2 -> 2
stb r3, 2(r0)

0xA2

//0xA3 -> 3
stb r4, 3(r0)

0xA3

//0xA0A1 -> 0
stb r5, 0(r0)

0xA1 0xA0

//A2A3 -> 2
stb r6, 2(r0)

0xA3 0xA2

//0xA0A1A2A3 -> 0
stb r7, 0(r0)

0xA3 0xA2 0xA1 0xA0

Figure 1–13. Byte Swapping in Hardware

Table 1–33. Big-Endian Mapping (Part 2 of 2)

Instruction 31:24 23:16 15:8 7:0
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

1–40 Chapter 1: Nios II DPX Architecture
Nios II DPX Processor Interfaces
Accessing Peripheral Registers
Accessing peripheral control and status registers using the Nios II DPX datapath
processor requires an extra step. As shown in Figure 1–14, word and halfword
accesses to these registers, byte-swapped by the hardware, need to be unswapped by
the software.

Table 1–34 lists macros, defined in byte_order.h, that provide one way to software
byte swap when accessing peripheral registers from C code.

However, when accessing peripheral registers, Altera recommends using the IORD
and IOWR macros described in Table 1–35. These macros, defined in io.h, implement
byte swapping when necessary.

Figure 1–14. Byte Swapping in Hardware

Table 1–34. Byte-Swapping Macros

Macro Description Behavior

SWAP_BE8_32(x)
Byte swaps a 32-bit value, yielding a 32-bit
result.

((x) << 24) & 0xff000000) |
((x) << 8) & 0x00ff0000) |
((x) >> 8) & 0x0000ff00) |
((x) >> 24) & 0x000000ff))

SWAP_BE8_16(x)
Byte swaps a 16-bit value, yielding a 16-bit
result.

((x) << 8) & 0xff00) |
((x) << 8) & 0x00ff) |

Table 1–35. Direct-Access Macros (Part 1 of 2)

Macro Description

IORD_32DIRECT(BASE,OFFSET) Reads from the 32-bit peripheral register at byte address
BASE + OFFSET and byte swaps the resulting data.

IORD_16DIRECT(BASE,OFFSET)
Reads from the 16-bit peripheral register at byte address
BASE + OFFSET and byte swaps the resulting data.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 1: Nios II DPX Architecture 1–41
Nios II DPX Datapath Processor Dual-Core Configuration
Nios II DPX Datapath Processor Dual-Core Configuration
You can configure the Nios II DPX with a dual MTP core. Figure 1–15 shows a
simplified Nios II DPX datapath processor block diagram configured with a dual core.

The dual-core configuration uses resources more efficiently over instantiating two
single-core Nios II DPX datapath processors. In particular, the on-chip instruction
memory and message buffers are shared.

The topology of the dual-core configuration differs from the single-core configuration
in the following ways:

■ The dual-core Nios II DPX datapath processor appears to software as a
Nios II DPX datapath processor with sixteen threads instead of eight. As incoming
messages initiate tasks, the tasks are allocated to one of the two processor cores.
When CIDs are used, tasks are allocated in alternation, with even CIDs assigned to
MTP 0 and odd CIDs to MTP 1.

■ Both MTP cores share the same instruction memory.

IORD_8DIRECT(BASE,OFFSET) Reads from the 8-bit peripheral register at byte address
BASE + OFFSET. No byte swap is required.

IOWR_32DIRECT(BASE,OFFSET) Byte swaps the 32-bit data value and writes the result to
the 32-bit peripheral register at byte address BASE +
OFFSET.

IOWR_16DIRECT(BASE,OFFSET)
Byte swaps the 16-bit data value and writes the result to
the 16-bit peripheral register at byte address BASE +
OFFSET.

IOWR_8DIRECT(BASE,OFFSET)
Writes the 8-bit data value to the 8-bit peripheral register at
byte address BASE + OFFSET. No byte swap is required.

Table 1–35. Direct-Access Macros (Part 2 of 2)

Macro Description

Figure 1–15. Nios II DPX Dual-Core Configuration Block Diagram

Nios-II DPX

Input
Context

Registers

Output
Context

Registers

Task
Table

S S

Message In
Sink

MM

Fixed-
Latency

Data
Master

Variable-
Latency

Data
Master

Message
Interface Unit

S

JTAG PHY

SLD
NodeInstruction

Memory
Internal
Context

Registers

Multithreaded
Processor

CID free-list

General
Purpose
Registers

Task Scheduler

Input
Context
Register
Slave

Output
Context
Register

Slave

Debug
Statistics

Message Out
Source

CID Request
Source

Transmit
Logic

Receive
Logic

Data Control

RX Msg
Queue

Sequence
Number
Reorder

FIFO

Transmit
Message
Registers

Receive
Message
Registers

CID
Reorder

FIFO

Debug
Units

Input
Context

Registers

Output
Context

Registers

MM

Fixed-
Latency

Data
Master

Variable-
Latency

Data
Master

Internal
Context

Registers

Processor

General
Purpose
Registers

Transmit
Message
Registers

Receive
Message
Registers

Debug
Slave

Reset
Controller

Multithreaded

Thread
Information

Thread
Information
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

1–42 Chapter 1: Nios II DPX Architecture
Loading Nios II DPX Software in a Deployed System
■ Data memory is a dual-port on-chip memory with a two-cycle read latency. On
each Nios II DPX MTP core, the fixed-latency master is connected to one port of
the dual-port memory.

■ Each of the two MTP cores provides its own fixed- and variable-latency data
masters. However, each MTP must have the same view of memory, typically by
connecting both master ports to each port of the dual-port memory.

Loading Nios II DPX Software in a Deployed System
During development, you typically load software into the Nios II DPX datapath
processor using the debugger. Deployed systems need a different approach. The
following approaches load the software without the debugger:

■ Include the software in the .sof file, including the instruction memory, task table,
and initial data memory contents. With this approach, the software can only be
changed by providing a new .sof file.

■ Load the software from flash memory through external circuitry connected to the
debug access slave interface.

The following procedure is an example of the steps required when using the debug
access slave to load the software in a deployed system:

1. Assert the system reset request by writing to the reset controller using the debug
access slave.

2. Assert the processor soft reset by writing to the reset controller using the debug
access slave.

3. Release the system reset request by writing to the reset controller using the debug
access slave.

4. Preload any data sections (such as .rwdata or .rodata) into data memory. The
debug access slave does not provide access to data memory, so you need to devise
a suitable scheme. In a single core system, you might connect the second port of
the data memory as another slave on the same bus as the debug access slave. In a
dual core system, or in other systems where both ports of the data memory are
used, you might create a two-stage bootloader for the Nios II DPX processor to
program data memory before loading the deployed software.

5. Program the instruction memory using the debug access slave.

6. Program the task table using the debug access slave.

7. Release the processor soft reset by writing to the reset controller using the debug
access slave.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

May 2011 Altera Corporation
2. Instantiating the Nios II DPX Datapath
Processor
This chapter provides information for instantiating the Nios II DPX processor as part
of a Qsys system, or for export as a stand-alone component.

Instantiating for a Qsys System
The parameter editor GUI in Qsys allows you to specify parameters for each
Nios II DPX datapath processor in your system. To instantiate the processor in your
Qsys design, perform the following steps:

1. On the Tools menu in the Quartus® II software, click Qsys.

2. On the Component Library tab in Qsys, expand Processors.

3. Double-click Nios II DPX Datapath Processor.

Parameter Settings
The Nios II DPX Datapath Processor parameter editor has several tabs. The following
sections describe the settings available on each tab.

Nios II DPX Datapath Processor Tab
The Nios II DPX Datapath Processor tab lists the main settings for configuring the
Nios II DPX datapath processor. Table 2–1 lists the parameters, their possible values,
and their descriptions.

Table 2–1. Nios II DPX Datapath Processor Tab Parameters (Part 1 of 2)

Name Values Description

Nios II DPX configuration

Enable dual-core mode On/Off Enables dual MTPs in the Nios II DPX datapath processor.

PEID 0 - 63

Specifies the processing element ID (PEID) of the Nios II DPX datapath
processor. This value is placed in the source field of the control word for
outgoing messages. Make sure the PEID is within the range of the source
and destination fields of message format and message interconnect.

Enable debug unit On/Off

Enables the debug unit, which provides common debug capabilities such
as hardware breakpoints and single-stepping. The debug unit provides a
mechanism to read and write registers, instruction memory, and data
memory.

Enable internal JTAG PHY On/Off

Includes an internal JTAG PHY in the Nios II DPX datapath processor.
When the internal JTAG PHY is not included, an external JTAG PHY
interface is provided. Disabling this option allows multiple Nios II DPX
datapath processors to use a shared JTAG PHY.

Enable debug access
slave interface On/Off

Enables an Avalon-MM Slave interface which provides access to the
Instruction memory, the task address table, the statistics collector, and the
reset controller.

Bytes of program memory 0 - 4 MB Configures the size of the program memory for the MTP in bytes.
Nios II DPX Datapath Processor Handbook

Chapter 2: Instantiating the Nios II DPX Datapath Processor 2–2
Instantiating for a Qsys System
Table 2–2 shows the available extension register configurations.

1 When referring to extension registers, software normally uses mnemonic names such
as rx0, rather than physical names such as r32. Physical extension register names are
available only in assembly language.

Nios II DPX extension register configuration

Extension register
configuration

Configuration 0 -
Configuration 14

Specifies how to allocate the 32 extension registers. Refer to Table 2–2 for
the available configurations.

Number of message
registers

Refer to
Table 2–2.

Displays the number of extension registers allocated as message registers
based on the specified Extension register configuration.

Number of internal
context registers

Refer to
Table 2–2.

Displays the number of extension registers allocated as internal context
registers based on the specified Extension register configuration.

Number of input/output
context registers

Refer to
Table 2–2.

Displays the number of extension registers allocated as input/output
context registers based on the specified Extension register configuration.

Table 2–1. Nios II DPX Datapath Processor Tab Parameters (Part 2 of 2)

Name Values Description

Table 2–2. Extension Register Configurations

Configuration Registers per RX/TX
Message Register Bank

Registers per Internal
Context Register Bank

Registers per
Input/Output Context

Register Bank

0 (default) 8 r32-r39 16 r40-r55 8 r56-r63

1 8 r32-r39 8 r40-r47 16 r48-r63

2 16 r32-r47 8 r48-r55 8 r56-r63

3 16 r32-r47 16 r48-r63 0

4 16 r32-r47 0 16 r48-r63

5 32 r32-r63 0 0

6 8 r32-r39 0 0

7 8 r32-r39 0 8 r40-r47

8 8 r32-r39 0 16 r40-r55

9 8 r32-r39 8 r40-r47 0

10 8 r32-r39 8 r40-r47 8 r48-r55

11 8 r32-r39 16 r48-r63 0

12 16 r32-r47 0 0

13 16 r32-r47 0 8 r40-r55

14 16 r32-r47 8 r48-r55 0
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

Chapter 2: Instantiating the Nios II DPX Datapath Processor 2–3
Instantiating for a Qsys System
Multithreaded Processor Tab
The Multithreaded Processor tab lists the settings for configuring the Nios II DPX
MTP. Table 2–3 lists the parameters, their possible values, and their descriptions.

Table 2–3. Multithreaded Processor Tab Parameters

Name Values Description

Vector address

Custom
reset/exception/debug
vector offsets

On/Off Allows you to specify your own reset, exception, and debug addresses.

Custom exception address
offset Variable The customized offset address in the instruction memory for the exception

vector for all threads.

Exception address Variable The instruction memory base address plus the exception address offset.
This field is read-only.

Custom break address
offset Variable The customized offset address in the Instruction memory for the break

address for all threads.

Break address Variable The instruction memory base address plus the break address offset. This
field is read-only.

Custom reset address
offset Variable

The initial PC used for all threads on their first cycle when reset is
de-asserted. Make sure the customized offset address resides in
instruction memory space and is the first word address in the program
memory.

Reset address Variable The instruction memory base address plus the reset address offset. This
field is read-only.

Data master

Data master byte address
bit width 8 - 31 Specifies the bit width for the fixed- and variable-latency data master

byte-addressable address bus.

Enable variable-latency
data master On/Off

Enables the variable-latency data master, allowing the MTP to access
peripherals which do not have a guaranteed read latency of 2 or that are
shared.

The variable-latency data master accesses all addresses outside the range
defined for the fixed-latency data master, defined by fixed-latency data
master low address and fixed-latency data master high address.

Fixed-latency data master
low address Variable Defines the lower boundary for fixed-latency data master address range.

Fixed-latency data master
high address Variable Defines the upper boundary for fixed-latency data master address range.

Enable data master
threadinfo interface On/Off

Enables an external Avalon-ST signal to be used with the fixed- and
variable-latency data masters that provide the thread number, CID, RXID,
and TXID associated with the software task performing the data access.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

Chapter 2: Instantiating the Nios II DPX Datapath Processor 2–4
Instantiating for a Qsys System
Message Interface Unit Tab
The Message Interface Unit tab lists the main settings for configuring the Nios II DPX
MIU. Table 2–4 lists the parameters, their possible values, and their descriptions.

Table 2–4. Message Interface Unit Tab Parameters (Part 1 of 2)

Name Values Description

Message unit configuration

Context ID ordering
enforcement On/Off Includes logic for CID order enforcement. CID order enforcement is under

software control.

Context ID allocation
support On/Off

Enables the CID allocation support, allowing the MTP to request additional
CIDs using the cidalloc command. Turning this option off disables the
cidalloc command.

Number of reserved
context IDs for allocation
(per processor core)

Variable

If CID allocation support is enabled, specifies how many of the available
CIDs can be allocated using the cidalloc command. The specified
number of CIDs is reserved for each processor core. The total number of
reserved CIDs is reported in Total number of reserved context IDs for
allocation.

Sequence number
ordering enforcement On/Off Includes logic for sequence number order enforcement. Sequence number

order enforcement is under software control.

Advanced receive
ID/transmit ID
Management

On/Off Allows you to alter the default number of RX and TX message register
banks available in the system.

Number of context IDs 0 - 255
Specifies the maximum number of context IDs available in the system.
The width of the Context ID field in the message format is based on this
parameter.

Number of receive IDs 0 - 255
Specifies the maximum number of RX message register banks available in
the system. When set to zero, RXIDs are disabled and the RX message
registers are indexed by the CID.

Number of transmit IDs 0 - 255
Specifies the maximum number of TX message register banks available in
the system. When set to zero, TXIDs are disabled and the TX message
registers are indexed by the CID.

Number of destination IDs 0 - 255
Specifies the maximum number of destination IDs available in the system.
The width of the destination field in the message format is based on
this parameter.

Number of output task IDs 0 - 255
Specifies the maximum number of output task IDs available in the system.
The width of the output task field in the message format is based on this
parameter.

Number of source IDs 0 - 255
Specifies the maximum number of source IDs available in the system. The
width of the source field in the message format is based on this
parameter.

Number of input task IDs 0 - 255
Specifies the maximum number of input task IDs available in the system.
The width of the input task field in the message format and the number
of entries in the task address table are based on this parameter.

Number of flag bits 0 - 255
This parameter indicates the total number of flag bits supported and
available in the message_flags extended control register. The width of
the flag field in the message format is based on this parameter.

Number of sequence
numbers 0 - 255 When Sequence number ordering enforcement is on, specifies the

maximum number of sequence numbers available in the system.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

Chapter 2: Instantiating the Nios II DPX Datapath Processor 2–5
Instantiating for a Qsys System
Memory Options (advanced) Tab
The Memory Options tab lists the settings for configuring the Nios II DPX datapath
processor memory. Table 2–1 lists the parameters, their possible values, and their
descriptions.

Bit offset of debug flag 0 to flags field
width –1

Specifies the location of the debug flag in the flags field of the PE
message format control word.

Number of user message
bits Variable Specifies the number of bits in the user message field of the PE message

format control word.

Width of input context
register data bus 32, 64, 128 Specifies the width of the input context register data bus.

Width of output context
register data bus 32, 64, 128 Specifies the width of the output context register data bus.

Table 2–4. Message Interface Unit Tab Parameters (Part 2 of 2)

Name Values Description

Table 2–5. Nios II DPX Datapath Processor Tab Parameters (Part 1 of 2)

Name Values Description

Nios II DPX RAM configuration

Instruction memory
initialization filename (1) ASCII, no spaces Specifies the name of the Hexadecimal (Intel-Format) File (.hex) for

initializing the memories in your system during simulation and synthesis.

Expected instruction
memory initialization file Read-only Displays the expected file specified by Instruction memory initialization

filename.

Instruction memory type Varies by device Specifies the type of instruction memory to use.

Task memory initialization
filename (1) ASCII, no spaces Specifies the name of the task memory initialization file to use for

simulation and synthesis.

Expected task memory
initialization file Read-only Displays the expected file specified by Task memory initialization

filename.

Task memory type Varies by device Specifies the type of memory to use for the task address table.

Message unit RAM configuration

Receive message register
memory type Varies by device Specifies the type of memory to use for the RX message registers.

Transmit message
register memory type Varies by device Specifies the type of memory to use for the TX message registers.

Input context register
memory type Varies by device Specifies the type of memory to use for the input context registers.

Output context register
memory type Varies by device Specifies the type of memory to use for the output context registers.

Context register memory
type Varies by device Specifies the type of memory to use for the internal context registers.

Sequence number FIFO
memory ram block type Varies by device Specifies the type of memory to use for the sequence number FIFO

memory ram block.

Note to Table 2–5:

(1) These parameters might be important in a multiprocessor system. If the processors are intended to run different software, you must select
distinct instruction and task memory initialization filenames. Otherwise, when the software tools generate memory initialization files for one
processor, they might overwrite the initialization files for another processor.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

Chapter 2: Instantiating the Nios II DPX Datapath Processor 2–6
Instantiating for a Qsys System
External Interfaces (advanced) Tab
The External Interfaces tab allows you to configure the control word in your message
format by assigning the base location of each control word field. Each field’s width is
determined by the next field's base location, with the destination field's width
determined by the control word width. To remove a field, set the next field's base
location to the same value, making the width equal to zero.

1 The default values are sufficient for most systems without adjustment.

Table 2–6 shows the Nios II DPX default PE message format control word fields and
field widths.

f For more information about PE message formats, refer to the Message Format chapter
of the Altera Event-Driven Datapath Processing Design Handbook.

Context ID FIFO memory
ram block type Varies by device Specifies the type of memory to use for the context ID FIFO memory ram

block.

Receive message register
memory ram block type Varies by device Specifies the type of memory to use for the receive message register

memory ram block.

Transmit message
register memory ram
block type

Varies by device Specifies the type of memory to use for the transmit message register
memory ram block.

Receive ID queue memory
ram block type Varies by device Specifies the type of memory to use for the RXID queue memory ram

block.

Transmit ID queue
memory ram block type Varies by device Specifies the type of memory to use for the TXID queue memory ram

block.

Transmit message
controller FIFO memory
ram block type

Varies by device Specifies the type of memory to use for the transmit message controller
FIFO memory ram block.

Table 2–5. Nios II DPX Datapath Processor Tab Parameters (Part 2 of 2)

Name Values Description

Note to Table 2–5:

(1) These parameters might be important in a multiprocessor system. If the processors are intended to run different software, you must select
distinct instruction and task memory initialization filenames. Otherwise, when the software tools generate memory initialization files for one
processor, they might overwrite the initialization files for another processor.

Table 2–6. Default PE Message Control Word

32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

destination source taskid CID

fl
ag
s

May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

http://www.altera.com/literature/hb/nios2dpx/hb_datapath_processing.pdf

Chapter 2: Instantiating the Nios II DPX Datapath Processor 2–7
Instantiating for a Qsys System
The External Interfaces tab lists the settings for configuring the Nios II DPX datapath
processor PE message format. Table 2–7 lists the parameters, their possible values,
and their descriptions.

Table 2–7. External Interfaces Tab Parameters (Part 1 of 2)

Name Values Description

Receive message interface

Receive message control
word width Variable Specifies the width in bits of the RX message control word.

Receive message control
destination base

0 to RX message
control word
width –1

Specifies the bit offset of the destination field in the RX message
control word. The width of the field is controlled by the Number of
destination IDs parameter on the Message Interface Unit tab.

Receive message control
source base

0 to RX message
control word
width –1

Specifies the bit offset of the source field in the RX message control
word. The width of the field is controlled by the Number of destination
IDs parameter on the Message Interface Unit tab.

Receive message control
input task ID base

0 to RX message
control word
width –1

Specifies the bit offset of the input task field in the RX message control
word. The width of the field is controlled by the Number of input task IDs
parameter on the Message Interface Unit tab.

Receive message control
context ID base

0 to RX message
control word
width –1

Specifies the bit offset of the CID field in the RX message control word.
The width of the field is controlled by the Number of context IDs
parameter on the Message Interface Unit tab.

Receive message control
flag bits base

0 to RX message
control word
width –1

Specifies the bit offset of the flags field in the RX message control word.
The width of the field is controlled by the Number of flag bits parameter
on the Message Interface Unit tab.

Receive message control
user message bits base

0 to RX message
control word
width –1

Specifies the bit offset of the user field in the RX message control word.
The width of the field is controlled by Number of user message bits on
the Advanced Options tab.

Transmit message interface

Transmit message control
has same settings as
receive message control

On/Off When on, the RX message control word parameter values are also used
for the TX message control word.

Transmit message control
word width Variable Specifies the width in bits of the TX message control word.

Transmit message control
destination base

0 to TX message
control word
width –1

Specifies the bit offset of the destination field in the TX message
control word. The width of the field is controlled by the Number of
destination IDs parameter on the Message Interface Unit tab.

Transmit message control
source base

0 to TX message
control word
width –1

Specifies the bit offset of the source field in the TX message control
word. The width of the field is controlled by the Number of source IDs
parameter on the Message Interface Unit tab.

Transmit message control
input task ID base

0 to TX message
control word
width –1

Specifies the bit offset of the input task field in the TX message control
word. The width of the field is controlled by the Number of input task IDs
parameter on the Message Interface Unit tab.

Transmit message control
context ID base

0 to TX message
control word
width –1

Specifies the bit offset of the CID field in the TX message control word.
The width of the field is controlled by the Number of context IDs
parameter on the Message Interface Unit tab.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

Chapter 2: Instantiating the Nios II DPX Datapath Processor 2–8
Instantiating for a Qsys System
Debug Statistics Tab
The Debug Statistics tab lists the settings for configuring the Nios II DPX statistics
collector. Table 2–8 lists the parameters, their possible values, and their descriptions.

Transmit message control
flag bits base

0 to TX message
control word
width –1

Specifies the bit offset of the flags field in the TX message control word.
The width of the field is controlled by the Number of flag bits parameter
on the Message Interface Unit tab.

Transmit message control
user message bits base

0 to TX message
control word
width –1

Specifies the bit offset of the user field in the TX message control word.
The width of the field is controlled by Number of user message bits on
the Advanced Options tab.

Table 2–7. External Interfaces Tab Parameters (Part 2 of 2)

Name Values Description

Table 2–8. Debug Statistics Tab Parameters (Part 1 of 2)

Name Values Description

Statistics and debug counters

Enable debug statistics On/Off Enables the debug statistics collector, allowing monitoring of the MTP and
MIU.

Enable processor
instruction counters On/Off

Enables counting of the number of instructions executed of the following
types:

■ Load

■ Store

■ Arithmetic/Logic

■ Compare/Branch

■ Call

■ Exit

■ Send

■ Other

Enable processor stats for
context ID On/Off

Count

Unavailable in dual-core mode

Enable processor stats for
input task ID On/Off When on, causes the statistics collector to count the number of times

tasks were executed for each Task ID up to 64 Task IDs

Enable processor stats for
output task On/Off Enables counting of the number of PE messages sent for each of the first

64 task IDs

Enable processor stats for
task ticks On/Off

Enables counting of the number of clock cycles taken for running the
previous task from start to completion for each of the first 64 task IDs.
These counters are not cumulative; they reset each time a new task runs.

Enable message interface
unit level count for
processing cycles on CID
0

On/Off
Enables counting of the number of clock cycles taken for running the
previous task from start to completion for the PE message with CID = 0.
These counters are not cumulative; they reset each time a new task runs.

Enable message interface
unit level count stats for
free context ID FIFO

On/Off Enables monitoring of the current, maximum, and minimum levels of the
free CID FIFO.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

Chapter 2: Instantiating the Nios II DPX Datapath Processor 2–9
Instantiating for a Qsys System
Advanced Options Tab
The Advanced Options tab lists the settings for configuring the Nios II DPX datapath
processor advanced options. Table 2–9 lists the parameters, their possible values, and
their descriptions.

Enable message interface
unit level count stats for
input task queue

On/Off Enables monitoring of the current, maximum, and minimum levels of the
input task queue.

Enable message interface
unit level count stats for
output task queue

On/Off Enables monitoring of the current, maximum, and minimum levels of the
output task queue.

Enable message interface
unit level count stats for
CID reordering level

On/Off Enables monitoring of the current, maximum, and minimum levels of the
CID reorder queue.

Enable message interface
unit level count stats for
sequence number
message reorder level

On/Off
When Sequence number ordering enforcement on the Message
Interface Unit tab is on, enables monitoring of the current, maximum, and
minimum levels of the sequence number reorder queue.

Table 2–8. Debug Statistics Tab Parameters (Part 2 of 2)

Name Values Description

Table 2–9. Advanced Options Tab Parameters

Name Values Description

Advanced option configuration

Assign CPUID control
register value manually On/Off

Enables manually assigning the read-only value of the cpuid control
register. When this option is off, the cpuid control register is set to the
PEID.

Custom CPUID control
register value 32-bit number Specifies the value for the cpuid control register.

Actual CPUID control
register value 32-bit number

When Assign CPUID control register value manually is on, displays the
value for the cpuid control register. When off, displays the default value
for the cpuid control register.

In dual-core Nios II DPX processor systems, each MTP has the same
cpuid.

Enable insert instruction On/Off Enables the Nios II DPX processor insert instruction.

Enable message interface
control register On/Off Enables the extended control registers used by the MIU, namely,

message_flags, message_user, message_id0, and message_id1.

Context register indexing
mode

per CID, per
thread Specifies the operating mode of the context registers.

Sequence number FIFO
implementation

Logic Element,
FIFO Specifies the location of the sequence number FIFO.

Thread argument pipeline
implementation

Logic Element,
RAM Specifies the location of the thread argument pipeline.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

Chapter 2: Instantiating the Nios II DPX Datapath Processor 2–10
Instantiating for a Stand-Alone System
Instantiating for a Stand-Alone System
You can generate a Nios II DPX processor core in Qsys with all connections exported,
and then connect the processor manually in HDL. To instantiate a Nios II DPX
processor for a stand-alone system, perform the following steps:

1. On the Tools menu in the Quartus II software, click Qsys.

2. On the File menu in Qsys, click New System.

3. On the System Contents tab, perform the following steps:

a. Remove the default clock component.

b. Use the instantiation steps and parameter settings in “Instantiating for a Qsys
System” on page 2–1 to add a Nios II DPX datapath processor from the
component library.

c. Click Filters and select All from the Filter list to provide access to all ports.

d. In the Export As column, click Click to export in each row to export all
interfaces.

e. Optionally rename any of the interfaces to match your system design.

4. On the File menu, click Save As, enter a name for your system and save.

5. On the Generation tab, perform the following steps:

a. Select the simulation and synthesis files you want to generate.

b. Specify the output directory.

c. Click Generate.

Qsys generates a system you can connect manually in HDL. For information about the
Nios II DPX interfaces, refer to “Nios II DPX Processor Interfaces” on page 1–21.

f For more information about stand-alone systems, refer to the Getting Started with the
Graphical User Interface chapter in the Nios II DPX Software Development section of the
Nios II DPX Datapath Processor Handbook.

Nios II DPX Context Address Adapter
Using the thread information interface, data memory can be optionally indexed by
CID, thread number, RXID, or TXID. The Nios II DPX Context Address Adapter
expands the address bus with additional thread information, allowing access to
standard memory-mapped components in a context specific way.

In Qsys, the Nios II DPX Context Address Adapter parameter editor is available on
the Component Library tab under the Processor Additions category. Table 2–10
shows the Nios II DPX Context Address Adapter parameters available in the
parameter editor.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-02.pdf

Chapter 2: Instantiating the Nios II DPX Datapath Processor 2–11
Nios II DPX Context Address Adapter
Table 2–10. Nios II DPX Context Address Adapter Parameters

Name Value Description

General

Address Mode Varies Displays the composition result of the output signal.

Address Indexing Using Thread Info

Index Thread Info in address On/Off Index bits of the thread information signal as part of the address.

Thread Info subsection LSB
bit 0 to 31

LSB of the thread information signal to extract and put into the address.
This parameter is ignored when Index Thread Info in address is not
enabled.

Thread Info subsection MSB
bit 0 to 31

MSB of the thread information signal to extract and put into the address.
This parameter is ignored when Index Thread Info in address is not
enabled.

Thread Info subsection
address bit position 0 to 31

Bit offset where address bits start being replaced with the specified thread
information subsection. This bit position is relative to the in_address bit
position.

Thread Info bits inserted

Thread Info Avalon-ST Sink Interface

Thread Info data width 1 to 32 Bus width of Avalon-ST sink port.

Thread Info Termination with static value

Static Thread Info On/Off Enables terminate thread information Avalon-ST sink port with a static
value.

Thread Info static value 0x00000000
-0xFFFFFFFF Static value used to terminate thread information Avalon-ST sink port.

Static Thread Info value

Avalon-MM Master and Slave Interfaces

Use read On/Off Enable read signal for all Avalon-MM interfaces.

Use readdata On/Off Enable readdata signal for all Avalon-MM interfaces.

Use write On/Off Enable write signal for all Avalon-MM interfaces.

Use writedata On/Off Enable writedata signal for all Avalon-MM interfaces.

Use byteenable On/Off Enable byteenable signal for all Avalon-MM interfaces.

Use readdatavalid On/Off Enable readdatavalid signal for all Avalon-MM interfaces.

Use waitrequest On/Off Enable waitrequest signal for all Avalon-MM interfaces.

Slave read latency 0 to 63 Read latency for Avalon-MM slave.

Maximum pending read 0 to 64 Maximum pending read for the Avalon-MM In slave.

Slave address width On/Off Address extension Avalon-MM slave address width.

Slave data width
8, 16, 32, 64,
128, 256,
512, 1024

Avalon-MM data width.

Slave byteenable width Varies Displays the width of the byte enable portion of Slave data width.

Master address width Varies Displays the total width of the slave address bus and the inserted thread
information bits.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

2–12 Chapter 2: Instantiating the Nios II DPX Datapath Processor
Nios II DPX Context Address Adapter
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

May 2011 Altera Corporation
3. System Verification
The Nios II DPX datapath processor is an event-driven multithreaded processor. The
DPX datapath processor processes external events, and can delegate processing tasks
to other PEs in the system. Hence debugging or verifying a Nios II DPX datapath
processor solution requires system-level debugging and verification strategies.

This chapter presents the following strategies for performing system-level debug and
verification of Nios II DPX datapath processor systems:

■ Register transfer level (RTL) simulation

■ Packet debug for a complete input-to-output context processing debug and
verification

■ Tools for debugging and verifying custom PEs

RTL Simulation
RTL simulation is a powerful means of debugging the interaction between the
Nios II DPX datapath processor and various PEs in a system. RTL simulation of a
Nios II DPX processor system requires the following steps:

■ Generate a Verilog HDL simulation model of your Qsys system.

■ Create a suitable testbench which exercises your design.

■ Build your Nios II DPX software project, and generate .hex files for initializing the
memories in your system at the beginning of your simulation.

■ Create a simulation script that builds and runs your simulation.

■ Debug your simulation by examining generated waveforms.

The following sections describe how to carry out these steps using the ModelSim®
simulator and the Altera Complete Design Suite.

Simulation Model, Testbench and Initialization Files
You create your Nios II DPX simulation model and testbench using the steps that
apply to any Qsys design.

f Refer to “Qsys Design Flow” in the Creating a System with Qsys chapter in Volume 1 of
the Quartus II Handbook.

You create memory initialization files using the Nios II SBT for Eclipse.

f Refer to “Memory Initialization Files” on page 6–46.
Nios II DPX Datapath Processor Handbook

http://www.altera.com/literature/hb/qts/qsys_section.pdf

Chapter 3: System Verification 3–2
Performance Monitoring
Create a Simulation Script for ModelSim
The following command can be added to a ModelSim do script to compile your
Nios II DPX processor Qsys system:

vlog -sv <path to Qsys file>/my_system/sim_verilog/my_system.v \
+libext+.v +libext+.sv +libext+.vo \
+incdir+<path to Qsys file>/my_system/sim_verilog/submodules \
-y <path to Qsys file>/my_system/sim_verilog \
-y <path to Qsys file>/my_system/sim_verilog/submodules \
-y <path to Qsys file>/my_system/sim_verilog/submodules/mentor \
-y <path to Qsys file>/my_system/sim_verilog/submodules/common

1 You might also wish to enhance this script to automatically copy the .hex files from
the mem_init directory.

Record Suitable Waveforms
In addition to the input and output signals of the Nios II DPX core, you can add
additional signals that allow you to monitor the program counter of your Nios II DPX
processor. Use this information in conjunction with disassembly of your program to
monitor the flow of your program in an RTL simulation. A suitable disassembly is
provided in the .objdump file in the directory where you built your software.

For single-core systems, add the following signals from the Nios II DPX processor
core top level:

■ message_unit_thread_dispatch_channel

■ nios2dpx_mtp_processor_0_fixed_latency_instruction_master_address

■ nios2dpx_mtp_processor_0_fixed_latency_instruction_master_readdata

1 The message_unit_thread_dispatch_channel signal contains the thread number
associated with the instruction address and data in the same cycle.

For dual-core systems, add the following signals from the Nios II DPX processor core
top level:

■ message_unit_thread_dispatch0_channel

■ nios2dpx_mtp_processor_0_fixed_latency_instruction_master_address

■ nios2dpx_mtp_processor_0_fixed_latency_instruction_master_readdata

■ message_unit_thread_dispatch1_channel

■ nios2dpx_mtp_processor_1_fixed_latency_instruction_master_address

■ nios2dpx_mtp_processor_1_fixed_latency_instruction_master_readdata

Performance Monitoring
You can use Altera's System Console debug facilities to collect and report runtime
statistics from your system. These statistics provide important information about the
functionality and performance of your system.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

Chapter 3: System Verification 3–3
Packet Debug
The Nios II DPX datapath processor contains circuitry for collecting suitable statistics,
and software for collecting these statistics is provided with the Nios II DPX Packet
Processing design example.

f For information about processor statistics, refer to the Getting Started with the
Nios II DPX Datapath Processor Tutorial.

You can also add statistics capture facilities to your own PEs. System Console's
statistics capture facilities can periodically sample data from any circuitry that
provides an Avalon-MM slave port. You can display these statistics within the System
Console GUI by means of a simple Tcl script.

Packet Debug
The PE message format defines a debug flag bit within its control word. The
Nios II DPX debugger allows entering debug mode on receiving PE messages with
the debug flag set. This feature allows debugging all PE messages processed by the
Nios II DPX datapath processor for a specific context, allowing context-specific
system debug and verification. The following sections provide information on this
packet debug capability.

Debug Flag Bit
The debug flag is a single bit in the flags field in the control word of your PE
messages. You specify the position of this flag with the Bit offset of debug flag
parameter when instantiating the Nios II DPX processor. For more information, refer
to “Message Interface Unit Tab” on page 2–4 and “External Interfaces (advanced) Tab”
on page 2–6.

Using the Nios II DPX debugger, you can instruct the Nios II DPX datapath processor
to stop on the first instruction of any task that is executed for a PE message with an
enabled debug flag. Only those threads that are scheduled to execute tasks for PE
messages with enabled debug flags enter debug mode; other threads are not affected
and continue to remain in the state they were.

The received PE message's flag bits are loaded in message_flags extended control
register. The contents of this register are used as the flag bits of transmit messages.
You can modify the contents of the message_flags extended control register through
software or by using the Nios II DPX debugger while the thread is suspended.

f For more information about extended control registers, refer to the Software
Programming Model chapter in the Nios II DPX Software Development section of the
Nios II DPX Datapath Processor Handbook.

f For more information about the processor's debug flag breakpoint capability from the
Nios II DPX debugger, refer to the Getting Started with the Graphical User Interface
chapter in the Nios II DPX Software Development section of the Nios II DPX Datapath
Processor Handbook.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

http://www.altera.com/literature/tt/tt-niidpx-start.pdf
http://www.altera.com/literature/tt/tt-niidpx-start.pdf
http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-02.pdf
http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-02.pdf

Chapter 3: System Verification 3–4
Packet Debug
PEs and the Debug Flag
PEs have access to the debug flag value in the received messages and can perform
custom debug actions if the debug flag is set. When transmitting messages, the PEs
provide a value for the debug flag. Normally, PEs transfer the debug flag value from
the received PE message to the transmitted PE message. However, some debugging
scenarios might require modifying the debug flag value.

Using Debug Flag Breakpoint Capability
Figure 3–1 shows a sample Nios II DPX datapath processor system. The input PE
receives an external stimulus and generates PE messages for the system. The output
PE generates its output when it receives a PE message indicating context processing is
complete. The Nios II DPX datapath processor executes application software to
process messages in the system. It can delegate work to the two example hardware
PEs.

The following sections illustrate some of the possible message debugging scenarios.
The scenarios described are not exhaustive and other methods that do not rely on the
debug flag are possible.

Figure 3–1. Sample Nios II DPX Datapath Processor System

MM

Fixed-latency
Data Master

Variable-latency
Data Master

CID Request
Interface

S Input Context
Register Interface

Message Interconnect

PE2PE1Input
PE

M

Output
PE

M

SOutput Context
Register Interface

S S

RX/TX Message
Interface

AV-ST
FIFO

Nios II DPX Datapath Processor

M

S

Avalon MM Master Port

Avalon MM Slave Port

S Data Memory

Data
Out

Data
In
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

Chapter 3: System Verification 3–5
Packet Debug
Context Processing Debug
Nios II DPX datapath processor's debug flag breakpoint capability provides the
ability to debug all tasks involved in processing a specific context.

By enabling the debug flag bit when processing a PE message received from the input
PE, all PE messages generated by the Nios II DPX datapath processor using the same
context as the input PE message have their debug flag enabled. As long as all PEs
transfer the debug flag bit from the incoming PE message to the transmitted PE
messages generated in context of the received PE message, all PE messages that are
generated within the system in response to the input PE message have their debug
flag enabled. For all PE messages with the debug flag bit set, namely, all PE messages
in reference to a specific context, the Nios II DPX datapath processor threads
scheduled for processing these context specific PE messages enter the debug mode.
This method provides a complete context processing debug.

The following steps show a way to perform context processing debugging:

1. Enable the debug flag hardware breakpoint feature with the monitor
set_packet_debug command in System Console.

2. From the Nios II DPX debugger, set a breakpoint at the task that the processor
executes when the processor receives the PE message of interest from the input PE.

3. Stimulate the input PE to generate a suitable PE message. The thread that is
scheduled to execute the task stops at the breakpoint.

4. Using the Nios II DPX debugger, enable the debug flag in the message_flags
extended control register. As a result, any PE message generated by this task has
its debug flag set.

5. Disable the task-specific breakpoint set in step 1.

As long as other PEs transfer the debug flag value to the messages generated for this
context, the Nios II DPX processor threads that are scheduled to execute tasks to
process PE messages in this context enter debug mode.

To perform context processing debugging for a specific context that can happen at an
arbitrary time, design the input PE to identify the context of interest and set the debug
flag bit for the PE message it generates in reference to the context. For example, in a
packet processing system, you could set the debug flag for all packets of a particular
type.

You can also use hardware breakpoints in a thread-specific way. In addition to the
previous steps, you can note the thread number in use and set a thread-specific
hardware breakpoint.

f For more information about context-specific debugging and breakpoints, refer to the
Getting Started with the Graphical User Interface chapter in the Nios II DPX Software
Development section of the Nios II DPX Datapath Processor Handbook.

PE Message Debug
Some situations might require debugging a specific PE message, or debugging the
task triggered by a specific message. In this case, enable the debug flag when sending
the message of interest. The Nios II DPX processor enters debug mode when the
corresponding message is received (assuming the PEs involved pass on the debug
flag).
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-02.pdf
http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-02.pdf

Chapter 3: System Verification 3–6
Hardware PE Debug
Hardware PE Debug
The following list suggests some strategies to provide debug access to hardware PEs:

■ Implementing Avalon-MM slave access—Design your PEs to contain status and
control registers for monitoring or controlling debug or verification features
specific to the PE. Make these registers accessible over an Avalon-MM slave
interface for access by an Avalon-MM master such as a Nios II processor for
embedded monitoring and control, or by a PC host using the JTAG to Avalon
Master Bridge IP core.

■ Observing RTL signals—Use the Altera SignalTap® II Logic Analyzer to monitor
signals that are vital for controllability and observability when generating the
device bit stream. These signals are listed in “Record Suitable Waveforms” on
page 3–2.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

May 2011 Altera Corporation
Additional Information
This chapter provides additional information about the document and Altera.

Document Revision History
The following table shows the revision history for this document.

How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the
following table.

Typographic Conventions
The following table shows the typographic conventions this document uses.

Date Version Changes

May 2011 2.0 Updated for ACDS v11.0

December 2010 1.0 Initial release

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name
extensions, software utility names, and GUI labels. For example, \qdesigns
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.
Nios II DPX Datapath Processor Handbook

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional Information
Typographic Conventions
Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the
Options menu.

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

 A question mark directs you to a software help system with related information.

f The feet direct you to another document or website with related information.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

The envelope links to the Email Subscription Management Center page of the Altera
website, where you can sign up to receive update notifications for Altera documents.

Visual Cue Meaning
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

https://www.altera.com/subscriptions/email/signup/eml-index.jsp

May 2011 Altera Corporation

NIIDPXHB-SD-2.0

© 2011 Altera Corporation. Al
QUARTUS and STRATIX are
All other trademarks and serv
www.altera.com/common/le
accordance with Altera’s stand
without notice. Altera assume
service described herein excep
version of device specification

101 Innovation Drive
San Jose, CA 95134
www.altera.com
Section II. Nios II DPX Software
Development
The Nios® II DPX Software Development section of the Nios II DPX Datapath Processor
Handbook provides the basic information needed to develop software for the Altera®
Nios II DPX MTP. This section describes the Nios II DPX MTP software development
environment, the Altera Embedded Design Suite (EDS) tools available to you, and the
process for developing software.

The Nios II DPX Software Development section assumes you have a basic familiarity
with embedded processor concepts.

Familiarity with Altera hardware development tools can give you a deeper
understanding of the reasoning behind the Nios II DPX MTP software development
environment.

This section includes the following chapters:

■ Chapter 4, Overview of the Nios II DPX MTP

■ Chapter 5, Software Programming Model

■ Chapter 6, Getting Started with the Graphical User Interface

■ Chapter 7, Getting Started from the Command Line

■ Chapter 8, Understanding the Nios II DPX Board Support Package

■ Chapter 9, Nios II DPX MTP Instruction Set and Application Binary Interface

■ Chapter 10, SBT Reference for the Nios II DPX MTP
Nios II DPX Datapath Processor Handbook

l rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS,
Reg. U.S. Pat. & Tm. Off. and/or trademarks of Altera Corporation in the U.S. and other countries.
ice marks are the property of their respective holders as described at
gal.html. Altera warrants performance of its semiconductor products to current specifications in
ard warranty, but reserves the right to make changes to any products and services at any time

s no responsibility or liability arising out of the application or use of any information, product, or
t as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest
s before relying on any published information and before placing orders for products or services.

http://www.altera.com/common/legal.html
http://www.altera.com
http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook.pdf
http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook.pdf

II–2 Section II: Nios II DPX Software Development
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

May 2011 Altera Corporation
4. Overview of the Nios II DPX MTP
This chapter provides a high-level overview of how the Nios II DPX MTP fits into the
Nios II DPX datapath processor. It outlines the software development environment
for the Nios II DPX MTP. This chapter contains the following sections:

■ “The MTP in the Context of the Nios II DPX Datapath Processor”

■ “Event-Driven Processing” on page 4–1

■ “Nios II DPX Multithreading” on page 4–2

■ “Dual-Processor Configurations” on page 4–2

■ “Nios II DPX Programming Considerations” on page 4–3

■ “The Nios II DPX Software Development Environment” on page 4–4

The MTP in the Context of the Nios II DPX Datapath Processor
The Nios II DPX MTP is a dedicated, special-purpose microprocessor embedded in
the Nios II DPX datapath processor. The DPX MTP is a submodule in the Nios II DPX
core, which includes instruction memory and hardware support for task and thread
control, messaging, system analysis and debugging. The Nios II DPX MTP and its
environment are optimized for datapath processing tasks, such as packet processing.

f For additional information about the Nios II DPX MTP and its hardware
environment, refer to the Nios II DPX Architecture chapter, in the Nios II DPX Hardware
Reference section of the Nios II DPX Datapath Processor Handbook.

Event-Driven Processing
Nios II DPX designs are based on a event-driven processing paradigm. The
programming model for the Nios II DPX MTP is different from that of a conventional
processor. Generally, to program the Nios II DPX MTP, you do not write a main()
function that executes for the lifetime of the application. Instead, main() typically only
executes some minimal initialization tasks and returns. The Nios II DPX software
consists of short routines, called tasks, that are executed in response to the receipt of a
PE message.

A task is analogous to an interrupt service routine (ISR). However, a task provides
better performance than a conventional ISR, because all necessary context information
is provided to the processor through the message interface hardware.

In a Nios II DPX system, processing elements (PEs) are connected to one another
through a message interconnect. The Nios II DPX datapath processor is an example of
a PE. PEs can also be specialized hardware accelerators or other processors with
message interfaces. Each PE is capable of performing one or more tasks. In a typical
system, the Nios II DPX datapath processor communicates with a heterogenous
collection of several PEs.
Nios II DPX Datapath Processor Handbook

www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf
www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf

4–2 Chapter 4: Overview of the Nios II DPX MTP
Nios II DPX Multithreading
f For information about PEs and Altera event-driven datapath processing, refer to
“Event-Driven Methodology” in the Altera Event-Driven Datapath Processing Design
Handbook.

Nios II DPX Multithreading
The Nios II DPX MTP is an interleaved multithreaded processor, capable of executing
eight threads simultaneously. Each thread can execute a task.

Each thread has its own register context, enabling threads to execute independently.
You can think of the threads as eight identical, separate processors.

Each thread is independent of the other threads. If a thread stalls, the remaining
threads continue to execute as usual. Thread stalls, however, are rare, because of
hardware features such as interleaved multithreading and fixed-latency memory
masters.

MTP hardware threads are interchangeable. Software normally need not determine
which hardware thread it is running on at any particular time. However, the current
thread number can be read from the threadnum control register if necessary.

1 Because the threads are independent, you must use care with shared resources, just as
in any multithreaded programming environment. You must protect shared resources,
such as device registers, with a mutual exclusion mechanism, such as semaphores.

f For detailed information about Nios II DPX multithreading, refer to “Functional
Description” in the Nios II DPX Architecture chapter, in the Nios II DPX Hardware
Reference section of the Nios II DPX Datapath Processor Handbook.

Dual-Processor Configurations
If your application requires more than eight threads, you can configure the
Nios II DPX datapath processor with dual MTP cores. A dual-core Nios II DPX
datapath processor functions the same as a single-core processor, except that it
supports sixteen simultaneous threads. The two cores have identical memory maps,
and run the same software. When a task needs to run, it can run on either MTP core.

A dual-processor configuration, which providing sixteen threads, uses less memory
than two distinct Nios II DPX MTPs, because the two MTPs share instruction
memory.

f For information about instantiating a dual-core Nios II DPX datapath processor, refer
to the Instantiating the Nios II DPX Datapath Processor chapter, in the Nios II DPX
Hardware Reference section of the Nios II DPX Datapath Processor Handbook.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf
www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf
www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf
www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf
http://www.altera.com/literature/hb/nios2dpx/hb_datapath_processing.pdf
http://www.altera.com/literature/hb/nios2dpx/hb_datapath_processing.pdf

Chapter 4: Overview of the Nios II DPX MTP 4–3
Nios II DPX Programming Considerations
Nios II DPX Programming Considerations
The event-driven paradigm, and the Nios II DPX MTP’s unique architecture and
hardware environment, make programming the MTP different from programming a
general-purpose processor. Before you start, become familiar with the Altera
Event-Driven Datapath Processing Design Handbook, as well as “Functional Description”
in the Nios II DPX Architecture chapter, in the Nios II DPX Hardware Reference section of
the Nios II DPX Datapath Processor Handbook. This topic provides a detailed
description of the Nios II DPX architecture.

Memory and I/O
The Nios II DPX MTP has separate address spaces for instructions and data.

Instruction memory is an on-chip memory embedded in the Nios II DPX core,
ensuring that threads never stall waiting for an instruction.

The Nios II DPX MTP possesses two kinds of data master interfaces: fixed-latency and
variable-latency.

The fixed-latency data master interfaces provide access to data that requires
time-critical access without stalling. The Nios II DPX MTP can use fixed-latency data
master interfaces to connect to any memory or peripheral that has zero wait states and
a read latency of two.

Variable-latency data master interfaces can access any Avalon-MM slave interface.
Access through a variable-latency data master always causes a stall for at least one
cycle.

The Nios II DPX MTP does not support caching. Whether or not a particular memory
access stalls is strictly determined by the type of master interface used and the
characteristics of the slave interface.

All Nios II DPX memory accesses use the byte-invariant big-endian convention
(BE-8).

f For details about how Nios II DPX memories are instantiated and configured, refer to
the Instantiating the Nios II DPX Datapath Processor chapter, in the Nios II DPX
Hardware Reference section of the Nios II DPX Datapath Processor Handbook.

The Nios II DPX Debug Interface
The Nios II DPX MTP interfaces to a debug unit, enabling the Nios II DPX debugger
to provide typical debugging features such as breakpoints, single-stepping, and
viewing registers and memory. The debugger interface enables nonstop debugging, in
which the debugger can selectively debug one thread while the other threads
continue to run normally.

For details about the Nios II DPX debugger, refer to Chapter 6, Getting Started with
the Graphical User Interface.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf
www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf
www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf
http://www.altera.com/literature/hb/nios2dpx/hb_datapath_processing.pdf
http://www.altera.com/literature/hb/nios2dpx/hb_datapath_processing.pdf

4–4 Chapter 4: Overview of the Nios II DPX MTP
The Nios II DPX Software Development Environment
Exception Controller
The Nios II DPX MTP supports a small set of exception types. For information about
working with Nios II DPX exceptions, refer to Chapter 5, Software Programming
Model.

Once a task is launched on a hardware thread, it must run to completion. There is no
way to preempt or interrupt a running task.

The Nios II DPX Software Development Environment
The Nios II EDS provides a consistent software development environment that works
for all Nios II DPX systems. With the Nios II EDS running on a host computer, an
Altera FPGA, and a JTAG download cable (such as an Altera USB-Blaster™ download
cable), you can write programs for and communicate with any Nios II DPX system.
The Nios II DPX datapath processor debug module provides a single, consistent
method to connect using a JTAG download cable. Therefore, you do not need to spend
time manually creating interface mechanisms for the embedded processor.

The Nios II EDS includes proprietary and open-source tools (such as the GNU C/C++
tool chain) for creating Nios II DPX programs. The Nios II EDS automates board
support package (BSP) creation for Nios II DPX MTP-based systems, eliminating the
need to spend time manually creating BSPs. The BSP provides a C runtime
environment, insulating you from the hardware in your embedded system.
Nios II DPX BSPs contain the Altera lightweight hardware abstraction layer
(LWHAL) and simple device drivers.

The Nios II SBT Development Flow
A development flow is a way of using a set of development tools together to create a
software project. The Nios II EDS provides the Nios II Software Build Tools (SBT)
development flow for creating Nios II programs. This development flow provides the
following user interfaces:

■ The Nios II SBT command line

■ The Nios II SBT for Eclipse™ graphical user interface (GUI)

The Nios II SBT allows you to create Nios II DPX software projects, with detailed
control over the software build process. The same Nios II SBT utilities, scripts and Tcl
commands are available from both the command line and the Nios II SBT for Eclipse.

The SBT provides powerful Tcl scripting capabilities. In a Tcl script, you can query
project settings, specify project settings conditionally, and incorporate the software
project creation process in a scripted software development flow. Tcl scripting is
supported both in Eclipse and at the command line.

f For information about Tcl scripting, refer to the Nios II Software Build Tools chapter of
the Nios II Software Developer’s Handbook.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 4: Overview of the Nios II DPX MTP 4–5
The Nios II DPX Software Development Environment
The Nios II SBT for Eclipse
The Nios II SBT for Eclipse is a GUI that runs the Nios II SBT utilities and scripts,
presenting a unified development environment. You can accomplish all software
development tasks within Eclipse, including creating, editing, building, running,
debugging, and profiling programs.

The Nios II SBT for Eclipse is based on the Eclipse 3.5 framework and the Eclipse
C/C++ development toolkit (CDT) 6.0 plugins. The Nios II SBT creates your project
makefiles for you, and Eclipse provides extensive capabilities for interactive
debugging and management of source files.

The SBT for Eclipse also allows you to import and debug projects you created in the
Nios II Command Shell.

f For details about the Nios II SBT for Eclipse, refer to Chapter 6, Getting Started with
the Graphical User Interface. For details about Eclipse, visit the Eclipse Foundation
website (www.eclipse.org).

The Nios II SBT Command Line
In the Nios II SBT command line development flow, you create, modify, build, and
run Nios II DPX programs with Nios II SBT commands typed at a command line or
embedded in a script. You run the Nios II SBT commands from the Nios II Command
Shell.

The Nios II SBT command line flow is useful if you have a large multiprocessor
project maintained in a source control system. You can create and build software
projects from the command line or a shell script, enabling you to integrate the
software build process with your other tools.

For further information about the Nios II SBT in command-line mode, refer to
Chapter 7, Getting Started from the Command Line.

To debug a command-line program, you can import your SBT projects to Eclipse. You
can then further edit, rebuild, run, and debug your imported project in Eclipse.
Alternatively, you can use any of several other system debugging tools, including the
following tools:

■ GDB at the command line

■ System Console

■ SignalTap

f For detailed information about debugging Nios II DPX systems, refer to the System
Verification chapter in the Nios II DPX Hardware Reference section of the Nios II DPX
Datapath Processor Handbook.

Nios II DPX Programs
Each Nios II DPX program you develop consists of an application project, optional
user library projects, and a BSP project. You build your MTP program to create an
Executable and Linking Format File (.elf) which runs on a Nios II DPX MTP.

The Nios II SBT creates software projects for you. Each project is based on a makefile.
This section discusses makefiles and projects.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

http://www.eclipse.org/org/
www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf

4–6 Chapter 4: Overview of the Nios II DPX MTP
The Nios II DPX Software Development Environment
1 The C++ language is not supported in the Nios II DPX MTP software development
environment.

Makefiles and the SBT
The makefile is the central component of a Nios II DPX software project, whether the
project is created with the Nios II SBT for Eclipse, or at the command line. The
makefile describes all the components of a software project and how they are
compiled and linked.

As a key part of creating a software project, the SBT creates a makefile for you.
Nios II DPX projects are sometimes called “user-managed,” because you, the user, are
responsible for the content of the project makefile. You use the Nios II SBT to define
the contents of the makefile.

f The Nios II Software Build Tools chapter of the Nios II Software Developer’s Handbook
provides detailed information about creating makefiles.

Nios II DPX Software Project Types
The following sections describe the project types that constitute a Nios II DPX
program.

Application Project

A Nios II DPX C application project consists of a collection of source code, plus a
makefile. A typical characteristic of a Nios II DPX application is that one of the source
files contains function main(), while other files contain tasks. An application can
include code that calls functions in libraries and BSPs. The makefile compiles the
source code and links it with a BSP and an optional library or libraries, to create
one .elf file.

User Library Project

A user library project is a collection of source code compiled to create a single library
archive file (.a). Libraries often contain reusable, general purpose functions that
multiple application projects can share. A collection of common arithmetical functions
is one example. A user library does not contain a main() function.

BSP Project

A Nios II DPX BSP project is a specialized library containing system-specific support
code. A BSP provides a software runtime environment customized for a processor
instance in a hardware system. The Nios II EDS provides tools to modify settings that
control the behavior of the BSP.

A BSP for the Nios II DPX MTP contains the following elements:

■ Lightweight hardware abstraction layer—For information, refer to Chapter 8,
Understanding the Nios II DPX Board Support Package.

■ Device drivers—For information, refer to “Software Projects” in the Nios II
Software Build Tools chapter of the Nios II Software Developer’s Handbook.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 4: Overview of the Nios II DPX MTP 4–7
The Nios II DPX Software Development Environment
Finding Nios II EDS Files
When you install the Nios II EDS, you specify a root directory for the EDS file
structure. This root directory must be adjacent to the Quartus® II installation. For
example, if the Nios II EDS 10.1 is installed on the Windows operating system, the
root directory might be c:\altera\10.1\nios2eds.

For simplicity, this handbook refers to this directory as <Nios II EDS install path>.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

4–8 Chapter 4: Overview of the Nios II DPX MTP
The Nios II DPX Software Development Environment
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

May 2011 Altera Corporation
5. Software Programming Model
This chapter describes the Nios II DPX software programming model, including
event-driven programming on the Nios II DPX datapath processor, and how tasks,
events, and messages function. The purpose of this chapter is to enable you to design
and write Nios II DPX software correctly.

This chapter discusses processor features at the assembly language level, as well as
the mechanics and syntax of creating tasks and sending PE messages. It describes how
the Nios II DPX datapath processor interacts with other PEs (components of the
Nios II DPX system lying outside the Nios II DPX datapath processor).

Fully understanding the contents of this chapter requires prior knowledge of
computer architecture, software processes and process management, exception
handling, and instruction sets.

f For a general introduction to datapath processing concepts, refer to the Altera
Event-Driven Datapath Processing Design Handbook.

Overview of the Nios II DPX MTP
The main component in the Nios II DPX datapath processor is the Nios II DPX
multithreaded processor (MTP). To software, the MTP appears as multiple processors
called threads. Each thread contains its own register bank and executes independently
of the other threads.

Some programming elements, such as instruction memory and a control register that
contains the processor ID, are shared by all threads. Some elements, such as program
counters (PC), general-purpose registers, control registers, and stack, exist separately
for each thread. And some elements, such as extension registers, exist separately
based on other criteria.

The MTP is streamlined for efficient, deterministic processing. There are no operating
mode options, no interrupt support, no memory protection or memory management
units. The processor supports a minimal set of exception types; software is not
expected to make significant use of exceptions.

The Event-Driven Programming Model
This section introduces key concepts of event-driven programming on the
Nios II DPX datapath processor.

Tasks, PE Messages and Events
In event-driven programming, work is carried out by tasks. A task is a series of steps
performed on data, triggered by an event. A task can be implemented either in
hardware or software. This chapter describes software tasks and how software tasks
interact with hardware tasks.

Each task has a clear-cut start and finish. There are no infinite loops or wait loops in
tasks. The task starts, executes the necessary steps, and then terminates.
Nios II DPX Datapath Processor Handbook

http://www.altera.com/literature/hb/nios2dpx/hb_datapath_processing.pdf
http://www.altera.com/literature/hb/nios2dpx/hb_datapath_processing.pdf

5–2 Chapter 5: Software Programming Model
The Event-Driven Programming Model
Work flows between tasks by means of PE messages. PE messages carry status, and
indicate what is to be done next. The next task is specified by the unique task ID.
Tasks also possess data, referred to as context. Typically, a PE message indicates the
context data by reference. For more information about context, see “Context Data” on
page 5–4.

A set of tasks, interoperating by means of PE messages, constitute a complete
application.

An event is defined as a significant occurrence at a particular point in time. The most
common events are the receipt or transmission of a PE message. However, custom
hardware events, particularly the arrival of valid data on system inputs, also occur
and must be handled.

The order of events in an event-driven system determines the order in which tasks are
carried out. The start of a task is triggered by an event.

Thus, the simplest possible event-driven flow resembles the following:

1. Task executes its steps.

2. Task sends a PE message.

3. Task terminates.

4. A messaging network delivers the message to its intended recipient, initiating the
next task.

5. Sequence repeats from step 1.

In an actual system, many tasks execute in parallel, and their relationships can be
more complex than the sequence shown here.

Task-Based Software
Nios II DPX datapath processor software consists of short task routines that are
executed in response to the receipt of a PE message.

Software Tasks

You write a task as a function in C, or as a subroutine-like block of code in assembly
language. Special syntax identifies a C function as a task. For details about task
syntax, refer to “Writing Task Code” on page 5–11.

Your task can call ordinary, non-task C functions or assembly language subroutines.
Write such functions or subroutines just as you would for any ordinary processor
architecture.

A software task executes on a thread in the Nios II DPX MTP.

f For more information about threads, refer to “Multithreaded Processor” in the
Nios II DPX Architecture chapter, in the Nios II DPX Hardware Reference section of the
Nios II DPX Datapath Processor Handbook.

1 Any task can execute on any thread. If the Nios II DPX datapath processor is
configured with a dual core, any task can execute on either of the two Nios II DPX
MTP cores. Threads are interchangeable. Which task is running on which thread at
any given time is of no significance to the behavior of the software.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf

Chapter 5: Software Programming Model 5–3
The Event-Driven Programming Model
f Dual-core Nios II DPX systems are discussed in “Nios II DPX Datapath Processor
Dual-Core Configuration” in the Nios II DPX Architecture chapter, in the Nios II DPX
Hardware Reference section of the Nios II DPX Datapath Processor Handbook.

Each task is dispatched by the Nios II DPX hardware when a PE message identifies
that task as the next to be executed. Any required arguments are preloaded into
special extended hardware registers. See “Using the Nios II DPX Extension Registers”
on page 5–19 for more information about the extended registers.

If no thread is available when an event occurs, the Nios II DPX datapath processor
stores the message and waits until one of the tasks terminates and frees its thread.

Once a task is started on a hardware thread, it runs to completion. There is no way to
preempt or interrupt a running task.

The Role of the main() Function

An event-driven C application has a function main(), like any other C program.
However, the role of main() is significantly simpler.

main() runs on each thread at startup time. In a Nios II DPX application, main()
performs any global initialization required by all software tasks, and then exits. All
subsequent software processing is performed by the tasks.

PE Messages
A PE message carries control information, arguments and potentially other data
between components in the system. PE messages can be transmitted in response to
events. The receipt of a PE message is an event.

The Nios II DPX datapath processor includes hardware optimized to accelerate PE
message passing. Special registers and instructions provide direct access to message
arguments. For more information about these registers and instructions, see “Using
the Nios II DPX Extension Registers” on page 5–19 and “Task-Related Instructions”
on page 5–14.

Receiving PE Messages

Each PE message identifies the next task to be executed. This task might be a software
task implemented on a Nios II DPX MTP, or a hardware task implemented on a PE
external to the Nios II DPX datapath processor.

Each PE message also identifies context data, if it is needed. See “Context Data” on
page 5–4 for more information about context data in messages.

The information in each PE message is copied by the hardware directly into processor
registers, eliminating the need to load message arguments from data memory.

Sending PE Messages

When the task finishes, it normally designates the next task to execute. The next task
is designated in a PE message.

To send a PE message, you move any required message data into the transmit
message registers, and execute the snd or sndi instruction.

Every task must send at least one PE message, typically when it terminates.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

5–4 Chapter 5: Software Programming Model
Nios II DPX Registers
Context Data
Context is information that is shared among a defined set of task instances.

The Nios II DPX datapath processor can be configured to use the CID to manage
context data, enabling tasks to share context with minimal overhead. The CID is a
token held by one task at a a time. The CID enables the task that holds it to read and
modify the context data, while ensuring that no other task attempts to read or modify
it concurrently.

Typically, the CID indexes into a shared memory containing application-specific data
such as packet data (header and payload). Context can also include cached data such
as a packet header if a PE is expected to perform many tasks on the same packet. The
significance of the CID is application-specific.

The number of available CIDs is specified when the Nios II DPX hardware system is
generated. Since the number of CIDs is finite, you must take several CID management
issues into consideration, especially when using CID ordering. For information about
CID management, see “Context Management” on page 5–16.

Nios II DPX Registers
The MTP register set includes general-purpose registers, extension registers, control
registers, and extended control registers. Some registers are part of the MTP itself,
while others are extensions of the MTP. This section discusses each register type.

See “Developing Software Tasks for the Datapath Processor” on page 5–10 for
descriptions of how to use the registers to send and receive messages.

General-purpose Registers
For each thread, the base MTP architecture provides thirty-two 32-bit general-purpose
registers, r0 through r31, as shown in Table 5–1. Some registers have names
recognized by the assembler. For example, the zero register (r0) must be configured at
startup time to return the value zero. The ra register (r31) holds the return address
used by procedure calls and is implicitly accessed by the call, callr and ret
instructions. C compilers use a common procedure-call convention, assigning specific
meaning to registers r1 through r23 and r26 through r28.

Table 5–1. MTP General-purpose Registers (Part 1 of 2)

Register Name Function Register Name Function

r0 zero 0x00000000 (1) r16 Callee-saved register

r1 at Assembler temporary r17 Callee-saved register

r2 Return value r18 Callee-saved register

r3 Return value r19 Callee-saved register

r4 Register arguments r20 Callee-saved register

r5 Register arguments r21 Callee-saved register

r6 Register arguments r22 Callee-saved register

r7 Register arguments r23 Callee-saved register

r8 Caller-saved register r24 Callee-saved register

r9 Caller-saved register r25 bt Breakpoint temporary (2)
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 5: Software Programming Model 5–5
Nios II DPX Registers
For more information, refer to “The Nios II DPX MTP Application Binary Interface”
on page 9–112.

Extension Registers
The MTP architecture provides an interface allowing the Nios II DPX datapath
processor to add additional banks of thirty-two 32-bit registers as extension registers.
These registers are normally referenced with the mnemonic register names listed in
Table 5–14 on page 5–19. In assembly language, they can also be referenced with the
physical register names r32 through r63.

Accessing Extension Registers
Accessing the extension registers from software is very similar to accessing the
general-purpose registers, with the following exceptions:

■ Write-only extension registers (TX message and output context) can only be the
destination register in assembly language instructions.

■ Read-only extension registers (RX message and input context) can only be the first
source register in assembly language instructions.

■ No extension register can be the second source register in assembly language
instructions.

■ Some assembly language instructions have further restrictions. For more
information, refer to the instruction descriptions in “The Nios II DPX MTP
Instruction Set” on page 9–1.

f For information about the use of extension registers by the Nios II DPX datapath
processor, refer to “Functional Blocks” in the Nios II DPX Architecture chapter, in the
Nios II DPX Hardware Reference section of the Nios II DPX Datapath Processor Handbook.
For information about programming extension registers in your design, refer to
“Developing Software Tasks for the Datapath Processor” on page 5–10.

r10 Caller-saved register r26 gp Global pointer

r11 Caller-saved register r27 sp Stack pointer

r12 Caller-saved register r28 fp Frame pointer

r13 Caller-saved register r29 ea Exception return address

r14 Caller-saved register r30 ba Breakpoint return address

r15 Caller-saved register r31 ra Return address

Notes to Table 5–1:

(1) This value must be configured by software at startup. Software must not write any nonzero value to this register.
(2) r25 is used exclusively by the debug module.

Table 5–1. MTP General-purpose Registers (Part 2 of 2)

Register Name Function Register Name Function
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

5–6 Chapter 5: Software Programming Model
Nios II DPX Registers
Control Registers
Control registers report the status and control the behavior of the processor. Control
registers are accessed differently than the general-purpose registers. The special
instructions rdctl and wrctl provide the only means to read and write to the control
registers.

1 When writing to control registers, all undefined bits must be written as zero.

The base MTP architecture provides two control registers. Table 5–2 shows details of
the defined control registers. All defined control registers have names recognized by
the assembler.

The following sections describe the defined control registers of the base MTP
architecture.

The cpuid Register
The cpuid register holds a constant value that uniquely identifies each processor in a
multiprocessor system. The cpuid value is determined at system generation time. The
cpuid register is read-only; writing to the register has no effect.

1 Each MTP in a dual-core Nios II DPX processor must have the same cpuid.

The threadnum Register
The threadnum register holds the thread number of the associated thread. The
threadnum register is read-only; writing to the register has no effect.

1 The threadnum register is a per-thread control register. There is one threadnum register
for each thread in the processor.

Table 5–3 shows the layout of the threadnum register.

Table 5–2. Control Register Names and Descriptions

Register Name Register Contents

5 cpuid Unique processor identifier

16 threadnum Thread number

Table 5–3. threadnum Control Register Fields (Note 1)

31 ... N N-1 1 0

0 THREADNUM

Notes to Table 5–3:
(1) N represents the number of bits needed to represent the total number of threads in the MTP, namely, log2(number of threads).
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 5: Software Programming Model 5–7
Nios II DPX Registers
Table 5–4 shows details of the fields defined in the threadnum register.

Extended Control Registers
The MTP architecture provides an interface that allows the Nios II DPX datapath
processor to add additional control registers as extended control registers. Some
extended control registers are global to the Nios II DPX MTP. Others are local to each
thread. As with standard control registers, you can use the rdctl and wrctl
instructions to access the contents of the extended control registers.

Table 5–5 shows details of the extended control registers defined in the Nios II DPX
datapath processor.

The following sections describe the extended control registers defined in the
Nios II DPX datapath processor.

The message_flags Register
The message_flags register is the message interface unit flags register. It holds the
message flags for a given task. The contents of this register are set based on the flags
field of the incoming message that started the task. Software tasks can read and write
this register.

Table 5–4. threadnum Control Register Field Descriptions

Field Description Access Reset Available

THREADNUM

THREADNUM is the thread number field. The width of this field is
variable and needs to contain enough bits to encode the number
of threads. For example, for eight threads, this field must be at
least three bits wide or wider.

Read Thread
number Per thread

Table 5–5. Extended Control Register Names and Descriptions

Physical
Register

Name
Mnemonic Register Contents

ctl17 reserved reserved

ctl24 message_flags (1) Message interface unit (MIU) flags register

ctl25 message_user (1) MIU user field register

ctl26 message_id0 (1) MIU task register

ctl27 message_id1 (1) MIU ID register

Notes to Table 5–5:
(1) The MIU control registers are per-context control registers. One bank of MIU control registers exists for every

context in the Nios II DPX datapath processor.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

5–8 Chapter 5: Software Programming Model
Nios II DPX Registers
Table 5–6 shows the layout of the message_flags register.

Table 5–7 shows details of the fields defined in the message_flags register.

The message_user Register
The message_user register is the message user field register. It holds user-defined
message information for a given task. The contents of this register are set based on the
user field of the incoming message that started the task. Software tasks can read and
write this register.

Table 5–8 shows the layout of the message_user register.

Table 5–9 shows details of the fields defined in the message_user register.

The message_id0 Register
The message_id0 register is the message interface unit task register. It holds the node
IDs and task ID for a given context. The message_id0 register is read-only; writing to
the register has no effect.

Table 5–6. message_flags Extended Control Register Fields (Note 1)

31 ... N N-1 1 0

0 FLAGS

Notes to Table 5–6:
(1) N represents the total number of flag bits you specify when instantiate the Nios II DPX processor. You specify this value with the Number of

flag bits parameter when instantiating your Nios II DPX processor. For more information, refer to “Instantiation for the Qsys Flow” in the
Instantiating the Nios II DPX Datapath Processor chapter, in the Nios II DPX Hardware Reference section of the Nios II DPX Datapath Processor
Handbook.

Table 5–7. message_flags Extended Control Register Field Descriptions

Field Description Access Reset Available

FLAGS

FLAGS is the message flags field. The width of this field is variable
and defined when instantiate the Nios II DPX processor.

Bit 0 of the flags register contains the debug flag. For more
information about the debug flag, refer to the System Verification
chapter in the Nios II DPX Hardware Reference section of the
Nios II DPX Datapath Processor Handbook.

Read/Write 0 Per thread

Table 5–8. message_user Extended Control Register Fields (Note 1)

31 ... N N-1 1 0

0 USER

Note to Table 5–8:
(1) N represents the total number of user-defined bits you specify when instantiate the Nios II DPX processor. You specify this value with the

Number of user message bits parameter when instantiating your Nios II DPX processor. For more information, refer to “Instantiation for the
Qsys Flow” in the Instantiating the Nios II DPX Datapath Processor chapter, in the Nios II DPX Hardware Reference section of the Nios II DPX
Datapath Processor Handbook.

Table 5–9. message_user Extended Control Register Field Descriptions

Field Description Access Reset Available

USER
USER is the message user-defined field. The width of this field is
variable and defined when instantiate the Nios II DPX processor. Read/Write 0 Per thread
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf
http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf
http://www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf

Chapter 5: Software Programming Model 5–9
Nios II DPX Registers
Table 5–12 shows the layout of the message_id0 register.

Table 5–11 shows details of the fields defined in the message_id0 register.

The message_id1 Register
The message_id1 register is the message interface unit ID register. It holds the
sequence number, CID, RXID and TXIDs for a given context. The message_id1 register
is read-only; writing to the register has no effect.

Table 5–12 shows the layout of the message_id1 register.

Table 5–10. message_id0 Extended Control Register Fields (Note 1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MIU_VERSION PEID SOURCE RX_TASKID

Notes to Table 5–10:
(1) High-order bits in each field are set to zero when the defined width for a field in the message format is less than eight bits.

Table 5–11. message_id0 Extended Control Register Field Descriptions

Field Description Access Reset Available

RX_TASKID
RX_TASKID is the input task ID field. The width of this field is
variable and defined at the time of DPX processor instantiation. Read 0 Per thread

SOURCE
SOURCE is the source ID field. The width of this field is variable
and defined at the time of DPX processor instantiation. Read 0 Per thread

PEID PEID contains a unique identifier for the Nios II DPX PE. Read 0 Per thread

MIU_VERSION
MIU_VERSION contains the version number of the message
interface unit hardware. Read 0 Per thread

Table 5–12. message_id1 Extended Control Register Fields (Note 1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SEQNUM CID RXID TXID

Notes to Table 5–12:
(1) High-order bits in each field are set to zero when the defined width for a field in the message format is less than eight bits.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

5–10 Chapter 5: Software Programming Model
Developing Software Tasks for the Datapath Processor
Table 5–13 shows details of the fields defined in the message_id1 register.

Developing Software Tasks for the Datapath Processor
This section describes how to write software tasks for the Nios II DPX datapath
processor.

The Nios II DPX Task ID
The task ID is a number that identifies a specific task in a given PE (such as the
Nios II DPX datapath processor). A task ID’s scope is its PE, so every task ID in a PE
must be unique.

Every task must have a task ID. “Writing Task Code” on page 5–11 describes how you
assign a task ID to a software task. Hardware task IDs are generally configured in the
PE hardware.

The PEID is the address of a PE. All PE messages contain the following fields:

■ Source—the PEID of the sending PE

■ Destination—the PEID meant to receive the PE message

■ Task ID—the specific task to run on the destination

When a Nios II DPX task sends a message to another PE, it uses the destination and
task ID fields to specify the next task to run. The PEID and task ID together uniquely
identify one task in a Nios II DPX system. Altera recommends defining PEIDs and
task IDs in a common file accessible both to hardware definition files and software
source files.

When the Nios II DPX datapath processor receives a message from another PE, it uses
the task ID to select the software task to run on the Nios II DPX MTP.

Table 5–13. message_id1 Extended Control Register Field Descriptions

Field Description Access Reset Available

TXID
TXID is the transmit ID field. The width of this field is variable and
contains enough bits to encode the number of TXIDs specified in
the Number of transmit IDs processor configuration parameter.

Read 0 Per thread

RXID
RXID is the receive ID field. The width of this field is variable and
contains enough bits to encode the number of RXIDs specified in
the Number of receive IDs processor configuration parameter.

Read 0 Per thread

CID
CID is the context ID field. The width of this field is variable and
contains enough bits to encode the number of CIDs specified in
the Number of context IDs processor configuration parameter.

Read 0 Per thread

SEQNUM

SEQNUM is the sequence number field. The width of this field is
variable and contains enough bits to encode the number of
sequence numbers specified in the NUM_SEQNUMS processor
configuration parameter.

Read 0 Per thread
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 5: Software Programming Model 5–11
Developing Software Tasks for the Datapath Processor
Sending PE Messages Between Tasks
The Nios II DPX datapath processor has two PE message buffers, one for transmitted
and one for received messages. Each buffer consists of a bank of message registers,
indexed by TXID or RXID, discussed in the following sections. Buffer sizes are
configurable.

1 A task function cannot be called directly by another task, or by any other function.
Tasks are entry points that receive their arguments in the extension registers. If you
want to “call” one task from another task, you must send a message. For information,
see “Spawning a New Task” on page 5–23.

Working With the RXID
Each message received by the Nios II DPX datapath processor is assigned an RXID.
The RXID is an identifier used to select a bank of receive message registers (RX
registers) to receive the message arguments. When a task starts running on a specific
thread in response to the message, the thread uses the RXID to access the arguments
in the RX registers directly.

The Nios II DPX datapath processor frees the RXID when the task terminates.
Optionally, when the task has used the data in the receive message registers, it can
free the RXID before it exits, with the rxfree instruction. This technique is useful if
there is a shortage of RXIDs.

Working With the TXID
The TXID controls the resources for transmitting a PE message. Each TXID
corresponds to a dedicated bank of registers, called transmit message registers. A TXID
gives the thread access to the necessary registers for the message.

When a thread owns a TXID, the processor automatically indexes the corresponding
transmit message registers, without needing to use any special addressing.

To send a message, a task must have a TXID. Every task must send at least one PE
message. Therefore, each task is allocated a default TXID when it is assigned to a
thread and starts running. If no TXID is available, no thread is assigned to the task.
The task waits until a TXID becomes available.

Every task must ensure that its default TXID is released before terminating, by
sending a message. To send a PE message, you move any required message data into
the transmit message registers, and execute the snd or sndi instruction.

To send more than one PE message from a task, you must execute the txalloc
instruction, to allocate a new TXID. Every task that successfully allocates a TXID must
send an additional message before it terminates, to free the allocated TXID. See
“Sending Multiple PE Messages” on page 5–23.

Writing Task Code
You can write a task in C or assembly language. The underlying task mechanics are
the same. The contents of a task are similar to a C function or an assembly language
subroutine.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

5–12 Chapter 5: Software Programming Model
Developing Software Tasks for the Datapath Processor
Because tasks are dispatched by hardware, and not called by software, the
Nios II DPX toolchain treats a task as a program entry point, like main(). Tasks do not
return to a caller. They terminate with an exit instruction, which simply puts the
processor thread into an idle state.

Writing a Task in C
In C, use the task attribute to indicate to the Nios II DPX toolchain that the function
defines a task. The syntax is as follows:

void __attribute__ ((task (<task id>)) <task function name> () {}

This attribute causes the function to terminate by restoring the stack pointer and
executing an exit instruction.

1 When a task executes the exit instruction, the current RXID is released (unless it was
previously released with the rxfree instruction).

The return statement is optional.

Before it terminates, each task must send a message to free the default TXID. See
“Working With the TXID” on page 5–11 for details.

Example 5–1 shows how the task attribute is used.

Because a task is treated as a program entry point, the C runtime environment does
not support any callee-saved registers when the task attribute is in effect.

Example 5–1. Task Declaration

#include "nios2dpx.h"

// Define the task ID used to call "my_task"
#define MY_TASK_ID 1

// Define the destination ID and task ID used by the message sent by "my_task".
// This defines the next operation to be performed.
#define OUTPUT_DESTINATION 0x3f
#define OUTPUT_TASK_ID 0x3f

// Definition of "my_task"
// Accepts a message with a single argument, adds the value of the argument
// to an internal context register, and sends a message
void __attribute__((task(MY_TASK_ID))) my_task()
{

// Read the argument from the incoming message from RX0, and add it to
// an internal context register (CR0)
CR0 = CR0 + RX0;

// Create an output message with one argument, the value of the
// incremented context register. The message has a destination and
// task ID set from constants, no special options, and a length of
// one argument. This argument is copied from the internal context
// register (CR0), to the first transmit argument (TX0).
TX0 = CR0;
NIOS2DPX_SNDI(OUTPUT_DESTINATION, OUTPUT_TASK_ID, OPT_NONE, 1);

}

Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 5: Software Programming Model 5–13
Developing Software Tasks for the Datapath Processor
When writing tasks for the Nios II DPX MTP, you can disregard many of the
reentrancy issues that you might associate with low-overhead multithreaded
environments. For example, each thread has a dedicated register bank, so each task
can freely use registers as if it were the only thread executing.

Threads might also be furnished with dedicated thread-addressed memories. This
option is selectable at system generation time. For more details, see “Nios II DPX
Memory Model” on page 5–20.

For information about the C prologue and epilogue in the Nios II DPX runtime
environment, refer to Chapter 8, Understanding the Nios II DPX Board Support
Package.

Writing a Task in Assembly Language
The LWHAL BSP includes a predefined task table (in task_table.S) containing the
entry point for each task. In assembly language, to install your task in the task table,
you must declare its entry point with a global symbol whose name is of the form
__task_<n>, where <n> is the task ID.

In C, the creation of a __task_<n> symbol is handled automatically.

If you develop your software in assembly language, you must insert the exit
instruction at the end of each task.

When a task executes the exit instruction, the current RXID is released (unless it was
previously released with the rxfree instruction).

1 Before it terminates, each task must send a message to free the default TXID. See
“Working With the TXID” on page 5–11 for details.

Example 5–2 illustrates how to declare a task in assembly language.

Example 5–2. Declaring a Task in Assembly Language

/* Declare a task with task name mytask, task Id = 4. */
.align 2
.global mytask
.type mytask, @function
.global __task_4
.set __task_4, mytask /* The LWHAL defines the __task_0 to __task_N */

/* symbols in task_table.S. */
/* __task_0 is task number 0, __task_1 is */
/* task number 1 and so on. */

mytask:
/* Reads RX registers and stores in CR registers */
mov cr0, rx0
mov cr1, rx1
mov cr2, rx2
mov cr3, rx3

mov tx0, rx0
movi r2, 2 /* dstid = 0, taskid = 2 */
sndi r3, r2, ((OPT_SNDEXIT << 5) | 1) /* length = 1 */
exit
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

5–14 Chapter 5: Software Programming Model
Developing Software Tasks for the Datapath Processor
The Null Task ID
A TXID is returned to the TXID free list when the task sends a message. There is no
mechanism for a thread to explicitly release a TXID.

If your task needs to release a TXID without triggering another task, it can send a
message with the null task ID, 0xFF. A message with the null task ID is captured and
discarded by the Nios II DPX datapath processor’s message interface unit (MIU).

Resource Sharing
Resource sharing in a multithreaded environment introduces several challenges. For
example, when multiple threads share one resource, a thread can corrupt another
thread's data. This section discusses techniques you can use to share resources
effectively in a Nios II DPX system.

The most common shared resource is memory. Nios II DPX tasks can share a resource
through the context mechanism, using CIDs to control access to data and prevent
corruption. However, some resources cannot be treated as task context. For example, a
hardware peripheral might be needed by multiple tasks.

See “Nios II DPX Memory Model” on page 5–20.

If the system is designed so that two tasks need concurrent access to the same
resource, the system must include an external hardware mutex to prevent collisions.
All tasks that access the resource must use the mutual exclusion hardware to protect
it. This applies to both hardware and software tasks.

For information about using an Altera mutex in a Nios II DPX design, refer to
Chapter 8, Understanding the Nios II DPX Board Support Package.

Task-Related Instructions
The Nios II DPX MTP provides several special-purpose extended instructions to
support event-driven programming. This section describes those instructions and
their use.

Your C program can execute each extended instruction by invoking a specific macro
provided by the LWHAL BSP. All program macros are defined in the BSP include file
nios2dpx.h, which must be included in each source file.

For details about C extended instruction macros, refer to “LWHAL Extended
Instruction Macros” on page 8–20. For details about the extended instructions, refer to
Chapter 9, Nios II DPX MTP Instruction Set and Application Binary Interface.

RXID Free (rxfree)
The rxfree instruction returns the task’s RXID to the RXID free list. The RXID is
always freed when the task exits, but a task can use this instruction before the task is
complete, so that the Nios II DPX datapath processor can accept a new PE message.
This optimization is useful if the total number of RXIDs is smaller than the total
number of CIDs.

1 The number of CIDs and RXIDs is determined when the system hardware is
configured.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 5: Software Programming Model 5–15
Developing Software Tasks for the Datapath Processor
C code can execute the rxfree instruction with the following macro:

NIOS2DPX_RXFREE()

TXID Allocate (txalloc)
The txalloc instruction allocates a TXID, and associates that TXID and its transmit
message registers to the running thread. If the thread already has a TXID, it does
nothing. A thread can have only one TXID at a time.

Tasks can use this instruction to send multiple PE messages. A task must always have
a TXID to send a message. Each time a task executes, the first message is sent with the
default TXID, which is allocated by the system when it starts the task. If an additional
message is to be sent, the task must allocate a new TXID after sending the first
message.

C code can execute the txalloc instruction with the following macro:

NIOS2DPX_TXALLOC (dest)

After executing the instruction, this macro places the status in dest. If no TXIDs are
available, txalloc reports a failure.

If your system uses CID ordering or sequence number reordering, only enable
ordering on one PE message per task. See “Avoiding System Deadlock” on page 5–24.

If a task sends multiple messages, it must avoid duplicating the context. For further
information, refer to “Context Management” on page 5–16 and “Avoiding System
Deadlock” on page 5–24.

CID Allocate (cidalloc)
The cidalloc instruction requests a new CID, in order to create a new context. It is
used to spawn a new task.

The Nios II DPX datapath processor can keep a CID in reserve. If the thread does not
already have a reserve CID, cidalloc allocates a new CID. The instruction places the
old CID in reserve, and the thread switches to the new CID. If no CIDs are available,
this instruction returns a failure code, and takes no other action.

C code can execute the cidalloc instruction with the following macro:

NIOS2DPX_CIDALLOC (dest)

After executing the instruction, this macro places the status in dest.

If a task sends multiple messages, it must avoid duplicating the context. For further
information, refer to “Context Management” on page 5–16 and “Avoiding System
Deadlock” on page 5–24.

You must ensure that all CIDs are freed once they are no longer needed. Freeing the
CID adds it back into the CID free list so that it can be reused.

Send (snd)
The snd instruction transmits a PE message. The instruction contains the following
information:

■ The PE to receive the message

■ The operation (task ID) to run on that PE
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

5–16 Chapter 5: Software Programming Model
Context Management
■ Operational flags, specifying options such as how to manage the CID

■ The number of transmit message registers in the message

If the task has a CID in reserve, it switches back to the reserve CID. If there is no
reserve CID, it continues with the current CID.

This instruction marks the reserve CID as invalid. Until the reserve CID is invalidated,
your code cannot successfully execute the cidalloc instruction.

C code can execute the snd instruction with the following macro:

NIOS2DPX_SND (destID, taskID, options, length)

The macro arguments are as follows:

■ destID—Unique identifier of destination PE

■ taskID—Unique identifier of destination task

■ options—Message control options

■ length—Number of message arguments. To transmit the maximum number of TX
registers (NUM_TX), set length to zero.

Send Immediate (sndi)
The sndi instruction is the same as the snd instruction, except that the options and
length arguments are represented by a 16-bit immediate value. Therefore the sndi
instruction supports no more than 11 option bits.

C code can execute the sndi instruction with the following macro:

NIOS2DPX_SNDI (destID, taskID, options, length)

Example 5–1 on page 5–12 shows how to use NIOS2DPX_SNDI() to send a message.

Exit
The exit instruction terminates a thread’s processing in the current task.

When you write a task in C with LWHAL support, an exit instruction is
automatically included at the end of each task function. For details, see “The
Lightweight Hardware Abstraction Layer (LWHAL)” on page 8–2.

Context Management
This section discusses how to use the Nios II DPX context management features.

f For general information about maintaining context, refer to “Maintaining Context” in
the Introduction to Altera Event-Driven Datapath Processing chapter of the Altera
Event-Driven Datapath Processing Design Handbook.

Creating a Context
Typically, a context is created in an input PE, flows through the system, and is
disposed of by the Nios II DPX datapath processor in response to a message from the
output PE. However, there are exceptions to this flow. For more information, see
“Spawning a New Task” on page 5–23.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2dpx/hb_datapath_processing.pdf
http://www.altera.com/literature/hb/nios2dpx/hb_datapath_processing.pdf

Chapter 5: Software Programming Model 5–17
Data Ordering with the DPX Datapath Processor
1 If your system uses either sequence number reordering or CID ordering, and a task
sends multiple messages, only one message from each task can invoke the reordering
mechanism. For more information, see “Avoiding System Deadlock” on page 5–24. It
is preferable to avoid designing tasks that send multiple PE messages in a system that
uses sequence number ordering.

Maintaining the CID Free List
The Nios II DPX datapath processor typically acts as the context manager, used for
allocating CIDs and maintaining the CID free list. The CID free list contains all CIDs
not currently in use. This section describes rules that software must follow to correctly
maintain the CID free list.

Software must ensure that all CIDs are freed once they are no longer needed. Freeing
the CID adds it back into the CID free list so that it can be reused. A CID can only be
freed by a task on the Nios II DPX datapath processor.

Failure to free a CID results in a CID leak. For details about CID leaks, refer to
“Avoiding System Deadlock” on page 5–24.

A software task can free a CID when it sends a message. When the PE message is
generated, use the OPT_FREECID option flag. When OPT_FREECID is set, the CID is freed
by the Nios II DPX datapath processor after the PE message is sent to the destination
PE. If OPT_FREECID is not set, the CID is passed to the destination PE.

Software must not free a CID that is already freed. If this happens, a second copy of
the CID is added to the CID free list. The result is a duplicated CID, potentially
resulting in undefined system behavior.

1 The hardware does not protect against CID leaks or duplicated CIDs.

Typically, the CID is not freed until the packet leaves the system. When the CID is
freed, it is available for reuse, and the buffer space that it controls can be overwritten.

If a task sends multiple messages, only one message should normally carry the
original CID. To avoid duplicating the context, each additional message must have a
new CID, created with the cidalloc instruction. If you duplicate context (by sending
PE messages with same CID to two different PEs) the result could be two threads
working on the same, unprotected data. This situation can also cause system
deadlock. For this reason, CID duplication is not recommended. For more
information, see “Avoiding System Deadlock” on page 5–24.

If your task needs to dispatch two tasks, use the spawning technique, described in the
next section.

Data Ordering with the DPX Datapath Processor
In many systems, data ordering must be enforced, to ensure that data leaves the
datapath processing system in the order in which it arrived. This technique is useful,
for instance, if your system is receiving and processing data packets, and must ensure
that it retransmits them without changing the order.

1 Data ordering increases the risk of system deadlock. For information about avoiding
deadlock, see “Avoiding System Deadlock” on page 5–24.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

5–18 Chapter 5: Software Programming Model
Data Ordering with the DPX Datapath Processor
There are many techniques that can be used to maintain data order. This section
discusses the following two mechanisms offered by the Nios II DPX datapath
processor:

■ Sequence number reordering

■ CID ordering

Sequence Number Reordering
Sequence number reordering ensures that all PE messages leave the Nios II DPX
datapath processor in the same order that the corresponding messages arrive. Any
message that is to be sent by the datapath processor is held in a reorder queue in the
datapath processor until all preceding messages are sent. This reorder mechanism is
an option that can be selected when the Nios II DPX hardware is implemented.

With the option, the Nios II DPX datapath processor tags each incoming context with
a sequence number. The sequence number is attached to the context until completion.
When an outgoing message is sent with that context, the sequence number is attached
to it. The messages are stored in the sequence number reordering queue of the
Nios II DPX datapath processor. Each outgoing message is stored here until all
messages with previous sequence numbers are sent. This ensures that the order of
messages exiting the Nios II DPX datapath processor is the same as when the
corresponding message entered.

In order to allow multiple messages to be sent by a task when sequence number
reordering is being used, the Nios II DPX software is able to mark outgoing messages
such that they bypass the reordering queue. In this case, tasks are responsible for
disabling ordering when they send a PE message.

1 If your system uses sequence number reordering, only enable ordering on one PE
message per task. See “Avoiding System Deadlock” on page 5–24.

CID Ordering
CID ordering ensures that packets leave the system in the same order that they arrive,
but allows them to get out of order during intermediate stages of processing. Packets
use the CID as a reordering tag, and so they are effectively tagged in the first
processing stage, and only reordered in the final processing stage.

CID reordering must be applied to exactly one message in the life of a CID. For this
reason the Nios II DPX software is able to control whether or not to pass messages
through the CID reorder queue. For example, you might use the CID reordering
queue on all messages going to the output PE. This allows all messages from the
Nios II DPX datapath processor to the output PE to be sent in the order of the CID,
ensuring the output PE sends the data out in order. All messages to other PEs are
allowed and bypass the queue.

1 If your system uses CID ordering, only enable ordering on one PE message per
context. See “Avoiding System Deadlock” on page 5–24.

Tasks are responsible for enabling ordering when they send a PE message.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 5: Software Programming Model 5–19
Using the Nios II DPX Extension Registers
Using the Nios II DPX Extension Registers
This section discusses some special considerations for using the Nios II DPX
extension registers.

The number of extension registers is configurable at the time of system generation.
When parameterizing the system, you select the number of each type of extension
register. Receive and transmit message registers are always present.

Certain extension registers are either read-only or write-only with respect to the
Nios II DPX MTP. Furthermore, there are restrictions on extension register usage in
the instruction fields.

f For details about Nios II DPX extension registers and how to access them, refer to
“Multithreaded Processor” in the Nios II DPX Architecture chapter, in the Nios II DPX
Hardware Reference section of the Nios II DPX Datapath Processor Handbook. For general
information about the Nios II DPX registers, see “Nios II DPX Registers” on page 5–4.

Table 5–14 lists the assembly language names for the extension registers.

f For information about how extension registers are accessed, refer to “Functional
Blocks” in the Nios II DPX Architecture chapter, in the Nios II DPX Hardware Reference
section of the Nios II DPX Datapath Processor Handbook.

Table 5–14. Assembly Language Names for Extension Registers

Register Group Register Names Notes

Receive message
registers (1)

RX0 to RX<n>

(0<n<=31)

When a task starts running, the receive message registers contain the
arguments carried by the PE message that triggered the task, eliminating
the need to load message arguments from memory.

Input context
registers (2)

CRi0 to CRi<n>

(0<n<=15)

These registers, which are read by the processor and written by external
hardware, contain values specific to the CID that the current thread is using.
They can be used to share information between hardware PEs and software
tasks processing the same context.

Output context
registers (2)

CRo0 to CRo<n>

(0<n<=15)

These registers, which written by the processor and read by external
hardware, contain values specific to the CID that the current thread is using.
They can be used to share information between hardware PEs and software
tasks processing the same context.

Internal context
registers (2)

CR0 to CR<n>

(0<n<=15)

These registers, which are both read or written by the processor, contain
values specific to the CID that the current thread is using. They can be used
to share information between different task processing the same context.

Transmit message
registers (3)

TX0 to TX<n>

(0<n<=31)
Prior to transmission of a PE message, a software task places message
arguments in the transmit message registers.

Notes to Table 5–14:

(1) Each RXID provides access to a unique bank of receive message registers.
(2) Each CID provides access to a unique bank of context registers, including input, output, and internal context registers.
(3) Each TXID provides access to a unique bank of transmit message registers.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf
www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf
www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf

5–20 Chapter 5: Software Programming Model
Nios II DPX Memory Model
Accessing Extension Registers
The Nios II DPX assembler strictly enforces register usage based on the configuration
selected when the hardware is generated. The assembler only allows you to refer to
implemented registers. It enforces read-only and write-only registers, and restrictions
on which operands registers can appear in.

The Nios II DPX C compiler and assembler both take a command-line switch
specifying the register configuration. The compiler passes the command-line switch to
the assembler. The assembler reports an error if a prohibited operation appears in the
code.

When it generates the BSP, the SBT determines the register configuration by
examining the system .sopcinfo file, and places the correct register configuration flag
in public.mk.

Accessing Extension Registers in C
You can access extension registers by using macro names defined by the Nios II DPX
toolchain. The toolchain defines names only for those extension registers that are
actually implemented in the hardware system. To use the register names, include the
header file nios2dpx.h in each source file. Extension registers are declared as type
unsigned int. nios2dpx.h declares the following register names, depending on the
number of registers present in the hardware:

■ Receive message registers— RX0 to RX31

■ Transmit message registers—TX0 to TX31

■ Internal context registers—CR0 to CR15

■ Input context registers—CRi0 to CRi15

■ Output context registers—CRo0 to CRo15

Example 5–1 on page 5–12 shows the use of the extension registers in C.

Accessing Extension Registers in Assembly Language
Assembly language code can refer to extension register with the same syntax as for
general registers. See Table 5–14 on page 5–19 for a list of register mnemonics.

Example 5–2 on page 5–13 shows the use of the extension registers in assembly
language.

Nios II DPX Memory Model
This section describes how the Nios II DPX MTP accesses memory.

Physical Memory Access
MTP addresses are 32 bits, allowing access up to a 4-gigabyte address space. The
locations of memory within the address space are specified in the parameter editor.
Reading from or writing to an address that does not map to a memory produces an
undefined result.

The processor’s data bus is 32 bits wide. It is possible to read and write data memory
as bytes, half-words (16 bits), or words (32 bits).
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 5: Software Programming Model 5–21
Nios II DPX Memory Model
Instruction and data memory are accessed by separate Avalon masters. Therefore the
Nios II DPX MTP cannot read and write instructions from the data master.

In the Nios II DPX MTP address map, data is at addresses 0x00000000—0x7fffffff. The
most significant bit of the address is disregarded in data accesses. Instructions reside
physically at 0x80000000 and higher. However, in the Nios II DPX MTP memory map,
instructions appear starting at address 0, since the most significant bit of the address
is asserted by the hardware

The Nios II DPX architecture is big-endian. The Nios II DPX instruction and data
masters use the byte-invariant big-endian convention (BE-8).

f For more information about the Nios II DPX BE-8 memory organization, refer to
“Nios II DPX Processor Interfaces” in the Nios II DPX Architecture chapter, in the
Nios II DPX Hardware Reference section of the Nios II DPX Datapath Processor Handbook.

The MTP architecture supports register+immediate addressing.

Instruction memory and data memory are shared by all threads.

f For more information, refer to “Functional Blocks” in the Nios II DPX Architecture
chapter, in the Nios II DPX Hardware Reference section of the Nios II DPX Datapath
Processor Handbook.

The Nios II DPX MTP can access data memory either of two ways:

■ Through the fixed-latency data master interface—a direct connection to memory
with exactly two cycles of read latency

■ Through the variable-latency data master interface—any Avalon-MM slave

Fixed-latency accesses are faster than variable-latency accesses. Typically, a system
uses the fixed-latency data master to access critical data structures, and the
variable-latency data master to access noncritical data and hardware peripherals.

You configure the data master interfaces as described in the Nios II DPX Architecture
chapter, in the Nios II DPX Hardware Reference section of the Nios II DPX Datapath
Processor Handbook. When accessing data memory, the Nios II DPX MTP automatically
determines which data master interface to use based on the memory address.

If the Nios II DPX datapath processor is instantiated in dual-core configuration, the
SBT and the GNU toolchain assume that the memory map for the two Nios II DPX
MTPs is identical. You must observe this restriction when connecting the data
masters.

f For detailed information about the Nios II DPX variable-latency data master, refer to
“Nios II DPX Processor Interfaces” in the Nios II DPX Architecture chapter, in the
Nios II DPX Hardware Reference section of the Nios II DPX Datapath Processor Handbook.

Memory Organization
Memory in a Nios II DPX system falls into one of the following categories:

■ Thread storage—dedicated to a particular thread on a particular Nios II DPX
datapath processor

■ Context storage—associated with a particular CID
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf
www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf
www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf
www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf

5–22 Chapter 5: Software Programming Model
Nios II DPX Memory Model
■ Datapath processor storage—available to all threads on a particular Nios II DPX
datapath processor

■ Global storage—available to all threads on all Nios II DPX datapath processors

Thread- and context-based memory partitioning are implemented using the
threadinfo interface and a context memory adaptor.

f For details about using a context memory adaptor, refer to “Nios II DPX Context
Address Adapter” in the Instantiating the Nios II DPX Datapath Processor chapter, in the
Nios II DPX Hardware Reference section of the Nios II DPX Datapath Processor Handbook.

Thread Storage
In a parallel-processing environment, if you have the same task code running on
different threads, it accesses the same data structures at the same memory addresses.
Without some sort of memory management, this arrangement is untenable because
one thread corrupts another thread’s data.

You can configure the system so that the memory is physically addressed by the data
address from the processor with an offset based on the thread number. This is like
having a very simple memory management unit (MMU), giving each thread a unique
memory region. A thread is physically incapable of accessing physical addresses
outside its region.

In this configuration, thread numbers are used to address unique segments of
memory, transparent to the software model. To each thread, it appears as if it has a
dedicated memory at a fixed address.

Memory partitioned by thread is useful for non-packet-oriented applications, such a
video processing, where all threads are operating on the same data structures.

You can also use the thread number to manage separate stacks for each thread. Using
a physical address with an offset based on the thread number makes each thread
physically incapable of corrupting other threads’ stacks. To manage the stack in this
way, you must modify crt0.S to initialize the stack correctly.

These options must be configured in hardware. No software toolchain support is
required.

Context Storage
Memory partitioned by context is useful for applications such as packet processing,
where each task has exclusive access to its data while it is running, and passes it to the
next task when it terminates.

Typically, memory is partitioned by context to ease the storage of information about
every packet currently in the datapath controlled by the Nios II DPX datapath
processor. In order for this buffer to persist after a task is complete and the packet is
sent for processing by another task, the memory is indexed by the CID.

Datapath Processor Storage
Typically, a Nios II DPX system is implemented with some memory that is accessible
to all threads in a Nios II DPX datapath processor. In this case, the threads must use
an effective form of mutual exclusion to prevent data corruption. This topic is
discussed in “Resource Sharing” on page 5–14.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf

Chapter 5: Software Programming Model 5–23
Advanced Topics
Global Storage
Normally, multiple Nios II DPX processors in a single system do not share memory.
Most data required by a task is specific either to a particular thread, or a particular
context.

However, it is possible to share memory between multiple DPX processors. In this
case, arbitration is required in the memory mapped interconnect, and so the variable
latency data master must be used.

Advanced Topics
This section discusses advanced programming topics that are not relevant to all
systems.

Sending Multiple PE Messages
Typically, each task sends one message, when its processing is complete. However,
your code can send additional messages if necessary, with certain precautions.

The Nios II DPX datapath processor uses the TXID to allocate space in the Tx message
queue. Every task is assigned a TXID when it starts running. When it transmits a PE
message, it relinquishes its TXID.

Each task must allocate a new TXID before sending an additional message. Your code
can request a new TXID using the txalloc instruction.

Generally, an additional message spawns another task. If this task requires context
data, your code must allocate an additional CID. For details, see “Spawning a New
Task” on page 5–23.

1 If the system enforces sequence number reordering, and a task sends multiple PE
messages, only one message can invoke sequence number reordering. All other
messages must be sent with the sequence number ordering bypass option set.

In a system that uses sequence number ordering, it is risky for tasks to send multiple
PE messages. Consider partitioning tasks so that each task sends only one message.
For further information, see “Data Ordering with the DPX Datapath Processor” on
page 5–17.

Spawning a New Task
Sometimes a software task running on a Nios II DPX datapath processor needs to
spawn another task running on the same processor. To do this, the task must send a
PE message with the destination set to the same processor that it is running on. This
technique requires that the message interconnect be configured so that the
Nios II DPX datapath processor can send messages to itself.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

5–24 Chapter 5: Software Programming Model
Advanced Topics
Example 5–3 shows how to spawn a new task by sending a message with a new CID,
whilst the current thread continues on the existing CID. Similarly you can send a
message on the current CID, whilst the current thread continues on a new CID.

Avoiding System Deadlock
There are several ways that software can inadvertently create a deadlock condition in
a Nios II DPX system. This section discusses several common deadlock situations,
and how you can avoid them.

Example 5–3. Spawning a Task

#include "nios2dpx.h"
#include "mytaskids.h"

void __attribute__((task(MYTASKID))) mytask(void)
/* MYTASKID is a task ID value defined in mytaskids.h */
{
int result;
int my_cri0, my_cri1;
int my_cr0;
int my_tx0;

/* Reads extension registers. */
my_cri0 = CRi0;
my_cri1 = CRi1;

/* Save context register. */
my_cr0 = CR0;

NIOS2DPX_CIDALLOC(result); /* Get a new CID, swap to new CID context */
if(result == ERR_OK)
{

CR0 = my_cr0; /* Copy data to new context */
my_tx0 = (my_cri0 << 16) | (my_cri1 >> 16);
/* Writes extension registers. */
TX0 = my_tx0;
/* Send a message with new CID, swapping back to original CID. */
NIOS2DPX_SNDI(0 /*dstId*/, 0 /* taskId*/, OPT_FREECID, 1);

}

NIOS2DPX_TXALLOC(result); /* Get a new TXID. */
if(result == ERR_OK)
{

TX0 = RX0;
TX1 = RX1;
/* Send a message with original CID. */
NIOS2DPX_SNDI(0 /*dstId*/, 2 /* taskId*/, 0 /* opts */, 2 /* length */);

}

return;
}

Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 5: Software Programming Model 5–25
Advanced Topics
CID Leak
Every CID that is allocated must be freed when it is no longer needed: for example,
when the corresponding data packet leaves the Nios II DPX system. Your code must
ensure that every CID allocation is balanced by a message with the OPT_FREECID flag
set. This applies to all CID allocations, whether initiated by hardware through the CID
request interface or by software with the cidalloc instruction. For more information
on this topic, refer to “Maintaining the CID Free List” on page 5–17.

CID Ordering Violations
If CID reordering is being used, exactly one message for each CID must be routed
through the CID reorder buffer, by using the OPT_CIDORDER option with the snd or
sndi instruction. If this restriction is violated, undefined behavior, including CID
queue stalls and potential deadlock, might result.

TXID Leak
Every task must ensure that its default TXID is released before terminating, by
sending a message. Every task that successfully allocates a TXID must send an
additional PE message before it terminates, to free the allocated TXID.

1 Failure to send a message in a task is also likely to cause a CID leak. For details, see
“CID Leak”.

TXID Free List Empty
The txalloc instruction can fail if no TXIDs are available. This situation is more likely
if some tasks issue multiple events per task, or if reordering is enabled, as TXIDs
cannot be freed until the PE message is sent to the destination PE. If all TXIDs are in
use, and no running task is able to send a message and free a TXID, the system
deadlocks.

You can avoid this problem by increasing the number of TXIDs.

Software can avoid this problem by sending a message promptly, ensuring that every
TXID is freed.

1 The total number of available TXIDs is determined when the hardware is generated.

Ordering Queue Full
If your system uses data ordering, and a task sends multiple messages, only one
message from each task can invoke the reordering mechanism. Typically this is either
the first or the last message sent by the task. All other messages must disable
reordering. If a task sends a second message with ordering enabled, one of the
messages stalls in the ordering queue. If this happens repeatedly, the ordering queue
fills, and the system locks up.

This deadlock hazard applies equally to sequence number reordering and CID
ordering.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

5–26 Chapter 5: Software Programming Model
Exception Processing
Sequence Number Violations
When a system uses sequence number reordering, you must ensure that every
sequence number is returned to the sequence reorder queue exactly once. Otherwise,
one of two problems arise:

■ Sequence number leak—If a sequence number fails to return to the queue, the
system locks up waiting for the missing sequence number.

■ Sequence number duplication—If the reordering queue receives multiple
messages with the same sequence number, only one of the messages is reordered
correctly. The remaining messages stall for an indeterminate period of time. As a
result, some arbitrary future messages stall. The system continues to display
message stalling behavior indefinitely.

To ensure that all sequence numbers return to the queue exactly once, design your
system to conform to the following rules:

■ Each task sends at least one message.

■ If a task sends more than one message, sequence number reordering is enabled on
only one message. Sequence number ordering is enforced by default when you
send a message. On all other messages, you must set the OPT_KEEPSEQNUM flag to
one in the snd or sndi instruction to disable sequence number ordering.

Exception Processing
Each of the MTP exceptions falls into one of the following categories:

■ Reset exception—Occurs when the Nios II DPX processor is reset. Control is
transferred to the reset address you specify in the IP core setup parameters.

■ Break exception—Occurs when the debug module requests control. Control is
transferred to the break address you specify in the IP core setup parameters.

■ Instruction-related exception—Occurs when any of several internal conditions
occurs, as detailed in Table 5–15 on page 5–27. Control is transferred to the
exception address you specify in the IP core setup parameters.

There are no interrupt exceptions, because the Nios II DPX MTP core does not
implement interrupts.

Table 5–15 shows all possible MTP exceptions in order of highest to lowest priority.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 5: Software Programming Model 5–27
Exception Processing
Reset Exceptions
The reset state is undefined for all system components, including general-purpose
registers, extension registers, control registers, and instruction and data memory.

When a hard processor reset signal is asserted, all operation of the MTP resets and
suspends, and a processor soft reset signal (cpu_soft_reset) is asserted for each
thread in the processor. The soft reset causes the MTP to suspend instruction fetch and
execution until the soft reset signal is de-asserted. The soft reset can only be asserted
while the hard reset signal (cpu_rst_n) is asserted but can be kept asserted after hard
reset is de-asserted.

While soft reset is asserted and hard reset is de-asserted, the MTP is fully functional
but does not fetch instructions. This scenario allows debug operations and the
instruction access slave to operate so that host debug operations function as normal
and the debugger or external logic can access instruction memory.

1 The main use model of the soft reset is to disable the Nios II DPX MTP while
instruction, task, and data memories are written by the debugger or external logic.

The MTP reset address is defined by the Nios II DPX hardware system, and is
selectable at system generation time. External logic connected to the thread
management interfaces controls the PCs of the threads.

When both the hard and soft resets de-assert and the MTP comes out of reset, the first
instruction executed on each thread must be andi r0, r0, 0 to set r0 to zero.

1 If the debugger gains control before the first instruction executes for a thread, the
debugger must execute the andi r0, r0, 0 instruction before executing other
instructions.

f For information about configuring the reset address, refer to the Instantiating the
Nios II DPX Datapath Processor chapter, in the Nios II DPX Hardware Reference section of
the Nios II DPX Datapath Processor Handbook.

Table 5–15. Nios II DPX Exceptions (In Decreasing Priority Order)

Exception Exception Type
Saved

Address
Register (1)

 Vector (2)

Reset Reset n/a Reset

Hardware Break Break ba (3) Break

Break Instruction Instruction-related ba (3) Break

Trap Instruction Instruction-related ea (3) Exception

Unimplemented Instruction Instruction-related ea (3) Exception

Notes to Table 5–15:

(1) Specifies the register in which the address is saved. The address saved is always pc+4.
(2) Specifies which exception vector address the processor passes control to when the exception occurs.
(3) Refer to Table 5–1 on page 5–4 for descriptions of the ea and ba registers.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf

5–28 Chapter 5: Software Programming Model
Exception Processing
Break Exceptions
A break is a transfer of control away from a program’s normal flow of execution for
the purpose of debugging. Software debugging tools can take control of the processor
core via the debug module.

Break processing is the means by which software debugging tools implement debug
and diagnostic features, such as breakpoints. Break processing is a type of exception
processing, but the break mechanism is independent from general exception
processing. A break can occur during exception processing, enabling debug tools to
debug exception handlers.

The processor enters the break processing state under either of the following
conditions:

■ The processor executes the break instruction. This is often referred to as a software
break.

■ The debug module asserts a hardware break.

Processing a Break
A break causes the processor to take the following steps:

1. Writes the address of the instruction following the instruction that caused the
exception to the ba register (r30).

2. Transfers execution to the break vector you specified in the IP core setup
parameters.

The contents of the break vector are under control of the debugger. The debugger
executes code on the Nios II DPX MTP by repeatedly performing the following steps:

1. Writes an instruction to the break vector

2. Asserts the break request signal to cause the processor to execute the instruction at
the break vector.

When the debugger is ready to return control to the Nios II DPX software, it inserts a
bret instruction at the break vector.

Understanding Register Usage
The general-purpose registers bt (r25) and ba (r30) are reserved for debugging. Code
is not prevented from writing to these registers, but debug code might overwrite the
values. The break handler can use bt (r25) to help save additional registers.

Returning From a Break
The bret instruction returns program execution to the address in the ba register (r30).
Aside from bt and ba, all registers are guaranteed to be returned to their pre-break
state after returning from the break handler.

Instruction-Related Exceptions
Instruction-related exceptions occur during execution of MTP instructions. This
section describes the possible exceptions and how they are processed.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 5: Software Programming Model 5–29
Exception Processing
Instruction-related exceptions on the Nios II DPX MTP are fatal. In a complex
multithreaded datapath processing system, there is no realistic way for a task to
recover from a fault on an individual thread, or to continue without disrupting the
rest of the system.

The Nios II DPX MTP supports the following instruction-related exceptions:

■ break instruction

■ trap instruction

■ Unimplemented instruction

Break Instruction

The break instruction is treated as a break exception. For more information, refer to
“Break Exceptions” on page 5–28.

Trap Instruction

When a program issues the trap instruction, the processor generates a software trap
exception, transferring control to the exception handler. For information about the
exception handler, see “The Lightweight Hardware Abstraction Layer (LWHAL)” on
page 8–2.

The trap instruction is not intended to support an RTOS.

Unimplemented Instruction

An unimplemented instruction is an instruction word value that is not defined in the
Nios II DPX MTP implementation. Many word values have no meaning in the
instruction set architecture. Others are available only if the target device possesses a
DSP block.

When a program attempts to execute an unimplemented instruction, the processor
generates an exception, transferring control to the exception handler. For information
about the exception handler, see “The Lightweight Hardware Abstraction Layer
(LWHAL)” on page 8–2.

f To determine the unused opcodes and opcode extensions, refer to the encodings
tables in “The Nios II DPX MTP Instruction Set” on page 9–1.

The following instructions are available only if the target device possesses a DSP
block:

■ mulxss

■ mulxsu

■ mulxuu

The Nios II DPX MTP provides no way to determine the cause of an exception.

Because instruction-related exceptions are fatal, the Nios II DPX lightweight
hardware abstraction layer (LWHAL) implements an exception handler that consists
of a break instruction. The break instruction transfers control to the Nios II DPX MTP
debug core.

All threads share a single exception vector, defined at the time of core instantiation.
The SBT creates the .exceptions linker region at the exception vector address.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

5–30 Chapter 5: Software Programming Model
Instruction Set Categories
f For details about the trap, mulxss, mulxsu, and mulxuu instructions, refer to Chapter 9,
Nios II DPX MTP Instruction Set and Application Binary Interface. For information
about configuring the exception vector, refer to the Instantiating the Nios II DPX
Datapath Processor chapter, in the Nios II DPX Hardware Reference section of the
Nios II DPX Datapath Processor Handbook.

Processing an Instruction-Related Exception
An instruction-related exception causes the processor to take the following steps:

1. Writes the address of the instruction following the break to the ea register (r29).

2. Transfers execution to the exception handler, stored at the exception vector you
specified in the IP core setup parameters.

Software cannot modify the exception vector. Programmers do not directly access
exception vectors, and can write programs without awareness of the address.

The lightweight hardware abstraction layer (LWHAL) default exception handler is a
simple routine that passes control to the debug unit.

You can create your own exception handler. The routine must save registers on entry
and restore them on exit. Saving the register contents on the stack is a typical,
re-entrant implementation.

f For more information about writing exception handlers, refer to “Exception
Handling” on page 8–8.

Instruction Set Categories
This section introduces the MTP instruction set, categorized by type of operation
performed.

Data Transfer Instructions
The MTP architecture is a load-store architecture. Load and store instructions handle
all data movement between registers, memory, and peripherals. Memories and
peripherals share a common address space.

Table 5–16 describes the wide (32-bit) load and store instructions.

Table 5–16. Wide Data Transfer Instructions

Instruction Description

ldw

stw

The ldw and stw instructions load and store 32-bit data words from/to memory. The effective address is the
sum of a register's contents and a signed immediate value contained in the instruction.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf

Chapter 5: Software Programming Model 5–31
Instruction Set Categories
The data transfer instructions in Table 5–17 support byte and half-word transfers.

Bit Manipulation Instructions
Bit manipulation instructions isolate and operate on specific bits in a register. Refer to
Table 5–18.

Arithmetic Instructions
Arithmetic instructions support addition, subtraction, and multiplication operations.
Refer to Table 5–19.

Table 5–17. Narrow Data Transfer Instructions

Instruction Description

ldb
ldbu
stb
ldh
ldhu
sth

ldb, ldbu, ldh and ldhu load a byte or half-word from memory to a register. ldb and ldh sign-extend the
value to 32 bits, and ldbu and ldhu zero-extend the value to 32 bits.

stb and sth store byte and half-word values, respectively.

Table 5–18. Bit Manipulation Instructions

Instruction Description

and
or
xor
nor

These are the standard 32-bit logical operations. These operations take two register values and combine them
bitwise to form a result for a third register.

andi
andci
ori
xori

These operations are immediate versions of the and, or, and xor instructions. The 16-bit immediate value is
zero-extended to 32 bits, and then combined with a register value to form the result.

andhi
andchi
orhi
xorhi

In these versions of and, or, and xor, the 16-bit immediate value is shifted logically left by 16 bits to form a
32-bit operand. Zeroes are shifted in from the right.

extract
insert
merge

These operations isolate and change specific bits while leaving the remaining bits unchanged. extract gets
bits from a register while insert and merge replace bits in a register. extract and insert shift bits to the
low end of the register while merge specifies the bits in place.

The insert instruction is an optional instruction. It can be configured at system generation time. If software
attempts to execute an insert instruction on a processor that does not implement the instruction, the
processor generates an exception.

Table 5–19. Arithmetic Instructions (Part 1 of 2)

Instruction Description

add
sub
mul

These are the standard 32-bit arithmetic operations. These operations take two registers as input and store
the result in a third register.

addi
subi
muli

These instructions are immediate versions of the add, sub, and mul instructions. The instruction word
includes a 12-bit signed value for addi, subi, and muli.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

5–32 Chapter 5: Software Programming Model
Instruction Set Categories
Move Instructions
These instructions provide move operations to copy the value of a register or an
immediate value to another register. Refer to Table 5–20.

Comparison Instructions
The MTP architecture supports a number of comparison instructions. All of these
instructions perform a comparison as follows:

1. Compare two registers or a register and an immediate value

2. Return the result of the comparison in a result register. The result can be true (one)
or false (zero).

These instructions perform all the equality and relational operators of the C
programming language. Comparison instructions are listed in Table 5–21.

mulxss
mulxuu

These instructions provide access to the upper 32 bits of a 32x32 multiplication operation. Choose the
appropriate instruction depending on whether the operands should be treated as signed or unsigned values. It
is not necessary to precede these instructions with a mul.

mulxsu This instruction is used in computing a 128-bit result of a 64x64 signed multiplication.

Table 5–19. Arithmetic Instructions (Part 2 of 2)

Instruction Description

Table 5–20. Move Instructions

Instruction Description

mov
movhi
movhi20
movi
movui
movia

mov copies the value of one register to another register. movi moves a 12-bit signed immediate value to a
register, and sign-extends the value to 32 bits. movhi and movhi20 move 16-bit and 20-bit immediate values,
respectively, into the uppermost bits of a register, inserting zeros in the remaining bit positions. movui moves
a 16-bit immediate value into the lower 16 bits of a register, inserting zeros in the upper 16 bits. Use movia to
load a register with an address.

Table 5–21. Comparison Instructions (Part 1 of 2)

Instruction Description

cmpeq Return true if values equal (==)

cmpne Return true if values not equal (!=)

cmpge Compare signed values, and return true if first value greater than or equal to second value (>=)

cmpgeu Compare unsigned values, and return true if first value greater than or equal to second value (unsigned >=)

cmpgt Compare signed values, and return true if first value greater than second value (signed >)

cmpgtu Compare unsigned values, and return true if first value greater than second value (unsigned >)

cmple Compare signed values, and return true if first value less than or equal to second value (signed <=)

cmpleu Compare signed values, and return true if first value less than or equal to second value (unsigned <=)

cmplt Compare signed values, and return true if first value less than second value (signed <)
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 5: Software Programming Model 5–33
Instruction Set Categories
Shift and Rotate Instructions
The following instructions provide shift and rotate operations. The number of bits to
rotate or shift can be specified in a register or an immediate value. Refer to Table 5–22.

Message Passing Instructions
Message passing instructions support hardware message passing. Refer to Table 5–23.

cmpltu Compare unsigned values, and return true if first value less than second value (unsigned <)

cmpeqi
cmpnei
cmpgei
cmpgeui
cmpgti
cmpgtui
cmplei
cmpleui
cmplti
cmpltui

These instructions are immediate versions of the comparison operations. They compare the value of a register
and a 12-bit immediate value. Signed operations sign-extend the immediate value to 32 bits. Unsigned
operations fill the upper bits with zero.

Table 5–21. Comparison Instructions (Part 2 of 2)

Instruction Description

Table 5–22. Shift and Rotate Instructions

Instruction Description

rol
ror
roli

The rol and roli instructions provide left bit rotation. roli uses an immediate value to specify the number
of bits to rotate. The ror instructions provides right bit rotation.

There is no immediate version of ror, because roli can be used to implement the equivalent operation.

sll
slli
sra
srl
srai
srli

These shift instructions implement the << and >> operators of the C programming language. The sll, slli,
srl, srli instructions provide left and right logical bit-shifting operations, inserting zeros. The sra and srai
instructions provide arithmetic right bit-shifting, duplicating the sign bit in the most significant bit. slli,
srli and srai use an immediate value to specify the number of bits to shift.

Table 5–23. Message Passing Instructions (Note 1), (2)

Instruction Description

snd
sndi

The snd and sndi instructions send messages.

txalloc The txalloc instruction allocates a new TXID and a new transmit buffer, for use by the current thread. (3)

rxfree
The rxfree releases the RXID held by the current thread, along with the associated receive message
buffer. (3)

cidalloc The cidalloc instruction obtains a new context ID for the current thread, facilitating spawning.

Notes to Table 5–23:

(1) The meaning of the register arguments is described in Chapter 9, Nios II DPX MTP Instruction Set and Application Binary Interface. Also see
“Sending PE Messages Between Tasks” on page 5–11.

(2) Set the destination register to r0 when the destination value is not required.
(3) For information about using RXID and TXID, see “Sending PE Messages Between Tasks” on page 5–11.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

5–34 Chapter 5: Software Programming Model
Instruction Set Categories
Program Control Instructions
The MTP architecture supports the unconditional jump, branch, and call instructions
listed in Table 5–24. These instructions do not have delay slots.

The conditional branch instructions compare register values directly, and branch if the
expression is true. Refer to Table 5–25. The conditional branches support the following
equality and relational comparisons of the C programming language:

■ == and !=

■ < and <= (signed and unsigned)

■ > and >= (signed and unsigned)

The conditional branch instructions do not have delay slots.

Table 5–24. Unconditional Jump and Call Instructions

Instruction Description

call
This instruction calls a subroutine using an immediate value as the subroutine's absolute address, and stores
the return address in register ra.

callr
This instruction calls a subroutine at the absolute address contained in a register, and stores the return
address in register ra. This instruction serves the role of dereferencing a C function pointer.

ret
The ret instruction is used to return from subroutines called by call or callr. ret loads and executes the
instruction specified by the address in register ra.

jmp
The jmp instruction jumps to an absolute address contained in a register. jmp is used to implement switch
statements of the C programming language.

jmpi
The jmpi instruction jumps to an absolute address using an immediate value to determine the absolute
address.

jrel
The jrel instruction jumps to an address relative to the current PC address. jrel is used to jump into a
branch table to implement C-language switch statements efficiently. This instruction is only efficient when the
case constants in the switch statement are grouped closely together.

br
This instruction branches relative to the current instruction. A 12-bit signed immediate value gives the word
offset, which is equivalent to a signed 14-bit byte offset, of the next instruction to execute.

Table 5–25. Conditional Branch Instructions

Instruction Description

bge
bgeu
bgt
bgtu
ble
bleu
blt
bltu
beq
bne

These instructions provide relative branches that compare two register values and branch if the expression is
true. Refer to “Comparison Instructions” on page 5–32 for a description of the relational operations
implemented.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 5: Software Programming Model 5–35
Instruction Set Categories
Thread Control Instructions
The MTP architecture supports hardware multithreading. Refer to Table 5–26.

Other Control Instructions
Table 5–27 shows other control instructions.

No-operation Instruction
The MTP assembler provides a no-operation instruction, nop.

Potential Unimplemented Instructions
A Nios II DPX processor core might not support all instructions if it is implemented
on a device without a DSP block. In this case, the processor generates an exception
after issuing an unimplemented instruction. The following instructions can generate
an unimplemented instruction exception:

■ insert

■ mulxss

■ mulxsu

■ mulxuu

Table 5–26. Thread Control Instructions

Instruction Description

exit
This instruction releases a thread, marking it as idle and therefore available to execute a new task. The current
task is terminated.

Table 5–27. Other Control Instructions

Instruction Description

trap
eret

The trap and eret instructions generate and return from exceptions. These instructions are similar to the
call/ret pair, but are used for exceptions. trap saves the return address in the ea register, and then
transfers execution to the general exception handler. eret returns from exception processing by executing
the instruction specified by the address in ea.

break
bret

The break and bret instructions generate and return from breaks. break and bret are used exclusively by
software debugging tools. Programmers never use these instructions in application code.

rdctl
wrctl

These instructions read and write control registers, such as the cpuid register. The value is read from or
stored to a general-purpose register.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

5–36 Chapter 5: Software Programming Model
Instruction Set Categories
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

May 2011 Altera Corporation
6. Getting Started with the Graphical
User Interface
The Nios II EDS allows you to construct and debug a wide variety of complex
software systems using a set of GUI interfaces. From these interfaces, you can create
application, BSP, and library projects, and you can build and debug these projects.

This chapter introduces you to project creation and debugging with the EDS GUI
tools.

The Nios II EDS provides two GUI tools for developing and debugging Nios II DPX
software: the System Console and the Nios II SBT for Eclipse. Eclipse is an IDE
providing common software development and debugging tools. The System Console
allows you to download software and configure a debug server for each Nios II DPX
datapath processor.

This chapter familiarizes you with the features of the Nios II DPX GUI tools. This
chapter contains the following sections:

■ “Getting Started”

■ “Makefiles and the Nios II SBT for Eclipse” on page 6–17

■ “Using the BSP Editor” on page 6–20

■ “Importing a Command-Line Project” on page 6–28

■ “Managing Toolchains in Eclipse” on page 6–32

■ “Eclipse Usage Notes” on page 6–32

Introduction to the Nios II DPX Debugging Environment
The System Console performs low-level debugging of hardware systems. The System
Console includes the GDB server control panel, which enables you to download a .elf
file to each Nios II DPX datapath processor, and launch a GDB server for each
processor. GDB servers enable the SBT for Eclipse to communicate with and control
the Nios II DPX MTPs through a debugging connection, such as JTAG over a
USB-Blaster.

The SBT for Eclipse is a set of plugins to the Eclipse framework and the Eclipse
C/C++ development toolkit (CDT) plugins. The Nios II SBT for Eclipse provides a
consistent development platform that works for all Nios II DPX Multi-Threaded
Processor (MTP) systems. The debugger allows you to perform many common
debugging tasks. You can accomplish all software development tasks within Eclipse,
including creating, editing, building, and debugging programs.

Alternatively, you can use the GDB command line to debug Nios II DPX software
without Eclipse. Third-party GDB server GUIs are also available. The use of these
tools is outside the scope of this handbook, and not supported by Altera.

f For detailed documentation of the GDB command line, refer to Debugging with GDB:
The GNU Source-Level Debugger, available from the Free Software Foundation website
(www.fsf.org).
Nios II DPX Datapath Processor Handbook

http://www.fsf.org

6–2 Chapter 6: Getting Started with the Graphical User Interface
Getting Started
Getting Started
Modifying existing code is a common, easy way to learn to start writing software in a
new environment. To get started with the Nios II DPX MTP, download the Getting
Started with the Nios II DPX MTP Tutorial and its accompanying example design.

f The Getting Started with the Nios II DPX MTP Tutorial and its accompanying example
design are available on the Packet Processing Design Example Using Nios II DPX
Datapath Processor page of the Altera website.

This section guides you through the most fundamental operations in the Nios II DPX
debugging environment. It shows how to create an application project for the
Nios II DPX MTP, along with the board support package (BSP) project required to
interface with your hardware. It also shows how to build the application and BSP
projects in Eclipse, and how to run the software on an Altera development board.

The debugging flow is divided in two stages: debug setup and debugging.

1 If your Nios II DPX hardware was generated using Qsys v10.1, you cannot debug it
using the Nios II EDS v11.0 or later. You must regenerate your Nios II DPX hardware
and the associated BSP.

f For information about regenerating your hardware in Qsys, refer to “Qsys Design
Flow” in the Creating a System with Qsys chapter in Volume 1: Design and Synthesis of
the Quartus II Handbook. For information about regenerating your BSP, refer to
“Revising your BSP” in the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook.

The Nios II SBT for Eclipse Workbench
The term “workbench” refers to the Nios II SBT for Eclipse desktop development
environment. The workbench is where you edit, compile and debug your programs in
Eclipse.

Perspectives, Editors, and Views
Each workbench window contains one or more perspectives. Each perspective
provides a set of capabilities for accomplishing a specific type of task.

Most perspectives in the workbench comprise an editor area and one or more views.
An editor allows you to open and edit a project resource (i.e., a file, folder, or project).
Views support editors, and provide alternative presentations and ways to navigate
the information in your workbench.

Any number of editors can be open at once, but only one can be active at a time. The
main menu bar and toolbar for the workbench window contain operations that are
applicable to the active editor. Tabs in the editor area indicate the names of resources
that are currently open for editing. An asterisk (*) indicates that an editor has unsaved
changes. Views can also provide their own menus and toolbars, which, if present,
appear along the top edge of the view. To open the menu for a view, click the
drop-down arrow icon at the right of the view’s toolbar or right-click in the view. A
view might appear on its own, or stacked with other views in a tabbed notebook.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

www.altera.com/literature/tt/tt-niidpx-start.pdf
www.altera.com/literature/tt/tt-niidpx-start.pdf
www.altera.com/literature/tt/tt-niidpx-start.pdf
www.altera.com/support/examples/nios-ii-dpx/exm-simple-packet-processing.html
www.altera.com/support/examples/nios-ii-dpx/exm-simple-packet-processing.html
http://www.altera.com/literature/hb/qts/qsys_intro.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 6: Getting Started with the Graphical User Interface 6–3
Getting Started
f For detailed information about the Eclipse workbench, perspectives, and views, refer
to the Eclipse help system.

1 Before you create a Nios II DPX project, you must ensure that the Nios II perspective
is visible. To open the Nios II perspective, on the Window menu, point to Open
Perspective, then Other, and click Nios II.

The Nios II DPX Launch Configuration
You run Nios II DPX projects using the Nios II DPX launch configuration. The
Nios II DPX launch configuration is implemented by the Nios II plugins. It enables a
GDB client running in Eclipse to attach to a running GDB server. You cannot use the
Nios II Hardware launch configuration for a Nios II DPX project.

The Altera Bytestream Console
The workbench in Eclipse for Nios II includes a bytestream console, available through
the Eclipse Console view. The Altera bytestream console enables you to see output
from the processor’s stdout device. For information about the Altera bytestream
console, see “Using the Altera Bytestream Console” on page 6–12.

Creating a Project
A complete Nios II DPX software project consists of an application project and a BSP
project. This section describes how to create both projects in the Nios II Software Build
Tools for Eclipse.

The BSP and the application project must be created separately. You cannot use a
project template to create a Nios II DPX project.

Creating the BSP
You create a BSP with default settings using the Nios II Board Support Package
wizard. To start the wizard, on the File menu, point to New and click Nios II Board
Support Package.

The Nios II Board Support Package wizard enables you to specify the following BSP
parameters:

■ The BSP project name

■ The underlying hardware design (.sopcinfo file)

■ The BSP project location

■ The BSP type (Lightweight HAL) and version

■ The target Nios II DPX MTP, if the system contains more than one core

■ Additional arguments to the nios2-bsp script

f For details about nios2-bsp command arguments, refer to “Details of BSP
Creation” in the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook.

Specifying the BSP Project Name

The SBT creates a directory with this name, to contain the BSP project files.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

6–4 Chapter 6: Getting Started with the Graphical User Interface
Getting Started
Letters, numbers, and the underscore (_) symbol are the only valid project name
characters. Project names cannot contain spaces or special characters. The first
character in the project name must be a letter or underscore. The maximum filename
length is 250 characters.

Specifying the BSP Project Location

The BSP project location is the parent directory in which the SBT creates the folder.

By default, the project location is under the directory containing the .sopcinfo file, in a
folder named software.

To place your BSP in a different folder, turn off Use default location, and specify the
BSP location in the Project location box.

Creating the Project

When you have specified your BSP, you click Finish to create the project. The SBT
copies required source files to your project directories, and creates makefiles and
other generated files. Finally, the SBT executes a make clean command on your BSP.

f For details about what happens when Nios II DPX projects are created, refer to
“Nios II DPX BSP Creation” on page 8–9. For details about the make clean command,
refer to “Makefiles” in the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook.

After you have created the BSP, you have the following options for GUI-based BSP
editing:

■ To access and modify basic BSP properties, right-click the BSP project, point to
Properties and click Nios II BSP Properties.

■ To modify parameters and settings in detail, use the Nios II BSP Editor, described
in “Using the BSP Editor”.

Creating the Application
You create an application project using the Nios II Application wizard. To start the
wizard, on the File menu, point to New and click Nios II Application.

Specifying the Project Name

Select a descriptive name for your project. The SBT creates a folder with this name to
contain the application project files.

Letters, numbers, and the underscore (_) symbol are the only valid project name
characters. Project names cannot contain spaces or special characters. The first
character in the project name must be a letter or underscore. The maximum filename
length is 250 characters.

Specifying the BSP

To select the BSP location, browse to the BSP you created in “Creating the BSP” on
page 6–3.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 6: Getting Started with the Graphical User Interface 6–5
Getting Started
Specifying the Project Location

The project location is the parent directory in which the SBT creates the project folder.
By default, the project location is under the directory containing the .sopcinfo file, in a
folder named software.

To place your application project in a different folder, turn off Use default location,
and specify the path in the Project location box.

Additional Arguments

In the Additional Arguments text box, you can specify any additional command-line
arguments for the nios2-app-generate-makefile command. The full command line is
displayed in the Command text box.

If you intend to run the project in the Nios II DPX MTP ModelSim® simulation
environment, use the Additional arguments parameter to specify the location of the
testbench file (.spd). The .spd file is located in the Quartus II project directory. Specify
the path as follows:

--set QUARTUS_PROJECT_DIR=<relative path>

Altera recommends that you use a relative path name, to ensure that your project is
independent of the installation directory.

For information about available command-line arguments for
nios2-app-generate-makefile, refer to Chapter 10, SBT Reference for the Nios II DPX
MTP.

Creating the Project

When you have specified your application, you click Finish to create the project. The
SBT creates the makefile and executes a make clean command on your application.

f For details about what happens when Nios II DPX projects are created, refer to
“Nios II DPX BSP Creation” on page 8–9. For details about the make clean command,
refer to “Makefiles” in the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook.

Adding Source Files

After the project is created, you have an empty framework for a Nios II DPX
application, with a makefile that specifies no source files. You can add or create source
files in the project to implement your software design.

f For information about creating and adding source files to an Eclipse project, see the
Eclipse help system.

When you create or add a source file, the SBT adds the file to your makefile. For
details, see “Makefiles and the Nios II SBT for Eclipse” on page 6–17.

Navigating the Project
When you have created a project, it appears in the Project Explorer view, which is
typically displayed at the left side of the Nios II perspective. You can expand each
project to examine its folders and files.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

6–6 Chapter 6: Getting Started with the Graphical User Interface
Getting Started
For an explanation of the folders and files in a Nios II DPX BSP, refer to “Nios II DPX
BSP Creation” on page 8–9.

Building the Project
To build a project in the Nios II SBT for Eclipse, right-click the project name and click
Build Project. A progress bar shows you the build status. The build process can take a
minute or two for a simple project, depending on the speed of the host machine.
Building a complex project takes longer.

During the build process, you view the build commands and command-line output in
the Eclipse Console view.

f For details about Nios II SBT commands and output, refer to Chapter 10, SBT
Reference for the Nios II DPX MTP.

When the build process is complete, the following message appears in the Console
view, under the C-Build [<project name>] title:

[<project name> build complete]

If the project has a dependency on another project, such as a BSP or a user library, the
SBT builds the dependency project first. This feature allows you to build an
application and its BSP with a single command.

Configuring the FPGA
Before you can run your software, you must ensure that the correct hardware design
is running on the FPGA. To configure the FPGA, you use the Quartus® II Programmer.

In the Windows operating system, you start the Quartus II Programmer from the
Nios II SBT for Eclipse, through the Nios II menu. In the Linux operating system, you
start Quartus II Programmer from the Quartus II software.

The project directory for your hardware design contains an SRAM Object File (.sof)
along with the .sopcinfo file. The .sof file contains the hardware design to be
programmed in the FPGA.

f For details about programming an FPGA with Quartus II Programmer, refer to the
Quartus II Programmer chapter in Volume 3: Verification of the Quartus II Handbook.

Debug Setup
In this stage, you set up a System Console debug session configuration script, one or
more Eclipse debug configurations, and an optional launch group. This configuration
information then is reused throughout the lifetime of the project.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

http://www.altera.com/literature/hb/qts/qts_qii53022.pdf

Chapter 6: Getting Started with the Graphical User Interface 6–7
Getting Started
Downloading the Project and Launching GDB Server
You use the GDB server control panel in System Console to download your software
project(s) and launch the GDB debug server(s). To launch the GDB server control
panel, perform the following steps:

1. In the Nios II menu, click System Console.

2. Select the application project to download and click OK.

3. In the Tools menu in System Console, click GDB Server Control Panel.

System Console determines what Nios II DPX datapath processors are present in the
system, through the JTAG debug interface.

The GDB server control panel enables you to specify the following parameters:

■ What Nios II DPX datapath processor(s) to use.

■ What .elf file(s) to download to them.

1 The GDB server control panel does not validate the .elf file you select.
Ensure that you select the correct .elf file, with a BSP generated for the
version of the hardware design that is loaded on the target device.

■ The desired TCP port number(s). The default TCP port number used by GDB is
10000.

If your system uses a dual-core Nios II DPX datapath processor, both Nios II DPX
MTPs must run the same program code, because the cores share one program
memory. Therefore, there is one .elf file per Nios II DPX datapath processor. You must
start one GDB server for each Nios II DPX datapath processor.

If your system has more than one Nios II DPX datapath processor, enter the desired
TCP port number for the first processor. The GDB server control panel assigns
sequential port numbers to the remaining processors. You can manually modify these
port numbers if you wish.

Make a note of the port number(s) you select. You need them when you create the
debug configuration(s) in Eclipse, in “Creating Eclipse Debug Configurations”.

After you have selected the .elf files and port numbers, select each Nios II DPX MTP
and click Launch Server. The Launch Server button downloads the .elf and starts the
GDB server.

By default, each Nios II DPX MTP thread pauses at the entry point (reset address).
You can start the threads running from Eclipse. Alternatively, if you want the
Nios II DPX MTP(s) to start running immediately, select the desired MTP(s) and click
Start Program.

If your Nios II DPX hardware design is out of date, you might see the following error
message:

The DPX hardware and debug driver versions are mismatched. Please
upgrade your DPX hardware.

This message appears if your Nios II DPX hardware was generated using Qsys v10.1,
and you attempt to debug it using the Nios II EDS v11.0 or later. You must regenerate
your Nios II DPX hardware and the associated BSP.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

6–8 Chapter 6: Getting Started with the Graphical User Interface
Getting Started
f For information about regenerating your hardware in Qsys, refer to “Qsys Design
Flow” in the Creating a System with Qsys chapter in Volume 1: Design and Synthesis of
the Quartus II Handbook. For information about regenerating your BSP, refer to
“Revising your BSP” in the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook.

Saving the GDB Server Configuration
When you have determined that your GDB server configuration is satisfactory, you
can save it as a Tcl script, by clicking Save Session. Saving the configuration as a Tcl
script enables you to start future debugging sessions much more easily.

By default, the configuration Tcl script is saved in the software project directory. You
can optionally save the script elsewhere in the file system. You can load it using the
source Tcl command.

With a debugging configuration Tcl script, you can start a debugging session from the
System Console command line. You can also run the script from the GDB command
line, if you choose.

All actions that are available through the GUI are available as discrete Tcl commands.

Creating Eclipse Debug Configurations
Your project must be built and downloaded, and GDB server must be running, before
you begin these steps.

The first step in debugging with Eclipse is to create a Nios II DPX debug
configuration for each Nios II DPX datapath processor. This type of debug
configuration enables Eclipse to attach to a GDB server that is already running.

Although the Eclipse documentation refers to a debug configuration as a “launch
configuration,” be aware that the Nios II DPX launch configuration does not launch
the Nios II DPX software. It merely attaches to the GDB server that you set up in
“Downloading the Project and Launching GDB Server” on page 6–7.

1 Do not use the Nios II Hardware launch configuration for a Nios II DPX project.

To create a debug configuration, right-click the application project name, point to
Debug As, and click Debug Configurations. In the Debug Configurations dialog
box, select Nios II DPX Hardware, and click the New button (). Then perform these
steps:

1. In the Main tab, ensure that the correct software project name and .elf file are
selected.

2. In the Debugger tab, under Debugger Options, select Connection.

3. At Port number, ensure that the port number matches what you selected in
“Downloading the Project and Launching GDB Server” on page 6–7.

4. Click Apply to save the debug configuration.

5. Click Close to close the dialog box.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

http://www.altera.com/literature/hb/qts/qsys_intro.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 6: Getting Started with the Graphical User Interface 6–9
Getting Started
Multiple Nios II DPX Datapath Processors
You must create one debug configuration for each Nios II DPX datapath processor in
the system. If you need multiple debug configurations, create them by performing the
following steps:

1. Create a single debug configuration as described in the previous section.

2. To create an additional debug configuration, select the first debug configuration
and click Duplicate on the right-click menu.

3. Edit the new debug configuration and adjust the port number to match the port
number you noted in “Downloading the Project and Launching GDB Server” on
page 6–7.

4. Repeat steps 1 through 3 to create any additional needed debug configurations.

1 Make sure that the GDB server port numbers and the downloaded .elf file for each
Nios II DPX datapath processor, as specified in the GDB server configuration, match
the port number and .elf file in each debug configuration.

Multi-Core Launches

If you have multiple debug configurations, create an Eclipse launch group. Launch
groups are an Eclipse feature that allows multiple debug configurations to be started
at the same time. You choose which debug configurations are added to the group. You
can use the launch group in any place where you can use a debug configuration.

f For details about Eclipse launch groups, refer to the Eclipse help system.

Debugging the Project
This section describes how to debug a Nios II DPX program using the System Console
and Nios II SBT for Eclipse. This section assumes that you have already performed the
debug configuration steps described in “Debug Setup” on page 6–6.

Here are the steps to debug a Nios II DPX datapath processor application:

1. Open the System Console GDB server control panel, as described in
“Downloading the Project and Launching GDB Server” on page 6–7.

2. Load a debug session by double clicking on the Tcl script that you created in
“Saving the GDB Server Configuration” on page 6–8. This script executes the
following steps:

a. Downloads the .elf file

b. Starts the bytestream console

c. Starts the GDB server

You can optionally interact with the debugger by typing GDB commands inside the
Console window of the corresponding GDB process to run, single step, and take other
common debugging actions.

1 The tbreak command is not supported by the Nios II DPX datapath processor.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

6–10 Chapter 6: Getting Started with the Graphical User Interface
Getting Started
In the Nios II SBT for Eclipse, open the debug configuration you created in “Creating
Eclipse Debug Configurations” on page 6–8. Click Debug to attach the Eclipse
debugging session to threads already running or paused on the Nios II DPX datapath
processor(s).

This command carries out the following actions:

■ Establishes communications with the running GDB server

■ Sets a breakpoint at the .elf entry point

■ Pauses execution at the .elf entry point

If a processor is paused (the default when you start the debugging session), you can
start or resume the thread with the Eclipse Resume button.

You cannot use an Eclipse run configuration for a Nios II DPX project. If you wish to
run the Nios II DPX software, you can use a debug configuration, and disable all
breakpoints.

f For general information about debugging with Eclipse and the CDT plugins, refer to
the Eclipse help system.

Thread Representation
Each Nios II DPX MTP is represented as a GDB process. Its threads are represented as
GDB threads. Each thread is labeled with a thread ID.

A single-core Nios II DPX datapath processor has eight threads. A dual-core processor
has 16 threads.

The SBT for Eclipse treats a dual-core processor like a single-core processor with 16
threads.

Hardware thread numbers range from 0 to <n> – 1, where <n> is the number of
threads. However, Eclipse thread IDs range from 1 to <n>. Because threads are
interchangeable, normally you need not be concerned with hardware thread numbers.

You can select a thread in the Debug view and start or stop it individually with the
Eclipse Resume and Suspend commands. Alternatively, you can select the parent
node and run all threads.

Debugging Actions
The Eclipse debugger with the Nios II plugins provides a Nios II perspective,
allowing you to perform many common debugging tasks. The debugging actions you
can perform with the Nios II SBT for Eclipse include the following actions:

■ Controlling program execution with commands such as:

■ Suspend (pause)

■ Resume

■ Terminate

■ Step Into

■ Step Over

■ Step Return
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 6: Getting Started with the Graphical User Interface 6–11
Getting Started
■ Setting breakpoints

■ Viewing disassembly

■ Instruction stepping mode

You can enable Eclipse to step through individual processor instructions by
clicking . When you turn on instruction stepping mode, the DSF Disassembly
view automatically opens.

■ Displaying and changing the values of local and global variables in the following
formats:

■ Binary

■ Decimal

■ Hexadecimal

■ Viewing and editing registers in the following formats:

■ Binary

■ Decimal

■ Hexadecimal

The debugger can view and edit Nios II DPX extension registers. However, it
cannot edit the read-only registers (such as RX0 and CRi0), and it cannot read the
write-only registers (such as TX0 and CRo0). Because the read-only and write-only
registers share register addresses, if you attempt to write to a read-only register
(such as RX0), you write to the corresponding write-only register (such as TX0).
Also, if you attempt to read from a write-only register, you read the value of the
corresponding read-only register.

f For detailed information about Nios II DPX extension registers, refer to
“Using the Nios II DPX Extension Registers” on page 5–19.

■ Viewing and editing memory in the following formats:

■ Hexadecimal

■ ASCII

■ Signed integer

■ Unsigned integer

■ Viewing stack frames in the Debug view

■ Typing GDB commands in the GDB console, in the Eclipse Console view

1 The tbreak command is not supported by the Nios II DPX datapath
processor.

Console output to stdout appears in the System Console.

f For information about debugging commands supported by Eclipse and the CDT
plugins, refer to the Eclipse help system.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

6–12 Chapter 6: Getting Started with the Graphical User Interface
Getting Started
If you modify and rebuild your source code, you must use System Console to reload
the .elf and restart the GDB server. For more information, see “Stopping and
Restarting”.

Breakpoints
The Nios II DPX debugging environment offers both software and hardware
breakpoints.

Software Breakpoints

Software breakpoints are set using Eclipse breakpoint infrastructure. Eclipse sets the
breakpoint for all threads, in all running debug sessions.

1 You cannot filter software breakpoints by thread. Although Eclipse offers GDB
thread-specific breakpoints, this feature is designed for software threads, and does not
work correctly with Nios II DPX hardware threads. To set a breakpoint on a specific
hardware thread, use a hardware breakpoint.

Hardware Breakpoints

Eclipse does not have infrastructure to set hardware breakpoints. You must use the
hbreak GDB command to set thread-specific hardware breakpoints. This command
must be issued inside the GDB server control panel, either in Eclipse or in System
Console.

You can set no more than four hardware breakpoints at a time.

Stopping and Restarting
When you stop the debugger, for example to modify and rebuild the code, the GDB
server stops listening. You must restart the GDB server from the GDB server control
panel as follows:

1. In the GDB server control panel, stop the GDB server by clicking Stop Server.

2. Click Launch Server to restart the server.

Eclipse breakpoints are preserved from the previous debug session.

If you have modified the code, the breakpoint locations might no longer be relevant.
You must clear and reset your breakpoints.

If you need to assert a hardware reset, close any open GDB servers and other System
Console services connected to the Nios II DPX datapath processor, such as views of
the processor or memory.

Using the Altera Bytestream Console
The Altera bytestream console enables you to see output from the processor’s stdout
device. The function of the Altera bytestream console is similar to the nios2-terminal
command-line utility.

Open the Altera bytestream console in the Eclipse Console view the same way as any
other Eclipse console, by clicking the Open Console () button.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 6: Getting Started with the Graphical User Interface 6–13
Getting Started
When you open the Altera bytestream console, the Bytestream Console Selection
dialog box shows you a list of available bytestreams. This is the same set of
bytestreams recognized by System Console. Select the bytestream connected to the
processor you are debugging.

f For information about how System Console recognizes bytestreams, refer to the
Analyzing and Debugging Designs with the System Console chapter in Volume 3:
Verification of the Quartus II Handbook.

1 A bytestream device can support only one connection at a time. You must close the
Altera bytestream console before attempting to connect to the processor with the
nios2-terminal utility, and vice-versa.

Context-Specific Debugging for Nios II DPX Systems
When debugging a datapath processing system, you need to be able to follow a
particular data packet, or context, through the system. A context usually follows a
path that takes it from an input PE, through multiple PEs including the Nios II DPX
datapath processor, to finally reach an output PE. As it traverses this path, the context
and its data are transformed by the action of hardware and software tasks.

To effectively analyze and debug the system, you need to follow the execution of the
many software tasks that act on selected contexts. The software debugging tools
enable you to trace the context whenever it returns to the Nios II DPX datapath
processor.

You cannot use the software debugging tools to trace a context through hardware PEs.

To achieve this context-specific debugging, you select a context that you are interested
in following, and set a debug flag associated with that context.

The debug flag is passed from PE to PE in messages on the same context. When the
debug flag returns to the Nios II DPX datapath processor, it activates a hardware
breakpoint, causing the thread to break on entry to the task. This allows you to
continue debugging with the same context.

Debug Flag Management

For any suspended thread, you can set or reset a debug flag to accompany the context
being processed by the thread. The debug flag is physically associated with the
message sent by the task when it terminates. When a task is started by a message that
contains a debug flag, all messages sent by that task also have the debug flag set.
Thus, the debug flag remains with the context until it is explicitly removed.

You control context-specific debug flags by typing commands into the GDB console.
The debug flag management commands are as follows:

monitor set_debug_flag <thread-id> <value>

This command sets or resets the debug flag currently being processed by the
thread specified in <thread-id>. <value> can be 0 or 1, where 0 means reset the flag
and 1 means set the flag. The thread must already be suspended before you issue
this command. Otherwise the command fails with an error message.

You specify a thread with the GDB thread ID. You can see the thread ID by
examining the Eclipse thread list.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

http://www.altera.com/literature/hb/qts/qts_qii53028.pdf

6–14 Chapter 6: Getting Started with the Graphical User Interface
Getting Started
monitor get_debug_flag <thread-id>

This command queries the value of the debug flag for the message currently being
processed by the specified thread. The return value is 0 if the flag is not set, and 1
if the flag is set. The thread must already be suspended before you issue this
command. Otherwise the command fails with an error message.

monitor set_packet_debug <value>

This command enables or disables the hardware breakpoint which causes the
Nios II DPX MTP to break on the first instruction of a task ready to process a
message marked with a debug flag. <value> can be 0 to disable the breakpoint or 1
to enable the breakpoint. In the case of a dual-core Nios II DPX datapath
processor, the setting applies to both cores.

monitor get_packet_debug

This command queries whether the processor is enabled to break on the arrival of
a message marked with a debug flag.

Working with Stand-Alone Systems
In the Nios II DPX stand-alone hardware development flow, you create a Nios II DPX
datapath processor in Qsys, and then export it to your system manually.

f For information about working in the stand-alone flow, refer to the Instantiating the
Nios II DPX Datapath Processor chapter, in the Nios II DPX Hardware Reference section of
the Nios II DPX Datapath Processor Handbook.

In the stand-alone flow, special steps are required to create a BSP. Extra steps are
required because the data memory, external to the Nios II DPX datapath processor, is
not represented in the Nios II DPX .sopcinfo file. This requires the data memory to be
specified during the BSP creation.

You must manually specify the external memory and the section mapping in the BSP
editor. After you do this, you can create a Tcl script to automate the steps in case you
need to recreate the BSP.

To create your BSP the first time, and create a Tcl script, perform the following steps.

1. Create a new BSP, as described in “Creating a New BSP” on page 6–26. Save the
BSP.

2. Add the data memory device to the linker script as follows:

a. On the Linker Script tab, click Add Memory Device. On the Main tab, fill in
Device Name, Memory Size, and Base Address.

b. If you need to generate memory initialization files for your user-defined
memory, you must specify additional memory parameters. Use the Advanced
tab to specify these settings, as described in “Creating Memory Initialization
Files”.

c. Click OK.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf

Chapter 6: Getting Started with the Graphical User Interface 6–15
Getting Started
3. Add the data memory region to the linker script as follows:

a. In the Linker Memory Regions table, add the linker memory region for the
data memory by clicking Add. Enter the region name and region size (size of
the memory). Select the memory device specified in the previous step, and
enter the memory offset.

b. Click Add.

For more information about the Linker Script tab, see “Linker Regions” on
page 6–23.

4. Enter the thread stack size (optional). In the Main Tab, in the Advanced settings,
select lwhal. Enter the stack size under thread_stack_size, ensuring that the
memory is large enough to contain a stack for each thread.

5. On the Linker Script tab, click Restore Defaults. This command applies the
default Tcl scripts to your BSP, to add any unassigned sections to the data RAM.

6. Save and generate the BSP.

7. If desired, export your memory settings to a Tcl script as described in “Exporting a
Tcl Script” on page 6–26.

To recreate the BSP with the same external memory, use the script as described in
“Using a Tcl Script in BSP Creation” on page 6–27.

Creating Memory Initialization Files
Generating memory initialization files requires detailed information about the
physical memory devices, such as device names and data widths. Normally, the
Nios II SBT extracts this information from the .sopcinfo file. However, in a standalone
system, the .sopcinfo file does not contain information about the data memory, which
is outside the system. Therefore you must provide this information manually.

Specify memory device information when you add the user-defined memory device
to your BSP. The device information persists in the BSP settings file, allowing you to
regenerate memory initialization files at any time, exactly as if the memory device
were part of the Qsys system.

Specify the memory device information in the Advanced tab of the Add Memory
Device dialog box. Settings in this tab control makefile variables in mem_init.mk.

In the Advanced tab, you can control the following memory characteristics:

■ The physical memory width.

■ The device’s path and name in the Qsys hierarchy.

■ The memory initialization file parameter name. Every memory device can have an
HDL parameter specifying the name of the initialization file. The Nios II DPX
ModelSim launch configuration overrides the HDL parameter to specify the
memory initialization filename.

■ Connectivity to processor master ports. These parameters are used when creating
the linker script.

■ The memory type: volatile, CFI flash or EPCS flash.

■ Byte lanes.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

6–16 Chapter 6: Getting Started with the Graphical User Interface
Getting Started
You can also enable and disable generation of the following memory initialization file
types:

■ .hex file

■ .dat and .sym files

■ .flash file

The Mem init filename parameter is not used in Nios II DPX systems. You can
disregard it.

Running a Nios II DPX System with ModelSim
To run a Nios II DPX system with ModelSim, you must first create a testbench and
specify memory initialization files. Creating the software projects is nearly the same as
when you run the project on hardware.

f For information about creating a testbench and specifying memory initialization files,
see “RTL Simulation” in the System Verification chapter in the Nios II DPX Hardware
Reference section of the Nios II DPX Datapath Processor Handbook.

To prepare your software for ModelSim simulation, perform the following steps:

1. Create your software project, as described in “Creating a Project” on page 6–3.

Be sure to specify the Quartus II project path, as described in “Additional
Arguments” on page 6–5.

If you are creating software for a stand-alone system, you must take special steps
to create memory initialization files correctly. These steps are described in
“Creating Memory Initialization Files” on page 6–15.

2. Build your software project, as described in “Building the Project” on page 6–6.

3. Create a ModelSim launch configuration as follows:

a. Right-click the application project name, point to Run As, and click Run
Configurations. In the Run Configurations dialog box, select Nios II
ModelSim, and click the New button ().

b. In the Main tab, ensure that the correct software project name and .elf file are
selected.

c. Click Apply to save the launch configuration.

d. Click Close to close the dialog box.

1 If you are simulating multiple Nios II DPX datapath processors, create a
launch configuration for each processor, and create a launch group, as
described in “Multiple Nios II DPX Datapath Processors” on page 6–9.

4. Open the debug configuration you previously created. Click Run. The Nios II SBT
for Eclipse performs a make mem_init_generate command to create memory
initialization files, and launches ModelSim.

5. At the ModelSim command prompt, type ldr.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf
www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf

Chapter 6: Getting Started with the Graphical User Interface 6–17
Makefiles and the Nios II SBT for Eclipse
1 When you create the launch configuration, you might see the following error
message:

SEVERE: The Quartus II project location has not been set in the ELF section. You
can manually override this setting in the launch configuration’s ELF file
‘Advanced’ properties page.

To correct this error, perform the following steps:

1. Click the Advanced button.

2. At Quartus II project directory, browse to the directory containing your
Quartus II project .spd file.

3. Click Close.

To avoid this error condition, specify the Quartus II project directory when you create
your application project, as described in “Additional Arguments” on page 6–5.

Makefiles and the Nios II SBT for Eclipse
The Nios II SBT for Eclipse creates and manages the makefiles for Nios II DPX MTP
software projects. When you create a project, the Nios II SBT creates a makefile based
on the source content you specify and the parameters and settings you select. When
you modify the project in Eclipse, the Nios II SBT updates the makefile to match.

Details of how each makefile is created and maintained vary depending on the project
type, and on project options that you control. The authoritative specification of project
contents is always the makefile, regardless how it is created or updated.

By default, the Nios II SBT manages the list of source files in your makefile, based on
actions you take in Eclipse. However, in the case of applications and libraries, you
have the option to manage sources manually. Both styles of source management are
discussed in the following sections.

Eclipse Source Management
Nios II DPX MTP application and user library makefiles are based on source files and
properties that you specify directly. Eclipse source management allows you to add
and remove source files with standard Eclipse actions, such as dragging a source file
into and out of the Project Explorer view and adding a new source file through the
File menu.

You can examine and modify many makefile properties in the Nios II Application
Properties or Nios II Library Properties dialog box. To open the dialog box,
right-click the project, click Properties, and click Nios II Application Properties or
Nios II Library Properties.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

6–18 Chapter 6: Getting Started with the Graphical User Interface
Makefiles and the Nios II SBT for Eclipse
Table 6–1 lists GUI actions that make changes to an application or user library
makefile under Eclipse source management.

After the SBT has created a makefile, you can modify the makefile in the following
ways:

■ With the Nios II SBT for Eclipse, as described in Table 6–1.

■ With Nios II SBT commands from the Nios II Command Shell.

When modifying a makefile, the SBT preserves any previous nonconflicting
modifications, regardless how those modifications were made.

After you modify a makefile with the Nios II Command Shell, in Eclipse you must
right-click the project and click Update linked resource to keep the Eclipse project
view in step with the makefile.

When the Nios II SBT for Eclipse modifies a makefile, it locks the makefile to prevent
corruption by other processes. You cannot edit the makefile from the command line
until the SBT has removed the lock.

If you want to exclude a resource (a file or a folder) from the Nios II DPX MTP
makefile temporarily, without deleting it from the project, you can use the Remove
from Nios II Build command. Right-click the resource and click Remove from
Nios II Build. When a resource is excluded from the build, it does not appear in the
makefile, and Eclipse ignores it. However, it is still visible in the Project Explorer, with
a modified icon. To add the resource back into the build, right-click the resource and
click Add to Nios II Build.

1 Do not use the Eclipse Exclude from build command. With Nios II DPX MTP
software projects, you must use the Remove from Nios II Build and Add to Nios II
Build commands instead.

Absolute Source Paths and Linked Resources
By default, the source files for an Eclipse project are stored under the project directory.
If your project must incorporate source files outside the project directory, you can add
them as linked resources.

An Eclipse linked resource can be either a file or a folder. With a linked folder, all
source files in the folder and its subfolders are included in the build.

Table 6–1. Modifying a Makefile with Eclipse Source Management

Modification Where Modified

Specifying the application or user library name Nios II Application Properties or Nios II Library Properties dialog
box.

Adding or removing source files f Refer to the Eclipse help system.

Specifying a path to an associated BSP Project References dialog box.

Specifying a path to an associated user library Project References dialog box.

Enabling, disabling or modifying compiler options Nios II Application Properties or Nios II Library Properties dialog
box.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 6: Getting Started with the Graphical User Interface 6–19
Makefiles and the Nios II SBT for Eclipse
When you add a linked resource (file or folder) to your project, the SBT for Eclipse
adds the file or folder to your makefile with an absolute path name. You might use a
linked resource to refer to common source files in a fixed location. In this situation,
you can move the project to a different directory without disturbing the common
source file references.

A linked resource appears with a modified icon (green dot) in the Project Explorer, to
distinguish it from source files and folders that are part of the project. You can use the
Eclipse debugger to step into a linked source file, exactly as if it were part of the
project.

You can reconfigure your project to refer to any linked resource either as an individual
file, or through its parent folder. Right-click the linked resource and click Update
Linked Resource.

You can use the Remove from Nios II Build and Add to Nios II Build commands
with linked resources. When a linked resource is excluded from the build, its icon is
modified with a white dot.

f For information about working with linked resources, refer to the Eclipse help system.

User Source Management
You can remove a makefile from source management control through the Nios II
Application Properties or Nios II Library Properties dialog box. Simply turn off
Enable source management to convert the makefile to user source management.
When Enable source management is off, you must update your makefile manually to
add or remove source files to or from the project. The SBT for Eclipse makes no
changes to the list of source files, but continues to manage all other project parameters
and settings in the makefile.

Editing a makefile manually is an advanced technique. Altera recommends that you
avoid manual editing. The SBT provides extensive capabilities for manipulating
makefiles while ensuring makefile correctness.

In a makefile with user-managed sources, you can refer to source files with an
absolute path. You might use an absolute path to refer to common source files in a
fixed location. In this situation, you can move the project to a different directory
without disturbing the common source file references.

Projects with user-managed sources do not support the following features:

■ Linked resources

■ The Add to Nios II Build command

■ The Remove from Nios II Build command
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

6–20 Chapter 6: Getting Started with the Graphical User Interface
Using the BSP Editor
Table 6–2 lists GUI actions that make changes to an application or user library
makefile under user source management.

1 With user source management, the source files shown in the Eclipse Project Explorer
view do not necessarily reflect the sources built by the makefile. To update the Project
Explorer view to match the makefile, right-click the project and click Sync from
Nios II Build.

BSP Source Management
Nios II BSP makefiles are handled differently from application and user library
makefiles. BSP makefiles are based on the BSP type, BSP settings, selected software
packages, and selected drivers. You do not specify BSP source files directly.

BSP makefiles must be managed by the SBT, either through the BSP Editor or through
the SBT command-line utilities.

f For further details about specifying BSPs, refer to “Using the BSP Editor”.

Using the BSP Editor
Typically, you create a BSP with the Nios II SBT for Eclipse. The Nios II plugins
provide the basic tools and settings for defining your BSP. For more advanced BSP
editing, use the Nios II BSP Editor. The BSP Editor provides all the tools you need to
create even the most complex BSPs.

Tcl Scripting and the Nios II BSP Editor
The Nios II BSP Editor provides support for Tcl scripting. When you create a BSP in
the BSP Editor, the editor can run a Tcl script that you specify to supply BSP settings.

You can also export a Tcl script from the BSP Editor, containing all the settings in an
existing BSP. By studying such a script, you can learn about how BSP Tcl scripts are
constructed.

Starting the Nios II BSP Editor
You start the Nios II BSP Editor in one of the following ways:

■ Right-click an existing project, point to Nios II, and click BSP Editor. The editor
loads the BSP Settings File (.bsp) associated with your project, and is ready to
update it.

Table 6–2. Modifying a Makefile with User Source Management

Modification Where Modified

Specifying the application or user library name Nios II Application Properties or Nios II Library Properties dialog
box

Specifying a path to an associated BSP Project References dialog box

Specifying a path to an associated user library Project References dialog box

Enabling, disabling or modifying compiler options Nios II Application Properties or Nios II Library Properties dialog
box
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 6: Getting Started with the Graphical User Interface 6–21
Using the BSP Editor
■ On the Nios II menu, click Nios II BSP Editor. The editor starts without loading
a .bsp file.

■ Right-click an existing BSP project and click Properties. In the Properties dialog
box, select Nios II BSP Properties, and click BSP Editor. The editor loads
your .bsp file for update.

The Nios II BSP Editor Screen Layout
The Nios II BSP Editor screen is divided into two areas. The top area is the command
area, and the bottom is the console area. The details of the Nios II BSP Editor screen
areas are described in this section.

Below the console area is the Generate button. This button is enabled when the BSP
settings are valid. It generates the BSP target files, as shown in the Target BSP
Directory tab.

The Command Area
In the command area, you specify settings and other parameters defining the BSP. The
command area contains several tabs:

■ The Main tab

■ The Software Packages tab

■ The Drivers tab

■ The Linker Script tab

■ The Enable File Generation tab

■ The Target BSP Directory tab

Each tab allows you to view and edit a particular aspect of the .bsp, along with
relevant command line parameters and Tcl scripts.

The settings that appear on the Main, Software Packages and Drivers tabs are the
same as the settings you manipulate on the command line.

f For detailed descriptions of settings defined for Altera-provided BSP types, software
packages, and drivers, refer to Chapter 10, SBT Reference for the Nios II DPX MTP.

The Main Tab
The Main tab presents general settings and parameters, and BSP type settings, for the
BSP. The BSP includes the following settings and parameters:

■ The path to the .sopcinfo file specifying the target hardware

■ The processor name

■ The BSP type and version

1 You cannot change the BSP type in an existing BSP. You must create a new
BSP based on the desired BSP type.

■ The BSP target directory—the destination for files that the SBT copies and creates
for your BSP.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

6–22 Chapter 6: Getting Started with the Graphical User Interface
Using the BSP Editor
■ BSP settings

BSP settings appear in a tree structure. Settings are organized into Common and
Advanced categories. Settings are further organized into functional groups. The
available settings depend on the BSP type.

When you select a group of settings, the controls for those settings appear in the pane
to the right of the tree. When you select a single setting, the pane shows the setting
control, the full setting name, and the setting description.

Software package and driver settings are presented separately, as described in “The
Software Packages Tab” and “The Drivers Tab”.

The advanced thread stack size setting, lwhal.thread_stack_size, is usually an
important setting for Nios II DPX BSPs.

The Software Packages Tab
The Software Packages tab allows you to insert and remove software packages in
your BSP, and control software package settings.

At the top of the Software Packages tab is the software package table, listing each
available software package. The table allows you to select the software package
version, and enable or disable the software package.

The BSP type determines which software packages are available.

Many software packages define settings that you can control in your BSP. When you
enable a software package, the available settings appear in a tree structure, organized
into Common and Advanced settings.

When you select a group of settings, the controls for those settings appear in the pane
to the right of the tree. When you select a single setting, the pane shows the setting
control, the full setting name, and the setting description.

Enabling and disabling software packages and editing software package settings can
have a profound impact on BSP behavior. Refer to the documentation for the specific
software package for details.

General settings, BSP type settings, and driver settings are presented separately, as
described in “The Main Tab” and “The Drivers Tab”.

The Drivers Tab
The Drivers tab allows you to select, enable, and disable drivers for devices in your
system, and control driver settings.

At the top of the Drivers tab is the driver table, mapping components in the hardware
system to drivers. The driver table shows components with driver support. Each
component has a module name, module version, module class name, driver name,
and driver version, determined by the contents of the hardware system. The table
allows you to select the driver by name and version, as well as to enable or disable
each driver.

When you select a driver version, all instances of that driver in the BSP are set to the
version you select. Only one version of a given driver can be used in an individual
BSP.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 6: Getting Started with the Graphical User Interface 6–23
Using the BSP Editor
Many drivers define settings that you can control in your BSP. Available driver
settings appear in a tree structure below the driver table, organized into Common and
Advanced settings.

When you select a group of settings, the controls for those settings appear in the pane
to the right of the tree. When you select a single setting, the pane shows the setting
control, the full setting name, and the setting description.

1 Enabling and disabling device drivers, changing drivers and driver versions, and
editing driver settings, can have a profound impact on BSP behavior. Refer to the
relevant component documentation and driver information for details. For Altera
components, refer to the Embedded Peripherals IP User Guide.

General settings, BSP type settings, and software package settings are presented
separately, as described in “The Main Tab” and “The Software Packages Tab”.

The Linker Script Tab
The Linker Script tab allows you to view available memory in your system, and
examine and modify the arrangement and usage of linker regions in memory.

When you make a change to the memory configuration, the SBT validates your
change. If there is a problem, a message appears in the Problems tab in the console
area, as described in “The Problems Tab” on page 6–25.

1 Rearranging linker regions and linker section mappings can have a very significant
impact on BSP behavior.

Linker Section Mappings

At the top of the Linker Script tab, the Linker Section Mappings table shows the
mapping from linker sections to linker regions. You can edit the BSP linker section
mappings using the following buttons located next to the linker section table:

■ Add—Adds a linker section mapping to an existing linker region. The Add button
opens the Add Section Mapping dialog box, where you specify a new section
name and an existing linker region.

■ Remove—Removes a mapping from a linker section to a linker region.

■ Restore Defaults—Restores the section mappings to the default configuration set
up at the time of BSP creation.

Linker Regions

At the bottom of the Linker Script tab, the Linker Memory Regions table shows all
defined linker regions. Each row of the table shows one linker region, with its address
range, memory device name, size, and offset into the selected memory device.

You reassign a defined linker region to a different memory device by selecting a
different device name in the Memory Device Name column. The Size and Offset
columns are editable. You can also edit the list of linker regions using the following
buttons located next to the linker region table:
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

http://www.altera.com/literature/ug/ug_embedded_ip.pdf

6–24 Chapter 6: Getting Started with the Graphical User Interface
Using the BSP Editor
■ Add—Adds a linker region in unused space on any existing device. The Add
button opens the Add Memory Region dialog box, where you specify the memory
device, the new memory region name, the region size, and the region’s offset from
the device base address.

■ Remove—Removes a linker region definition. Removing a region frees the
region’s memory space to be used for other regions.

■ Add Memory Device—Creates a linker region representing a memory device that
is outside the Nios II DPX system. The button launches the Add Memory Device
dialog box, where you can specify the device name, memory size and base
address. After you add the device, it appears in the linker region table, the
Memory Device Usage Table dialog box, and the Memory Map dialog box.

This functionality is equivalent to the add_memory_device Tcl command.

1 Ensure that you specify the correct base address and memory size. If the
base address or size of an external memory changes, you must edit the BSP
manually to match. The SBT does not automatically detect changes in
external memory devices, even if you update the BSP by creating a new
settings file.

f For information about add_memory_device and other SBT Tcl commands,
refer to “Tcl Commands” in Chapter 10, SBT Reference for the Nios II DPX
MTP.

■ Restore Defaults—restores the memory regions to the default configuration set up
at the time of BSP creation.

■ Memory Usage—Opens the Memory Device Usage Table. The Memory Device
Usage Table allows you to view memory device usage by defined memory region.
As memory regions are added, removed, and adjusted, each device’s free memory,
used memory, and percentage of available memory are updated. The rightmost
column is a graphical representation of the device’s usage, according to the
memory regions assigned to it.

■ Memory Map—Opens the Memory Map dialog box. The memory map allows
you to view a map of system memory in the processor address space. The Device
table is a read-only reference showing memories in the Nios II DPX system that are
mastered by the selected processor. Devices are listed in memory address order.

To the right of the Device table is a graphical representation of the processor’s
memory space, showing the locations of devices in the table. Gaps indicate
unmapped address space.

This representation is not to scale.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 6: Getting Started with the Graphical User Interface 6–25
Using the BSP Editor
Enable File Generation Tab
The Enable File Generation tab allows you to take ownership of specific BSP files that
are normally generated by the SBT. When you take ownership of a BSP file, you can
modify it, and prevent the SBT from overwriting your modifications. The Enable File
Generation tab shows a tree view of all target files to be generated or copied when the
BSP is generated. To disable generation of a specific file, expand the software
component containing the file, expand any internal directory folders, select the file,
and right-click. Each disabled file appears in a list at the bottom of the tab.

This functionality is equivalent to the set_ignore_file Tcl command.

1 If you take ownership of a BSP file, the SBT can no longer update it to reflect future
changes in the underlying hardware. If you change the hardware, be sure to update
the file manually.

f For information about set_ignore_file and other SBT Tcl commands, refer to “Tcl
Commands” in Chapter 10, SBT Reference for the Nios II DPX MTP.

Target BSP Directory Tab
The Target BSP Directory tab is a read-only reference showing you what output to
expect when the BSP is generated. It does not depict the actual file system, but rather
the files and directories to be created or copied when the BSP is generated. Each
software component, including the BSP type, drivers, and software packages,
specifies source code to be copied into the BSP target directory. The files are generated
in the directory specified on the Main tab.

When you generate the BSP, existing BSP files are overwritten, unless you disable
generation of the file in the Enable File Generation tab.

The Console Area
The console area shows results of settings and commands that you select in the
command area. The console area consists of the following tabs:

■ The Information tab

■ The Problems tab

■ The Processing tab

The following sections describe each tab.

The Information Tab
The Information tab shows a running list of high-level changes you make to your
BSP, such as adding a software package or changing a setting value.

The Problems Tab
The Problems tab shows warnings and errors that impact or prohibit BSP creation.
For example, if you inadvertently specify an invalid linker section mapping, a
message appears in the Problems tab.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

6–26 Chapter 6: Getting Started with the Graphical User Interface
Using the BSP Editor
The Processing Tab
When you generate your BSP, the Processing tab shows files and folders created and
copied in the BSP target directory.

Exporting a Tcl Script
When you have configured your BSP to your satisfaction, you can export the BSP
settings as a Tcl script. This feature allows you to perform the following tasks:

■ Regenerate the BSP from the command line

■ Recreate the BSP as a starting point for a new BSP

■ Recreate the BSP on a different hardware platform

■ Examine the Tcl script to improve your understanding of Tcl command usage

The exported Tcl script captures all BSP settings that you have changed since the
previous time the BSP settings file was saved. If you export a Tcl script after creating a
new BSP, the script captures all nondefault settings in the BSP. If you export a Tcl
script after editing a pre-existing BSP, the script captures your changes from the
current editing session.

To export a Tcl script, in the Tools menu, click Export Tcl Script, and specify a
filename and destination path. The file extension is .tcl.

You can later run your exported script as a part of creating a new BSP.

f To run a Tcl script during BSP creation, refer to “Using a Tcl Script in BSP Creation”.
For details about default BSP settings, refer to “Specifying BSP Defaults for the
Nios II DPX MTP” on page 8–14. For detailed information about Tcl command usage,
refer to “Tcl Commands” on page 10–42. For information about recreating and
regenerating BSPs, refer to “Revising Your BSP” in the Nios II Software Build Tools
chapter of the Nios II Software Developer’s Handbook.

Creating a New BSP
To create a BSP in the Nios II BSP Editor, use the New BSP command in the File menu
to open the New BSP dialog box. This dialog box controls the creation of a new BSP
settings file. The BSP Editor loads this new BSP after the file is created.

In this dialog box, you specify the following parameters:

■ The .sopcinfo file defining the hardware platform.

■ The CPU name of the targeted processor.

■ The BSP type (Lightweight HAL) and version.

■ The operating system version.

■ The name of the BSP settings file. It is created with file extension .bsp.

■ Absolute or relative path names in the BSP settings file. By default, relative paths
are enabled for filenames in the BSP settings file.

■ An optional Tcl script that you can run to supply additional settings.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 6: Getting Started with the Graphical User Interface 6–27
Using the BSP Editor
Normally, you specify the path to your .sopcinfo file relative to the BSP directory. This
enables you to move, copy and archive the hardware and software files together. If
you browse to the .sopcinfo file, or specify an absolute path, the Nios II BSP Editor
offers to convert your path to the relative form.

Using a Tcl Script in BSP Creation
When you create a BSP, the New BSP Settings File dialog box allows you to specify
the path and filename of a Tcl script. The Nios II BSP Editor runs this script after all
other BSP creation steps are done, to modify BSP settings. This feature allows you to
perform the following tasks:

■ Recreate an existing BSP as a starting point for a new BSP

■ Recreate a BSP on a different hardware platform

■ Include custom settings common to a group of BSPs

The Tcl script can be created by hand, or exported from another BSP.

f “Exporting a Tcl Script” describes how to create a Tcl script from an existing BSP. Refer
to “Specifying BSP Defaults for the Nios II DPX MTP” on page 8–14.

BSP Validation Errors
If you modify a Nios II DPX system after basing a BSP on it, some BSP settings might
no longer be valid. This is a very common cause of BSP validation errors. Eliminating
these errors usually requires correcting a large number of interrelated settings.

If your modifications to the underlying hardware design result in BSP validation
errors, the best practice is to update or recreate the BSP. Updating and recreating BSPs
is very easy with the BSP Editor.

f For complete information about updating and recreating BSPs, refer to “Revising
Your BSP” in the Nios II Software Build Tools chapter of the Nios II Software Developer’s
Handbook.

If you recreate your BSP, you might find it helpful to capture your old BSP settings by
exporting them to a Tcl script. You can edit the Tcl script to remove any settings that
are incompatible with the new hardware design.

f For details about exporting and using Tcl scripts, refer to “Exporting a Tcl Script” and
“Using a Tcl Script in BSP Creation”. For a detailed discussion of updating BSPs for
modified Nios II DPX systems, refer to “Revising Your BSP” in the Nios II Software
Build Tools chapter of the Nios II Software Developer’s Handbook.

Configuring Component Search Paths
By default, the SBT discovers system components using the same search algorithm as
Qsys. You can define additional search paths to be used for locating components.

You define additional search paths through the Edit Custom Search Paths dialog box.
In the Tools menu, click Options, select BSP Component Search Paths, and click
Custom Component Search Paths. You can specify multiple search paths. Each path
can be recursive.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

6–28 Chapter 6: Getting Started with the Graphical User Interface
Importing a Command-Line Project
Importing a Command-Line Project
If you have software projects that were created with the Nios II SBT command line,
you can import the projects into the Nios II SBT for Eclipse for debugging and further
development. This section discusses the import process.

Your command-line C application, and its associated BSP, might be created on the
command line. Regardless of its origin, any Nios II SBT command-line project is ready
to import into the Nios II SBT for Eclipse. No additional preparation is necessary.

The Nios II SBT for Eclipse imports several kinds of command-line projects:

■ Command-line C application project

■ Command-line BSP project

■ Command-line user library project

You can edit, build, debug, and manage the settings of an imported project exactly the
same way you edit, build, debug, and manage the settings of a project created in
Nios II SBT for Eclipse.

The Nios II SBT for Eclipse imports each type of project through the Import wizard.
The Import wizard determines the kind of project you are importing, and configures
it appropriately.

You can continue to develop project code in your SBT project after importing the
project into Eclipse. You can edit source files and rebuild the project, using the SBT
either in Eclipse or on the command line.

f For information about creating projects with the command line, refer to Chapter 7,
Getting Started from the Command Line.

Road Map
Importing and debugging a project typically involves several of the following tasks.
You do not need to perform these tasks in this order, and you can repeat or omit some
tasks, depending on your needs.

■ Import a command-line C application

■ Import a supporting project

■ Debug a command-line C application

■ Edit command-line C application code

When importing a project, the SBT for Eclipse might make some minor changes to
your makefile. If the makefile refers to a source file located outside the project
directory tree, the SBT for Eclipse treats that file as a linked resource. However, it does
not add or remove any source files to or from your makefile.

When you import an application or user library project, the Nios II SBT for Eclipse
allows you to choose Eclipse source management or user source management. Unless
your project has an unusual directory structure, choose Eclipse source management,
to allow the SBT for Eclipse to automatically maintain your list of source files.

You debug and edit an imported project exactly the same way you debug and edit a
project created in Eclipse.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 6: Getting Started with the Graphical User Interface 6–29
Importing a Command-Line Project
Import a Command-Line C Application
To import a command-line C application, perform the following steps:

1. Start the Nios II SBT for Eclipse.

2. On the File menu, click Import. The Import dialog box appears.

3. Expand the Nios II Software Build Tools Project folder, and select Import Nios II
Software Build Tools Project.

4. Click Next. The File Import wizard appears.

5. Click Browse and locate the directory containing the C application project to
import.

6. Click OK. The wizard fills in the project path.

7. Specify the project name in the Project name box.

1 You might see a warning saying “There is already a .project file at: <path>”.
This warning indicates that the directory already contains an Eclipse
project. Either it is an Eclipse project, or it is a command-line project that is
already imported into Eclipse.

If the project is already in your workspace, do not re-import it.

8. Click Finish. The wizard imports the application project.

After you complete these steps, the Nios II SBT for Eclipse can build, debug, and run
the complete program, including the BSP and any libraries. The Nios II SBT for
Eclipse builds the project using the SBT makefiles in your imported C application
project. Eclipse displays and steps through application source code exactly as if the
project were created in the Nios II SBT for Eclipse. However, Eclipse does not have
direct information about where BSP or user library code resides. If you need to view,
debug or step through BSP or user library source code, you need to import the BSP or
user library. The process of importing supporting projects, such as BSPs and libraries,
is described in “Import a Supporting Project”.

Importing a Project with Absolute Source Paths
If your project uses an absolute path to refer to a source file, the SBT for Eclipse
imports that source file as a linked resource. In this case, the import wizard provides a
page where you can manage how Eclipse refers to the source: as a file, or through a
parent directory.

f For information about managing linked resources, refer to “Absolute Source Paths
and Linked Resources” on page 6–18.

Import a Supporting Project
While debugging a C application, you might need to view, debug or step through
source code in a supporting project, such as a BSP or user library. To make supporting
project source code visible in the Eclipse debug perspective, you need to import the
supporting project.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

6–30 Chapter 6: Getting Started with the Graphical User Interface
Packaging a Library for Reuse
If you do not need BSP or user library source code visible in the debugger, you can
skip this task, and proceed to debug your project exactly as if you had created it in
Eclipse.

If you have several C applications based on one BSP or user library, import the BSP or
user library once, and then import each application that is based on the BSP or user
library. Each application’s makefile contains the information needed to find and build
any associated BSP or libraries.

The steps for importing a supporting project are exactly the same as those shown in
“Import a Command-Line C Application”.

User-Managed Source Files
When you import a Nios II DPX MTP application or user library project, the
Nios II SBT for Eclipse offers the option of user source management. User source
management is helpful if you prefer to update your makefile manually to reflect
source files added to or removed from the project.

With user source management, Eclipse never makes any changes to the list of source
files in your makefile. However, the SBT for Eclipse manages all other project
parameters and settings, just as with any other Nios II DPX MTP software project.

If your makefile refers to a source file with an absolute path, when you import with
user source management, the absolute path is untouched, like any other source path.
You might use an absolute path to refer to common source files in a fixed location. In
this situation, you can move the project to a different directory without disturbing the
common source file references.

User source management is not available with BSP projects. BSP makefiles are based
on the BSP type, BSP settings, selected software packages, and selected drivers. You
do not specify BSP source files directly.

f For details about how the SBT for Eclipse handles makefiles with user-managed
sources, refer to “User Source Management” on page 6–19.

Packaging a Library for Reuse
This section shows how to create and use a library archive file (.a) in the Nios II
Software Build Tools for Eclipse. This technique enables you to provide a library to
another engineer or organization without providing the C source files. This process
entails two tasks:

1. Create a Nios II user library

2. Create a Nios II application project based on the user library

Creating the User Library
To create a user library, perform the following steps:

1. In the File menu, point to New and click Nios II Library.

2. Type a project name, for example test_lib.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 6: Getting Started with the Graphical User Interface 6–31
Memory Initialization Files
3. For Location, browse to the directory containing your library source files (.c
and .h).

4. Click Finish.

5. Build the project to create the .a file (in this case libtest_lib.a)

Using the Library
To use the library in a Nios II application project, perform the following steps:

1. Create your Nios II application project as described in “Creating a Project” on
page 6–3.

2. To set the library path in the application project, right-click the project, and click
Properties.

3. Expand Nios II Application Properties. In Nios II Application Paths, next to
Application include directories, click Add and browse to the directory containing
your library header files.

4. Next to Application library directories, click Add and browse to the directory
containing your .a file.

5. Next to Library name, click Add and type the library project name you selected in
“Creating the User Library”.

6. Click OK.

7. Build your application.

As this example shows, the .c source files are not required to build the application
project. To hand off the library to another engineer or organization for reuse, you
provide the following files:

■ Nios II library archive file (.a)

■ Software header files (.h)

Memory Initialization Files
Sometimes it is useful to generate memory initialization files. For example, to
program your FPGA with a complete, running Nios II DPX system, you must include
the memory contents in your .sof file. In this configuration, the processor can boot
directly from internal memory without downloading.

Creating a Hexadecimal (Intel-Format) File (.hex) is a necessary intermediate step in
creating such a .sof file. The Nios II SBT for Eclipse can create .hex files and other
memory initialization formats.

To generate correct memory initialization files, the Nios II SBT needs details about the
physical memory configuration and the types of files required. Typically, this
information is specified when the hardware system is generated.

1 If your system contains a user-defined memory, you must specify these details
manually. For information, see “Creating Memory Initialization Files” on page 6–15.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

6–32 Chapter 6: Getting Started with the Graphical User Interface
Managing Toolchains in Eclipse
To generate memory initialization files, perform the following steps:

1. Right-click the application project.

2. Point to Make targets and click Build to open the Make Targets dialog box.

3. Select mem_init_generate.

4. Click Build. The makefile generates a separate file (or files) for each memory
device. It also generates a Quartus II IP File (.qip). The .qip file tells the Quartus II
software where to find the initialization files.

5. Add the .qip file to your Quartus II project.

6. Recompile your Quartus II project.

Managing Toolchains in Eclipse
To change the GCC toolchain version in Eclipse, right-click the project and click
Properties. In the Properties dialog box, expand the C/C++ Build tab and select Tool
Chain Editor. Select the appropriate Nios II DPX MTP GCC toolchain, depending on
your host operating system.

After you select the toolchain, the SBT for Eclipse continues to use that toolchain for
your project unless you change it again.

1 If you move the project to a different host platform, you must manually change to the
appropriate toolchain for the new host platform. For example, if you move a project
from a Windows host to a Linux host, use the Properties dialog box to select Linux
Nios II DPX MTP GCC 4.

f For general information about the GCC toolchains, refer to “Nios II DPX Software
Development Tools” on page 8–1. For information about selecting the toolchain on the
command line, refer to Chapter 7, Getting Started from the Command Line.

Eclipse Usage Notes
The behavior of certain Eclipse and CDT features is modified by the Nios II SBT for
Eclipse. If you attempt to use these features the same way you would with a
non-Nios II project, you might have problems configuring or building your project.
This section discusses such features.

Thread-Specific Breakpoints
You cannot filter software breakpoints by thread. Although Eclipse offers GDB
thread-specific breakpoints, this feature is designed for software threads, and does not
work correctly with Nios II DPX hardware threads. To set a breakpoint on a specific
hardware thread, use a hardware breakpoint, as described in “Breakpoints” on
page 6–12.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 6: Getting Started with the Graphical User Interface 6–33
Eclipse Usage Notes
DSF Disassembly View Required
To view disassembled Nios II DPX code in Eclipse, you must use the DSF
Disassembly view. You cannot use the standard Eclipse Disassembly view to view
disassembled Nios II DPX code.

When you turn on instruction stepping mode, the DSF Disassembly view
automatically opens.

Configuring Application and Library Properties
To configure project properties specific to Nios II SBT application and library projects,
use the Nios II Application Properties and Nios II Library Properties tabs of the
Properties dialog box. To open the appropriate properties tab, right-click the
application or library project and click Properties. Depending on the project type,
Nios II Application Properties or Nios II Library Properties tab appears in the list of
tabs. Click the appropriate Properties tab to open it.

The Nios II Application Properties and Nios II Library Properties tabs are nearly
identical. These tabs allow you to control the following project properties:

■ The name of the target .elf file (application project only)

■ The library name (library project only)

■ A list of symbols to be defined in the makefile

■ A list of symbols to be undefined in the makefile

■ A list of assembler flags

■ Warning level flags

■ A list of user flags

■ Generation of debug symbols

■ Compiler optimization level

■ Generation of object dump file (application project only)

■ Source file management

■ Path to associated BSP (required for application, optional for library)

Configuring BSP Properties
To configure BSP settings and properties, use the Nios II BSP Editor.

For detailed information about the BSP Editor, refer to “Using the BSP Editor” on
page 6–20.

Exclude from Build Not Supported
The Exclude from Build command is not supported. You must use the Remove from
Nios II Build and Add to Nios II Build commands instead.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

6–34 Chapter 6: Getting Started with the Graphical User Interface
Eclipse Usage Notes
Selecting the Correct Launch Configuration Type
If you try to debug a Nios II DPX MTP software project as a CDT Local C/C++
Application launch configuration type, you see an error message, and the Nios II
Debug perspective fails to open. This is expected CDT behavior in the Eclipse
platform. Local C/C++ Application is the launch configuration type for a standard
CDT project. To invoke the Nios II plugins, you must use a Nios II launch
configuration type. For details, see “Debugging the Project” on page 6–9.

Renaming Nios II DPX MTP Projects
To rename a project in the Nios II SBT for Eclipse, perform the following steps:

1. Right-click the project and click Rename.

2. Type the new project name.

3. Right-click the project and click Refresh.

If you neglect to refresh the project, you might see the following error message when
you attempt to build it:

Resource <original_project_name> is out of sync with the system

Running Shell Scripts from the SBT for Eclipse
Many SBT utilities are implemented as shell scripts. You can use Eclipse external tools
configurations to run shell scripts. However, you must ensure that the shell
environment is set up correctly.

To run shell scripts from the SBT for Eclipse, execute the following steps:

1. Start the Nios II Command Shell, as described in Chapter 7, Getting Started from
the Command Line.

2. Start the Nios II SBT for Eclipse by typing the following command:

eclipse-nios2r
You must start the SBT for Eclipse from the command line in both the Linux and
Windows operating systems, to set up the correct shell environment.

3. From the Eclipse Run menu, point to External Tools, and click External Tools
Configurations.

4. Create a new tools configuration, or open an existing tools configuration.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 6: Getting Started with the Graphical User Interface 6–35
Eclipse Usage Notes
5. On the Main tab, set Location and Argument as shown in Table 6–3.

For example, to run the command elf2hex --help, set Location and Argument as
shown in Table 6–4.

6. On the Build tab, ensure that Build before launch and its related options are set
appropriately.

By default, a new tools configuration builds all projects in your workspace before
executing the command. This might not be the desired behavior.

7. Click Run. The command executes in the Nios II Command Shell, and the
command output appears in the Eclipse Console tab.

Must Use Nios II Build Configuration
Although Eclipse can support multiple build configurations, you must use the Nios II
build configuration for Nios II DPX MTP projects.

CDT Limitations
The features listed in the left column of Table 6–5 are supported by the Eclipse CDT
plugins, but are not supported by Nios II plugins. The right column lists alternative
features supported by the Nios II plugins.

Table 6–3. Location and Argument to Run Shell Script from Eclipse

Platform Location Argument

Windows ${env_var:QUARTUS_ROOTDIR}\bin\cygwin\bin\sh.exe -c "<script name> <script args>"

Linux ${env_var:SOPC_KIT_NIOS2}/bin/<script name> <script args>

Table 6–4. Location and Argument to Run elf2hex --help from Eclipse

Platform Location Argument

Windows ${env_var:QUARTUS_ROOTDIR}\bin\cygwin\bin\sh.exe -c "elf2hex --help"

Linux ${env_var:SOPC_KIT_NIOS2}/bin/elf2hex --help

Table 6–5. Eclipse CDT Features Not Supported by the Nios II Plugins (Part 1 of 2)

Unsupported CDT Feature Alternative Nios II Feature

New Project Wizard

C/C++

■ C Project To create a new project, use one of the following Nios II
wizards:

■ C++ Project ■ Nios II Application

■ Nios II Board Support Package

■ Nios II Library

■ C/C++

■ Convert to a C/C++ Project

■ Source Folder
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

6–36 Chapter 6: Getting Started with the Graphical User Interface
Eclipse Usage Notes
Build configurations

■ Right-click project and point to Build Configurations The Nios II plugins only support a single build configuration.

Exclude from Build (from v10.0 onwards)

Right-click source files Use Remove from Nios II Build and Add to Nios II Build.

Project Properties

C/C++ Build

■ Builder Settings

■ Makefile generation By default, the Nios II SBT generates makefiles
automatically.

■ Build location The build location is fixed.

■ Behaviour

■ Build on resource save (Auto build)

■ Build Variables

■ Discovery Options

■ Environment

■ Settings

■ Tool Chain Editor

■ Current builder

■ Used tool To change the toolchain, use the Current tool chain option

C/C++ General

■ Enable project specific settings

■ Documentation

■ File Types

■ Indexer

■ Build configuration for the indexer The Nios II plugins only support a single build configuration.

■ Language Mappings

■ Paths and Symbols Use Nios II Application Properties and Nios II Application
Paths

Window Preferences

C/C++

■ Build scope

■ Build project configurations The Nios II plugins only support a single build configuration.

■ Build Variables

■ Environment

■ File Types

■ Indexer

■ Build configuration for the indexer The Nios II plugins only support a single build configuration.

■ Language Mappings

■ New CDT project wizard

Table 6–5. Eclipse CDT Features Not Supported by the Nios II Plugins (Part 2 of 2)

Unsupported CDT Feature Alternative Nios II Feature
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 6: Getting Started with the Graphical User Interface 6–37
Eclipse Usage Notes
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

6–38 Chapter 6: Getting Started with the Graphical User Interface
Eclipse Usage Notes
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

May 2011 Altera Corporation
7. Getting Started from the Command
Line
The Nios II SBT allows you to construct a wide variety of complex software systems
using a command-line interface. From this interface, you can execute Software Built
Tools command utilities, and use scripts (or other tools) to combine the command
utilities in many useful ways.

This chapter introduces you to project creation with the SBT at the command line.

This chapter includes the following sections:

■ “Advantages of the Command Line”

■ “Outline of the Nios II SBT Command-Line Interface”

■ “Scripting Basics” on page 7–2

■ “Running make” on page 7–5

Advantages of the Command Line
The Nios II SBT command line offers the following advantages over the Nios II SBT
for Eclipse:

■ You can invoke the command line tools from custom scripts or other tools that you
might already use in your development flow

■ On a command line, you can run several Tcl scripts to control the creation of a
board support package (BSP).

■ You can use command line tools in a bash script to build several projects at once.

The Nios II SBT command-line interface is designed to work in the Nios II Command
Shell.

f For details about the Nios II Command Shell, refer to “The Nios II Command Shell”
on page 7–2.

Outline of the Nios II SBT Command-Line Interface
The Nios II SBT command-line interface consists of:

■ Command-line utilities

■ Command-line scripts

■ Tcl commands

■ Tcl scripts

These elements work together in the Nios II Command Shell to create software
projects.
Nios II DPX Datapath Processor Handbook

7–2 Chapter 7: Getting Started from the Command Line
Scripting Basics
Utilities
The Nios II SBT command-line utilities enable you to create software projects. You can
call these utilities from the command line or from a scripting language of your choice
(such as perl or bash). On Windows, these utilities have a .exe extension. The
Nios II SBT resides in the <Nios II EDS install path>/sdk2/bin directory.

f Refer to “Altera-Provided Development Tools” in the Nios II Software Build Tools
chapter of the Nios II Software Developer’s Handbook for a summary of the
command-line utilities provided by the Nios II SBT.

The nios2-bsp Script
nios2-bsp is a convenience script that extends the capabilities provided by the
utilities. nios2-bsp either creates or updates a BSP, depending on whether the BSP you
specify already exists.

Tcl Commands
Tcl commands are a crucial component of the Nios II SBT. Tcl commands allow you to
exercise detailed control over BSP generation, as well as to define drivers and
software packages.

Tcl Scripts
The SBT provides powerful Tcl scripting capabilities. In a Tcl script, you can query
project settings, specify project settings conditionally, and incorporate the software
project creation process in a scripted software development flow. The SBT uses Tcl
scripting to customize your BSP according to your hardware and the settings you
select. You can also write custom Tcl scripts for detailed control over the BSP.

The Nios II Command Shell
The Nios II Command Shell is a bash command-line environment initialized with the
correct settings to run Nios II command-line tools.

To open the Nios II Command Shell, execute the following steps, depending on your
environment:

■ In the Windows operating system, on the Start menu, point to Programs > Altera >
Nios II EDS <version>. Select GCC 4 by clicking Nios II <version> Command
Shell.

■ In the Linux operating system, in a command shell, change directories to
<Nios II EDS install path>, and select GCC 4 by typing nios2_command_shell.sh.

Scripting Basics
This section provides an example to teach you how you can create a software
application using a command line script.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 7: Getting Started from the Command Line 7–3
Scripting Basics
In this section, assume that you want to build a software application for a Nios II DPX
system. Furthermore, assume that you have organized the hardware design files and
the software source files as shown in Figure 7–1.

Creating a BSP with a Script
One easy method for creating a BSP is to use the nios2-bsp script. The script in
Example 7–1 creates a BSP and then builds it.

Table 7–1 shows the meaning of each argument to the nios2-bsp script in
Example 7–1.

f For additional information about the nios2-bsp command, refer to “Nios II Software
Build Tools Utilities” in the “Nios II Software Build Tools Utilities” on page 10–1.

Figure 7–1. Simple Software Project Directory Structure

FastNetHW

FastNetBSP (project directory for board support package)

FastNetProject

FastNetTest1 (project directory for application)

source

Application source files (e.g. *.c, *.h)

Qsys files (e.g. fastnet.sopcinfo)

Example 7–1. nios2-bsp

nios2-bsp lwhal . ../user/data/FastNetProject/FastNetHW/
make

Table 7–1. nios2-bsp Example Arguments

Argument Purpose f Further Information

lwhal Sets the BSP type to Lightweight HAL “Settings” on page 10–28

.
Specifies the directory in which the BSP is to be
created —

../SOPC/ Points to the location of the hardware project —
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

7–4 Chapter 7: Getting Started from the Command Line
Scripting Basics
Figure 7–2 shows the flow to create a BSP using the nios2-bsp script. The nios2-bsp
script uses the .sopcinfo file to create the BSP files. You can override default settings
chosen by nios2-bsp by supplying command-line arguments, Tcl scripts, or both.

Creating an Application Project with a Script
You use nios2-app-generate-makefile to create application projects. The script in
Example 7–2 creates an application project and builds it.

Table 7–2 shows the meaning of each argument in Example 7–2.

Figure 7–2. nios2-bsp Command Flow

nios2-bsp

BSP files

make

BSP library file
(.a)

Qsys system file
(.sopcinfo)

Tcl
scripts

Command
line arguments

Example 7–2. nios2-app-generate-makefile

nios2-app-generate-makefile --bsp-dir ../BSP \
--elf-name test.elf --src-dir source/

make

Table 7–2. nios2-app-generate-makefile Example Arguments

Argument Purpose

--bsp-dir ../BSP
Specifies the location of the BSP on which this
application is based

--elf-name test.elf Specifies the name of the executable file

--src-dir source/
Tells nios2-app-generate-makefile where to find the
C source files
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 7: Getting Started from the Command Line 7–5
Running make
f For further information about each command argument in Table 7–2, refer to “Nios II
Software Build Tools Utilities” in the “Nios II Software Build Tools Utilities” on
page 10–1.

Running make
nios2-bsp places all BSP files in the BSP directory, specified on the command line with
argument --bsp-dir. After running nios2-bsp, you run make, which compiles the
source code. The result of compilation is the BSP library file, also in the BSP directory.
The BSP is ready to be linked with your application.

You can modify an application or user library makefile with the
nios2-lib-update-makefile and nios2-app-update-makefile utilities. With these
utilities, you can execute the following tasks:

■ Add source files to a project

■ Remove source files from a project

■ Add compiler options to a project’s make rules

■ Modify or remove compiler options in a project’s make rules

Creating Memory Initialization Files
To memory initialization files for a Nios II DPX system, you can use the Nios II
Command Shell. Change to the software application folder, and type:

make mem_init_generater
This command creates the memory initialization and simulation files for all memory
devices.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

7–6 Chapter 7: Getting Started from the Command Line
Running make
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

May 2011 Altera Corporation
8. Understanding the Nios II DPX Board
Support Package
This chapter describes board support packages generated by the SBT for the
Nios II DPX MTP. It enables you to understand the BSP creation process introduced in
Chapter 6, Getting Started with the Graphical User Interface and Chapter 7, Getting
Started from the Command Line.

This chapter includes a description of the LWHAL and a comprehensive reference to
the LWHAL API functions.

Nios II DPX Software Development Tools

The Nios II DPX GNU Toolchain
The GNU toolchain for the Nios II DPX MTP includes the following utilities:

■ nios2dpx-elf-addr2line

■ nios2dpx-elf-ar

■ nios2dpx-elf-as

■ nios2dpx-elf-c++filt

■ nios2dpx-elf-cpp

■ nios2dpx-elf-gcc

■ nios2dpx-elf-gcc-4.1.2

■ nios2dpx-elf-gccbug

■ nios2dpx-elf-gcov

■ nios2dpx-elf-gdb

■ nios2dpx-elf-gprof

■ nios2dpx-elf-ld

■ nios2dpx-elf-nm

■ nios2dpx-elf-objcopy

■ nios2dpx-elf-objdump

■ nios2dpx-elf-ranlib

■ nios2dpx-elf-readelf

■ nios2dpx-elf-size

■ nios2dpx-elf-strings

■ nios2dpx-elf-strip
Nios II DPX Datapath Processor Handbook

8–2 Chapter 8: Understanding the Nios II DPX Board Support Package
The Lightweight Hardware Abstraction Layer (LWHAL)
The Nios II DPX toolchain port is based on the following GNU tool versions:

■ binutils 2.20

■ GCC 4.1.2

■ newlib 1.16

■ GDB 7.0

1 The Nios II DPX toolchain does not support the C++ language.

newlib for the Nios II DPX MTP
The Nios II DPX toolchain supports a single, precompiled variant of newlib. The
supported variant of newlib is compiled with the following attributes:

■ BE-8 endianness

■ No profiling

■ No mulx instruction support

■ Support for a hardware multiply

newlib is configured with –DMALLOC_PROVIDED. However, the standard malloc(),
calloc(), free(), and realloc() functions are not supported. Instead, newlib
supports alt_malloc(), alt_free(), and alt_calloc(), as described in “Managing
Memory Usage with the LWHAL” on page 8–7.

Using the Nios II Software Build Tools
To create software projects for the Nios II DPX MTP, you use the Nios II SBT. The SBT
utilities work the same for the Nios II DPX MTP as for the Nios II processor. The
Nios II DPX MTP entails the following differences in how you use the tools:

■ The runtime library for the Nios II DPX MTP is based on the Altera Lightweight
Hardware Abstraction Layer (LWHAL). The LWHAL, and the associated newlib
implementation, have substantially fewer features, and a smaller footprint, than
the HAL environment commonly used with the Nios II processor. The LWHAL is
described in the next section.

■ A different set of default Tcl scripts is provided to create Nios II DPX BSPs. The
Nios II DPX default Tcl scripts are described in “Specifying BSP Defaults for the
Nios II DPX MTP” on page 8–14.

■ The Nios II boot configurations do not apply to a Nios II DPX system.

f For detailed information about how to use the Nios II SBT, refer to the Nios II Software
Build Tools chapter of the Nios II Software Developer’s Handbook.

The Lightweight Hardware Abstraction Layer (LWHAL)
The LWHAL is a very lightweight runtime environment with some newlib-like
features.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 8: Understanding the Nios II DPX Board Support Package 8–3
The Lightweight Hardware Abstraction Layer (LWHAL)
Startup Code
The LWHAL provides system initialization code in the C runtime library (crt0.S). This
code performs the following startup sequence for each thread:

■ Sets the r0 register to 0

■ Configures the gp register (all threads have the same value)

■ Configures the sp register

■ Waits for the .rwdata section to be initialized (if the lwhal.alt_load_copy_rwdata
BSP setting is enabled)

■ Calls main()

One thread (thread 0) performs the following additional steps:

■ Initializes the .bss region to zeroes

■ Copies .rwdata to RAM (if the lwhal.alt_load_copy_rwdata BSP setting is
enabled)

■ Initializes heap if used

You provide the main() function. The function prototype for main() is as follows:

int main (void)

The return value from main() is ignored.

crt0.S executes the exit instruction after the startup sequence is complete. The exit
instruction tells the external logic that the thread is idle.

crt0.o gets linked first in the .text.entry section, at the reset vector specified in the
hardware. When a reset is occurs, each thread begins execution at the reset vector.

Stack
Each thread has its own stack pointer. All threads have the same stack size, defined by
the lwhal.thread_stack_size BSP setting.

If you select a stack size less than 384, the minimum required for the LWHAL
printf() function, you see a compiler warning at build time. You can disable this
warning with the lwhal.enable_small_stack BSP setting.

f For detailed information about the lwhal.enable_small_stack setting, refer to
“Settings Reference” on page 10–30.

Device Drivers
The LWHAL BSP includes the following device drivers:

■ JTAG UART

■ UART

■ Mutex

■ PIO
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

8–4 Chapter 8: Understanding the Nios II DPX Board Support Package
The Lightweight Hardware Abstraction Layer (LWHAL)
JTAG UART Driver
The LWHAL’s simplified JTAG UART driver uses polled mode (blocking mode), and
no interrupts.

UART Driver
The LWHAL’s simplified Altera Avalon UART driver uses polled mode (blocking
mode), and no interrupts.

PIO Driver
The PIO driver for Nios II DPX MTP consists of accessor macros to write to and read
from the PIO registers.

Mutex Driver
The mutex core provides a protocol to ensure mutually exclusive ownership of a
shared resource. Multiprocessor and multi-threaded environments can use the mutex
core to determine which processor and thread owns the mutex.

1 In an LWHAL project, you must use the LWHAL driver for the Mutex core. The
LWHAL mutex driver is described in “Lightweight HAL Function Reference” on
page 8–17.

f For detail about the mutex core, refer to the Mutex Core chapter of the Embedded
Peripherals IP User Guide.

Differences from newlib
The LWHAL environment makes it possible to link with applications written for the
newlib C library. However, the majority of POSIX.1 (IEEE 1003.1) system services, as
well as newlib library functions that depend on them, are not needed for DPX task
development.

POSIX.1 Stubs
The unimplemented POSIX.1 functions are stubs, so any newlib library functions that
depend on them fail at runtime.

f For a complete description of POSIX.1 stub implementations, refer to the Sourceware
website (www.sourceware.org).

The following POSIX.1 functions are stubs:

■ close()

■ execve()

■ fcntl()

■ fork()

■ fstat()

■ getpid()
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

http://www.altera.com/literature/ug/ug_embedded_ip.pdf
http://www.altera.com/literature/ug/ug_embedded_ip.pdf
http://www.sourceware.org/

Chapter 8: Understanding the Nios II DPX Board Support Package 8–5
The Lightweight Hardware Abstraction Layer (LWHAL)
■ gettimeofday()

■ ioctl()

■ isatty()

■ kill()

■ link()

■ lseek()

■ open()

■ _rename()

■ sbrk()

■ settimeofday()

■ stat()

■ times()

■ unlink()

■ wait()

■ usleep()

■ environ()

■ read()

The write() Function
The write() function is implemented as a write to stdout. write() is called by the
minimal character-mode API. You do not need to call write() directly.

The _exit() Function
The _exit() routine terminates the thread. A child function (called by a task function)
can call exit() to terminate the thread. You do not need to call _exit() directly.

Software Tasks
The contents of a task are normally quite simple. You can code a task in C or assembly
language. The underlying task mechanics are the same.

Because tasks are dispatched by hardware, and not called by software, the
Nios II DPX toolchain treats a task as a program entry point, like main(). The runtime
environment does not support any callee-saved registers in a task.

f For more information about software tasks, refer to “Developing Software Tasks for
the Datapath Processor” on page 5–10.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

8–6 Chapter 8: Understanding the Nios II DPX Board Support Package
The Lightweight Hardware Abstraction Layer (LWHAL)
Writing a Task

C Syntax

In C, use the task attribute to indicate to the Nios II DPX toolchain that the function
defines a task. The syntax is as follows:

void __attribute__ ((task (<task id>)) <task function name> () {}

This attribute causes the function to terminate with an exit instruction, rather than
returning.

Assembly Language Syntax

In assembly language, you declare a task as a global entry point whose name is of the
form __task_<n>, where <n> is the task ID.

You must insert the exit instruction at the end of each task.

Sending a Message
This section describes how to send a message using the LWHAL.

f For detailed information about sending messages, refer to Chapter 5, Software
Programming Model.

C Syntax

C code can send a message with either of the following macros:

NIOS2DPX_SND (destID, taskID, options, length)

NIOS2DPX_SNDI (destID, taskID, options, length)

For information about these macros, see “LWHAL Extended Instruction Macros” on
page 8–20.

Assembly Language Syntax

In assembly language, to send a PE message, you move any required message data
into the transmit message registers, and execute the snd or sndi instruction.

Minimal Character-Mode API
The LWHAL supports a minimal character-mode API. It provides very simple
features and a small code footprint. This API includes the following functions:

■ alt_printf()

■ alt_putchar()

■ alt_putstr()

The LWHAL maps the standard newlib functions to these functions. Include
alt_stdio.h in your source file to use the newlib function names. See “Lightweight
HAL Function Reference” on page 8–17 for details.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 8: Understanding the Nios II DPX Board Support Package 8–7
The Lightweight Hardware Abstraction Layer (LWHAL)
Standard I/O BSP Settings
The stdout BSP settings determine the existence, base address, and device class of the
stdout device. system.h defines one of the following macros depending on which
device is designated as stdout:

■ ALT_STDOUT_IS_JTAG_UART—JTAG UART

■ ALT_STDOUT_IS_UART—UART

Managing Memory Usage with the LWHAL
The LWHAL supports a custom memory-management API with a small code
footprint. This API includes the following functions:

■ alt_malloc()

■ alt_free()

■ alt_calloc()

The LWHAL maps the standard newlib functions to these functions. Include
alt_malloc.h in your source file to use the newlib function names. See “Lightweight
HAL Function Reference” on page 8–17 for details.

All the threads share one heap. The linker symbol __alt_heap_start defines the start
of heap. The heap grows upwards in memory.

1 The LWHAL memory management functions are not thread-safe. To use them safely,
your system must include mutex hardware, such as the Altera Avalon Mutex.
Software must use the mutex to regulate access to the memory management
functions.

For more information about using the mutex core, see “Mutex Driver API” on
page 8–23.

Custom Device Drivers for the LWHAL
In an event-driven programming environment, device drivers need to be extremely
lightweight. The LWHAL provides very limited services for device drivers. If your
driver requires initialization, such as memory allocation, you must manually insert
the required function calls into main().

No device handles are provided in the LWHAL, except for a very limited stdout. For
maximum flexibility, Altera recommends that each driver function call accept a
pointer to the device base address as an argument. Review Altera-provided device
driver code for examples.

To enable the SBT to discover a custom device driver when it creates a BSP, you
describe the driver with a Tcl file.

f The process for integrating a custom device driver for a Nios II DPX BSP is identical
to the process for integrating a custom device driver for a Nios II BSP. For a detailed
description of this process, refer to the Developing Device Drivers for the Hardware
Abstraction Layer chapter of the Nios II Software Developer’s Handbook.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf

8–8 Chapter 8: Understanding the Nios II DPX Board Support Package
The Lightweight Hardware Abstraction Layer (LWHAL)
Exception Handling
Each exception, including unimplemented instructions and the trap instruction,
causes the Nios II DPX MTP to transfer execution to an exception address. The
address of the exception handler is specified in the hardware design at system
generation time and the software cannot modify it. All threads share one exception
handler. The exception code is linked in the.exceptions section.

The default exception handler triggers a software break. You can exclude the default
exception code if you do not expect the exceptions to happen, or you want to use your
own exception handler. The BSP setting lwhal.exclude_default_exception excludes
the default exception vector. You can hook in your own exception vector by enabling
lwhal.exclude_default_exception and linking your exception code in
the .exceptions section.

Implementing an Exception Handler
You can override the default exception handler, and provide a custom exception
handler, with the lwhal.exclude_default_exception BSP setting.

Ensure that you allocate enough instruction memory for your custom exception
handler. Because the default exception handler is minimal, the SBT allocates very little
space for the .exceptions section.

One simple approach to allocating exception handler space is to locate the body of the
handler in the .text section. In this configuration, you would place a jump to the
exception handler in the .exceptions section.

Alternatively, you can enlarge the .exceptions section by specifying custom
exception and break addresses when you generate the Nios II DPX hardware. To
change the size of the exception vector, perform the following steps:

1. Determine <handler size>, the number of bytes required by your exception handler.

2. Open the Nios II DPX datapath processor in Qsys, and open the Multithreaded
Processor tab. By default, the reset, break and exception offsets are configured to
leave 4 bytes for the exception handler.

3. Turn on Custom reset/exception/debug vector offsets.

4. Subtract (<handler size> – 4) from Custom exception address offset, Custom
break address offset, and Custom reset address offset.

1 You must adjust the exception, break and reset addresses together, to ensure that the
break and reset vectors have the correct sizes and positions for the LWHAL.

f For information about changing the Nios II DPX datapath processor’s parameters,
refer to “Instantiating for a Qsys System” in the Instantiating the Nios II DPX Datapath
Processor chapter, in the Nios II DPX Hardware Reference section of the Nios II DPX
Datapath Processor Handbook. For information about using BSP settings such as
lwhal.exclude_default_exception, refer to Chapter 8, Understanding the
Nios II DPX Board Support Package.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf

Chapter 8: Understanding the Nios II DPX Board Support Package 8–9
Nios II DPX BSP Creation
Break Handler
When a software or hardware break is asserted, the Nios II DPX MTP transfers control
to the break handler. The address of the break handler is specified in the hardware
design at system generation time. The .break section provides space for break handler
code. The debug unit overwrites the break handler code whenever a break occurs.
You do not need to provide a break handler.

Nios II DPX BSP Creation
This section describes how an LWHAL BSP is created.

LWHAL BSP Files and Folders
The Nios II SBT creates the LWHAL BSP directory in the location you specify.
Figure 8–1 shows a BSP directory after the SBT creates a BSP and generates BSP files.
The SBT places generated files in the top-level BSP directory, and copied files in the
LWHAL and drivers directories.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

8–10 Chapter 8: Understanding the Nios II DPX Board Support Package
Nios II DPX BSP Creation
Figure 8–1. LWHAL BSP After Generating Files

my_bsp

settings.bsp

public.mk

linker.x

memory.gdb

mem.init.mk

system.h

task_table.S

linker.h

Makefile

LWHAL

src (*.c, *.S files)

inc (*.h files)

drivers

src (*.c, *.S files)

inc (*.h files)

summary.html
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 8: Understanding the Nios II DPX Board Support Package 8–11
Nios II DPX BSP Creation
Table 8–1 details all the generated BSP files shown in Figure 8–1.

Table 8–1. Generated BSP Files

File Name Function

settings.bsp

Contains the following information:

■ BSP settings

■ Path to .sopcinfo file defining hardware

■ Linker memory regions

■ Linker section mappings

This file is coded in XML.

On the command line, settings.bsp is created by the nios2-bsp-create-settings command, and
optionally updated by the nios2-bsp-update-settings command. The nios2-bsp-query-settings
command is available to parse information from the settings file for your scripts. The
settings.bsp file is an input to nios2-bsp-generate-files.

The Nios II SBT for Eclipse provides equivalent functionality.

summary.html
Provides summary documentation of the BSP. You can view summary.html with a hypertext
viewer or browser, such as Internet Explorer or Firefox. If you change the settings.bsp file, the
SBT updates the summary.html file the next time you regenerate the BSP.

Makefile
Used to build the BSP. The targets you use most often are all and clean. The all target (the
default) builds the liblwhal_bsp.a library file. The clean target removes all files created by a
make of the all target.

public.mk
A makefile fragment that provides public information about the BSP. The file is designed to be
included in other makefiles that use the BSP, such as application makefiles. The BSP Makefile
also includes public.mk.

mem_init.mk

A makefile fragment that defines targets and rules to convert an application executable file to
memory initialization files (.dat, .hex, and .flash) for HDL simulation, flash programming, and
initializable FPGA memories. The mem_init.mk file is designed to be included by an application
makefile. For usage, refer to any application makefile generated when you run the SBT.

task_table.S An assembly language file that maps task IDs to software task functions. Unassigned task IDs
are mapped to the exception vector.

system.h
Contains the C declarations describing the configuration of the Nios II DPX MTP core(s), the
BSP memory map, and other system information needed by software applications.

linker.h Contains information about the linker memory layout. system.h includes the linker.h file.

linker.x Contains a linker script for the GNU linker.

memory.gdb Contains memory region declarations for the GNU debugger.

obj Directory Contains the object code files for all source files in the BSP. The hierarchy of the BSP source
files is preserved in the obj directory.

liblwhal_bsp.a Library
Contains the LWHAL BSP library. All object files are combined in the library file.

The LWHAL BSP library file is always named liblwhal_bsp.a.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

8–12 Chapter 8: Understanding the Nios II DPX Board Support Package
Nios II DPX BSP Creation
Table 8–2 details all the copied BSP files shown in Figure 8–1.

Table 8–2. Copied BSP Files

File Name Function

LWHAL Directory

Contains LWHAL source code files. These are all copied files. The src directory contains the
C-language and assembly-language source files. The inc directory contains the header files.

The crt0.S source file, containing LWHAL C run-time startup code, resides in the LWHAL/src
directory.

The nios2dpx_mtp.h and nios2dpx.h header files, containing macro definitions for access to
special Nios II DPX MTP instructions and registers, resides in the LWHAL/inc directory.

drivers Directory Contains all driver source code. The files in this directory are all copied files. The drivers
directory has src and inc subdirectories like the LWHAL directory.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 8: Understanding the Nios II DPX Board Support Package 8–13
Nios II DPX BSP Creation
Figure 8–2 shows a BSP directory after executing make.

Figure 8–2. LWHAL BSP After Build

my_bsp

settings.bsp

public.mk

linker.x

memory.gdb

mem.init.mk

system.h

task_table.S

linker.h

Makefile

LWHAL

src (*.c,*.S files)

inc (*.h files)

drivers

src (*.c,*.S files)

inc (*.h files)

summary.html

liblwhal_bsp.a

obj

LWHAL

drivers

src (.o files)

src (.o files)
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

8–14 Chapter 8: Understanding the Nios II DPX Board Support Package
Specifying BSP Defaults for the Nios II DPX MTP
Linker Map Validation
The LWHAL linker map is very simple. The SBT automatically selects reasonable
memory regions and section mappings, based on the Nios II DPX configuration. After
the BSP is created, you can edit the regions and section mappings, either from the
command line, or in the BSP editor.

When a BSP is generated, the SBT validates the linker region and section mappings, to
ensure that they are valid for a LWHAL project. If there are problems with the
Nios II DPX configuration, for example if the SBT is unable to allocate a .stack section
big enough for a stack for each thread, BSP generation fails.

See “Specifying the Default Memory Map” on page 8–16 for more information about
how the memory map is created.

1 Linker map validation presents special issues for stand-alone systems. See “Creating a
BSP for a Stand-Alone System” on page 8–25 for information.

Specifying BSP Defaults for the Nios II DPX MTP
The Nios II SBT sets BSP defaults using a set of Tcl scripts. Table 8–3 lists the
components of the LWHAL BSP default Tcl scripts included in the Nios II SBT. These
scripts specify default BSP settings. The scripts are located in the
<Nios II EDS install path>/sdk2/bin directory.

f For more information about Tcl scripting with the SBT, refer to “Tcl Scripts for BSP
Settings” in the Nios II Software Build Tools chapter of the Nios II Software Developer’s
Handbook.

The Nios II SBT uses the default Tcl scripts to specify default values for
system-dependent settings. System-dependent settings are BSP settings that reference
system information in the .sopcinfo file.

The SBT executes the default Tcl script before any user-specified Tcl scripts. As a
result, user input overrides settings made by the default Tcl script.

You can pass command-line options to the default Tcl script to override the choices it
makes or to prevent it from making changes to settings. For details, refer to “Top
Level Tcl Script for BSP Defaults”.

Table 8–3. Default Tcl Script Components

Script Level Summary

lwhal-set-defaults.tcl Top-level Sets system-dependent settings to default values.

lwhal-call-proc.tcl Top-level Calls a specified procedure in one of the helper scripts.

lwhal-stdio-utils.tcl Helper Specifies stdio device settings.

lwhal-linker-utils.tcl Helper Specifies memory regions and section mappings for
linker script.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf

Chapter 8: Understanding the Nios II DPX Board Support Package 8–15
Specifying BSP Defaults for the Nios II DPX MTP
The default Tcl script makes the following choices for you based on your Nios II DPX
system:

■ stdio character device

■ Default linker memory regions

■ Default linker sections mapping

The default Tcl scripts use slave descriptors to assign devices.

Top Level Tcl Script for BSP Defaults
The top level Tcl script for setting BSP defaults is lwhal-set-defaults.tcl. This script
specifies BSP system-dependent settings, which depend on the Nios II DPX system.
The nios2-bsp-create-settings and nios2-bsp-update-settings utilities do not call the
default Tcl script when creating or updating a BSP settings file. The --script option
must be used to specify lwhal-set-defaults.tcl explicitly. Both the Nios II SBT for
Eclipse and the nios2-bsp script call the default Tcl script by invoking either
nios2-bsp-create-settings or nios2-bsp-update-settings with the --script
lwhal-set-defaults.tcl option.

The default Tcl script consists of a top-level Tcl script named lwhal-set-defaults.tcl
plus the helper Tcl scripts listed in Table 8–3. The helper Tcl scripts do the real work of
examining the .sopcinfo file and choosing appropriate defaults.

The lwhal-set-defaults.tcl script sets the following defaults:

■ stdio character device (lwhal-stdio-utils.tcl)

■ Default linker memory regions (lwhal-linker-utils.tcl)

■ Default linker sections mapping (lwhal-linker-utils.tcl)

You run the default Tcl script on the nios2-bsp-create-settings,
nios2-bsp-query-settings, or nios2-bsp-update-settings command line, by using the
--script argument. It has the following usage:

lwhal-set-defaults.tcl [<argument name> <argument value>]*
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

8–16 Chapter 8: Understanding the Nios II DPX Board Support Package
Specifying BSP Defaults for the Nios II DPX MTP
Table 8–4 lists default Tcl script arguments in detail. All arguments are optional. If
present, each argument must be in the form of a name and argument value, separated
by white space. All argument values are strings. For any argument not specified, the
corresponding helper script chooses a suitable default value. In every case, if the
argument value is DONT_CHANGE, the default Tcl scripts leave the setting unchanged.
The DONT_CHANGE value allows fine-grained control of what settings the default Tcl
script changes and is useful when updating an existing BSP.

Specifying the Default stdio Device
The lwhal-stdio-utils.tcl script provides procedures to choose a default stdio slave
descriptor and to set the lwhal.stdout BSP setting to that value.

f For more information about these settings, refer to Chapter 10, SBT Reference for the
Nios II DPX MTP.

The script searches the .sopcinfo file for a slave descriptor with the string stdio in its
name. If lwhal-stdio-utils.tcl finds any such slave descriptors, it chooses the first as
the default stdio device. If the script finds no such slave descriptor, it looks for a slave
descriptor with the string jtag_uart in its component class name. If it finds any such
slave descriptors, it chooses the first as the default stdio device. If the script finds no
slave descriptors fitting either description, it chooses the last character device slave
descriptor connected to the Nios II DPX MTP. If lwhal-stdio-utils.tcl does not find
any character devices, there is no stdio device.

Specifying the Default Memory Map
The lwhal-linker-utils.tcl script provides procedures to add the default linker script
memory regions and map the default linker script sections to a default region. The
lwhal-linker-utils.tcl script uses the add_memory_region and add_section_mapping
BSP Tcl commands.

f For more information about these commands, refer to Chapter 10, SBT Reference for
the Nios II DPX MTP.

Table 8–4. Default Tcl Script Command-Line Options

Argument Name Argument Value

default_stdio Slave descriptor of default stdout device. Set to none
if no stdout device desired.

default_memory_regions

Controls generation of memory regions By default,
lwhal-linker-utils.tcl removes and regenerates all
current memory regions. Use the DONT_CHANGE
keyword to suppress this behavior.

default_sections_mapping

Slave descriptor of the memory device to which the
default sections are mapped. This argument has no
effect if default_memory_regions ==
DONT_CHANGE.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 8: Understanding the Nios II DPX Board Support Package 8–17
Hardware Requirements
The script chooses the largest volatile memory region as the default memory region. If
there is no volatile memory region, lwhal-linker-utils.tcl chooses the largest
non-volatile memory region. The script assigns the .text, .rodata, .rwdata, .bss, .heap,
and .stack section mappings to this default memory region.

The LWHAL linker map ensures that crt0.o is the first file in the .text section. .text
maps to a memory region that starts at the reset address and extends to the end of that
memory. Typically the reset address is the first address in the memory.

The linker defines the symbols __bss_start and __bss_end. These are pointers to the
beginning and the end of the .bss region.

Using Individual Default Tcl Procedures
The default Tcl script consists of the top-level lwhal-call-proc.tcl script plus the helper
scripts listed in Table 8–3 on page 8–14. The procedure call Tcl script allows you to call
a specific procedure in the helper scripts, if you want to invoke some of the default Tcl
functionality without running the entire default Tcl script.

The procedure call Tcl script has the following usage:

lwhal-call-proc.tcl <proc-name> [<args>]*

lwhal-call-proc.tcl calls the specified procedure with the specified (optional)
arguments. Refer to the default Tcl scripts to view the available functions and their
arguments. The lwhal-call-proc.tcl script includes the same files as the
lwhal-set-defaults.tcl script, so any function in those included files is available.

Hardware Requirements
The target hardware system must meet the following requirements:

■ It must contain one or more Nios II DPX datapath processors.

■ The program memory must be large enough to accommodate the specified break
and exception offsets, if any.

■ There must be enough memory space for a .stack section of at least <N> x <S>
bytes, where <N> is the number of threads in the Nios II DPX datapath processor,
and <S> is the per-thread stack size specified with the lwhal.thread_stack_size
BSP setting.

If your hardware system does not meet these requirements, the SBT cannot generate a
valid LWHAL BSP.

Lightweight HAL Function Reference
This section provides a list of all the functions in the LWHAL API and standard
drivers. Each function is listed with its C prototype and a short description. Each
listing provides information about whether the function is thread-safe.

1 Each function description lists the C header file that your code must include to access
the function. Because header files include other header files, the function prototype
might not be defined in the listed header file. However, you must include the listed
header file in order to include all definitions on which the function depends.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

8–18 Chapter 8: Understanding the Nios II DPX Board Support Package
Lightweight HAL Function Reference
The LWHAL API is different from newlib. See “Differences from newlib” on page 8–4.

LWHAL Function Macros
The LWHAL function macros provide useful, lightweight, newlib-like functionality.
This section describes the function macros.

calloc()

free()

malloc()

printf()

putchar()

Prototype: void *calloc(size_t nelem, size_t elsize);

Commonly called by: C programs

Include: alt_malloc.h

Description: #define calloc alt_calloc

Prototype: void free (void *ptr);

Commonly called by: C programs

Include: alt_malloc.h

Description: #define free alt_free

Prototype: void *malloc (unsigned int size);

Commonly called by: C programs

Include: alt_malloc.h

Description: #define malloc alt_malloc

Prototype: void printf(const char* fmt, ...)

Commonly called by: C programs

Include: alt_stdio.h

Description: #define printf alt_printf

Prototype: void putchar(int c)

Commonly called by: C programs

Include: alt_stdio.h

Description: #define putchar alt_putchar
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 8: Understanding the Nios II DPX Board Support Package 8–19
Lightweight HAL Function Reference
puts()

LWHAL Functions

alt_calloc()

alt_free()

alt_malloc()

Prototype: void puts(const char* str)

Commonly called by: C programs

Include: alt_stdio.h

Description: #define puts alt_puts

Prototype: void *alt_calloc(size_t nelem, size_t elsize);

Commonly called by: C programs

Thread-safe: No.

Include: alt_malloc.h

Description: This function is similar to newlib calloc().

Return: The alt_calloc() function returns a pointer to the allocated memory. If alt_calloc() fails, it
returns null.

Prototype: void alt_free (void *ptr);

Commonly called by: C programs

Thread-safe: No.

Include: alt_malloc.h

Description: This function is similar to newlib free(). alt_free() puts the memory block back in the free
list. If the adjacent blocks are free, it coalesces the freed memory with the adjacent blocks.

Return: None

Prototype: void *alt_malloc (unsigned int size);

Commonly called by: C programs

Thread-safe: No.

Include: alt_malloc.h

Description: This function is similar to newlib malloc().

alt_malloc() uses a first-fit algorithm. The LWHAL maintains a list of free blocks.
alt_malloc() searches the list for a block to fit the requested memory size. When a block is
found that is bigger than the requested memory, it splits the block into two parts. One is returned
to the caller, and the other is put back into the free list.

Return: The alt_malloc() function returns a pointer to the allocated memory. If alt_malloc() fails, it
returns null.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

8–20 Chapter 8: Understanding the Nios II DPX Board Support Package
Lightweight HAL Function Reference
alt_printf()

alt_putchar()

alt_putstr()

LWHAL Extended Instruction Macros
C code can execute Nios II DPX MTP extended instructions by using the macros listed
in this section.

For descriptions of the extended instructions, refer to “Nios II DPX Extended
Instruction Set Reference” on page 9–104.

NIOS2DPX_CIDALLOC()

Prototype: void alt_printf(const char* fmt, ...)

Commonly called by: C programs

Thread-safe: No.

Include: alt_stdio.h

Description: This function is similar to newlib printf(). It supports the %c, %s, %x, %d, %u, %X, and %%
substitution strings.

Return: None

Prototype: void alt_putchar(int c)

Commonly called by: C programs

Thread-safe: No.

Include: alt_stdio.h

Description: Similar to putchar()

Return: None

Prototype: void alt_putstr(const char* str)

Commonly called by: C programs

Thread-safe: No.

Include: alt_stdio.h

Description: Similar to puts()

Return: None

Prototype: NIOS2DPX_CIDALLOC (dest)

Arguments: dest—Set to the status returned by the instruction

Include: nios2dpx.h
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 8: Understanding the Nios II DPX Board Support Package 8–21
Lightweight HAL Function Reference
NIOS2DPX_RXFREE()

NIOS2DPX_SND()

NIOS2DPX_SNDI()

NIOS2DPX_TXALLOC()

Prototype: NIOS2DPX_RXFREE()

Arguments: None

Include: nios2dpx.h

Prototype: NIOS2DPX_SND (destID, taskID, options, length)

Arguments:

■ destID—Unique identifier of destination PE

■ taskID—Unique identifier of destination task

■ options—Message control options

■ length—Number of message arguments

Include: nios2dpx.h

Prototype: NIOS2DPX_SNDI (destID, taskID, options, length)

Arguments:

■ destID—Unique identifier of destination PE

■ taskID—Unique identifier of destination task

■ options—Message control options. For limitations on this argument, refer to the instruction
definition in “Nios II DPX Extended Instruction Set Reference” on page 9–104.

■ length—Number of message arguments

Include: nios2dpx.h

Prototype: NIOS2DPX_TXALLOC (dest)

Arguments: dest—Set to the status returned by the instruction

Include: nios2dpx.h
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

8–22 Chapter 8: Understanding the Nios II DPX Board Support Package
Lightweight HAL Function Reference
LWHAL Driver Functions
The SBT includes the LWHAL driver for each supported device that it discovers at the
time of BSP generation. Drivers can be disabled or overridden. This section lists the
function calls supported by each driver.

JTAG UART Driver API
The LWHAL JTAG UART driver has one function call.

altera_avalon_jtag_uart_lwhal_putchar()

UART Driver API
The LWHAL UART driver has one function call.

altera_avalon_uart_lwhal_putchar()

Prototype: void altera_avalon_jtag_uart_lwhal_putchar(void* base, int character)

Commonly called by: alt_putchar()

Thread-safe: No.

Include:

Description: Writes a single character to the JTAG UART

Function arguments:

■ base—JTAG UART base address

■ character—Character to be written

Return: None

Prototype: void altera_avalon_uart_lwhal_putchar(void* base, int character)

Commonly called by: alt_putchar()

Thread-safe: No.

Include:

Description: Writes a single character to the UART

Function arguments:

■ base—UART base address

■ character—Character to be written

Return: None
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 8: Understanding the Nios II DPX Board Support Package 8–23
Lightweight HAL Function Reference
Mutex Driver API
This section lists the function calls supported by the LWHAL mutex driver.

altera_avalon_mutex_lwhal_is_mine()

altera_avalon_mutex_lwhal_lock()

Prototype: int altera_avalon_mutex_lwhal_is_mine(void* base, alt_u16 owner)

Commonly called by: C programs

Thread-safe: Yes.

Include: altera_avalon_mutex_lwhal.h

Description: Determines if this owner owns the mutex.

Function arguments:

■ base—Mutex base address

■ owner—Unique identifier value for mutex owner

Return: The altera_avalon_mutex_lwhal_is_mine() function returns non-zero if the mutex is
owned by this owner.

Prototype: int altera_avalon_mutex_lwhal_lock
(void* base, alt_u16 owner, alt_u16 value)

Commonly called by: C programs

Thread-safe: Yes.

Include: altera_avalon_mutex_lwhal.h

Description: Locks the mutex. Does not return until it has successfully claimed the mutex (blocking).

Function arguments:

■ base—Mutex base address

■ owner—Unique identifier value for mutex owner

■ value—The new value to write to the mutex

Return: The altera_avalon_mutex_lwhal_lock() function returns zero if the mutex is successfully
locked, or non-zero otherwise.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

8–24 Chapter 8: Understanding the Nios II DPX Board Support Package
Lightweight HAL Standard Types
altera_avalon_mutex_lwhal_trylock()

altera_avalon_mutex_lwhal_unlock()

Lightweight HAL Standard Types
In the interest of portability, the LWHAL uses a set of standard type definitions in
place of the ANSI C built-in types. Table 8–5 describes these types, which are defined
in the header file alt_types.h.

Prototype: int altera_avalon_mutex_lwhal_trylock
(void* base, alt_u16 owner, alt_u16 value)

Commonly called by: C programs

Thread-safe: Yes.

Include: altera_avalon_mutex_lwhal.h

Description: Tries once to lock the mutex. Return immediately if it fails to lock the mutex (non-blocking).

Function arguments:

■ base—Mutex base address

■ owner—Unique identifier value for mutex owner

■ value—The new value to write to the mutex

Return: The altera_avalon_mutex_lwhal_trylock() function returns zero if the mutex is
successfully locked, or non-zero otherwise.

Prototype: void altera_avalon_mutex_lwhal_unlock(void* base, alt_u16 owner)

Commonly called by: C programs

Thread-safe: Yes.

Include: altera_avalon_mutex_lwhal.h

Description: Releases mutex. Upon release, the value stored in the mutex is set to zero. If the caller does not
hold the mutex, the behavior of this function is undefined.

Function arguments:

■ base—Mutex base address

■ owner—Unique identifier value for mutex owner

Return: None.

Table 8–5. Standard Types

Type Description

alt_8 Signed 8-bit integer.

alt_u8 Unsigned 8-bit integer.

alt_16 Signed 16-bit integer.

alt_u16 Unsigned 16-bit integer.

alt_32 Signed 32-bit integer.

alt_u32 Unsigned 32-bit integer.

alt_64 Signed 64-bit integer.

alt_u64 Unsigned 64-bit integer.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 8: Understanding the Nios II DPX Board Support Package 8–25
Creating a BSP for a Stand-Alone System
Creating a BSP for a Stand-Alone System
Stand-alone user flow support allows a user-defined memory device to be added to
the memory map. A user-defined memory device is a device that is defined outside
the Qsys or SOPC Builder hardware system. Because its parameters are not available
in the .sopcinfo file, you must provide them manually. Defining a user-defined
memory device allows linker memory regions and section mappings to be created
with the BSP tools.

Creating a BSP from the Command Line
From the command line, you specify a user-defined memory device with the
add_memory_device Tcl command. The command syntax is as follows:

add_memory_device <device name> <base address> <size>

You can use the following syntax to create a BSP for a stand-alone system on the
command line:

nios2-bsp lwhal <bsp-dir> [<sopc>]
--cmd=add_memory_device <device name> <base address>
--cmd=add_memory_region <name> <slave_desc> <offset>
--script=$SOPC_KIT_NIOS2/sdk2/bin/lwhal-call-proc.tcl set_default_sections_mapping

The last command in this command line reapplies the default section mappings by
calling the lwhal-call-proc.tcl script. This command is executed last. It causes the SBT
to recreate the memory map using the newly added memory device.

f For detailed information about the add_memory_device Tcl command, refer
Chapter 10, SBT Reference for the Nios II DPX MTP.

Creating a BSP with the BSP Editor
You can start the BSP editor several ways. For the purpose of creating a new BSP, start
the BSP editor one of the following ways:

■ From the Nios II SBT for Eclipse. On the Nios II menu, click Nios II BSP Editor.
The editor starts without loading a .bsp file.

■ From the Nios II Command Shell. Type:

nios2-bspr
In the BSP Editor, the Add Memory Device button allows you to specify a
user-defined device. In the Main tab, you can specify the following memory
characteristics:

■ Component name.

■ Base address.

■ Memory size.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

8–26 Chapter 8: Understanding the Nios II DPX Board Support Package
Creating a BSP for a Stand-Alone System
In the Advanced tab, you can control the following memory characteristics:

■ The memory initialization filename for SOPC Builder systems. This parameter is
not used with Qsys systems.

■ The physical memory width.

■ The device’s path and name in the Qsys hierarchy. This parameter is not used with
SOPC Builder systems.

■ The memory initialization file parameter name. Every memory device can have an
HDL parameter specifying the name of the initialization file. The Nios II DPX
ModelSim launch configuration overrides the HDL parameter to specify the
memory initialization filename. This parameter is not used with SOPC Builder
systems.

■ Connectivity to processor master ports. These parameters are used when creating
the linker script.

■ The memory type: volatile, CFI flash or EPCS flash.

■ Byte lanes.

In the Advanced tab, you can also enable and disable generation of the following
memory initialization file types:

■ .hex file.

■ .dat and .sym files.

■ .flash file.

Parameters in the Advanced tab are available only through the BSP Editor.

Once added, the device appears in the Memory Map dialog box and Memory Device
Usage Table, and you can define linker regions and mappings as usual.

To use the BSP Editor to create a BSP for a stand-alone system, perform the following
steps:

1. Create a new BSP. Generation error messages appear. You can safely ignore them
for now.

2. In the Linker Script tab, add a user-defined memory device with the Add
Memory Device button.

1 If you need to generate memory initialization files, specify them in this step,
as described in “Creating Memory Initialization Files” on page 6–15.

3. Define a memory region in the user-defined memory device, using the Add button
under Linker Regions.

4. Click Restore Defaults to correctly define memory sections for the new memory
configuration.

Alternatively, define the sections by hand.

5. Generate the BSP.

1 Any previous generation errors are resolved.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 8: Understanding the Nios II DPX Board Support Package 8–27
Creating a BSP for a Stand-Alone System
If you anticipate needing to repeat these steps more than once for the same
stand-alone system, export a Tcl script to automate the steps, as described in
“Exporting a Tcl Script” on page 6–33.

f For more information about creating and working with user-defined memory devices,
refer to “Using the BSP Editor” on page 6–28.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

8–28 Chapter 8: Understanding the Nios II DPX Board Support Package
Creating a BSP for a Stand-Alone System
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

May 2011 Altera Corporation
9. Nios II DPX MTP Instruction Set and
Application Binary Interface
The Nios II DPX MTP Instruction Set
This section introduces the Nios II DPX MTP instruction format and provides a
detailed reference of the MTP instruction set.

Instruction Formats
The Nios II DPX MTP implements the following instruction format types:

■ IX type

■ I-16 type

■ I-12 type

■ I-5 type

■ R-3 type

■ BMX type

IX (Immediate Extended) Type Instruction Format
The defining characteristic of the IX type instruction word format is that it contains a
20-bit immediate value embedded within the instruction word.

The IX type instruction format is:

IX type instruction words contain:

■ A 4-bit opcode field OP

■ A 2-bit extended opcode field OPIX

■ A 6-bit register field A

■ A 20-bit immediate data field IMM20

IX type instructions include call, jmpi, and movhi20.

The jmpi instruction is a variant on the IX type instruction format, using the A field
for additional address bits.

Table 9–1. IX (Immediate eXtended) Instruction Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP A OPIX IMM20

Table 9–2. IX (Immediate eXtended) Instruction Format—jmpi Instruction

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP IMM26[25:20] 1 IMM26[19:0]
Nios II DPX Datapath Processor Handbook

9–2 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
I-16 (16-Bit Immediate) Type Instruction Format
The defining characteristic of the I-16 type instruction format is that it contains a
16-bit immediate value embedded within the instruction word.

The I-16 type instruction format is:

I-16 type instruction words contain:

■ A 4-bit opcode field OP

■ Two 6-bit register fields A and B

■ A 16-bit immediate data field IMM16

In most cases, fields A and IMM16 specify the source operands, and field B specifies
the destination register. IMM16 is considered signed except for logical operations and
unsigned comparisons.

I-16 type instructions include arithmetic operations such as addi, ori, and xori.

I-12 (12-Bit Immediate) Type Instruction Format
The defining characteristic of the I-12 type instruction word format is that it contains a
12-bit immediate value embedded within the instruction word.

I-12 type instructions include arithmetic operations such as addi and muli, branch
operations, and load and store operations.

The I-12 type instruction format is:

I-12 type instruction words contain:

■ A 4-bit opcode field OP

■ A 4-bit extended opcode field OPI-12

■ Two 6-bit register fields A and B

■ A 12-bit immediate data field IMM12

I-5 (5-Bit Immediate) Type Instruction Format
The defining characteristic of the I-5 type instruction word format is that it contains a
5-bit immediate value embedded within the instruction word.

Table 9–3. I-16 (Immediate 16) Instruction Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP A B IMM16

Table 9–4. I-12 (Immediate 12) Instruction Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP A B OPI-12 IMM12
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–3
The Nios II DPX MTP Instruction Set
The I-5 type instruction format is:

I-5 type instruction words contain:

■ A 4-bit opcode field OP

■ A 4-bit extended opcode field OPI-12

■ A 3-bit extended opcode field OPI-5

■ Two 6-bit register fields A and B

■ A 5-bit immediate data field IMM5

I-5 type instructions include instructions such as roli and slli.

R-3 (Three Register) Type Instruction Format
The defining characteristic of the R-3 type instruction word format is that all
arguments and results are specified as registers.

The R-3 type instruction format is:

R-3 type instructions contain:

■ A 4-bit opcode field OP

■ A 6-bit extended opcode field OPR-3

■ Three 6-bit register fields A, B, and C

R-3 type instructions include arithmetic and logical operations such as add and nor,
comparison operations such as cmpeq and cmplt, and other operations that need only
register operands.

Table 9–5. I-5 (Immediate 5) Instruction Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP A B OPI-12 0 OPI-5 IMM5

Table 9–6. R-3 (3 Register) Instruction Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP A B C 0 0 OPR-3
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–4 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
BMX Type Instruction Format
The BMX (Bit Manipulation eXtension) instruction type is a variant on the I-12 type,
using the IMM12 field to specify a range of bits within a data word.

BMX instructions perform operations at the bit level. All the BMX instructions use
two 5-bit immediate fields in the instruction to encode all possible contiguous range
of bits in a 32-bit value. The LSB immediate value encodes the position of the
least-significant bit of the contiguous range of bits and the MSB immediate value
encodes the position of the most-significant bit of the contiguous range.

The BMX instruction format is:

BMX type instructions contain:

■ A 4-bit opcode field OP

■ A 4-bit extended opcode field OPI-12

■ Two 6-bit register fields A and B

■ An MSB field

■ An LSB field

Table 9–7. BMX I-12 Instruction Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OP A B OPI-12 0 MSB LSB
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–5
The Nios II DPX MTP Instruction Set
Instruction Encodings
Table 9–8 on page 9–5 through Table 9–12 on page 9–9 show the instruction encodings
for the Nios II DPX MTP.

Table 9–8. OP Opcode Field Codes

OP Instruction

0x0
See Table 9–9, “OPIX Extended Opcode Field

Codes, for IX Type Instructions”

0x1 See Table 9–10, “OPI-12 Extended Opcode Field
Codes for I-12 and BMX Type Instructions”0x2

0x3
See Table 9–11, “OPR-3 Extended Opcode Field

Codes for R-3 Type Instructions”

0x4 sndi

0x5

0x6

0x7

0x8 andci

0x9 andi

0xA ori

0xB xori

0xC andchi

0xD andhi

0xE orhi

0xF xorhi

Table 9–9. OPIX Extended Opcode Field Codes, for IX Type Instructions

OPIX (1) Instruction

0x0 call

0x1 jmpi

0x2 movhi20

Note to Table 9–9:

(1) OP = 0
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–6 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
Table 9–10. OPI-12 Extended Opcode Field Codes for I-12 and BMX Type Instructions

OP OPI-12 Instruction

0x1

0x0
See Table 9–12, “OPI-5

Extended Opcode Field Codes
for I-5 Type Instructions”

0x1 cmpgei

0x2 cmplti

0x3 cmpnei

0x4 cmpeqi

0x5 cmpgeui

0x6 cmpltui

0x7

0x8

0x9 bge

0xA blt

0xB bne

0xC beq

0xD bgeu

0xE bltu

0xF

0x2

0x0 ldb

0x1 ldh

0x2 ldw

0x3 addi

0x4 ldbu

0x5 ldhu

0x6

0x7

0x8 stb

0x9 sth

0xA stw

0xB muli

0xC insert (1)

0xD

0xE extract (1)

0xF merge (1)

Note to Table 9–10:

(1) BMX
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–7
The Nios II DPX MTP Instruction Set
Table 9–11. OPR-3 Extended Opcode Field Codes for R-3 Type Instructions (Part 1 of 2)

OPR-3 (1) Instruction

0x00

0x01 eret

0x02

0x03

0x04 rol

0x05 ret

0x06 nor

0x07 mulxuu

0x08 cmpge

0x09 bret

0x0A exit

0x0B

0x0C ror

0x0D jmp

0x0E and

0x0F

0x10 cmplt

0x11

0x12 cidalloc

0x13

0x14 sll

0x15 nextpc

0x16 or

0x17 mulxsu

0x18 cmpne

0x19

0x1A

0x1B

0x1C srl

0x1D callr

0x1E xor

0x1F mulxss

0x20 cmpeq

0x21

0x22

0x23

0x24

Note to Table 9–11:

(1) OP = 3
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–8 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
0x25

0x26 rdctl

0x27 mul

0x28 cmpgeu

0x29

0x2A

0x2B

0x2C

0x2D

0x2E wrctl

0x2F

0x30 cmpltu

0x31 add

0x32 txalloc

0x33

0x34

0x35 jrel

0x36

0x37

0x38

0x39 sub

0x3A rxfree

0x3B

0x3C sra

0x3D

0x3E

0x3F

Table 9–11. OPR-3 Extended Opcode Field Codes for R-3 Type Instructions (Part 2 of 2)

OPR-3 (1) Instruction

Note to Table 9–11:

(1) OP = 3
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–9
The Nios II DPX MTP Instruction Set
Assembler Pseudo-Instructions
Table 9–13 lists pseudo-instructions available in Nios II DPX MTP assembly language.
Pseudo-instructions are used in assembly source code like regular assembly
instructions. Each pseudo-instruction is implemented at the machine level using an
equivalent instruction. The movia pseudo-instruction is the only exception, being
implemented with two instructions. Most pseudo-instructions do not appear in
disassembly views of machine code.

Table 9–12. OPI-5 Extended Opcode Field Codes for I-5 Type Instructions

OPI-5 (1) Instruction

0x0 roli

0x1

0x2 slli

0x3 srli

0x4 trap

0x5 break

0x6

0x7 srai

Note to Table 9–12:

(1) OP = 1
OPI-12 = 0

Table 9–13. Assembler Pseudo-Instructions (Part 1 of 2)

Pseudo-Instruction Equivalent Instruction

bgt rA, rB, label blt rB, rA, label

bgtu rA, rB, label bltu rB, rA, label

ble rA, rB, label bge rB, rA, label

bleu rA, rB, label bgeu rB, rA, label

br label beq r0, r0, label

cmpgt rC, rA, rB cmplt rC, rB, rA

cmpgti rB, rA, IMMED cmpgei rB, rA, (IMMED+1)

cmpgtu rC, rA, rB cmpltu rC, rB, rA

cmpgtui rB, rA, IMMED cmpgeui rB, rA, (IMMED+1)

cmple rC, rA, rB cmpge rC, rB, rA

cmplei rB, rA, IMMED cmplti rB, rA, (IMMED+1)

cmpleu rC, rA, rB cmpgeu rC, rB, rA

cmpleui rB, rA, IMMED cmpltui rB, rA, (IMMED+1)

mov rC, rA add rC, rA, r0

movhi rB, IMMED orhi rB, r0, IMMED

movi rB, IMMED addi, rB, r0, IMMED

movia rB, label
movhi20 rB, %hi20adj(label)

addi rB, rB, %lo12(label)
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–10 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
Assembler Macros
The Nios II DPX assembler provides macros to extract 12-bit, 16-bit, and 20-bit fields
from labels and from 32-bit immediate values. Table 9–14 lists the available macros.
These macros return 12-bit, 16-bit, or 20-bit signed or unsigned values depending on
where they are used. For example, when used with an instruction that requires a
16-bit signed immediate value, these macros return a value ranging from –32768 to
32767. When used with an instruction that requires a 16-bit unsigned immediate
value, these macros return a value ranging from 0 to 65535.

Table 9–15 shows the notation conventions used to describe instruction operation.

movui rB, IMMED ori rB, r0, IMMED

nop add r0, r0, r0

subi rB, rA, IMMED addi rB, rA, (-IMMED)

Table 9–13. Assembler Pseudo-Instructions (Part 2 of 2)

Pseudo-Instruction Equivalent Instruction

Table 9–14. Assembler Macros

Macro Description Operation

%lo(immed32) Extract bits [15..0] of immed32 immed32 & 0xFFFF

%hi(immed32) Extract bits [31..16] of immed32 (immed32 >> 16) & 0xFFFF

%hiadj(immed32) Extract bits [31..16] and adds bit 15 of immed32
((immed32 >> 16) & 0xFFFF) +

((immed32 >> 15) & 0x1)

%gprel(immed32)
Replace the immed32 address with an offset from the global
pointer immed32 –_gp

%hi20 Extract bits [31..12] of immed32 (immed32>>12) & 0xFFFFF

%hi20adj Extract bits [31..12] of immed32 and adds bit 11 of immed32 ((immed32>>12) & 0xFFFFF) +
((immed32>>11) & 0x1)

%lo12 Extract bits [11..0] of immed32 immed32 & 0xFFF

Table 9–15. Notation Conventions (Part 1 of 2)

Notation Meaning

X ←Y X is written with Y

PC ←X The program counter (PC) is written with address X; the instruction at X is
the next instruction to execute

PC The address of the assembly instruction in question

rA, rB, rC One of the 32-bit general-purpose registers

IMMn An n-bit immediate value, embedded in the instruction word

IMMED An immediate value

Xn The nth bit of X, where n = 0 is the LSB

Xn..m Consecutive bits n through m of X

0xNNMM Hexadecimal notation

X : Y Bitwise concatenation
For example, (0x12 : 0x34) = 0x1234
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–11
The Nios II DPX MTP Instruction Set
Nios II DPX MTP Instruction Set Reference
This section describes general-purpose Nios II DPX MTP instructions. The following
pages list the instructions in alphabetical order.

σ (X) The value of X after being sign-extended to a full register-sized signed integer

X >> n The value X after being right-shifted n bit positions

X << n The value X after being left-shifted n bit positions

X & Y Bitwise logical AND

X | Y Bitwise logical OR

X ^ Y Bitwise logical XOR

~X Bitwise logical NOT (one’s complement)

Mem8[X] The byte located in data memory at byte address X

Mem16[X] The halfword located in data memory at byte address X

Mem32[X] The word located in data memory at byte address X

label An address label specified in the assembly file

(signed) rX The value of rX treated as a signed number

(unsigned) rX The value of rX treated as an unsigned number

Table 9–15. Notation Conventions (Part 2 of 2)

Notation Meaning
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–12 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
add add

Operation: rC ← rA + rB

Assembler Syntax: add rC, rA, rB

Example: add r6, r7, r8

Description: Calculates the sum of rA and rB. Stores the result in rC. Used for both signed and unsigned
addition.

Usage: Carry Detection (unsigned operands):

Following an add operation, a carry out of the MSB can be detected by checking whether the
unsigned sum is less than one of the unsigned operands. The carry bit can be written to a
register, or a conditional branch can be taken based on the carry condition. The following
examples show both cases.

add rC, rA, rB

cmpltu rD, rC, rA

add rC, rA, rB

bltu rC, rA, label

The original add operation

rD is written with the carry bit

The original add operation

Branch if carry generated

Overflow Detection (signed operands):

An overflow is detected when two positives are added and the sum is negative, or when two
negatives are added and the sum is positive. The overflow condition can control a conditional
branch, as shown in the following example.

add rC, rA, rB

xor rD, rC, rA

xor rE, rC, rB

and rD, rD, rE

blt rD, zero, label

The original add operation

Compare signs of sum and rA

Compare signs of sum and rB

Combine comparisons

Branch if overflow occurred

Extended Register
Restrictions:

rB cannot be an extended register.

Exceptions: None

Instruction Type: R-3

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 A (src1) B (src2) C (dst) 0 0 0x31
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–13
The Nios II DPX MTP Instruction Set
addi add immediate

Operation: rB ← rA + σ (IMM12)

Assembler Syntax: addi rB, rA, IMM12

Example: addi r6, r7, -100

Description: Sign-extends the 12-bit immediate value and adds it to the value of rA. Stores the sum in rB.

Usage: Carry Detection (unsigned operands):

Following an addi operation, a carry out of the MSB can be detected by checking whether the
unsigned sum is less than one of the unsigned operands. The carry bit can be written to a
register, or a conditional branch can be taken based on the carry condition. The following
examples show both cases.

addi rB, rA, IMM12

cmpltu rD, rB, rA

addi rB, rA, IMM12

bltu rB, rA, label

The original add operation

rD is written with the carry bit

The original add operation

Branch if carry generated

Overflow Detection (signed operands):

An overflow is detected when two positives are added and the sum is negative, or when two
negatives are added and the sum is positive. The overflow condition can control a conditional
branch, as shown in the following example.

addi rB, rA, IMM12

xor rC, rB, rA

xorhi rD, rB, IMM12

and rC, rC, rD

blt rC, zero, label

The original add operation

Compare signs of sum and rA

Compare signs of sum and IMM12

Combine comparisons

Branch if overflow occurred

Extended Register
Restrictions:

None

Exceptions: None

Instruction Type: I-12

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM12 = 12-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x2 A (src1) B (dst) 0x3 IMM12 (src2)
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–14 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
and bitwise logical and

Operation: rC ← rA & rB

Assembler Syntax: and rC, rA, rB

Example: and r6, r7, r8

Description: Calculates the bitwise logical AND of rA and rB and stores the result in rC.

Extended Register
Restrictions:

None

Exceptions: rB cannot be an extension register.

Instruction Type: R-3

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 A (src1) B (src2) C (dst) 0 0 0xE
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–15
The Nios II DPX MTP Instruction Set
andci bitwise logical and clear immediate

Operation: rB ← rA&(0xFFFF : IMM16)

Assembler Syntax: andci rB,rA,IMM16

Example: andci r6,r7,100

Description: Calculates the bitwise logical AND of rA and (0xFFFF : IMM16) and stores the result in rB.

Extended Register
Restrictions:

None

Exceptions: None

Instruction Type: I-16

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x8 A (src1) B (dst) IMM16 (src2)
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–16 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
andchi bitwise logical and clear immediate into high halfword

Operation: rB ← rA&(IMM16 : 0xFFFF)

Assembler Syntax: andchi rB,rA,IMM16

Example: andchi r6,r7,100

Description: Calculates the bitwise logical AND of rA and (IMM16 : 0xFFFF) and stores the result in rB.

Extended Register
Restrictions:

Exceptions: None

Instruction Type: I-16

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x8 A (src1) B (dst) IMM16 (src2)
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–17
The Nios II DPX MTP Instruction Set
andhi bitwise logical and immediate into high halfword

Operation: rB ← rA & (IMM16 : 0x0000)

Assembler Syntax: andhi rB, rA, IMM16

Example: andhi r6, r7, 100

Description: Calculates the bitwise logical AND of rA and (IMM16 : 0x0000) and stores the result in rB.

Extended Register
Restrictions:

None

Exceptions: None

Instruction Type: I-16

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0xD A (src1) B (dst) IMM16 (src2)
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–18 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
andi bitwise logical and immediate

Operation: rB ← rA & (0x0000 : IMM16)

Assembler Syntax: andi rB, rA, IMM16

Example: andi r6, r7, 100

Description: Calculates the bitwise logical AND of rA and (0x0000 : IMM16) and stores the result in rB.

Extended Register
Restrictions:

None

Exceptions: None

Instruction Type: I-16

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x9 A (src1) B (dst) IMM16 (src2)
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–19
The Nios II DPX MTP Instruction Set
beq branch if equal

Operation: if (rA == rB)

then PC ←PC + 4 + σ (IMM12)

else PC ←PC + 4

Assembler Syntax: beq rA, rB, label

Example: beq r6, r7, label

Description: If rA == rB, then beq transfers program control to the instruction at label. In the instruction
encoding, the offset given by IMM12 is treated as a signed number of words relative to the
instruction immediately following beq. Therefore, IMM12 is equivalent to a 14-bit offset in
bytes.

Extended Register
Restrictions:

None

Exceptions:

Instruction Type: I-12

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM12 = 12-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1 A (src1) B (dst) 0xC IMM12 (src2)
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–20 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
bge branch if greater than or equal signed

Operation: if ((signed) rA >= (signed) rB)

then PC ←PC + 4 + σ (IMM12)

else PC ←PC + 4

Assembler Syntax: bge rA, rB, label

Example: bge r6, r7, top_of_loop

Description: If (signed) rA >= (signed) rB, then bge transfers program control to the instruction at label. In
the instruction encoding, the offset given by IMM12 is treated as a signed number of words
relative to the instruction immediately following bge. Therefore, IMM12 is equivalent to a 14-bit
offset in bytes.

Extended Register
Restrictions:

None

Exceptions:

Instruction Type: I-12

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM12 = 12-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1 A (src1) B (dst) 0x9 IMM12 (src2)
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–21
The Nios II DPX MTP Instruction Set
bgeu branch if greater than or equal unsigned

Operation: if ((unsigned) rA >= (unsigned) rB)

then PC ←PC + 4 + σ (IMM12)

else PC ←PC + 4

Assembler Syntax: bgeu rA, rB, label

Example: bgeu r6, r7, top_of_loop

Description: If (unsigned) rA >= (unsigned) rB, then bgeu transfers program control to the instruction at
label. In the instruction encoding, the offset given by IMM12 is treated as a signed number of
words relative to the instruction immediately following bgeu. Therefore, IMM12 is equivalent to
a 14-bit offset in bytes.

Extended Register
Restrictions:

None

Exceptions:

Instruction Type: I-12

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM12 = 12-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1 A (src1) B (dst) 0xD IMM12 (src2)
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–22 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
bgt branch if greater than signed

Operation: if ((signed) rA > (signed) rB)

then PC ← label

else PC ←PC + 4

Assembler Syntax: bgt rA, rB, label

Example: bgt r6, r7, top_of_loop

Description: If (signed) rA > (signed) rB, then bgt transfers program control to the instruction at label.

Extended Register
Restrictions:

None

Pseudo-instruction: bgt is implemented with the blt instruction by swapping the register operands.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–23
The Nios II DPX MTP Instruction Set
bgtu branch if greater than unsigned

Operation: if ((unsigned) rA > (unsigned) rB)

then PC ← label

else PC ←PC + 4

Assembler Syntax: bgtu rA, rB, label

Example: bgtu r6, r7, top_of_loop

Description: If (unsigned) rA > (unsigned) rB, then bgtu transfers program control to the instruction at
label.

Extended Register
Restrictions:

None

Pseudo-instruction: bgtu is implemented with the bltu instruction by swapping the register operands.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–24 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
ble branch if less than or equal signed

Operation: if ((signed) rA <= (signed) rB)

then PC ← label

else PC ←PC + 4

Assembler Syntax: ble rA, rB, label

Example: ble r6, r7, top_of_loop

Description: If (signed) rA <= (signed) rB, then ble transfers program control to the instruction at label.

Extended Register
Restrictions:

None

Pseudo-instruction: ble is implemented with the bge instruction by swapping the register operands.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–25
The Nios II DPX MTP Instruction Set
bleu branch if less than or equal to unsigned

Operation: if ((unsigned) rA <= (unsigned) rB)

then PC ← label

else PC ←PC + 4

Assembler Syntax: bleu rA, rB, label

Example: bleu r6, r7, top_of_loop

Description: If (unsigned) rA <= (unsigned) rB, then bleu transfers program counter to the instruction at
label.

Extended Register
Restrictions:

None

Pseudo-instruction: bleu is implemented with the bgeu instruction by swapping the register operands.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–26 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
blt branch if less than signed

Operation: if ((signed) rA < (signed) rB)

then PC ←PC + 4 + σ (IMM12)

else PC ←PC + 4

Assembler Syntax: blt rA, rB, label

Example: blt r6, r7, top_of_loop

Description: If (signed) rA < (signed) rB, then blt transfers program control to the instruction at label. In
the instruction encoding, the offset given by IMM12 is treated as a signed number of words
relative to the instruction immediately following blt. Therefore, IMM12 is equivalent to a 14-bit
offset in bytes.

Extended Register
Restrictions:

None

Exceptions:

Instruction Type: I-12

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM12 = 12-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1 A B 0xA IMM12
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–27
The Nios II DPX MTP Instruction Set
bltu branch if less than unsigned

Operation: if ((unsigned) rA < (unsigned) rB)

then PC ←PC + 4 + σ (IMM12)

else PC ←PC + 4

Assembler Syntax: bltu rA, rB, label

Example: bltu r6, r7, top_of_loop

Description: If (unsigned) rA < (unsigned) rB, then bltu transfers program control to the instruction at
label. In the instruction encoding, the offset given by IMM12 is treated as a signed number of
words relative to the instruction immediately following bltu. Therefore, IMM12 is equivalent to
a 14-bit offset in bytes.

Extended Register
Restrictions:

None

Exceptions:

Instruction Type: I-12

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM12 = 12-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1 A B 0xE IMM12
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–28 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
bne branch if not equal

Operation: if (rA != rB)

then PC ←PC + 4 + σ (IMM12)

else PC ←PC + 4

Assembler Syntax: bne rA, rB, label

Example: bne r6, r7, top_of_loop

Description: If rA != rB, then bne transfers program control to the instruction at label. In the instruction
encoding, the offset given by IMM12 is treated as a signed number of words relative to the
instruction immediately following bne. Therefore, IMM12 is equivalent to a 14-bit offset in
bytes.

Extended Register
Restrictions:

None

Exceptions:

Instruction Type: I-12

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM12 = 12-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1 A B 0xB IMM12
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–29
The Nios II DPX MTP Instruction Set
br unconditional branch

Operation: PC ←PC + 4 + σ (IMM12)

Assembler Syntax: br label

Example: br top_of_loop

Description: Transfers program control to the instruction at label. In the instruction encoding, the offset
given by IMM12 is treated as a signed number of words relative to the instruction immediately
following br. Therefore, IMM12 is equivalent to a 14-bit offset in bytes.

Extended Register
Restrictions:

None

Exceptions:

Pseudo-instruction: br is implemented as beq zero, zero, IMM16.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–30 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
break debugging breakpoint

Operation: ba ←PC + 4

PC ←break handler address

Assembler Syntax: break

break imm5

Example: break

Description: Breaks program execution and transfers control to the debugger break-processing routine.
Saves the address of the next instruction in register ba. Transfers execution to the break
handler.

The 5-bit immediate field imm5 is ignored by the processor, but it can be used by the debugger.

break with no argument is the same as break 0.

Usage: break is used by debuggers exclusively. Only debuggers should place break in an application
program, operating system, or exception handler. The address of the break handler is specified
at system generation time.

Some debuggers support break and break 0 instructions in source code. These debuggers
treat the break instruction as a normal breakpoint.

Extended Register
Restrictions:

None

Exceptions: Break

Instruction Type: I-5

Instruction Fields: IMM5 = Type of breakpoint

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1 A (src1) B (dst) 0x0 0 0x5 IMM5
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–31
The Nios II DPX MTP Instruction Set
bret breakpoint return

Operation: PC ←ba

Assembler Syntax: bret

Example: bret

Description: Transfers execution to the address in ba.

Usage: bret is used by debuggers exclusively and must not appear in application programs, operating
systems, or exception handlers.

Extended Register
Restrictions:

None

Instruction Type: R-3

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 0x1e 0 0 0 0 0x9
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–32 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
call call subroutine

Operation: ra ←PC + 4

PC ← (PC31..20 : IMM20 × 4)

Assembler Syntax: call label

Example: call write_char

Description: Saves the address of the next instruction in register ra, and transfers execution to the
instruction at address (PC31..28 : IMM20 × 4).

Usage: call can transfer execution anywhere within the 4-megabyte (MB) range determined by
PC31..20. The Nios II DPX GNU linker does not automatically handle cases in which the address
is out of this range.

Extended Register
Restrictions:

None

Exceptions: None

Instruction Type: IX

Instruction Fields: IMM20 = 20-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0 0 0x0 IMM20
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–33
The Nios II DPX MTP Instruction Set
callr call subroutine in register

Operation: ra ←PC + 4

PC ← rA

Assembler Syntax: callr rA

Example: callr r6

Description: Saves the address of the next instruction in the return address register, and transfers execution
to the address contained in register rA.

Usage: callr is used to dereference C-language function pointers.

Extended Register
Restrictions:

None

Instruction Type: R-3

Instruction Fields: A = Register index of operand rA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 A 0 0x1f 0 0 0x1D
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–34 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
cmpeq compare equal

Operation: if (rA == rB)

then rC ←1

else rC ←0

Assembler Syntax: cmpeq rC, rA, rB

Example: cmpeq r6, r7, r8

Description: If rA == rB, then stores 1 to rC; otherwise, stores 0 to rC.

Usage: cmpeq performs the == operation of the C programming language. Also, cmpeq can be used to
implement the C logical negation operator “!”.

cmpeq rC, rA, zero # Implements rC = !rA

Extended Register
Restrictions:

rB cannot be an extension register.

Exceptions: None

Instruction Type: R-3

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 A B C 0 0 0x20
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–35
The Nios II DPX MTP Instruction Set
cmpeqi compare equal immediate

Operation: if (rA σ (IMM12))

then rB ←1

else rB ←0

Assembler Syntax: cmpeqi rB, rA, IMM12

Example: cmpeqi r6, r7, 100

Description: Sign-extends the 12-bit immediate value IMM12 to 32 bits and compares it to the value of rA. If
rA == σ (IMM12), cmpeqi stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpeqi performs the == operation of the C programming language.

Extended Register
Restrictions:

None

Exceptions: None

Instruction Type: I-12

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM12 = 12-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1 A B 0x4 IMM12
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–36 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
cmpge compare greater than or equal signed

Operation: if ((signed) rA >= (signed) rB)

then rC ←1

else rC ←0

Assembler Syntax: cmpge rC, rA, rB

Example: cmpge r6, r7, r8

Description: If rA >= rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmpge performs the signed >= operation of the C programming language.

Extended Register
Restrictions:

rB cannot be an extension register.

Exceptions: None

Instruction Type: R-3

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 A B C 0 0 0x8
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–37
The Nios II DPX MTP Instruction Set
cmpgei compare greater than or equal signed immediate

Operation: if ((signed) rA >= (signed) σ (IMM12))

then rB ←1

else rB ←0

Assembler Syntax: cmpgei rB, rA, IMM12

Example: cmpgei r6, r7, 100

Description: Sign-extends the 12-bit immediate value IMM12 to 32 bits and compares it to the value of rA. If
rA >= σ(IMM12), then cmpgei stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpgei performs the signed >= operation of the C programming language.

Extended Register
Restrictions:

None

Exceptions: None

Instruction Type: I-12

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM12 = 12-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1 A B 0x1 IMM12
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–38 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
cmpgeu compare greater than or equal unsigned

Operation: if ((unsigned) rA >= (unsigned) rB)

then rC ←1

else rC ←0

Assembler Syntax: cmpgeu rC, rA, rB

Example: cmpgeu r6, r7, r8

Description: If rA >= rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmpgeu performs the unsigned >= operation of the C programming language.

Extended Register
Restrictions:

rB cannot be an extension register.

Exceptions: None

Instruction Type: R-3

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 A B C 0 0 0x28
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–39
The Nios II DPX MTP Instruction Set
cmpgeui compare greater than or equal unsigned immediate

Operation: if ((unsigned) rA >= (unsigned) (0x0000 : IMM12))

then rB ←1

else rB ←0

Assembler Syntax: cmpgeui rB, rA, IMM12

Example: cmpgeui r6, r7, 100

Description: Zero-extends the 12-bit immediate value IMM12 to 32 bits and compares it to the value of rA. If
rA >= (0x0000 : IMM12), then cmpgeui stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpgeui performs the unsigned >= operation of the C programming language.

Extended Register
Restrictions:

None

Exceptions: None

Instruction Type: I-12

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM12 = 12-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1 A B 0x5 IMM12
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–40 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
cmpgt compare greater than signed

Operation: if ((signed) rA > (signed) rB)

then rC ←1

else rC ←0

Assembler Syntax: cmpgt rC, rA, rB

Example: cmpgt r6, r7, r8

Description: If rA > rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmpgt performs the signed > operation of the C programming language.

Extended Register
Restrictions:

rA cannot be an extension register.

Pseudo-instruction: cmpgt is implemented with the cmplt instruction by swapping its rA and rB operands.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–41
The Nios II DPX MTP Instruction Set
cmpgti compare greater than signed immediate

Operation: if ((signed) rA > (signed) IMMED)

then rB ←1

else rB ←0

Assembler Syntax: cmpgti rB, rA, IMMED

Example: cmpgti r6, r7, 100

Description: Sign-extends the immediate value IMMED to 32 bits and compares it to the value of rA. If rA >
σ(IMMED), then cmpgti stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpgti performs the signed > operation of the C programming language. The maximum
allowed value of IMMED is 32766. The minimum allowed value is –32769.

Extended Register
Restrictions:

None

Pseudo-instruction: cmpgti is implemented using a cmpgei instruction with an IMM12 immediate value of
IMMED + 1.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–42 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
cmpgtu compare greater than unsigned

Operation: if ((unsigned) rA > (unsigned) rB)

then rC ←1

else rC ←0

Assembler Syntax: cmpgtu rC, rA, rB

Example: cmpgtu r6, r7, r8

Description: If rA > rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmpgtu performs the unsigned > operation of the C programming language.

Extended Register
Restrictions:

rA cannot be an extension register.

Pseudo-instruction: cmpgtu is implemented with the cmpltu instruction by swapping its rA and rB operands.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–43
The Nios II DPX MTP Instruction Set
cmpgtui compare greater than unsigned immediate

Operation: if ((unsigned) rA > (unsigned) IMMED)

then rB ← 1

else rB ←0

Assembler Syntax: cmpgtui rB, rA, IMMED

Example: cmpgtui r6, r7, 100

Description: Zero-extends the immediate value IMMED to 32 bits and compares it to the value of rA. If rA >
IMMED, then cmpgtui stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpgtui performs the unsigned > operation of the C programming language. The maximum
allowed value of IMMED is 65534. The minimum allowed value is 0.

Extended Register
Restrictions:

None

Pseudo-instruction: cmpgtui is implemented using a cmpgeui instruction with an IMM12 immediate value of
IMMED + 1.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–44 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
cmple compare less than or equal signed

Operation: if ((signed) rA <= (signed) rB)

then rC ←1

else rC ←0

Assembler Syntax: cmple rC, rA, rB

Example: cmple r6, r7, r8

Description: If rA <= rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmple performs the signed <= operation of the C programming language.

Extended Register
Restrictions:

rA cannot be an extension register.

Pseudo-instruction: cmple is implemented with the cmpge instruction by swapping its rA and rB operands.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–45
The Nios II DPX MTP Instruction Set
cmplei compare less than or equal signed immediate

Operation: if ((signed) rA < (signed) IMMED)

then rB ←1

else rB ←0

Assembler Syntax: cmplei rB, rA, IMMED

Example: cmplei r6, r7, 100

Description: Sign-extends the immediate value IMMED to 32 bits and compares it to the value of rA. If rA <=
σ(IMMED), then cmplei stores 1 to rB; otherwise stores 0 to rB.

Usage: cmplei performs the signed <= operation of the C programming language. The maximum
allowed value of IMMED is 32766. The minimum allowed value is –32769.

Extended Register
Restrictions:

None

Pseudo-instruction: cmplei is implemented using a cmplti instruction with an IMM12 immediate value of IMMED
+ 1.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–46 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
cmpleu compare less than or equal unsigned

Operation: if ((unsigned) rA < (unsigned) rB)

then rC ←1

else rC ←0

Assembler Syntax: cmpleu rC, rA, rB

Example: cmpleu r6, r7, r8

Description: If rA <= rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmpleu performs the unsigned <= operation of the C programming language.

Extended Register
Restrictions:

rA cannot be an extension register.

Pseudo-instruction: cmpleu is implemented with the cmpgeu instruction by swapping its rA and rB operands.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–47
The Nios II DPX MTP Instruction Set
cmpleui compare less than or equal unsigned immediate

Operation: if ((unsigned) rA <= (unsigned) IMMED)

then rB ←1

else rB ←0

Assembler Syntax: cmpleui rB, rA, IMMED

Example: cmpleui r6, r7, 100

Description: Zero-extends the immediate value IMMED to 32 bits and compares it to the value of rA. If rA <=
IMMED, then cmpleui stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpleui performs the unsigned <= operation of the C programming language. The maximum
allowed value of IMMED is 65534. The minimum allowed value is 0.

Extended Register
Restrictions:

None

Pseudo-instruction: cmpleui is implemented using a cmpltui instruction with an IMM12 immediate value of
IMMED + 1.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–48 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
cmplt compare less than signed

Operation: if ((signed) rA < (signed) rB)

then rC ←1

else rC ←0

Assembler Syntax: cmplt rC, rA, rB

Example: cmplt r6, r7, r8

Description: If rA < rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmplt performs the signed < operation of the C programming language.

Extended Register
Restrictions:

rB cannot be an extension register.

Exceptions: None

Instruction Type: R-3

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 A B C 0 0 0x10
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–49
The Nios II DPX MTP Instruction Set
cmplti compare less than signed immediate

Operation: if ((signed) rA < (signed) σ (IMM12))

then rB ←1

else rB ←0

Assembler Syntax: cmplti rB, rA, IMM12

Example: cmplti r6, r7, 100

Description: Sign-extends the 12-bit immediate value IMM12 to 32 bits and compares it to the value of rA. If
rA < σ (IMM12), then cmplti stores 1 to rB; otherwise stores 0 to rB.

Usage: cmplti performs the signed < operation of the C programming language.

Extended Register
Restrictions:

None

Exceptions: None

Instruction Type: I-12

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM12 = 12-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1 A B 0x2 IMM12
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–50 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
cmpltu compare less than unsigned

Operation: if ((unsigned) rA < (unsigned) rB)

then rC ←1

else rC ←0

Assembler Syntax: cmpltu rC, rA, rB

Example: cmpltu r6, r7, r8

Description: If rA < rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmpltu performs the unsigned < operation of the C programming language.

Extended Register
Restrictions:

rB cannot be an extension register.

Exceptions: None

Instruction Type: R-3

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 A B C 0 0 0x30
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–51
The Nios II DPX MTP Instruction Set
cmpltui compare less than unsigned immediate

Operation: if ((unsigned) rA < (unsigned) (0x0000 : IMM12))

then rB ←1

else rB ←0

Assembler Syntax: cmpltui rB, rA, IMM12

Example: cmpltui r6, r7, 100

Description: Zero-extends the 12-bit immediate value IMM12 to 32 bits and compares it to the value of rA. If
rA < (0x0000 : IMM12), then cmpltui stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpltui performs the unsigned < operation of the C programming language.

Extended Register
Restrictions:

None

Exceptions: None

Instruction Type: I-12

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM12 = 12-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1 A B 0x6 IMM12
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–52 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
cmpne compare not equal

Operation: if (rA != rB)

then rC ←1

else rC ←0

Assembler Syntax: cmpne rC, rA, rB

Example: cmpne r6, r7, r8

Description: If rA != rB, then stores 1 to rC; otherwise stores 0 to rC.

Usage: cmpne performs the != operation of the C programming language.

Extended Register
Restrictions:

rB cannot be an extension register.

Exceptions: None

Instruction Type: R-3

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 A B C 0 0 0x18
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–53
The Nios II DPX MTP Instruction Set
cmpnei compare not equal immediate

Operation: if (rA != σ (IMM12))

then rB ←1

else rB ←0

Assembler Syntax: cmpnei rB, rA, IMM12

Example: cmpnei r6, r7, 100

Description: Sign-extends the 12-bit immediate value IMM12 to 32 bits and compares it to the value of rA. If
rA != σ (IMM12), then cmpnei stores 1 to rB; otherwise stores 0 to rB.

Usage: cmpnei performs the != operation of the C programming language.

Extended Register
Restrictions:

None

Exceptions: None

Instruction Type: I-12

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM12 = 12-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1 A B 0x3 IMM12
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–54 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
eret exception return

Operation: PC ←ea

Assembler Syntax: eret

Example: eret

Description: Transfers execution to the address in ea.

Usage: Use eret to return from exception handling routines.

Extended Register
Restrictions:

None

Instruction Type: R-3

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 A B C 0 0 0x1
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–55
The Nios II DPX MTP Instruction Set
extract extract bit field region

Operation: rB ← zero_extend (rA [msb : lsb])

Assembler Syntax: extract rB, rA, msb, lsb

Example: extract r6, r5, 22, 10

Description: Extracts the specified bit field from rA, zero extends the value, and stores result into rB. The
extract instruction performs the equivalent of a logical right shift of rA by LSB bits followed by a
mask to force bits above MSB to zero.

Instruction Type: BMX I-12

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

MSB = 5-bit unsigned immediate value

LSB = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x2 A (src1) B (dst) 0xE 0 MSB LSB
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–56 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
insert insert bit field region

Operation: rB ← { rB [31 : (msb+1)], rA [msb-lsb : 0], rB [(lsb-1) : 0] }

Assembler Syntax: insert rB, rA, msb, lsb

Example: insert r6, r5, 22, 10

Description: The insert instruction inserts bits from rA into rB. It performs the equivalent of a left shift of rA
by LSB bits followed by a bit-by-bit muxing between bits in rA and rB. The result is both a
source and a destination register number). If MSB is 31, there are no rB bits above the shifted
rA field in the destination. If LSB is 0, there are no rB bits below the shifted rA field in the
destination.

The insert instruction is an optional instruction. It can be configured at system generation
time. If software attempts to execute an insert instruction on a processor that does not
implement the instruction, the processor generates an exception.

Attempting to execute the insert instruction on an Nios II DPX MTP that does not implement
it causes an unimplemented instruction exception.

Exceptions: Unimplemented instruction

Instruction Type: BMX I-12

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

MSB = 5-bit unsigned immediate value

LSB = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x2 A (src1) B (dst) 0xE 0 MSB LSB
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–57
The Nios II DPX MTP Instruction Set
jmp computed jump

Operation: PC ← rA

Assembler Syntax: jmp rA

Example: jmp r12

Description: Transfers execution to the address contained in register rA.

Usage: It is illegal to jump to the address contained in register r31. To return from subroutines called
by call or callr, use ret instead of jmp.

Extended Register
Restrictions:

None

Instruction Type: R-3

Instruction Fields: A = Register index of operand rA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 A B C 0 0 0xD
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–58 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
jmpi jump immediate

Operation: PC ← (PC31..28 : IMM26 × 4)

Assembler Syntax: jmpi label

Example: jmpi write_char

Description: Transfers execution to the instruction at address (PC31..28 : IMM26 × 4).

Usage: jmpi is a low-overhead local jump. jmpi can transfer execution anywhere within the 256-MB
range determined by PC31..28. The Nios II DPX GNU linker does not automatically handle cases
in which the address is out of this range.

Extended Register
Restrictions:

None

Exceptions: None

Instruction Type: IX

Instruction Fields: IMM26 = 26-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0 IMM26[25:20] 0x1 IMM26[19:0]
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–59
The Nios II DPX MTP Instruction Set
jrel jump relative

Operation: pc ← pc + 4 + (rA <<2)

Assembler Syntax: jrel rA

Example: jrel r12

Description: Transfers execution to the instruction at address (pc + 4 + (rA<< 2)).

Usage: This instruction can be used to jump into a branch table to implement C-language switch
statements efficiently. Note that this instruction is only efficient when the case constants in the
switch statement are grouped closely together. pc is a byte address.

Extended Register
Restrictions:

None

Exceptions:

Instruction Type: R-3

Instruction Fields: A = Register index of operand rA

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 A 0x0 0x0 0 0 0x35
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–60 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
ldb load byte from memory or I/O peripheral

Operation: rB ←σ (Mem8[rA + σ (IMM12)])

Assembler Syntax: ldb rB, byte_offset(rA)

Example: ldb r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed
12-bit immediate value. Loads register rB with the desired memory byte, sign extending the
8-bit value to 32 bits.

Usage:

Extended Register
Restrictions:

rA cannot be an extension register.

Instruction Type: I-12

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM12 = 12-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x2 A (dst) B (addr src) 0x0 IMM12
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–61
The Nios II DPX MTP Instruction Set
ldbu load unsigned byte from memory or I/O peripheral

Operation: rB ←0x000000 : Mem8[rA + σ (IMM12)]

Assembler Syntax: ldbu rB, byte_offset(rA)

Example: ldbu r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed
12-bit immediate value. Loads register rB with the desired memory byte, zero extending the
8-bit value to 32 bits.

Usage:

Extended Register
Restrictions:

rA cannot be an extended register.

Instruction Type: I-12

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM12 = 12-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x2 A (dst) B (addr src) 0x4 IMM12 (addr offset)
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–62 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
ldh load halfword from memory or I/O peripheral

Operation: rB ←σ (Mem16[rA + σ (IMM12)])

Assembler Syntax: ldh rB, byte_offset(rA)

Example: ldh r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed
12-bit immediate value. Loads register rB with the memory halfword located at the effective byte
address, sign extending the 12-bit value to 32 bits. The effective byte address must be halfword
aligned. If the byte address is not a multiple of 2, the operation is undefined.

Usage:

Extended Register
Restrictions:

rA cannot be an extended register.

Instruction Type: I-12

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM12 = 12-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x2 A (dst) B (addr src) 0x1 IMM12 (addr offset)
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–63
The Nios II DPX MTP Instruction Set
ldhu load unsigned halfword from memory or I/O peripheral

Operation: rB ←0x0000 : Mem16[rA + σ (IMM12)]

Assembler Syntax: ldhu rB, byte_offset(rA)

Example: ldhu r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed
12-bit immediate value. Loads register rB with the memory halfword located at the effective
byte address, zero extending the 12-bit value to 32 bits. The effective byte address must be
halfword aligned. If the byte address is not a multiple of 2, the operation is undefined.

Usage:

Extended Register
Restrictions:

rA cannot be an extended register.

Instruction Type: I-12

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM12 = 12-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x2 A (dst) B (addr src) 0x5 IMM12 (addr offset)
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–64 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
ldw load 32-bit word from memory or I/O peripheral

Operation: rB ←Mem32[rA + σ (IMM12)]

Assembler Syntax: ldw rB, byte_offset(rA)

Example: ldw r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed
12-bit immediate value. Loads register rB with the memory word located at the effective byte
address. The effective byte address must be word aligned. If the byte address is not a multiple
of 4, the operation is undefined.

Usage:

Extended Register
Restrictions:

rA cannot be an extended register.

Instruction Type: I-12

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM12 = 12-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x2 A (dst) B (addr src) 0x2 IMM12 (addr offset)
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–65
The Nios II DPX MTP Instruction Set
merge merge bit field region

Operation: rA ← { rA [31 : (msb+1)], rB [msb : lsb], rA [(lsb-1) : 0] }

Assembler Syntax: merge rA, rB, msb, lsb

Example: merge r6, r5, 22, 10

Description: The merge instruction merges bits from rB into rA. It performs the equivalent of an insert
instruction except there is no shift operation and bits are written to rA instead of rB.

Usage: The merge instruction can be used to clear any contiguous range of bits in any register
connected to src1 by using zero (r0) for the rB source.

Instruction Type: BMX I-12

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

MSB = 5-bit unsigned immediate value

LSB = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x2 A (src1 & dst) B (src2) 0xF 0 MSB LSB
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–66 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
mov move register to register

Operation: rC ← rA

Assembler Syntax: mov rC, rA

Example: mov r6, r7

Description: Moves the contents of rA to rC.

Extended Register
Restrictions:

None

Pseudo-instruction: mov is implemented as add rC, rA, zero.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–67
The Nios II DPX MTP Instruction Set
movhi move immediate into high halfword

Operation: rB ← (IMM16 : 0x0000)

Assembler Syntax: movhi rB, IMM16

Example: movhi r6, 0x8000

Description: Writes the immediate value IMM16 into the high halfword of rB, and clears the lower halfword
of rB to 0x0000.

Usage: The maximum allowed value of IMM16 is 65535. The minimum allowed value is 0. To load a
32-bit constant into a register, first load the upper 16 bits using a movhi pseudo-instruction.
The %hi() macro can be used to extract the upper 16 bits of a constant or a label. Then, load
the lower 16 bits with an ori instruction. The %lo() macro can be used to extract the lower
16 bits of a constant or label as shown in the following example.

movhi rB, %hi(value)

ori rB, rB, %lo(value)

An alternative method to load a 32-bit constant into a register uses the %hiadj() macro and the
addi instruction as shown in the following example.

movhi rB, %hiadj(value)

addi rB, rB, %lo(value)

Extended Register
Restrictions:

None

Pseudo-instruction: movhi is implemented as orhi rB, zero, IMM16.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–68 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
movhi20 move 20 bit immediate into high halfword

Operation: rA ← (IMM20 << 12)

Assembler Syntax: movhi rB,IMM20

Example: movhi r6,0x8000

Description: Writes the immediate value IMM20 into the high 20 bits of rB, and clears the lower 12 bits of rB
to 0x000.

Usage: The maximum allowed value of IMMED is 1048575. The minimum allowed value is 0. To load a
32-bit constant into a register, first load the upper 20 bits using a movhi20 instruction.
The %hi20() macro can be used to extract the upper 20 bits of a constant or a label. Then,
load the lower 12 bits with an ori instruction. The %lo12() macro can be used to extract the
lower 12 bits of a constant or label as shown in the following example.

movhi20 rB, %hi20(value)

ori rB, rB, %lo12(value)

Extended Register
Restrictions:

None

Exceptions:

Instruction Type:

Instruction Fields:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0 A (dst) 0x2 IMM20
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–69
The Nios II DPX MTP Instruction Set
movi move signed immediate into word

Operation: rB ←σ (IMM12)

Assembler Syntax: movi rB, IMM12

Example: movi r6, -30

Description: Sign-extends the immediate value IMM12 to 32 bits and writes it to rB.

Usage: The maximum allowed value of IMM12 is 2047. The minimum allowed value is

–2048. To load a 32-bit constant into a register, refer to the movhi instruction.

Extended Register
Restrictions:

None

Pseudo-instruction: movi is implemented as addi rB, zero, IMM12.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–70 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
movia move immediate address into word

Operation: rB ← label

Assembler Syntax: movia rB, label

Example: movia r6, function_address

Description: Writes the address of label to rB.

Extended Register
Restrictions:

None

Pseudo-instruction: movia is implemented as:

movhi20 rB, %hi20adj(label)

addi rB, rB, %lo12(label)
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–71
The Nios II DPX MTP Instruction Set
movui move unsigned immediate into word

Operation: rB ← (0x0000 : IMM16)

Assembler Syntax: movui rB, IMM16

Example: movui r6, 100

Description: Zero-extends the immediate value IMM16 to 32 bits and writes it to rB.

Usage: The maximum allowed value of IMM16 is 65535. The minimum allowed value is 0. To load a
32-bit constant into a register, refer to the movhi instruction.

Extended Register
Restrictions:

None

Pseudo-instruction: movui is implemented as ori rB, zero, IMM16.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–72 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
mul multiply

Operation: rC ← (rA × rB) 31..0

Assembler Syntax: mul rC, rA, rB

Example: mul r6, r7, r8

Description: Multiplies rA times rB and stores the 32 low-order bits of the product to rC. The result is the
same whether the operands are treated as signed or unsigned integers.

Usage: Carry Detection (unsigned operands):

Before or after the multiply operation, the carry out of the MSB of rC can be detected using the
following instruction sequence:

mul rC, rA, rB

mulxuu rD, rA, rB

cmpne rD, rD, zero

The mul operation (optional)

rD is nonzero if carry occurred

rD is 1 if carry occurred, 0 if not

The mulxuu instruction writes a nonzero value into rD if the multiplication of unsigned
numbers generates a carry (unsigned overflow). If a 0/1 result is desired, follow the mulxuu
with the cmpne instruction.

Overflow Detection (signed operands):

After the multiply operation, overflow can be detected using the following instruction sequence:

mul rC, rA, rB

cmplt rD, rC, zero

mulxss rE, rA, rB

add rD, rD, rE

cmpne rD, rD, zero

The original mul operation

rD is nonzero if overflow

rD is 1 if overflow, 0 if not

The cmplt–mulxss–add instruction sequence writes a nonzero value into rD if the product in
rC cannot be represented in 32 bits (signed overflow). If a 0/1 result is desired, follow the
instruction sequence with the cmpne instruction.

Extended Register
Restrictions:

rB cannot be an extended register.

Instruction Type: R-3

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 A (src1) B (src2) C (dst) 0 0 0x27
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–73
The Nios II DPX MTP Instruction Set
muli multiply immediate

Operation: rB ← (rA × σ(IMM12)) 31..0

Assembler Syntax: muli rB, rA, IMM12

Example: muli r6, r7, -100

Description: Sign-extends the 12-bit immediate value IMM12 to 32 bits and multiplies it by the value of rA.
Stores the 32 low-order bits of the product to rB. The result is independent of whether rA is
treated as a signed or unsigned number.

Carry Detection and Overflow Detection:

For a discussion of carry and overflow detection, refer to the mul instruction.

Instruction Type: I-12

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM12 = 12-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x2 A (src1) B (dst) 0xB IMM12 (src2)
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–74 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
mulxss multiply extended signed/signed

Operation: rC ← ((signed) rA) × ((signed) rB)) 63..32

Assembler Syntax: mulxss rC, rA, rB

Example: mulxss r6, r7, r8

Description: Treating rA and rB as signed integers, mulxss multiplies rA times rB, and stores the 32
high-order bits of the product to rC.

Nios II DPX MTPs that do not implement the mulxss instruction cause an unimplemented
instruction exception.

Usage: Use mulxss and mul to compute the full 64-bit product of two 32-bit signed integers.
Furthermore, mulxss can be used as part of the calculation of a 128-bit product of two 64-bit
signed integers. Given two 64-bit integers, each contained in a pair of 32-bit registers,
(S1 : U1) and (S2 : U2), their 128-bit product is (U1 × U2) + ((S1 × U2) << 32) + ((U1 × S2)
<< 32) + ((S1 × S2) << 64). The mulxss and mul instructions are used to calculate the 64-bit
product S1 × S2.

Extended Register
Restrictions:

rB cannot be an extended register.

Exceptions: Unimplemented instruction

Instruction Type: R-3

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 A (src1) B (src2) C (dst) 0 0 0x1F
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–75
The Nios II DPX MTP Instruction Set
mulxsu multiply extended signed/unsigned

Operation: rC ← ((signed) rA) × ((unsigned) rB)) 63..32

Assembler Syntax: mulxsu rC, rA, rB

Example: mulxsu r6, r7, r8

Description: Treating rA as a signed integer and rB as an unsigned integer, mulxsu multiplies rA times rB,
and stores the 32 high-order bits of the product to rC.

Nios II DPX MTPs that do not implement the mulxsu instruction cause an unimplemented
instruction exception.

Usage: mulxsu can be used as part of the calculation of a 128-bit product of two 64-bit signed
integers. Given two 64-bit integers, each contained in a pair of 32-bit registers, (S1 : U1) and
(S2 : U2), their 128-bit product is: (U1 × U2) + ((S1 × U2) << 32) + ((U1 × S2) << 32) + ((S1
× S2) << 64). The mulxsu and mul instructions are used to calculate the two 64-bit products
S1 × U2 and U1 × S2.

Extended Register
Restrictions:

rB cannot be an extended register.*

Exceptions: Unimplemented instruction

Instruction Type: R-3

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 A (src1) B (src2) C (dst) 0 0 0x17
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–76 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
mulxuu multiply extended unsigned/unsigned

Operation: rC ← ((unsigned) rA) × ((unsigned) rB)) 63..32

Assembler Syntax: mulxuu rC, rA, rB

Example: mulxuu r6, r7, r8

Description: Treating rA and rB as unsigned integers, mulxuu multiplies rA times rB and stores the 32
high-order bits of the product to rC.

Nios II DPX MTPs that do not implement the mulxuu instruction cause an unimplemented
instruction exception.

Usage: Use mulxuu and mul to compute the 64-bit product of two 32-bit unsigned integers.
Furthermore, mulxuu can be used as part of the calculation of a 128-bit product of two 64-bit
signed integers. Given two 64-bit signed integers, each contained in a pair of 32-bit registers,
(S1 : U1) and (S2 : U2), their 128-bit product is (U1 × U2) + ((S1 × U2) << 32) + ((U1 × S2)
<< 32) + ((S1 × S2) << 64). The mulxuu and mul instructions are used to calculate the 64-bit
product U1 × U2.

mulxuu also can be used as part of the calculation of a 128-bit product of two 64-bit unsigned
integers. Given two 64-bit unsigned integers, each contained in a pair of 32-bit registers, (T1 :
U1) and (T2 : U2), their 128-bit product is (U1 × U2) + ((U1 × T2) << 32) + ((T1 × U2) << 32)
+ ((T1 × T2) << 64). The mulxuu and mul instructions are used to calculate the four 64-bit
products U1 × U2, U1 × T2, T1 × U2, and T1 × T2.

Extended Register
Restrictions:

rB cannot be an extended register.

Exceptions: Unimplemented instruction

Instruction Type: R-3

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 A (src1) B (src2) C (dst) 0 0 0x7
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–77
The Nios II DPX MTP Instruction Set
nextpc get address of following instruction

Operation: rC ←PC + 4

Assembler Syntax: nextpc rC

Example: nextpc r6

Description: Stores the address of the next instruction to register rC.

Usage: A relocatable code fragment can use nextpc to calculate the address of its data segment.
nextpc is the only way to access the PC directly.

Extended Register
Restrictions:

None

Exceptions: None

Instruction Type: R-3

Instruction Fields: C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 A (src1) B (src2) C (dst) 0 0 0x15
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–78 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
nop no operation

Operation: None

Assembler Syntax: nop

Example: nop

Description: nop does nothing.

Extended Register
Restrictions:

None

Pseudo-instruction: nop is implemented as add zero, zero, zero.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–79
The Nios II DPX MTP Instruction Set
nor bitwise logical nor

Operation: rC ←~(rA | rB)

Assembler Syntax: nor rC, rA, rB

Example: nor r6, r7, r8

Description: Calculates the bitwise logical NOR of rA and rB and stores the result in rC.

Extended Register
Restrictions:

rB cannot be an extended register.

Exceptions: None

Instruction Type: R-3

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 A (src1) B (src2) C (dst) 0 0 0x6
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–80 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
or bitwise logical or

Operation: rC ← rA | rB

Assembler Syntax: or rC, rA, rB

Example: or r6, r7, r8

Description: Calculates the bitwise logical OR of rA and rB and stores the result in rC.

Extended Register
Restrictions:

rB cannot be an extended register.

Exceptions: None

Instruction Type: R-3

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 A (src1) B (src2) C (dst) 0 0 0x16
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–81
The Nios II DPX MTP Instruction Set
orhi bitwise logical or immediate into high halfword

Operation: rB ← rA | (IMM16 : 0x0000)

Assembler Syntax: orhi rB, rA, IMM16

Example: orhi r6, r7, 100

Description: Calculates the bitwise logical OR of rA and (IMM16 : 0x0000) and stores the result in rB.

Extended Register
Restrictions:

None

Exceptions: None

Instruction Type: I-16

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0xE A (src1) B (dst) IMM16 (src2)
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–82 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
ori bitwise logical or immediate

Operation: rB ← rA | (0x0000 : IMM16)

Assembler Syntax: ori rB, rA, IMM16

Example: ori r6, r7, 100

Description: Calculates the bitwise logical OR of rA and (0x0000 : IMM16) and stores the result in rB.

Extended Register
Restrictions:

None

Exceptions: None

Instruction Type: I-16

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0xA A (src1) B (dst) IMM16 (src2)
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–83
The Nios II DPX MTP Instruction Set
rdctl read from control register

Operation: rC ←ctlN

Assembler Syntax: rdctl rC, ctlN

Example: rdctl r3, ctl31

Description: Reads the value contained in control register ctlN and writes it to register rC.

Applicable both to standard control registers and extended control registers.

Extended Register
Restrictions:

None

Exceptions:

Instruction Type: R-3

Instruction Fields: C = Register index of operand rC

N = Control register index of operand ctlN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 0x0 C (dst) 0 0 0x26
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–84 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
ret return from subroutine

Operation: PC ←ra

Assembler Syntax: ret

Example: ret

Description: Transfers execution to the address in ra.

Usage: Any subroutine called by call or callr must use ret to return.

Extended Register
Restrictions:

None

Instruction Type: R-3

Instruction Fields: None

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 0 0 0 0 0 0x5
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–85
The Nios II DPX MTP Instruction Set
rol rotate left

Operation: rC ← rA rotated left rB4..0 bit positions

Assembler Syntax: rol rC, rA, rB

Example: rol r6, r7, r8

Description: Rotates rA left by the number of bits specified in rB4..0 and stores the result in rC. The bits that
shift out of the register rotate into the least-significant bit positions. Bits 31–5 of rB are
ignored.

Extended Register
Restrictions:

rB cannot be an extended register.

Exceptions: None

Instruction Type: R-3

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 A (src1) B (src2) C (dst) 0 0 0x4
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–86 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
roli rotate left immediate

Operation: rC ← rA rotated left IMM5 bit positions

Assembler Syntax: roli rC, rA, IMM5

Example: roli r6, r7, 3

Description: Rotates rA left by the number of bits specified in IMM5 and stores the result in rC. The bits that
shift out of the register rotate into the least-significant bit positions.

Usage: In addition to the rotate-left operation, roli can be used to implement a rotate-right operation.
Rotating left by (32 – IMM5) bits is the equivalent of rotating right by IMM5 bits.

Extended Register
Restrictions:

None

Exceptions: None

Instruction Type: I-5

Instruction Fields: A = Register index of operand rA

C = Register index of operand rC

IMM5 = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1 A (src1) B (dst) 0x0 0 0x0 IMM5 (src2)
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–87
The Nios II DPX MTP Instruction Set
ror rotate right

Operation: rC ← rA rotated right rB4..0 bit positions

Assembler Syntax: ror rC, rA, rB

Example: ror r6, r7, r8

Description: Rotates rA right by the number of bits specified in rB4..0 and stores the result in rC. The bits that
shift out of the register rotate into the most-significant bit positions. Bits 31– 5 of rB are
ignored.

Extended Register
Restrictions:

rB cannot be an extended register.

Exceptions: None

Instruction Type: R-3

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 A (src1) B (src2) C (dst) 0 0 0xC
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–88 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
sll shift left logical

Operation: rC ← rA << (rB4..0)

Assembler Syntax: sll rC, rA, rB

Example: sll r6, r7, r8

Description: Shifts rA left by the number of bits specified in rB4..0 (inserting zeroes), and then stores the
result in rC. sll performs the << operation of the C programming language.

Extended Register
Restrictions:

rB cannot be an extended register.

Exceptions: None

Instruction Type: R-3

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 A (src1) B (src2) C (dst) 0 0 0x14
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–89
The Nios II DPX MTP Instruction Set
slli shift left logical immediate

Operation: rC ← rA << IMM5

Assembler Syntax: slli rC, rA, IMM5

Example: slli r6, r7, 3

Description: Shifts rA left by the number of bits specified in IMM5 (inserting zeroes), and then stores the
result in rC.

Usage: slli performs the << operation of the C programming language.

Extended Register
Restrictions:

None

Exceptions: None

Instruction Type: I-5

Instruction Fields: A = Register index of operand rA

C = Register index of operand rC

IMM5 = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1 A (src1) C (dst) 0x0 0 0x2 IMM5 (src2)
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–90 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
sra shift right arithmetic

Operation: rC ← (signed) rA >> ((unsigned) rB4..0)

Assembler Syntax: sra rC, rA, rB

Example: sra r6, r7, r8

Description: Shifts rA right by the number of bits specified in rB4..0 (duplicating the sign bit), and then stores
the result in rC. Bits 31–5 are ignored.

Usage: sra performs the signed >> operation of the C programming language.

Extended Register
Restrictions:

rB cannot be an extended register.

Exceptions: None

Instruction Type: R-3

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 A (src1) B (src2) C (dst) 0 0 0x3C
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–91
The Nios II DPX MTP Instruction Set
srai shift right arithmetic immediate

Operation: rC ← (signed) rA >> ((unsigned) IMM5)

Assembler Syntax: srai rC, rA, IMM5

Example: srai r6, r7, 3

Description: Shifts rA right by the number of bits specified in IMM5 (duplicating the sign bit), and then
stores the result in rC.

Usage: srai performs the signed >> operation of the C programming language.

Extended Register
Restrictions:

None

Exceptions: None

Instruction Type: I-5

Instruction Fields: A = Register index of operand rA

C = Register index of operand rC

IMM5 = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1 A (src1) C (dst) 0x0 0 0x7 IMM5 (src2)
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–92 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
srl shift right logical

Operation: rC ← (unsigned) rA >> ((unsigned) rB4..0)

Assembler Syntax: srl rC, rA, rB

Example: srl r6, r7, r8

Description: Shifts rA right by the number of bits specified in rB4..0 (inserting zeroes), and then stores the
result in rC. Bits 31–5 are ignored.

Usage: srl performs the unsigned >> operation of the C programming language.

Extended Register
Restrictions:

rB cannot be an extended register.

Exceptions: None

Instruction Type: R-3

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0x3 A (src1) B (src2) C (dst) 0 0 0x1C
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–93
The Nios II DPX MTP Instruction Set
srli shift right logical immediate

Operation: rC ← (unsigned) rA >> ((unsigned) IMM5)

Assembler Syntax: srli rC, rA, IMM5

Example: srli r6, r7, 3

Description: Shifts rA right by the number of bits specified in IMM5 (inserting zeroes), and then stores the
result in rC.

Usage: srli performs the unsigned >> operation of the C programming language.

Extended Register
Restrictions:

None

Exceptions: None

Instruction Type: I-5

Instruction Fields: A = Register index of operand rA

C = Register index of operand rC

IMM5 = 5-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1 A (src1) C (dst) 0x0 0 0x3 IMM5 (src2)
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–94 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
stb store byte to memory or I/O peripheral

Operation: Mem8[rA + σ (IMM12)] ← rB7..0

Assembler Syntax: stb rB, byte_offset(rA)

Example: stb r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed
12-bit immediate value. Stores the low byte of rB to the memory byte specified by the effective
address.

Usage:

Extended Register
Restrictions:

rA cannot be an extended register.

Instruction Type: I-12

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM12 = 12-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x2 A (st data src) B (addr src) 0x8 IMM12 (addr offset)
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–95
The Nios II DPX MTP Instruction Set
sth store halfword to memory or I/O peripheral

Operation: Mem16[rA + σ (IMM12)] ← rB15..0

Assembler Syntax: sth rB, byte_offset(rA)

Example: sth r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed
12-bit immediate value. Stores the low halfword of rB to the memory location specified by the
effective byte address. The effective byte address must be halfword aligned. If the byte address
is not a multiple of 2, the operation is undefined.

Usage:

Extended Register
Restrictions:

rA cannot be an extended register.

Instruction Type: I-12

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM12 = 12-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x2 A (st data src) B (addr src) 0x9 IMM12 (addr offset)
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–96 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
stw store word to memory or I/O peripheral

Operation: Mem32[rA + σ (IMM12)] ← rB

Assembler Syntax: stw rB, byte_offset(rA)

Example: stw r6, 100(r5)

Description: Computes the effective byte address specified by the sum of rA and the instruction's signed
12-bit immediate value. Stores rB to the memory location specified by the effective byte
address. The effective byte address must be word aligned. If the byte address is not a multiple
of 4, the operation is undefined.

Usage:

Extended Register
Restrictions:

rA cannot be an extended register.

Instruction Type: I-12

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM12 = 12-bit signed immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x2 A (st data src) B (addr src) 0xA IMM12 (addr offset)
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–97
The Nios II DPX MTP Instruction Set
sub subtract

Operation: rC ← rA – rB

Assembler Syntax: sub rC, rA, rB

Example: sub r6, r7, r8

Description: Subtract rB from rA and store the result in rC.

Usage: Carry Detection (unsigned operands):

The carry bit indicates an unsigned overflow. Before or after a sub operation, a carry out of
the MSB can be detected by checking whether the first operand is less than the second
operand. The carry bit can be written to a register, or a conditional branch can be taken based
on the carry condition. The following examples show both cases.

sub rC, rA, rB

cmpltu rD, rA, rB

sub rC, rA, rB

bltu rA, rB, label

The original sub operation (optional)

rD is written with the carry bit

The original sub operation (optional)

Branch if carry generated

Overflow Detection (signed operands):

Detect overflow of signed subtraction by comparing the sign of the difference that is written
to rC with the signs of the operands. If rA and rB have different signs, and the sign of rC is
different than the sign of rA, an overflow occurred. The overflow condition can control a
conditional branch, as shown in the following example.

sub rC, rA, rB

xor rD, rA, rB

xor rE, rA, rC

and rD, rD, rE

blt rD, zero, label

The original sub operation

Compare signs of rA and rB

Compare signs of rA and rC

Combine comparisons

Branch if overflow occurred

Extended Register
Restrictions:

rB cannot be an extended register.

Exceptions: None

Instruction Type: R-3

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 A (src1) B (src2) C (dst) 0 0 0x39
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–98 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
subi subtract immediate

Operation: rB ← rA – σ (IMMED)

Assembler Syntax: subi rB, rA, IMMED

Example: subi r8, r8, 4

Description: Sign-extends the immediate value IMMED to 32 bits, subtracts it from the value of rA and then
stores the result in rB.

Usage: The maximum allowed value of IMMED is 32768. The minimum allowed value is

–32767.

Extended Register
Restrictions:

None

Pseudo-instruction: subi is implemented as addi rB, rA, -IMMED
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–99
The Nios II DPX MTP Instruction Set
trap trap

Operation: ea ←PC + 4

PC ←exception handler address

Assembler Syntax: trap

trap imm5

Example: trap

Description: Saves the address of the next instruction in register ea, and transfers execution to the
exception handler. The address of the exception handler is specified at system generation time.

The 5-bit immediate field imm5 is ignored by the processor, but it can be used by the debugger.

trap with no argument is the same as trap 0.

Usage: To return from the exception handler, execute an eret instruction.

Extended Register
Restrictions:

None

Exceptions: Trap

Instruction Type: I-5

Instruction Fields: IMM5 = Type of breakpoint

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x1 0 0x1d 0x0 0 0x4 IMM5 (src2)
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–100 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
wrctl write to control register

Operation: ctlN ← rA

Assembler Syntax: wrctl ctlN, rA

Example: wrctl ctl6, r3

Description: Writes the value contained in register rA to the control register ctlN.

Applicable both to standard control registers and extended control registers.

Extended Register
Restrictions:

None

Exceptions:

Instruction Type: R-3

Instruction Fields: A = Register index of operand rA

N = Control register index of operand ctlN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 A (src1) N (dst) 0x0 0 0 0x2E
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–101
The Nios II DPX MTP Instruction Set
xor bitwise logical exclusive or

Operation: rC ← rA ^ rB

Assembler Syntax: xor rC, rA, rB

Example: xor r6, r7, r8

Description: Calculates the bitwise logical exclusive-or of rA and rB and stores the result in rC.

Extended Register
Restrictions:

rB cannot be an extended register.

Exceptions: None

Instruction Type: R-3

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 A (src1) B (src2) C (dst) 0 0 0x1E
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–102 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
xorhi bitwise logical exclusive or immediate into high halfword

Operation: rB ← rA ^ (IMM16 : 0x0000)

Assembler Syntax: xorhi rB, rA, IMM16

Example: xorhi r6, r7, 100

Description: Calculates the bitwise logical exclusive XOR of rA and (IMM16 : 0x0000) and stores the result
in rB.

Extended Register
Restrictions:

None

Exceptions: None

Instruction Type: I-16

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0xF A (src1) B (dst) IMM16 (src2)
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–103
The Nios II DPX MTP Instruction Set
xori bitwise logical exclusive or immediate

Operation: rB ← rA ^ (0x0000 : IMM16)

Assembler Syntax: xori rB, rA, IMM16

Example: xori r6, r7, 100

Description: Calculates the bitwise logical exclusive OR of rA and (0x0000 : IMM16) and stores the result in
rB.

Extended Register
Restrictions:

None

Exceptions: None

Instruction Type: I-16

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

IMM16 = 16-bit unsigned immediate value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0xB A (src1) B (dst) IMM16 (src2)
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–104 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
Nios II DPX Extended Instruction Set Reference
This section describes Nios II DPX MTP instructions that are specific to event-driven,
multi-threaded processing.

Table 9–16 lists option codes that you can use in the message control word argument
to the snd and sndi instructions. These option codes are defined in nios2dpx.h.

Table 9–17 and Table 9–18 specify the argument encodings used by the snd and sndi
instructions.

For the meanings of the option bits, see Table 9–16.

Table 9–16. OPT bits

Instruction
Bit

OPT Field
Bit Name Description

31:9 26:4 — Reserved

8 3 OPT_KEEPSEQNUM

Bypass the sequence number reorder buffer. Turning this option on has
the following effects:

■ Prevents the message from being reordered

■ Prevents the message sequence number from being returned to the
free sequence number list

For information about how to use this flag correctly, see “Advanced
Topics” on page 5–23.

This flag has no effect if sequence number ordering is disabled in the
hardware.

7 2 OPT_CIDORDER
Pass message through the CID reorder buffer. This option enables the
message to be reordered by CID.

6 1 OPT_SNDEXIT

Transfer control of thread to the scheduler. Tell the scheduler to release
the thread (exit) after snd instruction.

This option is used to save a thread cycle when a task exits. if another
task is not ready to run, the thread might continue to execute until it
reaches an exit instruction. This behavior is not predictable.

You must restrict use of the OPT_SNDEXIT option to tasks implemented
in assembly language. In C, it would terminate the thread before the
epilogue runs, corrupting the stack.

5 0 OPT_FREECID Free the associated CID.

Table 9–17. Message Destination Word

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DSTID OTID

Table 9–18. Message Control Word

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OPT (snd) LENGTH (1)

OPT (sndi) (2) LENGTH (1)

Note to Table 9–18:

(1) To transmit all available TX registers, set LENGTH to zero.
(2) The sndi instruction limits the message control word to a 16-bit immediate value. Therefore sndi only supports 11 option bits.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–105
The Nios II DPX MTP Instruction Set
Table 9–19 lists the status codes supported by the extended instructions. These status
codes are defined in nios2dpx.h.

Table 9–19. Extended Instruction Status Codes

Status Code Meaning

ERR_OK Instruction successful

ERR_NO_ID Thread does not own a TXID or CID

ERR_BUF_FULL Queue is full
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–106 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
cidalloc CID allocate

Operation: Obtains a new CID.

Assembler Syntax: cidalloc rC

Example: cidalloc r1

Description: Gets a new CID and swaps to it, keeping the old CID in reserve. Does nothing if there is a CID in
reserve already. cidalloc also gets a TXID if needed

Set rC to the status as follows:

■ ERR_OK—The new CID and TXID are valid.

■ ERR_NO_ID—Failure to allocate either a valid CID or a valid TXID. The thread continues to
use the old CID.

If CIDs are not implemented in the Nios II DPX datapath processor, the cidalloc instruction is
treated as a nop.

Once allocated, the currently active CID is switched to the new CID. Following a snd instruction,
the currently active CID reverts to the original CID.

Extended Register
Restrictions:

None

Exceptions:

Instruction Type: R-3

Instruction Fields: C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 0 0 C (dst) 0 0 0x12
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–107
The Nios II DPX MTP Instruction Set
exit exit

Operation: Exits the currently running thread.

Assembler Syntax: exit

Example: exit

Description: If the thread owns an RXID, mark it invalid and release it to the RXID free list. Then put the
processor thread into an idle state.

Extended Register
Restrictions:

None

Exceptions: None

Instruction Type: R-3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 0 0 0 0 0 0xA
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–108 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
rxfree RXID free

Operation: Frees the RXID of a thread

Assembler Syntax: rxfree rC

Example: rxfree r6

Description: Returns a thread's RXID to the RXID free list, and marks the thread as not owning an RXID.
Does nothing if the thread did not own an RXID.

Sets rC to the status as follows:

■ ERR_OK—The RXID is valid and is freed successfully.

■ ERR_NO_ID—The RXID is not valid.

If the hardware is configured with zero RXIDs, this instruction is treated as nop.

Extended Register
Restrictions:

None

Exceptions: None

Instruction Type: R-3

Instruction Fields: C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 0 0 C (dst) 0 0 0x3A
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–109
The Nios II DPX MTP Instruction Set
snd send

Operation: Sends a message with register message control word

Assembler Syntax: snd rC, rA, rB

Example: snd r1, r2, r3

Description: Sends a message using the current CID. If there is a CID in reserve, switch to it, else, continue
with the current CID. Mark the CID in reserve as invalid to allow another cidalloc to work.

The snd instruction specifies:

■ The PE – by using a unique destination ID (DSTID)

■ The operation to run on that PE (OTID)

■ Some operational flags (OPT)

■ The number of TX registers to send in the message (LENGTH)

Adds the message specified by the message destination and control words to the Tx message
queue

If thread owns a TXID, mark it invalid.

rA = Message destination word. See Table 9–17 on page 9–104.

rB = Message control word. See Table 9–18 on page 9–104.

Sets rC to the status as follows:

■ ERR_OK—The message is sent correctly.

■ ERR_NO_ID—No TXID is owned. The message is not sent.

■ ERR_BUF_FULL—The TX queue is full. The message is not sent.

Extended Register
Restrictions:

None

Exceptions: None

Instruction Type: R-3

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 A (src1) B (src2) C (dst) 0 0 0x22
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–110 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Instruction Set
sndi send immediate

Operation: Sends a message with immediate message control word

Assembler Syntax: sndi rB, rA, imm16

Example: sndi r1, r2, imm16

Description: rA = Message destination word. See Table 9–17 on page 9–104.

imm16 = Message control word. See Table 9–18 on page 9–104.

Because the message control word is limited to a 16-bit immediate value, this instruction only
supports 11 option bits.

Aside from specifying the limitations on the message control word, the sndi instruction is
identical to the snd instruction.

Extended Register
Restrictions:

None

Exceptions: None

Instruction Type: I-16

Instruction Fields: A = Register index of operand rA

B = Register index of operand rB

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x4 A (src1) B (dst) IMM16 (src2)
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–111
The Nios II DPX MTP Instruction Set
txalloc TXID allocate

Operation: Requests a TXID.

Assembler Syntax: txalloc rC

Example: txalloc r6

Description: If the thread does not currently own a TXID, request one. The return value indicates whether the
thread owns a valid TXID or not. If TXID is valid, set <status> = 0 [ERR_OK]. If TXID is not
valid, set <status> = 1 [ERR_NO_ID]. Returns: rC = <status>.

If the hardware is configured with zero TXIDs, this instruction is treated as nop.

Extended Register
Restrictions:

None

Exceptions: None

Instruction Type: R-3

Instruction Fields: C = Register index of operand rC

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x3 0 0 C (dst) 0 0 0x32
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–112 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Application Binary Interface
The Nios II DPX MTP Application Binary Interface
This section describes the Application Binary Interface (ABI) for the Nios II DPX MTP.
The ABI describes:

■ How data is arranged in memory

■ Behavior and structure of the stack

■ Function calling conventions

Data Types
Table 9–20 shows the size and representation of the C data types for the Nios II DPX
MTP.

Memory Alignment
Contents in memory are aligned as follows:

■ A function must be aligned to a minimum of 32-bit boundary.

■ The minimum alignment of a data element is its natural size. A data element larger
than 32 bits need only be aligned to a 32-bit boundary.

■ Structures, unions, and strings must be aligned to a minimum of 32 bits.

■ Bit fields inside structures are always 32-bit aligned.

Register Usage
The ABI adds additional usage conventions to the Nios II DPX MTP register file
defined in Chapter 5, Software Programming Model. The ABI uses the registers as
shown in Table 9–21.

Table 9–20. Representation of Data Types

Type Size (Bytes) Representation

char, signed char 1 two’s complement (ASCII)

unsigned char 1 binary (ASCII)

short, signed short 2 two’s complement

unsigned short 2 binary

int, signed int 4 two’s complement

unsigned int 4 binary

long, signed long 4 two’s complement

unsigned long 4 binary

pointer 4 binary

long long 8 two’s complement

unsigned long long 8 binary
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–113
The Nios II DPX MTP Application Binary Interface
1 The general purpose registers r32 through r63 are reserved registers. The Nios II DPX
C compiler ignores these registers when doing register allocation.

Table 9–21. Nios II DPX ABI Register Usage

Register Name Used by
Compiler

Callee-
Saved (1) Normal Usage

r0 zero v 0x00000000

r1 at Assembler temporary

r2 v Return value (least-significant 32 bits)

r3 v Return value (most-significant 32 bits)

r4 v Register arguments (first 32 bits)

r5 v Register arguments (second 32 bits)

r6 v Register arguments (third 32 bits)

r7 v Register arguments (fourth 32 bits)

r8 v

Caller-saved general-purpose registers

r9 v
r10 v
r11 v
r12 v
r13 v
r14 v
r15 v
r16 v v

Callee-saved general-purpose registers

r17 v v
r18 v v
r19 v v
r20 v v
r21 v v
r22 v v
r23 v v
r24 v v
r25 bt Break temporary

r26 gp v Global pointer

r27 sp v Stack pointer

r28 fp v (2) Frame pointer

r29 ea Exception return address

r30 ba Break return address

r31 ra v Return address

Notes to Table 9–21:

(1) A function can use one of these registers if it saves it first. The function must restore the register’s original value
before exiting.

(2) If the frame pointer is not used, the register is available as a callee-saved temporary register. Refer to “Frame
Pointer Elimination” on page 9–116.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–114 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Application Binary Interface
The endianness of values greater than 8 bits is BE-8.

f For information about BE-8 data representation, refer to the Nios II DPX Architecture
chapter, in the Nios II DPX Hardware Reference section of the Nios II DPX Datapath
Processor Handbook.

Stacks
The stack grows downward, towards lower addresses. The stack pointer points to the
last used slot. The frame pointer points to the saved frame pointer near the top of the
stack frame.

Function Stack Setup
Figure 9–1 shows an example of the structure of a current frame. In this case, function
a() calls function b(), and the stack is shown before the call and after the prologue in
the called function has completed.

Each section of the current frame is aligned to a 32-bit boundary. The ABI requires the
stack pointer be 32-bit aligned at all times.

Task Stack Setup
Use the task attribute to designate a function as a task entry point.

The task prologue sets up the stack and frame pointers much like the standard
prologue. Unlike the normal prologue, the task prologue does not save the
callee-saved registers. The task function assumes all callee saved registers are empty
scratch registers upon entry into the task function. Another difference between a task
and a standard function is that a task function has no arguments on the stack.

Figure 9–1. Stack Pointer, Frame Pointer and the Current Frame

In function a()
Just prior to calling b()

In function b()
Just after executing prologue

Incoming
stack

arguments

Other saved
registers

Space for
outgoing

stack
arguments

Allocated and freed by a()
(i.e. the calling function)

Allocated and freed by b()
(i.e. the current function)

Stack pointer

Outgoing
stack

arguments

Higher addresses

Stack pointer

Lower addresses

Space for
stack

temporaries

Return address

Saved frame
pointerFrame pointer
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

www.altera.com/literature/hb/nios2dpx/niidpx-handbook-01.pdf

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–115
The Nios II DPX MTP Application Binary Interface
The task epilogue restores the stack and frame pointers just like the normal epilogue.
Unlike the normal epilogue, the task epilogue does not restore the callee-saved
registers. The task epilogue terminates with the exit instruction instead of the ret
instruction.

A task function is declared as follows:

void __attribute__ ((task (<task id>)) <task function name> () {}

Figure 9–2 shows an example of the stack for a task function. The stack is shown after
the prologue in the task has completed.

Naked Stack Setup
Use the naked attribute to indicate that the specified function does not need the
prologue and epilogue sequences generated by the compiler. It is up to the
programmer to provide these sequences.

Naked functions are used to implement the body of an assembly function, while
allowing the compiler to construct the requisite function declaration for the assembler.
The only statements that can be safely included in naked functions are assembly
language statements that do not have operands. Avoid using other statements,
especially declarations of local variables and if statements.

A naked function is declared as follows:

void __attribute__((naked)) my_naked_function() {}

Figure 9–2. Stack Pointer in a Task Function

In task function b()
Just after executing prologue

Allocated and freed by b()
(the task function)

Stack pointer

Higher addresses

Lower addresses

Space for
stack

temporaries

Return address

Frame pointer
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–116 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Application Binary Interface
Figure 9–3 shows an example of the stack for a naked function. The stack is shown
after control has passed to the first statement in the function.

Frame Pointer Elimination
The frame pointer is provided for debugger support. If you are not using a debugger,
you can optimize your code by eliminating the frame pointer, using the
-fomit-frame-pointer compiler option. When the frame pointer is eliminated,
register fp is available as a temporary register.

Call Saved Registers
The compiler is responsible for saving registers that need to be saved in a function. If
there are any such registers, they are saved on the stack, from high to low addresses,
in the following order: ra, fp, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15,
r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, gp, and sp. Stack space is not allocated
for registers that are not saved.

Further Examples of Stacks
There are a number of special cases for stack layout, which are described in this
section.

Stack Frame for a Function With alloca()

The Nios II DPX stack frame implementation provides support for the alloca()
function, defined in the Berkeley Software Distribution (BSD) extension to C, and
implemented by the gcc compiler. Figure 9–4 depicts what the frame looks like after
alloca() is called. The space allocated by alloca() replaces the outgoing arguments
and the outgoing arguments get new space allocated at the bottom of the frame.

Figure 9–3. Stack Pointer in a Naked Function

In function a()
Just prior to calling b()

In naked function b()
Just after receiving control

Stack pointer

Higher addresses

Stack pointer

Lower addresses

Return address
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–117
The Nios II DPX MTP Application Binary Interface
1 The Nios II DPX C compiler maintains a frame pointer for any function that calls
alloca(), even if -fomit-frame-pointer is specified.

Figure 9–4. Stack Frame after Calling alloca()

higher addresses

lower addresses

space for
outgoing

stack
 arguments

sp

sp

space for
outgoing

stack
 arguments

memory
allocated

by
alloca()

Before After calling alloca()
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–118 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Application Binary Interface
Stack Frame for a Function with Variable Arguments

Functions that take variable arguments (varargs) still have their first 16 bytes of
arguments arriving in registers r4 through r7, just like other functions.

In order for varargs to work, functions that take variable arguments allocate 16 extra
bytes of storage on the stack. They copy to the stack the first 16 bytes of their
arguments from registers r4 through r7 as shown in Figure 9–5.

Stack Frame for a Function with Structures Passed By Value

Functions that take struct value arguments still have their first 16 bytes of arguments
arriving in registers r4 through r7, just like other functions.

If part of a structure is passed using registers, the function might need to copy the
register contents back to the stack. This operation is similar to that required in the
variable arguments case as shown in Figure 9–5.

Function Prologues
The Nios II DPX C compiler generates function prologues that allocate the stack frame
of a function for storage of stack temporaries and outgoing arguments. In addition,
each prologue is responsible for saving the state of the calling function. This entails
saving certain registers on the stack. These registers, the callee-saved registers, are
listed in Table 9–21 on page 9–113. A function prologue is required to save a
callee-saved register only if the function uses the register.

Given the function prologue algorithm, when doing a back trace, a debugger can
disassemble instructions and reconstruct the processor state of the calling function.

Figure 9–5. Stack Frame Using Variable Arguments

In function a()
Just prior to calling b()

In function b()
Just after executing prologue

Incoming
stack

arguments

Other saved
registers

Space for
outgoing

stack
arguments

Allocated and freed by a()
(i.e. the calling function)

Allocated and freed by b()
(i.e. the current function)

Outgoing
stack

arguments

Higher addresses

Lower addresses

Stack pointer

Copy of r7
Copy of r6
Copy of r5
Copy of r4

Space for
stack

temporaries

Stack pointer

Return address

Saved frame
pointerFrame pointer
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–119
The Nios II DPX MTP Application Binary Interface
1 An even better way to find out what the prologue has done is to use information
stored in the DWARF-2 debugging fields of the executable and linkable format (.elf)
file.

The instructions found in a Nios II DPX function prologue perform the following
tasks:

■ Adjust the stack pointer (to allocate the frame)

■ Store registers to the frame

■ Set the frame pointer to the location of the saved frame pointer

Example 9–1 shows a function prologue.

Prologue Variations

The following variations can occur in a prologue:

■ In a task function, callee-saved registers are not saved.

■ In a naked function, the prologue is absent.

■ If the function’s frame size is greater than 2047 bytes, extra temporary registers are
used in the calculation of the new stack pointer as well as for the offsets of where
to store callee-saved registers. The extra registers are needed because of the
maximum size of immediate values allowed by the Nios II DPX MTP.

■ If the frame pointer is not in use, the final instruction, recalculating the frame
pointer, is not generated.

■ If variable arguments are used, extra instructions store the argument registers on
the stack.

■ If the compiler designates the function as a leaf function, the return address is not
saved.

■ If optimizations are on, especially instruction scheduling, the order of the
instructions might change and become interlaced with instructions located after
the prologue.

Arguments and Return Values
This section discusses the details of passing arguments to functions and returning
values from functions.

Example 9–1. A function prologue

/* Adjust the stack pointer */
addi sp, sp, -16 /* make a 16-byte frame */

/* Store registers to the frame */
stw ra, 12(sp) /* store the return address */
stw fp, 8(sp) /* store the frame pointer*/
stw r16, 4(sp) /* store callee-saved register */
stw r17, 0(sp) /* store callee-saved register */

/* Set the new frame pointer */
addi fp, sp, 8
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–120 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Application Binary Interface
Arguments
The first 16 bytes to a function are passed in registers r4 through r7. The arguments
are passed as if a structure containing the types of the arguments were constructed,
and the first 16 bytes of the structure are located in r4 through r7.

A simple example:

int function (int a, int b);

The equivalent structure representing the arguments is:

struct { int a; int b; };

The first 16 bytes of the struct are assigned to r4 through r7. Therefore r4 is assigned
the value of a and r5 the value of b.

The first 16 bytes to a function taking variable arguments are passed the same way as
a function not taking variable arguments. The called function must clean up the stack
as necessary to support the variable arguments. Refer to “Stack Frame for a Function
with Variable Arguments” on page 9–118.

Return Values
Return values of types up to 8 bytes are returned in r2 and r3. For return values
greater than 8 bytes, the caller must allocate memory for the result and must pass the
address of the result memory as a hidden zero argument.

The hidden zero argument is best explained through an example.

In Example 9–2, if the result type is no larger than 8 bytes, b() returns its result in r2
and r3.

Example 9–2. Returned struct

/* b() computes a structure-type result and returns it */
STRUCT b(int i, int j)
{

...
return result;

}

void a(...)
{

...
value = b(i, j);

}

Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–121
The Nios II DPX MTP Application Binary Interface
If the return type is larger than 8 bytes, the Nios II DPX C compiler treats this program
as if a() had passed a pointer to b(). Example 9–3 shows how the Nios II DPX C
compiler sees the code in Example 9–2.

DWARF-2 Definition
Registers r0 through r31 are assigned numbers 0 through 31 in all DWARF-2
debugging sections.

Object Files
Nios II DPX MTP object file headers contain Nios II DPX MTP-specific values as
shown in Table 9–22.

Relocation
In a Nios II DPX MTP object file, each relocatable address reference possesses a
relocation type. The relocation type specifies how to calculate the relocated
address.Table 9–23 lists the calculation for address relocation for each Nios II DPX
relocation type. The bit mask specifies where the address is found in the instruction.

Example 9–3. Returned struct is Larger than 8 Bytes

void b(STRUCT *p_result, int i, int j)
{

...
*p_result = result;

}

void a(...)
{

STRUCT value;
...
b(*value, i, j);

}

Table 9–22. Nios II DPX MTP-Specific ELF Header Values

Member Value

e_ident[EI_CLASS] ELFCLASS32

e_ident[EI_DATA] ELFDATA2LSB

e_machine EM_ALTERA_NIOS2 == 113

Table 9–23. Nios II DPX Relocation Calculation (Part 1 of 2)

Name Value Overflow
check (1)

Relocated Address
R (2)

Bit Mask
M

Bit Shift
B

R_NIOS2_NONE 0 n/a None n/a n/a

R_NIOS2_S16 1 Yes S + A 0x0000FFFF 0

R_NIOS2_U16 2 Yes S + A 0x0000FFFF 0

R_NIOS2_PCREL16 3 Yes ((S + A) – 4) – PC 0x0000FFFF 0

R_NIOS2_CALL26 4 No (S + A) >> 2 0x0FCFFFFF 0
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–122 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Application Binary Interface
R_NIOS2_IMM5 5 Yes (S + A) & 0x1F 0x000007C0 0

R_NIOS2_CACHE_OPX 6 n/a None n/a n/a

R_NIOS2_IMM6 7 n/a None n/a n/a

R_NIOS2_IMM8 8 Yes (S + A) & 0xFF 0x000000FF 0

R_NIOS2_HI16 9 No ((S + A) >> 16) & 0xFFFF 0x0000FFFF 0

R_NIOS2_LO16 10 No (S + A) & 0xFFFF 0x0000FFFF 0

R_NIOS2_HIADJ16 11 No Adj(S+A) 0x0000FFFF 0

R_NIOS2_BFD_RELOC_32 12 No S + A 0xFFFFFFFF 0

R_NIOS2_BFD_RELOC_16 13 Yes (S + A) & 0xFFFF 0x0000FFFF 0

R_NIOS2_BFD_RELOC_8 14 Yes (S + A) & 0xFF 0x000000FF 0

R_NIOS2_GPREL 15 No (S + A – GP) & 0xFFFF 0x00000FFF 0

R_NIOS2_GNU_VTINHERIT 16 n/a None n/a n/a

R_NIOS2_GNU_VTENTRY 17 n/a None n/a n/a

R_NIOS2_UJMP 18 No
((S + A) >> 16) & 0xFFFF,

(S + A + 4) & 0xFFFF
0x0000FFFF 0

R_NIOS2_CJMP 19 No
((S + A) >> 16) & 0xFFFF,

(S + A + 4) & 0xFFFF
0x0000FFFF 0

R_NIOS2_CALLR 20 No
((S + A) >> 16) & 0xFFFF)

(S + A + 4) & 0xFFFF
0x0000FFFF 0

R_NIOS2_ALIGN 21 n/a None n/a n/a

R_NIOS2_S12 41 Yes S+A 0x00000FFF 0

R_NIOS2_U12 42 Yes S+A 0x00000FFF 0

R_NIOS2_BMX_LSB 43 Yes S+A 0x0000001F 0

R_NIOS2_BMX_MSB 44 Yes S+A 0x000003E0 5

R_NIOS2_PCREL14_S2 45 Yes (((S + A) – 4) – PC)>>2 0x00000FFF 0

R_NIOS2_U20 46 Yes S+A 0x000FFFFF 0

R_NIOS2_HI20 47 No ((S + A) >> 12) & 0xFFFFF 0x000FFFFF 0

R_NIOS2_LO12 48 No S+A 0x00000FFF 0

R_NIOS2_HIADJ20 49 No Adj20(S+A) 0x000FFFFF 0

R_NIOS2_ILLEGAL 22 n/a None None None

Notes to Table 9–23:

(1) For relocation types where no overflow check is performed, the relocated address is truncated to fit the instruction.
(2) Expressions in this column use the following conventions:

n S: Symbol address
n A: Addend
n PC: Program counter
n GP: Global pointer
n Adj(X): (((X >> 16) & 0xFFFF) + ((X >> 15) & 0x1)) & 0xFFFF
n Adj20(X): (((X >> 12) & 0xFFFFF) + ((X >> 11) & 0x1)) & 0xFFFFF
n BA: The base address at which a shared library is loaded

Table 9–23. Nios II DPX Relocation Calculation (Part 2 of 2)

Name Value Overflow
check (1)

Relocated Address
R (2)

Bit Mask
M

Bit Shift
B

Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface 9–123
The Nios II DPX MTP Application Binary Interface
With the information in Table 9–23, any Nios II DPX MTP instruction can be relocated
by manipulating it as an unsigned 32-bit integer, as follows:

Xr = ((R << B) & M | (X & ~M));

where:

■ R is the relocated address, calculated as shown in Table 9–23

■ B is the bit shift shown in Table 9–23

■ M is the bit mask shown in Table 9–23

■ X is the original instruction

■ Xr is the relocated instruction

Development Environment
The following symbols are defined:

■ __nios2

■ __nios2__

■ __NIOS2

■ __NIOS2__

■ __nios2_big_endian

■ __nios2_big_endian__

■ __nios2_6b

■ __nios2_6b__
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

9–124 Chapter 9: Nios II DPX MTP Instruction Set and Application Binary Interface
The Nios II DPX MTP Application Binary Interface
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

May 2011 Altera Corporation
10. SBT Reference for the Nios II DPX
MTP
This chapter provides a complete reference of all available commands, options, and
settings for the Nios II SBT, as it applies to Nios II DPX software development. This
reference is useful for)developing your own software projects, packages, or device
drivers.

f Before using this chapter, read Chapter 7, Getting Started from the Command Line,
and familiarize yourself with the parts of Chapter 8, Understanding the Nios II DPX
Board Support Package that are relevant to your tasks.

This chapter includes the following sections:

■ “Nios II Software Build Tools Utilities” on page 10–1

■ “Settings” on page 10–28

■ “Application and User Library Makefile Variables” on page 10–39

■ “Tcl Commands” on page 10–42

■ “Path Names” on page 10–84

Nios II Software Build Tools Utilities
The build tools utilities are an entry point to the Nios II SBT. Everything you can do
with the tools, such as specifying settings, creating makefiles, and building projects, is
made available by the utilities.

All Nios II SBT utilities share the following behavior:

■ Sends error messages and warning messages to stderr.

■ Sends normal messages (other than errors and warnings) to stdout.

■ Displays one error message for each error.

■ Returns an exit value of 1 if it detects any errors.

■ Returns an exit value of 0 if it does not detect any errors. (Warnings are not errors.)

■ If the help or version command-line option is specified, returns an exit value of 0,
and takes no other action. Sends the output (help or version number) to stdout.

■ When an error is detected, suppresses all subsequent operations (such as writing
files).
Nios II DPX Datapath Processor Handbook

10–2 Chapter 10: SBT Reference for the Nios II DPX MTP
Nios II Software Build Tools Utilities
Logging Levels
All the utilities support multiple status-logging levels. You specify the logging level
on the command line. Table 10–1 shows the logging levels supported. At each level,
the utilities report the status as listed under Description. Each level includes the
messages from all lower levels.

Table 10–2 shows the command-line options used to select each logging level. Only
one logging level is possible at a time, so these options are all mutually exclusive.

Setting Values
The value of a setting is specified with the --set command-line option to
nios2-bsp-create-settings or nios2-bsp-update-settings, or with the set_setting Tcl
command. The value of a setting is obtained with the --get command-line option to
nios2-bsp-query-settings or with the get_setting Tcl command.

For more information about settings values and formats, refer to “Settings” on
page 10–28.

Table 10–1. Nios II SBT Logging Levels

Logging Level Description

silent (lowest) No information is provided except for errors and warnings (sent to stderr).

default Minimal information is provided (for example, start and stop operation of SBT
phases).

verbose Detailed information is provided (for example, lists of files written).

debug (highest) Debug information is provided (for example, stack backtraces on errors). This
level is for reporting problems to Altera.

Table 10–2. Selecting Logging Level

Command-Line Option Logging Level Comments

none default If there is no command-line option, the default level is
selected.

--silent silent Selects silent level of logging.

--verbose verbose Selects verbose level of logging.

--debug debug Selects debug level of logging.

--log <fname> debug All information is written to <fname> in addition to
being sent to the stdout and stderr devices.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–3
Nios II Software Build Tools Utilities
Utility and Script Summary
The following command-line utilities and scripts are available:

■ “nios2-app-generate-makefile”

■ “nios2-bsp-create-settings” on page 10–6

■ “nios2-bsp-generate-files” on page 10–8

■ “nios2-bsp-query-settings” on page 10–9

■ “nios2-bsp-update-settings” on page 10–11

■ “nios2-lib-generate-makefile” on page 10–13

■ “nios2-bsp-editor” on page 10–15

■ “nios2-app-update-makefile” on page 10–16

■ “nios2-lib-update-makefile” on page 10–19

■ “nios2-swexample-create” on page 10–22

■ “nios2-elf-insert” on page 10–23

■ “nios2-elf-query” on page 10–24

■ “nios2-bsp-console” on page 10–27
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–4 Chapter 10: SBT Reference for the Nios II DPX MTP
Nios II Software Build Tools Utilities
nios2-app-generate-makefile

Usage
nios2-app-generate-makefile [--app-dir <directory>]

--bsp-dir <directory> [--debug]
[--elf-name <filename>] [--extended-help] [--help]
[--log <filename>] [--no-src] [--set <name> <value>]
[--silent] [--src-dir <directory>]
[--src-files <filenames>] [--src-rdir <directory>]
[--use-lib-dir <directory>] [--verbose]
[--version]

Options

■ --app-dir <directory>: Directory to place the application makefile and
executable and linking format file (.elf). If omitted, it defaults to the current
directory.

■ --bsp-dir <directory>: Specifies the path to the BSP generated files directory
(populated using the nios2-bsp-generate-files command).

■ --debug: Output debug, exception traces, verbose, and default information about
the command’s operation to stdout.

■ --elf-name <filename>: Name of the .elf file to create. If omitted, it defaults to the
first source file specified with the file name extension replaced with .elf and placed
in the application directory.

■ --extended-help: Displays full information about this command and its options.

■ --help: Displays basic information about this command and its options.

■ --log <filename>: Create a debug log and write to specified file. Also logs debug
information to stdout.

■ --no-src: Allows no sources files to be set in the Makefile. You must add source
files in manually before compiling

■ --set <name> <value>: Set the makefile variable called <name> to <value>. If the
variable exists in the managed section of the makefile, <value> replaces the default
settings. If the variable does not already exist, it is added. Multiple --set options
are allowed.

■ --silent: Suppress information about the command’s operation normally sent to
stdout.

■ --src-dir <directory>: Searches for source files in <directory>. Use . to look in the
current directory. Multiple --src-dir options are allowed.

■ --src-files <filenames>: Adds a list of space-separated source file names to the
makefile. The list of file names is terminated by the next option or the end of the
command line. Multiple --src-files options are allowed.

■ --src-rdir <directory>: Same as --src-dir option but recursively search for
source files in or under <directory>. Multiple --src-rdir options are allowed and
can be freely mixed with --src-dir options.

■ --use-lib-dir <directory>: Specifies the path to a dependent user library
directory. The user library directory must contain a makefile fragment called
public.mk. Multiple --use-lib-dir options are allowed.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–5
Nios II Software Build Tools Utilities
■ --verbose: Output verbose, and default information about the command’s
operation to stdout.

■ --version: Displays the version of this command and exits with a zero exit status.

Description

The nios2-app-generate-makefile command generates an application makefile
(called Makefile). The path to a BSP created by nios2-bsp-generate-files is a
mandatory command-line option. If no command-line arguments are specified, this
command returns an exit value of 1 and sends a help message to stderr.

For more details about this command, use the --extended-help option to display
comprehensive usage information.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–6 Chapter 10: SBT Reference for the Nios II DPX MTP
Nios II Software Build Tools Utilities
nios2-bsp-create-settings

Usage
nios2-bsp-create-settings [--bsp-dir <directory>]

[--cmd <tcl command>] [--cpu-name <cpu name>]
[--debug] [--extended-help] [--get-cpu-arch]
[--help] [--jdi <filename>]
[--librarian-factory-path <directory>]
[--librarian-path <directory>] [--log <filename>]
[--script <filename>] [--set <name> <value>]
--settings <filename> [--silent]
--sopc <filename> --type <OS name> [--type-version <version>]
[--verbose] [--version]

Options
■ --bsp-dir <directory>: Path to the directory where the BSP files are generated.

Use . for the current directory. The directory <directory> must exist. This command
overwrites preexisting files in <directory> without warning.

■ --cmd <tcl command>: Runs the specified Tcl command. Multiple --cmd options are
allowed.

■ --cpu-name <cpu name>: The name of the Nios II DPX MTP that the BSP supports.
Optional for a single-processor system.

■ --debug: Sends debug information, exception traces, verbose output, and default
information about the command’s operation, to stdout.

■ --extended-help: Displays full information about this command and its options.

■ --get-cpu-arch: Queries for processor architecture from the processor specified.
Does not create a BSP.

■ --help: Displays basic information about this command and its options.

■ --jdi <filename>: The location of the JTAG Debugging Information File (.jdi)
generated by the Quartus® II software. The .jdi file specifies the name-to-node
mappings for the JTAG chain elements. The tool inserts the .jdi path in public.mk.
If no .jdi path is specified, the command searches the directory containing
the .sopcinfo file, and uses the first .jdi file found.

■ --librarian-factory-path <directory>: Comma separated librarian search path.
Use $ for default factory search path.

■ --librarian-path <directory>: Comma separated librarian search path. Use $ for
default search path.

■ --log <filename>: Creates a debug log and write to specified file. Also logs debug
information to stdout.

■ --script <filename>: Run the specified Tcl script with optional arguments.
Multiple --script options are allowed.

■ --set <name> <value>: Sets the setting called <name> to <value>. Multiple --set
options are allowed.

■ --settings <filename>: File name of the BSP settings file to create. This file is
created with a .bsp file extension. It overwrites any existing settings file.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–7
Nios II Software Build Tools Utilities
■ --silent: Suppresses information about the command’s operation normally sent
to stdout.

■ --sopc <filename>: The SOPC Information File (.sopcinfo) used to create the BSP.

■ --type <OS name>: BSP type. Set to lwhal.

■ --type-version <version>: BSP software component version. By default the
latest version is used. default value can be used to reset to this default behavior.
Use ? to list available BSP types and versions.

■ --verbose: Sends verbose output, and default information about the command’s
operation, to stdout.

■ --version: Displays the version of this command and exits with a zero exit status.

Description
If you use nios2-bsp-create-settings to create a settings file without any
command-line options, Tcl commands, or Tcl scripts to modify the default settings, it
creates a settings file that fails when running nios2-bsp-generate-files. Failure occurs
because the nios2-bsp-create-settings command is able to create reasonable defaults
for most settings, but the command requires additional information for
system-dependent settings. The default Tcl scripts set the required system-dependent
settings. Therefore it is better to use default Tcl scripts when calling
nios2-bsp-create-settings directly. For an example of how to use the default Tcl
scripts, refer to the nios2-bsp script.

If no command-line arguments are specified, this command returns an exit value of 1
and sends a help message to stderr.

For more details about this command, use the --extended-help option to display
comprehensive usage information.

Example
nios2-bsp-create-settings --settings my_settings.bsp --sopc \

../my_sopc.sopcinfo --type lwhal --script default_settings.tcl
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–8 Chapter 10: SBT Reference for the Nios II DPX MTP
Nios II Software Build Tools Utilities
nios2-bsp-generate-files

Usage
nios2-bsp-generate-files --bsp-dir <directory>

[--debug] [--extended-help] [--help]
[--librarian-factory-path <directory>]
[--librarian-path <directory>] [--log <filename>]
--settings <filename> [--silent] [--verbose]
[--version]

Options
■ --bsp-dir <directory>: Path to the directory where the BSP files are generated.

Use . for the current directory. The directory <directory> must exist. This command
overwrites preexisting files in <directory> without warning.

■ --debug: Sends debug, exception trace, verbose, and default information about the
command’s operation to stdout.

■ --extended-help: Displays full information about this command and its options.

■ --help: Displays basic information about this command and its options.

■ --librarian-factory-path <directory>: Comma separated librarian search path.
Use $ for default factory search path.

■ --librarian-path <directory>: Comma separated librarian search path. Use $ for
default search path.

■ --log <filename>: Creates a debug log and writes to specified file. Also logs
debug information to stdout.

■ --settings <filename>: File name of an existing BSP Settings File (.bsp) to
generate files from.

■ --silent: Suppresses information about the command’s operation normally sent
to stdout.

■ --verbose: Sends verbose and default information about the command’s
operation to stdout.

■ --version: Displays the version of this command and exits with a zero exit status.

Description
The nios2-bsp-generate-files command populates the files in a BSP directory. The
path to an existing .bsp file and the path to the BSP directory are mandatory
command-line options. Files are written to the specified BSP directory. Generated files
are created unconditionally. Copied files are copied from the Nios II EDS installation
folder only if they are not present in the BSP directory, or if the existing files differ
from the installation files.

If no command-line arguments are specified, this command returns an exit value of 1
and sends a help message to stderr.

For more details about this command, use the --extended-help option to display
comprehensive usage information.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–9
Nios II Software Build Tools Utilities
nios2-bsp-query-settings

Usage
nios2-bsp-query-settings [--cmd <tcl command>]

[--debug] [--extended-help] [--get <name>]
[--get-all] [--help]
[--librarian-factory-path <directory>]
[--librarian-path <directory>] [--log <filename>]
[--script <filename>] --settings <filename>
[--show-descriptions] [--show-names] [--silent]
[--verbose] [--version]

Options
■ --cmd <tcl command>: Run the specified Tcl command. Multiple --cmd options are

allowed.

■ --debug: Output debug, exception traces, verbose, and default information about
the command’s operation to stdout.

■ --extended-help: Displays full information about this command and its options.

■ --get <name>: Display the value of the setting called <name>. Multiple --get
options are allowed. Each value appears on its own line in the order the --get
options are specified. Mutually exclusive with the --get-all option.

■ --get-all: Display the value of all BSP settings in order sorted by option name.
Each option appears on its own line. Mutually exclusive with the --get option.

■ --help: Displays basic information about this command and its options.

■ --librarian-factory-path <directory>: Comma separated librarian search path.
Use $ for default factory search path.

■ --librarian-path <directory>: Comma separated librarian search path. Use $ for
default search path.

■ --log <filename>: Create a debug log and write to specified file. Also logs debug
information to stdout.

■ --script <filename>: Run the specified Tcl script with optional arguments.
Multiple --script options are allowed.

■ --settings <filename>: File name of an existing BSP settings file to query settings
from.

■ --show-descriptions: Displays the description of each option after the value.

■ --show-names: Displays the name of each option before the value.

■ --silent: Suppress information about the command’s operation normally sent to
stdout.

■ --verbose: Output verbose, and default information about the command’s
operation to stdout.

■ --version: Displays the version of this command and exits with a zero exit status.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–10 Chapter 10: SBT Reference for the Nios II DPX MTP
Nios II Software Build Tools Utilities
Description
The nios2-bsp-query-settings command provides information from a .bsp file. The
path to an existing .bsp file is a mandatory command-line option. The command does
not modify the settings file. Only requested information is displayed on stdout; no
informational messages are displayed.

If no command-line arguments are specified, this command returns an exit value of 1
and sends a help message to stderr.

For more details about this command, use the --extended-help option to display
comprehensive usage information.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–11
Nios II Software Build Tools Utilities
nios2-bsp-update-settings

Usage
nios2-bsp-update-settings [--bsp-dir <directory>]

[--cmd <tcl command>] [--cpu-name <cpu name>]
[--debug] [--extended-help] [--help] [--jdi <filename>]
[--librarian-factory-path <directory>]
[--librarian-path <directory>] [--log <filename>]
[--script <filename>] [--set <name> <value>]
--settings <filename> [--silent]
[--sopc <filename>] [--verbose] [--version]

Options
■ --bsp-dir <directory>: Path to the directory where the BSP files are generated.

Use . for the current directory. The directory <directory> must exist.

■ --cmd <tcl command>: Run the specified Tcl command. Multiple --cmd options are
allowed.

■ --cpu-name <cpu name>: The name of the Nios II DPX MTP that the BSP supports.
This argument is useful if the hardware design contains multiple Nios II DPX
MTPs. Optional for a single-processor design.

■ --debug: Output debug, exception traces, verbose, and default information about
the command’s operation to stdout.

■ --extended-help: Displays full information about this command and its options.

■ --help: Displays basic information about this command and its options.

■ --jdi <filename>: The location of the .jdi file generated by the Quartus II
software. The .jdi file specifies the name-to-node mappings for the JTAG chain
elements. The tool inserts the .jdi path in public.mk. If no .jdi path is specified, the
command searches the directory containing the .sopcinfo file, and uses the
first .jdi file found.

■ --librarian-factory-path <directory>: Comma separated librarian search path.
Use $ for default factory search path.

■ --librarian-path <directory>: Comma separated librarian search path. Use $ for
default search path.

■ --log <filename>: Create a debug log and write to specified file. Also logs debug
information to stdout.

■ --script <filename>: Run the specified Tcl script with optional arguments.
Multiple --script options are allowed.

■ --set <name> <value>: Set the setting called <name> to <value>. Multiple --set
options are allowed.

■ --settings <filename>: File name of an existing BSP settings file to update.

■ --silent: Suppress information about the command’s operation normally sent to
stdout.

■ --sopc <filename>: The .sopcinfo file to update the BSP with. It is recommended
to create a new BSP if the design has changed significantly. This argument is useful
if the path to the original .sopcinfo file has changed.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–12 Chapter 10: SBT Reference for the Nios II DPX MTP
Nios II Software Build Tools Utilities
■ --verbose: Output verbose, and default information about the command’s
operation to stdout.

■ --version: Displays the version of this command and exits with a zero exit status.

Description
The nios2-bsp-update-settings command updates an existing Nios II DPX MTP .bsp
file. The path to an existing .bsp file is a mandatory command-line option. The
command modifies the settings file so the file must have write permissions. You might
want to use the --script option to pass the default Tcl script to the
nios2-bsp-update-settings command to make sure that your BSP is consistent with
your system (this is what the nios2-bsp command does).

If no command-line arguments are specified, this command returns an exit value of 1
and sends a help message to stderr.

For more details about this command, use the --extended-help option to display
comprehensive usage information.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–13
Nios II Software Build Tools Utilities
nios2-lib-generate-makefile

Usage
nios2-lib-generate-makefile [--bsp-dir <directory>]

[--debug] [--extended-help] [--help]
[--lib-dir <directory>] [--lib-name <filename>]
[--log <filename>] [--no-src]
[--public-inc-dir <directory>] [--set <name> <value>]
[--silent] [--src-dir <directory>]
[--src-files <filenames>] [--src-rdir <directory>]
[--use-lib-dir <directory>] [--verbose]
[--version]

Options
■ --bsp-dir <directory>: Path to the BSP generated files directory (populated using

the nios2-bsp-generate-files command).

■ --debug: Output debug, exception traces, verbose, and default information about
the command’s operation to stdout.

■ --extended-help: Displays full information about this command and its options.

■ --help: Displays basic information about this command and its options.

■ --lib-dir <directory>: Destination directory for the user library archive file (.a),
the user library makefile, and public.mk. If omitted, it defaults to the current
directory.

■ --lib-name <filename>: Name of the user library being created. The user library
file name is the user library name with a lib prefix and .a suffix added. Do not
include these in the user library name itself. If the user library name option is
omitted, the user library name defaults to the name of the first source file with its
extension removed.

■ --log <filename>: Create a debug log and write to specified file. Also logs debug
information to stdout.

■ --no-src: Allows no sources files to be set in the Makefile. You must add source
files manually before compiling.

■ --public-inc-dir <directory>: Path to a directory that contains C header files
(.h) that are to be made available (that is, public) to users of the user library. This
directory is added to the appropriate variable in public.mk. Multiple
--public-inc-dir options are allowed.

■ --set <name> <value>: Set the makefile variable called <name> to <value>. If the
variable exists in the managed section of the makefile, <value> replaces the default
settings. It adds the makefile variable if it does not already exist. Multiple --set
options are allowed.

■ --silent: Suppress information about the command’s operation normally sent to
stdout.

■ --src-dir <directory>: Search for source files in <directory>. Use . to look in the
current directory. Multiple --src-dir options are allowed.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–14 Chapter 10: SBT Reference for the Nios II DPX MTP
Nios II Software Build Tools Utilities
■ --src-files <filenames>: A list of space-separated source file names added to the
makefile. The list of file names is terminated by the next option or the end of the
command line. Multiple --src-files options are allowed.

■ --src-rdir <directory>: Same as --src-dir option but recursively search for
source files in or under <directory>. Multiple --src-rdir options are allowed and
can be freely mixed with --src-dir options.

■ --use-lib-dir <directory>: Path to a dependent user library directory. The user
library directory must contain a makefile fragment called public.mk. Multiple
--use-lib-dir options are allowed.

■ --verbose: Output verbose, and default information about the command’s
operation to stdout.

■ --version: Displays the version of this command and exits with a zero exit status.

Description
The nios2-lib-generate-makefile command generates a user library makefile (called
Makefile). The path to a BSP created by nios2-bsp-generate-files is an optional
command-line option.

If no command-line arguments are specified, this command returns an exit value of 1
and sends a help message to stderr.

For more details about this command, use the --extended-help option to display
comprehensive usage information.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–15
Nios II Software Build Tools Utilities
nios2-bsp-editor

Usage
nios2-bsp-editor [--extended-help]

[--fontsize <point size>] [--help]
[--librarian-factory-path <directory>]
[--librarian-path <directory>] [--log <filename>]
[--settings <filename>] [--version]

Options
■ --extended-help: Displays full information about this command and its options.

■ --fontsize <point size>: The default point size for GUI fonts is 11. Use this
option to adjust the point size.

■ --help: Displays basic information about this command and its options.

■ --librarian-factory-path <directory>: Comma separated librarian search path.
Use $ for default factory search path.

■ --librarian-path <directory>: Comma separated librarian search path. Use $ for
default search path.

■ --log <filename>: Create a debug log and write to specified file.

■ --settings <filename>: File name of an existing BSP settings file to update.

■ --version: Displays the version of this command and exits with a zero exit status.

Description
The nios2-bsp-editor command is a GUI application for creating and editing board
support packages for Nios II DPX MTP designs.

For more details about this command, use the --extended-help option to display
comprehensive usage information.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–16 Chapter 10: SBT Reference for the Nios II DPX MTP
Nios II Software Build Tools Utilities
nios2-app-update-makefile

Usage
nios2-app-update-makefile --app-dir <directory>

[--add-lib-dir <directory>] [--add-src-dir <directory>]
[--add-src-files <filenames>] [--add-src-rdir <directory>] [--debug]
[--extended-help] [--force] [--get <name>] [--get-all]
[--get-asflags] [--get-bsp-dir] [--get-debug-level]
[--get-defined-symbols] [--get-elf-name] [--get-optimization]
[--get-undefined-symbols] [--get-user-flags] [--get-warnings]
[--help] [--list-lib-dir] [--list-src-files] [--lock]
[--log <filename>] [--no-src] [--remove-lib-dir <directory>]
[--remove-src-dir <directory>] [--remove-src-files <filenames>]
[--remove-src-rdir <directory>] [--set <name>]
[--set-asflags <value>] [--set-bsp-dir <directory>]
[--set-debug-level <value>] [--set-defined-symbols <value>]
[--set-elf-name <name>] [--set-optimization <value>]
[--set-undefined-symbols <value>] [--set-user-flags <value>]
[--set-warnings <value>] [--show-managed-section] [--show-names]
[--silent] [--unlock] [--verbose] [--version]

Options
■ --app-dir <directory>: Path to the Application Directory with the generated

makefile.

■ --add-lib-dir <directory>: Add a path to dependent user library directory

■ --add-src-dir <directory>: Add source files in <directory>. Use . to look in the
current directory. Multiple --add-src-dir options are allowed.

■ --add-src-files <filenames>: A list of space-separated source file names to be
added to the makefile. The list of file names is terminated by the next option or the
end of the command line. Multiple --src-files options are allowed.

■ --add-src-rdir <directory>: Same as --add-src-dir option but recursively
search for source files in or under <directory>. Multiple --add-src-rdir options
are allowed and can be freely mixed with --src-dir options.

■ --debug: Output debug, exception traces, verbose, and default information about
the command’s operation to stdout.

■ --extended-help: Displays full information about this command and its options.

■ --force: Update the Makefile even if it’s locked

■ --get <name>: Get the values of Makefile variables

■ --get-all: Get all variables in the managed section of the Makefile

■ --get-asflags: Get user assembler flags

■ --get-bsp-dir: Get the BSP generated files directory

■ --get-debug-level: Get debug level flag

■ --get-defined-symbols: Get defined symbols flag

■ --get-elf-name: Get the name of .elf file

■ --get-optimization: Get optimization flag

■ --get-undefined-symbols: Get undefined symbols flag
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–17
Nios II Software Build Tools Utilities
■ --get-user-flags: Get user flags

■ --get-warnings: Get warnings flag

■ --help: Displays basic information about this command and its options.

■ --list-lib-dir: List all paths to dependent user library directories

■ --list-src-files: List all source files in the makefile.

■ --lock: Lock the Makefile to prevent it from being updated

■ --log <filename>: Create a debug log and write to specified file. Also logs debug
information to stdout.

■ --no-src: Remove all source files in the makefile

■ --remove-lib-dir <directory>: Remove a path to dependent user library
directory

■ --remove-src-dir <directory>: Remove source files in <directory>. Use . to look
in the current directory. Multiple --remove-src-dir options are allowed.

■ --remove-src-files <filenames>: A list of space-separated source file names to
be removed from the makefile. The list of file names is terminated by the next
option or the end of the command line. Multiple --src-files options are allowed.

■ --remove-src-rdir <directory>: Same as --remove-src-dir option but
recursively search for source files in or under <directory>. Multiple
--remove-src-rdir options are allowed and can be freely mixed with --src-dir
options.

■ --set <name> <value>: Set the value of a Makefile variable called <name>

■ --set-asflags <value>: Set user assembler flags

■ --set-bsp-dir <directory>: Set the BSP generated files directory

■ --set-debug-level <value>: Set debug level flag

■ --set-defined-symbols <value>: Set defined symbols flag

■ --set-elf-name <name>: Set the name of .elf file

■ --set-optimization <value>: Set optimization flag

■ --set-undefined-symbols <value>: Set undefined symbols flag

■ --set-user-flags <value>: Set user flags

■ --set-warnings <value>: Set warnings flag

■ --show-managed-section: Show the managed section in the Makefile

■ --show-names: Show name of the variables

■ --silent: Suppress information about the command’s operation normally sent to
stdout.

■ --unlock: Unlock the Makefile

■ --verbose: Output verbose, and default information about the command’s
operation to stdout.

■ --version: Displays the version of this command and exits with a zero exit status.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–18 Chapter 10: SBT Reference for the Nios II DPX MTP
Nios II Software Build Tools Utilities
Description
The nios2-app-update-makefile command updates an application makefile to add or
remove source files.

If no command-line arguments are specified, this command returns an exit value of 1
and sends a help message to stderr.

For more details about this command, use the --extended-help option to display
comprehensive usage information.

1 The --add-src-dir, --add-src-rdir, --remove-src-dir, and --remove-src-rdir
options add and remove files found in <directory> at the time the command is
executed. Files subsequently added to or removed from the directory are not reflected
in the makefile.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–19
Nios II Software Build Tools Utilities
nios2-lib-update-makefile

Usage
nios2-lib-update-makefile --lib-dir <directory>

[--add-lib-dir <directory>] [--add-public-inc-dir <directory>]
[--add-src-dir <directory>] [--add-src-files <filenames>]
[--add-src-rdir <directory>] [--debug] [--extended-help] [--force]
[--get <name>] [--get-all] [--get-asflags] [--get-bsp-dir]
[--get-debug-level] [--get-defined-symbols] [--get-lib-name]
[--get-optimization] [--get-undefined-symbols] [--get-user-flags]
[--get-warnings] [--help] [--list-lib-dir] [--list-public-inc-dir]
[--list-src-files] [--lock] [--log <filename>] [--no-src]
[--remove-lib-dir <directory>] [--remove-public-inc-dir <directory>]
[--remove-src-dir <directory>] [--remove-src-files <filenames>]
[--remove-src-rdir <directory>] [--set <name> <value>]
[--set-asflags <value>] [--set-bsp-dir <directory>]
[--set-debug-level <value>] [--set-defined-symbols <value>]
[--set-lib-name <name>] [--set-optimization <value>]
[--set-undefined-symbols <value>] [--set-user-flags <value>]
[--set-warnings <value>] [--show-managed-section] [--show-names]
[--silent] [--unlock] [--verbose] [--version]

Options
■ --add-lib-dir <directory>: Add a path to dependent user library directory

■ --add-public-inc-dir <directory>: Add a directory that contains C-language
header files

■ --add-src-dir <directory>: Add source files in <directory>. Use . to look in the
current directory. Multiple --add-src-dir options are allowed.

■ --add-src-files <filenames>: A list of space-separated source file names to be
added to the makefile. The list of file names is terminated by the next option or the
end of the command line. Multiple --src-files options are allowed.

■ --add-src-rdir <directory>: Same as --add-src-dir option but recursively
search for source files in or under <directory>. Multiple --add-src-rdir options
are allowed and can be freely mixed with --src-dir options.

■ --debug: Output debug, exception traces, verbose, and default information about
the command’s operation to stdout.

■ --extended-help: Displays full information about this command and its options.

■ --force: Update the Makefile even if it is locked

■ --get <name>: Get the values of Makefile variables

■ --get-all: Get all variables in the managed section of the Makefile

■ --get-asflags: Get user assembler flags

■ --get-bsp-dir: Get the BSP generated files directory

■ --get-debug-level: Get debug level flag

■ --get-defined-symbols: Get defined symbols flag

■ --get-lib-name: Get the name of user library

■ --get-optimization: Get optimization flag
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–20 Chapter 10: SBT Reference for the Nios II DPX MTP
Nios II Software Build Tools Utilities
■ --get-undefined-symbols: Get undefined symbols flag

■ --get-user-flags: Get user flags

■ --get-warnings: Get warnings flag

■ --help: Displays basic information about this command and its options.

■ --list-lib-dir: List all paths to dependent user library directories

■ --list-public-inc-dir: List all public include directories

■ --list-src-files: List all source files in the makefile.

■ --lock: Lock the Makefile to prevent it from being updated

■ --log <filename>: Create a debug log and write to specified file. Also logs debug
information to stdout.

■ --no-src: Remove all source files

■ --remove-lib-dir <directory>: Remove a path to dependent user library
directory

■ --remove-public-inc-dir <directory>: Remove a include directory

■ --remove-src-dir <directory>: Remove source files in <directory>. Use . to look
in the current directory. Multiple --remove-src-dir options are allowed.

■ --remove-src-files <filenames>: A list of space-separated source file names to
be removed from the makefile. The list of file names is terminated by the next
option or the end of the command line. Multiple --src-files options are allowed.

■ --remove-src-rdir <directory>: Same as --remove-src-dir option but
recursively search for source files in or under <directory>. Multiple
--remove-src-rdir options are allowed and can be freely mixed with --src-dir
options.

■ --set <name> <value>: Set the value of a Makefile variable called <name>

■ --set-asflags <value>: Set user assembler flags

■ --set-bsp-dir <directory>: Set the BSP generated files directory

■ --set-debug-level <value>: Set debug level flag

■ --set-defined-symbols <value>: Set defined symbols flag

■ --set-lib-name <name>: Set the name of user library

■ --set-optimization <value>: Set optimization flag

■ --set-undefined-symbols <value>: Set undefined symbols flag

■ --set-user-flags <value>: Set user flags

■ --set-warnings <value>: Set warnings flag

■ --show-managed-section: Show the managed section in the Makefile

■ --show-names: Show name of the variables

■ --silent: Suppress information about the command’s operation normally sent to
stdout.

■ --unlock: Unlock the Makefile
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–21
Nios II Software Build Tools Utilities
■ --verbose: Output verbose, and default information about the command’s
operation to stdout.

■ --version: Displays the version of this command and exits with a zero exit status.

Description
The nios2-lib-update-makefile command updates a user library makefile to add or
remove source files.

If no command-line arguments are specified, this command returns an exit value of 1
and sends a help message to stderr.

For more details about this command, use the --extended-help option to display
comprehensive usage information.

1 The --add-src-dir, --add-src-rdir, --remove-src-dir, and --remove-src-rdir
options add and remove files found in <directory> at the time the command is
executed. Files subsequently added to or removed from the directory are not reflected
in the makefile.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–22 Chapter 10: SBT Reference for the Nios II DPX MTP
Nios II Software Build Tools Utilities
nios2-swexample-create

Usage
nios2-create-swexample [--name] --sopc-dir --type [--list] [--app-dir]

[--bsp-dir] [--no-app] [--no-bsp] [--elf-name] [--describe]
[--describeX] [--describeAll] [--search] [--help] [--silent]
[--version]

Options
■ --name: Specify the name of the software project to create.

■ --sopc-dir Specify the hardware design directory. Required.

■ --type: Specify the software example design template type. Required.

■ --list: List all valid software example design template types.

■ --app-dir: Specify the application directory to create. Default:
<sopc-dir>/software_examples/app/<name>

■ --bsp-dir: Specify the bsp directory to create. Default:
<sopc-dir>/software_examples/bsp/<bsp-type>

■ --no-app Do not generate the create-this-app script

■ --no-bsp Do not generate the create-this-bsp script

■ --elf-name Name of the .elf file to create.

■ --describe: Describe the software example type specified and exit.

■ --describeX: Verbosely describe the software example type specified and exit.

■ --describeAll: Describe all the software example types and exit.

■ --search: Search for software example templates in the specified directory.
Default: <Nios II EDS install path>/examples/software

■ --help: Displays basic information about this command and its options.

■ --silent: Do not echo commands.

■ --version: Print the version number of nios2-create-swexample and exit.

Description
This utility creates a template software example for a given SOPC system.

If no command-line arguments are specified, this command returns an exit value of 1
and sends a help message to stderr.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–23
Nios II Software Build Tools Utilities
nios2-elf-insert

Usage
nios2-elf-insert <filename> [--cpu_name <cpuName>]

[--stderr_dev <stderrDev>] [--stdin_dev <stdinDev>]
[--stdout_dev <stdoutDev>] [--sidp <sysidBase>] [--id <sysidHash>]
[--timestamp <sysidTime>] [--sof <sofFile>]
[--sopcinfo <sopcinfoFile>] [--jar <jarFile>] [--jdi <jdiFile>]
[--quartus_project_dir <quartusProjectDir>]
[--sopc_system_name <sopcSystemName>]
[--profiling_enabled <profilingEnabled>]
[--simulation_enabled <simulationEnabled>]

Options
■ <filename>: the ELF filename

■ --cpu_name <cpuName>

■ --stderr_dev <stderrDev>

■ --stdin_dev <stdinDev>

■ --stdout_dev <stdoutDev>

■ --sidp <sysidBase>

■ --id <sysidHash>

■ --timestamp <sysidTime>

■ --sof <sofFile>

■ --sopcinfo <sopcinfoFile>

■ --jar <jarFile>

■ --jdi <jdiFile>

■ --quartus_project_dir <quartusProjectDir>

■ --sopc_system_name <sopcSystemName>

■ --profiling_enabled <profilingEnabled>

■ --simulation_enabled <simulationEnabled>

If no command-line arguments are specified, this command returns an exit value of 1
and sends a help message to stderr.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–24 Chapter 10: SBT Reference for the Nios II DPX MTP
Nios II Software Build Tools Utilities
nios2-elf-query

Usage
nios2-elf-query <filename> [--cpu_name] [--stderr_dev] [--stdin_dev]

[--stdout_dev] [--sidp] [--id] [--timestamp] [--sof] [--sopcinfo]
[--jar] [--jdi] [--quartus_project_dir] [--sopc_system_name]
[--profiling_enabled] [--simulation_enabled]

Options
■ <filename>: the ELF filename

■ --cpu_name

■ --stderr_dev

■ --stdin_dev

■ --stdout_dev

■ --sidp

■ --id

■ --timestamp

■ --sof

■ --sopcinfo

■ --jar

■ --jdi

■ --quartus_project_dir

■ --sopc_system_name

■ --profiling_enabled

■ --simulation_enabled

If no command-line arguments are specified, this command returns an exit value of 1
and sends a help message to stderr.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–25
Nios II Software Build Tools Utilities
nios2-bsp

Usage
nios2-bsp <bsp-type> <bsp-dir> [<sopc>] [<override>]...

Options
■ <bsp-type>: lwhal.

■ <bsp-dir>: Path to the BSP directory.

■ <sopc>: The path to the .sopcinfo file or its directory.

■ <override>: Options to override defaults.

Description
The nios2-bsp script calls nios2-bsp-create-settings or nios2-bsp-update-settings to
create or update a BSP settings file, and the nios2-bsp-generate-files command to
create the BSP files. The Nios II Embedded Design Suite (EDS) supports the LWHAL
BSP type for the Nios II DPX MTP

BSP type names are case-insensitive.

This utility produces a BSP of <bsp-type> in <bsp-dir>. If the BSP does not exist, it is
created. If the BSP already exists, it is updated to be consistent with the associated
hardware system.

The default Tcl script is used to set the following system-dependent settings:

■ stdio character device

■ System timer device

■ Default linker memory

■ Boot loader status (enabled or disabled)

If the BSP already exists, nios2-bsp overwrites these system-dependent settings.

The default Tcl script is installed at <Nios II EDS install path>/sdk2/bin/
bsp-set-defaults.tcl

When creating a new BSP, this utility runs nios2-bsp-create-settings, which creates
settings.bsp in <bsp-dir>.

When updating an existing BSP, this utility runs nios2-bsp-update-settings, which
updates settings.bsp in <bsp-dir>.

After creating or updating the settings.bsp file, this utility runs
nios2-bsp-generate-files, which generates files in <bsp-dir>

Required arguments:

■ <bsp-type>: Specifies the type of BSP. This argument is ignored when updating a
BSP. This argument is case-insensitive. The nios2-bsp script supports the LWHAL
BSP type for the Nios II DPX MTP.

■ <bsp-dir>: Path to the BSP directory. Use “.” to specify the current directory.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–26 Chapter 10: SBT Reference for the Nios II DPX MTP
Nios II Software Build Tools Utilities
Optional arguments:

■ <sopc>: The path name of the .sopcinfo file. Alternatively, specify a directory
containing a .sopcinfo file. In the latter case, the tool finds a file with the
extension .sopcinfo. This argument is ignored when updating a BSP. If you omit
this argument, it defaults to the current directory.

■ <override>: Options to override defaults. The nios2-bsp script passes most
overrides to nios2-bsp-create-settings or nios2-bsp-update-settings. It also passes
the --silent, --verbose, --debug, and --log options to nios2-bsp-generate-files.

nios2-bsp passes the following overrides to the default Tcl script:

■ --default_stdio <device>|none|DONT_CHANGE

Specifies stdio device.

■ --default_memory_regions DONT_CHANGE

Suppresses creation of new default memory regions when updating a BSP. Do
not use this option when creating a new BSP.

■ --default_sections_mapping <region>|DONT_CHANGE

Specifies the memory region for the default sections.

On a preexisting BSP, the value DONT_CHANGE prevents associated settings from
changing their current value.

1 The “--” prefix is stripped when the option is passed to the underlying
utility.

If no command-line arguments are specified, this command returns an exit value of 1
and sends a help message to stderr.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–27
Nios II Software Build Tools Utilities
nios2-bsp-console

Usage
nios2-bsp-console [--cmd <tcl> <command>] [--extended-help] [--gui]

[--help] [--script <filename>] [--version]

Options
■ --cmd <tcl> <command>: Runs the specified Tcl command. Multiple --cmd options

are allowed. Available Tcl commands are listed in “Tcl Commands for BSP
Settings” on page 10–42.

■ --extended-help: Displays full information about this command and its options.
Lists Altera BSP Tcl command help for the --cmd and --script options

■ --gui: This option opens a Tcl console for creating, editing, and generating Altera
BSPs.

■ --help: Displays basic information about this command and its options.

■ --script <filename>: Run the specified Tcl script with optional arguments.
Multiple --script options are allowed. Available Tcl commands are listed in “Tcl
Commands for BSP Settings” on page 10–42.

■ --version: Displays the version of this command and exits with a zero exit status.

Description
When invoked with no arguments, nios2-bsp-console starts an interactive
command-line Tcl interpreter for creating, editing, and generating Altera BSPs.
Available Tcl commands are listed in “Tcl Commands for BSP Settings” on page 10–42.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–28 Chapter 10: SBT Reference for the Nios II DPX MTP
Settings
Settings
Settings are central to how you create and work with BSPs, software packages, and
device drivers. You control the characteristics of your project by controlling the
settings. The settings determine things like the device drivers and other packages that
are included.

Every example in this handbook involves specifying or manipulating settings.
Sometimes these settings are specified automatically, by scripts such as
create-this-bsp, and sometimes explicitly, with Tcl commands. Either way, settings are
always involved.

This section contains a complete list of available settings for BSPs and for
Altera-supported device drivers and software packages. It does not include settings
for device drivers or software packages furnished by Altera partners or other third
parties. If you are using a third-party driver or component, refer to the supplier’s
documentation.

Settings used in the Nios II SBT are organized hierarchically, for logical grouping and
to avoid name conflicts. Each setting’s position in the hierarchy is indicated by one or
more prefixes. A prefix is an identifier followed by a dot (.).

Setting names are case-insensitive.

Overview of BSP Settings
A BSP setting consists of a name/value pair.

The format in which you specify the setting value depends on the setting type. Several
settings types are supported. Table 10–3 shows the allowed formats for each setting
type.

Table 10–3. Setting Formats

Setting Type Format When Setting Format When Getting

boolean 0/1 or false/true 0/1

number 0x prefix for hexadecimal or no prefix for a decimal number decimal

string

Quoted string

Use "none" to set empty string.

In the SBT command line, to specify a string value with
embedded spaces, surround the string with a
backslash-double-quote sequence (\"). For example:

--set APP_INCLUDE_DIRS \"lcd board\"

Quoted string
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–29
Settings
There are several contexts for BSP settings, as shown in Table 10–4.

Do not confuse BSP settings with BSP Tcl commands. This section covers BSP settings,
including their types, meanings, and legal values. The Tcl commands, which include
tools for manipulating the settings, are covered in “Tcl Commands for BSP Settings”
on page 10–42.

Overview of Component and Driver Settings
The Nios II EDS includes a number of standard software packages and device drivers.
All of the software packages, and several drivers, have settings that you can
manipulate when creating a BSP. This section lists the packages and drivers that have
settings.

You can enable a software package or driver in the Nios II BSP Editor. In the SBT
command line flow, use the enable_sw_package Tcl command, described in “Tcl
Commands for BSP Settings” on page 10–42.

Table 10–4. BSP Setting Contexts

Setting Context Description

Altera LWHAL Settings available with the Altera Lightweight HAL BSP or any BSP based on it.

Altera BSP
Makefile
Generator

Settings available if using the Altera BSP makefile generator (generates the
Makefile and public.mk files). These settings control the contents of makefile
variables. This generator is always present in Altera LWHAL BSPs or any BSPs
based on the Altera LWHAL.

Altera BSP
Linker Script
Generator

Settings available if using the Altera BSP linker script generator (generates the
linker.x and linker.h files). This generator is always present in Altera LWHAL
BSPs or any BSPs based on the Altera LWHAL.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–30 Chapter 10: SBT Reference for the Nios II DPX MTP
Settings
Settings Reference
This section lists all settings for BSPs, software packages, and device drivers.

lwhal.disable_startup_thread_sync
Identifier ALT_DISABLE_STARTUP_THREAD_SYNC

Type Boolean definition

Default Value false

Destination File system.h

Description Disables thread synchronization checking on startup.

By default, startup code in crt0.S assumes that the .rwdata section must be reloaded every time the
system is reset. Thread 0 waits until the .rwdata section is reloaded before executing initialization
code.

The lwhal.disable_startup_thread_sync setting allows you to disable this restriction in your
BSP, if your software is written without initialized global or static variables. This setting might be
useful if you develop assembly language, and want to take advantage of initialization code in crt0.S.

Restrictions Do not disable startup thread synchronization under the following circumstances:

■ Your code uses initialized global or static variables

Your application uses memory management functions such as alt_malloc(), alt_free() and
alt_calloc()

lwhal.enable_small_stack
Identifier none

Type Boolean assignment

Default Value 0

Destination File public.mk

Description lwhal.enable_small_stack turns off a build warning that indicates the setting 'lwhal.thread_stack_size'
might be too small (< 384 for printf) for your application.

Restrictions none

lwhal.exclude_default_exception
Identifier ALT_EXCLUDE_DEFAULT_EXCEPTION

Type Boolean definition

Default Value false

Destination File system.h

Description Excludes default exception vector. If true, this setting defines the macro
ALT_EXCLUDE_DEFAULT_EXCEPTION in system.h.

Restrictions none
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–31
Settings
lwhal.linker.enable_alt_load_copy_rwdata
Identifier none

Type Boolean assignment

Default Value 0

Destination File none

Description Causes the initialization code to copy the .rwdata section. If true, this setting defines the macro
ALT_LOAD_COPY_RWDATA in linker.h.

Restrictions none

lwhal.make.ar
Identifier AR

Type Unquoted string

Default Value nios2-elf-ar

Destination File BSP makefile

Description Archiver command. Creates library files.

Restrictions none

lwhal.make.ar_post_process
Identifier AR_POST_PROCESS

Type Unquoted string

Default Value none

Destination File BSP makefile

Description Command executed after archiver execution.

Restrictions none

lwhal.make.ar_pre_process
Identifier AR_PRE_PROCESS

Type Unquoted string

Default Value none

Destination File BSP makefile

Description Command executed before archiver execution.

Restrictions none
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–32 Chapter 10: SBT Reference for the Nios II DPX MTP
Settings
lwhal.make.as
Identifier AS

Type Unquoted string

Default Value nios2-elf-gcc

Destination File BSP makefile

Description Assembler command. Note that CC is used for Nios II DPX MTP assembly language source files (.S).

Restrictions none

lwhal.make.as_post_process
Identifier AS_POST_PROCESS

Type Unquoted string

Default Value none

Destination File BSP makefile

Description Command executed after each assembly file is compiled.

Restrictions none

lwhal.make.as_pre_process
Identifier AS_PRE_PROCESS

Type Unquoted string

Default Value none

Destination File BSP makefile

Description Command executed before each assembly file is compiled.

Restrictions none

lwhal.make.bsp_arflags
Identifier BSP_ARFLAGS

Type Unquoted string

Default Value -src

Destination File BSP makefile

Description Custom flags only passed to the archiver. This content of this variable is directly passed to the
archiver rather than the more standard ARFLAGS. The reason for this is that GNU Make assumes
some default content in ARFLAGS.This setting defines the value of BSP_ARFLAGS in Makefile.

Restrictions none
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–33
Settings
lwhal.make.bsp_asflags
Identifier BSP_ASFLAGS

Type Unquoted string

Default Value -Wa,-gdwarf2

Destination File BSP makefile

Description Custom flags only passed to the assembler. This setting defines the value of BSP_ASFLAGS in
Makefile.

Restrictions none

lwhal.make.bsp_cflags_debug
Identifier BSP_CFLAGS_DEBUG

Type Unquoted string

Default Value -g

Destination File BSP makefile

Description C compiler debug level. -g provides the default set of debug symbols typically required to debug a
typical application. Omitting -g removes debug symbols from the ELF. This setting defines the value
of BSP_CFLAGS_DEBUG in Makefile.

Restrictions none

lwhal.make.bsp_cflags_defined_symbols
Identifier BSP_CFLAGS_DEFINED_SYMBOLS

Type Unquoted string

Default Value none

Destination File BSP makefile

Description Preprocessor macros to define. A macro definition in this setting has the same effect as a #define in
source code. Adding -DALT_DEBUG to this setting has the same effect as #define ALT_DEBUG in a
source file. Adding -DFOO=1 to this setting is equivalent to the macro #define FOO 1 in a source file.
Macros defined with this setting are applied to all .S and C source (.c), files in the BSP. This setting
defines the value of BSP_CFLAGS_DEFINED_SYMBOLS in the BSP makefile.

Restrictions none

lwhal.make.bsp_cflags_optimization
Identifier BSP_CFLAGS_OPTIMIZATION

Type Unquoted string

Default Value -O0

Destination File BSP makefile

Description C compiler optimization level. -O0 = no optimization, -O2 = normal optimization, etc. -O0 is
recommended for code that you want to debug since compiler optimization can remove variables and
produce nonsequential execution of code while debugging. This setting defines the value of
BSP_CFLAGS_OPTIMIZATION in Makefile.

Restrictions none
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–34 Chapter 10: SBT Reference for the Nios II DPX MTP
Settings
lwhal.make.bsp_cflags_undefined_symbols
Identifier BSP_CFLAGS_UNDEFINED_SYMBOLS

Type Unquoted string

Default Value none

Destination File BSP makefile

Description Preprocessor macros to undefine. Undefined macros are similar to defined macros, but replicate the
#undef directive in source code. To undefine the macro FOO use the syntax -u FOO in this setting.
This is equivalent to #undef FOO in a source file. Note: the syntax differs from macro definition (there
is a space, i.e. -u FOO versus -DFOO). Macros defined with this setting are applied to all .S and .c files
in the BSP. This setting defines the value of BSP_CFLAGS_UNDEFINED_SYMBOLS in the BSP
Makefile.

Restrictions none

lwhal.make.bsp_cflags_user_flags
Identifier BSP_CFLAGS_USER_FLAGS

Type Unquoted string

Default Value none

Destination File BSP makefile

Description Custom flags passed to the compiler when compiling C and .S files. This setting defines the value of
BSP_CFLAGS_USER_FLAGS in Makefile.

Restrictions none

lwhal.make.bsp_cflags_warnings
Identifier BSP_CFLAGS_WARNINGS

Type Unquoted string

Default Value -Wall

Destination File BSP makefile

Description C compiler warning level. -Wall is commonly used.This setting defines the value of
BSP_CFLAGS_WARNINGS in Makefile.

Restrictions none

lwhal.make.bsp_inc_dirs
Identifier BSP_INC_DIRS

Type Unquoted string

Default Value none

Destination File BSP makefile

Description Space separated list of extra include directories to scan for header files. Directories are relative to the
top-level BSP directory. The -I prefix is added by the makefile, therefore you must not include it in the
setting value. This setting defines the value of BSP_INC_DIRS in the makefile.

Restrictions none
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–35
Settings
lwhal.make.build_post_process
Identifier BUILD_POST_PROCESS

Type Unquoted string

Default Value none

Destination File BSP makefile

Description Command executed after BSP built.

Restrictions none

lwhal.make.build_pre_process
Identifier BUILD_PRE_PROCESS

Type Unquoted string

Default Value none

Destination File BSP makefile

Description Command executed before BSP built.

Restrictions none

lwhal.make.cc
Identifier CC

Type Unquoted string

Default Value nios2-elf-gcc -xc

Destination File BSP makefile

Description C compiler command

Restrictions none

lwhal.make.cc_post_process
Identifier CC_POST_PROCESS

Type Unquoted string

Default Value none

Destination File BSP makefile

Description Command executed after each .c or .S file is compiled.

Restrictions none

lwhal.make.cc_pre_process
Identifier CC_PRE_PROCESS

Type Unquoted string

Default Value none

Destination File BSP makefile

Description Command executed before each .c or .S file is compiled.

Restrictions none
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–36 Chapter 10: SBT Reference for the Nios II DPX MTP
Settings
lwhal.make.ignore_system_derived.debug_core_present
Identifier none

Type Boolean assignment

Default Value 0

Destination File public.mk

Description Enable BSP generation to query if SOPC system has a debug core present. If true ignores export of
'CPU_HAS_DEBUG_CORE = 1' to public.mk if a debug core is found in the system. If true ignores
export of 'CPU_HAS_DEBUG_CORE = 0' if no debug core is found in the system.

Restrictions none

lwhal.make.ignore_system_derived.hardware_multiplier_present
Identifier none

Type Boolean assignment

Default Value 0

Destination File public.mk

Description Enable BSP generation to query if SOPC system has multiplier present. If true ignores export of
'ALT_CFLAGS += -mno-hw-mul' to public.mk if no multiplier is found in the system. If true ignores
export of 'ALT_CFLAGS += -mhw-mul' if multiplier is found in the system.

Restrictions none

lwhal.make.ignore_system_derived.hardware_mulx_present
Identifier none

Type Boolean assignment

Default Value 0

Destination File public.mk

Description Enable BSP generation to query if SOPC system has hardware mulx present. If true ignores export of
'ALT_CFLAGS += -mno-hw-mulx' to public.mk if no mulx is found in the system. If true ignores export
of 'ALT_CFLAGS += -mhw-mulx' if mulx is found in the system.

Restrictions none

lwhal.make.ignore_system_derived.sopc_system_base_address
Identifier none

Type Boolean assignment

Default Value 0

Destination File public.mk

Description Enable BSP generation to query SOPC system for system ID base address. If true ignores export of
'SOPC_SYSID_FLAG += --sidp=<address>' and 'ELF_PATCH_FLAG += --sidp=<address>' to
public.mk.

Restrictions none
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–37
Settings
lwhal.make.ignore_system_derived.sopc_system_id
Identifier none

Type Boolean assignment

Default Value 0

Destination File public.mk

Description Enable BSP generation to query SOPC system for system ID. If true ignores export of
'SOPC_SYSID_FLAG += --id=<sysid>' and 'ELF_PATCH_FLAG += --id=<sysid>' to public.mk.

Restrictions none

lwhal.make.ignore_system_derived.sopc_system_timestamp
Identifier none

Type Boolean assignment

Default Value 0

Destination File public.mk

Description Enable BSP generation to query SOPC system for system timestamp. If true ignores export of
'SOPC_SYSID_FLAG += --timestamp=<timestamp>' and 'ELF_PATCH_FLAG +=
--timestamp=<timestamp>' to public.mk.

Restrictions none

lwhal.make.rm
Identifier RM

Type Unquoted string

Default Value rm -f

Destination File BSP makefile

Description Command used to remove files when building the clean target.

Restrictions none

lwhal.stdout
Identifier STDOUT

Type Unquoted string

Default Value none

Destination File system.h

Description Slave descriptor of STDOUT character-mode device. This setting is used by the ALT_STDOUT family
of defines in system.h.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–38 Chapter 10: SBT Reference for the Nios II DPX MTP
Settings
lwhal.thread_stack_size
Identifier ALT_THREAD_STACK_SIZE

Type Decimal number

Default Value The default value of lwhal.thread_stack_size is selected by the default Tcl script launched when
a LWHAL BSP is created. lwhal.thread_stack_size is set to 3/4 of the size of the memory region
to which the .stack section is assigned, if the region is shared with other sections (the default case).

Destination File system.h

Description Defines stack size for a thread (in bytes). This setting defines the value of ALT_THREAD_STACK_SIZE
in system.h.

Restrictions none
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–39
Application and User Library Makefile Variables
Application and User Library Makefile Variables
The Nios II SBT constructs application and makefile libraries for you, inserting
makefile variables appropriate to your project configuration. You can control project
build characteristics by manipulating makefile variables at the time of project
generation. You control a variable with the --set command line option, as in the
following example:

nios2-bsp lwhal my_bsp --set APP_CFLAGS_WARNINGS "-Wall"r
The following utilities and scripts support modifying makefile variables with the
--set option:

■ nios2-app-generate-makefile

■ nios2-lib-generate-makefile

■ nios2-app-update-makefile

■ nios2-lib-update-makefile

■ nios2-bsp

Application Makefile Variables
You can modify the following application makefile variables on the command line:

■ CREATE_OBJDUMP—Assign 1 to this variable to enable creation of an object dump
file (.objdump) after linking the application. The nios2-elf-objdump utility is
called to create this file. An object dump contains information about all object files
linked into the .elf file. It provides a complete view of all code linked into your
application. An object dump contains a disassembly view showing each
instruction and its address.

■ OBJDUMP_INCLUDE_SOURCE—Assign 1 to this variable to include source code inline
with disassembled instructions in the object dump. When enabled, this includes
the --source switch when calling the object dump executable. This is useful for
debugging and examination of how the preprocessor and compiler generate
instructions from higher level source code (such as C) or from macros.

■ OBJDUMP_FULL_CONTENTS—Assign 1 to this variable to include a raw display of the
contents of the .text linker section. When enabled, this variable includes the
--full-contents switch when calling the object dump executable.

■ CREATE_ELF_DERIVED_FILES—Setting this variable to 1 creates the HDL simulation
and onchip memory initialization files when you invoke the makefile with the all
target. When this variable is 0 (the default), these files are only created when you
make the mem_init_generate target.

1 Creating the HDL simulation and onchip memory initialization files
increases project build time.

■ CREATE_LINKER_MAP—Assign 1 to this variable to enable creation of a link map file
(.map) after linking the application. A link map file provides information
including which object files are included in the executable, the path to each object
file, where objects and symbols are located in memory, and how the common
symbols are allocated.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–40 Chapter 10: SBT Reference for the Nios II DPX MTP
Application and User Library Makefile Variables
■ APP_CFLAGS_DEFINED_SYMBOLS—This variable allows you to define macros using
the -D argument, for example -D <macro name>. The contents of this variable are
passed to the compiler and linker without modification.

■ APP_CFLAGS_UNDEFINED_SYMBOLS—This variable allows you to remove macro
definitions using the -U argument, for example -U <macro name>. The contents
of this variable are passed to the compiler and linker without modification.

■ APP_CFLAGS_OPTIMIZATION—The C compiler optimization level. For example, -O0
provides no optimization and -O2 provides standard optimization. -O0 is
recommended for debugging code, because compiler optimization can remove
variables and produce non-sequential execution of code while debugging.

■ APP_CFLAGS_DEBUG_LEVEL—The C compiler debug level. -g provides the default
set of debug symbols typically required to debug an application. Omitting -g
omits debug symbols from the .elf.

■ APP_CFLAGS_WARNINGS—The C compiler warning level. -Wall is commonly used,
enabling all warning messages.

■ APP_CFLAGS_USER_FLAGS

■ APP_INCLUDE_DIRS—Use this variable to specify paths for the preprocessor to
search. These paths commonly contain C header files (.h) that application code
requires. Each path name is formatted and passed to the preprocessor with the -I
option.

You can add multiple directories by enclosing them in double quotes, for example
--set APP_INCLUDE_DIRS "../my_includes ../../other_includes".

■ APP_LIBRARY_DIRS—Use this variable to specify paths for additional libraries that
your application links with.

1 When you specify a user library path with APP_LIBRARY_DIRS, you also
need to specify the user library names with the APP_LIBRARY_NAMES
variable.

APP_LIBRARY_DIRS specifies only the directory where the user library file(s) are
located, not the library archive file (.a) name.

1 Do not use this variable to specify the path to a BSP or user library created
with the SBT. The paths to these libraries are specified in public.mk files
included in the application makefile.

You can add multiple directories by enclosing them in double quotes, for example
--set APP_LIBRARY_DIRS "../my_libs ../../other_libs".

■ APP_LIBRARY_NAMES—Use this variable to specify the names of additional libraries
that your application must link with. Library files are .a files.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–41
Application and User Library Makefile Variables
1 You do not specify the full name of the .a file. Instead, you specify the user
library name <name>, and the SBT constructs the filename lib<name>.a. For
example, if you add the string "math" to APP_LIBRARY_NAMES, the SBT
assumes that your library file is named libmath.a.

Each specified user library name is passed to the linker with the -l option. The
paths to locate these libraries must be specified in the APP_LIBRARY_DIRS variable.

1 You cannot use this variable to specify a BSP or user library created with the
SBT. The paths to these libraries are specified in public.mk file included in
the application makefile.

■ BUILD_PRE_PROCESS—This variable allows you to specify a command to be
executed prior to building the application, for example,
cp *.elf ../lastbuild.

■ BUILD_POST_PROCESS—This variable allows you to specify a command to be
executed after building the application, for example,
cp *.elf //production/test/nios2executables.

User Library Makefile Variables
You can modify the following user library makefile variables on the command line:

■ LIB_CFLAGS_DEFINED_SYMBOLS—This variable allows you to define macros using
the -D argument, for example -D <macro name>. The contents of this variable are
passed to the compiler and linker without modification.

■ LIB_CFLAGS_UNDEFINED_SYMBOLS—This variable allows you to remove macro
definitions using the -U argument, for example -U <macro name>. The contents
of this variable are passed to the compiler and linker without modification.

■ LIB_CFLAGS_OPTIMIZATION—The C compiler optimization level. For example, -O0
provides no optimization and -O2 provides standard optimization. -O0 is
recommended for debugging code, because compiler optimization can remove
variables and produce non-sequential execution of code while debugging.

■ LIB_CFLAGS_DEBUG_LEVEL—The C compiler debug level. -g provides the default
set of debug symbols typically required to debug an application. Omitting -g
omits debug symbols from the .elf.

■ LIB_CFLAGS_WARNINGS—The C compiler warning level. -Wall is commonly used,
enabling all warning messages.

■ LIB_CFLAGS_USER_FLAGS—

■ LIB_INCLUDE_DIRS—You can add multiple directories by enclosing them in double
quotes, for example --set LIB_INCLUDE_DIRS
"../my_includes ../../other_includes"
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–42 Chapter 10: SBT Reference for the Nios II DPX MTP
Tcl Commands
Standard Build Flag Variables
The SBT creates makefiles supporting the following standard makefile command-line
variables:

■ CFLAGS

■ ASFLAGS

You can define flags in these variables on the makefile command line, or in a script
that invokes the makefile. The makefile passes these flags on to the corresponding
GCC tool.

Tcl Commands
Tcl commands are a crucial component of the Nios II SBT. Tcl commands allow you to
exercise detailed control over BSP generation, as well as to define drivers and
software packages. This section describes the Tcl commands, the environments in
which they run, and how the commands work together.

Tcl Command Environments
The Nios II SBT supports Tcl commands in the following environments:

■ BSP setting specification—In this environment, you manipulate BSP settings to
control the static characteristics of the BSP. BSP setting commands are executed
before the BSP is generated.

■ BSP generation callbacks—In this environment, you exercise further control over
BSP details, managing settings that interact with one another and with the
hardware design. BSP callbacks run at BSP generation time.

■ Device driver and software package definition—In this environment, you bundle
source files into a custom driver or package. This process prepares the driver or
package so that a BSP developer can include it in a BSP using the SBT.

The following sections describe each Tcl environment in detail, listing the available
commands.

Tcl Commands for BSP Settings
“Settings” on page 10–28 describes settings that are available in a Nios II DPX MTP
project. This section describes the tools that you use to specify and manipulate these
settings.

You manipulate project settings with BSP Tcl commands. The commands in this
section are used with the utilities nios2-bsp-create-settings,
nios2-bsp-update-settings, and nios2-bsp-query-settings. You can call the Tcl
commands directly on a utility command line using the --cmd option, or you can put
them in a Tcl script, specified with the --script option. For details about how to call
Tcl commands from utilities, refer to “Nios II Software Build Tools Utilities” on
page 10–1.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–43
Tcl Commands
f For more information about creating Tcl scripts, refer to “Specifying BSP Defaults for
the Nios II DPX MTP” on page 8–14. This chapter includes a discussion of the default
Tcl script, which provides excellent usage examples of many of the Tcl commands
described in this section.

The following commands are available to manipulate BSP settings:

■ “add_memory_device” on page 10–45

■ “add_memory_region” on page 10–45

■ “add_section_mapping” on page 10–46

■ “are_same_resource” on page 10–46

■ “delete_memory_region” on page 10–46

■ “delete_section_mapping” on page 10–47

■ “disable_sw_package” on page 10–47

■ “enable_sw_package” on page 10–47

■ “get_addr_span” on page 10–48

■ “get_assignment” on page 10–48

■ “get_available_drivers” on page 10–48

■ “get_available_sw_packages” on page 10–49

■ “get_base_addr” on page 10–49

■ “get_break_offset” on page 10–50

■ “get_break_slave_desc” on page 10–50

■ “get_cpu_name” on page 10–50

■ “get_current_memory_regions” on page 10–51

■ “get_current_section_mappings” on page 10–51

■ “get_default_memory_regions” on page 10–51

■ “get_driver” on page 10–52

■ “get_enabled_sw_packages” on page 10–52

■ “get_exception_offset” on page 10–53

■ “get_exception_slave_desc” on page 10–53

■ “get_fast_tlb_miss_exception_offset” on page 10–53

■ “get_fast_tlb_miss_exception_slave_desc” on page 10–54

■ “get_memory_region” on page 10–54

■ “get_module_class_name” on page 10–55

■ “get_module_name” on page 10–55

■ “get_reset_offset” on page 10–55

■ “get_reset_slave_desc” on page 10–56

■ “get_section_mapping” on page 10–56
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–44 Chapter 10: SBT Reference for the Nios II DPX MTP
Tcl Commands
■ “get_setting” on page 10–56

■ “get_setting_desc” on page 10–57

■ “get_slave_descs” on page 10–57

■ “is_char_device” on page 10–58

■ “is_connected_to_data_master” on page 10–58

■ “is_connected_to_instruction_master” on page 10–58

■ “is_ethernet_mac_device” on page 10–59

■ “is_flash” on page 10–59

■ “is_memory_device” on page 10–59

■ “is_non_volatile_storage” on page 10–60

■ “is_timer_device” on page 10–60

■ “log_debug” on page 10–60

■ “log_default” on page 10–60

■ “log_error” on page 10–61

■ “log_verbose” on page 10–61

■ “set_driver” on page 10–61

■ “set_ignore_file” on page 10–62

■ “set_setting” on page 10–62

■ “update_memory_region” on page 10–63

■ “update_section_mapping” on page 10–63

■ “add_default_memory_regions” on page 10–63

■ “create_bsp” on page 10–64

■ “generate_bsp” on page 10–64

■ “get_available_bsp_type_versions” on page 10–64

■ “get_available_bsp_types” on page 10–65

■ “get_available_cpu_architectures” on page 10–65

■ “get_available_cpu_names” on page 10–65

■ “get_available_software” on page 10–65

■ “get_available_software_setting_properties” on page 10–66

■ “get_available_software_settings” on page 10–66

■ “get_bsp_version” on page 10–66

■ “get_cpu_architecture” on page 10–67

■ “get_nios2_dpx_thread_num” on page 10–67

■ “get_sopcinfo_file” on page 10–67

■ “get_supported_bsp_types” on page 10–67
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–45
Tcl Commands
■ “is_bsp_hal_extension” on page 10–67

■ “is_bsp_lwhal_extension” on page 10–68

■ “open_bsp” on page 10–68

■ “save_bsp” on page 10–68

■ “set_bsp_version” on page 10–68

■ “set_logging_mode” on page 10–69

add_memory_device

Usage
add_memory_device <device name> <base address>

Options

■ <device name>: String with the name of the memory device.

■ <base address>: The base address of the memory device. Hexadecimal or
decimal string.

■ : The size (span) of the memory device. Hexadecimal or decimal string.

Description

This command is provided to define a user-defined external memory device, outside
the Nios II DPX system. Such a device would typically be mapped through a bridge
component. This command adds an external memory device to the BSP’s memory
map, allowing the BSP to define memory regions and section mappings for the
memory as if it were part of the system. The external memory device parameters are
stored in the BSP settings file.

add_memory_region

Usage
add_memory_region <name> <slave_desc> <offset>

Options

■ <name>: String with the name of the memory region to create.

■ <slave_desc>: String with the slave descriptor of the memory device for this
region.

■ <offset>: String with the byte offset of the memory region from the memory
device base address.

■ : String with the span of the memory region in bytes.

Description

Creates a new memory region for the linker script. This memory region must not
overlap with any other memory region and must be within the memory range of the
associated slave descriptor. The offset and span are decimal numbers unless prefixed
with 0x.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–46 Chapter 10: SBT Reference for the Nios II DPX MTP
Tcl Commands
Example
add_memory_region onchip_ram0 onchip_ram0 0 0x100000

add_section_mapping

Usage
add_section_mapping <section_name> <memory_region_name>

Options

■ <section_name>: String with the name of the linker section.

■ <memory_region_name>: String with the name of the memory region to map.

Description

Maps the specified linker section to the specified linker memory region. If the section
does not already exist, add_section_mapping creates it. If it already exists,
add_section_mapping overrides the existing mapping with the new one. The linker
creates the section mappings in the order in which they appear in the linker script.

Example
add_section_mapping .text onchip_ram0

are_same_resource

Usage
are_same_resource <slave_desc1> <slave_desc2>

Options

■ <slave_desc1>: String with the first slave descriptor to compare.

■ <slave_desc2>: String with the second slave descriptor to compare.

Description

Returns a boolean value that indicates whether the two slave descriptors are
connected to the same resource. To connect to the same resource, the two slave
descriptors must be associated with the same module. The module specifies whether
two slaves access the same resource or different resources within that module. For
example, a dual-port memory has two slaves that access the same resource (the
memory). However, you could create a module that has two slaves that access two
different resources such as a memory and a control port.

delete_memory_region

Usage
delete_memory_region <region_name>

Options

■ <region_name>: String with the name of the memory region to delete.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–47
Tcl Commands
Description

Deletes the specified memory region. The region must exist to avoid an error
condition.

delete_section_mapping

Usage
delete_section_mapping <section_name>

Options

■ <section_name>: String with the name of the section.

Description

Deletes the specified section mapping.

Example
delete_section_mapping .text

disable_sw_package

Usage
disable_sw_package <software_package_name>

Options

■ <software_package_name>: String with the name of the software package.

Description

Disables the specified software package. Settings belonging to the package are no
longer available in the BSP, and associated source files are not included in the BSP
makefile. It is an error to disable a software package that is not enabled.

enable_sw_package

Usage
enable_sw_package <software_package_name>

Options

■ <software_package_name>: String with the name of the software package, with the
version number optionally appended with a ':'.

Description

Enables a software package. Adds its associated source files and settings to the BSP.
Specify the desired version in the form <software_package_name>:<version>. If you
do not specify the version, enable_sw_package selects the latest available version.

Examples

■ Example 1:

enable_sw_package altera_hostfs:7.2
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–48 Chapter 10: SBT Reference for the Nios II DPX MTP
Tcl Commands
■ Example 2:

enable_sw_package my_sw_package

get_addr_span

Usage
get_addr_span <slave_desc>

Options

■ <slave_desc>: String with the slave descriptor to query.

Description

Returns the address span (length in bytes) of the slave descriptor as an integer
decimal number.

Example
puts [get_addr_span onchip_ram_64_kbytes]

Returns:

65536

get_assignment

Usage
get_assignment <module_name> <assignment_name>

Options

■ <module_name>: Module instance name to query for assignment

■ <assignment_name>: Module instance assignment name to query for

Description

Returns the name of the value of the assignment for a specified module instance
name.

Example
puts [get_assignment "cpu0" "embeddedsw.configuration.breakSlave"]

Returns:

memory_0.s0

get_available_drivers

Usage
get_available_drivers <module_name>

Options

■ <module_name>: String with the name of the module to query.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–49
Tcl Commands
Description

Returns a list of available device driver names that are compatible with the specified
module instance. The list is empty if there are no drivers available for the specified
slave descriptor. The format of each entry in the list is the driver name followed by a
colon and the version number (if provided).

Example
puts [get_available_drivers jtag_uart]

Returns:

altera_avalon_jtag_uart_driver:7.2 altera_avalon_jtag_uart_driver:6.1

get_available_sw_packages

Usage
get_available_sw_packages

Options

None

Description

Returns a list of software package names that are available for the current BSP. The
format of each entry in the list is a string containing the package name followed by a
colon and the version number (if provided).

Example
puts [get_available_sw_packages]

Returns:

altera_hostfs:7.2 altera_ro_zipfs:7.2

get_base_addr

Usage
get_base_addr <slave_desc>

Options

■ <slave_desc>: String with the slave descriptor to query.

Description

Returns the base byte address of the slave descriptor as an integer decimal number.

Example
puts [get_base_addr jtag_uart]

Returns:

67616
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–50 Chapter 10: SBT Reference for the Nios II DPX MTP
Tcl Commands
get_break_offset

Usage
get_break_offset

Options

None

Description

Returns the byte offset of the processor break address.

Example
puts [get_break_offset]

Returns:

32

get_break_slave_desc

Usage
get_break_slave_desc

Options

None

Description

Returns the slave descriptor associated with the processor break address. If null, then
the break device is internal to the processor (debug module).

Example
puts [get_break_slave_desc]

Returns:

onchip_ram_64_kbytes

get_cpu_name

Usage
get_cpu_name

Options

None

Description

Returns the name of the BSP specific processor.

Example
puts [get_cpu_name]
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–51
Tcl Commands
Returns:

cpu_0

get_current_memory_regions

Usage
get_current_memory_regions

Options

None

Description

Returns a sorted list of records representing the existing linker script memory regions.
Each record in the list represents a memory region. Each record is a list containing the
region name, associated memory device slave descriptor, offset, and span, in that
order.

Example
puts [get_current_memory_regions]

Returns:

{reset onchip_ram0 0 32} {onchip_ram0 onchip_ram0 32 1048544}

get_current_section_mappings

Usage
get_current_section_mappings

Options

None

Description

Returns a list of lists for all the current section mappings. Each list represents a section
mapping with the format {section_name memory_region}. The order of the section
mappings matches their order in the linker script.

Example
puts [get_current_section_mappings]

Returns:

{.text onchip_ram0} {.rodata onchip_ram0} {.rwdata onchip_ram0}
{.bss onchip_ram0} {.heap onchip_ram0} {.stack onchip_ram0}

get_default_memory_regions

Usage
get_default_memory_regions

Options

None
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–52 Chapter 10: SBT Reference for the Nios II DPX MTP
Tcl Commands
Description

Returns a sorted list of records representing the default linker script memory regions.
The default linker script memory regions are the best guess for memory regions based
on the reset address and exception address of the processor associated with the BSP,
and all other processors in the system that share memories with the processor
associated with the BSP. Each record in the list represents a memory region. Each
record is a list containing the region name, associated memory device slave descriptor,
offset, and span, in that order.

Example
puts [get_default_memory_regions]

Returns:

{reset onchip_ram0 0 32} {onchip_ram0 onchip_ram0 32 1048544}

get_driver

Usage
get_driver <module_name>

Options

■ <module_name>: String with the name of the module instance to query.

Description

Returns the driver name associated with the specified module instance. The format is
<driver name> followed by a colon and the version (if provided). Returns the string
"none" if there is no driver associated with the specified module instance name.

Examples

■ Example 1:

puts [get_driver jtag_uart]

Returns:

altera_avalon_jtag_uart_driver:7.2

■ Example 2:

puts [get_driver onchip_ram_64_kbytes]

Returns:

none

get_enabled_sw_packages

Usage
get_enabled_sw_packages

Options

None
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–53
Tcl Commands
Description

Returns a list of currently enabled software packages. The format of each entry in the
list is the software package name followed by a colon and the version number (if
provided).

Example
puts [get_enabled_sw_packages]

Returns:

altera_hostfs:7.2

get_exception_offset

Usage
get_exception_offset

Options

None

Description

Returns the byte offset of the processor exception address.

Example
puts [get_exception_offset]

Returns:

32

get_exception_slave_desc

Usage
get_exception_slave_desc

Options

None

Description

Returns the slave descriptor associated with the processor exception address.

Example
puts [get_exception_slave_desc]

Returns:

onchip_ram_64_kbytes

get_fast_tlb_miss_exception_offset

Usage
get_fast_tlb_miss_exception_offset
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–54 Chapter 10: SBT Reference for the Nios II DPX MTP
Tcl Commands
Options

None

Description

Returns the byte offset of the processor fast translation lookaside buffer (TLB) miss
exception address. Only a processor with an MMU has such an exception address.

Example
puts [get_fast_tlb_miss_exception_offset]

Returns:

32

get_fast_tlb_miss_exception_slave_desc

Usage
get_fast_tlb_miss_exception_slave_desc

Options

None

Description

Returns the slave descriptor associated with the processor fast TLB miss exception
address. Only a processor with an MMU has such an exception address.

Example
puts [get_fast_tlb_miss_exception_slave_desc]

Returns:

onchip_ram_64_kbytes

get_memory_region

Usage
get_memory_region <name>

Options

■ <name>: String with the name of the memory region.

Description

Returns the linker script region information for the specified region. The format of the
region is a list containing the region name, associated memory device slave descriptor,
offset, and span in that order.

Example
puts [get_memory_region reset]

Returns:

reset onchip_ram0 0 32
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–55
Tcl Commands
get_module_class_name

Usage
get_module_class_name <module_name>

Options

■ <module_name>: String with the module instance name to query.

Description

Returns the name of the module class associated with the module instance.

Example
puts [get_module_class_name jtag_uart0]

Returns:

altera_avalon_jtag_uart

get_module_name

Usage
get_module_name <slave_desc>

Options

■ <slave_desc>: String with the slave descriptor to query.

Description

Returns the name of the module instance associated with the slave descriptor. If a
module with one slave, or if it has multiple slaves connected to the same resource, the
slave descriptor is the same as the module name. If a module has multiple slaves that
do not connect to the same resource, the slave descriptor consists of the module name
followed by an underscore and the slave name.

Example
puts [get_module_name multi_jtag_uart0_s1]

Returns:

multi_jtag_uart0

get_reset_offset

Usage
get_reset_offset

Options

None

Description

Returns the byte offset of the processor reset address.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–56 Chapter 10: SBT Reference for the Nios II DPX MTP
Tcl Commands
Example
puts [get_reset_offset]

Returns:

0

get_reset_slave_desc

Usage
get_reset_slave_desc

Options

None

Description

Returns the slave descriptor associated with the processor reset address.

Example
puts [get_reset_slave_desc]

Returns:

onchip_ram_64_kbytes

get_section_mapping

Usage
get_section_mapping <section_name>

Options

■ <section_name>: String with the section name to query.

Description

Returns the name of the memory region for the specified linker section. Returns null if
the linker section does not exist.

Example
puts [get_section_mapping .text]

Returns:

onchip_ram0

get_setting

Usage
get_setting <name>

Options

■ <name>: String with the name of the setting to get.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–57
Tcl Commands
Description

Returns the value of the specified BSP setting. get_setting returns boolean settings
with the value 1 or 0. If the value of the setting is an empty string, get_setting
returns "none".

The get_setting command is equivalent to the --get command-line option.

Example
puts [get_setting lwhal.enable_gprof]

Returns:

0

get_setting_desc

Usage
get_setting_desc <name>

Options

■ <name>: String with the name of the setting to get the description for.

Description

Returns a string describing the BSP setting.

Example
puts [get_setting_desc lwhal.enable_gprof]

Returns:

"This example compiles the code with gprof profiling enabled and links \
the application ELF with the GPROF library. If true, adds \
-DALT_PROVIDE_GMON to ALT_CPPFLAGS and -pg to ALT_CFLAGS in

public.mk."

get_slave_descs

Usage
get_slave_descs

Options

None

Description

Returns a sorted list of all the slave descriptors connected to the Nios II DPX MTP.

Example
puts [get_slave_descs]

Returns:

jtag_uart0 onchip_ram0
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–58 Chapter 10: SBT Reference for the Nios II DPX MTP
Tcl Commands
is_char_device

Usage
is_char_device <slave_desc>

Options

■ <slave_desc>: String with the slave descriptor to query.

Description

Returns a boolean value that indicates whether the slave descriptor is a character
device.

Examples

■ Example 1:

puts [is_char_device jtag_uart]

Returns:

1

■ Example 2:

puts [is_char_device onchip_ram_64_kbytes]

Returns:

0

is_connected_to_data_master

Usage
is_connected_to_data_master <slave_desc>

Options

■ <slave_desc>: String with the slave descriptor to query.

Description

Returns a boolean value that indicates whether the slave descriptor is connected to a
data master.

is_connected_to_instruction_master

Usage
is_connected_to_instruction_master <slave_desc>

Options

■ <slave_desc>: String with the slave descriptor to query.

Description

Returns a boolean value that indicates whether the slave descriptor is connected to an
instruction master.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–59
Tcl Commands
is_ethernet_mac_device

Usage
is_ethernet_mac_device <slave_desc>

Options

■ <slave_desc>: String with the slave descriptor to query.

Description

Returns a boolean value that indicates whether the slave descriptor is an Ethernet
MAC device.

is_flash

Usage
is_flash <slave_desc>

Options

■ <slave_desc>: String with the slave descriptor to query.

Description

Returns a boolean value that indicates whether the slave descriptor is a flash memory
device.

is_memory_device

Usage
is_memory_device <slave_desc>

Options

■ <slave_desc>: String with the slave descriptor to query.

Description

Returns a boolean value that indicates whether the slave descriptor is a memory
device.

Examples

■ Example 1:

puts [is_memory_device jtag_uart]

Returns:

0

■ Example 2:

puts [is_memory_device onchip_ram_64_kbytes]

Returns:

1

May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–60 Chapter 10: SBT Reference for the Nios II DPX MTP
Tcl Commands
is_non_volatile_storage

Usage
is_non_volatile_storage <slave_desc>

Options

■ <slave_desc>: String with the slave descriptor to query.

Description

Returns a boolean value that indicates whether the slave descriptor is a non-volatile
storage device.

is_timer_device

Usage
is_timer_device <slave_desc>

Options

■ <slave_desc>: String with the slave descriptor to query.

Description

Returns a boolean value that indicates whether the slave descriptor is a timer device.

log_debug

Usage
log_debug <message>

Options

■ <message>: String with message to log.

Description

Displays a message to the host’s stdout when the logging level is debug.

log_default

Usage
log_default <message>

Options

■ <message>: String with message to log.

Description

Displays a message to the host’s stdout when the logging level is default or higher.

Example
log_default "This is a default message."
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–61
Tcl Commands
Displays:

INFO: Tcl message: "This is a default message."

log_error

Usage
log_error <message>

Options

■ <message>: String with message to log.

Description

Displays a message to the host’s stderr, regardless of logging level.

log_verbose

Usage
log_verbose <message>

Options

■ <message>: String with message to log.

Description

Displays a message to the host’s stdout when the logging level is verbose or higher.

set_driver

Usage
set_driver <driver_name> <module_name>

Options

■ <driver_name>: String with the name of the device driver to use.

■ <module_name>: String with the name of the module instance to set.

Description

Selects the specified device driver for the specified module instance. The
<driver_name> argument includes a version number, delimited by a colon (:). If you
omit the version number, set_driver uses the latest available version of the driver
which is compatible with the module specified by the <module_name> argument.

If <driver_name> is none, the specified module instance does not use a driver. If
<driver_name> is not none, it must be the name of the associated component class.

Examples

■ Example 1:

set_driver altera_avalon_jtag_uart_driver:7.2 jtag_uart
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–62 Chapter 10: SBT Reference for the Nios II DPX MTP
Tcl Commands
■ Example 2:

set_driver none jtag_uart

set_ignore_file

Usage
set_ignore_file <software_component_name> <file_name> <ignore>

Options

■ <software_component_name>: Name of the driver, software package, or BSP type
to which the file belongs.

■ <file_name>: Name of the file.

■ <ignore>: Set to true to ignore (not generate or copy) the file, false to generate or
copy the file normally.

Description

You can use this command to have a specific BSP file ignored (not generated or
copied) during BSP generation. This command allows you to take ownership of a
specific file, modify it, and prevent the SBT from overwriting your modifications.

<software_component_name> can have one of the following values:

■ <driver_name>—The name of a driver, as specified with the create_driver
command in the *_sw.tcl file that defines the driver. Specifies that <file_name> is a
copied file associated with a device driver.

■ <software_package_name>—The name of a software package, specified with
the create_sw_package command in the *_sw.tcl file that defines the package.
Specifies that <file_name> is a copied file associated with a software package.

■ generated—Specifies that <file_name> is a generated top-level BSP file. The list of
generated BSP files depends on the BSP type. For a list of generated files
associated with LWHAL BSPs, refer to “Nios II DPX BSP Creation” on page 8–9.

set_setting

Usage
set_setting <name> <value>

Options

■ <name>: String with the name of the setting.

■ <value>: String with the value of the setting.

Description

Sets the value for the specified BSP setting. Legal values for boolean settings are true,
false, 1, and 0. Use the keyword none instead of an empty string to set a string to an
empty value. The set_setting command is equivalent to the --set command-line
option.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–63
Tcl Commands
Example
set_setting lwhal.enable_gprof true

update_memory_region

Usage
update_memory_region <name> <slave_desc> <offset>

Options

■ <name>: String with the name of the memory region to update.

■ <slave_desc>: String with the slave descriptor of the memory device for this
region.

■ <offset>: String with the byte offset of the memory region from the memory
device base address.

■ : String with the span of the memory region in bytes.

Description

Updates an existing memory region for the linker script. This memory region must
not overlap with any other memory region and must be within the memory range of
the associated slave descriptor. The offset and span are decimal numbers unless
prefixed with 0x.

Example
update_memory_region onchip_ram0 onchip_ram0 0 0x100000

update_section_mapping

Usage
update_section_mapping <section_name> <memory_region_name>

Options

■ <section_name>: String with the name of the linker section.

■ <memory_region_name>: String with the name of the memory region to map.

Description

Updates the specified linker section. The linker creates the section mappings in the
order in which they appear in the linker script.

Example
update_section_mapping .text onchip_ram0

add_default_memory_regions

Usage
add_default_memory_regions
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–64 Chapter 10: SBT Reference for the Nios II DPX MTP
Tcl Commands
Description

Defaults the BSP to use default linker script memory regions. The default linker script
memory regions are the best guess for memory regions based on the reset address and
exception address of the processor associated with the BSP, and all other processors in
the system that share memories with the processor associated with the BSP.

create_bsp

Usage
create_bsp <bspType> <bsp version> <processor name> <sopcinfo>

Options

■ <bspType>: Type of BSP to create.

■ <bsp version>: Version of BSP software element to utilize.

■ <processor name>: Name of processor instance for BSP

■ <sopcinfo>: .sopcinfo generated file that describes the system the BSP is for.

Description

Creates a new BSP.

generate_bsp

Usage
generate_bsp <bspDir>

Options

■ <bspDir>: BSP directory to generate files to.

Description

Generates a new BSP.

get_available_bsp_type_versions

Usage
get_available_bsp_type_versions <bsp_type> <sopcinfo_path>

Options

■ <bsp_type>: BSP type identifier (e.g. hal, ucosii).

■ <sopcinfo_path>: SOPC Information File path. Its parent folder might include
custom BSP IP software components (*_sw.tcl).

Description

Gets the available BSP type versions.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–65
Tcl Commands
get_available_bsp_types

Usage
get_available_bsp_types <sopcinfo_path>

Options

■ <sopcinfo_path>: SOPC Information File path. Its parent folder might include
custom BSP IP software components (*_sw.tcl).

Description

Gets the available BSP type identifiers.

get_available_cpu_architectures

Usage
get_available_cpu_architectures

Description

Gets the available processor architectures.

get_available_cpu_names

Usage
get_available_cpu_names <sopcinfo_path>

Options

■ <sopcinfo_path>: SOPC Information File path that contains processor instances

Description

Gets the processor names given a SOPC system.

get_available_software

Usage
get_available_software <bsp_type> <filter> <sopcinfo_path>

Options

■ <bsp_type>: BSP type identifier (e.g. hal, ucosii).

■ <sopcinfo_path>: SOPC Information File path. Its parent folder might include
custom BSP IP software components (*_sw.tcl).

■ <filter>: A filter can be applied to restrict results. Filters are "all", "drivers",
"sw_packages", and "os_elements". Comma separated tokens are acceptable.

Description

Gets the available software (drivers, software packages, and bsp components) for a
given BSP type.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–66 Chapter 10: SBT Reference for the Nios II DPX MTP
Tcl Commands
get_available_software_setting_properties

Usage
get_available_software_setting_properties <setting_name> \

<software_name> <software_version> <sopcinfo_path>

Options

■ <software_name>: Name of a software component (e.g.
"altera_avalon_uart_driver", or "hal").

■ <software_version>: Enter "default" for latest version, or a specific version
number.

■ <setting_name>: Name of a selected software component setting to get properties
for(e.g. hal.linker.allow_code_at_reset).

■ <sopcinfo_path>: SOPC Information File path. Its parent folder might include
custom BSP IP software components (*_sw.tcl).

Description

Gets the available setting names for a software component.

get_available_software_settings

Usage
get_available_software_settings <software_name> <software_version> \

<sopcinfo_path>

Options

■ <software_name>: Name of a software component (e.g.
altera_avalon_uart_driver).

■ <software_version>: Enter "default" for latest version, or a specific version
number.

■ <sopcinfo_path>: SOPC Information File path. Its parent folder can include
custom BSP IP software components (*_sw.tcl).

Description

Gets the available setting names for a software component.

get_bsp_version

Usage
get_bsp_version

Description

Gets the version of the BSP operating system software element.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–67
Tcl Commands
get_cpu_architecture

Usage
get_cpu_architecture <processor_name> <sopcinfo_path>

Options

■ <processor_name>: processor instance name

■ <sopcinfo_path>: SOPC Information File path that contains processor_name
instance

Description

Gets the processor architecture (e.g. nios2) of a specified processor instance given a
SOPC system.

get_nios2_dpx_thread_num

Usage
get_nios2_dpx_thread_num

Description

If the BSP is mastered by a Nios II DPX processor, then return the number of threads it
supports. Otherwise return null.

get_sopcinfo_file

Usage
get_sopcinfo_file

Description

Returns the path of the BSP specific SOPC Information File.

get_supported_bsp_types

Usage
get_supported_bsp_types <processor_name> <sopcinfo_path>

Options

■ <processor_name>: processor instance name

■ <sopcinfo_path>: SOPC Information File path. Its parent folder can include
custom BSP IP software components (*_sw.tcl).

Description

Gets the BSP types supported for a given processor and SOPC system.

is_bsp_hal_extension

Usage
is_bsp_hal_extension
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–68 Chapter 10: SBT Reference for the Nios II DPX MTP
Tcl Commands
Description

Returns a boolean value that indicates whether the BSP instantiated is of a type based
on Altera HAL.

is_bsp_lwhal_extension

Usage
is_bsp_lwhal_extension

Description

Returns a boolean value that indicates whether the BSP instantiated is of a type based
on Altera Lightweight HAL.

open_bsp

Usage
open_bsp <settingsFile>

Options

■ <settingsFile>: .bsp settings file to open.

Description

Opens an existing BSP.

save_bsp

Usage
save_bsp <settingsFile>

Options

■ <settingsFile>: .bsp settings file to save BSP to.

Description

Saves a new BSP.

set_bsp_version

Usage
set_bsp_version <version>

Options

■ <version>: Version of BSP type software element to use.

Description

Sets the version of the BSP operating system software element to a specific value. The
value "default' uses the latest version available. If this call is not used, the BSP is
created using the 'default' BSP software element version.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–69
Tcl Commands
set_logging_mode

Usage
set_logging_mode <mode>

Options

■ <mode>: Logging Mode: 'silent', 'default', 'verbose', 'debug'

Description

Sets the verbosity level of the logger. Useful to eliminate tool informative messages

Tcl Commands for BSP Generation Callbacks
If you are defining a device driver or a software package, you can define Tcl callback
functions to run whenever a BSP is generated containing your driver or package. Tcl
callback functions enable you to create settings dynamically for the driver or package.
This capability is essential when the driver or package settings must be customized to
the hardware configuration, or to other BSP settings.

Tcl callback scripts are defined and controlled from the *_sw.tcl file associated with
the driver or package. In *_sw.tcl, you can specify where the Tcl functions come from,
when function runs, and the scope of each Tcl function’s operation.

When the BSP is generated with your driver or software package, the settings you
define in the callback scripts are inserted in settings.bsp.

You specify the source of the callback functions with the set_sw_property command,
using the callback_source_file property.

A Tcl callback function can run at one of the following times:

■ BSP initialization

■ BSP generation

■ BSP validation

1 Although you can specify a new setting’s value when you create the setting at BSP
initialization, the setting’s value can change between initialization and generation. For
example, the BSP developer might edit the setting in the BSP Editor.

A Tcl callback can function in either of the following scopes:

■ Component class

■ Component instance
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–70 Chapter 10: SBT Reference for the Nios II DPX MTP
Tcl Commands
You specify each callback function’s runtime environment by using the appropriate
property in the set_sw_property command, as shown in Table 10–5.

Tcl callbacks have access to a specialized set of commands, described in this section. In
addition, Tcl callbacks can use any read-only BSP setting Tcl command.

f Refer to “Tcl Commands for BSP Settings” on page 10–42 for details about BSP setting
Tcl commands.

1 When a Tcl callback creates a setting, it can specify the value. However, callbacks
cannot change the value of a pre-existing setting.

add_class_sw_setting

Usage
add_class_sw_setting <setting-name> <setting-type>

Options

■ <setting-name>: Name of the setting to persist in the BSP settings file. This is
prepended with the driver class name associated with this callback script

■ <setting-type>: Type of the setting to persist in the BSP settings file.

Description

Creates a BSP setting that is associated with a particular software driver element class.
The set_class_sw_setting_property command is required to set the values for fields
pertaining to a BSP software setting definition. This command is only valid for a
callback script. A callback script is set in the driver’s *_sw.tcl file, using the command
set_sw_property callback_source_file <filename>.

Example
add_class_sw_setting MY_FAVORITE_SETTING String

Table 10–5. Callback Properties

Property as specified in set_sw_property Run time Scope Callback Arguments

initialization_callback Initialization Component
instance Component instance name

validation_callback Validation Component
instance Component instance name

generation_callback Generation Component
instance

Component instance name, BSP generate target
directory, driver BSP subdirectory (1)

class_initialization_callback Initialization Component
class Driver class name

class_validation_callback Validation Component
class Driver class name

class_generation_callback Generation Component
class

Driver class name, BSP generate target
directory, driver BSP subdirectory (1)

Note to Table 10–5:

(1) The BSP subdirectory into which the driver or package files are copied
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–71
Tcl Commands
add_class_systemh_line

Usage
add_class_systemh_line <macro-name> <macro-value>

Options

■ <macro-name>: Macro to be added to the system.h file for the generated BSP

■ <macro-value>: Value associated with the macro-name to be added to the system.h
file for the generated BSP

Description

This adds a system.h assignment or macro during a driver callback execution. The
BSP typically uses this during the generate phase depending on the generator. This
command is only valid for a callback script. A callback script is set in the driver’s
*_sw.tcl file, using the command set_sw_property callback_source_file
<filename>.

Example
add_class_systemh_line MY_MACRO "Macro_Value";

add_module_sw_property

Usage
add_module_sw_property <property-name> <property-value>

Options

■ <property-name>: Name of the property to add to the BSP for a module instance

■ <property-value>: Value of the property to add to the BSP for a module instance

Description

This adds a software property to the BSP driver of this module instance. The BSP
typically uses this during the generate phase depending on the generator. This
command is only valid for a callback script. A callback script is set in the driver’s
*_sw.tcl file, using the command set_sw_property callback_source_file
<filename>.

Example
add_module_sw_setting MY_FAVORITE_SETTING String

add_module_sw_setting

Usage
add_module_sw_setting <setting-name> <setting-type>

Options

■ <setting-name>: Name of the setting to persist in the BSP settings file. This is
prepended with the module name associated with this callback script

■ <setting-type>: Type of the setting to persist in the BSP settings file.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–72 Chapter 10: SBT Reference for the Nios II DPX MTP
Tcl Commands
Description

Creates a BSP setting that is associated with a particular instance of hardware module
in a SOPC system. The set_module_sw_setting_property command is required to set
the values for fields pertaining to a BSP software setting definition. This command is
only valid for a callback script. A callback script is set in the driver’s *_sw.tcl file,
using the command set_sw_property callback_source_file <filename>.

Example
add_module_sw_setting MY_FAVORITE_SETTING String

add_module_systemh_line

Usage
add_module_systemh_line <macro-name> <macro-value>

Options

■ <macro-name>: Macro to be added to the system.h file for the generated BSP

■ <macro-value>: Value associated with the macro-name to be added to the system.h
file for the generated BSP

Description

This adds a system.h assignment or macro during a driver callback execution. The
BSP typically uses this during the generate phase depending on the generator. This
command is only valid for a callback script. A callback script is set in the driver’s
*_sw.tcl file, using the command set_sw_property callback_source_file
<filename>.

Example
add_module_systemh_line MY_MACRO "Macro_Value";

get_class_peripheral

Usage
get_class_peripheral <instance-name> <irq-number>

Options

■ <instance-name>: Name of EIC module instance to find connected peripheral for.

■ <irq-number>: IRQ number to locate connected peripheral device

Description

This command is used on an EIC instance callback to obtain a peripheral slave
descriptor connected to a specific IRQ port number. This command is only valid for a
callback script.

Example
get_class_peripheral eic_1 $irq_2;
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–73
Tcl Commands
get_module_assignment

Usage
get_module_assignment <assignment-name>

Options

■ <assignment-name>: Name of the module assignment to retrieve the value for, as
defined for the module instance in the .sopcinfo file

Description

Given a module assignment key, return the assignment value of a module associated
with the callback script using this command. The callback script must be set in the
*_sw.tcl file using the following command:

set_sw_property callback_source_file <filename>

Example
puts [get_module_assignment embeddedsw.configuration.isMemoryDevice]

Returns:

true

get_module_name

Usage
get_module_name

Options

None

Description

Returns the name of the module associated with the callback script using this
command. The callback script must be set in the *_sw.tcl file using the following
command:

set_sw_property callback_source_file <filename>

Example
puts [get_module_name]

Returns:

jtag_uart

get_module_peripheral

Usage
get_module_peripheral <irq-number>

Options

■ <irq-number>: IRQ number to locate connected peripheral device
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–74 Chapter 10: SBT Reference for the Nios II DPX MTP
Tcl Commands
Description

This command is used on an EIC instance callback to obtain a peripheral slave
descriptor connected to a specific IRQ port number. This command is only valid for a
callback script.

Example
get_module_peripheral 2;

get_module_sw_setting_value

Usage
get_module_sw_setting_value <setting-name>

Options

■ <setting-name>: Name of the module software setting to retrieve the value for, as
defined by the add_module_sw_setting command.

Description

Given a module software setting name, return the setting value. The callback script
using this command must be set in the *_sw.tcl file using the following command:

set_sw_property callback_source_file <filename>

You can use this command in a generation or validation callback to retrieve the
current value of a setting created in an initialization callback.

Example
puts [get_module_sw_setting_value MY_SETTING]

Returns:

"My setting value"

get_peripheral_property

Usage
get_peripheral_property <slave-descriptor> <property-name>

Options

■ <slave-descriptor>: Slave descriptor of a connected peripheral device

■ <property-name>: Property name to query from the connected peripheral device

Description

This command is used on an EIC instance callback to obtain a connected peripheral
property value. This command is only valid for a callback script. A callback script is
set in the driver’s *_sw.tcl file, using the command set_sw_property
callback_source_file <filename>.

Example
get_peripheral_property jtag_uart supports_preemption;
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–75
Tcl Commands
remove_class_systemh_line

Usage
remove_class_systemh_line <macro-name>

Options

■ <macro-name>: Macro to be removed to the system.h file for the generated BSP

Description

This removes a system.h assignment or macro during a driver callback execution. The
BSP typically uses this during the generate phase depending on the generator. This
command is only valid for a callback script. A callback script is set in the driver’s
*_sw.tcl file, using the command set_sw_property callback_source_file
<filename>.

Example
remove_class_systemh_line MY_MACRO;

remove_module_systemh_line

Usage
remove_module_systemh_line <macro-name>

Options

■ <macro-name>: Macro to be removed to the system.h file for the generated BSP

Description

This removes a system.h assignment or macro during a driver callback execution. The
BSP typically uses this during the generate phase depending on the generator. This
command is only valid for a callback script. A callback script is set in the driver’s
*_sw.tcl file, using the command set_sw_property callback_source_file
<filename>.

Example
remove_module_systemh_line MY_MACRO;

set_class_sw_setting_property

Usage
set_class_sw_setting_property <setting-name> <property> <value>

Options

■ <setting-name>: Name of the setting to persist in the BSP settings file associated
with the driver class of this callback script

■ <property>: Name of the setting property to update

■ <value>: Value of the setting property to update
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–76 Chapter 10: SBT Reference for the Nios II DPX MTP
Tcl Commands
Description

Update a driver class software setting property. The setting must be added using the
add_class_sw_setting command before calling this method. This command is only
valid for a callback script. A callback script is set in the driver’s *_sw.tcl file, using the
command set_sw_property callback_source_file <filename>.

You can set the following setting properties:

■ destination

■ identifier

■ value

■ default_value

■ description

■ restrictions

■ group

Example
set_class_sw_setting_property MY_FAVORITE_SETTING default-value '42'

set_module_sw_setting_property

Usage
set_module_sw_setting_property <setting-name> <property> <value>

Options

■ <setting-name>: Name of the setting to persist in the BSP settings file associated
with the SOPC module of this callback script

■ <property>: Name of the setting property to update

■ <value>: Value of the setting property to update

Description

Update a module’s software setting property. The setting must be added using the
add_module_sw_setting command before calling this method. This command is only
valid for a callback script. A callback script is set in the driver’s *_sw.tcl file, using the
command set_sw_property callback_source_file <filename>.

You can set the following setting properties:

■ destination

■ identifier

■ value

■ default_value

■ description

■ restrictions

■ group
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–77
Tcl Commands
Example
set_module_sw_setting_property MY_FAVORITE_SETTING default-value '42'

Tcl Commands for Drivers and Packages
This section describes the tools that you use to specify and manipulate the settings
and characteristics of a custom software package or driver. Typically, when creating a
custom software package or device driver, or importing a package or driver from
another development environment, you need these more powerful tools. To
manipulate settings on existing software packages and device drivers, refer to
“Settings” on page 10–28 and “Tcl Commands for BSP Settings” on page 10–42.

A device driver and a software package are both collections of source files added to
the BSP. A device driver is associated with a particular component class (for example,
altera_avalon_jtag_uart). A software package is not associated with any particular
component class, but implements a functionality such as TCP/IP.

To define a device driver or software package, you create a Tcl script defining its
characteristics. This section describes the Tcl commands available to define device
drivers and software packages.

f For more information about creating Tcl scripts, refer to “Specifying BSP Defaults for
the Nios II DPX MTP” on page 8–14.

The following commands are available for device driver and software package
creation:

■ “add_sw_property” on page 10–77

■ “add_sw_setting” on page 10–79

■ “create_driver” on page 10–81

■ “create_sw_package” on page 10–82

■ “set_sw_property” on page 10–82

add_sw_property

Usage
add_sw_property <property> <value>

Options

■ <property>: Name of property.

■ <value>: Value assigned, or appended to the current value.

Description

This command defines a property for a device driver or software package. A property
is a list of values (for example, a list of file names). The add_sw_property command
defines a property if it is not already defined. The command appends a new value to
the list of values if the property is already defined.

In the case of a property consisting of a file name or directory name, use a relative
path. Specify the path relative to the directory containing the Tcl script.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–78 Chapter 10: SBT Reference for the Nios II DPX MTP
Tcl Commands
This command supports the following properties:

■ asm_source—Adds a Nios II DPX MTP assembly language source file (.s or .S) to
BSPs containing your package. nios2-bsp-generate-files copies assembly source
files into a BSP and adds them to the source build list in the BSP makefile. This
property is optional.

■ c_source—Adds a C source file (.c) to BSPs containing your package.
nios2-bsp-generate-files copies C source files into a BSP and adds them to the
source build list in the BSP makefile. This property is optional.

■ include_source—Adds an include file (typically .h) to BSPs containing your
package. nios2-bsp-generate-files copies include files into a BSP, but does not add
them to the generated makefile. This property is optional.

■ include_directory—Adds a directory to the ALT_INCLUDE_DIRS variable in
the BSP’s public.mk file. Adding a directory to ALT_INCLUDE_DIRS allows all
source files to find include files in this directory. add_sw_property adds the path to
the generated public makefile shared by the BSP and applications or libraries
referencing it. add_sw_property compiles all files with the include directory listed
in the compiler arguments.
This property is optional.

■ lib_source—Adds a precompiled library file (typically .a) to each BSP containing
the driver or package. nios2-bsp-generate-files copies the precompiled library file
into the BSP directory and adds both the library file name and the path (required
to locate the library file) into to the BSP’s public.mk file. Applications using the
BSP link with the library file.
The library file name must conform to the following pattern:
lib<name>.a
where <name> is a nonempty string.
Example:
add_sw_property lib_source LWHAL/lib/libcomponent.a
This property is optional.

■ specific_compatible_hw_version—Specifies that the device driver only supports
the specified component hardware version. See the version property of the
set_sw_property command for information about version strings. This property
applies only to device drivers (see the create_driver command), not to software
packages. If your driver supports all versions of a peripheral after a specific
release, use the set_property min_compatible_hw_version command instead.
This property is optional.
This property is only available for device drivers.

■ supported_bsp_type—Adds a specific BSP type (operating system) to the list of
supported BSP types that the driver or software package supports. Specify LWHAL if
the software supports the Altera LWHAL, or BSP types that extend it. If your
software is BSP type-neutral and works on multiple LWHAL-based BSP types,
state LWHAL only. If your software or driver contains code that depends on a
particular BSP type, state compatibility with that BSP type only, but not LWHAL.
The name of another BSP type to support must match the name of the BSP type
exactly. This BSP type name string is the same as that used to create a BSP with the
nios2-bsp-* commands, as well as in the .tcl script that describes the BSP type, in
its create_os command.
When you create a BSP with an BSP type that extends LWHAL and the BSP tools
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–79
Tcl Commands
select a driver for a particular hardware module, precedence is given to drivers
which state compatibility with a that specific BSP type (OS) before a more generic
driver stating LWHAL compatibility.
This property is only available for device drivers and software packages. This
property must be set to at least one BSP type.

■ excluded_lwhal_source—Specifies a file to exclude from the a BSP generated with
an BSP type that extends LWHAL. The value is the path to a BSP file to exclude,
with respect to the BSP root. This property is optional.

add_sw_setting

Usage
add_sw_setting <type> <destination> <displayName>

<identifier> <value> <description>

Options

■ <type>: Setting type - Boolean, QuotedString, UnquotedString.

■ <destination>: The destination BSP file associated with the setting, or the module
generator that processes this setting.

■ <displayName>: Setting name.

■ <identifier>: Name of the macro created for a generated destination file.

■ <value>: Default value of the setting.

■ <description>: Setting description.

Description

This command creates a BSP setting associated with a software package or device
driver. The setting is available whenever the software package or device driver is
present in the BSP. nios2-bsp-generate-files converts the setting and its value into
either a C preprocessor macro or BSP makefile variable. add_sw_setting passes macro
definitions to the compiler using the -D command-line option, or adds them to the
system.h file as #define statements.

The setting only exists once even if there are multiple instances of a software package.
Set or get the setting with the --set and --get command-line options of the
nios2-bsp, nios2-bsp-create-settings, nios2-bsp-query-settings, and
nios2-bsp-update-settings commands. You can also use the BSP Tcl commands
set_setting and get_setting to set or get the setting. The value of the setting persists
in the BSP settings file.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–80 Chapter 10: SBT Reference for the Nios II DPX MTP
Tcl Commands
To create a setting, you must define each of the following parameters:

■ type—This parameter formats the setting value during BSP generation. The
following supported types and usage restrictions apply:

■ boolean_define_only—Defines a macro if the setting’s value is 1 or true.
Example: #define LCD_PRESENT. No macro is defined if the setting’s value is
0 or false. This setting type supports the system_h_define and
public_mk_define generators.

■ boolean—Defines a macro or makefile variable to 1 (if the value is 1 or true) or
0 (if the value is 0 or false). Example: #define LCD_PRESENT 1. This type
supports all generators.

■ character—Defines a macro with a single character with single quotes around
the character. Example: #define DELIMITER ':'. This type supports the
system_h_define destination.

■ decimal_number—Decimal numbers define a macro or makefile variable with
an unquoted decimal (integer) number. Example: #define NUM_COPROCESSORS
3. This type supports all destinations.

■ double—Double numbers have a macro name and setting value in the
destination file including decimal point. Example: #define PI 3.1416. This
type supports the system_h_define destination.

■ float—Float numbers have a macro name and setting value in the destination
file including decimal point and f character. Example: #define PI 3.1416f.
This type supports the system_h_define destination.

■ hex_number—Hex numbers have a macro name and setting value in the
destination file with 0x prepended to the value. Example: #define LCD_SIZE
0x1000. This type supports the system_h_define destination.

■ quoted_string—Quoted strings always have the macro name and setting
value added to the destination files. In the destination, the setting value is
enclosed in quotation marks. Example:
#define DFLT_ERR "General error"
If the setting value contains white space, you must also place quotation marks
around the value string in the Tcl script.
This type supports the system_h_define destination.

■ unquoted_string—Unquoted strings define a macro or makefile variable with
setting name and value in the destination file. In the destination file, the setting
value is not enclosed in quotation marks. Example:
#define DFLT_ERROR Error
This type supports all destinations.

■ destination—The destination parameter specifies where add_sw_setting puts
the setting in the generated BSP. add_sw_settings supports the following
destinations:

■ system_h_define—With this destination, add_sw_settings formats settings as
#define <setting name> [<setting value>] macros in the system.h file
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–81
Tcl Commands
■ public_mk_define—With this destination, add_sw_settings formats settings
as -D<setting name>[=<setting value>] additions to the ALT_CPPFLAGS
variable in the BSP public.mk file. public.mk passes the flag to the C
preprocessor for each source file in the BSP, and in applications and libraries
using the BSP.

■ makefile_variable—With this destination, add_sw_settings formats settings
as makefile variable additions to the BSP makefile. The variable name must be
unique in the makefile.

■ displayName—The name of the setting. Settings exist in a hierarchical namespace.
A period separates levels of the hierarchy. Settings created in your Tcl script are
located in the hierarchy under the driver or software package name you specified
in the create_driver or create_sw_package command. Example:
my_driver.my_setting. The Nios II SBT adds the hierarchical prefix to the setting
name.

■ identifier—The name of the macro or makefile variable being defined. In a
setting added to the system.h file at generation time, this parameter corresponds
to the text immediately following the #define statement.

■ value—The default value associated with the setting. If you do not assign a value
to the option, its value is this default value. Valid initial values are true, 1, false,
and 0 for boolean and boolean_define_only setting types, a single character for
the character type, integer numbers for the decimal_number setting type, integer
numbers with or without a 0x prefix for the hex_number type, numbers with
decimals for float_number and double_number types, or an arbitrary string of text
for quoted and unquoted string setting types. For string types, if the value
contains any white space, you must enclose it in quotation marks.

■ description—Descriptive text that is inserted along with the setting value and
name in the summary.html file. You must enclose the description in quotation
marks if it contains any spaces. If the description includes any special characters
(such as quotation marks), you must escape them with the backslash (\) character.
The description field is mandatory, but can be an empty string ("").

create_driver

Usage
create_driver <name>

Options

■ <name>: Name of device driver.

Description

This command creates a new device driver instance available for the Nios II SBT. This
command must precede all others that describe the device driver in its Tcl script. You
can only have one create_driver command in each Tcl script. If the create_driver
command appears in the Tcl script, the create_sw_package and create_os commands
cannot appear.

The name argument is usually distinct from all other device drivers and software
packages that the SBT might locate. You can specify driver name identical to another
driver if the driver you are describing has a unique version number assignment.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–82 Chapter 10: SBT Reference for the Nios II DPX MTP
Tcl Commands
If your driver differs for different BSP types, you need to provide a unique name for
each BSP type.

This command is required, unless you use the create_sw_package or create_os
commands, as appropriate.

create_sw_package

Usage
create_sw_package <name>

Options

■ <name>: Name of the software package.

Description

This command creates a new software package instance available for the Nios II SBT.
This command must precede all others that describe the software package in its Tcl
script. You can only have one create_sw_package command in each Tcl script. If the
create_sw_package command appears in the Tcl script, the create_driver or
create_os commands cannot appear.

The name argument is usually distinct from all other device drivers and software
packages that the SBT might locate. You can specify a name identical to another
software package if the software package you are describing has a unique version
number assignment.

If your software package differs for different BSP types, you need to provide a unique
name for each BSP type.

This command is required, unless you use the create_driver or create_os
commands, as appropriate.

set_sw_property

Usage
set_sw_property <property> <value>

Options

■ <property>: Type of software property being set.

■ <value>: Value assigned to the property.

Description

Sets the specified value to the specified property. The properties this command
supports can only hold a single value. This command overwrites the existing (or
default) contents of a particular property with the specified value. This command
applies to device drivers and software packages.

This command supports the following properties:
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–83
Tcl Commands
■ hw_class_name—The name of the hardware class which your device driver
supports. The hardware class name is also the Component Name shown in
Component Editor. Example: altera_avalon_uart. This property is only available
for device drivers.
This property is required for all drivers.

■ version—The version number of this package. set_sw_property uses version
numbers to determine compatibility between hardware (peripherals) and their
software (drivers), as well as to choose the most recent software or driver if
multiple compatible versions are available. A version can be any alphanumeric
string, but is usually a major and one or more minor revision integers. The dot (.)
character separates major and minor revision numbers. Examples: 9.0, 5.0sp1,
3.2.11. This property is optional, but recommended. If you do not specify a
version, the newest version of the package is used.

■ min_compatible_hw_version—Specifies that the device driver supports the
specified hardware version, or all greater versions. This property is only available
for device drivers. If your device driver supports only one or more specific
versions of a hardware class, use the add_sw_property
specific_compatible_hw_version command instead. See the version property
documentation for information about version strings. This property is optional.
This property is only available for device drivers.

■ bsp_subdirectory—Specifies the top-level directory where
nios2-bsp-generate-files copies all source files for this package. This property is a
path relative to the top-level BSP directory. This property is optional; if
unspecified, nios2-bsp-generate-files copies the driver or software package into
the drivers subdirectory of any BSP including this software.

■ alt_sys_init_priority—This property assigns a priority to the software package
or device driver. The value of this property must be a positive integer. Use this
property to customize the order of macro calls in the BSP alt_sys_init.c file.
Specifying the priority is useful if your software or driver must be initialized
before or after other software in the system. For example, your driver might
depend on another driver already being initialized.
This property is optional. The default priority is 1000.
This property is only available for device drivers and software packages.

■ display_name—This property is used for user interfaces and other tools that wish
to show a human-readable name to identify the software being described in
the .tcl script. display_name is set to a few words of text (in quotes) that name your
software. For example: Altera Nios II DPX MTP driver.
This property is optional. If not set, tools that attempt to use the display name use
the package name created with the appropriate create_ command.

■ callback_source_file—This property specifies a Tcl source file containing
callback functions.

■ initialization_callback—This property specifies the name of a Tcl callback
function which is intended to run in the following environment:

■ Run time: initialization

■ Scope: component instance

■ Function argument(s): component instance name
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–84 Chapter 10: SBT Reference for the Nios II DPX MTP
Path Names
■ validation_callback—This property specifies the name of a Tcl callback function
which is intended to run in the following environment:

■ Run time: validation

■ Scope: component instance

■ Function argument(s): component instance name

■ generation_callback—This property specifies the name of a callback function
which is intended to run in the following environment:

■ Run time: generation

■ Scope: component instance

■ Function argument(s): component instance name, BSP generate target
directory, driver BSP subdirectory

■ class_initialization_callback—This property specifies the name of a callback
function which is intended to run in the following environment:

■ Run time: initialization

■ Scope: component instance

■ Function argument(s): driver class name

■ class_validation_callback—This property specifies the name of a callback
function which is intended to run in the following environment:

■ Run time: validation

■ Scope: component instance

■ Function argument(s): driver class name

■ class_generation_callback—This property specifies the name of a callback
function which is intended to run in the following environment:

■ Run time: generation

■ Scope: component instance

■ Function argument(s): driver class name, BSP generate target directory, driver
BSP subdirectory

Path Names
There are some restrictions on how you can specify file paths when working with the
Nios II SBT. The tools are designed for the maximum possible compatibility with a
variety of computing environments. By following the restrictions in this section, you
can ensure that the build tools work smoothly with other tools in your tool chain.
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

Chapter 10: SBT Reference for the Nios II DPX MTP 10–85
Path Names
Command Arguments
Many Nios II software build tool commands take file name and directory path
arguments. You can provide these arguments in any of several supported
cross-platform formats. The Nios II SBT supports the following path name formats:

■ Quoted Windows—A drive letter followed by a colon, followed by directory
names delimited with backslashes, surrounded by double quotes. Example of a
quoted Windows absolute path:

"c:\altera\72\nios2eds\examples\verilog\niosII_cyclone_1c20\standard"

Quoted Windows relative paths omit the drive letter, and begin with two periods
followed by a backslash. Example:

"..\niosII_cyclone_1c20\standard"

■ Escaped Windows—The same as quoted Windows, except that each backslash is
replaced by a double backslash, and the double quotes are omitted. Examples:

c:\\altera\\72\\nios2eds\\examples\\verilog\\niosII_cyclone_1c20\\standard
..\\niosII_cyclone_1c20\\standard

■ Linux—An optional forward slash, followed by directory names delimited with
forward slashes. Examples:

/altera/72/nios2eds/examples/verilog/niosII_cyclone_1c20/standard
verilog/niosII_cyclone_1c20/standard

Linux relative paths begin with two periods followed by a forward slash.
Example:

../niosII_cyclone_1c20/standard

■ Mixed—The same as quoted Windows, except that each backslash is replaced by a
forward slash, and the double quotes are omitted. Examples:

c:/altera/72/nios2eds/examples/verilog/niosII_cyclone_1c20/standard
../niosII_cyclone_1c20/standard

■ Cygwin—An absolute Cygwin path consists of the pseudo-directory name
"/cygdrive/", followed by the lower case Windows drive name, followed by
directory names delimited with forward slashes. Example:

/cygdrive/c/altera/72/nios2eds/examples/verilog/niosII_cyclone_1c20/standard

Cygwin relative paths are the same as Linux relative paths. Example:

../niosII_cyclone_1c20/standard

The Nios II SBT accepts both relative and absolute path names.
May 2011 Altera Corporation Nios II DPX Datapath Processor Handbook

10–86 Chapter 10: SBT Reference for the Nios II DPX MTP
Path Names
Table 10–6 shows the supported path name formats for each platform, for Nios II SBT
utilities and makefiles.

Object File Directory Tree
The makefile created by the Nios II SBT creates a new directory tree for generated
object files. To the extent possible, the object file directory tree retains the structure of
the corresponding source directory.

For example, if you specify the path to a source file as

src/util/special/tools.c

the makefile places the corresponding object code in

obj/util/special/tools.o

f The object file directory structure is illustrated in “Nios II DPX BSP Creation” on
page 8–9.

The makefile does not create object directories outside the project directory root. If the
source file path you specify is a relative path beginning with "..", the Nios II SBT
flattens the path name prior to creating the object directory structure.

For example, if you specify the path to a source file as

../special/tools.c

the makefile places the corresponding object code in

obj/tools.o

If you specify an absolute path to source files under Cygwin, the Nios II SBT creates
the obj directory structure as if you had used the Cygwin form of the path name. For
example, if you specify the path to a source file as

c:/dev/app/special/tools.c

the Nios II SBT places the corresponding object code in

obj/cygdrive/c/dev/app/special/tools.o

Table 10–6. Path Name Format Support

Context Formats supported on Linux (1) Formats supported on Windows
with Cygwin

Utilities and scripts Linux

■ Quoted Windows (2)

■ Mixed (2)

■ Escaped Windows (2)

■ Cygwin

Makefiles Linux
■ Mixed (3)

■ Cygwin (3)

Notes to Table 10–6:

(1) These rules apply to any Unix-like platform.
(2) These rules apply to other Unix-like shells running on Windows. The Nios II Command Shell, provided with the

Nios II EDS, is based on Cygwin. Examples in this chapter are designed for the Nios II Command Shell.
(3) The build tools automatically convert path names to Cygwin format
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

May 2011 Altera Corporation
Additional Information
This chapter provides additional information about the document and Altera.

Document Revision History
The following table shows the revision history for this document.

How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the
following table.

Typographic Conventions
The following table shows the typographic conventions this document uses.

Date Version Changes

May 2011 2.0 Updated for ACDS v11.0

December 2010 1.0 Initial release

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Non-technical support (General) Email nacomp@altera.com

(Software Licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative.

Visual Cue Meaning

Bold Type with Initial Capital
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI
labels. For example, Save As dialog box. For GUI elements, capitalization matches
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name
extensions, software utility names, and GUI labels. For example, \qdesigns
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and
<project name>.pof file.
Nios II DPX Datapath Processor Handbook

http://www.altera.com/support
http://www.altera.com/training
mailto:custrain@altera.com
http://www.altera.com/literature/
mailto:nacomp@altera.com
mailto:authorization@altera.com

Info–2 Additional Information
Typographic Conventions
Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the
Options menu.

“Subheading Title” Quotation marks indicate references to sections within a document and titles of
Quartus II Help topics. For example, “Typographic Conventions.”

Courier type

Indicates signal, port, register, bit, block, and primitive names. For example, data1,
tdi, and input. The suffix n denotes an active-low signal. For example, resetn.

Indicates command line commands and anything that must be typed exactly as it
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.

Also indicates sections of an actual file, such as a Report File, references to parts of
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for
example, TRI).

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is important,
such as the steps listed in a procedure.

■ ■ ■ Bullets indicate a list of items when the sequence of the items is not important.

1 The hand points to information that requires special attention.

 A question mark directs you to a software help system with related information.

f The feet direct you to another document or website with related information.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or your work.

w A warning calls attention to a condition or possible situation that can cause you
injury.

The envelope links to the Email Subscription Management Center page of the Altera
website, where you can sign up to receive update notifications for Altera documents.

Visual Cue Meaning
Nios II DPX Datapath Processor Handbook May 2011 Altera Corporation

https://www.altera.com/subscriptions/email/signup/eml-index.jsp

	Nios II DPX Datapath Processor Handbook
	Contents
	Section I. Nios II DPX Hardware Reference
	1. Nios II DPX Architecture
	Reading Prerequisites
	Installation Directory Structure
	Functional Blocks
	Multithreaded Processor
	ALU
	Register File
	General Purpose Registers
	Extension Registers
	Control Registers
	Extended Control Registers

	Memory
	Instruction Memory
	Data Memory
	Task Address Table

	Interrupts and Exceptions
	Threading Model

	Message Interface Unit
	Register Usage
	CID Usage
	RX Message Flow
	Task Address Table and Thread Scheduling
	TX Message Flow
	TX Message Ordering
	Context ID Ordering
	Sequence Number Ordering

	Reset Controller
	Debug Unit
	Debug Unit Configuration Options
	Debug Interface Memory Map

	Debug Statistics Collector

	Nios II DPX Clock Domains
	Nios II DPX Processor Reset Signals
	Reset Sequence with Debugger
	Reset Considerations when Designing Outside of Qsys

	Nios II DPX Processor Interfaces
	Interfaces
	RX Message Interface
	TX Message Interface
	CID Request Interface
	Input Context Register Interface
	Input Context Register Data Width = 32
	Input Context Register Data Width = 64
	Input Context Register Data Width = 128
	Input Context Register Interface Timing

	Output Context Register Interface
	Output Context Register Data Width = 32
	Output Context Register Data Width = 64
	Output Context Register Data Width = 128
	Output Context Register Interface Timing

	Fixed-Latency Data Master Interface
	Variable-Latency Data Master Interface
	Thread Information Interface
	Avalon-MM Debug Access Slave Interface
	Avalon-ST Debug Interfaces

	Memory Addressing and Byte Order
	Accessing Peripheral Registers

	Nios II DPX Datapath Processor Dual-Core Configuration
	Loading Nios II DPX Software in a Deployed System

	2. Instantiating the Nios II DPX Datapath Processor
	Instantiating for a Qsys System
	Parameter Settings
	Nios II DPX Datapath Processor Tab
	Multithreaded Processor Tab
	Message Interface Unit Tab
	Memory Options (advanced) Tab
	External Interfaces (advanced) Tab
	Debug Statistics Tab
	Advanced Options Tab

	Instantiating for a Stand-Alone System
	Nios II DPX Context Address Adapter

	3. System Verification
	RTL Simulation
	Simulation Model, Testbench and Initialization Files
	Create a Simulation Script for ModelSim
	Record Suitable Waveforms

	Performance Monitoring
	Packet Debug
	Debug Flag Bit
	PEs and the Debug Flag
	Using Debug Flag Breakpoint Capability
	Context Processing Debug
	PE Message Debug

	Hardware PE Debug

	Additional Information
	Document Revision History
	How to Contact Altera
	Typographic Conventions

	Section II. Nios II DPX Software Development
	4. Overview of the Nios II DPX MTP
	The MTP in the Context of the Nios II DPX Datapath Processor
	Event-Driven Processing
	Nios II DPX Multithreading
	Dual-Processor Configurations
	Nios II DPX Programming Considerations
	Memory and I/O
	The Nios II DPX Debug Interface
	Exception Controller

	The Nios II DPX Software Development Environment
	The Nios II SBT Development Flow
	The Nios II SBT for Eclipse
	The Nios II SBT Command Line

	Nios II DPX Programs
	Makefiles and the SBT
	Nios II DPX Software Project Types
	Application Project
	User Library Project
	BSP Project

	Finding Nios II EDS Files

	5. Software Programming Model
	Overview of the Nios II DPX MTP
	The Event-Driven Programming Model
	Tasks, PE Messages and Events
	Task-Based Software
	Software Tasks
	The Role of the main() Function

	PE Messages
	Receiving PE Messages
	Sending PE Messages

	Context Data

	Nios II DPX Registers
	General-purpose Registers
	Extension Registers
	Accessing Extension Registers

	Control Registers
	The cpuid Register
	The threadnum Register

	Extended Control Registers
	The message_flags Register
	The message_user Register
	The message_id0 Register
	The message_id1 Register

	Developing Software Tasks for the Datapath Processor
	The Nios II DPX Task ID
	Sending PE Messages Between Tasks
	Working With the RXID
	Working With the TXID

	Writing Task Code
	Writing a Task in C
	Writing a Task in Assembly Language

	The Null Task ID
	Resource Sharing
	Task-Related Instructions
	RXID Free (rxfree)
	TXID Allocate (txalloc)
	CID Allocate (cidalloc)
	Send (snd)
	Send Immediate (sndi)
	Exit

	Context Management
	Creating a Context
	Maintaining the CID Free List

	Data Ordering with the DPX Datapath Processor
	Sequence Number Reordering
	CID Ordering

	Using the Nios II DPX Extension Registers
	Accessing Extension Registers
	Accessing Extension Registers in C
	Accessing Extension Registers in Assembly Language

	Nios II DPX Memory Model
	Physical Memory Access
	Memory Organization
	Thread Storage
	Context Storage
	Datapath Processor Storage
	Global Storage

	Advanced Topics
	Sending Multiple PE Messages
	Spawning a New Task
	Avoiding System Deadlock
	CID Leak
	CID Ordering Violations
	TXID Leak
	TXID Free List Empty
	Ordering Queue Full
	Sequence Number Violations

	Exception Processing
	Reset Exceptions
	Break Exceptions
	Processing a Break
	Understanding Register Usage
	Returning From a Break

	Instruction-Related Exceptions
	Break Instruction
	Trap Instruction
	Unimplemented Instruction
	Processing an Instruction-Related Exception

	Instruction Set Categories
	Data Transfer Instructions
	Bit Manipulation Instructions
	Arithmetic Instructions
	Move Instructions
	Comparison Instructions
	Shift and Rotate Instructions
	Message Passing Instructions
	Program Control Instructions
	Thread Control Instructions
	Other Control Instructions
	No-operation Instruction
	Potential Unimplemented Instructions

	6. Getting Started with the Graphical User Interface
	Introduction to the Nios II DPX Debugging Environment
	Getting Started
	The Nios II SBT for Eclipse Workbench
	Perspectives, Editors, and Views
	The Nios II DPX Launch Configuration
	The Altera Bytestream Console

	Creating a Project
	Creating the BSP
	Specifying the BSP Project Name
	Specifying the BSP Project Location
	Creating the Project

	Creating the Application
	Specifying the Project Name
	Specifying the BSP
	Specifying the Project Location
	Additional Arguments
	Creating the Project
	Adding Source Files

	Navigating the Project
	Building the Project
	Configuring the FPGA
	Debug Setup
	Downloading the Project and Launching GDB Server
	Saving the GDB Server Configuration
	Creating Eclipse Debug Configurations
	Multiple Nios II DPX Datapath Processors
	Multi-Core Launches

	Debugging the Project
	Thread Representation
	Debugging Actions
	Breakpoints
	Software Breakpoints
	Hardware Breakpoints

	Stopping and Restarting
	Using the Altera Bytestream Console
	Context-Specific Debugging for Nios II DPX Systems
	Debug Flag Management

	Working with Stand-Alone Systems
	Creating Memory Initialization Files

	Running a Nios II DPX System with ModelSim

	Makefiles and the Nios II SBT for Eclipse
	Eclipse Source Management
	Absolute Source Paths and Linked Resources

	User Source Management
	BSP Source Management

	Using the BSP Editor
	Tcl Scripting and the Nios II BSP Editor
	Starting the Nios II BSP Editor
	The Nios II BSP Editor Screen Layout
	The Command Area
	The Main Tab
	The Software Packages Tab
	The Drivers Tab
	The Linker Script Tab
	Linker Section Mappings
	Linker Regions

	Enable File Generation Tab
	Target BSP Directory Tab

	The Console Area
	The Information Tab
	The Problems Tab
	The Processing Tab

	Exporting a Tcl Script
	Creating a New BSP
	Using a Tcl Script in BSP Creation

	BSP Validation Errors
	Configuring Component Search Paths

	Importing a Command-Line Project
	Road Map
	Import a Command-Line C Application
	Importing a Project with Absolute Source Paths

	Import a Supporting Project
	User-Managed Source Files

	Packaging a Library for Reuse
	Creating the User Library
	Using the Library

	Memory Initialization Files
	Managing Toolchains in Eclipse
	Eclipse Usage Notes
	Thread-Specific Breakpoints
	DSF Disassembly View Required
	Configuring Application and Library Properties
	Configuring BSP Properties
	Exclude from Build Not Supported
	Selecting the Correct Launch Configuration Type
	Renaming Nios II DPX MTP Projects
	Running Shell Scripts from the SBT for Eclipse
	Must Use Nios II Build Configuration
	CDT Limitations

	7. Getting Started from the Command Line
	Advantages of the Command Line
	Outline of the Nios II SBT Command-Line Interface
	Utilities
	The nios2-bsp Script
	Tcl Commands
	Tcl Scripts
	The Nios II Command Shell

	Scripting Basics
	Creating a BSP with a Script
	Creating an Application Project with a Script

	Running make
	Creating Memory Initialization Files

	8. Understanding the Nios II DPX Board Support Package
	Nios II DPX Software Development Tools
	The Nios II DPX GNU Toolchain
	newlib for the Nios II DPX MTP
	Using the Nios II Software Build Tools

	The Lightweight Hardware Abstraction Layer (LWHAL)
	Startup Code
	Stack
	Device Drivers
	JTAG UART Driver
	UART Driver
	PIO Driver
	Mutex Driver

	Differences from newlib
	POSIX.1 Stubs
	The write() Function
	The _exit() Function

	Software Tasks
	Writing a Task
	C Syntax
	Assembly Language Syntax

	Sending a Message
	C Syntax
	Assembly Language Syntax

	Minimal Character-Mode API
	Standard I/O BSP Settings

	Managing Memory Usage with the LWHAL
	Custom Device Drivers for the LWHAL
	Exception Handling
	Implementing an Exception Handler

	Break Handler

	Nios II DPX BSP Creation
	LWHAL BSP Files and Folders
	Linker Map Validation

	Specifying BSP Defaults for the Nios II DPX MTP
	Top Level Tcl Script for BSP Defaults
	Specifying the Default stdio Device
	Specifying the Default Memory Map
	Using Individual Default Tcl Procedures

	Hardware Requirements
	Lightweight HAL Function Reference
	LWHAL Function Macros
	LWHAL Functions
	LWHAL Extended Instruction Macros
	LWHAL Driver Functions
	JTAG UART Driver API
	UART Driver API
	Mutex Driver API

	Lightweight HAL Standard Types
	Creating a BSP for a Stand-Alone System
	Creating a BSP from the Command Line
	Creating a BSP with the BSP Editor

	9. Nios II DPX MTP Instruction Set and Application Binary Interface
	The Nios II DPX MTP Instruction Set
	Instruction Formats
	IX (Immediate Extended) Type Instruction Format
	I-16 (16-Bit Immediate) Type Instruction Format
	I-12 (12-Bit Immediate) Type Instruction Format
	I-5 (5-Bit Immediate) Type Instruction Format
	R-3 (Three Register) Type Instruction Format
	BMX Type Instruction Format

	Instruction Encodings
	Assembler Pseudo-Instructions
	Assembler Macros
	Nios II DPX MTP Instruction Set Reference
	add add
	addi add immediate
	and bitwise logical and
	andci bitwise logical and clear immediate
	andchi bitwise logical and clear immediate into high halfword
	andhi bitwise logical and immediate into high halfword
	andi bitwise logical and immediate
	beq branch if equal
	bge branch if greater than or equal signed
	bgeu branch if greater than or equal unsigned
	bgt branch if greater than signed
	bgtu branch if greater than unsigned
	ble branch if less than or equal signed
	bleu branch if less than or equal to unsigned
	blt branch if less than signed
	bltu branch if less than unsigned
	bne branch if not equal
	br unconditional branch
	break debugging breakpoint
	bret breakpoint return
	call call subroutine
	callr call subroutine in register
	cmpeq compare equal
	cmpeqi compare equal immediate
	cmpge compare greater than or equal signed
	cmpgei compare greater than or equal signed immediate
	cmpgeu compare greater than or equal unsigned
	cmpgeui compare greater than or equal unsigned immediate
	cmpgt compare greater than signed
	cmpgti compare greater than signed immediate
	cmpgtu compare greater than unsigned
	cmpgtui compare greater than unsigned immediate
	cmple compare less than or equal signed
	cmplei compare less than or equal signed immediate
	cmpleu compare less than or equal unsigned
	cmpleui compare less than or equal unsigned immediate
	cmplt compare less than signed
	cmplti compare less than signed immediate
	cmpltu compare less than unsigned
	cmpltui compare less than unsigned immediate
	cmpne compare not equal
	cmpnei compare not equal immediate
	eret exception return
	extract extract bit field region
	insert insert bit field region
	jmp computed jump
	jmpi jump immediate
	jrel jump relative
	ldb load byte from memory or I/O peripheral
	ldbu load unsigned byte from memory or I/O peripheral
	ldh load halfword from memory or I/O peripheral
	ldhu load unsigned halfword from memory or I/O peripheral
	ldw load 32-bit word from memory or I/O peripheral
	merge merge bit field region
	mov move register to register
	movhi move immediate into high halfword
	movhi20 move 20 bit immediate into high halfword
	movi move signed immediate into word
	movia move immediate address into word
	movui move unsigned immediate into word
	mul multiply
	muli multiply immediate
	mulxss multiply extended signed/signed
	mulxsu multiply extended signed/unsigned
	mulxuu multiply extended unsigned/unsigned
	nextpc get address of following instruction
	nop no operation
	nor bitwise logical nor
	or bitwise logical or
	orhi bitwise logical or immediate into high halfword
	ori bitwise logical or immediate
	rdctl read from control register
	ret return from subroutine
	rol rotate left
	roli rotate left immediate
	ror rotate right
	sll shift left logical
	slli shift left logical immediate
	sra shift right arithmetic
	srai shift right arithmetic immediate
	srl shift right logical
	srli shift right logical immediate
	stb store byte to memory or I/O peripheral
	sth store halfword to memory or I/O peripheral
	stw store word to memory or I/O peripheral
	sub subtract
	subi subtract immediate
	trap trap
	wrctl write to control register
	xor bitwise logical exclusive or
	xorhi bitwise logical exclusive or immediate into high halfword
	xori bitwise logical exclusive or immediate

	Nios II DPX Extended Instruction Set Reference
	cidalloc CID allocate
	exit exit
	rxfree RXID free
	snd send
	sndi send immediate
	txalloc TXID allocate

	The Nios II DPX MTP Application Binary Interface
	Data Types
	Memory Alignment
	Register Usage
	Stacks
	Function Stack Setup
	Task Stack Setup
	Naked Stack Setup
	Frame Pointer Elimination
	Call Saved Registers
	Further Examples of Stacks
	Stack Frame for a Function With alloca()
	Stack Frame for a Function with Variable Arguments
	Stack Frame for a Function with Structures Passed By Value

	Function Prologues
	Prologue Variations

	Arguments and Return Values
	Arguments
	Return Values

	DWARF-2 Definition
	Object Files
	Relocation
	Development Environment

	10. SBT Reference for the Nios II DPX MTP
	Nios II Software Build Tools Utilities
	Logging Levels
	Setting Values
	Utility and Script Summary
	nios2-app-generate-makefile
	Usage
	Options
	Description

	nios2-bsp-create-settings
	Usage
	Options
	Description
	Example

	nios2-bsp-generate-files
	Usage
	Options
	Description

	nios2-bsp-query-settings
	Usage
	Options
	Description

	nios2-bsp-update-settings
	Usage
	Options
	Description

	nios2-lib-generate-makefile
	Usage
	Options
	Description

	nios2-bsp-editor
	Usage
	Options
	Description

	nios2-app-update-makefile
	Usage
	Options
	Description

	nios2-lib-update-makefile
	Usage
	Options
	Description

	nios2-swexample-create
	Usage
	Options
	Description

	nios2-elf-insert
	Usage
	Options

	nios2-elf-query
	Usage
	Options

	nios2-bsp
	Usage
	Options
	Description

	nios2-bsp-console
	Usage
	Options
	Description

	Settings
	Overview of BSP Settings
	Overview of Component and Driver Settings
	Settings Reference

	Application and User Library Makefile Variables
	Application Makefile Variables
	User Library Makefile Variables
	Standard Build Flag Variables

	Tcl Commands
	Tcl Command Environments
	Tcl Commands for BSP Settings
	add_memory_device
	Usage
	Options
	Description

	add_memory_region
	Usage
	Options
	Description
	Example

	add_section_mapping
	Usage
	Options
	Description
	Example

	are_same_resource
	Usage
	Options
	Description

	delete_memory_region
	Usage
	Options
	Description

	delete_section_mapping
	Usage
	Options
	Description
	Example

	disable_sw_package
	Usage
	Options
	Description

	enable_sw_package
	Usage
	Options
	Description
	Examples

	get_addr_span
	Usage
	Options
	Description
	Example

	get_assignment
	Usage
	Options
	Description
	Example

	get_available_drivers
	Usage
	Options
	Description
	Example

	get_available_sw_packages
	Usage
	Options
	Description
	Example

	get_base_addr
	Usage
	Options
	Description
	Example

	get_break_offset
	Usage
	Options
	Description
	Example

	get_break_slave_desc
	Usage
	Options
	Description
	Example

	get_cpu_name
	Usage
	Options
	Description
	Example

	get_current_memory_regions
	Usage
	Options
	Description
	Example

	get_current_section_mappings
	Usage
	Options
	Description
	Example

	get_default_memory_regions
	Usage
	Options
	Description
	Example

	get_driver
	Usage
	Options
	Description
	Examples

	get_enabled_sw_packages
	Usage
	Options
	Description
	Example

	get_exception_offset
	Usage
	Options
	Description
	Example

	get_exception_slave_desc
	Usage
	Options
	Description
	Example

	get_fast_tlb_miss_exception_offset
	Usage
	Options
	Description
	Example

	get_fast_tlb_miss_exception_slave_desc
	Usage
	Options
	Description
	Example

	get_memory_region
	Usage
	Options
	Description
	Example

	get_module_class_name
	Usage
	Options
	Description
	Example

	get_module_name
	Usage
	Options
	Description
	Example

	get_reset_offset
	Usage
	Options
	Description
	Example

	get_reset_slave_desc
	Usage
	Options
	Description
	Example

	get_section_mapping
	Usage
	Options
	Description
	Example

	get_setting
	Usage
	Options
	Description
	Example

	get_setting_desc
	Usage
	Options
	Description
	Example

	get_slave_descs
	Usage
	Options
	Description
	Example

	is_char_device
	Usage
	Options
	Description
	Examples

	is_connected_to_data_master
	Usage
	Options
	Description

	is_connected_to_instruction_master
	Usage
	Options
	Description

	is_ethernet_mac_device
	Usage
	Options
	Description

	is_flash
	Usage
	Options
	Description

	is_memory_device
	Usage
	Options
	Description
	Examples

	is_non_volatile_storage
	Usage
	Options
	Description

	is_timer_device
	Usage
	Options
	Description

	log_debug
	Usage
	Options
	Description

	log_default
	Usage
	Options
	Description
	Example

	log_error
	Usage
	Options
	Description

	log_verbose
	Usage
	Options
	Description

	set_driver
	Usage
	Options
	Description
	Examples

	set_ignore_file
	Usage
	Options
	Description

	set_setting
	Usage
	Options
	Description
	Example

	update_memory_region
	Usage
	Options
	Description
	Example

	update_section_mapping
	Usage
	Options
	Description
	Example

	add_default_memory_regions
	Usage
	Description

	create_bsp
	Usage
	Options
	Description

	generate_bsp
	Usage
	Options
	Description

	get_available_bsp_type_versions
	Usage
	Options
	Description

	get_available_bsp_types
	Usage
	Options
	Description

	get_available_cpu_architectures
	Usage
	Description

	get_available_cpu_names
	Usage
	Options
	Description

	get_available_software
	Usage
	Options
	Description

	get_available_software_setting_properties
	Usage
	Options
	Description

	get_available_software_settings
	Usage
	Options
	Description

	get_bsp_version
	Usage
	Description

	get_cpu_architecture
	Usage
	Options
	Description

	get_nios2_dpx_thread_num
	Usage
	Description

	get_sopcinfo_file
	Usage
	Description

	get_supported_bsp_types
	Usage
	Options
	Description

	is_bsp_hal_extension
	Usage
	Description

	is_bsp_lwhal_extension
	Usage
	Description

	open_bsp
	Usage
	Options
	Description

	save_bsp
	Usage
	Options
	Description

	set_bsp_version
	Usage
	Options
	Description

	set_logging_mode
	Usage
	Options
	Description

	Tcl Commands for BSP Generation Callbacks
	add_class_sw_setting
	Usage
	Options
	Description
	Example

	add_class_systemh_line
	Usage
	Options
	Description
	Example

	add_module_sw_property
	Usage
	Options
	Description
	Example

	add_module_sw_setting
	Usage
	Options
	Description
	Example

	add_module_systemh_line
	Usage
	Options
	Description
	Example

	get_class_peripheral
	Usage
	Options
	Description
	Example

	get_module_assignment
	Usage
	Options
	Description
	Example

	get_module_name
	Usage
	Options
	Description
	Example

	get_module_peripheral
	Usage
	Options
	Description
	Example

	get_module_sw_setting_value
	Usage
	Options
	Description
	Example

	get_peripheral_property
	Usage
	Options
	Description
	Example

	remove_class_systemh_line
	Usage
	Options
	Description
	Example

	remove_module_systemh_line
	Usage
	Options
	Description
	Example

	set_class_sw_setting_property
	Usage
	Options
	Description
	Example

	set_module_sw_setting_property
	Usage
	Options
	Description
	Example

	Tcl Commands for Drivers and Packages
	add_sw_property
	Usage
	Options
	Description

	add_sw_setting
	Usage
	Options
	Description

	create_driver
	Usage
	Options
	Description

	create_sw_package
	Usage
	Options
	Description

	set_sw_property
	Usage
	Options
	Description

	Path Names
	Command Arguments
	Object File Directory Tree

	Additional Information
	Document Revision History
	How to Contact Altera
	Typographic Conventions

