

Programmer's Reference Series

ECLIPSE® Line Computers

~. Data General

NOTICE
Data General Corporation (DGC) has prepared this manual
for use by DGC personnel, licensees, and customers. The
information contained herein is the property of DGC and
shall not be reproduced in whole or in part without DGC's
prior written approval.

Users are cautioned that DGC reserves the right to make
changes without notice in the specifications and materials
contained herein and shall not be responsible for any
damages (including consequential) caused by reliance on
the materials presented, including, but not limited to
typographical, arithmetic, or listing errors.

NOVA, INFOS, and ECLIPSE are registered trademarks of
Data General Corporation, Westboro, Massachusetts.
DASHER, microNOVA, and ECLIPSE MV /8000 are trademarks
of Data General Corporation, Westboro, Massachusetts.

Ordering No. 014-000626
©Data General Corporation, 1979, 1980

All Rights Reserved
Printed in the United States of America

Rev. 02, October 1980

CONTENTS

THE ECLIPSE COMPUTER

INTRODUCTION

FEATURES OF THE ECLIPSE LINE OF COMPUTERS
Powerful Basic Instruction Set
Stack
Floating Point
Commercial Instruction Set
Memory Allocation and Protection
Extended Operation
Writeable Control Store
Error Checking and Correction
Memory Features
Power Fail/ Auto-restart
Real-time Clock
Input/Output Bus
Input/Output Devices
Software
Conclusion

INTERNAL STRUCTURE

INTRODUCTION

INFORMATION FORMATS
Bit Numbering
Octal Representation
Character Codes
Information Representation

INFORMATION ADDRESSING
Word Addressing
Byte Addressing
Bit Addressing
Addressing With The MAP Feature

RESERVED STORAGE LOCATIONS

PROGRAM EXECUTION
Program Flow Alteration
Program Flow Interruption

INSTRUCTION SETS

INTRODUCTION

INSTRUCTION FORMATS

CODING AIDS

FIXED POINT ARITHMETIC
LOAD ACCUMULATOR
STORE ACCUMULATOR
ADD
SUBTRACT
DECIMAL ADD
DECIMAL SUBTRACT
ADD IMMEDIATE
EXTENDED ADD IMMEDIATE
SUBTRACT IMMEDIATE
NEGATE
ADD COMPLEMENT
MOVE
INCREMENT
EXCHANGE ACCUMULATORS
UNSIGNED MULTIPLY
SIGNED MULTIPLY
UNSIGNED DIVIDE
SIGNED DIVIDE
SIGN EXTEND AND DIVIDE
HALVE

LOGICAL OPERATIONS
LOAD EFFECTIVE ADDRESS
COMPLEMENT
AND
AND IMMEDIATE
INCLUSIVE OR
INCLUSIVE OR IMMEDIATE
EXCLUSIVE OR

CONTENTS CONTINUED

ii

EXCLUSIVE OR IMMEDIATE
AND WITH COMPLIEMENTED SOURCE
LOGICAL SHIFT
DOUBLE LOGICAL SHIFT
HEX SHIFT LEFT
HEX SHIFT RIGHT
DOUBLE HEX SHIFT LEFT
DOUBLE HEX SHIFT RIGHT

BYTE MANIPULATION
LOAD BYTE
STORE BYTE

BIT MANIPULATION
SET BIT TO ONE
SET BIT TO ZERO
SKIP ON ZERO BIT
SKIP ON NON-ZERO BIT
SKIP ON ZERO BIT AND SET TO ONE
LOCATE LEAD BIT
LOCATE AND RESET LEAD BIT
COUNT BITS

DATA MOVEMENT
BLOCK ADD AND MOVE
BLOCK MOVE

STACK MANIPULATION
Stack Pointer
Frame Pointer
Stack Limit
Stack Fault Address
Return Block
Stack Frames
Stack Protection
Stack Protection Faults
Initialization of the Stack Control Words

STACK MANIPULATION INSTRUCTIONS
PUSH MULTIPLE ACCUMULATORS
POP MULTIPLE ACCUMULATORS
PUSH RETURN ADDRESS
SAVE
MODIFY STACK POINTER

iii

PROGRAM FLOW ALTERATION
JUMP
JUMP TO SUBROUTINE
INCREMENT AND SKIP IF ZERO
DECREMENT AND SKIP IF ZERO
SKIP IF ACS GREATER THAN ACD
SKIP IF ACS GREATER THAN OR EQUAL TO ACD
COMPARE TO LIMITS
EXECUTE
SYSTEM CALL
PUSH JUMP
POP PC AND JUMP
DISPATCH
POP BLOCK
RETURN
RESTORE

SUBROUTINES CALLS AND RETURNS

EXTENDED OPERATION FEATURE
EXTENDED OPERATION

WRITEABLE CONTROL STORE FEATURE
Placing Microcode in WCS
SPECIFY ADDRESS
LOAD MICROCODE
LOAD DECODE ADDRESS
ENTER WCS

MEMORY ALLOCATION AND PROTECTION FEATURE
Address Translation
Sharing of Physical Memory
Types of Maps
Supervisor Mode
Map Protection Capabilities
Map Protection Faults
Load Effective Address Mode
Initial Conditions

S/200 AND C/300 MAP INSTRUCTIONS
Load Map
Load Map Status
Read Map Status
Initiate Page Check

IV

Read User Status
Read Map Status
Translate Block

C/330 MAP INSTRUCTIONS

FLOATING POINT ARITHMETIC
Floating Point Registers
Floating Point Faults

FLOATING POINT INSTRUCTIONS
LOAD FLOATING POINT SINGLE
LOAD FLOATING POINT DOUBLE
STORE FLOATING POINT SINGLE
STORE FLOATING POINT DOUBLE
FLOAT FROM AC
FLOAT FROM MEMORY
FIX TO AC
FIX TO MEMORY
MOVE FLOATING POINT
ADD SINGLE (FPAC to FPAC)
ADD SINGLE (memory to FPA)
ADD DOUBLE (FPAC to FPAC)
ADD DOUBLE (memory to FPAC)
SUBTRACT SINGLE (FPAC from FPAC)
SUBTRACT SINGLE (memory from FPAC)
SUBTRACT DOUBLE (FPAC from FPAC)
SUBTRACT DOUBLE (memory from FPAC)
MULTIPLY SINGLE (FPAC by FPAC)
MULTIPLY SINGLE (FPAC by memory)
MULTIPLY DOUBLE (FPAC by FPAC)
~MUL TIPL Y DOUBLE (FPAC by memory)
DIVIDE SINGLE (FPAC by FPAC)
DIVIDE SINGLE (FPAC by memory)
DIVIDE DOUBLE (FPAC by FPAC)
DIVIDE DOUBLE (FPAC by memory)

NEGATE
NORMALIZE
ABSOLUTE VALUE
READ HIGH WORD
SCALE
LOAD EXPONENT
HALVE
COMPARE FLOATING POINT

v

LOAD FLOATING POINT STATUS
STORE FLOATING POINT STATUS
TRAP ENABLE
TRAP DISABLE
CLEAR ERRORS
PUSH FLOATING POINT STATE
POP FLOATING POINT STATE
Arithmetic Test
NO SKIP
SKIP ALWAYS
SKIP ON GREATER THAN ZERO
SKIP ON LESS THAN ZERO
SKIP ON ZERO
SKIP ON LESS THAN OR EQUAL TO ZERO
SKIP ON GREATER THAN OR EQUAL TO ZERO
SKIP ON NON-ZERO
Error Test
SKIP ON NO MANTISSA OVERFLOW
SKIP ON NO UNDERFLOW
SKIP ON NO OVERFLOW
SKIP ON NO ZERO DIVIDE
SKIP ON NO UNDERFLOW AND NO ZERO DIVIDE
SKIP ON NO OVERFLOW AND NO ZERO DIVIDE
SKIP ON NO UNDERFLOW AND NO OVERFLOW
SKIP ONNO ERROR

COMMERCIAL INSTRUCTION SET
Commercial Faults
1/0 Interrupts

COMMERCIAL INSTRUCTIONS
EXTENDED LOAD BYTE
EXTENDED STORE BYTE
LOAD INTEGER
STORE INTEGER
LOAD INTEGER EXTENDED
STORE INTEGER EXTENDED
INTEGERIZE
LOAD SIGN
CHARACTER MOVE
CHARACTER COMPARE

CONTENTS CONTINUED

vi

CHARACTER TRANSLATE
CHARACTER MOVE UNTIL TRUE
EDIT
SET T TO ONE
SET T TO ZERO
SET S TO ONE
SET S TO ZERO
ADD TO SI
ADD TO 01
ADDTOP
ADD TO P DEPENDING ON T
ADD TO P DEPENDING ON S
STORE IN STACK
DECREMENT AND JUMP IF ZERO
INSERT SIGN
INSERT CHARACTER SUPPRESS
INSERT CHARACTER ONCE
INSERT CHARACTER J TIMES
INSERT CHARACTERS IMMEDIATE
MOVE ALPHABETICS
MOVE NUMERICS
MOVE CHARACTERS
MOVE NUMERIC WITH ZERO SUPPRESSION
MOVE DIGIT WITH OVERPUNCH
MOVE FLOAT
END FLOAT
END EDIT

INPUT /OUTPUT

INTRODUCTION

OPERATION OF 1/0 DEVICES

PRIORITY INTERRUPTS

DATA CHANNEL

CODING AIDS

vii

1/0 INSTRUCTIONS
DATA IN A
DATA IN B
DATA IN C
DATA OUT A
DATA OUT B
DATA OUT C
1/0 SKIP
NO 1/0 TRANSFER

CENTRAL PROCESSOR FUNCTIONS
INTERRUPT ENABLE
INTERRUPT DISABLE
INTERRUPT ACKNOWLEDGE
MASK OUT
VECTOR ON INTERRUPTING DEVICE CODE
READ SWITCHES
1/0 RESET
HALT
CPU SKIP

ERROR CHECKING AND CORRECTION
Method of Operation
ENABLE ERCC
READ MEMORY FAULT ADDRESS
READ MEMORY FAULT CODE
ERCC Feature Memory Fault Codes

REAL TIME CLOCK
SELECT RTC FREQUENCY

POWER FAILI AUTO-REST ART
SKIP IF POWER FAIL FLAG IS ONE
SKIP IF POWER FAIL FLAG IS ZERO

CONTENTS CONTINUED

viii

FRONT PANEL

INTRODUCTION

CONSOLE SWITCHES
Reset-Stop
Deposit-Examine
Exam-Exam Nxt
Inst-u/lnst
PR Load-Exec
Start-Cont
Dep-Dep Next
Address Compare
Power

PROGRAM LOADING
BOOTSTRAP LOADER

APPENDICES

APPENDIX A
1/0 DEVICE CODES

APPENDIX B
OCT AL AND HEXADECIAML CONVERSION

APPENDIX C
ASCII CHARACTER CODES

APPENDIX D
DOUBLE PRECISION ARITHMETIC

APPENDIX E
COMPATIBILITY WITH NOVA LINE COMPUTERS

APPENDIX F
INSTRUCTION EXECUTION TIMES

APPENDIX G
USE OF THE VECTOR INSTRUCTION

APPENDIX H
INSTRUCTION USE EXAMPLES

APPENDIX I
S/200 And C/300 MAP

ix

CHAPTER I

THE ECLIPSE LINE OF COMPUTERS

INTRODUCTION

The Data General Corporation ECLIPSE line of
computers are general purpose, eight accumulator,
stored-program computers with a word length of
16 bits. The maximum addressable amount of
main memory for an ECLIPSE computer without
the MAP feature is 65,536 8-bit bytes. If the MAP
feature is installed, the maximum addressable
amount of main memory is 524. 288 bytes. Four of
the accumulators are 16 bits in length and are used
for arithmetic and logical operations. Two of
these accumulators can also be used as index reg­
isters. The remaining four accumulators are 64
bits in length and are used for floating point arith­
metic operations. Memory can be addressed
either directly or by using indirect addresses.
Chains of indirect address can be of any length. A
direct memory access (DMA) data channel is pro­
vided to enable rapid data transfer between main
memory and peripheral devices.

The ECLIPSE line of computers is made up of the
S series and the C series. The S series consists
of the ECLIPSE S/lOO, S/200, and S/230 computers.
The C series consists of the ECLIPSE C/300 and
C/330 computers. While these computers differ
in specifics such as available features, they all
share the same general architecture. This means
that, in general, hardware is compatible across
the entire line. To a somewhat lesser degree,
software is also compatible across the line.

FEATURES OF THE
ECLIPSE LINE OF COMPUTERS

The extensive capabilities of the ECLIPSE line of
computers are a result of the features which have
been designed as integral parts of the computer.
These features allow the ECLIPSE line of com­
puters to be used effectively in all types of system
applications such as instrumentation and control,
communications, computation, and data process­
ing. The features of the ECLIPSE line of com­
puters are summarized below.

Powerful Basic Instruction Set

The basic instruction set for the ECLIPSE line of
computers contains instructions that perform fixed
point arithmetic between accumulators, including
multiply and divide; transfer of operands between
accumulators and main storage; logical operations
between accumulators; logical operations on bits
and bytes both in memory and between accumu­
lators; and data movement between memory loca­
tions.

Stack

A Last-In/First-Out (LIFO) or push-down stack is
maintained by the processor. This feature provides
a convenient method for the saving of return infor­
mation and passing arguments between subroutines.
The stack also provides an expandable area for the
temporary storage of variables and intermediate
results. A fast and efficient method of changing
stacks is also provided so that a priority interrupt
handler can make. maximum use of the stack feature.

Floating Point

The floating point feature of the ECLIPSE line of
computers allows the manipulation of both single
precision (32 bits) and double precision (64 bits)
floating point numbers. Single precision gives
6-7 significant decimal digits, while double preci­
sion gives 15-17 significant decimal digits. The
decimal range of a floating point number is ap­
proximately 5.4 x 10-79 to 7.2 x 10+75 in either
precision.

Four separate 64 -bit floating point accumulators
are available to do floating point arithmetic.
While the first operand of a floating point arithme­
tic instruction is always in one of the floating
point accumulators, the second operand can either
be in a floating point accumulator or fetched from
memory. In addition to the standard arithmetic
functions, instructions are available that compare
two floating point numbers and set a condition code,
or that test a· floating point number for positivity

1-1 of 6
FEATURES OF THE

ECLIPSE LINE OF COMPUTERS

or negativity and conditionally skip upon the result
of the test. The four floating point accumulators
and the associated status bits can be pushed onto
or popped off of the stack by one instruction. The
floating point feature has been designed using the
latest advances in technology for floating point
computation. This makes the operation of the
floating point feature extremely fast. In addi­
tion, the floating point feature operates in parallel
with the rest of the central processor so that
floating point computations can be performed simul­
taneously with fixed point computations.

The floating point feature is available on the
ECLIPSE S/200 computer.

Commercial Instruction Set

The commercial instruction set feature of the
ECLIPSE line of computers allows the processor
to perform operations on data types commonly
found in the commercial environment. Instruc­
tions are included that can move strings of bytes
from one portion of memory to another; that can
compare one string of bytes to another string of
bytes and return an indicator which reflects
whether one string is greater than~ less than, or
equal to the other; and that can translate a string
of bytes from one representation to another de­
pending upon a table of translation values. There
is an instruction that can scan a string of bytes
looking fora delimiter or one of a number of de­
limiters.

In addition to the string instructions, there are
instructions in the commercial set that deal with
decimal numbers in both packed and unpacked
forms .. These instructions operate with the Ex­
tended Arithmetic Processor (EAP) and allow the
programmer to use floating point instructions to
manipulate decimal numbers without lOSing any
accuracy to round-off error. The Extended Arith­
metic Processor possesses all the instructions
and accumulators associated with the floating point
feature plus the ability to convert numbers from
their decimal representation to floating point rep­
resentation and from floating point back to decimal.
Instructions are included that can load and store
decimal numbers having from 1 to 32 digits.

Finally, the commercial instruction set contains a
powerful editing instruction that can convert a
decimal number in either packed or unpacked form
to a string of bytes under the control of an edit
sub-program. This edit sub-program can perform
many different operations on the number and its
destination field including leading zero suppres­
sibn, leading or trailing signs, floa'1:ing fill char­
acters, punctuation control, and insertion of text
into the destination field.

The commercial instruction set and the EAP are
features of the C series of ECLIPSE computers
and are not available on computers in the S series.

1-2

Memory Allocation and Protection

The memory allocation and protection (MAP) fea­
ture of the ECLIPSE line of computers performs
logical-to-physical address translation. Physical
memory is allocated to a user in blocks of 2048
bytes and up to 32 such blocks can be allocated to
a user at anyone time. The same block of physi­
cal memory can be allocated to more than one
user. This allows the sharing of procedure or data
areas. The blocks of memory allocated to a user
do not have to be contiguous.

The address translation function which correlates
a logical address to the corresponding allocated
physical memory address is called an "address
map". The MAP feature is capable of holding
three address maps at a single time. Two of the
address maps are user address translation func­
tions. The third address map translates addres­
ses for the data channeL Only one user address
map can be active at a time, but the data channel
address map can be active at any time.

IIi addition to translating addresses, the MAP
feature alsoperforms various protection functions.
A user is allowed to access only those blocks of
memory allocated to him 0 This ensures that· a user
does not reach out of his own areas of memory for
either instructions or data. Blocks of memory
allocated to a user may be write-protected so that
the user may not modify them. This allows blocks
of memory containing constants or non-self­
modifying procedures to be shared between users.

Input/Output devices can be declared accessible
or inaccessible to a user on an individual device
code basis. This allows any device to be con­
trolled by the operating system or dedicated to a
user, depending upon user requirements 0 Chains
of indirect addresses that go deeper than sixteen
levels can be detected and inhibited. This protects
the system from becoming disabled by an indirec­
tion loop. Each of these protection functions can
be enabled separately so the operating system can
handle users with widely differing requirements.
The MAP feature also allows the implementation of
the LOAD EFFECTIVE ADDRESS instruction. This
instruction allows the user to load the logical ad­
dress of any memory location into an accumulator.
This reduces the amount of memory that must be
set aside to hold addresses and greatly reduces the
number of instructions required to perform address
arithmetic.

The MAP feature is available on the ECLIPSE
S/200, S/230, C/300, and C/330 computers.

Extended Operation

The extended operation (XOP) feature of the
ECLIPSE line of computers provides the user with
a fast and general method of transferring control
to called procedures. By issuing one instruction,

all relevant return information is placed on the
stack and the address of the called procedure is
retrieved from a user-constructed table of proce­
dure addresses. After the address has been re­
trievedfrom the table, control is transferred to
the procedure. There are two EXTENDED OPER­
ATION instructions. Together, they are capable
of transferring program control to one of 48 sep­
arate procedures.

Writeable Control Store

The writeab.1e control store (WCS) feature of the
ECLIPSE line of computers operates with the XOP
feature to allow the user to implement his own
specialized instructions. WCS is 256 56-bit words
of extremely fast semiconductor memory. The
56-bit words contain instructions for controlling
the elementary data paths of the computer. Instruc­
tions are placed in WCS by the user with the aid of
input/output instructions. One of the two EX­
TENDED OPERATION instructions is used for
transferring control to WCS routines. Because an
ENTER WCS instruction can transfer control to one
of 16 procedures,up to 16 instructions can be im­
plemented at a time. WCS is a sophisticated fea­
ture and a full treatment is beyond the scope of
this manual. WCS is completely described in
"Microprogramming With the ECLIPSE Computer
WCS Feature" (DGC 014-000045).

Writeable Control Store is a feature of the S series
of ECLIPSE computers and is not available on com­
puters in the C series.

Error Checking and Correction

The error checking and correction (ERCC) feature
of the ECLIPSE line of computers provides the ca­
pability to detect and correct any single bit error
in a word read from main memory. In an ERCC
memory, a 5-bit check field is appended to each
2-byte word. The contents of this check field are
constructed by a hardware encoder from the six­
teen bits of the corresponding word. The check
field is written each time the word is written and
is checked each time the word is read. The code
for the check field is such that all single-bit errors
in either the data portion or check field portion of
a memory location are detected. When an error
is detected, the incorrect bit is corrected and the
entire location in memory is rewritten before the
data is passed along from the memory to the cen­
tral processing unit. If deSired, the ERCC feature
can interrupt the central processor upon finding a
memory error. This allows a record to be kept of
memory errors.

1-3

Memory Features

In addition to the ERCC feature, the ECLIPSE line
of computers has other memory features.

In order to increase memory availability and re­
duce memory module contention, core memories
may be interleaved. Interleaving is the process
whereby consecutive memory locations are placed
in different memory modules. This means that if
consecutive memory locations are being referenced,
a different memory module is referenced for each
location. In this way, memory fetches can be
overlapped. In atwo-way interleaved system, the
odd addresses are in one module and the even ad­
dresses are in the other module. In a four -way
interleaved system, such as the one shown in the
illustration, four consecutive locations reside in
four different modules. Two-way, four-way, and
eight-way interleaving are available. Different
levels of interleaving may be mixed in the same
system.

To increase memory speed, modules of semiconductor
memory. are available. Semiconductor mem-
0ries may be interleaved in either two- or four-
way schemes with other semiconductor memories.

All memories for the ECLIPSE line of computers
are asynchronous. This allows the central proces­
sor to function at full speed and wait for the mem­
ory to respond only when absolutely necessary.

DG-00581

LOCATIONS
3
7

LOCATIONS
2

II
15

LOCATIONS
I
5

6 19

10
14

18

LOCATIONS 9

0 13

4 17

8
12
16

FEATURES OF THE
F("IIP~F III'IJF OF rOMPIITI=Dc:.

Power Fail/Auto-restart

The power fail/auto-restart feature of the ECLIPSE
line of computers provides a "fail-soft" capability
in the event of unexpected power loss. In the event
of power failure, there is a delay of one to two mil­
liseconds before the processor shuts down. The
power fail portion of the feature senses the immi­
nent loss of power and interrupts the processor.
The interrupt service routine can then use this
delay to store the contents of the accumulators,
the program restart address, and other informa­
tion that will be needed to restart the system. One
to two milliseconds is enough time to execute 1,000
to 1,500 instructions on the ECLIPSE list of com­
puters so there is more than enough time to per­
form· the power fail routine.

When power is restored, the action taken by the
auto-restart portion of the feature depends upon the
position of the power switch on the front panel. If
the switch is in the" on" position, the processor
remains stopped after power is restored.

If the switch is in the "lock" position, then 222
milliseconds after power is restored, the proces­
sor executes the instruction contained in the first
location of main memory, restarting the inter­
rupted system.

Real-time Clock

The real-time clock feature of the ECLIPSE com­
puter generates a sequence of pulses that is inde­
pendent of the timing of the processor. The clock
will interrupt the system at one of four program­
selectable frequencies. The frequencies are:
ac line frequency, 10Hz, 100Hz, and 1000Hz.

Input/Output Bus

The input/output (I/O) bus is that portion of the
ECLIPSE line of computers system that carries
commands and data between the computer and
various peripheral devices connected to it. The
bus is made up of a six-line device selection net­
work, interrupt circuitry, command circuitry,
and sixteen data lines.

Device Addressability

Each I/O device in an ECLIPSE line of computers
system is connected to the six-line device selec­
tion network in such a way that each device will
only respond to commands that contain its own de­
vice code. The fact that the selection network is
made up of six lines gives 26 = 64 unique device
codes. Five of these codes are reserved for spe­
cific ECLIPSE line of computers features and
functions, but there are still 59 device codes avail­
able for use with I/O devices.

1-4

Interrupt Capability

The interrupt circuitry contained in the I/O bus
provides the capability for any I/O device to inter­
rupt the system when that device requires service.
When a device requests an interrupt, the processor
automatically transfers program control to the
main interrupt service routine. This routine can
either poll all the I/O devices in the system to
find out which one initiated the interrupt or the
routine can use one of two instructions to identify
the source of the interrupt.

The INTERRUPT ACKNOWLEDGE instruction
returns the device code of the interrupting device.
The VECTOR ON INTERRUPTING DEVICE CODE
instruction not only returns the device code of the
interrupting device, but also saves return infor­
mation on the stack and transfers program control
to the correct service routine for the device.

The interrupt circuitry of the ECLIPSE line of
computers also contains the capability to imple­
ment up to sixteen levels of priority interrupts.
This is done with a 16-bit priority mask. Each
level of device priority is associated with a bit in
this mask. In order to suppress interrupts from
any priority level, the corresponding bit in the
mask is set to 1. In addition to saving return in­
formation and transferring control, the VECTOR
ON INTERRUPTING DEVICE CODE instruction up­
dates this mask, and therefore makes the imple­
mentation of a priority interrupt system a
straightforward procedure.

Data Channel

Handling data transfers between external devices
and memory under program control requires an
interrupt plus the execution of several instructions
for each word transferred. To allow greater trans­
fer rates, the I/O bus contains circuitry for a
direct memory access (DMA) data channel through
which a device, at its own request, can gain direct
access to memory using a minimum of processor
time. At the maximum input rate of 1, 250, 000
words per second or at the maximum output rate of
approximately 715, 000 words per second, the data
channel effectively stops the processor, but at
lower rates processing continues while data is
being transferred.

Ease of Interfacing

Due to the straightforward logic and general design
of the I/O bus on the ECLIPSE line of computers,
customer provided or customer designed I/O de­
vices may be interfaced easily to an ECLIPSE line
of computers system.

Input /Output Devices

A comprehensive array of I/O devices is available
from Data General for the ECLIPSE line of com­
puters. This wide choice of devices, ranging from
teletypewriters to line printers to video display for
m~n-ma.chine interaction; and from paper tape to
magnetic tape to fixed and moving-head discs for
data storage allows a wide spectrum of possible
configurations. Also available are various multi­
plexors and telecommunications adapters, includ­
ing an IBM 360/370 interface.

Software

The ECLIPSE line of computers is fully supported
by proven Data General software. Because the
ECLIPSE line of computers is compatible with the
NOVA line of computers, the programming systems
available in the past have been easily altered to
take advantage of the processing advancements
provided by the expanded instruction set of the
ECLIPSE line of computers. These alterations
have been accomplished without sacrificing any of
the desirable features of these systems.

Languages

In addition to an assembler and a macroassembler,
there are powerful higher-level language proces­
sors available for use with the ECLIPSE line of
computers. Language processors such as ALGOL,
EXTENDED BASIC, and FORTRAN 5 have been
updated for the ECLIPSE line of computers to ease
the job of implementing applications systems.

1-·5

Operating Systems

Several operating systems are available for the
ECLIPSE line of computers:

• Stand-alone Operating System (SOS)
Real-Time Operating System (RTOS)
Real-time Disc Operating System (RDOS)
Advanced Operating System (AOS)

SOS and ROO S software are designed for the
small to medium-size systems, while AOS
software ha s been updated to take full advantage
of all the features embodied in the ECLIPSE line
of computers.

Conclusion

The comprehensiveness of the internal features,
software and I/O devices available with the
ECLIPSE line of computers ensures that ECLIPSE
line of computers systems can be effectively con­
figured to satisfy the unique and specific needs of
instrumentation and control, communications,
computation, and data processing applications.

FEATURES OF THE
ECLIPSE LINE OF COMPUTERS

1-6

CHAPTER II

INTERNAL STRUCTURE

INTRODUCTION

The basic structure of an ECLIPSE line data proc­
essing system consists of a central processing unit
(CPU), some amount of main memory, the I/O bus,
the I/O devices connected to the I/O bus, and a con­
sole which is on the front panel of the main com­
puter chassis.

110 BUS

CONSOLE

D6-00537

DISCS

Due to the general-purpose design of the ECLIPSE
computer, the type, size, and number of memory
modules and I/O devices have no effe'ct upon the
internal logical structure of the CPU. The CPU is
made up of the fixed-point arithmetic and logical
unit, the floating point arithmetic unit, the MAP
feature, the WCS feature, and the real-time clock
feature. In addition, there are eight accumulators.

Four of these are 16 bits in length and are used by
the fixed point unit. The other four are 64 bits in
length arid are used by the floating point unit. This
chapter deals with the addressing of information and
the logical representation of information within the
CPU, and is unaffected by those portions of the sys­
tem outside the CPU.

INFORMATION FORMATS

The basic piece of information within the proces­
sor is the binary digit, or "bit". A bit is capable
of representing only two quantities, 0 and.1. How­
ever, a bit cannot represent both these values at
the same time. At anyone point in time, a bit can
either represent a 0 or a 1, never both.

The normal unit of information within the CPU is
the ''byte''. A byte is made up of 8 bits. Because
each bit is capable of representing two quantities,
a byte is capable of representing 28 = 256 different
quantities. Two bytes may be combined to produce
a 16-bit unit called a "word". A word can repre­
sent 216 = 65,536 different quantities. I/O de­
vices transfer information in units of bits, bytes,
words, or multiples of words called "records",
depending upon the device.

Bit Numbering

In order to avoid confusion when talking about the
information contained in bytes and words, the bits
that make up these units of information are num­
bered from left to right, with the leftmost (high­
order) bit always numbered bit O. The numbering
extends to the right and is always carried out in the
decimal number system. The rightmost (low-order)
bit in a byte is bit 7. The rightmost bit in a word
is bit 15.

WORD WORD

~~--------~,------~ ~------~~'------~

2-1 of 12
INFORMATION FORMATS

Octal Representation

Because talking about the binary data contained in
bytes and words would quickly become awkward
and confusing if each bit were described, the octal
representation of binary information will be used
in this manual. To convert a piece of binary in­
formation to its octal representation, the bits in
the quantity are separated into groups of three bits
each, starting from the right and proceeding to the
left. If the number of bits to be represented is not
evenly divisible into groups of three, the leftmost
group will contain one or two bits. Each group of
bits can now be represented by one of eight different
symbols. The digits 0-7 are used to represent the
quantities 0 -7. Each encoded digit is called an oc­
tal digit. Because each group of bits can contain
anyone of 8 values, this representation is some­
times called "base 8" representation.

Another way to represent binary information is the
hexadecimal or "hex" representation. In hexa­
decimal, the bits in the quantity are separated into
groups of four bits each and each group can be
represented by one of 16 different symbols. The
digits 0 -9 are used to represent the quantities 0 -9.
The letters A-F are used to represent the quantities
10-15. Because each group of bits can contain any
one of 16 values, this representation is sometimes
called "base 16" representation.

The following table gives the correspondence be­
tween the various representations.

DECIMAL BINARY HEX BINARY OCTAL

0 0000 0 000 0
1 0001 1 001 1
2 0010 2 010 2
3 0011 3 011 3
4 0100 4 100 4
5 0101 5 101 5
6 0110 6 110 6
7 0111 7 111 7
8 1000 8 1 000 10
9 1001 9 1 001 11

10 1010 A 1 010 12
11 1011 B 1011 13
12 1100 C 1 100 14
13 1101 D 1 101 15
14 1110 E 1 110 16
15 1111 F 1 111 17

Our normal decimal numbering system is some­
times called "base 10" representation. Because
it is sometimes possible to confuse numbers writ­
ten in hex or octal with those written in decimal,
a subscript denoting the base will be used in cases
where confusion might occur. The following exam­
pIes illustrate this convention.

2-2

6410 = 4016 1008
8710 = 5716 1278

6310 = 3F 16 = 778

In the last example, it is obvious that 3F is a num­
ber written in hex, but the subscript is included to
erase any possible doubts.

Conversion tables for hex to decimal and octal to
decimal are contained in Appendix B of this manual.

Character Codes

Within the processor, all information is repre­
sented by binary quantities. The CPU does not
recognize certain bit combinations as characters
and certain other bit combinations as numbers.
Sooner or later, however, this information must
be transferred outside the computer in some form
easily understood by humans. For this reason,
some standard correspondence must be made be­
tween certain bit combinations and printable sym­
boIs. The code used to implement this correspond­
ence in I/O devices available with the ECLIPSE
line of computers is called the American Standard
Code for Information Interchange (ASCII). This
code can represent 95 printable symbols plus 33
control functions. A complete table of codes and
their corresponding characters can be found in
Appendix C of this manual.

Information Representation

Even though the CPU does not intrinsically recog­
nize one information type from another, the differ­
ent instructions in the instruction set expect that
the information to be operated on will be in a
specific format. In general, there are four differ­
ent, basic information formats. They are integers,
floating point numbers, logical quantities, and
decimal numbers.

Integers

Integers can be represented as either signed or un­
signed numbers and carried in either single or
multiple precision. Single precision integers are
two bytes long, while multiple precision integers
are four or more bytes long. Unsigned integers
use aU the available bits to represent the magni­
tude of the number. A single two-byte word can
represent any unsigned number in the inclusive
range 0 to 65,535. Two words taken together as
an unsigned, double precision integer can repre­
sent any number in the inclusive range 0 to
4,294,967,295.

For signed operations, the two'S complement num­
bering system is used. In this system, the left­
most or high-order bit is used as a sign bit. If
the sign bit is 0, the number is positive and the
remainder of the bits in the number represent the
magnitude of the number as described above. If
the sign bit is 1, the number is negative and the
remainder of the bits represent the two's comple­
ment of the magnitude of the number.

To create the negative of a number in the two's
complement scheme, complement all the bits of the
number including the sign bit. After the comple­
menting process is finished, add 1 to the rightmost
or low-order bit. If the two's complE!ment of a
negative number is formed, the result will be the
corresponding positive number. There is only one
representation for zero in two's complement arith­
metic: it is the number with all bits zero. Form -
ing the two's complement of zero will produce a
carry out of the high-order bit and leave the num­
ber with all bits zero.

Examples:

To form the negative of 4:

4=0 000 000

complement = 1 111 111
add 1 +

-4 = 1 111 111

To form the negative of 17158:

17158 = a 000 001

complement = 1 111 110
add 1 +

000 000 100

111 111 all
1

111 111 100

111 001 101

000 110 010

r--.~--~~~--==~-.~.

-17158 = 1 111 110
1

000 110 all

To form the negative of -17158:

-17158 = 1 111 110

complement = a 000 001
add 1 +

17158 = a 000 001

To form the negative of 0:

a = a 000 000

complement = 1 111 111

000 110 all

111 001 100
1

111 001 101

000 000 000

111 111 111
add 1 + a = "0 -nOO"'O,,--,O"'O"'O.----n,,=------,,;:=--~

1
000 000 000

Note that a is a positive number, i. e., its sign bit
is O.

Because the two's complement scheme has only one
representation for 0, there is always one more
negative number than there are non-negative num­
bers. The most negative number is a number with
a 1 in the sign bit and all other bits O. The posi­
tive value of this number can not be represented
in the same number of bits as used to represent
the negative number.

2-3

A single two -byte word can represent any signed
number in the inclusive range -32,768 to + 32,767.
Two words taken together as a signed, double pre­
cision integer can represent any number in the in­
clusive range -2,147,483,648 to + 2,147,483,647.

It is a property of numbers using the two's com­
plement scheme that addition and subtraction of
signed numbers are identical to addition and sub­
traction of unsigned numbers. The CPU just treats
the sign bit as the most significant magnitude bit.
This does not work for multiplication and division,
however, so the ECLIPSE line instruction set con­
tains both signed and unsigned multiply and divide
instructions.

Floating Point

The floating point feature of the ECLIPSE line of
computers allows operations on signed numbers
having a much larger range than those normally
represented as integers. It would take a 16-word
multiple precision integer to represent the range
of an ECLIPSE line floating point number. Since
floating point numbers occupy either two words for
single precision or four words for double precis­
ion, and the floating point feature is much faster
than multiple precision integer software routines,
floating point arithmetic is used when numbers
having a large range must be manipulated.

A floating point number is made up of three parts:
the sign, the exponent, and the mantissa. The
value of a floating point number is defined to be:

(MANTISSA) X (16 RAISED TO THE TRUE VALUE
OF THE EXPONENT FIELD)

The number is signed according to the value of the
sign bit. If the sign bit is 0, the number is posi­
tive; if the sign bit is 1, the number is negative.

Floating point numbers are represented internally
by either 32 bits (single precision) or 64 bits
(double precision).

The formats are shown below:

Single Precision

lsi PtP~E~111 MANTISSA
I I I I I I I I I I

0 1 7 8 31

Double Precision

I I 1 I

Bit zero is the sign bit: a for positive, 1 for nega­
tive.

Bits 1-7 contain the exponent. This is the power
to which 16 must be raised in order to give the
correct value to the number.

INFORMATION FORMATS

We use "excess 64" representation in the exponent
field to obtain both positive and negative exponents.
This means that the value in the exponent field is
64 greater than the true value of the exponent.
If the exponent field is zero, the true value of the
exponent is -64. If the exponent field is 64, the
true value of the exponent is 0. If the exponent field
is 127, the true value of the exponent is 63.

Bits 8 -31 for single precision and bits 8 -63 for
double precision contain the mantissa. This means
that bit 8 of the floating point number is bit ° of the
mantissa. The mantissa is always a positive frac­
tion greater than or equal to 1/16 and less than 1.
The "binary point" can be thought of as being just
to the left of bit 8. Continuing this concept then,
bit 8 represents the value 1/2, bit 9 represents
the value 1/4, bit 10 represents the value 1/8, and
so on.

In order to keep the mantissa in the range of 1/16
to 1, the results of floating point arithmetic are
"normalized". Normalization is the process
whereby the mantissa is shifted left one hex digit
at a time until the high-order four bits represent
a nonzero quantity. For every hex digit shifted,
the exponent is decreased by one. Since the
mantissa is shifted four bits at a time, it is possi­
ble for the high -order three bits Df a normalized
mantissa to be zero.

Zero is represented by a floating point number with
all bits zero. This is true for both single and
double precision. This is known as "true zero" .
When a calculation results in a zero mantissa, the
floating point processor automatically converts the
number to a true zero. Note that true zero is
positive. It is not possible to obtain negative zero
as the result of a calculation.

Floating point operands in memory are repre­
sented by two words for single precision and by
four words for double precision. The formats are
shown below:

Single Precision

Word 1 [SJ I pPON~NT I M~NTIS7'A, BITS ,0-; I
o I 2 3 I 4 5 6 1 7 8 9 1 10 II 12 1 13 14 15

Word 2 I 0 1 I 2 I 3 I:A,~TII~~A7 ~~T~ 9 ~~~711 1 121 131 14 I)
Double Precision

Word 1 I S I EXPONENT I MANTISSA BITS 0-7 I
0 1 1 2' 3 I 4 1 5' 6 I 7 8 1 9 110 ' II 1 121 13 ' 14' 15

Word 2 [MANTISSA BITS 8-23 I 1 1
3 1 4

1 1
6 1

1 1
9 1

1 1
12 1 13

1 1
0 I 2 5 7 8 10 " 14 15

Word 3 MANTISSA BITS 24-39 I
0 1

1 1
3 1 4

1 1
6 I 7

1 1
9 110

1 1
12 1 13 ' 14 115 I 2 5 8 "

Word 4 MANTISSA BITS 40-55 I
0 1

1
3 1

1 1
6 1 7

I 1
9 I 10

I 1
12 113

1 1
I 2 4 5 8 II 14 15

2-4

Logical Quantities

Logical operations in the ECLIPSE line can be per­
formed upon individual bits, bytes, or words. When
using the logical operations, quantities operated
on are treated as unstructured binary quantities.
The number of bits, bytes, or words operated up­
on depends on the particular instruction.

Decimal Numbers

Decimal numbers may be represented internally in
two ways, unpacked decimal and packed decimal.
In unpacked decimal, the number is made up of a
string of ASCII characters and the sign, if present,
may appear in one of four places. The sign of the
number may be indicated by a leading or trailing
byte which contains the ASCII code for plus (2B16)
or minus (2D16). Alternatively, either the high­
order digit or the low-order digit of the number
may indicate the sign in addition to carrying a digit
of the number. The table below gives the corre­
spondence between certain ASCII characters and
the sign and digit values that they carry.

SIGN DIGIT ASCII HEX
VALUE VALUE CHARACTER CODE

+ ° l6 + ° { 20, 2B, 30, 7B
+ 1 1A 31,41
+ 2 2B 32,42
+ 3 3C 33,43
+ 4 4D 34,44
+ 5 5E 35,45
+ 6 6 F 36,46
+ 7 7G 37,47
+ 8 8H 38,48
+ 9 9 I 39,49

- ° - } 2D,7D
- 1 J 4A
- 2 K 4B
- 3 L 4C
- 4 M 4D
- 5 N 4E
- 6 0 4F
- 7 P 50
- 8 Q 51
- 9 R 52

OG-01288

The digits that are not carrying the sign must be
valid ASCII characters for the digits 0-9 (3016-
3916) or spaces (2°16)' A space has the same value
as a zero.

Examples:

In the following examples, the hex value of a byte
is shown inside the box; the corresponding ASCII
character is shown beneath the box.

I Byte I Byte I Byte I Byte I Byte

+ 2, 048 (leading sign) I 2B I 32 I 30 I 34 I 38
+ 2 0 4 8

-1,756 (trailing sign) 1 31 1 37 1 35 1 361 2D
1 7 5 6 -

+ 1,850 (high-order sign) I 41 I 38 I 35 I 60 I
A 8 5 0

-3,970 (low-order sign) I 33 I 39 I 37 I 7D I
3 9 7 J

For packed decimal, each digit of the decimal num­
ber occupies one hex digit. The sign is specified
by a trailing hex digit. The number must start and
end on a byte boundary. In other words, the num­
ber cannot start or end halfway through a byte.
This means that a packed decimal number will al­
ways consist of an odd number of digits followed by
the sign. The sign must be either C16 for plus or
D16 for minus. The only valid codes for digits are
0-916,

Examples:

In the following examples, the hex value of a digit
is shown within the box; the corresponding decimal
digit is shown beneath the box.

Byte Byte Byte

+2,048 012 0 4 8 C
0 2 0 4 8 +

+ 32,456 3 I 2 4 5 6 C
3 2 4 5 6 +

-1,756 o I 1 7 5 6 D
0 1 7 5 6 -

-25,989 2 I 5 9 8 9 D
2 5 9 8 9 -

INFORMATION ADDRESSING

The information formats described in the preced­
ing section give a way of representing different
types of data within the CPU. Operations cannot
be performed upon these data types, however, un­
less they can be addressed by the CPU. The ad­
dress of a piece of information is its location in
main memory. Once the CPU knows the address
of a piece of information, the desired operation
can be performed.

2-5

Word Addressing

Main memory is partitioned into 2-byte words,
and each word has an address. The first word in
memory has the address O. The next word has the
address 1, the next word has the address 2, and so
on. Word addressing is used to address integers,
floating point numbers, and logical quantities that
are formatted in units of words.

ADDRESS

•

•

•

4008

40'8

4028

•

•
DG-00538

WORD . ,
r--------------------------------, , , , ,
~--------------------------------~

r --, , , , ,
L. __________________________________ -'

r- -- - ---- --- --- --- -- - --- -------,
"' , , ,

L ____________________________ ...J

I I ," ,BYIT~", I I , , ,BY,TE, ' , I
o I 2 3 4 5 6' 7 8 9 10 II 12 13 14 15

I "BYTE" I, ,BY;rE" I
o I I 2 3 '4 5 6 I 7 8 9'10 II 12' 13 14 15

I I ' ,BYIT~ , I \ , I ,BY,TE, I , \

o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

•

•

Effective Address Calculation

The instructions in the ECLIPSE line instruction
set that directly reference memory using word ad­
dressing fall into two classes. The "short" class
of instructions uses 11 bits in the instruction word
to define the address. The "extended" class of in­
structions uses two bits in the instruction word plus
the 16 bits of the word following the instruction to
define the address. These bits do not directly
specify the address, but are used in a calculation
which results in the address of the desired word.
The resultant address is called the "effective ad­
dress" or "E", and the calculation is called the
"effective address calculation".

For the short class, 11 bits in the instruction are
used to define the effective address. Bit 5 is called
the "indirect bit", bits 6 and 7 are called the "index
bits" and bits 8-15 are called the "displacement
bits" •

0'
I @ \ INDEX I , OISrLA,CEMENT , I

3 I 4 5 6 I 7 8 9 '10 II 12 ' 13 14 15 2

INFORMATION ADDRESSING

For the extended class, 2 bits in the instruction plus
the next word are used to define the effective ad­
dress. Depending on the instruction, either bits 1
and 2 or bits 3 and 4 or bits 6 and 7 of the instruc­
tion are the index bits. In the next word, bit 0 is
the indirect bit and bits 1-15 are the displacement
bits.

DEPENDS ON INSTRUCTION .
r 1

I IIN~EX IINDEX I IINDEXI I

o I 2 3 I 4 5 6 I 7 8 9 I 10 II I 12 I 13 I 14 15

DISPLACEMENT
5 I 6 I 7 I 8 I 9 I 10 I II I 12 I 13 I 14 I 15

If the index bits are 00, the displacement bits are
treated as an unsigned number which is the address
of a word in memory. Thi,s is called "absolute
addressing" .

If the index bits are 01, the displacement bits are
treated as a signed, two's complement number which
is added to the address of the word containing the
displacement bits. This is called" relative
addressing" .

If the index bits are 10, accumulator 2 is used as
an index register. If the index bits are 11, accu­
mulator 3 is used as an index register. In this
form of word addressing, known as "index register
addressing", the displacement is treated as a
signed, two's complement number which is added
to the contents of the selected index register to pro­
duce a memory address. In index register address­
ing' the addition of the displacement to the contents
of the index register does not change the value con­
tained in the index register.

The result of the addition performed in relative
addressing and index register addressing is
"clipped" to 15 bits. In other words, the high­
order bit of the result is set to O. For example,
if accumulator 2 is to be used as an index register
and contains the number 0777748, and the displace­
ment bits contain the number 0128, then the result
of the addition would be 0000068' not 1000068'

After one of the three types of addresses has been
computed from the index and displacement bits,
the indirect bit is tested. If this bit is zero, the

2-6

address already computed is taken as the effective
address. If the indirect bit is one, the word ad­
dressed by the result of the index and displacement
bits is assumed to contain an address. In this word
bit 0 is the indirect bit and bits 1-15 contain an
address. If bit 0 of the referenced word is 1, an~
other level of indirection is indicated, and bits
1-15 contain the address of the next word in the
indirection chain. The processor will continue to
follow this chain of indirect addresses until a word
is retrieved with bit 0 set to O. Bits 1-15 of this
word are taken to be the effective address.

For the short class of instructions, if an indirect
address points to a location in the range 20-278
(auto-increment locations), that word is fetched,
the contents of the word are incremented by one
and written back into the location. This updated
value is then used to continue the addressing chain.
If an indirect address points to a location in the
range 30-378 (auto-decrement locations), that word
is fetched, the contents of the word are decremented
by one and written back into the location. The up­
dated value is then used to continue the addressing
chain.

NOTE When referencing auto -increment
and auto -decrement locations, the
state of bit 0 before the increment
or decrement is the condition upon
which the continuation of the indi­
rection chain is based. For exam­
pIe: If an auto-increment location
contains 1777778, and the location
is referenced as part of an indirec­
tion chain, location 0 will be the
next address in the chain. That is,
the effective address will not be O.

The auto-increment and auto-de­
crement feature only works with
the following short class of instruc­
tions: LOAD, STORE, JUMP,
JUMP TO SUBROUTINE, INCRE­
MENT AND SKIP IF ZERO, DE­
CREMENT AND SKIP IF ZERO,
LOAD EFFECTIVE ADDRESS, and
during the program interrupt
cycle.

INDIRECT yY"'E''-----__ ---+ ____ ,-,

NO YES

An effective address is always 15 bits in length.
This means that an instruction which uses the
effective address calculation can address anyone
of 32,76810 words. This gives rise to the con-
cept of an "address space", which, in the ECLIPSE
computer, contains 64K bytes or 32,768 2 -byte
words.

2-7

Byte Addressing

There are two instructions that directly reference
bytes in memory. These instructions address
bytes by using a "byte pointer". A byte pointer is
a word in which bits 0-14 are the address in mem­
ory of a 2-byte word. Bit 15 of the byte pointer is
the "byte indicator". If the byte indicator is 0,
the referenced byte is the high -order (bits 0 -7)
byte of the word addressed by byte pointer bits
0-14. If the byte indicator is 1, the referenced
byte is the low-order (bits 8-15) byte of the word
addressed by byte pointer bits 0-14.

INFORMATION ADDRESSING

Bit Addressing

There are five instructions that directly reference
bits in memory. These instructions address bits
by using a 32-bit "bit pointer" 0 Bit 0 of the bit
pointer is the indirect bit. If this bit is 1, the
indirection chain will be followed until a word is
found with bit 0 set to O. Bits 1-15 of this word
become bits 1-15 of the bit pointer. Bits 1-15 con­
tain the address of a word which is the beginning of
a 4096 word field. Bits 16-27 of the bit pointer
contain a 12-bit positive number, which, when
added to the number contained in bits 1-15 of the
bit pointer produce the address of the desired, word
within the field. None of this addition affects the
original contents of the bit pointer. Bits 28 -31 of
the bit pointer contain an unsigned 4 -bit number
which is the number of the desired bit within the
referenced word.

06-00931

2-8

Commercial Instruction Set Addressing

The instructions in the commercial instruction set
all use byte addressing to address their operands.
Several of the instructions in this set also use an
attribute specifier word to determine the data type
of the operands. The format of the attribute speci­
fier word is as follows:

I I
o

Bits

0-7

8-10

RESERVED

2'3 1 4'5'6 1 7

TYPE I SIZE

8 ' 9 I 10 II ' 12 I 13 ' 14 ' 15

Name

Type

Contents

Reserved for future use.

Signify the type of the data as
follows:

o Unpacked decimal--low­
order sign

1 Unpacked decimal--high­
order sign

2 Unpacked decimal--trail­
ing sign

3 Unpacked decimal--lead­
ing sign

4 Unpacked decimal--un­
signed

5 Packed decimal
6 Two's complement

integer--byte aligned
7 Floating point--byte aligned

NOTE Data types 6 and 7 are the same
as the two's complement integers
and floating point numbers de­
scribed under Information Repre­
sentation except that they need not
begin and end on a word boundary.
Rather, they may begin and end
half-way through a word.

11-15 Size Signify the length of the data as
follows:
For all data types except type
5, this is the number of bytes
in the number (including lead­
ing or trailing signs) minus 1.
For data type 5, this is the
number of digits in the number.

Addressing With The MAP Feature

The concept of an address space was introduced in
the discussion of effective address calculation.
The "program" or "logical" address space is that
amount of memory that can be referenced by in­
structions in a program. The "physical;' address
space is the amount of physical memory that can
be referenced by the CPU. If the MAP feature is
not installed, the physical address space available
to the ECLIPSE line of computers CPU is 64K bytes
or 32K words, and the logical address space is
equal to the physical address space. Obviously,
if the system contains less than 64K of physical
memory, the usable address space is reduced,
but the maximum physical address space of the
CPU without the MAP feature is 64K. With the
MAP feature installed, the logical address space
is still 64K, but the maximum physical address
space is increased to 256K bytes.

Installation of the MAP feature has no effect on
logical addressing, The addressing calculations
remain the same. The MAP feature comes into
play when the CPU tries to use a 15-bit address to
reference memory, The MAP feature intercepts
the memory reference and the 15-bit address. The
MAP feature then translates the 15-bit address in­
to a 17 -bit address with the aid of address trans-
1ation hardware and the logical-to-physical address

2-9

translation functions that have been set up by the
supervisor program 0 The resultant 17 -bit address
is used to reference memory.

./ 0 ____

I 15 BIT LOGICAL U ADDRESS

./
_H

v /

256 K BYTES
MAP PF PHYSICAL

FEATURE MEMORY

H
D I " 17 BIT PHYSICAL --"

ADDRESS ~

3777778 ---t

DG-00542

INFORMATION ADDRESSING

RESERVED STORAGE LOCATIONS

In addition to the four accumulators, called ACO,
AC1, AC2, and AC3, which have already been
mentioned, there are thirty-two reserved storage
locations in the ECLIPSE line of computers.
These are locations in main memory that have
special meaning for the CPU. The address of
these locations, their names, and their functions
are given in the table below. The notation
"indirectable" means that bit 0 may be set to
indicate that this is an indirect address.

LOCATION LOCATION LOCATION
ADDRESS NAME FUNCTION

Octal

0 I/O RETURN Return address from
ADDRESS I/O interrupt. Also

first instruction of
Auto -restart routine.

1 I/O HANDLER Address of the I/O
ADDRESS interrupt handler.

Indirectable.

2 SC HANDLER Address of the SYS-
ADDRESS TEM CALL instruc-

tion handler.
Indirectable .

3 PFHANDLER Address of the pro-
ADDRESS tection fault handler.

Indirectable.

4 VECTOR Address of the top of
STACK the VECTOR stack.
POINTER Non -indirectable .

5 CURRENT Current interrupt
MASK priority mask.

6 VECTOR Address of the last
STACK normally usable 10-
LIMIT cation in the VECTOR

stack.

7 VECTOR Address of the
STACK VECTOR stack fault
FAULT handler. Indirect-
ADDRESS able.

20-27 AUTO-INCO Auto -incrementing
through locations.
AUTO-INC7

30-37 AUTO-DECO Auto -decrementing
through locations.
AUTO-DEC7

40 STACK Address of the top of
POINTER the stack. Non-

indirectable.

41 FRAME Address of the start
POINTER of the current stack

frame minus 1.
Non -indirectable.

2-10

LOCATION LOCATION LOCATION
ADDRESS NAME FUNCTION

42 STACK Address of the last
LIMIT normally usable lo-

cation in the stack.

43 STACK Address of the stack
FAULT fault handle r •
ADDRESS Indirectable •

44 XOP ORIGIN Address of the be-
ADDRESS ginning of the XOP

table.
Non-indirectable.

45 FLOATING Address of the float-
POINT ing point fault han-
FAULT dler. Indirectable.
ADDRESS

46 COMMERCIAL Address of the com-
FAULT mercial fault han-
ADDRESS dler.

47 , Reserved for future
use.

PROGRAM EXECUTION

Programs for the ECLIPSE line of computers con­
sist of sequences of instructions that reside in
main memory. The order in which these instruc­
tions are executed depends on a 15-bit counter
called the "program counter". The program coun­
ter always contains the address of the instruction
currently being executed. After the completion of
each instruction the program counter is incremen­
ted by one and the next instruction is fetched from
this address. This method of operation is called
"sequential operation" and the instruction fetched
frdm the location addressed by the incremented
program counter is called the "next sequential
instruction" .

Program Flow Alteration

Sequential operation can be explicitly altered by
the programmer in two ways. Jump instructions
alter program flow by inserting a new value into
the program counter. Conditional skip instructions
can alter program flow by incrementing the pro­
gram counter an extra time if a specified test con­
dition is true. In the case of a conditional skip
instruction when the test condition is true, the next
sequential instruction is not executed because it is
not addressed. After either a jump instruction or
a successful conditional skip instruction, sequen­
tial operation continues with the instruction addres­
sed by the updated value of the program counter.

Note that there are some instructions in the in­
struction set that are 32 bits in length. It is not
possible to skip over these instructions with a
conditional skip instruction. If the programmer
attempts to skip over one of these instructions
with a conditional skip instruction, the second
word of the 32 -bit instruction will be executed as
an instruction.

Because the program counter is 15 bits in'length,
it can address 32, 768 separate memory locations.
The next memory location after 77777 8 is location
0, and the location before 0 is location 777778. If
the program counter rolls from 777778 to 0 in the
course of sequential operation, no indication is
given and processing continues with the location
addressed by the updated value of the program
counter.

/' ;,/

"I > } SEQUENnOL
./ PROGRAM

t /. FLOW

INCREASING ./
ADDRESSES ~

j
JUMP

I ::;) JUMP N PROGRAM S

~ FLOW T
R

j
U ~ C
T ./
I ./
0 ./
N

~ } SKIP S

L
SKIP PROGRAM

r~ FLOW

I~
/ /;..
I

DG-DOS43

2-11
PROGRAM EXECUTION

Program Flow Interruption

The normal flow of a program may be interrupted
by external or exceptional conditions such as I/O
interrupts or various kinds of faults. In this case,
the address of the next sequential instruction in
the interrupted program is saved by the CPU so
that the I/O handler or the various fault handlers
can return control to the program at the correct
point. Once the address of the next sequential
instruction in the program has been'placed in the
program counter by the fault handler, sequential
operation of the program resumes.

2-12

r
INCREASING
ADDRESSES

I
J

j

I
N
S
T
R
U
C
T
I
o
N
S

L
OG-00544

CHAPTER III

INSTRUCTION SETS

INTRODUCTION

The instruction set implemented on the ECLIPSE line
computer is divided into 10 instruction sets. There
are instruction sets available for fixed point arith­
metic, logical operations, byte manipulation, bit
manipulation, data movement, stack manipulation,
program flow alteration, floating point arithmetic,
string and decimal number manipulation, and I/O
operations. In addition, instruction sets which are

_a mixture of I/O instructions and machine instruc­
tions are available for programming the MAP fea­
ture, the XOP feature, the ERCC feature, the RTC
feature, the power fail/auto-restart feature, and
certain CPU functions.

INSTRUCTION FORMATS

The instruction set of the ECLIPSE line of com­
puters is extremely bit-efficient. Therefore, the
set does not break into convenient instruction for­
mats. There are however, eight instructions
which share a common format and utilize a spe­
cialized arithmetic unit. This format is called the
"Two Accumulator-Multiple Operation" format.

III A~S I ACO IOp,COOE I sr 1 ? 1#1 i>Klf I
o I 2 3 I 4 5 6 I 7 8 9 10 II 12 13 14 15

In the Two Accumulator -Multiple Operation format
instructions, bit 0 is 1, bits 1 and 2 specify the
source accumUlator, bits 3 and 4 specify the des­
tination accumulator, bits 5 -7 contain the operation
code, bits 8 and 9 specify the action of the shifter,
bits 10 and 11 specify the value to which the carry
bit will be initialized, bit 12 specifies whether or
not the result will be loaded into the destination
accumUlator, and bits 13-15 specify the skip test.
Each instruction in this format utilizes an arith­
metic unit whose logical organization is illustrated
below.

D6-D0927

17 BITS

LOAD/NO LOAD

Each instruction specifies two accumulators to sup­
ply operands to the function generator, which per­
forms the function specified by bits 5-7 of the
instruction. The function generator also produces
a carry bit whose value depends upon three quan­
tities: an initial value specified by the instruction,
the function performed, and the result obtained.
The initial value may be derived from the previous
value of the carry bit, or the instruction may
specify an independent value.

The 17 -bit output of the function generator, made
up of the carry bit and the 16-bit function result,
then goes to the shifter. In the shifter, the 17 -bit
result can be rotated one place right or left, or the
two 8 -bit halves of the function result can be swap­
ped without affecting the carry bit. The 17 -bit out­
put of the shifter can then be tested for a skip. The
skip sensor can test whether the carry bit or the
rest of the 17 -bit result is or is not equal to zero.
After the skip sensor has tested the shifter output
it can be loaded into the carry bit and the destina­
tion accumulator. Note, however, that loading is
not necessary. An instruction in this format can
perform a complicated arithmetic and shifting
operation and test the result for a skip without af­
fecting the carry bit or either of the operands.

3-1 of 64 INSTRUCTION FORMATS

CODING AIDES

In the descriptions of the separate instructions,
the general form of how the instruction is coded in
assembly language is given along with the instruc­
tion format and the description of the instruction.
The general form of how an instruction may be
coded has the following format:

MNEMONIC<optional mnemonics> OPERAND STRING

The mnemonic must be coded exactly as shown in
the instruction description. Some instructions
have optional mnemonics that may be appended to
the main mnemonic if the option is desired. The
operand string is made up of the operands for the
given instruction.

The symbols <> and = are used in this manual to
aid in defining the instructions. These symbols
are not coded; they act only to indicate how an as­
sembly language instruction may be written. Their
general definition is given below.

< > Indicates optional operands or mnemonics.
The operand enclosed in the brackets (e. g. ,
<# » may be coded or not, depending on
whether or not the associated option is
desired.

Indicates specific substitution is required.
Substitute the desired accumulator, ad­
dress, name, number, or mnemonic.

The following abbreviations are used throughout
this manual:

I

N

n

AC

Either signed two's complement
integer in the range -32,768 to
+32,767 or unsigned integer in the
range 0 to +65,535.

Integer in the range 0-3

= Integer in the range 1-4

= Accumulator

ACS Source Accumulator

ACD Destination Accumulator

FPAC = Floating Point Accumulator

FACS = Floating Point Source Accumulator

FACD = Floating Point Destination
Accumulator

In the instructions that utilize an effective address,
the following coding conventions are used:

3-2

The indirect bit is set to 1 by coding the
symbol @ anywhere in the effective ad­
dress operand string.

The index bits are set by coding a comma
followed by one of the digits 0 -3 as the
last operand of the operand string. The
character" period" (.) can be used to set
the index bits to 01. "Period" can be
read to mean" address of the instruction" .
When the period is used, it is followed by
either a.plus or a/minus sign followed by
the di$placement e. g., " . + 7", or" . -2" .

Note that setting the index bits to 01 by using the
period is not the same as setting the index bits to
01 by coding a comma followed by a 1 when the in­
struction being coded is an extended class instruc­
tion. In the first case, the period is read by the
assembler to mean the address of the instruction,
so the assembler subtracts 1 from the coded dis­
placement to allow for the way in which the CPU
handles extended address calculations. In the sec-
0nd case, the assembler places the coded displace­
ment in the assembled instruction without
modification. For example, EJMP . + 3 is not
equivalent to EJMP 3, 1. EJMP . + 3 is equivalent
to EJMP 2,1.

The displacement is coded as a signed number in
the current assembler radix. This radix is the
numbering system in which the program supplies
numbers to the assembler. The default radix is
base 8 or octal. The assembler radix can be
changed by using the . RDX statement.

The assembler available with the ECLIPSE line of
computers allows the programmer to place labels
on instructions or locations in memory. When the
assembler comes upon a label in the operand string
of an effective address instruction, it automatically
sets the index and displacement bits to the correct
values. For a detailed discussion of the features
and operation of the ECLIPSE line assembler, see
the assembler manual (DGC 093-000017).

The fixed point and logical instructions which use
the two accumulator -multiple operation format
have several options that can be obtained by ap­
pending suffixes to the instruction mnemonic and
by coding optional operands in the operand string.
The characters to be coded are given below with
their results.

The characters in the column titled" class abbre­
viation" refer to specific fields in the two accumu­
lator-multiple operation format. The characters
in the column titled "coded character" show the
various characters which may be coded for this
option, The numbers in the column titled" result
bits" show the bit settings in these fields resulting
from each coded character. The comments in the
column titled" operation" describe the effect of
these bit settings.

CLASS CODED RESULT
ABBREVIATION CHARACTER BITS OPERATION

C (option omitted) 00 Do not initialize the carry bit.

Z 01 Initialize the carry bit to O.

0 10 Initialize the carry bit to 1.

C 11 Initialize the carry bit to the
complement of its present
value.

SH (option omitted) 00 Leave the result of the arith-
metic or logical operation
unaffected.

L 01 Combine the carry and the 16-
bit result into a 17 -bit number
and rotate it one bit left.

R 10 Combine the carry andthe 16-
bit result into a 17 -bit number
and rotate it one bit right.

S 11 Exchange the two 8-bit halves
of the 16 -bit result without
affecting the carry.

II (option omitted) a Load the result of the shift
operation into ACD.

II 1 Do not load the result of the
shift operation into ACD.

The following diagrams illustrate the operation of
the shifter.

Coded
Character

L

Shifter Operation

Left rotate one place. Bit 0 is rotated
into the carry position, the carry bit
into bit 15.

L0H-------0--]5------~

R

S

Right rotate one place. Bit 15 is
rotated into the carry position, the
carry bit into bit O.

~-------------0---]5------------~~

Swap the halves of the 16 -bit result.
The carry is not affected.

I: '8' ~ 0-7 8-]5

The following operands initiate operations that test
the result of the shift operation. If the tested con­
dition is true, the next sequential instruction is
skipped.

3-3

CLASS CODED RESULT
ABBREVIATION CHARACTER BITS OPERATION

SKIP (option omitted) 000 Never skip.

SKP 001 Always skip.

SZC 010 Skip if carry = O.

SNC all Skip if carry i= O.

SZR 100 Skip if result = O.

SNR 101 Skip if result i= O.

SEZ 110 Skip if either carry or result
= O.

SBN 111 Skip if both carry and result
i= O.

Instructions in the Two Accumu­
lator-Multiple Operation format
must not have both the "No Load"
and the" Never Skip" options spec­
ified at the same time. These bit
combinations are used by other in­
structions in the instruction set.

As an example of how to use these tables, assume
that accumulator 3 contains a signed, two's com­
plement number. Now consider the problem of
determining whether this number is positive or
negative. One way to determine this would be to
place the number zero in another accumulator and
use the SKIP IF ACS GREATER THAN ACD in­
struction, but this requires an extra instruction
and also destroys the previous contents of the other
accumulator. Another way to determine the sign
of the number in accumulator 3 is to use the MOVE
instruction and the power of the two accumulator­
multiple operation format. With the MOVE in­
struction, the contents of AC3 can be placed in the
shifter and shifted one bit to the left. This places
the sign bit in the carry bit. The carry bit can
then be tested for zero. In order to preserve the
number in AC3, the instruction can prevent the
output of the shifter from being loaded back into
AC3.

The general form of the MOVE instruction is:

MOV<c><sh><#> acs,acd<, skip>
== =

The general bit pattern of the MOVE instruction is:

I I 1 A9S I ACO I °] I ° I S]H 1 9 I #1 ~KI~
o I 2 3 I 4 5 6 1 7 8 9 10 II 12 13 14 15

To shift the number in AC3 one bit left without
destroying the number, and skip the next sequential
instruction if the bit shifted into the carry bit is
zero, the following instruction could be coded:

MOVL# 3,3,SZC

This instruction would assemble into the following
bit pattern:

1111]llllllo]IOlo]llo]olrlo]l]ol
o I 2 3 4 5 6 1 7 8 9 10 II 12 13 14 15

CODING AIDS

FIXED POINT ARITHMETIC

The fixed point instruction set performs binary
arithmetic on operands in accumulators. The
operands are 4, 16, or 32 bits in length and can
be either signed or unsigned. The instruction set
provides for loading, storing, adding, subtracting,
multiplying, dividing, and comparing of fixed point
operands.

LOAD ACCUMULATOR

LDA ac, <@ >displacement< ,index>
'= =

I 0 0 I I I AC I @ I INDEX , I pIS~LAfE~EN!
o ' I 2 3 I 4 5 6 I 7 8 .9 10 II 12 13 14 15

ELDA ac, <@>displacement<,index>
= =

I I 0 , I I AC I I I INDEX , 0 I O· I I I I I 0 I 0 I 0 ,
o I I 2 3 I 4 5 6 I 7 8 9 I 10 II· 12 I 13 14 15

DISPLACEMENT
2 I 3 I 4. I 5 I 6 I 7 I 8 I 9 I 10 I II ' 12 I 13 14 15

The word addressed by the effective address, "E",
is placed in the specified accumulator. The pre­
vious contents of the AC are lost. The contents of
the location addressed by "E" remain unchanged.

STORE ACCUMULATOR

STA ac, <@>displacement<, index> = =

I 0 I , 0 , AC I @ I INDEX I , DIS~LAqEMEN~
o 'I 2 3 I 4 5 6 I 7 8 9 I 10 II 12 I 13 14 15

ESTA ac, <@>displacement<,index> = =

I I I , 0 , AC I I 'INDEX I 0 I 0 I I I I I 0 I 0 I 0 ,
o I 2 3 I 4 5 6 I 7 8 9 I 10 II 12 I 13 14 15

I @ I DISPLACEMENT
o I J 2 I 3 I 4 I 5 I 6 I 7 ' 8 I 9 I 10 I II ' 12 I 13 I 14 15

The contents of the specified acC"umulator are
placed in the word addressed by the effective ad­
dress, "E". The previous contents of the location
addressed by "E" are lost. The contents of the
specified accumulator remain unchanged.

3-4

ADD

I I I A9S I ACD I I ,I 0 I 5,H I q I 4f I
o I 2 3 I 4 5 6 I 7 8 9 10 II 12

Sfl.1P
! 1

13 14 15

The carry bit is initialized to the specified value.
The number in ACS is added to the number in ACD
and the result is placed in the shifter. If the addi­
tion produces a carry of 1 out of the high-order bit,
the carry bit is complemented. The specified shift
operation is performed and the result of the shift is
placed in ACD if the no-load bit is O. If the skip
condition is true, the next sequential word is
skipped.

NOTE If the sum ofthe two numbers being
added is greater than 65,53510,
the carry bit is complemented.

SUBTRACT

SUB<P<sh><4f> acs, acd<, skip>

I I lAyS I ACD II I 0 I I S,H I 9 1# I
o I 2 3 I 4 5 6 I 7 8 9 10 II 12

SKIP
I I

13 14 15

The carry bit is initialized to its specified value.
The number in ACS is subtracted from the number
in ACD by taking the two's complement of the num­
ber in ACS and adding it to the number in ACD.
The result of the addition is placed in the shifter.
If the operation produces a carry of 1 out of the
high-order bit, the carry bit is complemented.
The specified shift operation is performed and the
result of th.e shift is placed in ACD if the no-load
bit is O. If the skip condition is true, the next
sequential word is skipped.

NOTE If the number in ACS is less
than or equal to the number in
ACD the carry bit is comple­
mented.

DECIMAL ADD

DAD acs,acd

I I I A9S I ACD I 0 I 0 0 I I 0 0 0 I 0 0 0 I
o I 2 3 I 4 5 6 I 7 8 I 9 I 10 I II ' 12 I 13 I 14 I 15

The decimal digit contained inACS bits 12-15 is
added to the decimal digit contained in ACD bits
12-15. The carry bit is added to this result. The
decimal units' position of the final result is placed
in ACD bits 12-15 and the decimal carry is placed
in the carry bit. The contents of ACS and bits
0-11 of ACD remain unchanged.

No validation of the input digits is performed.
Therefore, if bits 12-15 of either ACS or ACD
contain a number greater than 9, the results will
be unpredictable.

Example:

Assume that bits 12-15 of AC2 contain 9; bits 12-15
of AC3 contain 7; and the carry bit is 0, indicating
no carry from the previous DECIMAL ADD. After
the instruction DAD 2,3 is executed, AC2 remains
the same; bits 12-15 of AC3 contain 6; and the carry
bit is 1, indicating a decimal carry from this
DECIMAL ADD.

BEFORE AFTER

AC2101000100010001001100111010001000100010011001/

AC31 0 100010001000100011111101000 1000100010001110 I
carry
bit

DECIMAL SUBTRACT

DSB acs,acd

o 1

The decimal digit contained in ACS bits 12-15 is
subtracted from the decimal digit contained in ACD
bits 12-15. The complement of the carry bit is
subtracted from this result. The decimal units'
position of the final result is placed in ACD bits
12-15 and the complement of the decimal borrow
is placed in the carry bit. In other words, if the
final result is negative, a borrow is indicated, and
the carry bit is set to O. If the final result is posi­
tive, no borrow is indicated and the carry bit is
set to 1.

Example:

Assume that bits 12-15 of AC2 contain 9; bits 12-15
of AC3 contain 7; and the carry bit is 0, indicating
a borrow from the previous DECIMAL SUBTRACT.
After the instruction DSB 3,2 is executed, AC3
remains the same; bits 12-15 of AC2 contain 1; and
the carry bit is set to 1, indicating no borrow from
this DECIMAL SUBTRACT.

BEFORE AFTER

AC21010001000100010011001110100010001000100010011

AC3101000100010001000111111010001000100010001·1UI

carry
bit o 1

3-5

ADD IMMEDIATE

AD!

N
I

AC 1 0 I 0 I 0 I 0 I 0 I 0 I 0 I I I 0 I 0 I 0 1

3 I 4 5 6 7 8 9 10 II 12 13 14 15 2

The contents of the immediate field "N", plus 1,
are added to the unsigned, 16-bit number contained
in AC and the result is placed in AC. The carry
bit remains unchanged.

NOTE The assembler takes the coded
value of "n" and subtracts one
from it before placing it in the
immediate field. Therefore, the
programmer should code the ex­
act value that he wishes to add.

Example:

Assume that AC2 contains 1777758. After the in­
struction ADI 4,2 is executed, AC2 contains
0000018 and the carry bit is unchanged.

BEFORE AFTER

AC2 1111111111111111111101110100010001000100010011

carry
bit either 0 or 1 unchanged

EXTENDED ADD IMMEDIATE

ADD! ~,ac

II
0 1

I I 1 AC I
2 3 I 4

I I I I 0 , 0 , 0 I
9 I 10 " 12 I 13 14 15 5 6 7 8

IMMEDIATE FIELD I I o 2 ! 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10! 1,1 I 12 I 13 14 I 15

The contents of the immediate field are treated as a
signed, two's complement number and added to the
signed, two's complement number contained in
AC and the result is placed in AC. The carry
bit remains unchanged.

FIXED POINT ARITHMETIC

SUBTRACT IMMEDIATE

SBI ~,acd

N I ACo I 0 0 0 0 o 0 000
- 1 - , 1 ' 1 'I' ,

2345678 9 10 II 12 13 14 15

The contents of the immediate field" N", plus 1
are subtracted from the unsigned 16-bit number
contained in ACD and the result is placed in ACD.
The carry bit remains unchanged.

Example:

The assembler takes the coded
value of "n" and subtracts one
from it before placing it in the
immediate field. Therefore, the
programmer should c;ode the ex­
act value that he wishes to sub­
tract.

Assume that AC2 contains 0000038. After the in­
struction SBI 4,2 is executed, AC2 contains
1777778 and the carry bit is unchanged.

BEFORE AFTER

carry
bit either 0 or 1 unchanged

NEGATE

acs, acd<, skip>
== =

I I I A~S I ACO I 0 , 0 1 I I 5,H I ~ I # I SKIP
! I

o I 2 3 I 4 5 6 7 8 9 10 II 12 13 14 15

The carry bit is initialized to the specified value.
The two's complement of the number in ACS is
placed in the shifter. If the negate operation pro­
duces a carry of 1 out of the high-order bit, the
carry bit is complemented. The specified shift
operation is performed and the result is placed in
ACD if the no-load bit is O. If the skip condition
is true, the next sequential word is skipped.

NOTE If ACS contains 0, the carry
bit is complemented.

3-6

ADD COMPLEMENT

II I A9S I ACO II ,0 0 I S,H I ~ I # I ~KI\
o 1 2 3 I 4 5 6 I 7 8 9 10 II 12 13 14 15

The carry bit is initialized to the specified value.
The logical complement of the number in ACS is
added to the number in ACD and the result is
placed in the shifter. If the addition produces a
carry of 1 out of the high-order bit, the carry bit
is complemented. The specified shift operation
is performed, and the result of the shift is loaded
into ACD if the no-load bit is O. If the skip con­
dition is true, the next sequential word is skipped.

NOTE If the number in ACS is less
than the number in ACD, the
carry bit is complemented.

MOVE

I I I A~S I ACO I 0 ,I 0 I S,H I 9 I # I
o I 2 3 I 4 5 6 I 7 8 9 10 II 12

SKIP
I I

13 14 15

The carry bit is initialized to the specified value.
The contents of ACS are placed in the shifter. The
specified shift operation is performed and the re­
sult of the shift is loaded into ACD if the no-load
bit is O. If the skip condition is true, the next
sequential word is skipped.

INCREMENT

INC<c><sh><#> acs, acd<, skip>
== =

I I I A9 S I ACO I 0 ,I I I S,H 1 ~ I #1 SKIP
! !

o I 2 3 1 4 5 6 1 7 8 9 10 II 12 13 14 15

The carry bit is initialized to the specified value.
The number in ACS is incremented by one and the
result is placed in the shifter. If the incrementa­
tion produces a carry of 1 out of the high-order
bit, the carry is complemented. The specified
shift operation is performed, and the result of the
shift is loaded into ACD if the no-load bit is O. If
the skip condition is true, the next sequential word
is skipped.

NOTE If the number in ACS is 1777778
the carry bit is complemented.

EXCHANGE ACCUMULATORS

XCH acs,acd

o I 2 3 4 5· S 7 B

0010,0,01
9 I 10 ' II .' 12 I 13 14 15

The original contents of ACS are placed in ACD
and the original contents of ACD are placed in ACS.

UNSIGNED MULTIPLY

MUL

100 10,0,01
9 I 10 ' II ' 12 1 13 14 15

The 16-bit unsigned number in ACI is multiplied
by the 16-bit unsigned number in AC2 to yield ~
32-bit unsigned intermediate result. The 16-bit
unsigned number in ACO is added to the inter­
mediate result to produce the final result. The
final result is a 32-bit unsigned number and occu­
pies ACO and ACl. Bit 0 of ACO is the high-order
bit of the result and bit 15 of ACI is the low-order
bit. The contents of AC2 remain unchanged. Be­
cause the result is a double-length number, over­
flow cannot occur.

SIGNED MULTIPLY

MULS

I I I ° ° I , . I ' , I .
o 12345S

° ° ° ° ° I ! , I I !

7 B 9 10 II 12 13 14 15

The 16-bit signed two's complement number in ACI
is multiplied by the 16-bit signed two's complement
number in AC2 to yield a 32-bit signed two's com­
plement intermediate result. The 16-bit signed
two's complement number in ACO is added to the
intermediate result to produce the final result. The
final result is a 32-bit signed two's complement
number which occupies ACO and ACl. Bit 0 of ACO
is the sign bit of the result and bit 15 of AC1 is the
low-order bit. The contents of AC2 remain un­
changed. Because the result is a double -length
number, overflow cannot occur.

3-7

,

UNSIGNED DIVIDE

DIY

II .. I ° ° I . I ° ° , 0,0,01 ,.
14

,.
sl I ,

121 13 14 15 0 1 I 2 3 5 7 B 9 10 II

The 32-bit unsigned number contained in ACO and
ACI is divided by the 16-bit unsigned number in
AC2. The quotient and remainder are 16-bit un­
signed numbers and are placed in ACI and ACO,
respectively. The carry bit is set to O. The con­
tents of AC2 remain unchanged.

NOTE Before the divide operation takes
place, ACO is compared to AC2.
If the number in ACO is greater than
or equal to the number in AC2, an
overflow condition is indicated.
The carry bit is set to 1, and the
operation is terminated. All op­
erands remain unchanged.

SIGNED DIVIDE

DIYS

II , ° I I
3 I 4 5 ' sl 7 o I I 2

1,10,°"1°,0,01
B 9 I 10 II 12 13 14 15

The 32-bit signed two's complement number con­
tained in ACO and ACI is divided by the 16-bit
signed two's complement number in AC2. The
quotient and remainder are 16-bit signed numbers
and occupy ACI and ACO, respectively. The sign
of the quotient is determined by the rules of algebra.
The sign of the remainder is always the same as
the sign of the dividend, except that a z.ero quotient
or a ze:r;o remainder is always positive.

The carry bit is set to O. The contents of AC2
remain 'unchanged.

NOTE If the magnitude of the quotient
is such that it will not fit into
AC1, an overflow condition is in­
dicated. The carry bit is set to
1, and the operation is termi­
nated. The contents of ACO and
ACI are unpredictable.

FIXED POINT ARITHMETIC

SIGN EXTEND AND DIVIDE

DIVX

10010001
9 1 10' 11'12 1 13' 14' 15

The sign of the number in ACt is extended into ACO
by placing a copy of bit 0 of ACt in each bit of ACO.
After the sign extension, a SIGNED DIVIDE is per­
formed.

3-8

HALVE

HLV ac

1 I I 1 0 I AC I
o I I 2 3 1 4

1 0
1 I

5 6 7 8

I I I 10 0 0 I
9 I 10 I II I 121 13 I 14 I 15

The signed two's complement number contained
in AC is divided by 2 and rounded toward O. The
result is placed in AC.

If the number is positive, division is accomplished
by shifting the number right one bit. If the number
is negative, division is accomplished by negating
the number, shifting it right one bit, and negating
it again.

LOGICAL OPERATIONS

The logical instruction set performs logical opera­
tions on operands in accumulators. The operands
are 16 bits long and are treated as unstructured
binary quantities. The logical operations i~cluded
in this set are: AND, inclusive OR, exclusIve OR,
AND with complemented source, and COMPLE­
MENT. The logical instruction set also provides
instructions for shifting operands in accumulators.
Single length (16 bits) or double length (32 bits -­
formed by combining two adjoining accumulators)
operands can be logically shifted left or. r~ght in
one or four bit increments. The four bIt mcre­
ments are called hexadecimal or "hex" digits.

LOAD EFFECTIVE ADDRESS

ELEF ac, <@>displacement<,index> == -----

II I I I AC I I I INDEX I 0 ,0 I , I , I· 0 , 0 , 0 I
2 3 I 4 5 6 I 7 8 9 I 10 II 121 13 14 15 o

I I DISPrAC![MENT I! I I I
3 I 4 5 6 I 7 8 9 I 10 II 12 I 13 14 15 2

The effective address" E" is computed and placed
in bits 1-15 of AC. Bit 0 of AC is set to O. The
previous contents of AC are lost.

COMPLEMENT

COM<c>< sh>< #> acs, acd<, skip>
= = == =

I I I A9S 1 ACD I 0 I 0 I 0 I SIH I 9 ·1 # I
o I 2 3 I 4 5 6 7 8 9 10 II 12

SKIP , ,
13 14 15

The carry bit is initialized to the specified value.
The logical complement of the number in ACS is
placed in the shifter. The specified shift operation
is performed and the result is placed in ACD if the
no -load bit is O. If the skip condition is true, the
next sequential word is skipped.

AND

AND<c><sh><#> acs, acd<, skip>
=== == =

II I A~S I ACD II ,I 1 I S,H I 9 I # I 7KI~
o 1 2 3 I 4 5 6 I 7 8 9 10 II 12 13 14 15

The carry bit is initialized to the specified value.
The logical AND of ACS and ACD is placed in the
shifter. Each bit placed in the shifter is 1 only if
the corresponding bit in both ACS and ACD is one;
otherwise the result bit is O. The specified shift
operation is performed and the result is placed in
ACD if the no -load bit is O. If the skip condition
is true, the next sequential word is skipped.

3-9

AND IMMEDIATE

I I 1 , 0 I AC II , I
0 1 123 1 456 1 7

I I I I I 0 1 0 ,0 I
8 ' 9 I 10 I II 121 13 14 15

I IMMEDIATE FIE, LD , 'I '
I II I ' , I' I··

The contents of the immediate field are treated as
an unstructured 16-bit quantity. The logical AND
of the contents of the immediate field and the con­
tents of AC is placed in AC.

INCLUSIVE OR

lOR acs,acd =

I 1 I AqS I ACD I 0 ,0 1 ,0 , 0 0 ,0 , I I 0 , 0 , 0 I
o I 2 3 I 4 5 6 I 7 8 9 I 10 II 12 13 14 15 ,

The contents of ACS are inclusively OR'd with the
contents of ACD and the result is placed in ACD.
A bit position in the result is set to 1 if the cor­
responding bit position in one or both operands
contains a 1; otherwise, the result bit is set to O.
The contents of ACS remain unchanged.

INCLUSIVE OR IMMEDIATE

IORI ~,ac

I I I 0 I 0 I AC I I I I I I I I I I I I 1 I I 0 I 0 I 0 I
o I· 2 3 I 4 '5 6 I 7 8 9 10 II 121 13 14 15

I IMMEDIATE FIELD
I I I I I I I I I I I I I I I

o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

The contents of the immediate field are treated as
an unstructured 16 -bit quantity. The logical inclu­
sive OR of the contents of the immediate field and
the contents of AC is placed in AC.

EXCLUSIVE OR

XOR acs,acd
= ====

~9S I ACD I 0 ,0 I, 0 , I 1 0 , 0 , I 1 0 , 0 , 0 I
o I 2 3 I 4 5 6 I 7 8 9 10 II 12 13 14 15

The contents of ACS are exclusively OR'd with the
contents of ACD and the result is placed in ACD.
A bit position in the result is set to 1 if the cor­
responding bit positions in the two operands are
unlike; otherwise, the result bit is set to O. The
contents of ACS remain unchanged.

LOGICAL OPERATIONS

EXCLUSIVE OR IMMEDIATE

XORI i,ac

I I 0 I I 1 AC 1 I I I I I I I I I I I 0 I 0 I 0 1
o 1 I 2 3 1 4 5 6 I 7 8 9 I 10 I II I 12 I 13 14 15

1 ,
IMMEDIATE FIELD 1

I I 2 I 3 I 4 I 5 I 6 1 7 I 8 I 9 ' 10 I II I 12 I 13 I 14 I 15 o

The contents of the immediate field are treated as
an unstructured 16-bit quantity. The logical ex­
clusive OR of the contents of the immediate field

land the contents of AC is placed in AC.

AND WITH COMPLEMENTED SOURCE

ANC acs,acd ==

1 I I A95 1 ACD I 0 I 0 I I 0 0 0 I 0 I 0 I 0 1
o I 2 3 I 4 5 6

'
7 I 8 I 9' 10 I 111 12 , 13 14 15

The logical complement of the contents of ACS is
AND'd with the contents of ACD and the result is
placed in ACD. A bit position in the result is set
to 1 if the corresponding bit positions in ACS and
ACD contain a 0 and 1, respectively; otherwise,
the result bit is set to zero. The contents of ACS
remain unchanged.

Example:

The AND WITH COMPLEMENTED SOURCE in­
struction can be used to reset bits through a mask.
If the operand in ACD contains bit positions that

were set to 1 through a mask with the INCLUSIVE
OR instruction, the AND WITH COMPLEMENTED
SOURCE instruction will set those bits to 0 using
the same mask.

Assume that ACO contains 0, AC1 contains 0103578
and AC2 contains 1704418. After the instruction
lOR 1,0 is executed, ACO contains 0103578.

BEFORE AFTER

ACO 1010001000100010001000110100110001011110111111

AC1 1010011000101111011111110100110001011110111111

After the instruction lOR 2,0 is executed ACO con­
tains 1707578.

BEFORE AFTER

ACO 1010011000101111011111111111110001111110111111

AC2 1111111000110011001001111111110001100110010011

If it is desired to set to 0 all those bits that were
set to 1 by the first INCLUSIVE OR instruction,
the AND WITH COMPLEMENTED SOURCE instruc­
tion will do it. After the instruction ANC 1, 0 is
executed, ACO contains 1604008.

BEFORE AFTER

ACO 1111111000111111011111111111010001100100010001

AC1 1010011000101111011111110100110001011110111111

3-10

LOGICAL SHIFT

LSH acs,acd

I 1 I A9s I ACD I 0 ,I 0 1 0 0 0 1 0 0 0 I
o I 2 3 1 4 5 6 1 7' 8 ' 9 I 10' II ' 121 13' 14' 15

The contents of ACD are shifted left or right de­
pending on the number contained in bits 8-15 of
ACS. The 8-bit signed two's complement number
contained in bits 8-15 of ACS determines the direc­
tion of the shift and the number of bits to be shifted.
If the number in bits 8-15 of ACS is positive, shift­
ing is to the left; if the number in bits 8-15 of ACS
is negative, shifting is to the right. If the number
in bits 8-15 of ACS is zero, no shifting is per­
formed. Bits 0-7 of ACS are ignored.

The number of bits shifted is equal to the magnitude
of the number in bits 8-15 of ACS. Bits shifted out
are lost, and the vacated bit positions are filled
with zeroes. The carry bit and the contents of
ACS remain unchanged.

NOTE If the magnitude of the number
in bits 8-15 of ACS is greater
than 1510, all bits of ACD are
set to O. The carry bit and the
contents of ACS remain un­
changed.

DOUBLE LOGICAL SHIFT

DLSH acs, acd

I 1 I A9S I ACD I 0 " 0 , , 0 0 , 0 0 0 I
0123 1 456 1 7'8'9 1 10'11'12'13'14'15

The 32-bit number contained in ACD and ACD+ 1 is
shifted left or right depending on the number con­
tained in bits 8-15 of ACS. The 8-bit signed two's
complement number contained in bits 8-15 of ACS
determines the direction of the shift and the num­
ber of bits to be shifted. If the number in bits
8-15 of ACS is positive, shifting is to the left; if
the number in bits 8-15 of ACS is negative, shift­
ing is to the right. If the number in bits 8-15 of
ACS is zero, no shifting is performed. Bits 0-7
of ACS are ignored.

The number of bits .shifted is equal to the magnitude
of the number in bits 8-15 of ACS. Bits shifted out
are lost, and the vacated bit positions are filled
with zeroes. The carry bit and the contents of
ACS remain unchanged.

NOTES 1. If the magnitude of the num­
ber in bits 8-15 of ACS is
greater than 3110, all bits of
ACD and ACD+ 1 are set to O~

2. If ACD is specified as AC3,
then ACD+ 1 is ACO.

HEX SHIFT LEFT

HXL ~,ac

I 'I ~ I AC I 0 , , ' 0 , 0 , 0 , 0 , I , 0 , 0 , 0 I
The contents of AC are shifted left a number of
hex digits depending upon the immediate field" N" .
The number of digits shifted is equal to N+ 1. Bits
shifted out are lost, and the vacated bit positions
are filled with zeroes. If N is equal to 3, then all
16 bits of AC are shifted out and all bits of AC are
set to O.

NOTE The assembler takes the coded
value of "n" and subtracts one
from it before placing it in the
immediate field. Therefore, the
programmer should code the ex­
act number of hex digits that he
wishes to shift.

HEX SHIFT RIGHT

HXR ~,ac,

I' I ~ I AC I 0 ,I I, 0 " 0, 0 " 0, 0 , 0 I
o I 2 3 '4 5 6 '7 8 9 '10 II 12' 13 14 15

The contents of AC are shifted right a number of
hex digits depending upon the immediate field,
" N". The number of digits shifted is equal to
N+ 1. Bits shifted out are lost, and the vacated
bit positions are filled with zeroes. If N is equal
to 3, then all 16 bits of AC are shifted out and all
bits of AC are set to O.

NOTE The assembler takes the coded
value of "n" and subtracts one
from it before placing it in the
immediate field. Therefore, the
programmer should code the ex­
act number of hex digits that he
wishes to shift.

3-11
LOGICAL OPERATIONS

DOUBLE HEX SHIFT LEFT

DHXL ~,ac

/' I ~ / AC / ° , '
o I 23'456'78

00 0,' 0,0,0/
9 I 10 ' II 12 I 13 14 15

The 32 -bit number contained in AC and AC+ 1 is
shifted left a number of hex digits depending upon
the immediate field, "N". The number of digits
shifted is equal to N+ 1. Bits shifted out are lost
and the vacated bit positions are filled with zeroes.

NOTES 1. If AC is specified as AC3,
then AC+ 1 is ACO.

2. The assembler takes the
coded value of "n" and sub­
tracts one from it before
placing it in the immediate
field. Therefore, the pro­
grammer should code the
exact number of hex digits
that he wishes to shift.

3. If N is equal to 3, the con­
tents of AC+ 1 are placed in
AC and AC+ 1 is filled with
zeroeso

DOUBLE HEX SHIFT RIGHT

DHXR ~,ac

100
9 1 10' II

I ° ,0, ° I
12' 13 14 15

The 32-bit number contained in AC and AC+ 1 is
shifted right a number of hex digits depending upon
the immediate field" N". The number of digits
shifted is equal to N+ 1. Bits shifted out are lost
and the vacated bit positions are filled with zeroes.

3-12

NOTES 1. If AC is specified as AC3,
then AC+ 1 is ACO.

2. The assembler takes the
coded value of " n" and sub­
tracts one from it before
placing it in the immediate
field. Therefore, the pro­
grammer should code the
exact number of hex digits
that he wishes to shift.

3. IfN is equal to 3, the con­
tents of AC are placed in
AC+ 1 and AC is filled with
zeroes.

BYTE MANIPULATION

In addition to performing operations on structured
and unstructured 16-bit quantities, the instruction
set of the ECLIPSE line of computers allows the
loading and storing of 8-bit bytes. The LOAD
BYTE and STORE BYTE instructions can be used
with the SWAP option of the two accumulator­
multiple operation instructions and with the hex
shift instructions to perform character operations.

LOAD BYTE

LDB acs,acd

0123456789 10 " 12 13 14 15

The 8-bit byte addressed by the byte pointer con­
tained in ACS is placed in bits 8-15 of ACD. Bits
0-7 of ACD are set to O. The contents of ACS re­
main unchanged.

STORE BYTE

STB acs, acd

I I I A~S I A9D II I I I 0 I 0 ! 0 I 0 ! 0 ! I I 0 ! 0 ! 0 I
o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

Bits 8-15 of ACD are placed in the byte addressed
by the byte pointer contained in ACS. The contents
of ACS and ACD remain unchanged.

3-13

Example:

The following instruction sequence will convert an
unsigned integer to its corresponding octal repre­
sentation and place the result in six bytes in mem­
ory. ACO contains the integer, AC3 contains a
byte pointer to the low-order byte of the destina­
tion field.

When the routine is finished, and control is trans­
ferred to the location "OUT", the integer has been
converted to octal and the byte pointer in AC3
points to the high-order byte of the result.

LDA 2, CON6 ; GET COUNT
STA 2,CNT ;STORE IT
LDA 2, MASK ; GET MASK FOR CHAR

; AND SHIFT COUNT
LOOP: DLSH 2,0 ;SHIFT ONE OCTAL

; DIGIT
HXR 1,1 ;SHIFT AC1 4 BITS

; RIGHT
MOVZR 1,1 ;SHIFT AC1 1 BIT

; RIGHT
IOR 2,1 ; OR IN BITS FOR

; CHARACTER
MOVS 1,1 ; PUT CHAR IN LOW -

; ORDER BYTE
STB 3,1 ;STORE BYTE
DSZ CNT ;DONE?
JMP 0+2 ;NO
JMP OUT ;YES
SBI 1,3 ;DECREMENT AC3 BY 1
JMP LOOP ;DO NEXT DIGIT

CON6: 6
CNT: 0
MASK: 030375 ; CHAR MASK IN HI

BYTE, SHIFT COUNT
; IN LOW BYTE

OUT:

BYTE MANIPULATION

BIT MANIPULATION

In addition to performing operations on structured
and unstructured 16 bit quantities and on 8-bit
bytes, the standard instruction set allows opera­
tions to be performed on individual bits in accu­
mulators and in memory. This set of instructions
includes operations that locate leading bits, set
bits, and test bits.

SET BIT TO ONE

BTO ~,acd

II lAyS IACD II I 0 10 1 0 1 0 1 0 1 0 I I 10 1 0 , 0 I
o I 2 3 I 4 5 6 7 8 9 10 II 12 13 14 15

A 32 -bit bit pointer is formed from the contents of
ACS and ACD. ACS contains the high-order 16 bits
and ACD contains the low-order 16 bits of the bit
pointer. If ACS and ACD are specified as the same
accumulator, the accumulator contents are treated
as the low-order 16-bits of the bit pointer and the
high-order 16 bits are assumed to be O. The ad­
dressed bit in memory is set to 1. The contents of
ACS and ACD remain unchanged.

SET BIT TO ZERO

BTZ acs,acd

II lACS I A9D I' I 0 I 0 I 0 I I 0 I 0 o 0 0
I ' I

o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

A 32 -bit bit pointer is formed from the contents of
ACS and ACD. ACS contains the high-order 16 bits
and ACD contains the low-order 16 bits of the bit
pointer. If ACS and ACD are specified as the same
accumulator, the accumulator contents are treated
as the low-order 16 bits of the bit pointer and the
high-order 16 bits are assumed to be O. The ad­
dressed bit in memory is set to o. The contents of
ACS and ACD remain unchanged.

SKIP ON ZERO BIT

SZB acs, acd

I I I A?S I ACD I I I 0 0 I I 0 0 0 , 0 0 0 I
o I 2 3 1 4 5 6 1 7 8 I 9 I 10 I II I 12' 13 I 14 I 15

A 32-bit bit pointer is formed from the contents of
ACS and ACD. ACS contains the high-order 16 bits
and ACD contains the low-order 16 bits of the bit
pointer. If ACS and ACD are specified as the same
accumulator, the accumulator contents are treated
as the low-order 16 bits of the bit pointer and the
high-order 16 bits are assumed to be O. If the ad­
dressed bit in memory is 0, the next sequential
word is skipped. The contents of ACS and ACD
remain unchanged.

SKIP ON NON-ZERO BIT

SNB acs,acd

I I I AqS I AC 0 I I I 0 I
0123 1 456

I I I I 0 1 0 , 0 I
9 1 10 II 12 I 13 14 15 7 8

A 32-bit bit pointer is formed from the contents of
ACS and ACD. ACS contains the high-order 16 bits
and ACD contains the low-order 16 bits of the bit
pointer. If ACS and ACD are specified as the same
accumulator, the accumulator contents are treated
as the low-order 16 bits of the bit pointer and the
high-order 16 bits are assumed to be O. If the ad­
dressed bit in memory is 1, the next sequential
word is skipped. The contents of ACS and ACD
remain unchanged.

3-14

SKIP ON ZERO BIT AND SET TO ONE

SZBO acs, acd
==

9 10 II 12 13 14 15

A 32 -bit bit pointer is formed from the contents of
ACS and ACD. ACS contains the high-order 16 bits
and ACD contains the low-order 16 bits of the bit
pointer. If ACS and ACD are specified as the same
accumulator, the accumulator contents are treated
as the low-order 16 bits of the bit pointer and the
high-order 16 bits are assumed to be O. The ad­
dressed bit in memory is set to 1. If the bit was
o before being set to 1, the next sequential word
is skipped. The contents of ACS and ACD remain
unchanged.

NOTE This instruction facilitates the
use of bit maps for such pur­
poses as allocation of facilities
(memory blocks, I/O devices,
etc.) to several processes, or
tasks, that may interrupt one
another, or in a multiprocessor
environment. The bit is tested
and set to 1 in one memory
cycle.

LOCATE LEAD BIT

LOB acs,acd

I I I A9S I ACO I I 0 I 0 0 0 0 I 0 0 0 I
o I 2 3 '4 5' 6 ' 7' 8' 9 1 10' 11'12 ' 13' 14' 15

The contents of ACS are inspected for high -order
zeroes. A number equal to the number of high­
order zeroes is added to the 16-bit signed two's
complement number contained in ACD. The con­
tents of ACS and the state of the carry bit remain
unchanged.

NOTE If ACS and ACD are specified
as the same accumulator, the
instruction functions as de -
scribed above, except that
since ACS and ACD are the
same accumulator, the con­
tents of ACS will be changed.

LOCATE AND RESET LEAD BIT

LRB acs,acd

II I A9S I. A9° I' ,0 I I ,0, I 0 , 0, I 0 , 0 , 0 I
o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

The contents of ACS are inspected for high-order
zeroes. A number equal to the number of high­
order zeroes is added to the 16-bit signed two's
complement number contained in ACD. The lead­
ing 1 in ACS is set to O. The state of the carry
bit remains unchanged.

NOTE If ACS and ACD are specified
to be the same accumulator,
then the leading 1 in that accu­
mulator is set to 0, and no
count is taken.

3-15

COUNT BITS

COB acs,acd

I I I ActS I ACO II ,0 I, I ,0 0, 0 , I I 0 , 0 , 0 I
o I 2 3 I 4 5 6 I 7 8 9 I 10 II 12 13 14 15

The contents of ACS are inspected for 1 'so A
number equal to the number of 1 's in ACS is added
to the 16-bit signed two's complement number
contained in ACD. The contents of ACS and the
state of the carry bit remain unchanged.

NOTE If ACS and ACD are specified
as the same accumulator, the
instruction functions as de -
scribed above, except that
since ACS and ACO are the
same accumulator, the con­
tents of ACS will be changed.

BIT MANIPULATION

DATA MOVEMENT

Two instructions are provided in the ECLIPSE line
for the rapid, convenient movement of data .from
one location in memory to another. These Instruc­
tions move from 1 to 32,768 words in one opera­
tion. The BLOCK ADD AND MOVE instruction
also adds a constant to each word as it is moved.
This feature allows easy relocation of address
constants.

BLOCK ADD AND MOVE

BAM

I' ° 0,1 1°,1 I '1 0 ,0, 10 ,0,0
o I I 2 3 4 5 6 I 7 8 9 10 II 12 13 14 15

Words are moved sequentially from one memory
location to another. The words moved are treated
as 16-bit unsigned integers. After a word has been
fetched from the source location, and before it is
stored at the destination location, the 16-bit un­
signed integer contained in ACO is added to it. If
the addition produces a carry of lout of the high­
order bit, no indication is given.

The address of the source location is contained in
bits 1-15 of AC2. The address of the destination
location is contained in bits 1-15 of AC3. If bit 0
of either AC2 and AC3 is 1, it is assumed that the
address contained in bits 1-15 is an indirect ad­
dress. Before the data movement occurs, the
indirection chain is followed and the resultant ef­
fective address is placed in the accumulator.

The number of words moved is equal to the 16 -bit
unsigned number contained in ACl. This number
must be greater than 0 and less than or equal to
1000008. If the number contained in AC1 is out­
side these bounds, no data is moved and the con­
tents of the accumulators is unchanged.

ACCUMULATOR DESCRIPTIONS

AC CONTENTS

0 Addend

1 Number of words to be moved

2 Source address

3 Destination address

For each word moved, the count in AC1 is decre­
mented by one and the source and destination ad­
dresses in AC2 and AC3 are incremented by one.
Upon completion of the instruction, AC1 contains
zeroes, and AC2and AC3 point to the word follow­
ing the last word in their respective fields. The
contents of ACO remain unchanged.

Words are moved in consecutive, ascending order
according to their addresses. The next address
after 777778 is 0 for both fields. The fields may
overlap in any way.

NOTE Due to the potentially long time
that may be required to perform
this instruction in relation to I/O
requests, this instruction is in­
terruptable. If a BLOCK ADD
AND MOVE instruction is inter­
rupted' the program counter is
decremented by one before it is
placed in location 0 so that it
points to the BLOCK ADD AND
MOVE instruction. Because the
addresses and the word count are
updated after every word stored,
any interrupt service routine that
returns control to the interrupted
program via the address stored
in memory location 0 will cor­
rectly restart the BLOCK ADD
AND MOVE instruction.

When updating the source and destination addresses,
the BLOCK ADD AND MOVE instruction forces bit
o of the result to O. This ensures that upon return
from an interrupt, the BLOCK ADD AND MOVE in­
struction will not try to resolve an indirect address
in either AC2 or AC3.

3-16

BLOCK MOVE

BLM

/10,1,101 I 11,110,0,10,0,0/
o I I 2 3 I 4 I 5 I 6 I 7 I 8 9 10 II 12 I 13 14 15

The BLOCK MOVE instruction is equivalent to the
BLOCK ADD AND MOVE instruction in all respects
except that no addition is performed and ACO is not
used.

. NOTE The BLOCK MOVE instruction
is interruptable in. the same
manner as the BLOCKADD AND
MOVE instruction. The note for
BLOCK ADD AND MOVE also
applies to BLOCK MOVE.

3-17

Example:

The following sequence of instructions will create
a 17 word table of constants. The first word in the
table will have the value 0, the second word will
have the value 1, and so on. The last word in the
table will have the value 1610.

LDA

INC

SUBO
STA

INC
MOV
HXL
BAM
JMP

TBLAD: TABLE
TABLE: .BLK

2, TBLAD ;PUT ADDRESS OF

2,3

0,0
0,0,2

0,0
0,1
1,1

; TABLE IN AC2
;PUT ADDRESS OF
; T ABLE+ 1 IN AC3
;SET ACO to °
;SET FIRST WORD
; OF TABLE TO °
;ACO = ADDEND OF 1
;PUT 1610
; IN AC1
;CREATE TABLE

TABLE+21 ;JUMP AROUND

21

; TABLE--1710 = 218
;ADDRESS OF TABLE
;RESERVE 218 WORDS
; FOR TABLE

The first word moved is moved from TABLE+O to
TABLE+ 1. As it is moved, it is incremented by 1.
The second word moved is moved from TABLE+ 1
to TABLE+2. As it is moved, it is incremented by
1. The moving and adding continues until the table
is filled.

DATA MOVEMENT

STACK MANIPULATION

An important feature of the ECLIPSE line of com­
puters is the stack manipulation facility. A Last­
In/First-Out (LIFO) or "Push-Down" stack is
maintained by the processor. The stack facility
provides an expandable area of temporary storage
for variables, data, return addresses, sub­
routine arguments, etc. An important byproduct
of the stack facility is that storage locations are
reserved only when needed. When\ a procedure is
finished with its portion of the stack, those mem­
ory locations are reclaimed and are available for
use by some other procedure.

The operation of the stack depends upon the con­
tents of some reserved storage locations. Loca­
tions 40-438 are the stack control words for the
stack. The locations and their contents are
described below.

Stack Pointer

The stack pointer is contained in location 408,
The stack pointer is the address of the "top" of
the stack and is affected by operations that either
"push" objects onto or "pop" objects off of the
stack. A push operation increments the stack
pointer by 1 and then places the "pushed" object
in the word addressed by the new value of the
stack pointer. A pop operation takes the word
addressed by the current value of the stack pointer
and places it in some new location and then decre­
ments the stack pointer by 1.

.,I'.;-:.::-... :-... : .. -:: ;:.;.: .. ~

STACK POINTER /' STACK POINTER
BEFORE PUSH __ ~i-- AFTER POP

STACK POINTER __ PUSHED/POPPED "r--- STACK POINTER
AFTER PUSH WORD /' BEFORE POP

DG-0056/

Frame Pointer

INCREASING
ADDRESSES

~

/'

The frame pointer is contained in location 418'
The frame pointer is used to reference an area in
the user stack called a "frame". A frame is that
portion of the stack which is reserved for use by
a certain procedure. The frame pointer usually
points to the first available word minus 1 in the
current frame. The frame pointer is also used by
the RETURN instruction to reset the user stack
pointer.

3-18

Stack Limit

The stack limit is contained in location 428, The
stack limit is the address that is used to determine
the presence of a stack overflow condition. After
any stack operation that pushes objects onto the
stack, the stack pointer is compared to the stack
limit. If the stack pointer is greater than the
stack limit, a stack overflow condition is indicated
and a stack fault occurs.

Stack Fault Address

The stack fault address is contained in location
438. The stack fault location contains the address
of the stack' fault handler. Bit 0 of the stack
fault location may be set to 1, indicating that the
address contained in bits 1-15 is an indirect ad­
dress.

Return Block

A return block is defined as a block of five words
that is pushed onto the stack in order to allow con­
venient return to the calling program. The con­
tents of the return block may vary slightly
depending upon which instruction pushes the block,
but the purpose of the block is always the same -­
to allow orderly return by the POP BLOCK in­
struction' the RETURN instruction, or the
RESTORE instruction. The format of the return
block, therefore, is determined by how it is used
in the return sequence. The format of the return
block is as follows:

WORD # POPPED DESTINATION

1 Bit 0 placed in the
carry bit.
Bits 1-15 placed in the
program counter

2 AC3

3 AC2

4 AC1

5 ACO

In the stack, the return block looks like this:

STACK POINTER
AFTER POP

BLOC K OR RETURN

STACK POINTER
BEFORE POP

BLOCK o'R RETURN

5th WORD
POPPED

1st WORD
POPPED

Stack Frames

In order to implement re -entrant subroutines, a
new area of temporary storage must be available
for each execution of a called subroutine. The
easiest way to accomplish this is for the subrou­
tine to use the stack for temporary storage. A
"stack frame" is defined as that portion of the
stack which is available to the called routine. In
general, the stack frame belonging to a subroutine
begins with the first word in the stack after the
return block pushed by the called routine and con­
tains all words in the stack up to, and including,
the return block pushed by any routine which the
called routine calls. Variables and arguments can
be transmitted from the calling routine to the
called routine by placing them in prearranged
positions in the calling routine's stack frame. Be­
cause the SAVE instruction sets the frame pointer
to the last word in the return block, these variables
and arguments can be referenced by the called
program as a negative displacement from the
frame pointer. The called routine should ensure
that reference to the calling routine's stack frame
is made only with the permission of the calling
routine.

Stack Protection

Two types of protection are available for users of
the stack. The two conditions that can be detected
as error conditions are stack "overflow" and
stack "underflow". Stack overflow occurs when
a program pushes data into the area beyond that
allocated for the stack. If stack overflow is
allowed to occur, data will be pushed into areas
that are reserved for other purposes, and infor­
mation or instructions may be destroyed. Stack
underflow occurs when a program pops data from
the area below the area allocated for the stack. If
stack underflow is allowed to occur, the program
will be operating with information that will lead it
to an incorrect conclusion. In addition, it is pos­
sible that the program will push data in the under­
flow area, destroying either data or instructions.
Both underflow and overflow protection can be
enabled and disabled by the program.

To enable underflow protection, the area allocated
for the stack must begin at location 4018 and the
stack pointer must be initialized to 4008. If the
stack pointer is less than 4008 after a pop opera­
tion, an underflow condition is indicated and a
stack fault occurs.

Underflow protection can be disabled in two ways.
The first way is to allocate space for the stack
starting at a location greater than 4018• In this
way, an underflow stack fault will not occur unless
the program underflows the stack and continues to
pop objects off the stack until the stack pointer is
less than 4008. The second way to disable under­
flow protection is to set bit 0 of both the stack
pointer and the stack limit to 1. If this is done, all

3-19

or a portion of the stack may reside in page zero
without interference from the stack underflow
mechanism.

To make stack overflow protection meaningful, the
stack limit must be initialized to the address of the
last word allocated for the stack minus at least
1010. The reason for this is that stack overflow is
sensed only at the end of a push operation. It is
possible to push a 5 -word return block starting at
the address contained in the stack limit. Stack
overflow will not be sensed until the fifth word of
the return block is pushed. After the fifth word is
pushed, stack overflow will be indicated, and an­
other 5-word return block is pushed by the stack
overflow mechanism before control is transferred
to the stack fault routine. This means that at least
ten stack words must be allocated beyond the ad­
dress set in the stack limit. If the state of the
floating point feature is to be pushed, it is possible
to push 23 words beyond the stack limit. For a
VECTOR stack, it is possible to push 11 words
past the stack limit before stack overflow is
sensed.

To disable overflow protection, the stack limit
may be set to 777778. This will ensure that a
stack overflow condition is never indicated.

To disable both underflow and overflow protection,
bit 0 of both the stack pointer and the stack limit
should be set to 1. In addition bits 1-15 of the
stack limit should be set to 777778. With the
stack pointer and the stack limit set up in this
way, all protection devices for the stack are dis­
abled.

Stack Protection Faults

After every operation that pushes data onto the
stack, a check is made for overflow protection.
The stack pointer and the stack limit are treated
as unsigned 16-bit integers and compared. If the
stack pointer is greater than the stack limit, a
stack overflow condition exists. If a stack over­
flow condition exists, the processor pushes a
return block onto the stack with the program
counter in the return block pointing to the next
logical instruction after the stack instruction that
caused the fault. Bit 0 of the stack pointer is set
to 0 and bit 0 of the stack limit is set to 1. After
the return block has been pushed and bit 0 of the
stack pointer and the stack limit have been set,
the processor executes a "jump indirect" to the
stack fault address.

After every operation that pops data off the stack,
a check is made for underflow protection. If the
stack pointer is less than 4008 and bit 0 of the stack
limit is 0, a stack underflow condition exists. If
a stack underflow condition exists, the processor
sets the stack pointer equal to the stack limit and
pushes a return block with the program counter in

STACK MANIPULATION

the return block painting to the instruction imme­
diately after the stack instruction that caused the
fault. Bit 0 of the stack painter is set to 0 and bit
o of the stack limit is set to 1. After the return
block has been pushed and bit 0 of the stack pointer
and the stack limit have been set, the processor
executes a " jump indirect" to the stack fault
address.

It is up to the stack fault handler to determine the
exact nature of the stack error. This can be done
by looking at the contents of the stack pointer and
the stack limit. When the stack fault routine re­
ceives control, if the address contained in bits
1-15 of the stack pointer is not greater than the ad­
dress in bits 1-15 of the stack limit by 5, then the
error was a stack overflow error. If the address
in bits 1-15 of the stack pointer is greater than the
address in bits 1-15 of the stack limit by exactly 5,
then the error was a stack underflow error. Once
the stack fault routine has determined the nature of
the error, it can take appropriate action, such as
allocating more stack space or terminating the
program.

Initialization of the Stack Control Words

Before the first operation on the stack can be per­
formed, the stack control words must be initialized.
The rules for initialization are as follows:

Stack Pointer

The .stack pointer must be initialized to the begin­
ning address of the stack area minus one. If stack
underflow protection is desired, the stack pointer
must be initialized to 4008 and the stack area must
start at 4018. If stack underflow protection is not
desired, start the stack at some location greater
than 4018. Ifit is desired to have all or a portion
of the stack area in page zero, bit 0 of both the
stack pointer and the stack limit must be set to 1.

Frame Pointer

If the main user program is going to use the frame
pointer, it should be initialized to the same value
as the stack pointer. Otherwise, the frame pointer
can be initialized in a subroutine by the SAVE
instruction.

Stack Limit

In order for stack operations to be meaningful, the
stack limit must be initialized to a value greater
than the stack pointer. If stack overflow protection
is desired, the stack limit should be initialized to
the last address allocated for the stack minus at
least ten. If stack overflow protection is not de­
sired, the stack limit should be initialized to
777778' If it is desired to have all or a portion of
the stack area in page zero, bit 0 of both the stack
pOinter and the stack limit must be set to 1.

Stack Fault Address

The stack fault address should be initialized to the
address of the routine that is to receive control in
the event of a stack overflow or underflow. Bit 0
may be set to 1 to indicate an indirect address.

Examples:

Stack area of 508 words with overflow and under­
flow protection

STACK
POINTER

400 8

STACK
LIMIT
4368

I.

-
OG-0093. 20

L;; :.-: -: ...

377
400
401
402

436
437
440

. .

446
447
450

. ~

v-

_ 1st WORD
OF STACK

1/

[/

1.1

Stack area of 508 words in page zero with overflow
protection

po~J~~~_ ..!':-·········:::::-:-:-:-:-:-:·B 1st WORD

1000778 100 - OF STACK

NOTE: BIT 0\ . ,
SET TO I

STACK
LIM IT _1---:-1=-3=-5--r

1001358

OG-00932b

m······:-···-
147
150

Stack'ctrea of 1008 words with no protection

NOTE: BIT 0
SET TO I

STACK
~"""""""":-:-::""""'3

POINTER_ 437 1st WORD
1004378 440 - OF STACK

STACK

L1MITl 1777778

.OG-0093Cc

...... ~

537
540

3-20

STACK MANIPULATION INSTRUCTIONS

PUSH MULTIPLE ACCCUMULATORS

PSH acs,acd

II I A9S I ACfD I I , I I 0 , 0 o 0 o 0 0
I ' ,

012345678
I '

9 10 II 12 ·13 14 15

The set of accumulators starting with ACS and
ending with ACD is pushed onto the stack. The
accumulators are pushed in ascending order,
starting with the AC specified by ACS and con­
tinuing up to and including the AC specified by
ACD, with ACO following AC3.

The contents of the accumulators remain un­
changed. If ACS is equal to ACD, only ACS is
pushed.

POP MULTIPLE ACCUMULATORS

POP acs,acd

I I I A9S I ACD I I ,I 0 0 0 0
o I 2 3 I 4 5 6 I 7 ' 8 I 9 I 10 ' II

I 0 ,0 , 0 I
121 13 14 15

The set of accumulators starting with ACS and
ending with ACD are filled with words popped from
the stack. The accumulators are filled in de­
scending order, starting with the AC specified by
ACS and continuing down to and including ACD,
with AC3 following ACO. If ACS is equal to ACD,
only one word is popped and it is placed in ACS.

PUSH RETURN ADDRESS

PSHR

II 0 ,0 , 0 10 ,I , I
0'123456 1 7

100 000
8 9 I 10' IIi 121 13' 14' 15

Two is added to the present value of the program
counter and the result is pushed onto the stack.

SAVE

SAVE i

I 1 0 0 1 I I I I 0 0 I 0 0 0
3 I I

6 1
, ,

9 I 10'
,

121
, ,

0' I 2 4 5 7 8 " 13 14 15

I IMMEDIATE FIELD
o 1 3 1 4

I I
6 1 7

I I
9 1 10

I I
121

I I
2 5 8 II 13 14 15

A return block is pushed onto the stack. After the
fifth word of the return block is pushed, the value
of the stack pointer is placed in the frame pointer
and in AC3. The format of the five words pushed
is as follows:

3-21

WORD # PUSHED CONTENTS

1 ACO

2 AC1

3 AC2

4 Frame pointer before
the SAVE

5 Bit 0 = carry bit

Bits 1-15 = bits 1-15 of
AC3

After the return block has been pushed, bits 0-15
of the stack pointer are placed in bits 0-15 of the
frame pOinter.

After the frame pointer has been set up, the 16-bit
unsigned integer contained in the immediate field
is added to the stack pointer. The integer that is
added is called the "frame size". The purpose is
to allocate a portion of the stack for use by the
procedure which executed the SAVE. This portion
of the stack will not normally be accessed by push
and pop operations, but will be used by the proce­
dure for temporary storage of variables, counters,
and so forth.

NOTE Before the instruction is exe­
cuted' a check for stack over­
flow is performed. If execution
of the SAVE instruction would
result in a stack overflow con­
dition, the instruction is not
executed and a stack protection
fault is performed. The pro­
gram counter in the fault return
block is the address of the SAVE
instruction.

STACK MANIPULATION

Example:

If a subroutine receives control via a JUMP TO
SUBROUTINE instruction, then the following SAVE
instruction will save all the return information,
allocate a 6 -word block in the stack for use by the
procedure, and set the frame pointer to the address
of the last word in the return block.

JSR LOOP

LOOP: SAVE 6

STACK POINTER
BEFORE SAVE

FRAME POINTER
AFTER SAVE

-t

----J

~
STACK POINTER

AFTER SAVE
DG-00565

. , , .. ,.: .. ~
/"

ACO V
ACI

/"

AC2 V
OLD

FRAME POINTER /"
CARRYI BITS 1-15

BIT OF AC3 ./

/"

/"

./

/"

/"

~

3-22

MODIFY STACK POINTER

MSP ac

II 0 I 0 I AC I
o I I 2 3 I 4

I I I I 0 0 0 I
9 I 10 I II I 12 I 13 I 14 I 15

The contents of the specified AC are added to the
contents of the stack pointer and the result is com­
pared to the stack limit. If the result is greater
than the stack limit, a stack protection fault is
performed. The program counter in the fault re­
turn block is the address of the MODIFY STACK
POINTER instruction. The stack pointer is left
unchanged.

If the result is not greater than the stack limit, the
result is placed in the stack pointer .

PROGRAM FLOW ALTERATION

As stated previously, the normal method of pro­
gram execution is sequential. That is, the pro­
cessor will continue to retrieve instructions from
sequentially addressed locations in memory until
c.irected to do otherwise. Instructions are pro­
vided in the instruction set that alter this sequen­
tial flow. Program flow alteration is accomplished
by placing a new value in the program counter.
Sequential operations will then continue with the
instruction addressed by this new value. Instruc­
tions are provided that change the value of the
program counter, change the value of the program
counter and save a return address, or modify a
memory location by incrementing or decrementing
and skip the next sequential instruction if the re­
sult is zero. In addition to these operations, there
are also instructions that alter the program flow
while saving or restoring the state of the machine.
These instructions allow convenient implementation
of nested subroutines, re -entrant routines, and
recursive procedures.

JUMP

JMP <@ >displacement<, index>

o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

EJMP <@ >displacement<, index>

I I 0 I 0 I 0 0 I I I INDEX I 0 I 0 I! I [I 0 I 0 I 0
o I I 2 3 I 4 5 6 I 7 8 9 I 10 II 12 I 13 14 15

The effective address, "E" is computed and placed
in the program counter. Sequential operation con­
tinues with the word addressed by the updated value
of the program counter.

3-23

JUMP TO SUBROUTINE

JSR <@ > displacement< , index>
=

I 0 0 I 0 ! 0 I I @ I INDEX I [DIS~LAyEMENT!
o I I 2 3 I 4 5 6 I 7 89 I 10 II 121 13 14 15

EJSR <@ > displacement<, index>

II 0 1 0 10
o I I 2 3 I 4

I IINDEX\ 0 I 0 I I I I I 0 I 0 I 0 I
5 6 I 7 8 9 I 10 II 12 I 13 14 15

I@I I I I
DISPLACEMENT

I I I I I I I I
5 o I 2 3 4 6 7 8 9 10 II 12 13 14 15

The effective address, "E" is computed. Then the
present value of the program counter is incremented
by one for JSR and by two for EJSR and the result
is placed in AC3. "E" is then placed in the pro­
gram counter and sequential operation continues
with the word addressed by the updated value of
the program counter.

NOTE The computation of "E" is
completed before the incre­
mented program counter is
placed in AC3.

INCREMENT AND SKIP IF ZERO

ISZ <@>displacement<,index>
=

I 0 O! 0 : I 0 I @ IINDFX I [pIS~LA~EMFNT!
o I I 2 3 I 4 5 6 7 8 9 10 II 12 13 14 15

EISZ <@>displacement<, index>

II 0 0 I I 0 I IINDEXI 0 1 0 I I I I I 0 1 0 I 0 I
o I 2 3 I 4 I 5 6 I 7 8 9 I 10 II 12 I 13 14 15

The word addressed by "E" is incremented by one
and the result is written back into that location.
If the updated value of the location is zero, the
next sequential word is skipped.

PROGRAM FLOW ALTERATION

DECREMENT AND SKIP IF ZERO

DSZ <@ > displacement< ,index>
=

o " 2 3 '4 5 6 '7 8 9 10 II 12 13 14 15

EDSZ <@>displacement<,index>
======

II 0 0·. I I I I I INDEX I 0 ,0 I I I I I 0 I 0 , 0 I
o I I I 2 I 3 I 4 5 6 I 7 8 9 I 10 II 12 I 13 14 15

I@l I I I I
DISPLACEMENT

, I I I I ,.' I I
o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

The word addressed by "E" is decremented by one
and the result is written back into that location. If
the updated value of the location is zero, the next
sequential word is skipped.

SKIP IF ACS GREATER THAN ACD

SGT acs,acd
==

II I A9S I A90 I 0 I I 0, 0 : 0 ., 0 ,0 I' 0, 0 , 0 I
o I 2 3 4 5 6 '7 8 9 10 II 12 ' 13 14 15

The signed, two's complement numbers in ACS
and ACD are algebraically compared. If the num­
ber in ACS is greater than the number in ACD, the
next sequential word is skipped. The contents of
ACS and ACD remain unchanged.

SKIP IF ACS GREATER THAN OR EQUAL TO ACD

SGE acs,acd

I ' I A9S lAC, D I 0 I' 0 0 , 0 0 , 0 0 0 I
o I 2 3 4 5 6' 7 I 8 I 9' 10' II ' 12' 13' 14' 15

The signed two's complement numbers in ACS and
ACD are algebraically compared. If the number in
ACS is greater than or equal to the number in ACD,
the next sequential word is skipped. The con­
tents of ACS and ACD remain unchanged.

NOTE The SKIP IF ACS GREATER
. THAN ACD and SKIP IF ACS
GREATER THAN OR EQUAL
TO ACD instructions treat
the contents of the specified
accumulators as signed,two's
complement integers. For
comparison of unsigned in­
tegers, the SUBTRACT and
ADD COMPLEMENT instruc­
tions may be used. Use of
these instructions for com­
parison is described in Ap­
pendix H.

COMPARE TO LIMITS

CLM acs,acd ==

I I lAC,S I ACO I I 0 0 I I I I I 0 0 0 I . . . - I . , I ' , I ' , I ' , .
o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

The signed, two's complement number contained in
ACS is compared to two signed, two's complement
limit values, "L" and "H". If the number in ACS
is greater than or equal to L and less than or equal
to H, the next sequential word is skipped. If the
number in ACS is less than L or greater than H,
the next sequential word is executed.

If ACS and ACD are specified as different accumu­
lators, the address of the limit value L is contained
in bits 1-15 of ACD. The limit value H is contained
in the word following L. Bit 0 of ACD is ignored.

If ACS and ACD are specified as the same accumu­
lator, then the number to be compared is contained
in that AC and the limit values Land H are con­
tained in the two words following the instruction.
L is the first word and H is the second word. The
next sequential word is the third word following
the instruction.

EXECUTE

XCT ac

I' 0 I I I AC I' ,I 0 I I I I I , I (I I 0 ,0 ,0 I
o I I 2 3 I 4 5 6 I 7 8 9 I 10 II 12 1.3 14 15

The instruction contained in AC is executed as if
it were in main memory in the location occupied by
the EXECUTE instruction. If the instruction in
AC is an EXECUTE instruction which EXECUTE's
the instruction AC, the processor is placed in a
one-instruction loop. The Stop switch on the con­
sole will not stop the processor, but the Reset
switch will.

Due to the possibility of AC containing an EXE­
CUTE instruction, this instruction is interruptable.
An I/O interrupt can occur immediately prior to
each time the instruction in AC is executed. If an
I/O interrupt does occur, the program counter in
the return block pushed on the system stack points
to the EXECUTE instruction in main memory.
This capability to EXECUTE an EXECUTE instruc­
tion gives the programmer a "wait for I/O inter­
rupt" instruction.

3-24

SYSTEM CALL

SYC acs,acd

I I I A9S I ACD II I I I I ° I I ° I ° I I ° I ° I ° I
o I 2 3 I 4 5 6 I 7 8 9 I 10 II 121 13 14 15

If a user map is enabled, it is disabled and a return
block is pushed onto the stack. The program count­
er in the return block points to the instruction im­
mediately following the SYSTEM CALL instruction.
After the return block has been pushed a "jump in­
direct" to location 2 is executed. If this instruction
disabled a user map, then I/O interrupts cannot
occur between the time the SYSTEM CALL instruc­
tion is executed and the time the instruction pointed
to by the contents of location 2 is executed.

NOTE If both accumulators are speci­
fied as ACO, no return block is
pushed on the stack. The contents
of ACO remain unchanged. If not
both accumulators are specified
as ACO, then no special action is
taken. The contents of the speci­
fied accumulators remain un­
changed.

The assembler recognizes the
mnemonic SCL as equivalent to
SYC 1,1. The assembler recog­
nizes the mnemonic SVC as equiv­
alent to SYC 0, O.

PUSH JUMP

PSHJ <@>dis,Rlacement<, index>

II ° I ° ,0 ° I I IINDEXII , 0 I , I I I 0 , 0 , 0 I
o I I 2 3' 4 5 6' 7 8 9' 10 II 12' 13 14 15

I @ I DISPLACEMENT I
o I ' 2 I 3 I 4 ' 5 ' 6 ' 7' 8' 9 ' 10' II ' 12 ' 13' 14 I 15

The address of the next sequential instruction is
pushed onto the stack. The effective address" E"
is computed and placed in the program counter.
Sequential operation continues with the word ad­
dressed by the updated value of the program counter.

POP PC AN'D JUMP

POPJ

II ° ,0, I
o I I 2 3 I 4

10,0,1
1
°,0,01

9 I 10 II 12 13 14 15

The top word on the stack is popped and placed in
the program counter. Sequential operation con­
tinues with the word addressed by the updated value
of the program counter.

DISPATCH

DSPA ac) <@ > displacement< ,index>

II I I 0 I AC II I'NDEX I 0 1 I I , I ,I 0 , 0 I 0 I
o I I 2 3 I 4 5 6 I 7 8 9 I 10 II 12 I 13 14 15

2

DISPLACEMENT
I I 1 , I II I I I I I

The effective address "E" is computed. This is
the address of a "dispatch table". The dispatch
table consists of a table of addresses. Immediate­
ly before the table are two signed, two's comple­
ment limit words, "L" and "H". The last word of
the table is in location E+H-L.

.. ,,, , , ... , " .. ::;;
L I..-'

H v
E ------I-------rl..-'

1/

E+H-L-{:3
06-0//27

The signed, two's complement number contained
in AC is compared to the limit words. If the num­
ber in AC is less than L or greater than H, se­
quential operation continues with the instruction
immediately after the DISPATCH instruction.

If the number in AC is greater than or equal to L
and less than or equal to H, the word at location
E-L+number is fetched. If the fetched word is
equal to 1777778, sequential operation continues
with the instruction immediately after the
DISPATCH instruction. If the fetched word is not
equal to 1777778, this word is treated as the inter­
mediate address in the effective address calcula­
tion. After the indirection chain, if any, has been
followed, the effective address is placed in the
program counter and sequential operation continues
with the word addressed by the updated value of
the program counter.

3-25
PROGRAM FLOW ALTERATION

POP BLOCK

POPB

II 0 ° ° I
0 1 1'2'3 1 4'5

I
6 I 7 1 8

I ° ° I 0001
9 I 10 ' II ' 12 L 13 ' 14 ' 15

Five words are popped off of the stack and placed
in predetermined locations. The words popped and
their destinations are as follows:

STACK POINTER
AFTER POP

BLOCK

STACK POINTER
BEFORE POP

BLOCK

06-00607

Sequential operation continues with the word ad­
dressed by the updated value of the program
counter.

The POP BLOCK instruction can be used to return
control from routines called by the SUPERVISOR
CALL instruction or to return control from an I/O
interrupt handler that does not use the stack change
facility of the VECTOR ON INTERRUPTING
DEVICE CODE instruction.

RETURN

RTN

II ° I °
o I I ' 2 ' 3 I 4

I 0,0,1 10 ,0,0 I
9 I 10 II 12 13 14 15

. I

5 6 7 8

The contents of the frame pointer are placed in the
stack pointer and a POP BLOCK instruction is
executed. The popped value of AC3 is placed in
the frame pointer.

The RETURN instruction can be used to return
control from routines that issue a SAVE instruc­
tion at their entry points.

3-26

RESTORE

RSTR

II I I I °
o I I 2 I 3 I 4

I I 001 0 ° 0 I
5 I 6 I 7 I 8 I 9 I 10 III 112 I 13 1 14 I 15

Nine words are popped off the stack and placed in
predetermined locations. The words popped and
their destinations are as follows:

STACK POINTER
AFTER RESTORE --t

---II STACK POINTER
BEFORE RESTORE

06-00606

c·-',!,". _",."- ... ,!.- ," .. y

./
STACK

POINTER ./
FRAME

POINTER ./
STACK
LIMIT ./
STACK
FAULT ./

ACO
./

ACI ./
AC2 ./

AC3 ./
CARRY ~GRAM

BIT OUNTER ./
.,;

This instruction can be used to return control from
an I/O interrupt handler that uses the stack change
facility of the VECTOR ON INTERRUPTING
DEVICE CODE instruction.

Sequential operation continues with the word ad­
dressed by the updated value of the program counter.

NOTE No check for stack underflow
is performed as part of the
RESTORE operation.

SUBROUTINES CALLS AND RETURNS

The transfer of control between routines is made
easier and more orderly by using the stack facil­
ity. There are three general ways to effect calls
and returns, but more complex ways may be
derived. The three basic methods of call and
return are discussed here.

The first method transfers control to the subrou­
tine via a JUMP TO SUBROUTINE instruction.
The subroutine executes a SAVE instruction at the
subroutine entry point and returns control via the
RETURN instruction.

CALL:

SBRT:

;CALLING PROGRAM
JSR SBRT

; SUBROUTINE
SAVE i

RETURN: RTN

This method has the following characteristics:

1. AC3 of the calling program is destroyed
by JSR.

20 The call is only one word.

3. Upon return to the calling program, AC3
contains the calling program's frame
pointer.

4. A SAVE instruction is required at each
entry point.

5. Arguments are easily passed on the stack,
because SAVE sets up the frame pointer
for the called routine, and RETURN places
the frame pointer of the calling routine in
AC3.

The second method transfers control to the sub­
routine via a JUMP TO SUBROUTINE instruction.
The subroutine executes a PUSH MULTIPLE AC­
CUMULATORS instruction to save the return ad­
dress and returns control via the POP PC AND
JUMP instruction.

SUBR:

;CALLING PROGRAM
JSR SUBR

; SUBROUTINE
PSH 3,3

RETURN: POPJ

3-27

This method has the following characteristics:

1. AC3 of the calling program is destroyed
by the JSR.

2. The call is only one word.

3. A PSH 3, 3 instruction is required at each
entry point.

4. Arguments may be placed in-line in the
calling program and conveniently refer­
enced because AC3 points to the first word
after the call.

The third method transfers control to the subrou­
tine via a PUSH JUMP instruction. The subrou­
tine returns via a POP PC AND JUMP instruction.

CALL:

SBRT:

;CALLING PROGRAM
PSHJ SBRT ;PUSH RETURN ADDRESS

; AND JUMP

;SUBROUTINE

RETURN: POPJ

This method has the following characteristics:

1. No accumulators are destroyed.

2. The call requires two words.

3. Multiple entry points are easy to use be­
cause no action is required at the entry
point.

4. Arguments may be passed in the accu­
mulators.

SUBROUTINES CALLS AND RETURNS

Example:

An important feature of subroutines that use the
stack for saving return information is that they
can call themselves without complicated storage
allocation procedures. Routines that call them­
selves are called "recursive" procedures. A
good example of a recursive procedure is the
factorial function. The number n! (read "n
factorial") is equal to 1 if n is equal to either °
or 1. For values of n greater than 1 the definition
of n! is as follows: n! = n*(n-1)*(n-2)* •.. *1.
The function can also be defined as n! = n*«n-1) I).
This function can be computed by counting through
a loop (iteratively) or by a procedure calling itself
(recursively). The following procedure implements
the factorial function iteratively. AC2 contains n
and AC3 contains the return address. The answer
is returned in ACO and AC1.

ENTRY: SUBO 0,0 ;CLEAR ACO
INC 0,1 ;PUT 1 IN AC1

The following procedure implements the factorial
function recursively. AC2 contains n. The answer
is returned in ACO and AC1: The procedure is
called with a PUSH JUMP.

ENTRY: SUBO 0, ° ;CLEAR ACO
INC 0,1 ;PUT 1 IN AC1
ADCZ# 1,2,SNC ;N GREATER THAN 1?
POPJ ;NO--RETURN
PSH 2,2 ;YES--SAVE N
SBI 1, 2 ;DECREASE N BY 1
PSHJ ENTRY ;PUSH RETURN AD-

; DRESS AND DO
; FACTORIAL OF N-1

POP 2, 2 ;RETRIEVE N
MUL ;MULTIPLY (N-1)! BY

;N
POPJ ;RETURN

ADCZ# 1,2, SNC ;N GREATER THAN 1?
JMP 0,3 ;NO--RETURN WITH

; ANSWER = 1
MUL ;YES--MULTIPLY
SBI 1,2 ;DECREASE N BY 1
MOVZR# 2,2,SNR ;N=1?
JMP 0,3 ;YES--RETURN
JMP • -4 ;NO--DO IT AGAIN

3-28

EXTENDED OPERATION FEATURE

The extended operation feature (XOP) provides a
general, efficient method of transferring control
to and from procedures. When used with the
writeable control store feature (WCS) the XOP
feature enables the user to transfer control to any
one of 16 entry points in WCS. This gives the user
the capability of implementing his own specialized
instructions and executing them conveniently.

EXTENDED OPERATION

XOP acs,acd,Qperation number

I I I A~S I ACD I O;ERATI~N,,*: I 0
o I 2 3 I 4 5 6 I 7 8 9 10 ' II

o 0 0 I
121 13' 14 ' 15

A return block is pushed onto the stack. The ad­
dress in the stack of ACS is placed into AC2 and
the address in the stack of ACD is placed into AC3.
Memory location 448 (the XOP origin) must con­
tain the starting address of a 3210 word table of
addresses. These addresses are the starting loca­
tion of the various XOP operations.

The operation number in the XOP instruction is
added to the contents of the XOP origin to produce
the address of a word in the XOP table. That word
is fetched and treated as the intermediate address
in the effective address calculation. After the in­
direction chain, if any has been followed, the effec­
tive address is placed in the program counter. The
contents of ACO, AC1 and the XOP origin remain
unchanged.

The format of the return block pushed by the XOP
instruction is as follows:

-"--.
........ " :"""" .. :-:.:."'"":::;-

.---. STACK POINTER
BEFORE XOP

ACO

ACI

AC2

AC3

STACK POINTER
AFTER XOP

(I ADDRESS
~ CARRY OF XOP + I

~

06-00567

1/

V

i/

/'

/'

/'

/'

l.oI'

This return block is configured so that the XOP
procedure can return control to the calling pro­
gram via the POP BLOCK instruction.

3-29
EXTENDED OPERATION FEATURE

WRITEABLE CONTROL STORE FEATURE

The writeable control store (WCS) feature of the
EC LIPSE line of computers allows the user to
transfer control to anyone of 16 entry points in
WCS. These routines in WCS allow the micro­
programmer to utilize the full power of the
ECLIPSE line microcode processor.

Placing Microcode in WCS

Before the user can utilize the XOP feature to exe­
cute instructions in WCS, the microcode must be
placed in the WCS locations and the entry points
must be specified. This discussion treats only
how to place microcode in WCS and how to specify
the decode1 and decode2 addresses. For a detailed
discussion of how to write microprograms see
"Microprogramming With The ECLIPSE computer
WCS Feature" (DGC 014-000045).

The setting-up of WCS is done with three I/O in­
structions. For a detailed discussion of the I/O
format instructions see the I/O section of this
manual.

SPECIFY ADDRESS

DOA ac,WCS

I 0 ',' I AC I 0 " 0 I 0 , 0 I 0 , 0 ,0 0, 0 , ' I
o I I 2 3 I 4 5 6 I 7 8 9 10 II 12 ' 13 14 15

The contents of the specified AC are transferred
to the WCS word register. The format of the in­
formation in the specified AC is dependent upon
whether the user is transferring microcode words
or decode addresses to the WCS feature. If this
SPECIFY ADDRESS instruction is to be followed
by a LOAD MICROCODE instruction, the format
of the specified AC is as follows:

BIT NUMBER

0-5

6-13

14-15

CONTENTS

Unused

Address in WCS of the 56 -bit
microword that will be loaded
by the following LOAD MICRO­
CODE instruction.

Field of the 56 -bit microword
that will be loaded by the fol­
lowing LOAD MICROCODE
instruction. If these bits are
00, the field is microcode bits
0-15. If these bits are 01, the
field is microcode bits 16-31.
If these bits are 10, the field
is microcode bits 32-47. If
these bits are 11, the field is
microcode bits 48-55.

If this SPECIFY ADDRESS instruction is to be fol­
lowed by a LOAD DECODE ADDRESS instruction,
the format of the specified AC is as follows:

3-30

BIT NUMBER CONTENTS

0-10 Unused

11-14 Entry number--from bits 6-9 of
of the corresponding XOP1 in-
struction.

15 Decode number. If this bit is
0, the following LOAD DECODE
ADDRESS instruction will
specify a decode1 address. If
this bit is 1, the following
LOAD DECODE ADDRESS in-
struction will specify a decode2
address.

The contents of the specified AC remain unchanged.

LOAD MICROCODE

DOB ac,WCS

I 0 I I , I I Af I', 0 , 0 I 0 , 0 I 0 , 0 , 0 , 0 , 0 , ' I
o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

The contents of the specified AC are placed in the
field of the microcode word whose address was
specified in the previous SPECIFY ADDRESS in­
struction. If the field specified in the previous
SPECIFY ADDRESS instruction was field 3 (bits
14-15= 11), only bits 0-7 of the specified AC are
transferred to the WCS feature. The contents of
the specified AC remain unchanged.

LOAD DECODE ADDRESS

DOC ac,WCS

I 0 I ' , ' I Af II , I I 0 I 0 , 0 I 0 , 0 , 0 I 0 , 0 ,
o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

Bits 8-15 of the specified AC are placed in the
decode word whose address was specified in the
previous SPECIFY ADDRESS instruction. The
contents of the specified AC remain unchanged.

ENTER WCS

XOP1 acs, acd, entry number

I I I A9S I ACD I 0 I ENT~Y ~o. I' I I I I 0 I 0 I 0 I
o I 2 3 I 4 5 6 I 7 8 9 10 II 12 I 13 14 15

The microprogram in WCS whose entry number
corresponds to bits 6-9 in the ENTER WCS in­
struction is executed. The use of the accumula­
tors, whether or not they are changed, and the
location of the next instruction are all dependent
upon the executed microprogram.

If the WCS feature is not installed, the ENTER
WCS instruction operates exactly like the
EXTENDED OPERATION instruction except that
before the entry number is added to the XOP
origin, 3210 is added to the entry number.

MEMORY ALLOCATION AND
PROTECTION

NOTE In the following section, "MAP" refers
to the Memory Allocation and Protection unit,
whereas "map" refers to a set of memory
translation functions used by the MAP.

The MAP unit provides the hardware necessary to
control and use more than 32K of physical memory. A
MAP is useful for systems with two users and required
for systems with more than two users. In addition, the
MAP provides protection functions which help
protect the integrity of a large system.

A MAP unit gives several users access to the resources
of the computer by dividing th~ memory space
available into blocks assigned to each user. Each time
a user accesses memory, the MAP translates the
address the user sees (a logical address) to an address
the memory sees (a physical address). This is all
transparent to the user, and with software to control
the priorities of the MAP and the CPU, several users
can use the computer without being aware of the
presence of the others.

For the following discussion, certain words and
phrases should be defined:

Logical Address - The address used by the user in all
programming. The logical address space is 32,768
words long and is addressed by a 15-bit address.

Physical Address - The address used by the MAP to
address the physical memory. The physical address
space has a maximum size of 131,072 words (128K)
and is addressed by a 17-bit address.

Address Translation - The process of translating logical
addresses into physical addresses, and vice versa.

Memory Space - The addresses (physical or logical)
assigned to a particular user.

Page - 102410 (20008) words in memory.

User Map - The set of memory address translation
functions defined for a particular user.

Data Channel Map - The set of address translation
functions defined for the memory references of a data
channel device used by a particular user or device.

Supervisor - The section of the operating system
(software) which controls system functions such as
the operation of the MAP.

3-31

Address Translation
The primary function of the MAP is address
translation. The map divides each user's logical
address space into 1024-word pages and correlates
each logical page with a corresponding physical page.
The address space the user sees is unchanged, but the
map now translates each logical address into a
physical address before memory is actually accessed.

Note that there is no requirement that the physical
pages assigned to a user be in any particular order in
physical memory. The supervisor can therefore use
physical memory very flexibly, selecting unused pages
for a new user without concern for maintaining any
particular arrangement. Very complete use of the
physical memory is also possible, since no contiguous
blocks of memory larger than 1024 words are
required.

Sharing of Physical Memory
The MAP is also capable of declaring a section of
physical memory accessible to several users at once.
This is useful if several users need a routine to
perform some common function (e.g., trigonometric
tables). Without this capability, each user would
require a separate copy of the routine, thus creating
many duplicate copies and wasting considerable
space.

Types of Maps
Two types of maps are provided. User maps translate
logical addresses to physical addresses when memory
reference instructions are encountered in the user's
program. Data channel maps translate logical
addresses to physical addresses when data channel
devices address the memory.

Each user requires a separate user map. The MAP can
hold two user maps, but only one can be enabled at
anyone time. Thus if there are two users, the user
map for each is specified and loaded into the MAP.
The supervisor can then enable one or the other as
needed. If there are more than two users, new user
maps must be loaded as needed. In some operating
systems, the operating system itself uses one of the
user maps, so that a new user map must be loaded
each time another user is serviced. This is not as much
of an overhead burden as it sounds, because the Load
Map instruction loads a complete map with one
instruction, using relatively little time.

Separate data channel maps are needed because data
channel devices can access memory without direct
control from the user's program. There is thus no
assurance that the proper user map would still be
enabled at the time of the data channel request. The
MAP can hold four data channel maps. Enabling data
channel mapping enables all four data channel maps
at the same time. The choice of which map is used for
data channel references is made by the I/O controller
making the reference. Those controllers not equipped
to make this distinction use data channel map A by
default. See the Programmer's Reference Manual -
Peripherals wac No. 015-000021).

Supervisor Mode
So far we have assumed operation in the user mode.
The MAP can also operate in the supervisor mode.
The supervisor mode is used to analyze protection
faults (see below), load new maps, and, in general,
perform various MAP control functions. In the
supervisor mode, addresses in the range 0-757778
(which form logical pages 0-30> are not translated.
This means that· the supervisor program can be as
large as 31K and will reside in the lowest section of
memory. In the supervisor mode, addresses in the
range 76000-777778 are translated by the special map
for supervisor's logical page 31. This allows the
supervisor to access portions of user space while in
supervisor mode.

MAP Protection Capabilities
In addition to its address translation functions, the
MAP also provides protection functions. These
generally protect the integrity of the system by
preventing unauthorized access to certain parts of
memory or to I/O devices. For example, if a set of
trigonometric functions is stored in a section of
memory accessible to all users, this section can be
write protected so that users can read the functions
but cannot change them.

The various types of protection available are discussed
separately below.

Validity Protection

Validity protection protects a user's memory space
from inadvertent access by another user, thereby
preserving the integrity and privacy of the user's
memory space. When a user's map is specified, the
blocks of logical addresses required by the user's
program are linked to blocks of physical addresses.
The remaining (unused) logical blocks are declared
invalid to that user, and an attempt to access them
will cause a validity protection fault.

Validity protection is always enabled, so the
supervisor's responsibility is limited to declaring the
appropriate blocks of logical addresses invalid.

3-32

Write Protection

Write protection permits users to read the protected
memory addresses, but not to write into them. In this
way, the integrity of common areas of memory can be
protected. An attempt to write into a write protected
area of memory will cause a protection fault.

A block of addresses is write protected when the map
is specified. Write protection can be enabled or
disabled at any time by the supervisor.

Indirect Protection

An indirection loop occurs when the effective address
calculation follows a chain of indirect addresses and
never finds a word with bit 0 set to O. Without indirect
protection, the CPU would be unable to proceed with
any further instructions, thus effectively halting the
system.

With indirect protection enabled, a chain of 15
indirect references will cause a protection fault.
Indirect protection can be enabled or disabled at any
time by the supervisor.

1/0 Protection

I/O protection protects the I/O devices in the system
from unauthorized access. In many systems, all I/O
operations are performed through operating system
calls. Clearly, it is undesirable to permit individual
users to execute I/O instructions, since this will
interfere with the operating system. If a user with I/O
protection enabled attempts to execute an I/O
instruction, a protection fault will occur. I/O
protection can be enabled or disabled at any time.

MAP Protection Faults
When a user attempts to violate one of the enabled
types of protection, a protection fault occurs, as
follows:

• The current user map is disabled.

• A 5-word return block is pushed onto the system
stack.

• Control is transferred to the protection fault
handler, through an indirect jump via location 3.

The system programmer must supply the protection
fault handler. It determines the type of fault that
occurred (using the Read Map Status instruction),
and then takes the appropriate action.

A protection fault can occur at any point during the
execution of an instruction. Therefore, the return
address in the fifth word of the return block is not
always correct. For I/O protection· faults, the fifth
word will always be the logical 8ddress of the
instruction following the instruction that caused the
fault. For all other types of faults, the fifth word will
be a meaningless number.

Data General Corporation (DGC) has prepared this manual for use by DGC personnel and customers as a guide to the proper installation. operation. and
maintenance of DGC equipment and software. The drawings and specifications contained herein are the property of DGC and shall neither be reproduced in whole or
in part without DGC's prior written approval nor be implied to grant any license to make, use, or sell equipment manufactured in accordance herewith.

Load Effective Address Mode
The Load Effective Address instruction uses the same
instruction codes as some of the I/O instructions.
Without some other indication, the LPU would have
no way of knowing which instruction was intended.
The MAP therefore has a Lef mode bit, which
switches the mode of the MAP from Lef mode to I/O
mode. When the Lef mode bit is 1, all I/O format
instructions are interpreted as Load Effective Address
instructions. When the Lefmode bit is 0, all I/O format
instructions are interpreted as I/O instructions.

The Load Effective Address instruction is very useful
for quickly loading a constant into an accumulator. In
addition, a user operating in the Lef mode is
effectively denied access to any I/O devices, because all
I/O and Lef instructions are interpreted as Lef
instructions in this mode. Thus, Lefmode can be used
for I/O protection. Note, however, that no indication
is given if an I/O instruction is interpreted as an Lef
instruction. The contents of the indicated
a.ccumulator will depend on the I/O instruction, but in
general, the results will be undesirable.

When not operating in the Lef mode, all Lef and I/O
instructions are interpreted as I/O instructions. With
I/O protection enabled, these instructions will cause a
protection fault in the normal manner. With I/O
protection disabled, the Lef instruction will be
executed as an I/O instruction if possible. The results
will depend on the instruction, but will probably be
undesirable.

3-33

Initial Conditions
At power up, the user maps and the data channel
maps are undefined, the MAP is in the supervisor
mode, and ·supervisor logical page 31 is mapped to
physical page 31.

After an I/O Reset, the MAP is in supervisor mode, the
data channel maps are disabled, and supervisor logical
page 31 is mapped to physical page 31.

S/200 AND C/300
MAP INSTRUCTIONS

Listed below are the instructions for the MAP feature
found on the ECLIPSE S/200 and C/300 computers.

load Map

LMP

1000010001
I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

A BLOCK ADD AND MOVE instruction is performed
with the exception that no data is written into the
destination area. After the contents of ACO have been
added to the fetched word, the result is loaded into
the MAP feature. The accumulators are set up in the
same manner as for a BLOCK ADD AND MOVE
instruction. AC3 is ignored and its contents remain
unchanged. If this instruction is issued while in the
user mode, it is not executed if I/O protection is
enabled. Program operation continues with the next
sequential instruction.

AC CONTENTS

0 Addend
1 Number of words to be moved
2 Source address
3 Destination address

The information to be loaded into the MAP feature is
in three formats. Format number one defines the map
for a single 2K byte block of logical memory. Format
two defines the I/O devices that are inaccessible to a
user. Format three defines the protection features
that are to be enabled for a user.

Rev. 02 3-34

Format Number One - Address Translation

BIT
NUMBER CONTENTS

0 Reserved for future use.

1-5 Logical block number - this is the number of the
logical block to be mapped.

6-7 Map type - if 01, this is a translation for the data
channel i if 10, this is a translation for user A; if 11, this
is a translation for user B.

8 Write Protect - if 1, this block may not be modified if
write protection is enabled.

9-15 Physical block number - this is the number of the
physical block that corresponds to the logical block
given in bits 1-5.

NOTE A logical block is validity protected by
mapping to physical block 12'110 and setting the
write protect bit.

Format Number Two - I/O Protection

BIT
NUMBER CONTENTS

0 Reserved for future use.

1 Must be 1.

2 User number - if 0, these devices are to be protected
from user A; if 1, these devices are to be protected
from user B.

3-5 Device class - an unsigned number in the range 0-7 -
this is the high-order digit of the two-digit,
octal device code

6-7 Format type - must be 00.

8-15 Device protect bits: the second digit of the two-
digit device code is specified by the position of the
bit in this field. A 1 in any bit protects the
corresponding device from receiving any commands
directly from the user. For example, if bits 3-5 lre 010
and bits 8-15 are 01010000, then devices 218 and 238
are protected

Format Number Three - Status

BIT
NUMBER CONTENTS

0 Reserved for future use.

1 Must be o.

2 User Number - if 0, these status bits refer to user A;
if 1, these status bits refer to user B.

3-5 Reserved for future use.

&-7 Format Type - must be 00.

8 Reserved for future use.

9 LEF Mode - if 1, the LOAD EFFECTIVE ADDRESS
instruction is to be enabled for this user.

10 1/0 Protect - if 1,110 protection is to be enabled for
this user.

11 Write Protect - if 1, write protection is to be enabled
for this user.

12 Indirect Protect - if 1, indirect protection is to be
enabled for this user.

13 Data Channel Protect - if 1, data channel protection
is to be enabled for this user.

14 Data Channel Map Enable - if 1, the data channel
map is enabled immediately.

15 User Map Enable - if 1, the user map for this user is
enabled after the LOAD MAP instruction is finished.

It is format three that directs the MAP feature to
begin translating addresses. If at any time during the
execution of the LOAD MAP instruction, the MAP
feature receives a word in this format with bit 15 set
to 1, the interrupt system is immediately disabled and
the map for the user indicated by bit 2 is readied.
After the next POP BLOCK, POP PC AND JUMP,
RETURN, or STORE instruction or an indirect
reference while computing an effective address, the
map for the user indicated by bit 2 is enabled. After
the first user instruction has started to execute, the
interrupt system is enabled. The MAP feature will
continue to translate addresses and check for
protection violations until directed to stop by a
SYSTEM CALL instruction or until it senses a
protection violation or an I/O interrupt occurs.

3-35

Load Single Word

DOA ac,MAP

I 0 1 1 I AC 1 0 1 0 0 0 0 0 0 0 1 1 I
o I 1 1 2 3 I 4 5 1 6 I 7 1 8 1 9 110 1 11 1 12 113 1 141 15

The contents of the specified AC are transferred to
the MAP feature. The contents of the specified AC
must be in one of the formats listed under the LOAD
MAP instruction. The contents of the specified AC
remain unchanged.

Map Supervisor Block 31

DOB ac,MAP

I 0 1 1 I AC 11 0 0 0 0 0 0 0 0 1 1 I
o I 1 1 2 3 I 4 5 1 6 I 7 1 8 1 9 110 1 11 1 12 113 1 14 1 15

Bits 9-15 of the specified AC are transferred to the
MAP feature. These bits specify a physical block
number to which logical block 31 will be mapped
when in the supervisor mode.

Read User Status

DIA ac,MAP

I 0 1 1 1 AC ·1 0 0 1 0 I 0 0 . 0 0 0 1 1 1
o I 1 I 2 31· 4 5 I 6 I 1 I 8 9 110 I 11 I 12 113 I 14 I 15

The status· of the last enabled user map is placed in
the specified AC. The previous contents of the
specified AC are lost. The information placed in the
specified AC has the following format:

BIT
NUMBER CONTENTS

0 Reserved for future use.

1 Always O.

2 User number· if 0, these status bits refer to user A; if
1, these status bits refer to user B.

3-5 Reserved for future use.

6-7 Always o.

8 Reserved for future use.

9 LEF mode - if 1, tile LOAD EFFECTIVE ADDRESS is
enabled for this user.

10 1/0 Protect - if 1,110 protection is enabled for this
user.

11 Write Protect - if 1, write protection is enabled for
this user.

12 Indirect Protection· if 1, indirect protection is
enabled fOr this user.

13 Data Channel Protect - if 1, data channel protection
is enabled for this user.

14 Data channel Map Enable· if 1, the data channel is
currently enabled.

15 User Mode Interrupt· if 1, the last 1/0 interrupt
occurred while in user mode.

3-36

Read Map Status

ole ac,MAP

I. 0 1 1 I AC 11 0 1 0 0 0 0 0 0 1 1 1
o I 1 I 2 3 I 4 S I 6 I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 1S

The contents of the MAP status register are placed in
the specified AC. The previous contents of the
specified AC are lost. The format of the information
placed in the specified AC is as follows:

BIT
NUMBER CONTENTS

0 If 1, a data channel protection error has occurred.

1 If 1, the error ocurred during a MAP SINGLE CYCLE
instruction.

2 if 1, a write protection error has ocurred for the user
indicated in bit 6.

3 If 1, a validity protection error has occurred for the
user indicated in bit 6.

4 If 1, an indirect protection error has occurred for the
user ind icated in bit 6.

5 If 1, an lID protection error has occurred for the user
indicated in bit 6.

6 If 0, the last user map enabled was for user A; if 1,
the last user map enabled was for user B.

7 If 1, the program counter pushed onto the system
stack is undefined.

8 If 1, write protection is enabled for the physical
block whose number is given in bits 9-15.

9·15 This is the physical block number corresponding to
the logical page number given in the last
TRANSLATE BLOCK instruction.

Translate Block

DOC ac,MAP

I 0 1 1 1 AC 11 1 0 I 0 0 I 0 0 0 0 1 1 I
o I 1 I 2 3 I 4 5 I & I 7 8 I 9 10 I 11 I 12 I n I 14 I 15

The logical block number in bits 1-5 of t he spp,~ifi .. d
AC will be translated to the corresponding pllyRi"al
bloek number and placed in bits 9-15 of the MAP
81 at us register. The contents of the specified !\C
!'emain unchanged. The format of the specified AC is
as follows:

[}::r, LOilCAIL BLicK 10 . I ~~~ 1::::::::::i::::::':':i':'::)'::,:'I":::'::j::::"'}}i)}~r:,:~:r{'~i::{I:]
o 1 2 3 4 5 & I 7 8 9 10 11 12 n 14 15

BIT
NUMBER CONTENTS

0 Reserved for future use.

1-5 Logical block number to be translated.

6-7 If 00, no translation will be performed;
If 01, translation will be performed with the map for
the data channel.
If 10, translation will be performed with the map for
user A
If 11, translation will be performed with the map for
user B.

B-15 R·eserved for future use.

Map Single Cycle

NIOP MAP

0100000110000111
o I I 2 I 3 I 4 I 5 I & I 7 I 8 I 9 110 I 11 I 12 In I 14 I 15

The last user map enabled is enabled for one memory
reference. The first memory reference of the next
LOAD or STORE instruction is mapped. After the
memory cycle is mapped, the user map is again
disabled.

Example:

If AC2 contains 4058 , and the following instruction
sequence is issued:

NIOP MAP ;MAP SINGLE CYCLE
LDA 3,2,2

The logical address 4078 will be mapped using the user
map for the last enabled user. The word contained in
the corresponding physical location will be placed in
AC3.

However, if the following instruction seqlH'IlCI> IS

issued:

N/OP MAP ;MAP SINGLE CYCLE
LDA 3,@2,2

The logical address 4078 will be mapped using th,· UR<'r
map for the last enabled user. The content s of tile
corresponding physical location will be used 1IS tile
first level of an indirection chain. The next ml'mll!'Y
cycle. which is the second level of the indirpct inn
chain, will not be mapped.

3-37

NOTE The interrupt system is disabled from
the beginning of the MAP SINGLE CYCLE
instruction until after the next LOAD or
STORE instruction.

Load Effective Address

LEF ac'[@ldisplacementl,indexl

I 0 1 1 1 AC 1 @ 1 INDEX 1 DISPLACEMENT 1
o I 1 I 2 3 I 4 5 & I 7 8 I 9 1 10 I 11 I 12 In I 14 I 15

If the LEF MODE bit in the user status is 1 for a user,
then all I/O instructions issued by that user will be
interpreted as LOAD EFFECTIVE ADDRESS
instructions.

When a LOAD EFFECTIVE ADDRESS instruction is
issued, the logical effective address is computed from
bits 5-15 of the instruction and placed in the specified
AC. The previous contents of the specified AC are lost.
If an auto-incrementing or auto-decrementing lo­
cation is referenced in the course of the effective
address calculation, it is incremented or decremented.

Examples:

INSTRUCTION RESULT

LEF O,TABLE The logical address of TABLE is
placed in AC1

LEF 2,34,2 34& is added to the unsigned
integer in AC2.

LEF 1,-55,3 558 is subtracted from the un-
signed integer in AC3 and the
result is placed in AC1.

LEF 0,.+0 The logical address of this
LOAD EFFECTIVE ADDRESS
instruction is placed in ACO.

NOTE The LOAD EFFECTIVE ADDRESS
instruction can only be issued in the user mode.

S/230 AND C/330
MAP INSTRUCTIONS

Listed below are the instructions for the MAP feature
found on the ECLIPSE S/230 and C/330 computers.

Load Map

LMP

Successive words from memory are loaded into the
MAP feature where they are used to define an address
translation function. Words are loaded in consecutive,
ascending order according to their addresses. The
number of words to be loaded and the address of the
beginning of the field are contained in accumulators 1
and 2. Which address translation function is being
loaded is determined by the contents of the Map field
in the MAP status register.

ACO must contain O. AC1 must contain an unsigned
integer which is the number of words to be loaded into
the MAP feature. Bit 0 of AC2 must be set to O. Bits
1-15 of AC2 must contain the address of the first word
to be loaded. AC3 is ignored and its contents remain
unchanged.

For each word loaded, the count in AC1 is
decremented by one and the source address in AC2 is
incremented by 1. Upon completion of the instruction,
ACO and AC1 contain 0 and AC2 contains the address
of the word following the last word loaded.

This instruction is interruptable in the same manner
as the BLOCK ADD AND MOVE instruction. If this
inst-ruction is issued while in the user mode, it is not
executed if I/O protection is enabled. Program
operation continues with the next sequential
instruction.

Rev. 02 3-38

The words loaded into the MAP feature define the
address translation functions for the various user and
data channel maps. Which map is to be affected by a
LOAD MAP instruction is determined by the contents
of the Map field in the MAP status register. This field
can be altered by both the LOAD MAP STATUS and
the INITIATE PAGE CHECK instruction.

The format of the words loaded into the MAP feature
is as follows:

!Wpl LOGICAL I VAL I PHYSICAL I
o 1 I 2 I 3 I 4 I 5 6 I 7 8 I 9 110 I 11 I 12 113 I 14 I 15

Bits Name Function

0 Write If 1. this logical block will be write protected
Protect when write protection is enabled.

1-5 Logical This is the number of the logical block which is
Block to be mapped.

6-7 Validity These two bits must be be set to 1 when
declaring a logical block invalid. Otherwise,
they must be set to O.

8-15 Physical This is the number of the physical block of
Block memory that will hold the logical block defined

by bits 1-5.

NOTE A logical block is declared invalid by
setting the Write Protect bit to 1 and all of bits
6-15 to 1.

load MAP Status

DOA ac,MAP

I 0 1 1 I AC I 0 I 0 0 0 0 0 0 0 1 1 I
o I 1 I 2 3 I 4 5 6 I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

The contents of the specified AC are placed in the
MAP status register. The contents of the specified AC
remain unchanged. The format of the specified AC is
as follows:

Bits Name Function

0-5 ---- Reserved for future use.

6-8 Map Specify which map will be loaded by the next
LOAD MAP instruction as follows:

000 User A
001 Reserved for future use
010 User B
011 Reserved for future use
100 Data channel A
101 Data channel C
110 Data channel B
111 Data channel D

9 LEF If 1, the LOAD EFFECTIVE ADDRESS
instruction will be enabled for the next user.

10 1/0 If 1, 1/0 protection will be enabled for the next
user.

11 WP If 1, write protection will be enabled for the
next user.

12 IND If ~, indirect protection will be enabled for the
next user.

13 AlB If 0, the next user map enabled will be that for
user A.
If 1, the next user map enabled will be that for
user B.

14 DCH If 1, the mapping of data channel addresses
Enable will be enabled immediately after this

instruction.

15 User If 1, mapping of CPU addresses will
Enable commence with the first memory reference

after the next indirect reference or return type
instruction.

NOTE If the Load Map Status instruction sets
the User Enable bit to 1, the interrupt system is
inhibited and the MAP waits for an indirect
reference or a return type instruction. The
interrupt system is released and the MAP
begins translating addresses (using the user
map specified by bit 13 of the MAP status
register):

• After the first level of the next indirect
reference: or

• Upon completion of a Pop Block, Pop Jump,
Return, or Restore instruction that does not
result in a stack fault.

3-39

Read MAP Status

DlA

10 1

o I 1

ac,MAP

00000111
110 I 11 I 12 113 I 14 I 15

The contents of the MAP status register are placed in
the specified AC. The previous contents of the
specified AC are lost. The format of the information
placed in the specified AC is as follows:

Bits Name Contents

0-1 ---- Reserved for future use.

2 1/0 If 1. the last protection fault was an 1/0
protection fault.

3 WP If 1. the last protection fault was a write
protection fault.

4 IND If 1, the last protection fault was an indirect
protection fa u It.

5 Single If 1, the last protection fault occured during a
Cycle MAP SINGLE CYCLE instruction.

6-8 Map Specify which map will be loaded by the next
LOAD MAP instruction as follows:

000 User A
001 Reserved for future use
010 User B
all Reserved for future use
100 Data channel A
101 Data channel C
110 Data channel B
111 Data channel D

9 LEF If 1. the LOAD EFFECTIVE ADDRESS
instruction will be enabled for the next user.

10 1/0 If 1. 1/0 protection will be enabled for the next
user.

11 WP If 1, write protection will be enabled for the
, next user.
,

12 IND If 1, indirect protection will be enabled for the
next user.

13 AlB If 0, the next user map enabled will be that for
user A.
If 1, the next user map enabled will be that for
user B.

14 DCH If 1, the mapping of data channel addresses
Enable will be enabled immediately after this

instruction.

15 User If 1, the last 1/0 interrupt occurred while in
Mode user mode.

Initiate Block Check

DOC ac,MAP

The contents of the specified AC are transferred to
the MAP feature for later use by the BLOCK CHECK
instruction. The contents of the specified AC remain
unchanged. The format of the specified AC is as
follows:

Bits Name CONTENTS

0 ---- Reserved for future use.

1-5 Logical Number of the logical block for which the
Block check is requested.

6-8 Map Specify which map should be used for the
check as follows:

000 User A

001 Reserved for future use.

010UserB

011 Reserved for future use.

1 00 Data channel A

1 01 Data channel C

11 0 Data channel B

111 Data channel D

9-15 ---- Reserved for future use.

3-40

Block Check

DlC ac,MAP

I 0 1 1 1 AC 11 0 1 0 0 0 0 0 0 1 1 I
o I 1 I 2 3 I 4 5 I 6 I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

The number of the physical block which corresponds
to the logical block specified by the preceeding
INITIATE BLOCK CHECK instruction is placed in
bits 8-15 of the specified AC. Additional information
about the correspondence is placed in bits 0-7. The
previous contents of the AC are lost. The format of the
information placed in the specified AC is as follows:

IWPI MAP t~f~n!~~ftJ VAL I PHYSICAL I
o 1 I 2 I 3 r·"~··l···:~:·:~ 6 I 7 8 I 9 110 I 11 I 12 113 I 14 I 15

Bits Name Contents

0 WP The write protect bit for the logical block
which corresponds to the physical block
specified by bits 8-15.

1-3 Map The map which was used to perform the
translation between logical block number and
physical block number as follows:

000 User A
001 Reserved for future use
010 User B
011 Reserved for future use
100 Data channel A
101 Data channel C
110 Data channel B
111 Data channel D

4-5 ---- Reserved for future use

6-7 Validity If both these bits are 1, the logical block which
corresponds to the physical block specified by
bits 8-1 5 is validity protected.

8-15 Physical The number of the physical block which
Block corresponds to the logical block given in the

preceeding INIT ATE BLOCK CHECK
instruction.

Map Supervisor Block 31

DOB ac,MAP

I 0 1.1 I AC 11 0 0 0 0 0 0 0 0 1 1 I
o I 1.' 2 3 I 4 5 ' 6 I 7 ' 8 ' 9 110' 11 ' 12 113 ' 14 I 15

Bits 8-15 of the specified AC are transferred to the
MAP feature. These bits specify a physical block
number to which logical block 31 will be mapped
when in the supervisor mode.

The contents of the specified AC remain unchanged.
The format of the specified AC is as follows:

Bits Name Contents

0-7 _ .. Reserved for future use.

8-15 Physical The number of the physical. block to which
810ck logical block 31 should be mapped when in

supervisor mode.

Map Single Cycle

NIOP MAP

The .user map is enabled for one memory reference.
The·first memory reference of the next LDA or STA
instruction is mapped. After the memory cycle is
mapped, the user map is again disabled.

Example:

If AC2 contains 4058 , and the following instruction
sequence is issued:

NIOP MAP iMAP SINGLE CYCLE
LOA 3,2,2

The logical address 4078 will be mapped using the user
map specified by bit B of the MAP status register at
the time of the memory reference. The word
contained in the corresponding physical location will
be placed in AC3.

However, if the following instruction sequence is
issued:

NIOP
LOA

MAP iMAP SINGLE CYCLE
3, @2,2

The logical address 4078 will be mapped using the user
map for the last enabled user. The contents of the
corresponding physical location will be used as the
first level of an indirection chain. The next memory
cycle, which is the second level of the indirection
chain, will not be mapped.

NOTE The inte1'T'upt system is disabled from
the beginning of the MAP SINGLE CYCLE
instruction until after the next LDA 01' STA
in8truction.

Load Effective Address

LEF ac,£ @ ldisplacementl,index,l

I 0 1 I 1 I AC I @ I INDEX I DISPLACEMENT I
o I 1 2 31 4 5 6 I 7 8 ' 9110 I 11 112 113 114 ' 15

If the LEF MODE bit in the user status is 1 for a user,
then all I/O instructions issued by that user will be
interpreted as LOAD EFFECTIVE· ADDRESS
instructions, regardless of the state of the I/O
protection bit in the user status.

When a LOAD EFFECTIVE ADDRESS instruction is
issued, the logical effective address is computed from
bits 5-15 of the instruction and placed in the specified
AC. The previous contents of the specified AC are lost.
If an auto-incrementing or auto-decrementing lo­
cation is referenced in the course of the effective
address calculation, it is incremented or decremented.

Examples:

INSTRUCTION RESULT

LEF O,TABLE The logical address of TABLE is
placed in ACO.

LEF 2,34,2 34& is added to the unsigned
integer in AC2

LEf 1,-55,3 558 is subtracted from the unsigned
integer In AC 3 and the result
is placed in AC1

LfF 0,.+0 The logical address of this
LOAD EFFECTIVE ADDRESS
instruction is placed in ACO

NOTE The LOAD EFFECTIVE ADDRESS
in8truction can only be i8sued in the U8er mode.

FLOATING POINT ARITHMETIC

In addition to performing fixed point arithmetic,
the ECLIPSE line of computers can also perform
floating point arithmetic. This feature provides
the capability to perform rapid and convenient
arithmetic operations on numbers with a much
larger range than would be feasible using the fixed
point arithmetic instruction set. The precision
with which these numbers can be manipulated ex­
ceeds the precision readily available with the fixed
point instruction set.

If the floating point feature is not installed, in­
structions in the floating point arithmetic instruc­
tion set will be executed as "NO OPS", i. e. ,
"JMP . + 1" .

Floating Point Registers

There are five registers available to the program­
mer in the floating point processor. These are
the four floating point accumulators (FPAC's) and
the Floating Point Status Register (FPSR). The
FPAC's are numbered 0-3 and are called FACO,
FAC1, FAC2, and FAC3. The FPSR is a 32-bit
register that contains information about the pre­
sent status of the floating point processor. The
format of the FPSR is given below.

o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

IREsl ' , I FL~ATI~G ~OIN; P~OGR~M C,OUN;ER I ' I

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

3-42

BIT MNEMONIC

o ANY

1 OVF

2 UNF

3 DVZ

4 MOF

5 TE

6 Z

7

8-16

17-31

N

RES

FPPC

DESCRIPTION

Indicates that any of bits
1-4 are set.

Overflow indicator meaning
that during processing of a
floating point instruction,
an exponent overflow oc­
curred. The result is cor­
rect except that the exponent
is 128 too small.

Underflow indicator mean­
ing that during processing
of a floating point instruc­
tion' an exponent underflow
occurred. The result is
correct except that the ex­
ponent is 128 too large.

During a floating point di­
vide, a zero divisor was de­
tected. The division was
aborted and the operands
remain unchanged.

Mantissa overflow indicator
meaning that during a float­
ing point instruction, a bit
of significance was shifted
out of the high order end of
the mantissa. Also set if,
during a FIX instruction,
the result cannot fit into the
destination location.

Trap enable. If this bit is
1, the setting of any of bits
1-4 will result in a floating
point fault.

Zero bit. The result of the
last floating point operation
was equal to zero.

Negative bit. The result of
the last floating point opera­
tion was less than zero.

RESERVED

Floating point PROGRAM
COUNTER. This is the log­
ical address of the last
floating point instruction
executed. In the event of a
floating point fault, this is
the address of the floating
point instruction that caused
the fault.

Floating Point Faults

Upon completion of any floating point instruction,
if any of bits 1-4 in the FPSR are set, a floating
point fault is indicated. If bit 5 in the FPSR is also
set, a floating point trap is initiated. Upon issu­
ance of the next floating point instruction, if it is
not a PUSH FLOATING POINT STATE or POP
FLOATING POINT STATE instruction, a floating
point fault will occur. A return block is pushed
onto the stack and a "jump indirect" to location 458
instruction is executed. It is assumed that if bit
5 in the FPSR is 1, memory location 458 contains
the address of the floating point fault handler. The
return block pushed in the event of a floating point
fault has the following format:

WORD # PUSHED DESCRIPTION

1 ACO

2 AC1

3 AC2

4 AC3

5 Bit 0 = carry bit
Bits 1-15 = return address

NOTE This is not the address of the
Floating Point instruction that
caused the fault. It is the ad­
dress ofthe next user instruc­
tion to be executed.

Because PUSH FLOATING POINT STATE or POP
FLOA TING POINT STATE save the flags in the
FPSR, and because bits 1-4 are tested for possible
fault conditions after every floating point operation,
a floating point trap always occurs in the environ­
ment of the program that caused the fault.

3-43
flOATING POINT ARITHMETIC

FLOATING POINT INSTRUCTIONS

LOAD FLOATING POINT SINGLE

FLDS fpac, <@>displacement<,index>

I 1 IIN~EX I FPAC I I I ° ° I ° I 01 I ° I I ° I ° I ° I
o I 2 3 I 4 5 6 I 7 8 9 I 10 II 12 I 13 14 15

I @ I I I I I DISPL~CE,MENT I I I I I 1

o I 2 3 I 4 5 6 I 7 8 9 I 10 II 12 13 14 15

LOAD FLOATING POINT DOUBLE

FLDD fpac, <@ > displacement< , index>

II I IN?EXI FPAC I 1 ° ° ° I I ° I
° I ° 1° 1

3 I 4
I

6 I 7
I I

9 I 10
I I

12 I 0 I 2 5 8 II 13 14 15

I@I DISPLACEMENT
I I

3 I
I

6 I 7
I I

9 I 10
I I

121
I

0 I 2 4 5 8 II 13 14 15

The effective address" E" is computed. The
floating point number at that address is placed in
FPAC. For single precision, the low-order 32
bits of FPAC are set to O. The previous contents
of FPAC are lost. The Z and N bits in the FPSR
are set to reflect the new contents of FPAC.

STORE FLOATING POINT SINGLE

FSTS fpac, <@ > displacement< , index>

I I II N?EX I FPAC I I I ° I ° I I I ° I I I ° I I I °
o I 2 3 I 4 5 6 7 8 9 10 II 12 13 14 15

DISPLACEMENT
I I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10

STORE FLOATING POINT DOUBLE

FSTD fpac, <@ > displacement< , index>

IN?EX I FPAC I I ° ° I I I ° I ° ° ° I
I 2 3 I 4 5 I 6 I 7 I 8 I 9 I 10 I II I 12 I 13 I 14 I 15

I I I
DISPLACEMENT 1

5 I 6 I 7 I 8 I 9 I 10 I II I 12 I 13 I 141 15 I 2 3 4

The effective address" E" is computed and the
floating point number contained in FPAC is placed
at the memory location addressed by E. For
single preCision, only the high-order 32 bits of
FPAC are stored. The contents of FPAC remain
unchanged. The previous contents of the addressed
memory location are lost. The condition codes in
the FPSR remain unchanged.

FLOAT FROM AC

FLAS ac, fpac

I I I ~C I FPAC I I ° I ° ° I ° I ° ° ° 1
o I 2 3 I 4 5 I 6 I 7 I 8 I 9 I 10 I II I 12 I 13 I 14 I 15

The signed two's complement number contained in
AC is converted to a single precision floating point
number and placed in FPAC. The low-order 32
bits of FPAC are set to O. The contents of AC
remain unchanged. The previous contents of
FPAC are lost. The Z and N bits in the FPSR are
set to reflect the new contents of FPAC.

The range of numbers that can be converted is
-32,76810 to +32,76710'

FLOAT FROM MEMORY

FLMD fpac, <@ > displacement< , index>

I 1 I'N?EX I FPAC I I I ° I I I ° I I I I I ° I 1 I ° I ° I ° I
o I 2 3 I 4 5 6 7 8 9 10 II 12 13 14 15

o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

The effective address" E" is computed. The 32-
bit, signed, two's complement number-addressed
by E is converted to a double precision floating
point number and placed in FPAC. The previous
contents of FPAC are lost. The Z and N bits in
the FPSR are set to reflect the new contents of
FPAC.

The range of numbers that can be converted is
-2,147,483,64810 to +2,147,483,64710 ,

FIX TO AC

FFAS ac, fpac

I I I ~C I FPAC I I I ° I
0123 1 4567

11°111°11 °1°1°1
8 9 10 II 12 I 13 14 15

The integer portion of the floating point number
contained in FPAC is converted to a signed two's
complement number and placed in AC. If the
magnitude of the number in FPAC is such that it
will not fit into AC, the MOF bit is set in the
FPSR and the sign bit and the low-order 15 bits of
the converted number are placed in AC. The
contents of FPAC remain unchanged. The Z and
N bits in the FPSR are both set to O. The previous
contents of AC are lost.

The range of numbers than can be converted with­
out overflow is -32,76710 to +32,76710'

3-44

FIX TO MEMORY

FFMD fpac, <@ > displacement < , index>
.= =

I I I IN9EX I FPAC I I I 0 I I I I I I I 0 I I 0 I 0 I 0 I
o I 2 3 I 4 5 6 I 7 8 9 I 10 II 121 13 14 15

I @ I DISPLACEMENT I
o I I 2 1 3 I 4 15 16 1 7 I 8 19 110 I 11112113 1 141 15

The effective address" E" is computed. The inte­
ger portion of the floating point number contained
in FPAC is converted to a 32-bit, signed, two's
complement number and placed in the memory loca­
tion addressed by E. If the magnitude of the con­
verted number is such that it will not fit into 32
bits, the MOF bit is set in the FPSR and the sign
bit and the low-order 31 bits of the converted num­
ber are placed in the location addressed by E. The
contents of FPAC remain unchanged. The Z and N
bits in the FPSR are set to O.

The range of numbers that can be converted without
overflow is -2,147,483,64710 to + 2,147,483,64710 ,

MOVE FLOATING POINT

FMOV facs, facd
==

II I FAICS I FACD II I I I 1 0 I I I 1 0 I I 0 1 0 I 0 I
o I 2 3 I 4 5 6 I 7 8 9 I 10 II 12 I 13 14 15

The contents of FACS are placed in FACD. The
previous contents of FACD are lost. The contents
of FACS remain unchanged. The Z and N bits in
the FPSR are set to reflect the new contents of
FACD.

3-45

ADD SINGLE (FPAC to FPAC)

FAS facs, facd

II I FA,CS I FACD I 0 I 0 0 I 0 I 0 I I 0 I I I 0 I 0 I 0 I
o I 2 3 I 4 5 6 I 7 8 9 I 10 II 12 13 14 15

ADD SINGLE (memory to FPAC)

I I IIN~EX I FACD I 0 I I 0 I 0 I 0 I I 0 I I 0 I 0 I 0 I
o I 2 3 I 4 5 6 I 7 8 9 I 10 II 121 13 14 15

I @ I DISPLACEMENT
o I I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I II 121 13 I. 141 15

ADD DOUBLE (FPAC to FPAC)

FAD facs, facd

II I FA,CS I FACD I 0 I 0 0 1 0 I I I I 0 I I 0 I 0 I 0 I
o I 2 3 I 4 5 6 I 7 8 9 I 10 II 12 I 13 14 15

ADD DOUBLE (memory to FPAC)

FAMD facd, <@>disI>lacement<,index> = =

I I IIN~EX I FACD I 0 I I 0 10 I I I I 0 I I 0 I 0 I 0 I
o I 2 3 I 4 5 6 I 7 8 9 I 10 II 12 I 13 14 15

2 3 4 5 6 7 8 9 10 II 12 13 14 15

The floating point number contained in the source
location is added to the floating point number in
FACD and the normalized result is placed in the
FACD. The previous contents of FACD are lost.
The contents of the source location remain un­
changed. The Z and N bits in the FPSR are set to
reflect the new contents of FACD.

For an add from memory, the effective address
"E" is computed. E addresses either a 2 -word'
(single precision) or 4-word (double precision)
operand. For a single precision add, the operand
from memory is extended with 32 low-order zeroes
before the operation takes place.

FLOATING POINT ARITHMETIC

In order to achieve greater accuracy, all 64 bits
of FACD take part in a single precision add. If the
source operand in a single precision add is con­
tained in an FPAC, then all 64 bits of this number
also participate in the add.

Floating point addition consists of an exponent com­
parison and a mantissa addition. The exponents of
the two numbers are compared, and the mantissa
of the number with the smaller exponent is shifted
right. This mantissa alignment is accomplished by
taking the absolute value of the difference between
the two exponents and shifting the mantissa right
that number of hex digits. Bits shifted out of the
right end of the mantissa are lost, and do not take
part in the addition. If all significant digits are
shifted out of the mantissa, the operation is equiv­
alent to adding the number with the larger exponent
to zero. This requires a shift of at least 14 hex
digits. If this condition occurs, no normalization
takes place.

After alignment, the mantissas are added together.
The result of this addition is termed the inter­
mediate result. The sign of the intermediate re­
sult is determined from the signs of the two
operands by the rules of algebra. If the mantissa
addition produces a carry out of the high-order
bit, the mantissa in the intermediate result is
shifted right one hex digit and the exponent is in­
cremented by one. If this shift produces an ex­
ponent overflow, the OVF bit is set in the FPSR,
and the number in FACD is correct except that
the exponent is 128 too small.

If there is no mantissa overflow, the mantissa of
the intermediate result is examined for leading
hex zeroes. If the mantissa is found to be all
zeroes, a true zero is placed in the FACD and the
instruction is terminated.

If the mantissa is non-zero, the intermediate re­
sult is normalized, and the number placed in the
FACD. If the normalization results in an exponent
underflow, the UNF bit is set in the FPSR and the
instruction is terminated. The number in the FACD
is correct except that the exponent is 128 too large.

For single precision, the low-order 32 bits of the
result are set to O.

SUBTRACT SINGLE (FPAC from FPAC)

FSS facs, facd

I I I FAfS I FApO I 0 I 0 1 0 I I I 0 1 I I 0 I I 1 0 I 0 I 0 I
o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

SUBTRACT SINGLE (memory from FPAC)

FSMS facd, <@>displacement<,index> --- ====

II IIN~EX I FACO I 0 I I 0 I I 1 0 I I 0 I I 0 I 0 I 0 I
o I 2 3 1 4 5 6 1 7 8 9 1 10 II 12 1 13 14 15

I @ I I I . I I OISPL~CEIMENT I I
o I 2 3 1 4 5 6 I 7 8 9 1 10 II 121 13 14 15

SUBTRACT DOUBLE (FPAC from FPAC)

FSD facs, facd

II I FApS I FACO I 0 I 0 1 0 I

o I 23 1 45678

I 0
9 I 10 1 II 12 13 14 15

SUBTRACT DOUBLE (memory from FPAC)

FSMD facd, <@>displacement<,index> --- ====

I I IIN~EX I FAlCO I 0 I I I 0 I I I I 1 I 0 I I 0 I 0 I 0 I
o I 2 3 4 5 6 7 8 9 I 10 II 12 I 13 14 15

I @ I I I I I I DI~PL~CEIMENT . I I I I I
o I 2 3 4 5 6 7 B 9 1 10 II 12 I 13 14 15

The floating point number contained in the source
location is subtracted from the floating point num­
ber in F ACD and the normalized result is placed
in the FACD. The previous contents of FACD are
lost. The contents of the source location remain
unchanged. The Z and N bits in the FPSR are set
to reflect the new contents of FACD.

For a subtract from memory, the effective address
"E" is computed. E addresses either a 2-word
(single precision) or 4-word (double precision)
operand. For a single preCision subtract, the
operand from memory is extended with 32 low­
order zeroes before the operation takes place.

In order to achieve greater accuracy, all 64 bits
of FACD take part in a single precision subtract.
The subtraction is performed by inverting the sign
bit of the source operand and adding. After the
sign inversion, the operation is equivalent to float­
ing point addition.

For single precision, the low-order 32 bits of the
result are set to O.

3-46

MULTIPL Y SINGLE (FPAC by FPAC)

FMS facs, facd

I I I FA,CS I FACD I 0 I 0 I I 0 I 0 I I 0 I I I 0 I 0 I 0 I
o I 2 3 I 4 5 6 I 7 8 9 I 10 II 12 13 14 15

MULTIPL Y SINGLE (FPAC by memory)

I I IINDIEX I FACD I 0 I I I I 0 I 0 I I 0 I I 0 I 0 I 0 I
o I 2 3 I 4 5 6 I 7 8 9 I 10 II 12 I 13 14 15

I @ I DISPLACEMENT
o I I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I " I 12 I 13 I 14 15

MULTIPLY DOUBLE (FPAC by FPAC)

FMD facs, facd

II IFA,CS I Ft.CD 1 0 ,0 I 0
9 I 10 II 12 13 14 15

MULTIPLY DOUBLE (FPAC by memory)

FMMD facd, <@>disp'lacement<, index>

II IINDIEX I FACD I 0 I I I I 0 I I I I 0 I I 0 I 0 I 0 I
3 I 4 5 6 I 7 8 9 I 10 II i2 I 13 14 15 012

DISPLACEMENT

3 I 4 5 I 6 ' 7 I 8 I 9 I 10 I " I 12' 13 14 15

The floating point number contained in FACD is
multiplied by the floating point number contained
in the source location and the normalized result is
placed in FACD. The previous contents of FACD
are lost. The contents of the source location re­
main unchanged. The Z and N bits in the FPSR are
set to reflect the new contents of F ACD.

For a multiply from memory, the effective address
"E" is computed. E addresses either a 2-word
(single precision) or 4-word (double precision)
operand. For a single precision multiply, the
operand from memory is extended with 32 low­
order zeroes before the operation takes place.

In order to achieve greater accuracy, all 64 bits of
FACD take part in a single precision multiply. If
the source operand in a single precision multiply
is contained in an FPAC, then only the high-order
32 bits of this number participate in the multiply.

The mantissas of the two numbers are multiplied
together to give the mantissa of the intermediate
result. The exponents of the two numbers are ad­
ded together and 64 is subtracted. This subtraction
of 64 maintains the" Excess 64" notation. The
result of the exponent manipulation becomes the
exponent of the intermediate result. The sign of
the intermediate result is determined from the
sign of the two operands by the rules of algebra.

If the exponent processing produces either overflow
or underflow, the result is held until normalization,
as that procedure may correct the condition. If
normalization does not correct the condition, the
corresponding bit in the FPSR is set. The number
is correct except that, for exponent overflow, the
exponent is 128 too small, and for exponent under­
fbw, the exponent is 128 too large.

For single preCision, the low-order 32 bits of the
result are set to o.

3-47
FLOATING POINT ARITHMETIC

DIVIDE SINGLE (FPAC by FPAC)

FDS facs,facd

II I FA,CS I FACD I 0 I 0
0123'456'7

0' 0' 0001
8 I 9 I 10 I II I 12 I 13 I 14 I 15

DIVIDE SINGLE (FPAC by memory)

FDMS facd, <@>displacement<,index>
= =

I I) IN9EX I FACD I 0 I I I I I I 0 I I 0 I I 0 I 0 I 0 I
o I 2 3 '4 5 6 I 7 8 9 I 10 II 12 I 13 14 15

DISPLACEMENT
I I I I I I I I I I

DIVIDE DOUBLE (FPAC by FPAC)

FDD facs, facd

II I FA,CS I FACD I 0 I 0 , 0 000
, I I

o I 2 3 '4 5 6 7 8 9 ' 10 II 12 13 14 15

DIVIDE DOUBLE (FPAC by memory)

FDMD facd, <@>displacement<,index>
=

I 1 IIN~EX I FACD I 0 I I I I I I 1 1 I 0 I 1 0 I 0 I 0 I
o I 2 3 I 4 5 6 I 7 8 9 I 10 \I 12 I 13 14 15

I @ I DISPLACEMENT I
o I I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I II I 12 I 13 I 14 I 15

The floating point number contained in FACD is
divided by the floating point number contained in
the source location and the result is placed in
F ACD. The previous contents of F ACD are lost.
The contents of the source location remain un­
changed. The Z and N bits in the FPSR are set to
reflect the new contents of F ACD. Because the
operands are assumed to be normalized, and the
division produces a normalized result with normal­
ized operands, no normalization takes place.

For a divide from memory, the effective address
"E" is computed. E addresses. either a 2-word
(single precision) or 4-word (double precision)
operand. For a single precision divide, the operand
from memory is extended with 32 low-order zeroes
before the operation takes place.

In order to achieve greater accuracy, all 64 bits of
FACD take part in a single precision divide; how­
ever, only 24 quotient bits are formed. For single
preciSion, the low-order 32 bits of the result are
set to O.

The source operand is checked for a zero man­
tissa. If the mantissa is zero, the DVZ bit is set
in the FPSR and the instruction is terminated. The
number in FACD remains unchanged. The two

3-48

mantissas are compared and if the mantissa of the
number in FACD is greater than or equal to the
mantissa of the source operand, the mantissa of
the number in FACD is shifted right one hex digit
and the exponent of the number in FACD is in­
creased by one. This process continues until the
mantissa of the number in FACD is less than the
mantissa of the source operand.

The mantissa in FACD is then divided by the man­
tissa of the source operand and the quotient is the
mantissa of the intermediate result. The exponent
of the source operand is subtracted from the ex­
ponent in FACD and 64 is added to this result.
This addition of 64 maintains the" Excess 64" no­
tation. The result of the exponent manipulation
becomes the exponent of the intermediate result.
The sign of the intermediate result is determined
from the sign of the two operands by the rules of
algebra.

If the exponent processing produces either overflow
or underflow, the corresponding bit in the FPSR is
set. The number in FACD is correct except that,
for exponent overflow, the exponent is 128 too
small, and for exponent underflow, the exponent
is 128 too large.

For single precision, the low-order 32 bits of the
r€sult are set to O.

NEGATE

FNEG fpac

I I 1 I I I FPAC I I I I 0 I 0 I 0 1 I 0 I 1 0 I 0 I 0 I
o I I 2 3 I 4 5 6 I 7 8 9 I 10 \I 121 13 14 15

The sign bit of FPAC is inverted. Bits 1-63 of
FPAC remain unchanged. The Z and N bits in the
FPSR are set to reflect the new contents of FPAC.
If FPAC contains true zero, the sign bit remains
unchanged.

NORMALIZE

FNOM fpac

I I I 0 I 0 I F~AC I I I I I 0 I 0 I 0 I I I 0 I I 0 I 0 I 0 I
o I 2 3 4 5 6 7 8 9 10 II 12 I 13 14 15

The floating point number in FPAC is normalized.
If all bits of the mantissa are zero, a true zero is
set in FPAC. If an exponent underflow occurs, the
UNF bit is set in the FPSR. The number in FPAC
is correct, except that the exponent is 128 too
large.

The Z and N bits in the FPSR are set to reflect the
new contents of FPAC.

ABSOLUTE V ALUI!!

FAB fpac

I I I , 0 I FPAC I I ,I 0 , 0 ,0 I , 0 ,I 0 ,0 , 0 I
o 'I 2 3 1 4 5 6 1 7 8 9 1 10 II 121 13 14 15

The sign bit of FPAC is set to o. Bits 1-63 of
FPAC remain unchanged. The Z and N bits in the
FPSR are set to reflect the new contents of FPAC.

READ HIGH WORD

FRH fpac

I I 0 I . I I FPAC I
0'123 1 45

100 0 10 I 0 0 01
6 1 7 I 8 I 9 1 10 I II I 12 1 13 I 14 I 15

The high-order 16 bits of FPAC are placed in ACO.
The previous contents of ACO are lost. The con­
tents of FPAC and the Z and N bits in the FPSR
remain unchanged.

SCALE

FSCAL

I I 0 I 0 I FPAC I I
0'123'45

I 0 0 I 0
, I I , I

6 7 8 9 10 II
I 0 1 0 1 0 I
12' 13 14 15

The mantissa of the floating point number in FPAC
is shifted either right or left, depending upon the
contents of bits 1-7 of ACO. The contents of ACO
remain unchanged.

Bits 1-7 of ACO are treated as an exponent in
"Excess 64" representation. The difference be­
tween this exponent and the exponent in FP AC is
computed by subtracting the exponent in FPAC
from the number contained in ACO bits 1-7. If the
difference is zero, the instruction is terminated.
If the difference is positive, the mantissa con­
tained in FPAC is shifted right that number of hex
digits. If the diffe rence is negative, the mantissa
contained in FPAC is shifted left that number of
hex digits and the MOF bit in the FPSR is set.
After the shift, the contents of bits 1-7 of ACO re­
place the exponent contained in FP AC .

Bits shifted out of either end of the mantissa are
lost.

If the entire mantissa is shifted out of FP AC ,
FPAC is set to true zero.

The Z and N bits in the FPSR are set to reflect the
new contents of FPAC.

LOAD EXPONENT

FEXP fpac

I I 0 I I I FPAC I I I 0 0 I I I 0 I I 0 I 0 I 0 I
0' I 2 3 1 4 5 I 6 1 7 I 8 I 9 1 10 II 12' 13 14 15

Bits 1-7 of ACO rGphwG bits 1-7 of FPAC. Bits 0
and 8-15 of ACO are ignored. Bits 0 and 8-63 of
FPAC remain unchanged. The entire contents'of
ACO remain unchanged. The Z and N bits in the
FPSR are set to reflect the new contents of FPAC.

If FPAC contains true zero, bits 1-7 of FPAC re­
main unchanged.

NOTE The exponent contained in bits
1-7 of ACO is assumed to be in
"Excess 64" representation.

HALVE

FHLV fpac

I' I I I I FPAC I I
0 1 123 1 45

I 0 0 I I 0 I 0 0 01
6 1 7 I 8 I 9' ' , , ' , .

10 II 12 13 14 15

The mantissa contained in FP AC is shifted right
one bit position. The vacated bit position is filled
with a zero and the bit shifted out is lost. The
number is then normalized and the result is placed
in FPAC. If the normalization process causes an
exponent underflow, the UNF bit in the FPSR is set
and the number in FPAC is correct, except that the
exponent is 128 too large.

3-49

The Z. and N bits in the FPSR are set to reflect the
new contents of FPAC.

NOTE The effect of this instruction is
to divide the floating point num­
ber contained in FPAC by 2.

COMPARE FLOATING POINT

FCMP facs, facd

I 1 I FA,CS I FACD I 1 ,I I 0 0 I ,0 , I 0 ,0 , 0 I
o I 2 3 I 4 5 6 I 7 '8 ' 9 1 10 " 12 I 13 14 15

The floating point numbers in FACS and FACD are
algebraically compared to each other and the Z and
N bits in the FPSR are set to reflect the result.
The contents of FACS and FACD remain unchanged.
The results of the compare and the corresponding
bit settings are as follows:

BIT SETTINGS

RESULT Z N

FACS = FACD 1 0

FACS > FACD 0 1

FACS < FACD 0 0

FLOATING POINT ARITHMETIC

LOAD FLOATING POINT STATUS

FLST <@>displacement<,index>
=

I I 0 I I I INDEX I I I I 0 I I I I I I 0 I I 0 I 0 , 0 I
o I I 2 3' 4 5 6' 7 8 9' 10 II 12' 13 14 15

DISPLACEMENT 3' I I , I I , I I , I I
4 5 6 7 8 9 10 II 12 13 14 15

The effective address" E" is computed. The 32-
bit operand addressed by E is placed in the FPSR.
The condition codes are set to the values of the
loaded bits.

STORE FLOATING POINT STATUS

FSST <@ >displacement<, index>

I I 0 I 0 I INDEX I I I I 0 I I I I I ,0 ! I 0 I 0 I 0 I
o I I 2 3' 4 5 6' 7 8 9' 10 II 12' 13 14 15

DISPLACEMENT

2 I 3 ' 4 I 5 I 6 1 7 I 8 I 9 ' 10 I II I 12 ' 13 141 15

The effective address" E" is computed. The 32-
bit contents of the FPSR are placed in the memory
location addressed by E. The contents of the
FPSR remain unchanged.

TRAP ENABLE

FTE

II I 0 0 0 I 0
0 1 112 1 3'4 1 5 1 6'7'8

I I 0 I 0 0 0 I
9 I 10 ' II ' 12 I 13 I 14' 15

The trap enable bit in the FPSR is set to 1.

NOTE When a FLOATING POINT FAULT
occurs and the trap enable bit is
1, it is set to 0 before control is
transferred to the floating point er­
ror handler. The trap enable bit
should be set to 1 before normal
processing is resumed.

TRAP DISABLE

FTD

012345678

I I 0 I 0 0 0 I
9 ' 10 ' II I 12' 13 ' 14 I 15

The trap enable bit in the FPSR is set to o.

NOTE The I/O RESET instruction will
set this bit to o.

CLEAR ERRORS

FCLE

II , I 1 0 I I ,0, , 10, , I
o I 2 3 4 5 6 7 8 9 ' 10 II 12 13 14 15

Bits 0-4 of the FPSR are set to O.

NOTE The I/O RESET instruction will
set these bits to O.

3·50

PUSH FLOATING POINT STATE

FPSH

° ° , I '
10 I I ,0,1 0,0,01
6 I 7 ' 8 ' 9 I 10 II 121 13 14 15

II I ,
o I I 2 3 4 5

An 18 word floating point state block is pushed on­
to the user stack. The format of the 18 words
pushed is as follows:

S T A C K PO I NT E R ___ "c::::::::::::::::;::::::::::(=1
BEFORE FPSH

FPSR BITS ° -15
FPSR BITS 16 -31

FAC ° { r--------------~~ " ________ f-'

{ --------_/
FAC 1 1----------

1----- ---- ~'
i...o'

FAC 2{

_________ f..'

--------- "

--------- "

STACK POI"T::
C 3~S

AFTER FPSH 1 ~-----t"'"
OG-00603

The contents of the floating point accumulators and
the FPSR remain unchanged.

3-51

POP FLOATING POINT STATE

FPOP

II I I °
o I I ' 2 ' 3 I 4 I I ° I ° ° °

9 I 10 ' II ' 12 I 13 ' 14 ' 15

The state of the floating point unit is altered by
popping 18 words off of the user stack. The words
popped and their destinations are as follows:

STACK POINTER __ ~:::::::::::;::::::::::::::::::;:::::;;f"'JJ
AFTER FPOP

FPSR BITS 0-15
FPSR BITS 16 - 31

{ ---------~' FAC ° -~~_-_-_________ ~:

FAC 1 { -===~~~~~~~:
--------- ~'

i...o' { ---------~' FAC 2 ----------

r---------- f..' i...o'

FAC 3{ ~------==~~--~ ,,'
STACK POINTER ---------

BEFORE FPOP ---- ~
If

OG-00604

NOTE Due to the potentially long time
required to perform a PUSH
FLOATING POINT STATE or
POP FLOATING POINT STATE,
in relation to I/O interrupt re­
quests, these instructions are
interruptable. Because the stack
pointer and program counter are
not updated until the completion
of these instructions, any inter­
rupt service routines that return
control to the interrupted pro­
gram via the program counter
stored in location 0 will correct­
ly restart these instructions.

FLOATING POINT ARITHMETIC

Arithmetic Test

There are eight instructions in the floating point
instruction set that test the Z and N bits in the
FPSR and skip on the result of the test. These
instructions are described below.

NO SKIP

FNS

II 0, 0 ,0 0, I ,I 0 , I ,0 I 0 I 0 0 0
o I I 2 3 I 4 56 I 7 8 9 I 10 ' 11 ' 12 I 13 ' 14 ' 15

The next sequential word is executed.

SKIP ALWAYS

FSA

I ' 000 I I I 0 I 0 10 I 0,0,01
- 0 I I' , I ' , I ' , I ' , I - - -

2 3 4 5 6 7 8 9 10 II 12 13 14 15

The next sequential word is skipped.

SKIP ON GREATER THAN ZERO

FSGT

010
, I ' , I

3 I 4 012 5 6 7 8 9 10 II 12 13 14 15

If both the Z and N bits in the FPSR are 0, the next
sequential word is skipped. .

SKIP ON LESS THAN ZERO

FSLT

1,0,,00 I I 0 10 I 0,10,0,01
o I I 2 ' 3 I 4 ' 5 ' 6 I 7 ' 8 ' 9 I 10 ' II 12 I 13 14 15

If the N bit in the FPSR is 1, the next sequential
word is skipped.

3-52

SKIP ON ZERO

FSEQ

I I 0 ,0 , I 0 I I 0 I 0 I ,0, I 0 ,0 ,0 I
o I. I 2 3 1 4 ' 5 ' 6 1 7' 8 ' 9 1 10 II 12 1 13 14 15

If the Z bit in the FPSR is 1, the next sequential
word is skipped.

SKIP ON LESS THAN OR EQUAL TO ZERO

FSLE

o 0100000

o I 2
I I

3 4 5
I I I I ' I I I ,

6 7 8 9 10 II 12 13 14 15

If either the Z bit or the N bit in the FPSR is 1,
the next sequential word is skipped.

SKIP ON GREATER THAN OR EQUAL TO ZERO

FSGE

I' 0 I 0 I I I 0 I 0 I 0 I 0 0 01
o 1 I I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I II I 12 I 13 I 14 I 15

If the N bit in the FPSR is 0, the next sequential
word is skipped.

SKIP ON NON-ZERO

FSNE

I' 0 , 0 , I
0 1 123 1 4'5

10101010001
6 I 7 ' 8 ' 9 I 10 I II I 12 I 13 ' 14 ' 15

If the Z bit in the FPSR is 0, the next sequential
word is skipped.

Error Test

There are eight instructions in the floating point
instruction set that test the error indicators in the
FPSR and skip on the result of the test. These in­
structions are described below.

SKIP ON NO MANTISSA OVERFLOW

FSNM

111000110101010001
o 1 I ' 2' 3 1 4' 5' 6 1 7' 8' 9 1 10' II ' 121 13' 14' 15

If the mantissa overflow (MOF) bit in the FPSR is
0, the next sequential word is skipped.

SKIP ON NO UNDERFLOW

FSNU

111,°,11°,1,1,°,',°,',0,',°,0,0
0' I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

If the underflow (UNF) bit in the FPSR is 0, the
next sequential word is skipped.

SKIP ON NO OVERFLOW

FSNO

1'11,',0 ° 1 ',' 0, 0' 0' 0001
0123'456'7'8'9'10'11'12'13'14'15

If the overflow (OVF) bit in the FPSR is 0, the
next sequential word is skipped.

SKIP ON NO ZERO DIVIDE

FSND

0123456789 10 II 12 13 14 15

If the divide by zero (DVZ) bit in the FPSR is 0,
the next sequential word is skipped.

3-53

SKIP ON NO UNDERFLOW AND NO ZERO DIVIDE

FSNUD

I' I, ° , I
o I I 2 3 I 4

, , ° , 0 , 0 I ° 001
5 ' 6 ' 7 I 8 ' 9 ' 10 ' II ' 12 ' 13 I 14 ' 15

If both the underflow (UNF) bit and the divide by
zero (DVZ) bit in the FPSR are 0, the next sequen­
tial word is skipped.

SKIP ON NO OVERFLOW AND NO ZERO DIVIDE

FSNOD

I, ',',° 1 , , 1° 1 ,°",°",°,0,°1
o 'I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

If both the overflow (OVF) bit and the divide by
zero (DVZ) bit are 0, the next sequential word
is skipped.

SKIP ON NO UNDERFLOW AND NO OVERFLOW

FSNUO

I, ',',I 01 , ° , ° , ° , ° ° °
o 1 I 2 3' 4 ' 5 '6' 7' 8 ' 9 ' 10' II ' 12' 13' 14' 15

If both the underflow (UNF) bit and the overflow
(OVF) bit in the FPSR are 0, the next sequential
word is skipped.

SKIP ON NO ERROR

FSNER

o I 2 3 4 5
° , , ' ° , ° , ° , ° , ° .\ 1 ' , 1 . . -

6 7 8 9 10 II 12 13 14 15

If bits 1-4 in the FPSR are all 0, the next sequen­
tial word is skipped.

flOATING POINT ARITHMETIC

COMMERCIAL INSTRUCTION SET

An important feature of the ECLIPSE C/300 com­
puter is its ability to perform operations on
strings of characters and on decimal numbers.
Instrur.tions are included in this set that perform
manipulations on data types commonly found in the
commercial environment.

Commercial Faults

In the course of processing instructions in the
commercial set, the CPU performs certain checks
on the data being processed. If an invalid data
type or number is found, a commercial fault is
initiated. If a commercial fault is initiated, the
processor places A code representing the type of
fault in AC1, pushes a return block onto the stack
with the program counter in the return block point­
ing to the instruction that caused the fault, and
then executes a "jump indirect" to the commercial
fault address. The codes placed in ACl and their
meanings are as follows:

CODE MEANING

0 The EDIT instruction tried to pro-
cess an invalid op-code.

1 An instruction was presented with an
invalid data type. .

2 An instruction was presented with an
invalid sign character.

3 An instruction or EDIT op-code was
presented with an invalid digit or
character.

4 A LOAD INTEGER or STORE INTE-
GER instruction was presented with
a number out of range.

I/O Interrupts

Due to the potentially long time that may be re­
quired to perform any instruction in the commer­
cial set in relation to I/O requests, all instructions
in this set except for EXTENDED LOAD BYTE,
EXTENDED STORE BYTE, and INTEGERIZE are
interruptable. If a commercial instruction is
interrupted, the program counter is decremented
by one before it is placed in location 0 so that it
pOints to the instruction in progress. All the com­
mercial instructions maintain their operands in
such a manner that any interrupt service routine
that returns control to the interrupted program via
the address stored in memory location 0 will cor­
rectly restart the interrupted instruction.

The processor assumes that no interrupt service
program will alter the data being operated on by an
interrupted instruction.

3-54

COMMERCIAL INSTRUCTIONS

EXTENDED LOAD BYTE

ELDB ac, displacement< , index>

II ° , ° I AC II I'NDEX 1° " ',',' ° , ° ! ° 1
o 1 I 2 3 I 4 5 6 I 7 8 9 I 10 II 12 1 13 14 15

1 1
2

DISPLACEMENT

3 ' 4 ' 5 ' 6 1 7 ' 8 ' 9 I 10 ' II ' 12 I 13 14 ' l!'i o

A byte pointer is formed by taking the index value,
multiplying it by 2, and adding the low-order 16
bits of the result to the displacement. The byte
addressed by this byte pointer is placed in bits
8-15 of the specified AC. Bits 0-7 of the specified
AC are set to O. Neither the index value nor the
displacement are altered by the computation. The
previous contents of the specified AC are lost.

The index value is computer from the index bits as
follows:

INDEX BITS INDEX VALUE

00 0

01 Address of the displacement field

10 Contents of AC2

11 Contents of AC3

EXTENDED STORE BYTE

ESTB ac, displacement< , index>

I' ° I ' 1 AC I' llNDEX I ° I I I I ' I' ° I ° 1° 1

o 'I 2 3 1 4 5 6 I 7 8 9 I 10 II 121 13 14 15

1 1 I
DISPLACEMENT

I I I I I I I I I I 1
5 6 7 8 9 10 II 12 13 14 15 o I 234

A byte pointer is formed by taking the index value,
multiplying it by 2, and adding the low-order 16 bits
of the result to the displacement. Bits 8-15 of the
specified AC are placed in the byte addressed by
this byte pointer. Neither the index value nor the
displacement are altered by the computation. The
contents of the specified AC remain unchanged.

The index value is computer from the index bits as
follows:

INDEX BITS INDEX VALUE

00 0

01 Address of the displacement field

10 Contents of AC2

11 Contents of AC3

3-55

LOAD INTEGER

LDI fpac

I' ° I ° I FPAC I
o I I 2 3 I 4

','1',0 ',0,' 0,0,01

6 7 8 9 I 10 II 121 13 14 15 5

A decimal integer is converted to floating point
form, normalized, and placed in the specified
FPAC. The Z and N bits in the FPSR are set to
reflect the new contents of the specified FPAC.
The previous contents of the specified FPAC are
lost.

ACI must contain the attribute specifier word
which describes the number.

AC3 must contain a byte pointer which is the ad­
dress of the high-order byte of the number in
memory.

Upon successful termination, the contents of ACO
and ACI remain unchanged; AC2 contains the orig­
inal contents of AC3; and AC3 is undefined.

This instruction will initiate a commercial fault
under the following conditions:

1. For data types 0, 1, 2, 3, 4, and 5, if the in­
struction encounters an invalid digit or sign.

2. For data types 0, 1, 2,3,4, and 5, iftheab­
solute value of the number is greater than
1016 _1.

3. For data type 6, if the number is less than
-256 _1 or greater than 256.

4. For data type 7, if the size field is greater
than 8.

In the event of a commercial fault, the contents of
ACO remain unchanged; ACI contains the fault
code; AC2 contains the original contents of AC3;
and AC3 contains a byte pointer which is the ad­
dress of the next byte to be processed.

NOTES An attempt to load a minus 0 will
result in the specified FPAC being
set to true zero.

Numbers of data type 7 are not
normalized after loading.

The first byte of numbers of data
type 7 is assumed to contain the
sign and exponent of the floating
point number. The exponent must
be in "excess 64" representation.
The bytes following the first byte
are loaded directly into the man­
tissa of the speCified FPAC~ Low­
order bytes in the mantissa of the
specified FPAC which do not re­
ceive bytes from memory are set
to O.

COMMERCIAL INSTRUCTIONS

STORE INTEGER

STI fpac

I 10 , I I FPAC II, I I , I , 0 I I , 0 ,I 0 , 0 , 0 I
o I I 2 3 I 4 5 6 7 8 9 10 II 12 I 13 14 15

The contents of the specified FPAC are converted
to an integer of the specified type and stored, right­
justified, in memory beginning at the specified lo­
cation. ,The contents of the specified FPAC remain
unchanged. The previous contents of the addressed
memory locations are lost. The carry bit is set to
O. The condition codes in the FPSR remain un­
changed.

AC1 must contain the attribute specifier word
which describes the destination.

AC3 must contain a byte pointer which is the ad­
dress of the high-order byte of the destination field
in memory.

Upon successful termination, the contents of ACO
are undefined; AC1 remains unchanged; AC2 con­
tains the original contents of AC3; and AC3 contains
a byte pointer which is the address of the next byte
after the destination field.

This instruction will initiate a commercial fault
under the following condition: if the absolute value
of the number contained in the specified FPAC is
greater than 1016. In the event of a commercial
fault, the contents of ACO are unchanged; AC1 con­
tains the fault code; AC2 contains the original con­
tents of AC3; the contents of AC3 are unpredictable;
and the contents of the destination field are un­
predictable.

NOTES If the destination field cannot con­
tainthe entire number being stored,
high-order digits are discarded un­
til the number will fit into the des­
tination. The remaining low-order
digits are stored and the carry bit
is set to 1.

For data types 0, 1, 2, 3, 4, 5,
and 6, if the number being stored
will not fill the destination field,
the high-order bytes are set to O.

For data type 7, if the num be r be­
ing stored will not fill the destina­
tion field, the low-order bytes are
set to O.

LOAD INTEGER EXTENDED

LDIX

II I 0 0 0 I I I I 0 I ,0 , I 0 ,0 ,0 I
. 0 I I' , I ' , I I I I . . I . . .

2 3 4 5 6 7 8 9 10 II 12 13 14 15

A decimal integer of data type 0, 1, 2, 3, 4, or 5
is distributed into the four FPAC's. The integer
is extended with high-order zeros until it is 32
digits long and then the low-order 8 digits are
treated as an 8-digit number, converted to floating
point form and placed in FAC3. The next 8 digits
are treated as an 8-digit number, converted to
floating point form and placed in FAC2. The next
8 digits are treated as an 8-digitnumber, converted
to floating point form and placed in FAC1. The
high-order 8 digits are treated as an 8-digit num­
ber, converted to floating point form and placed in
FACO. The sign of the integer is placed in each
FPAC unless that FPAC has received 8 digits of
zeros, in which case the FPAC is set to true zero.
The Z and N bits in the FPSR are unpredictable.

AC1 must contain the attribute speCifier which de­
scribes the integer.

AC3 must contain a byte pointer which is the ad­
dress of the high-order byte of the integer.

Upon successful termination, the conte.nts of ACO
and AC1 remain unchanged; AC2 contains the orig­
inal contents of AC3; and AC3 is undefined.

This instruction will initiate a commercial fault
under the following conditions:

1. The attribute speCifier word specifies data type
6 or 7.

2. The integer contains an invalid digit or sign.

In the event of a commercial fault, the contents of
ACO remain unchanged; AC1 contains the fault
code; AC2 contains the original contents of AC3;
and the contents of AC3 are unpredictable.

STORE INTEGER EXTENDED

STIX

11,1,0,0,1,1,1,1,1,0 \,0,1 0,0,01
o I 2 3 4 5 6 7 8 9' 10 II 12 I 13 14 15

The contents of the four FPAC's are converted to
integer form and the low-order 8 digits of each are
used to form a 32-digit integer. This integer is
stored, right-justified, in memory beginning at the
speCified location. The sign of the integer is the
logical OR of the signs of all four FPAC's. The
previous contents of the addressed memory loca­
tions are lost. The carry bit is set to O. The con­
tents of the FPAC's remain unchanged. The
condition codes in the FPSR are unpredictable.

AC1 must contain the attribute specifier word
which describes the destination.

AC3 must contain a byte pOinter which is the ad­
dress of the high-order byte of the destination field
in memory.

Upon successful termination, the contents of ACO
and AC1 remain unchanged; AC2 contains the orig­
inal contents of AC3; and AC3 contains a byte
pointer which is the address of the next byte after
the destination field.

This instruction will initiate a commercial fault
under the following condition: if the attribute
specifier word specifies data type 6 or 7. In the
event of a commercial fault, the contents of ACO
remain unchanged; AC1 contains the fault code;
AC2 contains the original contents of AC3; the
contents of AC3 are unpredictable; and the contents
of the destination field remain unchanged.

NOTE If the destination field is not large
enough to contain the number being
stored, high-order digits are dis­
carded until the number will fit in
the destination. The low-order dig­
its remaining are stored and the
carry bit is set to 1.

INTEGERIZE

FINT

I I 1 I ° I FPAC II I I ° I ° I I I ° 1 . ° . ° ° 1
o 'I 2 3' 4 5 6' 7 8 9 I 10 I II I 12 I 13 I 14 I 15

The number contained in the specified FPAC has
its fractional portion (if any) set to 0 and then the
number is normalized. The Z and N bits in the
FPSR are set to reflect the new contents of the
specified FPAC.

NOTE If the absolute value of the num­
ber contained in the specified
FPAC is less than 1, the specified
FPAC is set to true zero.

LOAD SIGN

LSN

II I
o I I

I ,11111,1111°,11°11 °1°1°1
2 3 4 5 6 7 8 9 10 II 12 I 13 14 15

A number is evaluated and a code representing the
value is placed in AC1. The value of the number
and the resultant code is as follows:

VALUE CODE

Positive non-zero +1

Negative non-zero -1

Positive zero 0

Negative zero -2

AC1 must contain the attribute specifier word
which describes the number.

AC3 must contain a byte pointer which is the ad­
dress of the high-order byte of the number.

Upon successful termination, the contents of ACO
remain unchanged; AC1 contains the value code;
AC2 contains the original contents of AC3; and the
contents of AC3 are unpredictable. The contents
of the addressed memory locations remain un­
changed.

This instruction will initiate a commercial fault
under the following condition: if the instruction
encounters an invalid digit or sign. In the event
of a commercial fault, the contents of ACO remain
unchanged; AC1contalns the fault code; AC2 con­
tains the original contents of AC3; the contents of
AC3 are unpredictable; and the contents of the ad­
dressed memory locations remain unchanged.

3-57
COMMERCIAL INSTRUCTIONS

CHARACTER MOVE

CMV

I' '0 '10,',',' '0 ',0,' 0,0,°1
o ' I 2 3 4 5 6 7 ' 8 ' 9 I 10 " 12 ' 13 14 15

A number of bytes is fetched from one contiguous
area of memory and stored into another contiguous
area of memory under control of the values in the
four accumulators. Fetching and storing may pro­
ceed from right to left or from left to right and
may be in opposite directions. Moving continues
until the destination fierd is filled. If the source
field is longer than the destination field the carry
bit is set to 1, othe rwise it is set to O. If the
source field is shorter than the destination field,
the destination field is padded with space char­
acters.

ACO must contain the number of bytes in the desti­
nation field. If this number is positive, the desti­
nation will be filled in ascending order, starting
with the byte addressed by AC2. If this number is
negative, the destination will be filled in descending
order, starting with the byte addressed by AC2.

AC1 must contain the number of bytes in the source
field. If this number is positive, the source bytes
will be fetched in ascending order, starting with
the byte addressed by AC3. If this number is
negative, the source bytes will be fetched in de­
scending order, starting with the byte addressed
by AC3.

AC2 must contain a byte pointer which is the ad­
dress of the first destination byte.

AC3 must contain a byte pointer which is the ad­
dress of the first byte to be fetched.

The fields may overlap in any way.

Upon termination, ACO contains 0; AC1 contains
the number of source bytes remaining to be fetched;
AC2 contains a byte pointer which is the address of
the next byte after the destination field; and AC3
contains a byte pointer which is the address of the
next byte to be fetched.

NOTES If ACO contains the number 0 at
the beginning of this instruction,
no bytes are fetched and none are
stored.

If AC1 contains the number 0 at
the beginning of this instruction,
the destination field is filled with
space characters.

3-58

CHARACTER COMPARE

CMP

I' , °
o ' I 2

, ,
3 I 4 5 6 I 7

, ° , ° I 0001
8 ' 9 ' 10 ' II ' 12 I 13 ' 14 ' 15

One string of bytes is compared to another and a
code reflecting the result is placed in AC1. The
strings are processed one byte at a time and each
byte is treated as an unsigned 8 -bit binary quan­
tity. If an inequality is found, the string possess­
ing the lesser of the two bytes is considered the
lesser string. The strings may be processed from
left to right or from right to left and may be pro­
cessed in opposite directions. If one string is
shorter than the other, then, when that string is
exhausted, it is treated as if it were padded with
space characters to the length of the longer string.
Comparison continues until an inequality is found
or the longer string is exhausted. The contents of
both strings remain unchanged. The result of the
comparison and· the corresponding code placed in
AC1 is as follows:

RESULT CODE

string 1 < string 2 -1

string 1 = string 2 0

string 1 > string 2 I +1

ACO must contain the number of bytes to be pro­
cessed in string 2. If this number is positive,
string 2 will be processed in ascending order, be­
ginning with the byte addressed by AC2. If this
number is negative, string 2 will be processed in
descending order beginning with the byte addressed
by AC2.

AC1 must contain the number of bytes to be pro­
cessed in string 1. If this number is positive,
string 1 will be processed in ascending order, be­
ginning with the byte addressed by AC3. If this
number is negative, string 1 will be processed in
descending order beginning with the byte addressed
by AC3. .

AC2 must contain a byte pointer which is the ad­
dress of the first byte to be processed in string 2.

AC3 must contain a byte pointer which is the ad­
dress of the first byte to be processed in string 1.

The fields may overlap in any way.

Upon termination, ACO contains the number of
bytes remaining to be processed in string 2; AC1
contains the return code; AC2 contains a byte
pointer which is the address of either the failing
byte in string 2 (if an inequality was found), or the
next byte after string 2 (if string 2 was exhausted);
and AC3 contains a byte pointer which is the ad­
dress of either the failing byte in string 1 (if an
inequality was found), or the next byte after string
1 (if string 1 was exhausted).

CHARACTER TRANSLATE

CTR

II I
o I I

11°1°111111111°111°11 °1°1°1
2 3 4 5 6 7 8 9 10, II 12 I 13 14 15

A string of bytes is translated from one data re­
presentation to another and either moved to another
area of memory or compared to a second translated
string. If the compare option is used, a code re­
flecting the result of the compare is placed in ACl.
The strings are processed one byte at a time from
left to right and processing continues until string 1
is exhausted. For the move option, the translated
value of string 1 replaces string 2. For the com­
pare option, the translated value of string 1 is com­
pared to the translated value or string 2 on a byte
for byte basis, treating both bytes as unsigned 8-bit
binary quantities, until either an inequality is found
or until string 1 is exhausted. If an inequality is
found, the string possessing the lesser of the two
bytes is considered the lesser string. For the
move option, the contents of string 1 remain un­
changed. For the compare option, the contents of
both strings remain unchanged.

The translation is accomplished by treating each
byte as an unsigned 8-bit binary integer and using
that number as an index into a 256-byte translation
table. The byte in the table addressed by using the
source byte as an index is either stored in the next
available byte of string 2 or is used in the compare.

For the compare option, the result of the compari­
son and the corresponding code placed in AC1 is as
follows:

RESULT CODE

Translated value of string 1 <
translated value of string 2 -1

Translated value of string 1 =
translated value of string 2 0

Translated value of string 1 >
translated value of string 2 +1

3-59

ACO must contain a word address of a word which
contains a byte pointer which is the address of the
first byte of the 256 -byte translation table. If bit 0
of ACO is set to 1, then the contents of ACO are
assumed to be the beginning of an indirection chain
which will result in the address of a word which
contains the byte pointer to the translation table.

AC1 must contain the number of bytes to be pro­
cessed. Both strings will be processed in ascend­
ing order, beginning with the bytes addressed by
AC2 and AC3. If the number in AC1 is negative,
the move option is selected. If the number in AC1
is positive, the compare option is selected.

AC2 must contain a byte pointer which is the ad­
dress of the first byte to be processed in string 2.

AC3 must contain a byte pointer which is the ad­
dress of the first byte to be processed in string 1.

The fields may overlap in any way.

Upon termination of the instruction with the move
option, ACO contains the resolved address of the
word which contains the byte pointer to the trans­
lation table; AC1 contains 0; AC2 contains a byte
pointer which is the address of the next byte after
string 2; and AC3 contains a byte pointer which is
the address of the next byte after string 3. Upon
termination of the instruction with the compare
option, ACO contains the resolved address of the
word which contains the byte pointer to the trans­
lation table; AC1 contains the return code; AC2
contains a byte pointer which is the address of
either the failing byte in string 2 (if an inequality
was found) or the next byte after string 2 (if no
inequality was found); and AC3 contains a byte
pointer which is the address of either the failing
byte in string 1 (if an inequality was found) or the
next byte after string 1 (if no inequality was found).

COMMERCIAL INSTRUCTIONS

CHARACTER MOVE UNTIL TRUE

CMT

1[1
1
1[1[° 1 1[0[10[0[01

5 6 7 8 9 10 II 12 I 13 14 15

A number of bytes is fetched from one contiguous
area of memory and stored into another contiguous
area of memory until either the source string is
exhausted or until a specific character or one of a
set of characters is encountered. The strings may
be processed from left to right or from right to
left, but both strings must be processed in the
same direction. Each byte fetched from the source
string is treated as an unsigned 8-bit binary integer
and used as the bit index into a 256-bit table. If
the addressed bit is 0, the byte is stored in the next
available byte of the destination string and the next
byte is fetched from the source string. If the ad­
dressed bit is 1, the byte is not stored and the in­
struction terminates. Processing continues until
either the source string is exhausted or an ad­
dressed bit is 1.

ACO must contain the word address of the first word
of the 256 -bit translation table. If bit 0 of ACO is
1, the contents of ACO are treated as the beginning
of an indirection chain which will result in the word
address of the first word of the translation table.

AC1 must contain the number of bytes to be pro­
cessed. If the number is positive, processing will
be in ascending order starting with the bytes ad­
dressed by AC2 and AC3. If the number is nega­
tive, processing will be in descending order
starting with the bytes addressed by AC2 and AC3.

AC2 must contain a byte pointer which is the ad­
dress of the first destination byte.

AC3 must contain a byte pointer which is the ad­
dress of the first byte to be processed in the source
string.

The fields may overlap in any way.

Upon termination, ACO contains the resolved ad­
dress of the translation table; AC1 contains the
number of bytes that were not moved; AC2 contains
a byte pointer which is the address of the next byte
in the destination field; and AC3 contains a byte
pointer which is the address of either the failing
byte in the source string (if an addressed bit was 1)
or the next byte affer the source string (if no ad­
dressed bit was 1).

3-60

EDIT

EDIT

II I
o I I

1 ° I I
1

6 I 7
11°11[°11 °1°1°1
8 9 10 II 12 1 13 14 15 2 3 4 5

A decimal number is converted from either packed
or unpacked form to a string of bytes under the
control of an edit sub-program. This sub-program
can perform many different operations on the num­
ber and its destination field including leading zero
suppression, leading or trailing signs, floating fill
characters, punctuation control, and insertion of
text into the destination field.

Two indicators and three pointers are maintained
by the EDIT instruction. The indicators are the
Significance Trigger (T) and the Sign Flag (S). T
is set to 1 when the first non-zero digit is pro­
cessed unless otherwise specified by an edit op­
code. At the beginning of an EDIT instruction, T
is set to O. S is set at the beginning of an EDIT to
reflect the sign of the number being processed. If
the number is positive, S is set to O. If the num­
ber is negative, S is set to 1.

The three pointers are the Source Pointer (SI), the
Destination Pointer (DI), and the op-code pointer
(P). These pointers point to the current byte in
process for the respective areas. At the beginning
of an EDIT instruction, SI is set to the value con­
tained in AC3, DI is set to the value contained in
AC2, and P is set to the value contained in ACO.

The sub -program is made up of 8 -bit op -codes
followed by none, one, two, four, or several 8-bit
operands. Op-codes are included for testing T and
S; setting T and S; manipulating SI, DI, and P; and
for moving bytes to and from areas in memory.
The EDIT sub -program is processed sequentially,
much the same way programs are processed. Un­
less instructed to do otherwise, P is updated after
each operation to point to the next sequential op­
code. The EDIT instruction will continue to pro­
cess op-codes until directed to stop by the DEND
op-code.

ACO must contain a byte pointer which is the ad­
dress of the first byte of the EDIT sub-program.

AC1 must contain the attribute specifier word
which describes the number to be processed.

AC2 must contain a byte pointer which is the ad­
dress of the first byte of the destination field.

AC3 must contain a byte pointer which is the ad­
dress of the first byte of the source field.

The fields may overlap in any way.

Upon successful termination, the carry bit con­
tains the significance trigger; ACO contains a byte

pOinter which is the address of the next op -code to
be processed; the contents of AC1 are unpredict­
able; AC2 contains a byte pointer which is the ad­
dress of the next destination byte; and AC3 contains
a byte pointer which is the address of the next
source byte.

This instruction will initiate a commercial fault
under the following conditions:

1. If the attribute specifier word specifies data
type 6 ot 7.

2. If the instruction encounters an invalid digit or
sign.

3. If the instruction encounters an invalid edit
op-code.

40 If the attribute specifier word specifies data
type 5 and either the MOVE ALPHABETIC or
the MOVE CHARACTER op-code is executed.

In the event of a commercial fault, ACO contains a
byte pointer which is the address of the op-code
that failed plus 1 byte; AC1 contains the fault code;
AC2 contains the current value of DI; and AC3 con­
tains the current value of S1.

NOTES If SI is moved outside the area
occupied by the source number,
zeros will be supplied for numer­
ic moves, even if SI is later
moved back inside the source
area.

The EDIT instruction places in­
formation on the stack. There­
fore, the stack must be set up
and have several words available
for use.

If the EDIT instruction is inte r­
rupted, it places restart infor­
mation on the stack and places
1777778 in ACO.

If the initial contents of ACO are
equal to 1777778 , the operation
of the EDIT instruction is unpre­
dictable.

In the description of some of
the EDIT op-codes the symbol j
is used to signify for how many
characters a certain process is
to take place. For those op­
codes that use j, if the high­
order bit of j is 1, then j is
considered an 8-bit two's com­
plement integer and is used to
reference a word in the stack
from which a 16-bit unsigned
number is retrieved. This word
is at the address (stack pointer
+ l+j). The number at this ad­
dress is used instead of j for the
remainder of that op-code.

3-61

The EDIT op-codes are described below.

SET T TO ONE

DSTO

10 ,0,0,0,1,0,0,1
01234567

The Significance Trigger (T) is set to 1.

SET T TO ZERO

DSTZ

10 ,0,0,0,0,1,1,01
01234567

The Significance Trigger (T) is set to O.

SET S TO ONE

DSSO

1 0 ,0,0,0,0,1,0,1
01234567

The Sign Flag (S) is set to 1.

SET S TO ZERO

DSSZ

10,0,0,°1°, ,0,01
01234567

The Sign Flag (S) is set to O.

ADD TO SI

DASI <pO>

The 8-bit two's complement integer specified by
pO is added to the Source Indicator (SI).

ADD TO DI

DADI ~~~

10,0,0,1,0,0, ,01
01234567

PO
I I I I I I

o 1 2 3 4 567

The 8-bit two's complement integer specified by
pO is added to the Destination Indicator (DI).

COMMERCIAL INSTRUCTIONS

ADD TO P

DAPU <pO>

1 ° , ° ,0 , J ,0, , , I 1 -;::-'---;--'--;;-...J.-,;-p,-,o-:;-,-, -;;-,-, -;::-L'-:;-,
o 2345670234567

The 8-bit two's complement integer specified by
pO is added to the op-code pointer (P). Before the
add is performed, P is pointing to the byte con­
taining the DAPU op-code.

ADD TO P DEPENDING ON T

DAPT <pO>

PO
, I I I 10 ,0,0,0,1,0,1,1\

01234567 01234567

If T is I the 8-bit two's complement integer speci­
fied by pO is added to the op-code pointer (P). Be­
fore the add is performed, P is pointing to the byte
containing the DAPT op -code.

ADD TO P DEPENDING ON S

DAPS <pO>

If S is 0 the 8-bit two's complement integer speci­
fied by pO is added to the op -code pointer (p). Be­
fore the add is performed, P is pointing to the byte
containing the DAPS op -code.

STORE IN STACK

DSTK ~>,~

10 ,0,0,0,0,0,1,01
01234567

PO
o 12 3'4'5 6'7

K
I I I I

01234567

The byte specified by pO is stored in bits 8-15 of a
word in the stack. Bits 0-7 of the word that re­
ceives pO are set to O. If the 8-bit two's comple­
ment integer specified by k is negative, the word
that receives pO is the word addressed by
(stack pointer+ l+k). If k is positive then pO is
stored at the address (frame pointer+ 1+k).

DECREMENT AND JUMP IF ZERO

DDTK <k >, <pO>

10,0,0,0,0,0,1,11 I K
o I 2 3 4 5 S 7 '--:::O~7""1 -'--::-2-"--:3:;-'-' "74L'--:5;-'-' ";:"6....L'-:7;-'

P,O, , , I
0234567

A word in the stack is decremented by one. If the
decremented value of the word is zero, the 8-bit
two's complement integer specified by pO is added
to the op-code pointer (P). Before the add is per­
formed, P is pointing to the byte containing the
DDTK op-code. If the 8-bit two's complement
integer specified by k is negative the word decre­
mented is at the address (stack pointen 1+k). If
k is positive, the word decremented is at the ad­
dress (frame pointen I+k).

INSERT SIGN

DINS ~,<gl>

1°,0,0,0,1,1,1,01 PO
I I

01234567 o 2 3 4 5 6 7

PI
! I I !

o 234567

If the Sign Flag (S) is 0 the character specified by
pO is inserted in the destination field at the posi­
tion specified by DI. If S is 1 the character speci­
fied by p1 is inserted in the destination field at the
position specified by DI. DI is incremented by 1.

INSERT CHARACTER SUPPRESS

DINT <pO >, <pI>
= =

10 ,0, 0, 0, I ,0, I ,0 I PO
I I I , !

3-62

01234567 o 2 3 4 5 6 7

PI
! ! I

o 2 3 4 5 6 7

If the Significance Trigger (T) is 0 the character
specified by pO is inserted in the destination field
at the position specified by DI. If T is 1 the char­
acter speCified by p1 is inserted in the destination
field at the position specified by DI. DI is incre­
mented by 1.

INSERT CHARACTER ONCE

DINC <pO>

1°,0,0,1,0,0,0,01 PO
I , 1 ,

01234567 o I 2 3 4 5 6 7

The character specified by pO is inserted in the
destination field at the position specified by DI.
DI is incremented by one.

INSERT CHARACTER J TIMES

DIMC <j >, <pO>

1 0 ,0,0,1,0,1,0,1]
01234567 o

PO
I , I ,

o 2 3 4 5 6 7

J
! !, I

234567

The character specified by pO is inserted into the
destination field a number of times equal to j be­
ginning at the position specified by DI. DI is in­
creased by j.

INSERT CHARACTERS IMMEDIATE

DICI <j >, <pO >, <pI >, ••• ,<pj -i >
= = = =

1°,0,0,1,0,0,0,11
01234567

PO
I I ,

01234567

J
I I I I ,

01234567

PI
, I , I

01234567

PJ-I
I , I I ,

01234567

A number of characters equal to j is inserted from
the op -code stream into the destination field be­
ginning at the position specified by DI. Both DI and
P are increased by j.

MOVE ALPHABETICS

DMVA <i.>

1°1°1°1°11111°111 1 J o I 2 3 4 5 6 7 '--;::0 ~~2 '-:3;-'-1 -=4 1-:5 1 ~6 1-=7,....,

A number of alphabetic characters equal to j is
moved from the source field beginning at the posi­
tion specified by SI to the destination field beginning
at the position specified by DI. Both 81 and DI are
increased by j. T is set to 1.

If the attribute specifier word indicates that the
source field is data type 5 (picked), a commercial
fault is initiated. If any of the characters moved is
not an alphabetic (A-Z, a-z, or space), a commer­
cial fault is initiated.

3-63

MOVE NUMERICS

DMVN <j>

1°1°1°1°1 1 1°1°1°1
01234567 o

I I ~ I I I I
1234567

A number of numeric characters equal to j is
moved from the source field beginning at the posi­
tion specified by 81 to the destination field begin­
ning at the position specified by DI. Both 81 and
DI are increased by j. T is set to 1. In data type
2, if the least significant digit has been processed,
81 is undefined.

If any of the characters moved is not a numeric
(0-9 o;r space), a commercial fault is initiated.

MOVE CHARACTERS

DMVC <j>

10,°1°1°, 1111°1°1 J
" , o 234567 01234567

A number of characters equal to j is moved from
the source field beginning at the position specified
by 81 to the destination field beginning at the posi­
tion specified by DI. Both 81 and DI are increased
by j. T is set to 1.

If the attribute speCifier word indicates that the
sourc~ is data type 5 (packed), a commercial fault
is. initiated. No validation of the characters is
performed.

MOVE NUMERIC WITH ZERO SUSPRESSION

DMV8 <j >, <pO>

10,0,°11,0,1,11°1
01234567

PO , " ,
01234567

J
I , I I J I

01234567

A number of numeric characters equal to j is
moved from the source field beginning at the posi­
tion specified by 81 to the destination field beginning
at the position specified by DI. If T is 1, the digit
is moved from the source to the destination. As
long as T is 0, all zeros and spaces are replaced
with pO. When the first non-zero digit is en­
countered, T is set to 1. Both 81 and DI are in-
c reased by j. In data type 2, if the least signifi­
cant digit has been processed, SI is undefined.

If any of the characters moved is not a numeric
(0-9 or space), a commercial fault is initiated.

COMMERCIAL INSTRUCTIONS

MOVE DIGIT WITH OVERPUNCH

DMVO <pO >, <pl >, <p2 >, <p3 >

10 ,0,0,0,0,', ','I
01234567

P' , " ,
o 1 2 3 4 5 6 7

P3
, I I I

o 1 2 3 4 5 6 7

PO
01 2 3'4'5'6'7

P2
, , I ,

o 234567

A digit substitute is placed in the destination field
at the position specified by DI or a digit plus over­
punch is moved from the source field at the position
specified by SI to the destination field at the posi­
tion specified by DI. Both SI and DI are increased
by 1. In data type 2, if the least significant digit
has been processed, SI is undefined.

If the digit is a zero or space then if Sis 0 pO is
placed in the destination field; if S is 1 pl is placed
in the destination field. If the digit is a non-zero
then if S is 0 p2 is added to the digit and the result
is placed in the destination field; if S is 1 p3 is
added to the digit and the result is placed in the
destination field, If the digit is a non-zero T is
set to L

If the character is not a numeric (0-9 or space) a
commercial fault is initiated.

MOVE FLOAT

DMVF <j >, <pO >, <pl >, <p2 >

10 ,0,0,1,0 1,0,01
01234567

PO
, I I . I ,

01234567

P2
I I , I I

01234567

J
I I I I

o 2 3 4 5 6 7

p,
I I I I

o 2 3 4 5 6 7

For a number of characters equal to j, either a
digit substitute is placed in the destination field
beginning at the position specified by DI or a digit
is moved from the source field beginning at the
position specified by SI to the destination field
beginning at the position specified by DI. When T
changes from 0 to l, both the digit substitute and
the digit are placed in the destination field. SI is
increased by j.. DI is increased by j if T does not
change from 0 to 1 or by j + lifT changes from 0
to 1. In data type 2, if the least significant digit
has been processed, SI is undefined.

3-64

For each digit processed, if T is 1 the digit is
moved from the source field to the destination
field. If T is 0 and the digit is a zero or space pO
is placed in the destination field. If T is 0 and the
digit is a non-zero then T is set to 1 and the char­
acters placed in the destination field depend on S.
If S is 0 pl is placed in the destination field fol­
lowed by the digit. If S is 1 p2 is placed in the
destination field followed by the digit.

If any of the digits processed is not a numeric (0-9
or space) a commercial fault is initiated.

END FLOAT

DNDF <pO >, <pl >

1°1°1°1°1°1°1°1'1
01234567

P'
! J " I

01234567

PO
I I I , "'

01234567

If T is 1 nothing is placed in the destination field
and DI is left unchanged. If T is 0, then if S isO
pO is placed in the destination field at the position
specified by DI. If S is 1 pl is placed in the desti­
nation field at the position specified by DI. DI is
increased by 1.

END EDIT

DEND

\0,0,0,0,0,0,0,01
0234567

The EDIT sub-program is terminated.

CHAPTER IV

INPUT /OUTPUT

INTRODUCTION

In order for the processor to perform useful work
for the user, there must be some method for the
program to transfer information outside the ma­
chine. The Input/Output (I/O) instruction set pro­
vides this facility. There are eight I/O instructions
which allow the program to communicate with I/O
devices, control the I/O interrupt system, control
certain processor options, and to perform certain
processor functions.

The ECLIPSE line has a 6-bit device selection net­
work, corresponding to bits 10-15 in the I/O in­
struction format. Each device is connected to this
network in such a way that each device will only
respond to commands with its own device code.
Each device also has two flags, Busy and Done,
which control its operation. When Busy and Done
are both zero, the device is idle and cannot perform
any operations. To start a device, the program
must set Busy to 1 and set Done to O. When a de­
vice has finished its operation, it sets Busy to 0
and Done to 1.

The format for the I/O instructions is illustrated
below.

10 I, I I AC lop, CODE ICONT¥I ,DEVICE CqDE , I
o 1 I 2 3 1 4 5 6 1 7 8 9 10 II 121 13 14 15

Bits 0-2 are 011, bits 3-4 specify the AC, bits 5-7
contain the operation code, bits 8-9 control the
Busy and Done flags in the device, and bits 10-15
specify the code of the device. The six bits pro­
vided for the device code in the I/O format mean
that 64 unique device codes are available for use.
Some of these device codes, however, are reserved
for the CPU and certain processor options. The
remaining device codes are available for referenc­
ing I/O units. Some of the codes have been assigned
to specific devices by Data General and the assem­
bIer recognizes mnemonics for these devices. A
complete listing of device codes, the devices as­
signed to these codes, and the mnemonics assigned
to the devices is contained in Appendix A.

OPERATION OF I/O DEVICES

In general, the operation of all I/O devices is done
by manipulating the Busy and Done flags. In order
to operate a device, the program must first en­
sure that the device is not currently performing
some operation. After the program has deter­
mined that the device is available, it can start an
operation on the device by setting Busy to 1 and
Done. to O. Once a device has completed its opera­
tion, and set Busy to 0 and Done to 1, it is avail­
able for another operation. The program can
determine this condition in one of two ways. By
using the I/O SKIP instruction, the program can
test the status of the Busy and Done flags. An­
other way is to utilize the interrupt system that is
standard on the ECLIPSE computer. The interrupt
system is made up of an interrupt request line to
which each I/O device is connected, an Interrupt
On flag in the CPU, and a 16-bit interrupt priority
mask. The Interrupt On flag controls the status
of the interrupt system. If the flag is set to 1, the
CPU will respond to and process interrupts. If the
flag is set to 0, the CPU will not respond to any
interrupts. An interrupt request is initiated by an
I/O device when it completes its operation. Upon
completing the operation, the device sets Busy to
o and Done to 1. At this time, the device also
places an interrupt request on the interrupt re­
quest line, provided that the bit in the interrupt
priority mask which corresponds to the priority
level of the device is O. If the mask bit is 1, the
device sets Busy to 0 and Done to 1, but does not
place an interrupt request on the interrupt re­
quest line.

If the Interrupt On flag is 1 at the time the pro­
cessor completes execution of any instruction, the
processor honors any requests on the interrupt re­
quest line. If the Interrupt On flag is 0, the CPU
does not look at the interrupt request line; it just
goes on to the next sequential instruction. The
CPU honors an interrupt request by setting the In­
terrupt On flag to 0 so that no interrupts can inter­
rupt the first part of the interrupt service routine.
The CPU then places the updated program counter

4-1 of 11
OPERATION OF I/O DEVICES

into physical memory location 0 and executes a
"JMP @1" instruction. It is assumed that physical
location 1 contains the address, either direct or
indirect, of the interrupt service routine.

Once the CPU has transferred control to the inter­
rupt service routine, it is up to that routine to
save any accumulators that will be used, save the
carry bit if it will be used, determine which de­
vice requested the interrupt, and then service the
interrupt. The determination of which device needs
service can be done by I/O SKIP instructions or the
routine can use the INTERRUPT ACKNOWLEDGE
instruction. The saving of return information can
be combined with the determination of which device
is requesting service by use of the VECTOR ON
INTERRUPTING DEVICE CODE instruction.

The INTERRUPT ACKNOWLEDGE instruction re­
turns the 6 -bit device code of the device requesting
the interrupt. The VECTOR instruction,. in addition
to saving return information on the stack, performs
an INTERRUPT ACKNOWLEDGE and uses the code
returned as an index into a table of addresses.
These addresses are the beginnings of the various
device service routines. If more than one device
is requesting service, the code returned is the
code of that device requesting an interrupt which
is physically closest to the CPU on the I/O bus.
After servicing the device, the interrupt routine
should restore all saved values, set the Interrupt
On flag to 1, and return to the interrupted program.
The instruction that sets the Interrupt On flag to 1
(INTERRUPT ENABLE) allows the processor to
execute one more instruction (if the INTERRUPT
ENABLE instruction changed the condition of the
Interrupt On flag) before the next interrupt can
take place. In order to prevent the interrupt ser­
vice routine from going into a loop, this next in­
struction should be the instruction that returns
control to the interrupted program. Since the up­
dated value of the program counter was placed in
location 0 by the CPU upon honoring the interrupt,
all the interrupt routine has to do, after restoring
the AC's and the carry bit, is execute an INTER­
RUPT ENABLE instruction and a "JMP @O" in­
struction and control will be returned to the
interrupted program. If the main interrupt routine
used the VECTOR instruction to save return infor­
mation and to jump to the appropriate device ser­
vice routine, then this information can be restored,
and control returned to the interrupted program, by
either the RESTORE or POP BLOCK instruction.

PRIORITY INTERRUPTS

If the Interrupt On flag remains 0 throughout the
interrupt service routine, the interrupt routine
cannot be interrupted and there is only one level of
device priority. This level is determined by either
the order in which the I/O SKIP instructions are
issued or (if either INTERRUPT ACKNOWLEDGE
or VECTOR are used) by the physical location of
the devices on the bus. In a system with devices

4-2

of widely differing speed, such as a teletypewriter
versus a fixed head disc, the programmer may
wish to set up a multiple level interrupt scheme.
Hardware and instructions are available on the
ECLIPSE line of computers to allow the implemen­
tation of sixteen levels of priority interrupts.

Each of the I/O devices is connected to a bit in the
16 -bit priority mask. Devices which operate at
roughly the same speed are connected to the same
bit in the mask. Even though the standard mask
bit assignments have the higher numbered bits
assigned to lower speed deVices, no implicit pri­
ority ordering is intended. The manner in which
these priority levels are ordered is completely up
to the programmer. The listing of device codes in
Appendix A also contains the standard Data General
mask bit assignments.

The condition of the priority mask is altered by
the MASK OUT instruction. If a bit in the priority
mask is set to 1, then all devices in the priority
level corresponding to that bit will be prevented
from requesting an interrupt when they complete
an operation. In addition, all pending interrupt
requests from devices in that priority level are
disabled.

To implement a multiple priority level interrupt
handler, the interrupt handler must be written in
such a way that it may be interrupted without dam­
age. For this to be possible, the main interrupt
routine must save return information upon receiv­
ing control. The return information consists of
the four accumulators, the carry bit, and the re­
turn address. This information should be stored
in a unique place each time the interrupt handler is
entered so that one level Qf interrupt does not over­
lay the return information that belongs to a lower
priority level. The stack facility of the ECLIPSE
computer and the VECTOR instruction allows this
to be done in one instruction and stores the return
information in a standard form. After saving the
return information, the interrupt routine must
determine which device requires service and jump
to the correct service routine. This can be done
in the same manner as for a single level interrupt
handler. The VECTOR instruction does this at the
same time that it is saving the return information.

After the correct service routine has received con­
trol, that routine should save the current priority
mask, establish the new priority mask, and enable
the interrupt system with the INTERRUPT ENABLE
instruction. The VECTOR instruction does this in
addition to its other operations. After servicing
the interrupt, the routine should disable the inter­
rupt system with the INTERRUPT DISABLE in­
struction, reset the priority mask, restore the
accumUlator, enable the interrupt system, and
return control to the interrupted program. If the

. main interrupt handler uses the VECTOR instruc­
tion, then this dismissal process can be done by
disabling the interrupt system, restoring the old
priority mask, enabling the interrupt system and

then executing either a RESTORE or POP BLOCK
instruction.

DATA CHANNEL

Handling data transfers between external devices
and memory under program control requires the
execution of several instructions for each word
transferred. To allow greater transfer rates the
ECLIPSE line of computers contains a data chan­
nel through which a device, at its own request, can
gain direct access to memory using a minimum of
processor time. At the maximum input rate of one
word every BOOns or 1,250,000 words per second,
or at the maximum output rate of one word every
1400ns or approximately 715,000 words per second,
the data channel effectively stops the processor,
but at lower rates, processing continues while data
is being transferred.

When a device is ready to send or receive data, it
requests access time via the channel. At the
beginning of every memory cycle, the processor
synchronizes any requests that are then being made.
At certain specified points during the execution of
an instruction, the CPU pauses to honor all pre­
viously synchronized requests. When a request is
honored, a word is transferred directly via the
channel from the device to memory or from mem-
0ry to the device without specific action by the pro­
gram. All requests are honored according to the
relative position of the requesting devices on the
I/O bus. That device requesting data channel ser­
vice which is physically closest on the bus is ser­
viced first, then the next closest device, and so on,
until all requests have been honored. The synchro­
nization of neW requests occurs concurrently with
the honoring of other requests. If a device contin­
ually requests the data channel, that device can
prevent all devices further out on the bus from
gaining access to the channel.

Following completion of an instruction, the pro­
cessor handles all data channel requests, and then
honors all outstanding I/O interrupt requests. Af­
ter all data channel and I/O interrupt requests have
been serviced, the processor continues with the
next sequential instruction. The data channel is
fully described in the" Programmer's Reference
Manual for Peripherals" DGC 015-000021.

4-3

CODING AIDS

The set of I/O instructions has options that can be
obtained by appending mnemonics to the standard
mnemonics. These optional mnemonics and their
result are given below.

CLASS CODED RESULT
OPERATION ABBREVIATION CHARACTER BITS

f (omitted) 00 Does not affect
the Busy and
Done flags.

S 01 Start the device
by setting Busy
to 1 and Done to O.

C 10 Idle the devlce by
setting both Busy
and Done to O.

P 11 Pulse the special
in-out bus control
line. The effect,
if any, depends
upon the device.

I/O INSTRUCTIONS

DATA IN A

DIA<L> ac, device

10 I, " AC 10,0 1
0 1 123 1 456

~J
10 II 12 13 14 15

DEVICE CODE
I I I I ,

7 8

The contents of the A input buffer in the speCified
device are placed in the specified AC. After the
data transfer, the Busy and Done flags are set
according to the function specified by F.

The number of data bits moved depends upon the
size of the buffer and the mode of operation of the
device. Bits in the AC that do not receive data
are set to O.

DATA IN B

DIB<!,> ac , dIDdc.e

I 0 I I I AC I 0 I ~ I ,DEyIC~ cqDE
o I I '2 3 I 4 5 ' 6 I 7 8 9 10 II 12 13 14 15

The contents of the B input buffer in the specified
device are placed in the specified AC. After the
data transfer, the Busy and Done flags are set
according to the function speCified by F.

The number of data bits moved depends upon the
size of the buffer and the mode of operation of the
device. Bits in the AC that do not receive data
are set to O.

I/O INSTRUCTIONS

DATA IN C

I 0 . ! I I I AC I I I 0 I I ~ I
0 1 I 2 3 1 45 6 f 7 8 9

DEVICE CODE
10 I II I 12 I 13 I 14 I 15

The contents of the C input buffer in the specified
device are placed in the specified AC. After the
data transfer J the Busy and Dohe flags are set
according to the function specified by F.

The number of data bits moved depends upon the
size of the buffer and the mode of operation of the
device. Bits in the AC that do not receive data
are set to O.

DATA OUT A

DOA<!> aC,device

I 0 I I I I I Af· 1.0 I I 1 0 I f I DEVICE CODE
I I I I

0123456789 10 " 12 13 14 15

The contents of the specified AC are placed in the
A output buffer of the specified device. After the
data transfer, the Busy and Done flags are set
according to the function speCified by F. The con­
tents of the speCified AC remain unchanged.

The number of data bits moved depends upon the
size of the buffer and the mode of operation of the
device.

DATA OUT B

DOB<!> ac,device

I 0 I I I I I Ale I I I 0 I 0 I
o I 2 3 4 5· 6 7

DEVICE CODE
" I I I J

10 II 12 13 14 15

The contents ·of the specified AC are placed in the
B output buffer of the specified device. After the
data transfer, the Busy and Done flags are set
according to the function specified by F. The con­
tents of the specified AC remain unchanged.

The number of data bits moved depends upon the
size of the buffer and the mode of operation of the
device.

4-4

DATA OUT C

DOC<t> ac,~

10 II 12 13 14 15

The contents of the speCified AC are placed in the
C output buffer of the specified device. After the
data transfer, the Busy and Done flags are set
according to the function specified by F. The con­
tents of the specified AC remain unchanged.

The number of data bits moved depends upon the
size of the buffer and the mode of operation of the
device.

The I/O SKIP instruction enables the programmer
to make deCisions based upon the values of the
Busy and Done flags. Which test is performed is
based upon the value of bits 8 -9 in the instruction.
Bits 8 -9 can be set by appending an optional
mnemonic to the I/O SKIP mnemonic. The optional
mnemonics and their results are given below.

CLASS CODED RESULT
ABBREVIATION CHARACTER BITS OPERATION

t BN 00 Tests for Busy = 1.
BZ 01 Tests for Busy = O.
DN 10 Tests for Done = 1.
DZ 11. Tests for Done = O.

I/O SKIP

SKP<1,> device

I 0 I I I I 0 0 I I I I .1 I T 9 1
0 1 123 1 456 1 78'

DEVICE CODE
10 I ,,' 12 I 13 I 14 I 15

If the test condition specified by T is true, the
next sequential word is skipped.

NO I/O TRANSFER

NIO< 1> device

I 0 I I I I 0 I 0 I 0 I 0 I 0 I 8 ~ 9 I I DEYIC1 COpE
o I I 2 3 4 5 6 7 10 " 12 13 14 15

The Busy and Done flags in the specified device
are set according to the function specified by F.

CENTRAL PROCESSOR FUNCTIONS

I/O instructions with a device code of 778 perform
a number of special functions rather than control­
ling a specific device. In all but the I/O SKIP in­
struction, I/O instructions with a device code of
778 use bits 8 -9 to control the condition of the
Interrupt On flag. An I/O SKIP instruction with a
device code of 778 uses bits 8-9 to either test the
state of the Interrupt On flag or to test the state of
the Power Fail flag. The mnemonics are the same
as for normal I/O instructions. The table below
gives the result of these bits for instructions with
a device code of 778.

CLASS CODED RESULT
ABBREVIATION CHARACTER BITS OPERATION

f (omitted) 00 Does not affect the
state of the Interrupt
On flag.

S 01 Set the Interrupt On
flag to 1.

C 10 Set the Interrupt On
flag to O.

P 11 Does not affect the
state of the Interrupt
On flag. Used only
in the VCT instruc-
tion.

The device code of 778 deals mainly with proces­
sor functions and has, therefore, been given the
mnemonic of CPU. In addition, many of the I/O
instructions that reference this device code have
been given special mnemonics. While these
special mnemonics are functionally equivalent to
the corresponding I/O instructions with a device
code of 778, there is the following limitation; the
mnemonics for controlling the state of the Inter­
rupt On flag cannot be appended to them. If the
programmer wishes to alter the state of the Inter­
rupt On flag while performing a MASK OUT in­
struction, for example, he must issue the
appropriate I/O instruction (DOB<!> ac, CPU)
instead of the corresponding special mnemonic
(MSKO ac). If the special mnemonic is used,
bits 8 -9 are set to 00. In describing the instruc­
tions, the special mnemonic for the corresponding
I/O instruction will be given first, followed by the
I/O instruction.

INTERRUPT ENABLE

INTEN

NIOS CPU

o " 2 3 '4 5 6 7 8 9 10 II 12 13 14 15

The Interrupt On flag is set to 1.

If the state of the Interrupt On flag is changed by
this instruction, the CPU allows one more instruc­
tion to execute before the first I/O interrupt can

occur. However, if the instruction is one of those
that is interruptable, then interrupts can occur as
soon as the instruction begins to execute.

INTERRUPT DISABLE

INTDS

NIOC CPU

o ' I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

The Interrupt On flag is set to o.

INTERRUPT ACKNOWLEDGE

INTA ac

DIB<f> ac, CPU
=, =.

10,1,11 AC 10,1 ~ I I I
o I 2 3 '4 5 6 '7 8 9 10 1\ ' 12 I 13 14 15

The six-bit device code of that device requesting
an interrupt which is physically closest to the CPU
on the bus is placed in bits 10-15 of the specified
AC. Bits 0 -9 of the specified AC are set to o.
After the transfer, the Interrupt On flag is set
according to the function specified by F.

MASK OUT

MSKO ac

DOB<1,> ac, CPU

I 0 I, I I AC I I , 0 I 0 I ~ II j I , I I I I I , I I
o I I 2 3 I 4 5 6 7 8 9 10 " 12 13 14 15

The contents of the specified AC are placed in the
priority mask. After the transfer, the Interrupt
On flag is set according to the function specified
by F. The contents of the specified AC remain
unchanged.

NOTE A 1 in any bit disables inter­
rupt requests from devices in
the corresponding priority
level.

CENTRAL PROCESSOR FUNCTIONS

A

(START OF)
VCT INSTRUCTION

FETCH THE SECOND
WORD OF THE VCT
INSTRUCTION. BIT
o IS THE STACK
CHANGE BIT. BITS
1-15 CONTAIN THE
ADDRESS OF THE
BEGINNING OF THE
VECTOR TABLE

I PERFORM I
INTA

ADD THE CODE
RETURNED FROM
INTA TO THE AD­
DRESS OF THE VECTOR
TABLE AND FETCH THE
WORD AT THAT LOCA­
TION. BIT 0 IS THE
"DIRECT BIT"

BITS 1-15 OF
THE FETCHED
VECTOR TABLE
ENTRY CONTAINS
THE ADDRESS OF
THE DCT

SAVE LOCATIONS
40-438

PLACE CONTENTS OF
LOCATION 4 IN
STACK POINTER.
PLACE CONTENTS OF
LOCATION 6 iN
STACK LIMIT.
PLACE CONTENTS OF
LOCATION 7 IN
STACK FAULT.
NOTE: FRAME
POINTER IS DESTROYED
AND THE CONTENTS
ARE UNPREDICTABLE

PUSH OLD CONTENTS
OF LOCATIONS

408-438

BITS 1-15 OF THE
FETCHED VECTOR
TABLE ENTRY CON­
T AIN THE ADDRESS
OF THE DEVICE
INTERRUPT ROUTINE.

TRANSFER CONTROL
TO THE DEVICE
INTERRUPT ROUTINE
BY PLACING BITS
1-15 OF THE FETCHED
VECTOR TABLE ENTRY
IN THE PROGRAM COUNTER

00-00570

4-6

FETCH THE FIRST WORD
OF THE DCT. BIT 0 IS
THE" PUSH BIT". BITS
1-15 CONTAIN THE
ADDRESS OF THE DEVICE
INTERRUPT ROUTINE.

NO PUSH BIT ,-----::.:..:::..<

OG-0057O

1?

ES

PUSH STANDARD
RETURN BLOCK.
BITS 1-15 OF
LAST WORD PUSHED
CONTAIN BITS 1-15
OF PHYSICAL LOCATION
O.

PLACE THE
ADDRESS OF THE
DCT IN AC2.

PUSH THE CURRENT
INTERRUPT MASK
(LOCATION 5) ONTO
THE STACK.

PLACE THE LOGICAL
OR OF THE CURRENT
INTERRUPT MASK AND
THE SECOND WORD
OF THE DCT IN ACO.

PLACE THE
CONTE;NTS OF ACO
IN THE CURRENT
INTERRUPT MASK
(LOCATION 5).

DOA MASK OUT
FROMACO AND
ENABLE INTERRUPTS
(DOBS 0, CPU).

PLACE ADDRESS
OF DEVICE INTERRUPT
ROUTINE IN
PROGRAM COUNTER.

CONTINUE SEQUENTIAL
OPERATION WITH THE
WORD ADDRESSED
BY THE PROGRAM
COUNTER

,
(END OF)

VCT INSTRUCTION

TRANSFER
CONTROL TO
STACK FAULT
ROUTINE

I

VECTOR ON INTERRUPTING DEVICE CODE

VCT <@>displacement

1 0 0 0 0 I I I I

0 1 3 1
I

6 1 9 1
I

121
I

2 4 5 7 8 10 II 13 14

I@I DISPLACEMENT
I

3 I I I
6 1 7

I I
9 1

I I
121 0 2 4 5 8 10 II 13 14

This in,struction provides a fast and efficient
method for transferring control from the main

15

I
15

I/O interrupt handler to the correct interrupt ser­
vice routine for the interrupting device. Bit 0 of
the second word of the instruction is the "stack
change bit" and bits 1-15 contain the address of a
64-word vector table. Vector table entries are
one word in length and consist of a "direct" bit in
bit 0 followed by an address in bits 1-15.

An INTERRUPT ACKNOWLEDGE instruction is
performed. The device code returned is added to
the address of the vector table and the vector table
entry at that address is fetched. If the direct bit
in the fetched vector table entry is 0, the address
in bits 1-15 is taken to be the address of the device
handler routine for the interrupting device and
control is immediately transferred there by placing
the address in the program counter.

If the direct bit is 1, the address in bits 1-15 of
the vector table entry is taken to be the address of
the device control table (DCT) for the interrupting
device. At this point, the stack change bit is
examined. If the stack change bit is 0, no stack
change is performed. If the stack change bit is 1,
a new stack is created by placing the contents of
memory location 6 in the stack limit, and the con­
tents of memory location 7 in the stack fault. The
previous contents of memory locations 408 -438 are
then pushed onto this new stack.

4-7

Device control tables must consist of at least two
words. The first word of a DCT consists of a
"push bit" in bit 0 followed by the address of the
device handler routine for the interrupting device
in bits 1-15. The second word of a DCT contains a
mask that will be used to construct the new inter­
rupt priority mask. Succeeding words in a DCT
may contain information that is to be used by the
device interrupt handler.

After the stack change procedure is performed, the
first word of the DCT is fetched and inspected. If
the push bit is 1, a standard return block is pushed
onto the stack with bits 1-15 of physical location 0
placed in bits 1-15 of the last word pushed. If the
push bit is 0, no return block is pushed.

Following this procedure, the address of the DCT
is placed in bits 1-15 of AC2 and bit 0 of AC2 is
set to O.

Next, the current interrupt priority mask is
pushed on the stack. The contents of the second
word of DCT are logically OR'd with the current
interrupt priority mask and the result is placed in
both ACO and memory location 5. This constructs
the new interrupt priority mask and places it in
ACO and the save location for the mask. A
DOBS 0, CPU instruction is now performed. This
is a MASK OUT instruction that also enables the
interrupt system.

After a new interrupt priority mask is established
and the interrupt system enabled, control is trans­
ferred to the device handler by placing bits 1-15
of the first word of the DCT in the program
counter.

A detailed discussion of the use of the VECTOR
instruction and its impact on interrupt latency can
be found in Appendix G.

CENTRAL PROCESSOR FUNCTIONS

READ SWITCHES

READS ac

DIA<!> ac, CPU

I 0 I I I I I Ap I 0 I 0 I I I f
0123456789 10 II 12 13 14 15

The setting of the console data switches is placed
in the specified AC. After the transfer, the Inter­
rupt On flag is set according to the function speci­
fied by F.

I/O RESET

IORST

DIC<1,> ac, CPU

10 I I I I AC II ,0
0 1 123 1 456 1 7

~ I I
121 13 14 15 8 9 10 II

The Busy and Done flags in all I/O devices are set
to O. The 16-bit priority mask is set to O. The
Interrupt On flag is set according to the function
specified by F.

HALT

NOTE The assembler recognizes the
instruction IORST as equivalent
to DICC 0, CPU.

If the mnemonic DIC is used to
perform this function, an accu­
mulator must be coded to avoid
assembly errors. Regardless
of how the instruction is coded,
during execution, the AC field
is ignored and the contents of
the AC remain unchanged.

HALTA ac

DOC<!> ac, CPU

10 I I I I AC II I

10 II 121 13 14 15

The Interrupt On flag is set according to the func­
tion specified by F and then the processor is
stopped. The data lights display the contents of the
specified AC.

NOTE The assembler recognizes the
instruction HALT as equivalent
to HALTA O.

Rev. 02
4-8

The CPU SKIP instruction enables the programmer
to make decisions based upon the value of the
Interrupt On flag or the Power Fail flag. Which
test is performed is based upon the value of bits
8-9 in the instruction. Bits 8-9 can be set by
appending an optional mnemonic to the CPU SKIP
mnemonic. The optional mnemonics and their
results are given below.

CLASS CODED RESULT
ABBREVIATION CHARACTER BITS OPERATION

t BN 00 Tests for Interrupt
On = 1.

BZ 01 Tests for Interrupt
On = o.

DN 10 Tests for Power
Fail = 1.

DZ 11 Tests for Power
Fail = O.

CPU SKIP

SKP<l,> CPU

10 I I I I 0 0 I
o I I 2 3 I 4

T I I
6 1 7 5 8 9 10 II 14 15

If the test condition specified by T is true, the
next sequential word is skipped.

ERROR CHECKING AND CORRECTION

The Error Checking and Correction (ERCC) feature
is designed for applications where either a high
degree of reliability is required for the main mem-
0ry of a system, or where a graceful" fail-soft"
capability is desired in the event of memory errors.
The ERCC feature will detect and correct all
single -bit errors that occur in memories equipped
with the option.

The ERCC feature is a combination processor and
memory feature in that parts are present in both
to provide the facility. The ERCC feature is
available with any memory available with the
ECLIPSE line of computers.

Method of Operation

The word length of an ERCC memory is 21 hits.
These 21 bits are broken into 16 data bits followed
by 5 ERCC bits (CORO -COR4) . This check field is
constructed by a hardware encoder from the 16 data
bits and is written each time the memory location
is written into. When the memory location is read,
the encoder recomputes the ERCC bits read from
memory. If the computed bits match the bits read
from memory, the 16 data bits are passed on to the
CPU. If the bits do not match, a single bit error
has occurred. The memory pauses while the single
bit in error is corrected and the entire corrected
word is rewritten into the memory location. The
data is then passed on to the CPU and the ERCC
option requests an interrupt. If no error occurs,
no time is taken and the cycle time of the memory
is unchanged from its non-ERCC counterpart.

The logic of the ERCC feature is such that aU
single -bit errors are detected and corrected.. In
the rare event that a multi-bit error occurs, either
it is detected and reported as such with nocorrec­
tion, or it is incorrectly interpreted as a single­
bit error and that bit is complemented.

4-9

The operation of the ERCC option is governed by
one I/O instruction. Two other instructions are
used to interrogate the option after it has detected
and corrected an error. The ERCC option has no
Busy flag and no mask bit in the priority mask.
The device code for the ERCC option is 2. The
instructions for the ERCC option are described
below.

ENABLE ERee

DOA ac,ERCC

I 0 I ,I I Acl 0 ,I 0 0 0 0 0 0 0 I 0 I
o I I 2 3' 4 5 6.1 7' 8' 9' 10' II' 12' 13' 14' 15

The ERCC option is enabled according to the set­
ting of bits 14-15 of the specified AC. Bits 0-13
of the specified AC are ignored.. The contents of
the specified AC remain unchanged. The bit set­
tings and their meanings are described below.

BIT
SETTING

00

01

10

11

MEANING

Disable checking and correction.
Write valid check field.

Disable checking and correction.
For core memory., write check
field of 11111. For semiconduc­
tor memory, do not alter the
check field.

Enable checking and correction.
Do not interrupt on memory
error.

Enable checking a,nd correction.
Interrupt on memory error.

After Power Up or I/O reset, the ERCC option is
in the 10 state.

NOTE When the ERCC feature detects
and corrects a memory error ,
it sets its Done flag to 1. The
Done flag will remain 1 until the
ERCC feature receives a Start
pulse or an I/O RESET instruc­
tion is issued. Receipt of a Start
pulse will also set the fault ad­
dress to O.

ERROR CHECKING AND CORRECTION

READ MEMORY FAULT ADDRESS

DIA<t> ac, ERCC

I 01· I I I . AC .. I 0 I 0
0'1 23'456' 7 8 9 10 II 12 ' 13 14 15

The low-order 16 bits of the 17-bit physical ad­
dress of the memory location in error is placed in
bits 0-15 of the specified AC. The previous con­
tents of the specified AC are lost.

READ MEMORY FAULT CODE

DIB<!> ac, ERCC

10 I111 AC 10,1 II ~ 10,0,00,1,01
o I I 2 3 I 4 5 6 ,. 7 8 9 10 II 12' 13 14 15

A five bit error code is placed in bits 0 -4 of the
specified AC. Bits 5-14ofthe specified AC are
set to O. The high-order bit of the 17 -bit physical
address of the failing location is placed in bit 15.
These codes tell which bit was in error and has
been corrected. The codes and their meanings
are described below.

4-10

ERCC Feature Memory Fault Codes

FAULT
CODE MEANING

00000 No error.

00001 The error was in check bit 4.

00010 The error was in check bit 3.

00011 The error was in data bit O.

00100 The error was in check bit 2.

00101 The error was in data bit 1.

00110 The error was a multiple bit error.

00111 The error was in data bit 3.

01000 The error was in check bit 1.

01001 The error was in data bit 4.

01010 All 21 bits of the memory location are 1.

01011 The error was in data bit 6.

01100 The error was in data bit 7.

01101 The error was in data bit 8.

01110 The error was in data bit 9.

01111 The error was a multiple bit error.

10000 The error was in check bit O.

10001 The error was in data bit 11.

10010 The error was in data bit 12.

10011 The error was in data bit 13.

10100 The error was in data bit 14.

10101 All 21 bits of the memory location are O.

10110 The error was in data bit 2.

10111 The error was a multiple bit error.

11000 The error was in data bit 10.

11001 The error was a multiple bit error.

11010 The error was in data bit 5.

11011 The error was a multiple bit error.

11100 The error was in data bit 15.

11101 The error was a multiple bit error.

11110 The error was a multiple bit error.

11111 The error was a multiple bit error.

REAL TIME CLOCK

The Real Time Clock (RTC) feature of the
ECLIPSE line of computers generates a sequence
of pulses that is independent of the CPU timing.
It will generate I/O interrupts at anyone of four
program selectable frequencies. The Busy and
Done flags of the RTC option are controlled by bits
8-9 of the I/O instruction. The RTC option is de­
vice code 148 and has the mnemonic RTC. The
interrupt disable bit is priority mask bit 13.

Setting Busy allows the next pulse from the clock
to set Done, and the RTC option requests an I/O
interrupt if its priority mask bit is O. A SELECT
RTC FREQUENCY instruction to select the clock
frequency only has to be given once. After each
interrupt, an NIOS instruction will set up the clock
for the next interrupt.

When Busy is first set the first interrupt can come
at any time up to the clock period. After the first
interrupt has occurred, succeeding interrupts
come at the clock frequency, provided that the
program always sets Busy before the clock period
expires. After power up or I/O reset, the clock
is set to the line frequency. After power up the
line frequency pulses are available immediately,
but five seconds must elapse before a steady pulse
train is available from the clock for other fre­
quencies.

The RTC frequency is selected by the following
instruction.

SELECT RTC FREQUENCY

DOA<!,> ac,RTC

10 ','I A,e 10,1,°1 F 10 ° I 100 1
0' I 2 3 4 5 6 7 8' 9 10' II' 12 I 13' 14' 15

The clock frequency is set according to bits 14-15
ofthe specified AC. The contents of the specified
AC remain unchanged. Bits 0-13 of the specified
AC are ignored.

AC bits 14-15 Frequency

00 ac line frequency

01 10Hz

10 100Hz

11 1000Hz

POWER FAIL/AUTO-RESTART

In the ECLIPSE line of computers, when power is
turned off and then on again, core memory is un­
altered. However, when the power is turned on,
the state of the accumulators, the program coun­
ter, and the various flags in the CPU is indetermi­
nate. The power fail option provides a "fail-soft"
capability in the event of unexpected power loss.

In the event of power failure, there is a delay of
one to two milliseconds before the processor shuts
down. The power fail option senses the imminent
loss of power, sets the Power Fail flag, and re­
quests an interrupt. The interrupt service routine
can then use this delay to store the contents of the
accumulators, the carry bit, and the current pri­
ority mask. The interrupt service routine should
also save location 0 (to enable return to the inter­
rupted program), put a JUMP to the desired re­
start location in location 0, and then execute a
HALT. One to two milliseconds is enough time to
execute 1000 to 1500 instructions on the ECLIPSE
computer, so there is more than enough time to
perform the power fail routine.

When power is restored, the action taken by the
automatic restart portion of the power fail option
depends upon the position of the power switch on
the front panel. If the switch is in the" on" posi­
tion, the CPU remains stopped after power is re­
stored. If the switch is in the" lock" position,
then 222ms after power is restored, the CPU exe­
cutes a "jump indirect" to location 0, restarting
the interrupted program.

The power fail option has no priority mask bit in
the priority mask. It does not respond to the
INTERRUPT ACKNOWLEDGE instruction. It
responds to the VECTOR instruction with device
code O. Testing of the Power Fail flag by the
CPU SKIP instruction is described below.

SKIP IF POWER FAIL FLAG IS ONE

SKPDN CPU

I I II 0 I' I. I I I I I
5 6 '7 8 ' 9 10 ' II ' 12 I 13 ' 14 ' 15

If the Power Fail flag is 1 (i. e., power is failing),
the next sequential word is skipped.

SKIP IF POWER FAIL FLAG IS ZERO

SKPDZ CPU

1o I, I 10 0 II, 1 I I " ' I I'
.. 0 I I 2 3 I 4 5 6 I 7 8 9 10 II ' 121 13 14 15

4-11

If the Power Fail flag is 0 (i. e., power IS not
failing), the next sequential word is skipped.

REAL TIME CLOCK

ADDRESS COMPARE

MO SNlroo ;~~~

OFF-~ ·STOP c::::2 ADOR

EXAM INST PR LOAD START
EXAM NXT foI-lNST ~ CONT

POWER

."~~

DEPOSIT
DEll NXT

lSlI83389fFREH3FfBFfEEm 8ifii ;]
DO·00$45

ECLIPSE LINE Computer Console

CHAPTER V

FRONT PANEL

INTRODUCTION

The front panel of the ECLIPSE line of computers
contains all the functions I switches and displays
all the information needed to operate the machine.
The function and data switches allow the operator
to perform many useful operations and the lights
reflect the current state of the machine. If a
light is lit, it means the corresponding bit is 1.
If the light is not lit, the corresponding bit is O.
The lights and their meanings are described below.

LIGHT MEANING WHEN LIT

USER MODE The MAP feature is translat-
ing addresses in the user
mode.

ADDR COMPARE Operation of the machine is
suspended because the com-
parison requested by the
ADDRESS COMPARE switch
has come up true.

ION The Interrupt On flag is 1.

CARRY The carry bit is 1.

ROM ADDRESS These ten lights display the
address in the micro-code of
the next micro-instruction to
be fetched.

DATA These 16 lights display what
is currently in general reg-
ister 0 of the micro-code
processor.

ADDRESS These 15 lights display what
is currently in the memory
address bus.

CONSOLE SWITCHES
In a row along the bottom of the console are 26
switches. These are broken down into three
grpups; 5 function switches, 16 data switches, and
5 more function switches. The ten function
switches are spring loaded. When pushed up, they

perform one function, when pushed down, they
perform another function. When released, these
switches return to a neutral "off" position. The
16 data switches are two-position toggle switches.
When in the up position, they represent a 1; when
in the down position, they represent a O. These
switches have no neutral position. These 16
switches can be used to enter either data or ad­
dresses. If the switches are to be interpreted as
data, all 16 data switches are used and they cor­
respond to the bits in an internal 16-bit word. The
leftmost switch of this group corresponds to bit 0
and the rightmost switch corresponds to bit 15. If
the switches are to be interpreted as an address,
only the rightmost 15 switches are used. When
interpreted as an address, the second switch from
the left is the high-order bit of the address and the
rightmost switch is the low-order bit. All ad­
dresses coming from the console are treated as
logical addresses.

Starting from the left of the console and proceeding
to the right, the function switches and their mean­
ings are described below.

Reset-Stop

When this switch is pushed up, the RESET function
is performed and an I/O RESET instruction is
executed. The CPU is stopped after completing
the current processor cycle. The Interrupt On
flag, the 16-bit priority mask, and all Busy and
Done flags are set to O. While in tbis state, the
CPU will honor data channel requests.

When this switch is pushed down, the STOP func­
tion is performed. The CPU is stopped after
completing the current instruction and before exe­
cuting the next instruction. If an I/O device re­
quests an interrupt during the execution of the
current instruction, it is not honored before the
CPU is stopped. All outstanding data channel re­
quests are honored before the CPU is stopped.
Data channel requests are continually honored
while the machine is in the stopped state. After
the CPU is stopped, the address lights display the

5-1 of 6
CONSOLE SWITCHES

address of the next instruction to be executed. The
contents of the data lights are unpredictable.

Deposit-Examine

The next four switches are the accumulator
DEPOSIT-EXAMINE switches. The switches are
numbered 0-3 from left to right. Each switch af­
fects only its corresponding accumulator. When
one of these switches is pushed up, the current
setting of the data switches is deposited into the
corresponding accumulator. The data lights dis­
play the information placed in the AC.

When one of these switches is pushed down, the
contents of the corresponding accumulator are
displayed in the data lights.

Exam-Exam Nxt

When this switch is pushed up, the EXAMINE
function is performed. The address indicated by
data switches 1-15 is placed in the program
counter. This value is displayed in the address
lights. The contents of the word addressed by the
program counter are then read and displayed in the
data lights.

When this switch is pushed down, the EXAMINE
NEXT function is performed. The current value
of the program counter is incremented by one and
the new value is displayed in the address lights.
The contents of the word addressed by the updated
value of the program counter are then read and
displayed in the data lights.

Inst-JL/lnst

When this switch is pushed up, the INSTRUCTION
STEP function is performed. The instruction con­
tained in the word addressed by the current value
of the program counter is executed and then the
CPU is stopped. The address lights display the
updated value of the program counter. The con­
tents of the data lights are unpredictable.

NOTE If the machine is stopped while
in the user mode and the LOAD
EFFECTIVE ADDRESS instruc­
tian is enabled for the current
user, and a LOAD EFFECTIVE
ADDRESS instruction is exe­
cuted by use of the instruction
step function, the action of the
console is undefined.

When this switch is pushed down, the MICRO­
INSTRUCTION STEP function is performed. The
next micro-instruction in logical sequence is per­
formed and the micro -code processor is stopped.

5-2

The ROM address lights display the micro -code
address of the next microinstruction to be fetched.
The address lights display the contents of the mem-
0ry address bus, and the data lights display the
contents of the memory bus for the microinstruction
just performed.

PR Load-Exec

When this switch is pushed up, the program load
function is performed. The contents of the boot­
strap read-only memory are placed in memory
locations 0-378 and a "JMP 0" instruction is
performed.

When this switch is pushed down, the EXECUTE
function is performed. The current setting of the
data switches is interpreted as an instruction and
that instruction is executed as if it were in mem-
0ry at the location specified by the program
counter. After the instruction is stopped, the ad­
dress lights display the updated value of the pro­
gram counter. The contents of the data lights are
unpredictable.

NOTE If the machine is stopped while
in the user mode and the LOAD
EFFECTIVE ADDRESS instruc­
tion is enabled for the current
user, and a LOAD EFFECTIVE
ADDRESS instruction is exe­
cuted by use of the execute func­
tion' the action of the console is
undefined.

Start-Cont

When this switch is pushed up, the START function
is performed. The address indicated by data
switches 1-15 is placed in the program counter and
sequential operation of the processor begins with
the word addressed by the updated value of the
program counter.

When this switch is pushed down, the CONTINUE
function is performed. Sequential operation of the
processor continues from the current state of the
machine.

Dep-Dep Next

When this switch is pushed up, the DEPOSIT func­
tion is performed. The current setting of the data
switches is placed into the word addressed by the
current value of the program counter. The updated
value of the altered word is displayed in the data
lights.

When this switch is pushed down, the DEPOSIT
NEXT function is performed. The program count­
er is incremented by one and the current setting of
the data switches is placed into the word addressed

by the updated value of the program counter. The
updated value of the program counter is displayed
in the address lights and the updated value of the
altered word is displayed in the data lights.

Address Compare

The ADDRESS COMPARE switch is a four position
rotary switch. The four positions are labeled
"OFF" "MONITOR" STOP/STORE" and , , ,
"STOP / ADDR". The functions of these four posi­
tions are described below.

Off

When the switch is in the OFF position, the
ADDRESS COMPARE feature is disabled.

Monitor

When the switch is in th~ MONITOR position, it is
possible to examine and monitor locations in mem­
ory while the CPU is running. When the switch is
in this position, the contents of the memory loca­
tion addressed by the current setting of the data
switches is displayed in the data lights each time
the location is accessed by the CPU. The data is
not displayed until either the CPU accesses the
location or the EXAM-EXAM NXT switch is pushed
up. The data lights continue to display this infor­
mation until either the contents of the addressed
location are altered by the CPU or the setting of
the data switches is changed. In the first case, the
updated value of the location is displayed in the
data lights. In the second case, the old data re­
mains in the lights until either the CPU accesses
the location addressed by the new data switch set­
ting or the EXAM-EXAM NXT switch is pushed up.
As soon as the CPU accesses the location addressed
by the new switch setting or the EXAM-EXAM NXT
switch is pushed up, the contents of the location
addressed by the new switch setting will be dis­
played in the data lights.

5-3

Stop/Store

With the switch in the. STOP/STORE position, the
ADDRESS COMPARE feature will suspend the opera­
tion of the CPU if the CPU tries to alter the location
whose address is set in the data switches. The ad­
dressed location is altered. The ADDR COMPARE
light is lit to indicate that the ADDRESS COMPARE
feature has suspended the operation of the machine.
The contents of the data and address lights are
unpredictable.

Stop/Addr

With the switch in the STOP / ADDR position, the
ADDRESS COMPARE feature will suspend the opera­
tion of the CPU if the CPU tries to access the loca­
tion whose address is set in the data switches. The
addressed location is neither read nor written.
The ADDR COMPARE light is lit to indicate that
the ADDRESS COMPARE feature has suspended the
operation of the machine. The contents of the data
and address lights are unpredictable.

Power

The POWER switch is a three position key switch.
The three positions are labeled "OFF", "ON",
and "LOCK". With the switch in the OFF position,
all power to the CPU is shut off and the machine
will not run. Turning the switch to the ON position
turns on the power, performs a RESET function,
and enables all the switches. Turning the switch to
the LOCK position allows the key to be removed.
While the switch is in the LOCK position, all con­
sole functions except the MONITOR function of the
ADDRESS COMPARE feature are disabled.

CONSOLE SWITCHES

PROGRAM LOADING

Before a program can be executed it must be
brought into memory. This requires that a loading
program already reside in memory. If the memory
does not contain a loading program, the operator
can either enter a· bootstrap loader into memory
via the data switches or he can use the "PROGRAM
LOAD" feature. Pushing the PR LOAD-EXEC
switch on the console to the up position deposits a
3210 word bootstrap loader into the first 3210 mem­
ory locations and then begins sequential operation
at memory location o. This bootstrap loader will
then read in a loader program from an I/O device.
This bootstrap loader can use either programmed
I/O to read in a loader from a low-speed device
such as the teletypewriter or paper tape reader, or
data channel transfers to read in a loader from a
high-speed device such as magnetic tape or disc.

To enter a loader program, the operator must
first set up the device that is to be used and set its
octal device code into data switches 10-15. If the
device is a data channel device, set data switch 0
to 1. If the device is not a data channel device, set
data switch 0 to o. After this is done, push the
PR LOAD-EXEC switch to the up position. The
bootstrap loader will be deposited into memory
locations 0-378 and started at location O.

The bootstrap loader reads the data switches, sets
up its own I/O instructions with the specified de­
vice code, and then performs a program load pro­
cedure depending upon the state of data switch O.

If the switch is a 1, the bootstrap loader starts the
device for data channel storage beginning at loca­
tion 0 and then loops at location 3778 until a data
channel transfer places a word into that location.

NOTE For proper program loading via
the data channel, the device used
must be initiated for reading by
anI/O RESET followed by an NIOS
instruction. In addition, it is up
to the device to stop reading after
256 words have been read.

5-4

After a word has been placed in location 3778, it
is executed as an instruction. Typically, this word
is either a HALT or a JUMP into the data that the
data channel has placed in the first 3778 memory
locations.

If data switch 0 is a 0, the bootstrap loader reads
the loader program via programmed I/O. The de­
vice must supply 8-bit data bytes, and each pair of
bytes is stored as a single word in memory, where­
in the first and second bytes read become the left
and right halves of the word. To simplify the posi­
tioning of the tape in the reader, the bootstrap
loader ignores leading null characters. It does not
begin storing any words until it reads a non-zero
synchronization byte. The first word following
this synchronization byte must be the negative of
the total number of words to be read, including the
first word. The number of words to be read, in­
cluding the first word may not be greater than
19210 . The bootstrap loader stores these words
beginning at memory location 1008. After storing
the last word read, it transfers control to that
location.

Listed below is the standard 32 word bootstrap
loader for the ECLIPSE line of computers. This
program is capable of loading in either of the
manners described above.

The usual procedure is to use the bootstrap loader
to bring in a larger program that sizes memory
and then reads in the binary loader, storing it at
the top of memory.

BOOTSTRAP LOADER

BEG: IORST ;RESET ALL I/O
READS 0 ;READ SWITCHES INTO ACO
LDA 1, C77 ;GET DEVICE MASK (000077)
AND 0,1 ;ISOLATE DEVICE CODE
COM 1,1 ; - DEVICE CODE - 1

LOOP: ISZ OP1 ;COUNT DEVICE CODE INTO ALL
ISZ OP2 ;1/0 INSTRUCTIONS
ISZ OP3
INC 1,1, SZR ;DONE?
JMP LOOP ;NO, INCREMENT AGAIN

LDA 2, C377 ;YES, PUT JMP 377 INTO LOCATION 377
STA 2,377

OP1: 060077 ;START DEVICE: (NIOS 0) - 1
MOVL O,O,SZC ;LOW SPEED DEVICE? (TEST SWITCH 0)

C377: JMP 377 ;NO, GO TO 377 AND WAIT FOR CHANNEL

LOOP2: JSR GET+1 ;GET A FRAME
MOVC O,O,SNR ;IS IT NON-ZERO?
JMP LOOP2 ;NO, IGNORE AND GET ANOTHER

LOOP4: JSR GET ;YES, GET FULL WORD
STA 1,@C77 ;STORE STARTING AT 100 2'8 COMPLEMENT OF WORD COUNT

; (AUTOINCREMENT)
ISZ 100 ;COUNT WORD - DONE?
JMP LOOP4 ;NO, GET ANOTHER

C77: JMP 77 ;YES - LOCATION COUNTER AND JUMP TO LAST WORD

GET: SUBZ 1,1 ;CLEAR AC1, SET CARRY
OP2:
LOOP3: 063577 ;DONE?: (SKPDN 0) - 1

JMP LOOP3 ;NO, WAIT
OP3: 060477 ;YES, READ IN ACO: (DIAS 0,0) - 1

ADDCS 0,1, SNC ;ADD 2 FRAMES SWAPPED - GOT SECOND?
JMP LOOP3 ;NO, GO BACK AFTER IT
MOVS 1,1 ;YES, SWAP THEM
JMP 0,3 ;RETURN WITH FULL WORD
0 ; PADDING

5-5
PROGRAM LOADING

This page intentionally left blank.

5-6

APPENDICES

• I/O DEVICE CODES

• OCTAL AND HEXADECIMAL

CONVERSION

• ASCII CHARACTER CODES

• DOUBLE PRECISION ARITHMETIC

• . COMPATIBILITY WITH NOVA LINE

. COMPUTERS

• INSTRUCTION EXECUTION TIMES

• USE OF THE VECTOR INSTRUCTION

• INSTRUCTION USE EXAMPLES

A-l of 4

OCTAL
DEVICE

CODE MNEMONIC

00 ----
01 WCS
02 ERCC
03 MAP
04

05
06 MCAT
07 MCAR
10 TTl
11 TTO

12 PTR
13 PTP
14 RTC
15 PLT
16 CDR

17 LPT
20 DSK
21 ADCV
22 MTA
23 DACV

24 DCM
25
26
27
30 QTY

30 SLA
31 2 IBM1 }
32 IBM2
33 DKP
34 CAS

342 MX1 } 35 MX2
36 IPB
37 IVT
40 DPI

APPENDIX A

I/O DEVICE CODES

PRIORITY
MASK BIT DEVICE NAME

-- Unused
-- Writeable control store
-- Error checking and correction
-- Memory allocation and protection

12 Multiprocessor adapter transmitter
12 Multiprocessor adapter receiver
14 TTY input
15 TTY output

11 Paper tape reader
13 Paper tape punch
13 Real-time clock
12 Incremental plotter
10 Card reader

12 Line printer
9 Fixed head disc
8 A/D converter

10 Magnetic tape
-- D / A converter

0 Data communications multiplexor

14 Asynchronous hardware multiplexor

14 Synchronous line adapter

13 IBM 360/370 interface

7 Moving head disc
10 Cassette tape

11 Multiline asynchronous controller

6 Interprocessor bus--half duplex
6 IPB watchdog timer
8 IPB full duplex input

2Code returned by INT A and used by VCT

A-2

OCTAL
DEVICE
CODES

41
403
414
42
43

44
45
46
47
50

51
52
53
54
55

56
57
60
61
62

63
64
65
66
67

70
70

7l2}
72
73

74
742}
75
76
77

APPENDIX A (Continued)

I/O DEVICE CODES

PRIORITY
MNEMONIC MASK BIT DEVICE NAME

DPO 8 IPB full duplex output
SCR 8 Synchronous communication receiver
SCT 8 Synchronous communication transmitter
DIO 7 Digital I/O
DIOT 6 Digital I/O timer

MXM 12 Modem control for MX1/MX2

MCAT1 12 Second multiprocessor transmitter
MCAR1 12 Second multiprocessor receiver
TTIl 14 Second TTY input

TT01 15 Second TTY output
PTR1 11 Second paper tape reader
PTP1 13 Second paper tape punch
RTC1 13 Second real-time clock
PLT1 12 Second incremental plotter

CDR1 10 Second card reader
LPT1 12 Second line printer
DSK1 9 Second fixed head disc
ADCV1 8 Second A/D converter
MTA1 10 Second magnetic tape

DACV1 -- Second D/A converter

QTY1 14 Second asynchronous hardware multiplexor
SLA1 14 Second synchronous line adapter

13 Second IBM 360/370 interface

DKP1 7 Second moving head disc

CAS1 10 Second cassette tape

11 Second multiline asynchronous controller

CPU -- Central processor and console functions

2Code returned by INT A and used by VCT

3Can be set up with any unused even device code equal to 40 or above

4Can be set up with any unused odd device code equal to 41 or above

A-3

A-4

APPENDIX B

OCTAL AND HEXADECIMAL CONVERSION

To convert a number from octal or hexadecimal to
decimal, locate in each column of the appropriate
table the decimal equivalent for the octal or hex
digit in that position. Add the decimal equivalents
to obtain the decimal number.

To convert a decimal number to octal or hexa­
decimal:

1. Locate the largest decimal value in the
appropriate table that will fit into the
.decimal number to be converted;

2. note its octal or hex equivalent and column
position;

3. find the decimal remainder.

Repeat the process on each remainder. When the
remainder is 0, all digits will have been generated.

85 84 83 82 81 80

0 0 0 0 0 0 0

1 32,768 4,096 512 64 8 1

2 65,536 8,192 1,024 128 16 2

3 98,304 12,228 1,536 192 24 3
4 131,072 16,384 2,048 256 32 4

5 163,840 20,480 2,560 320 40 5

6 196,608 24,576 3,072 384 48 6

7 229,376 28,672 3,584 448 56 7

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

B-1 of 2

165 164 163 162

0 0 0 0

1,048,576 65,536 4,096 256

2,097,152 131,072 8,192 512

3,145,728 196,608 12,288 768

4,194,304 262,144 16,384 1,024

5,242,880 327,680 20,480 1,280

6,291,456 393,216 24,576 1,536

7,340,032 458,752 28,672 1,792

8,388,608 524,288 32,768 2,048

9,437,184 589,824 36,864 2,304

10,485,760 655,360 40,960 2,560

11,534,336 720,896 45,056 2,816

12,582,912 786,432 49,152 3,072

13,631,488 851,968 53,248 3,328

14,680,064 917,504 57,344 3,584

15,728,640 983,040 61,440 3,840

161 160

0 0

16 1

32 2

48 3

64 4

80 5

96 6

112 7

128 8

144 9

160 10

176 11

192 12

208 13

224 14

240 15

B-2

APPENDIX C
ASCII CHARACTER CODES

To Produce
7-bit ASCII Control On TTY Mod 33, 35 Even Parity

Decimal Octal Character Function Cntr 1 Shift Char 8-bit code

0 000 NUL Null v v P 000
1 001 SOH Start of Heading v A 201
2 002 STX Start of Text v B 202
3 003 ETX End of Text v C 003
4 004 EaT End of Transmission V D 204

5 005 ENQ Enquiry v E 005
6 006 ACK Acknowledge v F 006
7 007 BEL Bell v G 207
8 010 BS Backspace v H 210
9 011 HT Horizontal Tab v I 011

10 012 NL New Line line feed 012
v J 012 1
v line feed 212

11 013 VT Vertical Tab v K 213
12 014 FF Form Feed v L 014
13 015 RT Return return 215

v M 215
v return 0151

14 016 SO Shift Out v' N 216

15 017 S1 Shift In v' a 017
16 020 DLE Data Link Escape v' P 220
17 021 DC1 Device Control 1 v Q 021
18 022 DC2 Device Control 2 v' R 022
19 023 DC3 Device Control 3 v' S 223

20 024 DC4 Device Control 4 v T 024
21 025 NAK Negative Acknowledge v' U 225
22 026 SYN Synchronous Idle v V 226
23 027 ETB End Transmission Block v' W 027
24 030 CAN Cancel v X 030

25 031 EM End of Medium v Y 231
26 032 SUB Substitute v' Z 232
27 033 ESC Escape esc 033

v /I' K 033
28 034 FS File Separator v v L 234
29 035 GS Group Separator v v' M 035

30 036 RS Record Separator v' /I' N 036
31 037 US Unit Separator v v' a 237
32 040 SP Space space 240
33 041 ! v' 1 041
34 042 " v 2 042

35 043 # v' .3 243
36 044 $ v' 4 044
37 045 % v 5 245
38 046 & v' B 246
39 047 I v' 7 047

40 050 (v 8 050
41 051) v' 9 251

1 On even parity TTY's, these codes are odd parity.

C-l of 4

APPENDIX C (Continued)

ASCII CHARACTER CODES

I To Produce
7-bit On TTY Mod 33,35 Even Parity

Decimal Octal Character Cntrl Shift Char 8-bit Code

42 052 * v 252
43 053 + v , 053
44 054 , ,

45 055 - - 055
46 056 056
47 057 / / 257
48 060 0 0 060
49 061 1 1 261

50 062 2 2 262
51 063 3 3 063
52 064 4 4 264
53 065 5 5 065
54 066 6 6 066

55 067 7 7 267
56 070 8 8 270
57 071 9 9 071
58 072 072
59 073 , , 273

60 074 < v , 074
61 075 = v - 275
62 076 > v 276
63 077 ? v / 077
64 100 @ v P 300

65 101 A A 101
66 102 B B 102
67 103 C C 303
68 104 D D 104
69 105 E E 305

70 106 F F 306
71 107 G G 107
72 110 H H 110
73 111 I I 311
74 112 J J 312

75 113 K K 113
76 114 L L 314
77 115 M M 115
78 116 N N 116
79 117 0 0 317

80 120 P P 120
81 121 Q Q 321
82 122 R R 322
83 123 S S 123
84 124 T T 324

C-2

APPENDIX C (Continued)

ASCII CHARACTER CODES

To Produce
7-bit On TTY Mod 33,35 Even Parity

Decimal Octal Character Cntrl Shift Char 8-bit Code

85 125 U U 125
86 126 V V 126
87 127 W W 327
88 130 X X 330
89 131 Y Y 131

90 132 Z Z 132
91 133 [Ii K 333
92 134 \ v L 134
93 135] Ii M 335
94 136 A Ii N 336

95 137 - Ii 0 137
96 140 \ 140
97 141 a 341
98 142 b 342
99 143 c 143

100 144 d 344
101 145 e 145
102 146 f 146
103 147 g 347
104 150 h 350

105 151 i 151
106 152 j 152
107 153 k 353
108 154 1 154
109 155 m 355

110 156 n 356
111 157 0 157
112 160 p 360
113 161 q 161
114 162 r 162

115 163 s 363
116 164 t 164
117 165 u 365
118 166 v 366
119 167 w 167

120 170 x 170
121 171 Y 371
122 172 z 372
123 173 { 173
124 174 I 374

125 175 } 175
126 176 - 176
127 177 DEL rubout 377

C-3

C-4

APPENDIX D

DOUBLE PRECISION ARITHMETIC

A double length number consists of two words con­
catenated into a 32 -bit string wherein bit ° is the
sign and bits 1-31 are the magnitude in two's com­
plement notation. The high-order part of a nega­
tive number is therefore in one's complement form
unless the low order part is null (at the right, only
o's are null regardless of sign). Hence, in pro­
cessing double length numbers, two's complement
operations are usually confined to the low order
parts, whereas one's complement oper~tions are
generally required for the high-order parts.

Suppose we wish to negate the double length number
whose high and low order words respectively are
in ACO and ACt. We negate the low order part,
but we simply complement the high-order part un­
less the low order part is zero. Hence

NEG 1,1,SNR
NEG O,O,SKP ;LOW ORDER ZERO
COM 0,0 ;LOW ORDER NONZERO

Note that the magnitude parts of the sequence of
negative numbers from the most negative toward
zero are the positive numbers from zero upward.

Hence, in multiple precision arithmetic, low-order
words can be treated simply as positive numbers.
In unsigned addition a carry indicates that the low­
order result is just too large and the high-order
part must be increased. We add the number in
AC2 and AC3 to the number in ACO and AC1.

ADDZ 3,1,SZC
INC 0,0
ADD 2,0

In two's complement subtraction a carry should oc­
cur unless the subtrahend is too large. We could
increment as in addition, but since incrementing in
the high-order part is precisely the difference
between a one's complement and a two's comple­
ment, we can always manage with only two instruc­
tions. We subtract the number in AC2 and AC3
from that in ACO and ACt.

SUBZ 3,1, SZC
SUB 2,0,SKP
ADC 2,0

D-1 of 2

D-2

APPENDIX E

COMPATIBILITY WITH
NOVA LINE COMPUTERS

The ECLIPSE line of computers is compatible with
the Data General NOVA line of computers. Any
program presently running on any NOVA line com­
puter will run on an ECLIPSE line computer with­
out change provided that it does not violate any of
the following constraints:

1. The program may not be dependent on in­
struction execution times or Input/Output
(I/O) transfer times. Times for the
ECLIPSE line of computers may be faster
than a NOVA line computer depending upon
the application.

2. The program may not use any fixed-point
arithmetic instructions that have both the
"no-load" and "no-skip" options specified.
The ECLIPSE line of computers uses these
codes to implement instructions in the
standard instruction set.

3. The program may not require the hardware
multiply /divide option available on any
NOVA line computer.

4. The program may not utilize the data chan­
nel increment or add-to-memory features.

5. The program may not utilize either the
memory management and protection option
or the hardware floating point option cur­
rently available for NOVA line computers.

6. The memory and I/O resources available
on the ECLIPSE line computer should be
at least equivalent to those available on the
NOVA line computer for which the program
was designed.

A violation of the third constraint can be easily
corrected. The multiply and divide available in the
ECLIPSE line of computers standard instruction
set are functionally equivalent to the operations
provided in the hardware multiply/divide option for
the NOVA line computers. Only the operation codes
must be changed to take advantage of the ECLIPSE
line of computers multiply and divide. Similarly,
only small changes need be made to a program
which uses the current NOVA line floating point
option in order for that program to take advantage
of the ECLIPSE line of computers floating point
option. The floating point number formats are the
same.

E-l of 2

E-2

APPENDIX F

INSTRUCTION EXECUTION TIMES

The following table gives minimum, maximum,
and typical execution times for all instructions in
the basic instruction set. These times assume

STANDARD INSTRUCTION SET

ADD
ADD COMPLEMENT
ADD IMMEDIATE
EXTENDED ADD IMMEDIATE
AND
AND IMMEDIATE
AND WITH COMPLEMENTED SOURCE

BLOCK ADD AND MOVE
BLOCK MOVE
COMPARE LIMITS

number within limits
number less than L
number greater than H

number within limits
number less than L
number greater than H

COMPLEMENT
COUNT BITS
DECIMAL ADD

DECREMENT AND SKIP IF ZERO
EXTENDED DECREMENT AND SKIP IF ZERO
DECIMAL SUBTRACT
DISPATCH

number within limits
number less than L
number greater than H

DOUBLE HEX SHIFT LEFT
DOUBLE HEX SHIFT RIGHT
DOUBLE LOGICAL SHIFT

ENTER WCS
EXCHANGE ACCUMULATORS
EXCLUSIVE OR
EXCL USIVE OR IMMEDIATE
EXECUTE
EXTENDED OPERATION

HALVE
HEX SHIFT LEFT
HEX SHIFT RIGHT
INCL USIVE OR
INCL USIVE OR IMMEDIATE
INCREMENT
INCREMENT AND SKIP IF ZERO
EXTENDED INCREMENT AND SKIP IF ZERO

a system without the MAP feature operating with
4-way interleaved core memory. All times are
in microseconds.

MINIMUM MAXIMUM TYPICAL NOTES

0.6 0.6 0.6 1
0.6 0.6 0.6 1
0.6 0.6 0.6
1.2 1.2 1.2
0.6 0.6 0.6 1
1.2 1.2 1.2
0.6 0.6 0.6

1.8+0.8N 1. 8+ 1. 2N 1. 7 +1. ON 2
2.0+0.6N 1. 4+ 1. 2N 1. 85+0. 85N 2
specified AC's not the same

1.8

I
2.2 1.9

2.0 2.4 2.1
2.2 2.6 2.3

specified AC' s the same
1.6 1.6 1.6
1.8 1.8 1.8
1.6 1.6 1.6
0.6 0.6 0.6 1
1.0 10.6 1.0 +0.6N 3
0.6 0.6 0.6

1.4 1.6 1.5 4
2.4 2.6 2.45 4
0.6 0.6 0.6

3.6 3.6 3.6 4,11
2.8 2.8 2.8 4
2.6 2.8 2.65
2.4 4.2 depends on shift count
2.4 4.2 depends on shift count
1.0 5.6 depends on shift count

depends on user instruction
0.8

I
0.8

I
0.8

0.6 0.6 0.6
1.2 1.2 1.2
0.8 + time for instruction to be executed
4.8 5.8 I 5.05 I 5

1.0 1.0 1.0
1.8 3.0 depends on shift count
1.8 3.0 depends on shift count
0.6 0.6 0.6
1.2 1.2 1.2
0.6 0.6 0.6 1
1.4 1.6 1.5 4
2.4 2.6 2.45 4

F-1 of 8

APPENDIX F (Continued)

INSTRUCTION EXECUTION TIMES

STANDARD INSTRUCTION SET MINIMUM MAXIMUM TYPICAL

JUMP 0.6 0.8 0.65
EXTENDED JUMP 1.6 1.6 1.6
JUMP TO SUBROUTINE 0.6 0.8 0.65
EXTENDED JUMP TO SUBROUTINE 1.6 1.6 1.6
LOAD ACCUMULATOR 0.8 1.4 1.0
EXTENDED LOAD ACCUMULATOR 1.8 2.4 1. 95
EXTl!;NDED LOAD EFFECTIVE ADDRESS 1.6 1.6 1.6
LOAD BYTE 1.4 1.8 1.5
LOAD MAP 2.4+0.6N 2.4+0.6N 2.3+0.6N
LOCATE AND RESET LEAD BIT 1.2 7.2 1. 2+0. 4N
LOCATE LEAD BIT 1.0 7.0 1.0+0.4N

NOTES

4
4
4
4
4
4
4

2
3
3

LOGICAL SHIFT 1.0 3.8 depends on shift count
MODIFY STACK POINTER 2.2 2.4 2.25 12
MOVE 0.6 0.6 0.6 1

NEGATE 0.6 0.6 0.6 1
POP BLOCK 4.0 4.8 4.2 7
POP MULTIPLE ACCUMULATORS 2.2+0.4N 3.0+0.4N 2.4+0.4N 7,8
POP PC AND JUMP 2.4 3.2 2.6 7
PUSH JUMP 2.2 3.6 2.7 6,13
PUSH MULTIPLE ACCUMULATORS 2.2+0.4N 3.0+0.4N 2.4+0.4N 5,8

PUSH RETURN ADDRESS 2.6 3.2 2.8 5
RESTORE 6.0 8.0 6.85
RETURN 4.4 5.0 4.55 7
SAVE 3.8 5.2 4.08 5
SET BIT TO ONE 2.4 2.8 2.45 6

SET BIT TO ZERO 2.4 2.8 2.45 6
SIGN EXTEND AND DIVIDE 2.2 9.8 9.5
SIGNED DIVIDE 2.2 10.2 9.6
SIGNED MULTIPLY 7.2 7.2 7.2
SKIP IF ACS > ACD 1.0 1.0 1.0

SKIP IF ACS > ACD 1.0 1.0 1.0
SKIP ON NON-=ZERO BIT 2.2 2.6 2.3 6,10
SKIP ON ZERO BIT 2.2 2.6 2.3 6,10
SKIP ON ZERO BIT AND SET TO ONE 2.6 2.8 2.8 6
STORE ACCUMULATOR 0.8 1.4 1.0 4
EXTENDED STORE ACCUMULATOR 1.8 2.4 1. 95 4
STORE BYTE 1.8 2.0 1. 85

SUBTRACT 0.6 0.6 0.6 1
SUBTRACT IMMEDIATE 0.6 0.6 0.6
SYSTEM CALL 4.2 5.0 4.45 5,6
UNSIGNED DIVIDE 1.6 8.2 8.2
UNSIGNED MULTIPLY 7.2 7.2 7.2

F-2

APPENDIX F (Continued)

INSTRUCTION EXECUTION TIMES

I/O INSTRUCTION SET MINIMUM MAXIMUM TYPICAL

DATA INPUT 2.2 2.2 2.2
DATA OUTPUT 2.6 2.6 2.6
I/O SKIP 0.8 0.8 0.8
NO I/O TRANSFER 1.2 1.2 1.2

VECTOR ON INTERRUPTING DEVICE CODE
MODE A 2.6 2.8 2.65
MODEB 8.6 9.6 8.85
MODEC 10.2 12.2 10.75
MODED 15.0 18.0 16.5
MODEE 16.6 20.2 18.05

NOTES

9
9

10
9

5
5
5
5

PROGRAM INTERRUPT CYCLE 1. 4 1. 8 1. 5 4
DATA CHANNEL INPUT 0.8 0.8 0.8
DATA CHANNEL OUTPUT 1. 4 1. 6 1. 6
DATA CHANNEL LATENCY 0.8 5.6 1.5
PROGRAM INTERRUPT LATENCY is the sum of the longest time that the program runs with the interrupt

system disabled plus the time for the program interrupt cycle. The
longest non-interruptable instruction is a Mode E VECTOR with a
maximum time of 20.2 micro-seconds. Because this VECTOR also
enables the interrupt system, an interrupt will not be honored until
after the next instruction, unless the next instruction is interruptable
(e. g., BLOCK ADD AND MOVE). Therefore, the time for the next
longest instruction must be added. The next longest instruction is
COUNT BITS WITH A worst case time of 10.6 microseconds. To this
must be added the time for the program interrupt cycle of 1. 8 micro­
seconds. This yields an absolute worst case program interrupt
latency of 32.6 microseconds. The interrupt latency for a specific
application can be computed using the above method.

F-3

NOTES: 1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

APPENDIX F (Continued)

INSTRUCTION EXECUTION TIMES

MINIMUM MAXIMUM

If skip occurs, add: 0.6 0.6

N is number of words moved.
For each indirect reference in AC3, add: 0.8 0.8
For each indirect reference in AC2, add: 0.6 0.8
If N is less than 1, then time is: 1.2 1.2

N is the count added to ACD.
For LOCATE AND RESET LEAD BIT, if the
count is 16, the time is: 7.4 7.4
For LOCATE LEAD BIT, if the count is 16,
the time is: 7.2 7.2

For each indirect reference, add: 0.6 0.8
For each indirect auto -index reference, add: 1.0 1.6

If stack overflows, add: 3.2 3.8
In addition, see note 6.

For each indirect reference, add: 0.8 0.8

If stack underflows and underflow protection
is disabled, add: 0.4 0.8
If stack underflows and underflow protection
is enabled, add: 3.8 5.0
In addition, see note 6.

N is number of words pushed or popped.

S, C, and Pfunctions require no extra time.

If skip occurs, add: 0.4 0.4

For each indirect reference in the table address
add: 0.6 0.6

If stack overflows add: 4.2 4.8

If stack overflows add: 4.0 4.6

TYPICAL

0.6

0.8
0.65
1.2

7.4

7.2

0.65
1.15

3.45

0.8

0.7

4.4

0.4

0.6

4.65

4.25

APPENDIX F (Continued)

INSTRUCTION EXECUTION TIMES

FLOATING POINT
INSTRUCTION EXECUTION TIMES

Because the CPU and the floating point feature
operate in parallel, there are two distinct times to
consider when dealing with the execution time of a
floating point instruction. These are ., FPU time"
and "CPU time" .

FPU time is the amount of time taken in the floating
point unit actually performing the calculation.

CPU time is that amount of time that the CPU de­
votes to a floating pOint instruction. This time is
divided into three parts: setup time, wait time,
and finish time. setup time is the time devoted to
decoding the instruction and computing the effective
address if required. Wait time is the time spent
by the CPU waiting for the FPU to finish a previous
operation and become idle. Finish time is the time
devoted to transferring to the FPU all required
operands and initiating the floating point operation.
The following example illustrates these times.

FPU I ... 1 ___ F;,;;.;;MS..;.#.;..I ;:;;390~O ... ns _______ .:.:FM::::.S#~2,-,3::::90::::0n::..s __

Setup Setup
#1 #2

40001 400" cPUf--!-__ --____

Finish
#1

600ns

Wolf 2900ns

Time Line for This Instruction Sequence:
FMS 0, 1

:;(;,00:]34 FMS 2,3

Finish
'"2

600ns

Wait time is given by the following equation:

W AIT= FPU time for previous instruction - (finish
time for previous instruction + total execu­
tion time for non-floating point instructions
between the floating point instructions +
setup time for this floating point instruction).

If WAIT is less than 0, then a value of 0 should be
used for WAIT.

APPENDIX F (Continued)

INSTRUCTION EXECUTION TIMES

CPU
INSTRUCTION SETUP FINISH FPU REMARKS

ADD SINGLE (FPAC) J
t1.5

Exponent over- or underflow
ADD DOUBLE (FPAC) 0.4 0.6 2.3 Mantissa overflow
SUBTRACT SINGLE (FPAC) 2.4 Normalization needed
SUBTRACT DOUBLE (FPAC) 1.9 Normalization not needed

ADD SINGLE (MEMORY) } 1.2 0.8 t2 Exponent over - or underflow
SUBTRACT SINGLE (MEMORY) (Note 1) 3.0 Mantissa overflow

3.1 Normalization needed
2.6 Normalization not needed

tB Exponent over - or underflow
ADD DOUBLE (MEMORY) } 1.2 1.4 3.6 Mantissa overflow
SUBTRACT DOUBLE (MEMORY) (Note 1) 3.7 Normalization needed

3.2 Normalization not needed

MULTIPLY SINGLE (FPAC) 0.4 0.6 3.9

MULTIPLY DOUBLE (FPAC) 0.4 0.6 7.1

MULTIPLY SINGLE (MEMORY) 1.2 0.8 4.6 Note 1

MULTIPLY DOUBLE (MEMORY) 1.2 1.4 8.4 Note 1

DIVIDE SINGLE (FPAC) 0.4 0.6 4.2 Divisor mantissa> dividend mantissa
5.1 Divisor mantissa < dividend mantissa

-
DIVIDE DOUBLE (FPAC) 0.4 0.6 7.4 Divisor mantissa> dividend mantissa

8.3 Divisor mantissa < dividend mantissa -
DIVIDE SINGLE (MEMORY) 1.2 0.8 4.9 Divisor mantissa> dividend mantissa

(Note 1) 5.8 Divisor mantissa < dividend mantissa -
DIVIDE DOUBLE (MEMORY) 1.2 I 1.4 8.7 Divisor mantissa> dividend mantissa

(Note 1) 9.6 Divisor mantissa < dividend mantissa -
LOAD SINGLE 1.2 0.8 1.6 Note 1
LOAD DOUBLE 1.2 1.4 2.2 Note 1

STORE SINGLE 1.2 0.8 0.5 Notes 1, 2
STORE DOUBLE 1.2 1.2 0.5 Notes 1, 2

FLOAT FROM AC 0.4 0.6 1.9 Integer positive
2.3 Integer negative

FLOAT FROM MEMORY 1.2 0.8 2.3 Integer positive
(Note 1) 2.7 Integer negative

FIX TOAC 0.4 I 0.6 2.1 Integer positive
(Note 2) 2.5 Integer negative

FIX TO MEMORY 1.2 I 0.8 2.3 Integer positive
(Notes 1, 2) 2.7 Integer negative

F-6

APPENDIX F (Continued)

INSTRUCTION EXECUTION TIMES

CPU
SETUP FINISH FPU REMARKS

NEGATE 0.4 0.6 1.3
ABSOL UTE VAL UE 0.4 0.6 1.3
READ HIGH WORD 0.4 0.6 0.4 Note 2
SCALE 0.6 0.6 1.7
LOAD EXPONENT 0.6 O.H 1.6
HALVE 0.8 0.6 1.8
MOVE 0.4 0.6 1.0
NORMALIZE 0.4 O.H 1.4
COMPARE 0.4 0.6 0.9

LOAD STATUS 1.6 0.8 0.7 Notes 1, 2
STORE STATUS 1.6 0.8 0.5 Notes 1, 2

PUSH FLOATING POINT STATE 1.4 7.0 7.0
POP FLOATING POINT STATE 1.4 8.4 8.4

TRAP ENABLE
TRAP DISABLE 1.0 0.6 0.4
CLEAR ERRORS

SKIP TESTS 0.4 0.6 0.4 Note 3

NOTES: 1. For setup time, add 0.4 for first indirect reference and 0.6 for each subsequent indirect
reference. For finish time, add O. 2 for each indirect reference except for store instruc­
tions, add 0.0 for each indirect reference.

2. FPU time can begin concurrently with the beginning of setup time, if the FPU is idle.
Otherwise, FPU time begins as soon as the FPU finishes the previous instruction. Finish
time cannot commence until the FPU has completed this instruction.

3. If skip occurs, add 0.2 to finish time.

F-7

F-8

APPENDIXG

USE OF THE VECTOR INSTRUCTION

The VECTOR ON INTERRUPTING DEVICE CODE
instruction is an extremely powerful instruction.
Because of the impact of interrupt latency on over­
all system performance, and the impact of the
VECTOR instruction on interrupt latency, this in­
struction should be well understood before it is
used.

The VECTOR instruction can operate in anyone of
five modes. These modes are called mode A,
mode B, mode C, mode D, and mode E~ In gen­
eral, as one goes through the modes, from A toE,
the instruction performs more work, giving the
user more power, but also takes more time to
execute.

For all modes, the VECTOR instruction uses bits
1-15 of the second word to address the vector table.
An INTERRUPT ACKNOWLEDGE instruction is
performed and the device code received is added to
the address of the vector table and the word at that
location is fetched. At this point, the mode selec­
tion process begins.

Which mode is used for execution is a function of
the direct bit in the vector table entry, the stack
change bit in the second word of the VECTOR in­
struction and the push bit in the first word of the
DCT. The table below gives the relationship.

DffiECT STACK CHANGE PUSH MODE

0 X X A
1 0 0 B
1 0 1 C
1 1 0 D
1 1 1 E

Note: X = Don't care

For mode A, the state of the stack change and push
bits don't matter because they are never checked.

The uses of the five modes are described below.

Mode A is used when no time can be wasted in
getting to the interrupt handler for a device. A
device requiring mode A service would typically
be a non-buffered device with a very small latency
time. Alternatively, a real time process that
must receive control immediately after an event
could be serviced using mode A. The program­
mer pays for the speed realized through mode_ A
by giving up the state saving and priority masking
features of the other modes.

Modes B, C, D, and E are used to implement a
priority interrupt structure. They all build a new
priority mask and save the old priority mask be­
fore issuing a MASK OUT instruction that enables
the interrupt system. These modes differ in the
amount of time and work that they devote to saving
the state of the machine.

In a priority system, there are typically two types
of processes: those that operate at "base" level,
and those that do not. Base level is defined as
operating with all levels of interrupt enabled and
no interrupt processing in progress. Non-base
level is defined as operating with some interrupt
processing in progress. In general, those pro­
cesses that operate at base level are user problem
programs. Those processes that operate at non­
base level are the various interrupt handlers in the
system.

One of the first things that the supervisor program
should do when it receives an interrupt while a pro­
cess is operating at base level is to change the
stack environment. Two reasons lead to this con­
clusion. . The supervisor has no control over
whether or not the user has defined a stack by
placing meaningful information in the stack control
words. Additionally, even if the user has initialized
a stack, the supervisor has no control over the size
of the stack. If the user has defined a stack, but

G-l of 4

APPENDIX G (Continued)

USE OF THE VECTOR INSTRUCTION

is very close to his stack limit, it would not be
acceptable for a supervisor interrupt routine to fill
the user's stack to overflowing. By using either
mode D or E, the VECTOR instruction will change
the stack environment and initialize a stack over
which the supervisor has full control. At the same
time, the VECTOR instruction will save the stack
environment of the user so that it may be restored
before control is returned to the user.

If an interrupt handler. is already processing when
another interrupt is received, then the stack en­
vironment has already been changed by the inter­
rupt that occurred at base level and should not be
changed again. For interrupts that occur at non­
base level, modes Band C of the VECTOR instruc­
tion can be used.

The difference between modes D and E is the same
as the difference between modes Band C: Modes
Band D do not push a return block onto the stack.

G-2

While this saves a little bit of time over modes C
and E, it makes returning control to the interrupted
program somewhat more complicated.

All modes of the VECTOR instruction can be com­
bined in one vector table. Devices that require
mode A service will have bit 0 set to 0 in their
vector table entry. The other devices will have
bit 0 set to 1 in their vector table entries, and
control their modes of service by the ,setting of the
push bit in their DCT's.

The following example illustrates the use of the
VECTOR instruction. This example assumes a
system with only three peripherals: An event
counter that requires mode A service; a slow·
speed input device (TTY input); and a slow speed
output device (TTY output). The output device is
of lower priority than the input device. The exe­
cution times of the instructions illustrated here can
be found in Appendix F.

APPENDIX G (Continued)
USE OF THE VECTOR INSTRUCTION

.LOC 0 ;START ASSEMBLY AT 0
;INTERRUPT RETURN INTR: 0

INTE: PI
SC: SCH
PF: PFH
VSP: VS
CURMK: 0
VSL: VL
VSF: VF

LEVEL:

PI:

DISMIS:

VTAB:

SPUR:

TTIN:

TTOUT:

EVEN:

TTIH:

TTOH:

.LOC
-1
.LOC
ISZ
JMP
VCT

VCT

POP
DOBC
STA
LDA
SBI
STA
COM#
JMP
INTEN
RSTR
INTEN
POPB

@SPUR
@SPUR
@SPUR
@SPUR
EVEN
@SPUR
@SPUR
@SPUR
@TTIN
@TTOUT
@SPUR

@SPURH
o
@TTIH
3
@TTOH
1

JMP

JMP

;ADDRESS OF PROGRAM INTERRUPT ROUTINE
;ADDRESS OF SCL HANDLER
;ADDRESS OF PF HANDLER
;VECTOR STACK POINTER
;CURRENT MASK
;VECTOR STACK LIMIT
-;VECTOR STACK FAULT HANDLER

50 ;NEXT LOCATION IS 50 OCTAL
;INTERRUPT LEVEL COUNT

1000 ;NEXT LOCATION IS 1000 OCTAL
LEVEL ;BASE LEVEL?
-+3 ;NO
@VTAB ;BASE LEVEL VECTOR--

; @ SETS STACK CHANGE BIT TO 1
VTAB ;NON-BASE LEVEL VECTOR--

; STACK CHANGE BIT IS 0

3,3 ;POP OLD MASK INTO AC3
3, CPU ;MASK OUT THAT DISABLES INTERRUPTS
3, CURMK ;STORE MASK INTO CURRENT MASK
3,LEVEL ;PICK UP LEVEL
1,3 ;SUBTRACT 1
3, LEVEL ;STORE IT BACK
3,3,SZR ;BASE LEVEL?
• + 3 ;NO--JUST RETURN

;YES

@o

;RESTORE
;INTERRUPT ENABLE
;RETURN

;SPUR IS ADDRESS OF DCT FOR SPURIOUS INTERRUPT ROUTINE

;EVEN IS ADDRESS OF EVENT INTERRUPT HANDLER

;ADDRESS OF DCT FOR'TTY INPUT
;ADDRESS OF DCT FOR TTY OUTPUT
;REST OF TABLE IS FILLED WITH SPUR

;PUSH BIT = 1--SPURH = ADDRESS OF SPURIOUS INTERRUPT HANDLER
;DO NOT CHANGE CURRENT MASK
;TTIH = ADDRESS OF TTl INTERRUPT HANDLER
;MASK OUT LEVEL 14 AND 15
;TTOH = ADDRESS OF TTO INTERRUPT HANDLER
;MASK OUT LEVEL 15

;DO PROCESSING ASSOCIATED WITH EVENT COUNTER

;RETURN TO ADDRESS IN LOC 0

;DO PROCESSING ASSOCIATED WITH TTY INPUT

DISMIS ; GO TO DISMISS ROUTINE
;DO PROCESSING ASSOCIATED WITH TTY OUTPUT

JMP DISMIS GO TO DISMISS ROUTINE

G-3

G-4

APPENDIX H

INSTRUCTION USE EXAMPLES

On the following pages are examples of how the
instruction set of the ECLIPSE computer may
be used to perform some common functions.

1. Clear an AC and the carry bit.

SUBO AC,AC

2. Clear an AC and preserve the carry bit.

SUBC AC,AC

3. Generate the indicated constants.

SUBZL
ADC
ADCZL

AC,AC
AC,AC
AC,AC

; GENERATE + 1
;GENERATE -1
;GENERATE -2

4. Let ACX be any accumulator whose contents are zero. Generate the indicated constants in ACX.

INCZL
INCOL
INCS

ACX,ACX
ACX,ACX
ACX,ACX

;GENERATE +2
;GENERATE +3
;GENERATE +4008

50 Check if both bytes in an accumulator are equal.

MOYS ACS, ACD
SUB ACS,ACD,SZR
JMP ;NOT EQUAL

;EQUAL

6. Check if two accumulators are both zero.

MOY ACS,ACS,SNR
SUB ACS,ACD,SZR
JMP ;NOT BOTH ZERO

;BOTH ZERO

7. Check an ASCII character to make sure it is a decimal digit. The character is in ACS and is not
destroyed by the test. Accumulators ACX and ACY are destroyed.

LDA
LDA
ADCZ#
ADCZ#
JMP

C60:
C71:

ACX,C60
ACY,C71
ACY,ACS,SNC
ACS,ACX,SZC

60
71

8. Test an accumulator for zero.

MOY
JMP

AC,AC,SZR

;ACX=ASCII ZERO
;ACY = ASCII NINE
;SKIPS IF (ACS) > 9
;SKIPS IF (ACS) > 0
;NOT DIGIT =
;DIGIT

;ASCII ZERO
;ASCII NINE

;NOT ZERO
;ZERO

H-1 of 2

APPENDIXH (Continued)

INSTRUCTION USE EXAMPLES

9. Test an accumulator for -1.

COM#
JMP

AC,AC,SZR
;NOT -1
;-1

10. Test an accumulator for 2 or greater.

MOVZR# AC,AC,SNR
JMP ;LESS THAN 2

;2 OR GREATER

11. Assume it is known that AC contains 0, 1, 2, or 3. Find out which one.

12.

MOVZR# AC,AC,SEZ
JMP THREE ;WAS 3
MOV AC,AC,SNR
JMP ZERO ;WASO
MOVZR# AC,AC,SZR
JMP TWO ;WAS 2

;WAS 1

Multiply an AC by the indicated value.

MOV ACX,ACX ;MULTIPL Y BY 1

MOVZL ACX,ACX ;MULTIPLY BY 2

MOVZL ACX,ACY ;MULTIPLY BY 3
ADD ACY,ACX

ADDZL ACX,ACX ;MULTIPL Y BY 4

MOV ACX,ACY
ADDZL ACX,ACX ;MULTIPLY BY 5
ADD ACY,ACX

MOVZL ACX,ACY ;MULTIPL Y BY 6
ADDZL ACY,ACX

ADDZL ACX,ACX ; MULTIPL Y BY 8
MOVZL ACX,ACX

Multiplication by other factors of 2 can be achieved with the LOGICAL SHIFT instruction. Multipli­
cation by factors of 16 can be accomplished with the HEX SHIFT LEFT instruction.

13. Perform the following unsigned integer comparisons.

SUB#

SUB#

ADCZ#

SUBZ#

SUBZ#

ADCZ#

ACS, ACD, SZR

ACS, ACD, SNR

ACS, ACD, SNC

ACS, ACD, SNC

ACS, ACD, SZC

ACS, ACD, SZC

;SKIP IF CONTENTS OF ACS = CONTENTS OF ACD

;SKIP IF CONTENTS OF ACD f. CONTENTS OF ACD

;SKIP IF CONTENTS OF ACS < CONTENTS OF ACD

;SKIP IF CONTENTS OF ACS ~ CONTENTS OF ACD

;SKIP IF CONTENTS OF ACS > CONTENTS OF ACD

;SKIP IF CONTENTS OF ACS ~ CONTENTS OF ACD

H-2

APPENDIX I

S/200 AND C/300 MAP

MEMORY ALLOCATION
AND

PROTECTION FEATURE

Introduction to Address Translation

The Memory Allocation and Protection (MAP) fea­
ture provides a way to efficiently allocate to users
the memory and peripheral resources available in
an ECLIPSE line system. In addition, the re­
sources, once allocated, can be protected from
unauthorized access by another user. The MAP
feature also allows the size of physical memory to
be increased from 64K bytes to 256K bytes.

The process used by the MAP feature to assist in
the allocation of memory is called "logical to
physical address translation". As stated before,
the "address space" available to a user consists of
the 32,768 2-byte memory locations from 0 to
777778' This user address space is called the
"logical" address space. The physical main mem­
ory available to the CPU is called the "phYSical"
address space. If the MAP feature is not installed,
the maximum size of the physical address space is
limited to 64K bytes and the logical address space
is equal to the physical address space. In other
words, physical location 0 is always used to hold
logical location 0, physical location 1 is always
used to hold logical location 1, and so on.

O(~:::===:~i o~======~
I I
I I
I :
I I
I I

I
I LOGICAL..:........... PHYSICAL

ADDRESS
I SPACE I MEMORY
I I

: i
I I

: :
777778 L ________ -.l-,J 7777781....----1'

LOGICAL SPACE= PHYSICAL SPACE
06-0059/

With the MAP feature installed the maximum size
of the physical address space is increased to 256K
bytes. The maximum size of the logical address
space is not increased, however, and is still 64K
bytes. This means that the physical address space
is now big enough to hold four mutually exclusive
logical address spaces at the same time.

o rC=- -= = =--:,..--"
I I I
I I I
I I I
I LOGICAL: :

I ADDRESS I..:.....a.....
SPACE I T"""'II""'"

I 0 I I
I : I
I I I

777778 L_. ____ U 77777
o f - - - - - --r -,

LOGICAL
ADDRESS

SPACE
1

I ,

I I
I I
I I
I r

I
I I
I I
I

I I I
. I I I

777778L _____ ~ 177777
or------r:

I I I
I I I
I I I

I LOGICAL I I
I ADDRESS '.L.......
: SPACE :"j"""""""

2 I I
I I

I I I

0

8

8

I I I

777778 L-----.J.;! 2777778
or'------(:

I I I
I I I
I r I

I LOGICAL I I
I I I
I ADDRESS:",
I SPACE I I
I 3 I'
I I I
I I I
I I I 777778 L _____ ...J-.~ 3777778

06-00592

PHYSICAL
ADDRESS

SPACE
0

PHYSICAL
ADDRESS

SPACE
1

PHYSICAL
ADDRESS

SPACE
2

PHYSICAL
ADDRESS

SPACE

3

./

PHYSICAL
MEMORY

In the above illustration, physical locations
0-777778 are used to hold an entire logical address
space. Physical locations 1000008-1777778 are
used to hold a different logical address space.
Physical locations 2000008-2777778 are used to
hold a third logical address space and physical
locations 3000008-3777778 are used to hold a
fourth logical address space. It can be seen from
this illustration that while there is only one phys­
ical location 0, there are four logical locations
with the address O. Physical locations 0, 1000008,
2000008, and 3000008 are each used to hold a logi­
cal location 0 for a different logical address space.
The physical location corresponding to a given log-

1-1 of 11
MAP FEATURE

ical location in any of the four logical address
spaces could be found by performing the following
computation:
«logical space#)*(1000008))+(logical address) =
physical address

For example take logical address 5018 in logical
space 2:
«2) *(1000008) h (5018) = 2005018

In other words, physical location 2005018 is used
to hold the word at logical address 5018 in logical
address space 2.

The same address, but in logical space 3 corre­
sponds to physical address 3005018. If every
memory reference coming from the CPU were a
logical address, and if it were translated using
the above computation before the actual memory
reference were made, this setup would allow four
USf!r programs to run in the enlarged physical
srace. In addition, each user would perform as
if it were the only user of an ECLIPSE line com­
puter without the MAP feature.

There are two problems with this scheme of in­
serting small logical address spaces into a rela­
tively large physical memory space. First of all,
a supervisory program is needed to monitor the
actions of the user programs. This supervisor is
responsible for allocating a block of physical
memory to a user, for loading the user's program
into the allocated physical memory and for deter­
mining the order in which the loaded user pro­
grams will receive the instruction execution ser­
vices of the CPU. These functions could possibly
be performed by the MAP feature itself, but all
generality would be lost. In any case, to imple­
ment these functions within the MAP feature would
be quite costly. This supervisor program must,
obviously, occupy a region of physical memory
that would otherwise be allocated to a user. This
means that the number of users that could be ser­
viced at one time would be reduced from four to
three.

NOTE In general, the supervisor
could occupy any of the four
regions, but because it is
simpler to implement a su­
pervisor that resides in the
lowest region of physical
memory, it will be assumed
that the supervisor occu­
pies the region of physical
memory allocated to logical
block O. In other words,
the supervisor operates
with its logical address
space equal to its physical
address space and no ad­
dress translation is per­
formed.

1-2

.------ -71
01-----'1

1 I I
I 1 I
1 1 I
I :
: SUPERVISOR

I I

o

I
I I
I I I

777778 L _____ j...~ 777778

01"-----11
I I 1
1 I '
1 : I
I LOGICAL •
I ADDRESS i..!....a.....
I SPACE 1..........-
I 1 1 I
I I 1
I I I
I I I

777778 I .J..) 1777778
o r= =-=--::.:':- -(7J

1 1

LOGICAL
ADDRESS

SPACE
2

I 1
1 1
I I
1 !
I..::.....a..... 1,........-
1 I
I I
1 I
I I
I

777778 L..-__ __ ...l,..~ 2777778
01"""------(

1 I I
I 1 I
I 1 I
I I I
I LOGICAL I I
1 ADDRESS 1 ~
1 SPACE 1 T"""""""
I 3 I I
I 1 I
1 1 I
1 1 I

777778 ~ _____ J.) 3777778

OG-00593

SUPERVISOR

PHYSICAL
ADDRESS

SPACE
1

PHYSICAL
ADDRESS

SPACE
2

PHYSICAL
ADDRESS

SPACE
3

./

i/

/

PHYSICAL
MEMORY

Secondly, this scheme would It:;ad to inefficient use
of physical memory. In all probability, the user
programs being serviced would not need all of the
64K bytes of physical memory allocated to them.
Certainly, the supervisor would not need all of the
64K bytes allocated to it. Unfortunately, any un­
used physical memory would be wasted. Suppose
that the supervisor and each of the three users
were using only 32K of their 64K allocated bytes.
This would leave 128K bytes unused. This would
be enough physical memory to hold two entire log­
ical address spaces. Alternatively, this 128K of
physical memory could be used to service four
additional users if they needed only 32K bytes each.

0",:::::-":':::--===::;::"1
1 1 I
1 1 I
I SUPERVISOR 1 1
I I
I I.,.........

377778~ _______ -+--1 37777

1 I I
I I I
I UNUSED I I
I I I

0

SUPERVISOR

8 -------

UNUSED

1 I I
777778 L _______ l~ 77777 8 "

01""-------'(I
I LOGICAL I I
: ADDRESS : I
I SPACE 1..L.....a.....
I 1 I~
1 1)

377778 ~ _______ J-. I 137777

I i I
I I I
I UNUSED I I
1 I I

8

I I
777778 L ______ J,~ 1777778

01"'-------(1

I LOGICAL i I
I ADDRESS I I
I SPACE I
I 2 I I

377778 ~-------L--1 237777
1 I I
1 1 I
1 UNUSED I I

8

I I I
777778L ______ l) 2777778

01"-------11
i LOGICAL i I
I ADDRESS 1 I
1 SPACE I
I 3 I""""'"

37777 8 I I -I 3377778
1---------(I
1 1 I
1 I I
1 UNUSED I I
1 1 I

777778 L _______ l) 3777778

D(;-00594

PHYSICAL
ADDRESS

SPACE
1

UNUSED

PHYSICAL
ADDRESS

SPACE
2

--~----

UNUSED

PHYSICAL
ADDRESS

SPACE
'3

---~---

UNUSED

/

-'

/

.-

1/

/

PHYSICAL
MEMORY

Address Translation on the ECLIPSE Computers

A supervisor program is still needed when pro­
cessing with the MAP feature, but the amount of
wasted physical memory is greatly reduced. The
MAP feature allows more efficient allocation of
physical memory by allowing physical memory to
be allocated in blocks of 2K bytes, instead of the
blocks of 64K bytes used in the above example.
In addition, the MAP feature allows a different
logical to physical address computation to be speci­
fied for each 2K byte block of logical memory. In
addition, allocated blocks of physical memory do
not have to be contiguous.

The allocation of physical memory in blocks of 2K
bytes reduces waste of physical memory in two
ways. It means that the amount of physical mem-
0ry allocated to a user' need be no greater than the
amount of physical memory the user requires,
rounded up to the next 2K bytes. It also means
that there are many more blocks of physical mem-
0ry available for allocation. In the above example,
there were four 64K byte blocks available for al­
location. By allocating physical memory in blocks
of 2K bytes, the physical address space of 256K

1-3

bytes is broken into 128 different allocatable blocks.
A new block begins every 2K. The only restriction
on the allocation of physical memory is that the
first physical address in a block of allocated phys­
ical memory must be a multiple of 2K. This means
that a block can start at physical location 40008 or
100008 , but not at 120008'

If only one logical to physical address computation
could be specified for each user, all the blocks of
physical memory allocated to that user would have
to be contiguous. The first 2K bytes of that user's
logical address space would reside in the lowest
addressable 2K block allocated to him. The next
2K bytes of logical addresses would reside in the
next 2K of physical memory, and so on. While
physical memory waste would be less than for the
case of 64K byte blocks, a significant amount of
physical memory waste could still occur.

Consider the case of a system with a supervisor
that runs in 24K bytes. This leaves 232K bytes
available for allocation to users. Assume that
there are nine users, each requiring 24K bytes,
and a tenth user that requires 30K bytes. The
supervisor allocates the necessary physical mem-

0

8

8

8

8

8

8

~---"'---?1

01"'--------(1

: SUPERVISOR : ~
I 24K I "'r""P"'"
I I J 277778L ______ ...J,.~ 27777

OJ------i I
I USER I.J........
I I I "'r""P"'"
I 24K 14 277778 L ______ -"" 57777

0'-------'1 1
1 USER I 1
I 2 I
I 24K I .,...........

277778 L ______ l~ 107777

01------,.. I
I USER 1 1
I '3
I 24K I

277778L ______ .l~ 137777
or-------1" I

1 USER I I
I 4 I~
: 24K : .,...........

277778 ~ _____ -k~ 167777
0'-------1" I

I USER I 1
I 5 I~
I 24K I "'r""P"'"

277778L ______ .Li 2177778
0;--------1 I

II USER I I
6 I

I 24K I .,...........
277778 L ______ .1~ 247777

o -------=r 1
i USER 1 1

7 I I 24K : .,...........
27777 8 L.. _______ ..k~ 277777 8

0,...-------"1 1

: USER :.J........

i 2~K : "'r""P"'"
277778 L.. ______ ..J,,~ 3277778

0,...-------=0 1

: USER 1.L........
I 2:K I .,...........

277778 L _____ -...k~ 3577778
or--------'T 1

I I 1
I I 1
: U~gR I 1 3777778
I 30K I I
I I I

357778 L ______ J..,)
D6-00595

SUPERVISOR

USER
I

PHYSICAL

USER
2

PHYSICAL

USER
3

PHYSICAL

USER
4

PHYSICAL

USER
5

PHYSICAL

USER
6

PHYSICAL

USER
7

PHYSICAL

USER
8

PHYSICAL

USER
9

PHYSICAL

UNUSED
16K

/

/'

/

V

/'

/'

/'

/'

/'

V

PHYSICAL
MEMORY

MAP FEATURE

ory to the first nine users, using up 2161(bytes of
the 232K bytes available. Obviously, the tenth
user cannot be serviced because there are only
16K bytes unused.

Now, assume that user 2 finishes his job. The
supervisor knows that there are now 30K bytes
available, but cannot service user 10 because the
30K bytes are not contiguous. If user 4 finishes
his job next and then user 6 and finally user 8, the
supervisor knows that 112K bytes are available,
but still user 10 cannot be serviced because there
is not a contiguous block of 30K bytes. User 10
must wait until one of users 1, 3, 5, 7, or 9
finishes.

.--------"
0:"--------(I 0
I SUPERVISOR i .J....a.....
I 24K 1..,..........-

277778L _____ ..l~ 277778
oj------"""(.I

I USER 1++1
I I ,
I 24K ,

277778 L _____ .J.) 57777 8

/""------'" 1077778
0"'--------(' I

: USER 1.L......,.
I 3 '..,..........-I 24K I

277778 L.. ______ J..) 1377778

.------ - -'" 1677778 01"'------1 I
I USER I I
I 5 I
I 24K 1""""""'-

277778L ______ j..) 2177778

.--------'" 2477778 of-------(' I
I USER I I
I 7 I

: 24K : ..,..........-
277778 L.. _____ ..J,) 2777778

,..-------'1 3277778
01"'------...,..... I

: USiR !.J.......
I 24K 1""""""'-

277778 L-_____ .1~ 3577778
or------:.:::r I

I ' I
1 USER i I
I 10 I I 3777778

i 30K I I
357778 L _______ V

06-00596

SUPERVISOR

USER
1

PHYSICAL

UNUSED

USER
3

PHYSICAL

UNUSED

USER
5

PHYSICAL

UNUSED

USER
7

PHYSICAL

UNUSED

USER
9

PHYSICAL

UNUSED
16K

./

./

/

/

./

1/

./

./

PHYSICAL
MEMORY

1-4

Because the MAP feature allows a logical to physi
cal address computation to be specified for each
block of logical memory, this situation cannot oc­
cur. When the supervisor allocates a block of
physical memory to hold a 2K byte block of a logi­
cal address space it gives to the MAP feature the
number of the logical block and the number of the
corresponding physical block. In reality, the num­
ber of the logical block is the high-order five bits
of the first address in that logical block. The
number of the corresponding physical block is the
high-order seven bits of the first address in that
physical block. Given this information, all the
MAP feature has to do to translate a logical ad­
dress to a physical address is to make the corre­
spondence between the logical block number and
the physical block number and then append the
low-order ten bits of the logical address to the
physical block number. This is the process that
translates a 15 -bit logical address to a 17 -bit
physical address. This procedure is called "map­
ping" an address. The logical to physical address
computation for a specific block is called the
"map" for that block. The set of address trans­
lation computations that completely defines where
a user's logical space resides in physical memory
is called the "user map" for that user. The num­
ber of the user does not enter into this procedure
because the MAP feature only translates addresses
for one user at anyone time. The supervisor con­
trols which user will receive the instruction execu­
tion services of the CPU by directing the MAP
feature to translate addresses using only the logi­
cal to physical address computations for a specific
user. When the supervisor decides that it is time
for a different user to receive the services of the
CPU, the supervisor tells the MAP feature to in­
validate the current user map. The supervisor
then gives the MAP feature a new user map and
directs the MAP feature to translate addresses
using the new set of computations .

The waste of physical memory outlined above can­
not occur because with a translation computation
for each block of logical memory, the blocks do
not have to be contiguous. In fact, they do not have
to be in any order at all. Because each block of a
user's logical address space is individually tied to
the corresponding block of physical memory, the
blocks of physical memory can be anywhere in the
physical address space .

Given the same example of the nine users each re­
quiring 24K bytes of physical memory and the tenth
user requiring 30K, the ability to specify a dif­
ferent address computation for each block of logi­
cal memory means that as soon as any of the first
nine users finishes his job, the tenth user can be
serviced. Assume that user 2 finishes first. The
supervisor could allocate these 24K bytes to hold
the first 24Kbytes of user 10's logical address
space. The supervisor could then allocate 6K
bytes of the 16K bytes left over from the first nine
users to hold the last 6K bytes of user 10's logical
address space.

o
",-------,..

01"'"-------(1
I I I
i SUPERVISOR I ..I1~_~>~ SUPERVISOR I 24K 1 ., 1\111'

2777781 1) 277778 1--___ ----1"/ '--------:!:;::'" 0(------- 1 I
: USER : 1 USER
1 1 I~I_"'.~

277778L __ ~~ __ 1) 577778f-___ --I"

1
PHYSICAL

-------" of--------(I

USER
10

PHYSICAL
24K

107777 8 t------rl/

i USER : II!I.I-.~ USER
I 3 1 I ...

27777 8: 24K : J 137777 e 1--___ -,..-
o ~===..:--~.:~--ti 1/

3
PHYSICAL

: USER i .i~t-.. ~
1 4 I 1

USER
4

PHYSICAL

27777 ~ ~=..:--:~~-=~~ 1677778 t------r/

I Iii
I USER I ~ ... USER
I 5 Ii ...

27777eL __ ~~ __ 1~ 2177778 /
01"-------'1'" I i-----t'

5
PHYSICAL

i USER : .I~I-~". USER

i 2:K: ... PHY~ICAL
27777 ~ ~=-~~==--::1~ 2477778 f------I"

: USER I 1 .. USER
1 7 1 .!~I-~.... 7
1 24K I J PHYSICAL

2777781 I ;!Ii 277777 81------1i"'" L.------~ 1 Or-------- 1

: USER I ,.jl~t-.. ~
1 8 I .,

USER
8

PHYSICAL
27777eL_~~~_.....1~

o I"'-------::r' I
3277778 f------r

I USER : .. I~I-~". USER
1 9 1-, ...

2777781 24K i ~ 3577778f--;;;;;;"",,---I"/

Ollr=-..:-~:::=-TI 1.. -;t777ef-_US-,E6""RK":...10_--r/

9
PHYSICAL

............ UNUSED
I 10 I 1 3777778 '--_1_0K ____ /

277778 1 24K :), -
L--------r I

357778 L __s~ __J..
06-00597

PHYSICAL
MEMORY

1-5

In the preceding examples, it has been assumed
that the only time address translation occurs is
when the CPU requests a memory operation. In
reality, both the CPU and the data channel canre­
quest memory operations. The MAP feature will
accept logical addresses from both the CPU and
the data channel, and then translate these addres­
ses and perform the requested memory operation.
If the MAP feature used the map for the current
user to translate addresses for the data channel,
then the only time a user could obtain the services
of the data channel would be when that user was
actually executing. In order to provide greater
flexibility, the MAP feature allows the supervisor
to specify a separate map for the data channel.
This means that the data channel can service a
user that is not the currently executing user. This
allows the I/O activity of one user to be overlapped
with the execution of another user.

By allowing a separate map to be specified for each
block of logical memory, the MAP feature allows
physical memory to be shared among users. As­
sume that six users are being serviced and that all
the users are using a standard routine to perform
some complicated computation. Further assume
that this routine requires 4K bytes to run. If
memory could not be shared, six copies of the
same routine would have to be in physical memory
at the same time. However, if the routine were
written in such a manner that it did not modify it­
self, and if memory could be shared, only one
copy would be needed. This would cut the physical
memory requirements of this routine from 24K
bytes to 4K bytes.

MAP FEATURE

Sharing of physical memory is accomplished with
the MAP feature simply by allocating the same
block of physical memory to hold multiple blocks
of logical memory. Assume that user 1 requires
this computation to be in blocks 5 and 6 of his
logical memory. Users 2, 3, and 4 require this
computation to be in blocks 8 and 9 of their logical
memory. Users 5 and 6 require this computation
to be in blocks 4 and 5 of their logical memory.
Now assume that the supervisor allocates physical
blocks 125 and 126 to be used by this common
routine. All the supervisor has to do to enable all
the users to share this routine is map logical
blocks 5 and 6 of user 1 to physical blocks 125 and
126, respectively; map logical blocks 8 and 9 of
users 2, 3, and 4 to physical blocks 125 and 126;
and map logical blocks 4 and 5 of users 5 and 6 to
physical blocks 125 and 126. By doing this, 20K
bytes are made available to service other users.

LOGICAL
MEMORY

~

~

06-00601

A

I

USER 1 o SUPERVISOR I.
5 BLOCKS 27777. 24K l\ ""oc:",," 9 BLOCKS

24K l\ ""'" 5 BLOCKS

USER 2
8 BLOCKS

~
9 8LOCKS

6 BLOCKS USER 2
8 BLOCKS

USER 3 6 BLOCKS
8 BLOCKS

t: USER 3
8 BLOCKS

6 BLOCKS

6 BLOCKS

USER 4

~
USER 4 B BLOCKS

B BLOCKS

6 BLOCKS It- 6 BLOCKS

~
USER 5

USER 5 4 BLOCKS
4 BLOCKS

V
10 BLOCKS

10 BLOCKS

USER 6
4 BLOCKS

USER6 V
4 BLOCKS iL 10 BLOCKS

29

10 BLOCKS
371Pr-

-BLOCKS
UNUSED

}
LOGICAL
MEMORY

PHYSICAL
MEMORY
(128 BLOCKS)

373777.

375777.

377777.

1-6

If the supervisor had to completely specify the map
for a user each time that user was to receive the
services of the CPU, the overhead time required
would be substantial. The MAP feature can hold
two user maps plus the map for the data channel at
one time. This means that the supervisor can
specify two user maps plus a data channel map at
one time and then service these two users by dis­
abling one map and enabling the other map. The
data channel map can be enabled or disabled at any
time.

MAP Protection Features

In addition to translating addresses, the MAP fea­
ture provides five different kinds of protection.
These are validity protection, write protection,
indirect protection, I/O protection, and data chan­
nel protection. Validity protection is always en­
abled. The other four protection features can be
selectively enabled or disabled by the supervisor.

Validity protection protects the physical memory
allocated to either the supervisor or a user from
being accessed or altered by another user. If a
user only requires 30K bytes to run his program,
then the supervisor only allocates 30K bytes of
physical memory to that user. This leaves 34K
bytes of the user's logical address space unac­
counted for. If the user's program is well writ­
ten, it should never try to access one of these 34K
bytes. Mistakes do happen, however, and if the
user tries to access a location in logical memory,
it is important that no harm will be done to either
the supervisor or to other users.

In order to implement validity protection, the
supervisor must specify to the MAP feature which
logical addresses are to be declared invalid for
each user. The supervisor does this by allocating
enough physical memory to hold the amount of logi­
cal memory that the user says that he needs.
Then, all remaining blocks of the user's logical
address space are declared to be invalid. The
supervisor declares a logical block to be invalid
by mapping it to physical block 127 and declaring it
to be write protected. If the MAP feature tries to
translate an address for a user and finds that the
logical address is invalid, a protection fault occurs.

Write protection allows the supervisor to ensure
that certain blocks of allocated physical memory
will not be altered. In the example of shared phys­
ical memory, it would be disastrous if one of the
users altered a location in the shared routine. For
this reason, the supervisor would probably declare

all the logical blocks mapped to physical blocks
125 and 126 to be write protected. The supervisor
can write protect blocks of logical memory on a
block-by-block basis. If write protection is en­
abled for a user, the MAP feature monitors all
requests to modify memory. If the MAP feature
detects a modify memory request and the logical
address is in a block of logical memory that is
write protected, a protection fault occurs.

Indirect protection allows the supervisor to ensure
that the CPU will not be placed in an indirection
loop. An indirection loop is the case where the
effective address calculation follows a chain of in­
direct addresses and never fetches a word with
bit 0 set to O. When this happens, the effective
address calculation never finishes and the CPU
cannot finish the instruction.

To prevent the CPU from becoming disabled by a
user indirection loop, the supervisor can enable
indirect protection. With indirect protection en­
abled, the MAP feature monitors all indirect ref­
erences. If the MAP feature detects 15 consecutive
indirect references, it assumes that the chain of
indirect address will never end and a protection
fault occurs.

I/O protection allows the supervisor to protect the
I/O devices in the system from unauthorized ac­
cess. Devices can be declared accessible or in­
accessible to a user on a device-by-device basis.
With I/O protection enabled, the MAP feature
monitors all I/O instructions. If the MAP feature
detects an I/O instruction that refers to a device
that has been declared inaccessible for this user,
a protection fault occurs.

In lieu of I/O protection, the supervisor can enable
the LOAD EFFECTIVE ADDRESS instruction for a
user. If the LOAD EFFECTIVE ADDRESS instruc­
tion is enabled, then all instructions in the I/O
format become LOAD EFFECTIVE ADDRESS in­
structions. The user cannot access any I/O device
while LOAD EFFECTIVE ADDRESS is enabled.

Data channel protection allows the supervisor to
write protect a block or blocks of logical memory
in the data channel's logical address space. With
data channel protection enabled, the MAP feature
monitors all modify memory requests from the
data channel. A modify memory request from the
data channel is equivalent to a data channel input
operation. If the MAP feature detects a modify
memory request from the data channel and the
logical address is in a block of logical memory
that is data channel protected, the MAP feature
does not per _.Jrm th~ request and sets the data
channel protection error bit in the MAP status
register to 1. A protection fault does not occur
and processing continues.

1-7

When the MAP feature detects a violation of any of
the protection features that are enabled, it per­
forms a protection fault. First the MAP feature
disables the current user map. Then, it pushes
a 5 -word return block onto the stack that is defined
by the stack control words found in physicalloca­
tions 40-438, The MAP feature then performs a
"jump indirect" to location 3. This is a "jump in­
direct" to the address contained in physical loca­
tion 3 which is the address of the supervisor's
protection fault routine.

Due to the fact that the MAP feature can perform
a protection fault at any point within the execution
of an instruction, the return address placed in the
fifth word of the return block is not always correct.
For I/O protection violations, the return address
is always the logical address of the instruction
after the I/O instruction that caused the fault. For
violations of validity protection, write protection,
and indirect protection, the return address is
either the logical address of the instruction that
caused the fault, the logical address of the instruc­
tion after the instruction that caused the fault, or
it is meaningless. If the MAP feature faults at a
point within the instruction when the program
counter is undefined, the PC UNDEFINED bit in the
MAP status word is set to 1.

The MAP feature operates in two modes called
user mode and supervisor mode. In user mode,
all memory requests coming from the CPU are
translated using the current user map. Checking
is also performed for all protection features that
are enabled. In the supervisor mode, memory
requests in the range 0-757778 are not translated.
This means that the first 31 blocks of the.super­
visor's logical address space reside in the first
31 blocks of physical memory. In supervisor
mode, all memory requests in the range 760008-
777778 are translated using the special map for
supervisor logical block 31. This allows the
supervisor to access portions of user space while
in supervisor mode without resorting to lengthy
use of the ENABLE SINGLE CYCLE instruction.
The data channel map can be enabled or disabled
in either mode.

If an I/O interrupt occurs while the MAP feature
is in the user mode, the user map for the current
user is disabled, the logical address of the next
instruction to be executed for the current user is
placed in physical location 0, and a "JMP @1" in­
struction is performed. This is a "jump indirect"
to the address contained in physical location 1
which is the address of the supervisor'S I/O inter­
rupt handler.

When power is first turned on, or after an I/O
RESET instruction, the MAP feature is in the
supervisor mode and the data channel map is dis­
abled. Supervisor logical block 31 is mapped to
physical block 31. On power up, the user maps,
the data channel map, and the device protect
codes are undefined.

MAP FEATURE

MAP FEATURE INSTRUCTIONS

The MAP feature is programmed with a combina­
tion of I/O instructions and machine instructions.
The instructions that affect the MAP feature are
described on the following pages.

LOAD MAP

LMP

II I 0 ! 0 I I ,0 I I I I I I 0 I 0 1 0 I 0 I I ,0 I 0 I 0 I
o I 2 3 4 5 6 '7 8 9 10 " 12 13 14 15

A BLOCK ADD AND MOVE instruction is per­
formed with the exception that no data is written
into the destination area. After the contents of
ACO have been added to the fetched word, the re­
sult is loaded into the MAP feature. The accu­
mulators are set up in the same manner as for a
BLOCK ADD AND MOVE instruction. If this in­
struction is issued while in the user mode, it is
not executed if I/O protection is enabled. Pro­
gram operation continues with the next sequential
instruction.

Accumulator 3 is ignored and its contents remain
unchanged.

The information to be loaded into the MAP feature
is in three formats. Format number one defines
the map for a single 2K byte block of logical mem­
ory. Format two defines the I/O devices that are
inaccessible to a user. Format three defines the
protection features that are to be enabled for a
user.

Format Number One

Address Translation

I X ILO~ICA~ BLOCKI NQI ¥.t,fE Iwp I PH!SlqAL IBL~CK INO'I I
o I 2 3 I 4 5 6 I 7 8 9 10 " 12 13 14 15

BIT NUMBER CONTENTS

0 Unused

1-5 Logical block number--this is
the number of the logical block
that is to be mapped.

6-7 Map type--
if 01, this is a translation for
the data channel--
if 10, this is a translation for
user A
if 11, this is a translation for
user B.

1-8

BIT NUMBER CONTENTS

8 Write protect--
if 1, this block may not be
modified if write protection is
enabled.

9-15 Physical block number--this is
the number of the physical
block that corresponds to the
logical block given in bits 1-5.

NOTE A logical block is validity pro-
tected by mapping to physical
block 12710 and setting the write
protect bit.

Format Number Two

I/O Protection

DEVICE PROTECT BITS

8 9 10 " 12 13 14 15

BIT NUMBER CONTENTS

o Unused

1 Must be 1.

2 User number--
if 0, these devices are to be
protected from user A; if 1,
these devices are to be pro­
tected from user B.

3-5 Device class--this is an un­
signed number in the range
0-7. This is the high -order
digit of the two -digit octal de­
vice code.

6-7 Format type--must be 00.

8-15 Device protect bits--the sec­
ond digit of the two-digit octal
device code is specified by the
position of the bit in this field.
A 1 in any bit protects the
corresponding device from re­
ceiving any commands directly
from this user. For example,
if bits 3-5 are 010 and bits
8-15 are 01010000, then de­
vices 218 and 238 are pro­
tected.

Format Number Three

status

BIT NUMBER CONTENTS

0 Unused

1 Must be O.

2 User number--
if 0, these status bits refer to
user A;
if 1, these status bits refer to
user B.

3-5 Unused

6-7 Format type--must be 00.

8 Unused

9 LEF mode--
if 1, the LOAD EFFECTIVE
ADDRESS instruction is to be
enabled for this user.

10 I/O protect--
if 1, I/O protection is to be
enabled for this user.

11 Write protect--
if 1, write protection is to be
enabled for this user.

12 Indirect protect--
if 1, indirect protection is to
be enabled for this user.

13 Data channel protect--
if 1, data channel protection is
to be enabled for this user.

14 Data channel map enable --
if 1, the data channel map is
enabled immediately

15 User map enable--
if 1, the user map for this
user is enabled after the LOAD
MAP instruction is finished.

1-9

It is format three that directs the MAP feature to
begin translating addresses. If at any time during
the execution of the LOAD MAP instruction, the
MAP feature receives a word in this format with
bit 15 set to 1, the interrupt system is immediately
disabled and the map for the user indicated by bit
2 is readied. After the next POP BLOCK, POP
PC AND JUMP, RETURN, or RESTORE instruc­
tion or an indirect reference while computing an
effective address, the map for the user indicated
by bit 2 is enabled. After the first user instruction
has started to execute, the interrupt system is
enabled. The MAP feature will continue to trans­
late addresses and check for protection violations
until directed to stop by a SYSTEM CALL instruc­
tion or until it senses a protection violation, or
an I/O interrupt occurs.

LOAD SINGLE WORD

DOA aC,MAP

I 0 I I I I AC I 0 ! I 0 I 0 ! 0 I 0 I 0 ! 0 I 0 I I ! I I
o I I 2 3 I 4 5 6 I 7 8 9 10 " 12 13 14 15

The contents of the specified AC are transferred
to the MAP feature. The contents of the specified
AC must be in one of the formats listed under the
LOAD MAP instruction. The contents of the
specified AC remain unchanged.

MAP SUPERVISOR BLOCK 31

DOB aC,MAP

I 0 I! I I AC II ! 0 0 I 0 ! 0 I 0 ! 0 ! 0 O! I ! I I
o I I 2 3 I 4 5 6 I 7 8 9 10 " 12 I 13 14 15

Bits 9-15 of the specified AC are transferred to
the MAP feature. These bits specify a physical
block number to which logical block 31 will be
mapped when in the supervisor mode.

MAP FEATURE

READ USER STATUS

DIA ac,MAP

I 0 1 I , I I AC I 0 ,0 I I 0 , 0 I 0 , 0 ,0 0, I , I I
o I 2 3 1 4 5 6 1 7 8 9 10 II 12 1 13 14 15

The status of the last enabled user map is placed
in the specified AC. The previous contents of the
specified AC are lost. The information placed in
the specified AC has the following format:

BIT NUMBER CONTENTS

0 Unused

1 Always O.

2 User number--
if 0, these status bits refer to
user A
if 1, these status bits refer to
user B.

3...;5 Unused

6-7 Always O.

8 Unused

9 LEF mode--
if 1, the LOAD EFFECTIVE
ADDRESS is enabled for this
user.

10 I/O protect--
if 1, I/O protection is enabled
for this user.

11 Write protect--
if 1, write protect is enabled
for this user.

12 Indirect protection--
if 1, indirect protection is
enabled for this user.

13 Data channel protect--
if 1, data channel protection
is enabled for this user.

14 Data channel map enable--
if 1, the data channel is cur-
rentlyenabled.

15 User mode interrupt--
if 1, the last I/O interrupt
occurred while in user mode.

READ MAP STATUS

DIC ac,MAP
=

I 0 I, I I AC II ,0 I I 0, 0 I 0 , 0 ,0 0, I , I I
o 1 I 2 3 1 4 5 6 17 8 9 10 II 12 1 13 14 15

The contents of the MAP status register are
placed in the specified AC. The previous contents
of the specified AC are lost. The format of the
information placed in the specified AC is as follows:

PHYSICAL BLOCK NO.

10 II 12 13 14 15

BIT NUMBER CONTENTS

0 If 1, a data channel protection
error has occurred.

1 If 1, the error occurred during
a MAP SINGLE CYCLE in-
struction.

2 If 1, a write protection error
has occurred for the user in-
dicated in bit 6.

3 If 1, a validity protection
error has occurred for the
user indicated in bit 6.

4 If 1, an indirect protection
error has occurred for the
user indicated in bit 6.

5 If 1, an I/O protection has
occurred for the user indicated
in bit 6.

6 If 0, the last user map en-
abled was for user A
if 1, the last user map en-
abled was for user B.

7 If 1, the program counter
pushed onto the system stack
is undefined.

8 If 1, write protection is en-
abled for the physical block
whose number is given in
bits 9-15.

9-15 This is the physical block
number corresponding to the
logical page number given in
the last TRANSLATE BLOCK
instruction.

1-10

TRANSLATE BLOCK

DOC ac,MAP

10 ','I A,C 1',',01 0,°1 0,0,0,0,',11
o 1 I 2 3 4 5 6 7 8 9 10 II 12 1314 15

The logical block number in bits 1-5 of the speci­
fied AC will be translated to the corresponding
physical block number and placed in bits 9-15 of
the MAP status register. The contents of the
specified AC remain unchanged.

The format of the specified AC is as follows:

I X ILOGI'CA7 BLOCKI No.1 TMy% I X I X X I X I X X I X I X I
o I 2 3 1 4 5 6 1 7 8· 9 1 10 II 121 13 14 15

BIT NUMBER CONTENTS

0 Unused

1-5 Logical block number to be
translated.

6-7 If 00, no translation will be
performed
if 01, translation will be per-
formed with the map for the
data channel
if 10, translation will be per-
formed with the map for
user A
if 11, translation will be per-
formed with the map for user
B.

8-15 Unused

MAP SINGLE CYCLE

NIOP MAP

10 ','10010,0011,'1°,0,00,','1
o 'I 2 3 '4 5 6 '7 8 9 10 II 12 ' 13 14 15

The last user map enabled is enabled for one mem-
0ry reference. The first memory reference after
the next LOAD or STORE instruction is mapped.
After the memory cycle is mapped, the user map
is again disabled.

Example:

If AC2 contains 4058, and the following instruction
sequence is issued:

NIOP MAP
LDA 3,2,2

The logical address 4078 will be mapped using
the user map for the last enabled user. The word
contained in the corresponding physical location
will be placed in AC3.

I-11

However, if the following instruction sequence is
issued:

NIOP MAP
LDA 3,@2,2

The logical address 4078 will be mapped using
the user map for the last enabled user. The con­
tents of the corresponding physical location will be
used as the first level of an indirection chain. The
next memory cycle, which is the second level of
the indirection chain, will not be mapped.

NOTE The interrupt system is dis­
abled from the beginning of the
MAP SINGLE CYCLE in­
struction until after the next
LOAD or STORE instruction.

LOAD EFFECTIVE ADDRESS

LEF ac, <@ >disQlacement<, index>

I ° I , I I AC I @ I'NDEXI , DISfLA,CEMENT ,
0' I 2 3' 4 5 6' 7 8 9' 10 1/ 12' 13 14 15

If the LEF MODE bit in the user status is 1 for a
user, then all I/O instructions issued by that user
will be interpreted as LOAD EFFECTIVE ADDRESS
instructions.

When a LOAD EFFECTIVE ADDRESS instruction
is issued, the logical effective address is computed
from bits 5-15 of the instruction and placed in the
specified AC. The previous contents of the speci­
fied AC are lost. If an auto-incrementing or auto­
decrementing location is referenced in the course
of the effective address calculation, it is incre­
mented or decremented.

Examples:

INSTRUCTION RESULT

LEF 0, TABLE The logical address of TABLE
is placed in ACO.

LEF 2,34,2 348 is added to the unsigned
integer in AC2.

LEF 1, -55,3 558 is subtracted from the un-
signed integer in AC3 and the
result is placed in ACt.

LEF 0, .+0 The logical address of this
LOAD EFFECTIVE ADDRESS
instruction is placed in ACO.

NOTE The LOAD EFFECTIVE AD­
DRESS instruction can only be
issued while in the user mode.

MAP FEATURE

DG OFFICES

SALES AND SERVICE OFFICES

Alabama: Birmingham

Arizona: Phoenix, Tucson

Arkansas: Little Rock
California: EI Segundo, Fresno, Los Angeles, Oakland, Palo Alto, Pasadena,
Sacramento, San Diego, San Francisco, Santa Ana, Santa Barbara, Van Nuys

Colorado: Denver, Englewood

Connecticut: North Branford, Norwalk
Florida: Ft. Lauderdale, Orlando, Tampa

Georgia: Norcross

Idaho: Boise
Iowa: Cedar Rapids Bettendorf
Illinois: Arlington Heights, Champaign, Chicago, Peoria, Rockford, Schaumburg
Indiana: Indianapolis

Kentucky: Louisville

Louisiana: Baton Rouge, Metairie

Maine: Portland
Maryland: Baltimore
Massachusetts: Cambridge, Springfield, WelleSley, Worcester
Michigan: Grand Rapids, Southfield

Minnesota: Richfield
Missouri: Creve Coeur, Kansas City, St. Louis

Mississippi: Jackson

Montana: Billings

Nebraska: Omaha
Nevada: Las Vegas, Reno

New Hampshire: Bedford, Nashua

New Jersey: Cherry Hill, Somerset, Wayne
New Mexico: Albuquerque

New York: Albany, Buffalo, Lake Success, Latham, Melville, Newfield, New York,
Rochester, Syracuse, White Plains

North Carolina: Charlotte, Greensboro, Greenville, Raleigh
Ohio: Brooklyn Heights, Cincinnatti, Columbus, Dayton
Oklahoma: Oklahoma City, Tulsa

Oregon: Lake Oswego, Portland

Pennsylvania: Blue Bell, Carnegie, Lancaster, Philidelphia, Pittsburgh

Rhode Island: Providence, Rumford
South Carolina: Columbia

Tennessee: Knoxville, Memphis, Nashville
Texas: Austin, Dallas, EI Paso, Ft. Worth, Houston, San Antonio
Utah: Salt Lake City

Virginia: McLean, Norfolk, Richmond, Salem
Washington: Bellevue, Kirkland, Richland, Spokane
West Virginia: Charleston
Wisconsin: Brookfield, Madison, West Allis

INTERNATIONAL SUBSIDIARIES

Australia: Adelaide, Melbourne, New Castle, Sydney, Tasmania, Queensland, Victoria
Brazil: Sao Paulo
Canada: Calgary, Edmonton, Montreal, Ottawa, Quebec, Toronto, Vancouver, Winnipeg

France: Lille, Lyon, Nantes, Paris
Italy: Florence, Milan, Padua, Rome, Tourin

Japan: Tokyo

The Netherlands: Amsterdam, Rijswijk

New Zealand: Auckland, Wellington
Sweden: Gothenburg, Malmoe, Stockholm

Switzerland: Lausanne, Zurich
United Kingdom: Birmingham, Bristol, Chesire, Glasgow, Hounslow, London,

Manchester

West Germany: Dusseldorf, Filderstadt, Frankfurt, Hamburg, Hannover, Munich,

Nuremburg, Munich, Ratingen, Rodelheim, Stuttgart

DG-04976

REPRESENTATIVES & DISTRIBUTORS

Argentina: Buenos Aires
Bolivia: Novadata

Chile: Santiago
Columbia: Bogato
Costa Rica: San Jose

Ecuador: Quito

Egypt: Cairo
Finland: Helsinki
Guatemala: Guatemala City

Hong Kong: Hong Kong
India: Bombay

Indonesia: Jakarta
Israel: Givatayim
Korea: Seoul

Kuwait: Kuwait

Lebanon: Beirut
Malaysia: Kuala Lumpur

Mexico: Mexico City, Nuevo Leon

Morocco: Casablanca
Nicaragua: Managua
Nigeria: Ibadan, Lagos

Norway: Oslo

Paraguay: Asuncion
Peru: Lima

Philippine Islands: Manila
Portugal: Lisbon

Puerto Rico: Hato Rey

Saudi Arabia: Jaddah, Riyadh
Singapore: Singapore

South Africa: Capetown, Durban, Johannesburg, Pretoria

Spain: Barcelona, Bibao, Madrid, San Sebastian, Valencia
Taiwan: Taipei
Thailand: Bangkok

Turkey: Ankara

Uruguay: Montevideo
Venezuela: Maracaibo

ADMINISTRATION, MANUFACTURING
RESEARCH AND DEVELOPMENT

Massachusetts: Cambridge, Framingham. Southboro. Westboro
Maine: Westbrook
New Hampshire: Portsmouth
California: Anaheim, Sunnyvale
North Carolina: Research Triangle Park, Johnston County

Texas: Austin

Hong Kong: Kowloon, Tai Po
Thailand: Bangkok

L.U
Z
.....J

o
L.U

~ o
o
c.!J
z
o
.....J «
I­
:::::>
u

4. DataGeneral
users
gpoup Installation Membership Form

Name _________________ Position ________________ Date

Company, Organization or School ____________________________________ _

Address __ ~ ___ -----------City ____________ State ___ Zip _____ _

Telephone: Area Code ______ No. __________ Ext. ___________________ _

DOEM

D End User

o System House

D Government
D Educational

Qty. Installed I Qty. On Order

D AOS D RDOS

D DOS D Other

D MP/OS

Specify _--,-___ _

D Algol D Assembler

D DGiL D Fortran

D Cobol 0 RPG II

D PASCAL D PLil

D Business BASIC D Other

D BASIC

Specify

D Batch (Central)

o Batch (Via RJE)

D On-Line Interactive

o HASP

D RJE80

o RCX 70

Specify

D CAM

D XODIAC

D Other

0 ________ _

From whom was your machine(s)
purchased?

D Data General Corp.

D Other
Specify ______ _

Are you interested in joining a
special interest or regional
Data General Users Group?

0 ______________ __

t. DataGeneral
Data General Corporation. Westboro, Massachusetts 01580, (617) 366-8911

FOLD

FOLD

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 26 SOUTHBORO. MA. 01772

Postage will be paid by addressee:

t. Data General
ATTN: Users Group Coordinator
4400 Computer Drive
Westboro, MA 01580

FOLD

FOLD

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

w
Z
---l

0
w
I--
I--
0
0

c.9
Z
0
---l

«
I--
=>
U

Yes No

o 0

o 0

0 0

0 0

Please help us improve our future
publications by answering the questions below.
Use the space provided for your comments.

Engineering
Publications
COlnlnent Forln
Title: __________________ _

Document No. ___ 0_14_-_0_00_6_2_6_-0_2 ____ _

o You (can, cannot) find things easily. 0 Other:

o Language (is, is not) appropriate.

o Technical terms (are, are not) defined
as needed.

o Learning to use the equipment

o As a reference

o As an introduction to the
product

o Visuals (are,are not) well designed.

o Labels and captions (are,are not) clear.

o Other:

o To instruct a class.

o Other:

Name: ______________________ Title: __________ ~ _______ _

Company: _________________________ Di~sion: _________________ __

Address: ______________________ City: __________________ _

State: ______ Zip: __________ Telephone: ______________ Date: ______ _

DG-06895

•• DataGeneral
Data General Corooration. Westboro. Mass"('hll~,,tt~ 01 !;;RO

FOLD FOLD

FOLD FOLD

11111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 26 SOUTHBORO, MA. 01772

Postage will be paid by addressee

t. Data General
ATTN: ENGINEERING PUBLICATIONS
4400 Computer Drive
Westboro, MA 01580

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

