

ECLIPSE® C/150

PRINCIPLES OF OPERATION

4. Data General

NOTICE
Data General Corporation (DGC) has prepared this manual
for use by DGC personnel, licensees, and customers. The
information contained herein is the property of DGC and
shall not be reproduced in whole or in part without DGC's
prior written approval.

Users are cautioned that DGC reserves the right to make
changes without notice in the specifications and materials
contained herein and shall not be responsible for any
damages (including consequential) caused by reliance on
the materials presented, including, but not limited to
typographical, arithmetic, or listing errors.

NOVA, INFOS, and ECLIPSE are registered trademarks of
Data General Corporation, Westboro, Massachusetts.
DASHER, microNOVA, and ECLIPSE MV /8000 are trademarks
of Data General Corporation, Westboro, Massachusetts.

Ordering No. 014-000616
@Data General Corporation, 1978, 1980

All Rights Reserved
Printed in the United States of America

Rev. 01, September 1980

1
1
1
2
2
2

1
1
2

3
3
3
4
4
4
5
5
5

#:::::$

6
6
6
6
7

CONTENTS

ECLIPSE C/150 SYSTEM

HIGHLIGHTS OF THE ECLIPSE C/150 SYSTEM

Main Storage

I/O Management System

Main Processor

Packaging

Software Support

CONCEPTS AND FACILITIES

ADDRESSING CONVENTIONS

Word Addressing Definitions

ADDRESSING MODES

BYTE MANIPULATION

Byte Format

Byte Instructions

BIT MANIPULATION

Bit Addressing

Bit Instructions

CHARACTER MANIPULATION

Character Instructions

NUMBER CONVENTIONS

Integer Format

Decimal Format

Unpacked Decimals

Packed Decimal

Data Type Indicator

Logical Format

CONTENTS CONTINUED

Floating Point Format
Sign

Exponent

Mantissa

NUMBER MANIPULATION

Fixed Point Arithmetic Instructions
DECIMAL ARITHMETIC
Decimal Faults

Logical Operation Instructions
Floating Point Arithmetic

Floating Point Registers

Guard Digit

Floating Point Fault Conditions

Floating Point Trap

ALC MANIPULATION
ALC Format
ALC Instructions

ALC Instruction Execution
Carry

Function

Shift Operations

Skip Tests

Load/No-Load

THE STACK

Stack Control Words
Stack Pointer

Stack Limit

Stack Fault Address

Frame Pointer

Stack Protection

Stack Overflow

Stack Underflow

Stack Protection Faults
Stack Overflow Protection

Stack Underflow Protection

Stack Fault Handler

ii

Initializing the Stack Control Words

Stack Pointer

Stack Limit

Stack Fault Address

Frame Pointer

Examples

Stack Instructions

PROGRAM EXECUTION

Sequential Operation

Program Flow Alteration

Program Flow Interruption

Program Flow Alteration Instructions

EXTENDED OPERATION FEATURE

Extended Operation Instructions

MEMORY ALLOCATION AND PROTECTION

MAP Functions

Address Translation

Sharing of Physical Memory

Types of Maps

Unmapped Mode

MAP Protection Capabilities

Load Effective Address Mode

Initial Conditions

MAP Instructions

INPUT 10UTPUT

Busy and Done Flags

Programmed 1/0

Data Channel 1/0

1/0 Interrupts

Interrupt System Definitions

Processing an Interrupt Without a Priority System

Priority I nterrupt System

Stack Changes

Using the Vector Instruction

POWER FAILI AUTO-REST ART

POWER FAIL

MEMORY ERROR CHECKING

Error Checking and Correction

ERCC Instructions

CONTENTS CONTINUED

iii

ECLIPSE C/150 INSTRUCTIONS

ECLIPSE C/150 1/0 INSTRUCTIONS

CODING AIDS
CENTRAL PROCESSOR

ERCC ERROR CORRECTION

MEMORY ALLOCATION AND PROTECTION

CONSOLE FUNCTIONS

STANDARD 1/0 DEVICE CODES

OCTAL AND HEXADECIMAL CONVERSION

ASCII CHARACTER CODES

~

BINARY, OCTAL AND DECIMAL NUMBERING SYSTEMS

COMPATIBILITY WITH NOVA LINE COMPUTERS

ADDRESSING

BOOTSTRAP lOADER

BIBLIOGRAPHY

iv

Chapter I
ECLIPSE C/150 SYSTEM

Data General's ECLIPSE C/150 is ideal for
applications where commercial instruction capability
is required but where a large computer is
unnecessary.

HIGHLIGHTS OF THE ECLIPSE C/150
SYSTEM

Despite its small size, the ECLIPSE C/150 can execute
the entire ECLIPSE standard instruction plus the
ECLIPSE Floating Point Instruction Set, the
Character Instruction Set (CIS), and the ECLIPSE
Decimal/Edit instruction set. As such, it is ideal for
applications where a large computer is unnecessary
but full commercial instruction capability is required.

In this section, we discuss some of the features of the
C/150 which are important to the system
programmer.

Main Storage

The ECLIPSE C/150 has a maximum memory
capacity of 256 Kbytes. Minimum memory is 128
Kbytes. Both Error Checking and Correcting (ERCC)
semiconductor memory and core memory are
available.

Semiconductor memory modules can be 2-way
interleaved; core memory cannot be interleaved.

The C/150 Memory Allocation and Protection unit
protects individual user space within memory on a 2
Kbyte page basis. Protection modes include address
validity, infinite defer, write, and 110 protection.

110 Management System

The ECLIPSE C/150 has several systems for
transferring information to and from the computer.
Each method is appropriate for certain types of

014-000616-00

1- 1

peripherals.

The standard NOV NECLIPSE data channel
provides I/O communication for medium- and
high-speed devices such as disc drives, magnetic tapes
dri ves, data channel line printers, and synchronous
communications devices. Maximum transfer rates are
2.5 Mbyte/second input, 1.7 Mbyte/second output.

Programmed 110, with priority interrupt handling
and vectoring capability for automatic dispatch to
the correct interrupt handler, provides 110
communication for low-speed devices such as CRT
terminals, paper tape punches, and card readers.

Main Processor

The ECLIPSE C/150 main processor can execute the
standard ECLIPSE instruction set, using a fast,
hardware-assisted, integer multiply/divide function.
The standard 56-instruction ECLIPSE floating point
instruction set is also implemented in the C/150
firmware.

The Character Instruction Set (CIS) simplifies
handling of strings of characters or bytes. It is
especially useful in communications and business
applications where long strings of bytes must be
moved, compared, or checked against a reference.

The Decimal/Edit instruction set handles many types
of commercial operations, using a variety of
industry-compatible formats. In addition, the Edit
subprogram can perform many different operations
on a decimal number, including leading zero
suppression, floating fill characters, punctuation
control, and insertion of text into the destination
field.

HIGHLIGHTS OF THE ECLIPSE C/150 SYSTEM

Software Support

A wide variety of software support is available for the
ECLIPSE C/150 system.

The Real-Time Disc Operating System (RDOS)
supports multi-terminal interactive operations in a
foregroundlbackground multi-tasking environment.
It also supports INFOSTM (Data General's
sophisticated file management system) and, with
INFOS™, the Idea (Interactive Data Entry and
Access) system for multi-terminal transaction
processing.

Many higher-level languages are available with
RDOS, including COBOL, RPG II, and Business
BASIC. In addition, RDOS supports Fortran IV,
Fortran V, Extended Basic, DGIL TM (an
ALGOL-derivative structured programming
language), and Macro Assembler. In addition, RDOS
supports COBOL, RPG II, and Business BASIC.

The Advanced Operating System (AOS) uses
adaptive resource management for efficient operation
in multiuser environments. It supports concurrent
batch, timesharing, and real-time operations. INFOS
TM, COBOL, RPG II, and Idea are not available with
AOS.

HIGHLIGHTS OF THE ECLIPSE C/150 SYSTEM

Data General Corporation

1- 2

014-000616-00

Chapter II
CONCEPTS AND FACILITIES

The ECLIPSE C/150 contains a variety of extremely
powerful standard ECLIPSE facilities, including:

ECLIPSE standard instruction set,
stack,
data channel,
MAP,
character instruction set (CIS),
decimal arithmetic instructions,

In this chapter we describe the facilities which are
standard on all ECLIPSE C/150s, and the
assembly-language instructions which control these
facilities.

You can find com plete descri ptions of all the
ECLIPSE C/150 assembly-language instructions,
other than I/O instructions, in Chapter III. Chapter
IV contains complete descriptions of all the I/O
instructions.

ADDRESSING CONVENTIONS

The various methods of addressing memory locations
in the ECLIPSE C/150 give you considerable
flexibility when storing and retrieving data, or
transferring control to a different procedure.

Each addressed location in main memory consists of a
16-bit word. The first word in memory has the
address 0, the next has the address 1, the next 2, and
so forth.

In this manual, we speak of a user's address space of
15 bits. This is a reference to the logical address
space; the address space the user normally sees,
which can be addressed by a 15-bit address. The
maximum amount of logical address space available
to the programmer is 32,768 words. (The physical
address space - corresponding to the total amount of
main memory in the computer - may be much larger.)
Within a logical address space, the next sequential
memory location after location 777778 is location O.

014-000616-00

II-1

The MAP controls the relationship between a logical
address space and the physical address space by
translating logical addresses to physical addresses.
When the MAP is enabled, it intercepts each memory
reference and translates the 15-bit logical address
into a 20-bit physical address. Unless the MAP itself
is being programmed, the translation process is
invisible to the programmer.

Word Addressing Definitions

The following definitions are useful for under­
standing word addressing in the ECLIPSE C/150:

SHORT CLASS

AC OR f X TFNDFD OP com

• DISPLACEMENT I
I q I 10 11 12 I 1 \ I 14 I 1>

I OP COpE I I (a) I INDEX I
0112114, ,,17

EXTENDED CLASS

DFPFNDS ON INS TRUC flON

DISPLACEMENT I
1

I I
I " I 7 I K I q I 10 I 11 12 n 14 1,

Addressing Modes - Methods of addressing using a
displacement from some reference point to find the
desired address. There are three different modes,
each using different reference points.

ADDRESSING CONVENTIONS

Indirect Addressing - A method of addressing which
uses the first address found as a pointer to another
address which, in turn, may be used as a pointer to
yet another address, etc. A series of indirect
addresses is called an indirection chain.

Index Bits - Bits in the instruction which control the
addressing mode used when executing this
instruction.

Indirect Bit - A bit in the instruction or address which
controls the indirection chain at each step of the
addressing process.

Displacement Bits - Bits in the instruction which
control the displacement distance, in memory
locations, between some reference point (determined
by the mode) and the desired address.

Effective Address Calculation - Logical process of
converting the index, indirect, and displacement bits
into an address to be used by the instruction.

Intermediate Address - The address obtained by the
effective address calculation before testing for
indirection.

Lower Page Zero - Locations 0-3778 in memory.

When the index bits are 00, the displacement is
considered an unsigned integer. When the index bits
are 01, 10, or 11, the displacement is considered a
signed integer. Following is a table for the range of
the displacement field under various conditions.

INDEX BITS RANGE OF DISPLACEMENT FIELD

SHORT CLASS EXTENDED CLASS

00 o to 3778 o to 777778
or or

o to 25510 o to 32,76710

01 -2008 to 1778 -400008 to 377778
10 or or
11 -128 to +127 10 -16,384 to +16,383 10

Addressing Modes

Word addressing in the ECLIPSE C/150 can be done
in the following modes:

• absolute addressing;
• P.C. (program counter) relative addressing;

• accumulator relative addressing.

In addition, direct or indirect addressing can be used
in any of these modes. By choosing the proper mode
at the appropriate time, you can obtain access to any
address in your logical address space.

Addressing Modes

11-2

Data General Corporation

The figure below illustrates the three addressing
modes.

SHORT CLASS

ABSOLUTE {
ADDRESSING

0

3378

{

PC

PC-RELATIVE
ADDRESSING PC

PC

-2008

-
+1778

{

AC2

AC-RELA TIVE
ADDRESSING AC2

AC2

-2008

-
+1778

{

AC

AC-RELA TIVE
ADDRESSING AC3

AC3

3-200

-
+1778

DG-04458

MAIN MEMORY

PAGE ZERO

EXTENDED CLASS

ABSOLUTE.
PC-RELATIVE.
AC-RELATIVE
ADDRESSING

Absolute Addressing Mode - In absolute addressing
mode, the intermediate address is set equal to the
unmodified displacement. As a result, the short class
of instructions specify locations in the range 0-3778 in
the absol ute mode (short class instructions are
restricted to 8 bits in the displacement).

Lower page zero thus becomes very important
because any memory-reference instruction can
address this area. You can use it as a common storage
area for items that you frequently reference
throughout a program. Note, however, that we
reserve some of these locations for special purposes.

Extended class instructions can reference any logical
memory address using the absolute addressing mode.

P .C. Relative Addressing Mode In P.C .. relative
addressing mode, the intermediate address is found
by adding the displacement to the address of the
word containing the displacement.

Accumulator Relative Addressing Mode - In accumulator
relative addressing mode, the intermediate address is
found by adding the displacement to the contents of
the accumulator indicated by the index bits (you may
use either AC2 or AC3).

014-000616-00

CONCEPTS AND FACILITIES

Direct and Indirect Addressing - Direct addressing uses
the intermediate address without modification.

Indirect addressing uses the intermediate address as
a pointer to the next address. If bit 0 of the next
address is :1, this address is used as a pointer which
points to another address. The indirection chain is
continued lmtil an address is found with bit 0 equal
to O. This address is then used as the address of the
data.

Any number of indirection levels is permitted in the
ECLIPSE C/150, but indirect protection is available
which can limit indirections to 15 levels (see the MAP
section).

Auto-Incrementing and Auto-Decrementing - If the
intermediate address of a short class instruction is in
the range 20-278, and the indirect bit is 1, the
contents of the addressed location are incremented
by one, and the addressing chain continues using the
incremented value of the addressed location.

If the intermediate address of a short class
instruction is in the range 30-378, and the indirect bit
is 1, the contents of the addressed location are
decremented by one, and the addressing chain
continues using the decremented value of the
addressed location.

NOTE: The state of bit 0 before the increment or
decrement determines whether the indirection
chain is continued. For example: Assume an
auto-increment location contains 1 111118 (all
bits = .1 including bit 0), and the location is
referenced as part of an indirection chain. After
incrementing, the location contains all zeros.
However, bit 0 was 1 before the increment, so 0
will be the next address in the chain, rather than
the effective address.

You can find a flow diagram of the addressing process
in a Appendix F.

014-000616-00

11-3

BYTE MANIPULATION

Byte Format

We represent bytes as 8-bit unsigned binary integers.
A byte in memory is selected by a 16-bit byte pointer.
Bits 0-14 of the byte pointer contain the memory
address of a 2-byte word. Bit 15 (the byte indicator)
indicates which byte of the addressed location will be
used. If bit 15 is 0, the high-order byte (bits 0-7) will
be used. If bit 15 is 1, the low-order byte (bits 8-15)
will be used. See the figure below.

110 111

BITS 0-14
ADDRESS WORD i....-_~

DG-00930

BYTE INSTRUCTIONS

The byte instructions are shown in the table below.
Note that when an instruction moves a byte to an
accumulator it also clears the high-order half of the
destination accumulator. When an instruction moves
a byte from an accumulator to memory, it leaves
unchanged the other byte contained in that word of
memory.

The two extended instructions (ELOB and ESTB) use a
byte pointer contained in the instruction coding to
reference bytes. The two short class instructions (LOB

and 5TB) use an accumulator to hold the byte pointer.

BYTE MANIPULATION

Byte Instructions

Mnem Name Function

LOB Load Byte Places a byte of information
ELOB into an accumulator.

STB Store Byte Stores the right byte of an
ESTB accumulator into a byte of

memory.

BIT MANIPULATION

Bit Addressing

We use a 32-bit <2-word) bit pointer to address
individual bits in memory. Bit 0 of the bit pointer is
the indirect bit. If this bit is 1, the indirection chain
<using bits 1-15 for the address each time) will be
followed until a word is found with bit 0 set to O. Bits
1-15 of this word become bits 1-15 of the bit pointer,
and bits 0-15 of the next word become bits 16-31 of
the bit pointer.

We form the address of the desired bit as follows:

The address formed by the positive number
contained in bits 1-15 of the bit pointer <the base
address) is added to the number formed by the 12-bit
positive number contained in bits 16-27 <the offset).
The resulting address points to the word containing
the desired bit. Bits 28-31 of the bit pointer contain a
4-bit positive number which is the number of the
desired bit in the addressed word.

Below is a diagram of the bit-addressing process.

BIT MANIPULATION

11-4

Data General Corporation

BIT INSTRUCTIONS

The ECLIPSE C/150 instructions which manipulate
bits:

• Locate a bit in memory and set it to 0 or 1;
• Test a bit, skipping the next word if the specified

condition is true;

• Add a number to the contents of one accumulator
based on the number of ones or high-order zeros
found in the other accumulator.

Some of the bit instructions use a bit pointer to locate
a bit in memory. The others only affect bits within
the specified accumulators.

BIT MANIPULATION INSTRUCTIONS

Mnem Name Function

BTO Set Bit Sets the bit addressed by the
ToOne bit pointer to 1.

BTZ Set Bit Sets the bit addressed by the
To Zero bit pointer to O.

COB Count Counts the number of ones in
Bits one accumulator and adds that

number to the second
accumulator.

LOB Locate Counts the number of high-order
Lead Bit zeros in one accumulator and

adds that number to the
second accumulator.

LRB Locate Performs a Locate Lead Bit
And Reset instruction and sets the lead
Lead Bit bit to O.

SNB Skip On Skips the next sequential word
Non-Zero if the bit addressed by the
Bit bit pointer is 1.

SZB Skip On Skips the next sequential word
Zero Bit if the bit addressed by the

bit pointer is O.

SZBO Skip On Sets the bit addressed by the
Zero Bit bit pointer to 1 and skips the
And Set next sequential word if the
ToOne bit was originally O.

014-000616-00

CONCEPTS AND FACILITIES

CHARACTER MANIPULATION

Character Instructions

The four character instructions manipulate strings of
characters. Each character in a string occupies one
byte. These strings can be any data type. The
character instructions:

• compare one byte string to another;
• move a byte string from one area of memory to

another;

• translate a character string from one data type to
another.

The character instructions are described in the table
below.

CHARACTER INSTRUCTIONS

Mnem Name Function

CMP Character Compares one string of characters
Compare in memory to another string.

CMT Character Moves a string of bytes from one area
Move Until of memory to another until a table-
True specified delimiter character is

encountered or the source string is
exhausted.

CMV Character Moves a string of bytes from one area
Move of memory to another under control

of the values in the four
accumulators.

CTR Character Translates a string of bytes from one
Translate data representation to another and

either moves it to another area of
memory or compares it to a second
string of bytes.

014-000616-00

11-5

NUMBER CONVENTIONS

I nteger Format

We represent a signed integer by a two's-complement
number in one or more 16-bit words. The sign of the
number is positive if bit 0 of the first word is 0 and
negative if that bit is 1.

We represent an unsigned integer by using all the bits
of one or more 16-bit words to represent the
magnitude.

SIGNED INTEGERS

SINGLE PRECISION:

c= I
o 15

'-~

2' 5 COMPLEMENT
MAGNITUDE

MUL TIPLE PRECISION:
I 1 "'-1 ------1 5 Lol

o
____ --II

o 15 0 15) 15

2'5 COMPLEMENT MAGNITUDE

UNSIGNED INTEGERS

SINGLE PRECISION:

I 1
o 15

y

UNSIGNED
MAGNITUDE

MUL TIPLE PRECISION c= I r------~I ~ r-I --------..1
n 15 15 ;1 15

--------.------------~.--------------------

UNSIGNED MAGNIT UDE

Single precision integers are one word <16 bits) long,
and multiple precision integers are two or more
words long. As an example, the table below shows the
possible range of single and double precision numbers
represented by this format:

Single Precision Double Precision

Unsigned o to 65.535 o to 4.294.967.295

Signed -32.768 to -2.147,483.648 to
+32.767 +2.147,483.647

In addition, there is a Carry bit. A change in the
value of the carry bit indicates a carry out during
fixed point arithmetic operations.

NUMBER CONVENTIONS

Decimal Format

We represent decimal numbers by a variety of
industry-compatible formats. Both unpacked and
packed decimal format can be recognized and
manipulated by various instructions.

Unpacked Decimals

In unpacked decimal format, each byte of memory
contains the code for one ASCII character. Each
decimal digit is represented by the ASCI character
for that digit except when a digit and sign are
combined in one character. The table below shows
the ASCII characters we use to represent the
combination of a digit and sign in those formats
which require it.

Digit Digit With + Sign Digit With - Sign

ASCII Octal ASCII Octal
Charactel Code Character Code

0 I 173 ~ 175
1 A 101 J 112
2 B 102 K 113
3 C 103 L 114
4 D 104 M 115
5 E 105 N 116
6 F 106 0 117
7 G 107 P 120
8 H 110 Q 121
9 I 111 R 122

You can represent the sign in anyone of four ways
when using unpacked decimal format. These four
ways are shown in the table that follows.

Note that in each example, the fIrst line shows the
decimal number as normally written, the second line
shows the ASCII characters placed in each byte, and
the third line shows the octal code of the character in
each byte.

Type Characteristic Example

Leading Sign appears in +2048
Sign separate byte + 2 0 4 8

after number. 053 062 060 064 070
Trailing Sign appears in -1756
Sign seperate byte 1 7 5 6 -

after number. 061 067 065 066 055
High- Sign and high-order +1850
order digit are indicated by A 8 5 0
Sign single (first) byte. 101 070 065 060
Low- Sign and low-order -3972
order digit are indicated by 3 9 7 K
Sign single (last) byte. 063 071 067 113

NUMBER CONVENTIONS

11-6

Data General Corporation

Packed Decimal

In packed decimal format, each digit of the decimal
number occupies one half byte in memory. The sign
appears in a separate trailing half byte. The number
must start and end on a byte boundary, so a packed
decimal number always consists of an odd number of
digits followed by the sign (a zero is placed in front of
numbers with an even number of digits). The sign is
represented by the octal number 148 for plus and 158
for minus.

Several examples of packed decimal numbers are
shown below.

BYTE BYTE BYTE

+2048 0 2 0 4 8 +
00 02 00 04 10 14

+32,456 3 2 4 5 6 +
03 02 04 05 06 14

-1756 0 1 7 5 6 -
00 01 07 05 06 15

-25,989 2 5 9 8 9 -
02 05 11 10 11 15

Data Type Indicator

Most ECLIPSE C/150 instructions make certain
assumptions about the representation of data in
memory -- whether the data you are referencing is in
integer format, floating point format and so on. The
assumptions about data type made by the
instructions are usually obvious; your choice of
instruction implicitly defInes the kind of data you are
manipulating. For example the Load byte assumes
the information to which you refer is a single byte of
data, while the Load floating point double instruction
operates on an aggregate of data in memory that is
eight bytes long.

However, the decimal arithmetic and the edit
instructions do not make such assumptions. Rather,
these instructions require that you pass them a
parameter called the data-type indicator, which
defines both the data representation you want the
operation to use, and also its size. You pass the
indicator in an accumulator. The data-type indicator
has the following format:

014-000616-00

CONCEPTS AND FACILITIES

I TYPE I I SIZE I
7 I 8 9 I 10 11 12 I 13 I 14 I 15

BITS NAME CONTENTS or FUNCTION

0-7 --- Reserved for future use

8-10 TYPE Data type:

o Unpacked decimal. low order sign
1 Unpacked decimal, high order sign
2 Unpacked decimal, trailing sign
3 Unpacked decimal. leading sign
4 Unpacked decimal, unsigned
5 Packed decima I
6 Two's complement integer,
byte aligned
7 Floating point, byte aligned

11-15 SIZE Data length:

For all except data type 5,
count of bytes in number minus 1
(including sign);
For data type 5, the count
of digits in the number

Logical Format

We represent logical entities as individual bits in a
16-bit word. Each bit is treated as a separate binary
value. When two words are involved (logical AND or
XOR, for example) only corresponding bits of each
word interact. Examples oflogical operations include:

• forming the logical AND of two words;

• forming the logical complement of a word;

• shifting the contents of a word left or right.

Floating Point Format

Word for word, floating point format provides a much
larger range than integer format, at the expense of
some precision. It also provides the ability to operate
on fractions. The maximum range of floating point
format is equivalent to a 16-word multiple precision
integer. In addition, floating point operations are
executed faster than most multiple precision integer
operations.

We represent a floating point value using a
4-byte-wide (for single precision) or an 8-byte-wide
(for double precision) number. The 4- or 8-byte
aggregate contains 3 fields:

• a fractional part called the mantissa, which, at the
end of all floating point mathematics operations, is
always adjusted to be greater than or equal to 1/16
and less than 1 (i.e., normalized);

• an exponent, which is adjusted to maintain the
correct value of the number;

• a sign.

014-000616-00

II-7

Operations on numbers in memory employing the
floating point arithmetic instructions require that
the number be word aligned, so that bit 0 of the first
byte of the number is bit 0 of first word of a 2-word or
4-word area in memory. Certain operations on
numbers in memory employing decimal or edit
instructions allow the number to be either word
aligned or byte aligned. Byte alignment means that
bit 0 of the first byte of the number is either bit 0 or
bit 8 of any word in memory.

SINGLE PRECISION (4 BYTES)

[IiiYTE"OJ
o 1 7

t~NT
SIGN

I BYTE 1 I
8 15

I BYTE2 I
16 23

I BYTE 3 I
24 31

MANTISSA (6 HEX DIGITS)

l WORD ALIGNED FOR ALL FLOATING POINT OPERATIONS; MAY BE WORD OR
BYTE ALIGNED FOR MOST DECIMAL AND EDIT INSTRUCTIONS

DOUBLE PRECISION (8 BYTES)

II BYTE 0 I I BYTE 1 I
01 ., 8 15

32 39

BYTE 2 I
16 23

I BYTE 5 I
40 47

I BYTE3 I
24 31

I BYTE 6 I
48 53

I BYTE 7 I
54 63 I

~NT I BYTE 4 I

~--------------------~T~----------------------------~
MANTISSA (14 HEX DIGITS)

SIGN

l WORD ALlGIIIED FOR ALL FLOATING POINT OPERATIONS; MAY BE WORD OR
BYTE ALIGNED FOR MOST DECIMAL AND EDIT INSTRUCTIONS

DG-04849

NUMBER CONVENTIONS

The magnitude of a floating point number is defined
to be:

MANTISSA X 16(TRUE VALUE OF THE EXPONENn

We represent zero in floating point by a number with
all bits zero, known as true zero. When a calculation
results in a zero mantissa, the number is
automatically converted to a true zero.

Sign

Bit 0 of the first byte is the sign bit. If the sign bit is
0, the number is positive. If the sign bit is 1, the
number is negative.

Exponent

The right-most 7 bits of the first byte contain the
exponent. We use excess 64 representation. For both
positive and negative exponents, the value is 64
greater than the true value of the exponent. The
following table illustrates this:

EXPONENT FIELD TRUE VALUE of EXPONENT

0 -64
64 0
127 63

Mantissa

Bytes 1-3 (single precision) or bytes 1-7 (double
precision) contain the mantissa. By dermition, the
binary point lies between byte 0 and byte 1 of a
floating point number. In order to keep the mantissa
in the range of 1/16 to 1, the results of each floating
point calculation are normalized. A mantissa is
normalized by shifting it left one hex digit (4 bits) at
a time, until the high-order four bits (the left-most
four bits of byte 1) represent a nonzero quantity. For
every hex digit shifted, the exponent is decreased by
one.

NUMBER MANIPULATION

11-8

Data General Corporation

NUMBER MANIPULATION
Fixed Point Arithmetic Instructions

There are 26 ECLIPSE C/150 instructions which
perform fixed point arithmetic. These instructions:

• Perform binary arithmetic on operands in
accumulators;

• Load data from memory to an accumulator;
• Move data from an accumulator to memory;

• Load a number into an accumulator.

All of the fixed point arithmetic instructions are
shown in the following table. Some of the instructions
appear in both a short form and a long form (the long
form is usually indicated by the prefix E in the
mnemonic). Most of these are instructions that move
data to or from memory. For these, the short form is
16 bits in length and can directly specify a memory
address from 0 to 255, or can directly specify a small
area in memory surrounding the present value of the
program counter or an accumulator. Long form
instructions are 32 bits in length; they can directly
specify any address from 0 to 777778,

ADI and ADDI are also short and long forms,
respectively, of the same instruction. The short form
can only add a 2-bit quantity, coded with the
instruction (an immediate) in the range 1-4, while
the long form can add a 16-bit immediate in the
range -32,768 to + 32,767.

014-000616-00

CONCEPTS AND FACILITIES

FIXED POINT INSTRUCTIONS

Mnem Name Function

ADC Add Adds an unsigned integer to the
Complement logical complement of another

unsigned integer.

ADD Add Adds contents of one accumulator
to another.

ADDI Extended Adds a signed integer in the range
Add -32.768 to +32.767 to the
Immediate contents of an accumulator.

ADI Add Adds an unsigned integer in the
Immediate range 1 -4 to the contents

of an accumulator.

DIV Unsigned Divides the unsigned 32-bit
Divide integer in two accumulators by

the unsigned contents of a
third accumulator.

DIVS Signed Divides the signed 32-bit integer
Divide in two accumulators by the

signed contents of a third
accumulator.

DIVX Sign Extends the sign of one
Extend accumulator into a second
And accumulator and performs a
Divide Signed Divide on the result.

DSZ Decrement Decrements the addressed word.
EDSZ And Skip then skips if the decremented

If Zero value is zero.

HLV Halve Divides the contents of an
accumulator by 2.

INC Increment Increments the contents of
an accumulator.

ISZ Increment Increments the addressed word.
EISZ And Skip then skips if the incremented

If Zero value is zero.

LOA. Load Loads data from memory to an
ELDA Accumulator accumulator.

LEF. Load Places an effective address
ELEF Effective in an accumulator.

Address

MOV Move Moves the contents of an
accumulator through the
Arithmetic Logic Unit (ALU).

MUL Unsigned Multiplies the unsigned contents
Multiply of two accumulators and adds

the results to the unsigned
contents of a third accumulator.

MULS Signed Multiplies the signed contents
Multiply of two accumulators and adds

the results to the signed
contents of a third accumulator.

NEG Negate Forms the two's complement of the
contents of an accumulator.

014-000616-00

11-9

FIXED POINT INSTRUCTIONS Continued

Mnem Name Function

SBI Subtract Subtracts an unsigned integer in
Immediate the range 1-4 from the contents

of an accumulator.

STA. Store Stores data in memory from
ESTA Accumulator an accumulator.

SUB Subtract Subtracts contents of one
accumulator from another.

XCH Exchange Exchanges the contents of
Accumulators two accumulators.

DECIMAL ARITHMETIC

There are 11 instructions in the ECLIPSE C/150
which perform operations on decimal data. These
instructions:

• Add and subtract decimal integers;

• Shift the contents of words one or more hex digits
left or right;

• Convert decimal integers to floating point
numbers;

• Convert floating point numbers to decimal integers
of a specified data type;

• Convert decimal integers to strings of bytes and
perform a variety of functions on the string.

Decimal Faults

In the course of processing decimal instructions, the
CPU performs certain checks on the data being
processed. If an invalid data type or number is found,
a fault is initiated. When a fault occurs, the processor
first pushes a return block onto the stack, with the
program counter word in the return block pointing to
the instruction that caused the fault. It then places a
code indicating the type of fault in AC1, and executes
a Jump indirect to the decimal fault address, location
468, This location should point to a fault handling
routine.

The table below describes the decimal faults:

CODE INSTR. MEANING

4 LDI Number too large to convert to specified
STI data type. SIIDI is in AC2.
STIX

6 LSN Sign code is invalid for this data type.
LDI AC3 contains SI.
LDIX

7 LSN Invalid digit. AC2 contains SI.
LDI
LDIX

DECIMAL ARITHMETIC

DECIMAL ARITHMETIC INSTRUCTIONS

Mnem Name Function

DAD Decimal Adds together the decimal digits
Add found in bits 12-15 of

two acculumulators.

DHXL Double Shifts the 32-bit contents of two
Hex accumulators left 1 to 4 hex digits.
Shift
Left

DHXR Double Shifts the 32-bit contents of two
Hex accumulators right 1 to 4 hex digits.
Shift
Right

DSB Decimal Subtracts the decimal digit in bits
Subtract 12-15 of one accumulator from the

decimal digit in bits 12-15 of
another acumulator.

EDIT Edit Converts a decimal integer to a
string of bytes controlled by an
edit subprogram; or manipulates
string of bytes.

HXL Hex Shifts the contents of an
Shift accumulator left a number of
Left hex digits.

HXR Hex Shifts the contents of an
Shift accumulator right a number
Right of hex digits.

LDI Load Converts a decimal integer to
Integer normalized floating point form

and places it in a specified
floating point accumulator.

LDIX Extended Distributes a decimal integer
Load into 4 floating point
Integer accumulators.

LSN Load Evaluates a number in memory
and returns a code indicating
the sign of the number.

STI Store Converts the contents of a
Integer floating point accumulator

to a specified format and
stores it in memory.

STIX Extended Converts the contents of 4
Store floating point accumulators
Integer to integer form and uses the

8 low-order digits of each to
form a 32-bit integer.

Logical Operation Instructions

All of the logical operations instructions are shown in
the following table. The Load Effective Addre88 and
Extended Load Effective Addre88 instructions are the
short and long form, respectively, of the same
instruction. The short form is 16 bits in length and
can directly specify a memory address from 0 to 255
or can directly specify a small area in memory
surrounding the present value of the program
counter or an accumulator. Long form instructions
are 32 bits in length; they can directly specify any
address from 0 to 777778,

DECIMAL ARITHMETIC

II- 10

Data General Corporation

LOGICAL OPERATION INSTRUCTIONS

Mnem Name Function

ANC AND With Forms the logical AND of the
Complemented contents of one accumulator and
Source the logical complement of the

contents of another accumulator.

AND AND Forms the logical AND of the
contents of two accumulators.

AND I AND Forms the logical AND of a
Immediate 16-bit number contained in

the instruction and the
contents of an accumulator.

COM Complement Forms the logical complement
of the contents of an
accumulator.

DHXL Double Shifts the 32-bit contents of two
Hex accumulators left 1 to 4 hex
Shift digits depending on the value of
Left a 4-bit number contained in the

instruction.

DHXR Double Shifts the 32-bit contents of two
Hex accumulators right 1 to 4 hex
Shift digits depending on the value of
Right a 4-bit number contained in the

instruction.

DLSH Double Shifts the 32-bit contents of two
Logical accumulators left or right
Shift depending on the contents of a

third accumulator.

HXL Hex Shifts the contents of an
Shift accumulator left 1 to 4 hex
Left digits depending on the value of

a 4-bit number contained in the
instruction.

HXR Hex Shifts the contents of an
Shift accumulator right 1 to 4 hex
Right digits depending on the value of

a 4-bit number contained in the
instruction.

lOR Inclusive Forms the logical inclusive OR of
OR the contents of two accumulators.

IORI Inclusive Forms the logical inclusive OR of
OR a 16-bit number contained in the
Immediate instruction and the contents of

an accumulator.

LEF, Load Places an effective address
ELEF Effective in an accumulator.

Address

LSH Logical Shifts the contents of an
Shift accumulator left or right

depending on the contents of
another accumulator.

XOR Exclusive Forms the logical exclusive OR of
OR the contents of two accumulators.

XORI Exclusive Forms the logical exclusive OR of
OR a 16-bit number contained in the
Immediate instruction and the contents of

an accumulator.

014-000616-00

CONCEPTS AND FACILITIES

Floating Point Arithmetic

The ECLIPSE C/150 floating point instructions
assume normalized input numbers. Results are
undefined for unnormalized input.

Floating Point Registers

There are five registers available to the programmer
in the floating point processor. These are the four
floating point accumulators (FPAC's) and the
Floating Point Status Register (FPSR). The FPAC's
are numbered 0-3 and are called FACO, FAC1, F AC2,
and FAC3. The FPSR is a 32-bit register that
contains information about the present status of the
floating point processor. The format of the FPSR is
given at right.

Guard Digit

In order to increase accuracy, a 4-bit (1 hex digit)
guard digit is used during floating point arithmetic
operations. This guard digit accepts and holds up to
4 bits shifted out (to the right) of the mantissa, and is
used in all single precision and double precision
operations until the completion of each
instruction. The guard digit is truncated before the
data is stored at the end of the instruction process.

Floating Point Fault Conditions

After every floating point operation, the floating
point status register is checked for possible fault
conditions. Four types of floating point fault
conditions can be detected:

• overflow

• underflow
• divide by zero
• mantissa overflow

014-000616-00

II- 11

BITS NAME CONTENTS or FUNCTION

0 ANY Indicates that any of bits 1 -4 are set.

1 OVF Overflow Indicator--while processing
a floating point number, an exponent
overflow occurred; the result is correct
except the exponent is 1 28 too small.

2 UNF Underflow Indicator - while processing
a floating point number, an exponent
underflow occurred; the result is
correct except that the exponent is
1 28 too large.

3 DVZ Divide by Zero - while processing a
floating point number, a zero divisor
was detected; division was aborted
and the operands remain unchanged.

4 MOF Mantissa Overflow - during a
F5CAL instruction, a significant bit was
shifted out of the high order end of the
mantissa; this bit is also set during a
FIX instruction if the result does not
fit into the destination location.

5 TE Trap Enable - If this bit is 1, setting
any of bits 1 -4 will result in a floating
point fault.

6 Z Zero bit - The result of the last
floating point operation was zero.

7 N Negative bit--The result of the last
floating point operation was less
than zero.

8-11 * --- Reserved for future use.

12-15 FPMOD Indicates computer series supporting
the floating point instruction set.

0000 5/200, C/300,
5/230, C/330

0001 5/130, 5/250
standard FP,C/150

0010 M/600, C/350,
5/250 optional FP

0011 Reserved for
future use.

16 --- Reserved for future use.

17-31 FPPC Floating Point Program Counter - This
is the logical address of the last
floating point instruction executed.
In the event of a floating point fault,
this is the address of the floating
point instruction that caused the fault.

* Theile bits are used as internal flags by the firmware; Preserve
them when saving the state of the FPSR.

DECIMAL ARITHMETIC

Floating Point Trap

If the program has set bit 5 of the floating point
status register to 1, a floating point fault condition
will initiate a floating point trap. Immediately before
the next floating point instruction is executed, a
return block is pushed onto the stack and the
program counter jumps indirect via location 458'
Location 458 should contain the address of the
floating point fault handler. The return block pushed
has the following format:

WORD DESCRIPTION

0
1
2
3
4

ACO
AC1
AC2
AC3
Bit 0: Carry; Bit 1-15: return address

NOTE: The return address is not the address of
the floating point instruction that caused the
fault, nor is. it (necessarily) the address of the
instruction following the instruction that caused
the fault. It is the address of the floating point
instruction following the instruction that caused
the fault.

If the instruction following the instruction that
caused the fault is a Push Floating Point State or a
Pop Floating Point State, the fault will not occur
immediately. It will occur when the system
returns to the same user environment and is
about to execute a floating point instruction
other than a Push Floating Point State or a Pop
Floating Point State . In this way, the fault will only
occur within the user environment which caused
it.

The floating point instructions are shown in the
following table. Note that several instructions have
two forms; one ending in S and one ending in D . The
first form uses single-precision floating point format,
while the second form uses double-precision floating
point format. The function of the two forms is
otherwise identical.

DECIMAL ARITHMETIC

Mnem

FAB

FAMS,
FAMD

FAS,
FAD

FCLE

FCMP

FDMS,
FDMD

FDS,
FDD

FEXP

FFAS

FFMD

FHLV

FINT

FLAS

FLDS,
FLDD

FLMD

FLST

FMMS,
FMMD

11-12

Data General Corporation

FLOATING POINT INSTRUCTIONS

Name Function

Absolute Value Sets the sign bit of an FPAC to O.

Add (memory Adds the floating point number
to FPAC) in memory to the

floating point number in
an FPAC.

Add (FPAC Adds the floating point number
to FPAC) in one FPAC to the floating

point number in another FPAC.

Clear Errors Sets bits 0-4 of the FPSR TO O.

Compare Compares two floating point numbers
Floating and sets the Z and N flags
Point accordingly.

Divide Divides the floating point
(FPAC by number in an FPAC by a
memory) floating point number in

memory.

Divide Divides the floating point
(FPAC by number in one FPAC by the
FPAC) floating point number in

another FPAC.

Load Places bits 1-7 of ACO in bits 1 -7 of
Exponent the specified FPAC.

Fix To AC Converts the integer portion of a
floating point number to a signed
two's complement integer and places
the result in an accumulator.

Fix To Converts the integer portion of a
Memory floating point number to double-

preCision integer format and
stores the result in two memory
locations.

Halve Divides the floating point number in
FPAC by 2.

Integerize Sets the fractional portion of the
floating point number in the
specified FPAC to zero and
normalizes the result

Float Converts a signed two's complement
From AC number in an accumulator to a

single precision floating point
number.

Load Moves a floating point number
Floating from memory to a
Point specified FPAC.

Float Converts the contents of two memory
From locations in integer format to
Memory floating point format and places

the result in a specified FPAC.

Load Moves the contents of two specified
Floating memory locations to the FPSR.
Point
Status

Multiply Multiplies the floating point
(memory number in memory
by by the floating point number
FPAC) in an FPAC.

014-000616-00

CONCEPTS AND FACILITIES

FLOATING POINT INSTRUCTIONS (Continued) FLOATING POINT (Continued)

Mnem Name Function Mnem Name Function

FMOV Move Moves the contents of one FPAC to FSNE Skip On Skips the next sequential word if
Floating another FPAC. Non-Zero the Z flag of the FPSR is O.
Point FSNER Skip On Skips the next sequential word if bits

FMS. Multiply Multiplies the floating point No Error 1-4 of the FPSR are all O.
FMD (FPAC number in one FPAC by the FSNM Skip Skips the next sequential word if the

by floating point number in
FPAC) another FPAC.

On No mantissa overflow (MOF) flag of the
Mantissa FPSR is O.

FNEG Negate Inverts the sign bit of the FPAC. Overflow

FNOM Normalize Normalizes the floating point number FSNO Skip Skips the next sequential word if the
in FPAC. On No overflow (OVF) flag of the

FNS No Skip The next sequential word is executed. Overflow FPSR is O.

FPOP Pop Pops an 18-word floating point
Floating block off the user stack and alters
Point the state of the floating point unit.
State

FSNOD Skip Skips the next sequential word if both
On No the overflow (OVF) flag and the
Overflow divide by zero (DVZ) flag of the
And FPSR are O.

FPSH Push Pushes an 18-word floating point
Floating block onto the user stack.
Point

No Zero
Divide

FSNU Skip Skips the next sequential word if the

State On No underflow (UNF) flag of the

FRH Read Places the high-order 16 bits
High of an FPAC in ACO.
Word

Underflow FPSR is O.

FSNUD Skip Skips the next sequential word if both
On No the underflow (UNF) flag and the

FSA Skip The next sequential instruction is
Always skipped.

Underflow divide by zero (DVZ) flag of the
And FPSR are O.
No Zero

FSCAL Scale Shifts the mantissa of the floating Divide
point number in FPAC either right
or left. depending upon the contents
of bits 1 -7 of ACO.

FSEQ Skip On Skips the next sequential word if the

FSNUO Skip Skips the next sequential word if both
On No the underflow (UNF) flag and the
Underflow overflow (OVF) flag of the
And No FPSR are O.

Zero Z flag of the FPSR is 1. Overflow
FSGE Skip On Skips the next sequential word

Greater if the N flag of the FPSR is O.
FSS. Subtract Subtracts the floating point
FSD (FPAC number in one FPAC from the

Than Or
Equal

from floating point number in
FPAC) another FPAC.

To Zero
FSST Store Moves the contents of the FPSR

FSGT Skip On Skips the next sequential word if both
Greater the Z and N flags of the FPSR are O.

Floating to two memory locations.
Point

Than Or Status
Equal
To Zero

FSLE Skip On Skips the next sequential word

FSTS. Store Stores the contents of a specified
FSTD Floating FPAC into memory.

Point
Less if either the Z flag or the N flag
Than Or of the FPSR is 1.
Equal

FTD Trap Sets the trap enable flag of the
Disable FPSR to O.

To Zero FTE Trap Sets the trap enable flag of the

FSLT Skip On Skips the next sequential word if the
Enable FPSR to 1.

Less N flag of the FPSR IS 1.
Than
Zero

FSMS. Subtract Subtracts the floating point
FSMD (memory number in memory

from from the floating point number
FPAC) in an FPAC.

FSND Skip On Skips the next sequential word if the
No Zero divide by zero (DVZ) flag of the
Divide FPSR is O.

II- 13

014-000616-00 DECIMAL ARITHMETIC

ALe MANIPULATION

ALe Format

Each of the eight Arithmetic/Logic Class (ALC)
instructions performs a specific function upon the
contents of one or two accumulators and the carry
bit. The eight functions are Add, Subtract, Negate,
Add Complement, Move, Increment, Complement, and
AND. The instructions are identified by the
mnemonics of the eight functions, which are ADD, SUB,
NEG, ADC, MOV, INC, COM, and AND.

In addition to the specific functions performed by an
individual instruction, there is a group of general
functions all ALC instructions can perform. These
general functions include shift operations, which
rotate the data left or right, or swap the bytes. Also
included are various tests that can be performed on
the data. With each test the instructions can check
the data for some condition and skip or not skip the
next sequential word, depending on the outcome of
the test. Finally, the instructions can load or not load
the results of the specific and general functions into
the destination accumulator and the carry bit. The
diagram below shows the format of the ALC
instructions.

ALe Instructions

The ALC instructions are listed below.

ALC Instructions

Mnem Name Function

ADC Add Adds an unsigned integer to the
Complement logical complement of another

unsigned number.

ADD Add Adds contents of one accumulator
to the contents of another.

AND AND Forms the logical AND of the
contents of two accumulators.

COM Complement Forms the logical complement of
the contents of an accumulator.

INC Increment Increments the contents of an
accumulator.

MOV Move Moves the contents of an accumulator
through the ALU.

NEG Negate Forms the two's complement of the
contents of an accumulator.

SUB Subtract Subtracts contents of one
accumulator from the contents
of another.

ALe MANIPULATION

Data General Corporation

ALe I nstruction Execution

The ALC instructions use an Arithmetic Logic Unit
(AL U) to process data. The logical organization of the
ALU is illustrated below.

ACD
16 BITS

LOAD/NO LOAD

DG-0092'l

When an ALC instruction begins execution, it loads
the contents of the carry bit and the contents of the
accumulator(s) to be processed into the ALU. There
are five distinct stages of ALU operation. We will
discuss these stages separately.

Carry

The ALU begins its manipulation of the data by
determining a new value for the carry bit. This new
value is based upon three things; the old value of the
carry, bits 10-11 of the ALC instruction, and the ALC
instruction being executed. The AL U first determines
the effect of the instruction bits 10-11 on the old value
of the carry. The table below shows each of the
mnemonics that can be appended to the instruction
mnemonic, the value of bits 10-11 for each choice, and
the action each one takes.

SYMBOL VALUE OPERATION

{c} omitted 00 Leave Carry bit unchanged

{c}=z 01 Initialize Carry bit to 0

{c}=o 10 Initialize Carry bit to 1

{c}=C 11 Complement the Carry bit

Function

The ALU next evaluates the effect of the specific
function (bits 5-7) upon the data. For the instructions
Move, Negate, AND, and Complement the ALU
performs the function on the data word(s) and saves
the result. The value of the carry is as it was
calculated above. For the instructions Add, Add
Complement, Subtract, and Increment, the result of
the function's action upon the data word (s) may be
larger than 216 - 1. A carry out results. In this

11-14

014 .. 000616~OO

CONCEPTS AND FACILITIES

situation, the ALU saves the low-order 16 bits of the
function result, but it complements the value of the
carry calculated above.

NOTE: At this stage of operation, the ALU does
not load either the saved value of the function
result into the destination accumulator, or the
saved value of the carry into the carry bit.

Shift Operations

Next, the ALU performs any specified shift operation
on the 17 bits output from the function generator (16
bits of data plus the calculated value of the carry
bit). Depending on which shift operation is specified
in the instruction, the function generator output can
be rotated left or right one bit, or have its bytes
swapped. The first table below shows the different
shift operations that can be performed, the value of
bits 8-9 for each choice, and the action each choice
takes. The second table shows how each shift
operation works.

SYMBOL VALUE OPERATION

[shlomitted 00 Do not shift the result
of the ALC operation

[shl=L 01 Rotate left the 1 7 -bit
combination of Carry bit
and ALC operation result

[shl=R 10 Rotate right the 1 7 -bit
combination of Carry bit
and ALC operation result

[shl=s 11 Swap the two a-bit halves
of the ALC operation result
without affecting Carry bit

014-000616-00

Coded
Character

R

S

Shifter Operation

Left rotate one place Bit 0 IS rotated Into the carry

position, the carry bit Into bit 15

~~ ____ 0_-1_5 ____ ~1:J
Right rotate one place Bit 15 IS rotated Into the

carry pOSition, the carry bit Into bit 0

L~,---I __ 0-1_5 _----'~
Swap the halves of the 16-blt result The carry IS

flOt affected

Skip Tests

The AL U can test the result of the shift operation for
one of a variety of conditions, and skip or not skip the
next instruction depending upon the result of the
test. The table below shows the tests that can be
performed, the value of bits 13-15 for each choice, and
the action each choice takes.

11- 15

SYMBOL VALUE OPERATION

[skipl omitted 000 No skip

[skipl=SKP 001 Skip unconditionally

[skipl=SZC 010 Skip if Carry bit is zero

[skipl=SNC 011 Skip if Carry bit is nonzero

[skipl=SZR 100 Skip if ALC result is zero

[skipl=SNR 101 Skip if ALC result is nonzero

[skipl=SEZ 110 Skip if either ALC result
or Carry bit is zero

[skipl=SBN 111 Skip if both ALC result
and Carry bit is nonzero

Load/No-Load

If the no-load bit (bit 12) is 0, the ALU loads the
result of the shift operation into the destination
accumulator, and loads the new value of the carry
into the carry bit. If the no-load bit is 1, then the
AL U does not load the result of the shift operation
into the destination accumulator, and does not load
the new value of the carry into the carry bit, but all
other operations, such as skip tests, take place. This
no-load option is particularly convenient to use when
you want to test for some condition without
destroying the contents of the destination
accumulator. The table below shows how to code the

ALe MANIPULATION

load/no-load operation.

SYMBOL VALUE OPERATION

omitted 0 Load the result of the
shift operation into ACD

1 Do not load the ALC
operation result into ACD;
restore Carry bit to value
it had before shifting

NOTE: These instructions must not have both the
No-Load and the Never-Skip options specified at
the same time. These bit combinations are used
by other instructions in the instruction set.

THE STACK

Data General Corporation

THE STACK

The stack is a series of consecutive locations in
memory. In their simplest form, stack instructions
add items in sequential order to the top of the stack
and retrieve them in the reverse order. Several stack
areas may be defined by the program, but only one
stack may be in use at any time. The ECLIPSE Cli50
uses the push-down stack concept to provide easily
accessible temporary storage of data, variables,
return addresses, etc.

The simplest use of the stack is for temporary storage
of the contents of up to four accumulators, which can
be stored or retrieved with one instruction. More
commonly, the stack is used to store a return block
which greatly simplifies the process of entering and
returning from subroutines.

The return block can take several forms, but it
usually consists of five words: the contents of the four
accumulators, the program counter or the frame
pointer (see below), and the carry bit in bit 0 of the
last word pushed.

Three parameters define a stack: (1) the lower limit,
or starting location; (2) the upper limit, or stack
limit; and (3) the present top of the stack, or stack
pointer. The lower and upper limits define the area in
memory which is reserved for the stack, and the
stack pointer defines the location of the last word
placed onto the stack (or the next word available
from the stack). A diagram of a stack area is shown
below:

MAIN MEMORY

LOWER LIMIT I------~

STACK tl-------~
POINTER~ I

~ INCREASING
ADDRESSES

UPPER LIMIT I------~
("ST ACK LIMIT")

DG04426

To use the stack, define the upper and lower limits,
then use the stack instructions to put items on (push
onto) or remove items from (pop off) the top of the
stack. It is not necessary to keep track of the location
of the top of the stack. This is done automatically by
the stack pointer. The updated value of the stack
pointer is always stored in location 408'

11-16

014-000616-00

CONCEPTS AND FACILITIES

The lower limit of the stack is determined by the
initial value of the stack pointer, which is placed in
location 408 when the stack is set up by the program.
The upper limit is controlled by the value in location
428' This value is also chosen when the stack is set up,
but it can be changed by the program if more stack
area becomes necessary. Two other reserved locations
are used to control the stack. Location 438 contains
the address of the Stack Fault routine. Control is
transferred to the Stack Fault routine when a stack
underflow or overflow occurs (see Stack Protection,
below). Location 418 contains the current value of the
frame pointer, which is used as a reference pointer in
the stack.

Stack Control Words

The locations and uses of the stack control words are
discussed in detail below:

Stack Pointer

The stack pointer is the address of the current top of
the stack. Its current value is always in location 408,
A push operation increments the stack pointer by 1
and places the pushed word in the location addressed
by the new value of the stack pointer. A pop
operation takes the word addressed by the current
value of the stack pointer, places it in a register and
decrements the stack pointer by 1.

When the stack is set up, the value of the stack
pointer is initially set to one less than the address of
the first word in the stack. This determines the lower
limit of the stack.

Stack Limit

The stack limit is the upper limit of the stack
area. After each push operation, the stack pointer is
compared with the stack limit. If the stack pointer is
greater than the stack limit, an overflow condition
exists. The stack limit is contained in location 428,
For more information, see the next section on Stack
Protection.

Stack Fault Address

If a stack overflow or underflow occurs, control is
transferred to the Stack Fault routine. The address
of this routine, which may be indirect, is contained in
location 438,

Frame Pointer

The frame pointer differs from the stack pointer in
that it is not changed by push or pop operations, and
so its value is not incremented or decremented. This
makes it a useful reference pointer when it is set to
the same value as the stack pointer, because it then
preserves the original value of the stack pointer.

014-000616-00

The frame pointer is used by the Save and Return
instructions to store and reset the value of the stack
pointer when entering or leaving subroutines. The
frame pointer can also be used to define the boundary
between words placed in the stack by a calling
routine and words placed by a called routine. Using
the frame pointer as a reference, a routine can go
back into the stack and retrieve variables left there
by the preceding procedure.

The frame pointer is contained in location 418,

Stack Protection

You can enable protection for two stack error
conditions: overflow and underflow.

Stack Overflow

Stack overflow occurs when a program pushes data
into the area beyond that allocated for the stack, i.e.,
beyond the stack limit. If this occurs, data will be
pushed into areas which are reserved for other
purposes, possibly overwriting data or instructions.

Overflow protection is provided by the stack limit. If
a stack instruction pushes data onto the stack beyond
the stack limit, a return block is pushed onto the
stack, and control is transferred to the stack fault
handler. To disable overflow protection, the stack
limit should be set to 1777778,

To be meaningful, the stack limit must be 10 to 23
addresses lower than the last word in the stack,
because stack overflow is detected only at the end of a
push operation (except in the case of the Save and the
Modify Stack Pointer instructions - see details in
Chapter V). Thus, it is possible to push a 5- to
18-word return block starting at the stack limit.
Stack overflow will not be sensed until the last word
of the return block is pushed. After the last word is
pushed, stack overflow will be detected, and another
5-word return block will be pushed by the stack
overflow mechanism before control is transferred to
the stack fault routine. Depending on the size of the
initial return block (from the normal 5 words up to
the 18 words used by the floating point instruction
set), the potential overflow can be 10 to 23 words
long. '

11- 17

Stack Underflow

Stack underflow occurs when a program pops data
from the area below that allocated for the stack (i.e.,
pops more words off than were pushed on). If this
occurs, the program will be operating with incorrect
and unpredictable information. Furthermore, it is
possible that the program will push data into the
underflow area, overwriting data or instructions.

For underflow protection to be enabled, the area
allocated to the stack must begin at location 4018 and
the stack pointer must be initialized to 4008, If the

THE STACK

stack pointer is less than 400s after a pop operation,
an lUlderflow condition exists and a stack fault
occurs.

Underflow protection can be disabled in two ways:

• Start the stack at a location greater than 401s. A
stack fault will not occur then lIDless the program
lUlderflows the stack and then continues to pop
words off the stack until the stack pointer is less
than 4oos. Note that this does not completely
disable lUlderflow protection - it is always possible
to pop enough words off the stack to lUlderflow it.

• Set bit 0 of both the stack pointer and the stack
limit to 1. If this is done, all or a portion of the
stack may reside in page zero Oocations 0-377s), or
the stack may lUlderflow into page zero, without
interference from the stack lUlderflow mechanism.

Stack Protection Faults
Stack Overflow Protection

The Save and the Modify Stack Pointer instructions
check for overflow before executing. For every other
instruction that pushes data onto the stack, a check
is made for overflow after the execution of the
instruction. In both cases, the stack pointer and stack
limit are treated as lUlsigned 16-bit integers and
compared. If overflow has occurred, the processor:

• sets bit 0 of the stack pointer to 0;
• sets bit 0 of the stack limit to 1;
• pushes a return block onto the stack;
• executes a jump indirect to the stack fault address.

Bit 0 of the stack pointer and stack limit are set as
indicated so that the stack limit will (temporarily) be
larger than the stack pointer. In this way, the return
block pushed by the overflow mechanism itself will
not be interpreted as yet another overflow fault,
causing a loop condition. The program cOlUlter in the
return block points to the instruction immediately
following the stack instruction that caused the fault.

Stack Underflow Protection

After every operation that pops data off the stack, a
check is made for lUlderflow. If the stack pointer is
less than 400s , and bit 0 of the stack limit is 0, a stack
lUlderflow condition exists. In that case, the
processor:

• sets the stack pointer equal to the stack limit;
• sets bit 0 of the stack pointer to 0;
• sets bit 0 of the stack limit to 1;
• pushes a return block onto the stack;
• executes a jump indirect to the stack fault address.

THE STACK

Data General Corporation

Bit 0 of the stack pointer and stack limit are set as
indicated so that the stack limit will (temporarily) be
larger than the stack pointer. In this way, the return
block being pushed onto the stack by the lUlderflow
mechanism (starting at the stack limit) will not cause
an overflow fault. The program cOlUlter in the return
block points to the instruction immediately following
the stack instruction that caused the fault.

Stack Fault Handler

The stack fault handler (created by the programmer)
determines the nature of the fault. It also resets the
appropriate values, and takes any other appropriate
action, such as allocating more stack space or
terminating the program. Note that the stack fault
handler must reset bit 0 of the stack pointer and
stack limit to their original values.

Initializing the Stack Control Words

Initialize the stack control words before the first
operation on the stack is performed. The rules for this
are as follows:

II-18

Stack Pointer

• Initialize the stack pointer to the beginning
address of the stack minus one.

• If stack lUlderflow protection is desired, initialize
the stack pointer to 400s and start the stack area
at 401s.

• If stack lUlderflow protection is not desired, start
the stack at some location greater than 401s .

• If you want to have all or a portion of the stack
area in page zero, or you want to disable lUlderflow
protection, set bit 0 of both the stack pointer and
the stack limit to 1.

Stack Limit

• Initialize the stack limit to a value greater than
the stack pointer.

• If stack overflow protection is desired, initialize
the stack limit to the last address allocated for the
stack minus at least 10.

• If stack overflow protection is not desired,
initialize the stack limit to 77777s.

• If you want to have all or a portion of the stack
area in page zero, set bit 0 of both the stack pointer
and the stack limit to 1.

Stack Fault Address

Initialize the stack fault address to the address of the
routine that is to receive control in the event of a
stack overflow or lUlderflow. Bit 0 may be set to 1 to
indicate an indirect address.

014-000616-00

CONCEPTS AND FACILITIES

Frame Pointer

It is meaningless to attempt initialization of the
frame pointer until it is actually used. The frame
pointer will have no meaning until the first use of the
Save instruction.

Examples

Stack area 50s words with underflow protection:

L.~ --'" "'x~""
STACK ~ __________ ¥~
POINTER -, 377 ./
400B t.t----

4
-

0
-
0
----¥

I-------~I"" +__ FIRST WORD
t-__ 4_0~1 __ ~./ OF STACK

402 ~

STACK

LIMIT --. 436 ./
4368 437

440 A
!O!"::

446 ./
447 ../

DG-(}().93 2a -- 450 l.I'

Stack area 50s words in page zero with overflow
protection:

L

:3 FIRST WORD
STACK

POINTER~ 77
1000778 100 /-OFSTACK

V

NOTE BIT 0 <
SET TO 1

STACK v
LlMIT--+ 135 v

1001358 l..J

~ 147
150

DG-(){}.C)·i2b

014-000616-00

Stack area lOOs words, no protection:

NOTE BIT 0
SET TO 1

STACK
POINTER
1004378

--.

STACK

LIMIT 1
1777778

".c-

437
440

537
540

-

B +--FIRST WORD
OF STACK

./

./

.....
-':)I

./

,,-

./
.-I,.J

The first of the preceding stack arrangements could
be set up using the following assembly language
instructions:

.TITl STACK

.EXTN STH ;Declare STH external

.lOC 401 ;Go to location 401

.BlK 50 ;Allocate 50 (octal) words

.lOC 40 ;Go to stack control words
400 ; Stack pointer
400 ;Frame pointer
436 ;Stack limit
STKHR ;Address of stack fault

; handler
.END

Stack Instructions

The instructions that affect the stack are listed
below.

II- 19

THE STACK

STACK INSTRUCTIONS

Mnem Name Function

FPOP Pop Pops an 18-word floating point
Floating return block off the stack.
Point State

FPSH Push Pushes an 18-word floating point
Floating retum block onto the stack.
Point State

MSP Modify Changes the value of the stack
Stack pointer and checks for overflow.
Pointer

POP Pop Pops 1 to 4 words off the stack
Multiple and places them in the
Accumulators indicated accumulators.

POPB Pop Block Returns control from a
System Call routine or an
I/O interrupt handler that does
not use the stack change facility
of the Vector instruction.

POPJ Pop PC Pops the top word off the stack and
And Jump places it in the program counter.

PSH Push Pushes the contents of 1 to 4
Multiple accumulators on the stack.
Accumulators

PSHJ Push Jump Pushes the address of the next
sequential instruction on the
stack and places an effective
address into the program counter.

PSHR Push Return Pushes'the address of the
Address instruction after the next

sequential instruction onto
the stack.

RSTR Restore Returns control from certain types
of I/O interrupts.

RTN Retum Returns control from subroutines that
issue a Save instruction
at their entry points.

SAVE Save Saves the information required by
the Return instruction.

SYC System Call Pushes a return block and
indirectly places the address
of the System Call handler
in the program counter.

VCT Vector on Performs various interrupt functions.
Interrupting See the I/O section in this chapter.
Device Code

PROGRAM EXECUTION

Data General Corporation

PROGRAM EXECUTION

Sequential Operation

A i5-bit register called the program counter always
contains the address of the instruction currently
being executed. The program counter is incremented
by one after each instruction. It can normally address
the complete logical address space, i.e., 0 through
777778 , inclusive, a total of 32,768 word locations.
The address after 777778 is 0, and no indication is
given when the counter rolls from 777778 to 0 in the
course of sequential processing.

Program Flow Alteration

You can alter the program flow from sequential
operation in two ways. Jump instructions alter the
program flow by inserting a new value into the
program counter. Conditional skip instructions alter
the program flow by incrementing the program
counter an extra time if a specified test condition is
true. In either case, sequential operation continues
with the instruction addressed by the updated value
of the program counter.

11- 20

NOTE: Do not use a conditional skip immediately
before a 2-word instruction. The conditional
instruction causes a 1-word skip, which results
in an attempt to execute the second word of the
instruction as a 1-word instruction.

) SEQUENTIAL I PROGRAM
FLOW

INCREASING
I

ADDRESSES

j
N JUMP
S JUMP
T PROGRAM
R FLOW
U

I

C
T
I
0 SKIP

N SKIP PROGRAM

S FLOW

DG-0054.'J

014-000616-00

CONCEPTS AND FACILITIES

Program Flow Interruption

The normal flow of a program may be interrupted by
external or exceptional internal conditions, such as
110 interrupts or MAP faults. When this occurs, the
address of the next sequential instruction in the
interrupted program is saved, so that after the
interrupt is serviced, control will return to the right
place. The address of the starting instruction for the
proper fault or interrupt handler is then placed in
the program counter and sequential operation
continues within that program. When the fault or
interrupt handler has serviced the interrupt, control
is returned to the interrupted program at the saved
address.

SEQUENTIAL
PROGRAM

I
FLOW

INCREASING
ADDRESSES

!
j

I
N
S
T

j
R
U
C
T

j
I
0
N CONTINUED

S PROGRAM

~
/ FLOW
//

/

VG-OO.544

Program Flow Alteration Instructions

Program flow alteration and conditional instructions
are shown in the following tables.

In the first table, several instructions have both short
and long forms. The short form is 16 bits in length
and can directly specify a memory address from 0 to
255 or can directly specify a small area in memory
surrounding the present value of the program
counter or an accumulator. Long form instructions
are 32 bits in length; they can directly specify any
address from 0 to 777778.

The second table summarizes the skip instructions
that test condition codes in the floating point status
register.

014-000616-00

The third table summarizes the condition tests
available for the SKIP[tJ instruction. (This instruction
tests condition codes of a peripheral device, the
power-fail monitor or the interrupt system.)

The fourth table summarizes skip options of the ALe
instructions.

PROGRAM FLOW ALTERATION INSTRUCTIONS

Mnem Name Function

ClM Compare Compares a signed integer with two
To Limits other numbers and skips if first

integer is between the other two.

DSPA Dispatch Compares a signed integer with two
other numbers and skips if first
integer is not between the others;
otherwise, uses the integer as an
index into a table and places indexed
value in the program counter.

DSZ, Decrement Decrements the addressed word,
EDSZ And Skip then skips if the decremented

If Zero value is zero.

ISZ, Increment Increments the addressed word,
EISZ And Skip then skips if the incremented

If Zero value is zero.

JMP, Jump Places an effective address
EJMP in the program counter.

JSR. Jump To Increments program counter and
EJSR Subroutine stores incremented value in AC3;

then places a new address in
the program counter.

POPJ Pop PC Pops the top word off the stack and
And Jump places it in the program counter.

PSHJ Push Pushes the address of the next
sequential instruction onto the
stack and places a new address
in the program counter.

RSTR Restore Returns control from 1/0 interrupt
handlers that use the stack change
facility of the VCT instruction.

RTN Return Returns control from a subroutine
entered via Save instruction.

SGE Skip If Compares two signed integers in
ACS Greater two accumulators and skips if
Than Or the first is greater than or
Equal To ACD equal to the second.

II- 21

PROGRAM EXECUTION

Data General Corporation

Program Flow Alteration Instructions (Cont'd) FLOATING POINT SKIP TESTS

Mnem Name Function Mnem Name Function

SGT Skip If Compares two signed integers in FNS No Skip The next sequential word is executed.

ACS Greater accumulators; skips if first FSA Skip The next sequential instruction is
Than ACD is greater than the second. Always skipped.

SKPltJ I/O Skip Skips if the I/O condition t is true. FSEQ Skip On Skips the next sequential word if the

SNB Skip On References a single bit in memory Zero Z flag in the FPSR is 1.

Nonzero Bit via bit pOinter; skips if bit is 1. FSGE Skip On Skips the next sequential word

SYC System Pushes a return block onto the stack; Greater if the N flag of the FPSR is O.

SVC Call places address of System Call Than Or
handler in program counter. Equal

SZB Skip On References a single bit in memory To Zero

Zero Bit via bit pOinter; skips if bit is O. FSGT Skip On Skips the next sequential word if both

SZBO Skip On - References a single bit in memory
Zero Bit, via bit pointer; skips if bit is 0
Set To 1 and also sets the bit to 1.

VCT Vector On Identifies highest priority interrupt;
Interrupting passes control through a table
Device Code to a handler routine for device.

XOP Extended Pushes a return block onto the stack,
XOP1 Operation indexes into the XOP table and

transfers control to another procedure.

XCT Execute Executes contents of an accumulator
as an instruction.

Greater the Z and N flags of the FPSR are O.
Than Or
Equal
To Zero

FSLE Skip On Skips the next sequential word
Less if either the Z flag or the N flag
Than Or of the FPSR is 1.
Equal
To Zero

FSLT Skip On Skips the next sequential word if the
Less N flag of the FPSR IS 1.
Than
Zero

FSND Skip On Skips the next sequential word if the
No Zero divide by zero (DVZ) flag of the
Divide FPSR is O.

FSNE Skip On Skips the next sequential word if
Non-Zero the Z flag of the FPSR is O.

FSNER Skip On Skips the next sequential word if bits
No Error 1-4 of the FPSR are all O.

FSNM Skip Skips the next sequential word if the
On No mantissa overflow (MOF) flag of the
Mantissa FPSR is O.
Overflow

FSNO Skip Skips the next sequential word if the
On No overflow (OVF) flag of the
Overflow FPSR is O.

FSNOD Skip Skips the next sequential word if both
On No the overflow (OVF) flag and the
Overflow divide by zero (DVZ) flag of the
And FPSR are O.
No Zero
Divide

FSNU Skip Skips the next sequential word if the
On No underflow (UNF) flag of the
Underflow FPSR is O.

FSNUD Skip Skips the next sequential word if both
On No the underflow (UNF) flag and the
Underflow divide by zero (DVZ) flag of the
And FPSR are O.
No Zero
Divide

FSNUO Skip Skips the next sequential word if both
On No the underflow (UNF) flag and the
Underflow overflow (OVF) flag of the
And No FPSR are O.
Overflow

ll-22

PROGRAM EXECUTION 014-000616-00

CONCEPTS AND FACILITIES

I/O Skip Tests

SYMBOL FUNCTION

[tl=BN Tests Busy flag for nonzero

[tl=BZ Tests Busy flag for zero

[tl=DN Tests Done flag for nonzero

[tl=DZ Tests Done flag for zero

ALe Skip tests

SYMBOL FUNCTION

[skiplomitted No skip

[skipl=SKP Skip unconditionally

[skipl=Szc Skip if Carry bit is zero

[skipl=SNC Skip if Carry bit is nonzero

[skipl=SZR Skip if ALC result is zero

[skipl=SNR Skip if ALC result is nonzero

[skipl=SEZ Skip if either ALC result
or Carry bit is zero

[skipl=SBN Skip if both ALC result
and Carry bit is nonzero

014-000616-00

EXTENDED OPERATION FEATURE

The extended operation feature (XOP) provides an
efficient method of transferring control to and from
procedures. It enables the user to transfer control to
anyone of 32 procedure entry points.

Extended Operation Instuctions

There are two extended operation instructions in the
ECLIPSE C/150 instruction set.

EXTENDED OPERATION INSTRUCTIONS

Mnem Name Function

XOP Extended Pushes a return block on the
Operation stack, placing the address in

the stack of the specified
accumulators into AC2 and
AC3, and transfers control
to one of 32 other procedures
via the XOP table.

XOP1 Extended Same as XOP except that 32
Operation is added to the entry number

before entering the XOP table,
and only 16 table entries can
be specified.

II- 23

EXTENDED OPERATION FEATURE

MEMORY ALLOCATION AND
PROTECTION

MAP Functions
NOTE: In the following section, "MAP' refers to
the Memory Allocation and Protection unit,
whereas "map" refers to a set of memory
translation functions used by the MAP.

The ECLIPSE C/150 MAP unit provides the
hardware necessary to control and use more than 64
Kbytes of physical memory. In addition, the MAP
provides protection functions which help protect the
integrity of a large system.

A MAP unit gives several users access to the
resources of the computer by dividing the memory
space available into blocks assigned to each user.
Each time a user accesses memory, the MAP
translates the address the user sees (a logical
address) to an address the memory sees (a physical
address). This is all transparent to the user, and with
software to control the priorities of the MAP and the
CPU, several users can use the computer without
being aware of the presence of the others.

For the purposes of this discussion, we define certain
words and phrases:

Logical Address - The address used by the user in all
programming. The logical address space is 32,768
words long and is addressed by a 15-bit address.

Physical Address - The address used by the MAP to
address the physical memory. The maximum size of
the physical address space is 1,048,576 words (1M)
and it is addressed by a 20-bit address.

Address Translation - The process of translating logical
addresses into physical addresses.

Memory Space - The addresses (physical or logical)
assigned to a particular user.

Page -1024 (20008) words in memory.

User Map - The set of memory address translation
functions defined for a particular user.

Data Channel Map - The set of address translation
functions defined by the user-specified map. These
are defined for the memory references of a data
channel used by a particular device.

Supervisor - The section of the operating system
(software) which controls system functions such as
the operation of the MAP.

Data General Corporation

Address Translation

The primary function of the MAP is address
translation. The map divides each user's logical
address space into 1024-word pages and correlates
each logical page with a corresponding physical page.
The address space the user sees is unchanged, but the
map now translates each logical address into a
physical address before memory is actually accessed.

Note that there is no requirement that the physical
pages assigned to a user be in any particular order in
physical memory. The supervisor can therefore use
physical memory very flexibly, selecting unused
pages for a new user without concern for maintaining
any particular arrangement. Very complete use of the
physical memory is also possible, since no contiguous
blocks of memory larger than 1024 words are
required.

/

Sharing of Physical Memory

The MAP in the ECLIPSE C/150 is also capable of
declaring a section of physical memory accessible to
several users at once. This is useful if several users
need a routine to perform some common function
(e.g., trigonometric tables). Without this capability,
each user would require a separate copy of the
routine, thus creating many duplicate copies and
wasting considerable . space.

Types of Maps

Two types of maps are provided in the ECLIPSE
C/150. User maps translate logical addresses to
physical addresses when memory reference
instructions are encountered in the user's program.
Data channel maps translate logical addresses to
physical addresses when data channel devices
address the memory.

Each user requires a separate user map. The MAP
can hold two user maps, but only one can be enabled
at anyone time. Thus if there are two users, the user
map for each is specified and loaded into the MAP.
The supervisor can then enable one or the other as
needed. If there are more than two users, new user
maps must be loaded as needed. In some operating
systems, the operating system itself uses one of the
user maps, so that a new user map must be loaded
each time another user is serviced. This is not as
much of an overhead burden as it sounds, because the
Load Map instruction loads a complete map with one
instruction, using relatively little time.

Separate data channel maps are needed because data
channel devices can access memory without direct
control from the user's program. There is thus no
assurance that the proper user map would still be
enabled at the time of the data channel request. The
MAP can hold four data channel maps. Enabling data
channel mapping enables all four data channel maps
at the same time. The choice of which map is used for
data channel references is made by the I/O controller

II- 24

MEMORY ALLOCATION AND PROTECTION 014-000616-00

CONCEPTS AND FACILITIES

making the reference. Those controllers not equipped
to make this distinction use data channel map A by
default. See the Programmer's Reference Manual -
Peripherals (DGe No. 015-000021).

Unmapped Mode

So far we have assumed operation in the mapped
mode. The MAP can also operate in the unmapped
mode. This mode is used for diagnostic purposes and
for certain MAP control functions. In unmapped
mode, addresses in the range 0-757778 (which form
logical pages 0-30> are not translated. In unmapped
mode, addresses in the range 76000-777778 are
translated by the special map for logical page 31. This
allows you to access selected portions of user space
while in unmapped mode.

MAP Protection Capabilities

In addition to its address translation functions, the
MAP also provides protection functions. These
generally protect the integrity of the system by
preventing unauthorized access to certain parts of
memory or to I/O devices. For example, if a set of
trigonometric functions is stored in a section of
memory accessible to all users, this section can be
write protected so that users can read the functions
but cannot change them.

The various types of protection available in the
ECLIPSE C/150 are discussed separately below.

Validity Protection

Validity protection protects a user's memory space
from inadvertent access by another user, thereby
preserving the integrity and privacy of the user's
memory space. When a user's map is specified, the
blocks of logical addresses required by the user's
program are linked to blocks of physical addresses.
The remaining (unused) logical blocks are declared
invalid to that user, and an attempt to access them
will cause a validity protection fault.

Validity protection is always enabled, so the
supervisor's responsibility is limited to declaring the
appropriate blocks of logical addresses invalid.

Write Protection

Write protection permits users to read the protected
memory addresses, but not to write into them. In this
way, the integrity of common areas of memory can be
protected. An attempt to write into a write protected
area of memory will cause a protection fault.

A block of addresses is write protected when the map
is specified. Write protection can be enabled or
disabled at any time by the supervisor.

Indirect Protection

An indirection loop occurs when the effective address
calculation follows a chain of indirect addresses and

014-000616-00

never finds a word with bit 0 set to O. Without
indirect protection, the CPU would be unable to
proceed with any further instructions, thus
effectively halting the system.

With indirect protection enabled, a chain of 15
indirect references will cause a protection
fault. Indirect protection can be enabled or disabled
at any time by the supervisor.

1/0 Protection

I/O protection protects the I/O devices in the system
from unauthorized access. In many systems, all I/O
operations are performed through operating system
calls. Clearly, it is undesirable to permit individual
users to execute I/O instructions, since this will
interfere with the operating system. If a user with
I/O protection enabled attempts to execute an I/O
instruction, a protection fault will occur. I/O
protection can be enabled or disabled at any time.

MAP Protection Faults

When a user attempts to violate one of the enabled
types of protection, a protection fault occurs, as
follows:

• The current user map is disabled.

• A 5-word return block is pushed onto the system
stack.

• Control is transferred to the protection fault
handler, through an indirect jump via location 3.

The system programmer must supply the protection
fault handler. It determines the type of fault that
occurred (using the Read Map Status instruction),
and then takes the appropriate action.

A protection fault can occur at any point during the
execution of an instruction. Therefore, the return
address in the fifth word of the return block is not
always correct. For I/O protection faults, however,
the futh word will always be the logical address of
the instruction following the instruction that caused
the fault.

II- 25

Load Effective Address Mode

The Load Effective Address (LEF) instruction has the
same format as some of the I/O instructions. The
MAP therefore has a Lefmode bit which determines
whether an I/O format instruction will be
interpreted as an I/O or a LEF instruction. When the
Lef mode bit is 1 (Lef mode enabled), all I/O format
in tructions are interpreted as Load Effective
Address instructions. When the Lefmode bit is 0, all
I/O format instructions are interpreted as I/O
instructions.

The Load Effective Address instruction is very useful
for quickly loading a constant into an accumulator. In
addition, a user operating in the Lef mode is
effectively denied access to any I/O devices, because

MEMORY ALLOCATION AND PROTECTION

all I/O and Lef instructions are interpreted as Lef
instructions in this mode. Thus, Lefmode can be used
for 110 protection. Note, however, that no indication
is given if an 110 instruction is interpreted as a Lef
instruction.

When not operating in the Lef mode, all Lef and I/O
instructions are interpreted as 110 instructions. With
110 protection enabled, these instructions will cause a
protection fault in the normal manner. With 110
protection disabled, the Lef instruction will be
executed as an 110 instruction if possible.

Initial Conditions

At power up, the user maps and the data channel
maps are undefined, the MAP is in unmapped mode,
and unmapped logical page 31 is mapped to physical
page 31.

After an I/O Reset, the MAP is in unmapped mode,
the data channel maps are disabled, and unmapped
logical page 31 is mapped to physical page 31.

MAP Instructions

The MAP instructions control the actions of the
MAP. They are used by the supervisor program to
change the mapping functions or check status of the
various maps.

NOTE: MAP instructions can be executed in
mapped mode if I/O protection and Lef mode are
disabled for that user. When executed in mapped
mode, the Read Map Status, Initiate Page Check, and
Page Check instructions will return the desired
information without changing the map. The Map
Single Cycle instruction will disable the user map
after the next memory reference. The remainder
of the instructions will change the map while the
map is enabled, with undesirable results for this
user, another user, or the system as a whole.

Enabling Lef mode only will convert all I/O
instructions (including MAP instructions) to Lef
instructions. The Load Map instruction, however,
does not use the I/O format and therefore can
still be executed. Enabling both Lef mode and I/O
protection will prevent execution of the Load Map
instruction.

The MAP instructions are shown in the table below.
All except Load Map are in 110 format using the
device mnemonic MAP.

I

MEMORY ALLOCATION AND PROTECTION

11- 26

Mnem

DIA

DIC

DOA

DaB

DOC

LMP

NIOP

Data General Corporation

MAP INSTRUCTIONS

Name Function

Read Map Reads the status of the current map.
Status

Page Check Provides the identity and some
characteristics of the physical
page corresponding to the logical
page identified by the immediately
preceding Initiate Page Check
instruction.

Load Map Defines the parameters of a new map.
Status

Map Specifies the physical page
Supervisor corresponding to logical page 31 of
Page 31 the supervisor's address space.

Initiate Identifies a logical page.
Page Check

Load Map Loads successive words from memory
into the MAP where they are used
to define a user or data channel
map.

Map Single Maps one memory reference using the
Cycle last user map.

014-000616-00

CONCEPTS AND FACILITIES

INPUT /OUTPUT

This section describes the Input/Output (VO) of the
ECLIPSE C/150. We first discuss the general
operation of the system, then interrupts and the
Vector instruction.

The ECLIPSE C/150 has a 6-bit device selection
network, corresponding to bits 10-15 in the I/O
instruction format. The devices are connected to this
network in such a way that each device will only
respond to commands sent with its own device code.
With a 6-bit device code, 64 separate devices can be
individually controlled. Some of these device codes
are reserved for the CPU and certain processor
options, but the remaining are available for
referencing I/O devices. The assembler recognizes
mnemonics for those devices assigned a code by Data
General. A complete list of these is provided in
Appendix A of this manual.

See Programmer's Reference Manual - Peripherals
(DGC No. 015-00021) for details about programming
specific devices in the VO system.

Busy and Done Flags

I/O devices are controlled by manipulating their Busy
and Done flags (but note that data channel devices
require several programmed I/O instructions to be
properly set up before they can be started with the
flags). You can change the value of these flags using
optional flag control command mnemonics appended
to the instruction. When Busy and Done are both 0,
the device is idle and cannot perform any operations.
To start a device, the program must set Busy to 1 and
Done to O. When the device has finished its operation
and is ready to start another, it sets Busy to 0 and
Done to 1.

Programmed 1/0

Programmed I/O transfers data one word at a time
under direct program control. For slow devices, such
as teletypes, which transfer one character at a time
and require an immediate echo, programmed VO is
the fastest method of I/O operation.

For faster devices, programmed I/O has several
disadvantages. Several instructions are required for
the transfer of each byte and other CPU operations
must wait for the transfer to complete. Furthermore,
data must be transferred to or from an accumulator,
so an additional step is required if the data must be
stored in or retrieved from memory.

Data Channel 1/0

Data channel VO permits data to be transferred in
blocks of words, with program control necessary only
at the start of the operation. The CPU stops during

014-000616-00

each word transfer but the transfer is made directly
to or from memory, so no additional steps are
required. Data channel I/O is a very efficient method
of transferring large blocks of data between memory
and a fast I/O device. When single words or bytes are
needed, however, programmed VO is generally faster.

The maximum transfer rate for data channel I/O is as
follows:

• Input: One word every 800 ns, or 1,250,000 words
per second,

• Output: One word every 1400 ns, or 715,000 words
per second.

At these rates, the CPU is effectively stopped. At
lower rates, however, processing continues while
data is being transferred.

Data channel devices are controlled in three phases.
Phase I specifies the starting location in memory for
the first word to be transferred. Phase II loads the
two's complement of the number of words to be
transferred into the machine. These two phases are
done with programmed I/O instructions. Phase III
consists of either a Read or a Write command, which
are flag commands similar to those discussed above.
Once the flag command is issued, the data transfer
takes place when both the data channel device and
the processor are ready. No further program control
is required.

When a data channel device is ready to send or
receive data, it issues a data channel request to the
processor. At the beginning of every memory cycle,
the processor synchronizes any requests that are
then being made. At certain specified points during
the execution of an instruction, the CPU pauses to
honor all previously synchronized requests. When a
request is honored, a word is transferred directly via
the data channel between the device and memory
without specific action by the program.

All requests are honored according to the relative
position of the requesting devices on the I/O bus. The
device requesting data channel service which is
physically closest on the bus is serviced first, the next
closest device next, and so on, until all requests have
been honored. The synchronization of new requests
occurs concurrently with the honoring of other
requests. If a device continually requests the data
channel, that device can prevent all devices further
out on the bus from gaining access to the channel.

After handling all data channel requests, the
processor then handles all outstanding I/O interrupt
requests. Only then does program execution
continue.

11- 27

For more information on the data channel, see
Programmer's Reference Manual - Peripherals (DGC
No. 015-000021) and User's Manual - Interface
Designer's Reference (DGC No. 015-000031).

INPUT IOUTPUT

1/0 Interrupts

The 110 interrupt system in the ECLIPSE C/150
provides a convenient method of handling
programmed 110 with a minimum of overhead.
Instead of polling each 110 device repeatedly to fmd
out when it is ready to transmit or receive data, the
interrupt system permits the program to ignore the
110 devices completely until one requires service. At
that time, the device requests an interrupt. As soon
as the processor is at an interruptable point in its
processing, and has finished servicing data channel
requests, it services the interrupt.

Interrupt System Definitions

Interrupt request line- - Common connection between
all 110 devices and the computer. An 110 device places
a request on the interrupt request line at the same
time that it sets Busy to 0 and Done to 1, Le., when it
has finished a task and is ready to send or receive
data. No information is placed on the line which
permits the program to determine which device is
requesting an interrupt. This must be done
separately.

Interrupt On flag- - Flag in the CPU which controls the
status of the interrupt system. If the flag is set to 1,
the CPU will respond to and process interrupts. If the
flag is set to 0, the CPU does not look at the interrupt
request line at all, and therefore does not respond to
any interrupts.

Priority mask- - Set of bits in the 110 devices that
control the priority interrupt system. Each 110 device
is connected to one of 16 bits in the priority mask.
Some bits are connected to more than one 110 device.
When a bit is set to 1, the devices connected to it
cannot place a request on the interrupt request line,
although they can set their Busy flags to 0 and their
Done flags to 1. Since the mask can be changed by the
program, different devices can be inhibited at
different times to conform to the needs of a priority
system.

Base level- - The state of a program when no 110
devices are inhibited (all mask bits are 0) and no
interrupt processing is in progress. This is the
environment in which user program execution takes
place.

Nonbase level- - Any system state in which some 1/0
devices are inhibited andlor interrupt processing is in
progress. Interrupt handlers operate at non-base
level.

In the next section we will discuss interrupts. First
we will discuss interrupts without a priority system,
and then we will consider a priority interrupt
system.

INPUT 10UTPUT

Data General Corporation

Processing an Interrupt Without a Priority System

When an 110 device completes its operation and is
ready to send or receive more data, it sets its Busy
flag to 0 and its Done flag to 1. Since its priority bit is
0, it also places a request on the interrupt request
line. If the Interrupt On flag is 1 when the processor
is next interruptable, the interrupt will be serviced.

When servicing an interrupt, the CPU first sets the
Interrupt On flag to 0 so that no devices can
interrupt the first part of the interrupt service
routine. If a user map is enabled, it is disabled. The
CPU then places the contents of the updated program
counter into physical memory location 0 and jumps
indirect via location 1, where it expects to find the
address (direct or indirect) of the interrupt service
routine.

The interrupt service routine (supplied by the user)
must save any accumulators that will be used, save
the carry bit if it will be used, determine which
device requested the interrupt, and then service that
device as necessary.

The service routine can identify the interrupting
device by using 110 skip instructions, or the Interrupt
acknowledge instruction. Or it can save the return
information and identify the interrupting device with
one instruction by using the Vector on interrupting
device code instruction.

The Interrupt Acknowledge instruction returns the
~-bit device code of the device requesting the
Interrupt. The Vector instruction, in addition to
saving return information on the stack, performs an
Interrupt Acknowledge instruction and uses the code
returned as an index into a table of addresses. These
addresses are the beginnings of the various device
service routines.

After servicing the device, the interrupt routine
should restore the saved values of the accumulators
and the carry bit, set the Interrupt On flag to 1, and
return to the interrupted program. The Interrupt
Enable instruction sets the Interrupt On flag to 1,
and, if the value of the flag was changed, allows the
processor to execute one more instruction before the
next interrupt can take place.

This next instruction should return control to the
interrupted program. Since the updated value of the
program counter was placed in location 0 by the CPU
at the start of the interrupt service routine, a jump
indirect, via location 0, returns control to the proper
location in the interrupted program.

Priority Interrupt System

The need for a priority interrupt system can be
illustrated as follows:

II- 28

014-000616-00

CONCEPTS AND FACILITIES

If the Interrupt On flag remains 0 throughout the
interrupt service routine, the CPU cannot be
interrupted while an I/O device is being serviced. All
other devices, therefore, must wait until the first
device is finished. If the Interrupt On flag is returned
to 1 after the initial portion of the service routine,
any I/O device can interrupt the servicing of any
other I/O device. While this might be reasonable for
some devices, it is not for others. It is therefore
desirable to have a system of interrupt priorities
which will permit some devices to interrupt certain
others without disrupting the orderly processing of
data.

A rudimentary sort of priority system will result
from keeping the Interrupt On flag 0 throughout the
service routine. The priority of the I/O devices is then
determined, either by the order in which the I/O
SKIP instructions poll the I/O devices, or (using the
Interrupt Acknowledge or Vector instructions) by the
physical location of the I/O devices on the I/O bus.
Both of these methods are very inflexible, however.

The ECLIPSE C/150 has the hardware and
instructions for a more flexible and efficient priority
system, with up to sixteen levels of priority
interrupts. The interrupt service routine has full
control of this system, and can change the priorities
of various devices as necessary.

Setting Up a Priority System

To set up a system of priorities, place a Ma8k Out
instruction in the interrupt service routine for each
device. This instruction changes the priority mask,
thus controlling which devices can interrupt. All
those devices which should not interrupt the device
being serviced are masked out (prevented from
requesting an interrupt) if their mask bits are 1. In
addition, all pending interrupt requests from devices
controlled by that bit are disabled. The other mask
bits, corresponding to the devices which can
interrupt, are set to O.

If this is done in each interrupt service routine, then
the mask will always mask out those devices which
should not interrupt the device presently being
serviced. This is a dynamic process, changing each
time a different device is serviced, resulting in a
system of priorities. The device with the highest
priority will be able to interrupt all other devices,
and the device with the lowest priority will be
interruptible by all other devices.

Devices which operate at roughly the same speed are
controlled by the same bit in the mask. Appendix A
lists the mask bit assignments in addition to the
device code assignments. Although the bit
assignments are fixed, the priorities are set by the
programmer to fit the situation and are dynamically
adjustable.

014-000616-00

A multiple priority level interrupt handler must be
interruptable without damage. Usually this is not
true for the initial portions of the interrupt handler,
so the Interrupt On flag is initially set to O. The
interrupt handler must first save return information
after receiving control. This information must be
stored in a unique place each time the interrupt
handler is entered so that one level of interrupt does
not overlay the return information of the previous
level.

Next, the correct service routine must be
chosen. This routine must save the current priority
mask and establish a new one. Once this is all
completed, the Interrupt Enable instruction can be
used to set the Interrupt On flag to 1, enabling those
devices not restricted by the priority mask to
interrupt if necessary.

After servicing the interrupt, the interrupt service
routine should:

• disable the interrupt system,

• reset the priority mask to the condition it was in
when the routine was entered,

• restore the accumulators and the carry bit,

• enable the interrupt system,

• return control to the interrupted program.

Stack Changes

The interrupt handler usually requires use of a
stack. Rather than work with the user stack, you can
define a new stack which is reserved for use by the
interrupt handler. This overcomes the following
problems:

• There is no guarantee that a user stack will always
be defined,

• The user stack pointer could be just below the
stack limit. The interrupt handler would then
overflow the user stack.

The stack environment should be changed whenever
a transition is made from base level to non-base level
or vice versa.

If an interrupt is already being processed (Le., the
program is not at base level) when another interrupt
occurs, the stack environment should not be changed,
since this has already been done for the first
interrupt. If desired, return information to permit an
easy return to processing the first interrupt can be
pushed onto the new stack before the second
in terru pt is processed.

The Vector instruction handles all these stack
changes by using different modes in different
situations. The next section will discuss the use of
this instruction.

II- 29

INPUT IOUTPUT

Using the Vector Instruction

The Vector on interrupting device code instruction
can simplify the design of an interrupt handler by
doing many of the required steps in one instruction.
It can also perform different levels of tasks as needed
within the interrupt handler.

The Vector instruction has five different modes that
can be used in different circumstances. The simplest
of these is scarcely more complex than the Interrupt
acknowledge instruction. It does not save any
information on the state of the computer at the
interrupt, and takes very little time. The most
complex mode, on the other hand:

• saves considerable information on the state of the
machine,

• stores the user stack parameters,

• creates a new stack,
• resets the priority mask,

and, of course, takes much longer.

When choosing which mode to use, you must weigh
the importance of saving the state of the computer,
having a separate vector stack, and changing the
priority mask, against the time used for each
interrupt. Note that you are not committed to one
mode throughout the interrupt handler. It is possible
to use different Vector instruction modes at different
times to serve different needs. An example at the end
of this section illustrates this.

Mode A - is used when a device requires immediate
interrupt service. This would be the case for
unbuffered devices with very short latency times, or
for real time processes that require immediate access.
The price you pay for fast reaction time is that
nothing is saved to make the return from the
interrupt easier.

Modes B through E - all create a priority structure
which permits some interrupting devices to interrupt
the service of certain others. This takes longer than
mode A service, but permits devices which need
immediate service to get it even if a slower device is
already being serviced.

Modes D and E - both initiate a new stack. You should
use them only when operating at base level (no
interrupt processing in progress) since they set up a
new vector stack for use by the interrupt handler and
store the (old) user stack parameters in it. Once this
new stack has been set up, there is no reason to try to
set it up again if a new interrupt occurs before the old
one was fmished. Mode E also pushes a return block
onto the stack to make return to the first interrupt
handler easier.

INPUT IOUTPUT

Data General Corporation

Modes Band C - do not initiate a new stack, and are
therefore appropriate to use when operating at
non-base level (that is, when a device interrupts the
interrupt processing of another device). Mode C also
pushes a new return block onto the stack. Some of the
S/400 I/O instructions have special mnemonics which
can be used in place of the standard mnemonics. Note
that the mnemonics for controlling the state of flags
cannot be appended to these special instruction
mnemonics.

Thus, if you want to alter the state of the Interrupt
On flag while performing a Mask Out instruction,
you must use the full mnemonic:

DOB' ac,CPU

instead of the special mnemonic:

MSKOac

The special mnemonic sets bits 8 and 9 to 00.

11- 30

014-000616-00

CONCEPTS AND FACILITIES

1/0 INSTRUCTIONS

Mnem Name Function

DIA Data Transfers data from the A buffer of
In A an I/O device to an accumulator.

DIB Data Transfers data from the B buffer of
In B an I/O device to an accumulator.

DIC Data Transfers data from the C buffer of
In C an I/O device to an accumulator.

DOA Data Transfers data from an accumulator
Out A to the A buffer of an I/O device.

DOB Data Transfers data from an accumulator
Out B to the B buffer of an I/O device.

DOC Data Transfers data from an accumulator
Out C to the C buffer of an I/O device.

HALTA Halt Stops the Processor.
(DOC,
CPU)

INTA Interrupt Returns the device code of an
(DIB, Acknowledge interrupting device.
CPU)

INTDS Interrupt Sets Interrupt On flag to O.
(NIOC, Disable
CPU)

INTEN Interrupt Sets Interrupt On flag to 1.
(NIOS, Enable
CPU)

10RST Reset Sets all Busy and Done flags and
(DIC, the priority mask to O.
CPU)

MSKO Mask Out Changes the priority mask.
(DOB,
CPU)

NIO No I/O Changes a flag without causing
Transfer any other effect.

READS Read Places the contents of the console
(DIA, Switches data switches into an
CPU) accumulator.

SKP I/O Skip Tests a flag and skips the next
sequential word if the test
condition is true.

SKP, CPU Skip Tests the Interrupt On
CPU or Power Fail flag and skips

the next sequential word if
the test condition is true.

014-000616-00

POWER FAIL/AUTO-RESTART

When power is turned off and then on again, core
memory is unaltered, but the contents of
semiconductor memory are lost. The state of the
accumulators, the program counter, and the various
flags in the CPU and SC memory then are
indeterminate. The power fail facility provides a
fail-soft capability in the event of unexpected power
loss.

In the event of power failure, there is a delay of one to
two milliseconds before the processor shuts down.
The power fail facility senses the loss of power, sets
the Power Fail flag to 1 and requests an interrupt.
The interrupt service routine can then use this delay
to store the contents of the accumulators, the carry
bit, and the current priority mask. The interrupt
service routine should also save location 0 (to enable
return to the interrupted program), put a JUMP to
the desired restart location in location 0, and then
execute a HALT. One to two milliseconds is enough
time to execute 1000 to 1500 instructions, so there is
more than enough time to perform the power fail
routine.

When power is restored, the action taken by the
automatic restart portion of the power fail facility
depends upon the position of the power switch on the
front panel. If the switch is in the on position, the
CPU remains stopped after power is restored. If the
switch is in the lock position, then 222ms after power
is restored, the CPU executes the instruction
contained in physical location 0, thereby transferring
control to the restart procedure.

The contents of semiconductor memory are lost
under a power failure. Therefore, the auto restart
facility should not attempt to restart the system,
even with the power switch in the LOCK position, if
the host contains semiconductor memory. This can be
controlled by proper positioning of jumpers on the
power fail facility. The local memory of any optional
lOP and/or DCU/50 in the system is semiconductor so
the restart facility must reload those memories before
restarting the processors.

POWER FAIL

The power fail instructions test the state of the
power fail flag. They use the device code 778, The
assembler recognizes the mnemonic CPU for this
device code.

II- 31

The power fail facility has no priority mask bit in the
priority mask. It responds to the Interrupt
acknowledge and Vector instructions with device
code O.

POWER FAIL

POWER FAIL INSTRUCTIONS

Mnem Name Function

sKPDN, Skip If If the Power Fail flag is 1
CPU Power Fail (j.e., power is failing), the

Flag Is One next sequential word is skipped.

sKPDZ, Skip If If the Power Fail flag is 0
CPU Power Fail (i.e., power is not failing), the

Flag Is Zero next sequential word is skipped.

MEMORY ERROR CHECKING

Data General Corporation

MEMORY ERROR CHECKING

Error Checking And Correction

The Error Checking and Correction (ERCC) facility
is designed for applications requiring either a high
degree of reliability for the main memory of a system,
or a graceful "fail-soft" capability in the event of
memory errors. The ERCC facility will detect and
correct all single-bit errors that occur in memories
equipped with the option. ERCC is available for
semiconductor memory only.

Each ERCC memory word is 21 bits long. These 21
bits consist of 16 data bits followed by 5 ERCC check
bits. Each time the CPU writes data into a location, a
hardware encoder constructs the check field bits
from the 16 data bits. When the CPU reads a memory
location, the encoder checks the ERCC bits read from
memory. If the 21 bits do not generate an error code
when read, the ERCC facility passes the 16 data bits
on to the CPU. If the 21 bits generate an error code, a
single bit error has occurred. The memory pauses
while the ERCC facility corrects the single bit in
error and rewrites the entire corrected word back
into the memory location. The ERCC facility then
passes the data on to the CPU and requests an
interrupt. If no error occurs, no time is taken and the
cycle time of the memory is unchanged from its
non-ERCC counterpart.

ERCC logic enables the facility to detect and correct
all single-bit errors. In the rare event that a multi-bit
error occurs, the facility either detects and reports it
with no correction, or incorrectly interprets it as a
single-bit error and complements the bit.

ERCC Instructions

The operation of the ERCC facility is governed by one
I/O instruction. Two other instructions are used to
interrogate ERCC after it has detected and corrected
an error. ERCC contains a Done flag which is set to 1
after an error has been detected and initiates an
interrupt request. A fourth instruction is used to set
this flag to O. The ERCC facility has no Busy flag and
no mask bit in the priority mask. The device code for
the ERCC facility is 2. The assembler recognizes the
mnemonic ERCC for this device code.

All the ERCC instructions with the exception of the
Clear ERCC interrupt request use an accumulator,
which is specified when coding the instruction, to
receive the data or contain the control information.

u- 32

014-000616-00

CONCEPTS AND FACILITIES

ERCC INSTRUCTIONS

Mnem Name Function

DOA Enable Enables the ERCC facility according to
ERCC the setting of bits 14-1 5 of the

specified accumulator.

DIA Read Returns the low-order bits of
Memory the memory location which has
Fault produced an error.
Address

DIB Read Returns a 5-bit error code which tells
Memory which bit was in error. Also returns
Fault the high-order bits of the memory
Code fault address.

NIOS Clear Sets the ERCC Done flag to 0; clears
ERCC an interrupt request
Interrupt if one was pending.
Request

11- 33

014-000616-00 MEMORY ERROR CHECKING

RESERVED STORAGE LOCATIONS

The following location are reserved storage locations
in the ECLIPSE C/i50. These locations are used for
specific functions by the CPU and should not be used
for other functions.

The addresses of these locations, their names, and
their functions are given below. The notation
indirectable means that bit 0 may be set to indicate
that this is an indirect address.

The following locations are in unmapped logical
address space:

Loc Name Function

0 I/O RETURN Return address from I/O
ADDRESS interrupt; first instruction

of Auto-restart routine

1 I/O HANDLER Address of the I/O
ADDRESS interrupt handler (jndirectable)

2 SC HANDLER Address of the Sy8tem Call
ADDRESS instruction handler (jndirectable)

3 PF HANDLER Address of the protection
ADDRESS fault handler (jndirectable)

The following locations may be in unmapped logical
address space or in Map A or Map B logical address
space. They are usually placed in unmapped logical
address space:

11-34

MEMORY ERROR CHECKING

Data General Corporation

Loc Name Function

4 VECTOR STACK Address of the top of the vector
POINTER stack (not indirectable)

5 CURRENT MASK Current interrupt priority mask

6 VECTOR STACK Address of the last
LIMIT normally usable location

in the vector stack

7 VECTOR STACK Address of the vector stack
FAUL T ADDRESS fault handler (indirectable)

The following locations are usually in Map A or Map
B logical address space, but they may be in unmapped
addressed space too:

Loc Name Function

20-27 AUTO-INCO Auto-incrementing locations
through
AUTO-INC7

30-37 AUTO-DECO Auto-decrementing locations
through
AUTO-DEC7

40 STACK Address of the top of the
POINTER stack (not indirectable)

41 FRAME Address of the frame
POINTER reference within the

stack (not indirectable)

42 STACK LIMIT Address of the last normally
usable location in the
stack (not indirectable)

43 STACK FAULT Address of the stack fault
ADDRESS handler (indirectable)

44 XOP ORIGIN Address of the start of
ADDRESS XOP (not indirectable)

45 FLOATING POINT Address of the floating point
FAULT ADDRESS fault handler (indirectable)

46 DECIMAL/EDIT Address of the decimal/EDIT
FAUL T ADDRESS fault handler (jndirectable)

014-000616-00

Chapter III
ECLIPSE C/150 INSTRUCTIONS

This chapter lists all the instructions for the mach~ne
except those 110 instructions intended for a. specific
device such as the MAP, the BMC, and special CPU
instructions. We have arranged the instructions in
alphabetical order according to mnemonics as
recognized by the assembler.

For each instruction we include:

• the mnemonic recognized by the assembler

• the bit format required
• the format of any arguments involved

• a functional description of each instruction

Some instructions can only be executed by the host
processor, while others can also be executed by the
I/O processor and/or the Data Control Unit. A label
with each instruction indicates which processors can
execute that instruction.

014-000616-00

CODING AIDS

We use certain conventions and abbreviations
throughout this chapter to help you properly code
each instruction for Data General's assembler.
Briefly, they are these:

III- 1

[] [J Square brackets indicate that the enclosed
symbol (e.g., [,skip)) is an optional operand .or
mnemonic. Code it only if you want to specify
the option.

BOLD Code operands or mnemonics printed in
boldface exactly as shown. For example, code
the mnemonic for the Move instruction: MOV.

italic For each operand or mnemonic in italics,
replace the item with a number or symbol that
provides the assembler value you need for that
item (e.g., the proper accumulator number, an
address, etc.).

We use the following abbreviations throughout this
chapter:

ABBR MEANING

i Signed two's complement integer in
the range -32,768 to 32,767; or
unsigned in the range 0 to 65,535

N Integer in the range 0-3
n Integer in the range 1-4
AC Accumulator
ACS Source accumulator
ACD Destination accumulator
FPAC Floating point accumulator
FACS Floating point source accumulator
FACD Floating point destination accumulator

CODING AIDS

Add Complement

ADC [cJ [8hJ [# J aC8,acdl,8kipJ

Adds an unsigned integer to the logical complement
of another unsigned integer.

Initializes the carry bit to the specified value adds
the logical complement of the unsigned, '16-bit
number in ACS to the unsigned, 16-bit number in
ACD, and places the result in the shifter. If the
addition produces a carry of 1 out of the high-order
bit, the carry bit is complemented. The instruction
then performs the specified shift operation, and loads
the result of the shift into ACD if the no-load bit is O.
If the skip condition is true, the next sequential word
is skipped.

NOTE: If the number in ACS is less than the
number in A CD, the instruction complements the
Carry bit.

Add

ADD [cJ [8hJ [# J aC8,acd[,8kipJ

Performs unsigned integer addition and complements
the carry bit if appropriate.

Initializes the carry bit to the specified value, adds
the ';IDsigned, 16-bit number in ACS to the unsigned,
16-blt number in ACD, and places the result in the
shifter. If the addition produces a carry of 1 out of the
high-order bit, the carry bit is complemented. The
instruction then performs the specified shift
operation and places the result of the shift in ACD if
the no-load bit is O. If the skip condition is true, the
next sequential word is skipped.

~OTE: If the sum of the two numbers being added
IS greater than 65,535, the instruction
complements the Carry bit.

ADI

Data General Corporation

Extended Add Immediate

ADDI i,ac

Adds a signed integer in the range -32,768 to +32,767
to the contents of an accumulator.

Treats the contents of the immediate field as a
signed, 16-bit, two's complement number and adds it
to the signed, 16-bit, two's complement number
contained in the specified accumulator, placing the
result in the same accumulator. The Carry bit
remains unchanged.

Add Immediate

ADI n,ac

Adds an unsigned integer in the range 1-4 to the
contents of an accumulator.

Adds the contents of the immedi te field N, plus 1, to
the unsigned, 16-bit number contained in the
specified accumwator, placing the result in the same
accumulator. The carry bit remains unchanged.

111- 2

NOTE: The assembler takes the coded value of n
and subtracts one from it before placing it in the
immediate field Therefore, you should code the
exact value that you wish to add

Example - Assume that AC2 contains 1777758' After
the instruction ADI 4,2 is executed, AC2 contains
0000018 and the carry bit is unchanged.

BEFORE AFTER

carry bit either 0 or 1 unchanged

014-000616-00

~CLlPS~ C/150 INSTRUCTIONS

AND With Complemented Source

ANC acs,acd

Forms the logical AND of the logical complement of
the contents of ACS and the contents of ACD and
places the result in ACD. The instruction sets a bit
position in the result to 1 if the corresponding bit
positions in ACS and ACD contain a 0 and a 1,
respectively. The contents of ACS remain unchanged.

AND

ANDlc]lsh]l#] acs,acdl,skip]

Forms the logical AND of the contents of two
accumulators.

Initializes the carry bit to the specified value and
places the logical AND of ACS and ACD in the
shifter. Each bit placed in the shifter is 1 only if the
corresponding bit in both ACS and ACD is one;
otherwise the resulting bit is O. The instruction then
performs the specified shift operation and places the
result in ACD if the no-load bit is O. If the skip
condition is true, the next sequential word is skipped.

014-000616-00

111- 3

AND Immediate

ANDI i,ac

Places the logical AND of the contents of the
immediate field and the contents of the specified
accumulator in the specified accumulator.

ANDI

Block Add and Move

BAM

Moves memory words from one location to another,
adding a constant to each one.

Moves words sequentially from one memory location
to another, treating them as unsigned, 16-bit
integers. After fetching a word from the source
location, the instruction adds the unsigned, 16-bit
integer in ACO to it. If the addition produces a carry
of 1 out of the high-order bit, no indication is given.

Bits 1-15 of AC2 contain the address of the source
location. Bits 1-15 of AC3 contain the address of the
destination location. The address in bits 1-15 of AC2
or AC3 is an indirect address if bit 0 of that
accumulator is 1. In that case, the instruction follows
the indirection chain before placing the resultant
effective address in the accumulator.

The unsigned, 16-bit number in AC1 is equal to the
number of words moved. This number must be
greater than 0 and less than or equal to 32,768. If the
number in AC1 is outside these bounds, no data is
moved and the contents of the accumulators remain
unchanged.

AC CONTENTS

0 Addend
1 Number of words to be moved
2 Source address
3 Destination address

For each word moved, the count in AC1 is
decremented by one and the source and destination
addresses in AC2 and AC3 are incremented by one.
Upon completion of the instruction, AC1 contains
zeroes, and AC2 and AC3 point to the word following
the last word in their respective fields. The contents
of ACO remain unchanged.

BLM

Data General Corporation

Words are moved in consecutive, ascending order
according to their addresses. The next address after
777778 is 0 for both fields. The fields may overlap in
anyway.

NOTE: Because of the potentially long time that
may be required to perform this instruction it is
interruptable. If a Block Add and Move
instruction is interrupted, the program counter is
decremented by one before it is placed in location
o so that it points to the interrupted instruction.
Because the addresses and the word count are
updated after every word stored, any interrupt
service routine that returns control to the
interrupted program via the address stored in
memory location 0 will correctly restart the
Block Add and Move instruction.

When updating the source and destination addresses,
the Block Add And Move instruction forces bit 0 of
the result to O. This ensures that upon return from an
interrupt, the Block Add And Move instruction will
not try to resolve an indirect address in either AC2 or
AC3.

111- 4

Block Move

BLM

Moves memory words from one location to another.

The Block Move instruction is the same as the Block
Add And Move instruction in all respects except that
no addition is performed and ACO is not used.

NOTE: The Block Move instruction is interruptible
in the same manner as the Block Add And Move
instruction.

014-000616-00

ECLIPSE C/150 INSTRUCTIONS

Set Bit To One

BTO aC8,acd

Sets the specified bit to 1.

Forms a 32-bit bit pointer from the contents of ACS
and ACD. ACS contains the high-order 16 bits and
ACD contains the low-order 16 bits of the bit pointer.
If ACS and ACD are specified as the same
accumulator, the instruction treats the accumulator
contents as the low-order 16-bits of the bit pointer
and assumes the high-order 16 bits are O.

The instruction then sets the addressed bit in
memory to 1, leaving the contents of ACS and ACD
unchanged.

Set Bit To Zero

BTZ aC8,acd

Sets the addressed bit to O.

Forms a 32-bit bit pointer from the contents of ACS
and ACD. ACS contains the high-order 16 bits and
ACD contains the low-order 16 bits of the bit pointer.
If ACS and ACD are specified as the same
accumulator, the instruction treats the accumulator
contents as the low-order 16 bits of the bit pointer
and assumes the high-order 16 bits are O.

The instruction then sets the addressed bit in
memory to 0, leaving the contents of ACS and ACD
unchanged.

014-000616-00

Compare To Limits

elM aC8,acd

Compares a signed integer with two other integers
and skips if the first integer is between the other two.
The accumulators determine the location of the three
integers.

Compares the signed, two's complement integer in
ACS to two signed, two's complement limit values, L
and H. If the number in ACS is greater than or equal
to L and less than or equal to H, the next sequential
word is skipped. If the number in ACS is less than L
or greater than H, the next sequential word is
executed.

If ACS and ACD are specified as different
accumulators, the address of the limit value L is
contained in bits 1-15 of ACD. The limit value H is
contained in the word following L. Bit 0 of ACD is
ignored.

If ACS and ACD are specified as the same
accumulator, then the integer to be compared must
be in that AC and the limit values Land H must be in
the two words following the instruction. L is the first
word and H is the second word. The next sequential
word is the third word following the instruction.

111- 5

elM

Character Compare

CMP

Under control of the four accumulators, compares
two strings of bytes and returns a code in AC1
reflecting the results of the comparison.

The instruction compares the strings one byte at a
time. Each byte is treated as an unsigned 8-bit binary
quantity in the range (0-25510)' If two bytes are not
equal, the string whose byte has the smaller
numerical value is, by definition, the aower valued)
string. Both strings remain unchanged. The four
accumulators contain parameters passed to the
instruction. Two accumulators specify the starting
address, the number of bytes, and the direction of
processing (ascending or descending addressed) for
each string.

ACO specifies the length and direction of comparison
for string 2. If the string is to be compared from its
lowest memory location to the highest, ACO contains
the unsigned value of the number of bytes in string 2.
If the string is to be compared from its highest
memory location to the lowest, ACO contains the
two's complement of the number of bytes in string 2.

AC1 specifies the length and direction of comparison
for string 1. If the string is to be compared from its
lowest memory location to the highest, ACO contains
the unsigned value of the number of bytes in string 1.
If the string is to be compared from its highest
memory location to the lowest, AC1 contains the
two's complement of the number of bytes in string 1.

CMP

Data General Corporation

AC2 contains a byte pointer to the first byte
compared in string 2. When the string is compared in
ascending order, AC2 points to the lowest byte. When
the string is compared in descending order, AC2
points to the highest byte.

AC3 contains a byte pointer to the first byte
compared in string 1. When the string is compared in
ascending order, AC3 points to the lowest byte. When
the string is compared in descending order, AC3
points to the highest byte.

CODE COMPARISON RESULT

- 1 string 1 < string 2
0 string 1 = string 2
+ 1 string 1 > string 2

The strings may overlap in any way. Overlap will not
effect the results of the comparison.

Upon completion, ACO contains the number of bytes
left to compare in string 2. AC1 contains the return
code as shown in the table above. AC2 contains a byte
pointer either to the failing byte in string 2 (if an
inequality was found), or to the byte following string
2 (if string 2 was exhausted). AC3 contains a byte
pointer either to the failing byte in string 1 (if an
inequality was found), or to the byte following string
1 (if string 1 was exhausted). If the length of both
string 1 and string 2 was zero, the instruction returns
o in AC1. If the two strings are of unequal length, the
instruction fakes space characters < 0408 > in place
of bytes from the exhausted string, and continues the
comparison.

III- 6

014-000616-00

ECLIPSE CI150 INSTRUCTIONS

Character Move Until True

CMT

Under control of the four accumulators, moves a
string of bytes from one area of memory to another
until either a table-specified delimiter character is
moved or the source string is exhausted.

The instruction copies the string one byte at a time.
Before it moves a byte, the instruction uses that
byte's value to determine if it is a delimiter. It treats
the byte as an unsigned 8-bit binary integer (in the
range 0-2551O) and uses it as a bit index into a 256-bit
delimiter table. If the indexed bit in the delimiter
table is zero, the byte pending is not a delimiter, and
the instruction copies it from the source string to the
destination string. If the indexed bit in the delimiter
table is 1, the byte pending is a delimiter; the
instruction does not copy it, and the instruction
terminates.

The instruction processes both strings in the same
direction, either from lowest memory locations to
highest (ascending order), or from highest memory
locations to lowest (descending order). Processing
continues until there is a delimiter or the source
string is exhausted. The four accumulators contain
parameters passed to the instruction.

ACO contains the address (word address), possibly
indirect, of the start of the 256-bit U6-word}
delimiter table.

014-000616-00

AC1 specifies the length of the strings and the
direction of processing. If the source string is to be
moved to the destination field in ascending order,
AC1 contains the unsigned value of the number of
bytes in the source string. If the source string is to be
moved to the destination field in descending order,
AC1 contains the two's complement of the number of
bytes in the source string.

AC2 contains a byte pointer to the first byte to be
written in the destination field. When the process is
performed in ascending order, AC2 points to the
lowest byte in the destination field. When the process
is performed in descending order, AC2 points to the
highest byte in the destination field.

AC3 contains a byte pointer to the first byte to be
processed in the source string. When the process is
performed in ascending order, AC3 points to the
lowest byte in the source string. When the process is
performed in descending order, AC3 points to the
highest byte in the source string.

The fields may overlap in any way. However, the
instruction moves bytes one at a time, so certain
types of overlap may produce unusual side effects.

Upon completion, ACO contains the resolved address
of the translation table and AC1 contains the number
of bytes that were not moved. AC2 contains a byte
pointer to the byte following the last byte written in
the destination field. AC3 contains a byte pointer
either to the delimiter or to the first byte following
the source string.

111-7

NOTE: If A C1 contains the number 0 at the
beginning of this instruction, no bytes are fetched
and none are stored. The instruction becomes a
No-Op.

CMT

Character Move

CMV

Under control of the four accumulators, moves a
string of bytes from one area of memory to another
and returns a value in the Carry bit reflecting the
relative lengths of source and destination strings.

The instruction copies the source string to the
destination field, one byte at a time. The four
accumulators· contain parameters passed to the
instruction. Two accumulators specify the starting
address, number of bytes to be copied, and the
direction of processing <ascending or descending
addresses) for each field.

ACO specifies the length and direction of processing
for the destination field. If the field is to be processed
from its lowest memory location to the highest, ACO
contains the unsigned value of the number of bytes in
the destination field. If the field is to be processed
from its highest memory location to the lowest, ACO
contains the two's complement of the number of
bytes in the destination field.

AC1 specifies the length and direction of processing
for the source string. If the string is to be processed
from its lowest memory location to the highest, AC1
contains the unsigned value of the number of bytes in
the source string. If the field is to be processed from
its highest memory location to the lowest, AC1
contains the two's complement of the number of
bytes in the source string.

CMV

111- 8

Data General Corporation

AC2 contains a byte pointer to the first byte to be
written in the destination field. When the field is
written in ascending order, AC2 points to the lowest
byte. When the field is written in descending order,
AC2 points to the highest byte. -

AC3 contains a byte pointer to the first byte copied in
the source string. When the field is copied in
ascending order, AC3 points to the lowest byte. When
the field is copied in descending order, AC3 points to
the highest byte.

The fields may overlap in any way. However, the
instruction moves bytes one at a time, so certain
types of overlap may produce unusual side effects.

Upon completion, ACO contains 0 and AC1 contains
the number of bytes left to fetch from the source field.
AC2 contains a byte pointer to the byte following the
destination field; and AC3 contains a byte pointer to
the byte following the last byte fetched from the
source field.

NOTE: If ACO contains the number 0 at the
beginning of this instruction, no bytes are fetched
and none are stored. If ACt is 0 at the beginning
of this instruction, the destination field is filled
with space characters.

If the source field is shorter than the destination
field, the instruction pads the destination field with
space characters < 0408 >. If the source field is longer
than the destination field, the instruction terminates
when the destination field is filled and returns the
value 1 in the Carry bit, otherwise the instruction
returns the value 0 in the Carry bit.

014-000616-00

ECLIPSE C/150 INSTRUCTIONS

Character Translate

eTR

Under control of the four accumulators, translates a
string of bytes from one data representation to
another and either moves it to another area of
memory or compares it to a second translated string.

The instruction operates in two modes; translate and
move, and translate and compare. When operating in
translate and move mode, the instruction translates
each byte in string 1, and places it in a corresponding
position in string 2. Translation is performed by
using each byte as an 8-bit index into a 256-byte
translation table. The byte addressed by the index
then becomes the translated value.

When operating in translate and compare mode, the
instruction translates each byte in string 1 and string
2 as described above, and compares the translated
values. Each translated byte is treated as an unsigned
8-bit binary quantity in the range (0-25510)' If two
translated bytes are not equal, the string whose byte
has the smaller numerical value is, by definition the
lower valued string. Both strings remain unchanged.

ACO specifies the address, either direct or indirect, of
a word which contains a byte pointer to the first byte
in the 256-byte translation table.

AC1 specifies the length of the two strings and the
mode of processing. If string 1 is to be processed in
translate and move mode, AC1 contains the two's
complement of the number of bytes in the strings. If
the strings are to be processed in translate and
compare mode, AC1 contains the unsigned value of
the number of bytes in the strings. Both strings are
processed from lowest memory address to highest.

014-000616-00

AC2 contains a byte pointer to the first byte in string
2.

AC3 contains a byte pointer to the first byte in string
3.

Upon completion of a translate and move operation,
ACO contains the address of the word which contains
the byte pointer to the translation table and AC1
contains O. AC2 contains a byte pointer to the byte
following string 2 and AC3 contains a byte pointer to
the byte following string 1.

Upon completion of a translate and compare
operation, ACO contains the address of the word
which contains the byte pointer to the translation
table. AC1 contains a return code as calculated in the
table below. AC2 contains a byte pointer to either the
failing byte in string 2 (if an inequality was found) or
the byte following string 2 if the strings were
identical. AC3 contains a byte pointer to either the
failing byte in string 1 (if an inequality was found) or
the byte following string 1 if the strings were
identical.

CODE RESULT

-1 Translated value of string 1 <
Translated value of string 2

0 Translated value of string 1 =
Translated value of string 2

+1 Translated value of string 1 >
Translated value of string 2

If the length of both string 1 and string 2 is zero, the
compare option returns a 0 in AC1.

IU- 9

The fields may overlap in any way. However,
processing is done one character at a time, so unusual
side effects may be produced by certain types of
overlap.

eTR

Count Bits

COB aC8,acd

Adds a number equal to the number of ones in ACS to
the signed, 16-bit, two's complement number in ACD.
The instruction leaves the contents of ACS and the
state of the carry bit unchanged.

NOTE: If ACS and ACD are the same
accumulator, the instruction functions as
described above, except the contents of A CS will
be changed.

Complement

COM fcl f8hl f# 1 aC8,acdf,8kipl

Forms the logical complement of the contents of an
accumulator.

Initializes the carry bit to the specified value, forms
the logical complement of the number in ACS, and
performs the specified shift operation. The
instruction. then places the result in ACD if the
no-load bit is O. If the skip condition is true, the next
sequential word is skipped.

Data General Corporation

Decimal Add

DAD aC8,acd

Performs decimal addition on 4-bit binary coded
decimal (BCD) numbers and uses the carry bit for a
decimal carry.

Adds the unsigned decimal digit contained in ACS
bits 12-15 to the unsigned decimal digit contained in
ACD bits 12-15. The carry bit is added to this result.
The instruction then places the decimal units'
position of the final result in ACD bits 12-15, and the
decimal carry in the carry bit. The contents of ACS
and bits 0-11 of ACD remain unchanged.

NOTE: No validation of the input digits is
performed. Therefore, if bits 12-15 of either ACS
or ACD contain a number greater than 9, the
results will be unpredictable.

Example:

Assume that bits 12-15 of AC2 contain 9; bits 12-15 of
AC3 contain 7; and the carry bit is O. After the
instruction DAD 2,3 is executed, AC2 remains the
same; bits 12-15 of AC3 contain 6; and the carry bit is
1, indicating a decimal carry from this Decimal Add.

BEFORE

AC2 I 0 \ 000\000\000\001\0011

AC3 I 0 \ 000\0001000100011111

carry bit o

AFTER

I 0 I 0001000100010011001 I
1 0 1 00010001000\0001110 1

Ill-10

DAD 014-000616-00

ECLIPSE C/150 INSTRUCTIONS

Double Hex Shift Left

DHXL n,ac

Shifts the 32-bit number contained in AC and AC+1
left a number of hex digits depending upon the
immediate field N. The number of digits shifted is
equal to N + 1. Bits shifted out are lost and the
vacated bit positions are filled with zeroes.

NOTE: If AC is specified as AC3, then AC+1 is
A CO.

The assembler takes the coded value of nand
subtracts one from it before placing it in the
immediate field. Therefore, the programmer
should code the exact number of hex digits that
he wishes to shift.

If N is equal to 3, the contents of A C + 1 are
placed in AC and AC+1 is filled with zeroes.

Double Hex Shift Right

DHXR n,ac

Shifts the 32-bit number contained in AC and AC+ 1
right a number of hex digits depending upon the
immediate field N. The number of digits shifted is
equal to N + 1. Bits shifted out are lost and the
vacated bit positions are filled with zeroes.

NOTE: If AC is specified as AC3, then AC+ 1 is
A CO.

The assembler takes the coded value of nand
subtracts one from it before placing it in the
immediate field. Therefore, the programmer
should code the exact number of hex digits that
he wishes to shift.

If N is equal to 3, the contents of AC are placed
in A C + 1 and A C is filled with zeroes.

Unsigned Divide

DIV

Divides the unsigned 32-bit integer in two
accumulators by the unsigned contents of a third
accumulator. The quotient and remainder each
occupy one accumulator.

Divides the unsigned 32-bit number contained in ACO
and AC1 by the unsigned, 16-bit number in AC2. The
quotient and remainder are unsigned, 16-bit numbers
and are placed in AC1 and ACO, respectively. The
carry bit is set to O. The contents of AC2 remain
unchanged.

NOTE: Before the divide operation takes place, the
number in A CO is compared to the number in
A C2. If the contents of A CO are greater than or
equal to the contents of A C2, an overflow
condition is indicated. The carry bit is set to 1,
and the operation is terminated. All operands
remain unchanged.

Signed Divide

DIVS

Divides the signed 32-bit integer in two accumulators
by the signed contents of a third accumulator. The
quotient and remainder each occupy one
accumulator.

The signed, 32-bit two's complement number
contained in ACO and AC1 is divided by the signed,
16-bit two's complement number in AC2. The
quotient and remainder are signed, 16-bit numbers
and occupy AC1 and ACO, respectively. The sign of
the quotient is determined by the rules of algebra.
The sign of the remainder is always the same as the
sign of the dividend, except that a zero quotient or a
zero remainder is always positive. The carry bit is set
to O. The contents of AC2 remain unchanged.

NOTE: If the magnitude of the quotient is such
that it will not fit into AC1, an overflow condition
is indicated. The carry bit is set to 1, and the
operation is terminated. The contents of A CO
and A C1 are unpredictable.

III- 11

014-000616-00 DIVS

Sign Extend and Divide

DIVX

Extends the sign of one accumulator into a second
accumulator and performs a Signed Divide on the
result.

Extends the sign of the number in AC1 into ACO by
placing a copy of bit 0 of AC1 in each bit of ACO. After
extending the sign, the instruction performs a Signed
Divide operation.

Double Logical Shift

DLSH aC8,acd

Shifts the 32-bit number contained in ACD and
ACD+1 either left or right depending on the number
contained in bits 8-15 of ACS. The signed, 8-bit two's
complement number contained in bits 8-15 of ACS
determines the direction of the shift and the number
of bits to be shifted. If the number in bits 8-15 of ACS
is positive, shifting is to the left; if the number in bits
8-15 of ACS is negative, shifting is to the right. If the
number in bits 8-15 of ACS is zero, no shifting is
performed. Bits 0-7 of ACS are ignored.

AC3+1 is ACO. The number of bits shifted is equal to
the magnitude of.the number in bits 8-15 of ACS. Bits
shifted out are lost, and the vacated bit positions are
filled with zeroes. The Carry bit and the contents of
ACS remain unchanged.

NOTE: If the magnitude of the number in bits 8-15
ofACS is greater than 3110, all bits of ACD are
set to O. The Carry bit and the contents of ACS
remain unchanged.

Decimal Subtract

DSB aC8,acd

Data General Corporation

Performs decimal subtraction on 4-bit binary coded
decimal (BCD> numbers and uses the carry bit as a
decimal borrow.

Subtracts the unsigned decimal digit contained in
ACS bits 12-15 from the unsigned decimal digit
contained in ACD bits 12-15. Subtracts the
complement of the carry bit from this result. Places
the decimal units' position of the final result in ACD
bits 12-15 and the complement of the decimal borrow
in the carry bit. In other words, if the final result is
negative, the instruction indicates a borrow and sets
the carry bit to O. If the final result is positive, the
instruction indicates no borrow and sets the carry bit
to 1. The contents of ACS and bits 0-11 of ACD
remain unchanged.

Example:

Assume that bits 12-15 of AC2 contain 9; bits 12-15 of
AC3 contain 7; and the carry bit is O. After the
instruction DSB 3,2 is executed, AC3 remains the same;
bits 12-15 of AC2 contain 1; and the carry bit is set to
1, indicating no borrow from this Decimal Subtract.

BEFORE AFTER

AC2 101 00010001000100110011 10100010001000100010011

AC3 101 00010001000100011111 101 0001000100010001 111 1

carry bit o

III- 12

DSB 014-000616-00

ECLIPSE C/150 INSTRUCTIONS

Dispatch

DSP A ac, [@ Idisplacement[, index}

Conditionally transfers control to an address selected
from a table.

Computes the effective address E. This is the address
of a dispatch table. The dispatch table consists of a
table of addresses. Immediately before the table are
two signed. two's complement limit words. Land H.
The last word of the table is in location E+H-L.

........................... ",

L

H

E

•••••••••••• : ••• 0°

E+H-L

DG-01127

Compares the signed. two's complement number
contained in the accumulator to the limit words. If
th number in the accumulator is less than L or
greater than H. sequential operation continues with
the instruction immediately after the Dispatch
instruction.

If the number in AC is greater than or equal to Land
less than or equal to H. the instruction fetches the
word at location E-L+number. If the fetched word is
equal'to 1777778. sequential operation continues with
the instruction immediately after the Dispatch in­
struction. If the fetched word is not equal to 1777778•
the instruction treats this word as the intermediate
address in the effective address calculation. After the
indirection chain. if any. has been followed, the
instruction places the effective address in the
program counter and sequential operation continues
with the word addressed by the updated value of the
program counter.

Decrement And Skip If Zero

DSZ [@ Idisplacement[,indexl

Decrements the addressed word, then skips if the
decremented value is zero.

Decrements by one the word addressed by E and
writes the result back into that location. If the
updated value of the location is zero, the instruction
skips the next sequential word.

Edit

EDIT

Converts a decimal number from either packed or
unpacked form to a string of bytes under the control
of an edit sub-program. This sub-program can
perform many different operations on the number
and its destination field, including leading zero
suppression, leading or trailing signs, floating fill
characters, punctuation control, and insertion of text
into the destination field. The instruction also
performs operations on alphanumeric data if data
type 4 is specified.

The instruction maintains two flags and three
indicators or pointers.

The flags are the significance Trigger (T) and the
Sign flag (S). T is set to 1 when the first non-zero
digit is processed unless otherwise specified by an
edit op-code. At the beginning of an Edit instruction,
T is set to O. S is set to reflect the sign of the number
being processed. If the number is positive, S is set to
O. If the number is negative, S is set to 1.

The three indicators are the Source Indicator (SD,
the Destination Indicator (DD, and the op-code
Pointer (P). Each is 16 bits wide and contains a byte

III- 13

014-000616-00 EDIT

pointer to the current byte in each respective area. At
the beginning of an Edit instruction, 81 is set to the·
value contained in AC3. DI is set to the value
contained in AC2, and P is set to the value contained
in ACO. Also at this time the sign of the source
number is checked for validity.

The sub-program is made up of 8-bit op-codes
followed by one or more 8-bit operands. P, a byte
pointer, acts as the program counter for the Edit
sub-program. The sub-program proceeds sequentially
until a branching operation occurs - much the same
way programs are processed. Unless instructed to do
otherwise, the Edit instruction updates P after each
operation to point to the next sequential op-code. The
instruction continues to process 8-bit op-codes until
directed to stop by the DEND op-code.

The sub-program can test and modify 8 and T, as
well as modify 81, DI and P.

Upon entry to EDIT ACO is a byte pointer to the first
op-code of the Edit sub-program.

AC1 is the data-type indicator describing the number
to be processed.

AC2 is a byte pointer to the the first byte of the
destination field.

AC3 is a byte pointer to the first byte of the source
field.

The fields may overlap in any way. However the
instruction processes characters one at a time, so
unusual side effects may be produced by certain types
of overlap.

Upon successful termination, the carry bit contains
the significance Trigger; ACO contains a byte pointer
(P) to the next op-code to be processed; AC1 is
undefined; AC2 contains a byte pointer (DD to the
next destination byte; and AC3 contains a byte
pointer (8D to the next source byte.

NOTES: If SI is moved outside the area occupied
by the source number, zeros will be supplied for
numeric moves, even if 81 is later moved back
inside the source area.

Some op-codes perform movement of characters
from one string to another. For those op-codes
which move numeric data, special actions may
be performed For those which move non-numeric
data, characters are copied exactly to the
destination.

The Edit instruction places information on the
stack. Therefore, the stack must be set up and
have at least 9 words available for use.

Data General Corporation

If the Edit instruction is' interrupted, it places
restart information on the stack and places
1 '1'1'1'1'18 in A CO.

If the initial contents of ACO are equal to 1'1'1'1'1'18
the Edit instruction assumes it is restarting from
an interrupt; therefore do not allow this to occur
under any other circumstances.

In the description of some of the Edit op-codes we use
the symbol j to denote how many characters a certain
operation should process. When the high order bit of j
is 1, j has a different meaning, it is a pointer into the
stack to a word that denotes the number of
characters the instruction should process. So, in those
cases where the high order bit of j is 1, the
instructions interpret j as an 8-bit two's complement
number pointing into the stack. The number on the
stack is at address:

stack pointer + 1 + j.

The operation uses the number at this address as a
character count instead of j.

An Edit operation that processes numeric data (e.g.,
DMVN) skips a leading or trailing sign code it
encounters; similarly, such an operation converts a
high-order or low-order sign to its correct numeric
equivalent.

Add To DI

DADI pO

10001 001 01

o ' 1 , 2 '] , 4 ' 5 ' 6 ' 7

pO

0'1'2']'4'5'6'7
Adds the 8-bit two's complement integer specified by
pO to the Destination Indicator (DD.

Ill-14

DADI 014-000616-00

ECLIPSE C/lS0 INSTRUCTIONS

Add To SI

DASI pO

1000 ,00, '1
011121314151,1 o 1

Adds the 8-bit two's complement integer specified by
pO to the Source Indicator (SD.

Add To P Depending On S

DAPS pO

I 0 0 0 0 , , , , 1
011121314151,1

PO
011121314151,1

If S is 0, the instruction adds the 8-bit two's
complement integer specified by pO to the op-code
Pointer (P). Before the add is performed, P is pointing
to the byte containing the DAPS op-code.

Add To P Depending On T

DAPT pO

10000 ' 0 , '1 011121314151,1 o 1

PO
12 1 3 1 4 1 5 1 ,1

If T is one, the instruction adds the 8-bit two's
complement integer specified by pO to the op-code
Pointer (P). Before the add is performed, P is pointing
to the byte containing the DAPT op-code.

Add To P

DAPU pO

1000 '0' , '1
011121314151,1 o 1

PO
12 1 3 1 4 1 5 1 ,1

Adds the 8-bit two's complement integer specified by
pO to the op-code Pointer (P). Before the add is
performed, P is pointing to the byte containing the
DAPU op-code.

111- 15

014-000616-00 DAPU

End Edit

DEND

1000000001
011121314151,17

Terminates the EDIT sub-program.

Decrement and Jump If Non-Zero

DDTK k,pO

I 0 I 0 I 0 I 0 I 0 I 0 I 1 I 1 1 I I I kl I I I I
o 1 2 3 4 5 , 7 0 1 2 3 4 5 , 7

I I I pOI I I I o 1 2 3 4 5 , 7

Decrements a word in the stack by one. If the
decremented value of the word is non-zero, the
instruction adds the 8-bit two's complement integer
specifed by pO to the op-code Pointer (P). Before the
add is performed, P is pointing to the byte containing
the DDTK op-code. If the 8-bit two's complement
integer specified by k is negative, the word
decremented is at the address (stack pOinter+ 1 +k). If k
is positive, the word decremented is at the address (
frame pointer+ 1 + k).

Insert Characters Immediate

DICI j,pO,p1, ... ,p(j-1)

10001 0001 1 I jl o I 1 I 2 I 3 I 4 I 5 I , I 7 '---0 +1 -1-+1-2-+--3 -+-1-4-11-5--+-1 -,-+1-7

I I I I pOI I I I o 1 2 345 ,
I 1 I I Pl I I I I

7 0 1 2 3 4 5 , 7

I I I PU-1' I I I I
o 1 2 3 4 5 , 7

I
o I 1 I 2 I 3 I 4 I 5 I , I 7

Inserts i characters from the op-code stream into the
destination field beginning at the position specified
by DI. Increases P by (j +2), and increases DI by j.

Data General Corporation

Insert Character J Times

DIMC j,pO

I pO
o I 1 I 2 I 3 I 4 I 5 I , I 7

Inserts the character specified by pO into the
destination field a number of times equal to j
beginning at the position specified by DI. Increases DI
byj.

Insert Character Once

DINC pO

I 0 I 0 I 0 I 1 I 0 I 0 I 0 I 0 I I I I pQl I r I r o 1 2 3 4 5 , 7 ~O ~-+-:2~~3 +--:4-+'-5:-+--::-' +, --:7:-'

Inserts the character specified by pO in the
destination field at the position specified by DI.
Increments DIby 1.

III- 16

DINe 014-000616-00

ECLIPSE C/150 INSTRUCTIONS

Insert Sign

DINS pO,p1

10 0 0 0 1 1 1 01
01,12131415161

1 1 1 P1 1 1 1 1

PO
01,12131415161

If the Sign flag (S) is 0, the instruction inserts the
character specified by pO in the destination field at
the position specified by DI. If S is 1, the instruction
inserts the character specified by pI in the
destination field at the position specified by DI.
Increments DI by one.

Insert Character Suppress

DINT pO,p1

10 0 0 0 1 0 1 01
01,12131415161

1 1 1 P1 1 1 1 1

1 1 ~ 1 1 1 1 o 2 3 4 5 6

If the significance Trigger (T) is 0, the instruction
inserts the character specifed by pO in the destination
field at the position specified by DI. If T is 1, the
instruction inserts the character specified by pI in
the destination field at the position specified by DI.
Increments DI by one.

014-000616-00

Move Alphabetics

OM VA J

100001 1 011
01,12131415161

Moves j characters from the source field (beginning at
the position specified by SD to the destination field
<beginning at the position specified by DD. Increases
both SI and DI by j. Sets T to 1.

Initiates a commercial fault if the attribute specifier
word indicates that the source field is data type 5
(packed). Initiates a commercial fault if any of the
characters moved is not an alphabetic (A-Z, a-z, or
space).

Move Characters

DMVC J

100001 1 001
01,12131415161

Increments SI if the source data type is 3 and j>O.
The instruction then moves j characters from the
source field beginning at the position specified by SI
to the destination field beginning at the position
specified by DI. Increases both SI and DI by j. Sets T
to 1.

Initiates a commercial fault if the attribute specifier
word indicates that the source is data type 5
(packed). Performs no validation of the characters.

111- 17

DMVC

ECLIPSE C/150 INSTRUCTIONS

Move Float

DMVF j,pO,p1,p2

I I I pOI I I I I I I I Pl I I I I o 1 234 567 0 1 2 345 6 7

If the source data type is 3, j >0, and SI points to the
sign of the source number, the instruction increments
SI. Then for j characters, the instruction either places
a digit substitute in the destination field beginning at
the position specified by DI, or it moves a digit from
the source field beginning at the position specified by
SI to the destination field beginning at the position
specified by DI. When T changes from 0 to 1, the
instruction places both the digit' substitute and the
digit in the destination field, and increases SI by j. If
T does not change from 0 to 1, the instruction
increases DI by j. If T does change from 0 to 1, the
instruction increases DI by j+ 1.

If the source data type is 2, the state of SI is
undefmed after the least significant digit has been
processed.

If Tis 1, the instruction moves each digit processed
from the source field to the destination field. If T is 0
and the digit is a zero or space, the instruction places
pO in the destination field. If T is 0 and the digit is a
non-zero, the instruction sets T to 1 and the
characters placed in the destination field depend on
S. If S is 0, the instruction places p1 in the destination
field followed by the digit. If S is 1, the instruction
places p2 in the destination field followed by the digit.

The instruction initiates a commercial fault if any of
the digits processed is not valid for the specified data
type.

ilI-1S

014-000616-00

Move Numerics

DMVN j

Increments SI if the source data type is 3 and j>O.
The instruction then moves j characters from the
source field beginning at the position specified by SI
to the destination field beginning at the position
sp cifed by DI. Increases both SI and DI by j. Sets T
to 1.

Initiates a commercial fault if any of the characters
moved is not valid for the specified data type.

For data type 2, the state of SI is undefined after the
least significant digit has been processed.

Move Digit With Overpunch

DMVO pO,p1,p2,p3

10 0 0 0 0 1 1 11
o I 1 I 2 I 3 I 4 I 5 I 6 I

pO
o I 1 I 2 I 3 I 4 I 5 I 6 I

p1 1 1 p2
o I 1 I 2 I 3 I 4 I 5 I 6 I 7 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7

1 I I I p3 I
o 1 23 1 4 5 I 6 I 7

Increments SI if the source data type is 3 and SI
points to the sign of the source number. The
instruction then either places a digit substitute in the
destination field (at the position specified by D1), or it
moves a digit plus overpunch from the source field (at
the position specified by S1) to the destination field
(at the position specified by D1). Increases both SI
and Dlby 1.

If the source data type is 2, the state of the SI is
undefined after the least significant digit has been
processed.

If the digit "is a zero or space and S is 0, then the
instruction places pO in the destination field. If the
digit is a zero or space and S is 1, then the instruction
places p1 in the destination field. If the digit is a
non-zero and S is 0, the instruction adds p2 to the

DMVO

ECLIPSE C/1S0 INSTRUCTIONS

digit and places the result in the destination field. If
the digit is a non-zero and Sis 1, the instruction adds
p3 to the digit and places the result in the destination
field. If the digit is a non-zero, the instruction sets T
to 1. The instructions assumes p2 and p3 are ASCII
characters.

The instruction initiates a commercial fault if the
character is not valid for the specified data type.

Move Numeric With Zero Suppression

DMVS j,pO

10 0 0 1 0 1 1 01
01112131415161

I I I pOI I I I

Increments SI if the source data type is 3, j>O, and SI
points to the sign of the source number. The
instruction then moves j characters from the source
field <beginning at the position specified by SD to the
destination field <beginning at the position specified
by DD. Moves the digit from the source to the
destination if T is 1. Replaces all zeros and spaces
with pO as long as T is 0. Sets T to 1 when the first
non-zero digit is encountered. Increases both SI and
DI by j.

If the source data type is 2, the state of the SI is
undefined after the least significant digit has been
processed.

This op-code destroys the data type specifier.

Initiates a commercial fault if any of the characters
moved is not a numeric <0-9 or space).

End Float

DNDF pO,p1

1000000011
01112131415161

p1
01112131415161

PO
01112131415161

If T is 1, the instruction places nothing in the
destination field and leaves DI unchanged. If T is °
and S is 0, the instruction places pO in the destination
field at the position specified by DI. If T is ° and S is
1, the instruction places pl in the destination field at
the position specified by DI. It increases DI by 1, and
sets T to one.

Set S To One

DSSO

1000001011
01112131415161

Sets the Sign flag (S) to 1.

111- 19

014-000616-00 ossa

Set S To Zero

OSSZ

10 0 0 0 0 1 0 01
o I 1 I 2 I 3 I 4 I 5 I 6 I 7

Sets the Sign flag <S) to O.

Store In Stack

OSTK k,pO

10000001 01 I k
o I 1 I 2 I 3 I 4 I 5 I 6 I 7 0 I 1 I 2 I 3 I 4 I 5 I 6 I

1 I I I pOI I I I
o 1 2 3 4 5 6 7

Stores the byte specified by pO in bits 8-15 of a word
in the stack. Sets bits 0-7 of the word that receives pO
to O. If the 8-bit two's complement integer specified
by k is negative, the instruction addresses the word
receiving pO by <stack pointer+1 +k). If k is positive,
then the instruction stores pO at the address (frame
pointer+ 1 +k).

SetT To One

OSTO

100001 001 1
o I 1 I 2 I 3 I 4 I 5 I 6 I 7

Data General Corporation

Sets the significance Trigger (T) to 1.

Set T To Zero

OSTZ

1000001 1 01
o I 1 I 2 I 3 I 4 I 5 I 6 I 7

Sets the significance Trigger (T) to O.

III- 20

DSTZ 014-000616-00

ECLIPSE C/150 INSTRUCTIONS

Extended Decrement and Skip if Zero

EDSZ [@ldisplacementl,indexl

Decrements the addressed word, then skips if the
decremented value is zero.

Decrements by one the word addressed by E and
writes the result back into that location. If the
updated value of the word is zero, the instruction
skips the next sequential word.

014-000616-00

Extended Increment And Skip If Zero

EISZ [@ ldisplacement[,indexl

Increments the addressed word, then skips if the
incremented value is zero.

Computes the effective address, E , increments the
contents that of memory location by one, and writes
the new value back into memory at the same address.
If the updated value of the location is zero, the
instruction increments the program counter by one
and continues sequential operation at the updated
value of the program counter.

Extended Jump

EJMP [@ ldisplacement[,indexl

Computes the effective address, E, and places it in the
program counter. Sequential operation continues
with the word addressed by the updated value of the
program counter.

111- 21

EJMP

Extended Jump To Subroutine

EJSR [@ ldisplacement[,indexJ

Increments and stores the value of the program
counter in AC3, then places a new address in the
program counter.

Computes the effective address, E; then places the
address of the next sequential instruction in AC3.
Places E in the program counter. Sequential
operation continues with the word addressed by the
updated value of the program counter.

NOTE: The instruction computes E before it places
the incremented program counter in A C3.

Extended Load Accumulator

ELDA ac, [@ ldisplacementl, indexl

Moves a word out of memory and into an
apcumulator.

Places the word addressed by the effective address, E,
in the specified accumulator. The previous contents of
the location addressed by E remain unchanged.

Data General Corporation

Extended Load Byte

ELDB ac,displacementl,indexl

Copies a byte from memory into an accumulator.

Forms a byte pointer by first taking an index value,
multiplying it by 2, and then adding the low-order 16
bits of the result to the displacement. Copies the byte
addressed by this byte pointer into bits 8-15 of the
specified accumulator, and sets bits 0-7 of that
accumulator to O. The instruction destroys the
previous contents of the specified accumulator, but it
does not alter either the index value or the
displacement.

The argument index selects the source of the index
value. It may have values in the range of 0-3. The
meaning of each value is shown below:

INDEX BITS INDEX VALUE

00 0
01 Address of the displacement field

(Word 2 of this instruction)
10 Contents of AC2
11 Contents of AC3

III- 22

ELDB 014-000616-00

ECLIPSE C/150 INSTRUCTIONS

Load Effective Address

ELEF ac, [@ ldisplacementl, indexl

Places an effective address in an accumulator.

Computes the effective address, E, and places it in
bits 1-15 of the specified accumulator. Sets bit o of the
accumulator to O. The previous contents of the
accumulator are lost.

ELEF O,TABLE

ELEF 1,-55,3

ELEF 0,.+0

; The logical address of TABLE
; is placed in ACO.

; Subtracts 000055 (octal) from
; the unsigned integer in AC3 and
; places the result in AC 1.

; Places the logical address of this
; Load effective addre88
; instruction in ACO.

Extended Store Accumulator

ESTA ac, [@ ldisplacementl, indexl

Stores the contents of an accumulator into a memory
location.

The contents of the specified accumulator are placed
in the word addressed by the effective address, E. The
previous contents of the location addressed by E are
lost. The contents of the specified accumulator
remain unchanged.

Extended Store Byte

ESTB ac,displacementl,indexl

Copies into memory the byte contained in the right
half of an accumulator.

Forms a byte pointer by first taking an index value,
multiplying it by 2, and then adding the low-order 16
bits of that result to the displacement. Copies bits
8-15 of the specified accumulator into memory at the
byte address specified by the computed byte pointer.
The instruction does not alter the specified
accumulator.

The argument index selects the source of the index
value. It may have values in the range of 0-3; the
meaning of each value is shown below:

INDEX BITS INDEX VALUE

00 0
01 Address of the displacement field

(Word 2 of this instruction)
10 Contents of AC2
11 Contents of AC3

111- 23

014-000616-00 ESTB

ECLIPSE C/150 INSTRUCTIONS

Absolute Value

FAD fpac

Sets the sign bit of FP AC to O. Also sets the exponent
to zero if the mantissa is zero; otherwise leaves bits
1-63 ofFPAC unchanged. Updates the z and N flags in
the floating point status register to reflect the new
contents of FP AC.

Add Double (FPAC to FPAC)

FAD fac8,facd

Adds the floating point number in FACS to the
floating point number in FACD and places the
normalized result in F ACD. Destroys the previous
contents of F ACD, leaves the contents of F ACS
unchanged and updates the z and N flags in the
floating point status register to reflect the new
contents of FACD.

Floating point addition consists of an exponent
comparison and a mantissa addition. The exponents
of the two numbers are compared, and the mantissa
of the number with the smaller exponent is shifted
right. This mantissa alignment is accomplished by
taking the absolute value of the difference between
the two exponents and shifting the mantissa right
that number of hex digits. One guard digit is provided
so that all but four bits shifted out of the right end of
the mantissa are lost, and do not take part in the
addition. If all significant digits are shifted out of the
mantissa, the operation is equivalent to adding the
number with the larger exponent to zero. This
requires a shift of at least 15 hex digits.

After alignment, the mantissas are added together.
The result of this addition is termed the intermediate
result. One guard digit is provided for the
intermediate result, which is used if normalization is
required. The sign of the intermediate result is
determined from the signs of the two operands by the
rules of algebra. If the mantissa addition produces a
carry out of the high-order bit, the mantissa in the
intermediate result is shifted right one hex digit and
the exponent is incremented by one. If this shift
produces an exponent overflow, the OVF bit is set in
the floating point status register, and the number in
F ACD is correct; 'except that the exponent is 128 too
small.

If there is no mantissa overflow, the mantissa of the
intermediate result is examined for leading hex zeros.
If the mantissa is found to be all zeros, a true zero is
placed in the F ACD and the instruction terminates.

If the mantissa is non-zero, the intermediate result is
normalized, and the number placed in the F ACD. If
the normalization results in an exponent underflow,
the UNF bit is set in the floating point status register
and the instruction is terminated. The number in the
F ACD is correct except that the exponent is 128 too
large.

111- 24

014-000616-00 FAD

ECLIPSE C/150 INSTRUCTIONS

Add Double (Memory to FPAC)

FAMD fpac, [@ ldisplacementl, indexl

Adds the floating point number in the source location
to the floating point number in FPAC and places the
normalized result in FP AC. Destroys the previous
contents of FPAC, leaves the contents of the source
location unchanged and updates the z and N flags in
the floating point status register to reflect the new
contents of FP AC.

Computes the effective address E which addresses a
4-word (double precision) operand.

Floating point addition consists of an exponent
comparison and a mantissa addition. The exponents
of the two numbers are compared, and the mantissa
of the number with the smaller exponent is shifted
right. This mantissa alignment is accomplished by
taking the absolute value of the difference between
the two exponents and shifting the mantissa right
that number of hex digits. One guard digit is provided
so that all but four bits shifted out of the right end of
the mantissa are lost, and do not take part in the
addition. If all significant digits are shifted out of the
mantissa, the operation is equivalent to adding the
number with the larger exponent to zero. This
requires a shift of at least 15 hex digits for double
precision, or 7 hex digits for single precision.

After alignment, the mantissas are added together.
The result of this addition is termed the intermediate
r~sult. One guard digit is provided for the
intermediate result, which is used if normalization is
required. The sign of the intermediate result is
determined from the signs of the two operands by the
rules of algebra. If the mantissa addition produces a
carry out of the high-order bit, the mantissa in the
intermediate result is shifted right one hex digit and
the exponent is incremented by one. If this shift
produces an exponent overflow, the OVF bit is set in
the floating point status register, and the number in
FPAC is correct except that the exponent is 128 too
small.

If there is no mantissa overflow, the mantissa of the
intermediate result is examined for leading hex zeros.
If the mantissa is found to be all zeros, a true zero is
placed in the FP AC and the instruction terminates.

If the mantissa is non-zero, the intermediate result is
normalized, and the number placed in the FPAC. If
the normalization results in an exponent underflow,
the UNF bit is set in the floating point status register
and the instruction is terminated. The number in the
FPAC is correct except that the exponent is 128 too
large.

III- 25

014-000616-00 FAMD

Add Single (Memory to FPAC)

FAMS fpac, [@]displacement[, index]

Adds the floating point number in the source location
to the floating point number in FP AC and places the
normalized result in FP AC. Destroys the previous
contents of FP AC, leaves the contents of the source
location unchanged and updates the z and N lags in
the floating point status register to reflect the new
contents of FP AC.

Computes the effective address, E, which addresses a
2-word (single precision) operand.

Floating point addition consists of an exponent
comparison and a mantissa addition. The exponents
of the two numbers are compared, and the mantissa
of the number with the smaller exponent is shifted
right. This mantissa alignment is accomplished by
taking the absolute value of the difference between
the two exponents and shifting the mantissa right
that number of hex digits. One guard digit is provided
so that all but four bits shifted out of the right end of
the mantissa are lost, and do not take part in the
addition.

If all significant digits are shifted out of the mantissa,
the operation is equivalent to adding the number
with the larger exponent to zero. This requires a shift
of at least 15 hex digits for double precision, or 7 hex
digits for single precision.

Data General Corporation

After alignment, the mantissas are added together.
The result of this addition is termed the intermediate
result. One guard digit is provided for the
intermediate result, which is used if normalization is
required. The sign of the intermediate result is
determined from the signs of the two operands by the
rules of algebra. Jf the mantissa addition produces a
carry out of the high-order bit, the mantissa in the
intermediate result is shifted right one hex digit and
the exponent is incremented by one. If this shift
produces an exponent overflow, the OVF bit is set in
the floating point status register, and the number in
FPAC is correct, except that the exponent is 128 too
small.

If there is no mantissa overflow, the mantissa of the
intermediate result is examined for leading hex zeros.
If the mantissa is found to be all zeros, a true zero is
placed in the FP AC and the instruction terminates.

If the mantissa is non-zero, the intermediate result is
normalized, and the number placed in the FP AC. If
the normalization results in an exponent underflow,
the UNF bit is set in the floating point status register
and the instruction is terminated. The number in the
FPAC is correct except that the exponent is 128 too
large.

111- 26

FAMS 014-000616-00

ECLIPSE C/150 INSTRUCTIONS

Add Single (FPAC to FPAC)

FAS facs,facd

Adds the floating point number in F ACS to the
floating point number in FACD and places the
normalized result in F ACD. Destroys the previous
contents of FACD, leaves the contents of FACS
unchanged and updates the z and N flags in the
floating point status register to reflect the new
contents of F ACD.

Floating point addition consists of an exponent
comparison and a mantissa addition. The exponents
of the two numbers are compared, and the mantissa
of the number with the smaller exponent is shifted
right. This mantissa alignment is accomplished by
taking the absolute value of the difference between
the two exponents and shifting the mantissa right
that number of hex digits. One guard digit is provided
so that all but four bits shifted out of the right end of
the mantissa are lost, and do not take part in the
addition. If all significant digits are shifted out of the
mantissa, the operation is equivalent to adding the
number with the larger exponent to zero. This
requires a shift of at least 15 hex digits for double
precision, or 7 hex digits for single precision.

After alignment, the mantissas are added together.
The result of this addition is termed the intermediate
result. One guard digit is provided for the
intermediate result, which is used if normalization is
required. The sign of the intermediate result is
determined from the signs of the two operands by the
rules of algebra. If the mantissa addition produces a
carry out of the high-order bit, the mantissa in the
intermediate result is shifted right one hex digit and
the exponent is incremented by one. If this shift
produces an exponent overflow, the OVF bit is set in
the floating point status register, and the number in
F ACD is correct, except that the exponent is 128 too
small.

If there is no mantissa overflow, the mantissa of the
intermediate result is examined for leading hex zeros.
If the mantissa is found to be all zeros, a true zero is
placed in the F ACD and the instruction is
terminated.

If the mantissa is non-zero, the intermediate result is
normalized, and the number placed in the FACD. If
the normalization results in an exponent underflow,
the UNF bit is set in the floating point status register
and the instruction is terminated. The number in the
FACD is correct, except that the exponent is 128 too
large.

Clear Errors

FCLE

Sets bits 0-4 of the floating point status register to O.

NOTE: The I/O RESET instruction will set these
bits to O.

Compare Floating Point

FCMP facs, facd

Compares two floating point numbers and sets the z
and N flags in the floating point status register
accordingly.

Algebraically compares the floating point numbers in
F ACS and F ACD to each other and updates the z and
N flags in the floating point status register to reflect
the result. Leaves the contents of FACS and FACD
unchanged. The results of the compare and the
corresponding flag settings are shown in the table
below.

Z

1
0
0

N RESULT

0 FACS=FACD
1 FACS>FACD
0 FACS<FACD

NOTE: Unnormalized operands give unspecified
results.

111- 27

014-000616-00 FCMP

Divide Double (FP AC by FPAC)

FDD facs,facd

Divides the floating point number in FACD by the
floating point number in FACS and places .the
normalized result in FACD. Destroys the preVlOUS
contents of FACD, leaves the contents of FACS
unchanged, and updates the Z and N flags in the
floating point status register to reflect the new
contents of FA CD.

The source operand is checked for a zero mantissa. If
the mantissa is zero, the DVZ bit is set in the floating
point status register and. the instruction. is
terminated. The number In F ACD remalns
unchanged. If the mantissa is nonzero, the .previous
contents of FACD are lost. The two mantIssas are
compared and if the mantissa of the number in FACD
is greater than or equal to the mantissa ~f the sour~e
operand, the mantissa of the number m F ACD IS
shifted right one hex digit and the exponent of the
number in F ACD is increased by one. This process
continues until the mantissa of the number in F ACD
is less than the mantissa of the source operand. Since
one guard digit is provided, all but four bits shifted
out are lost.

The mantissa in F ACD is then divided by the
mantissa of the source operand and the quotient is
the mantissa of the intermediate result. The
exponent of the source oper~d is subtract.ed from
the exponent in F ACD and 64 IS added to thIS res~t.
This addition of 64 maintains the excess 64 notatIon.
The result of the exponent manipulation becomes the
exponent of the intermediate result. The sign of the
intermediate result is determined from the sign of the
two operands by the rules of algebra. The result is
normalized and placed in F ACD.

If the exponent processing produces either overflow
or underflow, the corresponding bit in the floating
point status register is set. The number in F ACD is
correct except that, for exponent overflow, the
exponent is 128 too small, and for exponent
underflow, the exponent is 128 too large.

Data General Corporation

Divide Double (FPAC by Memory)

FDMD fpac, [@ }displacement[, index}

I@o I DISPLACEMENT I
. , 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I 13 I 14 I 15

Divides the floating point number in FP AC by the
floating point number in the source location and
places the normalized result in FPAC. Destroys the
previous contents of FP AC, leaves the contents of the
source location unchanged, and updates the z and N
flags in the floating point status register to reflect the
new contents of FP AC.

Computes the effective address, E, which addresses a
4-word <double precision) operand.

The source operand is checked for a zero mantissa. If
the mantissa is zero, the DVZ bit is set in the floating
point status register and . the instruction. is
terminated. The number In FPAC remalns
unchanged. If the mantissa is nonzero, the .previous
contents of FPAC are lost. The two mantIssas are
compared and if the mantissa of the number in FPAC
is greater than or equal to the mantissa o.f the sour~e
operand, the mantissa of the number In FPAC IS
shifted right one hex digit and the exponent of the
number in FPAC is increased by one. This process
continues until the mantissa of the number in FACD
is less than the mantissa of the source operand. Since
one guard digit is provided, all but four bits shifted
out are lost.

The mantissa in FPAC is then divided by the
mantissa of the source operand and the quotient is
the mantissa of the intermediate result. The
exponent of the source operand is subtracted from
the exponent in FPAC and 64 is added to this res.ult.
This addition of 64 maintains the excess 64 notatIon.
The result of the exponent manipulation becomes the
exponent of the intermediate result. The sign of the
intermediate result is determined from the sign of the
two operands by the rules of algebra. The result is
normalized and placed in FP AC.

If the exponent processing produces either overflow
or underflow, the corresponding bit in the floating
point status register is set. The number in FP AC is
correct except that, for exponent overflow, the
exponent is 128 too small, and for exponent
underflow, the exponent is 128 too large.

Ill- 28

FDMD 014-000616-00

ECLIPSE C/lS0 INSTRUCTIONS

Divide Single (FPAC by Memory)

FDMS fpac, [@ ldisplacementl,indexl

Divides the floating point number in FPAC by the
floating point number in the source location and
places the normalized result in FP AC. Destroys the
previous contents of FPAC, leaves the contents of the
source location unchanged, and updates the Z and N
flags in the floating point status register to reflect the
new contents of FPAC.

Computes the effective address E which addresses a
2-word (single precision) operand.

The source operand is checked for a zero mantissa. If
the mantissa is zero, the DVZ bit is set in the floating
poin t status register and the instruction is
terminated. The number in FP AC remains
unchanged. If the mantissa is nonzero, the previous
contents of FPAC are lost. The two mantissas are
compared and if the mantissa of the number in FPAC
is greater than or equal to the mantissa of the source
operand, the mantissa of the number in FP AC is
shifted right one hex digit and the exponent of the
number in FP AC is increased by one. This process
continues until the mantissa of the number in FPAC
is less than the mantissa of the source operand. Since
one guard digit is provided, all but four bits shifted
out are lost.

The mantissa in FPAC is then divided by the
mantissa of the source operand and the quotient is
the mantissa of the intermediate result. The
exponent of the source operand is subtracted from
the exponent in FP AC and 64 is added to this result.
This addition of 64 maintains the exce88 64 notation.
The result of the exponent manipulation becomes the
exponent of the intermediate result. The sign of the
intermediate result is determined from the sign of the
two operands by the rules of algebra. The result is
normalized and placed in FP AC.

If the exponent processing produces either overflow
or underflow, the corresponding bit in the floating
point status register is set. The number in FPAC is
correct except that, for exponent overflow, the
exponent is 128 too small, and for exponent
underflow, the exponent is 128 too large.

Divide Single (FPAC by FPAC)

FDS facs, facd

Divides the floating point number in FACD by the
floating point number in FACS and places the
normalized result in F ACD. Destroys the previous
contents of FACD, leaves the contents of FACS
unchanged, and updates the Z and N flags in the
floating point status register to reflect the new
contents of FACD.

The source operand is checked for a zero mantissa. If
the mantissa is zero, the DVZ bit is set in the floating
point status register and the instruction is
terminated. The number in FACD remains
unchanged. If the mantissa is nonzero, the previous
contents of F ACD are lost. The two mantissas are
compared, and if the mantissa of the number in
FACD is greater than or equal to the mantissa of the
source operand, the mantissa of the number in FACD
is shifted right one hex digit and the exponent of the
number in FACD is increased by one. This process
continues until the mantissa of the number in FACD
is less than the mantissa of the source operand. Since
one guard digit is provided, all but four bits shifted
out are lost.

The mantissa in F ACD is then divided by the
mantissa of the source operand and the quotient is
the mantissa of the intermediate result. The
exponent of the source operand is subtracted from
the exponent in FACD and 64 is added to this result.
This addition of 64 maintains the exce88 64 notation.
The result of the exponent manipulation becomes the
exponent of the intermediate result. The sign of the
intermediate result is determined from the sign of the
two operands by the rules of algebra. The result is
normalized and placed in F ACD.

If the exponent processing produces either overflow
or underflow, the corresponding bit in the floating
point status register is set. The number in FACD is
correct except that, for exponent overflow, the
exponent is 128 too small, and for exponent
underflow, the exponent is 128 too large.

III- 29

014-000616-00 FDS

Load Exponent

FEXP fpac

Places bits 1-7 of ACO in bits 1-7 of the specified
FPAC. Ignores bits 0 and 8-15 of ACO. Leaves
unchanged bits 0 and 8-63 of FPAC and the entire
contents of ACO. Also sets bits 0-7 <the sign and
exponent) to zero if bits 8-63 <the mantissa) of FP AC
are zero. Leaves bits 1-7 of FPAC unchanged if FPAC
contains true zero.

NOTE: The exponent contained in bits 1-7 of A CO
is assumed to be in Excess 64 representation.

FixToAC

FFAS ac,fpac

Converts the integer portion of the floating point
number contained in the specified FP AC to a signed
two's complement integer and places the result in an
accumulator.

Forms the absolute value of the integer portion of the
floating point number in FP AC. Extracts the 15 least
significant bits from this value and, if the number in
FPAC is negative, forms the two's complement of the
integer. Then places the result in the specified
accumulator, sets the z and N flags in the floating
point status register to 0, and leaves the contents of
FP AC unchanged.

If the number in FPAC is less than -32,767 or greater
than + 32, 767, this instruction sets the MOF flag in the
floating point status register to 1.

NOTE: If the lower 15 bits of the integer formed
from the number in FPA C are all 0, the sign bit of
the result will be zero, regardless of the sign of
the original number.

Data General Corporation

Fix To Memory

FFMD fpac, [@ }displacement[, index}

Converts the integer portion of a floating point
number to double-precision integer format and stores
the result in two memory locations.

Forms the absolute value of the integer portion of the
floating point number in FP AC. Extracts the 31 least
significant bits from this value and, if the number in
FPAC is negative, forms the two's complement of the
integer. Then places the result into the locations
addressed by E, sets the z and N flags in the floating
point status register to 0, and leaves the contents of
FP AC unchanged.

If the number in FPAC is less than -2,147,483,647 or
greater than +2,147,483,647, this instruction sets the
MOF flag in the floating point status register to 1.

If the lower 31 bits of the integer formed from the
number in FPAC are all 0, the sign bit of the result
will be zero.

Halve

FHLV fpac

Divides the floating point number in FPAC by 2.

Shifts the mantissa contained in FP AC right one bit
position, fills the vacated bit position with a zero and
places the bit shifted out in the guard digit. Then
normalizes the number and places the result in
FP AC. Sets the UNF flag in the floating point status
register to 1 if the normalization process causes an
exponent underflow. The number in FPAC is then
correct, except that the exponent is 128 too large.
Updates the z and N flags in the floating point status
register to reflect the new contents of FP AC.

111- 30

FHLV 014-000616-00

ECLIPSE C/150 INSTRUCTIONS

Integerize

FINT fpac

Zeros the fractional portion (if any) of the number
contained in the specified FPAC, and then normalizes
the number. The instruction updates the z and N flags
in the floating point status register to reflect the new
contents of the specified FPAC.

NOTE: If the absolute value of the number
contained in the specified FPA C is less than 1,
the specified FPA C is set to true zero.

Float From AC

FLAS ac,fpac

Converts a two's complement number to floating
poin t format.

Converts the signed two's complement number
contained in the specified accumulator to a single
precision floating point number, places the result in
the specified FP AC, and sets the low-order 32 bits of
the FPAC to O. Leaves the contents of the specified
accumulator unchanged and destroys the previous
contents of the FPAC. Updates the z and N flags in
the floating point status register to reflect the new
contents of FPAC.

The range of numbers that can be converted is
-32,768 to +32,767.

014-000616-00

Load Floating Point Double

FLDD fpac,[@ldiBplacement[,indexl

Moves four words out of memory into a specified
FPAC.

Computes the effective address, E, and places the
double precision floating point number at that
address in FPAC. Also sets the sign and exponent to
zero if the mantissa is zero. Destroys the previous
contents of FP AC and updates the z and N flags in the
FPSR to reflect the new contents of FP AC.

Load Floating Point Single

FLDS fpac, [@ ldiBplacementl, indexl

Moves two words out of memory into a specified
FPAC.

Computes the effective address E and places the
single precision floating point number at that address
in FPAC. Also sets the sign and exponent to zero if
the mantissa is zero. Destroys the previous contents
of ~P AC and up~ates the z and N flags in the floating
pOlnt status regIster to reflect the new contents of
FPAC. The low-order 32 bits of FPAC are set to O.

III- 31

FLMD

Float From Memory

FLMD fpac, [@ ldisplacement[, indexl

Converts the contents of two memory locations to
floating point format and places the result in a
specified FPAC.

Computes the effective address E, converts the 32-bit,
signed, two's complement number addressed by E to
a double precision floating point number, and places
the result in the specified FPAC. Destroys the
previous contents of FP AC, and updates the z and N
flags in the floating point status register to reflect the
new contents of the FP AC.

The range of numbers that can be converted is
-2,147,483,648 to +2,147,483,647.

Load Floating Point Status

FLST [@ldisplacement[,indexl

Moves the contents of two specified memory locations
to the floating point status register.

Computes the effective address, E, places the 32-bit
operand addressed by E in the floating point status
register, and sets the condition codes to the values of
the loaded bits.

FMD

Data General Corporation

Multiply Double (FPAC by FPAC>

FMD facs,facd

Multiplies the floating point number in FACD by the
floating point number in FACS and places .the
normalized result in FACD. Destroys the preVlous
contents of FACD, leaves the contents of FACS
unchanged, and updates the z and N flags in the
floating point status register to reflect the new
contents of F ACD.

The mantissas of the two numbers are multiplied
together to give the mantissa of the intermediate
result. One guard digit is provided for the
intermediate result, which is used if normalization is
required. The exponents of the two numbers are
added together and 64 is subtracted. This subtraction
of 64 maintains the excess 64 notation. The result of
the exponent manipulation becomes the exponent of
the intermediate result. The sign of the intermediate
result is determined from the sign of the two
operands by the rules of algebra.

If the exponent processing produces either overflow
or underflow, the result is held until normalization,
as that procedure may correct the condition. If
normalization does not correct the condition, the
corresponding flag in the floating point status
register is set to 1. The number is correct except that,
for exponent overflow, the exponent is 128 too small,
and for exponent underflow, the exponent is 128 too
large.

III- 32

014-000616-00

ECLIPSE C/150 INSTRUCTIONS

Multiply Double (FPAC by Memory)

FMMD fpac, [@ ldisplacement[, indexl

Multiplies the floating point number in FPAC by the
floating point number in the source location and
places the normalized result in FP AC. Destroys the
previous contents of FPAC, leaves the contents of the
source location unchanged, and updates the z and N
flags in the floating point status register to reflect the
new contents of FPAC.

Computes the effective address, E, which addresses a
4-word (double precision) operand.

The mantissas of the two numbers are multiplied
together to give the mantissa of the intermediate
result. One guard digit is provided for the
intermediate result, which is used if normalization is
required. The exponents of the two numbers are
added together and 64 is subtracted. This subtraction
of 64 maintains the excess 64 notation. The result of
the exponent manipulation becomes the exponent of
the intermediate result. The sign of the intermediate
result is determined from the sign of the two
operands by the rules of algebra.

If the exponent processing produces either overflow
or underflow, the result is held until normalization,
as that procedure may correct the condition. If
normalization does not correct the condition, the
corresponding flag in the floating point status
register is set to 1. The number is correct except that,
for exponent overflow, the exponent is 128 too small,
and for exponent underflow, the exponent is 128 too
large.

Multiply Single (FPAC by Memory)

FMMS fpac, [@ ldisplacementl,indexl

Multiplies the floating point number in FPAC by the
floating point number in the source location and
places the normalized result in FPAC. Destroys the
previous contents of FPAC, leaves the contents of the
source location unchanged, and updates the z and N

flags in the floating point status register to reflect the
new contents of FP AC.

Computes the effective address E which addresses a
2-word single precision) operand.

The mantissas of the two numbers are multiplied
together to give the mantissa of the intermediate
result. One guard digit is provided for the
intermediate result, which is used if normalization is
required. The exponents of the two numbers are
added together and 64 is subtracted. This subtraction
of 64 maintains the excess 64 notation. The result of
the exponent manipulation becomes the exponent of
the intermediate result. The sign of the intermediate
result is determined from the sign of the two
operands by the rules of algebra.

If the exponent processing produces either overflow
or underflow, the result is held until normalization,
as that procedure may correct the condition. If
normalization does not correct the condition, the
corresponding flag in the floating point status
register is set to 1. The number is correct except that,
for exponent overflow, the exponent is 128 too small,
and for exponent underflow, the exponent is 128 too
large.

111- 33

014-000616-00 FMMS

Move Floating Point

FMOV fac8, facd

Moves the contents of one FPAC to another FPAC.

Places the contents of F ACS in FACD, destroys the
previous contents of FA CD, and leaves the contents of
FACS unchanged. If the mantissa in FACS is zero,
the sign and exponent in FACD are also set to zero.
The z and N flags in the floating point status register
are set to reflect the new contents of F ACD.

Data General Corporation

Multiply Single (FPAC by FPAC>

FMS fac8, facd

Multiplies the floating point number in F ACD by the
floating point number in FACS and places the
normalized result in FACD. Destroys the previous
contents of F ACD, leaves the contents of F ACS
unchanged, and updates the z and N flags in the
floating point status register to reflect the new
contents of F ACD.

The mantissas of the two numbers are multiplied
together to give the mantissa of the intermediate
result. One guard digit is provided for the
intermediate result, which is used if normalization is
required. The exponents of the two numbers are
added together and 64 is subtracted. This subtraction
of 64 maintains the excess 64 notation. The result of
the exponent manipulation becomes the exponent of
the intermediate result. The sign of the intermediate
result is determined from the sign of the two
operands by the rules of algebra.

If the exponent processing produces either overflow
or underflow, the result is held until normalization,
as that procedure may correct the condition. If
normalization does not correct the condition, the
corresponding flag in the floating point status
register is set to 1. The number is correct except that,
for exponent overflow, the exponent is 128 too small,
and for exponent underflow, the exponent is 128 too
large.

111- 34

FMS 014-000616-00

ECLIPSE C/150 INSTRUCTIONS

Negate

FNEG fpac

Inverts the sign bit of FPAC. Bits 1-63 of FPAC
remain unchanged. Also sets the sign and exponent
to zero if the mantissa in FPAC is zero. Updates the z
and N flags in the floating point status register to
reflect the new contents of FPAC. If FPAC contains
true zero, the sign bit remains unchanged.

Normalize

FNOM fpac

Normalizes the floating point numbers in FPAC. Sets
a true zero in FPAC if all the bits of the mantissa are
zero. Sets the UNF flag in the FPSR if an exponent
underflow occurs. The number in FPAC is then
correct, except that the exponent is 128 too large.

The z and N flags in the floating point status register
are set to reflect the new contents of FP AC.

014-000616-00

No Skip

FNS

The next sequential word is executed.

111- 35

FNS

Pop Floating Point State

FPOP

Pops an i8-word floating point return block off the
user stack and alters the state of the floating point
unit. The words popped and their destinations are as
follows:

~ -~ STACK POINTER "----~--'_'~-~......_ r-

AFTER FPOP ... ~
FPSR BITS 9-15

FPSR BIS 16-31

{

I----------j...~
FACO I--~-_--_-_--_--.......... -"'.

~--------- "," ..,

FAC 1

{ Ioo-~----------~-"," 10---------- ~.

---------- ~,

1--- ________ v-

10---------- ",-..,
FAC 2

{

10-

10--_-_-_--_-_--_-....... -1--.

STACK POINTE:

AC ~ {
BEFORE FPOP

~ - - - - - - - - - i'~

Io-----------""~

1--------- --~~ ..,
---- ~

DG-00604

NOTE: Because of the potentially long time
required to perform some noating point
instructions in relation to I/O interrupt requests,
these instructions are interruptable. Because the
FA CD, stack pointer, and program counter are
not updated until the completion of these
instructions, any interrupt service routines that
return control to the interrupted program via the
program counter stored in location 0 will
correctly restart these instructions.

FPSH

Data General Corporation

Push Floating Point State

FPSH

Pushes an i8-word floating point return block onto
the user stack, leaving the contents of the floating
point accumulators and the floating point status
register unchanged. The format of the i8 words
pushed is as follows:

III- 36

STACK POINTER "c:,....."...-___ ""'--_~_~;,J
BEFORE FPSH ..,

FACO{

FPSR BIS 0-15

FPSR BITS 16-31

~----------~-

1---------- ."
I----------~ .

l.-'

{

f----------~ ..

FAC 1 t----------------------.... ~~ ----------... ~ ...,

FAC2{ P--~-------------......... -"'. I-----------~~

I----------.~~
l.-'

FAC 3 r---------- ,.' { ... --------- ... "

STACK POINTER ---- - -- - --.~"
AFTER FPSH ~ t-------v..,

-
DG-00603

014-000616-00

ECLIPSE C/150 INSTRUCTIONS

Read High Word

FRH fpac

Places the high-order 16 bits of FPAC in ACO,
destroys the previous contents of ACO, and leaves
unchanged the contents of FPAC and the z and N

flags in the floating point status register.

Skip Always

FSA

The next sequential word is skipped.

014-000616-00

Scale

FSCAL fpac

Shifts the mantissa of the floating point number in
FPAC either right or left, depending upon the
contents of bits 1-7 of ACO. Leaves the contents of
ACO unchanged.

Treats bits 1-7 of ACO as an exponent in Excess 64
representation. Computes the difference between this
exponent and the exponent in FP AC by subtracting
the exponent in FPAC from the number contained in
ACO bits 1-7. If the difference is zero, the instruction
stops. If the difference is positive, the instruction
shifts the mantissa contained in FPAC right that
number of hex digits. If the difference is negative, the
instruction shifts the mantissa contained in FPAC
left that number of hex digits; if bits are lost the
instruction sets the MOF flag in the floating point
status register. After the shift, the contents of bits 1-7
of ACO replace the exponent contained in FPAC. Bits
shifted out of either end of the mantissa are lost. If
the entire mantissa is shifted out of FPAC, the
instruction sets FP AC to true zero. The instruction
sets the z and N flags in the floating point status
register to reflect the new contents of FP AC.

Subtract Double (FPAC from FPAC)

FSD fa cs,fa cd

Subtracts the floating point number in F ACS from
the floating point number in FACD and places the
normalized result in the FACD. Destroys the previous
contents of FACD, leaves the contents of FACS
unchanged, and updates the z and N flags in the
floating point status register to reflect the new
contents of FACD.

The subtraction is performed by inverting the sign
bit of the source operand and adding. After the sign
inversion, the operation is equivalent to floating point
addition. (See FAD.)

III- 37

FSD

Skip On Zero

FSEQ

Skips the next sequential word if the z flag of the
floating point status register is 1.

Skip On Greater Than Or Equal To Zero

FSGE

Skips the next sequential word if the N flag of the
floating point status register is O.

Skip On Greater Than Zero

FSGT

Data General Corporation

Skips the next sequential word if both the z and N
flags of the floating point status register are O.

Skip On Less Than Or Equal To Zero

FSLE

Skips the next sequential instruction if either the Z
flag or the N flag of the floating point status register
is 1.

llI- 38

FSLE 014-000616-00

ECLIPSE C/150 INSTRUCTIONS

Skip On Less Than Zero

FSLT

Skips the next sequential word if the N flag of the
floating point status register is 1.

Subtract Double (Memory from FPAC)

FSMD fpac,[@ldi8placementl,indexl

Subtracts the floating point number in the source
location from the floating point number in FPAC and
places the normalized result in the FP AC. Destroys
the previous contents of FPAC. leaves the contents of
the source location unchanged. and updates the z and
N flags in the floating point status register to reflect
the new contents of FPAC.

The instruction computes the effective address. E.
which addresses a 4-word (double precision) operand.

The subtraction is performed by inverting the sign
bit of the source operand and adding. After the sign
inversion. the operation is equivalent to floating point
addition. (See FAMD.)

Subtract Single (Memory from FPAC)

FSMS fpac,l@ ldi8placement[,indexl

Subtracts the floating point number in the source
location from the floating point number in FP AC and
places the normalized result in the FP AC. Destroys
the previous contents of FPAC.leaves the contents of
the source location unchanged. and updates the z and
N flags in the floating point status register to reflect
the new contents of FP AC.

The instruction computes the effective address. E.
which addresses a 2-word (single precision) operand.

The subtraction is performed by inverting the sign
bit of the source operand and adding. After the sign
inversion. the operation is equivalent to floating point
addition. (See FAMSJ

Skip On No Zero Divide

FSND

Skips the next sequential word if the divide by zero
(DVZ) flag of the floating point status register is O.

III- 39

014-000616-00 FSND

Skip On Non-Zero

FSNE

Skips the next sequential word if the zflag of the
floating point status register is O.

Skip On No Error

FSNER

Skips the next sequential word if bits 1-4 of the
floating point status register are all O.

Oata General Corporation

Skip On No Mantissa Overflow

FSNM

Skips the next sequential word if the mantissa
overflow (MOF) flag of the floating point status
register is O.

Skip On No Overflow

FSNO

Skips the next sequential word if the overflow (OVF)
flag of the floating point status register is O.

111- 40
FSNO 014-000616-00

ECLIPSE C/150 INSTRUCTIONS

Skip On No Overflow and No Zero Divide

FSNOD

Skips the next sequential word if both the overflow
(OVF) flag and the divide by zero (ovz) flag of the
floating point status register are O.

Skip On No Underflow

FSNU

Skips the next sequential word if the underflow (UNF)

flag of the floating point status register is O.

014-000616-00

Skip On No Underflow And No Zero Divide

FSNUD

Skips the next sequential word if both the underflow
(UNF) flag and the divide by zero (ovz) flag of the
floating point status register are O.

Skip On No Underflow And No Overflow

FSNUO

Skips the next sequential word if both the underflow
(UNF) flag and overflow (OVF) flag of the floating point
status register are O.

111- 41

FSNUO

Subtract Single (FPAC from FPAC)

FSS facs, facd

Subtracts the floating point number in F ACS from
the floating point number in FACD and places the
normalized result in the FACD. Destroys the previous
contents of F ACD, leaves the contents of F ACS
unchanged, and updates the z and N flags in the
floating point status register to reflect the new
contents of FACD.

The subtraction is performed by inverting the sign
bit of the source operand and adding. After the sign
inversion, the operation is equivalent to floating point
addition.

Store Floating Point Status

FSST [@]displacement[,index.]

Moves the contents of the FPSR to two specified
memory locations.

Computes the effective address, E, and places the
32-bit contents of the FPSR in the two consecutive
memory locations addressed by E and' E + 1. Leaves
the contents of the FPSR unchanged.

Data General Corporation

Store Floating Point Double

FSTD fpac,[@]displacementl,index]

Stores the contents of a specified FPAC into a
memory location.

Computes the effective address, E, and places the
floating point number contained in FP AC in memory
beginning at the location addressed by E Destroys
the previous contents of the addressed memory
location and leaves unchanged the contents of FPAC
and the condition codes in the FPSR.

Store Floating Point Single

FSTS fpac, [@]displacement[, index]

Stores the contents of a specified FP AC into a
memory location.

Computes the effective address E and places the
floating point number contained in FPAC in memory
beginning at the location addressed by E. Destroys
the previous contents of the addressed memory
location and leaves unchanged the contents of FPAC
and the condition codes in the FPSR. For single
precision, only the high-order 32 bits of FPAC are
stored.

III- 42

FSTS 014-000616-00

ECLIPSE C/150 INSTRUCTIONS

Trap Disable

FlO

Sets the trap enable bit of the FPSR to O.

NOTE: The I/O RESET instruction will set this bit
to O.

Trap Enable

FIE

Sets the trap enable bit of the FPSR to 1.

NOTE: When a floating point fault occurs and the
trap enable bit is 1, the trap enable bit is set to 0
before control is transferred to the floating point
error handler. The trap enable bit should be set
to 1 before normal processing is resumed.

014-000616-00

Halve

HLV ac

Divides the contents of an accumulator by 2 and
rounds the result toward zero.

The signed, 16-bit two's complement number
contained in the specified AC is divided by 2 and
rounded toward O. The result is placed in the
specified AC.

If the number is positive, division is accomplished by
shifting the number right one bit. If the number is
negative, division is accomplished by negating the
number, shifting it right one bit, and negating it
again.

Hex Shift Left

HXL n,ac

Shifts the contents of AC left a number of hex digits
depending upon the immediate field N. The number of
digits shifted is equal to N +1. Bits shifted out are
lost, and the vacated bit positions are filled with
zeroes. If N is equal to 3, then all 16 bits of AC are
shifted out and all bits of AC are set to O.

III- 43

NOTE: The assembler takes the coded value of n
and subtracts one from it before placing it in the
immediate field. Therefore, the programmer
should code the exact number of hex digits that
he wishes to shift.

HXL

Hex Shift Right

HXR n,ac

Shifts the contents of AC right a number of hex digits
depending upon the immediate field, N. The number
of digits shifted is equal to N + 1. Bits shifted out are
lost, and the vacated bit positions are filled with
zeroes. If N is equal to 3, then all 16 bits of AC are
shifted out and all bits of AC are set to O.

NOTE: The assembler takes the coded value of n
and subtracts one from it before placing it in the
immediate field. Therefore, the programmer
should code the ex.act number of hex. digits that
he wishes to shift.

Increment

INClc]lsh]I#] acs,acdl,skip]

Increments the contents of an accumulator.

Initializes the carry bit to the specified value.
Increments the unsigned, 16-bit number in ACS by
one and places the result in the shifter. If the
incrementation produces a carry of 1 out of the high
order bit, the instruction complements the carry bit.
Performs the specified shift operation, and loads the
result of the shift into ACD if the no-load bit is O. If
the skip condition is true, the next sequential word is
skipped.

NOTE: If the number in ACS is 1'l'l'l'l'l8 the
instruction complements the carry bit.

Data General Corporation

Inclusive OR

lOR aCB,acd

Forms the logical inclusive OR of the contents of ACS
and the contents of ACD and places the result in
ACD. Sets a bit position in the result to 1 if the
corresponding bit position in one or both operands
contains a 1; otherwise, the instruction sets the result
bit to O. The contents of ACS remain unchanged.

Inclusive OR Immediate

IORI i,ac

Forms the logical inclusive OR of the contents of the
immediate field and the contents of the specified AC
and places the result in the specified AC.

ill- 44

IORI 014-000616-00

ECLIPSE C/150 INSTRUCTIONS

Increment And Skip If Zero

ISZ [@ ldisplacement[,indexl

Increments the addressed word, then skips if the
incremented value is zero.

Increments the word addressed by E and writes the
result back into memory at that location. If the
updated value of the location is zero, the instruction
places the address of the next sequential instruction
in the program counter and operation continues from
there.

Jump

JMP

Computes the effective address, E, and places it in the
program counter. Sequential operation continues
with the word addressed by the updated value of the
program counter.

014-000616-00

Jump To Subroutine

JSR [@ ldisplacementf,indexl

Increments and stores the value of the program
counter in AC3, and then places a new address in the
program counter.

Computes the effective address, E; then places the
address of the next sequential instruction in AC3.
Places E in the program counter. Sequential
operation continues with the word addressed by the
updated value of the program counter.

NOTE: The instruction computes E before it places
the incremented program counter in A C3.

Load Accumulator

LOA ac, [@ ldisplacement[,indexl

Copies a word from memory to an accumulator.

Places the word addressed by the effective address, E,
in the specified accumulator. The previous contents of
the location addressed by E remain unchanged.

111- 45

LOA

Load Byte

LOB aC8,acd

Moves a byte from memory (as addressed by a byte
pointer in one accumulator) to the second
accumulator.

Places the 8-bit byte addressed by the byte pointer
contained in ACS in bits 8-15 of ACD. Sets bits 0-7 of
ACD to O. The contents of ACS remain unchanged
unless ACS and ACD are the same accumulator.

Data General Corporation

Load Integer

LOI fpac

Translates a decimal· integer from memory to
(normalized) floating point format and places the
result in a floating point accumulator.

Under the control of accumulators AC1 and AC3,
converts a decimal integer to floating point form,
normalizes it, and places it in the specified FPAC.
The instruction updates the z and N bits in the FPSR
to describe the new contents of the specified FP AC.
Leaves the decimal number unchanged in memory,
and destroys the previous contents of the specified
FPAC.

AC1 must contain the data-type indicator describing
the number.

AC3 must contain a byte pointer which is the address
of the high-order byte of the number in memory.

Numbers of data type 7 are not normalized after
loading. By convention, the first byte of a number
stored according to data type 7 must contain the sign
and exponent of the floating point number. The
exponent must be in "excess 64" representation. The
instruction copies each byte (following the lead byte)
directly to mantissa of the specified FPAC. It then
sets to zero each low-order byte in the FPAC that
does not receive data from memory.

Upon successful completion, the instruction leaves
accumulators ACO and AC1 unchanged. AC2 contains
the original contents of AC3; the contents of AC3 are
undefined.

NOTE: An attempt to load a minus 0 sets the
specified FPA C to true zero.

III- 46

LOI 014-000616-00

ECLIPSE C/150 INSTRUCTIONS

Load Integer Extended

LDIX

Distributes a decimal integer of data type 0, 1, 2, 3, 4,
or 5 into the four FPACs.

Extends the integer with high-order zeros until it is
32 digits long. Divides the integer into four units of 8
digits each and converts each unit to a floating point
number. Places the number obtained from the 8
high-order digits into FACO, the number obtained
from the next 8 digits into FAC1, the number
obtained from the next 8 digits into F AC2, and the
number obtained from the low-order 8 bits into
F AC3. The instruction places the sign of the integer
in each FPAC unless that FPAC has received 8 digits
of zeros, in which case the instruction sets FPAC to
true zero. The z and N flags in the floating point
status register are unpredictable.

AC1 must contain the data-type indicator describing
the integer.

AC3 must contain a byte pointer which is the address
of the high-order byte of the integer.

Upon successful termination, the contents of ACO and
AC3 are undefined; the contents of AC1 remain
unchanged; and AC2 contains the original contents of
AC3.

Load Effective Address

LEF ac,[@ldisplacement[,indexl

Computes the effective address, E, and places it in
bits 1-15 of the specified accumulator. Sets bit o of the
accumulator to O. The previous contents of the AC are
lost.

If an auto-incrementing or auto-decrementing
location is referenced in the course of the effective
address calculation, the contents of the location are
incremented or decremented. Note, however, that
auto-incrementing and auto-decrementing is
suppressed when demand paging is enabled.

The LEF instruction can only be used in a mapped
system, while in the user mode. With the LEF mode bit
set to 1, all I/O and LEF instructions will be
interpreted as LEF instructions. With the LEF mode bit
set to 0, all I/O and LEF instructions will be
interpreted as I/O instructions.

LEF O,TABLE ; The logical address of
; TABLE is placed in ACO.

LEF 1,-55,3 ; Subtracts 000055 (octal)
; from the unsigned integer
; in AC3 and the result is
; placed in AC 1.

LEF 0,. +0 ; Places the address of this
; Load effective addre88
; instruction in ACO.

NOTE: Be 8ure that I/O protection i8 enabled or
the Lef mode bit i8 8et to 1 before U8ing the Lef
in8truction. If you i88ue a Lef in8truction in the
I/O mode, with protection di8abled, the
in8truction will be interpreted and executed a8

an I/O in8truction, with p088ibly unde8irable
re8ult8.

III- 47

014-000616-00 LEF

Locate Lead Bit

LOB aCB,acd

Adds a number equal to the number of high-order
zeroes in the contents of ACS to the signed, 16-bit,
two's complement number contained in ACD. The
contents of ACS and the state of the carry bit remain
unchanged.

NOTE: If ACS and ACD are specified as the same
accumulator, the instruction functions as
described above, except that since A CS and
ACD are the same accumulator, the contents of
A CS will be changed.

Data General Corporation

Locate and Reset Lead Bit

LRB aCB,acd

Performs a Locate lead bit instruction, and sets the
lead bit to O.

Adds a number equal to the number of high-order
zeroes in the contents of ACS to the signed, 16-bit,
two's complement number contained in ACD. Sets
the leading 1 in ACS to O. The state of the carry bit
remains unchanged.

NOTE: If A CS and A CD are specified to be the
same accumulator, then the instruction sets the
leading 1 in that accumulator to 0, and no count
is taken.

Logical Shift

LSH aCB,acd

Shifts the contents of ACD either left or right
depending on the number contained in bits 8-15 of
ACS. The signed, 8-bit two's complement number
contained in bits 8-15 of ACS determines the
direction of the shift and the number of bits to be
shifted. 1f the number in bits 8-15 of ACS is positive,
shifting is to the left; if the number in bits 8-15 of
ACS is negative, shifting is to the right. If the number
in bits 8-15 of ACS is zero, no shifting is performed.
Bits 0-7 of ACS are ignored.

The number of bits shifted is equal to the magnitude
of the number in bits 8-15 of ACS. Bits shifted out are
lost, and the vacated bit positions are fuled with
zeroes. The carry bit and the contents of ACS remain
unchanged.

NOTE: If the magnitude of the number in bits 8-15
of ACS is greater than 15, all bits of ACD are set
to O. The carry bit and the contents of A CS
remain unchanged.

III- 48

LSH 014-000616-00

ECLIPSE C/1S0 INSTRUCTIONS

Load Sign

LSN

Under the control of accumulators AC1 and AC3,
evaluates a decimal number in memory and returns
in AC1 a code that classifies the number as zero or
nonzero and identifies its sign. The meaning of the
returned code is as follows:

VALUE OF NUMBER CODE

Positive non-zero +1
Negative non-zero -1
Positive zero 0
Negative zero -2

AC1 must contain the data type indicator describing
the number.

AC3 must contain a byte pointer which is the address
of the high-order byte of the number.

Upon successful termination, the contents of ACO
remain unchanged; AC1 contains the value code; AC2
contains the original contents of AC3; and the
contents of AC3 are unpredictable. The contents of
the addressed memory locations remain unchanged.

Move

MOV lc]lsh]l#] acs,acdl,skip]

Moves the contents of an accumulator through the
Arithmetic Logic Unit (ALU).

Initializes the carry bit to the specified value. Places
the contents of ACS in the shifter. Performs the
specified shift operation and loads the result of the
shift into ACD if the no-load bit is O. If the skip
condition is true, the instruction skips the next
sequential word.

Modify Stack Pointer

MSP ac

Changes the value of the stack pointer and tests for
potential overflow.

Adds the signed two's-complement number in AC to
the stack pointer. If the result is less than the stack
limit, the instruction places the result in the stack
pointer.

If the result is greater than the stack limit, the
instruction transfers control to the stack fault
routine. The program counter in the fault return
block is the address of the Modify Stack Pointer
instruction. The stack pointer is left unchanged.

III- 49

014-000616-00 MSP

Unsigned Multiply

MUL

Multiplies the unsigned contents of two accumulators
and adds the result to the unsigned contents of a
third accumulator. The result is an unsigned 32-bit
integer in two accumulators.

The unsigned, 16-bit number in AC1 is multiplied by
the unsigned, 16-bit number in AC2 to yield an
unsigned, 32-bit intermediate result. The unsigned,
16-bit number in ACO is added to the intermediate
result to produce the final result. The final result is
an unsigned, 32-bit number and occupies ACO and
AC1. Bit 0 of ACO is the high-order bit of the result
and bit 15 of AC1 is the low-order bit. The contents of
AC2 remain unchanged. Because the result is a
double-length number, overflow cannot occur.

Signed Multiply

MULS

Multiplies the signed contents of two accumulators
and adds the result to the signed contents of a third
accumulator. The result is a signed 32-bit integer in
two accumulators.

The signed, 16-bit two's complement number in AC1
is multiplied by the signed, 16-bit two's complement
number in AC2 to yield a signed, 32-bit two's
complement intermediate result. The signed, 16-bit
two's complement number in ACO is added to the
intermediate result to produce the final result. The
final result is a signed, 32-bit two's complement
number which occupies ACO and AC1. Bit 0 of ACO is
the sign bit of the result and bit 15 of AC1 is the
low-order bit. The contents of AC2 remain
unchanged. Because the result is a double-length
number, overflow cannot occur.

Data General Corporation

Negate

NEG fcl fshl f# 1 acs,acdf,skipl

Forms the two's complement of the contents of an
accumulator.

Initializes the carry bit to the specified value. Places
the two's complement of the unsigned, 16-bit number
in ACS in the shifter. If the negate operation
produces a carry of 1 out of the high-order bit, the
instruction complements the carry bit. Performs the
specified shift operation and places the result in ACD
if the no-load bit is O. If the skip condition is true, the
instruction skips the next sequential word.

NOTE: If A CS contains 0, the instruction
complements the carry bit.

Pop Multiple Accumulators

POP acs,acd

Pops 1 to 4 words off the stack and places them in the
indicated accumulators.

The set of accumulators from ACS through ACD is
filled with words popped from the stack. The
accumulators are filled in descending order, starting
with the AC specified by ACS and continuing down
through the AC specified by ACD, wrapping around
if necessary, with AC3 following ACO. If ACS is equal
to ACD, only one word is popped and it is placed in
ACS.

The stack pointer is decremented by the number of
accumulators popped and the frame pointer is
unchanged. A check for underflow is made only after
the entire pop operation is done.

III- 50

POP 014-000616-00

Pop Block

POPR

Returns control from a SY8tem Call routine or an 110
interrupt handler that does not use the stack change
facility of the Vector instruction.

Fi ve words are popped off the stack and placed in
predetermined locations. The words popped and their
destinations are as follows:

STACK POINTER
AFTFR POP

BLOCK

STACK POINTER
BEFORE POP

BLOCK

DG-00607

ACO

ACl

AC2

~ ___ 5th WORD
POPPED

1st WORD
1_'----- POPPED

Sequential operation is continued with the word
addressed by the updated value of the program
counter.

NOTE: If the I/O handler U8e8 the 8tack change
facility of the Vector on Interrupting Device Code
in8truction, do not U8e the Pop Block in8truction.
U8e the Restore in8truction in8tead.

PSH

Pop PC And Jump

POPJ

Data General Corporation

Pops the top word off the stack and places it in the
program counter. Sequential operation continues
with the word addressed by the updated value of the
program counter.

Push Multiple Accumulators

PSH aCB,acd

Pushes the contents of 1 to 4 accumulators onto the
stack.

The set of accumulators from ACS through ACD is
pushed onto the stack. The accumulators are pushed
in ascending order, starting with the AC specified by
ACS and continuing up through the AC specified by
ACD, wrapping around if necessary, with ACO
following AC3. The contents of the accumulators
remain unchanged. If ACS equals ACD, only ACS is
pushed.

The stack pointer is incremented by the number of
accumulators pushed and the frame pointer is
unchanged. A check for overflow is made only after
the entire push operation finishes.

111- 51

014-000616-00

ECLIPSE C/150 INSTRUCTIONS

Push Jump

PSHJ [@ldisplacement[,indexl

Pushes the address of the next sequential instruction
onto the stack, computes the effective address, E, and
places it in the program counter. Sequential
operation continues with the word addressed by the
updated value of the program counter.

Push Return Address

PSHR

Pushes the address of this instruction plus 2 onto the
stack.

Restore

RSTR

Returns control from certain types of 110 interrupts.

Pops nine words off the stack and places them in
predetermined locations. The words popped and their
destinations are as follows:

ST ACK POINTER

STACK
POINTER
FRAME

POINTER
STACK
LIMIT

STACK
FAULT

ACO

AC1

AC2

BEFORE RESTORE ----il~ ~----,=-=--~;;...;;;",;. _..,..

DG-00606

Sequential operation continues with the word
addressed by the updated value of the program
counter.

NOTE: Use the Restore instruction to return
control to the program only if the I/O interrupt
handler uses the stack change facility of the
Vector on Interrupting Device Code instruction.

The Restore instruction does not check for stack
underflow.

111- 52

014-000616-00 RSTR

Return

RTN

Returns control from subroutines that issue a Save
instruction at their entry points.

The contents of the frame pointer are placed in the
stack pointer and a Pop Block instruction is executed.
The popped value of AC3 is placed in the frame
counter.

SAVE

Save

SAVE

Data General Corporation

Saves the information required by the Return
instruction.

A return block is pushed onto the stack. After the
fifth word of the return block is pushed, the value of
the stack pointer is placed in the frame pointer and
in AC3. The 16-bit unsigned integer (called the frame
size) contained in the immediate field is added to the
stack pointer. The format of the five words pushed is
as follows:

WORD PUSHED CONTENTS

1 ACO
2 AC1
3 AC2
4 Frame pointer before the save
5 Bit 0 = carry bit

Bits 1-15 = bits 1-15 of AC3

The Save instruction allocates a portion of the stack
for use by the procedure which executed the Save .
The value of the frame size determines the number of
words in this stack area. This portion of the stack
will not normally be accessed by push and pop
operations, but will be used by the procedure for
temporary storage of variables, counters, etc. The
frame pointer acts as the reference point for this
storage area.

Before execution, the Save instruction checks for
stack overflow. If executing the instruction would
result in a stack overflow, Save transfers control to
the stack fault routine. The program counter in the
fault return block contains the address of the Save
instruction.

Use the Save instruction with the Jump to Subroutine
instruction, which places the return value of the
program counter in AC3. Save then pushes the return
value (contents of AC3) into bits 1-15 of the fifth
word pushed.

III- 53

014-000616-00

Subtract Immediate

S81 n,ac

Subtracts an unsigned integer in the range 1-4 from
the contents of an accumulator.

The contents of the immediate field N, plus 1 are
subtracted from the unsigned 16-bit number
contained in the specified AC and the result is placed
in ACD. The carry bit remains unchanged.

NOTE: The assembler takes the coded value of n
and subtracts one from it before placing it in the
immediate field. Therefore code the exact value
you wish to subtract.

Example - Assume that AC2 contains 0000038' After
the instruction S81 4,2 is executed, AC2 contains
1777778 and carry bit remains unchanged.

Data General Corporation

Skip If ACS Greater Than Or Equal to ACD

SGE aC8,acd

Compares two signed integers in two accumulators
and skips if the first is greater than or equal to the
second.

The signed two's complement numbers in ACS and
ACD are algebraically compared. If the number in
ACS is greater than or equal to the number in ACD,
the next sequential word is skipped. The contents of
ACS and ACD remain unchanged.

NOTE: The Skip If ACS Greater Than ACD and
Skip If ACS Greater Than Or Equal To ACD
instructions treat the contents of the specified
accumulators as signed, two's complement
integers. To compare unsigned integers, use the
Subtract and Add complement instructions.

Skip If ACS Greater Than ACD

SGT aC8,acd

Compares two signed integers in two accumulators
and skips if the first is greater than the second.

The signed, two's complement numbers in ACS and
ACD are algebraically compared. If the number in
ACS is greater than the number in ACD, the next
sequential word is skipped. The contents of ACS and
ACD remain unchanged.

111- 54

SGT 014-000616-0~

ECLIPSE C/150 INSTRUCTIONS

Skip On Non-Zero Bit

SNB aCB,acd

The two accumulators form a bit pointer. If the
addressed bit is 1, the next sequential word is
skipped.

Forms a 32-bit bit pointer from the contents of ACS
and ACD. ACS contains the high-order 16 bits and
ACD contains the low-order 16 bits of the bit pointer.
If ACS and ACD are specified as the same
accumulator, the instruction treats the accumulator
contents as the low-order 16 bits of the bit pointer
and assumes the high-order 16 bits are O.

If the addressed bit in memory is 1, the next
sequential word is skipped. The contents of ACS and
ACD remain unchanged.

Store Accumulator

S1 A ac, [@ ldiBplacementl, indexl

Stores the contents of an accumulator into a memory
location.

Places the contents of the specified accumulator in
the word addressed by the effective address, E. The
previous contents of the location addressed by E are
lost. The contents of the specified accumulator
remain unchanged.

Store Byte

STB aC8,acd

Moves the right byte of one accumulator to a byte in
memory. The second accumulator contains the byte
pointer.

Places bits 8-15 of ACD in the byte addressed by the
byte pointer contained in ACS. The contents of ACS
and ACD remain unchanged.

111- 55

014-000616-00 ST8

Store Integer

STI fpac

Under the control of accumulators AC1 and AC3,
translates the contents of the specified FP AC to an
integer of the specified type and stores it, right­
justified, in memory, beginning at the specified
location. The instruction leaves the floating point
number unchanged in the FP AC, and destroys the
previous contents of memory at the specified

. location (s).

AC1 must contain the data-type indicator describing
the integer.

AC3 must contain a byte pointer which is the address
of the high-order byte of the number in memory.

Upon successful completion, the instruction leaves
accumulators ACO and AC1 unchanged. AC2 contains
the original contents of AC~ and AC3 contains a byte
pointer which is the address of the next byte after the
destination field.

NOTES: If the number in the specified FPA C has
any fractional part, the result of the instruction
is undefined. Use the Integerize instruction to
clear any fractional part.

If the destination field cannot contain the entire
number being stored, high-order digits are
discarded until the number will fit into the
destination. The remaining low-order digits are
stored and CaTTY is set to 1.

For data types 0, 1, 2, 3, 4, and 5, if the number
being stored will not fill the destination field, the
high-order bytes to the right of the sign are set to
O.

For data type 6, if the number being stored will
not fill the destination field, the sign bit is
extended to the left to fill the field.

For data type 7, if the number being stored will
not fill the destination field, the low-order bytes
are set to O.

Store Integer Extended

STIX

Data General Corporation

Converts the contents of the four FP AC's to integer
form and uses the low-order 8 digits of each to form a
32-digit integer. The instruction stores this integer,
right-justified, in memory beginning at the specified
location. The sign of the integer is the logical OR of
the signs of all four FP AC's. The previous contents of
the addressed memory locations are lost. Sets the
carry bit to O. The contents of the FPAC's remain
unchanged. The condition codes in the FPSR are
unpredictable.

AC1 must contain the data-type indicator describing
the form of the in memory.

AC3 must contain a byte pointer which is the address
of the high-order byte of the destination field in
memory.

Upon successful termination, the contents of ACO are
undefined; the contents of AC1 remain unchanged;
AC2 contains the original contents of AC3; and AC3
contains a byte pointer which is the address of the
next byte after the destination field.

NOTES: If the destination field is not large enough
to contain the number being stored, the
instruction disregards high-order digits until the
number will fit in the destination. The instruction
stores low-order digits remaining and sets the
caTTY bit to 1.

For data types 0, 1, 2, 3, 4, and 5, if the number
being stored will not fill the destination field, the
instruction sets the high-order bytes to O.

For data type 6, if the number being stored will
not fill the destination field, the instruction
extends the sign bit to the left to fill the field.

IIl- 56

STIX 014-000616~OO

ECLIPSE C/150 INSTRUCTIONS

Subtract

SU8lc]lsh]l#] acs,acdl,skip]

Performs unsigned integer subtraction and
complements the carry bit if appropriate.

Initializes the carry bit to its specified value. The
instruction subtracts the unsigned, i6-bit number in
ACS from the unsigned, i6-bit number in ACD by
taking the two's complement of the number in ACS
and adding it to the number in ACD. The instruction
places the result of the addition in the shifter. If the
operation produces a carry of i out of the high-order
bit, the instruction complements the carry bit. The
instruction performs the specified shift operation and
places the result of the shift in ACD if the no-load bit
is O. If the skip condition is true, the instruction skips
the next sequential word.

NOTE: If the number in A CS is less than or equal
to the number in A CD, the instruction
complements the carry bit.

014-000616-00

System Call

SYC acs,acd

Pushes a return block and indirectly places the
address of the system call handler in the program
counter.

If a user map is enabled, the instruction disables it
and pushes a return block onto the stack. The
program counter in the return block points to the
instruction immediately following the System call
instruction. After pushing the return block, the
instruction executed a jump indirect to location 2. If
this instruction disabled a user map, then I/O
interrupts cannot occur between the time the System
call instruction is executed and the time the
instruction pointed to by the contents of location 2 is
executed.

III- 57

NOTE: If both accumulators are specified as A CO,
the instruction does not push a return block onto
the stack. The contents of A CO remain
unchanged. If either of the accumulators
specified is not A CO, then the instruction takes
no special action. The contents of the specified
accumulators remain unchanged.

The assembler recognizes the mnemonic SCL as
equivalent to SYC 1,1.

The assembler recognizes the mnemonic SVC as
equivalent to SYC 0,0.

SYC

Skip On Zero Bit

SZB aC8,acd

The two accumulators form a bit pointer. If the
addressed bit is zero, the next sequential word is
skipped.

Forms a 32-bit bit pointer from the contents of ACS
and ACD. ACS contains the high-order 16 bits and
ACD contains the low-order '16 bits of the bit pointer.
If ACS and ACD are specified as the same
accumulator, the instruction treats the accumulator
contents as the low-order 16 bits of the bit pointer
and assumes the high-order 16 bits are O.

If the addressed bit in memory is 0, the next
sequential word is skipped. The contents of ACS and
ACD remain unchanged.

Data General Corporation

Skip On Zero Bit And Set To One

SZBO aC8,acd

The two accumulators form a bit pointer. If the
addressed bit is 0, the instruction skips the next
sequential word. The instruction sets the addressed
bit to 1.

Forms a 32-bit bit pointer from the contents of ACS
and ACD. ACS contains the high-order 16 bits and
ACD contains the low-order 16 bits of the bit pointer.
If ACS and ACD are specified as the same
accumulator, the instruction treats the accumulator
contents as the low-order 16 bits of the bit pointer
and assumes the high-order 16 bits are O.

The instruction sets the addressed bit in memory to
1. If the bit was 0 before-being set to 1, the instruction
skips the next sequential word. The contents of ACS
and ACD remain unchanged.

NOTE: This instruction facilitates the use of bit
maps for such purposes as allocation of facilities
(memory blocks, I/O devices, etc.) to several
processes, or tasks, that may interrupt one
another, or in a multiprocessor environment. The
bit is tested and set to 1 in one memory cycle.

111- 58

SZBO 014-000616-00

ECLIPSE C/1S0 INSTRUCTIONS

Exchange Accumulators

XCH aC8,acd

Exchanges the contents of two accumulators.

Places the original contents of ACS in ACD and the
original contents of ACD in ACS.

014-000616-00

Execute

XCT ac

Executes the instruction contained in AC as if it were
in main memory in the location occupied by the
Execute instruction. If the instruction in AC is an
Execute instruction which executes the instruction in
AC, the processor is placed in a one-instruction loop.
The Stop switch on the console will not stop the
processor, but the Reset switch will.

Because of the possibility of AC containing an
Execute instruction, this instruction is interruptable.
An I/O interrupt can occur immediately prior to each
time the instruction in AC is executed. If an I/O
interrupt does occur, the program counter in the
return block pushed on the system stack points to the
Execute instruction in main memory. This capability
to execute an Execute instruction gives you a wait for
I/O interrupt instruction.

III- 59

NOTE: If the 8pecified accumulator contain8 the
fir8t word of a two-word in8truction, the word
following the XCT in8truction i8 u8ed a8 the
8econd word. Normal 8equential operation then
continue8 from the 8econd word after the XCT

in8truction.

The re8ult8 of XCT are undefined if the 8pecified
accumulator contain8 an in8truction that
modifie8 that 8ame accumulator. For example:

LOA O,TOT
XCT 0 ;UNDEFINED
JMP ON

TOT: ADD 1,0

XCT

Extended Operation

XOP aCB,acd,operation #

Pushes a return block onto the stack. Places the
address in the stack of ACS into AC2; places the
address in the stack of ACD into AC3. Memory
location 448 must contain the XOP origin address, the
starting address of a 3210 word table of addresses.
These addresses are the starting location of the
various XOP operations.

Adds the operation number in the XOP instruction to
the XOP origin address to produce the address of a
word in the XOP table. The instruction fetches that
word and treats it as the intermediate address in the
effective address· calculation. After the indirection
chain, if any, has been followed, the instruction
places the effective address in the program counter.
The contents of ACO, AC1, and the XOP origin
address remain unchanged.

The format of the return block pushed by the XOP
instruction is as follows:

ST ACK POINTER
BEFORE XOP

STACK POINTER
AFTER XOP

DG-0056'1

This return block is configured so that the XOP
procedure can return control to the calling program
via the Pop Block instruction.

Data General Corporation

Alternate Extended Operation

XOP1 aCB,acd,operation #

This instruction operates exactly like the Extended
Operation instruction except that it adds 3210 to the
entry number before it adds the entry number to the
XOP origin address. In addition, it can specify only 16
entry locations.

Exclusive OR

XOR aCB,acd

Forms the logical exclusive OR of the contents of ACS
and the contents of ACD and places the result in
ACD. Sets a bit position in the result to 1 if the
corresponding bit positions in the two operands are
unlike; otherwise, the instruction sets result bit to O.
The contents of ACS remain unchanged.

111- 60

XOR 014-000616-00

ECLIPSE C/150 INSTRUCTIONS

Exclusive OR Immediate

XORI i,ac

Forms the logical exclusive OR of the contents of the
immediate field and the contents of the specified AC
and places the result in the specified AC.

014-000616-00

III- 61

XORI

Chapter IV
ECLIPSE C/150 I/O INSTRUCTIONS

This chapter lists the ECLIPSE C/150 I/O
instructions intended for a specific device such as the
Map, the BMC, and special CPU instructions. We
have arranged these instructions in alphabetical
order according to mnemonics as recognized by the
assembler.

For each instruction we include:

• the mnemonic recognized by the assembler

• the bit format required

• the format of any arguments involved

• the functional description of each instruction

Some instructions can only be executed by the host
processor, while others can also be executed by the
I/O processor and/or the Data Control Unit. A label
with each instruction indicates which processors can
execute that instruction.

In general, these I/O instructions can be executed
only with Lef mode and I/O protection disabled. See
the Memory Allocation and Protection section in
Chapter II for a discussion of Lef mode and I/O
protection.

014-000616-00

CODING AIDS

We use certain conventions throughout this chapter
to help you properly code each instruction for Data
General's assembler. Briefly, they are:

IV-1

[] [] Square brackets indicate that the enclosed
symbol (e.g., [,skip] is an optional operand or
mnemonic. Code it only if you want to specify
the option.

BOLD Code operands or mnemonics printed in
boldface exactly as shown. For example, code
the mnemonic for the Move instruction: MOV.

italic For each operand or mnemonic in italics,
replace the item with a number or symbol that
provides the assembler value you need for that
item (e.g., the proper accumulator number, an
address, etc.).

We use the following abbreviations throughout this
chapter:

for F Device Flag Command

AGor AC Accumulator

CODING AIDS

GENERAL 1/0 INSTRUCTIONS

You can use the following general 110 instructions
with any JJO device, using the appropriate device
code.

Data In A

DIA device

Transfers data from the A buffer of an 110 device to
an accumulator.

The contents of the A input buffer in the specified
device are placed in the specified AC. After the data
transfer, the Busy and Done flags are set according to
the function specified by F.

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.
Bits in the AC that do not receive data are set to O.

GENERAL 1/0 INSTRUCTIONS

Data General Corporation

Data in B

DIRlf] ac,device

Transfers data from the B buffer of an JJO device to
an accumulator.

Places the contents of the B input buffer in the
specified device in the specified AC. After the data
transfer, sets the Busy and Done flags according to
the function specified by F.

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.
Bits in the AC that do not receive data are set to O.

Data In C

01 elf] ac,device

Transfers data from the C buffer of an JJO device to
an accumulator.

Places the contents of the C input buffer in the
specified device in the specified AC. After the data
transfer, sets the Busy and Done flags according to
the specified F.

IV-2

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.
Bits in the AC that do not receive data are set to O.

014-000616-00

ECLIPSE C/150 1/0 INSTRUCTIONS

DataOutA

DOAffJ ac,device

Transfers data from an accumulator to the A buffer
of an 110 device.

Places the contents of the specified AC in the A
output buffer of the specified device. After the data
transfer, sets the Busy and Done flags according to
the function specified by F. The contents of the
specified AC remain unchanged.

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.

Data Out B

DORff] ac,device

Transfers data from an accumulator to the B buffer of
an 110 device.

Places the contents of the specified AC in the B
output buffer of the specified device. After the data
transfer, sets the Busy and Done flags according to
the function specified by F. The contents of the
specified AC remain unchanged.

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.

014-000616-00

Data Out C

DOC [fJ ac,device

Transfers data from an accumulator to the C buffer of
an 110 device.

Places the contents of the specified AC in the C
output buffer of the specified device. After the data
transfer, sets the Busy and Done flags according to
the function specified by F. The contents of the
specified AC remain unchanged.

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.

No 1/0 Transfer

NIO lfJ device

Used when a Busy or Done flag must be changed with
no other operation taking place.

IV- 3

Sets the Busy and Done flags in the specified device
according to the function specified by F.

GENERAL 1/0 INSTRUCTIONS

1/0 Skip

SKP It] device

If the test condition specified by T is true, the
instruction skips the next sequential word.

CENTRAL PROCESSOR

Data General Corporation

CENTRAL PROCESSOR
Device Code - 778 <Primary)

Priority Mask Bit - None

Device Flag Commands

Device flag commands to the CPU determine whether
the current program can be interrupted by a
program interrupt request. When the interrupt
enable flag is set to 1, the program can be
interrupted. When the interrupt enable flag is set to
0, the program cannot be interrupted. The CPU
interrupt enable flag is controlled by the device flag
commands as follows:

(=5 Sets the interrupt enable flag to 1.

(=C Sets the interrupt enable flag to O.

(=p If not an INT A instruction no effect. If the
instruction is an INT A instruction,
interprets the INT A instruction as the first
word of a Vector instruction.

IOR5T Sets the interrupt enable flag to O.

Read Switches

READS
DIAlf]

ac
ac,CPU

Places the contents of the console switches into an
accumulator.

Places the setting of the console data switches in the
specified accumulator. Mer the transfer, sets the
Interrupt On flag according to the function specified
byF.

IV-4

014-000616-00

ECLIPSE C/150 I/O INSTRUCTIONS

Interrupt Acknowledge

INTA
01 R ff] ac,CPU

Returns device code of an interrupting device.

Places the six-bit device code of that device
requesting an interrupt which is physically closest to
the CPU on the 110 bus in bits 10-15 of the specified
accumulator; sets bits 0-9 to O. After the transfer, sets
the Interrupt On flag according to the function
specified by F.

Reset

IORST
DICff] ac,CPU

Sets all Busy and Done flags and the priority mask to
O.

Sets the Busy and Done flags in all 110 devices to O.
Sets the 16-bit priority mask to O. Sets the Interrupt
On flag according to the function specified by F.

NOTE: The a88embler recognize8 the mnemonic
10RST a8 equivalent to the in8truction DICC o,CPU.

If the mnemonic DlC i8 u8ed to perform thi8
function, you mU8t code an accumulator to avoid
a88embly error8. During execution, the
accumulator field i8 ignored and the content8 of
the accumulator remain unchanged.

014-000616-00

Mask Out

MSKO
DORff] ac,CPU

Sets the priority mask.

Places the contents of the specified accumulator in
the priority mask. After the transfer, sets the
Interrupt On flag according to the function specified
by F. The contents of the specified AC remain
unchanged.

NOTE: A 1 in any bit di8able8 interrupt reque8t8
at device8 which U8e that bit a8 a ma8k.

NOTE: Do not U8e thi8 in8truction when interrupt8
are enabled.

Halt

HALTA ac
DOC ff] ac,CPU

Stops the processor.

Sets the Interrupt On flag according to the function
specified by F, then stops the processor. The data
lights display the contents of the specified
accumulator.

IV- 5

NOTE: The a88embler recognize8 the mnemonic
HALT a8 equivalent to the in8truction HALT A O.

CENTRAL PROCESSOR

Interrupt Disable

INTDS
NIOC CPU

Sets Interrupt On flag to O.

Interrupt Enable

INTEN
NIOS CPU

Sets Interrupt On flag to 1.

If the instruction changes the state of the Interrupt
On flag, the CPU allows one more instruction to
execute before the first 110 interrupt can occur.
However, if the instruction is interruptible, then
interrupts can occur as soon as the instruction begins
to execute.

CENTRAL PROCESSOR

IV-6

Data General Corporation

CPU Skip

SKPltlCPU

If the test condition specified by T is true, the next
sequential word is skipped.

See Programmer's Reference-Peripherals (DGC No.
015-000021) for a complete set of examples on using
the interrupt system.

CPU Skip If Power Fail Flag Is One

SKPDN CPU

If the Power Fail flag is 1 (i.e., power is failing), the
instruction skips the next sequential word.

014-000616-00

ECLIPSE C/1S0 I/O INSTRUCTIONS

CPU Skip If Power Fail Flag Is Zero

SKPDZ CPU

If the Power Fail flag is 0 (Le., power is not failing>,
the instruction skips the next sequential word.

014-000616-00

IV- 7

CENTRAL PROCESSOR

Vector On Interrupting Device Code

VCT [@ ldisplacement[,indexl

Returns the device code of the interrupting device
and uses that code as an index into a table. The value
found in the table is then used as a pointer to the
appropriate interrupt handler (Mode A) or as a
pointer to another table which points to the
interrupt handler and contains a new priority mask
(Modes B through E). The instruction can also save
the state of the machine by pushing various words
onto the stack, creating a new vector stack, and
setting up a priority structure.

The accompanying flow chart (see opposite page) is a
complete diagram of the operation of the Vector
instruction. Note that all modes use the vector table
to find the next address used. Mode A uses the vector
table entry as the address of the interrupt handler
and passes control to it immediately. Modes B
through E all use the vector table address as a pointer
into a device control table (DCT), where the address
of the interrupt handler is found, along with a new
priority mask.

Three control bits determine the mode of the Vector
instruction which will be used. Their names and
locations are:

Direct Bit - Bit 0 of the selected vector table entry;

Stack Change Bit - Bit 0 of the second word of the
Vector instruction;

Push Bit - Bit 0 of the first word of the selected device
control table.

The value of these bits determines the mode in which
the Vectori.nstruction operates, as shown following:

DIRECT STACK PUSH MODE

0 don't don't A
care care

1 0 0 B
1 0 1 C
1 1 0 0
1 1 1 E

CENTRAL PROCESSOR

Data General Corporation

The functions performed by the Vector instruction
within each mode are summarized here:

MODE FUNCTION

A Uses device code returned by INT A as table entry to
find address of interrupt handler.

B Mode A plus: resets priority mask (saving old one)
and reenables interrupts.

C Mode B plus: pushes a normal 5-word return block
(4 ACs, the program counter, and the carry bit) onto
the stack.

0 Mode B plus: sets up a new vector stack for use by
the interrupt handler and saves the old stack
parameters.

E Mode C plus Mode D.

In the following paragraphs, we will consider each
mode and follow through the process step-by-step.

Common Process

The initial steps taken by the Vector instruction are
done regardless of the mode being used. The device
code of the interrupting device is returned. This code
is added to the address of the start of the vector table,
which is found in the displacement field (bits 1-15 of
the second instruction word), to get a new address
within the vector table. The word at this new
location is fetched and its bit 0 (the direct bit) is
examined.

Mode A

If the direct bit is 0, mode A is used and the state of
the other control bits does not matter. Bits 1-15 of the
fetched vector table entry are used as the address of
the interrupt handler for the interrupting device.
Control is immediately transferred to the interrupt
handler.

IV- 8

Mode 8

Modes B through E perform different functions
initially, but use a common second part. We discuss
the common second part after discussing each Part I
separately.

014-000616-00

ECLIPSE C/150 I/O INSTRUCTIONS

A

OG-005?O

014-000616-00

FfTCH THE SECOND
WORD OF THE vcr
INSTRUCTION BIT
o IS THE STACK
CHANGE BIT BITS
1-15 CONTAIN THE
ADDRESS OF THE
BEGINNING OF THE
VECTOR TABLE

ADD THE CODE
RETURNED ABOVE
TO THE ADDRESS OF THE
VECTOR TABLE (DISPLACEMENT

FIELD) AND FETCH THE
WORD AT THAT
LOCA TION BIT 0 IS
THE "DIRECT BIT"

BITS 1-15 OF
THE FETCHED
VECTOR TABLE
ENTRY CONTAINS
THE ADDRESS OF
THE OCT

PLACE CONTENTS OF
LOCA TION 4 IN
STACK POINTER
PLACE CONTENTS OF
LOCA TlON 6 IN
STACK LIMIT
PLACE CONTENTS OF
LOCA TlON 7 IN
STACK FAUL T
NOTE. FRAME
POINTER IS DESTROYED
AND THE CONTENTS
ARE UNPREDICTABLE

PUSH OLD CONTENTS
OF LOCATIONS

40-438

YES

MODE A

BITS 1 -1 5 OF THE
FETCHED VECTOR
TABLE ENTRY CON­
T AIN THE ADDRESS
OF THE DEVICE
INTERRUPT ROUTINE

TRANSFER CONTROL
TO THE DEVICE
INTERRUPT ROUTINE
BY PLACING BITS
1 -1 5 OF THE FETCHED
VECTOR TABLE ENTRY
IN THE PROGRAM COUNTER

IV- 9

MODES B. 0

ALL
MODES

NO

FETCH THE FIRST WORD
OF THE OCT BIT 0 IS
THE "PUSH BIT" BITS
1 - 1 5 C ONT AIN THE
ADDRESS OF THE DEVICE
INTERRUPT ROUTINE

PUSH STANDARD
RETURN BLOCK
BITS 1-15 OF
LAST WORD PUSHED
CONTAIN BITS 1-15 OF
PHYSICAL LOCA TION 0

PUSH THE CURRENT
INTERRUPT MASK
(LOCATION 5) ONTO
THE STACK

PLACE THE LOGICAL
OR OF THE CURRENT
INTERRUPT MASK AND
THE SECOND WORD
OF THE OCT IN ACO

PLACE THE CONTENTS
OF ACO IN THE CURRENT
INTERRUPT MASK
(LOCATION 5)

DO A MASK OUT
FROM ACO AND
ENABLE INTERRUPTS
(DOBS O.CPU)

PLACE ADDRESS
OF DEVICE INTERRUPT
ROUTINE IN
PROGRAM COUNTER

YES

CONTINUE SEQUENTIAL
OPERA TION WITH THE
WORD ADDRESSED
BY THE PROGRAM

TRANSFER
CONTROL TO
STACK FAULT
ROUTINE

CENTRAL PROCESSOR

Mode B - Part I

Mode B is used if the direct bit is 1 and the other two
control bits are O. The address in the vector table is
now used as the location of the device control table
(DCT) for the interrupting device. Bits 1-15 of the
first word of the DCT contain the address of the
desired interrupt handler (bit 0 is the push bit). The
second word of the DCT is used to construct the new
interrupt priority mask, and succeeding words (if
any) contain information to be used by the device
interrupt handler.

Mode C - Part I

If the direct bit and push bit are both 1, and the stack
change bit is 0, mode C is used. The mode B functions
are performed, and in addition, a standard 5-word
return block is pushed onto the stack. This block
consists of the contents of the four accumulators, the
carry bit, and the contents of physical location 0 (the
program counter return value).

Mode D - Part I

Mode D is used if the direct bit and the stack change
bits are 1 and the push bit is O. The mode B functions
are performed, and in addition, a new stack is set up
for the interrupt handler and the old contents of
physical locations 40-438 (the user stack control
words) are pushed onto the new stack.

Mode E - Part I

Mode E combines the functions of modes C and
D. That is, the functions of mode B are performed, a
new stack is set up, and a 5-word return block and
the old stack control words are pushed onto the
(new) stack.

Modes B through E - Part II

Modes B through E use the same procedure for the
remainder of the Vector instruction. The current
priority mask is pushed onto the stack. A Mask Out
instruction is then perfo~med, using the logical OR of
the current mask and the second word of the DCT.
The Interrupt On flag is set to 1 and control passes to
the selected device interrupt handler. Note that the
CPU permits one more instruction to execute (in this
case, the first instruction of the interrupt handler)
before the next 110 interrupt can occur.

Data General Corporation

ERCC ERROR CORRECTION
Device Code - 28 (Primary)

Priority Mask Bit - None

Device Flag Commands

(=5 Sets the interrupt request flag and the Done
flag to O.

(=C No effect.

(=p No effect.

IOR5T Sets the interrupt request flag, the Done flag,
and the ERCC control flags (bits 14 and 15)
to 0; disables error checking and correction.

Read Memory Fault Address

DIAlfl ac,ERCC

Places the complement of bits 12-15 of the physical
address of the memory location in error in bits 12-15
of the specified accumulator. Places the complement
of bits 0-3 of that address in bits 0-3 of the
accumulator. The previous contents of the specified
AC are lost. The format of the specified AC is as
follows:

PA 0-3 , I PA 12-15 I
o 1 1 1 2 1 3 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 121 13 1 141 15

BITS NAME CONTENTS or FUNCTION

0-3 PAO-3 Complement of bits 0-3 of the
physical address of the memory
location in error.

4-11 --- Reserved for future use.

12-15 PA12-15 Complement of bits 12-15 of the
physical address of the memory
location in error.

IV-10

ERCC ERROR CORRECTION 014-000616-00

ECLIPSE C/150 I/O INSTRUCTIONS

Read Memory Fault Code

DIBlf] ac,ERCC

Places a 5-bit error code in bits 0-4 of the specified
accumulator. This code identifies the corrected bit.
Sets bits 5-11 of the accumulator to 0 and places the
complement of the four high-order bits of the
physical address of the failing location in bits 12-15.
The accumulator format is as follows:

BITS NAME CONTENTS or FUNCTION

0-4 Code A 5-bit code identifying which bit
has an error

00000 No error
00001 Check bit 4
00010 Check bit 3
00011 Data bit 0
00100 Check bit 2
00101 Data bit 1
00110 Multiple bit error
00111 Data bit 3

01000 Check bit 1
01001 Data bit 4
01010 All 21 bits in

memory are 1
01011 Data bit 6
01100 Data bit 7
01101 Data bit 8
01110 Data bit 9
01111 Multiple bit error

10000 Check bit 0
10001 Data bit 11
10010 Data bit 12
10011 Data bit 13
10100 Data bit 14
10101 All 21 bits in

memory are 0
10110 Data bit 2
10111 Multiple bit error

11000 Data bit 10
11001 Multiple bit error
11010 Data bit 5
11011 Multiple bit error
11100 Data bit 15
11101 Multiple bit error
11110 Multiple bit error
11111 Multiple bit error

5-11 ---- Reserved for future use.

12-15 PA XO-X3 Complement of bits XO-X3 of the
physical address of the memory
location in error.

014-000616-00

Enable ERCC

DOA [fl ac,ERCC

Enables the ERCC option according to the setting of
bits 14-15 of the specified AC. Ignores bits 0-13 of the
specified AC. The contents of the specified AC remain
unchanged. The format of the specified AC is as
follows:

I I ERCC I
o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12113 14 I 15

BITS NAME CONTENTS or FUNCTION

0-13 ---- Reserved for future use
14-15 ERCC Control the ERCC feature as follows:

00 Disable checking and correction;
write valid check field.

01 Disable checking and correction;
for core memory, write
check field with 1111;
for semiconductor memory,
do not alter the check field.

10 Enable checking and correction; do
not interrupt on memory error.

11 Enable checking and correction;
interrupt on memory error.

IV- 11

ERCC ERROR CORRECTION

MEMORY ALLOCATION and
PROTECTION

Device Code - 38 (Primary)

Priority Mask Bit - None

Device Flag Commands

f=s No effect.

f=c No effect.

f=p Enables Map Single Cycle.

IORST Disables Map.

MEMORY ALLOCATION and PROTECTION

Load Map

LMP

Data General Corporation

Under control of AC1 and AC2, loads successive
words from memory into the MAP where they are
used to define a user or data channel map.

AC1 must contain an unsigned integer, which is the
number of words to be loaded into the MAP. Bits 1-15
of AC2 must contain the address of the first word to
be loaded. If bit 0 of AC2 is 1, the instruction follows
the indirection chain and places the resultant
effective address in AC2. ACO and AC3 are ignored
and their contents remain unchanged.

For each word loaded, the instruction decrements the
count in AC1 by one and increments the source
address in AC2 by 1. Upon completion of the
instruction, AC1 contains 0, and AC2 contains the
address of the word following the last word loaded.

This instruction is interruptible in the same manner
as the Block add and move instruction. If you issue
this instruction while in mapped mode, with I/O
protection enabled, the map will not be altered. AC1
and AC2 will be used and their contents modified as
described above. No I/O trap will occur.

The words loaded into the MAP define the address
translation functions for the various user and data
channel maps. The contents of the MAP field (bits 6-8)
of the MAP status register determine which map is
affected by the Load map instruction. You can alter
this field using either the Load map status or the
Initiate page check instruction.

The format of the words loaded into the MAP is as
follows:

. BITS NAME CONTENTS or FUNCTION

IV-12

0 WP Unused for data channel maps;
write protect for user maps.

1-5 LOGICAL Logical page number.
6-15 PHYSICAL Physical page number.

NOTE: Declare a logical page invalid by setting
the Write Protect bit to 1 and all of bits 6-15 to 1.

014-000616-00

ECLIPSE CI150 I/O INSTRUCTIONS

Read Map Status

DIAff] ac,MAP

Reads the status of the current map.

Places the contents of the MAP status register in the
specified AC. The previous contents of the specified
AC are lost. The format of the information placed in
the specified AC is as follows:

BITS NAME CONTENTS or FUNCTION

0-1 --- Reserved for future use.

2 I/O If 1, the last protection fault was an I/O
protection fault.

3 WP If 1, the last protection fault was a write
protection fault.

4 IND If 1, the last protection fault was an
indirect protection fault.

5 Single If 1, the last map reference was a
Cycle Map Single Cycle instruction.

6-8 Map Indicates which map will be loaded by
next Load map instruction as follows:
000 User A
001 Reserved for

future use
010 User B
011 Reserved for

future use
100 Data channel A
101 Data channel C
110 Data channel B
111 Data channel D

9 LEF If 1, the Load Effective Address
instruction was enabled by the last
Load Map Status instruction.

10 I/O If 1, I/O protection was enabled by the
last Load Map Status instruction.

11 WP If 1, write protection was enabled by
the last Load Map Status instruction

12 IND If 1, indirect protection was enabled by
the last Load Map Status instruction.

13 A/B If 0, the last Load Map Status
instruction enabled map A.
If 1, the last Load Map Status
instruction enabled user map B.

14 DCH If 1, the mapping of the data channel
Enable addresses is enabled.

15 User If 1, the last I/O interrupt occurred
Mode while in user mode.

014-000616-00

Page Check

ole ac,MAP

Provides the identity and some characteristics of the
physical page corresponding to the logical page
identified by the immediately preceding Initiate Page
Check instruction.

Places the number of the physical page which
corresponds to the logical page specified by the
preceding Initiate Page Check or Load Map Status
instruction in bits 6-15 of the specified AC. Places
additional information about this page in bits 0-3 and
destroys the previous contents of the AC. The format
of the information placed in the specified AC is as
follows:

BITS NAME CONTENTS or FUNCTION

0 WP The write protect bit for the logical
page which corresponds to the
physical page specified by bits 6-15.

1-3 Map The map which was used to perform
the translation between logical page
number and physical page number is as
follows:

000 User A
001 Reserved for

future use.
010 User B
011 Reserved for

future use.
100 Data channel A
101 Data channel C
110 Data channel B
111 Data channel D

4-5 --- Reserved for future use.

6-15 Physical The number of the physical page which
corresponds to the logical page
given in the preceding INITIATE PAGE
CHECK instruction. If all these bits
are 1, and WP (bit 0) is 1, then the
logical page is validity protected.

IV-13

MEMORY ALLOCATION and PROTECTION

Load Map Status

DOA ac,MAP

Defines the parameters of a new map.

Places the contents of the specified AC in the MAP
status register. The contents of the specified AC
remain unchanged. The format of the specified AC is
as follows:

BITS NAME CONTENTS or FUNCTION

0-5 --- Reserved for future use.

6-8 MAP Specify which map will be loaded by the
SEL next Load Map instruction as ~ollows:

000 User A
001 Reserved for future

use
010 User B
011 Reserved for future

use
100 Data channel A
101 Data channel C
110 Data channel B
111 Data channel 0

9 LEF If 1, the Load Effective Address
instruction will be enabled for the
next user

10 VO If 1, 1/0 protection will be enabled
for the next user

11 WP If 1, write protection will be enabled for
the next user

12 INO If 1, indirect protection will be enabled
for the next user

13 AlB If 0, the next user map enabled will be
that for user A
If 1, the next user map enabled will be
that for user B

14 DCH If 1, the mapping of data channel
Enable addresses will be enabled immediately

after this instruction

15 User If 1, mapping of CPU addresses will
Mode commence with the first memory

reference after the next indirect
reference or return type instruction
(POPB, POP), RTN, RSTR)

NOTE: If the Load Map Status instruction sets the User Enable bit to 1,
this inhibits the interrupt system and the MAP waits for either an
indirect reference or return type instruction. Either event releases the
interrupt system and allows the MAP to begin translating addresses
(using the user map specified by bit 13 of the MAP status register).
Address translation resumes (1) after the first level of the next
indirect reference; or (2) after the first Pop Block, Pop Jump, Return,
instruction that does not cause a stack fault.

Data General Corporation

Map Page 31

DOB ac,MAP

Specifies that mapping take place for a single page of
an unmapped address space. Mapping is always done
for locations 760008 through 777778 <logical page 31).
This is the only page which can be mapped when in
unmapped address space. You can use this instruction
to access a page of a user's memory space when in
unmapped mode.

Bits 6-15 of the specified AC are transferred to the
MAP. These bits specify a physical page number to
which logical page 31 will be mapped when in the
unmapped mode.

The contents of the specified AC remain unchanged.
The format of the specified AC is as follows:

I I PHYSICAL I
o 1 1 1 2 1 3 1 4 1 5 6 I 7 I 8 I 9 1 10 1 11 I 121 13 1 141 15

BITS NAME CONTENTS or FUNCTION

0-5 --- Reserved for future use.
6-15 PhYSical The number of the physical page

to which logical page 31 should
be mapped when in unmapped mode.

IV-14

MEMORY ALLOCATION and PROTECTION 014-000616-00

ECLIPSE CI150 I/O INSTRUCTIONS

Initiate Page Check

DOC ac,MAP

Identifies a logical page. The Page Check instruction
will find the corresponding physical page.

Transfers the contents of the specified AC to the
MAP for later use by the Page Check or Load Map
instruction. Leaves the contents of the specified AC
unchanged. The format of the specified AC is as
follows:

I I LOGICAL I
0112 1 314 1 5 1

MAP I I
6 1 7 , 8 9 1 10 , 11 I 121 13 I 14 I 15

BITS NAME CONTENTS or FUNCTION

0 --- Reserved for future use.

1-5 Logical Number of the logical block for which
Page the check is requested.

6-8 Map Specify which map should be used for
the check as follows:

000 User A
001 Reserved for

future use
010 User B
011 Reserved for

future use
100 Data channel A
101 Data channel C
110 Data channel B
111 Data channel D

9-15 --- Reserved for future use.

014-000616-00

Map Single Cycle

Disable User Mode

NIOP aC,MAP

Issued from unmapped mode, the instruction maps
one memory reference using the last user map; issued
from User mode with LEF mode and I/O protection
disabled, the instruction simply turns off the map,
returning it to unmapped mode. It is used by the
supervisor to access a user's memory space when only
one or two references are required. It is also used by a
privileged user to turn off memory mapping.

From unmapped mode - Enables the user map for one
memory reference. Maps the first memory reference
of the next LOA, ELOA, ST A or EST A instruction. After the
memory cycle is mapped, the instruction again
disables the user map.

NOTE: The interrupt system is disabled from the
beginning of the Map single cycle instruction until
after the next LOA, ELOA, ST A or EST A instruction.

From User mode - If LEF Mode and I/O protection is
disabled, this instruction turns off the MAP. All
subsequent memory references are unmapped until
the map is reactivated with a Load map status
instruction.

IV- 15

MEMORY ALLOCATION and PROTECTION

I
STOP
SWITCH

NAME

Exam!
ExamN

Dep/
DepN

St/
Cont

Rest!
Stp

AC
Dep/
Exam

Inst/
U Inst

PLoad
Exec

STATUS
LIGHTS

ADDRESS
LIGHT 1

DATA
LIGHT 1

AC
DEP/EXAM
SWITCHES

FUNCTION SWITCHES

POSITION FUNCTION

Up Loads PC with value of data switches. and
displays contents of that address. Also
fills MD register. To use while processor is
running, Address Compare switch must
be set to Mon.

Down Increments PC. and displays contents of
that address.

Up Deposits value in data switches at PC
Down address

Increments PC and deposits value in data
switches in that address.

Up Loads with value in data switches and
starts normal execution. Also fills MD
register.

Down Initiates normal operation from the current
state of the machine.

Up Sets to 0 all Busy and Done flags and
status lights. except Carry. ROM address
lights display 00028 .

Down Halts the CPU.

Up Loads the associated accumulator with
the value in the data switches.

Down Displays the contents of the associated
accumulator.

Up Executes one machine instruction then
halts the CPU.

Down Freezes the CPU after executing one
microinstruction. Address lights show
output of ALU.

Up Loads·bootstrap loader program. Data
switches 10-1 5 contain device code. and
switch 0 is 1 if device is on DCH

Down Executes instruction contained in data
switches.

12ROM
ADDRESS
LIGHTS

16 DATA
LIGHTS

ROTARY
SWITCH

POWER
SWITCH

,--------ROT ARY SWITCH-----.,.-----,

NAME SETTING

Address Compare Off

Monitor

Stop
Store

Stop
Addr

EFFECTS

Has no effect on processor operation.

When address in data switches is
accessed. displays contents in data lights.

When contents of address in data
switches is changed. processor freezes.

When address in data switches is
addressed. processor freezes.

STATUS LlGHTS------__

NAME MEANING WHEN LIT

ION I/O Interrupt flag is enabled.

Carry Carry bit is 1.

ROM Error Parity error in ROM is detected:

User MAP is in user mode. (MAP Al

Addr The conditions for a Monitor. Stop on
Compare Store or a Stop on Address have been

met.

• If a ROM parity error occurs. the CPU freezes.

,..------ ADDRESS AND DATA LlGHTS----......

NAME MEANING

ROM Address Displays the address of the
microinstruction last executed.

Data Lights Displays contents of MEM Bus. except in
Monitor mode.

Address Displays contents of the address bus or
the PC when halted.

CHAPTER V
CONSOLE FUNCTIONS

The console is a molded plastic panel with lights and
switches that display and change the state of the
machine. The position on the console and the general
function of each of these lights and switches is shown
in the removable diagram that precedes this page.
There are five types of switches:

• A data switch <also called a toggle switch) -- has
two positions. Up corresponds to 1, and down
means O.

• A function switch -- has three positions: up,
down and neutral. When pushed up or down, it
initiates a function; when released, it returns to
the neutral position.

• A rotary switch -- may have any number of
positions; once set to a position it remains there
until manually altered.

• A lock -- has three positions and cannot be
changed without the key.

Throughout the rest of the section we refer to each of
these types of switches by the name given above or by
the name of the function that switch performs.
However, each data switch has its own name <0-15),
which can be seen immediately above it. We use those
names to specify some subset of all data switches. The
same name also refers to the data light and address
light that is immediately above each switch. The
console diagram shows the relationship for data light,
address light, and data switch 1.

V-1

While it is powered up, the CPU is always in one of
three states: normal execution, frozen, or halted.
When it is in normal execution, the microcode
continually executes machine instructions from a
program.

When the CPU is frozen, it does not execute microcode
and it will not change state without external
intervention. While in this state most of the console
switches are disabled.

When the CPU is halted, it executes a small
microinstruction loop <the ROM address lights
display 0002 8, and all of the console switches function
normally. The CPU is in the halt state when it is
powered up.

MAIN POWER PANEL

NAME FUNCTION OPERATION

CPU Power A key switch with positions labeled OFF,
Power ON, and LOCK. With the switch in the OFF

position, all power is removed from the CPU
and the machine will not run. Turning the
switch ON applies power, performs a
RESET function, and enables all other
console switches. Turning the switch to
LOCK enables the key to be removed, and
also disables all console switches except
the MONITOR function of the ADDRESS
COMPARE feature.

NAME

ADDR COMPARE

POSITION

OFF

MONITOR

STOP
STORE

STOP
ADDR

ROT ARY SWITCH

EFFECTS OF SETTING

Has no effect on processor operation.

Displays contents of selected location in data lights, if and when that location
is accessed. The setting of the data switches specifies the address of the
monitored location. Updates the contents of data lights each time that·
location is accessed.

NOTE: Data lights remain unchanged until monitor conditions are met. If that

address is never accessed, the data lights will never display its contents.

Freezes processor when the contents of the selected location are altered. The
setting of the data switches specifies the address of the selected location.
Completes the store prior to the freeze.

Freezes processor when the selected location is accessed. The setting of the
data switches specifies the address of the selected location. The location is
neither read nor written.

V-2

NAME

EXAM
EX NEXT

DEPI
DP NEXT

STARTI
CONT

RESETi
STOP

DEP ACI
EXAM AC··

DG-04996

POSITION

UP

DOWN

UP

DOWN

UP

DOWN

UP

DOWN

UP

DOWN

FUNCTION

EXAMINE

EXAMINE
NEXT

DEPOSIT

DEPOSIT
NEXT

START

CONTINUE

RESET

STOP

DEPOSIT

EXAMINE

FUNCTION SWITCHES

MACHINE
STATE*

HALTED

RUNNING

HALTED

HALTED

HALTED

HALTED

HALTED,
FROZEN

RUNNING,
FROZEN,
HALTED

RUNNING

HALTED

HALTED

MEANING

Loads PC with the logical address contained in data switches 1 -1 5 Displays
contents of that location in data lights, and displays address of that location
in address lights

Displays contents of memory at location addressed by data switches. The
Address Compare switch must be set to Monitor or Stop on Store for the
display to remain long enough to be read. A running examine will not change
the PC.

Increments PC, and uses that number as an address. Displays the cor1tents of
that address in data lights. Displays address of that location in address lights.

Stores the value contained in the 16 rightmost data switches (0-15) il1to the
location addressed by PC. Displays new value of that location in data lights,
and displays address of that location in the address lights.

Increments PC and uses that number as an address to store value contained
in the 16 rightmost data switches (0-15). Displays new value of that location
in data lights, and displays address of that location in address lights.

Loads the contents of the 1 5 rightmost data switches into PC, and executes
the instruction at that address. Normal execution continues from there.
Displays the last contents of the memory bus in data lights, and displays the
contents of the selected address bus in address lights

Initiates normal operation of the CPU from the current state of the machine.

Stops the CPU immediately, initiates the equivalent of an 1/0 Reset
instruction, setting the Busy and Done flags of all peripherals to O. Sets all
status lights on the console, except Carry, to O. The ROM address lights will

display 00028 (the halt location). The contents of the data and address lights
are undefined.

NOTE: The PC is unchanged; however, the instruction addressed by the
current PC value may not have completed execution. This is the only func~ion
switch that will halt the CPU in the middle of an instruction.

Halts the CPU after the current instruction has been executed. Displays the
address of the next instruction to be executed in address lights. Displays the
last contents of the memory bus in data lights. The ROM address lights will

show 00028 (the halt location)

NOTE: Data channel requests will be honored after the halt, but interrupt
requests will not be honored after the Stop function has been initiated.

Loads the associated accumulator with the value contained in the 16
rightmost data switches (0-1 5) Displays the new contents of the AC in data
lights.

Displays the contents of the associated accumulator in data lights

V-3

FUNCTION SWITCHES

MACHINE
NAME POSITION FUNCTION STATP MEANING

INSTI UP STEP HALTED, Executes one machine instruction; then halts the processor. Displays the
~.dNST INSTRUCTION FROZEN, contents of the memory bus in data lights, and displays the address of the

RUNNING next instruction to be executed in address lights.

DOWN STEP HALTED, Executes one microinstruction; then freezes the CPU. Displays the contents
MICRO- RUNNING of the MEM bus in the data lights; displays the output of the ALU bus in the
INSTRUCTION address lights. Displays the address of the last microinstruction executed in

the ROM address lights.

PROG LOADI UP BOOTSTRAP HALTED Executes a microdiagnostic program; then loads bootstrap loader program
EXEC LOAD into memory locations 0-378, and executes it. If data switch 4 is ,

microdiagnostic will not be executed. Data switches '0-' 5 must contain the
device code of the 1/0 device that contains the program to be loaded. If that
device is on the data channel or the burst multiplexor channel, data switch
o must be set to ,.

DOWN EXECUTE HALTED Executes instruction contained in , 6 rightmost data switches (0-' 5). and
halts the CPU. (Execute may be used with step microinstruction)

NOTE: PC will be updated but the instruction at the old PC address will not be
executed.

* If a function definition has no entry for a particular machine state, that
function has no effect when in that state.

** There are 4 AC DeplExam switches on the console. Each performs
the same functions on a different accumulator.

DG-04996

V-4

This page intentionally left blank.

V-5

APPENDIX A
S1 ANDARD 1/0 DEVICE CODES

OCTAL OCTAL
DEVICE PRIORITY DEVICE
CODES MNEMONIC MASK BIT DEVICE NAME CODES

00 ---- -- Unused 41
3

01 ---- -- Unused 40
02 ERCC -- Error checking and correction 41
03 MAP -- Memory allocation and protection unit 42
04 DPM Demand Paging Map 43

lOP I 2.5 lOP Map. IDP Timer
05 44
06 MCAT • 12 Multiprocessor adapter transmitter 45
07 MCAR 12 Multiprocessor adapter receiver 46
10 TTl 14 TTY input 47
11 TTO 15 TTY output 50

12 PTR 11 Paper tape reader 51
13 PTP 13 Paper· tape punch 52
14 RTC 13 Real-time clock 53
15 PLT 12 Incremental plotter 54
16 CDR 10 Card reader 55

17 LPT 12 Line printer 56
20 DSK 9 Fixed head disc 57
21 ADCV 8 AID converter 60
22 MTA 10 Magnetic tape 61
23 DACV -- DI A converter 62

24 DCM 0 Data communications multiplexor 63
25 64
26 OKB 9 Fixed head OG/Oisc 65
27 OPF 7 OG/Oisc storage subsystem 66
30 QTY 14 Asynch. hardware multiplexor 67

30 SLA 14 Synchronous line adapter 70
31 1 IBM1 13 IBM 360/370 interface 70
32 19M2 13 IBM 360/370 interface 711

33 DKP 7 Moving head disc 72
34 1 CAS 1 10 Cassette tape 73

DCU 4 4 Data Control Unit
34 MX1 11 Multiline asynchronous controller 74
35 MX2 11 Multiline asynchronous controller 74 1

36 IPB 6 Interprocessor bus--half duplex 75
37 IVT 6 IPB watchdog timer 76
40 2 DPI 8 IPB full duplex input 77

1. Code returned by INT A and used by VCT
2. Can be set up with any unused even device code equal to 40 or above
3. Can be set up with any unused odd device code equal to 41 or above

A-l

PRIORITY
MNEMONIC MASK BIT DEVICE NAME

DPO 8 IPB full duplex output
SCR 8 Synch. communication receiver
SCT 8 Synch. communication transmitter
DIO 7 Digital 1/0
DIOT 6 Digital 1/0 timer
PIT 6 Programmable Interval Timer
MXM 12 Modem control for MX 1 IMX2

MCAT1 12 Second multiprocessor transmitter
MCAR1 12 Second multiprocessor receiver
TTI1 14 Second TTY input

TT01 15 Second TTY output
PTR1 11 Second paper tape reader
PTP1 13 Second paper tape punch
RTC1 13 Second real-time clock
PLT1 12 Second incremental plotter

CDR1 10 Second card reader
LPT1 12 Second line printer
DSK1 9 Second fixed head disc
ADCV1 8 Second AID converter
MTA1 10 Second magnetic tape

DACV1 -- Second DI A converter

lOP I 55 Host To lOP Interface
OKB1 9 Second Fixed Head OG/Oisc
OPF1 7 Second OG/Oisc storage subsystem

QTY1 14 Second asynch. hardware mux
SLA1 14 Second synchronous line adapter

13 Second IBM 360/370 interface
13 Second IBM 360/370 interface

DKP1 7 Second moving head disc

CAS1 10 Second cassette tape
11 Second multiline asynch. controller
11 Second multiline asynch. controller

DPU 4 DCU To Host Interface
CPU -- CPU and console functions

4 Can be set to any unused device code between 1 and 76
5. Micro interrupts are not maskable

APPENDIX B
OCTAL AND HEXADECIMAL CONVERSION

To convert a number from octal or hexadecimal to decimal,
locate in each column of the appropriate table the decimal
equivalent for the octal or hex digit in that position. Add the
decimal equivalents to obtain the decimal number.

To convert a decimal number to octal or hexadecimal:

1. Locate the largest decimal value in the appropriate
table that will fit into the decimal number to be
converted;

2. Note its octal or hex equivalent and column position;

3. Find the decimal remainder.

Repeat the process on each remainder. When the remainder
is 0, all digits will have been generated.

OCT AL CONVERSION TABLE
8 5 8 4 8 3 8 2 8' 8 0

0 0 0 0 0 0 0
1 32.768 4.096 512 64 8 1
2 65.536 8.192 1.024 128 16 2
3 98.304 12.228 1.536 192 24 3
4 131.072 16.384 2.048 256 32 4
5 163.840 20.480 2.560 320 40 5
6 196.608 24.576 3.072 384 48 6
7 229.376 28.672 3.584 448 56 7

HEXADECIMAL CONVERSION TABLE

16 5 16 4 16 3 16 2

0 0 0 0 0
1 1.048.576 65.536 4.096 256
2 2.097.152 131.072 8.192 512
3 3.145.728 196.608 12.288 768

4 4.194.304 262.144 16.384 1.024
5 5.242.880 327.680 20.480 1.280
6 6.291.456 393.216 24.576 1.536
7 7.340.032 458.752 28.672 1.792

8 8.388.608 524.288 32.768 2.048
9 9.437.184 589.824 36.864 2.304
A 10.485.760 655.360 40.960 2.560
B 11.534.336 720.896 45.056 2.816

C 12.582.912 786.432 49.152 3.072
D 13.631.488 851.968 53.248 3.328
E 14.680.064 917.504 57.344 3.584
F 15.728.640 983.040 61.440 3.840

8-1

16' 16 0

0 0
16 1
32 2
48 3

64 4
80 5
96 6

112 7

128 8
144 9
160 10
176 11

192 12
208 13
224 14
240 15

APPENDIX C
ASCII CHARACTER CODES

CHARACTER CODE IN DECIMAL

EBCDIC EQUIVALEVT HEXADECIMAL CODE

1 means CONTROL

07

8

9

<

>

?

OCTAL 10 11 12 13 14 15 17

~1 I __ @_--t~_' ·~ ... · __ H_~_ Z_7~_P_ •• __ X_---4....-..... ~ +_(G-R-A-VE-)__+_~ ·()4 · ~-h---f...,.....-.... :t_:_+ .. __ p_--+r~D+' __ X_---f ~ '" ~.. '''' "' A ~ ~ Q ~ Y ~ a - ~ q y
_ ~ • b • U

z

4 D

-
5 E

-
6 v

(TILDE)
-

7 DEL
'" (RUBOUT)

CHARACTER CODE IN OCTAL AT TOP AND LEFT OF CHARTS.

C-1

APPENDIX D
BINARY, OCTAL AND DECIMAL

NUMBERING SYSTEMS

The most familiar numbering system in our society is
the decimal system. For ordinary mental or
pencil-and-paper work it is clearly the easiest to use.
Computers, however, use the binary system, which
becomes very confusing to humans when more than a
few digits are involved. Fortunately, binary can be
easily translated into octal or hexadecimal
representation, both of which are relatively easy for
humans to use.

In this section, we provide some basic background on
the binary, octal and hexadecimal numbering
systems. Most readers will already be familiar with
these, but some may not and others may find the
review helpful.

The binary numbering system is used in computers
because the two binary values can be easily
represented electronically. In the binary system, the
only two permissible digits are 0 or 1, and each
position in a binary number represents some power
of 2. For example, consider the binary number:

10110102

which is equivalent to the sum (in decimal):

(1 x26) + (Ox2 5) + (1 x24) + (1 x23) +
(Ox22) + (1x2') + (Ox2O,

or

64 + 0 + 16 + 8 + 0 + 2 + 0 = 90,0.

If we divide this number into groups of 3 starting at
the right, thus:

1 011 010,

we see that each group of 3 has a range of:

000 = 0

to

111 = 7 = (22+ 2'+ 2°) = (4 + 2 + 1).

D-1

Zero to 7 is the range of digits allowable in the octal
numbering sytem, so we can convert from binary to
octal simply by grouping and evaluating each group
of 3 binary digits by itself. In octal, the number above
becomes:

011 010

or

3 2 = 1328

We can also convert this number to hexadecimal (or
base 16), Zero through nine decimal are unchanged in
the hexadecimal system, but 10-151Oare represented
by the letters A through F.

If we divide the original binary number into groups of
4 instead of 3, starting from the right, we get:

101 1010

The range for one group is now:

0000 = 0

to

1111 = 23+ 22+ 2' + 2°
= (8 + 4 + 2 + 1) = 1 5, 0= F'6

The number in the example above is then:

101 1010

or

5

APPENDIX E
COMPATIBILITY WITH NOVA LINE COMPUTERS

The ECLIPSE M/600 computers are compatible with
Data General's NOV A line of computers. Any
program presently running on any NOV A line
computer will run on an ECLIPSE series computer
without change provided that it does not violate any
of the following constraints:

• The program may not be dependent on
instruction execution times or Input/Output (1/0)
transfer times. Times for the ECLIPSE series
computers may be faster than a NOV A line
computer depending upon the application.

• The program may not use any fixed-point
arithmetic instructions that have both the no-load
and no-skip options specified. The ECLIPSE series
computers use these codes to implement
instructions in the standard instruction set.

• The program may not require the hardware
multiply/divide option available on any NOVA
line computer.

• The program may not utilize the data channel
increment or add-to-memory features.

E-1

• The program may not utilize either the memory
management and protection option or the
hardware floating point option currently available
for NOVA line computers.

• The memory and I/O resources available on the
ECLIPSE series computer should be at least
equivalent to those available on the NOVA line
computer for which the program was designed.

A violation of the third constraint can be easily
corrected. The multiply and divide available in the
ECLIPSE series computers standard instruction set
are functionally equivalent to the operations provided
in the hardware multiply/divided option for the
NOVA line computers. Only the operation codes must
be changed to take advantage of the ECLIPSE series
computer's multiply and divide feature. Similarly,
only small changes need be made to a program which
uses the current NOVA line floating point option in
order for that program to take advantage of the
floating point option. The floating point number
formats are the same.

APPENDIX F
ADDRESSING

A flow diagram of the addressing process is shown
below. See Chapter III for a detailed discussion of
addressing.

F-1

APPENDIX G
BOOTSTRAP LOADER

The Program Load console switch loads the bootstrap
loader program shown below into the first 3210 words
of memory and starts the program at location O. See
the console section of Chapter II for details on the use
of the Program Load function.

BEG: 10RST ; RESET ALL 1/0
READS 0 ;READ SWITCHES INTO ACO
LDA 1,C77 ;GET DEVICE MASK (000077)
AND 0,1 ;ISOLA TE DEVICE CODE
COM 1,1 ;-DEVICE CODE-l

LOOP: ISZ OPl ; COUNT DEVICE CODE INTO ALL
ISZ OP2 ;1/0 INSTRUCTIONS
ISZ OP3
INC 1,1,SZR ;DONE?
JMP LOOP ;NO, INCREMENT AGAIN
LDA 2,C377 ;YES; PUT JMP 377

;INTO LOCATION 377
STA 2,377

OP1: 060077 ;START DEVICE; (NIOS 0)-1
MOVL O,O,SZC ;LOW SPEED DEVICE?

; (TEST SWITCH 0)
C377: JMP 377 ;NO, GO TO 377

;AND WAIT FOR CHANNEL
LOOP2: JSR GET+l ;GET A FRAME

MOVC O,O,SNR ;IS IT NON-ZERO?
JMP LOOP2 ;NO, IGNORE AND GET ANOTHER

LOOP4: JSR GET ;YES, GET FULL WORD
STA 1,@C77 ;STORE STARTING AT 1002'S

;COMPLEMENT OF WORD
;COUNT (AUTO-INCREMENT)

ISZ 100 ;COUNT WORD - DONE?
JMP LOOP4 ; NO, GET ANOTHER

C77 JMP 77 ; YES, - LOCATION COUNTER
;AND JUMP
;TO LAST WORD

GET: SUBZ 1.1 ;CLEAR AC 1, SET CARRY
OP2:
LOOP3; 063577 ;DONE?: (SKPDN 0) -1

JMP LOOP3 NO, WAIT
OP3: 060477 ;YES, READ IN ACO: (DIAS 0,0) -1

ADDCS O,l,SNC ;ADD 2 FRAMES SWAPPED -
;GOT SECOND?

JMP LOOP3 ;NO, GO BACK AFTER IT
MOVS 1,1 ; YES, SWAP THEM
JMP 0,3 ; RETURN WITH FULL WORD
0 ;PADDING

G-l

INSTRUCTION INDEX

Absolute Value (FAB) 111-24
Add (ADD) 111-2
Add Complement (ADC) 111-2
Add Double (FPAC To FPAC) (FAD) 111-24
Add Double (Memory To FPAC) (FAMD) 111-25
Add Immediate (AD!) 111-2
Add Single (FPAC To FPAC) (FAS) 111-27
Add Single (Memory To FPAC) (FAMS) 111-26 * Add To DI (DAD!) 111-14 * Add To P (DAPU) 111-15 * Add To P Depending On S (DAPS) 111-15 * Add To P Depending On T (DAPT) 111-1 5 * Add To SI (DAS!) 111-15
Alternate Extended Operation (XOP 1) 111-60
AND (AND) 111-3
AND Immediate (AND!) 111-3
AND With Complemented Source (ANC) 111-3

Block Add and Move (BAM) 111-4
Block Move (BLM) 111-4

Character Compare (CMP) 111-6
Character Move (CMV) 111-8
Character Move Until True (CMT) 111-7
Character Translate (CTR) 111-9
Clear Errors (FCLE) 111-27
Compare Floating Point (FCMP) 111-27
Compare To Limits (CLM) 111-5
Complement (COM) 111-10

Data In A (DIA) IV-2
Data In B (DIB) IV-2
Data In C (DIC) IV-2
Data Out A (DOA) IV-3
Data Out B (DOB) IV-3
Data Out C (DOC) IV-3
Decimal Add (DAD) 111-10
Decimal Subtract (DSB) 111-1 2 * Decrement And Jump If Non-Zero (DDTK) 1 111-1 6
Decrement And Skip If Zero (DSZ) 111-1 3
Dispatch (DSP A) 111-1 3
Divide Double (FPAC by FPAC) (FDD) 111-28
Divide Double (FPAC by Memory) (FDMD) 111-28
Divide Single (FPAC by FPAC) (FDS) 111-29
Divide Single (FPAC by Memory) (FDMS) 111-29
Double Hex Shift Left (DHXL) 111-11
Double Hex Shift Right (DHXR) 111-11
Double Logical Shift (DLSH) 111-1 2

* EDIT SubinBtruction

Edit (EDIT) 111-1 3
* End Edit (DEND) 111-1 6 * End Float (DNDF) 111-1 9

Exchange Accumulators (XCH) III-59
Exclusive OR (XOR) 111-60
Exclusive OR Immediate (XOR!) 111-61
Execute (XCT) III-59
Extended Add Immediate (ADD!) 111-2
Extended Decrement And Skip If Zero (EDSZ) 111-21
Extended Increment And Skip If Zero (EISZ) 111-21
Extended Jump (EJMP) 111-21
Extended Jump To Subroutine (EJSR) 111-22
Extended Load Accumulator (ELDA) 111- 22
Extended Load Byte (ELDB) 111-22
Extended Operation (XOP) 111-60
Extended Store Accumulator (EST A) 111-23
Extended Store Byte (EST B) 111-23

Fix To AC (FFAS) 111-30
Fix To Memory (FFMD) 111-30
Float From AC (FLAS) 111-31
Float From Memory (FLMD) 111-32

Halt (HALTA) IV-5
Halve (FHLV) 111-30
Halve (HL V) 111-43
Hex Shift Left (HXL) 111-43
Hex Shift Right (HXR) 111-44

I/O Skip (SKP) IV-4
Inclusive OR (lOR) 111-44
Inclusive OR Immediate (lOR!) 111-44
Increment (INC) 111-44
Increment And Skip If Zero (lSZ) 111-45 * Insert Character J Times (DIM C) 111-16 * Insert Character Once (DINC) 111-16 * Insert Character Suppress (DINT) 111-17 * Insert Characters Immediate (DIC!) 111-16 * Insert Sign (DINS) 111-1 7
Integerize (FINT) 111-31
Interrupt Acknowledge (lNT A) IV-5
Interrupt Disable (lNTDS) IV-6
Interrupt Enable (lNTEN) IV-6

Jump (JMP) 111-45
Jump To Subroutine (JSR) 111-45

Load Accumulator (LOA) 111·45
Load Byte (LOB) 111·46
Load Effective Address.(ELEF) 111·23
Load Effective Address (LEF) 111·47
Load Exponent (FEXP) 111·30
Load Floating Point Double (FLO D) 111·31
Load Floating Point Single (FLDS) 111·31
Load Floating Point Status (FLST) 111·32
Load Integer (LDI) 11146
Load Integer Extended (LDIX) 111·47
Load Map (LMP) IV ·12
Load Sign (LSN) 111·49
Locate And Reset Lead Bit (LRB) 111·48
Locate Lead Bit (LOB) 111·48
Logical Shift (LSH) 111·48

Mask Out (MSKO) IV·5
Modify Stack Pointer (MSP) 111·49
Move (MOV) 111-49 * Move Alphabetics (DMVA) 111-1 7 * Move Characters (DMVC) 111-1 7 * Move Digit With Overpunch (DMVO) 111-18 * Move Float (DMVF) 111-18
Move Floating Point (FMOV) 111-34 * Move Numeric With Zero Suppression (DMVS) 111-19 * Move Numerics (DMVN) 111-18
Multiply Double (FPAC by FPAC) (FMD) 111-32
Multiply Double (FPAC by Memory) (FMMD) 111-33
Multiply Single (FPAC by FPAC) (FMS) 111-34
Multiply Single (FPAC by Memory) (FMMS) 111-33

Negate (FNEG) 111-35
Negate (NEG) III-50
No 1/0 Transfer (NIO) IV-3
No Skip (FNS) 111-35
Normalize (FNOM) 111-35

Pop Block (POPB) III-51
Pop Floating Point State (FPOP) 111-36
Pop Multiple Accumulators (POP) III-50
Pop PC And Jump (POPJ) III-51
Push Floating Point State (FPSH) 111-36
Push Jump (PSHJ) III-52
Push Multiple Accumulators (PSH) III-51
Push Return Address (PSHR) III-52

Read High Word (FRH) 111-37
Read Switches (READS) IV-4
Reset (lORST) IV-5
Restore (RSTR) III-52
Return (RTN) III-53

* EDIT Subinstl"Uction

Save (SAVE) 111·53
Scale (FSCAL) 111·37
Set Bit To One (BTO) 111·5
Set Bit To Zero (BTZ) 111·5 * Set S To One (DSSO) 111·19 * Set S To Zero (DSSZ) 111·20 * Set T To One (DSTO) III· 20 * Set T To Zero (DSTZ) 111·20
Sign Extend and Divide (DIVX) 111·12
Signed Divide (DIVS) 111·11
Signed Multiply (MULS) 111·50
Skip Always (FSA) 111·37
Skip If ACS Greater Than ACD (SGT) 111·54
Skip If ACS Greater Than Or Equal To ACD (SGE) 111·54
Skip On Greater Than Or Equal To Zero (FSGE) 111·38
Skip On Greater Than Zero (FSGT) 111·38
Skip On Less Than Or Equal To Zero (FSLE) 111·38
Skip On Less Than Zero (FSLT) 111·39
Skip On No Error (FSNER) 111·40
Skip On No Mantissa Overflow (FSNM) 111·40
Skip On No Overflow (FSNO) 111·40
Skip On No Overflow And No Zero Divide (FSNOD) 111·41
Skip On No Underflow (FSNU) 111·41
Skip On No Underflow And No Overflow (FSNUO) 111·41
Skip On No Underflow And No Zero Divide (FSNUD) 111·41
Skip On No Zero Divide (FSND) 111·39
Skip On Non·Zero (FSNE) 111·40
Skip On Non·Zero Bit (SNB) 111·55
Skip On Zero (FSEQ) 111·38
Skip On Zero Bit (SZB) 111·58
Skip On Zero Bit And Set ToOne (SZBO) 111·58
Store Accumulator (STA) 111·55
Store Byte (STB) 111·55
Store Floating Point Double (FSTD) 111·42
Store Floating Point Single (FSTS) 111·42
Store Floating Point Status (FSST) 111·42 * Store In Stack (DSTK) 111·20
Store Integer (STI) 111·56
Store Integer Extended (STIX) 111·56
Subtract (SUB) 111·57
Subtract Double (FPAC from FPAC) (FSD) 111·37
Subtract Double (Memory from FPAC) (FSMD) 111·39
Subtract Immediate (SBI) 111·54
Subtract Single (FPAC from FPAC) (FSS) 111·42
Subtract Single (Memory from FPAC) (FSMS) 111·39
System Call (SYC) 111·57

Trap Disable (FTD) 111-43
Trap Enable (FTE) 111-43

Unsigned Divide (DIV) 111-11
Unsigned Multiply (MUL) III-50

Vector On Interrupting Device Code (VCT) IV-8

1/0 INSTRUCTION INDEX

Clear Page-use Flags (NIOC DMP) VI-1 4
Control Console Function Register (DOA lOP) VI-19
Control Mode (DOA DCU) VI-1 0
Control Real-Time Clock (DOA DCUI) VI-11
Control Switch Register (DOB lOP) VI-20
CPU Skip (SKP CPU) VI-S
CPU Skip If Power Fail Flag Is One (SKPDN CPU) VI-S
CPU Skip If Power Fail Flag Is Zero (SKPDZ CPU) VI-S

Disable User Mode (NIOP MAP) VI-26

Enable ERCC (DOA ERCC) VI-1 6

Halt (HAL T A DOC CPU) VI-7

Initiate Page Check (DOC MAP) VI-26
Interrupt Acknowledge (lNT A DIB CPU) VI-6
Interrupt Disable (lNTDS NIOC CPU) VI-7
Interrupt Enable (lNTEN NIOS CPU) VI-S
lOP Control (and Select) Map and Page/Parity (DOA IOPI) VI-21
lOP Control Timer (DOC 10PI) VI-22
lOP Generate Micro-interrupt (DOB 10PI) VI-21
lOP Read Map Status and Parity Control (DIA 10PI) VI-20

Load Character Buffer (DOA TTO) VI-30
Load HTDCU Register (DOB DCU) VI-11
Load Map (LMP) VI-1 7
Load Map (LMP) VI-23
Load Map Status (DOA MAP) VI-25

Map Page 31 (DOB MAP) VI-25
Map Single Cycle (NIOP MAP) VI-26
Mask Out (MSKO DOB CPU) VI-7

Page Check (DIC MAP) VI-24

Read Address Buffer (DIC lOP) VI-1 9
Read Breakpoint Address (DIC DMP) VI-1 3
Read Breakpoint Control Flags (DIB DMP) VI-1 2
Read Character Buffer (DIA nl) VI-29
Read Console Buffer (DIB lOP) VI-1S
Read Count (DIA PIT) VI-27
Read Diagnostic Data (DIA DCU) VI-9
Read HTDCU Register (DIA DCUI) VI-11
Read Map Status (DIA MAP) VI-24
Read Memory Fault Address (DIA ERCC) VI-15
Read Memory Fault Code (DIB ERCC) VI-16
Read PC Save Register (DIA lOP) VI-1 S
Read Page-use Flags (DIA DMP) VI-1 2
Read Program Counter (DIB DCU) VI-9
Read Status (DIC BMC) VI-2
Read Switches (READS DIA CPU) VI-6
Reset (DIC DCU) VI-1 0
Reset (lORST DIC CPU) VI-7

Select Data Channel Map (DOC DCUI) VI-11
Select Page-Use Table and Word (DOA DMP) VI-13
Select RTC Frequency (DOA RTC) VI-2S
Set Breakpoint Address (DOC DMP) VI-14
Set Breakpoint Control Flags (DOB DMP) VI-1 3
Set Status (DOC BMC) VI-5
Specify High-Order Address (DOB BMC) VI-4
Specify Initial Count (DOA PIT) VI-27
Specify Initial Map Register (DOB BMC) VI-3
Specify Low-Order Address (DOA BMC) VI-3
Specify Word Count (DOC BMC) VI-5

BIBLIOGRAPHY
The following Data General publications may be of interest to readers of this manual:

Programmer's Reference, Peripherals

Programmer's Reference, Data Control Unit

Technical Reference, Data General Communications System

Technical Manual, 6020 Series Tape Transport

Technical Manual, Model 6045 60506051
Disc Drive (1 0 Megabyte)

Technical Manual, DG/Disc Storage Subsystem
(6060 Series, 100 Megabyte)

Technical Manual, Model 6063-6065 Fixed Head Disc

Interface Designer's Reference, NOVA and ECLIPSE Line Computers

Software Summary and Bibliography

AOS Software Documentatiori Guide

AOS Programmer's Manual

AOS Macroassembler Reference Manual

AOS Binder User's Manual

AOS Debugger and Disk File Editor User's Manual

AOS System Manager's Guide

DGC No. 015-000021

DGC No. 015-000060

DGC No. 014-000070

DGC No. 015-000040

DGC No. 015-000057

DGC No. 015-000061

DGC No. 015-000072

DGC No. 015-000031

DGC No. 093-000110

DGC No. 093-000202

DGC No. 093-000120

PGC No. 093-000192

DGC No. 093-0001 90

DGC No. 093-000195

DGC No. 093-0001 93

DG OFFICES

SALES AND SERVICE OFFICES

Alabama: Birmingham
Arizona: Phoenix, Tucson
Arkansas: Little Rock
California: EI Segundo, Fresno, Los Angeles, Oakland, Palo Alto, Pasadena,
Sacramento, San Diego, San Francisco, Santa Ana, Santa Barbara, Van Nuys
Colorado: Denver, Englewood
Connecticut: North Branford, Norwalk
Florida: Ft. Lauderdale, Orlando, Tampa
Georgia: Norcross
Idaho: Boise
Iowa: Cedar Rapids Bettendorf
Illinois: Arlington Heights, Champaign, Chicago, Peoria, Rockford, Schaumburg
Indiana: Indianapolis
Kentucky: Louisville
Louisiana: Baton Rouge, Metairie
Maine: Portland
Maryland: Baltimore
Massachusetts: Cambridge, Springfield, Wellesley, Worcester
Michigan: Grand Rapids, Southfield
Minnesota: Richfield
Missouri: Creve Coeur, Kansas City, St. Louis
Mississippi: Jackson
Montana: Billings
Nebraska: Omaha
Nevada: Las Vegas, Reno
New Hampshire: Bedford, Nashua
New Jersey: Cherry Hill, Somerset, Wayne
New Mexico: Albuquerque
New York: Albany, Buffalo, Lake Success, Latham, Melville, Newfield, New York,
Rochester, Syracuse, White Plains
North Carolina: Charlotte, Greensboro, Greenville, Raleigh
Ohio: Brooklyn Heights, Cincinnatti, Columbus, Dayton
Oklahoma: Oklahoma City, Tulsa
Oregon: Lake Oswego, Portland
Pennsylvania: Blue Bell, Carnegie, Lancaster, Philidelphia, Pittsburgh
Rhode Island: Providence, Rumford
South Carolina: Columbia
Tennessee: Knoxville, Memphis, Nashville
Texas: Austin, Dallas, EI Paso, Ft. Worth, Houston, San Antonio
Utah: Salt Lake City
Virginia: McLean, Norfolk, Richmond, Salem
Washington: Bellevue, Kirkland, Richland, Spokane
West Virginia: Charleston
Wisconsin: Brookfield, Madison, West Allis

INTERNATIONAL SUBSIDIARIES

Australia: Adelaide, Melbourne, New Castle, Sydney, Tasmania, Queensland, Victoria
Brazil: Sao Paulo
Canada: Calgary, Edmonton, Montreal, Ottawa, Quebec, Toronto, Vancouver, Winnipeg
France: Lille, Lyon, Nantes, Paris
Italy: Florence, Milan, Padua, Rome, Tourin
Japan: Tokyo
The Netherlands: Amsterdam, Rijswijk
New Zealand: Auckland, Wellington
Sweden: Gothenburg, Malmoe, Stockholm
Switzerland: Lausanne, Zurich
United Kingdom: Birmingham, Bristol, Chesire, Glasgow, Hounslow, London,
Manchester
West Germany: Dusseldorf, Filderstadt, Frankfurt, Hamburg, Hannover, Munich,
Nuremburg, Munich, Ratingen, Rodelheim, Stuttgart

DG-049'l6

REPRESENTATIVES & DISTRIBUTORS

Argentina: Buenos Aires
Bolivia: Novadata
Chile: Santiago
Columbia: Bogato
Costa Rica: San Jose
Ecuador: Quito
Egypt: Cairo
Finland: Helsinki
Guatemala: Guatemala City
Hong Kong: Hong Kong
India: Bombay
Indonesia: Jakarta
Israel: Givatayim
Korea: Seoul
Kuwait: Kuwait
Lebanon: Beirut
Malaysia: Kuala Lumpur
Mexico: Mexico City, Nuevo Leon
Morocco: Casablanca
Nicaragua: Managua
Nigeria: Ibadan, Lagos
Norway: Oslo
Paraguay: Asuncion
Peru: Lima
Philippine Islands: Manila
Portugal: Lisbon
Puerto Rico: Hato Rey
Saudi Arabia: Jaddah, Riyadh
Singapore: Singapore
South Africa: Capetown, Durban, Johannesburg, Pretoria
Spain: Barcelona, Bibao, Madrid, San Sebastian, Valencia
Taiwan: Taipei
Thailand: Bangkok
Turkey: Ankara
Uruguay: Montevideo
Venezuela: Maracaibo

ADMINISTRATION, MANUFACTURING
RESEARCH AND DEVELOPMENT

Massachusetts: Cambridge, Framingham, Southboro, Westboro
Maine: Westbrook
New Hampshire: Portsmouth
California: Anaheim, Sunnyvale
North Carolina: Research Triangle Park, Johnston County

Texas: Austin

Hong Kong: Kowloon, Tai Po
Thailand: Bangkok

UJ
Z
.....J

o
UJ .­.­o
o
<.9
Z
o
.....J
<l:
.­
::>
u

Yes No

o 0

o 0

o 0

o 0

Please help us improve our future
publications by answering the questions below.
Use the space provided for your comments.

~<' ,« ':".: ' ... "<,' :.~

··~t;~.inf~tl~~ldYoU:·.?~

Engineering
Publications
Comment Form
Title: __________________ _

Document No. ____ O_14_-...;.O...;..OO...;..6~1~6_-0...;..l=___ __ _

o You (can, cannot) find things easily. 0 Other:

o Language (is, is not) appropriate.

o Technical terms (are, are not) defined
as needed.

o Learning to use the equipment

o As a reference

o As an introduction to the
product

o Visuals (are,are not) well designed.

o Labels and captions (are,are not) clear.

o Other:

o To instruct a class.

o Other:

Name: _______________________ Title: __________________ _

Company: _______________________ Division: ----------------

Address: ______________________ City: __________________ _

State: ______ Zip: __________ Telephone: _____________ Date: ______ _

DG-06895

~. Data General

FOLD FOLD

STAPLE STAPLE

FOLD FOLD

"""
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 26 SOUTHBORO, MA. 01772

Postage will be paid by addressee:

-. Data General
ATTN: ENGINEERING PUBLICATIONS
4400 Computer Drive
Westboro, MA 01580

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

UJ
Z
---l

0
UJ
~
~
0
0

<...?
Z
0
---l
«
~
~
U

y~ No

o 0

0 0

0 0

0 0

Please help us improve our future
publications by answering the questions below.
Use the space provided for your comments.

Engineering
Publications
Comment Form
Title: __________________ _

DocumentNo. ______ O_l_4_-_00~O~6~1~6_-0~1~ ____ _

o You (can, cannot) find things easily. 0 Other:

o Language (is, is not) appropriate.

o Technical terms (are, are not) defined
as needed.

o Learning to use the equipment

o As a reference

o As an introduction to the
product

o Visuals (are,are not) well designed.

o Labels and captions (are,are not) clear.

o Other:

o To instruct a class.

o Other:

Name: ________________________ Title: ___________________ _

COmpany: ________________________ Division: ________________ _

Addr~s: _______________________ City: ___________________ __

State: ______ Zip: ___________ Telephone: _____________ Date: ______ __

DG-06895

~. Data General

FOLD FOLD

STAPLE STAPLE

FOLD FOLD

1111"

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 26 SOUTHBORO, MA. 01772

Postage will be paid by addressee:

~. DataGeneral
ATTN: ENGINEERING PUBLICATIONS
4400 Computer Drive
Westboro, MA 01580

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

UJ
Z
-.J

o
UJ
~
~
o
o
<.9
Z
o
-.J
<!
~
:::>
u

Yes No

o 0

o 0

o 0

o 0

Please help us improl)e our future
publications by answering the questions below.
Use the space prol)ided for your comments.

'/ . ~ , . ,

.D¢>. 'Wtfa;:lll\t$tratiOnshelp ygu?

. oo.t"'manual~J YOUoUyou needt() know?

. Wb.t~tiOflal inforrnatiOnwou~dyQ111ike?

It_mformatiQn.accurate?

:(If~()tJ>luse specify wttnpage num~:and
'M:9:i#iliJ

Engineering
Publications
Comment Form
Title: __________________ _

DocumentNo. _____ O_l~4_-~O~OO~6~·1~6~-O~1~ ___ _

o You (can, cannot) find things easily. 0 Other:

o Language (is, is not) appropriate.

o Technical terms (are, are not) defined
as needed.

o Learning to use the equipment

o As a reference

o As an introduction to the
product

o Visuals (are,are not) well designed.

o Labels and captions (are,are not) clear.

o Other:

o To instruct a class.

o Other:

Name: _______________________ Title: __________________ _

Company: _______________________ Division: _______________ _

Address: ______________________ City: ___________________ _

State: _______ Zip: __________ Telephone: _____________ Date: ________ _

DG-06895

4. Data General

FOLD FOLD

STAPLE STAPLE

FOLD FOLD

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 26 SOUTHBORO,MA. 01772

Postage will be paid by addressee:

~. OataGeneral
ATTN: ENGINEERING PUBLICATIONS
4400 Computer Drive
Westboro, MA 01580

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

