

ECLIPSE® C/350

PRINCIPLES OF OPERATION

4.DataGeneral
Data General Corporation ,Westboro. Massachusetts 01581

NOTICE

Data General Corporation <DGC) has prepared this
manual for use by DGC personnel, licensees, and
customers. The information contained herein is the
property of DGC and shall not be reproduced in whole
or in part without DGC's prior written approval.

Users are cautioned that DGC reserves the right to
make changes without notice in the specifications and
materials contained herein and shall not be
responsible for any damages (including con­
sequential) caused by reliance on the materials
presented, including, but not limited to typographical,
arithmetic, or listing errors.

NOVA, INFOS, and ECLIPSE are registered trademarks of
Data General Corporation, Westboro, Massachusetts.
DASHER and microNOVA are trademarks of Data
General Corporation, Westboro, Massachusetts.

FIRST EDITION
(Pir8t Printing, Augu8t 1978)

Ordering No. 014-000610-00
© Data General Corporation, 1978

AJl Rights Reserved
Printed in the United States of America

Rev. 01, August 1978

CONTENTS

ECLIPSE C/350 SYSTEM

HIGHLIGHTS OF THE ECLIPSE C/350 SYSTEM

Main Storage
1/0 Management System

Main Processor

Physical Oesign and Packaging

Software Support

CONCEPTS AND FACILITIES

ADDRESSING CONVENTIONS

Word Addressing Definitions

ADDRESSING MODES
BYTE MANIPULATION

Byte Format
Byte Instructions

BIT MANIPULATION

Bit Addressing

Bit Instructions

CHARACTER MANIPULATION

Character Instructions

NUMBER CONVENTIONS

Integer Format

Decimal Format

Unpacked Decimals

Packed Decimal

Data Type Indicator
Logical Format

Floating Point Format

Sign

Exponent

Mantissa

NUMBER MANIPULATION

Fixed Point Arithmetic Instructions
DECIMAL ARITHMETIC

Decimal Faults

Logical Operation Instructions
Floating Point Arithmetic

Floating Point Registers

Guard Digit

Floating Point Fault Conditions

Floating Point Trap

ALC MANIPULATION

ALC Format

ALC Instructions

ALC Instruction Execution
Carry

Function

Shift Operations

Skip Tests

Load/No-Load

THE STACK

Stack Control Words
Stack Pointer

Stack Limit

Stack Fault Address

Frame Pointer

Stack Protection

Stack Overflow

Stack Underflow

Stack Protection Faults
Stack Overflow Protection

Stack Underflow Protection

Stack Fault Handler

Initializing the Stack Control Words
Stack Pointer

Stack Limit

Stack Fault Address

Frame Pointer

Examples
Stack Instructions

ii

PROGRAM EXECUTION
Sequential Operation
Program Flow Alteration

Program Flow Interruption

Program Flow Alteration Instructions
LOGARITHMIC AND TRIGONOMETRIC FUNCTIONS

Floating Point Functions
Algorithm Coefficients

Floating Point Function Instructions

EXTENDED OPERATION FEATURE

Extended Operation Instructions

MEMORY ALLOCATION AND PROTECiflON

MAP Functions

Address Translation

Sharing of Physical Memory

Types of Maps

Unmapped Mode

MAP Protection Capabilities

Load Effective Address Mode

Initial Conditions

MAP Instructions

INPUT 10UTPUT

Busy and Done Flags
Programmed 1/0

Data Channel 1/0

1/0 Interrupts
Interrupt System Definitions

Processing an Interrupt Without a Priority Sy~tem

Priority Interrupt System

Stack Changes

Using the Vector Instruction

Basic 1/0 Devices

Asynchronous Line Controller

Real-Time Clock

Programmable Interval Timer

BASIC 1/0 DEVICES

Programmable Interval Timer

Programming Considerations

CONTENTS CONTINUED

iii

Real Time Clock
Asynchronous Line Controller

CONSOLE

Using the Console Address Mode Feature
Logical Address Mode

Physical Address Mode

Memory Diagnostic Mode

Using the ECLIPSE C/350 Program Loader
Program Load (Data Channel, Optional Burst Multiplexor)

Program Load Using Programmed I/O

Debugging Programs Using the Console
POWER FAILI AUTO-REST ART

POWER FAIL

OPTIONAL FEATURES

HIGH-SPEED 1/0

Burst Multiplexor Channel
BMC Address Modes

BMCMap

Burst Multiplexor Channel Instructions

MEMORY ERROR CHECKING
Error Checking and Correction
ERCC Instructions

ECLIPSE C/350 INSTRUCTIONS

CODING AIDS

Common Process
Mode A
ModeB

Mode B - Part I

Mode C - Part I

Mode D - Part I

Mode E - Part I

Modes B through E - Part II

iv

ECLIPSE C/350 I/O INSTRUCTIONS

CODING AIDS

BURST MULTIPLEXOR CHANNEL

Map Load Formats
Map Dump Formats

CENTRAL PROCESSOR

ERCC ERROR CORRECTION

MEMORY ALLOCATION AND PROTECTION

PROGRAMMABLE INTERVAL TIMER

REAL TIME CLOCK

PRIMARY ASYNCHRONOUS LINE INPUT

PRIMARY ASYNCHRONOUS LINE OUTPUT

CONSOLE FUNCTIONS

STANDARD I/O DEVICE CODES

OCT AL AND HEXADECIMAL CONVERSION

ASCII CHARACTER CODES

BINARY, OCTAL AND DECIMAL NUMBERING
SYSTEMS

COMPATIBILITY WITH NOVA LINE COMPUTERS

ADDRESSING

BOOTSTRAP LOADER

v

This pag;e intentionally left blank.

VI

Chapter I
ECLIPSE@C/350 SYSTEM

The ECLIPSE C/350 system is the newest member of
a new generation of Data General commercial
computer systems. The advanced architectural
features of the C/350 system provide Elxceptional
configuration flexibility, with the result that the
ECLIPSE C/350 can competently serve a wide variety
of commercial applications. In this chapter we discuss
the highlights of the ECLIPSE C/350 system and its
options.

HIGHLIGHTS OF THE ECLIPSE C/350
SYSTEM

There are 4 systems making up the ECLIPSE C/350
which together are responsible for the processing
power and throughput capability of this machine.
They are:

• Main Storage system,

• I/O Management System,

• Main Processor,

• Packaging.

In this section we cover the highlights of these
systems.

Main Storage

The ECLIPSE C/350 has a maximum memory
capacity of 1 Mbyte when using Error Checking and
Correcting (ERCC) semiconductor memory, with
cycle times of 500 nanoseconds for read cycles, 700
nanoseconds for write cycles.

With core memory, the C/350 has a maximum
memory capacity of 512 Kbytes, with a cycle time of
800 nanoseconds.

014-000610-00

1- 1

Memory modules can be interleaved up to 8 ways;
4-way interleaving producei3 an effective cycle time as
low as 300 nanoseconds for certain CPU instructions,
and 200 nanoseconds for optional burst multiplexor
I/O.

The C/350 Memory Allocl:j.tion and Protection unit
protects individual user sp~ce within memory on a 2
Kbyte page basis. Protection modes include address
validity, infinite defer, write, and I/O protection.

1/0 Management System

The ECLIPSE C/350 has several systems for
transferring information to and from the computer.
Each method is appropriate for certain types of
peripherals.

The optional Burst Multiplexor Channel (BMC)
provides a direct communi~ation path between main
memory and high-performance peripherals such as
DG/Disc Storage Subsystems and Fixed -Head
DG/Discs. Maximum ~ransfer rates are 10
Mbyte/second input, 6.7 Mbyte/second output. The
BMC option can support up to 4 controllers
transferring simultaneously.

The standard NOV NECLIPSE data channel
provides I/O communication for medium-speed
devices such as cartridge qiiscs, magnetic tapes, data
channel line printers, and synchronous
communications. Maximum transfer rates are 2.5
Mbyte/second input, 1.7 Mbyte/second output.

Programmed I/O, with priority interrupt handling
and vectoring capability for automatic dispatch to
the correct interrupt handler, provides I/O
communication for low-s@eed devices such as CRT
terminals, paper tape punches, and card readers.

1/0 Management System

Main Processor

The ECLIPSE C/350 main processor can execute the
~tandard ECLIPSE instruction set, using a fast
mteger multiply/divide function implemented in
firmware. It also executes the standard
56-instruction ECLIPSE floating point instruction set
using the Floating Point Processor (FPP)I for
extremely high-speed floating point operations.

The FPP also executes the Floating Point Functions.
These assembly language instructions perform
heavily-used scientific functions such as sine, cosine,
square root, natural logarithms, exponentiation and
polynomial evaluations.

Th~ Character Instruction Set simplifies handling of
strmgs of characters or bytes. It is especially useful in
communications and business applications, or any
situation where strings of bytes must be moved,
compared, or checked against a reference.

The Decimal/Edit instruction set handles many types
?f commercial operations, using a variety of
mdustry-compatible formats. Decimal numbers can
be converted to floating point format, manipulated by
the Floating Point Processor (FPP) and then
reconverted without round-off error.

~ addition, the. Edit subprogram can perform many
dlfferent operatIOns on a decimal number, including
leading zero suppression, floating fill charaeters,
punctuation control, and insertion of text into the
destination field.

Physical Design and Packaging

The ECLIPSE C/350 is packaged in a 19" wide rack
cabinet, allowing vertical mounting of up to 34 boards
in the mainframe. The ECLIPSE C/350 uSles a
135-amp (+5V) power supply and a heavy-duty
power distribution/fusing system. Multilayer printed
c~rcu~t ~oards provide optimal power and signal
dIstributIOn throughout. An additional 270-amp
(+5V) power supply is available for systems with
higher current requirements.

The C/350 cabinet contains a heavy-duty blower
system with over-temperature protection and
integral cable troughs for routing cables to
free-standing devices.

The front console is relocatable for troubleshooting at
the backplane and uses LED lamps for long life. It can
address the entire physical address space, select
individual maps, modify, examine or monitor
individual locations, and freeze on address read or
write.

Software Support

1- 2

Data General Corporation

Software Support

A wide variety of software support is available for the
ECLIPSE C/350 system.

The Real-Time Disc Operating System (RDOS)
supports real-time and batch operations plus
independent foregroundlbackground processing. It
also supports INFOStm (Data General's data base
management system) and, with INFOStm, the Idea
<Interactive Data Entry and Access} system. RDOS
can manage up to 512 Kbyte of main memory.

The Advanced Operating System (AOS) uses
adaptive resource management for effieient operation
in multiuser environments. It can manage up to 1
Mbyte of main memory in the ECLIPSE C/350 and
supports concurrent batch, timesharing, and
real-time operations. In addition, AOS can also
support INFOStm and Idea.

Many higher-level languages are also available,
including Fortran IV, Fortran V, Extended Basic,
PL/!, DG/L (an ALGOL-derivative structured
programming language), and Macro Assembler.

014-000610-00

Chapter II
CONCEPTS AND FACILITIES

The ECLIPSE C/350 contains a variety of extremely
powerful standard ECLIPSE facilities, including:

the ECLIPSE standard instruction set,
the stack,
the data channel,
the MAP,
the character instruction set (CIS),
decimal arithmetic instructions,
high-speed floating point processor (FPP),
floating point functions.

In addition, there are two optional facilities:

the Burst Multiplexor Channel <BMC),
Error Checking and Correcting (ERCC).

In this chapter we describe the facilities which
are standard. on all ECLIPSE C/350's. and the
assembly-language instructions which control these
facilities. In the next chapter. we describe the
optional facilities and their instructions.

You can fmd complete descriptions of all the
ECLIPSE C/350 assembly-language instructions,
other than I/O instructions, in Chapter IV. Chapter V
contains complete descriptions of all the I/O
instructions.

ADDRESSING CONVENTIONS

The various methods of addressing memory locations
in the ECLIPSE C/350 give you considerable
flexibility when storing and retrieving data, or
transferring control to a different procedure.

Each addressed location in main memory consists of a
16-bit word. The first word in memory has the
address 0, the next has the address 1. the next 2, and
so forth.

014-000610-00

11-1

In this manual, we speak of a user's addre88 8pace of
15 bits. This is a reference tq the logical address space
- the address space which the user normally sees and
which can be addressed ~y a 15-bit address. The
maximum amount of logic~ address space available
to the programmer is 32, ~68 words. (The phY8ical
address space - correspondif,. g to the total amount of
main memory in the compu er - may be much larger.)
Within a logical address s ace, the next sequential
memory location after locat on 777778 is location O.

The MAP controls the rela~ionship between a logical
address space and the P;tYSiCal address space by
translating logical addres s to physical addresses.
When the MAP is enabled, i intercepts each memory
reference and translates tp,e 15-bit logical address
into a 20-bit physical addrE!Bs. Unless the MAP itself
is being programmed, th~ translation process is
invisible to the programmer!.

Word Addressing Definr.tions

The following definitions' are useful for under­
standing word addressing iI). the ECLIPSE C/350 :

Word Addressing Definitions

SHORT CLASS

011214 ~ &17

DISPLACEMENT I
q I 10 I 11 I 12 I 11 I 14 I H

EXTENDED CLASS

DEPFNDS ON INSTRUCTION
I

o 1 2

b~D!~ I IINDEX I
114 ~ &17 I· I I I 1 I I I

8 q 10 11 12 11 14 IS

DISPLACEMENT I
& I 7 I 8 I q I 10 I 11 I 12 1 11 I 14 I H o 1 2

Addressing Modes - Three methods of addressing using
a displacement from some reference point to find the
desired address. Different modes use different
reference points.

Indirect Addressing - A method of addressing which
uses the first address found as a pointer to another
address which, in turn, may be used as a pointer to
yet another address, etc. A series of indirect
addresses is called an indirection chain.

Index Bits - Bits in the instruction which control the
addressing mode used when executing this
instruction.

Indirect Bit - A bit in the instruction or address which
controls the indirection chain at each step of the
addressing process.

Displacement Bits - Bits in the instruction which
control the displacement distance, in memory
locations, between some reference point <determined
by the mode) and the desired address.

Effective Address Calculation - Logical process of
converting the index, indirect, and displacement bits
into an address to be used by the instruction.

Intermediate Address - The address obtained by the
effective address calculation before testing for
indirection.

Lower Page Zero - Locations 0-3778 in memory.

When the index bits are 00, the displacement is
considered an unsigned integer. When the index bits
are 01, 10, or 11, the displacement is considered a
signed integer. Below is a table for the range of the
displacement field under various conditions.

Addressing Modes

II-2

Data General Corporation

INDEX BITS RANGE OF DISPLACEMENT fieLD

SHORT CLASS EXTENDED CLASS

00 o to 3778 o to 777778
or or
o to 255 10 o to 32.76710

01 -2008 to 1 778 -400008 to 377778
10 or or
11 -128 to +12710 -16.384 to + 16.3831 0

AODRfSSINGMODES

Word addressing in the ECLIPSE C/350 can be done
in the following modes:

• absolute addressing;
• P.C. <program counter) relative addressing;

• accumulator relative addressing.

In addition, direct or indirect addressing can be used
in any of these modes. By choosing the proper mode
at the appropriate time, you can obtain access to any
address in your logical address space.

The figure below illustrates the three addressing
modes.

SHORT CLASS

ABSOLUTE {
ADDRESSING

0

3378

{

PC

PC-RELATIVE PC
ADDRESSING

PC

-200.

-
+1778

{

AC2

AC-RELATIVE
ADDRESSING AC2

AC2

-200.

-
+177.

{

AC

AC-RELATIVE AC3
ADDRESSING

AC3

3-200

-
+177,

DG-04458

MAIN MEMORY

PAGE ZERO

EXTENDED CLASS

,~

ABSOLUTE.
PC-RELATIVE.
AC-RELATIVE
ADDRESSING

014-000610-00

CONCEPTS AND FACILITIES

Absolute Addressing Mode - In absolute addressing
mode, the intermediate address is, set equal to the
unmodified displacement. AB a result, the short class
of instructions specify locations in the range 0-3778 in
the absolute mode <short class instructions are
restricted to 8 bits in the displacement).

Lower page zero thus becomes very important
because any memory-reference in~.truction can
address this area. You can use it as a common storage
area for items that you frequently reference
throughout a program. Note, however, that we
reserve some of these locations for special purposes.

Extended class instructions can reference any logical
memory address using the absolute addressing mode.

P.e. Relative Addressing Mode In p.e. relative
addressing mode, the intermediate address is found
by adding the displacement to the address of the
word containing the displacement.

Accumulator Relative Addressing Mode - In accumulator
relative addressing mode, the intermediate address is
found by adding the displacement to the contents of
the accumulator indicated by the index bits (you may
use either AC2 or AC3).

Direct and Indirect Addressing - Direct addressing uses
the intermediate address without modification.

Indirect addressing uses the intermediate address as
a pointer to the next address. If bit 0 of the next
address is 1, this address is used as a pointer which
points to another address. The indirection chain is
continued until an address is found with bit 0 equal
to O. This address is then used as the address of the
data.

Any number of indirection levels is permitted in the
ECLIPSE C/350 , but indirect protection is available
which can limit indirections to 15 levels (see the MAP
section).

Auto-Incrementing and Auto-Decrementing - If the
intermediate address of a short class instruction is in
the range 20-27& and the indirect bit is 1, the
contents of the addressed location are incrlsmented
by one, and the addressing chain continues using the
incremented value of the addressed location.

If the intermediate address of a short class
instruction is in the range 30-37& and the indirect bit
is 1, the contents of the addressed location are
decremented by one, and the addressing chain
continues using the decremented value of the
addressed location.

NOTE: The state of bit 0 before the increment or
decrement determines whether the indirection
chain is continued. For example: Assume an
auto-increment location contains 1'1'17'1'18 (all

014-000610-00

IT-3

bits = 1 including bit Op. and the location is
referenced as part of an indirection chain. After
incrementing, the location contains all zeros.
However, bit 0 was 1 before the increment, so 0
will be the next address in the chain, rather than
the effective address.

You can find a flow diagram of the addressing process
in an appendix.

Addressing Modes

BYTE MANIPULATION
Byte Format

We represent bytes as 8-bit unsigned binary integers.
A byte in memory is selected by a 16-bit byte pointer.
Bits 0-14 of the byte pointer contain the memory
address of a 2-byte word. Bit 15 (the byte indicator)
indicates which byte of the addressed location will be
used. If bit 15 is 0, the high -order byte <bits 0-7) will
be used. If bit 15 is 1, the low-order byte (bits 8-15)
will be used. See the figure below.

BITS 0-14
ADDRESS WORD '--__

DG-00930

Byte Instructions

The byte instructions are shown i:p. the table below.
Note that when an instruction moves a byte to an
accumulator it also clears the high-order half of the
destination accumulator. When an instruction moves
a byte from an accumulator to memory, it leaves
unchanged the other byte contained in that word of
memory.

The two extended instructions (ELOB and ESTB) use a
byte pointer contained in the instruction coding to
reference bytes. The two short class instructions (LOB

and STB) use an accumulator to hold the byte pointer.

Bit Addressing

II-4

Oata General Corporation

Byte Instructions

Mnem Name Function

LOB Load Byte Places a byte of information
ELOB into an accumulator.

STB Store Byte Stores the right byte of an
ESTB accumulator into a byte of

memory.

BIT MANIPULATION
Bit Addressing

We use a 32-bit (2-word) bit pointer to address
individual bits in memory. Bit 0 of the bit pointer is
the indirect bit. If this bit is 1, the indirection chain
(using bits 1-15 for the address each time) will be
followed until a word is found with bit 0 set to O. Bits
1-15 of this word become bits 1-15 of the bit pointer,
and bits 0-15 of the next word become bits 16-31 of
the bit pointer.

We form the address of the desired bit as follows:

The address formed by the positive number
contained in bits 1-15 of the bit pointer (the base
address) is added to the number formed by the 12-bit
positive number contained in bits 16-27 (the offset).
The resulting address points to the word containing
the desired bit. Bits 28-31 of the bit pointer contain a
4-bit positive number which is the number of the
desired bit in the addressed word.

Below is a diagram of the bit-addressing process.

DG-00931

014-000610-00

CONCEPTS AND FACILITIES

Bit Instructions

The ECLIPSE C/350 instructions which manipulate
bits:

• Locate a bit in memory and set it to 0 or 1;
• Test a bit, skipping the next word if the specified

condition is true;

• Add a number to the contents of one accumulator
based on the number of ones or high-order zeros
found in the other accumulator.

Some of the bit instructions use a bit pointer to locate
a bit in memory. The others only affect bits within
the specified accumulators.

BIT MANIPULATION INSTRUCTIONS

Mnem Name Function

BTO Set Bit Sets the bit addressed by the
To One bit pointer to 1 .

BTZ Set Bit Sets the bit addressed by the
To Zero bit pointer to O.

COB Count Counts the number of ones in
Bits one accumulator and adds that

number to the second
accumulator.

LOB Locate Counts the number of high-order
Lead Bit zeros in one accumulator and

adds that numbar to the
second accumulator.

LRB Locate Performs a Locate Lead Bit
And Reset instruction and sets the lead
Lead Bit bit to O. ,

SNB Skip On Skips the next sequential word
Non-Zero if the bit addressed by the
Bit bit pointer is 1.

SZB Skip On Skips the next sequential word
Zero Bit if the bit addressed by the

bit pointer is O.

SZBO Skip On Sets the bit addressed by the
Zero Bit bit pointer to 1 and skips the
And Set nextsequentialword~the

ToOne bit was originally O.

014-000610-00

II- 5

CHARACTER MANIPULATION

Character Instructions

The foW' character instructi~ns manipulate strings of
characters. Each character ~n a string occupies one
byte. These strings can be any data type. The
character instructions:

• compare one byte string tb another;
• move a byte string from' one area of memory to

another;

• translate a character stri~g from one data type to
another.

The character instructions ~re described in the table
below.

CHARACTER INSTRUCTIONS

Mnem Name Function

CMP Character Compalres one string of characters
Compare in memory to another string.

CMT Character Moves ia string of bytes from one area
Move Until of metry to another until a table-
True specifi delimiter character is

encou ,tered or the source string is
exhau~ted.

CMV Character Moves! a string of bytes from one area
Move of me,j,ory to another under control

of the values in the four
accumlJlators.

CTR Character TranslE/tes a string of bytes from one
Translate data ~presentation to another and

either ~oves it to another area of
memot(or compares it to a second
string (,f bytes.

Character Instructions

NUMBER CONVENTIONS

Integer Format

We represent a signed integer by a two's-complement
number in one or more 16-bit words. The sign of the
number is positive if bit 0 of the first word is 0 and
negative if that bit is 1.

We represent an unsigned integer by using all the bits
of one or more 16-bit words to represent the
magnitude.

SIGNED INTEGERS

SINGLE PRECISION:

1 1
o 15
I •
2's COMPLEMENT

MAGNITUDE

MULTIPLE PRECISION: ,..--____ --, 2

I ----, I I f 1,-1 ------:-:1,5' o 15 0 15 0

2's COMPLEMENT MAGNITUDE

UNSIGNED INTEGERS

SINGLE PRECISION:

1 1
o 15

•
UNSIGNED

MAGNITUDE

MULTIPLE PRECISION:
, 1 "'-1 ------,1 1 1,-1 ____ ---:-:II
o 15 0 15 ~ 0 15

v
UNSIGNED MAGNITUDE

DG-04848

Single precision integers are one word (16 bits> long,
and multiple precision integers are two or more
words long. As an example, the table below shows the
possible range of single and double precision numbers
represented by this format:

Single Precision Double Precision

Unsigned o to 65,535 o to 4,294,967,295

Signed -32,768 to -2,147,483,648 to
+32,767 +2,147,483,647

In addition, there is a Carry bit. A change in the
value of the carry bit indicates a carry out during
fixed point arithmetic operations.

Decimal Format

II- 6

Data General Corporation

Decimal Format

We represent decimal numbers by a variety of
industry-compatible formats. Both unpacked and
packed decimal format can be recognized and
manipulated by various instructions.

Unpacked Decimals

In unpacked decimal format, each byte of memory
contains the code for one ASCII character. Each
decimal digit is represented by the ASCI character
for that digit except when a digit and sign are
combined in one character. The table below shows
the ASCII characters we use to represent the
combination of a digit and sign in 'those formats
which require it.

Digit Digit With + Sign Digit With - Sign

ASCII Octal ASCII Octal
Characte Code Character Code

0 { 173 } 175
1 A 101 J 112
2 B 102 K 113
3 C 103 L 114
4 D 104 M 115
5 E 105 N 116
6 F 106 0 117
7 G 107 P 120
8 H 110 a 121
9 I 111 R 122

You can represent the sign in anyone of four ways
when using unpacked decimal format. These four
ways are shown in the table that follows.

Note that in each example, the first line shows the
decimal number as normally written, the second line
shows the ASCII characters placed in each byte, and
the third line shows the octal code of the character in
each byte.

Type Characteristic Example

Leading Sign appears in +2048
Sign separate byte + 2 0 4 8

after number. 053 062 060 064 070

Trailing Sign appears in -1756
Sign separate byte 1 7 5 6 -

after number. 061 067 065 066 055

High- Sign and high-order +1850
order digit are indicated by A 8 5 a
Sign single (first) byte. 101 070 065 060

Low- Sign and low-order -3972
order digit are indicated by 3 9 7 K

Sign single (last) byte. 063 071 067 113

014·000610-00

CONCEPTS AND FACILITIES

Packed Decimal

In packed decimal format, each digit of the decimal
number occupies one half byte in memory. The sign
appears in a separate trailing half byte. The number
must start and end on a byte boundary, so a packed
decimal number always consists of an odd number of
digits followed by the sign (a zero is placed in front of
numbers with an even number of digits). The sign is
represented by the octal number 148 for plus and 158
for minus.

Several examples of packed decimal numbers are
shown below.

BYTE BYTE BYTE

+2048 0 2 0 4 8 +
00 02 00 04 10 14

+32,456 3 2 4 5 6 +
03 02 04 05 06 14

-1756 0 1 7 5 6 -
00 01 07 05 06 15

-25,989 2 5 9 8 9 -
02 05 11 10 11 15

Data Type Indicator

Most ECLIPSE C/350 instructions make certain
assumptions about the representation of data in
memory -- whether the data you are referencing is in
integer format, floating point format and so on. The
assumptions about data type made by the
instructions are usually obvious; your choice of
instruction implicitly defines the kind of data you are
manipulating. For example the Load byte assumes
the information to which you refer is a single byte of
data, while the Load f7.oating point double instruction
operates on an aggregate of data in memory that is
eight bytes long.

However, the decimal arithmetic and the edit
instructions do not make such assumptions; rather,
these instructions require you pass them a parameter
called the data-type indicator which defines both the
data representation you want the operation to use
and also its size; you pass the indicator in an
accumulator. The data-type indicator has the
following format:

014-000610-00

11-7

'!TYPE!! SIZE I
o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I ij 9 I 10 11 121 13 I 14 I 15

BITS NAME CON-ilNTS or FUNCTION

0-7 --- Reserve~ for future use

8-10 TYPE Data tY!fe:

o U~paCked decimal, low order sign
1 U packed decimal, high order sign
2 Urpacked decimal, trailing sign
3 Urpacked decimal, leading sign
4 u~packed decimal, unsigned
5 P cked decimal
6 T!No's complement integer,
bvttaligned
7 Fating point. byte aligned

11-15 SIZE Data le~gth:

For all ex~ePt data typa 5,
count of ytes in number minus 1
(jncludintsignJ ;
For data pa 5, the count
of digitsl in the number

Logical Format

We represent logical entiti~ as individual bits in a
16-bit word. Each bit is tre~ted as a separate binary
value. When two words are! involved (logical AND or
XOR, for example> only c~rresp6nd.ing bits of each
word interact. Examples of logical operations include:

• forming the logical AND ottwo words;
• forming the logical comp~ement of a word;
• shifting the contents of a word left or right.

Floating Point Format

Word for word, floating poiIllt format provides a much
larger range than integer tormat, at the expense of
some precision. It also prov~des the ability to operate
on fractions. The maximu$ range of floating point
format is equivalent to a l$-word multiple precision
integer. In addition, float~ng point operations are
executed faster than most tnultiple precision integer
operations.

We represent a floatin~ point value using a
4-byte-wide (for single prepision> or an 8-byte-wide
(for double precision) nuinber. The 4- or 8-byte
aggregate contains 3 fields:

• a fractional part called t4e mantissa, which, at the
end of all floating point $athematics operations, is
always adjusted. to be grElater than or equal to 1/16
and less than 1 (i.e., no,.".alized);

• an exponent, which is $.djusted to maintain the
correct value of the number;

• a sign.

Floating Point Format

Operations on numbers in memory employing the
floating point arithmetic instructions requiro that
the number be word aligned, that is, bit 0 of the first
byte of the number is bit 0 of first word of a 2-word or
4-word area in memory. Certain operations on
numbers in memory employing decimal or edit
instructions allow the number to be either word
aligned or byte aligned. Byte alignment means that·
bit 0 of the first byte of the number is either bilt 0 or
bit 8 of any word in memory.

SINGLE PRECISION (4 BYTES)

II BYTEO I
01 7

tEXPONENT

SIGN

I BYTE 1 I
8 15

BYTE 2 I
16 23

BYTE 3 I
24 31

MANTISSA (6 HEX DIGITS)

l WORD ALIGNED FOR ALL FLOATING POINT OPERATIONS; MAYBE WORD OR
BYTE ALIGNED FOR MOST DECIMAL AND EDIT INSTRUCTIONS

DOUBLE PRECISION (8 BYTES)

II BYTEO I I BYTE 1 I BYTE 2 I I BYTE3 I
01 7 8 15 16 23 24 31

I BYTE5 I I 8YTE6 I I 8YTE2J
32 39 40 47 48 53 54 63 l~NT I 8YTE4 I

~----------~----------~
MANTISSA (14 HEX DIGITS)

SIGN

l WORD ALIGNED FOR ALL FLOATING POINT OPERATIONS; MAY BE WORD OR
BYTE ALIGNED FOR MOST DECIMAL AND EDIT INSTRUCTIONS.

DG-04849

Floating Point Format

11-8

Data (Jeneral Corporation

The magnitude of a floating point number is defined
to be:

MANTISSA X 1 6 (TRUE VALUE OF THE EXPONENT)

We represent zero in floating point by a number with
all bits zero, known as true zero. When a calculation
results in a zero mantissa, the number is
automatically converted to a true zero.

Sign

BIT 0 of the first byte is the sign bit. If the sign bit is
0, the number is positive. If the sign bit is 1, the
number is negative.

Exponent

The right-most 7 bits of the first byte contain the
exponent. We use excess 64 representation. For both
positive and negative exponents, the value is 64
greater than the true value of the exponent. The
following table illustrates this:

EXPONENT FIELD TRUE VALUE of EXPONENT

0 -64
64 0
127 63

Mantissa

Bytes 1-3 (single precision) or bytes 1-7 (double
precision) contain the mantissa. By definition, the
binary point lies between byte 0 and byte 1 of a
floating point number. In order to keep the mantissa
in the range of 1/16 to 1, the results of each floating
point calculation are normalized. A mantissa is
normalized by shifting it left one hex digit (4 bits) at
a time, until the high-order four bits (the left-most
four bits of byte 1) represent a nonzero quantity. For
every hex digit shifted, the exponent i.s decreased by
one.

014-000610-00

CONCEPTS AND FACILITIES

NUMBER MANIPULATION

Fixed Point Arithmetic Instructions

There are 26 ECLIPSE C/350 instructions which
perform fixed point arithmetic. These instructions:

• Perform binary arithmetic on operands in
accumulators;

• Load data from memory to an accumulator;

• Move data from an accumulator to memory;

• Load a number into an accumulator.

All of the fixed point arithmetic instructions are
shown in the following table. Some of the instructions
appear in both a short form and a long form (the long
form usually is indicated by the prefix E in the
mnemonic). Most of these are instructions that move
data to or from memory. For these. the short form is
16 bits in length and can directly specify a memory
address from 0 to 255 or can directly specify a small
area in memory surrounding the present value of the
program counter or an accumulator. Long form
instructions are 32 bits in length; they can directly
specify any address from 0 to 777778- ADI and ADDI are
also short and long forms. respectively. of the same
instruction. The short form can only add a 2-bit
quantity coded with the instruction (an immediate)
in the range 1-4. while the long form can add a 16-bit
immediate in the range -32.768 to +32.767.

014-000610-00

Mnem

ADC

ADD

ADDI

ADI

DIV

DIVS

DIVX

DSZ
EDSZ

HLV

INC

ISZ
EISZ

LDA.
ELDA

LEF.
ELEF

MOV

MUL

MULS

NEG

IT-9

FIXED POINT IN$TRUCTIONS

Name Functi~n

Add Adds a~ unsigned integer to the
Complement logicallc0mPlement of another

unsign d integer.

Add Adds c~ntents of one accumulator
to anot er. __

Extended Adds a ~igned integer in the range
Add -32,76 to +32.767 to the
Immediate conten~ of an accumulator.

Add Adds a~ unsigned integer in the
Immediate range 1!-4 to the contents

of an atumulator.

UnSigned Divides the unsigned 32-bit
Divide integer lin two accumulators by

the un~igned contents of a
third a cumulator.

Signed Divides! the signed 32-bit integer
Divide in two ,ccumulators by the

Signed contents of a third
accum~lator.

Sign Extend. the sign of one
Extend accum~lator into a second
And accum lator a'nd performs a
Divide Signecf, Divide on the result.

Decrement Decre",ents the addressed word.
And Skip then s~ips if the decremented
If Zero l .. OU
Halve Divide the contents of an

accum lator by 2.

Increment Incremlmts the contents of
an acc~mulator.

Increment Incre~nts the addressed word.
And Skip then s ips if the incremented
If Zero value i zero.

Load Loads ~ata from memory to an
Accumulator accum(.lIator.

Load Places rn effective address
Effective in an a cumulator.
Address I

Move Moves~he contents of an
accum lator through the
Arithm tic Logic Unit (ALU).

Unsigned Multiplies the unsigned contents
Multiply of twolaccumulators and adds

the re~ults to the unsigned
conten~ of a third accumulator.

Signed MUltipts the signed contents
Multiply of two accumulators and adds

the re ults to the signed
-conten~s of a third accumulator.

Negate Forms !the two's complement of the
conterits of an accumulator.

FixediPoint Arithmetic Instructions

FIXED POINT INSTRUCTIONS Continued

Mnem Name Function

SBI Subtract Subtracts an unsigned integer in
Immediate the range 1-4 from the contents

of an accumulator.

STA. Store Stores data in memory from
ESTA Accumulator an accumulator.

SUB Subtract Subtracts contents of one
accumulator from another.

XCH Exchange Exchanges the contents of
Accumulators two accumulators.

DECIMAL ARITHMETIC

There are 11 instructions in the ECLIPSE C/350
which perform operations on decimal data. These
instructions:

• Add and subtract decimal integers;
• Shift the contents of words one or more hex digits

left or right:

• Convert decimal integers to floating point
numbers;

• Convert floating point numbers to decimal integers
of a specified data type;

• Convert decimal integers to strings of bytes and
perform a variety of functions on the string.

Decimal Faults

In the course of processing decimal instructions, the
CPU performs certain checks on the data being
processed. If an invalid data type or number is found,
a fault is initiated. When a fault occurs, the processor
first pushes a return block onto the stack with the
program counter word in the return block pointing to
the instruction that caused the fault. It then places a
code indicating the type of fault in AC1, and executes
a Jump indirect to the decimal fault address, location
468' This location should point to a fault handling
routine.

The table below describes the decimal faults:

CODE INSTR. MEANING

4 LDI Number too large to convert to specified
STI data type. SIIDI is in AC2.
STIX

6 LSN Sign code is invalid for this data type.
LDI AC3 contains SI.
LDIX

7 LSN Invalid digit. AC2 contains SI.
LDI
LDIX

Logical Operation Instructions

Data General Corporation

DECIMAL ARITHMETIC INSTRUCTIONS

Mnem Name Function

DAD Decimal Adds to~ether the decimal digits
Add found in'bits 12-15 of

two acculumulators.

DHXL Double Shifts the 32-bit contents of two
Hex accumulators left 1 to 4 hex digits.
Shift
Left

DHXR Double Shifts the 32-bit contents of two
Hex accumu~tors right 1 to 4 hex digits.
Shift
Right

DSB Decimal Subtracts the decimal digit in bits
Subtract 12-15 of one aecumufator from the

decimal 4igit in bits 12-15 of
another ~cumulator.

EDIT Edit Converts, a decimal integer to a
string of bytes controlled by an
edit subprogram; or manipulates
string of bytes.

HXL Hex Shifts th., contents of an
Shift accumull!tor left a number of
Left hex digits.

HXR Hex Shifts the contents of an
Shift accumulator right a number
Right of hex digits.

LDI Load Converts,a decimal integer to
Integer normalized floating point form

and places it in a specified
floating point accumulator.

LDIX Extended Distributes a decimal integer
Load into 4 floating point
Integer accumulators.

LSN Load Evaluates a number in memory
and retums a code indicating
the sign of the number.

STI Store Converts the contents of a
Integer floating point accumulator

to a specified format and
stores it in memory.

STIX Extended Converts the contents of 4
Store floating point accumulators
Integer to integer form and uses the

8 low-order digits of each to
form a 32-bit integer.

Logical Operation Instructions

All of the logical operations instructions are shown in
the following table. The Load Effective Address and
Ex.tended Load Effective Address instructions are the
short and long form, respectively, of the same
instruction. The short form is 16 bits in length and
can directly specify a memory address from 0 to 255
or can directly specify a small area in memory
surrounding the present value of the program
counter or an accumulator. Long form instructions
are 32 bits in length; they can directly specify any
address from 0 to 777778,

II-10

014-000610-00

CONCEPTS AND FACILITIES

LOGICAL OPERATION INSTRUCTIONS

Mnem Name Function

ANC AND With Forms the logical AND of the
Complemented contents of one accumulator and
Source the logical complement of the

contents of another accumulator.

AND AND Forms the logical AND of the
contents of two accumulators.

ANDI AND Forms the logical AND of a
Immediate 1 6-bit number contained in

the instruction and the
contents of an accumulator.

COM Complement Forms the logical complement
of the contents of an
accumulator.

DHXL Double Shifts the 32-bit contents of two
Hex accumulators left 1 to 4 hex
Shift digits depending on the value of
Left a 4-bit number contained in the

instruction.

DHXR Double Shifts the 32-bit contents of two
Hex accumulators right 1 to 4 hex
Shift digits depending on the value of
Right a 4-bit number contained in the

instruction.

DLSH Double Shifts the 32-bit contents of two
Logical accumulators left or right
Shift depending on the contents of a

third accumulator.

HXL Hex Shifts the contents of an
Shift accumulator left 1 to 4 hex
Left digits depending on the value of

a 4-bit number contained in the
instruction.

HXR Hex Shifts the contents of an
Shift accumulator right 1 to 4 hex
Right digits depending on the value .of

a 4-bit number contained in the
instruction.

lOR Inclusive Forms the logical inclusive OR of
OR the contents of two accumulators.

IORI Inclusive Forms the logical inclusive OR of
OR a 1 6-bit number contained in the
Immediate instruction and the contents of

an accumulator.

LEF, Load Places an effective address
ELEF Effective in an accumulator.

Address

LSH Logical Shifts the contents of an
Shift accumulator left or right

depending on the contents of
another accumulator.

XOR Exclusive Forms the logical exclusive OR of
OR the contents of two accumulators.

XORI Exclusive Forms the logical exclusive OR of
OR a 1 6-bit number contained in the
Immediate instruction and the contents of

an accumulator.

014-000610-00

II-11

Floating Point Arithmetif

The ECLIPSE C/350 floating point instructions
assume normalized input numbers. Results are
undefined for unnormalized ~nput.

Floating Point Registers

There are five registers avai~able to the programmer
in the floating point proce~sor. These are the four
floating point accumulators (FP AC's) and the
Floating Point Status Register (FPSR). The FPAC's
are numbered 0-3 and are caped F ACO, F AC1, F AC2,
and FAC3. The FPSR is. a 32-bit register that
contains information about ~he present status of the
floating point processor. Th~ format of the FPSR is
given at right. .

Guard Digit

In order to increase accurapy, a 4-bit (1 hex digit)
guard digit is used during 'oating point arithmetic
operations. This guard digiti accepts and holds up to
4 bits shifted out (to the righjt) of the mantissa, and is
used in all single precisio:p. and double precision
operations until the I completion of each
instruction. The guard digi~ is truncated before the
data is stored at the end of tll.e instruction process.

Floating Point Fault Condit,ons

After every floating point operation, the floating
point status register is ch~ked for possible fault
conditions. Four types o~ floating point fault
conditions can be detected.

Floating Point Arithmetic

BITS NAME CONTENTS or FUNCTION

0 ANY Indicates that any of bits 1-4 are set.

1 OVF Overflow Indicator--while processing
a floating point number, an exponent
overflow occurred; the result is correct
except the exponent is 128 too small.

2 UNF Underflow Indicator - while processing
a floating point number, an exponent
underflow occurred; the result is
correct except that the exponent is
128 too large.

3 DVZ Divide by Zero - whUe processing a
floating point number, a zero divisor
was detected; diviSion was aborted
and the operands remain unchanged.

4 MOF Mantissa Overflow - during a
F5CAL instruction, a significant bit was
shifted out of the high order end of the
mantissa; this bit is also set during a
FIX instruction if the result does not
fit into the destination location.

5 TE Trap Enable - If this bit is 1, setting
any of bits 1-4 will result in a floating
point fault.

6 Z Zero bit - The result of the last
floating point operation was zero.

7 N Negative bit--The result of the last
floating point operation was less
than zero.

8-13 --- Reserved for future use.

14-15 FPMOD Indicates computer series supporting
the floating point instruction set

00 5/200, C/300,
5/230, C/330

01 5/130,5/250
(with FIS)

10 Ml600, C/350
5/250
(with FPP)

11 Reserved for
future use

16 --- Reserved for future use.

17-3.1 FPPC Floating Point Program Counter - This
is the logical address of the last
floating pointinstruction executed.
In the event of a floating point fault,
this is the address of the floating
point instruction that caused the fault.

Floating Point Arithmetic

Data General Corporation

Floating Point Trap

If the program has set bit 5 of the floating point
. status register to 1. a floating point fault condition
will initiate a floating point tlrap. Immediately before·
the next floating point in~ruction is executed. a
return block is pushed onto the mack and the
program counter jumps indirect via .location 45g.
Location 458 should contain the address of the
floating point fault handler. The return block pushed
has the following format:

WORD DESCRIPTION

0
1
2
3
4

ACO
ACl
AC2
AC3
8it 0: Carry; Bit 1-15: return address

NOTE: The return addre88 i8 not the addre88 of
the floating point in8truc~ion that caused the
fault nor i8 it (nece88arily) the addre88 of the
in8truction following the i1l8truction that caused
the fault. It i8 the addres8 of the floating point
in8truction following the in8truction that caused
the fault.

If the instruction following the instruction that
caused the fault i8 a Push Floating Point State 01' a
Pop Floating Point State the fault will not occur
immediately. The fault will occur when the
8Y8tem return8 to the 8ame 'user environment and
i8 about to execute a floating point in8truction
other than a Push Floating Point State 01' a Pop
Floating Point State . In thi8 way, the fault will only
occur within the U8er environment which caused
it.

The floating point instructions are shown in the
following table. Note that several instructioml have
two forms. one ending in S and one ending in D . The
first form uses single-precision floating point format.
while the second form uses double-precision floating
point format. The function of the two forms is
otherwise identical.

II-12

014-000610-00

CONCEPTS AND FACILITIES

FLOATING POINT INSTRUCTIONS FLOATING POINT INSTR~CTIONS (Continued)

Mnem Name Function Mnem Name Functipn

FAB Absolute Value Sets the sign bit of an FPAC to O. FHLV Halve Divide~ the floating point number in
FAMS, Add (memory Adds the floating point number FPAC ~y 2.
FAMD to FPAC) in memory to the

floating point number in
an FPAC.

FAS, Add (FPAC Adds the floating point number
FAD to FPAC) in one FPAC to the floating

point number in another FPAC.

FCLE Clear Errors Sets bits 0-4 of the FPSR TO O.

FCMP Compare Compares two floating point numbers

FINT Integerize Sets t~ fractional portion of the
floatin~ point number in the
specifi d FPAC to zero and
normal zes the result.

FLAS Float Conve~s a signed two's complement
From AC num~1 in an accumulator to a

single recision floating point
numbe .

Floating and sets the Z and N flags FLDS, Load Moves ia floating point number
Point accordingly. FLOD Floating from njemory to a

FDMS, Divide Divides the floating point Point specifi~d FPAC.

FDMD (FPAC by number in an FPAC by a FLMD Float Conve~s the contents of two memory
memory) floating point number in From locatio~s in integer format to

memory. Memory floating point format and places

FDS, Divide Divides the floating point the res~lt in a specified FPAC.

FDD (FPAC by number in one FPAC by the FLST Load Moves ~he contents of two specified
FPAC) floating point number in Floating memorY locations to the FPSR.

another FPAC. Point

FEXP Load Places bits 1-7 of ACO in bits 1-7 of Status

Exponent the specified FPAC.

FFAS Fix ToAC Converts the integer portion of a
floating point number to a signed
two's complement integer and places

FMMS, Multiply , ",tin, po;",
FMMD (memory numbe in memory

by by the loating point number
FPAC) in anF AC.

the result in an accumulator.

FFMD Fix To Converts the integer portion of a
Memory floating point number to double-

FMOV Move Moves fhe contents of one FPAC to
Floating anothe FPAC.
Point

precision integer format and
stores the result in two memory
locations.

II-13

014-000610-00 Floating Point Arithmetic

Data General Corporation

FLOATING POINT (Continued) FLOATING POINT (Continued)

Mnem Name Function Mnem Name Function

FMS, Multiply Multiplies the floating point
FMD (FPAC number in one FPAC by the

by floating pOint number in
FPAC) another FPAC.

FSNE Skip On Skips the next sequential word if
Non-Zero the Z flag of the FPSR is O.

FSNER Skip On Skips the next sequential word if bits
No Error 1-4 of the FPSR are all O.

FNEG Negate Inverts the sign bit of the FPAC.

FNOM Normalize Normalizes the floating point number
in FPAC.

FSNM Skip Skips the next sequential word if the
On No mantissa overflow lMOF) flag of the
Mantissa FPSR is O.

FNS No Skip The next sequential word is executed. Overflow

FPOP Pop Pops an 18-word floating point FSNO Skip Skips the next sequential word if the
Floating block off the user stack and alters On No overflow (OVF) flag of the
Point the state of the floating point unit. Overflow FPSR is O.
State FSNOD Skip Skips the next sequential word if both

FPSH Push Pushes an 18-word floating point On No the overflow (OVF) flag and the
Floating block onto the user stack. Overflow divide by zero (DVZ) flag of the
Point And FPSR are O.
State No Zero

FRH Read Places the high-order 1 6 bits Divide

High of an FPAC in ACO. FSNU Skip Skips the next sequential word if the
Word On No underflow (UNF) flag of the

FSA Skip The next sequential instruction is Underflow FPSR is O.

Always skipped. FSNUD Skip Skips the next sequential word if both

FSCAL Scale Shifts the mantissa of the floating
point number in FPAC either right
or left, depending upon the conltents
of bits 1-7 of ACO.

On No the underflow (UNF) flag and the
Underflow divide by zero (DVZ) flag of the
And FPSR are O.
No Zero

FSEQ Skip On Skips the next sequential word if the
Zero Z flag of the FPSR is 1.

FSGE Skip On Skips the next sequential word
Greater if the N flag of the FPSR is O.
Than Or
Equal
To Zero

Divide

FSNUO Skip Skips the next sequential word if both
On No the underflow (UNF) flag and the
Underflow overflow (OVF) flag of the
And No FPSR are O.
Overflow

FSS, Subtract Subtracts the floating point

FSGT Skip On Skips the next sequential word if both
Greater the Z and N flags of the FPSR are O.
Than Or

FSD (FPAC number in one FPAC from the
from floating point number in
FPAC) another FPAC.

Equal
To Zero

FSST Store Moves the contents of the FPSR
Floating to two memory locations.

FSLE Skip On Skips the next sequential word
Less if either the Z flag or the N flag
Than Or of the FPSR is 1.

Point
Status

FSTS, Store Stores the contents of a specified

Equal FSTD Floating FPAC into memory.

To Zero Point

FSLT Skip On Skips the next sequential word if the
Less N flag of the FPSR IS 1.

FTD Trap Sets the trap enable flag of the
Disable FPSR to O.

Than FTE Trap Sets the trap enable flag of the
Zero Enable FPSR to 1.

FSMS, Subtract Subtracts the floating point
FSMD (memory number in memory

from from the floating point number
FPAC) in an FPAC.

FSND Skip On Skips the next sequential word if the
No Zero divide by zero (DVZ) flag of the
Divide FPSR is O.

--

II- 14

Floating Point Arithmetic 014-000610-00

CONCEPTS AND FACILITIES

ALe MANIPULATION

ALe Format

Each of the eight Arithmetic/Logic Class (ALC)
instructions performs a specific function upon the
contents of one or two accumulators and the carry
bit. The eight functions are Add, Subtract, Negate,
Add Complement, Move, Increment, Complement, and
AND. The instructions are identified by the
mnemonics of the eight functions, which are ADD, SUB,
NEG, ADC, MOV, INC, COM, and AND.

In addition to the specific functions performed by an
individual instruction, there is a group of general
functions all ALC instructions can perform. These
general functions include shift operations, which
rotate the data left or right, or swap the bytes. Also
included are various tests that can be performed on
the data. With each test the instructions can check
the data for some condition and skip or not skip the
next sequential word depending on the outcome of
the test. Finally, the instructions can load or not load
the results of the specific and general functions into
the destination accumulator and the carry bit. The
diagram below shows the format of the ALC
instructions.

ALe Instructions

The ALC instructions are listed below.

ALC Instructions

Mnem Name Function

ADC Add Adds an unsigned integer to the
Complement logical complement of another

unsigned number.

ADD Add Adds contents of one accumulator
to the contents of another.

AND AND Forms the logical AND of the
contents of two accumulators.

COM Complement Forms the logical complement of
the contents of an accumulator.

INC Increment Increments the contents of an
accumulator.

MOV Move Moves the contents of an accumulator
through the ALU.

NEG Negate Forms the two's complement of the
contents of an accumulator.

SUB Subtract Subtracts contents of one
accumulator from the contents
of another.

ALe Instruction ExecutiQn

The ALC instructions use an Arithmetic Logic Unit
(ALU) to process data. The logical organization of the
ALU is illustrated below.

ACD
16 BITS

LOAD/NO LOAD

DG-00927

When an ALC instruction qagins execution, it loads
the contents of the carry bi~ and the contents of the
accumulator(s) to be proces~ed into the ALU. There
are five distinct stages of ~U operation. We will
discuss these stages separately.

Carry

The ALU begins its manipulation of the data by
determining a new value foIj the carry bit. This new
value is based upon three th~ngs: the old value of the
carry, bits 10-11 of the ALC ~nstruction, and the ALC
instruction being executed. 'Fhe AL U first determines
the effect of the instruction tiits 10-11 on the old value
of the carry. The table below shows each of the
mnemonics that can be apP19nded to the instruction
mnemonic, the value of bits 10-11 for each choice, and
the action each one takes.

SYMBOL VALUE OPE~ATION

[cJ omitted 00 Leav$ Carry bit unchanged

[cJ=z 01 Initialize Carry bit to 0

[cJ=o 10 InitiaUze Carry bit to 1

[cJ=c 11 Complement the Carry bit

Function

The ALU next evaluates the effect of the specific
function (bits 5-7) upon the data. For the instructions
Move, Negate, AND, and Complement the ALU
performs the function on th, data word(s) and saves
the result. The value of the carry is as it was
calculated above. For the instructions Add, Add
Complement, Subtract, and IJ!l.crement the result of the
function's action upon the data word(s) may be

II-15

014-000610-00 ALe Instruction Execution

larger than 216 - 1. A carry out results. In this
situation, the ALU saves the low-order 16 bits of the
function result, but it complements the value of the
carry calculated above.

NOTE: At this stage of operation, the ALU does
not load either the saved value of the function
result into the destination accumulator, 01' the
saved value of the carry into the carry bit.

Shift Operations

Next the ALU performs any specified shift operation
on the 17 bits output from the function generator (16
bits of data plua the calculated value of the carry
bit). Depending on which shift operation is specified
in the instruction, the function generator output can
be rotated left or right one bit, or have its bytes
swapped. The first table below shows the different
shift operations that can be performed, the value of
bits 8-9 for each choice, and the action each choice
takes. The second table shows how each shift
operation works.

SYMBOL VALUE OPERATION

[8hIomitted 00 Do not shift the result
of the ALC operation

[8hl=L 01 Rotate left the 1 7 -bit
combination of Carry bit
and ALC operation result

[8hl=R 10 Rotate right the 1 7-bit
combination of Carry bit
and ALC operation result

[8h]=s 11 Swap the two a-bit halves
of the ALC operation result
without affecting Carry bit

ALe Instruction Execution

Coded
Character

R

S

Data General Corporation

Shifter Operation

Left rotate one place Bit 0 IS rotated Into the carry

position, the carry bit Into bit' 5

~~ _____ 0-_'5 ______ ~1:J
Right rotate one place Bit' 5 IS rotated Into the
carry position, the carry bit Into bit 0

C0-,---1 __ 0-'_5 _~~
Swap the halves of the' 6-blt result The carry IS
not affected

Skip Tests

The AL U can test the result of the shift operation for
one of a variety of conditions, and skip or not skip the
next instruction depending upon the result of the
test. The table below shows the tests that can be
performed, the value of bits 13-15 for each choice, and
the action each choice takes.

II- 16

SYMBOL VALUE OPERATION

[8kip] omitted 000 No Skip

[8kip]=SKP 001 Skip unconditionally

[8kip]=szc 010 Skip if Carry bit is zero

[8kip]=SNC 011 Skip if Carry bit is nonzero

[8kipl=sZR 100 Skip if ALC result is zero

[8kipl=SNR 101 Skip if ALC result is nonzero

[8kipl=SEZ 110 Skip if either ALC result
or Carry bit is zero

[8kip]=SBN 111 Skip if both ALC result
and Carry bit is nonzero

Load/No-Load

If the no-load bit (bit 12) is 0, the ALU loads the
result of the shift operation into the destination
accumulator, and loads the new value of the carry
into the carry bit. If the no-load bit is 1, then the
AL U does not load the result of the shift operation
into the destination accumulator, and does not load
the new value of the carry into the carry bit, but all
other operations, such as skip tests, take place. This
no-load option is particularly convenient to use when
you want to test for some condition without

014-000610-00

CONCEPTS AND FACILITIES

destroying the contents of the destination
accumulator. The table below shows how to code the
load/no-load operation.

SYMBOL VALUE OPERATION

omitted 0 Load the result of the

shift operation into ACD

1 D~ not load the ALC
operation result into ACD;
restore Carry bit to value
it had before shifting

NOTE: These instructions must not have both the
No-Load and the Never-Skip options specified at
the same time. These bit combinations are used
by other instructions in the instruction set.

014-000610-00

,I

THEST~CK

The stack is a series of ~_onsecutive locations in
memory. In their simplest ~orm, stack instructions
add items in sequential ord~r to the top of the stack
and retrieve them in the re,*erse order. Several stack
areas may be defined by th~ program, but only one
stack may be in use at any t~me. The ECLIPSE C/350
uses the push-down stack doncept to provide easily
accessible temporary stor"ge of data, variables,
return addresses, etc.

The simplest use ofthe stac~ is for temporary storage
of the contents of up to four I1ccumulators, which can
be stored or retrieved with one instruction. More
commonly, the stack is use4 to store a return block
which greatly simplifies th~ process of entering and
returning from subroutines.

The return block can tak~ several forms, but it
usually consists of five word£!: the contents ofthe four
accumwators, the progr~ counter or the frame
pointer (see below), and th~ carry bit in bit 0 of the
last word pushed.

Three parameters define a s~ack: (1) the lower limit,
or starting location; (2) tIte upper limit, or stack
limit; and (3) the present t~p of the stack, or stack
pointer. The lower and uppet limits define the area in
memory which is reserved' for the stack, and the
stack pointer defines the l~cation of the last word
placed onto the stack (or ~he next word available
from the stack). A diagram !of a stack area is shown
below: .

II-17

LOWER LIMIT

STACK t
POINTER-

~

UPPERUMIT
·STACK LIMIT"

DG-04426

:

MAINMEf)/I0RY

j INCREASING
ADDRESSES

To use the stack, define thei upper and lower limits,
then use the stack instructi1ns to put items on (push
onto) or remove items from (pop off) the top of the
stack. It is not necessary to %eep track of the location
of the top of the stack. This ~s done automatically by
the stack pointer. The updated value of the stack
pointer is always stored in l~ation 408.

THE STACK

The lower limit of the. stack is determined by the
initial value of the stack pointer, which is placed in
location 408 when the stack is set up by the program.
The upper limit is controlled by the value in location
428, This value is also chosen when the stack is set up,
but it can be changed by the program if more stack
area becomes necessary. Two other reserved locations
are used to control the stack. Location 438 contains
the address of the Stack Fault routine. Control is
transferred to the Stack Fault routine when a stack
underflow or overflow occurs (see Stack Protection,
below). Location 418 contains the current value of the
frame pointer, which is used as a reference pointer in
the stack.

Stack Control Words

The locations and uses of the stack control words are
discussed in detail below:

Stack Pointer

The stack pointer is the address of the current top of
the stack. Its current value is always in location 408.
A push operation increments the stack pointer by 1
and places the pushed word in the location addressed
by the new value of the stack pointer. A pop
operation takes the word addressed by the current
value of the stack pointer, places it in a regist,er and
decrements the stack pointer by 1.

When the stack is set up, the value of the stack
pointer is initially set to one less than the address of
the first word in the stack. This determines the lower
limit of the stack.

Stack Limit

The stack limit is the upper limit of the stack
area. After each push operation, the stack pointer is
compared with the stack limit. If the stack pointer is
greater than the stack limit, an overflow condition
exists. The stack limit is contained in location 428.
For more information, see the next section on Stack
Protection.

Stack Fault Address

If a stack overflow or underflow occurs, control is
transferred to the Stack Fault routine. The address
of this routine, which may be indirect, is contained in
location 438.

Frame Pointer

The frame pointer differs from the stack pointer in
that it is not changed by push or pop operations, and
so its value is not incremented or decremented.. This
makes it a useful reference pointer when it is set to
the same value as the stack pointer, because it then
preserves the original value of the stack pointer.

Stack Protection

Data General Corporation

The frame pointer is used by the Save and Return
instructions to store and reset the value of the stack
pointer when entering or leaving subroutines. The
frame pointer can also be used to define the boundary
between words placed in the stack by a calling
routine and words placed by a called routine. Using
the frame pointer as a reference, a routine can go
back into the stack and retrieve variables left there
by the preceding procedure.

The frame pointer is contained in location 418.

Stack Protection

You can enable protection for two stack error
conditions: overflow and underflow.

Stack Overflow

Stack overflow occurs when a program pushes data
into the area beyond that allocated for the stack, i.e.,
beyond the stack limit. If this occurs, data will be
pushed into areas that are reserved for other
purposes, possibly overwriting data or instructions.

Overflow protection is provided by the stack limit. If
a stack instruction pushes data onto the stack beyond
the stack limit, a return block is pushed onto the
stack, and control is transferred to the stack fault
handler. To disable overflow protection, the stack
limit should be set to 1777778,

To be meaningful, the stack limit must be 10 to 23
addresses lower than the last word in the stack,
because stack overflow is detected only at the end of a
push operation (except in the case of the Save and the
Modify Stack Pointer instructions - see details in
Chapter V)' Thus, it is possible to push a 5- to
18-word return block starting at the stack limit.
Stack overflow will not be sensed until the last word
of the return block is pushed. After the last word is
pushed, stack overflow will be detected, and another
5-word return block will be pushed by the stack
overflow mechanism before control is transferred to
the stack fault routine. Depending on the size of the
initial return block (from the normal 5 words up to
the 18 words used by the floating point instruction
set), the potential overflow can be 10 to 23 words
long.

II- 18

Stack Underflow

Stack underflow occurs when a program pops data
from the area below that allocated for the stack (i.e.,
pops more words off than were pushed on). If this
occurs, the program will be operating with incorrect
and unpredictable information. Furthermore, it is
possible that the program will push data into the
underflow area, overwriting data or instructions.

014-000610-00

CONCEPTS AND FACILITIES

For underflow protection to be enabled, the area
allocated to the stack must begin at location 4018 and
the stack pointer must be initialized to 4008 . If the
stack pointer is less than 4008 after a pop operation,
an underflow condition exists and a stack fault
occurs.

Underflow protection can be disabled in two ways:

• Start the stack at a location greater than 4018 . A
stack fault will not occur then unless the program
underflows the stack and then continues to pop
words off the stack until the stack pointer is less
than 4008 . Note that this does not completely
disable underflow protection - it is always possible
to pop enough words off the stack to underflow it.

• Set bit 0 of both the stack pointer and the stack
limit to 1. If this is done, all or a portion of the
stack may reside in page zero <locations 0-3778)' or
the stack may underflow into page zero, without
interference from the stack underflow mechanism.

Stack Protection Faults
Stack Overflow Protection

The Save and the Modify Stack Pointer instructions
check for overflow before executing. For every other
instruction that pushes data onto the stack, a check
is made for overflow after the execution of the
instruction. In both cases, the stack pointer and stack
limit are treated as unsigned 16-bit integers and
compared. If overflow has occurred, the processor:

• sets bit 0 of the stack pointer to 0;
• sets bit 0 of the stack limit to 1;
• pushes a return block onto the stack;
• executes a jump indirect to the stack fault address.

Bit 0 of the stack pointer and stack limit are set as
indicated so that the stack limit will (temporarily) be
larger than the stack pointer. In this way, the return
block pushed by the overflow mechanism itself will
not be interpreted as yet another overflow fault,
causing a loop condition. The program counter in the
return block points to the instruction immediately
following the stack instruction that caused the fault.

Stack Underflow Protection

After every operation that pops data off the stack, a
check is made for underflow. If the stack pointer is
less than 4008 , and bit 0 of the stack limit is 0, a stack
underflow condition exists. In that case, the
processor:

014-000610-00

II-19

• sets the stack pointer equal to the stack limit;

• sets bit 0 of the stack pointer to 0;

• sets bit 0 of the stack limi~ to 1;
• pushes a return block ont~ the stack;
• executes a jump indirect td the stack fault address.

Bit 0 of the stack pointer apd stack limit are set as
indicated so that the stack li(mit will (temporarily) be
larger than the stack pointeJ!'. In this way, the return
block being pushed onto th, stack by the underflow
mechanism (starting at the ~ack limit) will not cause
an overflow fault. The program. counter in the return
block points to the instructi<l>n immediately following
the stack instruction that caused the fault.

Stack Fault Handler

The stack fault handler (cre~ted by the programmer)
determines the nature of th~ fault. It also resets the
appropriate values, and takes any other appropriate
action, such as allocatingl more stack space or
terminating the program. Note that the stack fault
handler must reset bit 0 or the stack pointer and
stack limit to their original values.

Initializing the Stack Cohtrol Words

Initialize the stack control words before the first
operation on the stack is performed. The rules for this
are as follows: .

Stack Pointer

• Initialize the stack poiinter to the beginmng
address of the stack minus one.

• If stack underflow proteqtion is desired, initialize
the stack pointer to 4008 land start the stack area
at 4018.

• If stack underflow protection is not desired, start
the stack at some location greater than 4018 .

• If you want to have all Or a portion of the stack
area in page zero, or you want to disable underflow
protection, set bit 0 of both the stack pointer and
the stack limit to 1.

Stack Limit

• Initialize the stack limit to a value greater than
the stack pointer.

• If stack overflow protec~ion is desired, initialize
the stack limit to the last· address allocated for the
stack minus at least 10.

• If stack overflow protection .is not desired,
initialize the stack limit to 777778.

• If you want to have all or a portion of the stack
area in page zero, set bit 01 of both the stack pointer
and the stack limit to 1.

Initializ~ng the Stack Control Words

Stack Fault Address

Initialize the stack fault address to the address of the
routine that is to receive. control in the event of a
stack overflow or underflow. Bit 0 may be set to 1 to
indicate an indirect address.

Frame Pointer

It is meaningless to attempt initialization of the
frame pointer until it is actually used. The frame
pointer will have no meaning until the first use olthe
Save instruction.

Examples

Stack area 508 words with underflow protection:

DG-00932A

STACK
POINTER

400a

STACK
LIMIT
4368

I.

-

.Ai·~~··.·.·"

377

400

401

402

436
437
440

446
447

450

_FIRSTWORD
OF STACK I";;

I

Stack area 508 words in page zero with overflow
protection:

p~~~i~- .,. ''';7::' .. "'3 FIRST WORD

1000778 100 - OF STACK

NOTE: BIT 0 -<
SET TO 1

STACK
LlMIT- 135

1001358

DG'()()932B

Stack Instructions

~ :. ... -
147' .
150

Data General Corporation

Stack area 1008 words. no protection:

NOTE: BIT 0
SET TO 1

DG-00932C

p~~~i~ - ~ .. ' 437' , .. 1-FIRST WORD

1004378 1---'4"::470---t"":; OF STACK

....... f;

537
.540

STACK

LIMIT 1
1777778 --. ---"'

The first of the preceding stMk arrangements could
be set up using the following assembly language
instructions:

.TITL STACK

.EXTN STH ; Declare 5TH external

.LOC 401 ;Go to lo~tion 401

.BLK 50 ;Allocate 60 (octaO words

.LOC 40 ;Go to stack control words
400 ;Stack po!nter
400 ;Freme pejintar
436 ; Stack lirnit
STKHR ;Addl'/lss of stack fault

; handler
.END

Stack Instructions

The instructions that affect the stack are listed
below.

014-000610-00

CONCEPTS AND FACILITIES

STACK INSTRUCTIONS

Mnem Name Function
=

FPOP Pop Pops an lS-word floating poil1lt
Floating return block off the stack.
Point State

FPSH Push Pushes an 1 S-word floating point
Floating return block onto the stack.
Point State

MSP Modify Changes the value of the stack
Stack pointer and checks for overflow.
Pointer

POP Pop Pops 1 to 4 words off the stack
Multiple and places them in the
Accumulators indicated accumulators.

POPB Pop Block Returns control from a
System Call routine or an
1/0 interrupt handler that does
not use the stack change facility
of the Vector instruction.

POPJ Pop PC Pops the top word off the stac:k and
And Jump places it in the program countllr.

PSH Push Pushes the contents of 1 to 4
Multiple accumulators on the stack.
Accumulators

PSHJ Push Jump Pushes the address of the next
sequential instruction on the
stack and places an effective
address into the program counter.

PSHR Push Return Pushes the address of the
Address instruction after the next

sequential instruction onto
the stack.

RSTR Restore Returns control from certain types
of VO interrupts.

RTN Return Returns control from subroutines that
issue a Save instruction
at their entry points.

SAVE Save Saves the information required by
the Retum instruction.

SYC System Call Pushes a return block and
indirectly places the address
of the Sy8tem Call handler
in the program counter.

VCT Vector on Performs various interrupt func:tions.
Interrupting See the 110 section in this chapter.
Device Code

014-000610-00

11- 21

PROGRAM EXECUTION

Sequential Operation

A 15-bit register called thei program counter always
contains the address of the instruction currently
being executed. The program counter is incremented
by one after each instruction. It can normally address
the complete logical address space, i.e., 0 through
777778 , inclusive, a total M 32,768 word locations.
The address after 777778 is 0, and no indication is
given when the counter roll's from 777778 to 0 in the
course of sequential processing.

Program Flow Alteration

You can alter the program flow from sequential
operation in two ways. Jump instructions alter the
program flow by inserting a new value into the
program counter. Conditional skip instructions alter
the program flow by incrementing the program
counter an extra time if a ~pecified test condition is
true. In either case, sequen'tial operation continues
with the instruction addressed by the updated value
of the program counter.

NOTE: Do not U8e a condi#onal 8kip immediately
before a 2-word in8truqtion. The conditional
in8truction will caU8e a i-word 8kip which will
re8ult in an attempt to execute the 8econd word
of the in8truction a8 a 1-word instruction.

I /-;; } SEQUENTIAL
t ~-----V~ PROGRAM

INCREASING ~-----V~ FLOW
I ~---V./

ADDRIESSES ~ JUMP ~~
T t=====~%
R ~---i"'t/

j ~ ~---v~

JUMP
PROGRAM
FLOW

T I----'-----I"'~
I /'

o I--=-o-r-----I"'/ 1 N I---",S:!.>K!.!..liP __ -¥!/

S 1----------1-':)
I------v/

._' ~

DG-00543

}
SKIP
PROGRAM
FLOW

Program Flow Alteration

Program Flow Interruption

The normal flow of a program may be interrupted by
external or exceptional internal conditions sllch as
I/O interrupts or MAP faults. When this occlli's, the
address of the next sequential instruction in the
interrupted program is saved so that after the
interrupt is serviced, control will return to the right
place. The address of the starting instruction for the
proper fault or interrupt handler is then placed in
the program counter and sequential operation
continues within that program. When the fa.ult or
interrupt handler has serviced the interrupt, control
is returned to the interrupted program at the saved
address.

I
INCREASING
ADDRESSES

~

j

J

J

I
N
S
T
R
U
C
T
I
o
N
S

~
DG-00544

SEQUENTIAL
___ -----:>I PROGRAM

FLOW

CONTINUED
PROGRAM
FLOW

I/O
INTERRUPT
OCCURS

Program Flow Alteration Instructions

Program flow alteration and conditional instructions
are shown in the following tables.

In the first table, several instructions have both short
and long forms. The short form is 16 bits in length
and can directly specify a memory address from 0 to
255 or can directly specify a small area in memory
surrounding the present value of the program
counter or an accumulator. Long form instructions
are 32 bits in length; they can directly specify any
address from 0 to 777778'

Program Flow Alteration Instructions

Data General Corporation

The second table summarizes the skip instructions
that test condition codes in the floating point status
register.

The third table summarizes the condition tests
available for the SKIP[tJ instruction. (This instruction
tests condition codes of a peripheral device, the
power-fail monitor or the interrupt system.)

The fourth table summarizes skip options of the ALe
instructions.

PROGRAM FLOW ALTERATION INSTRUCTIONS

Mnem Name Function

ClM Compare Compares a signed integer with two
To Limits other numbers and skips if first

integer is between the other two.

DSPA Dispatch Compares a signed integer with two
other numbers and skips if first
integer is not between the others;
otherwise, uses the integer as an
index into a table and places indexed
value in the program counter.

DSZ, Decrement Decrements the addressed word,
EDSZ And Skip then ski@S if the decremented

If Zero value is ~ero.

ISZ, Increment Incremel'lts the addressed word,
EISZ And Skip then skips if the incremented

If Zero value is zero.

JMP, Jump Places an effective address
EJMP in the program counter.

JSR, Jump To Increments program counter and
EJSR Subroutine stores incremented value in AC3;

then places a new address in
the program counter.

POPJ Pop PC Pops the top word off the stack and
And Jump places it in the proglram counter.

PSHJ Push Pushes the address of the next
sequential instruction onto the
stack and places a new address
in the program counter.

RSTR Restore Returns control from I/O interrupt
handlers, that use the stack change
facility of the VCT instruction.

RTN Return Returns control from a subroutine
entered via Save instruction.

SGE Skip If Compares two signed integers in
ACS Greater two acclJmulators and skips if
Than Or the first is greater than or
Equal To ACD equal to the secord

II- 22

014-000610-00

CONCEPTS AND FACILITIES

Program Flow Alteration Instructions Cont'd FLOATI,,!G POI~T SKIP TESTS

Mnem Name Function Mnem Name Functi~n

SGT Skip If Compares two signed integers in
ACS Greater accumulators; skips if first
Than ACD is greater than the second.

SKP[tJ 1/0 Skip Skips if the 1/0 condition t is true.

SNB Skip On References a single bit in memory
Nonzero Bit via bit pointer; skips if bit is 1.

SYC System Pushes a return block onto the stack;
SVC Call places address of System Call

FNS No Skip The next sequential word is executed.

FSA Skip The next sequential instruction is
Always skipped.

FSEQ Skip On Skips the next sequential word if the
Zero Z flag in the FPSR is 1.

FSGE Skip On Skips ~e next sequential word
Greater if the flag of the FPSR is O.
Than Or

handler in program counter. Equal
SZB Skip On References a single bit in memory To Zero

Zero Bit via bit pointer; skips if bit is O. FSGT Skip On Skips the next sequential word if both
SZBO Skip On References a single bit in memory Greater the Z ahd N flags of the FPSR are O.

Zero Bit, via bit pointer; skips if bit is 0 Than Or
Set To 1 and also sets the bit to 1. Equal

VCT Vector On Identifies highest priority interrupt; To Zero

Interrupting passes control through a table
Device Code to a handler routine for device.

FSLE Skip On Skips the next sequential word
Less if either the Z flag or the N flag

XOP Extended Pushes a return block onto the stack,
XOP1 Operation indexes into the XOP table and

transfers control to another procedure.

Than Or of the FPSR is 1.
Equal
To Zero

XCT Execute Executes contents of an accumulator FSLT Skip On Skips the next sequential word if the

as an instruction. Less N flag of the FPSR IS 1.
Than
Zero

FSND Skip On Skips the next sequential word if the
No Zero divide tw zero (DVZ) flag of the
Divide FPSR is O.

FSNE Skip On Skips the next sequential word if
Non-Zero the Z flllg of the FPSR is O.

FSNER Skip On Skips the next sequential word if bits
No Error 1-4 of the FPSR are all O.

FSNM Skip Skips the next sequential word if the
On No mantissa overflow (MOF) flag of the
Mantissa FPSR is o.
Overflow

FSNO Skip Skips the next sequential word if the
On No overflow (OVF) flag of the
Overflow FPSR is O.

FSNOD Skip Skips the next sequential word if both
On No the overflow (OVF) flag and the
Overflow divide ~y zero (DVZ) flag of the
And FPSR are O.
No Zero
Divide

FSNU Skip Skips the next sequential word if the
On No underflow (UNF) flag of the
Underflow FPSR is O.

FSNUD Skip Skips the next sequential word if both
On No the underflow (UNF) flag and the
Underflow divide by zero (DVZ) flag of the
And FPSR alre O.
No Zero
Divide

FSNUO Skip Skips the next sequential word if both
On No the underflow (UNF) flag and the
Underflow overflow (OVF) flag of the
And No FPSR are O.
Overflow

II- 23

014-000616-00 Program Flow Alteration Instructions

1/0 Skip Tests

SYMBOL FUNCTION
--

[t]=BN Tests Busy flag for nonzero

[t]=BZ Tests Busy flag for zero

[t]=DN Tests Done flag for nonzero

[t]=DZ Tests Done flag for zero

--
ALe Skip tests

SYMBOL FUNCTION

[skip] omitted No skip

[skip]=SKP Skip unconditionally

[skip]=szc Skip if Carry bit is zero

[skip]=SNC Skip if Carry bit is nonzero

[skip]=SZR Skip if ALC result is zero

[skip]=SNR Skip if ALC result is nonzero

[skip]=SEZ Skip if either ALC result
or Carry bit is zero

[skip]=SBN Skip if both ALC result
and Carry bit is nonzero

Floating Point Functions

Data General Corporation

LOGARITHMIC AND
TRIGONOMETRIC FUNCTIONS

Floating Point Functions

Floating point functions are used by high-level
language compilers such as FORTRAN 5, DG/L or
PL/I to significantly increase the speed of programs
written in these languages. Each instruction
performs a single numerical tunction" such as taking
the logarithm or square root of an argument. Since
the entire algorithm is implemented in microcode,
the speed increase over an assembly language
subroutine is significant.

Algorithm Coefficients

Many of the instructions in this section use
algorithms containing one or more polynomials to
perform the required function. In those cases, the
instruction word must be followed by a series of
polynomial coefficients for proper operation of the
algorithm. The coefficients given in the tables
following these instructions cause the algorithm to
perform the function specified in the instruction
description.

All the floating point functions are interruptable;
interrupted instructions are restarted after the
interrupt. As a result, certain Real Time Clock or
Programmable Interval Timer frequencies may cause
looping when you are evaluating very large
polynomials with the Polynomial evaluation function.
Maximum interrupt latency is 10 microseconds.

Floating Point Function Instructions
All the floating point functions are shown in the
following table. Some instructions have two forms.
The form using a mnemonic ending in S produces a
single-precision floating point result while the form
using a mnemonic ending in D produces a
double-precision floating point result.

FLOATING POINT FUNCTION INSTRUCTIONS

Mnem Name Function

FCOSS, Cosine Forms the cosine of a number.
FCOSD

FEXPS, Real Forms the exponen1tial of a number.
FEXPD Exponential

FLOGS, Natural Forms the natural logarithm of a
FLOGD Logarithm number.

FPLYS, Polynomial Evaluates a polynomial of a
FPLYD Evaluation specified positive degree.

FSINS, Sine Forms the sine of a number.
FSIND

FSORS, Square Root Forms the square root of a number.
FSORD

II- 24

014-000610-00

CONCEPTS AND FACILITIES

The floating point functions update the floating point
status register as appropriate. Note, however, that
the result of a floating point function after an
exponent overflow or underflow, or after an attempt
to divide by zero, is not a meaningful number. The
format of the floating point statua register is as
follows:

I FLOATING POINT PROGRAM COUNTER ~
161171 18 1 191 20 I 21 I 221 23 I 241 251 26 1 27 I 281 29 1 303i

BITS NAME CONTENTS or FUNCTION

0 ANY Indicates that any of bits 1-4 are set.

1 OVF Overflow Indicator--while proceilsing
a floating point number, an exponent
overflow occurred; the result is correct
except the exponent is 128 too small.

2 UNF Underflow Indicator - while proc:essing
a floating point number, an exponent
underflow occurred; the result iii
correct except that the exponent is
1 28 too large.

3 DVZ Divide by Zero - while processing a
floating point number, a zero divisor
was detected; division was abol1ed
and the operands remain unchanged.

4 MOF Mantissa Overflow - during a
FSCAL instruction, a significant bit was
shifted out of the high order end of the
mantissa; this bit is also set during a
FIX instruction if the result does not
fit into the destination location.

5 TE T rap Enable - If this bit is 1, setting
any of bits 1-4 will result in a floating
point fault.

6 Z Zero bit - The result of the last
floating point operation was zero.

7 N Negative bit--The result of the last
floating point operation was less
than zero.

8-13 --- Reserved for future use.

14-15 FPMOD Indicates computer series supporting
the floating point instruction set.

00 S/200, C/300,
S/230, C/330

01 S/130, S/250
standard FP

10 M/600, C/350,
S/250 optional FP

11 Reserved for
future USEI.

16 --- R serve for future use.

17-31 FPPC Floating Point Program Counter - This
is the logical address of the last
floating point instruction executed.
In the event of a floating point fault,
this is the address of the floating
point instruction that caused the fault.

II- 25

014-000610-00

EXTENDED OPERATION FEATURE

The extended operation feature (XOP) provides an
efficient method of transferFing control to and from
procedures. It enables the uaer to transfer control to
anyone of 32 procedure entry points.

Extended Operation Instuctions

There are two extended operation instructions in the
ECLIPSE C/350 instruction set.

EXTENDED OPERATION INSTRUCTIONS

Mnem Name Function

XOP Extended Pushes a return block on the
Operation stack, placing the address in

the stack of the specified
accuml,llators into AC2 and
AC3. and transfers control
to one of 32 other procedures
via the 'XOP table.

XOP1 Extended Same liS xop except that 32
Operation is addep to the entry number

before entering the XOP table,
and only 1 6 table entries can
be specified.

Extended Operation Instuctions

MEMORY ALLOCATION AND
PROTECTION

MAP Functions

NOTE: In the following section. "MAP" refers to
the Memory Allocation and Protection unit.
whereas "map" refers to a set of memory
translation functions used by the MAP.

The ECLIPSE C/350 MAP unit provides the
hardware necessary to control and use more than 64
Kbytes of physical memory. In addition, th43 MAP
provides protection functions which help protect the
integrity of a large system.

A MAP unit gives several users access to the
resources of the computer by dividing the memory
space available into blocks assigned to each user.
Each time a user accesses memory, the MAP
translates the address the user sees (a logical
address) to an address the memory sees (a physical
address). This is all transparent to the user, and with
software to control the priorities of the MAP and the
CPU, several users can use the computer without
being aware of the presence of the others.

For the purposes of this discussion, we define eertain
words and phrases:

Logical Address - The address used by the u~eI' in all
programming. The logical address space IS 32,768
words long and is addressed by a 15-bit address.

Physical Address - The address used by the MAP to
address the physical memory. The maximum size of
the physical address space is 1,048,576 word!> (1M)
and it is addressed by a 20-bit address.

Address Translation - The process of translating logical
addresses into physical addresses.

Memory Space - The addresses (physical or logical)
assigned to a particular user.

Page - 1024 (20008) words in memory.

User Map - The set of memory address tran:slation
functions defined for a particular user.

Data Channel Map - The set of address translation
functions defined by the user-specified map. These
are defined for the memory references of a data
channel used by a particular device.

Supervisor - The section of the opera~ing system
(software) which controls system functIOns such as
the operation of the MAP.

MAP Functions

Data General Corporation

Address Translation

The primary function of the MAP is address
translation. The map divides each user's logical
address space into 1024-wqrd pages and correlates
each logical page with a corresponding physical page.
The address space the user sees is unchanged, but the
map now translates each logical address into a
physical address before memory is actually accessed.

Note that there is no requinement that the physical
pages assigned to a user be in any particular order in
physical memory. The supervisor can therefore use
physical memory very fleiKibly, selecting unused
pages for a new user without concern for maintaining
any particular arrangement.,very complete use of the
physical memory is also possible, since no contiguous
blocks of memory larger than 1024 words are
required.

Sharing of Physical Memory

The MAP in the ECLIPSE C/350 is also capable of
declaring a section of physical memory accessible to
several users at once. This is useful if several users
need a routine to perform some common function
(e.g., trigonometric tables). Without this capability,
each user would require a separate copy of the
routine, thus creating many duplicate copies and
wasting considerable space.

Types of Maps

Two types of maps are provided in the ECLIPSE
C/350 . User maps translate logical addresses to
physical addresses when memory reference
instructions are encountered in the user's program.
Data channel maps translate logical addresses to
physical addresses when data channel devices
address the memory.

Each user requires a separate user map. The MAP
can hold two user maps, but only one can be enabled
at anyone time. Thus if there are two users, the user
map for each is specified and loaded into the MAP.
The supervisor can then enable one or the other as
needed. If there are more than two users, new user
maps must be loaded as needed. In some operating
systems, the operating system itself uses one of the
user maps, so that a new user map must be loaded
each time another user is serviced. This is not as
much of an overhead burden as it sounds, because the
Load Map instruction loads a complete map with one
instruction, using relatively little time.

Separate data channel maps are needed because data
channel devices can access memory without direct
control from the user's program. There is thus no
assurance that the proper user map would still be
enabled at the time of the data channel request. The
MAP can hold four data channel maps. Enabling data
channel mapping enables all four data channel maps
at the Bame time. The choice of which map is used for

II- 26

014-000610-00

CONCEPTS AND FACILITIES

data channel references is made by the I/O controller
making the reference. Those controllers not equipped
to make this distinction use data channel map A by
default. See the Programmer's Reference Manual -
Peripherals (DOC No. 015-000021).

Unmapped Mode

So far we have assumed operation in the mapped
mode. The MAP can also operate in the unmapped
mode. This mode is used for diagnostic purposes and
for certain MAP control functions. In unmapped
mode, addresses in the range 0-757778 (which form
logical pages 0-30> are not translated. In unmapped
mode, addresses in the range 76000-777778 are
translated by the special map for logical page 31. This
allows you to access selected portions of user space
while in unmapped mode.

MAP Protection Capabilities

In addition to its address translation functions, the
MAP also provides protection functions. These
generally protect the integrity of the system by
preventing unauthorized access to certain parts of
memory or to I/O devices. For example, if a set of
trigonometric functions is stored in a section of
memory accessible to all users, this section can be
write protected so that users can read the functions
but cannot change them.

The various types of protection available in the
ECLIPSE C/350 are discussed separately below.

Validity Protection

Validity protection protects a user's memory space
from inadvertent access by another user, thereby
preserving the integrity and privacy of the user's
memory space. When a user's map is specified, the
blocks of logical addresses required by the user's
program are linked to blocks of physical addresses.
The remaining (unused) logical blocks are declared
invalid to that user, and an attempt to access them
will cause a validity protection fault.

Validity protection is always enabled, so the
supervisor's responsibility is limited to declaring the
appropriate blocks of logical addresses invalid.

Write Protection

Write protection permits users to read the protected
memory addresses, but not to write into them. In this
way, the integrity of common areas of memory can be
protected. An attempt to write into a write protected
area of memory will cause a protection fault.

A block of addresses is write protected when the map
is specified. Write protection can be enabled or
disabled at any time by the supervisor.

014-000610-00

Indirect Protection

An indirection loop occurs '1N'hen the effective address
calculation follows a chain of indirect addresses and
never finds a word with. bit 0 set to O. Without
indirect protection, the qpu would be unable to
proceed with any fur1}her instructions, thus
effectively halting the systetn.

With indirect protection enabled, a chain of 15
indirect references wil~ cause a protection
fault. Indirect protection c~ be enabled or disabled
at any time by the supervis~r.

I/O Protection

I/O protection protects the. I/O devices in the system
from unauthorized access .. In many systems, all I/O
operations are performed through operating system
calls. Clearly, it is undesir~ble to permit individual
users to execute I/O instlructions, since this will
interfere with the operating system. If a user with
I/O protection enabled attJempts to execute an I/O
instruction, a protection fault will occur. I/O
protection can be enabled Of disabled at any time.

MAP Protection Faults

When a user attempts to violate one of the enabled
types of protection, a protection fault occurs, as
follows:

• The current user map is ciusabled.

• A 5-word return block is pushed onto the system
stack.

• Control is transferred to the protection fault
handler, through an indirect jump via location 3.

The system programmer ~ust supply the protection
fault handler. It determi~~ the type of fault that
occurred (using the Read Map Status instruction),
and then takes the appropriate action.

II- 27

A protection fault can occqr at any point during the
execution of an instructi9n. Therefore, the return
address in the fifth word c;>f the return block is not
always correct. For I/O protection faults, however,
the fifth word will always be the logical address of
the instruction following the instruction that caused
the fault.

Load Effective Address Mbde

The Load Effective Address instruction has the same
format as some of the I/O instructions. The MAP
therefore has a Lef m~ bit which determines
whether an I/O format instruction will be
interpreted as an I/O or a'LEf instruction. When the
Lef mode bit is 1 (Lef mod~ enabled), all I/O format
instructions are interpreted as Load Effective
Address instructions. When the Lef mode bit is 0, all
I/O format instructions are interpreted as I/O
instructions.

MAP functions

The Load Effective Address instruction is very useful
for quickly loading a constant into an accumulator. In
addition, a user operating in the Lef mode is
effectively denied access to any I/O devices, because
all I/O and Lef instructions are interpreted as Lef
instructions in this mode. Thus, Lefmode can be used
for I/O protection. Note, however, that no indication
is given if an I/O instruction is interpreted as a Lef
instruction.

When not operating in the Lef mode, all Lef and I/O
instructions are interpreted as I/O instructions. With
I/O protection enabled, these instructions will cause a
protection fault in the normal manner. With I/O
protection disabled, the Lef instruction will be
executed as an I/O instruction if possible.

Initial Conditions

At power up, the user maps and the data channel
maps are undefined, the MAP is in unmapped mode,
and unmapped logical page 31 is mapped to physical
page 31.

After an I/O Reset, the MAP is in unmapped mode,
the data channel maps are disabled, and unmapped
logical page 31 is mapped to physical page 31.

MAP Instructions

The MAP instructions control the actions of the
MAP. They are used by the supervisor program to
change the mapping functions or check status of the
various maps.

NOTE: MAP instructions can be executed in
mapped mode if I/O protection and Lef mode are
disabled for that user. When executed in mapped
mode, the Read Map Status, Initiate Page Check, and
Page Check instructions will return the desired
information without changing the map. The Map
Single Cycle instruction will disable the user map
after the next memory reference. The remainder
of the instructions will change the map while the
map is enabled. with undesirable results for this
user, another user, 01' the system as a whole.

Enabling Lef mode only will convert all I/O
instructions (including MAP instructions) to Lef
instructions. The Load Map instruction, however,
does not use the I/O format and therefore can
still be executed. Enabling both Lef mode and I/O
protection will prevent execution of the Load Map
instruction.

The MAP instructions are shown in the table below.
All except Loq,d Map are in I/O format using the
device mnemonic MAP.

MAP Instructions

II- 28

Mnem

DIA

DIC

DOA

DOB

DOC

LMP

NIOP

Data General Corporation

MAP INSTRUCTIONS

Name Function

Read Map Reads the status of the current map.
Status

Page Check Provides the identity and some
characteristics of the physical
page coriresponding to the logical
page idehtified by the immediately
preceding Initiate Page Check
instructidn.

Load Map Defines the parameters of a new map.
Status

Map Specifies the physical page
Supervisor corresponding to logical page 31 of
Page 31 the supervisor's address space.

Initiate Identifies a logical page.
Page Check

Load Map Loads SUCcessive words from memory
into the MAP where they are used
to define a user or data channel
map.

Map Single Maps one memory reference using the
Cycle last user map.

014-000610-00

CONCEPTS AND FACILITIES

INPUT IOUTPUT

This section describes the Input/Output (I/O) of the
ECLIPSE C/350 . We first discuss the general
operation of the system. then interrupts and the
Vector instruction.

The ECLIPSE C/350 has a 6-bit device selection
network. corresponding to bits 10-15 in the I/O
instruction format. The devices are connected to this
network in such a way that each device will only
respond to commands sent with its own device code.
With a 6-bit device code. 64 separate devices can be
individually controlled. Some of these device codes
are reserved for the CPU and certain processor
options. but the remaining are available for
referencing I/O devices. The assembler recognizes
mnemonics for those devices assigned a code by Data
General. A complete list of these is provided in
Appendix A of this manual.

See Programmer's Reference Manual - Peripherals
wac No. 015-00021) for details about programming
specific devices in the I/O system.

Busy and Done Flags

I/O devices are controlled by manipulating their Busy
and Done flags (but note that data channel devices
require several programmed I/O instructions to be
properly set up before they can be started with the
flags). You can change the value of these flags using
optional flag control command mnemonics appended
to the instruction. When Busy and Done are both O.
the device is idle and cannot perform any operations.
To start a device. the program must set Busy to 1 and
Done to O. When the device has finished its operation
and is ready to start another. it sets Busy to 0 and
Done to 1.

Programmed 1/0

Programmed I/O transfers data one word at a time
under direct program control. For slow devices. such
as teletypes. which transfer one character at a time
and require an immediate echo. programmed I/O is
the fastest method of I/O operation.

For faster devices. programmed I/O has several
disadvantages. Several instructions are required for
the transfer of each byte and other CPU operations
must wait for the transfer to complete. Furthermore.
data must be transferred to or from an accumulator.
so an additional step is required if the data must be
stored in or retrieved from memory.

014-000610-00

Data Channel 1/0

Data channel I/O permits data to be transferred in
blocks of words. with program control necessary only
at the start of the operatioJll. The CPU stops during
each word transfer but the transfer is made directly
to or from memory. so Iilo additional steps are
required. Data channel I/O ~s a very efficient method
of transferring large blocks of data between memory
and a fast I/O device. When single words or bytes are
needed. however. programmed I/O is generally faster.

The maximum transfer rate I for data channel I/O is as
follows:

• Input: One word every 800 ns. or 1.250.000 words
per second.

• Output: One word every 1400 ns. or 715.000 words
per second. .

At these rates. the CPU ~s effectively stopped. At
lower rates. however. prqcessing continues while
data is being transferred.

Data channel devices are c~ntrolled in three phases.
Phase I specifies the start~g location in memory for
the first word to be transferred. Phase II loads the
two's complement of the Inumber of words to be
transferred into the machin.e. These two phases are
done with programmed I/O instructions. Phase III
consists of either a Read or a Write command. which
are flag commands similar to those discussed above.
Once the flag command is .issued. the data transfer
takes place when both the data channel device and
the processor are ready. No further program control
is required.

When a data channel device is ready to send or
receive data. it issues a data channel request to the
processor. At the beginning of every memory cycle.
the processor synchronizea any requests that are
then being made. At cert~n specified points during
the execution of an instruCtion. the CPU pauses to
honor all previously synchronized requests. When a
request is honored. a word lis transferred directly via
the data channel between. the device and memory
without specific action by tie program.

All requests are honored Mcording to the relative
position of the requesting dj3vices on the I/O bus. The
device requesting data channel service which is
physically closest on the bU$ is serviced first. the next
closest device next. and so on. until all requests have
been honored. The synchronization of new requests
occurs concurrently with the honoring of other
requests. If a device continually requests the data
channel •. that device can prevent all devices further
out on the bus from gainin~ access to the channel.

II- 29

Data Channel 1/0

After handling all data channel requests, the
processor then handles all outstanding I/O interrupt
requests. Only then does program execution
continue.

For more information on the data channel, see
Programmer's Reference Manual - Peripherals (DGe
No. 015-000021) and User's Manual - Interface
Designer's Reference WGe No. 015-000031).

1/0 Interrupts

The I/O interrupt system in the ECLIPSE C/350
provides a convenient method of handling
programmed I/O with a minimum of overhead.
Instead of polling each I/O device repeatedly to find
out when it is ready to transmit or receive data, the
interrupt system permits the program to ignore the
I/O devices completely until one requires service. At
that time, the device requests an interrupt. As soon
as the processor is at an interruptable point in its
processing, and has finished servicing data channel
requests, it services the interrupt.

Interrupt System Definitions

Interrupt request line- - Common connection between
all I/O devices and the computer. An I/O device places
a request on the interrupt request line at the same
time that it sets Busy to 0 and Done to 1, i.e., when it
has finished a task and is ready to send or receive
data. No information is placed on the line which
permits the program to determine which device is
requesting an interrupt. This must be done
separately.

Interrupt On flag- - Flag in the CPU which controls the
status of the interrupt system. If the flag is set to 1,
the CPU will respond to and process interrupts. If the
flag is set to 0, the CPU does not look at the interrupt
request line at all, and therefore does not respond to
any interrupts.

Priority mask- - Set of bits in the I/O devices that
control the priority interrupt system. Each I/O device
is connected to one of 16 bits in the priority mask.
Some bits are connected to more than one I/O device.
When a bit is set to 1, the devices connected to it
cannot place a request on the interrupt request line,
although they can set their Busy flags to 0 and their
Done flags to 1. Since the mask can be changed by the
program, different devices can be inhibited at
different times to conform to the needs of a priority
system.

Base level- - The state of a program when no I/O
devices are inhibited (all mask bits are 0) and no
interrupt processing is in progress. This is the
environment in which user program execution takes
place.

1/0 Interrupts

Data General Corporation

Nonbase level- - Any system state in which some I/O
devices are inhibited and/or interrupt processing is in
progress. Interrupt handleI'B operate at non-base
level.

In the next section we will discuss interrupts. First
we will discuss interrupts without a priority system,
and then we will consider a priority interrupt
system.

Processing an Interrupt Wi_hout a Priority System

When an I/O device completies its operation and is
ready to send or receive more data, it sets its Busy
flag to 0 and its Done flag to 1. Since its priority bit is
0, it also places a request on the interrupt request
line. If the Interrupt On flag is 1 when the processor
is next interruptable, the interrupt will be serviced.

When servicing an interrupt, the CPU first sets the
Interrupt On flag to 0 so that no devices can
interrupt the first part of the interrupt service
routine. If a user map is enabled, it is disabled. The
CPU then places the contents 'of the updated program
counter into physical memory location 0 and jumps
indirect via location 1, where it expects to find the
address (direct or indirect) of the interrupt service
routine.

The interrupt service routine (supplied by the user)
must save any accumulators that will be used, save
the carry bit if it will be used, determine which
device requested the interrupt, and then service that
device as necessary.

The service routine can identify the interrupting
device by using I/O skip instructions, or the Interrupt
acknowledge instruction. Or it can save the return
information and identify the ihterrupting device with
one instruction by using the Vector on interrupting
device code instruction.

The Interrupt Acknowledge instruction returns the
6-bit device code of the device requesting the
interrupt. The Vector instruction, in addition to
saving return information on the stack, performs an
Interrupt Acknowledge instru~tion and uses the code
returned as an index into a table of addresses. These
addresses are the beginnings of the various device
service routines.

After servicing the device, the interrupt routine
should restore the saved values of the accumulators
and the carry bit, set the Int~rupt On flag to 1, and
return to the interrupted wogram. The Interrupt
Enable instruction sets the lnterrupt On flag to 1,
and, if the value of.the flag was changed, allows the
processor to execute one more instruction before the
next interrupt can take place.

II- 30

014-000610-00

CONCEPTS AND FACILITIES

This next instruction should return control to the
interrupted program. Since the updated value of the
program counter was placed in location 0 by the CPU
at the start of the interrupt service routine, a jump
indirect via location 0 returns control to the proper
location in the interrupted program.

Priority I nterrupt System

The need for a priority interrupt system can be
illustrated as follows:

If the Interrupt On flag remains 0 throughout the
interrupt service routine, the CPU cannot be
interrupted while an I/O device is being serviced. All
other devices therefore must wait until the first
device is finished. If the Interrupt On flag is returned
to 1 after the initial portion of the service routine,
any I/O device can interrupt the servicing of any
other I/O device. While this might be reasonable for
some devices, it is not for others. It is therefore
desirable to have a system of interrupt priorities
which will permit some devices to interrupt certain
others without disrupting the orderly processing of
data.

A rudimentary sort of priority system will result
from keeping the Interrupt On flag 0 throughout the
service routine. The priority of the I/O devices is then
determined either by the order in which the I/O
SKIP instructions poll the I/O devices, or (using the
Inte1'l"Upt Acknowledge or Vector instructions) by the
physical location of the I/O devices on the I/O bus.
Both of these methods are very inflexible, however.

The ECLIPSE C/350 has the hardware and
instructions for a more flexible and efficient priority
system, with up to sixteen levels of priority
interrupts. The interrupt service routine has full
control of this system, and can change the priorities
of various devices as necessary.

Setting Up a Priority System

To set up a system of priorities, place a Mask Out
instruction in the interrupt service routine for each
device. This instruction changes the priority mask,
thus controlling which devices can interrupt. All
those devices which should not interrupt the device
being serviced are masked out (prevented from
requesting an interrupt) if their mask bits are 1. In
addition, all pending interrupt requests from devices
controlled by that bit are disabled. The other mask
bits, corresponding to the devices which can
interrupt, are set to O.

If this is done in each interrupt service routine, then
the mask will always mask out those devices which
should not interrupt the device presently being
serviced. This is a dynamic process, changing each
time a different device is serviced, resulting in a
system of priorities. The device with the highest

014-000610-00

11- 31

priority will be able to interrupt all other devices,
and the device with the 'lowest priority will be
interruptable by all other devices.

Devices which operate at roughly the same speed are
controlled by the same bit in the mask. Appendix A
lists the mask bit assignments in addition to the
device code assignments. Although the bit
assignments are fixed, the priorities are set by the
programmer to fit the situa.tion and are dynamically
adjustable.

A multiple priority level interrupt handler must be
interruptable without damage. Usually this is not
true for the initial portions I of the interrupt handler,
so the Interrupt On flag is initially set to O. The
interrupt handler must first save return information
after receiving control. Tll.is information must be
stored in a unique place each time the interrupt
handler is entered so that dne level of interrupt does
not overlay the return infhrmation of the previous
level.

Next, the correct sermce routine must be
chosen. This routine must .save the current priority
mask and establish a new one. Once this is all
completed, the Interrupt ~able instruction can be
used to set the Interrupt Ob. flag to 1, enabling those
devices not restricted by! the priority mask to
interrupt if necessary.

After servicing the interrupt, the interrupt service
routine should:

• disable the interrupt system,
• reset the priority mask to the condition it was in

when the routine was en~ered,

• restore the accumulators and the carry bit,
• enable the interrupt system,

• return control to the int~rrupted program.

Stack Changes

The interrupt handler Wl'ually requires use of a
stack. Rather than work w~th the user stack, you can
define a new stack which is reserved for use by the
interrupt handler. This <l>vercomes the following
problems:

• There is no guarantee tha.t a user stack will always
be defined,

• The user stack pointer. could be just below the
stack limit. The interrlupt handler would then
overflow the user stack.

The stack environment should be changed whenever
a transition is made from base level to non-base level
or vice versa.

1/0 Interrupts

If an interrupt is already being processed (i.e., the
program is not at base leveD when another int1errupt
occurs, the stack environment should not be changed,
since this has already been done for the first
interrupt. If desired, return information to permit an
easy return to processing the first interrupt can be
pushed onto the new stack before the second
interrupt is processed.

The Vector instruction handles all these stack
changes by using different modes in different
situations. The next section will discuss the use of
this instruction.

Using the Vector Instruction

The Vector on interrupting device code instruction
can simplify the design of an interrupt handler by
doing many of the required steps in one instruction.
It can also perform different levels of tasks as needed
within the interrupt handler.

The Vector instruction has five different modelS that
can be used in different circumstances. The simplest
of these is scarcely more complex than the Int,errupt
acknowledge instruction. It Goes not save any
information on the state of the computer s.t the
interrupt, and takes very little time. The most
complex mode, on the other hand:

• saves considerable information on the state of the
machine.

• stores the user stack parameters,

• creates a new stack,
• resets the priority mask,

and, of course, takes much longer.

When choosing which mode to use, you must weigh
the importance of saving the state of the computer,
having a separate vector stack, and changing the
priority mask, against the time used for each
interrupt. Note that you are not committed to one
mode throughout the interrupt handler. It is possible
to use different Vector instruction modes at different
times to serve different needs. An example at the end
of this section illustrates this.

Mode A - is used when a device requires immediate
interrupt service. This would be the Casl~ for
unbuffered devices with very short latency times, or
for real time processes that require immediate access.
The price you pay for fast reaction time is that
nothing is saved to make the return from the
interrupt easier.

Modes B through E - all create a priority structure
which permits some interrupting devices to interrupt
the service of certain others. This takes longer than

I/O Interrupts

Data General Corporation

mode A service, but perm~ts devices which need
immediate service to get it even if a slower device is
already being serviced.

Modes D and E - both initiate a new stack. You should
use them only when operating at base level (no
interrupt processing in progress) since they set up a
new vector stack for use by tb,e interrupt handler and
store the (old) user stack parameters in it. Once this
new stack has been set up, there is no reason to try to
set it up again if a new interrupt occurs before the old
one was finished. Mode E also pushes a return block
onto the stack to make return to the first interrupt
handler easier.

Modes Band C - do not initiate a new stack, and are
therefore appropriate to use when operating at
non-base level (that is, when a device interrupts the
interrupt processing of another device). Mode C also
pushes a new return block onto the stack.

Special Mnemonics

Some of the C/350 I/O instructions have special
mnemonics which can be used in place of the
standard mnemonics. Note that the mnemonics for
controlling the state of flags cannot be appended to
these special instruction mnemonics.

Thus, if you want to alter the state of the Interrupt
On flag while performing a' Mask Out instruction,
you must use the full mnemonic:

DOBf ac,CPU

instead of the special mnemonic:

MSKOac

The special mnemonic sets bits 8 and 9 to 00.

II- 32

014-000610-00

CONCEPTS AND FACILITIES

1/0 INSTRUCTIONS

Mnem Name Function

DIA Data Transfers data from the A buffer of
InA an I/O device to an accumulator.

DIB Data Transfers data from the B buffer of
In B an 1/0 device to an accumulator.

DIC Data Transfers data from the C buffer of
InC an 1/0 device to an accumulator.

DOA Data Transfers data from an accumulator
Out A to the A buffer of an I/O device.

DOB Data Transfers data from an accumulator
OutB to the B buffer of an 1/0 device.

DOC Data Transfers data from an accumulator
OutC to the C buffer of an I/O device.

HALTA Halt Stops the Processor.
(DOC.
CPU)

INTA Interrupt Returns the device code of an
(DIB. Acknowledge interrupting device.
CPU)

INTDS Interrupt Sets Interrupt On flag to O.
(NIOC. Disable
CPU)

INTEN Interrupt Sets Interrupt On flag to 1.
(NIOS. Enable
CPU)

10RST Reset Sets all Busy and Done flags and
(DIC. the priority mask to O.
CPU)

MSKO Mask Out Changes the priority mask.
(DOB.
CPU)

NIO No 1/0 Changes a flag without causing
Transfer any other effect.

READS Read Places the contents of the console
(DIA. Switches data switches into an
CPU) accumulator.

SKP 1/0 Skip Tests a flag and skips the next
sequential word if the test
condition is true.

SKP. CPU Skip Tests the Interrupt On
CPU or Power Fail flag and skips

the next sequential word if
the test condition is true.

014-000610-00

Basic 1/0 Devices

There are three I/O devices Which are common to all
ECLIPSE C/350 Computer systems. These devices are
an Asynchronous Line Controller, a Real-Time clock
(RTC), and a Programmable Interval Timer (PIT).

Asynchronous Line Controller

The Asynchronous Line Co~roller is the interface to
the primary terminal of thei ECLIPSE C/350 system.
It can transmit and recefve serial asynchronous
information at jumper sele¥able rates from 110 to
9600 baud. The ALC is program compatible with
Data General's 4010 controller.

Real-Time Clock

The Real-Time Clock generates low frequency I/O
.nterrupts for performip,g time calculations
independent of CPU timing. These interrupts may be
used as a time base in prognlms which require it. The
frequency of the clock is pi'ogram selectable to AC
line frequency, 10Hz, 100Hz, land 1000Hz.

Programmable Interval Timer

The Programmable Interval Timer is a CPU­
independent time base which can be programmed to
initiate program interrupts at fixed intervals ranging
from 100 microseconds to 6.5536 seconds in
increments of 100 microseconds. It can also be
sampled with I/O instructions at any point in its
cycle to determine the time until the next interrupt.
The PIT is often used in multiprogram operating
systems where the timer is used to allocate CPU time
to different programs on a "time slice" basis.

BASIC 1/0 DEVICES

The ECLIPSE C/350 computer
Programmable Interval Timer, a Real
and an Asynchronous Line Controller
devices.

Programmable Interval Timer

includes a
Time Clock,
as basic I/O

The Programmable Interval Timer (PIT) consists of a
16-bit initial count register and a 16-bit counter.
During operation, the counter is loaded with the
contents of the initial count register and is then
incremented at 100 microsecond intervals until the
count reaches 177777& The PIT then initiates a
program interrupt request. At the end of the next 100
microsecond interval, it is again loaded with the
contents of the initial count. register and the counting
process is repeated. A Busy flag and a Done flag
control the operation of the device.

II- 33

Programmable Interval Timer

Two instructions are used to load the initial count
register, and to read the present value of the counter.
The instructions are shown in the table below.

PIT INSTRUCTIONS

Mnem Name Function

DOA Specify Selects the value which will be loaded
Initial into the counter each time the PIT is
Count started or overflows.

DIA Read Reads the current value of the PIT
Count counter.

Programming Considerations

In order to obtain a particular time interval between
program interrupt requests, load into the initial
count register the two's complement of the number of
100 microsecond intervals between interrupt
requests. Whe you first start the PIT, the interval to
the first program interrupt request may be anywhere
from 0 to 6.5536 seconds. After the first interrupt
request, the time between program interrupt
requests will be the value selected by the contents of
the initial count register.

Real Time Clock

Data General Corporation

Real Time Clock

The real time clock <RTC) initiates program
interrupts at fixed intervals which are independent
of CPU timing or programs. Four timing intervals
may be selected by program control. A Busy and a
Done flag control the operation of the device.

One instruction programs the real time clock, as
shown in the table below.

REAL TIME CLOCK INSTRUCTION

Mnem Name Function

DOA Select Selects the frequency of real
RTC time clock interrrupts.
Frequency

When you first start the real time clock, the first
program interrupt request can come at any time up
to the clock period. After the first interrupt has
occurred, succeeding interruPts come at the clock
frequency, provided that the program always sets
Busy to 1 before the clock period expires. After power
up or IORST, the clock is set to the line frequency.
After power up, the line frequency pulses are
available immediately, but five seconds must elapse
before a steady pulse train is available from the clock
for other frequencies.

II- 34

014-000610-00

Asynchronous Line Controller

The Asynchronous Line Controller i:s the
communication link between the ECLIPSE C/350
computer and the system's master terminal. It
supports asynchronous communication at selected
rates from 110 to 9600 baud in '-bit codes with
program generated parity or 8-bit codes with no
parity. One or two stop bits may be used with either
format. Since the asynchronous communications
input and output can generate program interrupts
independently, each has its own device code and is
controlled by its own set of Busy and Done flag;s.

A single instruction is used to program the
asynchronous line input (ALD. The instruction is
shown in the table below.

ALI INSTRUCTION

Mnem Name Function

DIA Read Reads a character from the
Input input buffer.
Buffer

Asynchronous Line Controller

II-35

Data General Corporation

A single instruction programs the Asynchronous
Line Output (ALO), as shown in the table below.

ALO INSTRUCTION

Mnem Name Functi9n

DOA Load Places a character in the
Output output buffer.
Buffer

The asynchronous line controller is set up to transmit
and receive 8-bit characters 'without parity checking.
You can send and receive '-bit characters with even,
odd, or mark parity under program control by using
the high order bit in the 8-bit character (bit 8 in the
AC) as a parity bit. On transmission, the program
which drives the asynchroq.ous line controller must
calculate and insert the correct parity bit. On
reception, the program must calculate and check
parity on the received character.

You must also be aware of timing constraints on the
receive portion of the contrdller. As each character is
received, it is placed in an ill-put character buffer, the
Done flag is set to 1, and the Bus flag is set to O. If the
program controlling the receiver does not transfer
the character before the next character is received,
the contents of the input character buffer will be
overwritten and the previous character will be lost.
Typically, the inter-character time at 110 baud is 100
milliseconds and at 9600 baud the inter-character
time is approximately 104 microseconds.

014-00061Q..OO

CONCEPTS AND FACILITIES

CONSOLE

The ECLIPSE C/350 console is a powerful tool for
creating and debugging programs. The state of the
CPU, and the floating point processor can be S4:len in
the console's status lights at all times. The Program
Load function helps load programs quickly and easily
from peripheral devices. It can perform transfers
using either the data channel, the optional Burst
Multiplexor Channel, or programmed I/O. The rotary
switches, Operation and Address Source, that appear
on the right hand side of the console allow you to
closely monitor your code and the peripheral devices
as they access memory. With the Address Mode
switch you can alter addressing mode to monitor the
logical address input to the MAP, or the physical
address output from the MAP.

The following section offers a brief introduction to
these features and suggests some ways to use them to
get their maximum benefit. See the tables in Chapter
VI for complete documentation of the console
facilities.

Using the Console Address Mode Feature

The ECLIPSE C/350 console has three addressing
modes: logical, physical, and memory diagnostic:. The
Address Mode rotary switch on the right hand side of
the console specifies which of these modes is active.

Logical Address Mode

In logical addressing mode the console uses and
monitors only 15-bit logical addresses. All opersLtions
and functions that require an address from the
console use only the 15 low order data switches. The
console address lights will display the contents of the
logical address bus. If the MAP is enabled, all memory
addressing from the console and the program in
execution will be mapped; otherwise, the address will
be a physical address to the lowest 64K-byte of
memory.

Physical Address Mode

In physical addressing mode the console uses and
monitors 20-bit physical addresses. All console
operations and functions that require an address use
all 20 of the data switches. The address lights will
display the contents of the physical address bus. If
the MAP is enabled, memory addressing by the
program in execution will be mapped. Memory
addressing from the console will not be mapped.
Console functions that use the 15-bit PC registel' (e.g.
Examine Next) will prefix the PC with the contents
of the 5-bit extended address (EA) register to
produce a 20-bit address. (The EA register receives
the contents of the 5 left-most data switches
whenever a Start or Examine function is initiated.>

11-36

014-000610-00

Memory Diagnostic Mode

Use memory diagnostic address mode only for
diagnostic testing. In MD mode the MAP must be
turned off or else the results of memory addressing
will be undefined. The console or a program being
executed can address only one contiguous 64K-byte
segment of memory at anyone time. The contents of
the EA register define which 64K-byte segment is
used. Neither the console nor an executing program
can access the other segments until you change the
value of the EA register or alter the Address Mode
switch.

Two of the console functions alter the EA register:
Examine and Start. When used, these functions place
the setting of the 5 left-most data switches (XO-X4/0)
into EA. Each time you initiate Examine or Start the
EA is refreshed. However, that value will have no
meaning until you change the Address Mode switch
to MDorPhy.

Memory diagnostic mode places the c:ontents of the
EA register on the physical address bus in the 5
left-most bits. The normal logical address supplies
the remaining 15 bits. Most programs should execute
normally in Memory Diagnostic mode. However, this
addressing mode is not recommended for normal
operation.

Using the ECLIPSE C/350 Program loader

The Program Load function performs a
micro diagnostic test, then puts a 32-word bootstrap
loader in locations 0-378 of memory. (Appendix G
contains a listing of this bootstrap loader.> Prior to
initializing this function you must perform the
following steps:

• Prepare the I/O device for the read (load
appropriate tape or disc, turn on device, etc.);

• Set Data switches 10-15 to the device code of that
device;

• If it is a data channel or burst multiplexor channel
I/O device, set switch X4/0 to 1; otherwise, set it to
0;

• Set data switch 4 to enable or disable the
microdiagnostic test.

The microdiagnostic program is a quick (1 second)
microcode check of the low order 64 Kbyte of
memory. (MD mode will cause the check to be
performed in the 64 Kbyte specified by the EA
register.) If data switch 4 is 1, the microdiagnostic
program will not execute. If data switch 4 is 0, the
microdiagnostic test will execute before the bootstrap
loader is placed in memory. If the diagnostic test
detects no errors, the bootstrap loader will then enter
memory. (If you initiate a program load with all data
switches set to 0, then the microdiagnostic will not
terminate until it detects an error or you set data

Using the ECLIPSE C/350 Program Loader

switch 4 to 1.>

After the bootstrap loader is in memory. it
automatically begins execution at locationO. The
bootstrap loader reads the data switches. creates its
own I/O instructions with the specified device code.
and then performs one of two program load
procedures depending upon the value of Data switch
X4/0.

Program Load (Data Channel, Optional Burst
Maltiplexor)

If switch X4/0 is a 1. the bootstrap loader starts the
I/O device and loops at location ~78 until the data
transfer places a word into that location. The loader
then executes it as an instruction. Typically. that
word is an instruction to halt or to jump into the
data that has just been transferred.

NOTE: Some burst multiplexor and data channel
devices transfer more than 256 words at a time.
It is up to the device or the program to control
the transfer after 256 words have been read.

Program Load Using Programmed 1/0

If data switch X4/0 is a O. the bootstrap loader reads
the program via programmed I/O. The device must
supply 8-bit data bytes. The loader stores each pair of
bytes as a single word in memory: the odd byte
becomes the left half of the word. and the even byte
becomes the right half.

The bootstrap loader ignores leading null characters.
It does not begin storing any words until it reads a
non-zero synchronization byte. The first word
following this synchronization byte must be a two's
complement number which is the negative of the
total number of words to be read. including itself. The
number of words to be read. including the word
count. may not exceed 19210 .

The bootstrap loader stores these words beginning at
memory location 1008 . It transfers control to the
location of the last word read. after fmishing the
programmed read.

Debugging Programs Using the Console

The ECLIPSE C/350 console offers a number of
powerful debugging features. With it you can halt
program execution. examine the contents of
accumulators or memory. modify code or data. and
resume normal sequential execution. Additionally.
you can step through a program one instruction at a
time and examine or change code and data between
instructions.

The Operation switch that controls Monitor. Stop on
Store. and Stop on Address is a useful debugging aid.
With its various settings you can monitor a particular

Data General Corporation

memory location. and stop the program if it tries to
read or write that location.

The Stop on Address feature may also be used like a
break point by setting thie data switches to the
address of an instruction. When the instruction is
fetched. the machine freez~s. and the Match lamp
lights. You can then resume normal execution with
the Continue function. or yoU can put the machine in
the halt state with the step Instruction function.
Once the halt state has been reached. you have full
use or the console. (To restart the CPU. restore the
PC value; then hit Continue;)

A useful feature for debugging some routines is the
Instruction Step functi~. It will execute an
instruction in the same Wiay as normal sequential
execution would. but ~ween instructions the
processor is in the halt state. The console is fully
operational between instru~ions. and the code and
data may be examined or clumged as needed.

Assembly language progr~nuners seldom use the
function Microinstruction $tep. since the microcode
is not accessible to them. fIowever. you can micro
step through a single machine instruction by
following these steps:

Place the instruction i~ne data switches.
Push the Inst/ulnst swit down.
Push and hold the PLo Exec switch down.
Continue to push Inst/tJInst until ROM address
00028 appears in the ROM address lights.

The first microinstruction executed will not be part
of the instruction. .

To execute several mach~ne instructions together
follow these steps:

Place the instructions to pe evaluated in melllDry.
Place the address of th~ first instruction in the
data switches. '
Push the Inst/ulnst switch down.
Push the Strt/Cont switoh up.
Continue to push Inst/uIn.st down.

The first microinstruction will not be part of the
instruction at the start ad~ress .. You may then step
through the microcode completely. including
subsequent machine insttuctions. In either case.
normal sequential executior may be resumed at any
time with the Continue funption.

11-37

Debugging Programs Using the Console 014-000610-00

CONCEPTS AND FACILITIES

POWER FAILI AUTO-RESTART

When power is turned oft' and then on again. core
memory is Wlaltered. but the contents of
semiconductor memory are lost. The state of the
accumulators. the program cOWlter. and the various
flags in the CPU and SC memory then are
indeterminate. The power fail facility provides a
fail-80ft capability in the event of Wlexpected power
loss.

In the event of power failure. there is a delay of one to
two milliseconds before the processor shuts down.
The power fail facility senses the loss of power. sets
the Power Fail flag to 1 and requests an interrupt.
The interrupt service routine can then use this delay
to store the contents of the accumulators. the carry
bit. and the current priority mask. The interrupt
service routine should also save location 0 (to enable
return to the interrupted program). put a JUMP to
the desired restart location in location O. and then
execute a HALT. One to two milliseconds is enough
time to execute 1000 to 1500 instructions. sO there is
more than enough time to perform the power fail
routine.

When power is restored. the action taken by the
automatic restart portion of the power fail facility
depends upon the position of the power switch on the
front panel. If the switch is in the on position. the
CPU remains stopped after power is restored. If the
switch is in the lock position. then 222mB after power
is restored. the CPU executes the instruction
contained in physical location O. thereby transferring
control to the restart procedure.

The contents of semiconductor memory are lost
Wlder a power failure. Therefore. the auto restart
facility should not attempt to restart the system.
even with the power switch in the LOCK position. if
the system contains semiconductor memory. This
can be controlled by proper positioning of jumpers on
the power fail facility.

POWER FAIL

The power fail instructions test the state of the
power fail flag. They use the device code 778- The
assembler ~gnizes the mnemonic CPU for this
device code.

The power fail facility has no priority mask bit in the
priority mask. It responds to the Interrupt
acknowledge and Vector instructions with device
codeO.

II-38

014-0000610-00

Mnem

SKPDN,
CPU

SKPDZ,
CPU

POWER FAIL INSTRUCTIONS

Name Function

Skip If If the Power Fa~ flag is 1
Power Fail (i.e., power is failing), the
Flag Is One next seqlJential word is skipped.

Skip If If the Power Fail flag is 0
Power Fail (i.e .. power is not failing), the
Flag Is Zero next S&qlJential word is skipped.

POWER FAIL

Chapter III

OPTIONAL FEATURES

In this chapter. we describe the optional facilities in
the ECLIPSE 0/350 along with the instructions that
program these facilities. The optional facilities are:

• the Burst Multiplexor Channel (BMC);
• Error Checking and Correcting (ERCC).

You can find complete descriptions of all the
ECLIPSE C/350 instructions. other than I/O
instructions. in Chapter IV. Chapter V contains
complete descriptions of all the I/O instl'uctions.

014-00061()..OO

HIGH-SPEED 1/0
Burst Multiplexor Channel

The Burst Multiplexor Cbannel (BMC) is a high
speed communications pathway which transfers data
directly between main memory and high speed
peripherals. It is controlled: by the device controller
performing the data transf~r. No program control or
CPU interaction is requi~ except to set up the
BMC's map table. As a result. BMC data transfers are
limited only by the memory speed. If the BMC and
the CPU attempt to access memory at the same time.
the BMC has priority.

The maximum data rate for the BMC is:

• Input: 200 ns per word or5 Megawords/sec .
• Output: Alternating cycl~ times of 200ns per word

and 400 ns per word. or 31/3 Megawords/sec.

BMC Address Modes

The BMC has two address modes. In the unmapped
(physical) mode. the BMC receives 2Q-bit addresses
from the device controllers. and passes them directly
to memory. As each data word is transferred to or
from memory. the BMC increments the destination
address. causing succeesive words to move tolfrom
consecutive locations in memory.

The other BMC address mode is mapped. When a
controller initiates a data transfer. it can specify the
mapped (logical) mode. The high order 10 bits of the
logical address form a logicail page number. which the
BMC MAP translates into an lO-bit physical page
number. This page number. combined with the 10
low order bits from the logical address. forms a 2O-bit
physical address which is p~ to memory.

III-1

Burst Multiplexor Channel

BMCMAP

Since the BMC uses a different memory port from the
CPU, it contains its own MAP. This BMC MAP uses
its own map table to translate logical page numbers
to physical ones. The table contains 1024 map
registers, each of which holds an 10-bit physical page
number <the controlling program will have loaded
these physical page numbers into the table before I/O
transfers begin). The BMC uses the logical page
number as an index into the map table, and the
contents of the selected map register "become the high
order 10 bits of the physical address.

Note that when the BMC performs a mapped
transfer, it increments the destination address after
it moves each data word. If the increment causes an
overflow out of the 10 low order bits, this selects a
new map register for subsequent address translation.
Depending on the contents of the map table, this
could mean that successive words are not transferred
to/from consecutive pages in memory.

Burst Multiplexor Channel Instructions

Map loads and reads are initiated by an I/O Start
command to the burst multiplexor channel. The
channel's Busy flag is set to 1 when a map load or
read is in progress. There is no Done flag and the
burst multiplexor channel never causes program
interrupts.

Device code 5 is assigned to the burst multiplexor
channel. The assembler recognizes the mnemonic BMC
for this device code.

The operation of the BMC is essentially transparent
to software. The program must set up the map table,
but the operation of the burst multiplexor channel
and its MAP is controlled by the device controller
performing the data transfer. The table below
summarizes the burst multiplexor channel
instructions.

Bunt Multiplexor Channel Instructions

III-2

Data General Corporation

BURST MULTIPLEXOR CHANNEL INSTRUCTIONS

Mnem Name Function

DIC Read Places the burst multiplexor channel
" Status flags in an accumulator.

DOA Specify Specifies the low order part of a
Low memory address for loading or
Order reading the first map register.
Address

DOS· Specify Specifies the high order part of a
High memory address for loading or
Order reading the first map register.
Address

DOS· Specify Specifies the first map register of
Initial a group to be loaded or read.
Map
Register

DOC Set Used for diagnostic purposes onIV.
Status

* These instructi01l8 are dependent on accumulator content8.

014-000610-00

OPTIONAL FEATURES

MEMORY ERROR CHECKING

Error Checking And Correction

The Error Checking and Correction (ERCC) facility
is designed for applications requiring either a high
degree of reliability for the main memory of a system,
or a graceful "fail-soft" capability in the event of
memory errors. The ERCC facility will detect and
correct all single-bit errors that occur in memories
equipped with the option. ERCC is available for
semiconductor memory only.

Each ERCC memory word is 21 bits long. These 21
bits consist of 16 data bits followed by 5 ERCC check
bits. Each time the CPU writes data into a loca~tion, a
hardware encoder constructs the check field bits
from the 16 data bits. When the CPU reads a memory
location, the encoder checks the ERCC bits read from
memory. If the 21 bits do not generate an error code
when read, the ERCC facility passes the 16 da.ta bits
on to the CPU. If the 21 bits generate an error code, a
single bit error has occurred. The memory pauses
while the ERCC facility corrects the single bit in
error and rewrites the entire corrected word back
into the memory location. The ERCC facility then
passes the data on to the CPU and requelsts an
interrupt. If no error occurs, no time is taken aLIld the
cycle time of the memory is unchanged from its
non-ERCC counterpart.

ERCC logic enables the facility to detect and correct
all single-bit errors. In the rare event that a multi-bit
error occurs, the facility either detects and reports it
with no correction, or incorrectly interprets it as a
single-bit error and complements the bit.

ERCC Instructions

The operation of the ERCC facility is governed by one
I/O instruction. Two other instructions are used to
interrogate ERCC after it has detected and corrected
an error. ERCC contains a Done flag which is set to 1
after an error has been detected and initiates an
interrupt request. A fourth instruction is used to set
this flag to O. The ERCC facility has no Busy flag and
no mask bit in the priority mask. The device <lode for
the ERCC facility is 2. The assembler recogni.zes the
mnemonic ERCC for this device code.

All the ERCC instructions with the exception of the
Clear ERCC interrupt reque8t use an accumulator,
which is specified when coding the instruction, to
receive the data or contain the control information.

014-000610-00

Mnem

DOA

DIA

DIB

NIOS

III-3

ERCC INSTRUCTIONS

Name Function

Enable Enables the ERCC facility according to
ERCC the setting of bits 1 4- 1 5 of the

specified accumulator.

Read Returns the low-order bits of
Mernory the memory location which has
Fault produced an error.
Address

Read Returns a 5-bit error code which tells
Memory which bit was in error. Also returns
Fault the high-order bits of the memory
Code fault address.

Clear Sets the ERCC Done flag to 0; clears
ERCC an interrupt request
Interrupt if one was pending.
Request

ERCC Instructions

Chapter IV
ECLIPSE C/350 INSTRUCTIONS

This chapter lists all the instructions for the machine
except those I/O instructions intended for a specific
device such as the MAP, the BMC, and special CPU
instructions. We have arranged the instructions in
alphabetical order according to mnemonics as
recognized by the assembler.

For each instruction we include:

• the mnemonic recognized by the assembler

• the bit format required
• the format of any arguments involved
• a functional description of each instruction

014-000610-00

IV-l

CODING AIDS

We use certain conventions and abbreviations
throughout this chapter to help you properly code
each instruction for Data General's assembler.
Briefly, they are these:

[] [] Square brackets indicate that the enclosed
symbol (e.g., (,skip]) is an optional operand or
mnemonic. Code it only if you want to specify
the option.

BOLD Code operands or mnemonics printed in
boldface exactly as shown. For example, code
the mnemonic for the Move instruction: MOV.

italic For each operand or mnemonic in italics,
replace the item with a number or symbol that
provides the assembler value you need for that
item (e.g., the proper accumulator number, an
address, etc.).

We use the following abbreviations throughout this
chapter:

ABBR MEANING

i Signed two's complement integer in
the range -32,768 to 32,767; or
unsigned in the range 0 to 65,535

N Integer in the range 0-3
n Integer in the range 1-4
AC Accumulator
ACS Source accumulator
ACD Destination accumulator
FPAC Floating point accumulator
FACS Floating point source accumulator
FACD Floating point destination accumulator

CODING AIDS

Add Complement

ADC [cJ [shJ [# J acs,acd[,skipJ

Adds an unsigned integer to the logical complement
of another unsigned integer.

Initializes the carry bit to the specified value, adds
the logical complement of the unsigned, 16-bit
number in ACS to the unsigned, 16-bit number in
ACD, and places the result in the shifter. If the
addition produces a carry of 1 out of the high-order
bit, the carry bit is complemented. The instruction
then performs the specified shift operation, and loads
the result of the shift into ACD if the no-load bit is O.
If the skip condition is true, the next sequential word
is skipped.

NOTE: If the number in A CS is less than the
number in A CD, the instruction complements the
CaTTY bit.

Add

ADD [cJ [shJ [# J acs,acdl,skipJ

Performs unsigned integer addition and complements
the carry bit if appropriate.

Initializes the carry bit to the specified value, adds
the unsigned, 16-bit number in ACS to the unsigned,
16-bit number in ACD, and places the result in the
shifter. If the addition produces a carry of 1 out of the
high-order bit, the carry bit is complemented. The
instruction then performs the specified shift
operation and places the result of the shift in ACD if
the no-load bit is O. If the skip condition is true, the
next sequential word is skipped.

NOTE: If the sum of the two numbers being added
is greater than 65,535, the instruction
complements the CaTTY bit.

ADI

IV- 2

Data General Corporation

Extended Add Immediate

ADDI i,ac

Adds a signed integer in the range -32,768 to +32,767
to the contents of an accumula.tor.

Treats the contents of the immediate field as a
signed, 16-bit, two's complement number and adds it
to the signed, 16-bit, two's complement number
contained in the specified accumulator, placing the
result in the same accumulator. The Carry bit
remains unchanged.

Add Immediate

ADI n,ac

Adds an unsigned integer in the range 1-4 to the
contents of an accumulator.

Adds the contents of the immediate field N, plus 1, to
the unsigned, 16-bit number contained in the
specified accumulator, placing the result in the same
accumulator. The carry bit remains unchanged.

NOTE: The assembler takes the coded value of n
and subtracts one from it before placing it in the
immediate field. Therefore, you should code the
exact value that you wish to add.

Example - Assume that AC2 contains 1777758. After
the instruction ADI 4,2 is executed, AC2 contains
0000018 and the carry bit is unchanged.

014-000610-00

ECLIPSE C/350 INSTRUCTIONS

AND With Complemented Source

ANC aCB,acd

Forms the logical AND of the logical complement of
the contents of ACS and the contents of ACD and
places the result in ACD. The instruction sets a bit
position in the result to 1 if the corresponding bit
positions in ACS and ACD contain a 0 and a 1,
respectively. The contents of ACS remain unchanged.

AND

AND fc] fBhl f#] aCB,acdf,Bkip]

Forms the logical AND of the contents of two
accumulators.

Initializes the carry bit to the specified value and
places the logical AND of ACS and ACD in the
shifter. Each bit placed in the shifter is 1 only if the
corresponding bit in both ACS and ACD is one;
otherwise the resulting bit is O. The instruction then
performs the specified shift operation and places the
result in ACD if the no-load bit is O. If the skip
condition is true, the next sequential word is skipped.

014-000610-00

AND Immediate

ANDI l.,ac

Places the logical AND of the contents of the
immediate field and the contents of the specified
accumulator in the specified accumulator.

IV- 3

ANDI

Block Add and Move

BAM

Moves memory words from one location to another,
adding a constant to each one.

Moves words sequentially from one memory location
to another, treating them as unsigned, 16-bit
integers. After fetching a word from the sour~e
location, the instruction adds the unsigned, 16-b1t
integer in ACO to it. If the addition produces a carry
of 1 out of the high-order bit, no indication is given.

Bits 1-15 of AC2 contain the address of the source
location. Bits 1-15 of AC3 contain the address of the
destination location. The address in bits 1-15 of AC2
or AC3 is an indirect address if bit 0 of that
accumulator is 1. In that case, the instruction follows
the indirection chain before placing the resultant
effective address in the accumulator.

The unsigned, 16-bit number in AC1 is equal to the
number of words moved. This number must be
greater than 0 and less than or equal to 32,768. If t~e
number in AC1 is outside these bounds, no data 1S
moved and the contents of the accumulators remain
unchanged.

AC CONTENTS

0 Addend
1 Number of words to be moved
2 Source address
3 Destination address

For each word moved, the count in AC1 is
decremented by one and the source and destination
addresses in AC2 and AC3 are incremented by one.
Upon completion of the instruction, AC1 contains
zeroes, and AC2 and AC3 point to the word following
the last word in their respective fields. The contents
of ACO remain unchanged.

BLM

IV-4

Data General Corporation

Words are moved in conseQutive, ascending order
according to their addresses. The next address after
777778 is 0 for both fields. The fields may overlap in
anyway.

NOTE: Because of the poten.tially long time that
may be required to perform this instruction it is
inte1'1'Uptable. If a Bloclt Add and Move
instruction is inte1'1'Upted. the program counter is
decremented by one before it is placed in location
o so that it points to the inte1'1'Upted instruction.
Because the addresses an~ the word count are
updated after every word stored, any inte1'1'Upt
se7'Vice routine that returns control to the
inte1'1'Upted program via the address stored in
memory location 0 will correctly restart the
Block Add and Move instruction.

When updating the source and destination addresses,
the Block Add And Move instruction forces bit 0 of
the result to O. This ensures that upon return from an
interrupt, the Block Add And Move instruction will
not try to resolve an indirect address in either AC2 or
AC3.

Block Move

BLM

Moves memory words from one location to another.

The Block Move instruction is the same as the Block
Add And Move instruction in. all respects except that
no addition is performed and ACO is not used.

NOTE: The Block Move instruction is inte1'1'Uptable
in the same manner as the Block Add And Move
instruction.

014-000610-00

ECLIPSE Cl350 INSTRUCTIONS

Set Bit ToOne

BTO aeB,aed

Sets the specified bit to 1.

Forms a 32-bit bit pointer from the contents of ACS
and ACD. ACS contains the high-order 16 bits and
ACD contains the low-order 16 bits of the bit pointer.
If ACS and ACD are specified as the same
accumulator, the instruction treats the accumulator
contents as the low-order 16-bits of the bit pointer
and assumes the high-order 16 bits are O.

The instruction then sets the addressed bit in
memory to 1, leaving the contents of ACS and ACD
unchanged.

Set Bit To Zero

BTZ aeB,aed

Sets the addressed bit to O.

Forms a 32-bit bit pointer from the contents of ACS
and ACD. ACS contains the high-order 16 bits and
ACD contains the low-order 16 bits of the bit pointer.
If ACS and ACD are specified as the same
accumulator, the instruction treats the accumulator
contents as the low-order 16 bits of the bit pointer
and assumes the high-order 16 bits are O.

The instruction then sets the addressed bit in
memory to 0, leaving the contents of ACS and ACD
unchanged.

014-000610-00

IV-5

Compare To Limits

elM aeB,aed

Compares a signed integer with two other integers
and skips if the first integer is between the other two.
The accumulators determine the location of the three
integers.

Compares the signed, two's complement integer in
ACS to two signed, two's complement limit values, L
and H If the number in ACS is greater than or equal
to L and less than or equal to H, the next sequential
word is skipped. If the number in ACS is less than L
or greater than H, the next sequential word is
executed.

If ACS and ACD are specified as different
accumulators, the address of the limit value L is
contained in bits 1-15 of ACD. The limit value H is
contained in the word following L. Bit 0 of ACD is
ignored.

If ACS and ACD are specified as the same
accumulator, then the integer to be compared must
be in that AC and the limit values L and H must be in
the two words following the instruction. L is the first
word and H is the second word. The next sequential
word is the third word following the instruction.

elM

Character Compare

CMP

Under control of the four accumulators, compares
two strings of bytes and returns a code in AC1
reflecting the results of the comparison.

The instruction compares the strings one byte at a
time. Each byte is treated as an unsigned 8-bit binary
quantity in the range (0-2551O)' If two bytes are not
equal, the string whose byte has the smaller
numerical value is, by definition, the aower valued)
string. Both strings remain unchanged. The four
accumulators contain parameters passed to the
instruction. Two accumulators specify the starting
address, the number of bytes, and the direction of
processing (ascending or descending addressed) for
each string.

ACO specifies the length and direction of comparison
for string 2. If the string is to be compared from its
lowest memory location to the highest, ACO contains
the unsigned value of the number of bytes in string 2.
If the string is to be compared from its highest
memory location to the lowest, ACO contains the
two's complement of the number of bytes in string 2.

AC1 specifies the length and direction of comparison
for string 1, If the string is to be compared from its
lowest memory location to the highest, ACO contains
the unsigned value of the number of bytes in string 1.
If the string is to be compared from its highest
memory location to the lowest, AC1 contains the
two's complement of the number of bytes in string 1.

CMP

Data General Corporation

AC2 contains a byte pointer to the first byte
compared in string 2. When the string is compared in
ascending order, AC2 points to the lowest byte. When
the string is compared in descending order, AC2
points to the highest byte.

AC3 contains a byte pointer to the first byte
compared in string 1. When the string is compared in
ascending order, AC3 points to the lowest byte. When
the string is compared in descending order, AC3
points to the highest byte.

CODE COMPARISON RESULT

- 1 string 1 < string 2
0 string 1 = string 2
+ 1 string 1 > string 2

The strings may overlap in any way. Overlap will not
effect the results of the comparison.

Upon completion, ACO contains the number of bytes
left to compare in string 2. AC1 contains the return
code as shown in the table above. AC2 contains a byte
pointer either to the failing byte in string 2 (if an
ine~uali~y was found), or to the byte following string
2 (If strmg 2 was exhausted). AC3 contains a byte
pointer either to the failing byte in string 1 (if an
inequality was found), or to the byte following string
1 (if string 1 was exhausted). If the length of both
string 1 and string 2 was zero, the instruction returns
o in AC1. If the two strings are of unequal length, the
instruction fakes space characters <0408> in place
of bytes from the exhausted string, and continues the
comparison.

IV-6

014-000610-00

ECLIPSE C/350 INSTRUCTIONS

Character Move Until True

CMT

I 1 1 1 0 1 1 1 1 1 0 1 0 1 0 001
01 1 I 2 I 3 I 4 I 5 I 61 7 I 8 I 9110 I 11 I 121131~

Un.der control of the four accumulators. moves a
strl~g ~f bytes from one area of memory to another
untIl either a table-specified delimiter char:acter is
moved or the source string is exhausted.

The instruction copies the string one byte at a time.
Before it moves a byte, the instruction uses that
byte's value to determine if it is a delimiter. It treats
the byte as an unsigned 8-bit binary integer (in the
range 0-2551O) and uses it as a bit index into a 256-bit
delimiter table. If the indexed bit in the delimiter
table is zero, the byte pending is not a delimiter, and
the ~st~ction. copies it from the source string to the
destmatlOn strmg. If the indexed bit in the d4~limiter
table is 1, the byte pending is a delimiter' the
instruction does not copy it, and the instru:ction
terminates.

The instruction processes both strings in the same
d~rection, either from lowest memory locations to
hlgh~st (a8cending order), or from highest memory
locatIOns to lowest (de8cending order). Processing
continues until there is a delimiter or the source
string is exhausted. The four accumulators contain
parameters passed to the instruction.

~C? contains the address (word address), possibly
mdlrect, of the start of the 256-bit UH-word)
delimiter table.

014-000610-00

IV-7

AC1 specifies the length of the strings and the
direction of processing. If the source string is to be
moved to ~he destination field in ascending order,
AC1 contams the unsigned value of the number of
bytes in the source string. If the source string is to be
moved to the destination field in descending order,
AC1 contains the two's complement of the number of
bytes in the source string.

AC2 contains a byte pointer to the first byte to be
written in the destination field. When the process is
performed in ascending order, AC2 points to the
lowest byte in the destination field. When the process
is performed in descending order, AC2 points to the
highest byte in the destination field.

AC3 contains a byte pointer to the first byte to be
processed in the source string. When the process is
performed in ascending order, AC3 points to the
lowest byte in the source string. When the process is
performed in descending order, AC3 points to the
highest byte in the source string.

:rhe fiel~s may overlap in any way. However, the
mstructlOn moves bytes one at a time, so certain
types of overlap may produce unusual side effects.

Upon completion, ACO contains the resolved address
of the translation table and AC1 contains the number
of .bytes that were not moved. AC2 contains a byte
pomter to the byte following the last byte written in
the destination field. AC3 contains a byte pointer
either to the delimiter or to the first byte following
the source string.

NOTE: If ACl contain8 the number 0 at the
beginning of thi8 in8truction. no byte8 are fetched
and none are 8tored. The in8truction become8 a
No-Op.

ICMT

Character Move

CMV

Under control of the four accumulators moves a
string of bytes from one area of memory ~o another
and ~turns a value in the Carry bit reflecting the
relative lengths of source and destination strings.

The. ins.truction copies the source string to the
destmatlon field, one byte at a time. The four
accumulators contain parameters passed to the
instruction. Two accumulators specify the starting
address, number of bytes to be copied, and the
direction of processing (ascending or descending
addresses) for each field.

ACO specifi?s t~e length and direction of processing
for th~ destmatlOn field. If the field is to be processed
from ~ts lowest memory location to the highest, ACO
contams.the.unsigned value of the number of bytes in
the d?stm.atlon field. If the field is to be processed
from Its highest memory location to the lowest ACO
contains the two's complement of the number of
bytes in the destination field.

AC1 specifies the length and direction of processing
for t~e source string. If the string is to be processed
from Its lowest memory location to the highest, AC1
contains the unsigned value of the number of bytes in
the source string. If the field is to be processed from
its highest memory location to the lowest, AC1
contains the two's complement of the number of
bytes in the source string.

CMV

Data General Corporation

AC2 contains a byte pointer to the flrBt byte to be
written in the destination field. When the field is
written in ascending order, AC2 points to the lowest
byte. ~en the field is written in descending order,
AC2 pomts to the highest byte.

AC3 contains a byte pointer to the first byte copied in
the source string. When the field is copied in
ascending order, AC3 points to the lowest byte. When
the fi~d is copied in descending order, AC3 points to
the highest byte.

:r'he fiel~s may overlap in ~ny way. However, the
mstructlOn moves bytes one at a time, so certain
types of overlap may produce, unusual side effects.

Upon completion, ACO contains 0 and AC1 contains
the number of bytes left to fetch from the source field.
AC2. con~ains a byte pointer to the byte following the
destmatlon field; and AC3 contains a byte pointer to
the byte following the last, byte fetched from the
source field.

NOTE: If ACO contains the number 0 at the
beginning of thi8 instruction., no byte8 are fetched
and ~o":e are 8t~red. If ACt i8 0 at the beginning
of tht8 tn8tructtOn, the destination field i8 filled
with 8pace character8.

If the source field is shorter than the destination
field, the instruction pads the destination field with
space characters < 04011 >. If the source field is longer
than the destination field, the instruction terminates
when the destination field is ruled and returns the
value 1 in the Carry bit, otherwise the instruction
returns the value 0 in the Carry bit.

IV-8

014-000610-00

ECLIPSE C/350 INSTRUCTIONS

Character Translate

eTR

Under control of the four accumulators, translates a
string of bytes from one data representation to
another and either moves it to another area of
memory or compares it to a second translated string.

The instruction operates in two modes; translate and
move, and translate and compare. When operating in
translate and move mode, the instru.ction translates
each byte in string 1, and places it in a corresponding
position in string 2. Translation is performed by
using each byte as an 8-bit index into a 256-byte
translation table. The byte addressed by the index
then becomes the translated value.

When operating in translate and compare mode, the
instruction translates each byte in string 1 and string
2 as described above, and compares the translated
values. Each translated byte is treated as an unsigned
8-bit binary quantity in the range (0-25510)' If two
translated bytes are not equal, the string whose byte
has the smaller numerical value is, by definition the
lower valued string. Both strings remain unchanged.

ACO specifies the address, either direct or indirect, of
a word which contains a byte pointer to the first byte
in the 256-byte translation table.

AC1 specifies the length of the two strings and the
mode of processing. If string 1 is to be processed in
translate and move mode, AC1 contains the two's
complement of the number of bytes in the strings. If
the strings are to be processed in translate and
compare mode, AC1 contains the unsigned value of
the number of bytes in the strings. Both strings are
processed from lowest memory address to highest.

014-000610-00

IV-9

AC2 contains a byte pointer to the first byte in string
2.

AC3 contains a byte pointer to the first byte in string
3.

Upon completion of a translate and move operation,
ACO contains the address of the word which contains
the byte pointer to the translation table and AC1
contains O. AC2 contains a byte pointer to the byte
following string 2 and AC3 contains a byte pointer to
the byte following string 1.

Upon completion of a translate and compare
operation, ACO contains the address of the word
which contains the byte pointer to the translation
table. AC1 contains a return code as calculated in the
table below. AC2 contains a byte pointer to either the
failing byte in string 2 (if an inequality was found) or
the byte following string 2 if the strings were
identical. AC3 contains a byte pointer to either the
failing byte in string 1 (if an inequality was found) or
the byte following string 1 if the strings were
identical.

CODE RESULT

-1 Translated value of string 1 <
Translated value of string 2

0 Translated value of string 1 =
Translated value of string 2

+1 Translated value of string 1 >
Translated value of string 2

If the length of both string 1 and string 2 is zero, the
compare option returns a 0 in AC1.

The fields may overlap in any way. However,
processing is done one character at a time, so unusual
side effects may be produced by certain types of
overlap.

elR

Count Bits

COB acs,acd

Adds a number equal to the number of ones in ACS to
the signed. 16-bit. two's complement number in ACD.
The instruction leaves the contents of ACS and the
state of the carry bit unchariged.

NOTE: If ACS and ACD are the same
accumulator, the instruction functions as
described above, except the contents of ACS will
be changed.

Complement

COM lc} lshl l#} acs,acdl,skipJ

Forms the logical complement of the contents of an
accumulator.

Initializes the carry bit to the specified value, forms
the logical complement of the number in ACS, and
performs the specified shift operation. The
instruction then places the result in ACD if the
no-load bit is O. If the skip condition is true, the next
sequential word is skipped.

Data General Corporation

Decimal Add

DAD acs,acd

Performs decimal addition on 4-bit binary coded
decimal (BCD> numbers and uses the carry bit for. a
decimal carry.

Adds the unsigned decimal digit contained in ACS
bits 12-15 to the unsigned d~imal digit contained in
ACD bits 12-15. The carry bit is added to this result.
The instruction then places the decimal units'
position of the final result in ACD bits 12·15, and the
decimal carry in the carry bit. The contents of ACS
and bits 0-11 of ACD remain unchanged.

NOTE: No validation of the input digits is
performed. Therefore, if bits 12-15 of either ACS
or ACD contain a number greater than 9, the
results will be unpredictable.

Example:

Assume that bits 12-15 of AC2 contain 9; bits 12-15 of
AC3 contain 7; and the carry bit is O. After the
instruction DAD 2,3 is executed, AC2 remains the
same; bits 12-15 of AC3 contain 6; and the carry bit is
1, indicating a decimal carry froin this Decimal Add.

BEFORE

AC2 10100010001000100110011

ACl I 01 00010001000100011111

carry bit o

AFTER

1 010001000100010011001 I
[OJOOO100010001ooo1110 I

IV-l0

DAD 014-000610-00

ECLIPSE C/350 INSTRUCTIONS

Double Hex Shift Left

DHXL n,ac

1'1 NIACIO'" 000'0001
o 1 1 2 3 I 4 5 1 6 I 7 1 8 1 9110 1 11 1 12113 1 ~

Shifts the 32-bit number contained in AC and AC+l
left a number of hex digits depending upon the
immediate field N. The number of digits shifted is
equal to N + 1. Bits shifted out are lost and the
vacated bit positions are filled with zeroes.

NOTE: If AG is specified as AG3, then AG+1 is
AGO.

The assembler takes the coded value of nand
subtracts one from it before placing it in the
immediate field. Therefore, the programmer
should code the exact number of hex, digits that
he wishes to shift.

If N is equal to 3, the contents of AG+1 are
placed in A G and A G + 1 is filled with zeroes.

Double Hex Shift Right

DHXR n,ac

Shifts the 32-bit number contained in AC and AC+l
right a number of hex digits depending upon the
immediate field N. The number of digits shifted is
equal to N + 1. Bits shifted out are lost and the
vacated bit positions are filled with zeroes.

NOTE: If AG is specified as AG3, then AG+1 is
AGO.

The assembler takes the coded value of nand
subtracts one from it before placing it in the
immediate field. Therefore, the programmer
should code the exact number of hex digits that
he wishes to shift.

If N is equal to 3, the contents of AG are placed
in A G+ 1 and A G is filled with zeroes.

Data In A

DIA device

Transfers data from the· A buffer of an I/O device to
an accumulator.

The contents of the A input buffer in the specified
device are placed in the specified AC. After the data
transfer, the Busy and Done flags are set according to
the function specified by F.

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.
Bits in the AC that do not receive data are set to O.

Data in B

DI8[f1 o,c,device

Transfers data from the B buffer of an I/O device to
an accumulator.

Places the contents of the B input buffer in the
specified device in the specified AC. After the data
transfer, sets the Busy and Done flags according to
the function specified by F.

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.
Bits in the AC that do not receive data are set to O.

IV-l1

014-000610-00 DlBlfl

Data In C

Diem ac,device

Transfers data from the C buffer of an I/O device to
an accumulator.

Places the contents of the C input buffer in the
specified device in the specified AC. After the data
transfer. sets the Busy and Done flags according to
the specified F.

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.
Bits in the AC that do not receive data are set to O.

Unsigned Divide

DIV

Divides the unsigned 32-bit integer in two
accumulators by the unsigned contents of a third
accumulator. The quotient and remainder each
occupy one accumulator.

Divides the unsigned 32-bit number contained in ACO
and ACl by the unsigned. 16-bit number in AC2. The
quotient and remainder are unsigned. 16-bit numbers
and are placed in ACl and ACO. respectively. The
carry bit is set to O. The contents of AC2 remain
unchanged.

NOTE: Before the divide operation takes place. the
number in A CO is compared to the number in
AC2. If the contents of ACO are greater than 01'

equal to the contents of AC2. an overnow
condition is indicated. The ca1'1')1 bit is set to 1.
and the operation is terminated. All operands
remain unchanged.

Signed Divide

DIVS

Data General Corporation

Divides the signed 32-bit integer in two accumulators
by the signed contents of a third accumulator. The
quotient and remainder each occupy one
accumulator.

The signed. 32-bit two's complement number
contained in ACO and ACl is divided by the signed.
16-bit two's complement number in AC2. The
quotient and remainder are signed. 16-bit numbers
and occupy ACl and ACO. respectively. The sign of
the quotient is determined by the rules of algebra.
The sign of the remainder is always the same as the
sign of the dividend. except that a zero quotient or a
zero remainder is always positive. The carry bit is set
to O. The contents of AC2 remain unchanged.

NOTE: If the magnitude of the quotient is such
that it will not fit into A C1. an overnow condition
is indicated. The carry bit is set to 1, and the
operation is terminated. The contents of A CO
and AC1 are unpredictable.

Sign Extend and Divide

DIVX

Extends the sign of one accumulator into a second
accumulator and performs a Signed Divide on the
result.

Extends the sign of the number in ACl into ACO by
placing a copy of bit 0 of ACl in each bit of ACO. After
extending the sign. the instruction performs a Signed
Divide operation.

IV-12

DIVX 014-000610-00

ECLIPSE C/350 INSTRUCTIONS

Double Logical Shift

DLSH aC8,acd

Shifts the 32-bit number contained in ACD and
ACD+1 either left or right depending on the number
contained in bits 8-15 of ACS. The signed, 8-bit two's
complement number contained in bits 8-15 of ACS
determines the direction of the shift and the number
of bits to be shifted. If the number in bits 8-15 of ACS
is positive, shifting is to the left; if the number in bits
8-15 of ACS is negative, shifting is to the right. If the
number in bits 8-15 of ACS is zero, no shifting is
performed. Bits 0-7 of ACS are ignored.

AC3+1 is ACO. The number of bits shifted is equal to
the magnitude of the number in bits 8-15 of ACS. Bits
shifted out are lost, and the vacated bit positions are
filled with zeroes. The Carry bit and the contents of
ACS remain unchanged.

NOTE: If the magnitude of the number in bits 8-15
of ACS is greater than 3110 , all bits of ACD are
set to O. The Carry bit and the contents of ACS
remain unchanged.

Data Out A

DOA[fl ac,device

Transfers data from an accumulator to the A buffer
of an I/O device.

Places the contents of the specified AC in the A
output buffer of the specified device. After the data
transfer, sets the Busy and Done flags according to
the function specified by F. The contents of the
specified AC remain unchanged.

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.

Data Out B

DOOlf] ac,device

Transfers data from an accumulator to the B buffer of
an I/O device.

Places the contents of the specified AC in the B
output buffer of the specified device. After the data
transfer, sets the Busy and Done flags according to
the function specified by F. The contents of the
specified AC remain unchanged.

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.

Data Out C

DOC [fl ac,device

Transfers data from an accumulator to the C buffer of
an I/O device.

Places the contents of the specified AC in the C
output buffer of the specified device. After the data
transfer, sets the Busy and Done flags according to
the function specified by F. The contents of the
specified AC remain unchanged.

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.

IV-13

014-000610-00 DOC[fJ

Pop Context Block

DPOP

Uses the information in the context block pointed to
by location lOs to restore the CPU state to that at the
time of the last page fault or hardware breakpoint. If
bit 1 in the status word <offset 8 of the block) is 0, this
indicates that the fault occured. in MAP A, and the
instruction restores the floating point unit state from
the top 18 words of the block. Execution of the
interrupted program resumes before, during, or after
the instruction which caused the fault, depending on
the instruction type and how far it had proceeded
before the fault.

NOTE: DPOP i8 a privileged in8truction which can
execute only in Map B'8 addre88 8pace; and the
context block pointer aocation 108 mU8t be in
that 8pace). I88uing the in8truction from Map
A '8 addre88 8pace re8ult8 in an I/O protection
fault whether or not I/O protection is specified for
that map. The re8ult of executing thi8 instruction
in unmapped addre88 8pace i8 undefined.

Decimal Subtract

DSB aC8,acd

Data General Corporation

Performs decimal subtraction on 4-bit binary coded
decimal <BCD) numbers and uses the carry bit as a
decimal borrow.

Subtracts the unsigned decimal digit contained in
ACS bits 12-15 from the unsigned decimal digit
contained in ACD bits 12-15. Subtracts the
complement of the carry bit from this result. Places
the decimal units' position of the final result in ACD
bits 12-15 and the complement of the decimal borrow
in the carry bit. In other words, if the fmal result is
negative, the instruction indicates a borrow and sets
the carry bit to O. If the final result is positive, the
instruction indicates no borrow and sets the carry bit
to 1. The contents of ACS and bits 0-11 of ACD
remain unchanged.

Example:

Assume that bits 12-15 of AC2 contain 9; bits 12-15 of
AC3 contain 7; and the carry bit is O. After the
instruction DSB 3,2 is executed, AC3 remains the same;
bits 12-15 of AC2 contain 1; and the carry bit is set to
1, indicating no borrow from this Decimal Subtract.

BEFORE AFTER

AC2 101 000100010001001100 1 1 10100010001000100010011

AC3 1 0 1 0001000100010001111 1 I 0 1 0001000100010001111 1

carry bit o

IV-14

DSB 014-000610-00

ECLIPSE C/350 INSTRUCTIONS

Dispatch

DSPA ac,[@ldisplacementf,indexl

Conditionally transfers control to an addres selected
from a table.

Computes the effective address E. This is the address
of a dispatch table. The dispatch table consists of a
table of addresses. Immediately before the tiable are
two signed, two's complement limit words, L and H.
The last word of the table is in location E+H-L.

~':":"""""":"""".,;;,;J

L

H

E-----t--____--./

./

E+H-L

DG-01127

Compares the signed, two's complement number
contained in the accumulator to the limit words. If
the number in the accumulator is less than L or
greater than H, sequential operation continulEls with
the instruction immediately after the Dispatch
instruction.

If the number in AC is greater than or equal to Land
less than or equal to H, the instruction fetches the
word at location E-L+number. If the fetched word is
equal to 1777778, sequential operation continues with
the instruction immediately after the Dispatch in­
struction. If the fetched word is not equal to 1777778,
the instruction treats this word as the intermediate
address in the effective address calculation. After the
indirection chain, if any, has been followed, the
instruction places the effective address in the
program counter and sequential operation continues
with the word addressed by the updated value of the
program counter.

Decrement And Skip If Zero

DSZ [@ ldisplacementf, indexl

Decrements the addressed word, then skips if the
decremented value is zero.

Decrements by one the word addressed by E and
writes the result back into that location. If the
updated value of the location is zero, the instrootion
skips the next sequential word.

Edit

EDIT

o o~
13 14 15

Converts a decimal number from either packed or
unpacked form to a string of bytes under the control
of an edit sub-program'. This sub-program can
perform many different operations on the nwnber
and its destination field including leading zero
suppression, leading or trailing signs, floating fill
characters, punctuation control, and insertion of text
into the destination field. The instruction also
performs operations on alphanumeric data if data
type 4 is specified.

The instruction maintains two flags and three
indicators or pointers.

The flags are the significance Trigger (T) and the
Sign flag (S). T is set to 1 when the first non .. zero
digit is processed unless otherwise specified by an
edit op-code. At the beginning of an Edit instruction,
T is set to O. S is Bet to reflect the sign of the number
being processed. If the number is positive, S is set to
O. If the number is negative, S is set to 1.

IV-15

014-000610-00 EDIT

The three indicators are the Source Indicator (SD,
the Destination Indicator <DD, and the op-code
Pointer (P). Each is 16 bits wide and contains a byte
pointer to the current byte in each respective area. At
the beginning of an Edit instruction, SI is set to the
value contained in AC3. DI is set to the value
contained in AC2, and P is set to the value contained
in ACO. Also at this time the sign of the source
number is checked for validity.

The sub-program is made up of 8-bit op-codes
followed by one or more 8-bit operands. P, a byte
pointer, acts as the program counter for the Edit
sub-program. The sub-program proceeds sequentially
until a branching operation occurs - much the same
way programs are processed. Unless instructed to do
otherwise, the Edit instruction updates P after each
operation to point to the next sequential op-code. The
instruction continues to process a-bit op-codes until
directed to stop by the DEND op-code.

The sub-program can test and modify S and T, as
well as modify SI, DI and P.

Upon entry to EDIT ACO is a byte pointer to the first
op-code of the Edit sub-program.

AC1 is the data-type indicator describing the number
to be processed.

AC2 is a byte pointer to the the first byte of the
destination field.

AC3 is a byte pointer to the first byte of the source
field.

The fields may overlap in any way. However the
instruction processes characters one at a time, so
unusual side effects may be produced by certain types
of overla.p.

Upon successful termination, the carry bit contains
the significance Trigger; ACO contains a byte pointer
(P) to the next op-code to be processed; AC1 is
undefined; AC2 contains a byte pointer <DD to the
next destination byte; and AC3 contains a byte
pointer (SD to the next source byte.

NOTES: If 51 i8 movedout8ide the area occupied
by the 80urce number. zero8 wiU be 8upplied for
numeric move8. even if 51 i8 later moved back
in8ide the 80urce area.

Some op-code8 perform movement of character8
from one 8tring to another. For tho8e OP-COdeB
which move numeric data. special action8 may
be performed. For tho8e which move non-numeric
data, characters are copied exactly to the
de8tination.

Data General Corporation

The Edit instruction place8 information on the
8tack. Therefore. the 8tack must be 8et up and
have at lea8t 9 words available for USe.

If the Edit in8truction i8 interrupted, it place8
re8tart information on the 8tack and place8
1 'l'l'l'l'ls in A CO.

If the initial content8 of A CO are equal to 1 'l'l'l'l'ls
the Edit instruction a88ume8 it i8 re8tarting from
an interrupt; therefore do not allow thi8 to occur
under any other circum8tance8.

In the description of some of the Edit op-codes we use
the symbol j to denote how many characters a certain
operation should process. When the high order bit of j
is 1, j has a different meaning, it is a pointer into the
stack to a word that denotes the number of
characters the instruction should process. So, in those
cases where the high order bit of j is 1, the
instructions interpret j as an a-bit two's complement
number pointing into the stack. The number on the
stack is at address:

stack pointer + 1 + j.

The operation uses the number at this address as a
character count instead of j.

An Edit operation that processes numeric data (e.g.,
DMVN) skips a leading or trailing sign code it
encounters; similarly, such an operation converts a
high-order or low-order sign to its correct numeric
equivalent.

IV-16

EDIT 014-000610-00

ECLIPSE C/350 INSTRUCTIONS

AddToDI

DADI pO

1000100101
0 1 1121]14 1 5 1 ,17 o 1

PO
1 .2 1] 1 4 1 5 1 , 1 7

Adds the 8-bit two's complement integer specified by
pOto the Destination Indicator (DI).

Add ToSI

DASI pO

1000100111 r-. PO
o 1 1 1 2 1] 1 4 1 5 1 , 1 7 Y 1 1 21 3 1 4 1 5 1 , 1

Adds the 8-bit two's complement integer specified by
pO to the Source Indicator (SI).

Add ToP Depending On S

DAPS pO

1000011111
o 1 1 1 2 1 3 1 4 1 5 1 , I. 7 0 1

If S is 0, the instruction adds the 8-bit two's
complement integer specified by pO to the op-code
Pointer (P). Before the add is performed, P is pointing
to the byte cont81ning the DAPS op-code.

, ·",'c"

Add ToP Depending On T

DAPT pO

100001 01 11 'I PO
011121314151,17 0 1 121314151617

If T is one, the instruction adds the 8-bit two's
complement integer specified by pO to the op-code
Pointer (P). Before the add is performed, P is pointing
to the byte containing the DAPT op-code.

IV-17
014-000610-00 EDIT/DAPT

AddToP

DAPU pO

1000101111
01112131.151,17 o I 1 1 2'1 3 I 4 I 5 I , I

Adds the 8-bit two's complement integer specified by
pO to the op-code Pointer (P). Before the add is
performed, P is pointing to the byte containing the
DAPU op-code.

End Edit

DEND

I 0 0 0 0 o. 0 0 0 I
01'112131.151,17

Terminates the EDIT sub-program.

Decrement and Jump If Non-Zero

DDTK k,pO

I 0 I 0 I 0 I 0 I 0 I 0 I 1 I 1 I I I I kl I I I I
0123456701234567

o I 1 I I pOI I I I I I I I I I I I I
2345'7 012345'7

Decrements a word in the stack by one. If the
decremented value of the word is non-zero, the
instruction adds the 8-bit two's complement integer
specifed by pO to the op-code Pointer (P). Before the
add is performed, P is pointing to the byte containing
the DDTK op-code. If the 8-bit two's complement
integer specified by k is negative, the word
decremented is at the address (stack pointer+ 1 + k). If k
is positive, the word decremented is at the address (
frame pointer+ 1 + k).

Data General Corporation

Insert Characters Immediate

DICI j,pO,p1, ... ,p(j-1J

101001000111 i l o 1 I 2 I 3 I • I 5 I , I 7 ~o -+1-'1:-+-1 ~2 -+-'3:-+-1 ":'4 -+1-'5:-+-1 ...,., -+1-'7=-'

o I 1 I

Inserts j characters from the op-code stream into the
destination field beginning at the position specified'
by Dr. Increases P by (j +2), and increases DI by j.

Insert Character J Times

DIMC j,pO

1000101011
01112131.151,1

o I 1 I I pOI I I I I I I' I I I I I I
3456701234567

Inserts the character specified by pO into the
destination field a number of times equal to j
beginning at the position specified by Dr. Increases DI
by j.

IV-18

EDIT/DIMe 014-000610-00

ECLIPSE C/350 INSTRUCTIONS

Insert Character Once

DINe pO

10 0 0 , 0 0 0 01 r- pO
0 1 1 1 2 1 3 1 4 1 s 1 , 1 7 7-,-+-i+~s 1 ,I

Inserts the character specified by pO in the
desti.nation field at the position specified by Dr.
Increments DI by 1.

Insert Sign

DINS pO,p1

1 1 1 P'I 1 1 1 1 1 1 1 1 1 1 1 1 L-04--1+-4~3+-4~~s4-,~~ ~04-1~~2~-~3+-4~~s4-,~~

If the Sign flag (S) is 0, the instruction inserts the
character specified by pO in tho destination field at
the position specified by DI. If S is 1, the instruction
inserts the character specified by p1 in the
destination field at the position spl3Cified by DI.
Increments DI by one.

Insert Character Suppress

DINT pO,p1

10 0 0 0 , 0 , 01
01112 1 3 1 4 1 SI,1

1 1 1 P'I 1 1 1

o 1

PO
12 1 3 1 4 1 SI,1

If the significance Trigger (T) is 0, the instruction
inserts the character specifed by pO in the destination
field at the position specified by DI. If T is 1, the
instruction inserts the character specified by p1 in
the destination field at the position specified by Dr.
Increments DI by one.

.IV- 19

014-000610-00 EDIT/DINT

Move Alphabetics

DMVA J

100001101]
01112131415161

Moves j characters from the source field beginning at
the position specified by 81 to the destination field
beginning at the position specified by DI. Increases
both 8I and DI by j. 8ets T to 1.

Initiates a commercial fault if the attribute specifier
word indicates that the source field is data type 5
<packed). Initiates a commercial fault if any of the
characters moved is not an alphabetic (A-Z, a-z, or
space).

Move Characters

DMVC J

10 0 0 0 1 1 0 01
01112131415161

Increments 81 if the source data type is 3 and j>O.
The instruction then moves j characters from the
source field beginning at the position specified by 81
to the destination field beginning at the position
specified by DI. Increases both 81 and DI by j. 8ets T
to 1.

Initiates a commercial fault if the attribute spElcifier
word indicates that the source is data type 5
<packed). Performs no validation of the characters.

Move Float
DMVF j.pO.p1.p2

1000101001
01112131415161

Data General Corporation

j
01112131415161

If the source data type is 3, j >0, and 81 points to the
sign of the source number, the instruction increments
8I. Then for j characters, the instruction either places
a digit substitute in the destination field beginning at
the position specified by DI, or it moves a digit from
the source field beginning at the position specified by
81 to the destination field beginning at the position
specified by DI. When T changes from 0 to 1, the
instruction places both the digit substitute and the
digit in the destination field, and increases 81 by j .. If
T does not change from 0 to 1, the instruction
increases DI by j. If T does change from 0 to 1, the
instruction increases DI by j+ 1.

If the source data type is 2, the :state of 81 is
undefined after the least significant digit has been
processed.

If T is 1, the instruction moves each digit processed
from the source field to the destination field. If T is 0
and the digit is a zero or space, the instruction places
pO in the destination field. If T is 0 and the digit is a
non -zero, the instruction sets T to 1 and the
characters placed in the destination field depend on
8. If 8 is 0, the instruction places p1 in the destination
field followed by the .digit. If 8 is 1, the instruction
places p2 in the destination field followed by the digit.

The instruction initiates a commercial fault if any of
the digits processed is not valid for the specified data
type.

IV- 20

EDIT/DMVF 014-000610-00

ECLIPSE C/350 INSTRUCTIONS

Move Numerics

DMVN J

1 0 0 0 0 1 0 0 01 ~ j J
o 1 , 1 2 1 3 1 4 1 5 1 6 1 7 T...,...-+--i+~5 1 6 1 7

Increments 81 if the source data type is 3 and j>O.
The instruction then moves j eharacters from the
source field beginning at the position specified by 81
to the destination field beginning at the position
specifed by Dr. Increases both 81 and DI by j. 8ets T
to 1.

Initiates a commercial fault if any of t.he characters
moved is not valid for the specified data type.

For data type 2, the state of 81 is undefined after the
least significant digit has been processed.

Move Digit With Overpunch

DMVO pO,pl,p2,p3

I 0 0 0 0 0 1 1 1 I ~,I pQ
o 1 , 1 2 1 3 1 4 1 5 1 6 1 2 1 3 1 4 1 5 1 6 1 7

o 1 , 1 2 1
p1
3 1 4 1 5 1 6 1 o 1 , 1

p2
2 1 3 1 ~51 l

6 1 7

Increments 81 if the source data type is 3 and 81
points to the sign of the source number. The
instruction then either places a digit substitute in the
destination field at the position specified by DI,or it
moves a digit plus overpunch the source field at the
position specified by 81 to the destination field at the
position specified by Dr. Increases both 81 and DI by
1.

If the source data type is 2, the state of' the 81 is
undefined after the least significant digit has been
processed.

If the digit is a zero or space and 8 is 0, then the
instruction places pO in the destination field. If the
digit is a zero or space and 8 is 1, then the instruction
places p1 in the destination field. If the digit is a

non-zero and 8 is 0, the instruction adds p2 to the
digit and places the result in the destination field. If
the digit is a non-zero and 8 is 1, the instruction adds
p3 to the digit and places the result in the destination
field. If the digit is a non-zero the instruction sets T
to 1. The instructions assumes p2 and p3 are A8CII
characters.

The instruction initiates a commercial fault if the
character is not valid for the specified data type.

Move Numeric With Zero Suppression

DMVS i.pO

pO I I
01,121314151,17 011121314151,1

Increments 81 if the source data type is 3, j>O, and 81
points to the sign of the source number. The
instruction then moves j characters from the source
field beginning at the position specified by 81 to the
destination field beginning at the position specified
by DI. Moves the digit from the source to the
distination if T is 1. Replaces all zeros and spaces
with pO as long as T is O. 8ets T to 1 when the first
non-zero digit is encountered. Increases both 81 and
DIby j.

If the source data type is 2, the state of the 81 is
undefined after the least significant digit has been
processed.

This op-code destroys the attribute specifier word.

Initiates a commercial fault if any of the characters
moved is not a numeric <0-9 or space).

IV- 21

014-000610-00 EDIT/DMVS

End Float

ON OF pO,p1

1 0 0 0 0 0 0 0 11 PO
o 1 1 1 2 1 3 1 4 1 5 1 6 1 7 o 1 1 2 1 3 1 4 1 5 1 6 1 7

If T is 1, the instruction places nothing in the
destination field and leaves 01 unchanged. If T is 0
and S is 0, the instruction places pO in the destination
field at the position specified by 01. If T is 0 and S is
1, the instruction places p1 in the destination field at
the position specified by 01. Increases 01 by 1, and
sets T to one.

Set S To One

ossa
1000001011

01112131415161

Sets the Sign flag (S) to 1.

Set S To Zero

OSSZ

10 0 0 0 0 1 0 01
01112131415161

Sets the Sign flag (S) to O.

Store In Stack

OSTK k,pO

o 0 0 0 0 0 1 01
o 1 1 1 2 1 3 1 4 1 5 1 6 1 7

Data General Corporation

k
o 1 1 1 2 1 3 1 4 1 5 1 6 1 7

Stores the byte specified by pO in bits 8-15 of a word
in the stack. Sets bits 0-7 of the word that receives pO
to O. If the 8-bit two's complement integer specified
by k is negative, the instruction addresses the word
receiving pO by (stack pointer+1+k). If k is positive
then the instruction stores pO at the address (frame
pointer+1 +k).

IV- 22

EDIT/DSTK 014-000610-00

ECLIPSE C/lSO INSTRUCTIONS

SetTToOne

OSlO

100001 001 1
0 1 ,121]14 1 5 1 6 1

Sets the significance Trigger (T) to 1.

SetT To Zero

OSlZ

Sets the significance Trigger (T) to O.

014-000610-00

Extended Decrement and Skip if Zero

EOSZ [@ldisplacementf,indexl

I@o I DISPLACl:uENT . I
, 1 2 1 3 1 4 1 5 1 6 1 7 1 atfe 110 1 11 1 12113 1 141 15

Decrements the addressed word, then skips if the
decremented value is zero.

Decrements by one the word addressed by E and
writes the result back intJo that location. If the
updated value of the word' is zero, the instruction
skips the next sequential woM.

IV- 23

EDSZ

Extended Increment And Skip If Zero

EISZ [@ldisplacementl,indexl

Increments the addressed word, then skips if the
incremented value is zero.

Computes the effective address E , and increments
the contents that of memory location by one and
writes the new value back into memory at the same
address. If the updated value of the location is zero,
the instruction increments the program counter by
one and continues sequential operation at the
updated value of the program counter.

Extended Jump

EJMP [@ldisplacementl,indexl

Computes the effective address, E, and places it in the
program counter. Sequential operation continues
with the word addressed by the updated value of the
program counter.

Data General Corporation

Extended Jump To Subroutine

EJSR [@ldisplacementl,indexl

Increments and stores the value of the program
counter in AC3, and then places a new address in the
program counter.

Computes the effective address, E; then places the
address of the next sequential instruction in AC3.
Places E in the program counter. Sequential
operation continues with the word addressed by the
updated value of the program counter.

NOTE: The in8truction compute8 E before it place8
the incremented program counter in AC3.

Extended Load Accumulator

ELDA ac, [@ ldisplacement[, indexl

Moves a word out of memory and into an
accumulator.

Places the word addressed by the effective address, E,
in the specified accumulator. The previous contents of
the location addressed by E remain unchanged.

IV- 24

ELDA 014-000610-00

ECLIPSE C/350 INSTRUCTIONS

Extended load Byte

ElDB ac,displacementf,indexl

I 1 0 0 I AC I 1 I INDEX I 0 1 1 1 1 0 001
o I 1 I 2 3 I 4 5 6 I 7 8 I 9 I 10 I 11 1'"'i"2"h3+~

I DISPLACEMENT I
o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I 13 I 14 I 15

Copies a byte from memory into an accumulator.

Forms a byte pointer by first taking an index value,
multiplying it by 2, and then adding the low-order 16
bits of the result to the displacement. Copies t.he byte
addressed by this byte pointer into bits 8-15 of the
specified accumulator, and sets bits 0-7 of that
accumulator to O. The instruction destroys the
previous contents of the specified accumulator but it
does not alter either the index value or the
displacement.

The argument index selects the source of the index
value. It may have values in the range of 0-3; the
meaning of each value is shown below:

INDEX BITS

00
01

10
11

INDEX VALUE

o
Address of the displacement field
(Word 2 of this instruction)
Contents of AC2
Contents of AC3

load Effective Address

ELEF ac, [@ldisplacementf,indexl

Places an effective address in an accumulator.

Computes the effective address, E, and places it in
bits 1-15 of the specified accumulator. Sets bit o of the
accumulator to O. The previous contents of the
accumulator are lost.

ELEF O,TABLE

ElEF 1,-55,3

ElEF 0,.+0

; The logical address of TABLE
; is placed in ACO.

; Subtracts 000055 (octal) from
; the un~igned integer in AC3 and
; the re~ult is placed in AC 1 .

; Places the logical address of this
; Load effective add,.ess
; instruction in ACO.

Extended Store Accumulator

EST A ac, [@ ldisplacementf, indexl

Stores the contents of an accumulator into a memory
location.

The contents of the specified accumulator are placed
in the word addressed by the effective address, E. The
previous contents of the location addressed by E are
lost. The contents of the specified accumulator
remain unchanged.

IV- 25

014-000610-00 ESTA

Extended Store Byte

ESTR ac,displacementl,index.1

DISPLACENENT I
o 1 1 1 2 1 3 1 4 1 6 1 6 1 7 1 6 1 9 1 10 1 11 1 121 13 1 141 16

Copies into memory the byte contained in the right
half of an accumulator.

Forms a byte pointer by first taking an index value.
multiplying it by 2. and then adding the low~order 16
bits of that result to the displacement. Copies bits
8~15 of the specified accumulator into memory at the
byte address specified by the computed byte pointer.
The instruction does not alter the specified
accumulator.

The argument index; selects the source of the index
value. It may have values in the range of 0-3; the
meaning of each value is shown below:

INDEX BITS INDEX VALUE

00 0
01 Address of the displacement field

(Word 2 of this instruction)
10 Contents of AC2
11 Contents of AC3

Data Ceneral Corporation

Absolute Value

FAR fpac

Sets the sign bit of FP AC to O. Also sets the exponent
to zero if the mantissa is zero; otherwise leaves bits
1-63 of FP AC unchanged. Updates the Z and N flags in
the floating point status register to reflect the new
contents of FPAC.

IV- 26

FAB 014~000610~OO

ECLIPSE C/350 INSTRUCTIONS

Add Double (FPAC to FPAC>

FAD facs,facd

Adds the floating point number in F ACS to the
floating point number in F ACD and places the
normalized result in F ACD. Destroys the previous
contents of FACD, leaves the contents of FACS
unchanged and updates the z and N flags in the
floating point status register to reflect the new
contents of F ACD.

Floating point addition consists of an exponent
comparison and a mantissa addition. The exponents
of the two numbers are compared, and the mantissa
of the number with the smallel' exponent is shifted
right. This mantissa alignment is accomplished by
taking the absolute value of the difference between
the two exponents and shifting the mantissa right
that number of hex digits. One guard digit is provided
so that all but four bits shifted out of the right end of
the mantissa are lost, and do not take part in the
addition. If all significant digits are shifted out of the
mantissa, the operation is equivalent to adding the
number with the larger exponent to zero. This
requires a shift of at least 15 hex digits.

After alignment, the mantissas are added together.
The result of this addition is termed the intermediate
result. One guard digit is provided for the
intermediate result, which is used if normalization is
required. The sign of the intermediate result is
determined from the signs of the two operands by the
rules of algebra. If the mantissa addition produces a
carry out of the high-order bit, the mantissa. in the
intermediate result is shifted right one hex digit and
the exponent is incremented by one. If this shift
produces an exponent overflow, the OVF bit is set in
the floating point status register, and the number in
F ACD is correct except that the exponent is 128 too
small.

If there is no mantissa overflow, the mantissa of the
intermediate result is examined for leading hex zeros.
If the mantissa is found to be all zeros, a true zero is
placed in the F ACD and the instruction terminates.

If the mantissa is non-zero, the intermediate result is
normalized, and the number placed in the F ACD. If
the normalization results in an exponent underflow,
the UNF bit is set in the floating point status register
and the instruction is terminated. The number in the
FACD is correct except that the exponent is 128 too
large.

Add Double '(Memory toIFPAC>

FAMD fpac, [@ }displa4ementf, index.)

I@o I DISPLAdEMENT I
1 I 2 I 3 I 4 I 5 I 6 I 7 I J I 9 I 10 I 11 I 121 13 I 14 I 15

Adds the floating point num}:>er in the source location
to the floating point number in FP AC and places the
normalized result in FPAG. Destroys the previous
contents of FPAC, leaves tll.e contents of the source
location unchanged and upqates the z and N flags in
the floating point status register to reflect the new
contents ofFPAC.

Computes the effective addtess E which addresses a
4-word (double precision) operand.

Floating point addition cbnBists of an exponent
comparison and a mantissa! addition. The exponents
of the two numbers are cOQlpared, and the mantissa
of the number with the snj.aller exponent is shifted
right. This mantissa alignment is accomplished by
taking the absolute value of the difference between
the two exponents and shifting the mantissa right
that number of hex digits. dp.e guard digit is provided
so that all but four bits shifted out of the right end of
the mantissa are lost, and' do not take part in the
addition. If all significant digits are shifted out of the
mantissa, the operation is equivalent to adding the
number with the larger exponent to zero. This
requires a shift of at least 15 hex digits for double
precision, or 7 hex digits for single precision.

IV- 27

014-000610-00 FAMD

Mter alignment, the mantissas are added together.
The result of this addition is termed the intermediate
result. One guard digit is provided for the
intermediate result, which is used if normalization is
required. The sign of the intermediate result is
determined from the signs of the two operands by the
rules of algebra. If the mantissa addition produces a
carry out of the high-order bit, the mantissa in the
intermediate result is shifted right one hex digit and
the exponent is incremented by one. If this shift
produces an exponent overflow, the OVF bit is :set in
the floating point status register, and the number in
FP AC is correct except that the exponent is 128 too
small.

If there is no mantissa overflow, the mantissa of the
intermediate result is examined for leading hex zeros.
If the mantissa is found to be all zeros, a true zero is
placed in the FPAC and the instruction terminates.

If the mantissa is non-zero, the intermediate reBult is
normalized, and the number placed in the FPAC. If
the normalization results in an exponent underflow,
the UNF bit is set in the floating point status register
and the instruction is terminated. The number in the
FPAC is correct except that the exponent is 128 too
large.

Data General Corporation

Add Single (Memory to FPAC)

FAMS fpac, [@ldisplacementf,indexl

Adds the floating point number in the source location
to the floating point number in FP AC and places the
normalized result in FPAC. Destroys the previous
contents of FPAC, leaves the contents of the source
location unchanged and updates the z and N flags in
the floating point status register to reflect the new
contents of FPAC.

Computes the effective address E which addresses a
2-word (single precision) operand.

Floating point addition consists of an exponent
comparison and a mantissa addition. 'The exponents
of the two numbers are compared, and the mantissa
of the number with the smaller exponent is shifted
right. This mantissa alignment is accomplished by
taking the absolute value of the difference between
the two exponents and shifting the mantissa right
that number of hex digits. One guard digit is provided
so that all but four bits shifted out of the right end of
the mantissa are lost, and do not take part in the
addition.

If all significant digits are shifted out of the mantissa,
the operation is equivalent to adding the number
with the larger exponent to zero. This requires a shift
of at least 15 hex digits for double precision, or 7 hex
digits for single precision.

IV- 28

FAMS 014-000610-00

ECLIPSE C/350 INSTRUCTIONS

After alignment, the mantissas are added together.
The result of this addition is termed the intermediate
result. One guard digit is provided for the
intermediate result, which is used if normalization is
required. The sign of the intermediate result is
determined from the signs of the two operands by the
rules of algebra. If the mantissa addition produces a
carry out of the high-order bit, the mantissa in the
intermediate result is shifted right one hex digit and
the exponent is incremented by one. If this shift
produces an exponent overflow, the OVF bit is set in
the floating point status register, and the number in
FPAC is correct except that the exponent is 128 too
small.

If there is no mantissa overflow, the mantissa of the
intermediate result is examined for leading hex zeros.
If the mantissa is found to be all zeros, a true zero is
placed in the FP AC and the instruction terminates.

If the mantissa is non-zero, the intermediate result is
normalized, and the number placed in the FPAC. If
the normalization results in an exponent underflow,
the UNF bit is set in the floating point status register
and the instruction is terminated. The number in the
FP AC is correct except that the exponent is 128 too
large.

Add Single (FPAC to FP~C)

FAS facB,facd

Adds the floating point number in F ACS to the
floating point number in F ACD and places the
normalized result in F AC:O. Destroys the previous
contents of FACD, leaves the contents of FACS
unchanged and updates the Z and N flags in the
floating point status register to reflect the new
contents of F ACD.

Floating point addition c~nsists of an exponent
comparison and a mantissa addition. The exponents
of the two numbers are cOIIlpared, and the mantissa
of the number with the sm/llier exponent is shifted
right. This mantissa align~ent is accomplished by
taking the absolute value of the difference between
the two exponents and shifting the mantissa right
that number of hex digits. ~e guard digit is provided
so that all but four bits shiftW, out of the right end 01
the mantissa are lost, and do not take part in thf
addition. If all significant digits are shifted out of the
mantissa, the operation is ~quivalent to adding the
number with the larger ~xponent to zero. This
requires a shift of at least 15 hex digits for double
precision, or '7 hex digits for $ingle precision.

After alignment, the manti~sas are added together.
The result of this addition isitermed the intermediate
result. One guard digit is provided for the
intermediate result, which i$ used if normalization is
required. The sign of the, intermediate result is
determined from the signs ot the two operands by the
rules of algebra. If the man~issa addition produces a
carry out of the high-order [bit, the mantissa in the
intermediate result is shift~ right one hex digit and
the exponent is increment~d by one. If this shift
produces an exponent overfliow, the OVF bit is set in
the floating point status re~ster, and the number in
F ACD is correct except tha~ the exponent is 128 too
small.

If there is no mantissa oveI1'low, the mantissa of the
intermediate result is ex~ed for leading hex zeros.
If the mantissa is found to be all zeros, a true zero is
placed in the FACD ~d the instruction is
terminated.

If the mantissa is non-zero, the intermediate result is
normalized, and the numbet placed in the F ACD. If
the normalization results in: an exponent underflow,
the UNF bit is set in the floa~ing point status register
and the instruction is termiIJ.ated. The number in the
F ACD is correct except that the exponent is 128 too
large.

IV- 29

014-000610-00 FAS

Clear Errors

FCLE

Sets bits 0-4 of the floating point status register to O.

NOTE: The I/O RESET instruction will set these
bits to O.

Compare Floating Point

FCMP facB, facd

Compares two floating point numbers and sets the z
and N flags in the floating point status register
accordingly.

Algebraically compares the floating point numbers in
F ACS and F ACD to each other and updates the z and
N flags in the floating point status register to reflect
the result. Leaves the contents of FACS and FACD
unchanged. The results of the compare and the
corresponding flag settings are shown in the table
below.

Z

1
0
0

N RESULT

0 FACS=FACO
1 FACS>FACO
0 FACS<FACO

NOTE: Unnormalized operands give unspecified
results.

Cosine Double

FCOSD

Data General Corporation

Forms the cosine of the number in FPACO, places the
result in FP ACO, and sets the z and N flags of the
floating point status register to reflect the new value
in FP ACO. Places the contents of AC3 in the program
counter and loads the value in location 418 <the frame
pointer) into AC3.

The Sine and Cosine instructions can share the same
data. The Sine instruction always skips the word
immediately following the instruction word when
searching for data. The Cosine instruction word can
be placed in this location if desired.

Format: Algorithm coefficients must follow the
Cosine instruction. The format is:

WORD NAME CODED VALUE (Hex)

0 Instruction FCOSO
Word

1-4 4/PI 4114 5F30 60C9 C883
5-8 A6 387C F24A 053B 3668
9-12 A5 BA69 B262 61F8 B3AO
13-16 A4 3C3C 3E9F 5C1F 7086
17-20 A3 BE15 503C 70B7 837F
21-24 A2 3F40 F07C 206B FE84
25-28 A1 C04E F4F3 26F9 15EC
29-32 AO 40FF FFFF FFFF FFCC
33-36 B6 3778 FBB4 E1B7 20EO
37-40 B5 B978 C018 E66C 040B
41-44 B4 3B54 1EOB F28C 7B01
45-48 B3 B026 5A59 9C5A A5E8
49-52 B2 3£A3 35E3 3BAC 3709
53-56 B1 C014 ABBC E625 BE3C
57-60 BO 40C9 OFOA A221 6896

IV- 30

FCOSO 014-000610-00

ECLIPSE C/350 INSTRUCTIONS

Cosine Single

FCOSS

Forms the cosine of the number in FPACO. places the
result in FP ACO. and sets the z and N flags of the
floating point status register to reflect the new value
in FP ACO. Places the contents of AC3 in the program
counter and loads the value in location 418 <the frame
pointer) into AC3.

The Sine and C08ine instructions can share the same
data. The Sine instruction always skips the word
immediately following the instruction word when
searching for data. The C08ine instruction word can
be placed in this location if desired.

Format: Algorithm coefficients must follow the
C08ine instruction. The format is:

WORD NAME CODED VALUE (Hex)

0 Instruction FCOSS
Word

1-2 4/PI 4114 5F30
3-4 A3 BE14 E35E
5-6 A2 3F40 EBCA
7-8 A1 C04E F4E3
9-10 AO 40FF FFFF
11-12 B3 B025 B25F
13-14 B2 3EA3 2F49
15-16 B1 C014 ABBC
17-18 BO 40C9 OFOB

Divide Double (FPAC by FPAC>

FDD facs,facd

Divides the floating point n~ber in F ACO by the
floating point number in F ACS and places the
normalized result in F ACO Destroys the previous
contents of FACO. leaves .the contents of FACS
unchanged. and updates th~ Z and N flags in the
floating point status regis~er to reflect the new
contents of F ACO. !

I

The source operand is check~d for a zero mantiBBa. If
the mantissa is zero. the ovz, bit is set in the floating
point status register and the instruction is
terminated. The number1 · in FACO remains
unchanged. If the mantissa ~s nonzero. the previous
contents of FACO are lost. The two mantissas are
compared and if the mantiss~ofthe number in FACO
is greater than or equal to t e mantiBBa of the source
operand. the mantissa of t e number in FACD is
shifted right one hex digit Ijnd the exponent of the
number in F ACO is increa~ by one. This process
continues until the mantissalof the number in FACO
is less than the mantissa of tfle source operand. Since
one guard digit is provided. i all but four bits shifted
out are lost.

The mantissa in FACO i~' then divided by the
mantissa of the source oper d and the quotient is
the mantissa of the int rmediate result. The
exponent of the source ope and is subtracted from
the exponent in F ACO and 4 is added to this result.
This addition of 64 maintainis the exce88 64 notation.
The result of the exponent~aniPulation becomes the
exponent of the intermediat result. The sign of the
intermediate result is dete ·ned from the sign of the
two operands by the rules of algebra. The result is
normalized and placed in FA~m. .

If the exponent processing~· roduces either overflow
or underflow. the correspo ding bit in the floating
point status register is set. e number in F ACO is
correct except that. for ,xponent overflow. the
exponent is 128 too sm~. and for exponent
underflow. the exponent is 1~8 too large.

IV- 31

014-000610-00 FDD

Divide Double (FPAC by Memory)

FDMD fpac, [@ldisplacementl,indexl

I ~I DISPLACEM:NT I
. 1 I 2 I 3 I 4 I 5 I 8 I 7 I 8 I 9 I 10 I 11 I 121 13 I 14 I 15

Divides the floating point number in FPAC by the
floating point number in the source location and
places the normalized result in FP AC. Destroys the
previous contents of FPAC, leaves the contents of the
source location unchanged, and updates the I and N
flags in the floating point status register to reflect the
new contents of FPAC.

Computes the effective address E which addresses a
4-word (double precision) operand.

The source operand is checked for a zero mantissa. If
the mantissa is zero, the DVI bit is set in the floating
point status register and the instruction is
terminated. The number in FP AC remains
unchanged. If the mantissa is nonzero, the previous
contents of FPAC are lost. The two mantissas are
compared and if the mantissa of the number in FP AC
is greater than or equal to the mantissa of the source
operand, the mantissa of the number in FP AC is
shifted right one hex digit and the exponent of the
number in FP AC is increased by one. This process
continues until the mantissa of the number in F ACD
is less than the mantissa of the source operand. Since
one guard digit is provided, all but four bits shifted
out are lost.

The mantissa in FPAC is then divided by the
mantissa of the source operand and the quotient is
the mantissa of the intermediate result. The
exponent of the source operand is subtracted from
the exponent in FP AC and 64 is added to this result.
This addition of 64 maintains the excess 64 notation.
The result of the exponent manipulation becomes the
exponent of the intermediate result. The sign of the
intermediate result is determined from the sign of the
two operands by the rules of algebra. The result is
normalized and placed in FPAG.

If the exponent processing produces either overflow
or underflow, the corresponding bit in the floating
point status register is set. The number in FP AC is
correct except that, for exponent overflow, the
exponent is 128 too small, and for exponent
underflow, the exponent is 128 too large.

Data General Corporation

Divide Single (FPAC by Memory)

FDMS fpac, [@ ldisplacementl, indexl

Divides the floating point number in FP AC by the
floating point number in the source location and
places the normalized result in FPAC. Destroys the
previous contents of FPAC, leaves the contents of the
source location unchanged, and updates the I and N
flags in the floating point status register to reflect the
new contents of FPAC.

Computes the effective address E which addresses a
2-word (single precision) operand.

The source operand is checked for a zero mantissa. If
the mantissa is zero, the DVI bit is set in the floating
point status register and the instruction is
terminated. The number in FP AC remains
unchanged. If the mantissa is nonzero, the previous
contents of FPAC are lost. The two mantissas are
compared and if the mantissa of the number in FPAC
is greater than or equal to the mantissa of the source
operand, the mantissa of the number in FPAC is
shifted right one hex digit and the exponent of the
number in FPAC is increased by one. This process
continues until the mantissa of the number in FP AC
is less than the mantissa of the source operand. Since
one guard digit is provided, all but four bits shifted
out are lost.

The mantissa in FPAC is then divided by the
mantissa of the source operand and the quotient is
the mantissa of the intermediate result. The
exponent of the source operand is subtracted from
the exponent in FPAC and 64 is added to this result.
This addition of 64 maintains the excess 64 notation.
The result of the exponent manipulation becomes the
exponent of the intermediate result. The sign of the
intermediate result is determined from the sign of the
two operands by the rules of algebra. The result is
normalized and placed in FPAC.

If the exponent processing produces either overflow
or underflow, the corresponding bit in the floating
point status register is set. The number in FP AC is
correct except that, for exponent overflow, the
exponent is 128 too small, and for exponent
underflow, the exponent is 128 too large.

IV- 32

FDMS 014-000610-00

ECLIPSE Cl350 INSTRUCTIONS

Divide Single (FPAC by FPAC)

FDS facs,facd

Divides the floating point number in FACD by the
floating point number in FACS and places the
normalized result in F ACD. Destroys the previous
contents of FACD, leaves the contents of FACS
unchanged, and updates the I and N flags in the
floating point status register to reflect the new
contents of FA CD.

The source operand is checked for a zero mantissa. If
the mantissa is zero, the DVI bit is set in the floating
point status register and the instruction is
terminated. The number in F ACD remains
unchanged. If the mantissa is nonzero, the previous
contents of F ACD are lost. The two mantissas are
compared and if the mantissa of the number in FACD
is greater than or equal to the mantissa of the source
operand, the mantissa of the number in FACD is
shifted right one hex digit and the exponent of the
number in F ACD is increased by one. This process
continues until the mantissa of the number in FACD
is less than the mantissa of the source opera.nd. Since
one guard digit is provided, all but four bits shifted
out are lost.

The mantissa in F ACD is then divided by the
mantissa of the source operand and the quotient is
the mantissa of the intermediate result. The
exponent of the source operand is subtracted from
the exponent in FACD and 64 is added to thin result.
This addition of 64 maintains the excess 64 notation.
The result of the exponent manipulation becomes the
exponent of the intermediate result. The sign of the
intermediate result is determined from the sign of the
two operands by the rules of algebra. The result is
normalized and placed in F ACD.

If the exponent processing produces either overflow
or underflow, the corresponding bit in the floating
point status register is set. The number in FACD is
correct except that, for exponent overflow, the
exponent is 128 too small, and for exponent
underflow, the exponent is 128 too large.

Load Exponent

FEXP fpac

Places bits 1-7 of ACO in bits 1-7 of the specified
FPAC. Ignores bits 0 ankl 8-15 of ACO. Leaves
unchanged bits 0 and 8-63 of FP AC and the entire
contents of ACO. Also sets bits 0-7 <the sign and
exponent) to zero if bits 8-6;3 <the mantissa) of FP AC
are zero. Leaves bits 1-7 of FPAC unchanged if FPAC
contains true zero.

NOTE: The exponent contained in bits 1-'7 of AGO
i8 a8sumed to be in Excess 64 repre8entation.

IV- 33

014-000610-00 FEXP

Real Exponential Double

FEXPD

Raises the value, e, to the power of the value in
FPACO and places the result in FP ACO. Sets the z
and N flags of the floating point status register to
reflect the new value in FPACO.

Normal return: Places the contents of AC3 in the
program counter and loads the value in location 418
(the frame pointer) into AC3.

Error return: Occurs if the exponential to be loaded
into FPACO will cause an overflow or underflow (i.e.:

ASS (FPACO) > = Ln (1663) = 174.673

before the operation). Leaves AC3 and FPACO
unchanged, and loads the address of the error return
word into the program counter.

Format: Algorithm coefficients must follow the Real
Exponential instructions. The standard format is:

WORD NAME CODED VALUE (Hex)

0 Instruction FEXPO
Word

1-4 LOGE 4117 1547 6528 8.!F9
5-8 LIMIT C2AE AC4F 97F2 880E
9-12 A2 3F5E 9721 5588 5E05
13-16 Al 4214 338A 9313 EC1B
17-20 AO 435E 9E82 3F89 A60F
21-24 81 42E9 2F28 7AE8 9543
25-28 80 4411 1036 2F87 4CA5
29-32 S02Xl 4116 A09E 667F 3BCO
33-36 S02X2 4120 413C CCFE 7799
37-40 S02X4 415A 8279 99FC EF'33
41-44 S02X8 4185 04F3 33F9 01:64
45 Error (AOOR)

Address

--

Real Exponential Single

FEXPS

Data General Corporation

Raises the value, e, to the power of the value in
FPACO and places the result in FP ACO. Sets the z
and N flags of the floating point status register to
reflect the new value in FPACO.

Normal return: Places the contents of AC3 in the
program counter and loads the value in location 418
(the frame pointer) into AC3.

Error return: Occurs if the exponential to be loaded
into FPACO will cause an overflow or underflow, (i.e.:

ASS (FPACO) >= Ln (1663) = 174.673

before the operation). Leaves AC:3: and FPACO
unchanged, and loads the address of the error return
word into the program counter.

Format: Algorithm coefficients must follow the Real
Exponential instructions. The standard format is:

WORD NAME CODED VALUE (Hex)

0 Instruction FEXPS
Word

1-2 LOGE 4117 1547
3-4 LIMIT C2AE AC4F
5-6 8 4219 OA03
7-8 A 418A 086E
9-10 S02Xl 4116 A09E
11-12 S02X2 4120 4130
13-14 S02X4 415A 827A
15-16 S02X8 4185 04F3
17 Error (AOOR)

Address

IV- 34

FEXPS 014-000610-00

ECLIPSE C/350 INSTRUCTIONS

FixToAC

FFAS ac,fpac

Converts the integer portion of the floating point
number contained in the specified FPAC to a signed
two's complement integer and places the result in an
accumulator.

Forms the absolute value of the integer portion of the
floating point number in FPAC. Extracts the 15 least
significant bits from this value and, if the number in
FP AC is negative, forms the two's complement of the
integer. Then places the result in the specified
accumulator, sets the z and N flags in the floating
point status register to 0, and leaves the contents of
FP AC unchanged.

If the number in FP AC is less than -32,767 or greater
than +32,767, this instruction sets the MOF flag in the
floating point status register to 1.

NOTE: If the lower 15 bits of the integer formed
from the number in FPAC are all 0, the sign bit of
the result will be zero regardless of the sign of
the original number.

Fix To Memory

FFMD fpac,[@]displacement[,index.]

Converts the integer portion of a floating point
number to double-precision integer format and stores
the result in two memory locations.

Forms the absolute value of the integer portion of the
floating point number in FPAC. Extracts the 31 least
significant bits from this value and, if the number in
FPAC is negative, forms the two's complement of the
integer. Then places the result into the locations
addressed by E, sets the z and N flags in the floating
point status register to 0, and leaves the contents of
FP AC unchanged.

If the number in FPAC is less than -2,147,483,647 or
greater than +2,147,483,647, this instruction sets the
MOF flag in the floating point status register to 1.

If the lower 31 bits of the integer formed from the
number in FPAC are all 0, the sign bit of the result
will be zero.

Halve

FHLV fpac

Divides the floating point n$ber in FPAC by 2.

Shifts the mantissa contain d in FP AC right one bit
position, fills the vacated bit position with a zero and
places the bit shifted out i the guard digit. Then
normalizes the number d places the result in
FPAC. Sets the UNF flag in he floating point status
register to 1 if the normali ation process causes an
exponent underflow. The n mber in FPAC is then
correct, except that the ex onent is 128 too large.
Updates the z and N flags inl the floating point status
register to reflect the new cop-tents of FP AC.

Integerize

FINT

Zeros the fractional portio~ (if any) of the number
contained in the specified FPAC and then normalizes
the number. The instructio~ updates the z and N flags
in the floating point status ~egister to reflect the new
contents of the specified FP .C.

NOTE: If the absolute ralue of the number
contained in the specifie~ FPA C is less than 1,
the specified FPA C is set ~o true zero.

IV- 35

014-000610-00 FHLV

Float From AC

FLAS ac,fpac

Converts a two's complement number to floating
point format.

Converts the signed two's complement number
contained in the specified accumulator to a single
precision floating point number, places the result in
the specified FPAC, and sets the low-order 32 bits of
the FP AC to O. Leaves the contents of the specified
accumulator unchanged and destroys the previous
contents of the FPAC. Updates the z and N flags in
the floating point status register to reflect the new
contents of FPAC.

The range of numbers that can be converted is
-32,768 to +32,767.

Load Floating Point Double

FLDD fpac,[@ldisplacementf,index,l

Moves four words out of memory into a specified
FPAC.

Computes the effective address, E, and places the
double precision floating point number at that
address in FPAC. Also sets the sign and exponent to
zero if the mantissa is zero. Destroys the previous
contents of FP AC and updates the z and N flags in the
FPSR to reflect the new contents of FP AC.

Data General Corporation

Load Floating Point Single

FLDS fpac, [@ ldisplacementf, index,l

Moves two words out of memory into a specified
FPAC.

Computes the effective address E and places the
single precision floating point number at that address
in FPAC. Also sets the sign and exponent to zero if
the mantissa is zero. Destroys the previous contents
of FP AC and updates the z and N flags in the floating
point status register to reflect the new contents of
FPAC. The low-order 32 bits ofFPAC are set to O.

Float From Memory

FLMD fpac, [@ ldisplacementf,index,l

I ~ I DISPLACEMENT I
1 I 2 I 3 I 4 I 5 I 8 I 7 I 8 I 9 I 10 I 11 I 121 13 I 14 I 15

Converts the contents of two memory locations to
floating point format and places the result in a
specified FPAC.

Computes the effective address E, converts the 32-bit,
signed, two's complement number addressed by E to
a double precision floating point number, and places
the result in the specified FPAC. Destroys the
previous contents of FP AC, and updates the z and N

flags in the floating point status register to reflect the
new contents of the FPAC.

The range of numbers that can be converted is
-2,147,483,648 to +2,147,483,647.

IV- 36

FLMD 014-000610-00

ECLIPSE C/350 INSTRUCTIONS

Natural Logarithm Double

FLOGD

\1000011111101 o~
o I 1 1 2 1 3 I 4 1 5 1 6 I 7 1 8 1 9 I 10 1 11 1 12 I 13 114i5

Forms the natural logarithm of the float.ing point
number in FPACO and puts the result int.o FPACO.
Sets the z and N flags of the floating point status
register to reflect the new contents of FPACO.

Normal return: Places the contents of AC3 in the
program counter and loads the value in loeation 418
<the frame pointer) into AC3.

Error return: Occurs if the original value in FPACO is
less than or equal to zero <the logarithm function is
invalid in this range). Leaves AC3 and FPACO
unchanged, and loads the address of the error return
word into the program counter.

Format: Algorithm coefficients must follow the
Natural Logarithm instructions. The format of the
instruction is:

WORD NAME CODED VALUE (Hex)

0 Instruction FLOGO
Word

1-4 Sa.5 40B5 04F3 33F9 DE65
5-8 A2 C212 53EF 5000 FEAA
9-12 A1 4250 76C2 3149 ABB9
13-16 AO C25A 2CB8 97BF !i916
17-20 B2 C214 BBC5 OCOB 3E86
21-24 B1 4230 C205 31 EF IlB7F
25-28 BO C220 165C 4BOF AC95
29-32 LOG2 40B1 7217 F701 CF7A
33 Error (AOOR)

Address

Natural Logarithm Single

FLOGS

Forms the natural logarithm of the floating point
number in FPACO and puts the result into FPACO.
Sets the z and N flags of the floating point status
register to reflect the new contents of FPACO.

Normal return: Places the contents of AC3 in the
program counter and loads the value in location 418
<the frame pointer) into AC3.

Error return: Occurs if the original value in FP ACO is
less than or equal to zero <the logarithm function is
invalid in this range). Leaves AC3 and FPACO
unchanged, and loads the address of the error return
word into the program counter.

Format: Algorithm coefficients must follow the
Natural Logarithm instructions. The format of the
instruction is:

WORD NAME CODijD VALUE (Hex)

0 Instruction FLOGS
Word

1-2 sa.5 40B5 04F3
3-4 A1 40E5 4226
5-6 AO C135 0453
7-8 BO C11A 822A
9-10 LOG2 40B1 7218
11 Error (AOOR)

Address

IV- 37

014-000610-00 FLOGS

Load Floating Point Status

FLST [@ ldisplacementl, indexl

DISPLACEMENT ~
1 I 2 I 3 1 4 I 5 I 6 1 7 I 8 I 9 1 10 I 11 I 121 13 I 1~

Moves the contents of two specified memory locations
to the floating point status register.

Computes the effective address, E, places the 32-bit
operand addressed by E in the floating point status
register, and sets the condition codes to the values of
the loaded bits.

Data General Corporation

Multiply Double (FPAC by FPAC)

FMD facs,facd

Multiplies the floating point number in FACD by the
floating point number in FACS a.nd places the
normalized result in FACD. Destroys the previous
contents of F ACD, leaves the contents of F ACS
unchanged, and updates the z and N flags in the
floating point status register are set to reflect the
new contents of F ACD.

The mantissas of the two numbers are multiplied
together to give the mantissa of the intermediate
result. One guard digit is provided for the
intermediate result, which is used if normalization is
required. The exponents of the two numbers are
added together and 64 is subtracted. 'l'his subtraction
of 64 maintains the excess 64 notation. The result of
the exponent manipulation becomes the exponent of
the intermediate result. The sign of the intermediate
result is determined from the sign of the two
operands by the rules of algebra.

If the exponent processing produces either overflow
or underflow, the result is held until normalization,
as that procedure may correct the condition. If
normalization does not correct the condition, the
corresponding flag in the floating point status
register is set to 1. The number is correct except that,
for exponent overflow, the exponent is 128 too small,
and for exponent underflow, the exponent is 128 too
large.

IV- 38

FMD 014-000610-00

ECLIPSE C/3S0 INSTRUCTIONS

Multiply Double (FPAC by Memory)

FMMD fpac, [@ ldisplacementf,indexl

Multiplies the floating point number in FP AC by the
floating point number in the source location and
places the normalized result in FPAC. Destl'oys the
previous contents of FPAC, leaves the contents of the
source location unchanged, and updates the z and N
flags in the floating point status register are set to
reflect the new contents of FP AC.

Computes the effective address E which addresses a
4-word (double precision) operand.

The mantissas of the two numbers are multiplied
together to give the mantissa of the intermediate
result. One guard digit is provided for the
intermediate result, which is used if normali2:ation is
required. The exponents of the two numbers are
added together and 64 is subtracted. This subtraction
of 64 maintains the exce88 64 notation. The result of
the exponent manipulation becomes the exponent of
the intermediate result. The sign of the intermediate
result is determined from the sign of the two
operands by the rules of algebra.

If the exponent processing produces either overflow
or underflow, the result is held until normalization,
as that procedure may correct the condition. If
normalization does not correct the condition, the
corresponding flag in the floating point status
register is set to 1. The number is correct except that,
for exponent overflow, the exponent is 128 too small,
and for exponent underflow, the exponent is 128 too
large.

Multiply Single (FPAC b~ Memory)

FMMS fpac'[@ ldisplacementf, indexl

Multiplies the floating point number in FPAC by the
floating point number in the source location and
places the normalized res~t in FP AC. Destroys the
previous contents of FPAC, ,leaves the contents of the
source location unchanged, and updates the z and N
flags in the floating point status register are set to
reflect the new contents of FPAC.

Computes the effective address E which addresses a
2-word (single precision) operand.

The mantissas of the two numbers are multiplied
together to give the mantissa of the intermediate
result. One guard digit is provided for the
intermediate result, which is used if normalization is
required. The exponents of the two numbers are
added together and 64 is subtracted. This subtraction
of 64 maintains the exce88 64 notation. The result of
the exponent manipulation becomes the exponent of
the intermediate result. Th$ sign of the intermediate
result is determined from the sign of the two
operands by the rules of algebra.

If the exponent processing produces either overflow
or underflow, the result is held until normalization,
as that procedure may correct the condition. If
normalization does not correct the condition, the
corresponding flag in the floating point status
register is set to 1. The number is correct except that,
for exponent overflow, the exponent is 128 too small,
and for exponent underflow, the exponent is 128 too
large.

IV- 39

014-000610-00 FMMS

Move Floating Point

FMOV facB,facd

Moves the contents of one FPAC to another FP AC.

Places the contents of F ACS in F ACD, destroys the
previous contents of FA CD, and leaves the contents of
F ACS unchanged. If the mantissa in F ACS is zero,
the sign and exponent in F ACD are also set to zero.
The z and N flags in the floating point status register
are set to reflect the new contents of F ACD.

Data General Corporation

Multiply Single (FPAC by FPAC>

FMS facB,facd

Multiplies the floating point number in F ACD by the
floating point number in F ACS and places the
normalized result in FACD. Destroys the previous
contents of F ACD, leaves the contents of F ACS
unchanged, and updates the Z and N flags in the
floating point status register are set to reflect the
new contents of FACD.

The mantissas of the two numbers are multiplied
together to give the mantissa of the. intermediate
result. One guard digit is provided for the
intermediate result, which is used if normalization is
required. The exponents of the two numbers are
added together and 64 is subtracted. This subtraction
of 64 maintains the exce88 64 notation. The result of
the exponent manipulation becomes the exponent of
the intermediate result. The sign of the intermediate
result is determined from the sign of the two
operands by the rules of algebra.

If the exponent processing produces either overflow
or underflow, the result is held until normalization,
as that procedure may correct the condition. If
normalization does not correct the condition, the
corresponding flag in the floating point status
register is set to 1. The number is correct except that,
for exponent overflow, the exponent is 128 too small,
and for exponent underflow, the exponent is 128 too
large.

IV-40

FMS

ECLIPSE Cl350 INSTRUCTIONS

Negate

FNEG fpac

Inverts the sign bit of FPAC. Bits 1-63 of FPAC
remain unchanged. Also sets the sign and exponent
to zero if the mantissa in FPAC is zero. Updates the Z
and N flags in the floating point status register to
reflect the new contents of FPAC. If FPAC contains
true zero, the sign bit remains unchanged.

Normalize

FNOM fpac

Normalizes the floating point numbers in FP AC. Sets
a true zero in FPAC if all the bits of the mantissa are
zero. Sets the UNF flag in the FPSR if an exponent
underflow occurs. The number in FPAC is then
correct, except that the exponent is 128 too large.

The Z and N flags in the floating point status register
are set to reflect the new contents of FP AC.

No Skip

FNS

The next sequential word is executed.

IV- 41

014-000610-00 FNS

Polynomial Evaluation Double

FPLYD

Evaluates a polynomial of a specified positive degree,
and places the result in FPACO. The inputs to the
polynomial are as follows:

X
N (degree)
Coefficients

Original value in FPACO.
Lower byte of word following instruction.
Followinll words.

Evaluates either normalized or unnormalized
polynomials. (A normalized polynomial has
coefficients adjusted so that the coefficient of the
highest degree, An' is one.) If bit 0 of the word
following the instruction is set to 1, the instruction
evaluates a normalized polynomial. If bit 0 is 0, the
instruction evaluates an unnormalized polynomial.

Polynomial: An unnormalized polynomial is of the
form:

An Xn + An-l Xn-1 + ... + Al X + Ao

A normalized polynomial is of the form:

Xn + An_l Xn-1 + ... + Al X + Ao

Format: The coefficients of the polynomial must
follow the instruction word and degree word. The
format is:

CODED WORD

FPLYD
N

An
An_l

Ao
FPLYD
N + 1000008

An_l

An-2

Ao

MEANING

Instruction word
Nth degree. unnormalized
Coefficients

Instruction word
Nth degree. normalized
Coefficients

NOTE: The first coefficient. An of a normalized
polynomial is one. If a normalized polynomial
has been specified, the algorithm does not expect
you to supply An .

Data General Corporation

Polynomial Evaluation Single

FPLYS

Evaluates a polynomial of a specified positive degree,
and places the result in FPACO. The inputs to the
polynomial are as follows:

X
N (degree)
Coefficients

Original value in FPACO.
Lower byte of word following instruction.
Following words.

Evaluates either normalized or unnormalized
polynomials. (A normalized polynomial has
coefficients adjusted so that the coefficient of the
highest degree, An' is one.) If bit 0 of the word
following the instruction is set to 1, the instruction
evaluates a normalized polynomial. If bit 0 is 0, the
instruction evaluates an unnormalized polynomial.

Polynomial: An unnormalized polynomial is of the
form:

An Xn + An_l Xn-1 + ... + Al X + AO

A normalized polynomial is of the form:

Xn + An_l Xn-1 + ... + Al X + Ao

Format: The coefficients of the polynomial must
follow the instruction word and degree word. The
format is:

CODED WORD

FPLYS
N

An
An•1

Ao
FPLYS
N + 1000008

An-I
An_2

MEANING

InstructiO"n word
Nth degree •. unnormalized
Coefficients

Instruction word
Nth degree. normalized
Coefficients

NOTE: The first coefficient. An of a normalized
polynomial is one. If a normalized polynomial
has been specified. the algorithm does not expect
you to supply An .

IV- 42

fPL¥S

ECLIPSE CI~SO INSTRUCTIONS

Pop Floating Point State

FPOP

11 1 1 0 1 1 1 0 1 1 1 0 1 0 0 01
o 1 1 I 2 I 3 1 4 I 5 I 6 1 7 I 8 I 9 1 10 I 11 I 121 13 I~

Pops an 18-word floating point return block off the
user stack and alters the state of the floating point
unit. The words popped and their destinati.ons are as
follows:

STACK POINTER ...
AFTER FPOP

FACO{

FAC'{

FAC2{

ST ACK P~NT,:AC J
BEFORE FPOP

DG-00604

L :- -;:J
."

FPSR BITS 9-15 .. ~
FPSR BIS 16-31 ."

-------- --- ~ ...

.-,..----------
foo--------- ~'

~

1------ -- --.~"

1---------- ~

foo--------- ~-
."

1---------- ~'

1-----------~.
1---------- ~-

.J'

1---------- i-"

1-"----------~-
1--------- -. ~-

~'

- ~ - -

NOTE: Because of the potentially long time
required to perform some noating point
instructions in relation to I/O interrupt requests,
these instructions are inteT'T'uptable. Becaus49 the
FA CD, stack pointer, and program counter are
not updated until the completion of these
instructions, any interrupt service routines that
return control to the inteT'T'upted program viet the
program counter stored in location 0 will
correctly restart these instructions.

014-000610-00

Push Floating ,Point State

FPSH

Pushes an 18-word floating point return block onto
the user stack, leaving the' contents of the floating
point accumulators and the floating point status
register unchanged. The format of the 18 words
pushed is as follows:

STACK POINTER--.
BEFORE FPSH

FACO{

FAC'{

FAC2{

STACK POlNT,:AC !
AFTER FPSH ~ L

DG-00603

Read High Word

FRH fpac

A r'

FPSR BIS 0-1 5
~

FpSR BITS 16-31 ."

foo---------- .-
1-"---------1--
-------- ~-

i.;o'

---------1--'
--------- --I--

----- -----~'
~

-----------~

-----------~-

--.,..------- ~-
."

: ~ .. ---------
- -------I

i-"

--------- ~-
,

."

I,.J

Places the high-order 16 pits of FPAC in ACO,
destroys the previous contents of ACO, and leaves
unchanged the contents of ~ AC and the z and N
flags in the floating point status register.

IV- 43

FRH

Skip Always

FSA

The next sequential word is skipped.

Scale

FSCAL fpac

Shifts the mantissa of the floating point number in
FPAC either right or left. depending upon the
contents of bits 1-7 of ACO. Leaves the contents of
ACO unchanged.

Treats bits 1-7 of ACO as an exponent in Excess 64
representation. Computes the difference between this
exponent and the exponent in FP AC by subtracting
the exponent in FP AC from the number contained in
ACO bits 1-7. If the difference is zero. the instruction
stops. If the difference is positive. the instruction
shifts the _ mantissa contained in FPAC right that
number of hex digits. If the difference is negative. the
instruction shifts the mantissa contained in FP AC
left that number of hex digits; if bits are lost the
instruction sets the MOF flag in the floating point
status register. After the shift. the contents of bits 1-7
of ACO replace the exponent contained in FP AC. Bits
shifted out of either end of the mantissa are lost. If
the entire mantissa is shifted out of FPAC. the
instruction sets FP AC to true zero. The instruction
sets the z and N flags in the floating point status
register to reflect the new contents of FP AC.

Data General Corporation

Subtract Double (FPAC from FPAC>

FSD facB,facd

Subtracts the floating point number in F ACS from
the floating point number in FACD and places the
normalized result in the F ACO. Destroys the previous
contents of FACD. leaves the contents of FACS
unchanged. and updates the z and N flags in the
floating point status register to reflect the new
contents of F ACD.

The subtraction is performed by inverting the sign
bit of the source operand and adding. After the sign
inversion. the operation is equivalent to floating point
addition. (See FAD.)

Skip On Zero

FSEQ

Skips the next sequential word if the z flag of the
floating point status register is 1.

IV-44

FsEQ 014-008619-00

ECLIPSE C/350 INSTRUCTIONS

Skip On Greater Than Or Equal To Zero

FSGE

1 1 0 1 0 1 1 101 0 1 0 1 0 ~
o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 121 '13 I wW

Skips the next sequential word if the N flag of the
floating point status register is O.

Skip On Greater Than Zero

FSGT

110111110101010001
o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 121 13 I ~

Skips the next sequential word if both the z and N
flags of the floating point status register are O.

Sine Double

FSIND

Forms the sine of the number in FPACO, places the
result in FP ACO, and sets the z and N flags of the
floating point status registeJ!' to reflect the new value
in FP ACO. Places the contents of AC3 in the program
counter and loads the value in location 418 <the frame
pointer) into AC3.

The Sine and Cosine instructions can share the same
data. The Sine instruction! always skips the word
immediately following the instruction word when
searching for data. The Cosine instruction word can
be placed in this location if desired.

Format: Algorithm coefficients must follow the Sine
instruction. The format is:

WORD NAME COD~D VALUE (Hex)

0 Instruction FSINO
Word

1 Ignored ---
2-5 4/PI 4114 5F30 60C9 C883
6-9 A6 387C! F24A 053B 3668
10-13 A5 BA69 i B262 61F8 B3AO
14-17 A4 3C3C 3E9F 5C1F 7086
18-21 A3 BE15 ! 503C 70B7 837F
22-25 A2 3F40! F07C 206B FE84
26-29 Al C04E F4F3 26F9 15EC
30-33 AO 40FF FFFF FFFF FFCC
34-37 B6 3778 ! FBB4 E1B7 20EO
38-41 B5 B978 C018 E66C 040B
42-45 B4 3B54 lEOB F28C 7BOl
46-49 B3 B026 5A59 9C5A A5E8
50-53 B2 3EA3 35E3 3BAC 3709
54-57 Bl C014 ABBC E625 BE3C
58-61 BO 40C9 OFOA A221 6896

IV- 45

014-000610-00 FSIND

Sine Single

FSINS

Forms the sine of the number in FPACO. places the
result in FP ACO. and sets the z and N flags of the
floating point status register to reflect the new value
in FPACO. Places the contents of AC3 in the program
counter and loads the value in location 418 <the frame
pointer) into AC3.

The Sine and Cosine instructions can share th43 same
data base. The Sine instruction always skips the word
immediately following the instruction word when
searching for data. The Cosine instruction word can
be placed in this location if desired.

Format: Algorithm coefficients must follow the Sine
instruction. The format is:

WORD NAME CODED VALUE (Hex)

0 Instruction FSINS
Word

1 Ignored ---
2-3 4/PI 4114 5F30
4-5 A3 BE14 E35E
6-7 A2 3F40 EBCA
8-9 A1 C04E F4E3
10-11 AO 40FF FFFF
12-13 B3 B025 B25F
14-15 B2 3EA3 2F49
16-17 B1 C014 ABBC
18-19 BO 40C9 OFDB

Data General Corporation

Skip On Less Than Or Equal To Zero

FSLE

Skips the next sequential instruction if either the z
flag or the N flag of the floating point status register
is 1.

Skip On Less Than Zero

FSLT

Skips the next sequential word if the N flag of the
floating point status register is 1.

IV- 46

FSLT 014-000610-00

ECLIPSE C/350 INSTRUCTIONS

Subtract Double (Memory from FPAC)

FSMD fpac, [@ldisplacementl,indexl

Subtracts the floating point number in the source
location from the floating point number in FPAC and
places the normalized result in the FPAC. Destroys
the previous contents of FPAC.leaves the contents of
the source location unchanged. and updateEi the z and
N flags in the floating point status register to reflect
the new contents of FPAC.

The instruction computes the effective address E
which addresses a 4-word (double precision) operand.

The subtraction is performed by inverting the sign
bit of the source operand and adding. After the sign
inversion. the operation is equivalent to floating point
addition. (See FAMO')

Subtract Single (Memory from FPAC)

FSMS fpac, [@ ldisplacementf, indexl

I ~, DISPLACEM:NT I
1 1 2 1 31 4 1 5 1 61 7 1 8 1 9110 1 11 1 121131 ~

Subtracts the floating point number in the source
location from the floating point number in FPAC and
places the normalized result in the FPAC. Destroys
the previous contents of FPAC. leaves the contents of
the source location unchanged. and updates th4~ Z and
N flags in the floating point status register to reflect
the new contents of FPAC.

The instruction computes the effective address E
which addresses a 2-word (single precision) operand.

The subtraction is performed by inverting the sign
bit of the source operand and adding. After the sign
inversion. the operation is equivalent to float,ing point
addition. (See FAMS.)

Skip On No Zero Divide

FSND

Skips the next sequential w9rd if the divide by zero
(ovz) flag of the floating poiht status register is O.

Skip On Non-Zero

FSNE

Skips the next sequential word if the Z flag of the
floating point status register is O.

IV- 47

014-000610-00 FSNE

Skip On No Error

FSNER

Skips the next sequential word if bits 1-4 of the
floating point status register are all O.

Skip On No Mantissa Overflow

FSNM

Skips the next sequential word if the mantissa
overflow (MOF) flag of the floating point status
register is O.

Skip On No Ov~rflow

FSNO

Data General Corporation

Skips the next sequential word if the overflow (OVF)
flag of the floating point status register is O.

Skip On No Overflow and No Zero Divide

FSNOD

Skips the next sequential word if both the overflow
(OVF) flag and the divide by zero (DVZ) flag of the
floating point status register are O.

IV- 48

FSNOD 014-000610-00

ECLIPSE C/350 INSTRUCTIONS

Skip On No Underflow
FSNU

111010110101010001
o I 1 1 2 1 31 4 1 5 1 61 7 1 8 1 9 110 1 11 1 12113 1 ~

Skips the next sequential word if the underflow (UNF)

flag of the floating point status register is O.

Skip On No Underflow And No Zero Divide

FSNUD

Skips the next sequential word if both the underflow
(UNF) flag and the divide by zero (OVZ) flag of the
floating point status register are O.

Skip On No Underflow And No Overflow

FSNUO

Skips the next sequential w9rd if both the underflow
(UNF) flag and overflow (OVF) flag of the floating point
status register are O.

Subtract Single (FPAC from FPAC)

FSS facB, facd

Subtracts the floating poiht number in F ACS from
the floating point number in FACD and places the
normalized result in the F ACD. Destroys the previous
contents of FACD, leavss the contents of FACS
unchanged, and updates 'the Z and N flags in the
floating point status register to reflect the new
contents of F ACD. .

The subtraction is perforJlled by inverting the sign
bit of the source operand ,and adding. After the sign
inversion, the operation is equivalent to floating point
addition.

IV-49

014-000610-00 FSS

Square Root Double

FSQRD

Forms the square root of the number in FPACO and
puts the result into FP ACO. Sets the z and N flags of
the floating point status register to reflect the new
value in FPACO.

Normal return: Places the contents of AC3 in the
program counter and loads the contents oflocation 418
<the frame pointer) into AC3.

Error return: Occurs if the original value in FPACO is
negative <the square root function is invalid for these
values). Loads the address of the word following the
Square Root instruction into the program counter.

Format: Use the following format:

NAME CODED VALUE

FSORD Instruction word
ERRTN Control goes to address ERRTN if FPACO < 0

Square Root Single

FSQRS

Forms the square root of the number in FP ACO and
puts the result into FP ACO. Sets the z and N flags of
the floating point status register to reflect the new
value in FPACO.

Normal return: Places the contents of AC3 in the
program counter and loads the contents oflocation 418
<the frame pointer) into AC3.

Error return: Occurs ifthe original value in FPACO is
negative <the square root function is invalid for these
values). Loads the address of the word following the
Square Root instruction into the program counter.

Format: Use the following format:

NAME CODED VALUE

FSORS Instruction word
ERRTN Control goes to address ERRTN if FPACO<O

Data General Corporation

Store Floating Point Status

FSST {@Jdisplacementl,index}

Moves the contents of the FPSR to two specified
memory locations.

Computes the effective address E and places the
32-bit contents of the FPSR in the two consecutive
memory locations addressed by E and E + 1. Leaves
the contents of the FPSR unchanged.

Store Floating Point Douhle

FSTD fpac,[@]di8placementl,index]

Stores the contents of a specified FP AC into a
memory location.

Computes the effective address. E, and places the
floating point number contained in FPAC in memory
beginning at the location addressed by E. Destroys
the previous contents of the addressed memory
location and leaves unchanged the contents of FPAC
and the condition codes in the FPSR.

IV- 50

FSTO 014-000610-00

ECLIPSE C/3S0 INSTRUCTIONS

Store Floating Point Single

FSlS fpac, [@ Jdisplacementl, indexJ

I ~I DISPLACEMONT I
1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I 13 I 14 I 15

Stores the contents of a specified FP AC into a
memory location.

Computes the effective address E and places the
floating point nwnber contained in FPAC in memory
beginning at the location addressed by E. Destroys
the previous contents of the addresed memory
location and leaves unchanged the contents of FPAC
and the condition codes in the FPSR. For single
precision, only the high-order 32 bits of FPAC are
stored.

Trap Disable

FlD

Sets the trap enable bit of the FPSR to O.

NOTE: The I/O RESET instruction will set this bit
toO.

Trap Enable

FlE

Sets the trap enable bit of the FPSR to 1.

NOTE: When a floating po*t fault OCCU1'S and the
trap enable bit is 1, the ~:p enable bit is set to 0
before control is transfe d to the floating point
error handler. The trap able bit should be set
to 1 before normal process~ng is resumed.

Halt

HALlA ac
DOC [fJ ac,CPU

Stops the processor.

Sets the Interrupt On flag ~cording to the fqnction
specified by F, then stops ~he processor. The data
lights display the cont,nts of the specified
accumulator.

NOTE: The assembler recpgnizes the mnemonic
HALT as equivalent to the i~truction HALTA o.

IV-51

014-000610-00 HALTA

Halve

HLV ac

Divides the contents of an accumulator by 2 and
rounds the result toward zero.

The signed, 16-bit two's complement number
contained in the specified AC is divided by 2 and
rounded toward O. The result is placed in the
specified AC.

If the number is positive, division is accomplished by
shifting the number right one bit. If the number is
negative, division is accomplished by negating the
number, shifting it right one bit, and negating it
again.

Hex Shift Left

HXL n,ac

Shifts the contents of AC left a number of hex digits
depending upon the immediate field N. The number of
digits shifted is equal to N + 1. Bits shifted out are
lost, and the vacated bit positions are filled with
zeroes. If N is equal to 3, then all 16 bits of AC are
shifted out and all bits of AC are set to O.

NOTE: The assembler takes the coded value of n
and subtracts one from it before placing it in the
immediate field. Therefore, the programmer
should code the exact number of hex digits that
he wishes to shift.

Data General Corporation

Hex Shift Right

HXR n,ac

Shifts the contents of AC rigJtlt a number of hex digits
depending upon the immedi\l.te field, N. The number
of digits shifted is equal to N + 1. Bits shifted out are
lost, and the vacated bit positions are filled with
zeroes. If N is equal to 3, then all 16 bits of AC are
shifted out and all bits of ACare set to o.

NOTE: The assembler takee the coded value of n
and subtracts one from it before placing it in the
immediate field. Therefore, the programmer
should code the exact num.ber of hex digits that
he wishes to shift.

Increment

INClc]lsh]l#] acs,acdl,skip]

Increments the contents of an accumulator.

Initializes the carry bit to the specified value.
Increments the unsigned, 16-bit number in ACS by
one and places the result in the shifter. If the
incrementation produces a carry of 1 out of the high
order bit, the instruction complements the carry bit.
Performs the specified shift operation, and loads the
result of the shift into ACD if the no-load bit is O. If
the skip condition is true, the next sequential word is
skipped.

NOTE: If the number in ACS is 1777778 the
instruction complements the carry bit.

IV- 52

INC 014-000610-00

ECLIPSE Cl350 INSTRUCTIONS

Interrupt Acknowledge

INTA
01 B [f] ac,CPU

Returns device code of an interrupting device.

Places the six-bit device code of that device
requesting an interrupt which is physically closest to
the CPU on the I/O bus in bits 10-15 of the specified
accumulator; sets bits 0-9 to O. After the transfer, sets
the Interrupt On flag according to the function
specified by F.

Interrupt Disable

INTOS
NIOC CPU

Sets Interrupt On flag to O.

Interrupt Enable

INTEN
NIOS CPU

Sets Interrupt On flag to 1. .

If the instruction changes ~he state of the Interrupt
On flag, the CPU allows pne more instruction to
execute before the first ryo interrupt can occur.
However, if the instructio~ is interruptable, then
interrupts can occur as soon as the instruction begins
to execute.

Inclusive OR

lOR aCB,acd

Forms the logical inclusive OR of the contents of ACS
and the contents of ACD I and places the result in
ACD. Sets a bit position ~n the result to 1 if the
corresponding bit position. in one or both operands
contains a 1; otherwise, the I instruction sets the result
bit to O. The contents of ACI3 remain unchanged.

IV- 53

014-000610-00 lOR

Inclusive OR Immediate

IORI i,ac

IMMEDIATE FIELD I
o 1 1 I 2 I 3 1 4 I 5 I 6 1 7 I 8 I 9 1 10 I 11 I 121 13 I 14 I 15

Forms the logical inclusive OR of the contents of the
immediate field and the contents of the specified AC
and places the result in the specified AC.

Reset

IORST
DICm ac,CPU

Sets all Busy and Done flags and the priority mask to
o.

Sets the Busy and Done flags in all I/O devices to o.
Sets the i6-bit priority mask to O. Sets the Interrupt
On flag according to the function specified by F.

NOTE: The a88embler recognizes the mnemonic
IORST a8 equivalent to the instruction DICC O,CPU.

If the mnemonic DIC is used to perform thi8
function, you must code an accumulator to avoid
a88embly e1'1'Or8. During execution, the
accumulator field i8 ignored and the content8 of
the accumulator remain unchanged.

Data General Corporation

Increment And Skip If Zero

ISZ [@]displacementl,index,]

Increments the addressed word, then skips if the
incremented value is zero.

Increments the word addressed by E and writes the
result back into memory at that location. If the
updated value of the location is zero, the instruction
places the address of the next sequential instruction
in the program counter and operation continues from
there. T

Jump

JMP

Computes the effective address, E, and places it in the
program counter. Sequential operation continues
with the word addressed by the updated value of the
program counter.

IV-54

IMP 014-000610-00

ECLIPSE C/350 INSTRUCTIONS

Jump To Subroutine

ISR {@ldisplacementl,index.l

Increments and stores the value of the program
counter in AC3. and then places a new address in the
program counter.

Computes the effective address. E; then places the
address of the next sequential instruction in AC3.
Places E in the program counter. Sequential
operation continues with the word addressed by the
updated value of the program counter.

NOTE: The instruction computes E before it places
the incremented program counter in A C3.

Load Accumulator

LOA ac,{@ldisplacementl,index.l

Copies a word from memory to an accumulator.

Places the word addressed by the effective address E
in the specified accumulator. The previous contents of
the location addressed by E remain unchanged.

Load Byte

LOB acs,acd

Moves a byte from memory. (as addressed by a byte
pointer in one accumul~tor) to the second
accumulator.

Places the 8-bit byte addr~sed by the byte pointer
contained in ACS in bits 8-1p of ACD. Sets bits 0-7 of
ACD to O. The contents of lACS remain unchanged
unless ACS and ACD aretheisame accumulator.

IV- 55

014-000610-00 LDB

Load Integer

LDI fpac

Translates a decimal integer from memory to
(normalized) floating point format and places the
result in a floating point accumulator.

Under the control of accumulators AC1 andl AC3,
converts a decimal integer to floating point form,
normalizes it, and places it in the specified FPAC.
The instruction updates the z and N bits in the FPSR
to describe the new contents of the specified FP AC.
Leaves the decimal number unchanged in memory,
and destroys the previous contents of the specified
FPAC.

AC1 must contain the data-type indicator desc:ribing
the number.

AC3 must contain a byte pointer which is the address
of the high-order byte of the number in memory.

Numbers of data type 7 are not normalized after
loading. By convention, the first byte of a number
stored according to data type 7 must contain the sign
and exponent of the floating point number. The
exponent must be in "excess 64" representation. The
instruction copies each byte (following the lead byte)
directly to mantissa of the specified FP AC. It then
sets to zero each low-order byte in the FPAC that
does not receive data from memory.

Upon successful completion, the instruction leaves
accumulators ACO and ACl unchanged. AC2 contains
the original contents of AC3; the contents of AC3 are
undefined.

NOTE: An attempt to load a minus 0 sets the
specified FPA C to true zero.

Load Integer Extended

LDIX

Data General Corporation

Distributes a decimal integer of data type 0, 1, 2, 3, 4,
or 5 into the four FPACs.

Extends the integer with high-order zeros until it is
32 digits long. Divides the integer into 4 units of 8
digits each and converts each unit to a floating point
number. Places the number obtained from the 8
high-order digits into FACO, the number obtained
from the next 8 digits into FAC1, the number
obtained from the next 8 digits into F AC2, and the
number obtained from the low-order 8 bits into
F AC3. The instruction places the sign of the integer
in each FPAC unless that FPAC has received 8 digits
of zeros, in which case the instruction sets FP AC to
true zero. The Z and N flags in the floating point
status register are unpredictable.

AC1 must contain the data-type indicator describing
the integer.

AC3 must contain a byte pointer which is the address
of the high-order byte of the integer.

Upon successful termination, the contents of ACO and
AC3 are undefined; the contents of ACl remain
unchanged; and AC2 contains the original contents of
AC3.

IV- 56

LDIX 014-000610-00

ECLIPSE C/3S0 INSTRUCTIONS

Load Effective Address

LEF ac, [@ ldisplacementl, index.l

Computes the effective address E and places it in bits
1-15 of the specified accumulator. Sets bit 0 of the
accumulator to O. The previous contents of the AC are
lost.

If an auto-incrementing or auto-decrementing
location is referenced in the course of the effective
address calculation, the contents of the location are
incremented or decremented. Note, however, that
auto-incrementing and auto-decrementing is
suppressed when demand paging is enabled.

The LEF instruction can only be used in a mapped
system, while in the user mode. With the LEF mode bit
set to 1, all YO and LEF instructions will be
in erpreted as LEF instructions. With the LEF mode bit
set to 0, all YO and LEF instructions will be
interpreted as YO instructions.

LEF O.TABLE

LEF 1.-55.3

LEF 0 •. +0

; The logical address of
; TABLE is placed in ACO.

; Subtracts 000055 (octaQ
; from the unsigned integer
; in AC3 and the result is
; placed in AC 1.

; Places the address of this
; Load effective addre88
; instruction in ACO.

NOTE: Be sure that I/O protection is enabled 01'

the Lef mode bit is set to 1 before using the Lef
instruction. If you issue a Lef instruction in the
lID mode, with protection disabled., the
instruction will be interpreted and executed as
an I/O instruction, with possibly undesirable
results.

014-000610-00

IV- 57

LEF

Load Map

LMP

Under control of AC1 and AC2, loads successive
words from memory into the MAP where they are
used to define a user or data channel map.

AC1 must contain an unsigned integer which is the
number of words to be loaded into the MAP. Bits 1-15
of AC2 must contain the address of the first word to
be loaded. If bit 0 of AC2 is 1, the instruction follows
the indirection chain and places the resultant
effective address in AC2. ACO and AC3 are ignored
and their contents remain unchanged.

For each word loaded, the instruction decrements the
count in AC1 by one and increments the source
address in AC2 by 1. Upon completion of the
instruction, AC1 contains 0, and AC2 contains the
address of the word following the last word loaded.

This instruction is interruptable in the same manner
as the Block add and move instruction. If you issue
this instruction while in mapped mode, with I/O
protection enabled, the map will not be altered. AC1
and AC2 will be used and their contents modified as
described above. No 110 trap will occur.

The words loaded into the MAP define the address
translation functions for the various user and data
channel maps. The contents of the MAP field (bits 6-8)
of the MAP status register determine which map is
affected by the Load map instruction. You can alter
this field using either the Load map status or the
Initiate page check instruction.

The format of the words loaded into the MAP is as
follows:

BITS NAME CONTENTS or FUNCTION

0 WP Unused for data channel maps;
write protect for user maps.

1-5 LOGICAL Logical page number.
6-15 PHYSICAL Physical page number.

NOTE: Declare a logical page invalid by setting
the Write Protect bit to 1 and all of bits 6-15 to 1.

Data General Corporation

Locate Lead Bit

LOB aCB,acd

Adds a number equal to the number of high-order
zeroes in the contents of ACS to the signed, 16-bit,
two's complement number contained in ACD. The
contents of ACS and the state of the carry bit remain
unchanged.

NOTE: If ACS and ACD are specified as the same
accumulator, the instruction functions as
described above, ex.cept that since A CS and
A CD are the same accumulator, the contents of
ACS will be changed.

IV- 58

LOB 014-000610-00

ECLIPSE C/350 INSTRUCTIONS

Locate and Reset Lead Bit

LRB aC8,acd

Performs a Locate lead bit instruction, and sets the
lead bit to o.

Adds a number equal to the number of high-order
zeroes in the contents of ACS to the signed, 16-bit,
two's complement number contained in ACD. Sets
the leading 1 in ACS to O. The state of the carry bit
remains unchanged.

NOTE: If ACS and ACD are 8pecified to be the
8ame accumulator, then the instruction 8ets the
leading 1 in that accumulator to 0, and no count
is taken.

Logical Shift

LSH aC8,acd

Shifts the contents of ACD either left or right
depending on the number contained in bits 8~15 of
ACS. The signed, 8-bit two's complement number
contained in bits 8-15 of ACS determines the
direction of the shift and the number of bits to be
shifted. If the number in bits 8-15 of ACS is positive,
shifting is to the left; if the number in bits 8-15 of
ACS is negative, shifting is to the right. If the number
in bits 8-15 of ACS is zero, no shifting is performed.
Bits 0-7 of ACS are ignored.

The number of bits shifted is equal to the magnitude
of the number in bits 8-15 of ACS. Bits shifted out are
lost, and the vacated bit positions are tilled with
zeroes. The carry bit and the contents of ACS remain
unchanged.

NOTE: If the magnitude of the number in bit8 8-15
of ACS is greater than 15, all bits of ACD are set
to O. The ca1'1')' bit and the contents of ACS
remain unchanged.

Load Sign

LSN

Under the control of accuplUlators ACl and AC3,
evaluates a decimal numbeJj'in memory and returns
in ACl a code that classifi~ the number as zero or
nonzero and identifies its ~gn. The meaning of the
returned code is as follows:

VALUE OF NUMBER CqOE

Positive non-zero +1
Negative non-zero -1
Positive zero 0
Negative zero -2

ACl must contain the data type indicator describing
the number.

AC3 must contain a byte porter which is the address
of the high-order byte oftha number.

Upon successful terminati~n, the contents of ACO
remain unchanged; ACl coq.tains the value code; AC2
contains the original cOints of AC3; and the
contents of AC3 are unpre . ctable. The contents of
the addressed memory loea ions remain unchanged.

IV- 59

014-000610-00 LSN

Move

MOV [c) [sh] [#] acs,acdl,skip]

Moves the contents of an accumulator through the
Arithmetic Logic Unit (ALU).

Initializes the carry bit to the specified value. Places
the contents of ACS in the shifter. Performs the
specified shift operation and loads the result of the
shift into ACD if the no-load bit is O. If the skip
condition is true, the instruction skips the next
sequential word.

Mask Out

MSKO
DOB [f) ac,CPU

Sets the priority mask.

Places the contents of the specified accumulator in
the priority mask. After the transfer, sets the
Interrupt On flag according to the function specified
by F. The contents of the specified AC remain
unchanged.

NOTE: A 1 in any bit disable8 interrupt reque8t8
at device8 which U8e that bit a8 a ma8k.

NOTE: Do not U8e thi8 in8truction when interrupt8
are enabled.

Data General Corporation

Modify Stack Pointer

MSP ac

Changes the value of the stack pointer and tests for
potential overflow.

Adds the signed two's-complement number in AC to
the stack pointer. If the result is less than the stack
limit, the instruction places the result in the stack
pointer.

If the result is greater than the stack limit. the
instruction transfers control to the stack fault
routine. The program counter in the fault return
block is the address of the Modify Stack Pointer
instruction. The stack pointer is left unchanged.

Unsigned Multiply

MUL

Multiplies the unsigned contents of two accumulators
and adds the result to the 1;1nsigned oontents of a
third accumulator. The result is an unsigned 32~bit
integer in two accumulators.

The unsigned, 16-bit number in AC1 is multiplied by
the unsigned. 16-bit number in AC2 to yield an
unsigned. 32-bit intermediate result. The unsigned.
16-bit number in ACO is added to the intermediate
result to produce the final result. The final result is
an unsigned. 32-bit number and occupies ACO and
AC1. Bit 0 of ACO is the high-order bit of the result
and bit 15 of AC1 is the low-order bit. The oontents of
AC2 remain unchanged. Because the result is a
double-length number. overflow cannot occur.

IV-60

MUL 014-000610-00

ECLIPSE C/350 INSTRUCTIONS

Signed Multiply

MULS

Multiplies the signed contents of two accumulators
and adds the result to the signed contents of a third
accumulator. The result is a signed 32-bit integer in
two accumulators.

The signed, 16-bit two's complement number in AC1
is multiplied by the signed, is-bit two's complement
number in AC2 to yield a signed, 32-bit two's
complement intermediate result. The signed, 16-bit
two's complement number in ACO is added to the
intermediate result to produce the final result. The
final result is a signed, 32-bit two's complement
number which occupies ACO and ACt. Bit 0 of ACO is
the sign bit of the result and bit 15 of AC1 is the
low-order bit. The contElnts of AC2 remain
unchanged. Beoause the result is a double-length
number, overflow oannot occur.

Negate

NEG [cJ[shl[#) acs,acdl,skip)

Forms the two's complement of the contents of an
accumulator.

Initializes the carry bit to the specified value. Places
the two's complement of the unsigned, 16-bit number
in ACS in the shifter. If the negate operation
produces a carry of 1 out of the high-order bit, the
instruction complements the carry bit. Performs the
specified shift operation and places the result in ACD
if the no-load bit is O. If the skip condition is true, the
instruction skips the next sequential word.

NOTE: If ACS contains 0, the instruction
complements the carry bit.

No I/O Transfer

NIO [(J device

Used when a Busy or Done tlag must be changed with
no other operation taking p*ce.

I

Sets the Busy and Done flags in the specified device
according to the function sp~ified by F.

Pop Multiple Accumulat~rs

POP acs,acd

Pops 1 to 4 words off the sts.Qk and places them in the
indicated. accumulators.

The set of accumulators frofi ACS through ACD is
filled. with words poppedj from the stack. The
accumulators are filled in d~nding order, starting
with the AC specified. by A~S and continuing down
through the AC specified b~ ACD, wrapping around
if necessary, with AC3 folloVfmg ACO. If ACS is equal
to ACD, only one word is pcl>pped and it is placed in
ACS.

The stack pointer is decre~ented. by the number of
accumulators popped and the frame pointer is
unchanged. A check for und~rf1ow is made only after
the entire pop operation is d~ne.

IV-61

014-000610-00 POP

Pop Block

POPB

Returns control from a Sy8tem Call routine or an I/O
interrupt handler that does not use the stack change
facility of the Vector instruction.

Five words are popped off the stack and placed in
predetermined locations. The words popped and their
destinations are as follows:

STACK POINTER
AFTER POP

BLOCK

STACK POINTER
BEFORE POP

BLOCK

DG-00607

1st WORD
.:--- POPPED

Sequential operation is continued with the word
addressed by the updated value of the program
counter.

NOTE: If the YO handler U8e8 the 8tack change
facility of the Vector on Interrupting Device Code
in8truction, do not U8e the Pop Block in8truction.
U8e the Restore instruction instead.

Pop PC And Jump

POPJ

Data General Corporation

Pops the top word off the stack and places it in the
program counter. Sequential operation continues
with the word addressed by the updated value of the
program counter.

Push Multiple Accumulators

PSH aC8,acd

Pushes the contents of 1 to 4 accumulators onto the
stack.

The set of accumulators from ACS through ACD is
pushed onto the stack. The accumulators are pushed
in ascending order. starting with the AC specified by
ACS and continuing up through the AC specified by
ACD. wrapping around if necessary. with ACO
following AC3_ The contents of the accumulators
remain unchanged. If ACS equals ACD. only ACS is
pushed.

The stack pointer is incremented by the number of
accumulators pushed and the frame pointer is
unchanged. A check for overflow is made only after
the entire push operation finishes.

IV- 62

PSH 014-000610-00

ECLIPSE Cl350 INSTRUCTIONS

Push Jump

PSHJ {@ldisplacementl,index.1

I :; I DISPLACErvt:NT I
1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 121 13 I 14 I 15

Pushes the address of the next sequential instruction
onto the stack, computes the effective address E and
places it in the program counter. Sequential
operation continues with the word addressed by the
updated value of the program counter.

Push Return Address

PSHR

Pushes the address of this instruction plu8 2 onto the
stack.

Read Switches

READS
DIA{fJ

ac
ac,CPU

Places the contents of the cpnsole switches into an
accumulator.

Places the setting of the con~ole data switches in the
specified accumulator. Afte~ the transfer, sets the
Interrupt On flag according to the function specified
byF.

IV- 63

014-000610-00 READS

Restore

RSTR

1 1 1 1 0 1 1 1 1 1 1 0 0 1 0 "()Ql
01 1 I 2 I 31 4 1 5 I 61 7 I 8 I 9110 I 11 I 12113 1 ~

Returns control from certain types of I/O interrupts.

Pops nine words off the stack and places them in
predetermined locations. The words popped and their
destinations are as follows:

ST ACK POINTER
AFTER RESTORE ~-----t

STACK POINTER
BEFORE RESTORE

DG-00606

.. ..

,c . :::. '!"::::o:?
• J/

STACK
POINTER ./
FRAME

POINTER ./'
STACK
LIMIT ./

STACK
FAULT ./

ACO
./'

ACl
./

AC2 /"
AC3 V

CARRY I~ROGRAM
BIT COUNTER /"

Sequential operation continues with the word
addressed by the updated value of the program
counter.

NOTE: Use the > Restore instruction to return
control to the program only if the I/O inteT'T'Upt
handler uses the stack change facility of the
Vector on Interrupting Device Code instruction.

The Restore instruction does not check for stack
underflow.

Return

RTN

Returns control from subroutines that issue a Save
instruction at their entry points.

The contents of the frame pointer are placed in the
stack pointer and a Pop Block instruction is executed.
The popped value of AC3 is placed in the frame
counter.

Save

SAVE

Data General Corporation

1'11001111100
o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 12

I IMMEDIATE FIELD 1
O I 1 I 2 I 31 4 I I 1 I I I I I I I I -

5 6 7 8 9 10 '11 12 13 14 15

Saves the information required by the Return
instruction.

A return block is pushed onto the stack. After the
fifth word of the return block is pushed, the value of
the stack pointer is placed in the fra,me pointer and
in AC3. The 16-bit unsigned integer (called the frame
size) contained in the immediate field is added to the
stack pointer. The format of the five words pushed is
as follows:

WORD PUSHED CONTENTS

1 ACO
2 AC1
3 AC2
4 Frame pointer before the save
5 Bit 0 = carry bit

Bits 1 -1 5 = bits 1 -15 of AC3

The Save instruction allocates a portion of the stack
for use by the procedure which executed the Save.
The value of the frame size determine.s the number of
words in this stack area. This portion of the stack
will not normally be accessed by push and pop
operations, but will be used by the procedure for
temporary storage of variables, counters, etc. The
frame pointer acts as the referenCE! point for this
storage area.

Before execution, the Save instruction checks for
stack overflow. If executing the instruction would
result in a stack overflow, Save transfers control to
the stack fault routine. The program. counter in the
fault return block contains the address of the Save
instruction.

Dse the Save instruction with the Jump to Subroutine
instruction, which places the return value of the
program counter in AC3. Save then pushes the return
value (contents of AC3) into bits t-15 of the fifth
word pushed.

IV- 64

SAVE 014-000610-00

ECLIPSE C/356 INSTRUCTIONS

Subtract Immediate

S81 n,ac

Subtracts an unsigned integer in the range 1-·4 from
the contents of an accumulator.

The contents of the immediate field N, plus 1 are
subtracted from the unsigned 16-bit number
contained in the specified AC and the result is placed
in ACo. The carry bit remains unchanged.

NOTE: The assembler takes the coded value of n

and subtracts one from it before placing it in the
immediate field. Therefore code the exact value
you wish to subtract.

Example - Assume that AC2 contains 0000038' After
the instruction SBI 4,2 is executed, AC2 contains
1777778 and carry bit remains unchanged.

BEFORE AFTER

carry bit either 0 or 1 unchanged

Skip If ACS Greater Thao Or Equal to ACD

SGE aC8,acd

o 0 ~
13 14 15

Compares two signed integ~rs in two accumulators
and skips if the first is greater than or equal to the
second.

The signed two's complemept numbers in ACS and
ACD are algebraically compared. If the number in
ACS is greater than or equal to the number in ACD,
the next sequential word is !skipped. The contents of
ACS and ACD remain unchanged.

NOTE: The Skip If ACS Greater Than ACD and
Skip If ACS Greater Th~m Or Equal To ACD
instructions treat the coliJ.tents of the specified
accumulators as signed, two's complement
integers. To compare unsigned integers, use the
Subtract and Add complement instructions.

Skip If ACS Greater Than: ACD

SGT aC8,acd

Compares two signed integers in two accumulators
and skips if the first is greater than the second.

The signed, two's complemertt numbers in ACS and
ACD are algebraically com~ared. If the number in
ACS is greater than the number in ACD, the next
sequential word is skipped. The contents of ACS and
ACD remain unchanged.

IV- 65

014-000610-00 SGT

1/0 Skip

SKP [t] device

If the test condition specified by T is true, the
instruction skips the next sequential word.

Skip On Non-Zero Bit

SNB acs,acd

The two accumulators form a bit pointer. If the
addressed bit is 1, the next sequential word is
skipped.

Forms a 32-bit bit pointer from the contents of ACS
and ACD. ACS contains the high-order 16 bits and
ACD contains the low-order 16 bits of the bit pointer.
If ACS and ACD are specified as the same
accumulator, the instruction treats the accumulator
contents as the low-order 16 bits of the bit pointer
and assumes the high-order 16 bits are O.

If the addressed bit in memory is 1, the next
sequential word is skipped. The contents of ACS and
ACD remain unchanged.

Data General Corporation

Store Accumulator

STA ac, [@]displacementf, index]

Stores the contents of an accumulator into a memory
location.

Places the contents of the specified accumulator in
the word addressed by the effective address, E. The
previous contents of the location addressed by E are
lost. The contents of the specified accumulator
remain unchanged.

Store Byte

STB acs,acd

Moves the right byte of one accumulator to a byte in
memory. The second accumulator contains the byte
pointer.

Places bits 8-15 of ACD in the byte addressed by the
byte pointer contained in ACS. The contents of ACS
and ACD remain unchanged.

IV- 66

STB 014-000610-00

ECLIPSE C/3S0 INSTRUCTIONS

Store Integer

STI fpac

Under the control of accumulators AC1 and AC3,
translates the contents of the specified FPAC to an
integer of the specified type and stores it, right­
justified, in memory beginning at the specified
location. The instruction leaves the floating point
number unchanged in the FP AC, and destroys the
previous contents of memory at the specified
location (s).

AC1 must contain the data-type indicator describing
the integer.

AC3 must contain a byte pointer which is the address
ofthe high-order byte of the number in memory.

Upon successful completion, the instruction leaves
accumulators ACO and AC1 unchanged. AC2 contains
the original contents of AC3 and AC3 contains a byte
pointer which is the address of the next byte after the
destination field.

NOTES: If the number in the specified FPA C has
any Fractional part, the result of the instruction
is undefined. Use the Integerize instruction to
clear any Fractional part.

If the destination field cannot contain the entire
number being stored, high-order digits are
discarded until the number will fit into the
destination. The remaining low-order digits are
stored and Carry is set to 1.

For data types 0, 1, 2, 3, 4, and 5, if the number
being stored will not fill the destination field, the
high-order bytes to the right of the sign are set to
o.
For data type 6, if the number being stored will
not fill the destination field, the sign bit is
extended to the left to fill the field.

For data type 7, if the number being stored will
not fill the destination field, the low-order bytes
are set to O.

Store Integer Extended

STIX

Converts the contents of th~ four FPAC's to integer
form and uses the low-order 8 digits of each to form a
32-digit integer. The instru~tion stores this integer,
right-justified, in memory b~ginning at the specified
location. The sign of the inf:ter is the logical OR of
the signs of all four FPAC's. e previous contents of
the addressed memory loc tions are lost. Sets the
carry bit to O. The content of the FPAC's remain
unchanged. The condition podes in the FPSR are
unpredictable. I

AC1 must contain the data-~ype indicator describing
the form of the in memory. I

AC3 must contain a byte poi~ter which is the address
of the high-order byte of the destination field in
memory.

Upon successful terminationj the contents of ACO are
undefined; the contents of ,¥\C1 remain unchanged;
AC2 contains the original cqntents of AC3; and AC3
contains a byte pointer wh~ch is the address of the
next byte after the destinatidn field.

NOTES: If the destination field is not large enough
to contain the numbel!' being stored, the
instruction disregards hig~-order digits until the
number will fit in the destination. The instruction
stores low-order digits ,.EJmaining and sets the
carry bit to 1.

For data types 0, 1, 2, 3, 1, and 5, if the number
being stored will not fill t~ destination field, the
instruction sets the high-otder bytes to O.

For data type 6, if the nu~ber being stored will
not fill the destination . field, the instruction
extends the sign bit to the teft to fill the field.

IV- 67

014-000610-00 STIX

Subtract

SUBlc][sh]l#] acs,acdl,skip]

Performs unsigned integer subtraction and
complements the carry bit if appropriate.

Initializes the carry bit to its specified value. The
instruction subtracts the unsigned, 16-bit number in
ACS from the unsigned, 16-bit number in ACD by
taking the two's complement of the number in ACS
and adding it to the number in ACD. The instruction
places the result of the addition in the shifter. If the
operation produces a carry of 1 out of the high-order
bit. the instruction complements the carry bit. The
instruction performs the specified shift operation and
places the result of the shift in ACD if the no-load bit
is O. If the skip condition is true. the instruction skips
the next sequential word.

NOTE: If the number in ACS i8 le88 than or equal
to the number in A CD, the in8truction
complement8 the carry bit.

SYC

Data General Corporation

System Call

SYC acs,acd

Pushes a return block and indirectly places the
address of the 8y8tem call handler in the program
counter.

If a user map is enabled. the instruction disables it
and pushes a return block onto the stack. The
program counter in the return block points to the
instruction immediately following the Sy8tem call
instruction. After pushing the return block. the
instruction executed a jump indirect to location 2. If
this instruction disabled a user map. then I/O
interrupts cannot occur between the time the Sy8tem
call instruction is executed and the time the
instruction pointed to by the contents of location 2 is
executed.

IV- 68

NOTE: If both accumulators are 8pecified a8 ACO,
the instruction does not push a return block onto
the 8tack. The content8 of A CO remain
unchanged. If either of the accumulator8
8pecified is not A CO, then the instruction takes
no special action. The contents of the 8pecified
accumulator8 remain unchanged.

The aS8embler recognize8 the mnemonic SCL as
equivalent to SYC 1,1.

The aS8embler recognize8· the mnemonic SVC a8
equivalent to SYC 0,0.

014-000610-00

ECLIPSE C/350 INSTRUCTIONS

Skip On Zero Bit

SZB aeB,aed

The two accumulators form a bit pointer. If the
addressed bit is zero, the next sequential word is
skipped.

Forms a 32-bit bit pointer from the contents of ACS
and ACD. ACS contains the high-order 16 bits and
ACD contains the low-order 16 bits of the bit pointer.
If ACS and ACD are specified as the same
accumulator, the instruction treats the accumulator
contents as the low-order 16 bits of the bit pointer
and assumes the high-order 16 bits are O.

If the addressed bit in memory is 0, the next .
sequential word is skipped. The contents of ACS and
ACD remain unchanged.

Skip On Zero Bit And SetlTo One

SZBO aeB,aed

The two accumulators fonr. a bit pointer. If the
addressed bit is O. the ins~ruction skips the next
sequential word. The instruction sets the addressed
bit to 1.

Forms a 32-bit bit pointer f~om the contents of ACS
and ACD. ACS contains th, high-order 16 bits and
ACD contains the low-order 116 bits of the bit pointer.
If ACS and ACD are ~: pecified as the same
accumulator. the instructio treats the accumulator
contents as the low-order 1 bits of the bit pointer
and assumes the high-order ~6 bits are O.

The instruction sets the addressed bit in memory to
1. If the bit was 0 before being set to 1. the instruction
skips the next sequential w~rd. The contents of ACS
and ACD remain unchanged~

I

NOTE: This instruction fa~ilitates the use of bit
maps for such purposes a~ allocation of facilities
(memory blocks. I/O de~ices, etc,) to several
processes. or tasks. th~t may interrupt one
another, or in a multiproc,ssor environment. The
bit is tested and set to 1 ini one memory cycle.

IV- 69

014-000610-00 SZBO

Vector On Interrupting Device Code

veT [@ldisplacementl,indexl

Returns the device code of the interrupting device
and uses that code as an index into a table. The value
found in the table is then used as a pointer to the
appropriate interrupt handler (Mode A) or as a
pointer to another table which points to the
interrupt handler and contains a new priority mask
(Modes B through E). The instruction can also save
the state of the machine by pushing various words
onto the stack, creating a new vector stack, and
setting up a priority structure.

The accompanying flow chart (see opposite page) is a
complete diagram of the operation of the Vector
instruction. Note that all modes use the vector table
to find the next address used. Mode A uses the vector
table entry as the address of the interrupt handler
and passes control to it immediately. Modes B
through E all use the vector table address as a pointer
into a device control table (DCT), where the address
of the interrupt handler is found, along with a new
priority mask.

Three control bits determine the mode of the Vector
instruction which will be used. Their names and
locations are:

Direct Bit - Bit 0 of the selected vector table entry;

Stack Change Bit - Bit 0 of the second word of the
Vector instruction;

Push Bit - Bit 0 of the first word of the selected device
control table.

The state of these bits collectively determine which
mode will be used by the Vector instruction. This
relationship is as follows:

DIRECT STACK PUSH MODE

0 don't don't A
care care

1 0 0 B
1 0 1 C
1 1 0 0
1 1 1 E

Data General Corporation

The functions performed by the Vector instruction
within each mode are summarized here:

MODE FUNCTION

A Uses device code returned by INT A as table entry to
find address of interrupt handler.

B Mode A plus: resets priority mask (saving old one)
and reenables interrupts.

C Mode B plus: pushes a normal 5-word return block
(4 ACs, the program counter, and the carry bit) onto
the stack.

0 Mode B plus: sets up a new vector stack for use by
the interrupt handler and saves the old stack
parameters.

E Mode C plus Mode D.

In the following paragraphs, we will consider each
mode and follow the process through step-by-step.

Common Process

The initial steps taken by the Vector instruction are
done regardless of the mode being used. The device
code of the interrupting device is returned. This code
is added to the address of the start of the vector table,
which is found in the displacement field (bits 1-15 of
the second instruction word), to get a new address
within the vector table. The word at this new
location is fetched and its bit 0 (the direct bit) is
examined.

Mode A

If the direct bit is 0, mode A is used and the state of
the other control bits does not matter. Bits 1-15 of the
fetched vector table entry are used as the address of
the interrupt handler for the interrupting device.
Control is immediately transferred to the interrupt
handler.

ModeR

Modes B through E perform different functions
initially, but use a common second part. We discuss
the common second part after discussing each Part I
separately.

IV-70

VCT 014-000610-00

ECLIPSE C/3S0 INSTRUCTIONS

START OF
VCT INSTRUCTION

FETCH THE SECOND
WORD OF THE VCT
INSTRUCTION. BIT
o IS THE STACK
CHANGE BIT. BITS
, -, 5 CONTAIN THE
ADDRESS OF THE
BEGINNING OF THE
VECTOR TABLE

\
RETURN I
DEVICE CODE

ADD THE CODE
RETURNED ABOVE

)

TO THE ADDRESS OF THE
VECTOR TABLE IDISPLACEMENT
FIELD) AND FETCH THE
WORD AT THAT
LOCATION BIT 0 IS
THE "DIRECT BIT"

~~_Y_E_S __________ --; MODE A

MODESB~ •

BITS '-'5 OF
THE FETCHED
VECTOR TABLE
ENTRY CONTAINS
THE ADDRESS OF
THE DCT

r-______ N_O_~CH~~~~~IT
MODES B. C = 11

YES

A

06-00570

014-000610-00

SAVE LOCATIONS
40-43a

MODESD, E ~

PLACE CONTENTS OF
LOCATION 4 IN
ST AC K POINTER.
PLACE CONTENTS OF
LOCATION 6 IN
STACK LIMIT.
PLACE CONTENTS OF
LOCATION 7 IN
STACK FAULT.
NOTE: FRAME
POINTER IS DESTROYED
AND THE CONTENTS
ARE UNPREDICTABLE

PUSH OLD CONTENTS
OF LOCA TIONS

40-43.

BITS '-'5 OF THE
FETCHED VECTOR
'r ABLE ENTRY CON­
TAIN THE ADDRESS
OF THE DEVICE
INTERRUPT ROUTINE.

TRANSFER CONTROL
TO THE DEVICE
INTERRUPT ROUTINE
BY PLACING BITS
, -'5 Of. THE FETCHED
VECTOR TABLE EN,TRY
IN THE PROGRAM COUNTER

IV-71

FETCH THE FIRS~ WORD
OF THE OCT Bil 0 IS

THE "PUSH BIT'i BIT 5
, -, 5 CONTAIN HE
ADDRESS OF T E DEVICE
INTERRUPT R04TINE.

.------<.NO ¢.:USH ~IT
MODES B_ 0 "

~ES MODES C. E

ALL
MODES

I

PUSH STANDJ.RD
RETURN BLOCiK.

BITS '-'5 OF
LAST WORD ~USHED
CONTAIN BIT~ '-'5 OF
PHYSICAL LO~A TION O.

,
PLACE THE
ADDRESS ~F THE
OCT IN AC~

~ ~ODES B. C. D. E

PUSH THE CU~RENT
INTERRUPT N ASK
ILOCA TlON 5) ONTO

THESTACK~

PLACE THE LqJGICAL
OR OF THE CI(JRRENT
INTERRUPT ~ASK AND
THE SECONDIWORD
OF THE OCT II" ACO.

11
PLACE THE C0i;TENTS
OF ACO IN TH CURRENT
INTERRUPT M SK
ILOCATION 51.

DO A MASK bUT
FROM ACO NO
ENABLE INT RRUPTS
IDOBSO,CP I.

PLACE ADD ESS
OF DEVICE I TERRUPT
ROUTINE IN

PROGRAM CflUNTER.

~~Y~E=S ________ ~

OPERATION ITH THE CONTROL TO
CONTINUE S¥UENTIAL .--T-R-A-N-:lSL.FE""R-----..

WORD ADDR SSED STACK FAULT
BY THE PRO RAM ROUTINE
COUNTER.

I ,
END OF

VCT INSTRUPION)

Mode B

Mode B - Part I

Mode B is used if the direct bit is 1 and the other two
control bits are O. The address in the vector table is
now used as the location of the device control table
(vGT) for the interrupting device. Bits 1-15 of the
first word of the DCT contain the address of the
desired interrupt handler <bit 0 is the push bit). The
second word of the DCT is used to construct the new
interrupt priority mask, and succeeding words (if
any) contain information to be used by the device
interrupt handler.

Mode C - Part I

If the direct bit and push bit are both 1, and the stack
change bit is 0, mode C is used. The mode B functions
are performed, and in addition, a standard 5-word
return block is pushed onto the stack. This block
consists of the contents of the 4 accumulators, the
carry bit, and the contents of physical location 0 (the
program counter return value).

Mode D - Part I

Mode D is used if the direct bit and the stack change
bits are 1 and the push bit is O. The mode B functions
are performed, and in addition, a new stack is set up
for the interrupt handler and the old contents of
physical locations 40-438 (the user stack control
words) are pushed onto the new stack.

Mode E - Part I

Mode E combines the functions of modes C and
D. That is, the functions of mode B are performed, a
new stack is set up, and a 5-word return block and
the old stack control words are pushed onto the
(new) stack.

Modes B through E - Part II

Modes B through E use the same procedure for the
remainder of the Vector instruction. The current
priority mask is pushed onto the stack. A Mask Out
instruction is then performed, using the logical OR of
the current mask and the second word of the DCT.
The Interrupt On flag is set to 1 and control passes to
the selected device interrupt handler. Note that the
CPU permits one more instruction to execute (in this
case, the first instruction of the interrupt handler)
before the next I/O interrupt can occur.

Data General Corporation

Exchange Accumulators

XCH aCB,acd

Exchanges the contents of two accumulators.

Places the original contents of ACS in ACD and the
original contents of ACD in ACS.

IV-72

XCH 014-000610-00

ECLIPSE C/3S0 INSTRUCTIONS

Execute

XCT ac

Executes the instruction contained in AC as if it were
in main memory in the location occupied by the
Execute instruction. If the instruction in AC is an
Execute instruction which executes the instruction in
AC. the processor is placed in a one-instruction loop.
The Stop switch on the console will not stop the
processor. but the Reset switch will.

Because of the possibility of AC containing an
Executeinstruction. this instruction is interruptable.
An I/O interrupt can occur immediately prior to each
time the instruction in AC is executed. If an I/O
interrupt does occur. the program counter in the
return block pushed on the system stack points to the
Execute instruction in main memory. This capability
to execute an Execute instruction gives you a wait for
I/O interrupt instruction.

NOTE: If the specified accumulator contains the
first word of a two-word instruction, the word
following the XCT instruction is used as the
second word. Normal sequential operation then
continues from the second word after the XCT

instruction.

The results of XCT are undefined if the specified
accumulator contains an instruction that
modifies that same accumulator. For example:

LDA O,TOT
XCT 0
JMP ON

TOT: ADD 1,0

; UNDEFINED

Extended Operation

XOP aC8,acd,operatibn #

Pushes a return block ont~ the stack. Places the
address in the stack of AC into AC2; places the
address in the stack of A D into AC3. Memory
location 448 must contain thd XOP origin address. the
starting address of a 3210 ~ord table of addresses.
These· addresses are the starting location of the
various XOP operations.

Adds the operation number if\. the XOP instruction to
the XOP origin address to produce the address of a
word in the XOP table. The: instruction fetches that
word and treats it as the int¢rmediate address in the
effective address calculatioll. After the indirection
chain. if any. has been fo~owed. the instruction
places the effective address ~n the program counter.
The contents of ACO. ACt and the XOP origin
address remain unchanged.

The format of the return blbck pushed by the XOP
instruction is as follows:

STACK POINTER
BEFORE XOP

STACK POINTER
AFTERXOP----~-r~~~~~

This return block is configured so that the XOP
procedure can return contrell to the calling program
via the Pop Block instruction.

IV-73

014-000610-00 xOP

Alternate Extended Operation

XOP1 aC8,acd,operation #

This instruction operates exactly like the Extended
Operation instruction except that it adds 3210 to the
entry number before it adds the entry number to the
XOP origin address. In addition, it can specify only 16
entry locations.

Exclusive OR

XOR aCB,acd

Forms the logical exclusive OR of the contents of ACS
and the contents of ACD and places the result in
ACD. Sets a bit position in the result to 1 if the
corresponding bit positions in the two operands are
unlike; otherwise, the instruction sets result bit to O.
The contents of ACS remain unchanged.

Data General Corporation

Exclusive OR Immediate

XORI i,ac

Forms the logical exclusive OR of the contents of the
immediate field and the contents of the specified AC
and places the result in the specified AC.

IV-74

XORI 014-000610-00

Chapter V
ECLIPSE C/350 I/O INSTRUCTIONS

Chapter VI lists the ECLIPSE C/350 I/O instructions
intended for a specific device such as the Map, the
BMC, and special CPU instructions. We have
arranged these instructions in alphabetical order
according to mnemonics as recognized by the
assembler.

For each instruction we include:

• the mnemonic recognized by the assembler
• the bit format required
• the format of any arguments involved
• a functional description of each instruction

Some instructions can only be executed by the host
processor, while others can also be executed by the
I/O processor and/or the Data Control Unit. A label
with each instruction indicates which proCessors can
execute that instruction.

In general, these I/O instructions can be executed
only with Lef mode and I/O protection disabled. See
the Memory Allocation and Protection section in
Chapter II for a discussion of Lef mode and I/O
protection.

014-000610-00

v-!

CODING AIDS

We use certain conventions throughout this chapter
to help you properly code e4ch instruction for Data
General's assembler. Briefly, they are these:

[] [] Square brackets indil::ate that the enclosed
symbol (e.g., [,8kip] is. an optional operand or
mnemonic. Code it on~y if you want to specify
the option.

BOLD Code operands or ~nemonics printed in
boldface exactly as shpwn. For example, code
the mnemonic for the Move instruction: MOV.

italic For each operand Of mnemonic in italics
replace the item with ~ number or symbol tha~
provides the assemble~ value you need for that
item (e.g., the proper accumulator number, an
address, etc.).

We use the following abbreViations throughout this
chapter:

for F Device Flag Command

ACor AC Accumulator

CODING AIDS

BURST MULTIPLEXOR CHANNEL
Device Code - 58 (Primary)

Priority Mask Bit - None

Device Flag Commands

f=s Sets the Busy flag to 1 and initiates a BMC
map load or dump sequence.

f=c Sets the status register (except bit 1) to O.

f=p No effect.

IORST Sets the status register (except bit 1) to O.

BURST MULTIPLEXOR CHANNEL

Read Status

DICm ac,BMC

Data General Corporation

Loads the burst multiplexor status flags into the
specified accumulator. The previous contents of the
accumulator are lost. The format of t.he accumulator
is shown below.

1 ~ I ~ I ~ I ~ I 4 1 5 1 61 ~ I : I 9 1 101 11 1 121 131 141 15 1

BITS NAME CONTENTS or FUNCTION

0 E When 1, the channel has
detected a validity protect error.
an address parity error.
or a data parity error ..

1 D When 1. the direction for a map
data transfer is from the
register(s) to memory (dump).

2 S When 1. the channel is in
two step diagnostic mode.

3 V When 1. the channel has
detected a validity protect error.

4-6 --- Reserved for future lise.

7 A When 1. the channel has
detected an address parity error.

S P When 1. the channel has
detected a data parity error.

9-15 --- Reserved for future lise.

v- 2
014-000610-00

ECLIPSE C/3S0 1/0 INSTRUCTIONS

Specify Low-Order Address

DOA [fJ ac,BMC

The contents of the specified accumulator specify the
low-order 10 bits of the 20·bit physical memory
address of the first word to be transferred to or from
the map. The contents of the accumulator are
unchanged. The format of -the accumulator is shown
below.

BITS NAME CONTENTS or FUNCTION

0-5 --- Must be O.

6-15 LOADDR Specify the least significant
bits of the physical address for
the start of a map data transfer.

Specify Initial Map Register

DOB [fJ ac,BMC

The contents of the specified accumulator select the
first map register to be loaded or dumped in the next
map data transfer. The contents of the accumulator
are unchanged. The format of the accumulator is
shown below.

BITS NAME CONTENTS or FUNCTION

0 --- Must be 1.

1-5 --- Must beO.

6-15 MAP Specify a map register
REGISTER as the first location

for a map toad/dump.

014-000610-00

V-3

Specify High-Order Addrjess

DOBm ac,BMC

The contents of the specil' accumulator determine
the direction of the next ma data transfer. as well as
the high-order part of the p ysical memory address
to b'e used. Bit 1 specifies wether map registers are
to be loaded or dum . Bits 5-15 are the
high-order 10 bits of the 2 , bit physical address of
the first word in memory to ~e transferred to or from
the map .. The contents of t e specified accumulator
are unchanged. The forma of the accumulator is
shown below.

1°0101° ° 001 ;' HA 1
1 2 1 3 1 4 , 5 6 1 7 1 8 1 9 1 10 1 11 1 121 13 1 14 1 15

BITS NAME CONTE~TS or FUNCTION

0 --- Must beO.

1 DUMP When 1, ~he direction for the map
data tranlifer is from the register(s)
to memorly.

2-5 --- Must be O.
6-15 HIADDR Specify tile most significant bits

of the ph~ical address for
the start ~f the map data transfer.

BUR~T MULTIPLEXOR CHANNEL

Map Load Formats

To load the map. the burst multiplexor transfers the
contents of a memory buffer to the map register (s).
The format of each word in the memory buffer is:

BITS NAME CONTENTS or FUNCTION

0 PROT When 1. the channel cannot
transfer data to/from the memory
locations in the specified physical
page. A transfer attempt results
in a validity protect error.

1-5 --- Must be O.

6-15 PPN Specify the physical page number
for address translation.

Map Dump Formats

To dump the map. the burst multiplexor transfers
the contents of the map register(s) to a memory
buffer. The format of each word in the memory buffer
is;

BITS NAME CONTENTS or FUNCTION

0 PROT When 1. the channel cannot
transfer data to/from memory
in the specified physical page.

1-5 --- Reserved for future use.

6-15 PPN Physical page number.

BURST MULTIPLEXOR CHANNEL

V-4

Data General Corporation

Specify Word Count

DOC [f] ac,BMC

The contents of the specified accumulator determine
the number of map registers to be loaded or dumped
in the next map data transfer. The specified number
must be one less than the number of words to be
transferred. The contents of the specified
accumulator are unchanged. The format of the
accumulator is shown below.

BITS NAME CONTENTS or FUNCTION

0-8 --- Must be O.

9-15 COUNT Specify a number that is one less
less than the number of map
registers to be loaded/dumped.

014-000610-00

ECLIPSE C/3S0 110 INSTRUCTIONS

Set Status

DOC ffJ ac,BMC

The contents of the specified accumulator control the
diagnostic functions of the burst multiplexor. The
contents of the accumulator are unchanged. The
format of the accumulator is shown below.

BITS NAME CONTENTS or FUNCTION

0 --- Must be 1.

1 --- Must beO.

2 STEP When 1. the channel enters
two-step diagnostic mode.

3 VPE When 1. the channel forces
a validity protect error.

4-6 --- Must beO.

7 APE When 1. the chennel forces
an address parity error.

S OPE When 1. the channel forces
a data parity error.

9-15 --- MustbeO.

014-000610-00

V-5

CENTRAL P~OCESSOR
Device Code - 778 (Primary)

Priority Mask Bit - None

Device Flag Commands

Device flag commands to tile CPU determine whether
the current program cajnbe interrupted by a
program interrupt requ{t. When the interrupt
enable flag is set to ,the program can be
interrupted. When the int rrupt enable flag is set to
0, the program cannot e interrupted. The CPU
interrupt enable flag is co trolled by the device flag
commands as follows: I

f=s Sets the interrupt ~nable flag to 1.

f=c Sets the interrupt enable flag to O.

f=p If not an INT A instruction no effect. If the
instruction is ian INT A instruction,
interprets the 1m A instruction as the first
word of a Vector instruction.

10RST Sets the interrupt enable flag to O.

Read Switches

READS
DIAffJ

ac
ac,CPU

Places the contents of thei console sWitches into an
accumulator. I

Places the setting of thei;SOle data sWitC. he. s in the
specified accumulator. er the transfer, sets the
Interrupt On flag accordin to the function specified
byF.

CENTRAL PROCESSOR

Interrupt Acknowledge

INTA
DIB(fJ ac,CPU

Returns device code of an interrupting device.

Places the six-bit device code of that device
requesting an interrupt which is physically closest to
the CPU on the YO bus in bits 10-15 of the specified
accumulator; sets bits 0-9 to o. After the transfer, sets
the Interrupt On flag according to the function
specified by' F.

Reset

IORST
DIC[f] ac,CPU

Sets all Busy and Done flags and the priority mask to
o.
Sets the Busy and Done flags in all YO devices to o.
Sets the 16-bit priority mask to O. Sets the Interrupt
On flag according to the function specified by F.

NOTE: The assembler recognizes the mnemonic
10RST as equivalent to the instruction DICC o,CPU.

If the mnemonic DIC is used to perform this
function, you must code an accumulator to avoid
assembly e1'1'Ors. During execution, the
accumulator field is ignored and the contents of
the accumulator remain unchanged.

CENTRAL PROCESSOR

v- 6

Mask Out

MSKO
DOB [f] ac,CPU

Sets the priority mask.

Data Generil Corporation

Places the contents of the specified accumulator in
the priority mask. After the transfer, sets the
Interrupt On nag according to the function specified
by F. The contents of the specified AC remain
unchanged.

NOTE: A 1 in any bit disables inte1'1'upt requests
at devices which use that bit a8 a mask.

NOTE: Do not use this in8truction when inte1'1'upt8
are enabled.

Halt

HALTA ac
DOC [f] ac,CPU

Stops the proceBSor.

Sets the Interrupt On flag according to the function
specified by F, then stops the prOCeBSor. The data
lights display the contents of the specified
accumulator.

NOTE: The a8sembler recognize8 the mnemonic
HALT a8 equivalent to the instruction HALT A O.

014-000610-00

ECLIPSE Cl350 110 INSTRUCTIONS

Interrupt Disable

INTDS
NIOC CPU

Sets Interrupt On flag to O.

Interrupt Enable

INTEN
NIOS CPU

Sets Interrupt On flag to 1.

If the instruction changes the state of the Interrupt
On flag, the CPU allows one more instruction to
execute before the first VO interrupt can occur.
However, if the instruction is interruptable, then
interrupts can occur as soon as the instruction begins
to execute.

014-000610-00

V-7

CPU Skip

SKP[tlCPU

If the test condition specified by T is true, the
next sequential word is skipped.

CPU Skip If Power Fail Flag Is One

SKPDN CPU

If the Power Fail flag is 1 (i.e., power is failing), the
instruction skips the next sequential word.

CENTRAL PROCESSOR

CPU Skip If Power Fail Flag Is Zero

SKPDZ CPU

If the Power Fail flag is 0 (i.e., power is not failing),
the instruction skips the next sequential word.

ERCC ERROR CORRECTION

v- 8

Data General Corporation

ERCC ERROR CORRECTION

This is an optional feature.
Device Code - 28 (Primary)

Priority Mask Bit - None

Device Flag Commands

f=s Sets the interrupt request flag and the Done
flag to O.

f=c No effect.

f=p No effect.

IORST Sets the interrupt request flag, the Done flag,
and the ERCC control flags (bits 14 and 15)
to 0; disables error checking and correction.

Read Memory Fault Address

DIA[fJ ac,ERCC

Places the complement of bits 12-15 of the physical
address of the memory location in error in bits 12-15
of the specified accumulator. Places the complement
of bits 0-3 of that address in bits 0-3 of the
accumulator. The previous contents of the specified
AC are lost. The format of the specified AC is as
follows:

PAO-3 I I PA12-15 I
o I 1 I 2 I 3 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 12 I 13 I 14 I 15

BITS NAME CONTENTS or FUNCTION

0-3 PA 0-3 Complement of bits 0-3 of the
physical address of the memory
location in error.

4-11 --- Reserved for future use.

12-15 PA 12-15 Complement of bits 12-15 of the
physical address of the memory
location in error.

014-000610-00

ECLIPSE Cl3S0 110 INSTRUCTIONS

Read Memory Fault Code

0181f1 ac,ERCC

Places a 5-bit error code in bits 0-4 of the specified
accumulator. This code identifies the bit in error that
was corrected. Sets bits 5-11 of the accumulator to 0
and places the complement of the four high-order bits
of the physical address of the failing location in bits
12-15. The accumulator format is as follows:

I FAULT I I PAXO-X3 I
o I 1 1 2 1 3 I 4 5 1 8 I 7 1 8 1 9 I 10 1 11 12 I 13 1 14 1 15

BITS NAME CONTENTS or FUNCTION

0-4 Code A 5-bit code identifying which bit
has an error

00000 No error
00001 Check bit 4
00010 Check bit 3
00011 Data bit 0
00100 Check bit 2
00101 Data bit 1
00110 Multiple bit error
00111 Data bit 3

01000 Check bit 1
01001 Data bit 4
01010 All 21 bits in

memory are 1
01011 Data bit 6
01100 Data bit 7
01101 Data bit 8
01110 Data bit 9
01111 Multiple bit error

10000 Check bit 0
10001 Data bit 11
10010 Data bit 12
10011 Data bit 13
10100 Data bit 14
10101 All 21 bits in

memory are 0
10110 Data bit 2
10111 Multiple bit error

11000 Data bit 10
11001 Multiple bit error
11010 Data bit 5
11011 Multiple bit error
11100 Data bit 15
11101 Multiple bit error
11110 Multiple bit error
11111 Multiple bit error

5-11 ---- Reserved for future use.

12-15 PA XO-X3 Complement of bits XO-X3 of the
physical address of the memory
location in error.

014-000610-00

V-9

Enable ERCC

OOA ac,ERCC

Enables the ERCC option a~cording to the setting of
bits 14-15 of the specified A~. Ignores bits 0-13 of the
specified AC. The contents oif the specified AC remain
unchanged. The format of the specified AC is as
follows:

I -I I ERCC I
o I 1 1 2 1 3 I 4 1 5 1 8 I 7 1 $ 1 9 110 1 11 1 12113 141 16

BITS NAME CONTE~TS or FUNCTION

0-13 ---- Reserveej for future use
14-15 ERCC Control ~he ERCC feature as follows:

00 Dis~ble checking and correction;
writ~ valid check field.

01 Dis~ble checking and correction;
for (:ore memory. write
che~k field with 1111 ;
for ,emiconductor memory.
do riot alter the check field.

10 Ena~le checking and correction; do
not Interrupt on memory error.

11 Ena\)le checking and correction;
intetrupt on memory error.

ERCC ERROR CORRECTION

MEMORY ALLOCATION and
PROTECTION

Device Code - 48 (Primary)

Priority Mask Bit - None

Device Flag Commands

f=s No effect.

f=c No effect.

f=p Enables Map Single Cycle.

10RST Disables Map.

MEMORY ALLOCATION and PROTECTION

Load Map

LMP

Data General Corporation

Under control of AC1 and AC2, loads successive
words from memory into the MAP where they are
used to define a user or data channel map.

AC1 must contain an unsigned integer which is the
number of words to be loaded into the MAP. Bits 1-15
of AC2 must contain the address of the first word to
be loaded. If bit 0 of AC2 is 1, the instruction follows
the indirection chain and places the resultant
effective address in AC2. ACO and AC3 are ignored
and their contents remain unchanged.

For each word loaded, the instruction decrements the
count in AC1 by one and increments the source
address in AC2 by 1. Upon completion of the
instruction, AC1 contains 0, and AC2 contains the
address of the word following the last word loaded.

This instruction is interruptable in the same manner
as the Block add and move instruction. If you issue
this instruction while in mapped mode, with I/O
protection enabled, the map will not be altered. AC1
and AC2 will be used and their contents modified as
described above. No I/O trap will occur.

The words loaded into the MAP define the address
translation functions for the various user and data
channel maps. The contents of the MAP field (bits 6-8)
of the MAP status register determine which map is
affected by the Load map instruction. You can alter
this field using either the Load map status or the
Initiate page check instruction.

The format of the words loaded into the MAP is as
follows:

V-10

BITS NAME CONTENTS or FUNCTION

0 WP Unused for data channel maps;
write protect for usar maps.

1-5 LOGICAL logical page number.
6-15 PHYSICAL Physical page number.

NOTE: Declare a logical page invalid by setting
the Write Protect bit to 1 and all of bits 6-15 to 1.

014-000610-00

ECLIPSE Cl350 1/0 INSTRUCTIONS

Read Map Status

DIAlf] ac,MAP

Reads the status of the current map.

Places the contents of the MAP status register in the
specified AC. The previous contents of the specified
AC are lost. The format of the information placed in
the specified AC is as follows:

BITS NAME CONTENTS or FUNCTION

0-1 --- Reserved for future use.

2 liD If 1, the last protection fault was an liD
protection fault.

3 WP If 1, the last protection fault was a write
protection fault.

4 IND If 1, the last protection fault was an
indirect protection fault.

5 Single If t, the last map reference was a
Cycle Map Single Cycle instruction.

6-8 Map Indicates which map will be loaded by
next Load map instruction as follows:
000 User A
001 Reserved for

future use
010 User B
011 Reserved for

future use
100 Data channel A
tOl Data channel C
110 Data channel B
111 Data channel 0

9 LEF If 1, the Load Effective Address
instruction was enabled by the last
Load Map Status instruction.

10 liD If 1, liD protection was enabled by the
last Load Map Status instruction.

11 WP If 1, write protection was enabled by
the last Load Map Status instruction

12 IND If 1, indirect protection was enabled by
the last Load Map Statu8 instruction.

13 AlB If 0, the last Load Map Status
instruction enabled map A
If 1, the last Load Map Status
instruction enabled user map B.

14 DCH If 1, the mapping of the data channel
Enable addresses is enabled

15 User If 1, the last liD interrupt occurred
Mode while in user mode.

014-000610-00

V-11

Page Check

Die ac,MAP

Provides the identity and so~e characteristics of the
physical page correspondi*g to the logical page
identified by the immediatel~ preceding Initiate Page
Check instruction.

Places the number of the physical page which
corresponds to the logical page specified by the
preceding Initiate Page Clutck or Load Map Statu8
instruction in bits 6-15 of ~he specified AC. Places
additional information abou~ this page in bits 0-3 and
destroys the previous conte*s of the AC. The format
of the information placed i~ the specified AC is as
follows:

I ~ MAP I I : PHYSICAL I
; 1 I 2 I 3 4 I 5 6 I 7 I a'i 9 I 10 I 11 I 121 13 1 141 15

BITS NAME CONTEtj.JTS or FUNCTION

0 WP The writEl protect bit for the logical
page whiph corresponds to the
physical page specified by bits 6- 15.

1-3 Map The map;which was used to perform
the trans~tion between logical page
number ~nd physical page number is as
follows:

000 User A
001 Reserved for

future use.
010 UserB
011 Reserved for

future use.
1001 Data channel A
101 Data channel C
110 Data channel B
111 Data channel 0

4-5 --- Reservedl for future use.

6-15 Physical The num~r of the physical page which
correspo~ds to the logical page
given in the preceding INITIATE PAGE
CHECK il1struction. If all these bits
are 1, an~ WP (bit 0) is 1, then the
logical page is validity protected.

MEMORY ALLdcATION and PROTECTION

Load Map Status

DOA ac,MAP

Defines the parameters of a new map.

Places the contents of the specified AC are placed in
the MAP status register. The contents of the specified
AC remain unchanged. The format of the specified
AC is as follows:

BITS NAME CONTENTS or FUNCTION

0-5 --- Reserved for future use.

6-8 MAP Specify which map will be loaded by the
SEL next Load Map instruction as follows:

000 User A
001 Reserved for future

use
010 User B
011 Reserved for future

use
100 Data channel A
101 Data channel C
110 Data channel B
111 Data channel 0

9 LEF If 1.the Load Effective Address
instruction will be enabled for the
next user

10 liD If 1. liD protection will be enabled
for the next user

11 WP If 1. write protection will be enabled for
the next user

12 INO If 1. indirect protection will be enabled
for the next user

13 AlB If O. the next user map enabled will be
that for user A
If 1. the next user map enabled will be
that for user B

14 OCH If 1. the mapping of data channel
Enable addresses will be enabled immediately

after this instruction

15 User If 1. mapping of CPU addresses will
Mode commence with the first memory

reference after the next indirect
reference or return type instruction
(POPB, POP), RTN, RSTR)

NOTE: If the Load Map Status in8truction 8ets the U8er Enable bit to 1.
this inhibits the inte1'1'Upt system and the MAP waits for either an
indirect reference or return type in8truction. Either event relea8e8 the
inte1'1'Upt 8Y8tem and allow8 the MAP to begin translating addre88es
(using the user map 8pecified by bit 13 of the MAP statu8 register).
Addre88 translation re8ume8 (1) after the first level of the next
indirect reference; or (2) after the fir8t Pop Block. Pop Jump. Return. or
Restore instruction that does not c aU8e a 8tack fault.

V-12

MEMORY ALLOCATION and PROTECTION

Data General Corporation

Map Page 31

DOB ac,MAP

Specifies that mapping take place for a single page of
an unmapped address space. Mapping is always done
for locations 760008 through 777778 (logical page 31>.
This is the only page which can be mapped when in
unmapped address space. You can use this instruction
to access a page of a user's memory space when in
unmapped mode.

Bits 6-15 of the specified AC are transferred to the
MAP. These bits specify a physical page number to
which logical page 31 will be mapped when in the
unmapped mode.

The contents of the specified AC remain unchanged.
The format of the specified AC is as follows:

I I PHYSICAL
o 1 1 1 2 1 3 1 4 1 5 6 1 7 1 8 1 9 1 10 1 1'1 1 121 13 1 141 15

BITS NAME CONTENTS or FUNCTION

0-5 --- Reserved for future use.
6-15 Physical The number of the physical page

to which logical page 31 should
be mapped when in unmapped mode.

014-000610-00

ECLIPSE C/3S0 I/O INSTRUCTIONS

Initiate Page Check

DOC ac,MAP

Identifies a logical page. The Page Check instruction
will find the corresponding physical page.

Transfers the contents of the specified AC to the
MAP for later use by the Page Check or Load Map
instruction. Leaves the contents of the specified AC
unchanged. The format of the specified AC is as
follows:

BITS NAME

0 ---
1-5 Logical

Page

6-8 Map

9-15 -

014-000610-00

MAP
6 I 1 I

, I
8 9 I 10 I 11 I 121 13 I 14 I 15

CONTENTS or FUNCTION

Reserved for future use.

Number of the logical block for which
the check is requested.

Specify which map should be used for
the check as follows:

000 User A
001 Reserved for

future use
010 UserB
011 Reserved for

future use
100 Data channel A
101 Data channel C
110 Data channel B
111 Data channel 0

Reserved for future use.

Map Single Cycle

Disable User Mode

NIOP ac,MAP

Issued from unmapped mode, the instruction maps
one memory reference using the last user map; issued
from User mode with LEF mode and I/O protection
disabled, the instruction simply turns off the map,
returning it to unmapped mode. It is used by the
supervisor to access a user's memory space when only
one or two references are required. It is also used by a
priveleged user to turn off memory mapping.

From unmapped mode - Enables the user map for one
memory reference. Maps the first memory reference
of the next LOA, ELOA, 5T A or E5T A instruction. After the
memory cycle is mapped, the instruction again
disables the user map.

NOTE: The interrupt system is disabled from the
beginning of the Map single cycle instruction until
after the next LOA, ELDA, ST A or EST A instruction.

From User mode - If LEF Mode and I/O protection is
disabled, this instruction turns off the MAP. All
subsequent memory references are unmapped until
the map is reactivated with a Load map status
instruction.

V-13

MEMORY ALlJOCATION and PROTECTION

PROGRAMMABLE INTERVAL TIMER
Device Code - 538 (Primary)

Priority Mask Bit - 11

Device Flag Commands

f=s Sets the Busy flag to 1 and the Done flag and
interrupt request flag to 0; begins the
counting cycle.

f=c Sets the Busy and Done flags and the
interrupt request flag to 0; stops the
counting cycle.

f=p No effect.

10RST Sets the Busy and Done flags, the interrupt
request flag, the initial count register, the
count output buffer, and the interrupt mask
bit (bit 11) to 0; stops the counting cycle.

Read Count

DIAlf] ac,PIT

Places the value of the Programmable Interval
Timer's Counter in bits 0-15 of the specified
accumulator destroying the accumulator's previous
contents. After the data transfer, performs the
function specified by F. The format of the specified
accumulator is as follows:

BITS NAME CONTENTS or FUNCTION

0-15 Count Current value of the PIT
counter within one count cycle.

PROGRAMMABLE INTERVAL TIMER

V-14

Data General Corporation

Specify Initial Count

DOAlfJ ac,PIT

Loads bits 0-15 of the specified accumulator into the
Programmable Interval Timer's Initial Count
Register. After the data transfer, performs the
function specified by F. The contents of the specified
accumulator remain unchanged; the format of the
accumulator is as follows:

BITS NAME CONTENTS or FUNCTION

0-15 Initial Two's complement of the number
Count of 100 microsecond intervals

between interrupts

014-000610-00

ECLIPSE C/3S0 1/0 INSTRUCTIONS

REAL TIME CLOCK
Device Code - 148 (Primary)

Priority Mask Bit - 13

Device Flag Commands

f=s Sets the Busy flag to 1, and the Done flag and
interrupt request flag to 0; enables RTC
interrupts.

f=c Sets the Busy and Done flags and the
interrupt request flag to 0; disables RTC
interrupts.

f=p No effect.

10RST Sets the Busy and Done flags, the interrupt
request flag, the interrupt mask bit (bit 13),
and the clock frequency select bits to 0;
disables RTC interrupts.

Select RTC Frequency

DOA[fJ ae,RTC

The clock frequency is set according to bits 14-15 of
the specified AC. The contents of the specified AC
remain unchanged. Bits 0-13 of the specified AC are
ignored. The format of the specified AC is as follows:

I IRTC I
o 1 1 I 2 I 3 1 4 I 5 I 6 1 7 I 8 I 9 1 10 I 11 I 121 13 141 15

BITS NAME CONTENTS or FUNCTION

0-13 --- Reserved for future use.
14-15 RTC Selects the clock frequency as follows:

00 ac line frequency
01 10Hz
10 100Hz
11 1000Hz

014-000610-00

V-15

PRIMARY ASYNCI-tRONOUS LINE
INPUT

Device Code - 108 (Primary)

Priority Mask Bit - 14

Device Flag Commands

f=s Sets the Busy flag to 1 and the Done flag to O.

f=c Sets the Busy and Done flags and the
interrupt request flag to O.

f=p No effect.

10RST Sets the Busy and Done flags, the interrupt
request flag, and the interrupt mask bit (bit
14) to O.

Read Character Buffer

DIAlf] ae,TTI

Places the contents of the controller's input buffer in
bits 8-15 ofthe specified aCClpnulator. After the data
transfer, sets the controller1s Busy and Done flags
according to the function specified by F. The format
of the specified accumulator is as follows:

I ~HARACTER I
o 1 1 I 2 I 3 1 4 I ·5 I 6 1 7 8 1 9 1 10 I 11 I 121 13 I 141 15

BITS NAME CONTEI'1ITS or FUNCTION

0-7 ---- Reserved for future use.

8-15 Char- The 8 bit ~haracter or 7 bit character
acter with parity in bit position 8 read

from the input buffer.

ECLIPSE C/350 1/0 INSTRUCTIONS

PRIMARY ASYNCHRONOUS LINE
OUTPUT

Device Code - 118 (Primary)

Priority Mask Bit - 15

Device Flag Commands

f=s Sets the Busy flag to 1 and the Done flag to 0;
begins transmission of the character
contained in the output buffer.

f=c Sets the Busy and Done flags and the
interrupt request flag to O.

f=p No effect.

10RST Sets the Busy and Done flags, the interrupt
request flag, and the interrupt mask bit (bit
15) to O.

Load Character Buffer

DOA[fl ac,TTO

Loads bits 8-15 of the specified accumulator into the
controller's output buffer. Mter the data transfer,
sets the controller's Busy and Done flags according to
the function specified by F. The contents of the
specified accumulator remain unchanged. The format
of the specified accumulator is as follows:

I I CHARACTER I
o I 1 I 2 I 3 I 4 I 5 I 6 I 7 a I 9 I 10 I 11 I 12 I 13 I 14 I 15

BITS NAME CONTENTS or FUNCTION

0-7 --- Reserved for future use.

8-15 DATA The 8-bit character or 7 -bit character
with parity in bit position 8 to be
placed in the output buffer.

PRIMARY ASYNCHRONOUS LINE OUTPUT

V-i6

014-000610-00

FUNCTION SWITCHES

NAME

Exam!
ExamN

Dep/
DepN

St/
Cont

Rest/
Stop

AC
Dep/
Exam

Inst/
U Inst

P Load/
Exec

POSITION FUNCTION

Up Loads PC with value of data switches, and
displays contents of that address. Also
fills EA register. To use while processor is
running. Operation switch must be set to
Mon.

Down Increments PC, and displays contents of
that Ilddress.

Up Deposits value in data switches at PC
address.

Down Increments PC and deposits value in data
switches in that address.

Up Loads with value in data switches and
starts normal execution. Also fills EA
register.

Down Initiates normal operation from the current
state of the machine.

Up Resets CPU and issues an lOR ST. ROM
address lights display 00028 .

Down Halts the CPU.

Up Loads the associated accumulator with
the value in the data switches.

Down Displays the contents of the associated
accumulator.

Up Executes one machine instruction then
halts the CPU.

Down Freezes the CPU after executing one
microinstruction. Address lights show
output of ALU.

Up Loads bootstrap loader program. Data
switches 10-1 5 contain device code.
X4/0 is 1 if device is on DCH or BMC, and
4 is 0, if microdiagnostic is to be
executed.

Down Executes instruction contained in data
switches.

STATUS LIGHTS

NAME MEANING WHEN LIT

ION I/O Interrupt flag is enabled.

Carry Carry bit is 1.

ROM Error Parity error in ROM is detected:

Super MAP is in unmapped mode. (MAP B)

User

Match

DCH

BMC

lOP

FPP

MAP is in user mode. (MAP A)

The specified address source has access
of the address bus.

Physical address bus is in use by the data
channel.

The BMC is operating.

Will never light; reserved for future use.

The floating point processor is performing
a floating point operation.

• If a ROM parity occurs, the CPU freezes.

STATUS 16 DATA

/AS
IGHTS

// \ /
0 /

// RO~E"ROR - • - • - •
10;;7

•

l;:
20 ADDRESS/

12 ROM ADDRESS

JGHTS

/
I

/ • ~.~~ .. • --• • • •

STATUS
LIGHTS

A

~
SUPER USER MATCH

• • •

3 ROTARY
SWITCHES

~m,oo~
-~ ~'''"S-

DEP DEP DEP OEP PAOG
RESET ACO ACl AC2 AC3 INST LOAD

STOP ~~~ EX;":'; ~ EXEC
ACO ACl AC2 AC3

LIGHTS I / r J
~~kd~~/~/~~~!~~~~~!=~~~~=~=~I~C~~=~~=~b§~k~~dl~~~~§b~~=~ __ ~~=!=~~=~=~:t

20DATA-- / I \ 7
SWITCHES / I \ ~ DG-04714

DATA ADDRESS DATA 10 FUNCTION
LIGHT 1 LIGHT 1 SWITCH 1 SWITCHES

ROT ARY SWITCHES

NAME

Operation

Addr
Mode

Addr
Source

SETTING EFFECTS

Off Has no effect on processor operation.

Mon

SIS

S/A

Log

Phy

MD

All

User

Super

DCH

BMC

When address in data switches is
accessed, displays contents in data lights.

When contents of address in data
switches is changed, processor freezes.

When address in. data switches is
addressed, processor freezes.

Sets logical addressing mode, displays
contents of logical address bus in address
lights.

Sets physical addressing mode; displays
contents of physical address bus in
address lights.

Sets memory diagnostics addreSsing
mode; displays contents of physical
address bus in address lights.

Console monitors all memory addressing
sources, except BMC.

Console monitors memory addressing by
user MAP (MAP A).

Console monitors unmapped memory
addressing (MAP B).

Console monitors memory addressing by
the data channel.

If the BMC option is included, the console
monitors memory addressing by thll BMC;
otherwise, no monitoring will take place.

ADDRESS AND DATA LIGHTS

NAME MEANING

ROM Address Displays the address of the
microinstruction last executed.

Data Lights

Address

Displays contents of MEM Bus, except
in Monitor mode.

Displays contents of the address bus
selected by the Address Mode switch,
or the PC when halted.

POWER PANEL

NAME

CPUPWR

OPERATION

C;ontrols DC power to the ECLIPSE
C/400 chassis.

LOCK Enables and disables console switches.

MAIN STOP Shuts off all power to the cabinet when
pushed.

CPU
PWR

POWER
BUTTON

LOCK
ON OFF

I
CONSOLE

LOCK

MAIN
STOP

\
EMERGENCY
SHUTDOWN

CHAPTER VI
CONS~LE FUNCTIONS

The console is a molded plastic panel with ligij.ts and
switches that display and change the state' of the
machine. The position on the console and the teneral
function of each of these lights and switches is shown
in the removable diagram that precedes this page.
There are five types of switches:

• A data switch (also called a toggle switch) -- has
two positions. Up corresponds to 1, and down
meansO.

• A function switch -- has three positions: up,
down and neutral. When pushed up or d(>wn, it
initiates a function; when released, it returns to
the neutral position. .

• A rotary switch -- may have any number of
positions; once set to a position it remains there
until manually altered.

• A button switch .- has one stable positiqn, out.
When pushed in, it initiates a function. When
released it returns to the stable position.

• A lock -- has two positions and can:p.ot be
changed without the key.

Throughout the rest of the section we refer to each of
these types of switches by the name given aboVie or by
the name of the function that switch performs.
However. each data switch has its own name <l{O-15>,
which can be seen immediately above it. We use those
names to specify BOme subset of all data switches. The
same name also refers to the data light and address
light that is immediately above each switcp. The
console. diagram shows the relationship for data light,
address light, and data switch 1.

While it is powered up, the CPU is always in one of
three states: normal execution, frozen, or halted.
When it is in normal execution, the microcode
continually executes machine instructions from a
program.

When the CPU is frozen, it does not execute microcode
and it will not change state without external
intervention. While in this state most of the console
switches are disabled.

When the CPU is halted, it executes a small
microinstruction loop (the ROM address lights
display 0002 8, and all of the console switches function
normally. The CPU is in the halt state when it is
powered up.

MAIN POWER PANEL

NAME FUNCTION OPERATION

CPU DC' Controls dc power to the C/400 chassis
PWR Power (does not affect operation of the fans). If

the chassis is powered down, pushing this
button powers it up; if the chassis is
powered up, this button powers it down.
When the CPU is first powered up it
automatically performs a Reset function.

LOCK Console Enables and disables console switches.
Lock When in the ON position, auto restart is

enabled, only power board switches
function; when in the OFF position, auto
restart is disabled, and all console
switches function.

MAIN Emergency Shuts off all power to the chassis when
STOP Shut Down pushed. Use it only in the event of an

emergency. This button is not disabled by
the console lock. Restore AC power by
resetting the circuit breakers at the rear of
the cabinets.

1 The actton orthUl swttch tS mechamcal; you can tum the swttch on and
off whether or not ac power is present in the system.

VI-10fS

NAME POSITION

OPERATION OFF

MON

SS

SA

ADDRESS MODE LOG

PHY

MD

ROT ARY SWITCHES

EFFECTS OF SETTING

Has no effect on processor operation.

Displays contents of selected location in data lights, if and when that location
is accessed. The setting of the data switches sRecifies the address of the
monitored location. Updates the contents of d~ta lights each time that
location is accessed, The position of the Address Mode and Address Source
switches modify this function.

NOTE: Data lights remain unchanged until monitor conditions are met (i.e., the
addressing source specified by the Address Source switch reads from or
writes to the selected address). If that address is never accessed, the data
lights will never display its contents.

Freezes processor when the contents of the selected location are altered. The
setting of the data switches specifies the address of the selected location.
Completes the store prior to the freeze. The position of the Address Mode
and Address Source switches modify this function.

Freezes processor when the selected lOCation is apcessed. The setting of the
data switches specifies the address of the selec~d location. The location is
neither read nor written. The position of the Address Mode and Address
Source switches modify this function.

Sets console addressing mode to use 15-bit logical addresses. The 15
rightmost address lights (1-15) will display tt\e contents of the logical
address bus.
When using Monitor, Stop on Store, or Stop on Address to evaluate a
program's use of a memory address, use data switches 1-15.

NOTE: The Examine and Start functions requireta 15-bit logical address in
data switches 1-15. The MAP that is active wil produce a 20-bit physical
address of the location to be examined or execut d. However, the 5 leftmost
data switches (XO-X4/0) will be used to fill the EA register. (For more detail
see Console Section, Chapter II.)

Sets console addressing mode to use 20-bit physical addresses. All 20
address lights will display the contents of the physical address bus.
When using Monitor, Stop on Store, or Stop on Address to evaluate a
program's use of a memory address, use all 20 d~ta switches.

NOTE: The Examine and Start functions require a 20-bit physical address in
data switches XO-15. The 5 leftmost Data sWitqhes (XO-X4/0) will be used
to fill the EA register. (For more detail see Consol" Section, Chapter 11.)

Sets console addressing mode to memory diagnostics. All 20 address lights
will display the contents of the physical address bfis.
When using Monitor, Stop on Store, or Stop I on Address to evaluate a
program's use of a memory address, use all 20 data switches.

I
NOTE: The Examine and Start functions require ~ 20-bit physical address in
data switches XO-15. The 5 leftmost data switches will fill the EA register.
The MAP is inactive, and neither the console nor executing programs use it to
generate physical addresses. (For more detail: see the Console Section,
Chapter II.)

VI-2

NAME

ADDRESS SOURCE

IROT ARY SWITCHES

POSITION EFFECTS OF SETTING

ALL Specifies that the console will monitor all memory addressing sources except
BMC.

USER" Specifies that the console will monitor memory addressing by the user
(Map B).

SUPER" Specifies that the console will monitor memory addressing by the supervisor
(MapA).

DCH i Specifies that the console will monitor memory addressing by the data
I channel.

BMC If the BMC option is included. specifies that the console will monitor
addressing by the burst multiplexor channel.

NOTE: Since the Burst Multiplexor does not use the logical address bus. when
the Address Source is set to BMC the Address Mode switch must be set to

i PHY or MD for any monitoring to occur. The BMC cannot be monitored for a

I
Stop on Store or a Stop on Address. When the processor freezes due to a
Stop on Store or a Stop on Address. the BMC will not necessarily stop
reading or writing memory.

• In memory diagnostIc mode the MAP must be inactive so the User and
Supervisor distinctioJs will not exist. If the Address Source switch is set to
User or Supervisor allld the Address Mode switch is set to MD. no monitoring
should occur.

VI-3

FUNCTION SWITCHES

NAME POSITION FUNCTION
MACHINE MEANING

STATE·

EXAMI UP EXAMINE HALTED Loads PC with the logical address contained in 4'ta switches 1-15. Displays
EX NEXT contents of that location in data lights, and displ~ys address of that location

in address lights ..

RUNNING Displays contents of memory at location addre:sed by data switches. The
Operation switch must be set to Monitor or Sto on Store for the display to
remain long enough to be read. A running examin~ will not change the PC.

NOTE: The Examine function also fills the t register with the value
contained in the 5 leftmost data switches (XOX4/5). This register is used
when the Address Mode switch is set to MD dr PHY. (For more detail see
Console Section, Chapter II.)

DOWN EXAMINE HALTED Increments PC, and uses that number as an add;ss. Displays the contents of
NEXT that address in data lights. Displays address of t t location in address lights.

DEPI UP DEPOSIT HALTED Stores the value contained in the 16 rightmost ~ata switches (X4/0-15) into
DPNEXT the location addressed by PC. Displays new v'lue of that location in data

lights, and displays address of that location in th~ address lights.

DOWN DEPOSIT HALTED Increments PC and uses that number as an add~ss to store value contained
NEXT in the 16 rightmost data switches (X4/0-15).! Displays new value of that

location in data lights, and displays address of thbt location in address lights.

STARTI UP START HALTED Loads the contents of the 1 5 rightmost data sill/itches into PC, and executes
CONT the instruction at that address. Normal exec~tion continues from there.

Displays the last contents of the memory bus i~ data lights, and displays the
contents of the selected address bus in address lights.

NOTE: The Start function also fills the EA regist~r with the value contained in
the 5 leftmost data Switches (XO-X4/0). Thi~ register is used when the
Address Mode switch is set to MD or PHY. (or more detail see Console
Section, Chapter II.)

DOWN CONTINUE HALTED, Initiates normal operation of the CPU from the c~rrent state of the machine.
FROZEN

RESETI UP RESET RUNNING, Stops the CPU immediately, initiates the ~uivalent of an 1/0 Reset
STOP FROZEN, instruction, setting the Busy and Done flags of all peripherals to O. Sets all

HALTED status lights on the console, except Carry, to O! The ROM address lights will
display OOO2a (the halt location). The contents·pf the data and address lights
are umtefined.

NOTE: The PC is unchanged; however, the Instruction addressed by the
current PC value may not have completed execttion. This is the only function
switch thet will halt the CPU in the middle of an .instruction.

DOWN STOP RUNNING Halts the CPU after the current instruction ha~ been executed. Displays the
address of the next instruction to be axecuted address lights. Displays the
last contents of the memory bus in data lights. The ROM address lights will

$how 0002" (the nalt location).

NOTE: Deta channel reqL\ests wiU~ honored ter the halt, and the 8MC will
contin!J8 to access memory. But interrupt req sts !Nill not be honored after
the Stop function has been initiated.

'VI-4

NAME

DEPAC/
EXAM AC··

INST/
ulNST

'PROGLOAD/
EXEC

FUNCTION SWITCHES
i

POSITION FUNCTION MACHINE: MEANING STATE* .

UP

DOWN

UP

DOWN

UP

DOWN

DEPOSIT HALTED Loads the associated accumulator with the value contained in the 1 6
rightmost data switches (X4/0-1 5). Displays the new contents of the AC in
data lights.

EXAMINE HALTED Displays the contents of the associated accumulator in data lights.

STEP HALTED. Executes one machine instruction; then halts the processor. Displays the
INSTRUCTION FROZEN. contents of the memory bus in data lights. and displays the address of the

RUNNING· next instruction to be executed in address lights. (See the section on
debugging through the console. Chapter II.)

STEP HALTED. Execufes one microinstruction; then freezes the CPU. Displays the contents
MICRO- RUNNING of the MEM bus in the data lights; displays the output of the ALU bus in the
INSTRUCTION address lights. Displays the address of the last microimitruction executed in

the ROM address lights. (See the section on debugging through the console.
Chapter 11.1

BOOTSTRAP HALTED Executes a microdiagnostic program; then loads bootstrap loader program
LOAD into memory locations 0-37 8 • and executes it. If data switch 4 is 1

microdiagnostic will not be executed. Data switches 10-15 must contain the
device code of the I/O device that contains the program to be loaded. If that
device is on the data channel or the burst multiplexor channel. data switch
(X4/0) must be set to 1. (See the discussion of bootstrap loading in Chapter
II.)

EXECUTE HALTED Executes instruction contained in 16 rightmost data switches (X4/0-1 5). and
halts the CPU. (Execute may be used with step microinstruction -- see
discussion of debugging through the console in Chapter II.)

NOTE: PC will be updated but the instruction at the old PC address will not be
executed.

• If a function definition has ~o entry for a particular machine state. that
function has no effect when iri that state .

.. There 8fe 4 AC DeplExam swi~ches on the C/400 console. Each performs the
same functions on a different ~cumulator.

VI-5

.-----OPERATION MONITORING ----.,
CONDITIONS

OPERATION: OFF
ADDR MODE: LOG. PHY. MD
ADDR SOURCE: ALL. USER. SUPER. DCH. BMC

The data lights display the contents of the memory bus.
Depending on the addressing mode. the address lights will
show the contents of either the physical or logical address bus.
The Address Source switch has no effect for this operation.

OPERATION: MON
ADDR MODE: LOG"
ADDR SOURCE: ALL. USER. SUPER. DCH

The data lights display the contents of the memory bus when
the contents of the logical address bus match the address
contained in the data switches. The 1 5 rightmost data switches
(1-15) specify the logical address of the monitored locations.
The data lights are updated each time an address match is
detected. and they remain unchanged between matches. The
address lights display the last contents of the logical address
bus. The Address Source switch specifies the originator of the
access.

OPERATION: MON
ADDR MODE: LOG
ADDR SOURCE: BMC

The burst multiplexor channel never accesses the logical
address bus. The data lights will never change while the rotary
switches remain in these positions.

OPERATION: MO~

ADDR MODE: PHY
ADDR SOURCE: ALL. USER. SUPER. DCH. BMC """

The data lights display the contents of the memory bus each
time the contents of the physical address bus match the
address contained in the data switches. All 20 data switches
specify the physical address of the single monitored location.
The data lights are updated each time an address match is
detected. and they remain unchanged between matches. The
address lights display the last contents of the physical address
bus. The Address Source switch specifies the originator of the
access.

OPERATION: MON
ADDR MODE: MD""
ADDR SOURCE: ALL. DCH. BMC """

The data lights display the contents of the memory bus each
time the contents of the physical address bus match the
address contained in the data switches. All 20 data switches
specify the physical address of the single monitored location.
The data lights are updated each time an address match is
detected. and they remain uncl:langed between matches. The.
address lights display the last contents of the physical address
bus. The Address Source switch specifies the originator of the
access.

VI-6

OPERATION: MON
ADDR MODE: MD
ADDR SOURCE: USER. SUPER

The MAP should be disabled in M~ mode. While the rotary
switches remain in this setting. nl> monitoring should take
place.

OPERATION: SIS
ADDR MODE: LOG"
ADDR SOURCE: ALL. USER. SUPER.! DCH

The processor freezes when the col· ents of the logical address
bus match the address contained in he data switches during a
write operation. The 1 5 rightmost d ta switches (1-1 5) specify
the logical address that will cause the freeze. The location is
written prior to the freeze. and ~he Match lamp lights to
indicate the cause of the freeze. Th' address lights display the
last contents of the logical addressl bus. The Address Source
specifies the originator of the store. ;

OPERATION: SIS
ADDR MODE: LOG. PHY. MD
ADDR SOURCE: BMC

The burst multiplexor channel may rot be used as the address
source for a Stop on Store. While ~he switches remain in this
setting. the processor will never frEleze due to a Store by the
BMC.

OPERATION: SIS
ADDR MODE: PHY
ADDR SOURCE: ALL. USER. SUPER. DCH

The processor freezes when the Cleltents of the physical
address bus match the address contained in the data switches
during a write operation. All 20 pata switches specify the
physical address that win cause ~he freeze. The location is
written prior to the freeze. and ~he Match lamp lights to
indicate the cause of the freeze. Th~ address lights display the
last contents of the physical addre~s bus. The Address Source
specifies the originator of the write. I

OPERATION: SIS
AD DR MODE: MD""
ADDR SOURCE: ALL. DCH

The processor freezes when the I contents of the physical
address bus match the address co~tained in the data switches
during a write operation. All 20 dat~ switches specify the single
physical address that will cause ~he freeze. The location is
written prior to the freeze. and ~he Match lamp lights to
indicate the cause of the freeze. T~e address lights display the
last contents of the physical addre~s bus. The Address Source
switch specifies the originator of th. write.

OPERATION: SIS
ADDR MODE: MD
ADDR SOURCE: USER. SUPER

The MAP must be disabled in MD mode. While the the rotary
switches are in this setting the prbcessor should never freeze
due to a Stop on Store.

OPERATION: SI A
ADDR MODE: LOG"
ADDR SOURCE: ALL, USER, SUPER, DCH

The processor freezes when the contents of the logical aPdress
bus match the address contained in the data switches. the 1 5
rightmost data switches (1-15) specify the logical addrells that
will cause the freeze. The location is not read or writtE!n, and
the Match lamp lights to indicate the cause of the free~e. The
address lights display the last contents of the logical ~drEiss
bus. The setting of the Address Source switch specifies the
originator of the access.

OPERATION: SIA
ADDR MODE: LOG, PHY, MD
ADDR SOURCE: BMC

The burst multiplexor channel is not monitored for a Stop on
Address operation. While the rotary switches are in this ,etting,
the processor will never freeze due to an access by the BMC.

OPERATION: SIA
ADDR MODE: PHY
ADDR SOURCE: ALL, USER, SUPER. DCH

The processor freezes when the contents of the physical
address bus match the address contained in the data switches.
All 20 data switches specify the physical address tlllat will
cause the freeze. The location is not read or written, and the
Match lamp lights to indicate the cause of the freete. The
address lights display the contents of the physical address bus.
The Address Source switch specifies the originator of the
access.

VI-7

OPERATION: SIA
AD DR MODE: MD""
ADDR SOURCE: ALL, DCH

The processor freezes when the contents of the physical
address bus match the address contained in the data switches.
All 20 of the data switches specify the single physical address
that will cause the freeze. The location is not read or written,
and the Match lamp lights to indicate the cause of the freeze.
The address lights display the last contents of the physical
address bus. The Address Source switch specifies the
originator of the access.

OPERATION: SIA
ADDR MODE: MD
ADDR SOURCE: USER, SUPER

The MAP should be disabled in MO mode. While the rotary
switches are in this setting, the processor should never freeze
due to a Stop on Address.

• A single logical address may specify several physical locations
in memory. When in logical addressing mode, several mapped
locations may be monitored simultaneously. (See section on the
MAP in Chapter II for details.)

•• In memory diagnostic mode only 32K of memory is
addressable because the MAP is tumed off. The burst
multiplexor channel, since it uses its own MAP can address the
entire memory even in MD mode. (See section on the console in
Chapter II for more details.)

• •• If the BMC option is not included in your system, then no
monitoring will take place.

This page intentionally left blank.

VI-8

APPENDIX A
S1 ANDARD 1/0 DEVICE CODES

OCTAL OCTAL

DEVICE PRIORITY DEVICE

CODES MNEMONIC MASK BIT DEVICE NAME CODES

00 ---- -- Unused 41 3

01 ---- -- Unused 40

02 ERCC -- Error checking and correction 41

03 MAP -- Memory allocation and protection unit 42

04 43

05 44

06 MCAT 12 Multiprocessor adapter transmitter 45

07 MCAR 12 Multiprocessor adapter receiver 46

10 TTl 14 TTY input 47

11 TTO 15 TTY output 50

12 PTR 11 Paper tape reader 51

13 PTP 13 Paper tape punch 52

14 RTC 13 Real-time clock 53

15 PLT 12 Incremental plotter 54
16 CDR 10 Card reader 55

17 LPT 12 Line printer 56

20 DSK 9 Fixed head disc 57

21 ADCV 8 AID converter 60
22 MTA 10 Magnetic tape 61
23 DACV -- D I A converter 62

24 DCM 0 Data communications multiplexor 63
25 64

26 DKB 9 Fixed head DG/Disc 65
27 DPF 7 DG/Disc storage subsystem 66
30 aTY 14 Asynch. hardware multiplexor 67

30 SLA 14 Synchronous line adapter 70
31' IBMl 13 IBM 360 /370 interface 70
32 IBM2 13 IBM 360/370 interface 71'

33 DKP 7 Moving head disc 72
34' CAS' 10 Cassette tape 73

34 MXl 11 Multiline asynchronous controller 74

35 MX2 11 Multiline asynchronous controller 74'

36 IPB 6 Interprocessor bus--half duplex 75
37 IVT 6 IPB watchdog timer 76
40 2 DPI 8 IPB full duplex input 77

1 Code returned by INTA and used by VCT
2. Can be set up with any unused even device code equal to 40 or above
3 Can be set up with any unused odd device code equal to 41 or above

A-l

PRIORITY
MNEMONIC MASK BIT DEVICE NAME

DPO 8 IPS full duplex output
SCR 8 Synch. communication receiver

SCT 8 Synch. communication transmitter
DIO 7 Digital 1/0
DIOT 6 Digital 1/0 timer

"tC)qrd'Tlf'~dtla-~ Interl",l I In'er

MXM 12 Modem control for MX l/MX2

MCAn 12 Second multiprocessor transmitter
MCARl 12 Second multiprocessor receiver
TTll 14 Second TTY input

TTOl 15 Second TTY output
PTRl 11 Second paper tape reader
PTPl 13 Second paper tape punch
RTCl 13 Second real-time clock
PLn 12 Second incremental plotter

CDRl 10 Second card reader
LPn 12 Second line printer
DSKl 9 Second fixed head disc
ADCVl 8 Second AID converter
MTAl 10 Second magnetic tape

DACVl -- Second D I A converter

DKBl 9 Second Fixed Head DG/Disc
DPFl 7 Second DG/Disc storage subsystem

aTYl 14 Second asynch. hardware mux
SLAl 14 Second synchronous line adapter

13 Second IBM 360 '370 interface
13 Second IBM 360 /370 interface

DKPl 7 Second moving head disc

CASl 10 Second cassette tape
11 Second multiline asynch. controller
11 Second multiline asynch controller

CPU -- ,-.f'1J and console functions
-

APPENDIX B
OCTAL AND HEXADECIMAL CONVERSION

To convert a number from octal or hexadecimal to decimal.
locate in each column of the appropriate table the decimal
equivalent for the octal or hex digit in that position. Add the
decimal equivalents to obtain the decimal number.

To convert a decimal number to octal or hexadecimal:

1. Locate the largest decimal value in the appropriate
table that will fit into the decimal number to be
converted;

2. Note its octal or hex equivalent and column position;

3. Find the decimal remainder.

Repeat the process on each remainder. When the remainder
is O. all digits will have been generated.

OCT AL CONVERSION TABLE
8 5 8 4 8 3 8 2 8' 8 0

0 0 0 0 0 0 0
1 32.768 4.096 512 64 8 1
2 65.536 8.192 1.024 128 16 2
3 98.304 12.228 1.536 192 24 3
4 131.072 16.384 2.048 256 32 4
5 163.840 20.480 2.560 320 40 5
6 196.608 24.576 3.072 384 48 6
7 229.376 28.672 3.584 448 56 7

8-1

HEXADECIMAL CONVERSION TABLE

1(,5 16 4 16 3 16 2

0 0 0 4.09~ I 0
1 1.048.576 65.536 256
2 2.097.152 131.072 8.192 512
3 3.145.728 196.608 12.288 768

4 4.194.304 262.144 16.384 1.024
5 5.242.880 327.680 20.480 1.280
6 6.291.456 393.216 24.576 1.536
7 7.340.032 458.752 28.672 1.792

8 8.388.608 524.288 32.768 2.048
9 9.437.184 589.824 36.864 2.304
A 10.485.760 655.360 40.960 2.560
B 11.534.336 720.896 45.056 2.816

C 12.582.912 786.432 49.152 3.072
D 13.631.488 851.968 53.248 3.328
E 14.680.064 917.504 57.344 3.584
F 15.728.640 983.040 61.440 3.840

16' 16°

0 0
16 1
32 2
48 3

64 4
80 5
96 6

112 7

128 8
144 9
160 10
176 11

192 12
208 13
224 14
240 15

APPENDIX C
ASCII CHARACTER CODES LEGEND.

EBCDIC EQUIVALENT HEXADECIMAL CODE

1 means CONTROL

8

9

<

>

?

CHARACTER CODE IN OCTAL AT TOP AND LEFT OF CHARTS.

C-1

APPENDIX D
BINARY, OCTAL AND DECIMAL

NUMBERING SYSTEMS

The most familiar numbering system in our society is
the decimal system. For ordinary mental or
pencil-and-paper work it is clearly the easiest to use.
Computers, however, use the binary system, which
becomes very confusing to humans when more than a
few digits are involved. Fortunately, binary can be
easily translated into octal or hexadecimal
representation, both of which are relatively easy for
humans to use.

In this section, we provide some basic background on
the binary, octal and hexadecimal numbering
systems. Most readers will already be familiar with
these, but some may not and others may find the
review helpful.

The binary numbering system is used in computers
because the two binary values can be easily
represented electronically. In the binary system, the
only two permissible digits are 0 or 1, and each
position in a binary number represents some power
of 2. For example, consider the binary number:

10110102

which is equivalent to the sum (in decimal>:
(1 x26) + (Ox25) + (1 x24) + (1 x23) +
(Ox22) + (lx2') + (Ox2OJ

or

64 + 0 + 16 + 8 + 0 + 2 + 0 = 9010.

If we divide this number into groups of 3 starting at
the right, thus:

1 011 010,

we see that each group of 3 has a range of:

000=0

to

111 = 7 = (22+ 2'+ 2°) = (4 + 2 + 1).

0-1

Zero to 7 is the range of dijgits allowable in the octal
numbering sytem, so we can convert from binary to
octal simply by grouping and evaluating each group
of 3 binary digits by itself. In octal, the number above
becomes:

011 010

or

3 2 = 1328

We can also convert this number to hexadecimal (or
base 16). Zero through nine decimal are unchanged in
the hexadecimal system, but 10-151Oare represented
by the letters A through F.

If we divide the original binary number into groups of
4 instead of 3, starting from the--right, we get:

101 1010

The range for one group is now:

0000 = 0

to

1111 = 23+ 22+ 2' + 2°
= (8 + 4 + 2 + 1) = 1 510= F'6

The number in the example above is then:

101 1010

or

5

APPENDIX E
COMPATIBILITY WITH NOVA LINE COMPUTERS

The ECLIPSE M/600 computers are compatible with
Data General's NOVA line of computers. Any
program presently running on any NOV A line
computer will run on an ECLIPSE series computer
without change provided that it does not violate any
of the following constraints:

• The program may not be dependent on
instruction execution times or Input/Output (110)
transfer times. Times for the ECLIPSE series
computers may be faster than a NOV A line
computer depending upon the application.

• The program may not use any fixed-point
arithmetic instructions that have both the no-load
and no-skip options specified. The ECLIPSE series
computers use these codes to implement
instructions in the standard instruction set.

• The program may not require the hardware
multiply/divide option available on any NOV A
line computer.

• The program may not utilize the data channel
increment or add-to-memory features.

E-l

• The program may not utilize either the memory
management and protection option or the
hardware floating point option currently available
for NOVA line computers.

• The memory and I/O resources available on the
ECLIPSE series computer should be at least
equivalent to those available on the NOVA line
computer for which the program was designed.

A violation of the third constraint can be easily
corrected. The multiply and divide available in the
ECLIPSE series computers standard instruction set
are functionally equivalent to the operations provided
in the hardware multiply/divided option for the
NOV A line computers. Only the operation codes must
be changed to take advantage of the ECLIPSE series
computer's multiply and divide feature. Similarly,
only small changes need be made to a program which
uses the current NOV A line floating point option in
order for that program to take advantage of the
floating point option. The floating point number
formats are the same.

APPENDIX F
ADDRESSING

A flow diagram of the addressing process is shown
below. See Chapter III for a detailed discussion of
addressing.

DG-0093:J

F-1

APPENDIX G
BOOTSTRAP LOADER

The Program Load console switch loads the bootstrap
loader program shown below into the first 3210 words
of memory and starts the program at location O. See
the console section of Chapter II for details on the use
of the Program Load function.

BEG: 10RST ;RESET ALL I/O
READS 0 ;READ SWITCHES INTO ACO
LOA 1.C77 ;GET DEVICE MASK (000077)
AND 0.1 ;ISOLATE DEVICE CODE
COM 1 .1 ;-DEVICE CODE-l

LOOP: ISZ OPl ;COUNT DEVICE CODE INTO ALL
ISZ OP2 ;1/0 INSTRUCTIONS
ISZ OP3
INC 1.1.SZR ;DONE?
JMP LOOP ;NO. INCREMENT AGAIN
LDA 2.C:377 ;YES; PUT JMP 377

;INTO LOCATION 377
STA 2.377

OPl : 060077 ;START DEVICE; (NIOS 0)-1
MOVL O.O.SZC ;LOW SPEED DEVICE?

;(TEST SWITCH 0)
C377: JMP 377 ;NO, GO TO 377

;AND WAIT FOR CHANNEL
LOOP2: JSR GET+l ;GET A FRAME

MOVC O,O.SNR ;IS IT NON-ZER07
JMP LOOP2 ;NO. IGNORE AND GET ANOTHER

LOOP4: JSR GET ;YES, GET FULL WORD
STA 1,@C77 ;STORE STARTING AT 1002'S

;COMPLEMENT OF WORD
;COUNT (AUTO-INCREMENT)

ISZ 100 ;COUNT WORD - DONE?
JMP LOOP4 ;NO. GET ANOTHER

C77 JMP 77 ;YES. - LOCATION COUNTER
;AND JUMP
;TO LAST WORD

GET: SUBZ 1,1 ;CLEAR AC1. SET CARRY
OP2:
LOOP3; 063577 ;DONE? (SKPDN 0) -1

JMP LOOP3 NO, WAIT
OP3: 060477 ;YES, READ IN ACO (DIAS 0,0) -1

ADDCS O.l.SNC ;ADD 2 FRAMES SWAPPED-
;GOT SECOND?

JMP LOOP3 ;NO, GO BACK AFTER IT
MOVS 1.1 ;YES, SWAP THEM
JMP 0.3 ;RETURN WITH FULL WORD
0 ;PADDING

G-l

INSTRUCTION INDEX

Absolute Value (FAB) IV-26
Add (ADD) IV-2
Add Complement (ADe) IV-2
Add Double (FPAC To FPAC) (FAD) IV-27
Add Double (Memory To FPAC) (FAMD) IV-27
Add Immediate (AD!) IV-2
Add Single (FPAC To FPAC) (FAS) IV-29
Add Single (Memory To FPAC) (FAMS) IV-28

* Add To DI (DAD!) IV-17
* Add To P (DAPU) IV-18
* Add To P Depending On S (DAPS) IV-17
* Add To Depending On T (DAPT) IV-17
* Add to SI (DAS!) IV-17

Alternate Extended Operation (XOP1) IV-74
AND (AND) IV-3
AND Immediate (AND!) IV-3
AND With Complemented Source (ANC) IV-3

Block Add and Move (BAM) IV-4
Block Move (BlMIIV-4

Character Compare (CMP) IV-6
Character Move (CMV) IV-8
Character Move Until True (CMT) IV-7
Character Translate (CTR) IV-9
Clear Errors (FClE) IV-30
Compare Floating Point (FCMP) IV-30
Compare To limits (ClM) IV-5
Complement (COM) IV-1 0
Cosine Double (FCOSD) IV-30
Cosine Single (FCOSS) IV-31
Count Bits (COB) IV-10

Data In A (DIA) IV-11
Data In B (DIB) IV-11
Data In C (DIC) IV-12
Data Out A (DOA) IV-13
Data Out B (DOB) IV -13
Data Out C (DOC) IV-13
Decimal Add (DAD) IV-1 0
Decimal Subtract (DSB) IV-14

* Decrement And Jump If Non-Zero (DDTK) IV-18
Decrement And Skip If Zero (DSZ) IV-15
Dispatch (DSPA) IV-15
Divide Double (FPAC by FPAC) (FDD) IV-31
Divide Double (FPAC by Memory) (FDMD) IV-32
Divide Single (FPAC by FPAC) (FDS) IV-33
Divide Single (FPAC by Memory) (FDMS) IV-32
Double Hex Shift left (DHXU IV-11
Double Hex Shift Right (DHXR) IV-11
Double logical Shift (DlSH) IV-13

Edit (EDIT) IV-15
* End Edit (DEND) IV-18
* End Float (DNDF) IV-22

Exchange Accumulators (XCHIIV-72
Exclusive OR (XOR) IV-74
Exclusive OR Immediate (XOR!) IV-74
Execute (XCn IV-73
Extended Add Immediate (ADD!) IV-2
Extended Decrement And Skip If Zero (EDSZ) IV-23
Extended Increment And Skip If Zero (EISZ) IV-24
Extended Jump (EJMP) IV-24
Extended Jump To Subroutine (EJSR) IV-24
Extended load Accumulator (ElDA) IV-24
Extended load Byte (ElDB) IV-25
Extended Operation (XOP) IV-73
Extended Store Accumulator (ES"TA) IV-25
Extended Store Byte (ESTB) IV-26

Fix To AC (FFAS) IV-35
Fix To Memory (FFMD) IV-35
Float From AC(FLAS) IV-36
Float From Memory (FlMD) IV~36

Halt (HALT A) IV-51
Halve (FHlVIIV-35
Halve (Hl V) IV-52
Hex Shift left (HXl) IV-52
Hex Shift Right (HXR) IV-52

1/0 Skip (SKP) IV-66
Inclusive OR (lOR) IV-53
Inclusive OR Immediate (lOR!) IV-54
Increment (INC) IV-52
Increment And Skip If Zero (lSZ) IV-54

* Insert Character J Times (DIMC) IV-18
* Insert Character Once (DINC) IV-19
* Insert Character Suppress (DINT) IV-19
* Insert Characters Immediate (DIC!) IV-18
* Insert Sign (DINS) IV-19

Integerize (FINn IV -35
Interrupt Acknowledge (I NT A) IV-53
Interrupt Disable (lNTDS) IV-53
Interrupt Enable (lNTEN) IV-53

Jump (JMP) IV-54
Jump To Subroutine (JSR) IV-55

* EDIT Subinstruction

Load Accumulator (LOA) IV-55
Load Byte (LOB) IV-55
Load Effective Address (ELEF) IV-25
Load Effective Address (LEF) IV-57
Load Exponent (FEXP) IV-33
Load Floating Point Double (FLDD) IV-36
Load Floating Point Single (FLDS) IV-36
Load Floating Point Status (FLST) IV-38
Load Integer (LOll IV-56
Load Integer Extended (LDIX) IV-56
Load Map (LMP) IV-58
Load Sign (LSN) IV-59
Locate And Reset Lead Bit (LRB) IV-59
Locate Lead Bit (LOB) IV-58
Logical Shift (LSH) IV-59

Mask Out (MSKO) IV-60
Modify Stack Pointer (MSP) IV-60
Move (MOV) IV-60

* Move Alphabetics (DMVA) IV-20
* Move Characters (DMVC) IV-20
* Move Digit With Overpunch (DMVO) IV-21
* Move Float (DMVF) IV-20

Move Floating Point (FMOV) ILV-40
* Move Numeric With Zero Suppression (DMVS) IV-21
* Move Numerics (DMVN) IV-21

Multiply Double (FPAC by FPAC) (FMD) IV-38
Multiply Double (FPAC by Memory) (FMMD) IV-39
Multiply Single (FPAC by FPAC) (FMS) IV-40
Multiply Single (FPAC by Memory) (FMMS) IV-39

Natural Logarithm Double (FLOG D) IV-37
Natural Logarithm Single (FLOGS) IV-37
Negate (FNEG) IV-41
Negate (NEG) IV-61
No 1/0 Transfer (NIO) IV-61
No Skip (FNS) IV-41
Normalize (FNOM) IV-41

Polynomial Evaluation Double (FPL YO) IV-42
Polynomial Evaluation Single (FPL YS) IV-42
Pop Block (POPB) IV-62
Pop Context Block (DPOP) IV-14
Pop Floating Point State (FPOP) IV-43
Pop Multiple Accumulators (POP) IV-61
Pop PC And Jump (POPJ) IV-62
Push Floating Point State (FPSH) IV-43
Push Jump (PSHJ) IV-63
Push Multiple Accumulators (PSH) IV-62
Push Return Address (PSHR) IV-63

Read High Word (FRH) IV-43
Read Switches (READS) IV-63
Real Exponential Double (FEXPD) IV-34
Real Exponential Single (FEXPS) IV-34
Reset (lORST) IV-54
Restore (RSTR) IV-64
Return (RTN) IV-64

Save (SAVE) IV-64
Scale (FSCAU IV-44
Set BitTo One (BTO) IV-5
Set Bit To Zero (BTZ) IV-5

* Set 5 To One (0550) IV-22
* Set 5 To Zero (DSSZ) IV-22
* Set T To One (DSTO) IV-23
* Set T To Zero (DSTZ) IV-23

Sign Extend and Divide (DIVX)IV-12
Signed Divide (DIVS) IV-1 2
Signed Multiply (MULS) IV-61
Sine Double (FSIND) IV-45
Sine Single (FSINS) IV-46
Skip Always (FSA) IV-44
Skip If ACS Greater Than ACD (SGT) IV-65
Skip If ACS Greater Than Or Equa~1 To ACD (SGE) IV-65
Skip On Greater Than Or Equal To Zero (FSGE) IV-45
Skip On Greater Than Zero (FSGn IV-45
Skip On Less Than Or Equal To Zero (FSLE) IV-46
Skip On Less Than Zero (FSL T) IV-46
Skip On No Error (FSNER) IV-48
Skip On No Mantissa Overflow (FSNM) IV-48
Skip On No Overflow (FSNO) IV-48
Skip On No Overflow And No Zero Divide (FSNOD) IV-48
Skip On No Underflow (FSNU) IV -49
Skip On No Underflow And No Overflow (FSNUO) IV-49
Skip On No Underflow And No Zero Divide (FSNUD) IV-49
Skip On No Zero Divide (FSND) IV-47
Skip On Non-Zero (FSNE) IV-47
Skip On Non-Zero Bit (SNB) IV-66
Skip On Zero (FSEQ) IV-44
Skip On Zero Bit (SZB) IV-69
Skip On Zero Bit And Set To One (SZBO) IV-69
Square Root Double (FSQRD) lv-50
Square Root Single (FSQRS) IV-50
Store Accumulator (ST A) IV-66
Store Byte (STB) IV-66
Store Floating Point Double (FSTD) IV-50
Store Floating Point Single (FSTS) IV-51
Store Floating Point Status (FSST) IV-50

* Store In Stack (DSTK) IV-22
Store Integer (STIIIV-67
Store Integer Extended (STlX) IV-67
Subtract (SUB) IV-68
Subtract Double (FPAC from FPAC) (FSD) IV-44
Subtract Double (Memory from FPAC) (FSMD) IV-47
Subtract Immediate (SBIIIV-65
Subtract Single (FPAC from FPAC) (FSS) IV-49
Subtract Single (Memory from FPAC) (FSMS) IV-47
System Call (SYC) IV-68

Trap Disable (FTD) IV-51
Trap Enable (FTE) IV-51

Unsigned Divide (DIV) IV-12
Unsigned Multiply (MUL) IV-60

Vector On Interrupting Device Code (VCT) IV-70

* EDIT Subinstruction

1/0 INSTRUCTION INDEX

CPU Skip (SKP CPU) V-7
CPU Skip If Power Fail Flag Is One (SKPDN CPU) V-7
CPU Skip If Power Fail Flag Is Zero (SKPDZ CPU) V-8

Enable ERCC (DOA ERCC) V-9

Halt (HALT A DOC CPU) V-6

Initiate Page Check (DOC MAP) V-13
Interrupt Acknowledge (INT A DIB CPU) V-6
Interrupt Disable (INTDS NIOC CPU) V-7
Interrupt Enable (INTEN NIOS CPU) V-7

Load Character Buffer (DOA TTO) V-16
Load Map (LMP) V-1 0
Load Map Status (DOA MAP) V-12

Map Page 31 (DOB MAP) V-1 2
Map Single Cycle (NIOP MAP) V-13
Mask Out (MSKO DOB CPU) V-6

Page Check (DIC MAP) V -11

Read Character Buffer (DIA TTl) V-15
Read Count (DIA PIT) V -1 4
Read Map Status (DIA MAP) V-11
Read Memory Fault Address (DIA ERCC) V-8
Read Memory Fault Code (DIB ERCC) V-9
Read Status (DIC BMC) V-2
Read Switches (READS DIA CPU) V-5
Reset (I0RST DIC CPU) V-6

Select RTC Frequency (DOA RTC) V-1 5
Set Status (DOC BMC) V-5
Specify High-Order Address (DOB BMC) V-3
Specify Initial Count (DOA PIT) V-14
Specify Initial Map Register (DOB BMC) V-3
Specify Low-Order Address (DOA BMC) V-3
Specify Word Count (DOC BMC) V-4

BIBLIOGRAPHY
The following Data General publications may be of interest to readers of this manual:

Programmer's Reference, Peripherals

Programmer's Reference, Data Control Unit

Technical Reference, Data General Communications System

Technical Manual, 6020 Series Tape Transport

Technical Manual. Model 6045 6050 6051
Disc Drive (10 Megabyte)

Technical Manual. DG/Disc Storage Subsystem
(6060 Series, 1 00 Megabyte)

Technical Manual, Model 6063-6065 Fixed Head Disc

Interface Designer's Reference, NOVA and ECLIPSE Line Computers

Software Summary and Bibliography

AOS Software Documentation Guide

AOS Programmer's Manual

AOS Macroassembler Reference Manual

AOS Binder User's Manua~

AOS Debugger and Disk File Editor User's Manual

AOS System Manager's Guide

DGC No. 01 5-000021

DGC No. 01 5-000060

DGC No. 014-000070

DGC No. 015-000040

DGC No. 015-000057

DGC No. 015-000061

DGC No. 015-000072

D.GC No. 015-000031

DGC No. 093-0001 10

DGC No. 093-000202

DGC No. 093-000 1 20

PGC No. 093-000192

DGC No. 093-000190

DGC No. 093-000195

DGC No. 093-000193

SALES AND SERVICE OFFICES

Alabama: Birmingham
Arizona: Phoenix, Tucson
Arkansas: Little Rock
California: EI Segundo, Fresno, Palo Alto, Sacramento, San Diego,
San Francisco, Santa Ana, Santa Barbara, Van Nuys
Colorado: Englewood
Connecticut: North Branford
Florida: Ft. Lauderdale, Orlando, Tampa
Georgia: Norcross
Idaho: Boise
Illinois: Peoria, Schaumburg
Indiana: Indianapolis
Kentucky: Louisville
louisiana: Baton Rouge
Maryland: Baltimore
Massachusetts: Springfield, Wellesley, Worcester
Michigan: Southfield
Minnesota: Richfield
Missouri: Kansas City, St. Louis
Nevada: Las Vegas
New Hampshire: Nashua
New Jersey: Cherry Hill, Wayne
New Mexico: Albuquerque
New York: Buffalo, Latham, Melville, Newfield, New York,
Rochester, Syracuse, White Plains
North Carolina: Charlotte, Greensboro
Ohio: Columbus, Dayton, Brooklyn Heights
Oklahoma: Oklahoma City, Tulsa
Oregon: Portland
Pennsylvania: Blue Bell, Carnegie
Rhode Island: Rumford
South Carolina: Columbia
Tennessee: Knoxville, Memphis
Texas: Austin, Dallas, EI Paso, Ft. Worth, Houston
Utah: Salt Lake City
Virginia: McLean, Norfolk, Richmond, Salem
Washington: Kirkland
West Virginia: Charleston
Wisconsin: West Allis

Italy: Milan, Padua, Rome
The Netherlands: Rijswijk
New Zealand: Auckland, Wellington
Sweden: Gothenburg, Malmoe, Stockholm
Switzerland: Lausanne, Zurich
United Kingdom: Birmingham, Dublin, Glasgow, London, Manchester
West Germany: Filderstadt, Frankfurt, Hamburg, Munich, Ratingen,
Rodelheim

DG-049'l6

MANUFACTURER'S REPRESENTATIVES
& DISTRIBUTORS

Argentina: Buenos Aires
Costa Rica: San Jose
Ecuador: Quito
Egypt: Cairo
Finland: Helsinki
Greece: Athens
Hong Kong: Hong Kong
India: Bombay
Indonesia: Jakarta
Iran: Tehran
Israel: Givatayim
Japan: Tokyo
Jordan: Amman
Korea: Seoul
Kuwait: Kuwait
lebanon: Beirut
Malaysia: Kuala Lumpur
Mexico: Mexico City
Nicaragua: Managua
Nigeria: Lagos, Ibadan
Norway: Oslo
Peru: Lima
Philippine Islands: Manila
Puerto Rico: Hato Rey
Saudi Arabia: Riyadh
Singapore: Singapore:
South Africa: Johannesburg, Pretoria
Spain: Barcelona, Bilbao, Madrid, San Sebastian, Valencia
Taiwan: Taipei
Thailand: Bangkok
Uruguay: Montevideo
Venezuela: Maracaibo

ADMINISTRATION, MANUFACTURING
RESEARCH AND DEVELOPMENT

Massachusetts: Cambridge, Framingham, Westboro, Southboro
Maine: Westbrook
New Hampshire: Portsmouth
California: Anaheim, Sunnyvale
North Carolina: Research Triangle Park, Johnston County

Hong Kong: Kowloon, Tai Po
Thailand: Bangkok

