
4. Data General
.,-------------

Customer Documentation

ECLIPSE®MV /Family
(32-Bit) Systems

Instruction Dictionary

ECLIPSE® MV/Family (32-Bit) Systems
Principles of Operation

014-001371-01

Ordering No. 014-001371
Copyright C> Data General Corporation, 1988
All Rights Reserved
Printed in the United States of America
Rev. 01, July 1988

Notice
DATA GENERAL CORPORATION (DGC) HAS PREPARED THIS DOCUMENT FOR USE BY DGC
PERSONNEL, CUSTOMERS, AND PROSPECTIVE CUSTOMERS. THE INFORMATION
CONTAINED HEREIN SHALL NOT BE REPRODUCED IN WHOLE OR IN PART WITHOUT
DGC'S PRIOR WRITTEN APPROVAL.

DGC reserves the right to make changes in specifications and other information contained in this
document without prior notice, and the reader should in all cases consult DGC to determine whether any
such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE SALE OF DGC HARDWARE PRODUCTS
AND THE LICENSING OF DGC SOFTWARE CONSIST SOLELY OF THOSE SET FORTH IN THE
WRITTEN CONTRACTS BETWEEN DGC AND ITS CUSTOMERS. NO REPRESENTATION OR
OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT INCLUDING BUT NOT
LIMITED TO STATEMENTS REGARDING CAPACITY, RESPONSE-TIME PERFORMANCE,
SUITABILITY FOR USE OR PERFORMANCE OF PRODUCTS DESCRIBED HEREIN SHALL BE
DEEMED TO BE A WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE RISE TO ANY
LIABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST
PROFITS) ARISING OUT OF OR RELATED TO THIS DOCUMENT OR THE INFORMATION
CONTAINED IN IT, EVEN IF DGC HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN
OF THE POSSIBILITY OF SUCH DAMAGES.

CEO, DASHER, DATAPREP, DESKTOP GENERATION, ECLIPSE,
ECLIPSE MV/4000, ECLIPSE MV16000, ECLIPSE MV/8000, GENAP, INFOS, MANAP,
mlcroNOVA, NOVA, PRESENT, PROXI, SWAT, and TRENDVIEW are U.S. registered
trademarks of Data General Corporation; and AOSMAGIC, AOS/VSMAGIC, AROSE/PC,
ArrayPlus, BusIGEN, BusIPEN, BusiTEXT, CEO Connection,
CEO Drawing Board, CEO DXA, CEO PXA, CEO Wordview, CEOwrite,
COBOL/SMART, COMPUCALC, CSMAGIC, DASHER/One, DASHER/186,
DATA GENERAL/One, DESKTOP/UX, DG/SOO, DG/AROSE, DGConnect, DG/DBUS,
DG/Fontstyles, DG/GATE, DG/GEO, DG/L, DG/UX, DG/XAP, ECLIPSE MV/1400,
ECLIPSE MV/IOOO, ECLIPSE MV17800, ECLIPSE MV/IOOOO, ECLIPSE MV/lSOOO,
ECLIPSE MV/IOOOO, FORMA-TEXT, GATEKEEPER, GDC/IOOO, GDC/1400,
microECLIPSE, microMV, MV/UX, PC Liaison, RASS, REV-UP, SLATE,
SPARE MAIL, TEO, TEO/3D, TEO/Electronics, TURBO/4, UNITE, and XODIAC are
trademarks of Data General Corporation.

ECLIPSE MV/Family (32-Bit) Systems Principles of Operation
014-001371-01

Revision History:

Original Release - January 1988
First Revision - July 1988

A vertical bar in the margin of a page indicates substantive technical change from
the previous revision.

Preface

The ECLIPSE® MV/Family (32-Bit) Systems Principles 0/ Operation manual explains the
processor-independent concepts and functions of ECLIPSE MV /Family systems to
assembly language programmers. The second volume in this two-volume global set,
ECLIPSE® MV/Family (32-Bit) Systems Instruction Dictionary (DGC No. 014-001372),
describes each instruction in the ECLIPSE MV IFamily instruction set.
Processor-dependent information, available in machine-specific supplements,
complements the two-volume global set.

A related manual, the ECLIPSE® MV/Family Instruction Reference Booklet (DGC No.
014-000702), provides a brief summary of the instruction set and register information.
The reference booklet lists each instruction by assembler-recognizable mnemonic with a
shorthand description of its function.

The Assembler mentioned in this manual is Data General's Macroassembler which is
detailed in the AOS/VS Macroassembler (MASM) Reference Manual (DGC No.
093-000242) .

014-001371 iii

Preface

Manual Organization

iv

This manual contains 10 chapters. Chapter 1 gives an overview of the 32-bit ECLIPSE
~IY/Family system of computers. Chapter 1 of each machine-specific supplement
provides a hardware summary for that computer system.

Chapters 2 through 10 present, in a functional framework, processor independent
concepts and functions, and introduce the instruction set. Machine-specific supplements
contain information specific to that computer system. The chapters explain:

• Fixed-point computation

• Floating-point computation

• Stack management

• Program flow management

• Queue management

• Graphics management

• Device management

• Memory and system management

• ECLIPSE 16-bit compatible instructions

Appendixes A through D in this global manual present information on:

• Register fields

• Fault and status codes

• Reserved memory locations

• Load Control Store instruction

Machine-specific supplements include Appendixes E through G which provide details on:

• Standard 110 device codes

• Context block formats

• Instruction execution times

A Glossary offers brief definitions of terms used to describe the features of ECLIPSE
MY/Family computer systems.

The second volume of this set, ECLIPSE® MV/Family (32-Bit) Systems Instruction
Dictionary t presents each of the instructions in the ECLIPSE MY IFamily instruction set
alphabetically according to instruction mnemonic.

014-001371

Preface

Standard Symbols
The manual uses certain conventions and abbreviations.

[] The square brackets indicate an optional argument. Omit the square
brackets when you include an optional argument with an Assembler
statement.

UPPERCASE BOLDFACE characters indicate a literal and/or argument in an Assembler
statement. When you include a literal argument with an Assembler
statement, use the exact form.

lowercase italic characters indicate a variable argument in an Assembler statement. When
you include the variable with an Assembler statement, substitute a literal
value for the variable argument.

ac

acs

acd

fpac

fpacs

fpacd

014-001371

The ac abbreviation indicates a fixed-point accumulator.

The acs abbreviation indicates a source fixed-point accumulator.

The acd abbreviation indicates a destination fixed-point accumulator.

The fpac abbreviation indicates a floating-point accumulator.

The fpacs abbreviation indicates a source floating-point accumulator.

The fpacd abbreviation indicates a destination floating-point accumulator.

v

Preface

Coordinating Machine-Specific Supplements

vi

The two-volume global set, ECLIPSE® MV/Family (32-Bit) Systems Principles of
Operation and ECLIPSE® MV/Family (32-Bit) Systems Instruction Dictionary, supersedes
all previous revisions of the single-volume manual, ECLIPSE® MV/Family 32-Bit Systems
Principles of Operation (DGC No. 014-000704). The two-volume set contains the most
up-to-date information for the ECLIPSE MV/Family computer systems.

The machine-specific supplements are designed to be incorporated into either the
two-volume set or the original single-volume manual to create a machine-specific
reference for assembly language programmers.

Table P-1 lists the various revisions of the supplement manuals which should be
incorporated with the two-volume set (014-001371 and 014-001372). Table P-2 lists the
revisions of the supplement manuals which should be incorporated with the original
single-volume manual (014-000704). Note that the manual revision numbers may be
found on the manual's Notice page. (If your particular machine's supplement or
"functional characteristics" manual is not listed, then it is unaffected.)

Table P-1 Two-Volume Set (014-001371 and 014-001372)

Manual

ECLIPSE MV/2000'1I DC and DS/7500 Series
Systems Principles of Operation Supplement

ECLIPSE MV17800n. Series Systems
Principles of Operation Supplement

ECLIPSE MV/15000· Series Systems
Principles of Operation Supplement

ECLIPSE MV /20000 n. Series Systems
Principles of Operation Supplement

Table P-2 Single-Volume (014-000704)

Manual

ECLIPSE MV/2000n. DC and DS/7500 Series
Systems Principles of Operation Supplement

ECLIPSE MV/7800n. Series Systems
Principles of Operation Supplement

ECLIPSE MV/8000n. II System
Principles of Operation Supplement

ECLIPSE MV/10000n. Class Systems
Principles of Operation Supplement

ECLIPSE MV/15000n. Series Systems
Principles of Operation Supplement

ECLIPSE MV /20000 n. Series Systems
Principles of Operation Supplement

Ordering
Number

014-001203

014-001180

014-001297

014-001169

Ordering
Number

014-001203

014-001180

014-001227

014-001228

014-001297

014-001169

End of Preface

Revision Numbers

03 and up

03 and up

02 and up

02 and up

Revision Numbers

00 through 02

00 through 02

00

00

00 through 01

00 through 01

014-001371

Contents

1 System Overview

Functional Capabilities . 1-2
Registers ... 1-2
Fixed-Point Computation. 1-2
Floating-Point Computation. 1-3
Stack Management . 1-5
Program Flow Management . 1-5
Queue Management .. 1-6
Graphics Management 1-6
Device Management . 1-6
System l\1anagement . 1-7
Memory Management 1-7
ECLIPSE 16-Bit Compatible Instructions. 1-8

Accessing Memory . 1-8
Current Segment . 1-9
Other Segments ... 1-9
Memory Reference Instructions . 1-10
Address Modes . 1-11
Operand Access ... 1-13

Protection Capabilities .. 1-18

2 Fixed-Point Computing
Binary Operations. 2-2

Data Formats ... 2-2
Move Instructions . 2-3
Arithmetic Instructions. 2-4
Carry Operations .. 2-7
Shift Instructions . 2-7
Skip Instructions . 2-9
Overflow Fault .. 2-10
Processor Status Register 2-10

Logical Operations ... 2-12
Data Formats ... 2-12
Logical Instructions .. 2-13
Bit Manipulation ' . 2-13
Shift Instructions " . 2-14
Skip Instructions , . 2-14

Decimal and Byte Operations "............................ 2-15
Data Formats ... 2-15
Move Instructions " . 2-19
Arithmetic Instructions " . 2-20
Shift Instructions. 2-21
Effective Address Instructions ... 2-21
Skip Instructions. 2-21
Data Type Faults .. 2-22
Decimal Arithmetic Example . 2-23

014-001371 vii

3 Floating-Point Computing

Data Formats ... 3-2
Conversion Instructions ... 3-3
Move Instructions . 3-4
Floating-Point Arithmetic Operations . 3-5

Appending Guard Digits. 3-5
Aligning the Mantissas ... 3-5
Calculating and Normalizing the Result. 3-6
Truncating or Rounding the Result 3-6
Storing the Result . 3-6

Arithmetic Instructions . 3-7
Addition ... 3-7
Subtraction ... 3-7
Multiplication ... 3-8
Division . 3-8

Skip Instructions . 3-9
Intrinsic Instruction Set ... 3-10
Faults and Status .. 3-12

4 Stack Management

Wide Stack Operations ... 4-2
Wide Stack Registers ... 4-3

Wide Stack Base .. 4-3
Wide Stack Limit 4-3
Wide Stack Pointer .. 4-4
Wide Frame Pointer . 4-4

Wide Stack Register Instructions . 4-4
Wide Stack Data Instructions 4-5
Initializing A Wide Stack . 4-7
Wide Stack Faults ... 4-8

5 Program Flow Management

Related Instruction Groups 5-2
Execute Accumulator . 5 - 2
Jump. 5-2
Skip. 5-2
Subroutine. 5-4

Transferring Program Control To Another Segment 5-9
Subroutine Call . 5-9
Subroutine Return ... 5 -14

Fault Handling .. 5-16
Fixed-Point Overflow Fault . 5-17
Floating-Point Faults 5-18
Decimal and ASCII Data Faults 5-19
Stack Faults ... 5-23

viii 014-001371

6 Queue Management
Building a Queue .. 6-2
Queue Descriptor . 6-3
Setting Up and Modifying a Queue 6-3
Queue Examples . 6-3

Queue Descriptor of an Empty Queue 6-3
Adding a Data Element into an Empty Queue. 6-4
Adding a Data Element at the Head of a Queue 6-4
Adding a Data Element at the Tail of a Queue 6-4
Removing a Data Element . 6-6

Queue Instructions 6-7

7 Graphics Management
Graphics Instruction Set . 7 - 2
Forms. 7-4

Forms and Bitmaps .. 7-5
Local Origin ~ . 7-6
Bounding Rectangle "........................... 7-6
Coordinate System "........................... 7-7

GIS Data Structures , . 7-9
Form Descriptor. 7-9

Form Attributes .. 7-13
Operation Mask and Combination Rule 7-13
Line Dra wing Attributes . 7 -16
Character Drawing Attributes. 7-17
Character Fonts ... 7 -17
Cursor Descriptor 7 -17
Color Descriptors .. 7-20

Form Cache .. 7-21
Interrupts .. 7 - 21
Fault Handling .. 7-22

Fixed-Point Overflow. 7-25

8 Device Management
I/O Communication .. 8-2

I/O Access ... 8-3
I/O Registers . 8-3
Types of Information Transfers . 8-4

General 110 Instructions .. 8-6
Device Flags .. 8-7
Interrupts .. 8-8

Interrupt Flags .. 8-8
Instruction Interruption 8-9
Processor Interrupt Servicing. 8-10
Vectored Interrupt Processing. 8-12
Interrupt Service Routines 8-17

Data Channel/Burst Multiplexor Channel. 8-20
Transfer Sequence ... 8-21
Device Maps and Data Transfers 8-22
DCH/BMC Registers. 8-25

Device Controllers ... 8-29
Device Controller Registers 8-29
Device Controller Programming. 8-32
Data Transfer Latency. 8-33

014-001371 b

x

Integral Devices ... 8-36
Central Processor .. 8-36
Timing Mechanisms .. 8-49
Architectural Clocks . 8-49
Programmable Interval Timer 8-60
Real-Time Clock .. 8-63
Primary Asynchronous Line Input/Output 8-65
System Control Processor/Program 8-68
Power Supply Controllers. 8-80

Multiple Central Processing Units . 8-88
Initialization .. 8-88
Processor State Block " . 8-89
Memory Views .. 8-90
110 Communication .. 8-91
Multiple 110 Channels 8-91
110 Interrupt Handling . 8-91
Intra-Processor Communication 8-92
Error Codes .. 8-93

9 Memory and System Management

Page Access .. 9-2
Segment Access and Address Translation 9-2

Segment Base Registers 9-2
Page Frames. 9-4
Pagetables .. 9-4

Address Translation . 9-6
Page Access .. 9-9

Central Processor Identification. 9-10
Privileged Faults . 9-11

Page Faults ... 9-11
Protection Vio~tions 9-13

Reserved Memory ... 9-18
Page Zero 9-18
State Area. 9-21

10 ECLIPSE 16-Blt Programming

ECLIPSE Registers .. .
ECLIPSE Stack .. .
ECLIPSE Faults and Interrupts
Expanding an ECLIPSE Program
Expanding an ECLIPSE Subroutine
ECLIPSE Instructions

ECLIPSE MV IFamily Instruction Compatibility
ECLIPSE Memory Reference Instructions
ECLIPSE Fixed-Point Instructions
ECLIPSE Floating-Point Instructions
ECLIPSE Program Flow Instructions
ECLIPSE Stack Instructions

Program Flow .. .
Fault Handling
Reserved Memory .. .
CPU Identification .. .

10-2
10-5
10-6
10-6
10-7
10-7
10-8
10-8

10-12
10-13
10-15
10-16
10-17
10-17
10-18
10-18

014-001371

A Register Fields

Segment Base Registers ... A-2
Program Counter .. A-3
Processor Status Register .. A-4
Floating-Point Status Register A-5
DCH/BMC Status Registers . A-6
CPU Identification ... A-7

B Fault and Status Codes

Protection Faults .. B-1
Page Faults B-2
Stack Faults .. B-2
UPSC Faults. B-2
PSC Status and Faults .. B-4
Decimal/ASCII Faults .. B-6

C Reserved Memory Locations

o Load Control Store Instruction

Microcode File and Block Format D-3
LCS Implementation ... 0-4
Microcode Blocks. D-5
Error Return . 0-7
Kernel Functions .. 0-8

Glossary

Index

014-001371 xi

xii

Figures

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8
Figure 1-9
Figure 1-10
Figure 1-11

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7

Figure 3-1
Figure 3-2
Figure 3-3

Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4

Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9

Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7

ECLIPSE MV IFamily functional components
Fixed-point accumulator
Floating-point accumulator
Program counter format
Logical address space
Memory reference instruction word addressing formats
Memory reference instruction byte addressing formats
Byte pointer format
Byte addressing
Bit pointer format '
Bit addressing

Fixed-point two's-complement data formats
ECLIPSE compatible shift operations
Processor status register format
Fixed-point logical data formats
Explicit data type indicator
Packed and unpacked decimal data
Decimal arithmetic example

Floating-point data formats
Intrinsic instruction set format
Floating-point status register format

Typical wide stack
Wide stack management register format
Sample code for initializing a wide stack
Example of wide stack operations

Illegal and legal skip instruction sequences
DO-loop instruction sequence
Example of subroutine code for XJSR
Wide stack operations from XJSR. WSSVS. and XPEF instructions
Wide stack operations from WRTN instruction
Gate array format
XCALL or LCALL effective address
Validating inward segment crossing sequence
Wide Return instruction sequence

Data elements with user data
Format of queue descriptor
Queue descriptor for an empty queue
Data element added to an empty queue
Data element added at head of queue
Data element added at tail of queue
Data element removed

1-1
1-3
1-4
1-5
1-7

1-10
1-11
1-15
1-16
1-17
1-17

2-2
2-8

2-10
2-12
2-15
2-18
2-23

3-2
3-10
3-13

4-2
4-3
4-7
4-7

5-3
5-3
5-7
5-8
5-8

5-10
5-11
5-13
5-15

6-2
6-3
6-3
6-4
6-4
6-5
6-6

014-001371

Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8
Figure 7-9
Figure 7-10

Figure 8-1
Figure 8-2
Figure 8-3
Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7
Figure 8-8
Figure 8-9

Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Figure 9-5
Figure 9-6
Figure 9-7

Figure 10-1
Figure 10-2
Figure 10-3
Figure 10-4
Figure 10-5
Figure 10-6
Figure 10-7

Figure D-l
Figure D-2

014-001371

Form data structures
Windowing with vinual bitmaps
Use of rectangle list
Coordinate conversions
Venex of contiguous line segments
Effect of line style
Types of cursors
GIS fault· sequence
Overdraw condition parameters
Overdraw condition parameters for endpoints

An ECLIPSE MV IFamily system with dual IOCs
General 110 instruction format
Interrupt sequence .. .
Vectored interrupt processing sequence
Sequence of actions to conclude interrupt service
Vector table
Device control table (DCT)
DCH/BMC registers
CPU ISCP communications sequence

Segment base register format
Pagetable entry format
Indirect and effective logical address formats
One-level pagetable translation
Two-level pagetable translation ... ,
Page fault sequence ,
Protection violation sequence

ECLIPSE MV IFamily registers with applicable ECLIPSE bits
ECLIPSE word addressing format
ECLIPSE effective addressing
ECLIPSE byte addressing format
ECLIPSE byte addressing
ECLIPSE bit addressing format
BTO, BTZ, SNB, SZB, and SZBO bit addressing

Microcode file format
Microcode block format

7-4
7-5
7-6
7-8

7-16
7-17
7-18
7-23
7-26
7-27

8-2
8-6

8-11
8-13
8-14
8-14
8-16
8-25
8-69

9-3
9-4
9-6
9-7
9-8

9-12
9-16

10-4
10-8
10-9
10-9

10-10
10-10
10-11

0-4
0-5

xiii

Tables

Table 1-1 Program counter format 1-6
Table 1-2 Effective addressing . 1-13
Table 1-3 Word-oriented data . 1-14
Table 1-4 Byte data ... 1-14
Table 1-5 Byte pointer contents . 1-16
Table 1-6 Bit pointer contents . 1-16
Table 1-7 Faults.. 1-18

Table 2-1 Fixed-point two's-complement formats 2-2
Table 2-2 Range of 16- and 32-bit fixed-point numbers (in octal) 2-2
Table 2-3 Fixed-point precision conversion 2-3
Table 2-4 Fixed-point data movement instructions 2-3
Table 2-5 Fixed-point addition instructions 2-4
Table 2-6 Fixed-point subtraction instructions 2-5
Table 2-7 Fixed-point multiplication instructions . 2-5
Table 2-8 Fixed-point division instructions . 2-6
Table 2-9 Fixed-point increment or decrement value and skip instructions .. 2-6
Table 2-10 Carry initializing instructions . 2-7
Table 2-11 Fixed-point skip on condition instructions. 2-9
Table 2-12 PSR manipulation instructions . 2-10
Table 2-13 Processor status register contents 2-11
Table 2-14 Logical Instructions 2-13
Table 2-15 Bit Instructions . 2-13
Table 2-16 Logical shift instructions 2-14
Table 2-17 Fixed-point logical skip instructions . 2-14
Table 2-18 Data type indicator description. 2-16
Table 2-19 Explicit data types .. 2-17
Table 2-20 Sign and number combination for unpacked decimal 2-19
Table 2-21 Nonsign-positioned numbers for unpacked decimal 2-19
Table 2-22 Fixed-point byte movement instructions 2-19
Table 2-23 Fixed-point to floating-point conversion and store instructions. . . . 2-20
Table 2-24 Edit subprogram instructions. 2-20
Table 2-25 Arithmetic instructions. 2-20
Table 2-26 Hex shift instructions. 2-21
Table 2-27 Load effective address instructions. 2-21
Table 2-28 Decimal and ASCII fault codes 2-22

Table 3-1 Floating-point data formats description 3-2
Table 3-2 Floating-point binary conversion instructions 3-3
Table 3-3 Floating-point decimal conversion instructions 3-3
Table 3-4 Floating-point data movement instructions 3-4
Table 3-5 Floating-point addition instructions 3-7
Table 3-6 Floating-point subtraction instructions 3-7
Table 3-7 Floating-point multiplication instructions 3-8
Table 3-8 Floating-point division instructions . 3-9
Table 3-9 Floating-point skip on condition instructions 3-9

xiv 014-001371

Table 3-10
Table 3-11
Table 3-12
Table 3-13

Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 4-6

Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6
Table 5-7
Table 5-8
Table 5-9
Table 5-10
Table 5-11
Table 5-12
Table 5-13
Table 5-14
Table 5-15
Table 5-16
Table 5-17
Table 5-18
Table 5-19
Table 5-20
Table 5-21
Table 5-22

Table 6-1

Table 7-1
Table 7-2
Table 7-3
Table 7-4
Table 7-5
Table 7-6
Table 7-7

Table 8-1
Table 8-2
Table 8-3
Table 8-4
Table 8-5
Table 8-6
Table 8-7
Table 8-8
Table 8-9
Table 8-10

014-001371

Intrinsic instruction set format description
Floating-point intrinsic instructions
Floating-point status register instructions
Floating-point status register format description

Wide stack management register format description
Wide stack register instructions
Wide stack double word access instructions
Wide stack return block instructions
Standard wide return block
Instructions affecting the wide stack

Jump instructions .. .
Skip instructions .. .
Standard wide return block
Subroutine instructions
Sequence of subroutine instructions
Segment program control transfer instructions
Gate array format description
XCALL or LCALL effective address format description
Faults
Fixed-point fault return block
Wide floating-point fault return block
Narrow floating-point fault return block
Decimal and ASCII fault codes
Wide return block for decimal data fault (type 1)
Wide return block for ASCII data fault (type 2)
Wide return block for ASCII data fault (type 3)
Narrow return block for decimal data fault (type 1)
Narrow return block for ASCII data fault (type 2)
Narrow return block for ASCII data fault (type 3)
Wide stack fault return block
Wide stack fault codes
Narrow stack fault return block

Queue instructions

GIS instructions
Form descriptor contents
Rectangle descriptor contents
Form attributes .. .
Combination rules
Cross-hair cursor descriptor
Image cursor descriptor

General 110 instructions
General 1/0 instruction format description
Device flag controls for general devices
Device flag tests for skip instruction
Vector table contents
Device control table contents
110 instructions for DCH/BMC maps
1/0 registers .. .
Wordlblock counter values
110 instructions for the CPU

3-11
3-11
3-12
3-13

4-3
4-5
4-5
4-6
4-6
4-8

5-2
5-3
5-5
5-5
5-5
5-9

5-10
5-11
5-16
5-17
5-18
5-19
5-20
5-21
5-21
5-21
5-22
5-22
5-22
5-23
5-24
5-25

6-7

7-3
7-10
7-13
7-14
7-15
7-19
7-19

8-6
8-6
8-7
8-7

8-15
8-16
8-22
8-25
8-31
8-37

xv

xvi

Table 8-11
Table 8-12
Table 8-13
Table 8-14
Table 8-15
Table 8-16
Table 8-17
Table 8-18
Table 8-19
Table 8-20
Table 8-21

Table 9-1
Table 9-2
Table 9-3
Table 9-4
Table 9-5
Table 9-6
Table 9-7
Table 9-8
Table 9-9
Table 9-10

Table 10-1
Table 10-2
Table 10-3
Table 10-4
Table 10-5
Table 10-6
Table 10-7
Table 10-8
Table 10-9
Table 10-10

Table A-1
Table A-2
Table A-3
Table A-4
Table A-5
Table A-6
Table A-7
Table A-8
Table A-9

Table B-1
Table B-2
Table B-3
Table B-4
Table B-5
Table B-6

Table C-1
Table C-2

CPU device instructions with 110 channels
Instructions affecting the alarm clock
Instructions affecting the time-slice timer
Instructions affecting the PIT
Instructions affecting the RTC
110 instructions for TTl and TTO
SCP instructions
110 instructions for the power supply controllers
Multiple-processor instructions
ECLIPSE MV /Family instructions with multiple-processor functions
Error values returned to AC 1

Segment base register format description
Pagetable entry format description
Logical address format description
Instructions that manipulate referenced and modified bits
System identification instructions
Priority of protection violation faults
Protection fault return block
Protection fault codes
Page zero locations for segment 0
Page zero locations for segments 1 through 7

Comparison of ECLIPSE 16-bit and ECLIPSE MV/Family registers
Standard ECLIPSE (narrow) return block
Alterations to ECLIPSE subroutines
ECLIPSE word addressing format description
ECLIPSE byte addressing format description
ECLIPSE bit addressing format description
ECLIPSE fixed-point computina instructions
ECLIPSE floating-point computing instructions
ECLIPSE program flow management instructions
ECLIPSE stack management instructions

Registers and contents
Segment base register contents
Program counter format for ECLIPSE MV IFamily programs
Program counter modified by ECLIPSE 16-bit instructions
Processor status register contents
Floating-point status register contents
110 channel status register contents ,
110 channel mask register contents
110 channel definition register contents

Protection fault codes
Page fault codes
Stack fault codes .. .
USPC fault codes .. .
PSC status and fault codes
Decimal/ASCII fault codes

Page zero location for segment 0
Page zero locations for segments 1 through 7

8-40
8-50
8-54
8-60
8-63
8-66
8-68
8-81
8-92
8-93
8-93

9-3
9-5
9-6

9-10
9-10
9-13
9-15
9-15
9-19
9-20

10-3
10-5
10-7
10-9
10-9

10-11
10-12
10-13
10-15
10-16

A-I
A-2
A-3
A-3
A-4
A-5
A-6
A-6
A-7

B-1
B-2
B-2
B-2
8-4
B-6

C-2
C-3

014-001371

Table 0-1
Table 0-2
Table 0-3
Table 0-4
Table D-S
Table D-6
Table D-7
Table D-8
Table 0-9
Table 0-10

014-001371

Microcode file format blocks
Words used in the microcode block format
Title block format
End block format .
Combined action of End block data words 1 and 2
Code block format
Fill block format .. .
Comment block format
Revision block format
Error codes returned to ACO

0-3
O-s
0-5
0-6
0-6
0-6
0-7
0-7
0-7
D-8

xvii

Peripherals

Line printer

Termlnall

AC1

AC2

AC3

/ ~
Status

I PSR

Floatlng­
point

FPACO

FPAC1

FPAC2

FPAC3

Status

FPSR

Memory

Stacks and
Queues Protection mechanism

Reserved memory
Narrow stack parameters
Virtual memory translation
Device maps

Arithmetic Logic

Control logic and microcode

Figure 1-1 ECLIPSE MVIFamily functional components

014-001371

INT-00150

1
System Overview

The ECLIPSE 32-bit central processor - hereafter called the processor - provides
facilities to manage data, to access memory, and to control program flow. (See Figure
1-1.)

The processor can perform fixed-point or floating-point computation, as well as stack.
program, queue, device, system, and memory management. In addition, the processor
contains ECLIPSE compatible instructions for 16-bit program development and upward
program compatibility. (This manual contains pertinent information for programmers
doing cross-development for ECLIPSE 16-bit systems.)

This chapter provides a brief description of the processor's functional capabilities,
memory address space, and system protection capabilities. Machine-specific supplements
provide hardware summaries.

NOTE:

014-001371

Each machine-specific supplement contains an appendix, "Instruction
Execution Times," which lists all instructions supported by that particular
machine. If an instruction is not listed in this appendix, it is not supported
on that processor.

1-1

System Overview

Functional Capabilitie::;
The following sections of this chapter describe the functional capabilities of ECLIPSE
MY IFamily computers.

NOTE: Data General defines a computer word as 16 bits and a doubleword as 32
bits. For consistency throughout this manual, we specify bit patterr~ I'or
registers and instructions as 16-bit quantities, regardless of the actutil bit
length of these quantities. For instance, the bit pattern for a 64-bit
floating-point accumulator is represented as four lines of 16 bits each.

Registers
All ECLIPSE MY IFamily computers implement the following registers:

• Four 32-bit fixed-point accumulators

• One 16-bit processor status register

• Four 64-bit floating-point accumulators

• One 64-bit floating-point status register

• Four 32-bit stack management registers

• One 31-bit program counter

• Eight 32-bit segment base registers

• One 1-bit Carry register

Any register bits that are listed as reserved must be loaded, or written to, with zeros. The
processor mayor may not verify that these bits are zero, however. correct operation is
only defined when these bits are zero.

Fixed-Point Computation

1-2

Fixed-point computation uses fixed-point binary arithmetic with signed and unsigned
16-bit and 32-bit numbers. The processor also performs decimal arithmetic and logical
operations, and manipulates 8-bit bytes.

The processor contains five registers relating to fixed-point computation: four 32-bit
fixed-point accumulators (ACO. AC1. AC2. and AC3); and a processor status register
(PSR). The next two sections summarize these fixed-point registers. Refer to the chapter,
"Fixed-Point Computing," for additional information.

NOTE: The lowest numbered bit of a register (such as bit 0) is the most significant
bit. The highest numbered bit (such as bit 31) is the least significant bit.

Fixed-Point Accumulators
Fixed-point accumulators are accessed with instructions that manipulate a bit. byte. word
(16 bits), or double word (32 bits). Figure 1-2 indicates the mapping of bytes and words
within the fixed-point accumulators.

The majority of operands smaller than the accumulator are right-justified within the
accumulator.

014-001371

System Overview

In addition to using an accumulator for fixed-point computation:

• The processor returns state information in accumulators under certain conditions, such
as an error code after a fault occurs;

• An instruction may be loaded or built in an accumulator, and then executed;

• AC2 or AC3 may be used as index registers for addressing (refer to the section,
"Address Modes").

Byte 0 Byte 1

o 7 8

Byte 2 Byte 3

3,1 16 23 24

Word 0

o

Word 1
3,1 16

INT-0015

Figura 1-2 Fixed-point accumulator

Processor Status Register

The processor status register (PSR) contains status flags such as an overflow fault service
mask and a fixed-point overflow fault flag. The overflow fault service mask allows the
processor to service a fault. The processor sets the overflow fault flag when the results of
a fixed-point computation exceed the system's ability to represent the result of the
compute. The remaining flags are processor-dependent.

You can access the PSR bits with instructions that set a bit or that test and skip on
condition of a bit. Refer to the chapter, "Fixed-Point Computing." for additional
information.

Floating-Point Computation
Floating-point computation consists of floating-point binary arithmetic with signed.
single-precision (32-bit) and double-precision (64-bit) numbers.

The processor contains five registers relating to floating-point computation: four 64-bit
floating-point accumulators (FPACO, FPACl, FPAC2, and FPAC3); and a floating-point
status register (FPSR). The next two sections summarize the floating-point registers. Refer
to the chapter, "Floating-Point Computing," for additional information.

Floating-Point Accumulators

A floating-point accumulator is accessed with instructions that manipulate single- and
double-precision floating-point numbers.

014-001371 1-3

1-4

System Overview

A single-precision number requires a double word (two consecutive words), while a
double-precision number requires two doublewords (four consecutive wo:ds) Figure 1-3
shows how these values map to a floating-point accumulator.

Double Word 0 (bits 0-15)

I,. Double Word 0 (bits 16-31)

132
Undefined

lot
Undefined

Double Word 0 (bit. 0-15) J 0

Double Word 0 (bits 16-31) .,I
16

Double Word 1 (bits 0-15) J 32

lot
Doubl. Word 1 (bit. 16-31) .J

INT-001S3

Figure 1-3 Floating-point accumulator

Floating-Point Status Register

The floating-point status register (FPSR) contains status and fault flags, such as exponent
overflow and underflow fault flags, fault service mask, input argument error flag, rounding
flag, and processor status flags.

The processor sets an overflow or underflow fault flag when the result of a floating-point
computation exceeds the processor's storage capacity. The fault service mask allows the
processor to service a fault. The remaining flags provide information on processor status.

You can access the contents of the FPSR with instructions to initialize it or to test and
skip on a condition.

014-001371

System Overview

Stack Management

The processor has facilities for narrow and wide stack management. A slack is a series of
consecutive locations in memory. Typically. a program uses a stack to pass arguments
between subroutine calls and to save the program state when servicing a fault. After
executing a subroutine or handling a fault. the processor restores the program and
continues program execution.

The narrow stack is a contiguous set of words that support ECLIPSE 16-bit program
development and upward program compatibility. Narrow stack management relies on
three 16-bit narrow stack management parameters, per memory segment, which are
maintained in memory. Refer to the chapter, "ECLIPSE 16-Bit Programming," for
additional information on the narrow stack.

The wide stack is a contiguous set of doublewords that support the ECLIPSE MV/Family
32-bit programs. Wide stack management relies on four 32-bit wide stack management
parameters. for each memory segment. A memory segment is a logically addressable
subset of memory. Refer to the section. .. Memory Management," for additional
information on memory and segments.

Wide stack management for the current segment also includes four 32-bit wide stack
management registers. You access a stack management register with instructions that load
or store a register value. Refer to the chapter, ,. Stack Management," for additional
information on the wide stack.

The following list summarizes the wide stack management registers.

• Wide stack base (WSB) defines the lower limit of the wide stack.

• Wide stack limit (WSL) defines the upper limit of the wide stack.

• Wide stack pointer (WSP) addresses the current top-most location on the wide stack.

• Wide frame pointer (WFP) defines a reference point in the wide stack.

Program Flow Management
In program flow management the processor controls program execution (such as calling a
subroutine) and handles faults. nlis section summarizes program control; the chapter,
.. Program Flow Management," provides additional information.

The processor controls program flow with a 31-bit program counter (PC). Figure 1-4
shows the format of the program counter. Table 1-1 describes the format.

Segment Logical Address

3 4

Logical Address

16

Figure 1-4 Program counter format

014-001371 1-5

System Overview

Table 1-1 Program counter format

Name

Segment

Bits Meaning

1-3 Current segment. The processor provides specific procedures for modifying
the current segment field.

Logical Address 4-31 Logical word address within the segment. During normal program flow. the
processor Increments bits 4-31 of the program counter. Thus. address
wraparound occurs within the current segment.

Queue Management
In queue management, elements are inserted, deleted, and searched for in a queue. A
queue is a variable-length list of linked entries. Typically, an operating system uses
queues to track processes that it must perform, such as printing files on a line printer.

Refer to the chapter, .. Queue Management," for further information on the queue
facilities and management.

Graphics Management
The optional Graphics Instruction Set (GIS) performs high speed graphic functions in
ECLIPSE MV IFamily systems. GIS supports windowing systems in which several programs
share one bitmap. The instruction set includes nonprivileged and privileged instructions.
Privileged instructions maintain the various databases. Nonprivileged instructions perform
operations such as reading or writing a single pixel, drawing lines, or filling in a bitmap
region with a solid color.

Refer to the chapter, "Graphics Management," for more detailed information on GIS as
well as the ECLIPSE MV/Family (32-Bit) Systems Instruction Dictionary for instruction
specifics.

Device Management

1-6

In device management, the processor transfers data between memory and a device. The
processor transfers data in bytes, words, or blocks of words using three transfer facilities:
programmed input/output (110); data channel 1/0 (DCH); or high speed burst
multiplexor channel (BMe). The chapter, "Device Management," summarizes the three
transfer facilities.

Programmed 1/0
Bytes or words may be transferred between an accumulator and a device with the
programmed 110 facility. The programmed 1/0 facility may be used to transfer data with
a slow speed device, or to initialize a data channel or a burst multiplexor channel
transfer.

Data Channel 1/0
The data channel 110 initiates a transfer of words between memory and a device. The
data channel accesses memory directly, with or without a device map. Thus, the data
transfer bypasses the accumulators.

Burst Multiplexor Channel
The high speed burst multiplexor channel initiates a transfer of blocks of words between
memory and a device. Memory is directly accessed, with or without a device map, with
the burst multiplexor channel. Thus, the data transfer bypasses the accumulators.

014-001371

System Overview

System Management
System management facilities determine processor-dependent configurations, such as
processor identification and size of the main memory. Refer to the chapter, U Memory
and System Management," for additional information.

Memory Management
The processor provides a logical address space of 4 gigabytes (1 gigabyte equals 230

bytes). The address space is divided into eight segments and rings, which facilitate
memory management. A segment is an addressable unit of memory that contains
programs and data. A ring is a collection of protection mechanisms, which safeguards the
contents of a segment.

As rings and segments are similar and inter-related, this manual uses the term segment to
indicate either term or both terms.

The processor addresses a segment through a 0-7 numbering system, and each segment
contains 512 Mbytes. Figure 1-5 illustrates the concept of the segments and their
contents.

• Segment O. The processor uses this segment to execute privileged and nonprivileged
instructions as the kernel operating system.

• Segments 1-7. The processor uses these segments to execute nonprivileged
instructions. Refer to the appropriate operating system programmer's manual for
information on the implementation-dependent use of segments (typically, segments
1-3 are used by the operating system).

Figure 1-5 Logical address space

014-001371

Acce.1 from .egment 7
to .egment 8 I. through
a gate defined In segment 6.

Full access
from Inner segments
to outer segments

Gate

Segment 7

tNT-Q0151

1-7

System Overview

As the logical address space is larger than physic~: memory, the processor uses virtual
memory to provide the full range of logical add: ses.

• The virtual memory system translates logical addresses to physical addresses.

A logical address specifies a segment number and a logical location within the
segment. You write programs using these logical addresses. The processor converts the
logical addresses to physical addresses, and then accesses the contents of the location
specified.

• The operating system may store the virtual memory on disk in 2-Kbyte units called
pages.

When processing needs a page on disk, the operating system moves the page to
physical memory for manipulation. This page-swapping system is called demand
paging.

The hardware facilities for address translation include eight segment base registers (SBRO
through SBR7), which define eight memory segments and their access protocols. The
processor's address translation capability is explained in the section, "Accessing
Memory."

Using a privileged instruction, you can load the contents of a segment base register. Refer
to the chapter. "Memory and System Management." for additional information.

ECLIPSE 16-Blt Compatible Instructions
The processor contains an ECLIPSE compatible instruction set (and stack facilities) for
16-bit program development and upward program compatibility. Most programs that
execute on ECLIPSE 16-bit computers also execute on ECLIPSE MV/Family computers
without recompiling or reassembling. Some ECLIPSE 16-bit instructions that refer to
memory locations may need to be modified before using them in ECLIPSE MV/Family
system-specific programs. Refer to the chapter, "ECLIPSE 16-Bit Programming," for
additional information.

This manual refers to ECLIPSE 16-bit instructions as ECLIPSE or 16-bit instructions,
and ECLIPSE MV /Family specific instructions as MV or 32-bit instructions.

Accessing Memory

1-8

The processor addresses and accesses memory for an instruction or for an operand. To
address memory, the processor uses a 16-bit word as the standard unit of address.

NOTE: For most efficient performance, 32- and 64-bit data should be aligned on
doubleword boundaries.

The instruction that the processor accesses can be a single word or mUltiple words. The
operand can be a bit, byte, word, doubleword, or multiple words. A memory reference
instruction refers to a class of instructions that access memory for data or for another
instruction. The memory reference instructions contain the information for

• Determining the effective address of an operand. The processor reads or writes an
operand.

• Determining the effective address of the next nonsequential instruction. The processor
modifies the program counter with the effective address, and then executes the
instruction that the program counter identifies.

014-001371

System Overview

A memory reference instruction attempts to access memory in the current segment or in
another segment. The validity of the access depends on a comparison of the access
protocols permitted for the memory page and the type of access that the instruction
attempts to perform. The access protocols are explained in the next two sections
"Current Segment" and "Other Segments."

Current Segment
When a memory reference instruction addresses the current segment, the processor
compares the page protocols with the type of access that the instruction requests,
determining the validity of the reference. The page protocols are identified as a valid
page, read access, write access, and execute access.

For instance, when loading a byte into an accumulator from the current segment, the
processor reads the byte from memory if it resides where the page protocols permit a
read access.

The processor also compares the segment field of every indirect address reference with
the current segment. For accessing data (read or write access), indirect addressing can
occur within the current segment or towards a higher numbered segment. For transferring
program control (execute access), indirect addressing must occur in the current segment.

If a reference is invalid, the processor aborts the access and services the fault (a
protection violation). Refer to the chapter, "Memory and System Management," for
further information on page access and protection violation faults.

Other Segments
When executing a memory reference instruction that addresses another segment,

• The processor compares the current segment with the destination segment to
determine the directional validity of the reference. The destination segment contains
the operand or nonsequential instruction.

Read or write access must be to the current segment or to a higher numbered
segment.

• The processor compares the segment and page protocols with the type of access that
the instruction requests to determine the access validity of the reference. The
processor first checks the segment protocols and then checks the page protocols.

If read or write access to a higher numbered segment is requested, the segment
protocol checks whether the segment is valid. For instance, when loading a byte into
an accumulator from a higher numbered segment, the processor reads the byte only if
it resides in a valid segment and page protocols permit a read access.

If the reference is invalid, the processor aborts the access and services the protection
violation fault. Refer to the chapter, "Memory and System Management," for further
details on page accesses and protection violation faults.

014-001371 1-9

System Overview

Memory Reference Instructions

1-10

Memory reference instructions i..\ccess memory using eithe:- word or byte addressing.
Figure 1-6 shows the typical memory reference instruction formats for word addressing.
Figure 1-7 shows the typical memory reference instruction formats for byte addressing.
The mnemonic "op" is the operation indicator. The instruction formats for word
addressing contain an indirect (@) field. The instruction formats for word and byte
addressing contain index and displacement fields, and also an optional accumulator (ac)
field. The optional accumulator field specifies a source or destination accumulator in the
range of zero through three.

For instance, if the ac field is equal to zero (ac = 0) for a load accumulator instruction,
the processor loads an operand from memory into the destination accumulator (ACO or
FPACO).

The combination of index, displacement, and @ (indirect) fields specifies the effective
address that contains the instruction or operand. To resolve the effective address, the
processor first identifies the addressing mode; then any indirect address(es). and finally
the effective address.

A typical Instruction format with an 8-blt displacement

o I op I ac I @ I Index I displacement

o I 1 15

A typical instruction format with a 1S-blt displacement

op

displacement

x := either • 0 or 1

A typical instruction format with a 31-blt displacement

I : I
displacement (bits 0-14)

31 I

I~ displacement (bits 15-30)

INT-00155

Figure 1-6 Memory reference Instruction word addressing formats

014-001371

System Overview

A typical Instruction format with a 16-bit displacement

Index I se I op

11 I,~ I ;31,: I :. I I ~ I 1 2 3 .. 5

I,· displacement

A typical Instruction format with a 32-blt displacement

Index I ee I op

11 I,~ 1,03 I,: I :. I I ~ I 1 2 3 .. 5

I,· displacement (bits 0-15)

3' I

I~ displacement (bits 16-31)

INT-00156

Figure 1-7 Memory reference instruction byte addressing formats

Address Modes
Using the index field (Table 1-2), the processor determines if the instruction specifies an
absolute or relative addressing mode. The Assembler (in conjunction with the appropriate
pseudo-op) produces object code with absolute or relative addressing.

Absolute Addressing

For absolute addressing, the displacement field contains an indirect or an effective
address. The address, expressed as an unsigned integer (8, 15, or 31 bits wide), specifies
an addressing range as shown in Table 1-2.

With a few exceptions (LDA, LDB, LDI, LDIX, LEF, LSN, and XOPO), an assembler
mnemonic of a memory reference instruction indicates the size and the range of the
displacement. For instance, a memory reference instruction

• Without the X or L prefix uses a standard displacement of 8 bits.

• With the X or E prefix uses an extended displacement of 15 bits.

• With the L prefix uses a long displacement of 31 bits.

NOTE: When using an 8- or 15-bit displacement in absolute addressing, the
processor zero-extends the displacement to 28 bits, and uses the current
segment for the 3 high-order bits of the effective address.

Thus, the displacemen~ becomes an indirect address or an effective absolute address.

014-001371 1-11

System Overview

Relative Aadressing

For relative addressing, the index fiel fines a register (Table 1-2) the contents of
which become a base address. The prL~essor adds the base address to the displacement
(8-, 15-, or 31-bit two's-complement mteger). When using an 8- or 1S-bit
displacement, the processor sign-extends the displacement to 31 bits.

In addition, if executing an instruction with an extended (1S-bit) or long (31-bit)
displacement, the processor adds a constant to the sum for program relative addressing.
The additional increment adjusts the sum to address the first word of the displacement,
which begins following the word that contains the instruction opcode. An instruction with
an 8-bit displacement contains the displacement in the same word as the opcode.

Thus, the address becomes an indirect or effective relative address.

Indirect and Effective Addresses

1-12

When the indirect field equals zero, the absolute or relative address becomes the effective
address. The processor translates an effective address to a physical address, and accesses
the physical address.

When the indirect field equals one, the absolute or relative address becomes an indirect
address (or pointer). The processor translates the indirect address to a physical address
and uses the contents of that physical address as another indirect or direct address.

NOTE: For an ECLIPSE 16-bit compatible instruction, the processor accesses a
single word in memory as an indirect pointer; otherwise, the processor
accesses a doubleword.

The processor tests bit 0 of the pointer contents. which defines additional (if any)
indirect addressing.

• When bit 0 equals zero, the contents become the effective address.

The processor translates the effective address to a physical address and accesses it.

• When bit 0 equals one, the contents become another pointer.

The processor continues to resolve pointers until bit 0 equals zero.

With the address translation unit (ATV) enabled, the processor can resolve up to 15 10

pointers. However. for an instruction that can specify two indirect-addressing chains
(such as WBLM). the total number of pointers for the two chains should be equal to
or less than 15.

NOTE: If the processor attempts to resolve more than 15 indirect addresses (with the
ATU enabled), a protection violation occurs. Though the actual number of
indirections (jor one or two chains of the same instruction) may vary slightly
with different processors, at some level of indirection the processor will trap.
All ECLIPSE MV/Family processors will detect infinite indirection.

014-001371

System Overview

Table 1-2 Effective addressing

Address
Mode

Absolute

PC
Relative

AC2
Relative

AC3
Relative

Index
Bits

00

01

10

11

Intermediate
logical
Address·

o

o

o

PC+O

AC2+0

AC2+0

AC2+0

AC3+0

AC3+0

AC3+0

Prefix t

E or X

L

E or X

L

E or X

l

E or X

L

Displacement Range
Octal Words (decimal)

o to 377
(0 to 255) (current ring)
o to 077777
(0 to 32.767) (current ring)
o to 17777777777
(0 to 2.147.483.647)

- 200 to + 177
(- 128 to + 127) (current ring)
- 40000 to + 37777
(- 16.384 to + 16.383)
-10000000000 to + 07777777777
(-1.073.741.824 to

1.073.741.823)

- 200 to + 177
(- 128 to + 127) (current ring)
- 40000 to + 37777
(- 16.384 to + 16.383)
-10000000000 to + 07777777777
(-1.073.741.824 to

+ 1,073,741,823)

- 200 to + 177
(- 128 to + 127) (current ring)
- 40000 to + 37777
(- 16,384 to + 16,383)
-10000000000 to + 07777777777
(-1.073.741,824 to +

1.073,741,823)

• The processor ignores bit 0 of PC, AC2, and AC3 when calculating the
intermediate logical address.

t

n

E, X or L corresponds to the prefix of an instruction mnemonic, which identifies
an instruction containing an ECLIPSE 16-bit extended (E) displacement field or
ECLIPSE 32-bit extended (X) or long (L) displacement fie/d.

The n variable in the PC relative addressing mode equals the number of words
that precede the first word of the displacement for the current instruction.

Operand Access
Before accessing a memory operand, the processor first resolves an effective address.

The processor accesses an operand as a bit, byte, several bytes, word, doubleword, or
several doublewords. Tables 1-3 and 1-4 show the relations between instructions that
load an accumulator with word-oriented and byte data, respectively. The following
sections explain the word, byte, and bit accesses. (To access several bytes, the processor
must first access a byte; to access several words or doublewords, it must first access a
word.)

014-001371 1-13

System Overview

Table 1-3 Word-oriented data

Instruction Word Address Width
(Bits)

Displacement V" ..Ith
(Bits)

LDA
ELDA
XNLDA
XWLDA
LNLDA
LWLDA

15
15
31
31
31
31

Table 1-4 Byte data

Instruction

STB
ESTB
WSTB
XSTB
LSTB

Byte Pointer
Address Width

(Bits)

16

16

32

32

32

8
15
15
15
31
31

Displacement
Width Index.
(Bits)

o
16

o
16

32

Byte address In any accumulator

Word address (absolute, PC-relative, AC-relatlve)

Byte addrE!ss In any accumulator

Word address (absolute. PC-relative. AC-relatlve)

Word address (absolute. PC-relative. AC-relatlve)

Word

The processor accesses a word operand for computations involving narrow (16-bit) data.
An instruction mnemonic with a prefix of N (such as N AD D) indicates a narrow or one
word operand. An instruction that requests a word in memory (such as XNLDA) supplies
the effective address parameters to the processor. The processor then resolves the
effective address.

Doubleword

The processor accesses a double word operand for computations involving data widths of
32 or more bits. A fixed-point instruction mnemonic with a prefix of W (such as
WAD D) indicates a wide or two-word operand. A single-precision floating-point
instruction (such as LF AMS) requires one doubleword, while a double-precision
instruction (such as LFAMD) requires two doublewords.

An instruction that requests a double word (such as XWLDA) supplies the effective
address parameters to the processor. The processor then resolves the effective address,
which points to the first word of the doubleword operand.

Byte

1-14

An instruction that requests a byte forms a byte pointer from the contents of an
accumulator or from the contents of the index field and the 16- or 32-bit displacement.
(The accumulator specified by the index field holds a word pointer. The processor
multiplies this word pointer by two to create a byte pointer.) A byte pointer consists of
an effective address and a byte indicator. The least significant bit of the byte pointer
contains the byte indicator.

NOTE: Byte addressing excludes indirect addressing.

014-001371

System Overview

The processor identifies a byte as follows:

• 16-Bit displacement

For an instruction with a 16-bit displacement (such as XLDB), the processor extends
the displacement to 29 bits (absolute addressing) or 32 bits (relative addressing),
calculates the effective address, and then identifies the byte. Note that when the
processor extends the displacement to 29 bits, it also appends the current ring of
execution (as bits 0-2) to create a 32-bit address.

• 32-Bit displacement

For an instruction with a 32-bit displacement (such as LLDB), the processor
calculates the effective address, and then identifies the byte.

• Accumulator

For an instruction that requires a byte pointer in an accumulator, you must first use a
load effective byte address instruction (such as LLEFB). The load effective byte
address instruction calculates an effective byte address, and then loads it into an
accumulator.

Although identification of the bit numbers depend on the byte pointer location, the
format of a byte pointer remains identical, regardless of its location. Figure 1-8 shows
the formats for a byte pointer; Table 1-5 describes the formats.

16-bit Displacement

Word address BI

16 30 31

32-bit Displacement

I
Segment I,. Word address

3' I 16 18

I~ Word address

46 1
BI

I 47

Accumulator Contents

I
Segment

I 3

Word address

,51 0 2

1'6

Word address J BI

I 31

INT-00157

Figure 1-8 Byte pointer format

014-001371 1-15

Bit

System Overview

Table 1-5 Byte pointer contents

Name Meaning

Segment This field identifies either the current segment or an outward memory segment.

Word address This field Identifies a 16-blt word In the memory segment.

BI This field Identifies the byte. When the BI field equals 0, the processor accesses
the most significant byte (bits 0-7). When the BI field equals 1, the processor
accesses the least significant byte (bits 8-15).

The processor accesses the word and then locates the byte as Figure 1-9 shows.

Segment 7

32-blt byte address
A

I~---------'----------"\

0 Byte Indicator specifies
most significant byte

1" 1 I 0 I 000 I 000 I 000 1110 1000 1010 1011 1110 I 001 I 0 I
~-------..... r------

Specifies
segment
In memory

602355
602356
602357
602360
602361
602362

'----'-\v,------J Word address specifies
a word In memory

602363 Word 602361

0 15

Words In memory

Figure 1-9 Byte addressing

An instruction that accesses a bit in memory (such as WBTO, WBTZ, WSNB, WSZB,
and WSZBO) forms a bit pointer from the contents of two accumulators. The bit pointer
is composed of a word pointer and a bit identifier. The word pointer consists of an
effective address (in the aes accumulator) and a word offset (in the aed accumulator).
The bit identifier is located in the least significant bits of the aed accumulator.

Figure 1-10 shows the accumulator formats for the WBTO, WBTZ, WSNB, WSZB, and
WSZBO instructions; Table 1-6 describes the formats.

Table 1-6 Bit pointer contents

Name Meaning

@ Specifies Indirection. When It equals 1. It Identifies an Indirect address; when
It equals 0, It Identifies a direct address.

Segment Identifies either the current segment or an outward memory segment.

Base word address Identifies a 16-blt word In the specified memory segment.

Base word offset Contains an unsigned Integer which the processor adds to the effective
address to arrive at a final word address (see Figure 1-11).

Bit Identifier Specifies the bit position (0-15) In the final word.

INT-001S8

1-16 014-001371

System Overview

ACS Contents

I: I Segment Word address

3 4

I ,. Word address

ACD Contents

Word offset

I ,.
Word offset Bit Identifier I

28 31

INT- 0160

Flgur. 1-10 Bit pointer format

The processor uses the acs accumulator contents to calculate an effective address. If a bit
instruction specifies the two accumulators as the same accumulator, then the base word
address is zero in the current segment.

ACS I 0 1111 I 000 1100 1 000 I 000 1101 1110 1110 1110 1 000 I Segment 7

t.(LfJl~ 31 I

Indirect SpecifIes T
bit segment 7 Word address

Specifies a word In memory

I Specifies offset from word

28-blt word offset

1 '-1 -------~ '---------.1

4-blt bit Identifier

ACD I 0 1 000 I 000 I 000 I 000 I 000 I 000 I 000 I 000 I 010 11101 I
o 27 28 31

15 o
Specifies bit 13 of word

Word 40056662

INT-001S9

Figure 1-11 Bit addressing

014-001371 1-17

System Overview

Protection t:!apabilities

1-18

While executIng an instruction, the processor checks the validity of a memory reference
or an 110 operation (protection violation), a page reference (nonresident page). a stack
operation, a computation, and a data format. Table 1-7 lists the validity checks (or
faults).

Table 1-7 Faults

Fault

Nonresident page

Protection violation

Stack operation

Fixed-point computation

Floating-point computation

Invalid decimal or ASCII data format

Type

Privileged

Privileged

Nonprlvlleged

Nonprlvlleged

Nonprlvlleged

Nonprlvlleged

If the processor detects an error, a nonprivileged or privileged fault occurs before the
next instruction is executed. A nonprivileged fault occurs when the processor detects a
computation error. The processor limits 110 access on a per ring basis, and limits memory
access using a hierarchical protection mechanism. For instance,

• Before executing an 110 instruction, the processor checks the 1/0 validity flag in the
current segment.

• Before executing a memory reference instruction, the processor checks the validity of
the reference.

The processor executes an 110 or memory reference instruction when validity checks
permit the access. Otherwise, the processor initiates a protection violation. Thul. an
operating system can restrict access to the devices to specific segment(s).

Accessing and changing a protection mechanism requires a privileged instruction
(executable only in segment 0) or data access, typically controlled by the operating
system. Refer to the chapter, "Program Flow Management," for further details on
servicing a nonprivileged fault.

A privileged fault occurs when an operation is not permitted by the address translation
mechanism (page not resident, 1/0 protection) or by the ring structure (privileged
instruction, outward call). Refer to the chapters, "Memory and System Management" and
"Program Flow Management," for further details on servicing a privileged fault.

End of Chapter

014-001371

2
Fixed-Point Computing

U sing fixed-point computation the processor can add. subtract, multiply, and divide 16-
and 32-bit signed (two's-complement) and unsigned binary data. The processor can also
perform logical operations on 16- and 32-bit data.

In addition to binary arithmetic and logical operations, the processor can manipulate
8-bit bytes (as alphanumeric ASCII data) and can perform binary coded decimal (BCD)
arithmetic. The processor performs the byte manipulation with fixed-point operations,
and performs BCD arithmetic with fixed-point and floating-point operations.

Following a computation, the processor can shift (arithmetically or logically) the contents
of an accumulator and can skip on a condition (the result of the computation and/or
shift). Finally, the processor can store the result in an accumulator or memory.

This chapter explains the various computations (binary, logical, decimal and byte) and
the processor status register.

014-001371
2-1

Fixed-Point Computing

Binary Operations
The processor performs fixed-point binary arithmetic in the arithmetic logic unit (AL U).
Move, arithmetic, shift, and skip instructions control processor and arithmetic logic unit
operations.

Data Formats

2-2

The majority of fixed-point arithmetic instructions require two's-complement (signed)
binary numbers. For instance, the ADD instruction adds two 16-bit two's-complement
binary numbers. The 16- and 32-bit numbers must begin on word boundaries. Figure
2-1 shows the fixed-point accumulator formats for the 16- and 32-bit two's-complement
numbers; Table 2-1 describes the formats. Table 2-2 shows the precision of 16- and
32-bit two's complement (signed) binary numbers.

16-81t Fixed-Point Two's-Complement Format

Zero- or sign-extend ,.1
Two' I-complement number

32-81t Fixed-Point Two' s-Complement Format

I : I Two' a-complement number

I,. Two' a-complement number

INT-00161

Figure 2-1 Fixed-point two's-complement data formats

Table 2-1 Fixed-point two's-complement formats

Name

Zero- or aign-extend

S

Two's-Complement
Number

Contents

These bits contain either 16 zeros or 16 ones. For moving and computing
narrow data (depending on the Instruction). the processor sign-extends
the narrow data either when loading It Into an accumulator. or (when
converting It to wide data) before or after the narrow data operations.

The sign bit. Bit 16 contains the sign bit for narrow data; bit 0 contains
the sign bit for wide data. The sign bit equals zero for a positive number
and equals one for a negative number.

The processor requires two' s-complement binary numbers for the
majority of fixed-point arithmetic computation.

Table 2-2 Range of 16- and 32-bit fixed-point numbers (in octal)

Form of Data

Signed (two' s complement)

Unsigned

16-blt Precision

-32.768 to +32.767

o to 65.535

32-blt Precision

-2.147.483.648 to +2.147.483.647

o to 4.294.967.295

014-001371

Fixed-Point Computing

Table 2-3 lists the instructions that explicitly convert 16-bit data to or from 32-bit data.
Other tables in this chapter list the instructions that convert the precision before or after
another function. For instance, when loading narrow data (16-bit) from memory into an
accumulator, the processor sign-extends the number before loading it. \\'hen executing a
narrow fixed-point instruction (NADD), the processor sign-extends the result.

Table 2-3 Fixed-point preCision conversion

Instruction

CVWN
SEX
ZEX

Move Instructions

Operation

Convert from 32 -bit to 16-blt
Sign-extend 16-blts to 32 -bits
Zero-extend 16-blts to 32-blts

The move instructions transfer data between accumulators, load or store data between
memory and an accumulator, calculate and load a value into an accumulator, or move
blocks of words between memory locations. Table 2-4 lists these instructions according to

type of operation.

The block move instructions (such as WBLM) require an effective address in one or
more accumulators. Use a load effective address instruction to calculate and load the
effective address into an accumulator.

Table 2-4 Fixed-point data movement instructions

Instruction Type
Instruction Operation

Between Accumulators
MOV • Move and skip
WMOV Wide move
WXCH Wide exchange accumulators
XCH • Exchange accumulators

Betwen memory and an accumulator
ELDA • Extended load accumulator
EST A • Extended store accumulator

LDA •
LDATS
LNLDA
LNSTA
LWLDA
LWSTA
NLDAI
STA •
STATS
XNLDA
XNSTA
XWLDA
XWSTA
WLDAI

Load accumulator
Load accumulator with doubleword addressed by WSP
Narrow load accumulator (long displacement)
Narrow store accumulator (long displacement)
Wide load accumulator
Wide store accumulator
Narrow load Immediate
Store accumulator
Store accumulator Into doubleword addressed by WSP
Narrow load accumulator
Narrow store accumulator
Wide load accumulator
Wide store accumulator
Wide load with wide Immediate

Calculate and load Into an accumulator
ELEF • Extended load effective address
LEF • Load effective address
LLEF Load effective address (long displacement)
XLEF Load effective address

Between memory locations
BAM • Block add and move

BLM •
WBLM

Block move
Wide block move

• ECLIPSE compatible instruction

014-001371
2-3

Fixed-Point Computing

Arithmetic Instructions

2-4

The arithmetic instructions perform computations on fixed-point values. The basic
operations include addition, subtraction, multipication, and division. An additional
arithmetic operation is incrementing or decrementing a value and then skipping the next
sequential 16-bit word in the instruction stream depending on the results of the new
value.

Arithmetic functions are performed on either two values in accumulators. an immediate
value and an accumulator, an immediate value and a memory location, or a memory
location and an accumulator. Tables 2-5 through 2-9 list the arithmetic instructions
according to arithmetic function and type of operation.

NOTE: The ECLIPSE 16-bit compatible instructions (such as, ADC, ADD, MUL,
and D IVS) ignore bits 0-15 of the source accumulator. The results of
ECLIPSE 16-bit compatible instructions leave bits 0-15 of the destination
accumulator undefined, except where noted otherwise.

Table 2-5 Fixed-point addition Instructions

Operation Type
In.tructlon Operation

Accumulator to Accumulator

ADC • Add complement and skip
ADD • Add and skip
NADD Narrow add
WADC Wide add complement
WADD Wide add
ADDI • Extended add Immediate
ADI • Add Immediate

Immediate to Accumulator

INC • Inorement and Iklp
NADDI Narrow extended add Immediate
NADI Narrow add Immediate
WADDI Wide add with wide Immediate
WADI Narrow add Immediate
WINC Wide Increment
WNADI Wide add with narrow immediate

Immediate to Memory
LNADI Narrow add Immediate
LWADI Wide add Immediate
XNADI Narrow add Immediate to memory word
XWADI Add Immediate to memory doubleword

Memory to Accumulator

Operand Valu ••
Sourc. D •• tlnatlon Ae.ult

U16 U16 U16
U16 U16 U16
S16 S16 532
S32 S32 532
S32 S32 S32
S16 S16 516
21 U16 U16

1 U18 U16
S16 S16 532
21 516 532
S32 532 532
21 S32 532
1 U32 U32
S16 532 S32

21 S16 S16
21 S32 532
21 516 S16
21 532 532

LNADD Narrow add memory word to accumulator S16 S16 S32
LWADD Wide add memory to accumulator S32 S32 S32
XNADD Narrow add memory to accumulator S16 S16 S32
XWADD Wide add memory to accumulator S32 S32 S32

S16 = Signed 16-blt inteQer S32 • SIQned 32-blt InteQer
U 16 = Unsigned 16-bit integer U32 • UnslQned 32-blt InteQer

21 • 2-bit inteQer In range 1 to 4
* ECLIPSE compatible instruction

014-001371

Fixed-Point Computing

Table 2-6 Fixed-point subtraction instructions

Operation Type
Instruction Operation

Accumulator from Accumulator

NSUD Narrow subtract
SUB • Subtract and skip
WSUD Wide subtract

Immediate from Accumulator
NSBI Narrow subtract Immediate
S B I • Subtract Immediate
WSBI Wide subtract Immediate

Immediate from Memory
LNSBI Narrow subtract Immediate
LWSBI Wide subtract Immediate
XNSBI Narrow subtract Immediate
XWSDI Wide subtract immediate

Memory from Accumulator
LNSUB Narrow subtract memory immediate
LWSUB Wide subtract memory word
XNSUB Narrow subtract memory word
XWSUB Wide subtract memory

S 16 = Signed 16-bit integer
U 16 = Unsigned 16-bit integer

* ECLIPSE compatible instruction

Table 2-7 Fixed-point multiplication instructions

Operation Type
Instruction Operation

Accumulator by Accumulator
M U L • Unsigned multiply
M U LS • Signed multiply
N M U L Narrow sign-extend multiply
WMUL Wide multiply
WMULS Wide signed multiply

Accumulator by Memory

LNMUL Narrow wide multiply memory word
LWMUL Wide multiply memory word
XNMUL Narrow multiply memory word
XWMUL Wide multiply memory word

014-001371

S 16 = Signed 16-bit Integer
U16 = Unsigned 16-bit integer

* ECLIPSE compatible Instruction

Operand Values
Source Destination

S16 S16
U16 U16
S32 S32

21 S16
21 U16
21 S32

21 S16
21 S32
21 S16
21 S32

S16 S16
S32 S32
S16 S16
S32 S32

S32 = Signed 32-blt integer
U32 = Unsigned 32-blt integer
21 = 2-bit integer in range 1 to 4

Operand Values
Source Destination

U16 U16
S16 S16
S16 S16
S32 S32
S32 S32

S16 S16
S32 S32
S16 S16
S32 S32

S32 = Signed 32-blt integer
U32 = Unsigned 32-bit Integer
21 = 2-blt Integer In range 1 to 4

Result

S32
U16
S32

S32
U16
S32

S16
S32
S16
S32

S32
S32
S32
S32

Result

U32
S32
S32
S32
S64

S32
S32
S32
S32

2-5

2-6

Fixed-Point Computing

Table 2-8 Fixed-point division instructions

Ope. ..; Values I Operation Type
Instruction Operation Divisor Dh, .dend Quotient/Remainder

Accumulator by Accumulator
D I V • Unsigned divide U 16
DIVS • Signed divide S16
D I VX • Sign-extend and divide S 16
H LV • Halve signed 2
NDIV Narrow sign-extend divide S16
WDIV Wide divide S32
WDIVS Wide signed divide S32
WH LV Wide halve signed 2

Accumulator by Memory
LNDIV Narrow divide memory word 516
LWDIV Wide divide memory word 532
XNDIV Narrow divide by memory word 516
XWDIV Wide divide by memory doubleword 532

U32
532
516
516
516
532
564
532

516
532
516
532

U16/U16
516/516
S16/516
516/-
532/-
532/-
532/532
532/-

532/-
532/-
532/-
532/-

S16 = Signed 16-bit integer
U16 = Unsigned 16-bit integer

S32 = Signed 32-bit Integer
U32 = Unsigned 32-bit Integer
- = Not applicable

• ECLIPSE compatible instruction

Table 2-9 Fixed-point increment or decrement value and skip instructions

Instruction

DSZ •
DSZTS
EDSZ •
EISZ •
ISZ •
ISZTS
LNDSZ
LNISZ
LWDSZ
LWISZ
XNDSZ
XNISZ
XWDSZ
XWISZ

Operation

Decrement and skip If zero
Decrement the double word addressed by W5P (skip If zero)
Extended decrement and skip If zero
Extended Increment and skip If zero
Increment and skip If zero
Increment the doubleword addressed by W5P (skip If zero)
Narrow decrement and skip If zero
Narrow Increment and skip If zero
Wide decrement and skip If zero
Wide increment and skip If zero
Narrow decrement and skip If zero
Narrow increment and skip If zero
Wide decrement and skip If zero
Wide Increment and skip If zero

All of the Instructions above are atomic (if the wide operand Is aligned on a doubleword boundary)
with the exception of DSZTS and ISZTS. Note that a performance Increase may be realized
(particularly In a multiple-processor configuration) If you use Instructions which are not atomic In
place of atomic ones, such as LWADI (Wide Add Immediate) or ISZTS Instead of LWISZ.

• ECLIPSE compatible instruction

014-001371

Fixed-Point Computing

Carry Operations
For fixed-point arithmetic operations. the processor maintains a carry flag (Carry) that
contains a value of 0 or 1. If an instruction acids 16-bit data. any carry occurs from hit
16; if an instruction adds 32-bit data. any carry occurs from bit O.

The value of Carry can be initialized before a binary operation by executing an explicit
carry instruction. Table 2-10 lists the instructions that initialize Carry. The processor
retains the value of Carry for use with another instruction.

The processor changes the value of Carry as a result of executing an ECLIPSE
MV /Family arithmetic instruction or an EClI PSE 16-bit compatible fixed-point
instruction. For an ECLIPSE MV IFamily arithmetic instruction. the processor loads the
result of a carry into Carry; it is not relative to its former value (as it is with an ECLIPSE
16-bit compatible instruction). For an EClI PSE 16-bit compatible instruction. the
processor complements Carry during

• Addition. when the most significant bit of each operand and the carry from the
adjacent bit produce a carry;

• Subtraction, when borrowing from the most significant bit.

Table 2-10 Carry initializing instructions

Instruction

ADC •
AND •
ADD •
COM •
CRYTC
CRYTO
CRYTZ
INC •
MOV·
NEG •
SUB •

Operation

Add complement with optional Carry initialization
AND with optional Carry initialization
Add with optional Carry initialization
One's complement with optional Carry initialization
Complement Carry
Set Carry to one
Set Carry to zero
Increment with optional Carry Initialization
Move with optional Carry initialization
Negate with optional Carry Initialization
Subtract with optional Carry initialization

• ECLIPSE compatible instruction

Shift Instructions
ECLIPSE MV/Family shift instructions operate on either the entire 32 bits of an
accumulator (wide shift) or bits 16-31 of an accumulator (ECLIPSE 16-bit instructions).

Wide arithmetic shift instructions (WASH and \VASHI) move 32 bits of an accumulator
left or right (0 to 31 bit positions), depending on an 8-bit two's-complement number.
The 8 bits in the source accumulator for the \V ASH instruction or the 8 bits in the
immediate displacement of the WAS H I instruction contain the 8-bit number.

014-001371
2-7

2-8

Fixed-Point Computing

• For a left shift. the 8-bit number is positive. The processor shifts from 0 to 31 bit
positions and zero-extends the vacated bit positions. A fixed-point overflow occurs if
the sign bit changes.

NOTE: Shifting a negative value more than 3 J bit positions to the left guarantees a
fixed-point overflow.

• For no shifting. the 8-bit number must be O.

• For a right shift. the 8-bit number must be negative. The processor shifts from 0 to
31 bits and sign-extends the vacated bit positions. The processor drops the bits shifted
from the least significant bit position. Negative values shifted right are rounded
towards zero.

For instance. when the processor shifts -3 to the right one bit position. the result yields
-1; shifting + 1 to the right one bit position yields O. The WASH and W ASHI instructions
provide the capability of mUltiplying or dividing by a power of 2.

The ECLIPSE 16-bit compatible arithmetic and logical instructions (ADC. ADD. AND.

COM. INC. MOV. NEG. and SUB) can shift an intermediate result one bit position or
swap the two bytes (Figure 2-2). Accumulator bit 31 is the least significant bit, and bit
16 is the most significant bit. The shift can be

• One bit to the left.

Carry assumes the state of the most significant bit. and the least significant bit assumes
the state of Carry.

• One bit to the right.

Carry assumes the state of the least significant bit, and the most significant bit assumes
the state of Carry.

• A swap of the most significant byte with the least significant byte.

The processor preserves the state of the Carry flag.

Direction Shifter Operation f

Left Left rotate one place. Bit 16 Is rotated into the
carry position. the carry bit Into bit 31 .

YC l4 I 16-31 ~
Right Right rotate one place. Bit 31 Is rotated Into the

carry position. the carry bit into bit 16.

~cl ~I 16-31 rJ
Swap Swap the halves of the 16-blt result. The carry

is not affected.

I
I 16-23 I 24-31 I

l ---1

r 1
I 16-23 I 24-31 I

INT-00162

Figure 2-2 ECLIPSE compatible shift operations

014-001371

Fixed-Point Computing

Skip Instructions
In a skip instruction. the processor tests the result of an operation for a specific condition
and directs the processor to skip or execute the word after the skip instruction.

For an instruction that includes a skip option (such as the ECLIPSE 16-bit compatible
arithmetic and logical instructions). the processor tests the result during its temporary
storage. The processor can then save the result of the computation or ignore it. For an
instruction that excludes a skip option (such as NADD), the processor stores the result in
memory or an accumulator. You can then test the result with an explicit test and skip on
condition instruction (such as Skip on OVR Reset - SNOVR).

The ECLIPSE 16-bit compatible instructions test for a zero or nonzero value for either
or both of the temporary result or Carry. Other instructions compare immediate values to
the contents of memory locations or an accumulator. or compare the contents of two
accumulators.

Table 2-11 lists the fixed-point skip on condition instructions according to type of
operation. When a skip occurs, the processor increments the program counter by one
and executes the second word after the skip instruction.

NOTE: Be sure that a skip does not transfer controJ to the middJe of a 32-bit or
longer instruction.

Table 2-11 Fixed-point skip on condition instructions

Instruction Operation

ECLIPSE 16-bit compatible instructions
ADC • Add complement with optional skip
ADD • Add with optional skip
INC • Increment with optional skip
MOV • Move with optional skip
NEG • Negate with optional Carry Initialization
SUB • Subtract with optional skip

Compare immediate to accumulator
WSEQI Wide skip if equal to Immediate
WSGTI Wide skip if AC greater than immediate
WSLEI Wide skip If AC less than or equal to immediate
WS N EI Wide skip If AC not equal to Immediate
WUGTI Wide unsigned skip If AC greater than Immediate
WULEI Wide unsigned skip if AC less than or equal to Immediate

Compare immediate to memory location
C L M • Compare to limits
WCLM Wide compare to limits and skip

Compare accumulator with accumulator
SGE • Skip if ACS greater than or equal to ACO
SGT • Skip if ACS greater than ACO
WSEQ Wide skip If ACS equal to ACO
WSGE Wide signed skip If ACS greater than or equal to ACO
WSGT Wide signed skip If ACS greater than ACO
WS LE Wide signed skip If ACS less than or equal to ACO
WSLT Wide signed skip if ACS less than ACO
WSNE Wide skip if ACS not equal to ACO
WUSGE Wide unsigned skip if ACS greater than or equal to ACO
WUSGT Wide unsigned skip if ACS greater than ACO

• ECLIPSE compatible Instruction

014-001371
2-9

Fixed-Point Computing

Overflow Fault
The processor checks .x a fixed-point overflow when attempting division or when
calculating a fixed-point result. An overflow occurs if the divisor is zero, or if the result
is too large to store in memory or in a fixed-point accumulator. At the end of the
current instruction cycle, the processor sets the processor status register's overflow flag
(OVR) to one. OVR remains set until cleared by another instruction. Refer to the
chapter, "Program Flow Management," for information on fault handling.

Processor Status Register

2-10

The processor contains a 16-bit processor status register (PSR), which retains information
about the status of fixed-point computations. You access the register with instructions that
test and set the register contents. Refer to the" Skip Instructions" section for a list of the
instructions that test the register contents. Table 2-12 lists the instructions that
manipulate the register contents.

Table 2-12 PSR manipulation instructions

Instruction

BKPT
FXTD
FXTE
LCALL
LPSR
PBX
SNOVR
SPSR
\VDPOP
WPOPB
WRSTR
WRTN
WSAVR
WSAVS
WSSVR
WSSVS
XCALL
XVCT

Operation

Breakpoint (sets the PSA to 0; tests IXCT upon return from Interrupt)
Disable fixed-point trap (resets OVK and disables traps)
Enable fixed-point trap (sets OVK and enables traps)
Call subroutine (sets OVA to 0)
Load PSA Into ACO
Pop block and execute (may set IXCT)
Skip on OVA reset
Store PSA from ACO
Wide pop context block (restores PSA from context block)
Wide pop block (restores PSA from wide stack)
Wide restore (restores PSA from wide stack)
Wide return (restores PSA from wide stack)
Wide save and set OVK to zero
Wide save and set OVK to one
Wide special save and set OVK to zero
Wide special save and set OVK to one
Call subroutine (sets OVA to 0)
Vector 1/0 Interrupt (initializes PSA with contents of device control table)

Figure 2-3 shows the format of the processor status register; Table 2-13 describes its
contents.

Aeserved

151
INT-00163

Figure 2-3 Processor status register format

NOTES: The IRES, IXCT and FFP bits are for hardware use. Do not modify the
state of these bits; otherwise, results are unpredictable.

Refer to a machine-specific supplement for information on implemented bits.

014-001371

Fixed-Point Computing

Table 2-13 Processor status register contents
Bit Mnemonic Function

o

2

3

4

014-001371

OVK OVK is an overflow mask.
To enable fixed-point overflow detection and servicing. set OVK to 1 (with the
FXTE. SPSR. WSAVS. and WSSVS Instructions - see Table 2-12).
The processor saves or restores the status of OVK when going to or returning
from a subroutine or fault handler. For the processor to detect and service an
overflow fault. OVK must be set to 1 before the processor sets OVR to 1.

OVA OVR Is an overflow flag.

IRES

IXCT

FFP

The processor sets OVR to 1 when It detects a fixed-point overflow condition.
The processor detects a fixed-point overflow condition when the result exceeds
the 16-blt precision (for narrow data instruction) or 32-bit precision (for wide
data instruction) .
The overflow condition (overflow) exists for the duration of the fixed-point
Instruction that causes the overflow. The processor saves the transient overflow
condition by performing a logical Inclusive OR of overflow and OVR before
completing the instruction.
OVR remains set to 1 until any of the following events occur:
• An 110 interrupt request is acknowledged.

Refer to the chapter. M Device Management." for additional details.
• A fault is detected and serviced.

Refer to the chapter. .. Program Flow." for additional details.
• A powerup. 110 reset. or system reset is performed.
• The processor executes an Instruction listed In Table 2 -12.
IRES Is an interrupt resume flag.
The processor sets IRES when It Interrupts a resumable instruction that requires
the processor to save its state on the user stack. For example, when the
processor Interrupts a Wide Edit (WEOIT) Instruction, the processor sets IRES
and saves the microstate on the user stack.

When a resumable Instruction begins execution. It first tests IRES. If IRES Is O.
the instruction begins an initial execution. If IRES Is 1. the instruction restores
the state. resets IRES to O. and resumes execution.
NOTE: Although the processor can interrupt some instructions,

implementations may choose to run them through to completion.
Refer to a machine-specific supplement for additional information.

IXCT is an interrupt-executed opcode flag.
When the processor executes the B KPT instruction. It pushes a wide return
block onto the current stack. Then. when returning program control, the PBX
instruction (located at the end of the breakpOint handler) pops the wide return
block and continues the normal program flow with the saved Instruction in ACO.

If an interrupt occurs while executing the saved Instruction (PC points to the
B KPT Instruction). the processor sets IXCT and pushes the opcode of the
saved Instruction onto the wide stack. Upon returning from the Interrupt handler.
the BKPT instruction tests IXCT. If IXCT Is set. the BKPT Instruction resets
IXCT to 0, pops the saved opcode of the interrupted Instruction off the wide
stack, and executes it.

FFP Is the floating-point fault pending flag.
This bit contains the state of the Trap Enable (TE) flag of the floating-point
status register (FPSR) only if the FPSR error bit (ANY) Is also set to indicate a
floating-point error. FFP Is applicable to systems with floating-point units which
are capable of operating In parallel with the CPU. FFP is valid only in the PSR
within the context block.
Before handling either an Interrupt or page fault. the processor must walt for
any floating-point instruction executing In a parallel floating-point unit to
complete.
To guarantee that any floating-point fault Is serviced in the proper context. the
processor inhibits the floating-point trap until the completion of the page fault or
the interrupt service. To accomplish this. the processor sets FFP to reflect the
current value of TE In the FPSR. The processor then clears TE (if FFP is set) to
inhibit floating-point faults and services the page fault or Interrupt.
Upon return from the service routine. the processor restores the FPSR TE bit
from the PSR FFP and clears FFP. If the restored FPSR TE bit is 1, the
processor services any pending floating-point traps after the next Instruction
boundary Is crossed. such as after a WOPOP or WRSTR instruction.

(continued)

2-11

Fixed-Point Computing

Table 2-13 Processor status register contents (concluded)

Bit Mnemonic Function

5-15 Reserved The processor sets the reserved bits to zero when storing them in memory.
The processor Ignores the reserved bits when loading the PSR.
CAUTION: Do not set the PSR bits 5 through 13 to store transient data while

they are in memory (such as in a return blocK); these reserved bits
must remain unused.

When stored in memory. bits 14 and 15 are reserved for Data General
software.

Logical Operations
The processor performs fixed-point logical arithmetic in the arithmetic logic unit. You
control the processor and arithmetic logic unit operations with the move, logic, shift, and
skip instructions.

The processor performs the logical functions with ADC, AND, COM, lOR, and XOR
instructions. It can then store the result in memory or can test the result with a skip
instruction, which either continues normal program flow or changes it.

Data Formats

2-12

Fixed-point logical instructions require the binary data to begin on word boundaries. For
instance, an Inclusive OR instruction (lOR) performs a logical OR of two 16-bit binary
values; a Wide Inclusive OR instruction (WIOR) performs a logical OR of two 32-bit
binary values. Figure 2-4 shows the 16- and 32-bit formats.

16-81t Fixed-Point Logical Format

Undefined

IS I

1,.
Logical Data

32-81t Fixed-Point Logical Format

Logical Data

IS I

1,.
Logical Data

31 I
Figure 2-4 Fixed-point logical data formats

014-001371

Fixed-Point Computing

Logical Instructions

The instructions, listed in Table 2-14, perform logical manipulation on binary data -
one's complement, negate, AND, inclusive OR. or exclusive OR. The instructions operate
on one or two accumulators, or an accumulator and an immediate value.

Table 2-14 Logical Instructions

Instruction

ANC *
AND *
ANDI *
COM *
lOR *
IORI *
NEG *
NNEG
WANC
WAND
WANDI
WCOM
WIOR
WIORI
WNEG
WXOR
WXORI
XOR *
XORI

Operation

AND with one's complemented source
AND
AND Immediate
Complement (one's complement)
Inclusive OR
Inclusive OR Immediate
Nogate
Narrow Negate
Wide AND with one' s complemented source
Wide AND
Wide AND Immediate
Wide complement (one' s-complement)
Wide Incluelva OR
Wide Inclusive OR Immediate
Wide Negate
Wide exclusive OR
Wide exclusive OR Immediate
Exclusive OR
Exclusive OR Immediate

* ECLIPSE compatible instruction

Bit Manipulation
The instructions listed in Table 2-15 operate on one or more bits. A wide set bit
instruction (WBTO and WBTZ) requires an effective address in an accumulator. Use a
load effective address instruction (LLEF or XLEF) to calculate and to load the effective
address into an accumulator.

Table 2-15 Bit Instructions

Instruction

COB *
LOB *
LRB *
WBTO
WBTZ
WLOB
WLRB

014-001371

Operation

Count bits
Locate lead bit
Locate and reset lead bit
Wide set bit to one
Wide set bit to zero
Wide locate lead bit
Wide locate and reset lead bit

2-13

Fixed-Point Computing

Shift Instructions
Table 2-16 lists the logical shift instructions. The processor can also shift an intermediate
result for the ADC, ADD, INC, MOV, NEG and SUB instructions.

Table 2-16 Logical shift instructions

Instruction

DHXL*
DHXR *
DLSH *

HXL •
HXR •
LSH *
WLSH
WLSHI
WLSI
WMOVR

Operation

Double hex shift left
Double hex shift right
Double logical shift
Hex shift left
Hex shift right
logical shift
Wide logical shift
Wide logical shift immediate
Wide logical shift left immediate
Wide move right

* ECLIPSE compatible instruction

Skip Instructions

2-14

Table 2-17 lists the logical skip on condition instructions. The ECLIPSE 16-bit logical
instructions test the result during its temporary storage. Other instructions check the
setting of one or more bits either in an accumulator, a memory location, or the processor
status register. When a skip occurs, the processor increments the program counter by
one, and executes the second word after the skip instruction.

NOTE: Verify that a skip does not transfer control to the middle of a 32-bit or
longer instruction.

Table 2-17 Fixed-point logical skip instructions

In.tructlon Operation

ECLIPSE 16-bit instructions)
ANC * AND (complemented source) with optional skip
AND * AND with optional skip
COM * One's complement with optional skip
NEG * Negate with optional skip

Bit check (in accumulator or PSR)
NSALA Narrow skip on all bits set In accumulator
NSANA Narrow skip on any bit set In accumulator
WSALA Wide skip on all bits set In accumulator
WSANA Wide skip on any bit set In accumulator
WSKBO Wide skip on AC bit set to one
WSKBZ Wide skip on AC bit set to zero
SNOVR Skip on OVR reset

Bit check (in memory location)
NSALM
NSANM
SNB *
SZB *
SZBO *
WSALM
WSANM
WSNB
WSZB
WSZBO

Narrow skip on all bits set In memory location
Narrow skip on any bit set In memory location
Skip on nonzero bit
Skip on zero bit
Skip on zero bit and set to one
Wide skip on all bits set In doubleword memory location
Wide skip on any bit set in doubleword memory location
Wide skip on nonzero bit
Wide skip on zero bit
Wide skip on zero bit and set bit to one

* ECLIPSE compatible instruction

014-001371

Fixed-Point Computing

Decimal and Byte Operations
The processor performs decimal arithmetic (packed and unpacked) and 8-bit byte (or
ASCII) manipulation. You control the various operations with the move, arithmetic, skip,
and shift instructions. The move instructions include the instructions that convert,
compare, and insert data.

The decimal arithmetic operations consist of

• Converting and moving decimal numbers between a floating-point accumulator and
memory, and translating, scaling, and moving decimal strings between memory
locations. The move instructions that convert one data type to another require an
explicit data type description.

• Performing floating-point computations on the converted decimal numbers. Refer to
the chapter, "Floating-Point Computing," for information on the floating-point
arithmetic instructions.

The byte operations consist of

• Moving bytes from one memory location to another.

• Insening bytes. To insert one or more bytes into a string. move the beginning part of
the string to another location. Bytes to be inserted are moved to the other location.
and finally. the remainder of the string is moved to the other location.

• Deleting bytes. To delete one or more bytes from a string. move the beginning part of
the string to another location. Then, skip the bytes to be deleted, and finally, move
the remainder of the string to the other location.

• Convening from one data type to another data type. The move instructions that
conven one data type to another require an explicit data type description.

• Comparing one data type to another data type or searching the string for a specific
character. The skip instructions include the byte compare instructions even though
they do not perform the skip function. A byte compare instruction stores the result of
the comparison in an accumulator. Use a skip on condition instruction to test. the
comparison.

Data Formats
The processor must know the format of the data before accessing it. Most instructions
(such as fixed-point and floating-point instructions) imply a data format. However. for
packed decimal (BCD) and unpacked decimal (ASCII) arithmetic with cenain
instructions (such as WED IT, WLDI, WDMOV), the processor requires (in ACO and/or
ACt) an explicit data type indicator. as shown in Figure 2-5 and described in Table
2-18.

Scale factor Software reserved

o 7 8

Software reserved Type I Size

16 23 24 26 I 27 31

INT-Q0165

Figure 2-5 Explicit data type indicator

014-001371
2-15

2-16

Fixed-Point Computing

Table 2-18 Data type indicatol cription

Mnemonics

Scale factor

Bits DescriJ:,; .on

0-7 The scale factor determines how the decimal integer in memory will be
interpreted by some instructions. Decimal Instructions which do not
require this field Ignore Its contents.

The scale factor (sf) is interpreted as an 8-bit. two's complement
integer in the range -128 <= sf <= 127. If the decimal integer
represented in memory is X. then the .. scaled" decimal integer is equal
to X • 10A(-sf).

For example. If the decimal string in memory represents the number
932. then the .. scaled" decimal integer is equal to:

9320 if sf = -1
932 if sf = 0
93.2 if sf = 1
0.00932 if sf = 5

Software reserved 8-23 The reserved field Indicates that Data General reserves these bits for
future software use.

Type 24-26 The type field Identifies the type of data. as listed in Table 2-19.

Size 27 -31 The size field Is Interpreted as a 5-bit. unsigned integer in the range
o <= size <= 31. and indicates the length of the integer data in memory.

For all data types except 5, the size field Is one less than the number of
bytes of memory occupied by the Integer.
For data type 5, the Ilze field II equal to the number of digits In the
Integer. The processor expects an odd number for a size specification.
If an even size is specified. the processor adds one to it (to make the
size odd) and uses a zero for the most significant digit.

Refer to to Table 2-19 for examples.

Decimal strings in memory are either packed or unpacked (see Figure 2-6).

An unpacked decimal digit is the ASCII code for the digit that is represented (see Table
2-21 for valid unpacked digits). An unpacked decimal string consists of a series of
unpacked diaits and a sian. as (ollowa:

Data types 0 and 1 combine the sign of the integer with one of the decimal digits.
This overpunched sign occupies one byte in the integer field in memory. and all other
bytes in the integer field consist of unpacked digits.

Data types 2 and 3 require an unpacked sign that occupies a separate byte in the
integer field. All other bytes in the integer field consist of unpacked digits. The
unpacked sign can be either the ASCII plus sign (+) - 0538 - or the ASCII minus
sign (-) - 0558 ,

Refer to Table 2-20 for a list of the sign-positioned ASCII characters. Table 2-21 lists
the nonsign-positioned ASCII characters.

A packed decimal string contains two BCD digits per byte (Figure 2-6). The lowest order
byte in the decimal string contains the least significant decimal digit packed with the sign
of the integer. The packed sign, which occupies four bits, can be either 148 or 178 (e l6

or F 16) for positive (+) ~ or 158 (D1S) for negative (-).

Table 2-19 on the following page gives examples of eight data types.

014-001371

Fixed-Point Computing

Table 2-19 Explicit data types

Characters in Each Byte Data Type
Data Decimal In Memory Indicator
Type Meaning Example (Octal) or [Hex] (Octal)

0 Unpacked decimal: -397 (063) (071) (120) 000002
last byte combines (33) (39) [50)
the sign and the +397 (063) (071) (107)
last digit (33) (39) [47}

1 Unpacked decimal: -397 (114) (071) (067) 000042
first byte combines [40) [39} [37)
the sign and the +397 (103) (071) (067)
first digit [43} [39) [37}

2 Unpacked decimal: -397 (063) (071) (067) (055) 000103
last byte contains (33) (39) (37) (20)
the unpacked sign +397 (063) (071) (067) (053)

l33) l39) l37) [28)

3 Unpacked decimal: -397 (055) (063) (071) (067) 000143
first byte contains [20) [33J (39) (37)
the unpacked Ilgn +397 (053) (063) (071) (067)

(28J [33J [39J [37J

4 Unpacked decimal: +397 (063) (071) (067) 000202
and unsigned l33J (39J [37J

5 Packed decimal: -397 (071) (175) 000243
two BCD digits (39) (70)
(or one digit and sign) +397 (071) (174)
per byte (39) [7CJ

6 Two's complement: -397 [FEJ [73J 000301
byte-aligned -391 [FF) [FE) [13) 000302

+391 [01 J (80J 000301
+391 (OO) [01 J (80J 000302

7 Floating-point: -397 [C3J [18J [~O] 000342
byte-aligned -397 (C3J (18J (OOJ [OOJ 000343

+397 (43J [18J (OOJ 000342
+397 (43J (18J (OOJ (OOJ 000343

2-17
014-001371

Fixed-Point Computing

Unpacked Decimal

Leading sign:
Data type 3

Training sign:
Data type 2

High order .Ign:
Data type 1

Low order .ign:
Data type 0

Unsigned:
Data type 4

'-----"-I-----~f ~J---l--~----"------,JI
t \ r----------.J/

ASCII
represent at ion
of sign

V
ASCII representation of decimal digits

\--1 --'-----a..--~f ~~~~I ---'
\~----~ / t V

ASCII representation of decimal digits
ASCII
representation
of sign

~~I ~~f ~I----J----..I._~I . \~--------------~ ---------------~/ I V
ASCII repre.entatlon
of character: defined a.
a combination of fir.t
decimal digit and .ign

ASCII repre.entatlon of remaining decimal digit.

~I ----'----~~f ~I----J----..I.~I~
\----------------~ ---------------~/ . V I

ASCII repre.entation of all ~Scf~~~:~~:~~~f~~ as
but la.t decimal digit a combination of last

decimal digit and sign

I L.----,---~~f ~~----,-----,---~I
\~----------------------~ r-----------------------/ V

ASCII representation of
decimal digit. (assumed positive)

Packed Decimal

Data type 5 I '----" ~----______tf ~~----,----,----,----,--~I
\~----------------------~ r-------------------J/ t V

BCD repre.entation of decimal digits,
extended by a leadir:tg 0, if necessary,
to an odd number of aigits.
Each digit occupies liZ byte (4 bits).

Figure 2-6 Packed and unpacked decimal data

2-18

Sign: + =

INT-00166

014-001371

Fixed-Point Computing

Table 2-20 Sign and number combination for unpacked decimal

Digit ASCII Digit ASCII Digit ASCII
and Character and Character and Character
Sign (octal code) Sign (octal code) Sign (octal code)

0+ space (040) Si- S (065) 1- J (112)
0+ + (053) 5+ E ('05)
0+ { (173) 2- K (113)
0+ 0 (060) 6+ 6 (066)

6+ F (106) 3- L (114)
1+ 1 (061)
1+ A (101) 7t 7 (067) 4- M (115)

7t G (107)
2t 2 (062) 5- N (116)
2+ B (102) 8+ 8 (070)

8+ H (110) 6- 0 (117)
3+ 3 (063)
3+ C (103) 9t 9 (071) 7- P (120)

9+ I (111)
4+ 4 (064) 8- a (121)
4+ 0 (104) 0- (055)

0- (175) 9- R (122)

NOTE: Though all four forms of 0+ and both forms of 0- are accepted, brackets
(" {" or "}") are always generated.

Table 2-21 Nonsign-positioned numbers for unpacked decimal

Digit ASCII Character Digit ASCII Character Digit ASCII Character
(octal code) (octal code) (octal code)

space (040) 3 3 (063) 7 7 (067)
0 0 (060) 4 4 (064) 8 8 (070)
1 1 (061) 5 5 (065) 9 9 (071)
2 2 (062) 6 6 (066)

Move Instructions
Move instructions transfer formatted data between memory and a fixed-point
accumulator (ac) or floating-point accumulator (fpac) or between two memory locations.
In addition to moving data, several instructions also convert, compare, or insert data.

Table 2-22 lists the instructions that move bytes of data. If an instruction loads a byte
into the least significant bits of a fixed-point accumulator, the processor zero-extends the
remaining bits. If an instruction stores a byte into memory, the processor changes the
byte being addressed, but the other byte in the memory word remains intact.

Table 2-22 Fixed-point byte movement instructions

Instruction

LDB *
LLDB
LSTB
STB *
WCMT
WCMV
WCTR
WDMOV
WED IT
WLDB
WSTB
XLDB
XSTB

Operation

Load byte
Load byte (long displacement)
Store byte (long displacement)
Store byte
Wide character move until true
Wide character move
Wide character translate and compare
Wide decimal move
Convert and Insert string of decimal or ASCII characters
Wide load byte
Wide store byte
Load byte
Store byte

• ECLIPSE compatible instructions

014-001371
2-19

Fixed-Point Computing

The decimal move and convert instructions (Table 2-23):

• Convert packed decimal dat. 1 floating-point format when loading a decimal number
into a floating-point accumuLLOr.

• Convert floating-point data to packed decimal format when storing a decimal number
in memory.

Table 2-23 Fixed-point to floating-point conversion and store instructions

Instruction

LDI, WLDI
LDIX, WLDIX
STI, WSTI
STIX, WSTIX

Operation

Convert a decimal and load Into an fpac
Convert a decimal. extend it. and load It Into four fpacs
Convert fpac data and store into memory
Convert the four fpacs' data and load into memory

The edit (\\,EDIT) instruction (with an edit subprogram) converts a decimal integer to a
string of bytes, moves a string of bytes, or inserts additional bytes. Table 2-24 lists the
edit subprogram instructions (these are all ECLIPSE 16-bit compatible instructions).

Table 2-24 Edit subprogram instructions

Instruction

DADI
DAPS
DAPT
DAPU
DASI
DDTK
DE~D
DICI
DIMC
DI:S-C
DI:S-S
DI l'lT
D~VA

DMVC
DMVF
DMVN
DMVO
D:,\lVS
DNDF
DSSO
DSSZ
DSTK
DSTO
DSTZ

Operation

Add signed Integer to destination indicator
Add signed Integer to opcode pointer If sign flag Is zero
Add signed Integer to opcode pointer If trigger is one
Add signed integer to opcode pOinter
Add signed integer to source indicator
Decrement a word in the stack by one and jump if word Is nonzero
End edit subprogram
Insert characters immediate
Insert character j times
Insert character once
Insert one of two characters depending on sign flag
Insert one of two characters depending on trigger
Move a number of alphabetical characters
Move a number of characters
Move a number of digits depending on trigger
Move a number of numbers
Move digit with overpunch
Move number with zero suppression
End float
Set sign flag to one
Set sign flag to zero
Store in stack
Set trigger to one
Set trigger to zero

Arithmetic Instructions

2-20

\\,ith the ECLIPSE 16-bit compatible fixed-point add and subtract instructions. the
processor computes the sum or difference of two unsigned BCD numbers in bits 28-31 of
two accumulators. A carry, if any. is a decimal carry. With the wide decimal instructions.
the processor adds one to. or subtracts one from. a decimal string or compares two
decimal strings. Table 2-25 lists the arithmetic instructions.

Table 2-25 Arithmetic instructions

Instruction

DAD •
DSB •
\\'DCMP
WDDEC
WDI~C

Operation

Decimal add
Decimal subtract
Wide decimal compare
Wide decimal decrement
Wide decimal increment

• ECLIPSE compatible instruction

014-001371

Fixed-Point Computing

Shift Instructions
With the ECLIPSE 16-bit compatible hex shift instructions. the processor can move
decimal results (in bits 16-31 of a fixed-point accumulator) either to the left or to the
right. Table 2-26 lists the hex shift instructions.

Table 2-26 Hex shift instructions

Instruction

DHXL*
DHXR *
HXL*
HXR *

Operation

Double Hex Shift Left
Double Hex Shift Right
Hex Shift Left
Hex Shift Right

* ECLIPSE compatible instruction

Effective Address Instructions
Load effective address instructions (see Table 2-27) calculate a byte or word address that
can be used with other instructions to manipulate data. When the processor executes a
character manipulation instruction (such as WCMV) with an illegal address. a protection
fault occurs.

Table 2-27 Load effective address instructions

Instruction

ELEF *
LEF *
LLEF
LLEFB
LPEF
LPEFB
WMOVR
XLEF
XLEFB
XPEF
XPEFB

Operation

Extended Load Effective Address
Load Effective Address
Load Effective Address (Long Displacement)
Load Effective Byte Address (Long Displacement)
Push Address (Long Displacement)
Push Byte Address (Long Displacement)
Wide Move Right (convert byte pointer to word pointer)
Load Effective Address (Extended Displacement)
Load Effective Byte Address (Extended Displacement)
Push Effective Address (Extended Displacement)
Push Effective Byte Address (Extended Displacement)

* ECLIPSE compatible Instruction

Skip Instructions
A skip instruction normally tests for a condition and then modifies the program counter.
When a skip occurs, the processor increments the program counter by one and executes
the second word after the skip instruction. However, the Wide Character Compare
(WCMP). the Wide Character Translate and Compare (WCTR), and the Wide Load
Sign (WLSN) instructions test for a condition, and then load a 0, -1, or +1 into ACt.
You can then use a Wide Skip If Accumulator Equal instruction (WSEQ and WSEQI) to
test the result.

The Wide Character Scan Until True instruction (WCST) searches a string of bytes for
one or more specified characters. When the instruction locates a byte, it stores the byte
address in an accumulator.

NOTE:

014-001371

Be sure that a skip does not transfer control to the middle of a 32-bit or
longer instruction.

2-21

I

Fixed-Point Computing

Data Type Fault&

2-22

The processor checks for a valid decimal or ASCII data type and for valid data when
executing an instruction that requires an explicit data type description (such as "'EDIT,
WCTR. WSTI. or WCST). If either the data type or the data is invalid. the processor
does not perform the instruction. but instead services the fault before executing another
instruction.

Table 2-28 lists the decimal and ASCII fault codes. The first and second columns list the
code that appears in AC 1. The third column lists the type of return block pushed. The
fourth and fifth columns list instructions and conditions that can cause faults.

Refer to the chapter. "Program Flow Management." for more information on fault
handling.

Table 2-28 Decimal and ASCII fault codes

Code Returned Return
In AC1 Block Faulting

Narrow Wide Type Instruction Meaning

000000 100000 2 EDIT, WEDIT An Invalid digit or alphabetic character
encountered during execution of one of
the following subopcodes: DMVA,
DMVF, DMVN. DMVO,DMVS

000001 100001 1 LDIX, STIX Invalid data type (6 or 7)
3 EDIT, WEDIT, WLDIX, Invalid data type (6 or 7)

WSTIX. WDMOV,
WDDEC, WDINC,
WDCMP

000002 100002 2 EDIT, WEDIT DMVA or DMVC subopcode with
source data type 5; AC2 contains the
data size and precision

000003 100003 2 EDIT, WEDIT An Invalid opcode; AC2 contains the
data size and precision

000004 100004 LDI, STI, STIX, Number too large to convert to specified
WLDI, WSTI, data type. I number I > (1 016) - 1
WSTIX, WLDIX Number too large to convert to specified

data type. Number > (1032) - 1
000005 3 EDIT, LDI, LDIX, Invalid microinterrupt return block

STI, STIX (Applies only to ECLIPSE
Interrupt-resumable instructions)

000006 100006 WLSN, WLDI, LSN, Sign code Is Invalid for this data type •
LOI, LDIX, WLDIX

3 EDIT, WED IT, WDINC,
WDMOV, WOCMP,
WDDEC

000007 100007 WLSN, WLDI, WLDIX, Invalid digit •
LSN, LDI, LOIX

3 WDMOV, WDCMP,
WDINC, WDDEC

A value containing both an invalid sign and one or more invalid digits produces a decimal/ASCII
fault which may indicate either type of error.

014-001371

Fixed-Point Computing

Decimal Arithmetic Example
Figure 2-7 illustrates an example of code written for execution under AOS/VS. The
program does the following:

1. Accepts the decimal number from a terminal (in ASCII format).

2. Converts it to single-precision floating-point format.

3. Performs the floating-point addition.

4. Converts the sum to ASCII format.

S. Displays it on the terminal.

CON:
FCON:
IBUF:

.TITL DECIMAL

.ENT START
.NREL
: CONSTANTS
.ENABLE SWORD

.TXT
202
. BLK 5

• ·.CONSOLE"

:PARAMETER PACKETS

;Generic console name
;Type 4 and 3 decimal digits.
;Reserve 5 words for number buffer .

:READ CONSOLE PACKET TO OPEN. READ. & WRITE

CONSOLE: .BLK 22
.LOC CONSOLE+?ISTI
?RTDS+OFIO
.LOC CONSOLE+?ISTO
o
.LOC CONSOLE+?IMRS
-1

;Data sensitive I/O.

.LOC CONSOLE+?IBAD
IBUF*2

.?IBAD contains byte pointer to data packet.

:END OF

START:

AGAIN:

.LOC CONSOLE+?IRCL
-1
.LOC CONSOLE+?IFNP
CON*2
.LOC CONSOLE+?IRNW
o
.ENABLE DWORD
.LOC CONSOLE+?IDEL
-1
.LOC CONSOLE+7ETSP
o
.LOC CONSOLE+7ETFT
o
.LOC CONSOLE+?ETLT
o

CONSOLE PACKET

?OPEN CONSOLE

?READ CONSOLE

XNLDA I.FCON
XNLDA 3.CONSOLE+?IBAD
WLDI 0
FAS 0.0
XNLDA l.FCON
XNLDA 3. CONSOLE+?IBAD

WSTI 0
INC 1.I.SZC

WBR AGAIN
?WRITE CONSOLE

?CLOSE CONSOLE

7RETURN

.END START

;Open console to read and write.

;Accept a number from the keyboard.

;Initialize for data type 4.
;Get byte pointer from console packet.

;Single-precision floating-point add.

;Increment byte count and skip
;if WSTI truncates.
;Repeat WSTI.
;Display the sum on the console.

;close the console.

;Return to CLI.

INT-00167

Figure 2-7 Decimal arithmetic example

End of Chapter

2-23
014-001371

3
Floating-Point Computing

Using floating-point computation, the processor can add, subtract, multiply, and divide
32-bit (single-precision) and 64-bit (double-precision) sign magnitude data.

The optional Intrinsic Instruction Set (lIS), allows the processor to perform trigonometric
and logarithmic functions, exponentiation, and square root evaluation on 32-bit and
64-bit data.

Following a computation, the processor can convert a double-precision value to a
single-precision value, or it can convert a single-precision value to a fixed-point or
decimal value. Then, the processor can test and skip on a condition that results from the
computation or conversion. Finally, the processor can store the result in an accumulator
or memory.

This chapter explains the various computations (convert, move, arithmetic, and skip), the
Intrinsic Instruction Set. and the floating-point status register (FPSR).

014-001371 3-1

I

Floating-Point Computing

Data Formats

3-2

All floating-point instructions require normalized floating-point values in order to produce
valid results. (Exceptions to this rule are given in the instruction descriptions, such as the
Floating-Point Normalize (FNOM) instruction, the Read High Word (FRH) instruction,
and any instructions which load or store floating-point values or push or pop values using
the stack.) Floating-point arithmetic and intrinsic instructions require normalized, sign
magnitude numbers. You can use the Floating-Point Normalize instruction to normalize
raw floating-point data, which mayor may not already be normalized.

In addition, if a mantissa equals zero, the processor expects it to equal true zero. A true
zero value exists when the sign bit, exponent, and mantissa equal zero; that is, all bits
equal zero.

The processor operates most efficiently when single-precision numbers are on even-word
boundaries, and double-precision numbers are on even doubleword boundaries. These
numbers must be within the value range of 5.4 (10-78) to 7.2 (1075). Figure 3-1 shows the
floating-point formats; Table 3-1 describes the formats.

Single Precision Format

I : Exponent Mantissa

Mantissa

Double Precision Format

Exponent Mantissa (Most Significant Bytes)

7 8

Mantissa (Most Significant Bytes)

Mantissa (Least Significant Bytes)

Mantissa (Least Significant Bytes)

Figure 3-1 Floating-point data formats

Table 3-1 Floating-point data formats description

Name

S

Exponent

Mantissa

Contents

The S bit Is the sign bit of the mantissa. The sign bit equals 0 for a positive
number, and equals 1 for a negative number.

The exponent, expressed as an unsigned Integer, equals 64'0 greater than the
true value of the exponent (excess-64 representation). The following exponents
Illustrate excess-64 representation numbers.

Exponent True Value of Exponent

o -64'0
64'0 0
127'0 +63'0

The mantissa, expressed as a fraction, Implies that the location of the binary
point is between bits 7 and 8. For normalized floating-point numbers,

the range of the mantissa for single-precision Is 1/16 to 1-(2 _2.)

the range for double-precision Is 1/16 to 1-(2-58)

15

31

47

63

INT-Q0168

014-001371

Floating-Point Computing

Conversion Instructions
Floating-point conversion instructions change various values to floating-point
representation. Table 3-2 lists the instructions that convert and move data between
fixed-point and floating-point accumulators, convert a mixed number to a fraction, and
scale a floating-point number.

Table 3-2 Floating-point binary conversion instructions

Instruction

FEXP •
FAB •
FFAS •
FFMD •
FINT •
FLAS •
FNEG •
FNOM •
FRDS
FRH •
FSCAL •
WFFAD
WFLAD

Operation

Load exponent (ACO 17-23 to fpac 1-7)
Compute absolute value (set sign of fpac to zero)
Fix to AC (fpac to ac)
Fix to memory
Integerize (fpac)
Float from AC (ac to fpac)
Negate
Normalize (fpac)
Floatlng-po;nt round double to single
Read high word (fpac 0-15 to ACO 16-31)
Scale floating-point
Wide fix from fpac
Wide float from AC

• ECLIPSE compatible instruction

Table 3-3 lists the instructions that convert and move a fixed-point decimal between
memory and a floating-point accumulator. Refer to the chapter, "Fixed-Point
Computing," for further information on the load and store integer instructions.

Table 3-3 Floating-pOint decimal conversion instructions

Instruction

LDf, WLDf
LDIX, WLDIX
STf, WSTI
STIX, WSTIX

014-001371

Operation

Convert a decimal and load It Into an fpac
Convert a decimal, extend It, and load It Into four fpacs
Convert fpac data and store It Into memory
Convert the data In four fpacs and store them Into memory

3-3

Floating-Point Computing

Move Instructions

3-4

All single-precision operations that specify an accumulator operate with the most
significant 32 bits of the floating-point accumulator (bits 0-31) and ignore the least
significant 32 bits (bits 32-63). Upon completion of the specified operation, the processor
returns the result to the most significant portion of the floating-point accumulator. The
processor loads the least significant 32 bits of the floating-point accumulator with zeros.
Table 3-4 lists the instructions which load and store values between the floating-point
accumulators and memory or between accumulators.

Table 3-4 Floating-point data movement Instructions

Instruction

FLDD •
FLDS •
FMOV •
FPSH
FPOP
FSTD •
FSTS •
LFLDD
LFLDS
LFSTD
LFSTS
WFPOP
WFPSH
XFLDD
XFLDS
XFSTD
XFSTS

Operation

Load Floating-Point Double
Load Floating-Point Single
Move Floating-Point (FPAC to FPAC)
Narrow Floating-Point Push
Narrow Floating-Point Pop
Store Floating-Point Double
Store Floating-Point Single
Load Floating-Point Double (Long Ol,placement)
Load Floating-Point Single (Long DI'placement)
Store Floating-Point Double (Long DI,placement)
Store Floating-Point Single (Long Displacement)
Wide Floating-Point Pop
Wide Floating-Point Push
Load Floating-Point Double (Extended DI,placement)
Load Floating-Point Single (Extended Ol,placement)
Store Floating-Point Double (Extended Ol,placement)
Store Floating-Point Single (Extended Ol,placement)

• ECLIPSE compatible Instruction

014-001371

Floating-Point Computing

Floating-Point Arithmetic Operations
To perform a floating-point arithmetic operation, the processor executes a floating-point
arithmetic instruction. In executing the instruction, the processor

1. Appends guard digits.

2. Aligns the mantissas (for addition and subtraction).

3. Calculates and normalizes the result.

4. Adjusts the result by truncating or round~.lg it.

5. Stores the result in a floating-point accumulator or memory.

Appending Guard Digits
To increase the accuracy of the result, the processor appends guard digits to the mantissa
of one operand before performing the arithmetic calculations. A guard digit is one hex
digit (four bits) that initially contains zero. The processor modifies the guard digits during
the arithmetic calculations, which increases the accuracy of the result.

The processor appends one or two guard digits to the least significant hex digit of a
mantissa, depending on the RND flag (bit 8) in the floating-point status register. Use the
Load Floating-Point Status Register instruction (LFLST) to change the RND flag.

• When the RND flag equals zero, the processor appends one guard digit in preparation
for truncating the mantissa of the intermediate result.

• When the RND flag equals one, the processor appends two gC3rd digits in preparation
for rounding the mantissa of the intermediate result.

An intermediate result includes the exponent and the mantissa.

NOTE: The floating-point conversion and single-precision store instructions (FINT,
FSCAL, LFSTS, WFFAD, WFLAD, and XFSTS) ignore the RND flag.

Aligning the Mantissas

For floating-point addition and subtraction, the processor first aligns the smaller mantissa
to the larger mantissa. To align the mantissas, the processor takes the absolute value of
the difference between the two exponents. If the difference equals nonzero, the processor
shifts the mantissa with the smaller exponent to the right until the difference equals zero
or until the processor shifts out the significant digits of the mantissa. The mantissas are
aligned when the difference equals zero.

If the processor shifts out the significant digits, the operation is equivalent to adding zero
to the number with the larger exponent. To shift out the significant digit~1 the processor
must shift at least 7 or 8 hex digits for single-precision (for truncating or rounding,
respectively) or shift at least 15 or 16 hex digits for double-precision. ..

014-001371 3-5

Floating-Point Computing

Calculating and Normalizing the Result
The processor performs the floating-point arithmetic operation. uses algebraic rules to
determine the signs of the intermediate result. and then normalizes it. The processor
normalizes an intermediate mantissa by shifting it left one hex digit at a time until the
most significant hex digit represents a nonzero quantity. For each hex digit shifted left.
the processor decrements the intermediate exponent by one. The processor zero fills the
guard digit of the intermediate mantissa.

Truncating or Rounding the Result
As determined by the RND flag. the processor truncates or rounds the intermediate
mantissa.

• When the RND flag equals zero. the processor truncates the intermediate mantissa by
removing the guard digit.

• When the RND flag equals one. the processor rounds the intermediate mantissa by
removing and analyzing the two guard digits.

When the two guard digits are

Within the range of 0 to 7F 16 inclusive, the intermediate result becomes the final
result (without change).

Equal to 80,6. the processor adds the least significant bit of the intermediate
mantissa to the intermediate mantissa.

The processor forces an even mantissa to be rounded down to the nearest integer
and an odd mantissa to be rounded up to the nearest integer. If the processor
rounded down or rounded up without an intermediate mantissa overflow, the
operation produces the final result.

Within the range of 81'6 to FF'6 inclusive, the processor adds 1 to the
intermediate mantissa.

If the processor rounded up the intermediate mantissa without an overflow, the
operation produces the final result.

If rounding up causes a mantissa overflow, the processor performs the following
actions:

1. Shifts the intermediate mantissa right one hex digit.

2. Places 1'6 into the most significant hex digit.

3. Adds 1'6 to the intermediate exponent.

4. Truncates the rightmost hex digit so that the intermediate mantissa is 24 or 56 bits,
which becomes the final result.

Storing the Result

3-6

The processor stores the final result in the specified memory location or floating-point
accumulator. The processor then checks for a possible exponent underflow or overflow. If
no underflow or overflow exists, the instruction execution is complete. If an underflow or
overflow exists, the processor sets the appropriate error flag in the floating-point status
register. The value of the exponent is undefined.

014-001371

Floating-Point Computing

Arithmetic Instructions
Floating-point arithmetic instructions perform single- and double-precision addition.
subtraction, multiplication, and division. Unnormalized floating-point numbers may
produce undefined results (use FNOM to normalize floating-point numbers).

Addition
The processor adds the two mantissas together, producing an intermediate result. The
processor determines the sign of the intermediate result from the signs of the two
operands by the rules of algebra.

If the mantissa addition produces a carry from the most significant bit, the processor
shifts the intermediate mantissa to the right one hex digit and increments the exponent by
one.

• If incrementing the exponent produces no exponent overflow and the intermediate
mantissa equals a nonzero, the processor normalizes the intermediate mantissa. rounds
or truncates it, and stores the final result in memory or in a floating-point
accumulator.

• If incrementing the exponent produces an exponent overflow, the processor sets the
OVF error flag in the FPSR to one and terminates the instruction.

If there is no mantissa overflow, but the intermediate mantissa contains all zeros, the
processor places a true zero in memory or in a floating-point accumulator.

Table 3-5 lists the floating-point add instructions.

Table 3-5 Floating-point addition instructions

Instruction

FAD *
FAS *
FAMD •
FAMS *
LFAMD
LFAMS
XFAMD
XFAMS

Operation

Add Double (FPAC to FPAC)
Add Single (FPAC to FPAC)
Add Double (Memory to FPAC)
Add Single (Memory to FPAC)
Add Double (Memory to FPAC) (Long Dlaplacement)
Add Single (Memory to FPAC) (Long Displacement)
Add DOUble (Memory to FPAC) (Extended Displacement)
Add Single (Memory to FPAC) (Extended Displacement)

* ECLIPSE compatible instruction

Subtraction
For floating-point subtraction, the processor temporarily complements the sign of the
source mantissa and performs a floating-point addition. Upon completion, the difference
is stored in the destination floating-point accumulator. Also the source mantissa returns
to its original value when the source accumulator (fpacs) is different from the destination
accumulator (fpacd). Table 3-6 lists the floating-point subtract instructions.

Table 3-6 Floating-point subtraction instructions

Instruction

FSD *
FSS *
FSMD *
FSMS *
LFSMD
LFSMS
XFSMD
XFSMS

Operation

Subtract Double (FPAC from FPAC)
Subtract Single (FPAC from FPAC)
Subtract Double (Memory from FPAC)
Subtract Single (Memory from FPAC)
Subtract Double (Memory from FPAC) (Long Displacement)
Subtract Single (Memory from FPAC) (Long Displacement)
Subtract Double (Memory from FPAC) (Extended Displacement)
Subtract Single (Memory from FPAC) (Extel,ded Displacement)

* ECLIPSE compatible instruction

014-001371 3-7

Floating-Point Computing

Multiplication

For floating-point multiplication, the processor multiplies one floating-point mantissa by
the other floating-point mantissa to produce an intermediate floating-point mantissa. The
processor adds the two exponents, subtracts 64'0 to maintain excess 64 notation, and
produces an intermediate floating-point exponent. The processor then normalizes the
intermediate mantissa, rounds or truncates it, and stores the final result. Table 3-7 lists
the floating-point multiplication instructions.

Table 3-7 Floating-point multiplication instructions

Instruction

FMD •
FMS·
FMMD •
FMMS •
LFMMD
LFMMS
XFMMD
XFMMS

Operation

Multiply Double (FPAC by FPAC)
Multiply Single (FPAC by FPAC)
Multiply Double (FPAC by Memory)
Multiply Single (FPAC by Memory)
Multiply Double (FPAC by Memory) (Long Displacement)
Multiply Single (FPAC by Memory) (Long Displacement)
Multiply Double (FPAC by Memory) (Extended Displacement)
Multiply Single (FPAC by Memory) (Extended Displacement)

• ECLIPSE oompatlble Instruotlon

Division

3-8

For floating-point division, the processor tests the divisor for zero. (The source location
contains the divisor and the destination location contains the dividend.) If the divisor is
zero, the processor sets the INV error flag in the FPSR to one. places error code zero in
the INP bits and the address of the instruction in the FPPC. and ends the instruction. If
the divisor is nonzero. the processor compares the two mantissas. If the dividend
mantissa is greater than or equal to the divisor mantissa. the processor aligns the two
mantissas in the following process:

1. Shifts the dividend mantissa to the right one hex digit.

2. Places 0'6 in the most significant digit of the dividend mantissa.

3. Adds 1'6 to the dividend exponent.

When the dividend mantissa is less than the divisor mantissa. the processor performs the
following actions:

1. Divides the mantissas to produce an intermediate floating-point mantissa.

2. Subtracts the divisor exponent from the dividend exponent. and adds 6410 to the
difference (maintaining the excess 64 notation), which produces an intermediate
floating-point exponent.

3. Normalizes and rounds or truncates the intermediate mantissa, which produces the
final result (exponent and mantissa).

4. Stores the final result in memory or a floating-point accumulator.

Table 3-8 lists the floating-point divide instructions.

014-001371

Floating-Point Computing

Table 3-8 Floating-point division instructions

Instruction

FDD •
FDS •
FDMD *
FDMS •
FHLV •
LFDMD
LFDMS
XFDMD
XFDMS

Operation

Divide Double (FPAC by FPAC)
Divide Single (FPAC by FPAC)
Divide Double (FPAC by Memory)
Divide Single (FPAC by Memory)
Halve (fpac/2)
Divide Double (FPAC by Memory) (Long Displacement)
Divide Single (FPAC by Memory) (Long Displacement)
Divide Double (FPAC by Memory) (Extended Displacement)
Divide Single (FPAC by Memory) (Extended Displacement)

• ECLIPSE compatible instruction

Skip Instructions
A skip instruction tests the result of an operation for a specific condition by checking a
bit or combination of bits in the FPSR. These instructions then direct the processor either
to skip the word or to execute the word after the skip instruction. (The FCMP
instruction compares two floating-point numbers and sets the Z and N status flags in the
FPSR reflecting the relationship. You can then use a skip instruction to test the status
flags.)

Table 3-9 lists the floating-point skip on condition instructions. When a skip occurs, the
processor increments the program counter by one and executes the second word a fter the
skip instruction.

NOTE: Be sure that a skip does not transfer control to the middle of a 32-bit or
larger instruction.

Table 3-9 Floating-point skip on condition instructions

Instruction

FCMP •
FSEQ *
FSGE *
FSGT *
FSLE •
FSLT *
FSND *
FSNE *
FSNER *
FSNM *
FSNO *
FSNOD *
FSNU *
FSNUD *
FSNUO *

Operation

Compare two floating-point numbers (set Nand Z)
Skip on zero (Z = 1)
Skip on greater than or equal to zero (N = 0)
Skip on greater than zero (N and Z = 0)
Skip on less than or equal to zero (N or Z = 1)
Skip on less than zero (N = 1)
Skip on no zero divide (INV = 0)
Skip on nonzero (Z = 0)
Skip on no error (ANY = 0)
Skip on no mantissa overflow (MOF = 0)
Skip on no overflow (OVF = 0)
Skip on no overflow and no zero divide (OVF and INV = 0)
Skip on no underflOW (UNF = 0)
Skip on no underflow and no zero divide (UNF and INV = 0)
Skip on no underflow and no overflow (UNF and OVF = 0)

• ECLIPSE compatible instruction

014-001371 3-9

Floating-Point Computing

Intrinsic Instruction Set

3-10

The optional Intrinsic Instruction Set (lIS) performs trigonometric and logarithmic
functions, exponentiation, and square root evaluation on single-precision and
double-precision data.

These instructions assume the single argument to be operated on is in FPACO and the
answer will be returned to FPACO. For instructions which require two arguments
(WFATN2D, WFATN2S, WFPWRD, and WFPWRS), FPACI contains the second
argument. When the instruction completes, the contents of the remaining floating-point
accumulators are undefined.

All floating-point inputs are assumed to be normalized. Any input with a zero mantissa is
also assumed to have a zero sign bit and an all zero exponent (true zero).

The trigonometric instructions (sine, cosine, tangent) require a floating-point input in
radians while the inverse trigonometric instructions (arcsine, arccosine, arctangent) return
the result in radians.

lIS instructions always update the Z and N flags of the FPSR so that they reflect the
result - either zero or negative.

If traps are enabled, an lIS instruction can cause a floating-point trap for either invalid
input or for a result that overflows or underflows.

• Invalid input. If an invalid normalized number or an illegal argument is used as input
to an lIS instruction, a trap occurs. An illegal argument causes the processor to place
the instruction address in the FPSR floating-point program counter (FPPC), set the
INV bit in the FPSR to one, and place an error code in FPSR bits 28-31 (INP). The
error code indicates what type of input error occurred. For example, a negative value
input to a square root instruction causes an invalid input argument trap with the error
code 2 returned to the INP bits. The FPSR description in the section, .. Faults and
Status." of this chapter explains the various codes and their meanings.

• Overflow or underflow. If the result of an II S instruction has overflowed or
underflowed, a floating-point trap occurs with the relevant error bits (OVF or UNF)
updated in the FPSR. Overflow and underflow errors behave identically to the
standard floating-point instruction errors.

The four-word format for all lIS instructions is shown in Figure 3-2; Table 3-10
describes the format.

Instruction opcode

15 I
PC-relative displacement

31 I

I~ PC-relative displacement

I ..
Instruction sub-opcode ~I

Figure 3-2 Intrinsic instruction set format

014-001371

Floating-Point Computing

Table 3-10 Intrinsic instruction set format description

Name

Instruction opcode

PC-relative
displacement

Bits Contents

0-15 This identifies an instruction as belonging to the Intrinsic
Instruction Set. For all liS instructions. this value Is 107171 8 ,

16-47 Each liS instruction has a displacement coded with It.
Machines that Implement these instructions in hardware Ignore
the displacement. (Addresses must resolve to a valid word in
the current ring.) The coded displacement is a PC-reiative.
nonlndirectable address of a routine In an optional runtime
library In the current ring. The routine emulates the function of
the Instruction If hardware support does not exist. Note that bit
16 Is always O.

Instruction sub-opcode 48-63 This field identifies the specific liS Instruction. The descriptions
In the Instruction Dictionary give the sub-opcodes for ali liS
Instructions.

All lIS instructions are interruptible. Table 3-11 lists the intrinsic instructions.

Table 3-11 Floating-point intrinsic instructions

Instruction

WFACOSD
WFACOSS
WFASIND
WFASINS
WFATAND
WFATANS
WFATN2D
WFATN2S
WFCOSD
WFCOSS
WFEXPD
WFEXPS
WFLG2D
WFLG2S
WFLNGD
WFLNGS
WFLOGD
WFLOGS
WFPWRD
WFPWRS
WFSIND
WFSINS
WFSQRD
WFSQRS
WFTAND
WFTANS

014-001371

Function

Arccosine Double
Arccosine Single
Arcsine Double
Arcsine Single
Arctangent Double
Arctangent Single
Arctangent Double (Two-Accumulator)
Arctangent Single (Two-Accumulator)
Cosine Double
Cosine Single
Exponential Double
Exponential Single
Binary logarithm Double
Binary logarithm Single
Natural logarithm Double
Natural logarithm Single
Common logarithm Double
Common logarithm Single
Power Double (Two-Accumulator)
Power Single (Two-Accumulator)
Sine Double
Sine Single
Square Root Double
Square Root Single
Tangent Double
Tangent Single

3-11

Floating-Point Computing

Faults and Status

3-12

The processor checks for a floating-point fault. mantissa status. or an exception condition
(such as an overflow or underflow) during or immediately after executing a floating-point
instruction. The processor stores the result of this check in the 64-bit floating-point
status register (FPSR). When the processor detects a floating-point fault, it sets the
appropriate FPSR bits. These bits are cumulative and remain set until they are changed
by another instruction.

The processor cannot service the fault unless it first determines the state of the trap
enable (TE) m~sk (bit 5 of the FPSR). If TE equals

• 0 - the processor continues normal program execution with the next sequential
instruction. Program flow remains unchanged.

• 1 - the processor disrupts normal program execution by performing an indirect jump
to the floating-point fault handler to service the fault. Refer to the chapter, "Program
Flow Management." for further information on floating-point fault handling.

NOTE: The FSST, LFSST, FPSH, and WFPSH Instructions store the contents 0/
the FPSR. However, they will not store an FPSR value with any
combination oj bit 5 and bits 1 through 4 concurrently set.

The FPSR is accessed with instructions that initialize the register or that test the register's
bits. The section, .. Skip Instructions," in this chapter lists instructions that test the bits.
Table 3-12 lists the instructions that initialize the register and that store or load the
register contents.

Table 3-12 Floating-point status register instructions

Instruction

FCLE •
FLST •
FPOP •
FPSII •
FSST •
FTD •
FTE •
LFLST
LFSST
WFPSH
\\-'FPOP

Operation

Clear errors (FPSR)
load FPSR
Narrow floating-point pop
Narrow floating-point push
Store FPSR
Floating-point trap disable (resets TE)
Floating-point trap enable (sets TE)
load FPSR (long Displacement)
Store FPSR (long Displacement)
Wide push floating-point .tate
Wide pop floating-point state

• ECLIPSE compatible instruction

The floating-point status register contains flags indicating a fault (ANY, OVF, UNF, INV,
MOF), enabling fault detection (TE), the mantissa status (Z and N), result rounding or
truncating (RND), the floating-point identification (10), the floating-point unit operation
(PAR), an invalid input argument indicator (INP), and the floating-point program
counter (FPPC). Figure 3-3 shows the format of the FPSR; Table 3-13 describes the
FPSR bits.

014-001371

Floating-Point Computing

Reserved ID

9 11 12 15

Reserved IpARI Reserved INP

16 21 I 22 I 23 27 28 31

o Floating-point program counter (MSS)

32 33 47

Floating-point program counter (LSS)

48 63

INT-00169

Figure 3-3 Floating-point status register format

Table 3-13 Floating-point status register format description

Name Bits

ANY o

OVF

UNF 2

INV 3

MOF 4

014-001371

Contents or Function

Error status flag.

The processor sets ANY to 1 when It sets either OVF. UNF. INV. or
MOF to 1. ANY Is never set from memory. but is always recomputed
from these bits.

Exponent overflow flag.

The processor sets OVF while executing a floating-point Instruction and
an exponent overflow occurs. The result Is correct except the exponent
la 12810 too amaH.

Exponent underflow flag.

The processor sets UNF while executing a floating-point Instruction and
an exponent underflow occurs. The result Is correct except the
exponent Is 12810 too large.

Input argument error flag.

The processor sets INV while attempting to execute an Instruction with
an Invalid argument as Input. If INV Is 1. INP further defines the Input
errpr. The processor then aborts the operation. the state of FPACO Is
undetermined. and the remaining oper2U'lds are unchanged.

NOTE: The previous definition of this flag, Divide by Zero (DVZ) , has
been expanded to include other input argument errors.

Mantissa overflow flag.

The processor sets MOF while executing a floating-point Instruction
when It detects a mantissa overflow. If It occurs during a FSCAL
Instruction. the processor shifts out the most significant bit. If It occurs
during an FFAS. FFMD. or WFFAD Instruction, the result Is too
large and the processor truncates the result before storing It.

(continues)

3-13

3-14

Floating-Point Computing

Table 3-13 Floating-point status register format description

Name

TE

z

N

RND

Reserved

10

Reserved

PAR

Re.erved
INP

Bits

5

6

7

8

9-11

12-15

16-21

22

Contents or Function

Trap enable mask.

The processor or you enable floating-point fault detection and servicing
by setting TE to 1. and disable floating-point detection and servicing by
setting TE to O. TE can be set to 1 with the FTE instruction, and set to
o with the FTD instruction.

Unless your system runs with a parallel floating-point unit. the processor
does not save or restore the status of TE when going to or returning
from a subroutine or fault handler. Refer to the ~ Processor Status
Register" description In the chapter. "Fixed-Point Computing." for
further information.

The processor cannot detect and service a fault unless TE Is set to 1
before the processor sets ANY to 1. If TE is set to 1, a 1 in any of bits
1 through 4 results In a floating-point trap, except where noted.

True zero flag.

The processor sets Z If the result of executing a floating-point Instruction
produces a true zero.

Negative flag.

The processor sets N If the result of executing a floating-point
Instruction produces a value less than O.

Round flag.

You set RND (with the LFLST, FLST. WFPOP, and FPOP
instructions) to direct the processor to round (RND = 1) or to truncate
(RND = 0) the Intermediate result when executing a floating-point
Instruction.

These bits are Ignored and returned as zeros.

Floating-point Identification code that reflects the floating-point revision.

These bits are Ignored and returned as zeros.

Floating-point operation flag.

This bit Is applicable only to processors which support a floating-point
unit capable of operating In both aerial and paraliel with the main CPU.

If PAR I. 1. the floating-point unit operation la .erlal.
If PAR Is O. the floating-point unit operation Is parallel.

23-27 The.e bits are Ignored and returned as zeros.

28-31 These bits contain an Indicator of an Invalid Input argument. The
definition of INP depends on the setting of the Invalid input argument
(INV) bit.

If INV Is O. INP Is undefined.

If INV Is 1. the value contained In INP Indicates an attempt to use an
Invalid Input. A code value greater than zero applies to the floating-point
Intrinsic Instruction Set (liS) option. The currently defined values are
listed below.

(continues)

014-001371

Floating-Point Computing

Table 3-13 Floating-point status register format description (concluded)

Name

INP

o

Bits

28-31

Contents or Function

Code
(octal)

o

Instruction

FDS, FDD,
FDMS, FDMD,
XFDMS, XFDMD,
LFDMS, LFDMD

Description

Attempt to execute a floating-point
divide Instruction with a divisor
equal to O.

NOTE: When the processor detects a 0 divisor input. the contents of the
remaining floating-point accumulators are unmodified. Carry is
unchanged. and overflow Is unaffected.

WFLOGS, WFLOGD FPACO contains a value less than
WFLG2S, WFLG2D or equal to O.
WFLNGS, WFLNGD

2 WFSQRS, WFSQRD FPACO contains a value less than O.

3 WFASINS, WFASIND The absolute value of FPACO is
WFACOSS, WFACOSD greater than 1.

4 WFPWRS, WFPWRD The value in FPACO Is less than 0
and the value In FPAC1 is not equal
to 0, or the value in FPACO Is equal
to 0, and the value in FPAC1 is less
than or equal to O.

5 WFEXPS, WFEXPD The number In FPACO will cause an
overflow.

WFPWRS, WFPWRD The numbers In FPACO and FPAC1
will cause an overflow.

6 WFTANS, WFTAND The number In FPACO, which is an
odd Integer multiple of values near
P1I2, will cause an overflow. (Even
Integer multiples of PII2 return 0)

7 WFATN2S, WFATN2D The numbers In both FPACO and
FPAC1 equal O.

10 WFEXPD, WFEXPS The number In FPACO will cause an
underflow.

WFPWRD, WFPWRS The numbers In either FPACO or
FPAC1 will cause an underflow.

NOTES: If floating-point traps are disabled (TE equals 0), more than one
Invalid Input argument error may occur before floating-point traps
are again enabled. In this case, INP will contain the error code for
the FIRST Instruction which caused an Invalid input argument error.

When the processor detects an Invalid Input error while executing an
liS Instruction, the state of all floating-point accumulators Is
undefined, Carry Is unchanged, and overflow is unaffected.

This bit must be zero (processor specific).

FloatIng-Point
Program Counter

32

33-63 The floating-point program counter (FPPC) contains the address of the
first floating-point Instruction to set an error bit In the FPSR (after an

NOTES:

014-001371

FCLE or fORST Instruction) unless specifically set by a Load
Floating-Point Status Instruction (LFLST). FPPC Is undefined If ANY=O.

All reserved bits in the FPSR must be O. Instructions which load the
FPSR from memory (such as LFLST or WFPOP) must load "reserved"
bits as zeros otherwise the results are unpredictable.

The OVF, UNF, INV, and MOF status bits are cumulative. These bits are
only cleared by FPSR loads which restore them, or by an instruction
which explicitly clears them (such as FCLE).

End of Chapter

3-15

•

4
Stack Management

A stack is a series of consecutive locations in memory. In the simplest form, stack
instructions add items in sequential order to the top of the stack and retrieve them in the
reverse order. A program can access several stack areas, but can use only one stack area
at any time. The processor, using the push-down stack concept, pushes (stores) data
onto the stack (toward higher addresses) and pops (retrieves) data from it in the reverse
order (toward lower addresses).

For instance, the processor can push or pop the contents of up to four accumulators with
the WPSH or WPOP instruction. In addition. the processor can push a return block for
a subroutine call, an 110 interrupt request, or a fault. Then a return block would be
popped upon returning from the call, interrupt. or fault handler.

The 32-bit processor provides facilities for wide and narrow stack operations. The wide
stack. a series of doublewords. supports 32-bit programs. The system includes four 32-bit
stack management registers to manage wide stack operations. The narrow stack, a series
of single words. supports 16-bit programs (for ECLIPSE 16-bit program development and
upward program compatibility). The system uses three words per ring in reserved memory
to manage narrow stack operations.

This chapter presents the wide stack operations and instructions. Refer to the chapter.
"ECLIPSE 16-Bit Compatibility." for further information on the narrow stack. The
chapter ... Program Flow Management." presents wide and narrow stack fault handling.

014-001371 4-1

Stack Management

Wide Stack Operations

4-2

Each segment contains a set of wide stack parameters that the processor manages in the
current segment with four 32-bit stack registers. You can modify the contents of the
stack registers with instructions that move data between an accumulator and a stack
register.

When transferring program control to another segment, the processor stores the contents
of the stack registers in page zero of the current segment and initializes the contents of
the stack registers from page zero of the destination segment.

CAUTION: A program must not refer to or modify the stack parameters in page zero oj
the current segment.

When a program executes in one ring, the stack must reside either in that ring or a
higher ring and may span ring boundaries. Extreme care should be taken when using a
stack that crosses an upper ring boundary as certain locations, such as page zero, may be
affected (a ring crossing to that ring may then produce undefined results).

NOTE: A segment violation fault is NOT generated when executing a stack-related
instruction (such as WPOPJ) which affects that portion of the stack
extending into the next-higher ring (this occurs when popping the stack
contents from the higher ring back into the ring of execution).

Figure 4-1 shows the four stack parameters. Items (1) and (2) identify the lower stack
limit (base) and upper stack limit, which define the locations that the stack occupies.
Items (3) and (4) identify the wide stack pointer and the wide frame pointer, which
address the data in the stack.

....AAA A ... A
••••••••• v

R •• t of memory

I (2) R.t.rred to by WSl --.

I I Incr.a.lng
addr •••••
(doubl. word.)

(3) R.terred to by WSP Data word

(4) R.terred to by WFP Carry and PC

AC3

AC2 }_~~k
ACl (standard)
ACO

PSR/argument count

I I
PSR/argument count

(1) Reterred to by WSB

Rest ot memory
AA""'" AAAAA

... vvv yVyy

INT-00170

Figure 4-1 Typical wide stack

014-001371

Stack Management

Wide Stack Registers
For most efficient operation, the contents of the wide stack registers should be initialized
to address locations that are aligned on double word boundaries (even addresses).

The processor accesses the stack management registers to save or restore them when
changing program flow between segments. When the processor transfers program control
to another segment, it initializes all four wide stack registers using the contents of
reserved memory locations in page zero of the new segment. Figure 4-2 shows the format
of these registers; Table 4-1 describes the format.

I
X I Segment Logical Address

151 0 3 4

I
Logical Address

I 16 31

INT-00171

Figure 4-2 Wide stack management register format

Table 4-1 Wide stack management register format description

Name Bit

x o

Segment 1-3

Logical Address 4-31

Wide Stack Base

Contents

Initially thll value mUlt be zero (In the .tack limit tnl. bit I •• et to one
when a stack fault occurs).

Specifies the segment location of the stack.

Specifies a logical address within the segment.

The wide stack base (WSB) defines the lower limit of the wide stack. When you initialize
a wide stack, the wide stack base should be one doubleword below the actual address of
the first double word in the wide stack.

The processor uses the contents of the wide stack base when it pops data from the wide
stack. For instance, when returning from a subroutine, the processor pops a wide return
block and then checks for a wide stack underflow. If the wide stack pointer value is less
than the wide stack base value, an underflow condition exists. Refer to the section,
"Wide Stack Faults," for further information on handling an underflow fault.

Wide Stack Limit
The wide stack limit (WSL) defines the upper limit of the wide stack. When you initialize
a wide stack, the wide stack limit should be 18 doublewords below the actual address of
the last double word in the wide stack. so that there will be space for handling a stack
overflow if one occurs.

014-001371 4-3

Stack Management

The processor pushes one or more doublewords onto the wide s~ack (such as a wide
return block when calling a subroutine), and then for most operations checks for a stack
overflow fault. (However. the processor checks for overflow before pushing data onto the
stack when using the wide save instructions - WSAVR. WSAVS, WSSVR, and WSSVS -
or when crossing to a subroutine in a lower-numbered segment.)

To check for a wide stack overflow fault, the processor compares the wide stack pointer
contents to the wide stack limit contents. If the wide stack pointer contents are greater
than the wide stack limit contents. an overflow condition exists. Refer to the section,
"Wide Stack Faults." for further information on handling an overflow fault.

Wide Stack Pointer

The wide stack pointer (WSP) addresses the top location of the wide stack. either the
location of the last doubleword placed on the stack (when adding data to the stack) or
the next double word available from the stack (when removing data from the stack).
When initializing a wide stack. set the wide stack pointer so that it is equal to the address
in the wide stack base register.

To push a doubleword. the processor increments the wide stack pointer by two and stores
a doubleword onto the stack. A pop operation retrieves one or more double words from
the wide stack and decrements the wide stack pointer by two for each doubleword it
pops.

NOTE: The area between the wide stack pointer and the wide stack limit can be
modified by the processor. For example. the WEDIT instruction may
implicitly push and pop temporary WEDIT data.

Wide Frame Pointer

The wide frame pointer (WFP) -- unchanged by push and pop operations -- defines a
reference point in the wide stack. When setting up a wide stack. initialize the wide frame
pointer so that it has the same value as the wide stack pointer. This preserves the original
value of the wide stack pointer.

The processor stores and resets the value of the wide frame pointer when entering or
leaving subroutines. Thus, the wide frame pointer identifies the boundary between words
placed on the wide stack before a subroutine call, and between words placed on the wide
stack during a subroutine execution. Using the wide frame pointer as a reference, the
processor can move back into the wide stack and retrieve arguments stored there by a
preceding routine.

Wide Stack Register Instructions

4-4

The instructions listed in Table 4-2 load (or modify) a widt: stack register with data from
an accumulator or store data in an accumulator from a wide stack register. In addition, if
the LCALL or XCALL instruction transfers program control to another segment, the
processor initializes all four wide stack registers (using the contents of reserved memory
locations in page zero of the new segment). When transferring program control back to
the original segment (with the WRTN instruction), the processor initializes the stack
registers from the reserved memory locations of the original segment.

014-001371

Stack Management

Table 4-2 Wide stack register instructions

Instruction

LCALL
LDAFP

LDASB
LDASL

LDASP

STAFP
STASB

STASL

STASP

WMSP
WRTN

XCALL

Operation

Call subroutine (return from call with WRTN)
Load accumulator with the WFP register contents
Load accumulator with the WSB register contents
Load accumulator with the WSL register contents
Load accumulator with the WSP register contents
Store accumulator In the WFP register
Store accumulator In the WSB register
Store accumulator In the WSL register

Store accumulator In the WSP register
Wide modify WSP register
Wide return control from subroutine (LCALL, XCALL)

Call subroutine (return from call with WRTN)

Wide Stack Data Instructions
The wide stack data instructions access a doubleword or a block of doublewords. All the
wide stack data instructions which push or pop data on the stack increment or decrement
the wide stack pointer.

• Instructions which use the wide stack pointer only to access data (such as LDATS
and DSZTS) do not modify WSP.

• Instructions that access a doubleword modify the wide stack pointer by two.

• Instructions that access a block of doublewords modify the wide stack pointer by
four or more (depending upon the size of the data block or return block).

The instructions in Table 4-3 access a doubleword or a block of doublewords.

Table 4-3 Wide stack doub/eword access instructions

Instruction

DSZTS *

ISZTS *
LDATS*

LPEF
LPEFB

LPSHJ
NBSle *
NFSte *
STATS *
WBSte *

WFPOP
WFPSH
WFSte *
WPOP

WPOPJ
WPSH
XPEF

XPEFB
XPSlIJ

Operation

Decrement the doubleword addressed by WSP (skip If zero)
Increment the doubleword addressed by WSP (skip If zero)

Load accumulator with doubleword addressed by WSP
Push address
Push byte address
Push jump to subroutine (pop with WPOPJ)
Narrow backward search queue and skip
Narrow forward search queue and skip
Store accumulator Into doubleword addressed by WSP
Wide backward search queue and skip
Wide floating-point pop
Wide floating-point push
Wide forward search queue and skip
Wide pop accumulators (push with WPSII)

Wide pop PC and Jump (push with LPSHJ or XPSHJ)

Wide push accumulators (pop with WPOP)

Push address
Push byte address
Push jump to subroutine (pop with WPOPJ)

* Instruction uses but does not modify WSP.

014-001371 4-5

4-6

Stack Management

The instructions in Table 4-4 push or pop a return block. Although the return block can
take several forms, it usually consists of six doublewords. Table 4-5 lists the standard
return block 'With the order of items pushed and popped.

Table 4-4 Wide stack return block instructions

Instruction

BKPT

PBX

WPOPB

WRSTR

WRTN

WSAVR

WSAVS

WSSVR

WSSVS

WXOP

Operation

Breakpoint handler (return from breakpoint handler with PBX)

Pop block and execute (return from breakpoint handler)

Wide pop block

Wide restore from an Interrupt

Wide return via wide save (WSAVR. WSAVS. WSSVR. and WSSVS)

Wide save (reset overflow mask). used with LCALL and XCALL

Wide save (set overflow mask). used with LCALL and XCALL

Wide special save (reset overflow mask). used with LJSR & XJSR

Wide special save (set overflow mask). used with LJSR & XJSR

Extended operation (return with WPOPB; used to expand Instruction set)

Table 4-5 Standard wide return block

Ooubleword
Number In Block
Pushed Popped Name Contents

2

3

4

5

6

6 PSR/ARG_COUNT Bits 0-15 contain the PSR.

5 ACO

4 AC1

3 AC2

2 AC3

CRY/PC

Bits 16-31 contain either all zeros or an argument count
from the LCALL or XCALL Instruction.

Contents of accumulator 0

Contents of accumulator 1

Content. of accumulator 2

Contents of accumulator 3 (or WFP before the push)

Bit 0 contains Carry.
Bits 1-31 contain the PC return address.

The Instruction Dictionary presents the return block contents with each subroutine
instruction description. The chapter. "Program Flow Management." identifies the return
blocks for the nonprivileged faults, while the chapter, "Device Management," presents
the return block for an 110 interrupt. The chapter, "Memory and System Management,"
identifies the return blocks for privileged operations.

014-001371

Stack Management

Initializing A Wide Stack
Figure 4-3 illustrates assembler code for initializing a wide stack. The stack resides in
locations 256 10 through 355 10 , In this example, the processor detects a stack overflow 18
double words before the actual end of the stack - if a stack overflow does occur, the 18
reserved doublewords (ENDZ) provides stack space for a wide stack fault return block .

. NREL
BASE: .BLK
ENOZ: .BLK

XLEF
STASL
XLEF
STASB
STASP
STAFP

XPEFB

66.
36.

O,ENOZ
0
O,BASE-2
0
0
0

BYTZ*2

;Reserve 66 words for the wide stack
;Reserve 36 words for wide stack end zone

;Initialize WSL for a stack
overflow when WSP = BASE+88

:Initialize WSB
; Initialize WSP
: Initialize WFP

:Calculate and store the byte address
for BYTZ on the stack.

INT-D0172

Figure 4-3 Sample code for Initializing a wide stack

Figure 4-4 illustrates the result of executing the assembler code in Figure 4-3. The
XPEFB instruction calculates and pushes a byte address onto the stack.

354 1 __ ;1
- -.-

256

WSP & WFP --.
o 31

Wide stack after
intialization
(ST ASP and ST Ar-P
Instructions)

WSP

WFP

J __ ;1
-

-.
-..

o

----~

Byte address

31

Wide stack after
XPEFB Instruction

Figure 4-4 Example of wide stack operations

014-001371 4-7

Stack Management

Wide Stack Faults

4-8

Stack overflow and underflow are stack faults. Stack overflow occurs when a program
pushes data into the area beyond that allocated for the stack. Stack underflow occurs
when a program pops data from the area beyond that allocated for the stack. Once
detected, the processor always processes a stack fault.

After pushing data onto the stack, the processor checks for a stack overflow by
comparing the value of the wide stack pointer to the value of the wide stack limit. If the
value of the wide stack pointer is greater, a stack overflow exists. Loading the value
377777777778 into the wide stack limit register disables wide stack overflow fault
detection.

After popping data from the stack, the processor checks for a stack underflow by
comparing the value of the wide stack pointer to the value of the wide stack base. If the
value of the wide stack pointer is less, a stack underflow exists. Loading the value
200000000008 into the wide stack base register disables wide stack underflow fault
detection.

Table 4-6 lists some instructions that push or pop one or more doublewords onto the
wide stack. The table also lists the number of words required beyond the wide stack limit
for a stack fault return block. Refer to the chapter, "Program Flow Management," for a
description of stack fault servicing.

Table 4-6 Instructions affecting the wide stack

Doubleword. Doubleword.
Instruction Description Pushed or Required Beyond

(Popped) WSL for Stack Fault

BKPT Breakpoint handler 6 12
LCALL Subroutine call 1 7
LFAMD, etc. Floating-point arithmetic with TE enabled 0 12
LPEF Push address 1 7
LPEFB Push byte address 7

LPSHJ Push jump 1 7
PBX Pop block and execute (6) 6
WADD, etc. Fixed-point arithmetic with OVK enabled 0 12

WEDIT Wide edit 9 15
WFPOP Wide floating-point pop (10) 6

WFPSH Wide floating-point push 10 16

WPOP Wide pop accumulators (1-4) 6
WPOPB Wide pop block (6) 6
WPOPJ Wide pop PC and jump (1) 6

WPSH Wide push accumulators 1-4 10

WRSTR Wide restore (11) 6

WRTN Wide return (6) 6

WSAVR Wide savelreset OVK 5 11

WSAVS Wide savelset OVK 5 11

WSSVR Wide special save/reset OVK 6 12

WSSVS Wide special save/set OVK 6 12

WXOP Extended operation 6 12

XCALL Subroutine call 7

XPSlIJ Push jump to subroutine 7

XVCT Vector on 110 Interrupt 6 or 11 17

End of Chapter

014-001371

5
Program Flow Management

This chapter explains program flow. related instruction groups. transferring program
control to another segment. and handling faults. Refer to the chapter. "Device
Management." for 110 interrupt processing.

The program counter (PC) specifies the logical address of the instruction to execute:.
Thus. it controls the execution sequence of instructions. Since only bits 4 through 31 of
the program counter are incremented. address wraparound occurs within the current
segment.

NOTE: If the address translation unit is off, addresses are physical ones. In this case,
the program counter is undefined for values greater than 512 Mbytes.

To address the next instruction (for normal program flow), the processor increments the
program counter by

• one, when executing a one-word instruction (such as NADI).

• two, when executing a two-word instruction (such as NADDI).

• three, when executing a three-word instruction (such as LNADI).

• four, when executing a four-word instruction (such as LCALL).

NOTE: The \VCLM instruction increments the program counter by five when both
source and destination accumulators are specified as the same accumulator (the
instruction then includes two 32-bit immediate values).

Any of the following events alter the normal program flow.

• Executing the XCT instruction.

• Executing a jump instruction.

• Executing a skip instruction.

• Executing a subroutine call or return instruction.

• Detecting a fault.

• Detecting an 110 interrupt request.

014-001371 5-1

Program Flow Management

Related I ~struction Groups
The next section explains related instruction groups such as the Execute Accumulator.
jump. skip. and subroutine call or return instructions.

Execute Accumulator

Jump

Skip

5-2

The Execute Accumulator instruction (XCT) executes bits 16-31 of an accumulator as an
instruction. If these bits are the first 16 bits (word) of a multi word instruction, the
additional required words of the instruction are fetched from words immediately following
the XCT instruction. After executing the accumulator contents, program flow continues at
one of the following locations.

• The first location after the XCT instruction (assuming a 16-bit instruction was
executed) .

• The second, third, or fourth location after the XCT instruction, if the contents of the
accumulator is the first o'f a two-, three-. or four-word instruction.

• The effective address. if the accumulator contains an instruction that alters normal
program flow. such as a jump or skip instruction.

A jump instruction loads the effective address into the program counter. Program flow
continues at the effective address. A jump instruction does not save a return address.
The jump instructions are listed -in Table 5-1.

Table 5-1 Jump instructions

Instruction

DSPA •
JMp·
LDSP
LJMP
WBR
XJMP

Operation

Dispatch (with narrow displacement)
Jump (with narrow displacement)
Dispatch (with long displacement)
Jump (with long displacement)
Branch (PC-relative jump)
Jump (with extended displacement)

• ECLIPSE compatible instruction

A skip instruction causes the processor to either execute the next word in the instruction
stream. or to jump over this word and execute the second word following the skip
instruction. To skip. the processor adds one to the program counter. During most skip
instructions. the processor first tests a machine condition or status. and on the basis of
test results. executes the first or second word as an instruction.

When using a skip instruction. verify that the skip does not transfer control to the middle
of a two (or more) word instruction. For instance. the two lines of code starting at
"NOGO:" in Figure 5-1 perform an undesired skip because the program counter contains
the address of the first word of the LFDMD two-word displacement. The three lines of
code staning at "SKIPOK:" in Figure 5-1 perform the skip properly.

014-001371

NOGO: FSEQ
LFDMD O.OOPAND

SKI POK: F SNE
WBR NEXT
LFDMD O.@OPAND

NEXT:

Program Flow Management

;Skip on zero
;Floating-point divide with a two-word displacement

;Skip on nonzero and execute the LFDMD instruction
;Zero -- skip the LFDMD instruction
;Floating-point divide with a two-word displacement

INT-00174

Figure 5-1 Illegal and legal skip instruction sequences

Certain skip instructions modify the program counter by other than one (or zero) word.
Table 5-2 lists these instructions; the remainder of this section describes how the
DO-loop and search queue instructions modify the program counter.

Table 5-2 Skip instructions

Instruction

FNS •
FSA •
LNDO
LWDO
XNDO
XWDO
NBStc
NFStc
WBStc
WFStc

Operation

No skip
Skip always
Narrow do until greater than
Wide do until greater than
Narrow do until greater than
Wide do until greater than
Narrow search queue backward
Narrow search queuo forward
Wide search queue backward
Wide search queue forward

• ECLIPSE compatible instruction

A DO-loop instruction (LNDO. LWDO. XNDO. and XWDO) increments a loop variable
by one and then compares it to a value in a specified accumulator. The processor
executes the

• First instruction in the DO-loop sequence while the incremented variable equals (or
remains less than) the value in the accumulator.

• Instruction following the DO-loop sequence when the incremented variable becomes
greater than the value in the accumulator.

The processor skips the DO-loop sequence of instructions by adding one plus the
termination offset (for skipping the DO-loop sequence) to the current program counter
value. The processor then loads this sum into the program counter.

For example, the lines of code in Figure 5-2 perform a valid DO-loop sequence.

LOOP:

END:

WSUB
XNSTA
NLDAI
XNDO

WBR

0,0
0, INDEX
5,0
o ,END -., INDEX

LOOP

INDEX: .WORD 0

;Get a 0
;Initialize the counter in memory
;Maximum index value
;Start of the Do-loop
;New index value is in AC) and may be
;used by computations in the loop

;Loop was executed 5 times

; Index value

Figure 5-2 DO-loop instruction sequence

014-001371

INT-00175

5-3

Program Flow Management

A search queue instruction (NBStc, NFStc, \\'BStc, ar: :'FStc) c~uses the program
counter to skip one, two, or three words when an explic ~ueue element exists. The first
word following the search queue instruction normally contains a jump instruction to a
routine that handles an unsuccessful return from the queue search, while the second word
is a jump to a routine for an interrupted queue search. The third word following the
search queue instruction is the location where a successful queue search returns. Refer to
the chapter, a. Queue Management," for more information on the search queue
instructions.

In addition to the program flow and search queue instructions, additional skip instructions
are available for fixed-point, floating-point, and I/O operations. For more information,
refer to the following chapters.

• "Fixed-Point Computing" for the fixed-point skip instructions.

• "Floating-Point Computing" for the floating-point skip instructions.

• "Device Management" for the 110 skip instructions.

Subroutine

5-4

Some instructions that call a subroutine push arguments and/or a return block onto the
wide stack before actually jumping to the subroutine. These instructions also require
specific instructions to properly return from a subroutine. Table 5-4 lists the subroutine,
save, and return instructions. Table 5-5 illustrates the relationships between the various
subroutine instructions and their corresponding return instructions. A description of the
subroutine instructions and an example with wide stack operations follows the tables.

For instructions which do not explicitly push information onto the stack, the
recommended procedure for calling and returning from a subroutine is:

1. Push any arguments (to be passed to the subroutine) onto the stack.

2. Jump to (using an LJSR or XJSR instruction) or call (with an LCALL or XCALL
instruction) the subroutine. This places the effective address into the program
counter.

3. Use a save instruction as the first instruction in the subroutine (to push a return
block and other return information onto the stack).

4. Return from the subroutine using the appropriate subroutine return instruction (see
Table 5-5). The subroutine return instruction (generally a WRTN instruction) pops
the wide return block from the stack, thus, restoring the Carry bit, program
counter, and accumulators. Program flow continues with the instruction following the
subroutine call (unless the popped return block updates the program counter).

Although a wide return block can take several forms, it usually consists of six
doublewords, as shown in Table 5-3. The fifth doubleword contains the contents of AC3
(for a BKPT or WXOP instruction) or the previous wide frame pointer (for XCALL or
LCALL and WSA VS or WSA VR instructions). Bit 0 of the sixth doubleword contains
Carry; bits 1-31 contain the program counter.

014-001371

Program Flow Management

Table 5-3 Standard wide return block

Doubleword
Number In Block
Pushed Popped Name Contents

6 PSR/ARG_COUNT Bits 0-15 contain the PSR.
Bits 16-31 contain either all zeros or an argument count
from the LCALL or XCALL Instruction.

2 5

3 4

4 3

5 2

6

ACO

AC1
AC2

AC3

CRY/PC

Contents of accumulator 0
Contents of accumulator 1
Contents of accumulator 2

Contents of accumulator 3 (or WFP before the push)
Bit 0 contains Carry.
Bits 1-31 contain the PC return address.

Table 5-4 Subroutine instructions

Instruction

BKPT
LCALL
LJSR
LPSHJ
PBX
WEDIT
WPOPB
WPOPJ
WRTN
WSAVR
WSAVS
WSSVR
WSSVS
WXOP
XCALL
XJSR
XPSHJ

Operation

Breakpoint handler
Call subroutine (long displacement)
Jump to subroutine (long displacement)
Push jump (long displacement)
Pop block and execute
Wide edit of alphanumeric data
Wide pop block
Wide pop PC and jump
Wide return
Wide save and reset overflow mask
Wide save and set overflow mask
Wide special save and reset overflow mask
Wide special save and set overflow mask
Wide extended operation
Call subroutine (extended displacement)
Jump to subroutine (extended displacement)
Push jump (extended displacement)

Table 5-5 Sequence of subroutine instructions

Call Instruction Segment Associated
or Sequence Crossing Save

Permitted Instruction

BKPT No
LCALL Yes WSAVR

Yes WSAVS
LJSR No WSSVR

No WSSVS
LPSHJ No
WEDIT No
WXOP No
XCALL Yes WSAVR

Yes WSAVS
XJSR No WSSVR

No WSSVS

XPSHJ No

Return
Instruction

PBX/WPOPB*
WRTN
WRTN
WRTN
WRTN
WPOPJ
DEND

WPOPB
WRTN
WRTN
WRTN
WRTN
WPOPJ

* Use the BKPT/WPOPB Instruction sequence when removing the BKPT instruction before
returning from the breakpoint handler.

014-001371 5-5

Program Flow Management

Jump to Subroutine
A jump to a subroutine (LJSR or XJSR) instruction transfers program control to a
subroutine in the current segment. These instructions store the return address in AC~ and
transfer program control to the effective address. As the first instruction of the
subroutine, a wide special save (WSSVR or WSSVS) instruction pushes a standard wide
return block onto the wide stack, manipulates some of the PSR bits, and reserves stack
space for local variables. As the last instruction of the subroutine, the Wide Return
(WRTN) instruction returns program control from the subroutine.

A push and jump to a subroutine (LPSHJ or XPSHJ) instruction pushes a return
address onto the wide stack and transfers program control to the effective address in the
current segment. As the last instruction of the subroutine, the WPO P J instruction returns
program control from the subroutine.

Call Subroutine
A call to a subroutine (LCALL or XCALL) instruction transfers program control to a
subroutine in the current segment or in another segment and pushes (or copies) a
double word onto the destination wide stack. As the first instruction of the subroutine, a
wide save (WSA VR or WSA VS) instruction pushes a standard wide return block onto the
wide stack in the destination segment, sets or resets the OVK bit of the PSR, and
reserves stack space for local variables. As the last instruction of the subroutine, the
Wide Return (WRTN) instruction returns program control from the subroutine. (Refer to
the next section for a complete description of transferring program control to another
segment.)

Breakpoint Instruction

5-6

The Breakpoint (BKPT) instruction pushes a wide return block and transfers program
control to the breakpoint handler. The Pop Block and Execute (PBX) instruction returns
program control from the breakpoint handler.

Before executing BKPT, first save elsewhere in memory the one-word opcode from the
location that the BKPT instruction will occupy. Then, store the BKPT instruction in that
one-word location.

When the processor executes the BKPT instruction. it pushes a wide return block onto
the current stack and jumps to the breakpoint handler. When returning program control.
the breakpoint handler must load the one-word opcode from memory into ACO. Then it
executes the PBX instruction, which temporarily

1. Disables the interrupt system for one instruction execution;

2. Saves the one-word opcode in ACO (bits 16-31) and performs the function of a
WPOPB instruction;

3. Replaces the BKPT instruction with the temporarily saved one-word ope ode and
then continues normal program flow.

If an interrupt occurs while the processor is executing the saved instruction (the program
counter points to the BKPT instruction). the processor sets the IXCT flag in the PSR and
pushes the opcode of the saved instruction on the wide stack. Upon returning from the
interrupt handler, the BKPT instruction tests the IXCT nag. If the flag is set, the BKPT
instruction resets the flag to 0, pops the saved opcode of the interrupted instruction off
the wide stack. and executes it.

NOTE: If you remove the BKPT instruction (replacing it with another instruction)
before returning from the breakpoint handler, you must use the WPOPB
instruction to return from the handler.

014-001371

Program Flow Management

Wide Edit Instruction

The Wide Edit (WED IT) instruction transfers control to an edit subprogram without
changing the program counter. The WED IT instruction subprogram then uses a byte
pointer as its program counter. The subprogram End Edit (D END) instruction returns
program control to the instruction following the WEDIT instruction. Refer to the 'VEDIT
description in the Instruction Dictionary for complete information.

Example With Wide Stack Operations

The following illustrates the effects of a jump to subroutine (XJSR) instruction on a wide
stack. The jump occurs within the current segment. The routine passes arguments tn the
subroutine by pushing the arguments onto the stack before executing the XJSR
instruction.

Figure 5-3 illustrates the lines of processor-related assembler code for beginning and
ending a subroutine. The first instruction of the subroutine is a wide special sa ve
instruction (WSSVS) and the last instruction of the subroutine is a Wide Return
instruction (WRTN). The second instruction of the subroutine (XPEF) further illustrates
wide stack operations.

XJSR

SUB: WSSVS
HERE: XPEF

WRTH

SUB

o
HERE

;Jump to subroutine.

;Save a wide return block.
;Calculate and push this address into the
;wide stack.

;Return from subroutine call.

Figure 5-3 Example of subroutine code for XJSR

INT-00176

Figures 5-4 and 5-5 illustrate the result of executing the assembler code in Figure 5-3.
During the XJSR instruction, the processor stores the return address into AC3 and jumps
to the subroutine. With WSSVS as the first instruction of the subroutine, the processor
stores the PSR, ACO-AC2, the old WFP, Carry (C), and AC3 (return address) into the
wide stack.

Although Figures 5-4 and 5-5 illustrate that the wide stack resides between 256'0 and
355'0' the wide stack can be of any size and can reside almost anywhere within the
segment of execution (or a higher numbered segment). Refer to the chapter, "Stack
Management," for further wide stack information.

014-001371 5-7

5-8

Program Flow Management

J ____ d _ - - .--~

WSP

~~ ... C 1 PC return

Old WFP

AC2

AC1

P WF ACO

WSP -+ Pushed words

- ---
WFP'" Pushed words

o 31

Wide stack before
)(JSR Instruction

Direction of program execution

PSR T 00000o

Pushed words

-
] Pu.hod_~ i
1 Pushed words r

o 31

Wide stack after
)(JSR and WSSVS
Instructions

WSP

WFP

Ret urn
ock bl

Jd ------ _

..... Addr.ss pushed

..... C I PC return

Old WFP

AC2 Retu
bloc

AC1

ACO

PSR 1000000
Pushed words

-

rn
k

WFP I-hod -do

1 Pushed w:=-r
o 31

Wide stack after
XPEF Instruction

INT-Q0177

Figure 5-4 Wide stack operations from XJSR, WSSVS, and XPEF instructions

354} ____ ;;1
wsp-+ Address pushed Registers reloaded

WFP--' C o-CRY;1-31-PC

Old WFP-AC3

AC2

AC1

ACO

Bits 0-15 to PSR

Pushed words

lpushed~
o 31

Wide stack events while executing the
WRTN Instructions

a --
Addre .. pushed

C I PC return

Old WFP

AC2

AC1

ACO

PSR I 00000o

WSP -+ Pushed words

- --
WFP-1 _hod;r

1 PuShed::s-r

o 31

Wide stack after
executing WRTN
Instruction

INT-00178

Figure 5-5 Wide stack operations from WRTN instruction

014-001371

Program Flow Management

Transferring Program Control To Another Segment
The ring structure of ECLIPSE MV IFamily processors limits the transfer of program
control (for most instructions) to the current ring of execution (CRE). In order to
transfer program control to another segment, access to the other segment must be
through a gate array using a call subroutine instruction. The instructions listed in Table
5-6 transfer program control to or from another segment.

Table 5-6 Segment program control transfer instructions

Instruction

LCALL
WDPOP
WPOPB
WRTN
XCALL
WRSTR

Operation

Call subroutine
Wide return from page fault
Wide pop block
Wide return
Call subroutine
Wide restore from an 1/0 Interrupt

The LCALL and XCALL instructions initiate the transfer to another segment. The
WRTN instruction returns program control from the LCALL and XCALL instructions.
The \\'RSTR instruction returns program control from a base level 110 interrupt. The
WPO PB instruction returns program control from an intermediate-level 110 interrupt.
Refer to the chapter, "Device Management," for a description of 110 interrupts.

The processor checks the direction of a transfer. A subroutine call must be inward
(towards segment 0) and a return from a subroutine call or I/O interrupt must be
outward (towards segment 7).

NOTE: No segment crossing occurs with an interrupt request when the current segment
equals 0 and the interrupt-servicing code resides in segment O.

If the processor detects an invalid segment crossing, it does not execute the instruction;
instead, it initiates a protection fault in the originating segment. The processor sets AC 1
to 7 for an illegal outward subroutine call, or sets AC 1 to 8 for an illegal inward return.

NOTE: The processor performs, without software assistance, all the functions necessary
for a segment crossing.

Subroutine Call
To transfer program control to another segment with the XCALL or LCALL instruction,
the processor

1. Verifies that the instruction can access the destination segment.

2. Validates the entry point through a gate array in the destination segment.

3. Redefines the wide stack and transfers the call arguments to it.

4. Transfers program control to the destination segment.

Gate Array
A gate array is a series of locations that specify entry points (or gates) to the segment.
The processor accesses a gate array through a pointer in page zero (locations 348 and 358
of reserved memory) of the destination segment. Figure 5-6 shows the format of a gate
array; Table 5-7 describes the gate array format.

014-001371 5-9

Program Flow Management

151 16 1,7 31 I Bltl

UndefIned I 01 Max. Number of Gat ••

X Brack.t Program Count.r Offl.t Gat. 0

X 0' 1 Program Count.r Off •• t Gat. 1

X Brack.t Program Counter Off •• t Gat. 2

I

: : 'ncr.a"ng I
I I Addr

I I

... 1_x---,I_B_r_ac_k_._t ... _____ Pr_og_ra_m_c_ou_n_ter_O_f_fl_e_t __ -"I Gat. 0-1 In • Max. No.'

1 0 1 1 31 " 31 I Bit.

INT-0017G

Figure 5-8 Gate array format

Table 5-7 Gate array format description

Name

Doubleword 1

Undefined

o

Contents

The processor Ignores these bits.

Bit 16 Is always O.

Maximum Number The maximum number of gates (n) specifies the total number of gates.
of Gates If the maximum number Is zero. the destination segment cannot be the

target of an Inward segment crossing.

Doublewords 2 through n+ 1 (gates 0 through n-1)

X The processor Ignores the contents of this bit.

Bracket

Program Counter
Offset

The bracket Is the gate bracket. an unsigned Integer In the range of zero to
seven. The bracket Identifies the highest numbered source segment that can
use the gate. For Instance. If the Gate 1 gate bracket contains 011,. only
segments 0 through 3 can access this segment.

The program counter offset Is the address of the first Instruction of the
subroutine In the destination segment (target address).

Transfer

5-10

The call subroutine instructions (LCALL and XCALL) are coded as:

LCALL [@]displacement[,index] [,argument_count]
XCALL [@]displacement[,index][,argument_count]

The effective address formed from [@]displacement[,index1 may specify an inner ring or
the current ring. The 16-bit argument_count coded with the LCALL or XCALL
instruction indicates the number of arguments pushed onto the wide stack.

Figure 5-7 shows how the processor interprets the final effective address; Table 5-8
describes the effective address format.

014-001371

Program Flow Management

I
x

I
Segment Unused I

0 3 4 15 I

I ~61 Gate Number

31 I 17

INT-001ao

Figure 5-7 XCALL or LCALL effective address

Table 5-8 XCALL or LCALL effective address format description

Name Bits Contents

X 0 This bit Is Ignored by the processor.

Segment 1-3 The segment bits specify the segment number of the destination
segment.

Unused 4-15 These bits are Ignored by the processor.

Always O. 0 16

Gate Number 17-31 Index to an element (a gate) In the gate array.
or Call Offset If the segment bits (1-3) specify a destination segment less than the

current segment of execution. then the gate number specified by bits
17 -31 Is a gate In the destination segment.

If the destination segment specified by bits 1-3 equals the current
segment of execution. then bits 17-31 do not indicate a gate number.
but a target offset In the current ring to which control Is transferred.

To perform a valid inward segment crossing, as depicted in Figure 5-8, the processor

1. Tests for a valid segment by checking the validity bit in the segment base register.

If the segment is accessible, the processor continues to the next step.

If the segment is not accessible, the processor aborts the call, sets AC 1 to 3, and
services the protection fault.

2. Checks for a valid gate by

014-001371

a. Comparing the gate number to the maximum number of gates.

If the gate number is less than the maximum number of gates, the segment
crossing continues.

b. Comparing the segment number to the gate bracket number of the indexed gate.

The segment number used for comparison is either the current segment of
execution (if there was no indirection) or the segment of the last indirect
address.

If the segment number is equal to or less than the value in the gate bracket, the
processor copies the segment number from the effective address to bits 1-3 of
the program counter.

Next, the processor copies the program counter offset (bits 4-31 from the
indexed gate) to the program counter bits 4-31, and continues (to step 3).

If a gate number or a gate bracket comparison fails, the processor aborts the call,
sets AC1 to 6, and services the protection fault. The protection fault occurs in the
source segment.

5-11

5-12

Program Flow Management

3. Stores the wide frame pointer and wide stack pointer registers into page zero
locations of the source segment.

The values of the wide stack limit and wide stack base registers should be identical
to the values in reserved memory.

4. Redefines the wide stack for the destination segment by loading the wide stack
pointer, wide stack limit, and wide stack base registers from page zero locations of
the destination segment.

NOTE: Page zero must be memory resident. A page fault may not occur when
referring to these locations because an infinite page fault will be signaled
and the processor will halt.

The WSAVS or WSAVR instruction sUDsequently initializes the wide frame
pointer.

S. Checks for a potential destination stack overflow.

The 16-bit argument_count coded with the LCALL or XCALL instruction specifies
the number of arguments pushed onto the wide stack. The processor uses this
parameter to determine if the number of arguments to copy exceeds the size of the
wide stack.

If the processor detects a potential overflow, it does not copy the arguments. It sets
AC 1 to 2 and processes a stack fault in the destination segment. The program
counter word in the return block contains the address of the first instruction to
execute in the destination segment.

6. Creates a double word containing the current processor status register and the
number of arguments pushed onto the source wide stack (PSRlarg_count). The
actual contents of the PSRlarg_count double word depend on the value of the high
bit in the argument_count coded with the call subroutine instruction. If the high bit
equals

7.

• 0, the PSRlarg_count double word is in the following format:

Bits 0-15 contain current PSR.
Bits 16-31 contain argument_count.

• 1, the processor assumes the top doubleword pushed on the source stack is in
the following format:

Bits 0-15 are undefined.
Bits 16-31 contain argument_count with bit 16 equal to O.

In this case, the processor ignores the argument_count coded with the call
subroutine instruction and places the current PSR into bits 0-15 of the stack
double word .

NOTE: Before the LCALL or XCALL instruction completes execution, the
processor removes the PSR/arg_count doubleword from the source
segment's stack (only the destination segment's stack will contain the
PSR/arLcount value).

Copies the number of arguments from the source stack to the destination stack, if
no potential overflow exists.

The order of the arguments in the destinati<;m stack matches the order of the
arguments in the source stack.

NOTE: The copying of arguments is interruptable.

014-001371

Program Flow Management

8. Pushes the PSRlarg_count doubleword onto the destination wide stack.

9. Executes the first instruction of the subroutine.

A wide save instruction (WSA VR or WSA VS) should be the first instruction of the
subroutine. Either instruction would push a return block onto the destination wide
stack and load the wide frame pointer with the updated value of the wide stack
pointer.

AA~~t ;~II No
Service protection

fault

Abort call
ACl = 6

Service protection
fault

Abort call
AC1 = 6

Service protection
fault

No

No

Copy ~me"t number
from effective addre ..

to PC (bits 1-3)

Copy PC off.et
from Indexed gate
to PC (bits 4-31)

Store WFP and WSP
to .ource .egment
page zero location.

Copy argument.
from source stack

to destination stack

Figure 5-8 Validating inward segment crossing sequence

014-001371

Ve. ACl -2
FIrooeeI ,tack fault \"
... tlnaUM _"iFnttA

INT-D0881

5-13

Program Flow Management

Trojan Horse Pointers

When executing a subroutine in another segment. the processor uses the access privileges
of the destination segment to determine the validity of the reference. A trojan horse
pointer exists if one of the arguments passed from the source segment points to a location
in the destination segment (or a segment between the source and destination). A
privileged access fault would occur if a program refers to a location in a lower numbered
segment.

For example. a trojan horse pointer can exist when a program in segment 6 calls a
subroutine in segment 2. and one of the arguments passed is a pointer to information in
segment 2. 3. 4 or 5.

You can protect against a trojan horse pointer by using the Validate Word Pointer
(VWP) or Validate Byte Pointer (VBP) instruction to ensure that the destination segment
is greater than or equal to the source segment (before executing the subroutine).

The processor protects against a trojan horse pointer when it executes a character move
instruction that moves data in descending order (such as WCMT and WCMV). The
processor checks each data transfer and ensures that the source segment and destination
segment remain the same.

Subroutine Return
As the last instruction of the subroutine. use the Wide Return instruction (WRTN) to
return program control from the LCALL or XCALL instruction. Referring to Figure 5-9.
the processor

1. Places the contents of the wide frame pointer into the wide stack pointer.

2. Pops the six double word return block.

The processor pushed the first five doublewords of the return block when it
executed the WSAVR or WSAVS instruction. The processor pushed the sixth
double word (processor status register and the number of arguments) when it
executed the LCALL or XCALL instruction.

3. Loads the program counter with the return address in the destination segment, and
checks for inward return.

4. Stores the updated wide frame pointer and updated wide stack pointer registers into
page zero locations of the source segment.

The values of the wide stack limit and wide stack base registers should be identical
to the values in reserved memory.

5. Redefines the wide stack for the destination segment by loading the wide stack limit.
wide stack base. and wide frame pointer registers from page zero locations of the
destination segment.

NOTE: Page zero must be memory resident. A page fault may not occur when
referring to these locations because an infinite page fault will be signaled
and the processor will halt.

6. Calculates the address of the doubleword that precedes the arguments of the calling
sequence and loads the wide stack pointer with this address. This address is equal
to the destination (outer) segment's wide stack pointer value minus two times the
argument count (from the return block).

7. Loads the program counter from the return block (which may be the instruction
after the LCALL or XCALL instruction) and continues execution.

5-14 014-001371

Program Flow Management

Abort return
AC1 =2

Service protection
fault

Ves

Place WFP Into WSP

Pop return block

Return address
(destination segment)

to PC

Figure 5-9 Wide Return instruction sequence

014-001371

No

Store WFP and WSP
,----... into page zero of

source segment

Load WSL, WSB, and
WFP from page zero

of destination segment

Double word address
(preced~~g~~ments)

Load PC from
return block

INT-00882

5-15

Program Flow Management

Fault Handling

5-16

While executing an instruction, the processor performs certain checks on the operation
and the data. If the processor detects an error. a privileged or nonprivileged fault occurs
before executing the next instruction. Table 5-9 lists the faults with their type.

Table 5-9 Faults

Fault

Nonresident page

Protection violation

Stack operation

Fixed-point computation

Floating-point computation

Invalid decimal or ASCII data format

Type

Privileged

Privileged

Nonprivlleged

Nonprlvlleged

Nonprlvileged

Nonprivileged

When the processor detects a fault, it pushes a return block onto the stack and jumps to
the fault handler through the appropriate fault handler pointer in reserved memory. The
initial and indirect pointers to a fault handler (except to a page fault handler) are 16
bits. Levels of indirection, if any, occur within the segment initially containing the
pointer. A nonprivileged fault pointer is located in page zero of the current segment. A
privileged fault pointer is located in page zero of segment O.

If a privileged fault occurs while handling a nonprivileged fault, the processor suspends
acting on the nonprivileged fault and processes the privileged fault. Refer to the chapter,
.. Memory and System Management," for privileged fault handling.

To service a nonprivileged fault, the processor

1. Sets AC 1 to a value that identifies the fault when a stack fault, fixed-point fault or
a decimal! ASCII fault occurs. Refer to the appendix, .. Fault Codes," for a listing of
fault codes.

2. Pushes a fault return block onto the stack.

The fault return block contains the address of the instruction that the processor was
executing at the time the fault occurred.

3. Checks for stack overflow.

If a stack overflow occurs, the processor pushes a stack fault return block onto the
stack and processes the stack fault. The stack fault return block contains the return
address to the original fault.

If no stack overflow occurs, the processor continues to service the original fault.

4. Jumps to the fault handler.

The last instruction of a wide fault handler should be a WPOPB instruction so that
the processor can continue to execute the interrupted program.

Execution of ECLIPSE 16-bit compatible instructions does not generate fixed-point
faults. Certain ECLIPSE arithmetic instructions (ADD, DIV, etc.) set the state of the
carry bit. If detection of the appropriate fault is desired, it is necessary to create a
subroutine that checks the state of the carry bit upon completion of these instructions. A
carry-out from accumulator bit 16 affects the system's carry bit upon execution of these
ECLIPSE instructions. The Instruction Dictionary describes the ECLIPSE instruction set
and the instructions which affect the carry bit.

014-001371

Program Flow Management

Fixed-Point Overflow Fault
The processor detects a fixed-point overflow when attempting division by zero or when
calculating a two's complement number that is too large to store in memory or in a
fixed-point accumulator. The processor sets the processor status register (PSR) overflow
flag (OVR) to one.

For the processor to service the fixed-point fault (or trap), you must set the PSR
overflow fault mask (OVK) to one before the processor sets OVR. Use the FXTE
instruction to set OVK to one, and the FXTD instruction to set OVK to zero.

• If OVK equals zero when the processor sets OVR to one, the processor ignores the
overflow. OVR, however, remains set to one until explicitly changed. The processor
continues normal program execution with the next sequential instruction.

• If OVK equals one, the processor initiates a fixed-point overflow fault at the end of
the current fixed-point instruction.

To service a fixed-point fault. the processor

1. Pushes a wide return block (see Table 5-10 for the return block contents).

2.

3.

4.

014-001371

The PSR value in the return block contains OVR set to 0, OVK set to 1, and IRES
unchanged. The return address (doubleword number 6) is the address of the
instruction the processor executes after servicing the fault.

Table 5-10 Fixed-point fault return block

Doubleword
In Block
Pushed

2
3
4

5
6

Contents

PSR (Bltl 0-15 ccntaln the proc ... or Itatul r.gllter; bite 18-31
contain zeros)
ACO (Bits 0-31)
AC1 (Bits 0-31)

AC2 (Bits 0-31)
AC3 (Bits 0-31)
CRY/PC (Bit 0 contains Carry; bits 1-31 contain address of the
Instruction following the fault-causing Instruction)

Places the address of the instruction that caused the fault into ACO.

Sets the processor status register to zero.

Jumps to the fault handler through the 16-bit pointer in reserved memory (location
378 of the current segment).

5-17

Program Flow Management

Floating-Point Faults

5-18

The processor detects a floating-point error when

• Attempting division by zero

• Executing an lIS instruction with an invalid input argument

• Calculating a number too large to store in memory or in a floating-point accumulator.

The processor sets both the appropriate floating-point status register (FPSR) fault flag
(OVF, UNF, INV, or MOF) and the ANY flag to one. If the error is an invalid input
argument, the processor also returns a code to the FPSR INP bits.

For the processor to service a floating-point fault (or trap), you must set the
floating-point fault mask (TE) to one before the processor sets a floating-point fault flag.
Use the FTE instruction to set TE to one and the FTD instruction to set TE to zero.

• If TE equals zero when the processor sets a floating-point fault flag to one, the
processor ignores the fault. The processor continues normal program execution with
the next sequential instruction.

'. If TE equals one when the processor sets a floating-point fault flag to one, the
processor initiates a floating-point overflow fault at the end of the current
floating-point instruction.

To service a floating-point fault, the processor

1. Pushes a return block onto the stack.

The processor reads the 16-bit address of the floating-point fault handler from page
zero (location 458) of reserved memory for the current segment. If the first word of
the floating-point handler is an ECLIPSE MV IFamily instruction (bit 0 equals 1
and bits 12 through 15 are 10002), the processor pushes a wide return block onto
the wide stack. Otherwise, the processor pushes a narrow return block onto the
narrow stack. Table 5-11 describes the wide return block and Table 5-12 describes
the narrow return block.

The return address in the return block (PC) is the address of the next instruction
that the processor executes after servicing the fault. Use a store floating-point status
instruction (LFSST or FSST) to determine the address of the floating-point
instruction that caused the fault.

Table 5-11 Wide floating-point fault return block

Doubleword
In Block
Pushed

2
3
4
5
6

Content.

PSR (Bits 0-15 contain the processor status register; bits 16-31
contain zeros)
ACO (Bits 0-31)
AC1 (Bits 0-31)
AC2 (Bits 0-31)
AC3 (Bits 0-31)

CRY/PC (Bit 0 contains Carry; bits 1-31 contain address of the
Instruction following the fault-causing Instruction)

014-001371

Program Flow Management

Table 5-12 Narrow floating-point fault return block

Word in Block
Pushed

1

2
3
4

5

Contents

ACO (Bits 16-31)

AC1 (Bits 16-31)

AC2 (Bits 16-31)

AC3 (Bits 16-31)

PC (Bit 0 equals CRY; bits 1-15 contain bits 17-31 of the address of
the Instruction following the fault-causing instruction)

2. Sets FPSR(TE) to zero to disable floating-point traps.

3. Sets the PSR to zero (for a wide floating-point fault).

4. Jumps to the fault handler through the 16-bit pointer in reserved memory location
458 of the current segment. (The processor services narrow and wide floating-point
faults using the same pointer.)

Decimal and ASCII Data Faults
The processor checks for a valid decimal or ASCII data type and for valid data when
executing any decimal instruction which requires a decimal string as input. If either the
data type or the data is invalid, the fault occurs at the end of the current instruction.

To service a decimal/ASCII fault, the processor

1. Pushes a return block onto the stack.

The processor pushes a wide return block onto the wide stack if executing a 32-bit
instruction (such as WED IT or WSTIX). The processor pushes a narrow return
block onto the narrow stack if executing an ECLIPSE 16-bit instruction (such as
ED IT or STIX).

The length and width of the return block depends on the type of fault that occurs
and the instruction that causes it. For example, the WEDIT instruction uses the
wide stack for temporary storage. When a fault occurs. the processor pushes the
return block in addition to the temporary words that the WEDIT instruction

requires.

Table 5-13 lists the decimal and ASCII fault codes. The first and second columns
list the code that appears in AC 1. The third column lists the type of return block
pushed; the following two sections describe the wide and narrow fault return blocks.
The fourth and fifth columns list the instructions and conditions that caused the

fault.

2. Sets the processor status register to O.

3. Places the fault code in AC1 (bits 16-31) and the value of the program counter for
the instruction that caused the fault in ACO.

4. Jumps to the fault handler through the 16-bit pointer in reserved memory location
468 of the current segment. Both the wide and narrow fau1ts use the same fault
pointer and handler.

014-001371 5-19

Program Flow Management

Table 5-13 Decimal and ASCII fault codes

Code Returned Return
In ACl Block Faulting

Narrow Wide Type Instruction Condition

000000 100000 2 EDIT, WED IT An Invalid digit or alphabetic character
encountered during execution of one of
the following subopcodes: DMVA,
DMVF, DMVN, DMVO, DMVS.

000001 100001 1 LDIX, STIX Invalid data type (6 or 7) .

3 WEDIT, WLDIX, Invalid data type (6 or 7).
WSTIX, WDMOV,
WDDEC, WDINC,
WDCMP, EDIT

000002 100002 2 EDIT, WEDIT DMVA or DMVC subopcode with
source data type 5; AC2 contains the
data size and precision.

000003 100003 2 EDIT, WEDIT An Invalid opcode; AC2 contains the
data size and precision.

000004 100004 LDI, STI, STIX, Number too large to convert to specified
WLDI, WSTI, data type. Inumberl> (1016) - 1
WSTIX, WLDIX Number too large to convert to specified

data type. Number> (1032) - 1

000005 3 EDIT, LDI, LDIX, Invalid mlcrolnterrupt return block.
STI, STIX (Applies only to ECLIPSE

Interrupt-resumable Instructions.)

000006 100006 WLSN, WLDI, LSN, Sign code Is Invalid for this data type
LDI, LDIX, WLDIX for this data type.

3 EDIT, WEDIT,WDINC,
WDMOV, WDCMP,
WDDEC

000007 100007 WLSN, WLDI, WLDIX, Invalid digit.
LSN, LDI, LDIX

3 WDMOV, WDCMP,
WDINC, WDDEC

5-20 014-001371

Program Flow Management

Wide Fault Return Blocks

Tables 5-14 through 5-16 list the contents and types of wide return blocks. After the
processor pushes a wide return block, the accumulators retain their original contents,
except that AC 1 contains the fault code.

Table 5-14 Wide return block for decimal data fault (type 1)

Doubleword
In Block
Pushed

1

2
3
4

5
6

Contents

PSR (Bits 0-15 contain the processor status register; bits 16-31 contain zeros)
ACO (unchanged)

AC1 (contains original descriptor)

AC2 (contains original source Indicator or destination Indicator for WSTI or
STIX Instruction)
AC3 (undefined)

CRY/PC (Bit 0 contains Carry; bits 1-31 contain 31-blt address of the decimal
Instruction causing the fault)

Table 5-15 Wide return block for ASCII data fault (type 2)

Doubleword
In Block
Pushed

1

2

3
4

5

6

Contents

PSR (Bits 0-15 contain the processor status register; bits 16-31 contain zeros)

ACO (contains current value of P - byte pointer to subopcode that caused the
fault)

AC1 (contains original descriptor)
AC2 (undefined)
AC3 (undefined)
CRY/PC (Bit 0 contains Carry; bltl 1-31 contain 31-blt addr ••• of the WF.DIT
Instruction causing fault)

Table 5-16 Wide return block for ASCII data fault (type 3)

Doubleword
In Block
Pushed

014-001371

1

2
3
4

5

6

Contents

PSR (Bits 0-15 contain the processor status register; bits 16-31 contain zeros)
ACO (contains original source descriptor for WDMOV and WDCMP)

AC1 (contains original descriptor)
AC2 (contains original source pointer for WDMOV and WDCMP)

AC3 (contains original destination pointer for WDMOV. WDCMP. WDINC.
and WDDEC)

CRY/PC (Bit 0 contains Carry; bits 1-31 contain 31-blt address of the Instruction
causing the fault)

5-21

Program Flow Management

Narrow Fault Return Blocks

5-22

Tables 5-17 through 5-19 list the contents and types of narrow return blocks. After the
processor pushes a narrow return block, the accumulators retain their original contents,
except that AC1 contains the fault code. The tables lists the contents of the accumulators
immediately before the block is pushed. Note that the only bits 16 through 31 of the
accumulators are affected.

Table 5-17 Narrow return block for decimal data fault (type 1)

Word Number
In Block
Pushed

1

2
3
4

5

Contents

ACO
AC1 (original descriptor)
AC2 (original source Indicator - or destination Indicator for WSTI or STIX)

AC3 (undefined)
CRY/PC (Bit 0 contains Carry; bits 1-15 contain address of the decimal
Instruction causing the fault)

Table 5-18 Narrow return block for ASCII data fault (type 2)

Word Number
In Block
Pushed

1-4

5
6
7

8

9

Contentl

Reserved for ECLIPSE compatibility
ACO (current value of P - byte pointer to subopcode that caused the fault)
AC1 (original descriptor)
AC2 (undefined)
AC3 (undefined)
CRY/PC (Bit 0 contains Carry; bits 1-15 contain addr ••• of the d.clmal
Inltructlon caullng the fault)

Table 5-19 Narrow return block for ASCII data fault (type 3)

Word Number
In Block
Pushed

1
2
3
4

5

Contentl

ACO
AC1 (original descriptor)
AC2 (undefined)
AC3 (undefined)
CRY/PC (Bit 0 contalnl Carry; bits 1-15 contain address of the decimal Instruction
causing the fault)

014-001371

Program Flow Management

Stack Faults
The processor checks for a wide stack fault after a wide stack operation, and checks for
a narrow stack fault after a narrow stack operation. When a stack overflow occurs, the
program overwrites the data in the area beyond the stack. When a stack underflow
occurs, the program accesses incorrect information. Once detected, the processor always
services the narrow or wide stack fault.

Wide Stack Fault Operations

After a wide push operation, the processor compares the contents of the wide stack
pointer to the contents of the wide stack limit. If the wide stack pointer value is greater
than the wide stack limit value, the processor detects a wide stack overflow fault.

After a wide pop operation, the processor compares the contents of the wide stack
pointer to the contents of the wide stack base. If the wide stack pointer value is less than
the wide stack base value, the processor detects a wide stack underflo~ fault.

You can disable wide stack overflow fault detection by loading the value 377777777778
into the wide stack limit register, thus the wide stack limit is larger then the wide stack
pointer. You can disable wide stack underflow fault detection by loading the value
200000000008 into the wide stack base register.

When a wide stack fault occurs, the processor

1. Sets the wide stack pointer equal to the wide stack limit (for a wide stack underflow
only).

2. Pushes a wide return block onto the wide stack. (See Table 5-20.)

The return address word in the wide return block points to the next instruction that
the processor executes after servicing the fault.

Table 5-20 Wide stack fault return block

Doubleword
in Block
Pushed

2
3
4
5

6

Contents

PSR (Bits 0-15 contain the processor status register; bits 16-31
contain zeros).

ACO

ACl

AC2
AC3
CRY IPC (Bit 0 contains Carry; bits 1-31 contain 31-blt address of
the Instruction causing the fault If a type 1 fault. otherwise. the
address of the next instruction in the instruction stream.)

3. Sets the PSR flags (OVK, OVR. and IRES) to O.

4. Sets bit 0 of the wide stack pointer to O.

5. Sets bit 0 of the wide stack limit to 1.

6. Updates the wide stack pointer and the reserved memory locations for the stack
parameters in the current segment.

7. Loads ACO with the address of the instruction that caused the fault.

014-001371 5-23

Program Flow Management

8. Loads AC 1 with the code that describes the fault. (See Table 5-21.)

Table 5-21 Wide s:ack fault codes

AC~ Code Meaning

000000 Overflow on every stack operation other than SAVE, WMSP I or segment
crossing.

000001 Underflow or overflow would occur If the Instruction were executed (pertains
to WMSP, WSSVR, WSSVS, WSAVR, and WSAVS instructions.) (PC
in return block refers to the instruction that caused the stack fault.)

000002 Too many arguments on a cross segment call.
000003 Stack underflow.

000004 Overflow due to a return block pushed as a result of a micro interrupt or
fault.

9. Jumps to the wide stack fault handler through the 16-bit pointer in page zero of the
current segment (location 148)'

If you write a wide stack fault handler, the handler routine should

1. Determine the nature of the fault (underflow or overflow).

2. Reset ~it 0 of the wide stack pointer and the wide stack limit to the original values.

f. Take other appropriate action. such as allocating more stack space or terminating
the program.

4. Use a WPO PB instruction as the last instruction of the fault handler to return to
the faulting program.

Narrow Stack Fault Operations

5-24

The narrow stack is a series of single words managed by three reserved memory words.
The narrow stack supports program development and upward program compatibility for
ECLIPSE 16-bit proarams.

After a narrow push operation. the processor compares the contents of the narrow stack
pointer to the contents of the narrow stack limit. If the stack pointer value is greater than
the stack limit value. the processor detects a narrow stack overflow fault.

After a narrow pop operation. the processor compares the contents of the narrow stack
pointer to 4018 , If the stack pointer value is less than 400e and bit 0 of the narrow stack
limit is zero. the processor detects a narrow stack underflow fault.

You can disable narrow stack overflow fault detection by setting bit 0 of the narrow stack
pointer to zero and bit 0 of the stack limit to one. You can disable narrow stack
underflow fault detection by

• Starting the narrow stack at a location greater than 401a.

H the narrow stack starts at location greater than 40 Ie. underflow still occurs when the
value of the stack pointer becomes less than 4008 , The processor can detect underflow
if a program pops enough words from the narrow stack to cause the narrow stack
pointer to wraparound.

• Setting bit 0 of either the narrow stack pointer or the narrow stack limit to one.

If bit 0 of the narrow stack pointer or narrow stack limit is set to one. either all or
part of the stack may reside in reserved memory page zero (0-3778), or the stack
may underflow into reserved memory page zero without interference from the narrow
stack fault handler.

014-001371

Program Flow Management

When a narrow stack fault occurs, the processor

1. Sets the narrow stack pointer equal to the narrow stack limit (for stack underflow
only) .

2. Sets bit 0 of the narrow stack pointer to zero and bit 0 of the narrow stack limit to
one.

Thus, the narrow stack limit is (temporarily) larger than the narrow stack pointer,
which disables overflow fault detection.

3. Pushes a narrow return block onto the narrow stack. (See Table 5-22.) Note that
the only bits 16 through 31 of the accumulators are affected.

The return address word in the narrow return block points to the next instruction
the processor executes after servicing the fault.

4. Jumps to the narrow stack fault handler through the 16-bit pointer in page zero of
the current segment (location 438),

Table 5-22 Narrow stack fault return block

Word Number
In Block
Pushed

2
3
4

5

Contents

ACO
AC1
AC2

AC3

CRY fPC (Bit 0 contains Carry: bits 1-15 contain the address of the
Instruction causing the fault.)

If you write a narrow stack fault handler, the handler should

1. Determine the nature of the fault (underflow or overflow).

2. Reset bit 0 of the narrow stack pointer and the narrow stack limit to their original
values.

3. Take other appropriate action, such as allocating more stack space or terminating
the program.

4. Use a POPB instruction as the last instruction of the fault handler to return to the
faulting program.

End of Chapter

014-001371 5-25

&
Queue Management

A queue is a variable-length list of double-linked entries that has a beginning and an
end. The operating system uses queues to track processes that it must run (a ready
queue), files that must be printed on the line printer, pages that are resident in physical
memory, and so on.

An entry in a queue is called a data element. The beginning and end of a queue are
called the head and the tail. respectively. In a typical first in, first out (FIFO) queue.
data elements are enqueued at the tail and dequeued at the head.

One advantage of using a queue rather than a single-threaded list is that queue data
elements refer to the data elements that precede and follow them. Data elements can be
added anywhere in the queue, not just at the tail. Conversely, data elements can be
removed anywhere in the queue, not just at the head.

New entries are added to the queue when service (such as the name of a new file to be
printed) is required. and they are removed from the queue after they are of no further
use. A queue may be empty, it may have only one entry. or it may have many entries.

014-001371 6-1

Queue Management

Building a Queue

6-2

For the data elements to be linked togethe; each data element must contain two
addresses, called links. One of the links contains the effective word address of the
following data element in the queue: the forward link. The other link contains the
effective word address of the preceding data element in the queue: the backward link.

The forward and backward links do more than refer to the adjacent queue data
elements: they also indicate the elementf that are currently at the head and tail of the
queue. If a data element's forward link contains -1, then that data element is at the tail
of the queue. If a data element's backward link contains -1, then that data element is at
the head of the queue. Note that a data element containing -1 in both its forward and
backward links is the only data element currently in the queue.

NOTES: Removing a data element from the queue sets both forward and backward links
to -1. If the same data element is removed twice, results are indeterminate.

If a data element's forward or backward link contains self-directed pointers (a
pointer to itself), a queue instruction will loop until interrupted.

A data element may contain user information (optional) as well as the forward and
backward links. This user information can precede or follow the forward and backward
links. Figure 6-1 shows the structure of a data element with user data either preceding or
following the links. The user determines the structure and the meaning of the
information.

Also, note that the length of the user information in the data elements can vary, since
the links of each data element always refer to other links and not to user information.
The search queue instructions, however, do refer to the user information, so make sure
that any programs using these instructions take the length of the user information into
account.

Incr.a.lng
.ddr

I
U •• r data
(optional)
following links

I
I
I
I
I

I
I
I
I

Flr.t double word of u •• r data

nth doubl. word of u.er d.t.

Forw.rd link

Backw.rd link

First doubl. word of us.r data

nth doubl. word of u •• r d.ta

0

Figure 6-1 Data elements with user data

I
I
I
I
I

I
I
I
I

31

U •• r d.t.
(optlon.l)
preceding link.

Bits

INT-00883

014-001371

Queue Management

Queue Descriptor
Each queue uses a queue descriptor that indicates the current head and tail of the queue.
A queue descriptor is two doublewords. The first doubleword contains the address of the
data element that is currently at the head of the queue: the second contains the address
of the data element that is currently at the tail of the queue. (See Figure 6-2.)

Address of data element at head of queue

Address of data element at tail of queue

o 31

INT-00182

Figure 6-2 Format of queue descriptor

Setting Up and Modifying a Queue
To define an empty queue, create a queue descriptor that contains -1 in both of its
pointers. To place a data element into the empty queue, load the address of the data
element into both double words of the queue descriptor (indicating a one-element queue)
and load -1 into the data element's forward and backward links. To add or remove a
data element anywhere in the queue, specify the queue descriptor and the address of
some data element in the queue. The descriptor and address specified act as reference
points that the processor uses to add the data element at the right point or to remove the
appropriate data element.

Queue Examples
The examples following demonstrate how you can form queues, how you can add and
remove data elements in the queue, and how the processor updates the various links and
descriptors. Note that in each example, the user data follows the links.

Queue Descriptor of an Empty Queue
Figure 6-3 shows the queue descriptor for an empty queue.

-1

-1

o 31

INT-00183

Figure 6-3 Queue descriptor for an empty queue

014-001371 6-3

Queue Management

Adding a Data Element into an Empty Queue

Figure 6-4 illustrates how the processor adds a data element (at location A) into an
empty queue. After adding the data element, the processor updates the queue descriptor.
The descriptor shows that the queue has only one element, A. At location A, the first
word of the data element contains the forward link -1. The last word contains the
backward link of -1.

Queue

I----~-:----f: ... f----~~---:-----1

o

User
information

Data element at
location A

31

o 31

Queue descriptor after
adding a data element

at location A

INT-00184

Figure 6-4 Data element added to an empty queue

Adding a Data Element at the Head of a Queue

Figure 6-5 illustrates how the processor adds a data element (at location B) at the head
of the queue before data element A. After adding the data element, the processor
updates the queue descriptor to refer to the new head. It also changes the backward link
of data element A to refer to the preceding data element (B). The links of data element
B show that it is the head of the queue and that element A follows it.

Queue

A

Oat .. _tat {
-1

location B
User

Information

-1

B
Data element at

location A
User

Information

0 31

o 31

Queue descriptor after
adding a data e'ement

at location B

INT-00185

Figure 6-5 Data element added at head of queue

Adding a Data Element at the Tail of a Queue

6-4

Figure 6-6 illustrates how the processor adds a data element (at location C) at the tail of
the queue, after data element A. The -1 in data element B's backward link shows that B
is the head of the queue. The -1 in data element C's forward link shows that C is the
tail of the queue. The queu'e descriptor also indicates the queue's new head.

014-001371

Queue Management

Queue

Datl~~~~ne~t at { ~ ___ :_1 __ ~
User

information

Da~~~~~~ at { ~ ___ : ___ -I

User
information

Data element at
location C

o

-1

A

User
information

31

B

C

31

Queue descriptor after
adding a data element

at location C

I T-O 186

Figure 6-6 Data element added at tail of queue

The example below shows how an ENQT instruction may be used in a programming call.

;This subroutine moves an element from one queue to the end of
;another. It is the responsibility of the caller to set the
;transition bit, if necessary.

;Callin« oonventions: XJSR QMOVE
<return>

ACO Source queue descriptor address
ACI ~ Address of element to be moved
AC2 Destination queue descriptor address
QMOVE: WSSVS 0

NLDAI QLOCK,3 ;Queue descriptor lock offset.
;First, handle the source queue.

QLPl: WSZBO 0,3
WBR QSPINI
DEQUE
NOP
WBTZ 0,3

;Now, handle the destination queue.
QLP2: WSZBO 2,3

WBR QSPIN2
WMOV 2,0

WMOV
WADC
ENQT
NOP
WBTZ

1,2
1,1

0,3
;All done -- lights on and return.

WRTN

014-001371

;Can we lock source?
;No, wait.
;Remove from source.
;No-op.
;Unlock source lock.

;Can we lock destination?
;No, wait.
;Destination
;descriptor address.
;Element to be added.
;At the end.

;No-op.
;Unlock destination lock.

6-5

Queue Management

;Spin lock for the source queue.
QSPIN1: WSZB 0,3 ;Source unlocked yet?

WBR QSPINl ;No, wait.
WBR QLP1 ;Try to get source lock.

;Spin lock for the destination queue.
QSPIN2; WSZB 2,3 ;Destination unlocked yet?

WBR QSPIN2 ;No, wait.
WBR QLP2 ;Try to get destination lock.

Removing a Data Element

6-6

Figure 6-7 illustrates how the processor removes data element B. After removing the data
element, the processor updates the queue descriptor to show the new head (A). A's
backward link shows that it is the new head. C's links remain unchanged, since C is still
the tail of the queue, and A is still the following data entry.

0 31

c

Da'a olomon. o. { -1
location A

User
information

-1

A
Data element at

location C

User
information

0 31

Figure 6-7 Data element removed

A

C

Queue descriptor after
removing a data element

at location B

INT-00187

The following example shows how a DEQUE instruction may be used in a programming
call.

;This subroutine removes an element from a linked list queue. It is
;the responsibility of the caller to set the transition bit, if
;necessary.

;Calling conventions: XJSR PDEQ

AC1 = Queue descriptor address
AC2 = Element to be queued
PDEQ: WSSVR °

PDEQ1:

WMOV 1,0
WMOV 2,1

NLDAI
WSZBO
WBR
DEQUE

QLOCK,2
0,2
PSPIN

;Save return block on stack.
;Move queue address to ACO.
;Move element to be removed
;to AC1.
;Queue descriptor lock offset.
;Can we lock it?
;No, wait.

014-001371

PSPIN:

NOP
WBTZ
WRTN

WSZB
WBR
WBR

Queue Instructions

Queue Management

0,2

0,2
PSPIN
PDEQI

;No-Op.
;Unlock it.
;And return to calling
;program.
;Unlocked yet?
;No, wait.
;Yes, grab it!

Table 6-1 lists the instructions for manipulating queues. ENQH and ENQT instructions
add data elements to queues, and the DEQUE instruction removes data elements. The
remaining instructions perform queue or queue-like searches.

NOTE: The \\'MESS instruction is a powerful instruction for indivisibly updating a
queue or automatically updating a database without software locking.

Table 6-1 Queue instructions

Instruction

ENQH
ENQT
DEQUE
NBStc

NFStc

\VBStc

WFStc

WMESS

014-001371

Operation

Add a data element towards the queue head.

Add a data element towards the queue tall.

Remove a queue data element.

Narrow search queue backward (towards head): 16-blt test condition

Narrow search queue forward (towards tall): 16-blt test condition

Wide search queue backward (towards head): 32-blt test condition

Wide search queue forward (towards tall): 32-blt test condition

Wide mask. skip and store If equal

End of Chapter

6-7

7
Graphics Management

The Graphics Instruction Set (GIS) performs high-speed graphic functions, directly
supporting windowing systems in which several programs share one bitmap. GIS allows
each program to have both a physical bitmap (such as a display screen) and a virtual
bitmap. which is used to store regions of the screen that have been taken over by
another program. GIS instructions can switch from one bitmap to the other in midstream;
the user's program need not know which bitmap is being used; and the operating system
does not need to oversee every drawing operation to prevent one program from
overwriting another's data.

The Graphics Instruction Set, as presented in this manual, is Data General's GIS II for
ECLIPSE MV/Family systems. Information on GIS I may be found in the Data General
4000-Class Integrated Systems, Functional Characteristics manual (DGC No.
014-001066).

014-001371 7-1

Graphics Management

Graphics Instruction Set

7-2

The Graphics Instruction Set includes both privileged and nonprivileged instructions.
Privileged GIS instructions are used to maintain the various GIS databases discussed later
in this chapter. Nonprivileged instructions do the following:

• Read or write a single pixel.

• Draw a line, or a series of connected lines.

• Fill a rectangular region of the bitmap with a solid color.

• Copy a rectangular region from one place to another.

• Write a text character or other symbol onto an image.

• Change a drawing attribute.

This section provides some general information about GIS instructions. The Instruction
Dictionary describes each instruction in detail. All GIS instructions are four words (64
bits) long, and have the following format:

0 7 5

0 0 0 0 0

0 6 7 8 11 12 13 15

8 E 6 9

I,: I displacement (high order)

17 31

I~ displacement (low order)

4,1

I·.
sub-opcode ~I

Bits 0-15 of the instruction identifies this instruction as a GIS instruction; these bits are

always 1071518 (8E69'6)'

Bits 16-47 (displacement) are a routine's address that you must provide to handle
instruction traps. These traps may be used to simulate additional instructions. If your
system currently does not support GIS microcode, the displacement is the
program-counter-relative address of a runtime routine that emulates the GIS instruction
functions. Bit 16 is always O.

Bits 48-63 (sub-opcode) identify the particular GIS operation to perform. The processor
accepts only those values listed in Table 7-1. Other values will produce an instruction

trap.

014-001371

Graphics Management

Table 7-1 GIS instructions

Instruction Sub-opcode Type Description
Octal [hex]

WGBITBLT 30 [18] Nonprivileged Copies pixels to a form or location

\VGCHRBLT 31 [19] Nonprlvileged Writes a character Into a form

WGLDCURS 34 [1C] Privileged Writes cursor block to cursor descriptor memory

WGLFORM 20 [10] Privileged Loads a form into form cache memory

WGPFORMS 21 [11] Privileged Removes form (s) from form cache

WGPLINE 27 [17] Nonprlvileged Draws line segment (s) In a form

WGRDATTR 32 [1A] Nonprivileged Reads attributes of a form

WGRDPAL 22 [12] Privileged Reads a palette register

WGRDPIXL 24 [14] Nonprivileged Reads a pixel from a form

WGRFLOOD 26 [16] Nonprivileged Sets rectangle color

WGWRATTR 33 [18] NonprivUeged Writes attribute of a form

WGWRPAL 23 [13] Privileged Writes a palette register

WGWRPIXL 25 [15] Nonprivileged Writes a pixel into a form

Certain guidelines are consistent for each GIS instruction:

• AC 1 contains a form 10. The form 10, created by the operating system, refers to the
form descriptor of the form in which the instruction draws.

• AC2 contains a pointer to an instruction packet (if such a packet is defined for that
instruction) .

• AC3 is not used by GIS instructions. This allows efficient invocation of GIS
subroutines from high-level languages that use AC3 to hold the frame pointer.

• Attributes (such as line style, foreground color, etc.) are associated with the form
being operated on.

• The microcode for GIS instructions is designed to optimize its speed of execution if
certain conditions are met. General guidelines for faster execution of all GIS
instructions include:

- Using combination rules that do not require both source and destination pixels. (In
the case of a virtual bitmap, the destination pixel will not be read from memory to
perform the combination if it is not needed.)

- Working with a rectangle list containing a single rectangle.

• Any parameter, which requires an unsigned number, should have bit 0 of the 32-bit
value equal to O. Entering a negative value (bit 0 equal to 1) where an unsigned
number is called for, will give undefined results.

GIS instructions operate on forms. A form descriptor describes the form itself and points
to related databases, such as attributes and rectangle and cursor descriptors. The
following sections describe forms, data structures, the form cache, interrupts, and GIS

fault handling.

014-001371 7-3

Graphics Management

Forms

7-4

The form is the basic unit of pixel space, the "paper" on which a picture is drawn. The
form is the object upon which all GIS operations are performed. Although the data
structures that define a form are complex, they combine to create the appearance of a
simple rectangular set of pixels.

Forms are managed by the operating system. Screens and bitmaps are considered to be a
system resource, like disk space, that must be shared by many programs and users. The
privileged GIS instructions create and delete forms, change their sizes, and move them
around on the screen.

Every GIS drawing instruction refers to a specific form with a form ID in ACt. When a
user program creates a form, the operating system must assign a form ID and pass it to
the program.

The properties of a form are specified in a block of data called a form descriptor. Figure
7-1 shows how the descriptor ties together all the data structures that define the form.
The section, "GIS Data Structures," describes the various properties of the form in
detail.

Form descriptor

Cursor descriPtor I Attribute block I

Figure 7-1 Form data structures

PhYSical bitmap

ULct- - - - - - - - - - -,
I Bounding rectangle I

~ Local
~ origin I

I
I I L _________ .J

Virtual bitmap

.-----------,
-+- Local

origin I
I

I I L.. _________ ...J

Rectangle list
r-----,
I I
I I
I I L- ____ -J

I
I

I I L- ____ -J

r-----,
I I
I I
I I L- ____ -J

INT-00017

014-001371

Graphics Management

Forms and Bitmaps

Every form is associated with one or two bitmaps - a physical bitmap and/or a logical
bitmap. A physical bitmap is part of a display device, and changes to this bitmap are
immediately visible on the screen. A virtual bitmap is placed in main memory; and
changes to a virtual bitmap are not visible until the pixels are copied to a physical
bitmap. The origin of a bitmap is always the upper-left corner of the bitmap (coordinates
0, 0).

Virtual bitmaps have two main purposes: to allow pictures to be created in main memory,
and moved later to the screen for display; to provide hardware support of windowing
systems, in which several forms may overlap on the screen. The size of a virtual bitmap
must be equal to or greater than the size of its associated form. The depth of a virtual
bitmap is limited only by the virtual address space available within the segment (to a
maximum of 228 - 1).

Figure 7-2 illustrates the following example.

A program creates a form, called F1, that has both a physical and a virtual bitmap.
Initially the form is fully visible, and all drawing takes place on the physical bitmap.
Then another program creates a form, F2, whose physical bitmap overlaps part of
the physical bitmap of Fl. The operating system must then handle this conflict by
copying the obscured part of F1 to the F1 virtual bitmap, setting up its data
structures to indicate the change.

Since the GIS instructions know that F1 is now divided into several pieces. all
drawing operations automatically switch from one bitmap to the other. The first
program is never aware that part of its form is now on the virtual bitmap.

Physical bitmaps Virtual bitmaps

F1 F1

[j] B
F1

[iJ
F1

F2

F2

B
INT-00008

Figure 7-2 Windowing with virtual bitmaps

014-001371 7-5

Graphics Management

The data structure that keeps track of this forms division is the rectangle.
consists of one or more rectangle descriptors. Each descriptor gives the Sj

of a rectangle, and tells which bitmap' is on.

which
:d position

The use of the rectangle list is illustrated in Figure 7-3. F2 is completely visible, so its
rectangle list consists of a single descriptor. The descriptor specifies that the rectangle is
on the physical bitmap. F 1 is panially obscured by F2. The visible ponion of F 1 is an
irregular L shape. In order to describe this arrangement, the operating system must
handle the L as two rectangular pieces. So the rectangle list for F 1 contains three
descriptors: two pointing to the physical bitmap;; one pointing to the vinual bitmap.

Physical bitmaps Virtual bitmaps Rectangle lists

F1 F1

Physical

[1--1
__ ...I

[iJ F2

F2
Physical

:-q
I I L ____ ...1

Virtual
B

r----'

LJ=1
F2

PhYSical

D
INT-OOOO9

Figure 7-3 Use of rectangle list

Local Origin
Every form has a local origin used by all GIS instructions that refer to the form. This
allows each form to have its origin at the upper-left corner (ULC), center, or any
convenient location (the local origin does not necessarily have to lie within the form).

Bounding Rectangle

7-6

All rectangles are defined by a ULe and a size (X-extent and Y -extent). Every form has
a bounding rectangle that specifies the usable range of values for X and Y coordinates in
the form. The bounding rectangle is not a region of memory; it is an abstract entity that

014-001371

Graphics Management

is defined by the coordinates of its ULC and its X-extent and V-extent. All GIS
instructions apply clipping, so that no instruction may read or modify any pixels outside
the bounding rectangle.

The bounding rectangle encompasses all rectangles on the rectangle list for the form. The
ULe of the bounding rectangle is equal to the ULC of the uppermost, lefthand rectangle
in the rectangle list. Pixels with coordinates outside the bounding rectangle are never
drawn.

A rectangle that is write inhibited may be accessed by read operations, but not write
operations. This rectangle is used to implement clip rectangles on a form.

Some instructions execute faster if the ULC starts at the leftmost pixel of an even
doubleword. Virtual bitmap doubleword addresses are calculated as follows:

• The LOC _ VIRT _ Y value in the form descriptor is subtracted from the Local_ Y
coordinate (in the instruction packet). The LOC_ VIRT_X value in the form descriptor
is subtracted from the Local_X coordinate. The recomputed X and Y coordinates now
address a virtual global coordinate.

• The global Y coordinate, X pitch, and Y pitch are multiplied together.

• This value is added to the product of the global X coordinate and the X pitch. If the
modulus 32 of this value equals zero, then the coordinates point to the leftmost pixel
of the doubleword.

• The integer ponion of this intermediate value is divided by 32 and then added to the
bitmap's base address.

This procedure, expressed as an equation, is:

Doubleword address =
integer portion[«local Y - LOC VIRT Y) * X pitch * Y pitch

+ (local X - LOC VIRT X) *Yyitch) / 32]
+ bitmap base address - --

Coordinate System

GIS uses three types of coordinates: user, virtual, and physical. The user coordinates are
local; the virtual and physical coordinates are global. The calculation of the final
coordinates is dependent on whether the bitmap accessed is vinual or physical.

• The user coordinates are X and Y values contained in the drawing packets of all GIS
instructions. The acceptable user coordinates are 32-bit signed integers. Within this
chapter these coordinates are specified as Local_X and Local_ Y.

• The virtual coordinates are the user X and Y values transformed onto the virtual
bitmap. These coordinates are positive 31-bit integers relative to the ULC of the
virtual bitmap. The values LOC_ VIRT_X and LOC_ VIRT_Y, contained in the form
descriptor, are used in the conversion of the local coordinates to virtual global
coordinates.

• The physical coordinates are the user X and Y values transformed onto the physical
bitmap. These coordinates are positive 31-bit integers relative to the ULC of the
physical bitmap. The values VIRT_PHY_X and VIRT_PHY_Y, contained in the form
descriptor, are used in the conversion of the virtual global coordinates to physical
global coordinates.

014-001371 7-7

7-8

Graphics Management

Figure 7-4 illustrates the conversion of coordinates from one type to another using form
Fl from the previous example. The bounding rectangle upper-left corner (BR_ULC) is
mapped to the global virtual bitmap using the local-to-virtual bitmap values in the form
descriptor (LOC_ VIRT_X and LOC_ VIRT_Y). LOC_ VIRT_X and LOC_ VIRT_Y are the
X and Y coordinates, respectively, of the virtual bitmap's ULC relative to the origin of
the form. The coordinates for the two rectangles which are on the physical bitmap are
then calculated using the virtual-to-physical bitmap coordinates in the form descriptor
(VIRT _PHY _X and VIRT _PHY _ Y). VIRT _PHY _X and VIRT _PHY _Yare the X and Y
coordinates, respectively, of the virtual bitmap's ULC relative to the origin of the physical
bitmap.

r,---
1\ lI"\
1 \w
1

Global physical

Fl

F2

... LOC VIAl (X.Y)

e\
Origin of form ~ BA ULC Fl

Physical

Physical

Virtual

Bounding rectangle

Figure 7-4 Coordinate conversions

Global virtual

INT-00884

014-001371

Graphics Management

GIS Data Structures
The data structures used by GIS are both powerful and very generalized. These structures
include form descriptors and their related databases: rectangle descriptors, form blocks,
cursor descriptors, and color descriptors.

The following properties must be true for all data structures (except virtual bitmaps) used
by GIS instructions:

• They must always be resident in physical main memory.

• Except for bitmaps, they must not cross page boundaries.

• They must be doubleword aligned; i.e., the first word of every data structure must
ha ve an even address.

• The maximum size of any data structure is one page.

Most of the addresses stored in these data structures are physical addresses.

Form Descriptor
The form descriptor describes the form itself and points to related databases, such as
attributes and cursor descriptor. The operating system creates a form descriptor in
response to a user request.

The form descriptor block is a doubleword table of signed and unsigned 32-bit integers.
All unsigned numbers in the form descriptor should be 31-bit integers or signed 32-bit
positive integers (bit 0 is always 0). Entering a negative value (bit 0 equals 1), where an
unsigned number is called for, will cause undefined results. The form descriptor's
contents are listed in Table 7-2 (the "Mnemonic" column is for reference within this text
only). The form descriptor's properties and related databases are detailed in the sections
that follow.

If the form has only a physical bitmap associated with it, the virtual bitmap port~on of the
form descriptor will be filled with zeros. These "empty" bitmaps will never be used as
long as no rectangles on the form's rectangle list refer to the nonexistent bitmap. If a
rectangle does refer to a nonexistent bitmap, the results are undefined.

Drawing will not occur if any of the following conditions (relating to the destination form)
exist:

• Both the form mask (in the form descriptor) and the operation mask (in the attribute
block) equal zero.

• No writable rectangle exists.

• Combination rule number five is used (destination moved to destination).

• Both foreground and background pixel drawing is suppressed (Bits 0 and 1 of the
LINE_CTRL doubleword in the attribute block equal zero). This applies only to the
\VGPLINE and WGCHRBLT instructions.

• Any other combination of items in the form descriptor that would cause the
instruction to perform no operation.

If a GIS instruction is operating on a particular form descriptor, changing any
information, other than the following, will produce undefined results:

014-001371 7-9

7-10

Graphics Management

• Global ULC (VIRT_PHY_X, VIRT_PHY_Y)

• Local ULC (LOC_VIRT_X, LOC_VIRT_Y)

• Rectangle bits (FLAGS)

• Rectangle list (RECT _LIST)

If any of these values change, the operating system should increment the form-generation
number in the form descriptor.

Table 7-2 Form descriptor contents

Double
Word II Mnemonic

1 lENGTH

2 ATTA_BlK

3 FOAM_GEN

4 BA_UlC_X

5 BA_UlC_Y

6 BA_EXT_X

7 BA_EXT_Y

a VIAT_PHY_X

9 VIAT_PHY_Y

10 lOC_VIAT_X

11 lOC_VIAT_Y

12 FLAGS

Contents

Number of 16-bit words in this form descriptor (unsigned).

Physical address of the attribute block (unsigned).

Form generation number (unsigned). This value should be zero when
the form Is first created and incremented by the operating system
every time the form Is modified. This value Is used by the processor
for comparison with a value in the long context block.

X coordinate (signed) of the bounding rectangle's ULC (with respect
to the local origin of the form) .

Y coordinate (signed) of the bounding rectangle's ULC (with respect
to the local origin of the form).
Width of the bounding rectangle In pixels (unsigned).

Height of the bounding rectangle In pixels (unsigned).
X coordinate (signed) of the virtual bitmap's ULC, relative to the
orlgl" of the physical bitmap. This value and VIAT _PHY _ Yare used to
convert the virtual global coordinates to physical global coordinates.

Y coordinate (signed) of the virtual bitmap's ULC, relative to the
origin of the physical bitmap.

X coordinate (signed) of the virtual bitmap's ULC, relative to the
origin of the form. This value and lOC _ VIAT _ Yare used to convert
the local X and Y coordinates to virtual global coordinates.

Y coordinate (signed) of the virtual bitmap' 8 ULC relative to the
origin of the form.
Flag bits. The bits and their Interpretations are

Bit Setting Description
o 1 The rectangle list contains at least one rectangle on the

physical bitmap.

2

3

4

5

6-31

o The rectangle list contains no rectangles on the
physical bitmap.

o

o

o

o

The rectangle list contains at least one rectangle on the
virtual bitmap.
The rectangle Jist contains no rectangles on the virtual
bitmap.
The rectangle Jist contains at least one rectangle not on
either the virtual bitmap or the physical bitmap.

The rectangle list contains all rectangles that are on
either the virtual bitmap or the physical bitmap.
The rectangle list contains at least one write-Inhibited
rectangle.
The rectangle list contains no write-inhibited rectangles.

Only one rectangle is on the rectangle list.

Multiple rectangles are on the rectangle list.

When writing pixels, replicate the low-order byte
(palette index) three times to fill a 3-byte pixel. (This
allows programs written for a-bit pixels to run on
devices having 24-bit pixels.)

Aeserved for future use; should be set to O.

(continued)

014-001371

Graphics Management

Table 7-2 Form descriptor contents (concluded)

Double
Word II Mnemonic

14 RECT LIST

15 CURSOR_DESC
16 DEV_TYPE

17 P _BMAP _ADDR
18 P_X_PITCH

19 P_Y_PITCH

20 P _LOG2_XPITCH

21 P _LOG2_ YPITCH

22 V _ BMAP _ ADDR

23 V_X_PITCH

24 V_Y_PITCH

25 V _LOG2_XPITCH

26 V _LOG2_ YPITCH

014-001371

Contents

Form mask bits (unsigned). Defines the pixel depth of the bitmaps
associated with a form. For a bitmap with n bits per pixel. the
low-order n bits of the FORM_MASK are set to either 1 or O. The
remaining bits in the FORM_MASK must be set to O. When a GIS
instruction executes. the FORM_MASK is logically ANDed with the
Operation Mask (in the Attribute Block) to produce a mask that
determines which bits within a pixel should be operated upon.
Physical address of the start of the form's rectangle list (unsigned).

Physical address of a cursor descriptor (unsigned).
Device type of the physical bitmap (unsigned). The individual bits and
their interpretations are

Bit Setting Description
o Indicates presence of a video board.

o Video board exists. The physical bitmap portion of the
form descriptor contains valid information.
No video board exists. The physical bitmap portion of
the form descriptor Is Invalid. The remaining bits In the
Device Type doubleword are Ignored.

1-12
13-15

Reserved and should be eet to O.
Number of bits per pixel allowed:
Value Number of bits per pixel
(octal) (decimal)
o 1
1 2
2 4
3 2. 4. or 8
5 32
Reserved and should be set to O. 16-25

26-31 Internal pixel transfer value. Indicates the maximum

number of plxele to be tran,ferred. For example. 108
Indicates 8 pixels per transfer: 208 Indicates 16 pixels:

408 Indicates 32 pixels.
Microcode 10 (unsigned) for video board (base address).

Number of bits per pixel In the physical bitmap; also known as .. X
pitch." This unsigned number is a power of 2 in the range 1-32.

Number of pixels per line for the physical bitmap. also known as .. Y
pitch." This unsigned number must be a power of 2.
Base 2 logarithm of the X pitch of the physical bitmap (unsigned).

Base 2 logarithm of the Y pitch of the physical bitmap (unsigned).
Logical address of the start of the virtual bitmap memory (this
unsigned address must be doubleword aligned).

Number of bits per pixel In the virtual bitmap. also known as .. X
pitch." This unsigned number must be a power of 2 In the range
1-32.
Number of pixels per line for the virtual bitmap. also known as .. Y
pitch." This unsigned number must be a power of 2.
Base 2 logarithm of the X pitch for the virtual bitmap (unsigned).

Base 2 logarithm of the Y pitch for the virtual bitmap (unsigned).

7-11

Graphics Management

Form Mask

The form mask (FOR!\f_!\fASK) ir ~ form descriptor is a value that specifies which bits
in a pixel can be accessed by drawi .. ~ operations. For example, if you set the form mask
to 1, only the low order bit of any pixel can be modiL~d. Also, when a pixel is read by a
\\'GRDPIXL, \\'GCHRBLT, or \VGBITBLT instruction, only the bits enabled by the
mask will be read; the instruction will read zeros for all other bits.

The form mask is used to implement palette sharing, a technique that helps programs to
share the display without destroying each other's data. The following example explains
the use of palette sharing.

A graphics workstation has 256 colors available. You want to run two concurrent
programs, called PI and P2, each with its own form. Each program needs 16
colors, so the operating system must provide a separate set of 16 palette registers
to each program.

The operating system sets up both form descriptors with a value of 15
(000011112) in the form mask. This permits each program to use only the
low-order four bits of its pixels. In addition, the operating system uses the
WGRFLOOD instruction to set all pixels in the PI form to O. and to set all
pixels in the P2 form to 16 (000100002),

The setting of the form mask ensures that neither program can modify the upper
four bits of its pixels. Thus, both programs can use pixel values from 0 to 15, but
only PI actually has these values in the bitmap. P2 "thinks" that it is using values
from 0 to 15, but it is really using values from 16 to 31, because the operating
system has preset the high-order bits of all pixels in the form. The form mask
prevents both programs from modifying the high-order bits. so each can use only
its assigned range of values.

Rectangle Descriptor

7-12

Although the user perceives a form as a unit. in reality it may be divided into many
pieces. For convenience, each piece is a rectangle. A rectangle descriptor describes one
of the set of rectangles that make up a form. A rectangle descriptor indicates whether
that area of the bounding rectangle is on a physical bitmap, a virtual bitmap, or on
neither bitmap. Note that the rectangle descriptor allows you to declare that a rectangle is
on neither bitmap. This allows a program to save some execution time by updating only
the parts of the form that are visible to the user.

Each form has a structure called the rectangle list (RECT _LIST in the form descriptor)
that is used to keep track of which bitmap is used for various parts of the form. The list
consists of one or more rectangle descriptors. Each descriptor gives the size of a
rectangle, and tells which bitmap it is on. The rectangle descriptor, as shown in Table
7-3, consists of six unsigned 32-bit integers.

The collection of rectangles that makes up an entire form is called a tiling of that form.
Certain constraints are placed on a tiling. Rectangles:

• may not overlap;

• must completely tile the bounding rectangle for the form; and

• may not lie outside the form.

If any of these conditions are violated. undefined results will occur.

014-001371

Graphics Management

Table 7-3 Rectangle descriptor contents

Double
Word # Mnemonic

2

3

4

5
6

NEXT

FLAGS

ULC_Y

EXT_X
EXT_Y

Form Attributes

Contents

Physical address of the next rectangle descriptor in the list, or -1 if
it is the last one.
Flags bits. The individual bits and their interpretations are

Bit Meaning when 1
o The rectangle is on the physical bitmap.
1 The rectangle is on the virtual bitmap.
2 The rectangle Is not on any bitmap.
3 The rectangle is write inhibited.
4-31 Reserved for future use: should be set to zero.

NOTE: Bits O. 1, and 2 are mutually exclusive.
X coordinate of the rectangle' s ULC with respect to the local origin
of the form.
Y coordinate of the rectangle' s U LC with respect to the local origin
of the form.
Width of the rectangle In pixels.
Height of the rectangle in pixels.

Values such as foreground color and line style are stored in the attribute block, pointed
to by the ATTR_BLK double word in the form descriptor. Initially, the attribute block is
filled with a set of default values which is loaded into the forms cache by the Load
Forms instruction (WGLFORM). All of the attribute block values can then be examined
with the Read Attribute (WGRDATTR) instruction and modified with the Write Attribute
(WGWRATTR) instruction~ these instructions specify an index number for an attribute in
an accumulator. Additionally, the packet for the Draw Polyline (WGPLINE) instruction
may contain values which supersede those in the attribute block. If an attribute is
changed while a GIS instruction is operating on that form, the results are undefined.

An attribute block consists of unsigned 32-bit integers created when a form descriptor is
created. The contents of the attribute block are summarized in Table 7-4 and further
explained in the following sections.

Operation Mask and Combination Rule

Two attributes - the operation mask and the combination rule - apply to all instructions
that draw in the form. These attributes specify how pixels are to be combined for any
instruction that writes to a form.

The operation mask specifies which bits in a pixel can be modified by drawing operations.
A 0 means "do nothing with this bit"; a 1 means .. operate on this bit using the
combination rule." For example, if you set the operation mask to 1, only the low-order

bit of any pixel will be modified.

The operation mask is functionally equivalent to the form mask. The difference is that
the form mask, located in the form descriptor, will generally be used by the operating
system to restrict a user's access to the bitmap. The effect of the operation mask can
never be more than what the form mask allows; the operation mask and form mask are
always logically ANDed together. The operation mask is part of the attribute block. and
user programs may freely use it.

014-001371 7-13

7-14

Graphics Management

Table 7-4 Form attributes

Double-
word II Index II
(octal) (decimal) Mnemonic Description

LENGTH Length of the attribute block in 16-bit words.

2 0 OP_MASK Operation mask - determines which bits within a pixel
will be affected by a GIS operation.

3 COMBO_RULE Combination rule - specifies one of 16 boolean functions
to be applied during a GIS operation (see Table 7-5).

4 2 LlNE_CTRL line control - set of flag bits that govern the drawing of
lines. The individual bits and their Interpretations are
Bit II Setting Description
0 0 Draw the foreground pixels.

1 Suppress the foreground pixels.
0 Draw the background pixels.
1 Suppress the background pixels.

2 0 Draw the initial point (s) .
1 Suppress the initial point (s) .

3 0 Draw the final pOint (s) .
1 Suppress the final point (s) .

4 0 WGPLINE packet contains no
attributes.
WGPLINE packet contains three
new attributes for each line
segment.

5 0 WGPLINE packet contains a
contiguous line.
WGPLINE packet contains a
noncontiguous line.

6-31 Reserved for future use;
should be set to zeros.

5 3 LlNE_F _COLOR line foreground color - Pixel value of the foreground
color used when drawing lines.

6 4 LlNE_B_COLOR Line background color - Pixel value of the background
color used when drawing lines.

7 5 LINE_STYLE line style - Set of bits that determine the texture of
any lines that are drawn. Bits set to 1 indicate that a
foreground color pixel should be planted. Bits cleared to
o Indicate that a background pixel should be planted.

10 6 CHAR_CTRL Character control - Set of bits that govern the drawing
of characters. The Individual bits and their interpretations
are

Bit II Setting Description
0 0 Draw the foreground pixels.

1 Suppress the foreground pixels.
0 Draw the background pixels.

Suppress the background pixels.
2-31 Reserved for future use;

should be set to zero.
11 7 CHAR_F _COLOR Character foreground color - Pixel value of the

foreground color used when drawing characters.

12 8 CHAR_B_COLOR Character background color - Pixel value of the
background color used when drawing characters.

You can use the operation mask to change the color of pixels being written to a form.
This is useful in situations where you have a library of shapes or other small images that
you will combine into a large picture. Each shape can be drawn in a library form, using a
pixel value for which all bits are 1. When you transfer a shape to the main image area,
the operation mask can selectively clear some bits so that the resulting pixels contain any
desired color.

014-001371

Graphics Management

GIS instructions also apply a combination rule that controls how pixels are modified.
Rather than simply overwriting the destination with the source data, GIS instructions can
perform a number of different logical functions (on a bit-by-bit basis) to each bit in the
source pixel and destination pixel.

Table 7-5 summarizes the sixteen different combination rules. Rules without a description
in the table are not considered useful. Your program will probably do most drawing
operations with rule 3, which performs a simple copy of source pixels to destination
pixels. Note that any combination rule that does not involve both source and destination
pixels will execute faster, such as combination rule numbers 0, 3, 5, 12, and 15.

Table 7-5 Combination rules

COMBO_RULE
Rule Bits 28-31 Logical Function

0 0000 dest := 0
1 000 1 dest : = src AND dest
2 001 0 dest : = src AND (NOT dest)
3 o 0 1 1 dest := src
4 o 1 0 0 dest : = (NOT src) AND dest

5 o 1 0 1 dest := dest
6 o 1 1 0 dest : = src XOR dest
7 o 1 1 1 dest : = src OR dest

8 1 000 dest := (NOT src) AND (NOT dest)
9 100 1 dest : = src XNOR dest
10 101 0 dest := (NOT dest)
11 1 0 1 1 dest : = src OR (NOT dest)
12 1 1 0 0 dest := (NOT src)

13 1 1 0 1 delt := (NOT Irc) OR deat
14 1 1 1 0 dest := NOT (src AND dest)
15 1 1 1 1 dest := 1

Description

Set destination bits to O.

Move source bits to destination.
Mask out: set to 0 all destination bits
for which the corre.pondlng source
bit Is 1.
NO-OP: no change to destination.
Logical XOR.
Merge: set to 1 all destination bits
for which the corresponding source
bit is 1.

Logical XNOR (equivalence).
Complement destination bits.

Move complement of source bits
to destination.

Set destination bits to 1.

Rules 6 and 9 implement the logical XOR and XNOR functions. With rule 6, the new
value of the destination pixel is the exclusive OR of the source and the previous contents
of the destination. For example, if you use this rule to write color 3 (0011 2) into a pixel
containing color 5 (01012), the pixel will be set to (3 XOR 5), or 6 (01102),

This rule may produce some odd effects on the screen, but it has the unique advantage
that you can erase or "undraw" any object by drawing it twice. Continuing the example
above, if we use the same rule to write color 3 into the pixel that now contains 6, we
find it will be restored to its original value of 5.

This effect is useful for programs that display temporary items, such as a menu or cursor,
on top of an image. The temporary items can be quickly erased by re-executing the
program statements that created them; there is no need to laboriously redraw the original
image. Rule 9 has the same reversible property as rule 6, although it produces different

colors.

Another useful property of rule 6 (or 9) is that it can be used to swap two pictures in
memory without using any temporary storage.

014-001371 7-15

Graphics Management

When any pixel is operated on, the following calculation determines the resulting
destination pixel (OP _A~D_FOR~1_l\1ASK refers to the logical A!':D of the operation
mask and the form mask):

1. The combination rule is applied to the source pixel and the destination pixel.

2. This intermediate result is logically ANDed with the OP _A~D_FORM_!\1ASK.

3. The destination pixel is logically Ar\Ded with the complement of the
OP _AND _FORM_MASK.

4. Steps 2 and 3 are inclusively ORed together to produce the resulting destination
pixel.

This procedure, expressed as an equation, is:

DEST_PIXEL := [OP_AND_FORM_MASK AND (SOURCE_PIXEL RULE DEST_PIXEL)]
OR [-OP_AND_FORM_MASK AND DEST_PIXEL]

The visible effect of applying a combination rule during an instruction depends on the
assignment of colors to the values of the source and destination pixels.

Line Drawing Attributes

7-16

There are four values in the attribute block that affect the operation of the WGPLINE
instruction: the line style (LINE_STYLE), line control word (LINE_ CTRL) , line
foreground color (LINE_F _COLOR), and line background color (LINE_B_COLOR). The
colors planted are affected by the operation mask, form mask, and combination rule.

The values for line style, line foreground color. and line background color may also be
specified by the WGPLINE packet. In this case, these values in the attribute block are
undefined during and immediately after execution of the WGPLINE instruction.

LINE_STYLE together with LINE_CTRL are used to texture a line. LINE_STYLE is a
string of 32 bits that define a pattern (solid. dotted. dashed, etc.). As WGPLINE draws
each pixel, it looks at each bit in LINE_STYLE, going from the most significant bit
(MSB) to the least significant bit (LSB). If the selected LINE_STYLE bit is 1 for a given
pixel. the pixel is planted with the line foreground color. If the selected LINE_STYLE bit
is O. the pixel is planted with the line background color. When the LSB of LINE_STYLE
is reached, the processor returns to the MSB of LINE_STYLE. This procedure starts at
the first pixel of the first line segment, continuing to the last pixel of the last line
segment.

LI~E_CTRL is used to suppress the line foreground and/or line background colors when
drawing a polyline. It is also used to suppress the initial and/or final endpoint of the
polyline. Suppression of a pixel means that it will be left unaffected by the instruction.

If the line being drawn is a single point (all the endpoints of the polyline are the same
coordinate), the point is drawn only if bits 2 and 3 of LINE_ CTRL are set to O. The
attributes for the vertex of contiguous lines segments are derived from the attributes for
the trailing line segment (see Figure 7-5).

Vertex
Trailing line segment

INT-00886

Figure 7-5 Vertex of contiguous line segments

014-001371

Graphics Management

For solid lines, use a line style of -1 (all bits equal 1). Some other values are given in
Figure 7-6.

Binary value Resulting line

11111111111111111111111111111111 Solid

11111111111100001111111111110000 Dashed

10001000100010001000100010001000 Dotted

11111111100010001111111110001000 Centerline . - . - . - . - . - . - . - . -

INT-00010

Figure 7-6 Effect of line style

Character Drawing Attributes
Three attributes affect the action of the WGCHRBLT instruction: the character control
word (CHAR_CTRL), character foreground color (CHAR_F _COLOR). and character
background color (CHAR_B_COLOR). The colors planted are affected by the operation
mask. form mask, and combination rule.

When WGCHRBLT draws a character. it normally writes the foreground color into all
pixels corresponding to ones in the character cell. and it writes the background color into
all pixels corresponding to zeroes. This action can be modified by CHAR_CTRL.

Bits 0 and 1 allow the foreground and/or background pixels to be suppressed; When they
are suppressed, WGCHRBL T skips over them. instead of writing the specified color.
When both bits are zero, each character drawn will be enclosed in a rectangle of the
background color. Suppressing the background lets previously drawn material be seen
around the characters. Suppressing the foreground causes each character to be drawn as
a rectangle of background, with the character shape "cut out" so that previously drawn
material can show through.

Character Fonts
A font is a set of shapes for letters. numbers. and punctuation marks. also known as a
character set. The GIS Character Block Transfer (WGCHRBLT) instruction writes
characters onto a bitmap. Under GIS. a character is defined by a rectangular set of pixels
on a form. To use WGCHRBLT. the character source form must have only one bit per
pixel (X pitch = 1) and be one virtual rectangle; otherwise. there are no limits on the
size or shape of the character. WGCHRBLT can be used to draw graphic icons. logic
circuits. and other special-purpose objects. A complete font can consist of many small
forms or a single large form that contains the shapes for all the characters.

Cursor Descriptor
A cursor is a pattern drawn on the bitmap screen to represent the position of a pointing

device.

Every form descriptor includes the address of a cursor descriptor (CURSOR_DESC) that
can define the location of a graphic cursor for use with an input device such as a mouse

014-001371 7-17

7-18

Graphics Management

or light pen. This permits the cursor to be managed by the operating system, even though
it is drawn over the user's picture in the form. GIS instructions use the descriptor to

determine if a drawing operation may overwrite the cursor. If so, the instruction is
interrupted. Then the operating system can remove the cursor, complete the user's
operation, and later restore the cursor.

There are two different types of cursors: image and cross hair. The image cursor may
take any shape - for instance. an arrow. This cursor is defined by the rectangle that
contains the visible portion of the image.

The cross-hair cursor consists of one horzontal line and one vertical line. This cursor is
defined by the endpoints of the horizontal and vertical lines that form the cross hair. In
the case of a full-screen cross hair. the horizontal and vertical lines always span the
entire width and height. respectively. of the bitmap screen. The endpoints of a
full-screen cross hair are always on the edge of the bitmap screen. In the case of a cross
hair that is very large, the cross hair may be clipped to the edge of the bitmap screen.
The endpoints of a large cross hair define the visible portion of the cross hair.

For each of the two types of cursors. there is a different cursor descriptor. The cursor
descriptor consists of signed and unsigned 32-bit integers. The first doubleword of the
descriptor remains the same in both cases. This is the FLAGS doubleword. which
contains bits that determine the format of the descriptor that follows. The format of the
cursor descriptors is shown in Figure 7-7, and in Tables 7-6 (cross-hair descriptor) and
7-7 (image descriptor). The Load Forms instruction (WGLFORM) loads the initial
cursor descriptor block into the forms cache; the Load Cursor Descriptor instruction
(WGLDCURS) may then be used by the operating system to change the cursor by
modifying the cursor descriptor block and updating the internal cache entries.

Cross-hair curlor

Vertical start

Horizontal start+ } Height

Width Image cursor

UlC ... - - - - -,

I IT.,. I I I
I I L ____ .J

Width

Figure 7-7 Types of cursors

Height

INT-00012

014-001371

Graphics Management

Table 7-6 Cross-hair cursor descriptor

Double
Word # Mnemonic

FLAGS

2 H_START_X

3 H_START_Y

4 H_END_X

5 H_END_Y

6 V_START_X

7 V_START_Y

8 V_END_X

9 V_END_Y

Contents

Flag bits. The individual bits and their interpretations are
Bit # Meaning
a If 1. cursor Is visible.

If O. cursor invisible.

1. 2 Must be set to a 12 for cross-hair cursor. (Only one of
bits 1 and 2 may be set at anyone time. Setting both
of these bits will produce undefined results.)

3-31 Reserved for future use; should be set to O.

X coordinate (signed) of left endpoint of horizontal line with respect to
physical bitmap origin.

Y coordinate (signed) of left endpoint of horizontal line with respect to
physical bitmap origin.

X coordinate (signed) of right endpoint of horizontal line with respect to
physical bitmap origin.
Y coordinate (signed) of right endpoint of horizontal line with respect to
physical bitmap origin.
X coordinate (signed) of top endpoint of vertical line with respect to
physical bitmap origin.
Y coordinate (signed) of top endpoint of vertical line with respect to
physical bitmap origin.

X coordinate (signed) of bottom endpoint of vertical line with respect
to physical bitmap origin.
Y coordinate (signed) of bottom endpoint of vertical line with respect
to physical bitmap origin.

Table 7-7 Image cursor descriptor

Double
Word' Mnemonic

2

3

4

5

014-001371

FLAGS

EXTENT_X
EXTENT_Y

Content.

Flag bits. The individual bits and their interpretations are
Bit' Meaning
o If 1. cursor is visible.

If O. cursor invisible.

1. 2 Must be set to 102 for Image cursor. (Only one of bits
1 and 2 may be set at anyone time. Setting both of
these bits will produce undefined results.)

3-31 Reserved for future use; should be set to O.

X coordinate (signed) of ULC of cursor rectanQle with respect to
physical bitmap origin.
Y coordinate (signed) of ULC of cursor rectangle with respect to
physical bitmap origin.
Width of cursor rectangle in pixels (unsigned).
Height of cursor rectangle in pixels (unsigned).

7-19

Graphics Management

Color Descriptors

7-20

Different display devices in the Data General product line have different palette
organizations. The Write Palette (\VG\VRPAL) and Read Palette (\\'GRDPAL)
instructions, however, use a generalized data format that is compatible with all displays.
Furthermore, the data format supports future hardware designs that may use palette
registers up to 96 bits long.

In this data structure, each palette register's contents is translated to or from a color
descriptor consisting of four 32-bit numbers. The first three numbers represent red,
green, and blue components, respectively. and are used only by color displays. The
fourth number represents the gray-scale intensity, and is used only by monochromatic
displays. If you are writing a program to run on both color and monochromatic displays,
you should specify values for all four numbers.

Unlike most data used by GIS, palette values are left justified within the descriptor
words. That is, when the hardware reads or writes a value that is less than 32 bits long, it

reads or writes the leftmost bits of the word.

Left justification increases the compatibility of systems with different display hardware.
When you write a palette register with WGWRPAL, the hardware takes as many bits as it
can use, starting from the leftmost bit. You can specify the color values to any desired
precision, and the hardware will match your intentions as closely as possible, given the
number of bits in the actual palette register. When you read a palette register with
WGRDPAL, the hardware places the bits from the palette in the leftmost bits of the
descriptor word(s), and sets all unused bits to O.

014-001371

Graphics Management

Form Cache
In order for a GIS instruction to operate on a form, the target form must be loaded into
the form cache (using the Load Form instruction, \VGLFORM). If the target form is not
in the form cache, a form cache miss fault occurs (refer to the section, .. Fault
Handling"). The operating system controls access to forms by loading or not loading a
particular form into the form cache in response to this fault.

A cache tag uniquely identifies a form in the form cache. The cache tag is three
doublewords consisting of the address of the form descriptor and two keys. The first key
is the user's form ID, a number that is supplied on a GIS instruction in ACt. The form
ID must be a value other than O. The second key is some process-specific number
chosen by the operating system. For ECLIPSE MV/Family machines, this number is the
contents of the segment base register for the ring on whose behalf the form was loaded
into the form cache. This key is then specific to each ring and to each process.

To determine if the form required by a particular GIS instruction is in the form cache,
the processor obtains the user's form ID and the operating system's key and searches the
form cache for a cache tag containing these values.

• If a cache tag is found whose contents match the user's form ID, the remaining
actions are dependent upon the segment number:

If the GIS instruction was issued from segments 1 through 7, the processor then
checks the operating system's key. If the key matches, the GIS instruction
continues, using the form pointed to by the form descriptor address. If the key does
not match, the processor returns a form cache miss fault to the operating system.

If the nonprivileged GIS instruction was issued from segment 0, the processor
ignores the operating system's key and continues execution of the GIS instruction.

• If no match of the user's form ID is found, the processor returns a form cache miss
fault to the operating system.

While processing a GIS instruction, any forms in the form cache that are unused by this
instruction may be purged.

Interrupts
All GIS instructions are interruptible and either resumable or restartable. When an
interrupt occurs, a GIS instruction saves the current state on the wide stack and sets bit 2
(IRES) of the Processor Status Register to 1. When the interrupt service is complete,
control passes back to the GIS instruction, which pops the saved state off the wide stack.
sets bit 2 of the Processor Status Register to 0, and continues with its execution. For
further information, refer to the section, "Interrupt Servicing," in the chapter. "Device

Management. "

014-001371 7-21

Graphics Management

Fault Handling

7-22

When a GIS instruction executes, the processor checks various parameters before
continuing execution of the instruction. Conditions that could cause a GIS fault are:

• Form ID not found in form cache,

• Instruction could corrupt the cursor,

• Unknown attribute index, or

• Invalid WGCHRBL T source form.

If one of these conditions occurs, the processor generates a GIS fault (using the same

mechanism for page faults, as described in the chapter, "Memory and System
Management"). When a GIS fault occurs, the following results (refer also to Figure 7-8):

1. If the current segment is not 0, the processor stores the wide frame pointer and
wide stack pointer in their respective locations in page zero of the current segment
and performs a segment crossi-ag to segment O.

2. The processor uses the contents of locations 328 and 338 of page zero in segment 0
as a base address to store a context block (the internal state of the machine) in
memory. The structure of the 10-doubleword GIS fault context block is:

3.

Double
Word II

1

2

3

4

5

6

7

8

9

10

Contents

Program status register (bits 0-15 contain the PSR; bits 16-31 contain zeros)

User's ACO

U.er', AC1

User's AC2

User's AC3

Carry (bit 0) and PC (bits 1-31) on fault

Next segment of execution (bits 0-2)

Microcode block state

Value causing fault (see step 4).

Restart value

When a GIS fault occurs, the restart value field (double word 10) of the context
block contains a zero. While handling the fault, a new value may be placed in this
location. Upon return from the fault handler, if this value is 1, the CPU will
execute the instruction following the faulting GIS instruction.

The processor initializes the segment 0 stack from page zero of segment O.

014-001371

Ves

Store WFP and WSP
into current

Seg~~ft~ zero

Cross to
segment 0

Store context block
using page zero

locations 32e and 33e
of segment 0

Initialize segment 0
stack from
page zero

Load fault code
into ACl

A~r~ u'i.~~li~3

Disable interrupts
for one instruction

Jump to page fault
handler using page zero

locations 30e and 31e

Execute first instruction
of fault handler

Figure 7-8 GIS fault sequence

014-001371

Graphics Management

Fault handler r--,
I
I
I

No

No

Invalid WGCHRBL T
source

Trap process

Ves

V ••

V ••

"Value causing fault"
field contains
user's form ID

Issue WGLFORM
instruction to

load form descriptor

"Value causing fault"
field contains

user's form 10

Erase cursor
associated with
specified form

"Valu. caullng fault"
field contains
user's form 10

Set context block
restart value to 1

TraffJ'rocess with
.. inva i form ID trap"

code

--
INT-00885

7-23

7-24

Graphics Management

4. The nrocessor loads a fault code into AC 1 as follows:

--- .---~
F ;..ult Fault Type Value In Context Block Doubleword 9

(Value Causing Fault) Code

0-4 Reserved for page faults Refer to the chapter. ~ Memory and System
Management .•

5

6

7

Form cache miss

Cursor intersect

Unknown attribute index

User form 10 of form not found in form cache.

User form 10 supplied on GIS instruction.

User form 10 supplied on WGRDATTR or
WGWRATTR instruction.

8

9-12

Invalid WGCHRBLT source

Reserved

Undefined.

Reserved for future use.

The unknown attribute index and invalid \VGCHRBL T source faults can only be
taken at the start of a GIS instruction. Once a GIS instruction starts to execute,
these faults are invalid. The form cache miss and cursor intersect faults may be
taken at any time.

The contents of ACO, AC2, and AC3 are undefined.

5. The processor disables interrupts for one instruction and jumps to the page fault
handler using the address in locations 308 and 318 of segment O.

6. The processor executes the first instruction of the fault handler. The fault handler
may then take action dependent upon the type of fault:

• Form cache miss (form cache does not contain specified form ID).

a. The value causing fault field in the context block contains the user's form ID.

b. The operating system searches for specified form in its internal databases.

c. If no form is found, the operating system can trap the process using the same
mechanism as an inward address violation. The trap code will be "invalid
form ID trap." (Refer to the chapter, "Memory and System Management.")

d. If a form is found, the operating system issues a WGLFORM instruction to
load the form descriptor.

e. The operating system returns control with a WDPOP instruction.

• Cursor intersect (a particular GIS instruction could corrupt the cursor).

a. The value causing fault field in the context block contains the user's form ID.

b. The operating system erases the cursor associated with the specified form.

c. The operating system returns control with a WDPOP instruction.

014-001371

Graphics Management

• Unknown attribute block (the attribute index provided on a \VGRDATTR
\VGWRA TTR instruction falls outside of the form descriptor's attribute block).

a. The value causing fault field in the context block contains the user's form ID.

b. If the attribute index, specified by the user, does not refer to a valid "soft"
attribute, the operating system traps the process.

c. If the attribute index, specified by the user, refers to a valid "soft" attribute,
the operating system sets the restart value field of the context block to 1.

d. The operating system returns control with a WDPOP instruction.

• Invalid WGCHRBL T source (the source form given on this instruction does not
meet the following restrictions: the rectangle list consists of a single rectangle on
the virtual bitmap; the virtual bitmap is one bit per pixel deep.)

a. The value causing fault field in the context block is undefined.

b. The operating system traps the process.

Fixed-Point Overflow

Certain GIS instructions perform arithmetic operations during execution. If these
operations produce a fixed-point overflow, the following may occur:

• The instruction continues, but the results are undefined.

• The processor status register overflow bit (OVR) is set to one.

GIS instructions, such as WGPLINE or WGRFLOOD, may produce a fixed-point
overflow during an overdraw condition.

An overdraw condition occurs when a GIS instruction attempts to either write a location
that is beyond the clippable area or draw a line with endpoints that are further apart
than the allowable maximum.

Each bounding rectangle has a corresponding dippable area associated with it. The
dippable area is defined as a rectangle whose sides are parallel to the bounding rectangle
with each side no farther than 231 - 1 points from the opposite side of the bounding
rectangle. Any instruction's packets may contain coordinates that encompass points within
the dippable area (valid) and beyond the dippable area (invalid). GIS will apply correct
clipping to valid coordinates, but will not draw any points outside the bounding rectangle.
Coordinates outside the dippable area produce a fixed-point overflow with undefined
results. Figure 7-9 is a representation of the dippable area.

In the figure, the parameters of the bounding rectangle are defined by its ULC and
points X + X_EXT, Y + Y _EXT. A line drawn through point A (with the \VGPLINE
instruction) is valid if any point on that line does not extend beyond the dippable area
and produce an overdraw condition. Therefore, line Be (v.:hich extends beyond the
bounding rectangle) is valid and the portion within the bounding rectangle will be drawn.
However, line DE, which contains points beyond the acceptable clipping area, is invalid
and causes a fixed-point overflow with undefined results.

014-001371 7-25

7-26

Graphics Management

Clippable area

/ I '
I
I 23Ll
I
I
I

o

______ 2~LJ __ '

,I~

E

I
I ,

I
I
I , , , ,

C

Figure 7-9 Overdraw condition parameters

/

INT -00716

An overdraw condition also occurs if a GIS instruction, such as WGPLINE, attempts to
draw a line with endpoints that are further apart than the allowable maximum. This limit
is defined as 229 points from one endpoint to the perpendicular of the second point. Both
endpoints must also be within the dippable area. If the maximum allowable distance is
exceeded, a fixed-point overflow may occur even though the endpoints are within the
clippable area. As shown in Figure 7-10, line FG is valid if each endpoint is less than or
equal to 229 points to the perpendicular of the other endpoint (FZ and GZ). If the
endpoints are valid, the portion of the line within the bounding rectangle will be drawn.

For further information on fixed-point overflow, refer to the section, "Fixed-Point
Overflow Fault," in the chapter, "Program Flow Management."

014-001371

F

Graphics Management

Clippable area

.......................... - X+X EXT
V + V=EXT

G
r

I
I
I
I
I
I
I
I
I
<=2

<=2"
--------------------------- Z

INT -00717

Figure 7-10 Overdraw condition parameters for endpoints

End of Chapter

014-001371 7-27

8
Device Management

The processor supports devices that transfer data using a slow-, medium-, or high-speed
transfer rate. With a programmed 110 facility. the processor transfers 1 or 2 bytes of data
between a device and an accumulator. With a data channel 110 facility. the processor
transfers words or blocks of words between a medium-speed device and memory. With a
burst multiplexor channel I/O facility. the processor transfers bursts of data between a
high-speed device and memory.

For instance. a slow-speed asynchronous line controller transfers data with the
programmed 110 facility. Medium-speed devices. such as line printers and magnetic
tapes. transfer data with the data channel (DCH) 110 facility. The high-speed disk drives
and high-speed magnetic tape drives transfer data with the burst multiplexor channel
(BMC) 110 facility.

Devices are either external or internal to the computer.

• External devices are those peripherals residing on either the 110 bus or BMC with
communications generally handled through a device controller (such as disk drive
and magnetic tape units. printers. and terminals).

• Internal devices are those which are integral to the computer and accessible directly
by the processor without the necessity of communicating through a device controller
(such as the CPU, real-time clock. programmable interval timer. system control
processor) .

Depending upon the operating system, a device is usually accessed through a system call
to an operating system. This chapter presents basic information to assist in reading and
writing an interrupt or device handler routine. The chapter first provides general
information pertinent to all devices: device access. 110 instructions, and interrupts. We
then discuss the data channel and burst multiplexor channel, device controllers in
general, and writing device handler routines to support external peripherals. The chapter
concludes with information on integral (internal) devices. For descriptions of the
structure, functions, signals. and timing characteristics of the 110 buses, refer to the
machine-specific interface designer's guide.

014-001371 8-1

Device Management

I/O Communication

8-2

A peripheral generally consists of one or more devices and a device controller.
Communication between the processor and a device is through the device controller using
one or more of the I/O facilities (programmed, data channel, burst multiplexor channel).
An intermediary for some ECLIPSE ~IV/Family systems is an 1/0 channel controller
(IOC). An IOC manages access to an 1/0 channel with each IOC maintaining its own set
of buses (generally both a data channel and a burst multiplexor channel). Figure 8-1
shows an ECLIPSE MY/Family system with dual 1/0 channel controllers.

CPU

Data: Channel

1------1 lOCO

Burst Multiplexor Channel

~ ~--
Data Channel

IOC1

[£J 1/0 device controller
Burst Multiplexor Channel

Figure 8-1 An ECLIPSE MVIFamily system with dual IOCs

The I/O bus is shared by all the device controllers as well as by the computer, while the
BMC bus is shared only by the computer and device controllers which incorporate the
BMC facility. Since these buses are shared they are, by necessity, half-duplex buses with
only one operation occurring at anyone time. However, an operation can be occurring
simultaneously on each bus.

The I/O bus connects in parallel to each DCH and BMC device controller in the system;
the BMC connects in parallel to each device controller that uses the BMC facility.

The direction of all I/O transfers is relative to the computer. Output refers to information
moving from the computer to a device controller; input refers to information moving from
a device controller to the computer.

014-001371

Device Management

lID Access
The processor accesses a device with address translation disabled or enabled. When
address translation is

• disabled - the processor is running in physical mode (it ignores the contents of the
segment base register) and executes the 110 instruction.

• enabled - the processor checks the segment base register for the current segment
before it executes an 110 instruction.

Bits 2 and 3 of the segment base registers affect 110 access for each segment as follows:

• Bit 2 is the LEF or 110 mode bit (specifying how the processor interprets the LEF
and 110 instruction opcodes). If bit 2 is set to

1 It indicates LEF mode. The processor interprets and executes both 110 and
LEF instructions as LEF (load effective address) instructions.

o It indicates 110 mode. The processor interprets 110 instructions and LEF
instructions as 110 instructions. (Executing an 110 instruction requires an
additional interpretation of bit 3.)

NOTE: Bit 2 affects the LEF instruction but not the ELEF, XLEF, and LLEF
instructions.

• Bit 3 is the 110 validity flag (enabling or disabling the execution of an 110
instruction). If bit 3 is set to

1 The processor allows execution of 110 instructions.

o The processor detects a protection violation when attempting to execute an
110 instruction.

Refer to the chapter. .. Memory and System Management." for information on the
segment base registers and servicing a protection fault.

I/O Registers
Several registers provide status and control information for the 110 channel controllers.
the DCH controller. and the BMC controller:

• BMC and DCH map slot registers - contain logical-to-physical address translation
information for BMC and DCH transfers to memory.

• 110 channel definition register - contains error and status information for the BMC
and DCH.

• 110 channel status register - contains status information for the 110 channel.

• 110 channel mask register - contains mask bits for each 110 channel.

• CPU dedication control register (multiple-processor systems only) - specifies which
processor in a multiple-processor system will receive 110 interrupts.

The section ... Data Channel/Burst Multiplexor Channel." discusses the registers. their
effects on 110 transfers, and the I/O instructions for manipulating these registers.

014-001371 8-3

Device Management

Types of Information Transfers

8-4

The computer and a device controller transfer information in one of three ways:

• Programmed 110 control - I\loves a word. or part of a word. between an accumulator
and a register in the device controller. This type of transfer occurs over the liD bus
when a program executes the appropriate 110 instruction.

This method provides communication with all internal devices and sets up all DCH
and BMC operations (with the actual data transfers performed over the respective
channels). Since at least one instruction - and most likely several - must execute for
each character or word transferred. programmed I/O is slower and generally used only
for devices that do not have to transfer large quantities of information quickly.

• Data channel control - Generally moves a block of data. one word at a time.
between physical memory and the device through a register in the device controller.
The block of data is transferred automatically over the data channel once the program
sets up the transfer for a particular device.

Transferring large blocks of data under DCH control reduces the amount of program
overhead required. The information to set up the DCH transfer is assembled in the
accumulators and then transferred to the device controller with programmed 110
instructions. The block of data is then automatically transferred between memory and
the device controller over the data channel.

Each time the device controller is ready to transfer a word from the block, it requests
access to the DCH bus controller. When access is granted, the device controller
transfers a memory address to the bus controller and then the word is either
transferred and written to memory or read from memory and transferred to the device
controller. Because multiple liD instructions do not execute for each word transferred.
block transfers can occur at high rates.

• Burst multiplexor channel control - Moves a block of data. The block of data is
transferred automatically over the B~1C once the program sets up the transfer for a
particular peripheral. The block is transferred in a burst of several words between
physical memory and the device through registers in the device controller. The words
of the burst are transferred in serial succession (one word at a time).

The information to set up the BMC transfer can be assembled in the accumulators
and then transferred to the device controller with programmed 110 instructions over
the 110 bus (identical to data channel control). Once the device controller is set up,
the block of data is then transferred directly between memory and the device
controller over the BMC.

After the program sets up and initiates the BMC transfer for a block of data. it does
not have to take further action. Each time the device controller is ready to transfer a
specified number of words from the block. it requests access to the BMC. When
access is granted, the device controller provides a starting memory address and the
number of words to be transferred during the data transfer. Then the number of
words specified for the data burst are transferred.

Since the channel only has to be activated once and a memory address only has to be
supplied once for each burst of words transferred. block transfers over the BMC can
occur at much higher rates than those under data channel control.

014-001371

Device Management

With the majority of ECLIPSE MV IFamily systems. the actual transfer of data using the
DCH or BMC facilities does not disturb the state of the processor. The data is
transferred directly between the registers in the device controller and physical memory.
This greatly reduces the amount of program overhead in the form of executing 110
instructions and loading or storing data. A program sets up the device for the transfer;
the controller for the respective bus then performs the transfer.

All DCH and BMC device controllers receive their commands using the standard I/O
bus. Data transfers for DCH devices are performed on the I/O bus; data transfers for
BMC devices are performed on the BMC bus.

In addition. where intelligent device controllers are used. the commands to set up the
transfer can be assembled in a control block in host memory. After the program supplies
a starting memory address for the control block and initiates the device controller with
programmed I/O instructions using the 110 bus, the control block is transferred to the
device controller over the respective bus (DCH or BMC). Multiple device controller
operations can be performed without additional program intervention when a group of
control blocks are linked together.

014-001371 8-5

Device Management

General I/O InstrtJctions

8-6

The I/O instructions J. lVide communications between the processor and a device
controller. A general set of I/O instructions provides device-independent operations. A
special set of I/O instructions communicates with the device controller. loads a device
map. or services a vector interrupt.

The general I/O instructions receive or send data. and initialize or test a device flag. The
Programmed I/O (PIO) instruction issues a general I/O instruction (contained in an
accumulator) to an I/O device on a specified I/O channel. Table 8-1 lists the general I/O
instructions.

Table 8-1 General I/O instructions

Instruction Opcode Operation

DIA[f] * 001 Data in A (from A buffer of device to an accumulator)

DIB[j] • 011 Data In B (from B buffer of device to an accumulator)

DIC[j] • 101 Data in C (from C buffer of device to an accumulator)

DOA[j) • 010 Data out A (from an accumulator to A buffer of device)

DOB[j] • 100 Data out B (trom an accumulator to B buffer of device)

DOC[f] • 110 Data out C (from an accumulator to C buffer of device)

IORST • 101 I/O reset

~IO[f] • 000 No I/O transfer (initialize a Busy/Done flag)

SKPt • 111 I/O skip (test a Busy/Done flag and skip on condition)

* ECLIPSE compatible instruction

Figure 8-2 illustrates the format for a general I/O instruction; Table 8-2 describes the
format.

0 1 1 ac Opcode f or t I Device code

0 , 2 3 I 4 5 7 8 I 9 I 10 15

INT-00126

Figure 8-2 General I/O instruction format

Table 8-2 General 110 instruction format description

Mnemonic

011

ac

Opcode

f or t

Device code

Bits Meaning

0-2 This binary code indicates an \/0 instruction.

3. 4 The ac field specifies a fixed-point accumulator In the range 0-3. Bits
16-31 of tha accumulator contain the data to send to or receive from a
device.

5-7 The opcode field Identifies the I/O instruction operation. Table 8-1 lists
the I/O instructions and their opcodes.

8, 9 This field Indicates a device flag and a function to perform on that flag.
The f bit Identifies a device flag to change; the t bit Identifies a device
flag to test.
Depending on the I/O instruction and the device, the instruction initializes
or tests the device flag of the device. (See Tables 8- 3 and 8-4.)

10-15 The device code field identifies a unique device controller to send data to
or to receive data from.
With a 6-bit device code, the processor can communicate with up to
64'0 device controllers per I/O channel. The assembler translates a
standard three, four, or five letter device mnemonic to a device code.
Refer to the machine-specific M Standard 110 Device Codes" appendix for
a list of standard device mnemonics and their corresponding device
codes.

014-001371

Device Management

Device Flags
The Busy and Done flags indicate the device state to a device handler routine. For all
external and internal devices (except the CPU), the flags are Busy and Done. For the
CPU, the flags are interrupt on and powerfail. Note that the CPU is considered a device
for programming purposes.

When both the Busy flag and Done flag equal zero, the device is idle. To start a device,
issue an 110 instruction with the proper device flag control that sets the Busy flag to one
and the Done flag to zero. When the device finishes the operation and becomes ready to
start another operation, the device controller sets its Busy flag to zero and its Done flag
to one.

The interrupt on flag (ION) controls the device interrupt system. When ION equals

• 0, the processor ignores interrupt requests.

• 1, the processor services interrupt requests. (Refer to the note in the section,
"Instruction Interruption.")

The read-only powerfail flag indicates the power state to the CPU device driver. \Vhen
the powerfail flag equals

• 0, the processor detects the proper power voltage ranges.

• 1, the processor detects a powerfail condition.

Table 8-3 Device flag controls for general devices

Assembler Bits 1/0 CPU
Code for f 8 9 Busy Done ION

(option omitted) 0 0 No effect No effect No effect

S 0 Set to a 1 Set to a 0 Set to a 1

C 0 Set to a 0 Set to a 0 Set to a 0

P Pulses a special 1/0 bus control line No effect

Table 8-4 Device flag tests for skip instruction

Assembler Bits
Code for t 8 9 110 CPU

BN 0 0 T est for Busy = 1 Test for ION = 1

BZ 0 1 T est for Busy = 0 Test for ION = 0

DN 0 T est for Done = 1 Test for powerfail = 1

DZ T est for Done = 0 Test for powerfall = 0

014-001371 8-7

Device Management

Interrupts
The processor and an operating system maintain the I/O facilities through a hierarchical
interrupt system. Any program can initiate an 110 operation by requesting a data transfer
to or from a device. With most operating systems, the program transmits the request
through I/O system calls, which initialize the device and transfer data by invoking the
interrupt system.

When a device completes an operation, its controller sets its Done flag to 1 and the Busy
flag to 0 to indicate that it requires service. The program can then test the state of the
Done flag with the I/O Skip (SKP) instruction to determine when this occurs. Checking a
device's Done flag needs to be done frequently to ensure that service is not delayed.
These status checks are time consuming, and, to avoid the necessity of repeating them.
all ECLIPSE MV IFamily computers have a program interrupt facility.

All device controllers that use the program interrupt facility have access to an interrupt
request line - a single, direct signal to the processor along which requests for service are
communicated. An interrupt request can be generated by a device controller when the
controller's Done flag is set to 1. The processor can respond to an interrupt request by
halting the normal flow of program execution and transferring control to an
interrupt-handling routine. A program can control which device controllers may request
interrupts and when the processor may start an interrupt by manipulating a number of
interrupt flags.

Interrupt Flags

8-8

The operating system maintains control of the interrupt system by manipulating the
interrupt on flag. an interrupt mask. and device flags. The interrupt on flag and interrupt
mask reside in the processor. The interrupt on flag enables or disables all interrupt
recognition, while the interrupt mask enables or disables selective device interrupt
recognition.

The Busy and Done device flags reside in the device controller and provide the interrupt
communication link between the processor and the device. By manipulating the flags and
the interrupt mask, the interrupt system can ignore all interrupt requests or selectively

service certain interrupt requests.

If the interrupt on flag and interrupt mask enable processor recognition of the interrupt
request, the processor services the interrupt. \Vhen the interrupt on flag (ION) equals

• 1, the processor responds to an interrupt request.

• 0, the processor cannot respond to an interrupt request.

The CPU instructions, Interrupt Disable (INTDS) and Interrupt Enable (INTEN), control
the state of the interrupt on flag. Information on CPU instructions is presented later in

this chapter in the section, "Integral Devices."

Each of the 16 bits in the interrupt mask may be associated with one or more devices.

When a bit in the interrup"L mask equals

• 1, an interrupt request from that device (s) to the processor is blocked.

• 0, the processor services an interrupt request from the device.

To change the state of a bit in the interrupt mask. use the ~1ask Out instruction
(MSKO), a CPU instruction. Each device controller using the interrupt facility contains
an interrupt disable flag. All device controller interrupt disahle flags are manipulated at

014-001371

Device Management

once with a MSKO instruction using a mask contained in an accumulator. (Each device
controller is assigned by its hardware to a bit position in the mask. i\1ask bit assignments
for standard device controllers are given in the machine-specific supplement.) \\'hen a
MSKO instruction executes, each device controllers' interrupt disable flag is set to the
value of the assigned bit of the mask (a value of 1 disables the device from posting an
interrupt to the processor; a value of 0 enables the posting of an interrupt). Following
powerup, or when a reset occurs, all interrupt disable flags are set to O.

To service an interrupt, the processor first determines the action to take on the currently
executing instruction, next redefines the interrupt mask, and finally services the interrupt
request. The section "Processor Interrupt Servicing" explains the processor's actions to

transfer program control to the interrupt handler, and then to the interrupt service
routine.

Instruction Interruption
Most instructions that require only a minimum of processor execution time are
noninterruptible. For instructions that require more execution time, the processor (if
required) interrupts the executing instruction, updates the accumulators, and services the
interrupt. If the instruction must continue where it left off (resumable instruction), the
processor also sets the processor status register interrupt resume flag (IRES) to 1. After
servicing the interrupt, the processor either restarts or resumes the interrupted instruction.

NOTE: Some processors use nonmaskable interrupts (NMls) to control internal
processor events. NMls are not masked by the state of ION. Thus, any
instruction that is interruptable (such as WBLM) produces undefined results if
the instruction overwrites the executing opcode, regardless of the state of ION.
An NMI causes the execution of the instruction to be stopped and then resumed
with updated accumulator values. If the instruction (WBLM) overwrites itself,
then the opcode may no longer be available when the instruction is resumed.

ECLIPSE MV/Family processors set the processor status register bit 2 (IRES) to 1 when
an interrupt occurs during execution of a resumable instruction. The processors also set
PSR bit 3 (IXCT) to 1 if the interrupted instruction were executed by a Pop Block and
Execute (PBX) instruction.

NOTE: When an interrupt occurs during a segment crossing, the saved program counter
points to the first instruction of the called procedure.

014-001371 8-9

Device Management

Processor Interrupt Servicing
To service an interrupt request (Figure 8-3), the processor

1. Sets IO!\' to O.

2. Determines if the address translation facilities are enabled.

If address translation is enabled, the processor continues with step 3.

If address translation is disabled, the processor gets the interrupt handler pointer
from physical location 18 and continues with step 7.

Refer to the chapter" Memory and System Management" for information on
enabling and disabling the address translat:ion facilities.

3. Stores the current stack register values in the respective page zero locations of the
current segment.

4. Changes the current segment of execution to segment O.

5. Initializes the wide stack using the values from page zero locations of segment O.

6. Fetches the interrupt handler pointer from word 18 of reserved page zero memory
for segment O.

7. Resolves the effective address of the interrupt handler.

8. Examines the first word of the interrupt handler, which may be one of the following
types:

Type 1 - An ECLIPSE MY IFamily 32-bit processor instruction.

A 32-bit processor instruction contains bit 0 equal to 1 and bits 12-15
equal to 10012 ,

Type 2 - An ECLIPSE 16-bit instruction.

Instructions other than XVCT or type 1 are identified as ECLIPSE 16-bit
instructions.

Type 3 - A vector interrupt (XVCT) instruction.

9. Stores the return address in the following locations (according to instruction type):

Type 1 - Logical locations 28 and 38 of segment O.

Type 2 - Location 0 of segment O.

Type 3 - The vector stack (as part of the return block) for the XVCT instruction,
during the vector interrupt processing.

10. Jumps indirectly (according to instruction type) as follows:

Type 1 - To the immediate interrupt handler and executes the type 1 instruction as
the first instruction of the handler.

A jump instruction (LJMP or XJMP) can be used to jump indirectly
through the return address in order to return from the interrupt handler.

Type 2 - To the ECLIPSE interrupt handler and executes the type 2 instruction as
the first instruction of the ECLIPSE interrupt handler.

Type 3 - To the vectored interrupt handler (through word 78 of page zero for
segment 0) and executes the XVCT instruction. The next section
describes vectored interrupt processing.

The last instruction of the vectored interrupt handler should be a wide
restore from vector interrupt instruction (WRSTR), which pops the wide
return block from the vector stack.

8-10 014-001371

Store current stack
register values in

current page
zero locations

Cross to
segment 0

Load segment 0
stack location

values Into stack
registers

Fetch pointer to
interrupt handler
from location 1,

page zero, segment 0

Type 1 instructions -_ ... _--
Store PC in

locations 2-3 of
segment 0

Jump @ 1

Figure 8-3 Interrupt sequence

014-001371

Device Management

Ves

Resolve Indirect
chain (it necessary);

examine first word
of interrupt handler

Fetch pointer to
interrupt handler

from physical
location 1

Type 2 instructions Type 3 (XVCT)
~----~----_ r----~~--~

Store PC in
location 0,
segment 0

Jump @ 1

Store PC in
return block

on vector stack

Jump @ 7

INT-00127

8-11

Device Management

Vectored Interrupt Processing
\\'hen the processor executes a vector interrupt (XVCT) instruction, the processor (Figure
8-4) tests the contents of the interrupt-level word in location 0 of page zero reserved
memory for segment O. If this location equals

• zero, then the processor begins base-level interrupt processing.

• nonzero, then the processor begins intermediate-level interrupt processing.

The processor, in either case, increments the interrupt-level word by one.

NOTE: Software, as part of the interrupt return, must decrement the interrupt-level
word by one.

Base-Level Interrupt Processing

To service a base-level vector interrupt, the processor must be executing in segment O. If
the current segment of execution is segment 1 through 7. the processor

• Sa ves the wide stack pointer and the wide frame pointer in the reserved memory
locations of the current segment. (The wide stack base and wide stack limit contents
are the same as the reserved memory contents.)

• Crosses to segment O.

To service a base-level vector interrupt, the processor

1. Saves the wide stack parameters (the wide stack registers and the pointer to the wide
stack fault handler) from the reserved memory locations of segment 0 in an internal
processor state.

2. Uses the three vector stack parameters in reserved memory (locations 48 • 68 • and
78) to initialize the four wide stack registers and wide stack fault pointer for the
vector stack. Loading the vector stack information enables vector stack underflow
and overflow detection.

• Vector stack pointer parameter (location 48)

The processor, interpreting the parameter as a 16-bit word, zero-extends the
vector stack pointer before loading it into the wide stack base, wide stack pointer,
and wide frame pointer registers.

• Vector stack limit parameter (location 68)

The processor, interpreting the parameter as a 16-bit word, zero-extends the
vector stack limit before loading it into the wide stack limit register.

NOTE: The 16-bit vector stack base and limit parameters initially restrict the
vector stack to the lower 128 Kbytes of segment O.

• Vector stack fault address parameter (location 78)

3. Pushes the previously saved wide stack parameters from the internal processor state

onto the vector stack.

4. Pushes a wide return block onto the vector stack.

5. Continues execution as described in the section, "Final Interrupt Processing."

8-12 014-001371

Flna

Vector interrupt
instruction

Level count

= O?

Base-level
Yes Interrupt

Increment
level count

Current segment

= 07

Yes

Save location 148
and four stack

registers Internally

• Load location 148
and stack registers

With contents of
vector stack

locations

+
Push saved stack

parameters
onto new vector

stack

Push wide
return block onto
new vector stack

I Interrupt
proc esslng ,

Calculate effective
address from

displacement of
XVCT instruction

Use effective
address and I/O

channel number as
base address of

vector table

No

Device Management

Use device code

Intermediate-level
as an index

into vector table
Interrupt

Bits 1-31 of
referenced table

entry point to
a OCT

~
Load OCT base

address into
AC2

Store stack pointer
and frame pointer

in reserved
memory of OCT

current segment (Bit 0)
= 1?

l
No

Cross to
segment 0

Use current mask
at vector table

base address -2
to form mask word

Push doubleword
from previous step

onto stack

1
OR pushed

Increment level doubleword with

c~niii~~oOeojn contents of OCT

segment 0 words 2 and 3

1 Load result
of OR into

Push wide ACO
return block onto
new vector stack

T Store contents of
ACO into current
mask word of

vector table

,1.

00 MSKO with
contents of ACO.
Enable interrupts

Figure 8-4 Vectored interrupt processing sequence

014-001371

Yes

Load zero-extended
device code and
channel number

into AC1

Load PC with
words 0 and 1

of OCT

Load PSR
with word 4

of OCT

Vector stack 0
overflow?

Yes

Transfer control to
stack fault handler

via location 148

Fetch and execute
first instruction
of vector stack

fault handler

,
Fetch and execute

instruction
pointed to by PC

Additional
interrupts can

now occur

INT-00128

8-13

I

Device Management

Intermediate-Level Interrupt Processing

The processor begins intermediate-level interrupt processing with the current segment
equal to segment O. To service an intermediate-level vector interrupt, the processor

1. Pushes a wide return block onto the vector stack.

2. Continues execution as described in the section, "Final Interrupt Processing."

Final Interrupt Processing

To complete the vector interrupt servicing (Figure 8-5), the processor

Vector table
OCT of

interrupting device

I I
o 31 10 o 31

1.

8-14

I I Current mask Interrupt routine address
I I
I I
I I OCT address - device 0 Interrupt mask

I I Vector !
I I table I I PSR J base
I I address I I
I I plus I I I I 1/0 I I I I channel I I I I number

XVCT IdiSPlacement
and

OCT address - device n ~
I I - device I I

code I I , ,

INT-00129

Figure 8-5 Sequence of actions to conclude interrupt service

Calculates the effective address from the displacement of the XVCT instruction. The
indirection chain, if any, is narrow.

There is one vector table for each 110 channel (0-6). The effective address
identifies word 0 of the vector table for the currently interrupting 110 channel. Each
table contains 64 doubleword entries (one entry for each device on the 110
channel). Figure 8-6 illustrates the vector table; Table 8-5 describes the contents of
each table.

Doubl ..
word
offset 0 15 16 24125 31

-1 Current device mask Reserv.d I Current 1/0 channel mask

o X OCT address for device 0

2 X OCT address for device 1

X OCT address for device 2

~ I : I OCT addre .. for device ~

3,1
INT-00130

Figure 8-6 Vector table

014-001371

Device Management

Table 8-5 Vector table contents

Contents Bits

Doubleword -1

Current device 0-15
mask

Reserved 16-24

Current 110 25-31
channel mask

Meaning

Contains the current device mask. The processor uses this value
(and the current 110 channel mask) to form a new device mask.

Reserved for future use and must be set to O.

Contains the current 110 channel mask. Each bit corresponds to
an 110 channel number. The processor uses this value (and the
current device mask) to form a new device mask.

Doublewords 0 through 638

X

OCT address
for device n

o
1-31

Unused and may be set to 0 or 1.

Contains 31-blt address to a device control table. Each address
points to the base of the table for the Interrupting device code (In

the range. 0 to 638),

2. Uses the interrupting device code number as a doubleword offset from the base of
the vector table to address an entry.

Bits 1-31 of the vectored entry contain the base address of a device control table
(DCT). The first five single words of the device control table are defined by the
XVCT instruction. These words must be set up as shown in Figure 8-7 (Table 8-6
describes the contents of these words). In addition, you can build the device control
table with more words to store device-dependent variables and constants for use by
the device interrupt routine.

3. Loads AC2 with the base address of the device control table.

NOTE: On machines capable of supporting multiple processors (CPUs) , if DCT
double word offset 0 bit 0 equals 1, proceed to step 8. This allows a
program to optionally not use the built-in masking functionality.

4. Constructs a doubleword and pushes it onto the vector stack.

Bits 0-7 of this doubleword contain all zeros. Bits 8-31 contain the current mask
values (doubleword -1) from the vector table (bits 8-15 contain the current device
mask and bits 16-31 contain the current 110 channel mask).

5. Loads ACO with the inclusive OR of the pushed double word and the corresponding
values from doubleword 1 of the device control table (110 channel mask and device
mask).

6. Stores ACO into the appropriate locations of the current mask (doubleword -1 of the
vector table). Bits 8-15 are stored in the current 110 channel mask; bits 16-31 are
stored in the current device mask.

7. Performs the function of a mask out (MSKO) instruction with ACO and enables
interrupts. (Bits 8-15 are placed into the 110 channel mask register; bits 16-31 are
placed into the device priority mask register.)

When a mask bit equals one, the processor disables interrupt recognition of devices
on the 110 channel that use that mask bit.

8. Loads the least significant bits of AC 1 with the interrupting 110 channel number and
device number, placing Os in bits 0-23.

9. Loads the program counter with the address of the device interrupt routine (bits
1-31 of double word 0 of the device control table).

10. Initializes the processor status register using the contents of the PSR value (bits 0-15
of doubleword 2) in the device control table.

014-001371 8-15

I

I

I

8-16

Doubleword
offse t

MS~ 0

1

2

Reserved

Device Management

Device Interrupt routine

I 1/0 1 channel mask Res Device mask

PSR Interrupt routine dependent

3 Interrupt routine dependent

--. ..

..

15116 311
INT-00131

Figure 8-7 Device control table (DCT)

Table 8-6 Device control table contents

Contents

Doubleword 0

MSK

Device Interrupt
routine

Doubleword 1

Reserved

110 channel
mask

Res

Device mask

Doubleword 2

Bits

0

1-31

0-6

7-14

Meaning

Enables masking function (applies only to multiple-processor
systems). If 0, use built-In masking function.

Contains 31-blt address of the interrupt routine for this device.
The processor places this value In the program counter.

Reserved for future use and must be set to O.

Contains the 110 channel mask. Each bit corresponds to an 110
channel number, for instance bit 14 equals 110 channel 7 (see the
110 channel mask register description In this chapter). A bit set to
1 masks interrupts on that 110 channel; a bit set to 0 enables
Interrupts from that channel.

15 Reserved for future use and must be set to O.

16-31 Contains 16-blt device mask specific to this device. The processor
uses this value when creating a new device mask.

PSR 0-15 Contains new processor status register value.

May be used for additional Information. Interrupt routine 16-31
dependent

Doublewords 3 through n

Interrupt routine 0-31 May be used for additional information.
dependent

11. Checks for a vector stack overflow.

If the processor does not detect a vector stack overflow, it continues with step 12.

If the processor detects a vector stack overflow, it transfers program control to the
vector stack fault handler. The processor executes the first instruction of the vector
stack fault handler before honoring further interrupts.

12. Executes the instruction addressed by the program counter.

The processor executes the first instruction of the interrupt handler before honoring
further interrupts.

NOTE: On machines capable of supporting multiple processors, the processor executes
the first instruction 0/ the interrupt or vector stack fault handler. Then, if bit
o 0/ the value in AC2 equals 0, the processor honors further interrupts.

The processor requires that the pointer chain - from the interrupt handler, to the vector
table, to the device control table, and finally to the interrupt routine - remain in
segment O.

014-001371

Device Management

Interrupt Service Routines
This section is provided for programmers who write their own interrupt service routines.
Interrupt service routines for device controllers supported by Data General Corporation's
operating systems are included in the operating system software. In addition, DOC
operating systems provide a system call that allows users to define non-DGC device
controllers or applications-specific peripheral devices for which the user has written
special device-driver routines. Refer to the respective operating system programmer's
manual for information on the system call.

The interrupt service routine (or handler) must save the state of the processor, identify
which device controller requires service, and service the device controller.

Saving the state of the processor involves saving

• the contents of any accumulators that will be used in the interrupt service routine,

• Carry. if necessary.

• the stack and frame pointers.

When the first instruction of the interrupt handler is a vector interrupt (XVCT)
instruction. the instruction saves the state of the processor. The previous section,
"Vectored Interrupt Processing," describes the XVCT instruction procedure.

There are various ways in which the interrupt handler can identify which device controller
requires service. The interrupt handler can

• perform a polling routine. This routine is generally a sequence of I/O Skip (SKP)
instructions that tests the states of the Done flags of all device controllers in use. With
this method, device controller priorities are determined by the order in which the tests
are performed. Note that the polling technique disregards the state of the device
controllers' interrupt disable flags. Device controllers that are masked out will be
recognized if their Done flags are 1, even though these device controllers could not
have caused the interrupt.

• issue an Interrupt Acknowledge (INTA) instruction. This instruction reads the device
code of the highest priority device controller requesting an interrupt into a specified
accumulator. Note that with this method the device controller interrupt disable flags
are significant. Device controllers that are masked out cannot respond to the INT A
instruction.

• issue a Programmed 110 (PIO) instruction with an accumulator containing an INTA
instruction. This procedure is identical to issuing an INTA instruction and is used in
systems with multiple I/O channels.

• issue a vector interrupt (XVCT) instruction. This instruction determines which device
controller requires service in the same way as the PIO instruction with an INTA
instruction. In addition, the device code is used to vector automatically to the correct
device controller service routine. The XVCT instruction also saves the state of the
processor and performs other operations necessary to the handling of priority
interrupts.

After determining which device controller requires service, the interrupt handler generally
transfers control to a device controller service routine. This routine performs the
information transfer to or from that device controller (if required) and either starts the
device controller on a new operation or idles the device controller if it has no more
operations pending.

014-001371 8-17

Device Management

When all service for the device controller has been completed, either the device
controller service routine or the main interrupt handler must perform the following
sequence to dismiss the interrupt:

• Signal the device controller to set its Done flag to 0 to dismiss the interrupt request
that was just honored. If this is not done, the un dismissed interrupt request will cause
another interrupt - this time incorrectly - as soon as the interrupt handler finishes
and attempts to return control to the interrupted program.

• Restore the pre-interrupt states of the accumulators, Carry, the stack pointer, and
address translation unit.

• Set ION to 1 to enable interrupts again.

• Return to the interrupted program.

The instruction that enables interrupts (usually INTEN) sets ION to 1, but the processor
does not allow the state of ION to change to 1 until the next instruction begins. Thus,
after the instruction that turns interrupts back on, the processor starts executing one more
instruction before another interrupt can be recognized. The interrupt (or device) handler
should issue a return instruction (to the interrupted program) immediately after enabling
interrupts. This prevents a waiting interrupt from overwriting the previously saved contents
of the interrupted program's program counter before it is used to return control to the
interrupted program.

Priority Interrupt

8-18

If ION remains 0 throughout the interrupt service routine, the routine cannot be
interrupted and there is only one level of device priority. All device controllers that have
not been disabled by the program are, for the most part, equally able to request
interrupts and receive interrupt service. Only when two or more device controllers are
requesting an interrupt at exactly the same time is a priority distinction made. When this
happens priority is determined either by the order in which the 110 Skip instructions are
given or, by an INTA or XVCT instruction, or by the order of the device controllers
along the 110 bus. The program interrupt facility hardware and instructions allow the
program to implement up to 16 interrupt priority levels.

In a system with device controllers of widely differing speeds and/or service requirements,
a more extensive priority structure may be necessary. In order to avoid losing data, a
program interrupt scheme must allow a slower device to interrupt a faster device. This
involves creating a multiple-level priority structure and assigning a slower device to a
higher priority level.

In general, a multiple-level priority interrupt scheme is used to allow higher-priority
device controllers to interrupt the service routines of lower-priority device controllers. A
hierarchy of priority levels can be established through program manipulation of the
interrupt disable flags of all device controllers in the system. When the interrupt request
from a device controller of a certain priority is honored, the interrupt handler sets up the
new priority level. The handler does this by establishing new values for the interrupt
disable flags of all device controllers according to an appropriate interrupt priority mask
used with the M S K 0 instruction.

Device controllers whose interrupt disable flags are set to 1 by the corresponding bit of
this priority mask are masked out (disabled) and are thereby regarded as being of lower
priority than the device controller being serviced. Before proceeding with the device
service routine, set ION to 1 so that the higher-priority device controllers may interrupt
the current service routine.

014-001371

Device Management

Interrupt Priority Mask

The bit of the priority mask that governs the interrupt disable flag for a given device
controller is assigned to that device controller by the hardware and cannot by changed by
the program. Although lower-speed devices are generally assigned to higher-numbered
mask bits, no implicit priority ordering is intended.

The manner in which these priority levels are ordered is completely up to the program.
By means of the priority mask, the program can establish any desired priority structure,
with one limitation: in the cases in which two or more device controllers are assigned to
the same bit of the priority mask, these device controllers are constrained to be at the
same priority level. When a device controller causes an interrupt, a decision must then be
made to place all other device controllers that share the same mask bit with the
interrupting device controller at a higher or lower priority level. If you mask out all
device controllers that share that priority mask bit. the interrupting device controller is
also masked out.

Priority Interrupt Handler

A priority interrupt handler differs from a single-level interrupt handler in several ways.
The handler must be re-entrant (no information is lost that the handler will need to
restore the state of the machine if a device controller service routine is interrupted by
another, higher-priority device controller). Two additional items of information that
should be saved (besides those saved by a single-level interrupt handler) are the return
address to the previously interrupted program and the current priority mask. A standard
method of storing return information for a re-entrant interrupt handler is through the use
of the stack.

The interrupt handler (including the device controller service routines) for a multi-level
priority scheme should perform the following tasks:

• Save the state of the processor (the contents of the accumulators, Carry, the return
address to the previously interrupted program, the stack parameters, and the current
priority mask).

• Identify the device controller that requested the interrupt.

• Transfer control to the service routine for that device controller.

• Establish the new priority mask with a MSKO instruction for that device controller's
service routine and store it in memory at the location reserved for the current priority
mask at that level of interrupt.

• Clear the current device interrupt.

• Enable interrupts (any device controller not masked out can now interrupt this service
routine) .

• Service the device controller that requested the interrupt.

• Disable interrupts in preparation for dismissal of this interrupt level, so that no
interrupts will occur during the transition to the next lower level.

• Restore the previously saved state of the processor, and reinstitute the pre-interrupt
priority mask with a MSKO instruction.

• Enable interrupts.

• Transfer control to the return address of the previously interrupted program that was

saved.

The XVCT instruction performs the necessary initial tasks for a priority interrupt handler.

014-001371 8-19

Device Management

Data ChannellBurst Multiplexor Channel

8-20

The d~'a channel (DCH) provides I/O communication for medium-speed devices and
synchronous communications. The burst multiplexor channel (B!\'1C) is a high-speed
communications pathway that transfers data directly between main memory and
high-speed peripherals. I/O-to-memory transfers for both DCH and BMC always bypass
the address translator. The DCH and BMC use a map to control the transfer of data,
with the BMC capable of operating in either mapped or unmapped mode. The ECLIPSE
MY/Family instructions load map slots and return DCH and BMC status information.

The DCH and BMC provide access to memory for individual device controllers on
demand. Devices that use either channel operate under a priority structure imposed on
them by their respective channel (generally set by either their physical slot location,
jumpers, or hardware switches on the device controller board). When one or more device
controller requests access, priority is given to the device controller on the

• DCH that is closest to the data channel bus controller on the I/O bus.

• BMC that is assigned highest bus priority by its hardware.

A data channel or burst multiplexor channel transfer is set up with a program that
specifies the

• 110 channel to be used for the transfer.

In a multiple-channel environment, the system uses the default 110 channel for
ECLIPSE 16-bit I/O instructions. The 110 Channel Select (PRTSEL) instruction can
be used to change the default 110 channel. In a single-channel environment. the
PRTSEL instruction performs no operation.

NOTE: On powerup or after a system reset, channel 0 is the default I/O channel.
An I/O reset does not change the de/ault.

• Direction of the transfer (read or write).

A read is a transfer of data from the device to the processor or physical memory
(data in); a write is a transfer from the processor or memory to the device (data
out).

• Address of the first word to transfer.

•

The device transmits a word address to a device map. A device map is a set of map
registers that control the addressing of memory for the data transfer.

Total number of words to transfer.

014-001371

Device Management

Transfer Sequence

The entire I/O transfer sequence is synchronized by clock signals generated by the
respective bus controller (BMC or DCH). For timing information. refer to the
machine-specific interface designer's guide. The actual transfer sequence is a two-way
communication between the bus controller and the device controller that proceeds as
follows.

When a device controller has a word or block of data ready for transfer to memory or
wants to receive data from memory. it issues a request to its respective bus controller. If
the device controller has bus priority and no other controllers are active on that channel.
the bus controller begins the cycle by acknowledging the device controller's request. The
acknowledgment signal causes the device controller to send back to the bus controller the

• starting memory address.

• direction of the transfer.

• intelligent device controllers may also send the type of transfer (data or map load).

• BMC device controllers may also specify the mode of addressing (physical or logical)
for the transfer.

Following the receipt of the address, the data itself is transferred in the specified
direction on the appropriate bus.

Each time a data transfer is completed, the interaction between the bus controller and
the device controller is over. The device controller carries out any tasks necessary to
complete the data transfer. such as transferring the data to the device itself for an output
operation.

As each word (or word of a burst) is transferred. the device controller increments its
memory address register to point to the next memory location. If the word/block counter
is used as a

• word counter. the device controller also increments the counter as each word (or
word of a burst) is transferred.

• block counter. the device controller increments the counter only when each block has
been transferred.

When the word/block counter becomes O. the device controller typically terminates
further transfers. sets its Busy flag to 0 and its Done flag to 1, and initiates a program
interrupt request.

If the counter has not yet overflowed, the device controller continues the operation.
issuing another request when it is ready for the next transfer.

014-001371 8-21

Device Management

Device Maps and Data Transfers

8-22

A memory allocation and protection (MAP) feature provides allocation of memory for
I/O access. The MAP allows physical memory to be allocated in 2-kilobyte blocks
(pages). During I/O operations, these pages are selected with a logical address that the
MAP translates into a physical address for accessing memory.

The DCH or BMC facility uses a device map in either unmapped or mapped mode.

• In unmapped mode, the processor passes the word address directly to memory, as a
physical address. You can use the load physical address (LPHY) instruction to
translate a logical address to a physical address and store it in an accumulator. (The
logical address must point to a current or higher number segment.) Then, send the
physical address to the device, using an 110 instruction.

• In mapped mode, the processor uses the device map and the word address to
translate the most significant bits of the logical address to a physical page number.
The processor then concatenates the physical page number to the 10 least significant
bits of the logical address to form the physical address.

Some 110 device controllers can load their own mapping information. Both the DCH and
BMC allow device controllers to load their own map locations (slots) - upstream map
loading. (Map slots for device controllers that do not include this provision are loaded by
program control.)

Upstream map loading is performed by the device controller requesting access to its
respective bus controller. When access is granted, the device controller specifies a map
load operation along with a map slot address and then proceeds with the transfer as
previously described. However. the data transferred to the respective channel bus
controller is placed into the I/O map that is contained within the respective bus controller
rather than being transferred into memory.

Table 8-7 lists the 110 instructions that affect a device map (a DCH map or BMC map).

NOTE: Loading a data channel map from a device while DCH mapping is disabled
(bit 14 of the liD channel definition register is set to 0) will produce
undefined results.

Table 8-7 110 instructions for DCHIBMC maps

In.tructlon

CIO. CIOI

IORST •

WLMP

LPHY

Operation

Returns BMC/DCH status or loads map registers from accumulators ('12 slot at
a time).

Sends a reset signal to all devices on all 110 channels to clear their states and
turns off DCH and BMC mapping (clears bits 0, 3, 4, 7, 8, 9, and 14 of the 110
channel definition register).

Loads BMC/DCH map slots from memory (as a block of doublewords).

Translates a logical address to a physical address, loading the result Into an
accumulator (for use in the unmapped mode) .

• ECLIPSE compatible instruction

The CIO, CIOI, and WLMP instructions initiate DCH/BMC map loads and return status
information when in mapped mode. Use the LPHY instruction for map loads in
unmapped mode. The DCH or BMC sets its Busy flag to 1 when a map load or read is
in progress. Neither channel has a Done flag, and the channels never cause program
interrupts.

014-001371

Device Management

Once you initialize the device, the transfer takes place in two phases.

1. The device driver initializes a device map with the starting word address of the block
or subblock to transfer, with the number of words to transfer, and with the direction
of the transfer.

2. The data channel or burst multiplexor channel facility transfers the data between the
device and memory.

For large transfers, repeat the two phases until the processor transfers the total number of
words.

DCH/BMC Maps

The map controlling a DCH or BMC transfer is a series of contiguous map slots (see
Figure 8-8). Each map slot contains a pair of map registers: an even-numbered register
and its corresponding odd-numbered register. The 110 map table can define up to 512
map slots for DCH operations and up to 1,024 map slots for BMC operations. Each map
slot provides the physical page starting memory address for a 2-Kbyte block of memory
as well as page access protection.

Note that either BMC or DCH mapping must be enabled before it can be performed.

• DCH mapping is enabled by setting the DCH map enable COME) bit of the 110
Channel Definition register to 1. When this bit is 0, all OCH addresses are unmapped.

• BMC mapping is enabled by a control signal supplied by the BMC device controller.
This signal is sent for each transfer sequence. Enabling or disabling BMC mapping is a
function of the device controller and is not governed by the program.

DCH Maps

ECLIPSE MV IFamily computer systems support 16 data channel maps, each of which
contains 32 map slots. With every data transfer the DCH sends a logical address to the
processor. The processor translates the logical address into a physical address using the
appropriate map slot for that address.

NOTE: Loading a data channel map from a device with DCH mapping disabled (bit
14 of the 110 channel definition register) will produce undefined results.

BMC Maps and Address Modes

The device controller performing the data transfer controls the BMC. No program control
or processor interaction is required, except when setting up the BMC's map table. The
BMC contains its own map and has two modes of addressing. Each device controller
sends a 20-bit address which the BMC map uses as a logical or physical address,
depending on the addressing mode.

The BMC uses its map to translate logical page numbers into physical ones. (On some I
machines that implement it, the Store State Pointer instruction defines the memory
locations of the BMC map.) The map table contains 1024 map registers, with each
odd-numbered register containing a physical page number and each even-numbered
register containing access data (see the following sections for the register contents). The
BMC uses the logical page number as an index into the map table, and the contents of
the selected map register become the high-order bits of the physical address.

014-001371 8-23

Device Management

The device controller specifies whether the BMC will operate in unmapped mode
(physical) or mapped mode (logical).

• In unmapped mode, the BMC receives a 20-bit address from the device controller
and uses this as the base physical memory address for the data transfer. As the
BMC transfers each data word between the device and memory, it increments the
base address, moving successive words to or from consecutive memory locations.

• In mapped mode, the BMC receives the 20-bit address from the device <.:ontroller
and uses the high-order lO bits of this logical address to form a logical page
number. The BMC map translates this logical page number into a lO-bit physical
page number. This page number combines with the lO low-order bits from the
controller's logical address, to form a 20-bit base physical address, which the BMC
uses to access memory.

Note that when the BMC performs a mapped transfer, it increments the base
address after it moves each data word. If the increment causes the 10 low-order bits
to overflow, a new map register is selected for subsequent address translation.
Depending on the contents of the map table, the BMC may not be able to transfer
successive words to or from consecutive pages in memory.

Loading Maps From an 1/0 Device

8-24

In addition to the normal configuring of the map by the processor, the map can be
upstream loaded from a device controller. In this operation, the device controller
performs two map operations that write

• for the DCH, two 16-bit words into a map slot: one to the high-order register and
one to the low-order register. These registers may be written to in any order or, if an
existing map is being modified. only one register need be loaded. Note that bit 15 of
the address word defines which register (high-order or low-order) receives the data
word.

• for the BMC, any number of 16-bit words into map slot registers. beginning with a
specified register. The device controller specifies the number of map slot registers to
write to and the beginning register address. Note that two words are required to load
each map slot; one for the high-order register and one for the low-order register. To
load a number of complete map slots, the beginning register address must be even and
an even number of 16-bit words must be specified.

014-001371

Device Management

DCH/BMC Registers
ECLIPSE MV/Family systems contain 512 DCH slots and 1024 BMC slots. Each 32-bit
slot consists of two 16-bit map registers. These map registers and the 110 channel
registers are numbered from 0 through 77778 , as depicted in Figure 8-8 and explained
in Table 8-8. The DCH and BMC map registers contain page number and access
information. The I/O channel registers contain status and control information which affect
DCH and BMC maps and data transfers. The figures and tables that follow describe the
formats for each of the registers.

0000

Slot numbers
8MC

0- 1777
slots

3777
4000

Slot n~_s {
2000 - 2777

5777

DCH

slots

6000 1/0 channel definition raglster

6001

Reserved

7677

7700 1/0 channel status ragl.tar

7701 I/O channel mask register

7702 CPU dedication control

7703
Reserved

7777
o 8its

I'

15

" " " " " "

Slot 0 - - high 0000

Slot 0 - - low 0001

Slot 1 - - high 0002

Slot 1 - - low 0003

INT-00132

Figure 8-8 DCHIBMC registers

Table 8-8 I/O registers

Registers
(Octal)

0000-3776
0001-3777
4000-5776
4001-5777
6000
6001-7677
7700
7701
7702
7703-7777

014-001371

Description

Even-numbered registers are the most significant half of BMC map slots 0-1777.
Odd-numbered registers are the least significant half of BMC map slots 0-1777.
Even-numbered registers are the most significant half of DCH map slots 0-777.
Odd-numbered registers are the least significant half of DCH map slots 0-777.
I/O channel definition register.
Reserved.
1/0 channel status register.
I/O channel mask register.
CPU dedication control.
Reserved.

8-25

I

I

Device Management

BMC/DCH Slot Register Formats

The processor translates the contents of the B~IC and DCH even address registers
(0000-37768 and 4000-57768 , respectively) as diagrammed below.

v I 0 I Reserved I Physical page number

o I 1 I 2 10 I 11 15

The processor translates the contents of the BMC and DCH odd address registers
(0000-37778 and 4001-57778 • respectively) as diagrammed below.

Bits Name

o v

o

2-10 Reserved

11-15 (odd) Physical Page
0-15 (even) Number

Physical page number

Contents or Function

Map validity bit
If 0, processor allows access to page.
If 1. processor denies access to page.

Data bit
If O. the channel transfers data to device or memory.
If 1, the channel transfers zeros to device or memory.

Reserved for use by the hardware. Write to with zeros; reading these
bits returns an undefined state.
Tho physical page number which the map uses when translating from
a logical to a physical address.

1/0 Channel Definition Register Format

8-26

The I/O channel definition register (60008) provides error and status information.

ICE I/O Channel DME

o 10 13 14 15

NOTE: Writing a 1 into bits 3, 4, 7, or 8 complements these bits. The IORST and
PRTRST instructions clear bits 3,. 4, 7, 8, 9, and 14.

Bits Name

0 ICE

1, 2 Reserved

3 BVE

4 DVE

5 DCH

6 BMC
7 BAP
8 BOP
9 DIS

10-13 1/0 channel

14 DME
15

Contents or Function

I/O channel error flag; If 1. an error has occurred on the I/O channel (0 only
when all other error bits are 0 - read-only bit).
Reserved for future use and returned as zero.

BMC validity error flag; If 1. BMC address validity protect error has
occurred.
DCH validity error flag; If 1, DCH address validity protect error has occurred.

DCH transfer flag; If 1. a DCH transaction Is In progress (read-only bit).
BMC transfer flag; If 1. a BMC transfer Is In progress (read-only bit).
BMC address error; If 1, the channel has detected an address parity error.
BMC data error: If 1. the channel has detected a data parity error.
Disable block transfer; If 1. disables BMC block transfers to and from I/O
memory port.
I/O channel number.
DCH mode; If 1. DCH mapping Is enabled.
Always set to 1.

014-001371

Device Management

liD Channel Status Register Format
The read-only I/O channel status register (77008) provides I/O channel status
information.

ERR

0

Bits Name

0 ERR

1-9 Reserved

10 OTO

11 MPE

12

13 1

Reserved INT

9 15

Contents or Function

Error. If 1, the 110 channel has detected an error. This bit Is set to 1 If
any error-indicating bit In the 10C status register is set to 1 .

Bits 1 through 9 are reserved for future use.

OCH time-out error. If 1, a OCH read-modlfy-wrlte operation time-out
error has occurred.

Map parity error. If 1, a map parity error has occurred.

Always set to 1, indicating extended DCH map slots and operations are
supported.
Always set to 1.

14 CMB Current state of the mask bit for this 110 channel (refer to the 1/0 channel
mask register format description).

15 tNT Interrupt pending; If 1, the channel Is attempting to Interrupt the CPU.

liD Channel Mask Register Format
The write-only I/O channel mask register (770 is) specifies a mask flag for each channel.
When an I/O channel mask flag is set to 1, the processor ignores all interrupt requests
from devices on that channel.

The Interrupt Acknowledge instruction (INT A) using an 110 channel number from 0
through 6 returns the device code of the highest priority interrupting device on that
channel, which has its Done flag set. \Vith channel 7, the INT A instruction returns the
device code of the highest priority interrupting aevice on the highest priority channel,
regardless of the state of the 110 channel mask register flags.

An I/O Channel Reset instruction (PRTRST) zeroes the mask bit for a single channel (0
through 6) or for all channels (7).

NOTE: A CIO read to the liD channel mask register produces undefined results.

The format of the I/O channel mask register is as diagrammed below.

Reserved 0

0 7 15

Bits Name Contents or Function

0-7
8
9
10
11
12
13
14
15

014-001371

Reserved Reserved for future use; should be set to O.
CO II 0 channel 0 mask *
C1 1/0 channel 1 mask *
C2 110 channel 2 mask *
C3 110 channel 3 mask *
C4 110 channel 4 mask *
C5 110 channel 5 mask *
C6 1/0 channel 6 mask *
0 Reserved and set to O.

If 1. prevents all devices connected to the indicated I/O channel from interrupting the
processor. A system reset sets CO to zero and C1 through C6 to ones.

8-27

I

8-28

Device Management

CPU Dedication Control Register Format

Each I/O channel contains a 16-bit register (77028), that controls which processor is to
receive I/O interrupts. This register is applicable only to multiple-processor configurations;
systems which suppon only a single processor ignore the contents of this register. This
read/write register is available only while a multiple-processor system is in dedicated
mode; an attempt to read or write this register while the system is in any mode other
than dedicated may cause unpredictable results (refer to the section, .. Multiple Central
Processing Units," for more information on operating modes).

The format of the CPU dedication control register is as diagrammed below.

I 0

Bits Name

0-14 Reserved
15 CPU

Reserved

Contents or Function

Reserved for future use: must be set to O.
Processor number to which all NOVA type Interrupts (except cross
interrupts) will be directed.
On a system reset. this number Is set to the value of the Inltla/ processor.
Upon execution of an IORST Instruction. this number Is set to the value of
the processor that Issued the IORST Instruction.

NOTE: The actual number of .. Reserved- and .. CPU· bits implemented is dependent on the
number of processors in the system.

014-001371

Device Management

Device Controllers
Device controllers for either the data channel or burst multiplexor channel are similar in
structure. From a programming point of view, the typical device controller operates as a
collection of data registers, control registers, and status flags through which the program
communicates. \Vith these registers and flags, the program can route data between the
computer and a device and monitor the operation of the device.

The distinction between registers and flags is generally one of information content:

• A flag contains a single bit of information.

• A register is made up of a number of bits (generally 16 or 32 bits).

• Fields are groups of bits iII a register that convey a single piece of information.

The following describes the basic components of a typical device controller. The
information is meant only to typify the workings of a device controller sir.ce each device
controller is tailored to the specific device it controls. Refer to the programmer's
reference for each device for a complete description of the device controller.

The information that the computer and a device controller transfer is generally one of
three types: status, control, or data. Status information (from the device controller to the
computer) informs the computer about the state of the peripherai. Control information
(from the computer to the device controller) tel1s the peripheral what to do. Data
originates from, or is sent to, the device during read or write operations.

Device Controller Registers

Registers in a device controller are classified according to the kind of information they
store: data, control, and status. This classification is only a general one, since a register
may contain more than one type of information. For instance, a register that serves as a
control register when loaded by a program may serve as a status register when read by a
program. Programmed 110 instructions designate the direction of an 110 transfer (input or
output) and which device controller register (A, B, or C) is to receive the data. For
example, the DOB instruction outputs data from an accumulator to the B register of a
device controller.

Device controllers generally include one or more of the following:

• status register and/or flags (normally the Busy and Done flags),

• control register,

• data registers (or buffers),

• word (or block) counter,

• memory address register,

• burst counter (BMC devices only).

Each device controller contains the program interrupt components and the interface logic
for their respective bus (B:v1C device controllers also contain the mterface logic to the
data channel). Other controller components, generally available to the program, are in
the form of additional control and status registers.

014-001371 8-29

Device Management

Status Flags and Registers

The two fundamental status flags in a device controller are the Busy and Done flags (see
the" Device Flags" section). Status registers (indicating the state of the device) consist
primarily of status flags but can also contain control parameters. The control parameters
contained in status registers are commonly those that change during the device operation.

Briefly, to place a device in operation, the program signals the device controller to set its
Busy flag to 1 and its Done flag to 0 (both flags remain in these states for the duration of
the operation, indicating that the device is in use). When the device completes its
operation, the device controller sets the Busy flag to 0 arId the Done flag to 1. The
setting of the Done flag to 1 can be used to trigger a program interrupt. Whether or not
a program interrupt occurs depends on the state of the interrupt facility. Regardless of the
current state of the interrupt facility, no interrupt can occur for that device until its Done
flag is set to 1. Therefore, setting the Done flag to 1 initiates a program interrupt request.
At this point, the program can either start the next operation by signaling the device
controller to set its Done flag to 0 and its Busy flag to 1; or the program can clear (idle)
the device by signaling the device controller to set both flags to O.

For a relatively simple device, the Busy and Done flags alone may furnish enough status
information to allow the program to service the device adequately. A more complex
device. however. will generally require additional status flags (generally a status register)
to specify its internal operating conditions more completely to the program. The
difference between these additional status flags and the Busy and Done flags is that the
Busy or Done flags may be tested directly with a single 110 instruction while any other
status flag requires that its value first be read into an accumulator from the device's status
register.

Status flags that indicate errors or malfunctions in the operation of a device are either
passive or active (according to their effect on the device operation when they are set). A
device controller sets

• a passive error flag in the course of the operation when the associated error occurs
with no immediate indication of this type of error given to the program. In this case,
the operation is allowed to continue to completion.

• an active type of error flag when the program attempts to start an operation or, during
an operation, attempts to perform a process that is not allowed. In this case, the
operation never begins and the Done flag is set to 1 immediately to notify the

program.

Control Registers

8-30

Control registers aJlow the program to supply the device controller with the information
necessary to operate the device, such as drive or transport numbers. data block sizes, and
command specifications. Control parameter~ (units of control information) typically allow
the program to select one of a number of device units in a subsystem, the operation to
perform. and the initial values for flags and counters in the device controller. The
program transfers control parameters to the device controller with an 110 instruction
specifying an accumulator containing the desired parameters.

014-001371

Device Management

Data Registers

Data registers (or data buffers) store data in the device controller as it passes between
the device and the computer. Data buffers must contain the data word (or the entire
number of data words for each BMC burst transfer) to be transferred before the actual
input transfer can begin. Likewise, the data buffer must be able to receive the data word
(or the entire number of data words for each BMC burst transfer) before an output
transfer can begin. To properly transfer data, device controllers generally have two sets of
data buffers: one for transferring data to or from the device and another for transferring
data from or to memory through the channel controller.

• Data buffers of devices that transfer data with programmed I/O are directly accessihle
to the program (data is transferred between the device controller register and an
accumulator by an 110 instruction).

• Devices that transfer data under DCH or BMC control transfer the data hetween the
device controller register and memory automatically (under the control of the
appropriate channel controller). Data buffers in device controllers that use the DCH
or BMC need not be - and usually are not - accessible to the processor through
programmed I/O.

Word/Block Counter

The program loads the wordlblock counter with the size of the data block to be
transferred. This value indicates either the number of words (word counter) or the
number of blocks of words (block counter) to be transferred. The counter value loaded
should be the two's complement of the block size. The device controller automatically
increments this counter by one for each word or block transferred. \\'hen the counter
overflows, the device controller terminates the transfer and initiates an interrupt to the
processor.

The size of the wordlblock counter varies from one device controller to another,
depending on the block size associated with the device. A typical word/block counter has
either 12 or 15 bits, allowing for up to 4,096 or 32,768, respectively, words or blocks of
words. Since the counter expects a negative value, the most significant hit of the
word/block register need not be a 1 (it is not the sign bit for the number). Thus, a word
count of 0 is valid; it specifies the largest possible word or block size. Table 8-9
illustrates the correspondence between some word or block counts and the program
values that must he loaded into a 12-bit or 15-bit counter.

Table 8-9 Word/block counter values

(Negative) 1S-Blt 12-Bit
Word Count Value Value
(Decimal) (Octal) (Octal)

-1 77777 7777
-2 77776 7776
-100 77634 7634
-2048 74000 4000
-4096 70000 0000
-8192 60000 Not applicable
-32767 00001 Not applicable
-32768 00000 Not applicable

014-001371 8-31

Device Management

Memory Address Register

The memory address register contains the memory address that the device controller will
use for the next data transfer. This address can specify either a physical or logical starting
memory address. The program loads the memory address register with the memory
address of the first word in the block to be transferred. The device controller
automatically increments thi~ counter for each word (or block) transferred. Therefore,
successive transfers are from consecutive memory locations.

:'\OTE: Because it is the logical memory address that is incremented during mapped
transfers. successi\'e physical memory locations may not be accessed. If
incrementing the logical address results in a carry from the page olfset
address into the logical page number, the logical page number is
incrt'mt?nted and the physical page number is taken from the next sequential
lo~ical page numher map slot. Therefore, in mapped transfers, successi\'e
data words may flat be accessed ac consecutil'e memory locations if the
transfer overlaps two logical pages.

BMC Burst Counter

B\1C de\ice controllers include a circuit that specifies the size (number of words) of the
burst transfer. The size is usually selected with hardware switches or jumpers and is
normally not accessible by the program. Data bursts may range from 1 through 256
words, but when more than one BMC controller is connected to the BMC, this value is
gt.:nerally 4, g, or 16 "ords.

Device Controller Programming

8-32

Thi~ section presents an overview of device controller programming. Routines for setting
up and mitiating 110 operations for device controllers supported by Data General
Corporation's operating systems are included in the operating system software. In
addnion, DOC operating systems provide a system call that allows users to define
non-DGC device controllers. Refer to the respective operating system programmer's
manual tor information on the system call.

Programmmg a device controller for a block transfer typically involves the following steps:

• Check the device status (usually by testing the Busy flag and/or reading a status word
and checking one or more error or ready bits).

II an error has occurred, ideally the program should take appropriate action.

I f no error has occurred but the device is not yet ready, the program should wait for
the device to complete its operation.

\\'hen the device is ready, the program should

• Specify where the data block is located on the device, usually by giving a device
address (such as, specifying a unit numher, channel number, sector number. or
\\ hatever may be requir~d by the device).

• Specify where the data block is to be located in memory by loading the memory
addre~s register with the memory address of the first word of the block. This may also
include setting up the appropriate channel's map.

014-001371

Device Management

• Load the word/block counter with the value to specify the number of 16-bit words
contained in the data block or the number of blocks to transfer.

• Specify the type of transfer and initiate the operation. If the device is capable of
several different operations, specifying the type of transfer usually involves loading a
control register in the device controller. The operation itself is usually initiated by a
programmed I/O instruction with the start (S) or I/O pulse (P) device flag controls.

NOTE: Because of the ECLIPSE MV/Family memory organization, an improvement
in system performance may be realized by starting BA1e data transfers on
quad doubleword memory address boundaries (three least significant word I
address bits = 000). Also, the word/block coum should be even and in
multiples of eight 16-bit words.

Assemble the necessary information in the accumulators and transfer that information to

the device controller using programmed I/O instructions.

Where intelligent device controllers are used. the commands to set up the tran~fer can be

assembled in a control block in memory. The control block is then transferred to the
device controller under either DCH or B~IC control on the respective bus (the program
must first supply a starting memory address for the control block and initiate the deVIce
controller with programmed I/O instructions). l\1ultiple device controller operations can
be performed without additional program intervention when a group of control blocks are
linked together.

Setting up and initiating the I/O operations are the major parts of programming either a
DCH or BMC block transfer. If any errors could have occurred during the operation. the
program should check for these errors when the operation is complete and take
appropriate action.

Data Transfer Latency
Systems that depend heavily on 110 transfers may overload the I/O facilities. This
overloading means that certain devices may lose data or have poor performance because
the system cannot respond to them in time.

Programmed 1/0

Nearly all devices operating under programmed lIO request processor service by setting
their Done flag to 1. The processor determines that the Done flag is 1 either by using the
program interrupt facility to respond to interrupt requests or repeatedly checking the
device with programmed I/O instructions (polling). Programmed 110 latency is the delay
between the time that a device requests service and the time that the processor carries
out that service.

When using a polling routine. programmed I/O latency has two components:

• The interval between the time the Done flag is set to 1 by the device and the time
the flag is checked by the processor. This component can be diminished by
performing frequent checks on the Done flag.

• The time required by the device service routine to transfer data to or from the
device and set the Done flag to 0 (by idling the device or instructing it to begin a
new operation). This component can be diminished with an efficient device service
routine.

014-001371 8-33

8-34

Device Management

\\'hen the processor interrupt facility is used, programmed 110 latency has at least four
components:

1. The time from the setting of the Done flag to 1 to either the end of the instruction
being executed by the processor or to the point where an interruptible instruction
can be interrupted.

2. The time the interrupt facility needs to store the program counter and enter the
interrupt handler (this component is a fixed time).

3. The time required by the interrupt handler to save the state of the machine, identify
the device, and transfer control to the service routine. (This component time is fixed
when using the XVCT instruction; otherwise this time is determined by the software
that handles the interrupt.)

4. The time required by the service routine to transfer data to or from the device and
set the Done flag to O. (The service routine software determines this time.)

Programmed I/O latency may be extended by three other time periods:

5. When processor operation is suspended because of other system activity. (This time
is dependent on the nature of the activity and the number of other activities in
progress.)

6. When the processor does not respond to the device's interrupt request because the
interrupt s}'stem is disabled (for example, during the servicing of an interrupt from
another device). (The service routine software determines this time.)

7. When the device's interrupt disable flag is set to 1 during the servicing of an
interrupt of a higher priority device. (The service routine software determines this
time.)

Components 4, 6, and 7 account for the bulk of programmed 110 latency.

Any device that must wait too long for program service from the processor may suffer
from degraded performance. The maximum programmed 110 latency for a device is the
longest allowable delay between the time that a device sets its Done flag to 1 and the
lime that the processor transfers data to or from that device and sets the Done flag to O.

When the actual programmed I/O latency for a device exceeds the maximum
programmed 110 latency, the specific effects depend on the device in question. (In the
worst case, data may be incorrectly read or written.) The maximum al10wable
programmed]/0 latenCies for each device may be found in the programming manual for
the device.

A device service routine must usually perform certain computations (updating pointers to
buffers, byte counters, etc.) but rarely are these computations so complex that they
cannot be accomplished within the constraints of the maximum allowable programmed
I/O latency. If several devices are competing for service at the same time, however, it
may be necessary to jeopardize the performance of some devices by deferring their
request for program service until the processor has serviced the higher priority requests.
For this reason, ECLIPSE MV/Family computers incorporate the priority interrupt
facility.

The object of the priority interrupt facility is to minimize the loss of data. Thus the
assignment of the software priority levels should be made with the following
considerations in mind:

•
•

•

The maximum allowable programmed 1/0 latency for each device.

The result of exceeding the maximum allowable programmed 110 latency for each
device (slowdown or data loss).

The cost of losing data.

014-001371

Device Management

Data Channel and Burst Multiplexor Channel
Time constraints may also be encountered when transferring data \'ia the data channel or
burst multiplexor channel. \Vhen a device needs service, it makes a request. There may
be more than one devIce. however. waiting to access the DCH or B~1C at anyone tlme.
Consequently, there may be a significant delay between the time when a device requests
access to the channel and the time when the transfer actually occurs. This latency also
includes the time required to complete transfers to or from any higher priority devices
that are also requesting channel access.

The length of DCH or BMC latency depends on the number of DCH or B\1C devices
operating in the system at a higher priority and the frequency of their use.

~10st devices operate under fixed time constraints. For devices such as disk drives,
diskette drives, or magnetic tape transports, if data is not read or written at the correct
instant. the controller will have to wait for another revolution of the disk. or in the case
of tape, reverse tape direction and perform the operation again. (Since B\IC device
controllers transfer data in bursts, the time constraints are related to the sil.e of the data
burst.)

Consequently, on input, such devices must be allowed to write a word (or burst of words)
into memory before the next word (or burst) is assemhled by the device controller. On
output. the device controller must be able to read the data from memory before the
surface is positioned under the write head. In either case. if the latency time is too long,
data cannot be properly transferred. Most devices operating under either DCH or BMC
control set an error flag (data late) when this happens, so that the service routine can
take appropriate action to recover from the error, if possible. ~10st magnetic media
device controllers also provide extra levels of data buffering or larger data buffers that
usually eliminate data late issues. \Vith these controllers, no data is moved to memory or
written to the device until the deVIce controller's buffers are full.

The maximum allowable latency period of a device is the longest time the device can wait
for a transfer. During system configuration, DCH or Bi\1C priorities should be assigned to

devices on the same basis as programmed 1/0 devices:

• The maximum allowahle latency period of the device. A device with a short
allowable latency should usually receive a hIgher priority than one with a long
allowable latency.

• The recovery time of a device (how long before it can repeat a transfer that failed
because of excessive latency) if the device can recover.

• The
NOTE:

cost of losing data from the device if the device cannot recover.

Device controllers that ha\'e the potential for using large portions of the data
channel bandwidth and effectively locking out controllers of lower priority
should be placed in lower priority positions. These controllers generally
include local area networks (LANs) , intelligent synchronous controllers
(lSCs) , network bus adapters (NBlls) , and graphics display controllers
(GDCs).

DCH latency might be improved by less frequent use of T/O instructions. In addition,
there is an upper limit on the number of DCH transfers per second that an 110 channel
can support. In cases where this limit is exceeded, one solution is to reduce the number
of devices using the data channel at the same time. Refer to the machine-specific
supplement for DCH and Bi\1C bandwidths.

BMC latency might be improved by decreasing the size of the data burst from the BMC
device controllers. Reducing the size of the data burst means a BMC device controller
must request B\IC bus controller service more often and the controller must buffer fewer
words before requesting service.

014-001371 8-35

Device Management

Integral Devices
The following sections of this chapter describe instructions for manipulation of these
integra! devices:

• central processing unit

• timing mechanisms (architectural clocks or programmable interval timer and
real-time clock) •

• primary asynchronous line input/output

• system control processor (or program)

• data channel and burst multiplexor channel

• universal power supply controller t

• power supply controller t

Either the architectural clocks or the programmable interval timer and real-time clock
may be loaded with a microcode load instruction (these timing devices are mutually
exclusive) .

t ECLIPSE MV/Family systems support either the universal power supply controller
(UPSC) or the power supply controller (PSC). Refer to the machine-specific
supplement to determine which power supply controller your system supports.

The machine-specific "Standard 110 Device Codes" appendix lists device codes, device
mnemonics. and priority mask bit assignments.

Central Processor
Device Code

Assembler Mnemonic

Priority Mask Bit

778

CPU

!\:one

The central processor (CPU) is considered an internal device with control and status flags
and is accessible using 110 instructions. The control flag is the interrupt on flag; the status
nag is the powerfail flag (refer to the section, "General 110 Instructions"). The I/O
instructions to the CPU may use either the standard 110 instruction form. or a special
CPU-specific form. Some CPU-specific instructions may be interpreted differently from
their standard 110 instruction equivalent. For information on ECLIPSE MV/Family
systems that may support more than one central processor, refer to the section, "Multiple
Central Processing Units."

Device Flag Control

8-36

Device flag commands to the CPU determine whether or not the processor can interrupt
the current program with a program interrupt request. When the interrupt on flag (IO;\J)

equals 1, the processor can interrupt the program (once the instruction following the
enable has begun). The processor cannot interrupt the program when the interrupt on
flag equals O. The CPU interrupt on flag is controlled by the device flag commands as
follows:

/=omitted

/=S

/=C

f=P

ION unchanged.

Sets ION to 1.

Sets ION to O.

Causes an unimplemented instruction interrupt.

014-001371

Device Management

The assembler interprets the 110 instructions for the CPC using either the stand3rd JIO
instruction format or a special 110 instruction format. For in~tance. the instruction that
initializes the devices and sets the priority mask bits to 0 (I/O Reset) uses the following
standard form:

DICff) ac,CPU

The same instruction can take the following special form:

IORST

The special assembler statement IORST is equivalent to the standard assemhler statement
DICe O,CPU

Both statements set ION and all 110 device Busy and Done flags to O. A device fla~

control (S, C, or P) cannot be appended to the special form of a CPt: instruction (such
as IORST).

NOTE: The assembler detects a fatal format error when a de\'ice flag is appended
to a special CPU instruction.

CPU Instructions

Table 8-10 lists the I/O instructions - both standard and special forms - that aff~cl the
CPU.

Table 8-10 I/O instructions for the CPU

Assembler Statement
Special Form Standard Form

Function

READS ac

PRTSEL

PRTRST

INTA ac

IORST

MSKO ac

HALT

INTDS

INTEN

SKPt CPU

DIA!JJ ac,CPU Returns the code of the device that the system booted from.

NIO CPU On a single 1/0 channel machine, performs no operation
On a multiple-I/O channel machine. sets the default 1/0
channel to contents of ACO. •

PIO 0,0 On a single 1/0 channel machine. performs no operation
On a multiple-I/O channel machine. initializes an I/O
subsystem. •

DIBI!J ac,CPU Returns the device code of the interrupting device.

DICI!J ac,CPU Initializes the I/O system (sets ION to 0, resets the I/O device
Busy and Done flags and all the priority mask bits to 0: clears
certain CPU registers and disables the DCH mapping and
address translator) .

DOB/f} ac,CPU Initializes or changes the priority mask.

DOCI!1 ac,CPU Stops the processor

NIOC CPU Disables interrupts (sets ION to 0).

NIOS CPU Enables interrupts (sets ION to 1)

SKPI CPU Tests the condition of ION or the powerfail flag. and when true.
skips the next word in the program.

• If a single 110 channel is implemented on a machint. C(lpah/c {If SlIr'porting mlllti/lle

lIO channels, these instructions execute as multiple-I/O channel inSTructions.

014-001371 8-37

Read Switches
READS ac

o

o

o
6

Function:

Parameters:

NOTE:

Device Management

o

6

boot device code -+ ac

unchanged -+ ION

None

4

o

7 8

READS ac = DIA ac,CPU

3

READS

7 7

11 12 13 15

F

The Read Switches instruction places the code of the device that the system booted from
into the specified accumulator.

Arguments

ac(16-31) After execution contains device code. (Refer to the machine-specific
supplement for a list of the device codes.)

Registers, Flags, and Stacks

ACO-AC3 Can be individually specified as ac; otherwise unused.

ION Unchanged

Carry Unchanged

Overflow Unaffected

PC PC + 1

PSR Unchanged

Stack Unchanged

Related Instructions

DIA The assembler recognizes READS ac to be equivalent to D IA ac, CPU.

Exceptions

None

8-38 014-001371

Device Management

liD Channel Select
PRTSEL

PRTSEL

o 7 4 o 7 7

o o o o
o 6 7 8 11 12 13 15

7 8 3 F

Function: Select or return default 1/0 channel

Parameters: ACO = 110 channel -+ unchanged

NOTE: If ACO initially = -1. then default 110 channel -+ ACO

PRTSEL performs no operation on those machines which implement a single 110
channel.

On multiple 110 channel machines (or those machines capable of multiple 110 channels).
the I/O Channel Select instruction specifies the default 110 channel that the ECLIPSE
16-bit compatible 110 instructions use.

If bits 16 through 31 of ACO initially contain -1. then PRTSEL places the current
default I/O channel into ACO.

PRTSEL unmasks interrupts on the selected channel and masks interrupts on all other
channels.

NOTE:

NOTE:

Arguments

None

Use this instruction carefully in multiple lIO channel machines.

In multiple-CPU systems, this instruction changes the default lIO channel on
all processors.

Registers. Flags, and Stacks

ACO(29-31)

AC1-AC3

Carry

Overflow

PC

PSR

Stack

014-001371

Before execution. contains I/O channel (bits 16 to 28 set to 0).

After execution. contents unchanged unless ACO initially contains all
ones in bits 16-31. then the processor returns the current default 110
channel number.

Unused

Unchanged

Unaffected

PC + 1

Unchanged

Unchanged

8-39

I

Device Management

Related Instructions

Table 8-11 shows the effect of using the I/O channel numbers with various I/O
instructions. The I/O Instruction column indicates the instruction executed (in both
standard and special formats). The remaining columns describe the action on the default
I/O channel. and as the result of executing the instruction using a Program I/O (PIO)
instruction to a specific channel. (PIO issues a programmed I/O command to an I/O
device on a specified I/O channel; refer to the Instruction Dictionary for a complete
description.) In the table. n equals a value in the range of 0 to the maximum number of
implemented I/O channels.

Table 8-11 CPU device instructions with I/O channels

I/O Default 1/0 PIO to 110 pro to I/O
Instruction Channel Channel n· Channel 7

READS ac Returns code of device Undefined Undefined
DIAl!! ac, CPU system booted from

INTA ac Return highest priority Return highest priority Return highest priority
DIBl!] aCt CPU device on default channel device on channel n device on highest priority

channel

IORST ac Perform 110 Reset Perform 110 Channel Perform 1/ 0 Channel
DIClfJ ac, CPU Instruction function on Reset (PRTRST) Reset (PRTRST) function

all channels function on channel n on all channels

MSKO ac Mask out devices on Mask out devices on Mask out devices on
DOBl!] ac,CPU def au It channel channel n all channels

HALT ac Halt the CPU Undefined Undefined
DOClfJ ac,CPU

INTDS Disable Interrupts Undefined Undefined
NIOC ac,CPU (ION=1)

INTEN Enable Interrupts Undefined Undefined
NIOS ac,CPU (ION=O)

SKPBN CPU Skip If ION = 1 Undefined Undefined

SKPBZ CPU Skip If ION = 0 Undefined Undefined

SKPDN CPU Skip If powerfail = 1 Undefined Undefined

SKPDZ CPU Skip If powerfail = 0 Undefined Undefined

Exceptions

On powerup or after a system reset, the default I/O channel becomes O.

An I/O reset does not change the default I/O channel.

For 110 instructions that specify a device code other than 778 (CPU):

• The ECLIPSE 16-bit compatible 110 instructions use the default I/O channel.

• The PIO instruction (with an ECLIPSE 16-bit compatible 110 instruction) uses
any implemented 110 channel.

In either case, results are undefined with any channel number other than those
implemented.

8-40 014-001371

Device Management

I/O Channel Reset
PRTRST ac

PRTRST

o

Be

o 2

8

Function:

Parameters:

2 7

o
6 7 8

5

I/O channel devices -+ clear states
o -+ priority mask
o -+ I/O channel mask bit

f -+ ION

D

ac = 110 channel #, ION control -+ unchanged

3

o
11 12 13 15

9

PRTRST performs no operation on those machines that implement a single 110 channel.

On multiple-II0 channel machines (or those capable of supporting multiple I/O
channels) t PRTRST sends a reset signal to all devices on the I/O channel specified in ac.
This signal instructs the devices to clear their states. In addition, the instruction sets the
addressed 110 channel's 16-bit priority mask and the mask bit for the addressed I/O
channel in the I/O channel mask register to O. The device control flag if) determines the
state of the interrupt on flag (ION). A PRTRST issued to an 110 channel resets only that
channel; issued to channel 7, it resets all implemented I/O channels.

Arguments
ac(16-31) Specifies I/O channel in bits 17-19 and ION control in bits 24 and 25

(bits 0-15 are undefined). Format is as follows:

o 110 channel #

16 17 19 31

Registers, Flags, and Stacks

ACO-AC3

Carry

ION

Overflow

PC

PSR

Stack

Can be individually specified as ac; otherwise unused.

Unchanged

After execution, set according to f.

Unaffected

PC + 1

Unchanged

Unchanged

Related Instructions
PIO

Exceptions

The assembler recognizes a PIO acs,acd instruction to be equivalent to
the PRTRST instruction if acs contains the specified bit pattern (see ac
description). In this case, acs specifies the accumulator containing the
I/O channel number, and acd is not used.

A Command I/O (CIO) instruction that reads the I/O channel mask register will have
undefined results.

Specifying an unimplemented 110 channel number produces undefined results.

014-001371 8-41

•
•

I

I

Device Management

Interrupt Acknowledge
INTA ac

INTA

o

o

o

Function:

Parameters:

NOTE:

6 3

device code -+ DC

unchanged -+ ION

None

6

INTA DC = DID DC,CPU

4 7 7

o

7 8 11 12 13 15

3 F

The Interrupt Acknowledge instruction places a device code into the specified
accumulator. The code indicates the device requesting an interrupt which has the highest
priority on the highest priority 110 channel.

Arguments

ac(26-31) After execution contains device code; bits 0-25 are set to O.

NOTE: If you execute an INTA instruction using the PIO instruct~on,
the 110 channel number is returned to ac(23-25).

Registers. Flags, and Stacks

ACO-AC3 Can be individually specified as ac; otherwise unused.

Carry Unchanged

ION Unchanged

Overflow Unaffected

PC PC + 1

PSR Unchanged

Stack Unchanged

Related Instructions

DIB The assembler recognizes DIBlfi ac,CPU to be equivalent to INTA ac.
The DIB form of the Interrupt Acknowledge instruction allows ION to
be manipulated.

Exceptions

8-42

Do not use the DIBP ac,CPU form for the Interrupt Acknowledge instruction as this bit
pattern is reserved for the V'CT instruction on some ECLIPSE 16-bit computers.

014-001371

1/0 Reset
IORST

o

o
o

Function:

Parameters:

NOTE:

6

6

Device Management

2

5

Clear all 1/0 devices
o -+ priority mask
0-+ PSR
o -+ FPSR(O-S)

0-+ ION

o

6

o -+ Busy and Done flags

off -+ address translator

None

IORST = Dice O,CPU

6

7 8

B

10RST

7 7

11 12 13 15

F

IORST sends a reset signal to all devices on all 110 channels to clear their states. The
instruction disables logical address translation and sets the following to 0: the 16-bit
priority mask, the PSR, bits 0 through 8 of the FPSR, and ION.

NOTES:

Arguments

None

In multiple-liD channel environments, IORST also sets the following to 0:
the 110 channel mask register flag for channel 0, and bits 0, 3, 4, 7, 8, 9,
and 14 of the 110 channel definition register (60008).

In multiple-CPU systems, IORST also clears all pending cross interrupts
and redirects all 10C traffic to the CPU that issued the IORST instruction.

Registers, Flags and Stacks

ACO-AC3 Unused

Carry Unchanged

ION Set to 0

O\'erflow Unaffected

PC PC + 1

PSR Set to 0

FPSR(0-8) Set to 0

Stack Unchanged

Related Instructions

DIC

Exceptions

None

014-001371

The assembler recognizes DICC O,CPU to be equivalent to IORST. The
DIClf} ac, CPU form of the 110 Reset instruction allows manipulation of
ION. When using the DIClf} ac, CPU form of the 110 Reset instruction,
an accumulator value must be coded to avoid assembly errors. During
execution, the processor ignores the accumulator field, and the contents
of the accumulator remain unchanged.

8-43

Mask Out
MSKO ac

o 6

o

o
6

Function:

Parameters:

NOTE:

Device Management

2

4

ac ~ priority mask

unchanged ~ ION

None

o

6

o

o o

7 8

MSKO ac = DOB ac,CPU

3

MSKO

7 7

" 12 13 15

F

The Mask Out instruction places the contents of the specified accumulator into the 16-bit
priority mask.

NOTE:

Arguments

ac(16-31)

Masking out a device when interrupts are enabled is not recommended.

Before execution, contains new priority mask. A 1 in a bit position
disables interrupt requests for devices that use that bit as a mask. (Refer
to the machine-specific" Standard 110 Device Codes" appendix for
device code mask bits.)

After execution, contents unchanged.

Registers, Flags, and Stacks

ACO-AC3 Can be individually specified as ac, otherwise unused.

Carry Unchanged

ION Unchanged

Overflow Unaffected

PC PC + 1

PSR Unchanged

Stack Unchanged

Related Instructions

DOB

Exceptions

None

8-44

The assembler recognizes DOB If] ac,CPU to be equivalent to MSKO

ac. The DOB form of the Mask Out instruction allows manipulation of

ION.

014-001371

Halt
HALT

o 6

o
o

6

Function:

Parameters:

NOTE:

Device Management

2

4

Stops the processor

unchanged -+ ION

None

o

6

HALT = DOC O,CPU

o o

7 8

7

HALT

7 7

11 12 13 15

F

The Halt instruction stops the processor.

Arguments

None

Registers, Flags, and Stacks

ACO-AC3 Unused

Carry Unchanged

ION Unchanged

Overflow Unaffected

PC PC + 1

PSR Unchanged

Stack Unchanged

Related Instructions

DOC

Exceptions

None

014-001371

The assembler recognizes DOC O,CPU to be equivalent to HALT. The
DOC form of Halt allows manipulation of ION. When using this form.
an accumulator must be coded to avoid assembly errors. During
execution. the processor ignores the accumulator field. and the contents
of the accumulator remain unchanged.

8-45

Interrupt Disable
INTDS

o 6

o
o

6

Function: 0-+ ION

Parameters: None

Device Management

o 2

o o
6 7 8

o B

NOTE: INTDS = NIOC CPU

INTDS

7 7

11 12 13 15

F

The Interrupt Disable instruction sets the interrupt on flag (ION) to 0, thus concealing a
device interrupt.

Arguments

None

Registers, Flags, and Stacks

ACO-AC3 Unused

Carry Unchanged

ION Set to 0

Overflow Unaffected

PC PC + 1

PSR Unchanged

Stack Unchanged

Related Instructions

NIO The assembler recognizes NIOC CPU to be equivalent to INTDS.

Exceptions

None

8-46 014-001371

Interrupt Enable
INTEN

o 6

o
o

6

Function: 1 -+ ION

Parameters: None

Device Management

o

o o o

6 7 8

o 7

NOTE: INTEN = NIOS CPU

INTEN

7 7

11 12 13 15

F

The Interrupt Enable instruction sets the interrupt on flag (ION) to 1, allowing the CPU
to recognize a device interrupt.

Arguments

None

Registers. ·Flags. and Stacks

ACO-AC3 Unused

Carry Unchanged

ION Set to 1

Overflow Unaffected

PC PC + 1

PSR Unchanged

Stack Unchanged

Related Instructions

NIO

Exceptions

The assembler recognizes NIOS CPU to be equivalent to INTEN.

If the Interrupt Enable instruction changes the state of ION. the CPU allows one more
instruction to execute before the first I/O interrupt can occur. If. however. the instruction
is interruptible. then interrupts can occur as soon as the instruction begins to execute.

014-001371 8-47

CPU Skip
SKPt CPU
(false test return)
(true test return)

o

o
o

Function:

6

6

Device Management

3 4

6 7 8

7 3

If t = true then skip

unchanged -+ ION and powerfail flags

Parameters: None

SKPtCPU

7 7

11 12 13 15

F

The CPU Skip instruction tests the specified flag. If the test condition is true, the
processor skips the next sequential word.

Arguments

Specifies the test. The following lists the possible test conditions.

Assembler
Code for t

BN
BZ
ON
OZ

Bits
8 9

o 0
o 1
, 0
, 1

Registers, Flags, and Stacks

ACO-AC3 Unused

Carry Unchanged

ION Unchanged

Overflow Unaffected

PC PC + 1 (false test)
PC + 2 (true test)

PSR Unchanged

Stack Unchanged

Related Instructions

None

Exceptions

None

8-48

CPU Flag and Test

ION = ,
ION = 0
Powerfall = ,
Powerfall = 0

014-001371

Device Management

Timing Mechanisms
ECLIPSE MV IFamily systems support either the Architectural Clocks or a combination of
the PIT and the RTC as timing devices; the two clock implementations are mutually
exclusive. Systems which provide the option of supporting either type of timing devices
expect a value indicating the type to be coded with the Load Control Store (LCS)
instruction (refer to the appendix, "Load Control Store Instruction"). Systems which
support only one or the other type of timing mechanism load the appropriate microcode.

An ECLIPSE MV IFamily system which does not support the Architectural Clocks
generates an unimplemented instruction trap if an Architectural Clock instruction is
issued.

Architectural Clocks
The Architectural Clocks include

• an alarm clock,

• a time-slice timer,

• a boot clock.

The alarm clock and the time-slice timer both represent a time value as a 64-bit integer
with the following clarifications:

• High-order bits (0 through 45) are supported on all ECLIPSE MV IFamily systems -
bit 31 ticks at a 1.6384 second interval, bit 45 ticks at a 100 microsecond interval.

• The number of low-order bits (46 through 63) clocked is machine-dependent - if
supported, bit 63 ticks at a frequency of 218(104) hertz.

The boot clock uses a separate time format - refer to the SCP section in this chapter.

After powerup (but before any Architectural Clock instructions have executed), or after
an 110 Reset (IORST) instruction, the clocks are in the following condition:

• Alarm clock

The time-of-day clock value is invalid (on powerup only; IORST leaves the
time-of-day clock unaffected).

The alarm portion of the alarm clock contains a value indicating a number of years
in the distant future.

• Time-slice timer

The contents of the time-slice timer and the time-slice timer fault handler address
are undefined.

Time-slice timer faults are disabled.

• Boot clock - The boot clock is always valid.

The following sections describe the Architectural Clocks and the instructions which affect
them.

014-001371 8-49

Device Management

Alarm Clock

8-50

The alarm clock is an I/O device which implements a time-of-day (TOD) clock with an
alarm for generating an I/O interrupt.

There is one alarm clock per system. The alarm clock counter has a roll-over of 222.99
years. Setting the date and time base is the responsibility of the operating system - the
processor only interprets the clock contents as a 64-bit integer and never performs any
conversions on this value.

The device code for the alarm clock is 148 , with a mask bit of 13. The alarm clock does
not support Busy or Done flags. Communication between the processor and the alarm
clock is with special alarm clock instructions. Note that the standard I/O instructions
(DIA, DIB, DIC, DOA, DOB, DOC, PIO, SKPt, and NIO) to the alarm clock device
code produce undefined results. Table 8-12 lists the instructions that affect the alarm
clock.

Table 8-12 Instructions affecting the alarm clock

Assembler Statement Function

R TO 0 Returns the current time of day.
STO 0 Sets the time of day.
ALARM Sets the alarm value.
I NT A Returns the device code for the alarm clock.
MSKO Masks out the alarm clock.
10 RST Sets the alarm to a value In the distant future; does not affect the

tlme-of-day portion of the clock.
HALT Stops the processor, but does not affect on the alarm clock's tlme-of-day

function.

The time-of-day counter is set with the STOD instruction and read with the RTOD
instruction; the alarm value can be set with the ALARM instruction. When the STOD
instruction executes, the TaD counter is loaded with a 64-bit value which represents the
current time and date. The TaD counter counts up from this value, keeping the current
time without any additional software support.

Two successive RTOD instructions will return two different time-of-day values. If the
time-of-day counter ever reaches its highest value (-1), it is invalid. An invalid condition
may occur when the counter counts up to or through the highest value, or when an
STOD instruction. containing the highest value. executes. The highest value is relative to
the actual number of bits the processor supports. For instance, if your system supports 50
out of 64 bits. then the processor treats all ones in the 50 bits as the highest value.

In the event of an invalid time-of-day, the RTOD instruction will return the highest
time. Any successive RTOD instructions will continue to return this value until the
time-of-day is validated by issuing an STOD instruction (counting begins after execution
of this STOD instruction). At powerup, the time-oC-day value is invalid; an STOD
instruction must be executed to set the time-of-day to a valid value.

NOTE: The time-slice Junctions will still operate correctly even with an invalid
time-oj-day value.

To set the alarm, issue an ALARM instruction using a value in time-of-day units. When
the TOO counter reaches the value specified by the ALARM instruction. an alarm
interrupt occurs for device code 148 , The alarm is disabled when the time-of-day is set.
I f you issue an ALARM instruction with a value less than or equal to the current value
of the TOO counter, an interrupt is immediately generated. If the time-of-day is invalid,
then the ALARM value is considered to be less than or equal to the TOO value. and an
interrupt is immediately generated.

014-001371

Device Management

Read Time of Day RTOD
RTOD

4

o

c
Function:

Parameters:

3 4

o

6 7 8

7

TOO -+ ACO&ACI

ACO = ? -+ high-order TOO value

ACl = ? -+ low-order TOO value

7

o

11 12 13 15

3 9

RTOD atomically reads the counter portion of the alarm clock, placing the resulting
time-oC-day value into ACO and ACt. (An RTOD instruction returns a time-of-day
value greater than or equal to the value set by the last STOD instruction.)

Arguments

None

Registers, Flags, and Stacks

ACO After execution, contains high-order 32 bits of time-of-day value.

ACt After execution, contains low-order 32 bits of time-of-day value.

AC2, AC3 Unused

Carry Unchanged

Overflow Unaffected

PC PC + 1

PSR Unchanged

Stack Unchanged

Related Instructions

STOD Set Time oC Day

Exceptions

If the time-oC-day counter is invalid. RTOD returns aU ones.

Two successive RTOD instructions will return two different values. This also applies to
two separate processors in a multiple-processor system attempting to read the TOD
counter at the same time.

An RTOD instruction always returns a time value equal to or greater than the time value
specified by the most recent STOD instruction. This applies even when the STOn
instruction specifies nonzero data in unsupported low-order bits.

014-001371 8-51

Device Management

Set Time of Day STOD
STOn

Privileged Instruction

4 3 4 5

0 0 0

0 6 7 8 11 12 13 15

C 7 2 9

0 0 0 0 3

0 0 0 0 0 0 0

0 6 7 8 11 12 13 15

0 0 0 B

Function: Time-of-day value ~ TOD clock

Parameters: ACO = high-order TOO value ~ unchanged
ACt = low-order TOO value ~ unchanged

STon clears any pending alarm clock interrupts, disabling the alarm portion of the alarm
clock (no device code 148 interrupts can be posted until a subsequent ALARM
instruction executes). The instruction places the time-of-day value, contained in ACO
and ACl, into the counter portion of the clock. STOn then enables the counter, leaving
the alarm function disabled.

Arguments

None

Registers, Flags, and Stacks

ACO

AC1

AC2, AC3

Carry

Overflow

PC

PSR

Stack

Before execution, contains high-order 32 bits of time-of-day value.

After execution, contents unchanged.

Before execution, contains low-order 32 bits of time-of-day value.

After execution, contents unchanged.

Unused

Unchanged

Unaffected

PC + 2

Unchanged

Unchanged

Related Instructions

Load immediate Use these instructions to place values into ACO and ACl.

RTOD

ALARM

Read Time of Day

Set Alarm

Exceptions

8-52

If the time-of-day counter is set to its highest value (all ones), or ever counts to its
highest value, the TOO becomes invalid. When the TOO is invalid, the RTOD instruction
will continue to return all ones until another STOD is issued.

014-001371

Device Management

Set Alarm ALARM
Privileged Instruction

ALARM

4 3 4 5

0 0 0

0 6 7 8 11 12 13 15

C 7 2 9

0 0 0 0 4

0 0 0 0 0 0 0

0 6 7 8 11 12 13 15

0 0 0 C

Function: TOO ~ alarm

Parameters: ACO = high-order TOO value ~ unchanged
ACt = low-order TOO value ~ unchanged

ALARM atomically places the time-of-day value, contained in ACO and AC1, into the
alarm portion of the alarm clock. Issuing an ALARM instruction clears a pending alarm
interrupt.

When the time-of-day counter becomes greater than or equal to the alarm value, the
alarm clock generates an interrupt for device code 148 , If interrupts are disabled (ION
equals 0), the interrupt will be held until interrupts are again enabled.

Arguments

None

Registers, Flags, and Stacks

ACO

ACl

AC2, AC3

Carry

Overflow

PC

PSR

Stack

Before execution, contains high-order 32 bits of time-of-day value.

After execution, contents unchanged.

Before execution, contains low-order 32 bits of time-of-day value.

After execution, contents unchanged.

Unused

Unchanged

Unaffected

PC + 2

Unchanged

Unchanged

Related Instructions
Load immediate Use these instructions to place values into ACO and ACl.

RTOD

STon

Exceptions

Read Time of Day

Set Time of Day

If an alarm value that is less than or equal to the current time-of-day value is loaded
into the alarm, the alarm clock immediately posts an interrupt.

014-001371 8-53

Device Management

Time-Slice Timer

8-54

The time-slice til :- is a count-down timer that causes a time-·:lice fault to occur when a
specified time-sll expires. Each processor (in a multiple-prol. 5sor system) contains one
time-slice timer; all timer functions (read time-slice, set time-slice, set fault handler)
apply only to the timer associated with that particular processor. The timer interface is in
terms of time-of-day units. Table 8-13 lists the instructions that affect the time-slice
timer.

Table 8-13 Instructions affecting the time-slice timer

Assembler Statement Function

R TS Returns the current contents of the time-slice timer.
STS Sets a time-slice.
STSFH Identifies routine to handle future time-slice faults.
10 RS T Disables the time-slice timer.

When an STS instruction executes, the time-slice timer is loaded with a 64-bit value that
represents the processor's time slice. The timer counts down from this value and
generates a time-slice expiration fault when the timer reaches O. The time-slice timer
continues to count down below 0 after the time-slice fault has been initiated. In order for
a time-slice fault to occur, a time-slice fault handler must have been specified using the
STSFH instruction.

When a time-slice fault is initiated, the processor clears the time-slice fault and disables
future time-slice faults. (Though the timer continues to count down below 0, no further
time-slice faults are generated on this processor until a subsequent STS instruction is
issued.)

The actions that then occur depend upon whether or not a JPLOAD (or JPFLOAD)
instruction has been executed on the processor. Note that both JPLOAD and JPFLOAD
instructions apply only to multiple-processor systems (single-processor systems assume
that neither instruction is issued). If either of these instructions:

• has been issued - the processor performs a JPFLUSH instruction in the current
ring of execution, crosses to ring 0, and jumps to the time-slice fault handler.

• has not been issued - the processor crosses to ring 0, pushes a wide return block
onto the ring 0 wide stack, and jumps to the time-slice fault handler. Use a
WPOPB instruction to return from the fault handler.

NOTE: On a time-slice fault. the contents of the accumulators are undefined. (The
old accumulator values are saved in the return block on the stack.)

The first instruction of the time-slice fault handler executes before interrupts are again
acknowledged (the state of ION is unaffected when a time-slice fault is initiated).

Since the time-slice timer is not an 110 device, neither the 110 channel mask bit nor the
MSKO instruction will mask a time-slice fault. The interrupt on flag (ION) will mask a
time-slice fault (in multiple-processor systems, ION masks an interrupt only for its
associated processor). If a time-slice timer counts down to 0 while ION is 0, the pending
time-slice fault will be held until JON is set to 1.

014-001371

Device Management

Read Time-Slice

RTS

4

o

c
o o

o o
o

o
Function:

Parameters:

Privileged Instruction

3 4

o

6 7 8

7

o o

o o o

6 7 8

o
Time-slice timer value -+ ACO&ACI

ACO = ? -+ high-order time-slice value

ACt = ? -+ low-order time-slice value

2

o

5

0 0

11 12 13 15

9

7

0

11 12 13 15

F

RTS loads the current contents of the time-slice timer into ACO and AC 1. (This
instruction has no effect on the time-slice timer.)

Arguments

None

Registers, Flags, and Stacks

RTS

ACO After execution, contains high-order 32 bits of current time-slice timer
value.

AC1 After execution, contains low-order 32 bits of current time-slice timer
value.

AC2, AC3 Unused

Carry Unchanged

Overflow Unaffected

PC PC + 2

PSR Unchanged

Stack Unchanged

Related Instructions

STS Set Time-Slice

Exceptions

None

014-001371 8-55

Device Management

Set Time-Slice STS
STS

4

0

C

0 0

0 0

0

0

Function:

Parameters:

Privileged Instruction

3 4

o

6 7 B

7 2

o o

o o o

6 7 8

o o
Time-slice value -+ timer

ACO = high-order time-slice value -+ unchanged

ACt = low-order time-slice value -+ unchanged

5

0 0

11 12 13 15

9

5

0

11 12 13 15

D

STS clears any pending time-slice expiration faults for this processor. The instruction
then loads the time-slice timer value, contained in ACO and AC 1, into the time-slice
timer. STS enables time-slice timer expiration faults.

When the residual time-slice decrements to 0, a time-slice fault occurs on the associated
processor. If interrupts are disabled (ION equals 0), the fault will be held until interrupts
are again enabled. Once the fault is initiated, execution of the first instruction in the fault
handler is guaranteed.

The time-slice timer continues to decrement until a new value is loaded with another
STS instruction.

Arguments

None

Registers, Flags, and Stacks

ACO

ACl

AC2, AC3

Carry

Overflow

PC

PSR

Stack

8-56

Before execution, contains high-order 32 bits of desired time-slice
value.

After execution, contents unchanged.

Before execution, contains low-order 32 bits of desired time-slice value.

After execution, contents unchanged.

Unused

Unchanged

Unaffected

PC + 2

Unchanged

Unchanged

014-001371

Device Management

Related Instructions

Load immediate Use these instructions to place values into ACO and AC 1.

RTS Read Time-Slice

STSFH Set Time-Slice Fault Handler

Exceptions

A time-slice expiration fault can not occur until the time-slice fault handler address has
been specified by the Set Time-Slice Fault Handler instruction.

If 0 is loaded into the time-slice timer, the time-slice value will continue to be less than
or equal to 0, and no time-slice expiration fault will occur for at least 222 years.

If the STS instruction loads a very small value into the time-slice timer, a time-slice fault
may be generated immediately. Thus, execution of the instruction following the STS
instruction is not guaranteed.

014-001371 8-57

Device Management

Set Time-Slice Fault Handler STSFH
STSFH

Privileged Instruction

4 3 4 5

o 0 0

o 6 7 8 " 12 13 15

c 7 2 9

o o o o 6

o o o o o 0 o

o 6 7 8 " 12 13 15

o o o E

Function: Time-slice handler address -+ timer

Parameters: ACO = fault handler address -+ unchanged

Note: Address must be in logical ring O.

STSFH identifies the starting address (in segment 0) of the time-slice fault handler. The
processor saves this address internally and refers to it when a time-slice fault is initiated.

Arguments

None

Registers, Flags, and Stacks

ACO

ACI-AC3

Carry

Overflow

PC

PSR

Stack

Before execution, contains logical ring 0 address of time-slice fault
handler.

After execution, contents unchanged.

Unused

Unchanged

Unaffected

PC + 2

Unchanged

Unchanged

Related Instructions

Load effective address
Use these instructions to place a value into ACO.

Exceptions

8-58

The STSFH instruction must be issued before a time-slice expiration fault can occur. If
an STS instruction attempts to force a time-slice fault before the handler address has
been defined. the processor ignores the fault and clears the time-slice fault condition.

If the address in ACO is other than a ring 0 address. a protection fault occurs. and AC 1
contains error code 7 (outward ring call).

014-001371

Device Management

Boot Clock

Each ECLIPSE rv1V IFamily system contains one boot clock. Access to the boot clock is I
provided by the SCP interface on device code 458 , The boot clock can be read after
powerup to get the initial time of day. The boot clock parameters are machine
dependent, but in general, the clock

• Is powered by a battery during a power interruption.

• Provides at least I-second resolution (even when on battery).

• Returns at least hours, minutes, seconds, day, date, and year.

Refer to the SCP section for further information on boot clock support.

014-001371 8-59

Device Management

Programmable Interval Ttmer
Device Code

Assembler Mnemonic

Priority Mask Bit

438

PIT

6 or 11 (See machine-specific appendix,
"Standard 110 Device Codes")

The programmable interval timer (PIT) is a cpe -independent time base that is set to
initiate program interrupts at fixed intervals ranging from 100 microseconds to 6.5536
seconds in increments of 100 microseconds. The PIT can also be sampled with 110
instructions at any point in its cycle to determine the time that elapses before the next
interrupt. Use the PIT in multiprogram operating systems to allocate CPU time to
different programs on a time-slice basis.

The PIT consists of a 16-bit initial count register and a 16-bit counter. During operation,
the processor loads the PIT counter with the contents of the initial count register. The
processor then increments the counter at lOa-microsecond intervals until the count goes
from 1777778 to O. If interrupts are enabled, the PIT then initiates a program interrupt
request. The value of the PIT counter is undefined after it reaches a and initiates an
interrupt. (Depending on the machine, the PIT counter either is reset to the contents of
the initial count register or continues counting from 0.) A Busy flag and a Done flag
control the operation of the device.

To obtain a particular time interval between program interrupt requests, load the two's
complement of the number of lOa-microsecond intervals between interrupt requests into
the initial count register. \Vhen you first start the PIT, the processor immediately loads
the count into the counter. At the first lOa-microsecond pulse, the processor again loads
the count into the counter. This is done to synchronize the program and the counter.

Device Flag Control

Device flag commands to the PIT start or stop the counting cycle for program interrupts.

/=omitted

/=s

/=C

/=p

Busy and Done flags unchanged.

Sets the Busy flag to 1 and the Done and interrupt request flags to 0; begins
the counting cycle.

Sets the Busy and Done flags and the interrupt request flag to 0; stops the
counting cycle.

No effect.

PIT Instructions

8-60

Table 8-14 lists the 110 instructions that affect the PIT device.

Table 8-14 Instructions affecting the PIT

Assembler Statement Function

Places the PIT counter value Into the accumulator. DIAl!] ac, PIT

DOAI!] ac,PIT

IORST

Loads the Initial count register with the value In the accumulator.
Stops the counting cycle and sets the Busy and Done flags. the interrupt
mask bit. and the counter to O.

014-001371

Device Management

Read Count
DIAUl ac,PIT

0 6 0 4 4 3

0 0 0 0 0

0 6 7 8 11 12 13 15

6 2 3

Function: PIT counter ~ ac

If] ~ Busy and Done flags

Parameters: ac = ? ~ PIT Counter

The Read Count instruction places the value of the PIT counter in the specified
accumulator.

Arguments

ac(16-31)

Ifl

After execution contains the current value of the PIT counter within
one count cycle (in two's complement)~ bits 0-15 are undefined.

Specify from S, C, and P for desired Busy and Done flag function.

Register, Flags, and Stacks

ACO-AC3 Can be individually specified as ac; otherwise unused.

Carry Unchanged

Overflow Unaffected

PC PC + 1

PSR Unchanged

Stack Unchanged

Related Instructions

DOA[f] ac,PIT Specify Initial Count

Exceptions

None

014-001371 8-61

Device Management

Specify Initial Count
DOAif} aC,PIT

o 6

o

o

o

o 6 7 8

6

Function:

2

ac -+ PIT Initial Count register

[f] -+ Busy and Done flags

2

4

o o o

11 12 13

Parameters: ac = Initial count (two's complement) -+ unchanged

3

15

3

The Specify Initial Count instruction loads the contents of the specified accumulator into
the initial count register of the PIT.

Arguments

ac(16-31)

lf1

Before execution, contains the signed 16-bit integer specifying the
number of lOO-microsecond intervals between interrupts.

After execution, contents unchanged.

Specify from S, C, and P for desired Busy and Done flag function.

Registers, Flags, and Stacks

ACO-AC3 Can be individually specified as ac; otherwise unused.

Carry Unchanged

Overflow Unaffected

PC PC + 1

PSR Unchanged

Stack Unchanged

Related Instructions

D IA (f] ac, PIT Read Count

Exceptions

None

8-62 014-001371

Device Management

Real-Time Clock

Device Code 148

Assembler Mnemonic RTC

Priority Mask Bit 13

The real-time clock (RTC) generates low-frequency 1/0 interrupts for performing time
calculations independent of CPU timing. The interrupts can be used as a time base in
programs that require it. The frequency of the clock is program-selectable to 10 Hz,
ac-line frequency, 100 Hz, or 1000 Hz. The Busy and Done flags control the operation
of the device.

Once the RTC starts, the first program interrupt request can occur at any time up to the
selected clock period. After the first interrupt occurs, succeeding interrupts occur at the
clock frequency, provided that the program always sets the Busy flag to 1 before the
clock period expires.

After powerup or when an 1/0 Reset (IORST) instruction is issued, the processor sets the
clock to the ac-line frequency. After powerup. the line frequency pulses are available
immediately. but five seconds must elapse before a steady pulse train is available from the
clock for other frequencies.

Device Flag Control

Device flag commands to the RTC enable or disable RTC interrupts.

/=omitted

/=S

/=c

/=p

Busy and Done flags unchanged.

Sets the Busy flag to 1 and the Done and interrupt request flags to 0;
enables RTC interrupts.

Sets the Busy. Done. and interrupt request flags to 0; disables RTC
interrupts.

No effect.

RTC Instructions

Table 8-15 lists the I/O instructions that affect the RTC device.

Table 8-15 Instructions affecting the RTC

Assembler Statement Function

DOA/fJ ac, RTC
IORST

Loads the RTC with a clock frequency value from an accumulator.
Disables RTC interrupts and selects the ac-line frequency: also, sets the
Busy and Done flags and the priority mask bit to O.

014-001371 8-63

Select RTC Frequency
DOA!f] ac,RTC

Device Management

o 6 0

o o 0

o 6 7 8 l' 12 13

6 2 o

Function: ac -+ clock frequency

Parameters: ac = frequency value -+ unchanged

4

o

15

c

The Select RTC Frequency instruction sets the clock frequency according to the contents
of the specified accumulator.

Arguments

ac(30-31)

If]

Before execution. contains clock frequency (bits 0 through 29 should be
set to 0). The clock frequency values are:

Blta 30, 31

00
01
10
11

Frequency Selected

ac-lIne
10 Hz

100 Hz

1000 Hz

After execution, contents unchanged.

Specify from S. C, and P for desired Busy and Done flag function.

Registers. Flags. and Stacks

ACO-AC3 Can be individually specified as ac; otherwise unused.

Carry Unchanged

Overflow Unaffected

PC PC + 1

PSR Unchanged

Stack Unchanged

Related Instructions

None

Exceptions

None

8-64 014-001371

Device Management

Primary Asynchronous Line Input/Output
INPUT OUTPUT

Device Code Device Code

Assembler Mnemonic

108

TTl

14

Assembler Mnemonic

lIe

TTO

Priority ~1ask Bit Priority ~lask Bit 15

The primary asynchronous interface (lTY) is the communication link between the
processor and the master terminal. This interface supports asynchronous communication
at selected rates from 110 to 4800 baud in 7 -bit codes with program-generated parity or
8-bit codes with no parity (depending on the machine, the baud range may be greater).
You can use one or two stop bits with either format.

The asynchronous interface consists of separate input (TTl) and output (TTO) devices.
As the TTl and TIO devices can generate program interrupts independently, each has its
own device code and is controlled by its own set of Busy and Done flags.

The TTY interface is set up to transmit and receive 8-bit characters without parity
checking. A process can send or receive 7-bit characters with even, odd, or mark parity
by using the high-order bit in the 8-bit character (accumulator bit number 24) as a
parity bit. On transmission, the program that drives the interface calculates and inserts
the correct parity bit. On reception, the program calculates and checks parity on the
received character.

There are timing constraints on the receive portion of the interface. As the TIl device
receives each character, it places the character in an input buffer and sets the Done flag
to 1 and the Busy flag to O. If the program controlling the receiver does not transfer the
character before receiving the next character, the contents of the input buffer are
overwritten and the previous character is lost. Typically, the intercharacter time at 110
baud is 100 milliseconds; at 4800 baud, the intercharacter time is approximately 2.08
milliseconds.

Device Flags

Device flag commands to the TTY interface determine the flag settings and the

transmission of an output character.

/=omitted

f=S

/=c
/=p

014-001371

Busy and Done flags unchanged.

Sets the Busy flag to 1 and the Done flag to O. When the S flag is used
with the TIO device, the interface transfers the character from the output
buffer to the shifter and begins transmission of the character. The interface
sets the Busy flag to 0 and the Done flag to 1 when the character passes
from the output buffer to the shifter.

Sets the Busy, Done, and interrupt request flags to O.

No effect.

8-65

Device Management

TTI/TTO Instructions

Table 8-16 lists the I/O instrucuons that affect the TTY interface.

Table 8-16 110 instructions for TTl and TTO

Assembler Statement Function

DIA[fJ ac, TTl

DOA!fJ ac, TTO

IORST

Reads a character from the TTl device into an accumulator.

Sends a character from an accumulator to the TTO device.

Sets the Busy and Done flags and the priority mask bits to O.

Read Character Buffer
DIAl!} aC,1TI

0 6 0 4 o

0 0 o o o

0 6 7 8 11 12 13 15

6 o 8

Function: TTl (buffer) -+ DC

Parameters: DC = ? -+ character

The Read Character Buffer instruction places the contents of the controller's input buffer
in the specified accumulator.

Arguments
ac(24-31)

If}

After execution, contains the 8-bit character (or 7-bit character with
parity in bit number 24) read from the input buffer.

Specify from S, C, and P for desired Busy and Done flag function.

Registers, Flags, and Stacks

ACO-AC3 Can be individually specified as ac; otherwise unused.

Carry Unchanged

Overflow Unaffected

PC PC + 1

PSR Unchanged

Stack Unchanged

Related Instructions

DOA{fJ ac, TIO Load Character Buffer

Exceptions

None

8-66 014-001371

Device Management

Load Character Buffer
DOA!f} ac, TIO

o 6

o

o

6 3

Function: ac -+ TTO (buffer)

4

6 7 8

Parameters: ac = character -+ unchanged

o

o o
11 12 13 15

9

The Load Character Buffer instruction loads the contents of the specified accumulator
into the controller's output buffer.

Arguments

ac(24-31)

Ifl

Before execution. contains 8-bit character (or 7-bit character with
parity in bit number 24) to be placed in the output buffer.

After execution. contents unchanged.

Specify from S. C. and P for desired Busy and Done flag function.

Registers. Flags. and Stacks

ACO-AC3 Can be individually specified as ac; otherwise unused.

Carry Unchanged

Overflow Unaffected

PC PC + 1

PSR Unchanged

Stack Unchanged

Related Instructions

DIALf) ac.TII Read Character Buffer

Exceptions

None

014-001371 8-67

Device Management

System Control Processor/Program
Device Code 45 8

Assembler Mnemonic SCP

Priority Mask Bit 15

The system control processor, described in Chapter 1, is a system within most ECLIPSE
~1V IFamily computers that has its own microcomputer. The system control program is a
diagnostic-type operating system which initially runs on both the CPU and (in systems
which support it) the system control processor. We use the mnemonic, SCP, to refer to
both the system control processor and system control program. Communication between
the CPU and the SCP is handled by the system control program. \Vhen another operating
system is running on the CPU, the SCP runs either in the background or on the system
control processor.

The SCP runs programs designed to help isolate hardware problems. It maintains an error
log which lists the error type, its location, and the time it occurred; and also provides all
the system timing for ECLIPSE MV/Family computer systems.

Device Flag Control
Device flag commands to the SCP determine the settings of the Busy and Done flags.

/=omitted

/=S

/=C

/=p

Busy and Done flags unchanged.

Sets the Busy flag to 1 and the Done flag to O.

Sets the Busy and Done flags to O.

No effect.

SCP Instructions
Table 8-17 lists the instructions that provide communications between the CPU and the
sCPo

Table 8-17 SCP instructions

*

Assembler Statement Function

DOBS ac,SCP

DIBC ac,Scp

SKPt SCP •

NIOC SCI> •

fORST •

Enables or disables CPU error reporting, and performs the indicated
command.

Returns the current status of the SCP.

Tests the SCP Busy/Done flag and skips the next instruction If t is true.
Clears the SCP Busy and Done flags: leaves the SCP In diagnostic mode.
Disables CPU error reporting.

The IORST instruction is described earlier in this chapter; the SKP and NIO
instructions are explained in the Instruction Dictionary. Note that a DIA, DOA, DIC,
or DOC instruction to the SCP is a no-op.

CPU-to-SCP Protocol

8-68

Communication with the SCP generally involves the transfer of data between the CPU
and device code 45 (SCP) using the SCP's B register. The Enable/Disable Error
Reporting (DOBS ac, SCP) instruction requests information from the SCP using
commands coded in an accumulator. The Return SCP Status (DIBC ac, SCP) instruction
retrieves the information, placing it into the specified accumulator. Some forms of the
Enable/Disable Error Reporting and Return SCP Status instructions require an interface
block of one or more words for transferring data between the SCP and the CPU.
Depending on the direction of the transfer, we refer to this block as an SCP-to-CPU or
CPU-to-SCP buffer.

014-001371

Device Management

The CPU/SCP protocol is as follows (see Figure 8-9):

1. The CPU/SCP interface block must have been defined to the SCP using a DOBS

SCP instruction with a Set Block command (0048)'

2. The CPU must test the availability of the SCP's Busy flag (with the SKPBZ SCP or

SKPBN SCP instruction) and its B register. If the Busy flag is 0, the SCP is ready to

accept the next DOBS instruction.

load buffer with
data; set word 0

to nonzero

Update interface
block With

buff.r addr •••

Issue
DaBS ac,SCP

instruction

Read B register;
set Busy flag to 0

Read data from
CPU-to-SCP

buffer (if required)

Set word 0 of
buffer to 0

Disable SCP to
CPU logging

load buffer with
data

(if required)

Figure 8-9 CPU/SCP communications sequence

014-001371

Write status word
>"" --.t of 3 into B

register

Take no further
action

Write sub-code
into SCP-to-CPU

buffer

Write status word
into B register

INT-00895

8-69

8-70

Device Management

3. If data must be transferred from the CPU to the SCP, the CPt: should test the
CPU -to-SCP buffer for availability. Protocol requires the CPU to set word 0 of this
buffer to a nonzero value before using it; the SCP sets word 0 to 0 after the SCP
has used the information in the buffer. Therefore, if word 0 of the buffer is
nonzero, the CPU waits before placing information into the buffer and sending a
function request.

4. The CPU loads the buffer with the appropriate data (see the DOBS SCP instruction)
and updates the interface block with the buffer address.

5. The CPU issues a DOBS ac, SCP instruction. The accumulator contains the function
code (command), a request to enable or disable error reporting. and possibly a new
interface block address. The DOBS ac .SCP instruction places the data in the
accumulator into the B register of the SCP; the S pulse of this instruction notifies the
SCP that the B register is full by setting the Done flag to O.

6. The SCP reads its B register and sets the Busy flag to O.

7. The SCP tests the Done flag to ensure that the B register is available for use (Done
equals 0).

8. The SCP performs the desired function, reading the data from the CPU-to-SCP
buffer (if required).

If the SCP can not perform the desired function. it writes a status word with a value
of 3 into its B register and takes no further action regarding the requested function.

9. The SCP sets word 0 of the buffer to 0 aher it has finished using the information
stored in that buffer.

10. The SCP disables SCP-to-CPU error logging.

11. The SCP writes the appropriate information into the SCP-to-CPU buffer, starting at
offset 1.

If the CPU command is either a Get Time or Get GMT function. the SCP writes a
sub-code value indicating the contents of the buffer into word 0 of the SCP-to-CPU
buffer (instead of a 0). The remainder of the buffer contains the data requested.
The SCP also writes a status word into its B register to either acknowledge the
receipt of the information from the CPU or to tell the CPU the data it has requested
is available in the buffer.

12. The SCP writes a status word into its B register (either to acknowledge the receipt of
information from the CPU or to tell the CPU the data it has requested is available in
the buffer).

13. The SCP sets the Done flag to 1 causing an interrupt from device code 45.

The Enable/Disable Error Reporting instruction descript.ion that follows explains the
commands.

NOTE: The following describes all current SCP commands. Refer to your
machine-specific supplement for the commands implemented on your system.

014-001371

Device Management

Enable/Disable Error Reporting
DOBS ac,SCP

o 6

o
o

6

Function:

Parameters:

2

o o o

6 7 8

4

SCP error reporting -+ enable/disable
Perform command
1 -+ Busy
0-+ Done

ac = command -+ unchanged

4 5

o o

11 12 13 15

6 5

The Enable/Disable Error Reporting instruction sets the SCP Busy flag, clears the Done
flag, and uses the contents of the specified accumulator to enable or disable CPU error
reporting and to perform the command (function) contained in the command field.

Arguments
ac(16-31)

014-001371

Before execution, contains function word as follows:

Bits Contents or Function

16 This bit enables or disables the SCP error reporting.
1 = enable; 0 = disable

17 -23 Command. The SCP performs the function defined by these bits:

Command
(octal)
000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020-176

Name
No-op
Set time
Select SCP powerdown mode
Disable SCP powerdown mode
Set block
Enable all ERCC
Mask ERCC page
Mask soft ERCC
Mask all sniff error reporting
Disable all ERCC
Size
Set boot clock time
Get boot clock time
Set GMT offset
Get GMT offset
Reserved (used by Data General's AOS/VS)

Undefined
177 Enter diagnostic sequence

24-31 Interface Block. The CPU or SCP uses the contents of these bits
dependent upon the command in bits 17-23. For any command
requiring a CPU/SCP buffer, this value is a physical address pointer to
a multiple word block in page zero (in the range of 0 to 3778), For the
Size command (0128), this value is a type indicator.

The following explains the enable/disable SCP error reporting bit and

the SCP commands.

The enable/disable bit (bit 16) enables or disables CPU error reporting.
When the CPU or SCP reports an error, it uses the page zero address
specified by the interface block (bits 24-31) as a pointer to a
double word physical address. This address in turn points to a 16-word
block that the CPU or SCP can use to report error data. The first word

8-71

8-72

Device Management

of the block receives the error code. The remaining 15 words are
available for reporting extended error status information. (The actual
buffer lengths are specified by the functions that use them.)

If the SCP interrupts the CPU, the SCP disables error reporting until
the CPU issues a new enable command.

For example, under a Data General operating system. the CPU uses the
first word of the error block as the ERRLOG code number. Any error
that requires extended error status also causes the entire 16-word block
(including the code number) to be logged as the data area of the
ERRLOG entry.

The allocated and implemented commands (bits 17-23) are defined as
follows:

• No-op (command 0008)

The No-op command enables or disables SCP-to-CPU logging
only; no other function is specified. The command enables ERCC
error reporting, but does not change the current ERCC reporting
mode.

• Set Time (command 001 8)

The Set Time command sends the SCP the current time, and
requires three words of the CPU-to-SCP buffer as follows:

Word Contents

o Number of days since December 31. 1967.

1. 2 Number of seconds since midnight.

NOTE: Word 0 of the buffer is set to 0 when this function is
complete.

• Select SCP Powerdown Mode (command 0028)

• Disable SCP Powerdown Mode (command 0038)

• Set Block (command 0048)

The Set Block command specifies to the SCP the address of the
interface block (bits 24--31).

• Enable All ERCC Error Reporting (command 0058)

The Enable All ERCC Error Reporting command enables the SCP
to detect and report any memory error. This function requires a
CPU-to-SCP buffer of five words. The SCP detects the following
ERCC errors:

Single-bit 1-bit ERCC error during memory read.

Multibit 2-bit (or more) ERCC error during memory read.

Soft-sniff 1-bit ERCC error during memory refresh.

Hard-sniff 2-bit (or more) ERCC error during memory refresh.

NOTE: After a system reset or power restoration, reporting of
ERCC codes is turned off until an Enable All ERCC Error
Reporting command is issued.

• Mask ERCC Page (command 0068)

The Mask ERCC Page command turns off error reporting for a
given page of physical memory.

014-001371

014-001371

Device Management

• l\1ask Soft ERCC (command 0078)

The l\1ask Soft ERCC command disables the reponing of all
one-bit correctable ERCC errors. Only two-bit correctable errors
and all uncorrectable errors are reponed.

• Mask All Sniff Error Reponing (command 01°8)

The Mask All Sniff Error Reponing command disables the
reponing of all soft-sniff and hard-sniff errors occurring during
memory refresh.

• Disable All ERCe Error Reporting (command 011 8)

The Disable All ERee Error Reporting command tells the SCP to
disable all memory trror reponing and detection.

• Size (command 012 8)

The Size command returns various system parameters, such as
memory size. microcode revision. and node number. The Size
command uses bits 24-31 of the accumulator to contain the value
for the type of information being requested. The SCP requires that
the Size command disable error reporting (bit 16 equals 0). Since
the Size command uses word 0 of the SCP-to-CPU buffer to
contain certain status data. the sellmg of word 0 to 0 has no
meaning for this command. However, when the buffer is full, the
SCP writes a status word with a value of 0 into its B register.

The types currently specified in bits 24-31 are listed below and
described in the following tables along with the contents of their
CPU-to-SCP and SCP-to-CPU buffers.

Type II Returns Information on

1 CPU

2 Memory

3 I/O device type (or reserved)

CPU Type (code 1 in bits 24-31 of command word)

Address
Burrer Orrset Value

(Octal)

CPU-to-SCP +0

SCP-to-CPU +0
+1
+2.3
+4.5

+6.7
+10.11
+12,13

Node number
-1 (myself)
o (SCP)

1378 (data identifier code)
Error code
Node number
Status type word
Bit Value
o 0

o

Description
110 processor
Job processor
Slave
Master

2-31 Undefined Reserved
Model number *
Microcode revision (major/minor) *
Memory size *

• see :"'CLIl> instruction for a description

8-73

8-74

Device Management

MEMORY Type (code 2 in bits 24-31 of command word)

Address
Buffer Offset Value

(Octal)

CPU-to-SCP +0,1

SCP-to-CPU +0
+1
+2,3
+4,5

+6,7

Physical page number which must be at the
beginning of a module
1378 (data Identifier code)
E"'ror code
Number of pages
Code Indicating memory type
(Bit 0 of offset 4 Indicates whether this memory
Is standard main memory or special memory.)
Standard Main Memory
Bit Contents
o 0 (indicates standard main memory)
1--31 Universal memory module code
Special Memory (Machine-specific) •
Bit Contents
o 1 (indicates special memory)
1--31 1 - Bit map graphics

2 - GIS memory
7FFFFFFF 18 - Nonexistent

Status of memory area
o = Believed to be good
Nonzero = undefined

• The special memory for GIS and bitmap graphics will use
additional words of the SCP-to-CPU buffer to return sizing
information as follows:

GIS Memory

The format for additional GIS values stans at offset address + 1 08

as follows:

Address
Buffer Offset Value

(Octal)

SCP-to-CPU + 10, 11 Model number
+12, 13 Bits per pixel

Bitmap Graphics

The special memory for bitmap graphics will give the rest of the
sizing information at the memory locations starting at 0 in the page
where it was found. An example of what sizing information might
look like follows.

Address Contents Function
(octal)

o
2
4
6
10
12
14
16
20

t

P
pa
b
y
z
n
np

2 • • t is the size of the block reserved
Model number (identifier for graphics subsystem)
Bits per pixel
2 • • pa Is offset to palette base
2· • b is the offset to bitmap base
2 • • Y is the number of pixels per line (y pitch)
2 * * z is the number of lines in the plane
Number of planes
Number of palette entries

014-001371

014-001371

Device Management

110 DEVICE Type (code 3 in bits 24-31 of command word)

Address
Buffer Offset Value

(Octal)

SCP to CPU +0, 1 Number of device blocks
+2, +3

+4, +5

Device block 1
+2 contains the device code
+3 contains the device model number

Device block 2
Device code and device model number repeat in
blocks of two words per device.
Some possible device codes and model numbers
are as follows:
Device Model Description
Code ID
(octal) (octal)
10 050000 TTl
11 050000 TTO (same as TTl)
14 060000 Real-time clock
21 060000 Printer
24 000000 Winchester disk
43 140000 Programmable interval timer
45 170105 SCP
63 110000 Magnetic tape
77 160000 CPU

• Set Boot Clock (command 0138)

The Set Boot Clock command disables error reporting and sends
new boot clock values to the SCP. This command uses seven words
of the CPU-to-SCP buffer as follows (words one through six must
be binary coded decimal values):

Word Offset Contents

0 Nonzero protocol word
1 Seconds
2 Minutes
3 Hours
4 Days
5 Months
6 Years

Upon completion, the SCP sets word 0 of the SCP-to-CPU buffer
to 0, returns a status value to its B register, and sets the Done flag.
A status va]ue of 2 indicates an acknowledgement; a value of 3
means the SCP could not perform this function (no further action
is taken by the SCP). Note that if the boot clock is changed
through the SCP-CLI, the SCP places the value 0 into its B
register. enters code 2068 into its error log. and posts an interrupt.

• Get Boot Clock (command 0148)

The Get Boot Clock command disables error reporting and requests
the boot clock time from the SCP. The SCP writes the appropriate
information into the SCP-to-CPU buffer as fonows (words one I
through six are binary coded decimal values):

8-75

I

8-76

Device Management

Word Offset Contents

o
1
2
3
4
5
6

, (sub-code indicating this buffer contains boot clock data)
Seconds
Minutes
Hours
Days
Months
Years

Upon completion, the SCP returns a statu~ value to its B register,
and sets the Done flag. A status value of 4 indicates that the
requested information is now in the buffer; a value of 3 means the
SCP could not perform this function (no further action is taken by
the SCP).

• Set Gl\'lT Offset (command 015 8)

•

The Set G\1T Offset command disables error reporting and sends
new Greenwich \lean Time values to the SCPo This command uses
eight word~ of the CP,L -to-SCP buffer as follows (words one
through six must he hinary coded decimal values):

Word Offset Contents

o ,
2
3
4
5
6
7

Nonzero protocol word
Seconds
Minutes
Hours
Days
Months
Years
Offset sign (0 = positive. 1 = negative)

Upon completion, the SCP sets word 0 of the SCP-to-CPlJ buffer
to 0, returns a status value to its B register, and sets the Done flag.
A status value of 2 indicates an acknowledgement; a value of 3
means the SCP could not perform this function (no further action
is taken by the SCP). Note that if the G!vlT offset is changed
through the SCP-CLI. the SCP places the value 0 into its B
register, enters code 2078 into its error log. and posts an interrupt.

Get GMT Offset (command 0168)

The Get GMT Offset command disables error reporting and
requests the Greenwich fvtean Time from the SCP. The SCP writes
the appropriate information into the SCP-to-CPU buffer as follows
(words one through six are binary coded decimal values):

Word Offset Contents

o
1
2
3
4
5
6
7

2 (sub-code indicating the buffer contains GMT offset data)
Seconds
Minutes
Hours
Days
Months
Years
Offset sign (0 = positive. 1 = negative)

014-001371

Device Management

Upon completion. the SCP returns a status value to its B register.
and sets the Done flag. A status value of 4 indicates that the
requested information is now in the buffer; a value of 3 means the
SCP could not perform this function (no further action is taken by
the SCP).

• Enter Diagnostic Sequence (command 1778)

The Enter Diagnostic Sequence command disables CPU error
reporting and all previously enabled functions. The SCP does not
use the interface block address entered with this DOBS SCP
instruction. Instead. the SCP uses the previous address as a pointer
to the SCP/CPU interface block. The SCP clears its Busy flag. The
SCP remains in diagnostic mode until either a console reset occurs
or the CPU issues another DOBS SCP instruction.

When the CPU issues the second DOBS SCP instruction. the SCP
first places the contents of bits 16-31 of the specified accumulator
into word 0 of the SCP-to-CPU buffer. The SCP then reads words
1-7 from the CPU-to-SCP buffer. inverts them. and writes them
back to their respective locations in the SCP-to-CPU buffer. Upon
completion. the SCP returns a status value of 0 to its B register.
sets the Done flag. and interrupts the CPU.

NOTES: The following will also clear the SCP diagnostic mode: an
IORST instruction, or the SCP-CLI commands, RESET,
START, and BOOT.

The SCP-to-CPU interface block address is lost when
diagnostic mode is terminated.

Registers. Flags and Stacks

ACO-AC3 Can be individually specified as ac; otherwise unused.

Busy flag Set to 1

Carry Unchanged

Done flag Set to 0

Overflow Unaffected

PC PC + 1

PSR Unchanged

Stack Unchanged

Related Instructions

None

Exceptions

Issuing the IORST instruction causes single-bit errors to be checked and corrected. but I
not reported.

014-001371 8-77

Device Management

Return SCP Status
DIBC ac,SCP

o

o

o
6

Function:

Parameters:

6

Status code -+ ac

o -+ Busy
0-+ Done

6

3

ac = ? -+ status code

6 4 5

o o

7 8 11 12 13 15

A 5

The Return SCP Status instruction clear~ the SCP Busy and Done flags and returns a
code to the specified accumulator denoting the current status of the SCP. The CPU
expects all information except status information to be passed using the SCP-to-CPU
buffer. If this buffer contains information, the CPU does not expect this data to be valid
until after it issues the D I B instruction.

Arguments
ac(16-31) After execution, contains codes denoting current status of SCP as

follows:

Status
(octal) Meaning

000000 Log information is 'n current SCP-to-CPU buffer. SCP logging is
disabled. The first word of the log buffer (word 0) is interpreted as a
log code: the use of the remaining 15 words is dependent on the log
code (extended status). The status codes and their definitions are:
Code Definition
(octal)
007 Powerfail detected
050 Power restore detected
053 Single-bit ERCC error detected (see ERCC extended status)
054 Multiple-bit ERCC error detected (see ERCC extended status)
055 Sniff or I/O detected multiple-bit ERCC error (see ERCC

Extended Status)
ERCC Extended Status
The four-word extended status for ERCC codes 053. 054 rand
055 is
Word Contents
o Status code (053. 054. or 055)
1 Status

Bits Definition
0-11 Reserved
12 CPU access
13 1/0 access
14 Reserved
15 Sniff access

2 Physical page number
3 Doubleword on module
4 Syndrome bits

140 SCP error logging enabled
141 SCP error logging disabied
142 Processor halted
143 SCP BOOT command has been executed
144 Power down
145 Power up
146 Reserved
147 Reserved
150 Battery backup complete
153 Microsequencer parity error
154 System cache parity error
155 System cache to Bank Controller parity error
156 10C parity error
157 Sbus time-out
160 Sbus parity error

8-78 014-001371

Device Management

Status
(octal) Meaning

Code Definition
(octal)
161 Operating system error
162 SCP error log disk error
163 Infinite protection fault
164 Infinite page fault
165 Instruction cache enabled
166 Instruction cache disabled
167 Reserved
170 Reserved
171 SCP RESET command has been executed
172 Address Translation Unit enabled
173 Address Translation Unit disabled
174 Illegal PIO command
175 Reserved
1 76 Reserved
177 SCP HALT command has been executed
200 SCP CONTINUE command has been executed
201 SCP START command has been executed
202 SCP INIT command has been executed
203 SCP has disabled interrupts initiated by the Bank Controller for

soft ERCC errors. (This occurs when there are multiple "stuck
on one" or .. stuck on zero" soft ERCC errors and the interrupt
frequency Is so high that it locks out the system console.)

204 Reserved
205 Hard interrupt from an unknown source
206 Boot clock time changed through SCP-CLI command.
207 GMT offset changed through SCP-CLI command.

000001 SCP reset. The SCP is reset and must be reinitialized with the DOllS
ac,SCP instruction and a command 4. (All previously enabled
functions have been disabled, and the SCP-to-CPU interface block
address has been lost.)

000002 SCP function request acknowledge. This acknowledgment Indicates to
the CPU that the SCP has completed a requested function.

000003 SCP requested function is in error. The SCP reports an unknown error
with this code. The SCP Issues this code if the required SCP/CPU
interface block has not been defined, an undefined function request is
made, or Invalid data Is passed to the SCP (through the CPU-to-SCP
buffer) .

000004 Data requested is In buffer. The SCP has placed the requested
information Into the SCP-to--CPU buffer. The sub-code values
returned to word 0 of the buffer indicate the contents of the buffer:
Sub-code Definition
001 Boot clock data
002 GMT offset data

177777 SCP Is In diagnostic seoquence.

Registers, Flags, and Stacks
ACO-AC3 Can be individually specified as ac; otherwise unused.

Busy t Done flags Set to 0

Carry Unchanged

Overflow Unaffected

PC PC + 1

PSR Unchanged

Stack Unchanged

Related Instructions
DIB ac,SCP

Exceptions

The DIB ac,SCP and the DIBC ac,SCP instructions perform identical
functions. The DInS ac,SCP instruction is a no-op.

Issuing the I/O Reset instruction (IORST) causes single-bit errors to be checked and I
corrected. but not reported to the CPU.

014-001371 8-79

Device Management

Power Supply Controllers

Universal Power Supply Controller

Device Code

Assembler Mnemonic

Priority Mask Bit

UPSC

13

Power Supply Controller

Device Code

Assembler Mnemonic

Priority Mask Bit

PSC

13

The power supply controllers for the ECLIPSE MY IFamily systems contain an on-board
microprocessor which perform functions such as: a power-up diagnostic self-test,
monitoring the system power, and reporting failures, problems, and status information.
These controllers are either the Power Supply Controller (PSC) or the Universal Power
Supply Controller (UPSC) - refer to the machine-specific supplement for which type of
controller your machine supports.

Both types of controllers provide powerup and powerdo'WTI sequencing. the transfer to
battery operation. 110 operations with ECLIPSE MY IFamily systems. and output voltage
margining. A major difference between controllers is the communications pathway - the
CPU communicates directly with the UPSC; the CPU-to-PSC communication generally is
through an intermediate processor (usually the diagnostic remote processor). though this
is transparent to your program.

Both controllers use the same device code (48) and the same priority mask bit (13). In
multiple-IIO channel configurations. the CPU uses device code 4 on the primary 110
controller (lOCO) as the gateway to their power supply controller.

In addition. the controllers monitor the following:

• problems with the power supplies (such as overtemperature and overcurrent
conditions) ;

• ac overvoltages and undervoltages (PSC only);

• overloads on the output voltages;

• state of the power switch;

• battery backup faults;

• fan or blower failures.

Device Flag Control

8-80

Device flag commands to the power supply controllers determine the enabling or disabling
of controller interrupts.

/=omitted

/=S

/=C

/=P

Busy and Done flags unchanged.

Sets the Busy flag to 1 and the Done flag to O.

Sets the Busy and Done flags to O.

Sets the Busy flag to 1 and the Done flag to O.

014-001371

Device Management

Power Supply Controller Instructions

Instructions to the PSC or CPSC differ in their functions; Table 8-18 lists the I/O
instructions that affect the controllers.

Table 8-18 I/O instructions for the power supply controllers

Assembler
Statement

DOAS aC,U/PSC
DOAP ac,UPSC
DIA['} aC,U/PSC
IORST
NIO[fj U/PSC

Function

Writes data to UPSC or PSC.
Requests data from UPSC.
Reads data from UPSC or PSC.
Clears Busy and Done flags and interrupt priority mask bit.
Manipulates Busy and Done flags.

The IORST instruction is described earlier in this chapter; the NIO instruction is
explained in the Instruction Dictionary. Note that the 1/0 instructions - DIB, DIe, and
DOC - to the controllers are no-ops.

In the instruction descriptions that follow, if the instruction penains only to the Universal
Power Supply Controller or only to the Power Supply Controller, we use their respecitive
mnemonics (UPSC or PSC). If the instruction applies to both controllers, we use the
mnemonic, U/PSC. When the arguments to the assembler differ, we present the UPSC
code followed the PSC code. (\\'hen developing code, use the mnemonic appropriate for
your controller - UPSC or PSC.) The forms of data written to or read from the
controllers differ between type of controller.

014-001371 8-81

Device Management

Write Data to U/PSC
DOAS aC,U/Pse

o 6 o 4

o
o

6

Function:

Parameters:

ac -+ U/PSC

1 -+ Busy

0-+ Done

2

6

ac = data -+ unchanged

o

7

o o o o

8 11 12 13 15

4 4

The Write Data to U IPse instruction sends the contents of the accumulator to the power
supply controller. When you issue this instruction, the controller sets the Busy flag to 1
and the Done flag to O.

Upon completion of the operation. the controller clears the Busy flag to 0 and sets the
Done flag to 1.

Arguments

ac(16-31) Before execution. contains data to be sent to the power supply
controller. Bits 16-23 are either undefined or contain all zeros
dependent upon whIch controller register is being written to. Bits 24 and
25 specify which register on the controller will receive the data. Bits
26-31 contain data pertinent to the register chosen.

8-82

The following lists the 16-bit power supply registers (specified by bits 24
and 2S) that can be written on the controller.

ac Bits Register
24. 25 Selected

00

01

10

11

Control register

Power margining register

Reserved
Diagnostic test register
(UPSC only)

Contents or Function

Selects reporting mode. power margining. and
enable/disable battery backup.
Enables logic and memory voltages to be
increased or decreased I when the back panel
is jumpered for margining or margining is
selected using the control register) .

Reserved for future use.
Verifies the data path between the computer
and UPSC or enables the battery test.
NOTE: These bits are reserved for diagnostic
purposes on the PSC.

The following diagrams and tables describe the various controller
registers and explain the functions when an accumulator bit is set.

014-001371

014-001371

Device Management

Control Register (Register 0)

16

ac Bit

16-23
24,25
26

27

28

29

30
31

Undefined o 1 0 CLR BT ALT CO~ BBut PFM FLT

Name

Undefined
00
CLR/FLT

BT

ALT

COM

BBU
PFM

23 24 I 25 26 27 28 29 I 30 I 31

Contents or Function

Unused.
Selects the control register.
If 1, clears fault code register.
NOTE: This bit applies only to the PSC. The UPSC
reserves this bit for future use.
If 1, removes AC power to allow battery testing.
NOTE: This bit applies only to the UPSC. The PSC
reserves this bit for diagnostic pusposes.
If 1. masks out powerfail interrupts (depending on the
system, a powerfail interrupt may be non-maskable). If
this bit is 1, the CPU powerfail skip instructions (SKPD:"
and SKPDZ) will still identify the state of the powerfail
flag.
Enables or disables interrupts. If 1. the controller can
Interrupt CPU when a fault occurs. If 0, disables all 1/0
Interrupts from the controller.
If 1, disables the battery backup unit.
If 1, enables power margining through program control.

Power Margining Register (Register 1)

A voltage is in the nominal state: when the corresponding bit is O. The
voltage is margined when the corresponding bit is 1 and the computer is
either jumpered or programmed for margining.

16

ac Bits

16-23
24,25
26
27
28

29

30
31

Undefined

Name

Undefined
01
+5L1
+5LD
ALLI

ALLD

+SMI
+SMD

23

Contents or Function

Unused.
Selects the power margining register.
Increases + 5 logic voltage.
Decreases +S logiC voltage.
UPSC - Increases +5MEM and -S and + 12 logic and
memory volt ages.
PSC - Increases - 5 logic and + 12 logic voltages.
UPSC - Decreases +SMEM and -5 and + 12 logic and
memory voltages.
PSC - Decreases -S logic and + 12 logic voltages.
UPSC and PSC - Increases +5 memory voltage.
UPSC and PSC - Decreases +5 memory voltage.

8-83

Device Management

Diagnostic Test Register (Register 3) - LTPSC only

The UPSC performs the battery test or bit test specified by bits 30 and
31 of the accumulator.

To complete the command, the lJPSC requires a second DOAS
ac,UPSC instruction. When the UPSC fails to detect the second DOAS
instruction, the UPSC automatically exits the diagnostic test. The GPSC
indicates a time-out by setting the Done flag to 1 and placing the
appropriate fault code in the fault code register. The fault code register
may be read with the Read Data From lJPSC instruction.

I,. 0-0

Be Bits Name

16-23 0-0
24.25 11
26-29 0-0
30 BTE

31 COMP

23 I 24 I 25 I 2.

0-0

Contents or Function

Reserved and must be zero.
Selects the diagnostic test register.
Reserved and must be zero.

IBTEICOMPI
29 30 31

Enables battery test. If 1. the battery test Is enabled.
Initiate the actual test with a second DOAS UPSC
specifying the Control register (OO)with bit 27 (BT) set to
1. Note that the BTE bit must be set before the BT bit.
Comp;ements data. When a second DOAS UPSC
Instruction executes. the UPSC reads the data from its
A buffer. and. if COMP is 1. complements the data. It
then returns the data to the A buffer. which can be read
with the DIA UPSC instruction.

Registers, Flags, and Stacks

ACO-AC3 Can be individually specified as ac; otherwise unused.

Busy flag Set to 1

Carry Unchanged

Done flag Set to 0

Overflow Unaffected

PC PC + 1

PSR Unchanged

Stack Unchanged

Related Instructions

None

Exceptions

None

8-84 014-001371

Request Data From U/PSC
DOAP ac, u/psc

a 6

a

o

6

Device Management

3

o

6 7 8

C

Function: Requests controller data

Parameters: ac = Data requested -. unchanged

o 4

o o o
11 12 13 15

4

The Request Data From U/PSC instruction uses the specified accumulator to request
specific information from the power supply controller.

Arguments

ac(28-31) Before execution. contains request for information from the controller.
Bits 0 through 27 are reserved and must be set to O. The contents of
bits 28-31 are defined as follows:

Bits 28-31 Controller
(octal) Request Function

00
01

02
03

04

05
06

07

10

Both
UPSC
PSC
Both
Both

UPSC
PSC
PSC
PSC

PSC

PSC

Read control bits.
Read battery backup and margining bits.
Read margining bits.
Read power supply system status.
Read fault code register (return latest fault code/status
data) .
Read UPSC code revision number.
Read PSC code revision number (maJor).
Read PSC code revision number (minor).
Read fault code register (return second latest fault
code/status datal.
Read fault code register (return third latest fault
codelstatus data).
Return 2528 (used for sizing) .

After execution. contents unchanged.

Registers, Flags. and Stacks

ACO-AC3 Can be individually specified as ac; otherwise unused.

Busy flag Set to 1

Carry Unchanged

Done flag Set to 0

Overflow Unaffected

PC PC + 1

PSR Unchanged

Stack Unchanged

Related Instructions

None

Exceptions

None

014-001371 8-85

Device Management

Read Data From U/PSC
IA [f] aC,U/Pse

0 6

0

0

6

Function:

Parameters:

o 4

o o

6 7 8

U/PSC (A buffer) -+ ac

ac = ? -+ requested data

o 4

o o o

11 12 13 15

o 4

The Read Data From u/Pse instruction loads the data from the controller's A buffer
into the accumulator. This instruction either returns the data requested (with the previous
Request Data From U IPse instruction) or reads the latest fault code following an
interrupt from the power supply controller.

Arguments
ac(16-31)

8-86

After execution, contains data from the controller's A buffer.

The following describes the data returned for each type of request.

Read Control Bits

I,.
ac Bit Name

16-26 0-0
27 JFM

28 ALT
29 COM

30 BBU
31 PFM

0-0 I JFM I AL T ICOMI BBU I PFM I
26 27 28 29 30 31

Contents (if set to one)

Reserved and returned as zeros.
Power margining is enabled through hardware jumpering.
(UPSC only)
NOTE: The PSC reserves this bit.
Powerfail interrupt is masked out.
The power supply controller can interrupt the CPU when
a fault occurs.
The battery backup unit Is disabled.
Power margining is enabled through program control.

Read Battery Backup and Margining Bits

16

ac Bit

16-23
24

2S
26
27
28

29

30
31

Name

0-0
BAT

0
+SLI
+SLO
ALLI

ALLO

+SMI
+SMD

0-0 BATI 0 +SLI +SLO ALLI ALLot+5MII+SMO

23 24 I 25 26 27 28 29 I 30 I 31

Contents (If set to one)

Reserved and returned as zeros.
The battery backup is connected and in use. (This bit is
cleared if the system is not running on batteries. a battery
fault occurs. or the BBU flag Is set).
NOTE: This bit applies only to the UPSC: the PSC
reserves this bit.
Reserved and returned as zero.
+ 5 logic voltage is Increased.
+ 5 logic voltage is decreased.
UPSC - tSMEM and -S and t12 logic and memory
voltages are increased.
PSC - -S and + 12 logic voltages are increased.
UPSC - t5MEM and -5 and + 12 logic and memory
voltages are decreased.
PSC - -5 and + 12 logic voltages are decreased.
UPSC and PSC - +5 memory voltage is Increased.
UPSC and PSC - +5 memory voltage is decreased.

014-001371

If]

Device Management

Read Power Supply System Status

I"
ac Bit Name

16-27 0-0
28 PART

29 FULL
30 RUN
31 CHAR

0-0

27 28 29 30 31

Contents (if set to one)

Reserved and returned as zeros.
The system Is equipped with partial battery backup.
NOTE; This bit applies only to the UPSC: the PSC
reserves this bit.
The system is equipped with full battery backup.
The system is running on the batteries.
The batteries are recharging.

Read Fault Code Register

0-0

16

ac Bit Name

16-23 0 - 0
24-28 Fault Code
29-31 Fault Category

Fault Code I Fault Category

23 24 28 I 29 31

Contents

Reserved and returned as zeros.
Specifies the fault code for a specific fault category.
Specifies the fault category (ranging from 0 through 7) .

When the power system detects a fault, it loads the fault code and
category into the fault code register and then displays the code on the
front panel. The fault code register retains the code of the last fault,
even if the fault clears. For example, if a fan takes too long to reach an
effective speed, it can cause a fan fault. When the fan is running.
however, the fault code register retains the fault, even though the fault
clears. The .. Fault Codes" appendix contains a categorized list of fault
and status codes for the UPSC and PSC.

Specify from S, C, and P for desired Busy and Done flag function.

Registers. Flags, and Stacks

ACO-AC3

Busy flag

Carry

Done flag

Overflow

PC

PSR

Stack

Related Instructions
None

Exceptions
None

014-0013I·1

Can be specified as ac, otherwise unused.

Set by f

Unchanged

Set by f

Unaffected

PC + 1

Unchanged

Unchanged

8-87

Device Management

Multiple Central Processing Units
Some ECLIPSE f\.,1V IFamily systems support more than one central processing unit per
system. Each processor is identical in terms of architecture. features, options. and
function, and every processor is independent of any other processor. These
multiple-processor computers are tightly coupled systems; their processors share the same
memory subsystem. The ECLIPSE ~1V IFamily instruction set includes a subset of
multiple-processor instructions for intra-processor communication.

Since each processor runs independent of the others, programming multiple processors is
generally identical to programming a single-processor system. Differences include system
initialization, a processor's view of memory, and intra-processor and 110 communicatior..s,
which are described in the following sections.

NOTE: Each processor in a multiple-CPU system should be running the same
revision of microcode, otherwise results may be undefined.

Initialization

8-88

The processors are equal except at boot time. One processor is designated the "initial
processor," according to a state established at initial powerup. This state may be changed
through the virtual console program running on the system (operator's) console.

The initial processor performs diagnostic routines and initialization functions on itself first.
\Vhen the initial processor has passed all of its tests and has loaded its own control store,
it may then communicate with another processor. Once running, each processor operates
independently of the others, with actions determined by program control.

From a hardware point of view, the initial processor is the one which is booted first. has
the default connection to the operator's console, and at powerup receives all interrupts.
In all other hardware aspects, the processors are equal in function.

In the following discussion. references to the initial processor is for identification purposes
only and is valid only when the processors are initialized. The following sequence starts at
the system console:

1. The initial processor is "booted," and issues an LCS instruction to load all of its
control store.

2. The initial processor issues a Store State Pointer instruction (SSPT).

3. The initial processor may then determine the state of any other processor by issuing
a Return Processor Status instruction (JPST ATUS).

4. If the initial processor decides to bring up another processor (target processor), the
initial processor

• Issues a Load Control Store into JP instruction (JPLCS) to the target processor.

•

This procedure continues until the target processor has loaded all of its control
store. (Note that issuing a JPLCS instruction is only necessary if the results of
the JPSTATUS instruction indicate that the target processor has not had its
control store loaded.) At this point, the target processor has the ability to
respond to all other multiple-processor operations.

Places the starting program counter value and other data, such as accumulator
values, into the appropriate sections of a processor state block.

014-001371

Device Management

• Issues a Start Another Processor instruction (JPSTART) to start the target
processor. The JPSTART instruction also transfers the address of the lP state
block to the target processor.

The target processor then performs the following:

Loads its processor state from the lP state block.

Checks segment base register 0 (SBRO) for validity. If SBRO is invalid (bit 0
is 0), the processor indicates a validity protection fault by placing error code
3 into AC1.

Changes the current ring of execution to the ring specified by the program
counter in the lP state block.

Loads the wide stack registers from page zero of the new ring of execution.

Transfers execution to the instruction specified by the program counter in
the lP state block.

5. The state (running/stopped) of any processor may be read at any time with the
JPSTATUS instruction.

Processor State Block
Each processor maintains a processor state block (also known as the lP state block) in
physical main memory. This block contains information which is stored inside the
processor during program execution. The information in the block includes register and
accumulator values and other processor-specific data. The state block must

• reside wholly within a single page,

• be doubleword aligned, and

• be resident.

The state block generally consists of 50 words in the following format:

Word
Offset Description

PSR

ACO

AC1

AC2

AC3

Carry (word 10. bit 0) and next program counter

FPSA

FPACO

FPAC1

FPAC2

FPAC3

SBRs(O-7) - Each SBA uses a doubleword.

0-1

2-3

4-5

6-7

8-9

10-11

12-15

16-19

20-23

24-27

28-31

32-47

48-49 Physical JPLOAD/JPFLUSH address. Should be Initially set to -1. (This value is
written by the JPSTOP instruction and read by the JPSTART instruction and should
be preserved over multiple starts and stops.)

50

014-001371

Processor flags. Bits 0-13 are reserved and should be initialized to O. Bit 14 is the
state of the Interrupt enable flag (ION): bit 15 is the state of the A TU ON flag.

8-89

Device Management

Memory Views

8-90

Multiple processors may read or write the same, overlapping, or entirely different areas of
memory. A single processor's view of memory is the result of a serial ordering of all
processors' writes, though different processors may see different serial orderings. \Vhen a
single processor writes to its view of memory. the changes eventually appear in all
processors' views.

Certain ECLIPSE MY/Family instructions are either indivisible, uninterruptible, or

serializable with respect to multiple processors" In the following discussion, "observer"
refers to any entity which accesses memory, such as processors, liD channel controllers
(IOCs), and (indirectly) liD de\'ices.

• Indivisible - The operation is performed as one atomic unit; no intermediate results
of the operation are visible to another observer. To another observer. the operation
appears to have either never started or fully completed. The Instruction Dictionary
describes those instructions which are indivisible.

Certain store-type. memory-reference instructions are guaranteed to be indivisible if
the target address is aligned to the data width. (such as, STB = 8 bits, X\VSTA =
32 bits, BTO = 1 bit). Note that WBTO and related instructions are considered
single-bit store instructions. Other instructions. which adhere to these alignment
constraints, are also guaranteed to be indivisible.

NOTE: Atomic memory instructions (such as ISZ and DSZ) executing in
multiple-processor environments may produce an undesireable impacl on
system performance. Use an instructions such as X\VADI. in place of
X\VISZ, to increment a pointer in memory.

• Uninterruptible - lID interrupts are not honored during execution of these
instructions, unless an exception occurs that forces a partial completion of the
instruction (such as a page fault).

• Serializable - Each operation goes to completion in all observers' views before the
next operation begins. The result (memory views) of a set of operations is said to
be serializable if there is a serial execution of those same operations that will
produce the same result.

The following instructions are serializable and indivisible:

ISZ, EISZ, XNISZ. LNISZ, XWISZ, LWISZ, DSZ, EDSZ, XNDSZ, LNDSZ,
X\VDSZ, and L\VDSZ.

SZBO, \VSZBO, and WMESS. (If interrupts are enabled, these instructions
honor interrupts before starting execution. If these instructions skip, the
interrupt is held off until the next instruction executes.)

DEQUE. ENQH, and ENQT. (These queue instructions are serializable and
indivisible with respect to themselves. They are not serializable or indivisible
with respect to instructions such as X\\,LDA. In this case, an XWLDA
instruction will see a queue pointer in either the before- or after-execution
state. as long as the pointer is even-aligned.)

014-001371

Device Management

The folloowing demonstrates how different processors have different memory views.

\
Time \

o
1

Processor # A

STA 0, 0, 0
XWLDA 0, 0, 0

B

STA 0, I, 0
XWLDA 0, 0, 0

Initially, ACO(processor A) contains X'. ACO(processor B) contains Y', and double word
o contains XY.

At Time 1. ACO(processor A) will get either X'Y or X'Y' and ACO(processor B) will get
either XY' or X'Y'.

There is no serial execution of the two store instructions which gives either X'Y or XY·.
If these instructions were serializable. either processor's ACO would get X·Y·.

1/0 Communication
Multiple-processor ECLIPSE MV /Family systems support execution of 110 instructions,
such as CIa or Pia, from any of the processors residing on the system bus. In a
multiple-IOC configuration, all processors can do I/O to all devices on all IOCs. I/O
instructions that are broadcast to all 110 channels, such as MSKO, are executed by all
IOCs in the system simultaneously.

Multiple 1/0 Channels
Some multiple-processor ECLIPSE MV/Family systems may support more than one I/O
channel (IOC). Each 110 channel supports its own data channel (OCH) and Burst
Multiplexor Channel (BMC). In these configurations, lOCO supports the following integral
devices:

Device
Mnemonic Code Description

(octal)

TTl 010 TTY Input

TTO 0" TTY output
PSC 004 Power supply

SCP 045 System control processor/program (or diagnostic remote processor)

CPU 077 Central processing unit

RTC 014 Real-time clock

PIT 043 Programmable interval timer

The device codes for these devices are reserved on all IOCs and may not be used for
any other purpose.

1/0 Interrupt Handling
A multiple-processor system handles I/O interrupts using a dedicated device mode -
each IOC dedicates itself to a particular processor. All interrupts generated by an IOC
are directed to a single processor; a particular processor can receive interrupts only from
the IOC that is attached to it. In multiple-IOC configurations, the IOCs may be split
between the processors or all IOCs may interrupt one processor, leaving the other
processors to run uninterrupted.

014-001371 8-91

•

I

Device Management

Each IOC contains a 16-bit register (77028), that controls which CPU is to receive 1'0
interrupts. Systems which support only a single processor ignore the contents of thls
register. This read/write register is available only whiL a multiple-processor system is L.

dedicated mode; an attempt to read or write this register while the system is in any mode
other than dedicated may cause unpredictable results.

The format of the CPt; dedication control register is diagrammed below and described in
the following table.

o

Bits Name

0-14 Reserved
15 CPU

Reserved

Contents or Function

Reserved for future use: must be set to O.
Processor number to which all NOVA type interrupts (except cross
interrupts) will be directed.
On a system reset, this number is set to the value of the initial processor.
Upon execution of an IORST instruction, this number is set to the value of
the processor that Issued the IORST instruction.

NOTE: The actual number of ~ Reserved" and ~ CPU" bits implemented is dependent on the
number of processors in the system.

Intra-Processor Communication

8-92

The processors in multiple-processor configurations communicate using a set of privileged
multiple-processor instructions. Communications between these tightly coupled processors
occurs in shared and/or reserved locations in main memory. Each processor in the system
is identified by a unique Processor ID number. The Processor ID number is a 16-bit
unsigned integer assigned by the hardware. Acceptable values range from 0 to the
maximum number of processors minus 1.

A multiple-processor instruction executing on one processor affects one or more
processors. Table 8-19 lists the multiple-processor instructions; the complete instruction
descriptions are given in the Instruction Dictionary. Some standard ECLIPSE MY/Family
non-multiple-processor instructions affect multiple-processor systems to varying degrees;
Table 8-20 lists these instructions. All other ECLIPSE MY/Family instructions (including
110 to the processor) executing on one processor affect only that processor.

NOTE: All multiple-processor instructions are privileged instructions,

Table 8-19 Multiple-processor instructions

Mnemonic

CINTR

JPFLUSH
JPID

JPFLOAD

JPLCS
JPLOAD

JPSTART

JPSTATUS
JPSTOP

Description

Request, remove, or query a request for a cross interrupt.

Fill in the jp state block for this processor.

Return a Processor 10 number.
Load a subset of a jp state block into this processor.

Load control store into a target processor.
Load a jp state block into this processor.

Request a processor to continue from the stopped state.

Return Information on a processor's status.
Request a processor to stop.

014-001371

Device Management

Table 8-20 ECLIPSE MVIFamily instructions with multiple-processor functions

Mnemonic

IORST

Description

I/O Reset. In addition to its normal functions, this instruction also clears all
pending cross interrupts. and redirects all 10C traffic to the processor that
Issued the IORST instruction.

Halt. Halts this processor and notifies the SCP that it is stopped. HALT

SSPT Store State Pointer. Regardless of the number of processors. there is only one
state pointer per system.

It Is recommended that the state area not be moved, as the system maintains
some parameters and synchronization Information within the state area. If the
state area is moved. certain operations will be disrupted and data may be lost.

PRTSEL I/O Channel Select. Changes the default I/O channel on ALL processors.

Error Codes
Conditions which produce errors during execution of multiple-processor instructions
return a value to AC 1. Table 8-21 lists these errors.

Table 8-21 Error values returned to AC1

Value InstructIon

JPLCS, JPSTART

2 CINTR, JPLCS, JPSTART
JPSTATUS, JPSTOP

3 JPLCS

4 CINTR, JPLCS, JPSTART,
JPSTATUS, JPSTOP

5 JPFLUSH

6 CINTR

7 JPSTOP

014-001371

Description

Not stopped. The processor to receive the request is
currently running.

Nonexistent processor. The processor 10 specifies a
value for a processor which does not exist.

LCS error.

Processor failure. The processor to receive the request
is not working.

No JP state block.

Illegal option.

Processor not running.

End of Chapter

8-93

I

9
Memory and System Management

The processor supports memory management and system management facilities for an
operating system. This chapter presents basic information to assist in writing operating
system software.

The memory management facilities transform a logical address into a physical address and
monitor the contents of the physical memory. The system management facilities return or
modify implementation-dependent information about the system and the service faults.

The processor supports a virtual memory size of 4 Gbytes. which it distributes through
eight segments. Each segment can support up to 512 Mbytes of logical address space. As
the logical address space is larger than the physical address space. the processor uses a
demand-paging scheme.

This chapter explains memory management functions (segment access and address
translation). and system functions (processor identification and fault handling of privileged
violations) .

014-001371 9-1

Memory and System Management

Page Access
Pages of logical memory are maintained on disk until the processor needs them in
physical memory. (A page equals 2 Kbytes.) \\'hen referring to an instruction or to data
that currently resides on disk, the processor moves the page to physical memory. \\'hen
physical memory is full, however. the processor may first copy a page from memory to
disk before moving the referenced page into memory. To facilitate the operation" the
processor maintains tables in memory that determine

• \\'here a page resides (memory- or disk-resident).

Bits 11-31 of a segment base register specify a physical address of a pagetable in
memory. Each segment is described by a pagetable. which occupies at least 2 Kbytes
and begins on an integral 2-Kbyte boundary. A pagetable contains entries that
indicate where the pages reside in memory.

• \Vhen to overwrite a page in memory with a page from disk.

The processor maintains a tahle of referenced and modified bits.

Segment Access and Address Translation
To access a memory word or words. the processor translates a logical address (indirect or
effective address) to a physical address. and accesses the physical page, which contains
the word or words.

The following paragraphs describe the segment base registers, pagetables. and the
logical-address-to-ph ysical-address translation.

Segment Base Registers

9-2

To access a segment. the processor first checks the segment base register specified by the
icJgical address. Bit 0 of the segment base register controls access to the segment by
~peclfying if the processor can refer to the segment to execute the instruction. If the
processor cannot refer to the segment. the processor aborts the instruction and services a
segment validity protection fault. Refer to the section ... Protection Violations." in this
chapter for further information on protection fault handling.

The processor maintains one segment base register for each of the eight segments. The
segment base registers (SBRO through SBR7) contain information which

• validates segment access.

• validates I/O access.

• specifies a one- or two-level pagetable.

• specifies for its segment the address of the first entry in the pagetable.

The segment base registers can be modified with the privileged instructions. LSBRA and
LSBRS. which loads a block of doublewords from memory into the segment base'
registers.

~OTE: Pri\'ileged instructions must execute in segment 0; otherwise, a protection

violation occurs.

Figure 9-1 shows the format of a segment base regIster; Table 9-1 describes the format.

014-001371

Memory and System Management

Reserved

10 11 15

Root page table frame

16 31

INT-00188

Figure 9-1 Segment base register format

Table 9-1 Segment base register format description

Bit Name

o v

L

2 LEF

3 1/0

4-10 Reserved

11-31 Root
paget able
frame

014-001371

Contents or Function

Segment-validity flag. The processor accesses a segment either to execute an
Instruction or to access data for an Instruction that reads or writes data. The
segment. however. must be a valid reference.

If O. this Is an Invalid segment. The processor aborts a memory reference
instruction and services a protection violation when the logical address
refers to an invalid segment.

If 1, this Is a valid segment. Fo"owlng a valid segment check, the processor
checks for a valid addressing range (translation level) In the logical address.

Translation-level flag. The processor can access the segment with either a
one- or two-level paget able .

If 0, this Is a one-level pagetable. The processor can use a one-level
paget able with a program that requires 1 Mbyte or less of logical address
space In the segment. A one-level paget able entry contains the pagetable
offset for the physical address translation.

If 1, this Is a two-level paget able . The processor must use a two-level
paget able with a program that requires from 1 Mbyte to 512 Mbytes of
logical address space in the segment. A two-level pagetable entry contains
the address of the second pagetable, which contains the pagetable offset
for the physical address translation.

Refer to the section, .. Paget able ," for additional Information on the paget able .
Refer to the section, "Address Translation," for an example of using a
segment base register and one or two paget abies .

Mode flag. This flag controls the Interpretation of the 110 or LEF opcode(s)
(opcodes that begin with 011 2).

If 1, the processor executes the Instruction as an LEF Instruction.

If 0, the processor executes the Instruction as an I/O Instruction. Before
executing the Instruction as an 110 Instruction, the processor checks the
I/O validity flag.

110 validity flag. The processor checks the I/O validity flag when executing an
110 Instruction.

If 0, 1/0 operations are /lie gal from this segment. The processor aborts
executing the 110 Instruction and services the protection violation.

If 1, I/O operations are legal from this segment. The processor executes
the 1/0 Instruction.

Reserved for Internal Data General use.

Specifies the most significant bits of the physical address for the root pagetable
page. (The table begins on a 2 -Kbyte address boundary.) The remaining bits of
the address come from either bits 4-12 or 13-21 of the logical address.

9-3

Memory and System Management

Page Frames

A page frame address (or. .:..: number) is a page address shifted right 10 bits.

A physical address has the following format.

Page number

o

Page number Word offset

16 21 22 31

A page address is considered to be the page number with 10 zeros following it. This page
number is also the page frame, because the page actually includes the addresses between
the start of the page (word offset 0) and the end of the page (word offset 3FF IS)' For
example:

Page 1 is:

Page 55 is:

1 00000000002 =

0101 0101 00000000002 =

Page frame 1 corresponds to the page address 400 16 and refers to the data words with
addresses 400 16 through 7FF16 •

Pagetables

9-4

In each segment, the processor accesses a pagetable that specifies the status of the pages
for the segment in memory. The pagetable manipulation instructions are Load Pagetable
Entry (LPTE) and Store Pagetable Entry (SPTE). The pagetable contains an entry (PTE)
for each page which

• indicates if a page is valid and the type of access.

• indicates if a page is currently in physical memory.

• contains information needed to translate a logical address to a physical address.

Figure 9-2 shows the format of a pagetable entry. Table 9-2 describes the format.

v Reserved Physical page address

o 5 10 11 15

Physical page address

16

INT-001S9

Figure 9-2 Pagetable entry format

014-001371

Memory and System Management

Table 9-2 Pagetable entry format description

Bit Name

o v

M

2 R

3 W

4 E

5-10 Reserved

11-31 Physical
page
address

014-001371

Contents or Function

Valid-access flag. The processor accesses the page to read or write data. or
to execute an instruction. The page reference must be a valid page

If 0, this is an invalid page. The processor aborts the memory reference
instruction and services the protection violation when the logical address
refers to an invalid page.

If 1. this is a valid page. Following the valid page check. the processor
checks for a valid page access (read, write. or execute) .

Memory-resident flag. For the processor to access a page for reading or
writing data. or for executing an instruction. the page must reside in physical
memory.

If O. the page is on disk. The processor suspends the memory reference
instruction and signals a page fault when the logical address refers to a
disk-resident page Fol:owing the page fault. the processor resumes
executing the memory reference Instruction

If 1 the page is in physical memory The processor completes executing
the memory reference instruction when the logical addre~s refers to a
memory-resident page

Read-access flag The processor must access tr.e page for reading data.

If 0, the processor cannct access the page for reading. The processor
aborts the memory reference instruction and services tre protection
violation when the instruction requests a read operation. such as loading an
accumulator or skipping on the condition of a memory word.

If 1, the processor can access the page for reading. Following the valid
read access. the processor chE~cks for a disk- or memory-resident page
status.

NOTE: A page with write or execute access a/so requires read access.
otherwise. results are indeterminate.

Write-access flag The processor must access the page for writing data

If O. the processor cannot access the page for writing. The processor
aborts the memory reference instruction and services the protection
violation when the instruction requests a write operation, such as storing an
accumulator or modifYing a bit of a memory word.

If 1 . the processor can access the page for writing. Following the valid write II

access. the processor checks for a dlsk-- or memory--resident page status.

Execute--access flag _ The processor must access the page for execution of its I
contents. I

If O. the processor cannot access the page for execution. When the next I
Instruction to be executed is from a page whose execute-access flag is
zero, the processor aborts the instruction and services the protection
violation.

If 1, the processor can access the page for execution. Following the valid
execute access, the processor checks for a disk- or memory- resident
page status.

Reserved for use by Data General software.

Identifies a page In memory.
For a one-level pagetable translation, the physical page address refers to a
page containing an instruction and/or data.

For a two-level paget able translation. the physical page address refers tc a
page containing the base of another pagetable (Note that the processor
ignores the page access bits -- bits 2, 3. and 4 -. for a two -level
pagetable translation.)

9-5

Memory and System Management

Address Translation

9-6

Following a valid segment reference, the processor checks the range of the logical address
space within the segment, and compares it to the address range of the logical address. Bit
1 of the segment base register defines a one- or two-level pagetable which specifies the
addressing range. Refer to the section, .. Segment Base Register," for further details.

The processor compares bit 1 of the segment base register with bits 4-12 of the logical
address. When bit 1 equals 0, the logical address bits 4-12 must be all zeros. The
processor aborts the instruction and services the protection fault when any of the llogical
address bits 4-12 contain a 1.

Figure 9-3 illustrates an indirect or an effective logical address for a one- and two-level
pagetable; Table 9-3 describes the formats. Refer to the chapter, .. System Overview," for
an explanation l)f calculating an indirect or effective logical address.

One-Level Pagetable Logical Word Address

I Page level 1 Segment 3 I 4
x 0-0

12 13 15 o

Page level 1 Page offset

16 31

Two-Level Pagetable Logical Word Address

x I Segment I Page level 2 1 Page level 1

12 113 15

31 I 16 2,122
Page off •• t Page level 1

INT-00190

Figure 9-3 Indirect and effective logical address formats

Table 9-3 Logical address format description

Name

a x

1-3 Segment

Contents or Function

The processor ignores this bit when using direct addressing. The processor
tests bit 0 when using indirect addressing and continues to test It in subsequent
indirect addressing until the bit equals zero.

These bits specify one of the eight segment base registers.

4-12 Page level 2 These bits specify an entry In the first of two paget abies for a two-level
pagetable translation. The pagetable entry contains the address of the second
pagetable.

For a one-level paget able translation. the page level 2 field must be all zeros. If
they are not. the processor aborts the Instruction and services a paget able
validity protection fault. Refer to the section ... Protection Violations. ~ in this
chapter for further information on protection fault handling.

13-21 Page level 1 These bits specify an entry in a pagetable.

For both one- and two--Ievel pagetable translation. the pagetable entry contains
the address of the final page to be accessed for data or by an Instruction.

22-31 Page offset These bits specify the final entry in the final page. The page offset completes
the address translation

014-001371

Memory and System Management

Figures 9-4 and 9-5 present examples of one- and two-level pagetable translation.
respectively. The circled numbers labeling the accompanying paragraphs correspond to

the circled numbers shown in the figures.

Logical word address

12 13 21 22 31

0-0 One-level page table I Page offset

1-____ ,..------JI~--___ 'r----....J
Specifies an SBR
with the format G)

31

Physical address

Specifies starting word address
of a page table

CD

PTE511

Specifies an oHset from
start of page table

'1
Valid resident

phYSical address

31

Final P"'Ys CiI'
word addres::;

The logical word address to be translated has the format stlowIl 'n the diagram Bits 1-3 of
the word address specify one of the eight segment base registers (SB~s) . The processor
uses the contents of thiS valid SBR to form the phYSical address of a PTE

To form this physical page address, the processor begins with the fhYSiCal address
specified In bits 11-31 of the SBR. This address becomes bits 1-2 of the PTE address.
Bits 13-21 of the logical word address becomes bits 22-30 of the PTE address. The
processor appends a zero to the right of the PTE address. making a 31-blt word address.

Bits 1-21 of the PTe address (unchanged in step 2 above) specify the starting address of a
page table. Bits 22-31 of the PTE addressspec'!y an offset from the start of the tabie to
some PTE (labeled PTEn In the fIgure). ThIS PTE specifies the startIng address 01 a page
of memory.

PTEn bits 11-31, the page address, become bit:; 1-21 of the phYSical address The page
offset fIeld specifIed in bIts 22-31 of the logical word address become bits 22-3' of the
physical address. This is the physical worc:f address translated from the original word
address.

Figure 9-4 One-level pagetable translation

014-001371 9-7

®
®

CD

®

®

Memory and System Management

Logical word address

31

Two-level page table One-level page table Page offset

--~.r--- ~--------\r-------J~------~r---------~~--------~r----·~

PTE1

PTE2
PTEn format

PTEn

PTE511 One-level paoe table

o
Page table

PTEO

PTE1

PTEm

PTE511

o

31

31

Speclfi.s starting word
addr.ss of a pao. tabl.

Specifies the offs.t from the page table
starting addr.ss to choose
a particular PTE

Logical word addr.ss to be translated has the format .hown In the diagram. Bit. 1-3 of the
word addr ... specify on. of the .ight segment bas. r~l.t.rs (SBRs) .• he proc.ssor u •• s the
cont.nt. of this valid SBR to form lhe aeJdr ... of a PTE.
To form thl •• ddr ... , tha proce .. or baaln. with the Dhy.lcal .ddr .. s specified In bit. 11-31 of
the BBR. Thl •• ddr ... bacoma. bit. 1-'21 of the PTE .ddr Bit. 4-12 of the loglc.1 word
addr ... become bits 22-30 of the PTE addr The proce .. or appends a zero to {he right of
the PTE .ddr ... , m.klng • 31-bit word addr

Bits 1-21 of the PTE .ddr pacify the st.rting .ddr ... of a p.;! tabl •. Bits 22-31 of the
PTE .ddr ... spacify an offs.t from 1ha start of {he tabl. to some PTE (labeled PTEn in the
figur.). The PTE spacifi •• the .tarting addr.s. of a page tabl •.

The proc •• sor now constructs the addr ... of a sacond PTE, The physic.1 addr .. s sj)4!Cified in
bits 11-31 of the first (PTEn) become bits 1-21 of the .ddr.sl of thil second PTEm. Bitl 13-21
of the logical word .ddress become bits 22-30 of the second PTE' I .ddr ... , Th. processor
appends a z.ro to the right of the lecond PTE addr ... to make a 31-bit word addr

Bits 1-21 of the second PTE addr.ss lP.8Cify the .tartino address of a second paget.bl •. Bits
22-31 of the second PTE address specify an offset from the start of the second table to some
PTE (labeled PTEm in the figure). The second PTE lpecifles the starting addr •• s of a page.
The page table containing PTEm can be paged its.lf. PTEn can Indicate a nonr.sld.nt pagetabl •.

The second PTEm' 5 bits 11-31, the page addr.ss, become bits 1-21 of the physical addrels.
The page offs.t s~ifled In bits 22-31 of the logical word addr.ss becomes bits 22-31 of the
phYSical address. This last value is the phYSical word address. INT-00192

Figure 9-5 Two-level pagetable translation

9-8 014-001371

Memory and System Management

Page Access
When an instruction refers to a page. the processor determines the validity of the access
by checking the access request with the appropriate validation and access validation bits
in the pagetable entry.

If an instruction refers to a valid page that is not currently in physical memory. a page
fault occurs. The fault handler saves the current state of the processor in reserved
memory (as a context block). moves a memory page to disk (if required). and then
transfers the referenced page from disk to memory.

Access Validation

When a referenced page is valid. the processor determines whether the page is restricted
to a particular access. Bits 2-4 of the referenced pagetable entry contain the access bits
that specify any restriction.

If the reference to memory is for reading. the processor checks bit 2. A 1 in bit 2
indicates a valid read while a 0 indicates an invalid read. When the reference is invalid.
a protection fault occurs, and AC 1 contains the error code O.

NOTE: In general, read access must always be available to any page with execute
or write access.

When the reference to memory is for writing. the processor checks bit 3. A 1 in bit 3
indicates a valid write. while a 0 indicates an invalid write. When the reference is invalid.
a protection fault occurs. and AC 1 contains the error code 1.

If the reference to memory is for executing. the processor checks bit 4. A 1 in bit 4
indicates a valid execute while a 0 indicates an invalid execute. When the reference is
invalid. a protection fault occurs. and AC 1 contains the error code 2.

Demand Paging

As logical address space is larger than the physical memory space. all pages cannot reside
in physical memory at the same time. A paging facility (under control of the page fault
handler) moves referenced pages in and out. of memory whenever necessary. This process
is called demand paging.

When an instruction refers to a valid page not currently in physical memory, a page fault
occurs. A status field in the context block indicates the cause of the page fault (Refer to
the section. "Page Faults." in this chapter for detailed information.). If an instruction
refers to a location that requires a two-level pagetable when only a one-level pagetable is
allocated. then a protection violation occurs. Refer to the section. "Protection
Violations." in this chapter for more information.

Referenced and Modified Bits

A referenced bit and a modified bit. associated with each physical page in memory.
indicate whether a page has been read from or written to. When the processor reads a
word from memory, it sets the referenced bit associated with the physical page to one.
\Vhen the processor writes a word to memory. the processor sets the referenced and
modified bits associated with the physical page to ones. A read or write operation occurs
when the processor accesses memory without a protection fault occurring on a memory
resident page.

014-001371 9-9

Memory and System Manage01e"~

The referenced bit helps to determine which pa;
handler should replace with a new page from dl
system and the page fault handler to determine tJle

pages.

physical memory the page fault
ne referenced bit allows an operating

trequency of references to individual

The modified bit indicates if the processor wrote to a memory page. When a modified bit
equals one, the processor modified the contents of the page. The page fault handler must
first copy the page to disk before moving a new page from disk to memory. If a modified
bit equals zero, the processor did not modify the contents of the page, and the page fault
handler can immediately move a new page from disk to memory.

!':OTES: A memory reference by the computer's I/O subsystem does not affect the
state of the modified and referenced bits.

When the processor accesses pagetable pages to perform logical-to-physical
address translations, the referenced bit for the pagetable pages mayor may
not be set.

Table 9-4 lists the privileged instructions that manipulate the referenced and modified
bits. Refer to the chapter, "Fixed-Point Computing," for a list of additional instructions
that manipulate bit strings.

Table 9-4 Instructions that manipulate referenced and modified bits

Instruction Operation

LMRF Loads the modified and referenced bits for a page frame.

SMRF Stores the modified and referenced bits for a page frame.

NOTE: The results of these instructions are undefined for page frames outside
main memory.

Central Processor Identification

9-10

Central processor identification (CPUID) instructions load information about certain
system parameters (such as the memory r,ize and the microcode revision level) into one
or more fixed-point accumulators. Table 9-5 lists the central processor identification
instructions.

Table 9-5 System identification instructions

Instruction

ECLID, LCPID

NCLID

Operation

loads CPUID information Into bits 0-31 of ACO.

loads CPUID Information Into bits 16-31 of ACO. AC1. and AC2,

014-001371

Memory and System Management

Privileged Faults
\Vhile executing an instruction. the processor checks the operation and the data being
operated on. If the processor detects an error. a privileged or nonprivileged fault occurs
before the processor executes the next instruction in the instruction stream. A
nonprivileged fault is serviced by the operating system within the segment where the
instruction is executing. (The chapter. "Program Flow," discusses the handling of

nonprivileged faults.)

Privileged faults are serviced by the operating system in segment O. Upon detection of a
privileged fault, the address translator generates either a page or protection fault.

• Page fault - The processor detects a page fault when the interpretation of the
validity and appropriate access bits in a pagetable entry is coupled with an attempt
to refer to a location that is part of the logical address space, but is not part of the
physical address space.

• Protection fault - The processor detects a protection fault for an invalid memory
reference, invalid 110 operation, or illegal instruction (such as a privileged
instruction or an unimplemented opcode).

The following sections describe the actions the processor takes when a page fault or
protection fault occur.

Page Faults
When a page fault occurs, the processor does the following (refer to Figure 9-6):

NOTE: The following must a/ways be resident in physical memory: page zero of the
current segment of execution, page zero of segment 0, the context block, and
the page fault handler.

1. If the current segment is not 0, stores the frame pointer and stack pointer in their
respective locations in page zero of the current segment and performs a segment
crossing to segment O.

2. Uses the contents of locations 328 and 338 of segment 0 as a base address to store
a context block (the internal state of the machine) in memory. Refer to the
appendix, "Context Block Formats," in the machine-specific supplement for the
contents of the context block.

3. Initializes the segment 0 stack using the wide stack parameters from page zero of
segment O.

4. Stores one of the following codes into AC 1:

Code Explanation

0 Reserved

Reserved

2 Paget able page fault

3 Reserved

4 Normal object reference

5. Disables interrupts for one instruction, and jump~ indirect through locations 308 and
318 of segment O.

014-001371 9-11

9-12

Memory and System Management

Yes

onte)(t block stored;
pointer at 32-33 of

s80ment 0

Initialize
segment 0 stack

Store fault code
In ACI

.Jump @ 30-31
(s8Oment 0)

Stored frame pointer
and stack pointer
In current segment

INT-OOlg3

Figure 9-6 Page fault sequence

6. Executes the first instruction of the page fault handler.

The page fault handler then.

a. Begins restoring a page from memory to disk. if necessary. Refer to the section.
"Referenced and Modified Bits," ior more information on determining when a
page needs to be restored to disk.

The page fault handler invokes the 110 interrupt system to transfer the page to
disk.

b. Initiates loading the referenced page from disk to memory after the page fault
handler re~tores the referenced page to disk.

The page fault handler invokes the interrupt system to transfer the page from
disk.

c. Restores the state of the processor after the page fault handler loads the
referenced page into memory.

The page fault handler executes the \\'DPOP instruction, which restores the
state of the processor and restarts the interrupted program. The \\'DPOP
instruction accesses the information In the context block to restore the
processor's state.

7. Complt!les the memory reference and continues executing the instruction.

l'OTE: A page fault must not occur during steps J through 5: otherwise, the
pr(lccssor halts.

014-001371

Memory and System Management

Protection Violations
The processor detects a protection violation for an invalid memory reference, invalid 1/0

operation, or illegal instruction (such as a privileged instruction or an unimplemented

opcode) .

Since an operation could produce multiple protection violations. the processor imposes
priorities on the faults. \Vhen two or more faults occur simultaneously, the processor
services the highest priority fault and ignores lower priority faults. Table 9-6 lists the
protection violation faults in the order of priority. For instance, if writing to a
write-protected page in an inner ring. the processor services the inward ring reference
protection violation (with priority 2) and ignores the write protection violation (with

priority 4).

Table 9-8 Priority of protection violation faults

Level of Priority

o
1

2

3

4

5

6

7

Fault Description

Privileged or I/O instruction violation

Indirect addressing violation

Inward reference violation

Segment validity violation

Pagetable validity violation

Read. write. or execute access violation

Segment crossing violation

Unimplemented opcode or Instruction

Instructions which operate on characters (such as WCMV or 'VCMT) must use byte
pointers that denote ring-valid addresses in the user's address spact.: (even if the length
of the string to be moved, or copied, etc., is zero). Any and all instances described by
byte-pointer (or length) pairs must also be entirely ring-valid in the user's address space.
Should these conditions not be met, a protection fault may occur, even if the offending
address is not actually required to be accessed. This could occur in the case of
zero-length strings or if the bytes are ignored due: to truncating a long source string. The
protection fault may occur either prior to any bytes being accessed, or at the time of the
offending access.

Protection Violation Sequence
\\Then the processor detects a protection violation (Figure 9-7), the processor aborts
execution of the instruction which caused the protection fault and performs the following:

NOTE: Page zero Jor segment 0 and page zero Jor the segment where the protection
fault originated must both be resident in physical memory, otherwise. an
If infinite page fault" results.

1. Saves the offending program counter value (offending PC), the fault code describing
the fault type, and the offending address (if any) in internal processor state.

2. If the offending PC is in segment 0, procedes to step number 6.

3. Stores the contents of the wide stack pointer and the wide frame pointer into the
page zero locations of the current segment (locations 208 and 228 , respectively). If
another protection fault is detected during this operation, the stack values are not
stored into their locations.

4. Crosses to segment O.

014-001371 9-13

•
9-14

Memory and System Management

5. Redefines the wide stack for segment O. The processor initializes the wide stack
pointer, wide stack limit, and wide stack base registers using the contents of
locations 208 through 278 in page zero of segment 0 . (See the note following this
discussion.)

6. Pushes a fault return block, as shown in Table 9-7, onto the segment 0 stack. (See
the note following this discussion.)

7. Sets the PSR to zero.

8. Initializes ACO, AC 1, and AC2.

Sets ACO equal to the address of the instruction (offending PC) causing the fault.

Sets AC 1 equal to a value identifying the fault. Table 9-8 lists the protection fault
codes.

Sets AC2 equal to the specific address (offending address) that caused the
reference problem. If applicable (bit 0 is undefined). Table 9-8 lists the faults that
return an address to AC2.

9. Checks for stack overflow.

If stack overflow occurs, the processor pushes a stack fault return block onto the
stack and process the stack fault. The stack fault return block contains the address
of the protection fault handler. (See the note following this discussion.)

If no stack overflow occurs, the processor continues to service the protection fault.

10. Jumps to the fault handler and executes the first instruction before any I/O
interrupts are taken. Reserved memory location 368 of segment 0 contains the
16-bit starting address of the protection violation fault handler. (See the note
following this discussion.)

NOTE: If another protection fault(s) occurs before processing of the original protection
fault is resolved, the processor

• Sets {he PSR to O.

• Places the offending PC into ACO. the fault code into ACJ, and the
offending address (if any) into AC2.

• Halts with a sta[US of "infinite protection fault."

If one or more protection faults should occur (during steps 5, 6, 9, or JO). the
values in AC J and AC2 are those for the last protection fault detected. The
offending PC in A cn is always that of the last instruction which started
executing.

During the servicing of a protection violation:

• If an 1/0 interrupt request occurs, the processor executes the first instruction of the
protection violation fault handler before servicing the interrupt request.

• If a protection violation fault occurs while handling any other type of nonprivileged
fault, the processor aborts the first fault and processes the protection violation fault.
The return block pushed onto the stack for the protection violation fault is undefined ..
as are the contents of ACO.

014-001371

Memory and System Management

Table 9-7 Protection fault return block

Doubleword
in Block
Pushed

1

2

3

4

5

6

Contents

PSR (Bits 0-15 contain the processor status register: bits 16- 31 contain zeros)

ACO

AC1

AC2

AC3

PC (Bit 0 contains Carry: bits 1-31 contain the PC of execution if fault type is
privileged or i 10. otherwise these bits are undefined.)

Table 9-8 Protection fault codes

Code

(octal)

0

1

2

3

4

5

6

7

10

11

12

13

14

15

16

17

20

21

014-001371

Address Meaning

in AC2

y Read violation

Y Write violation

Y Execute violation

Y Validity violation
(SBR or PTE)

Y Inward address
reference

y Defer (indirect)
violation

y Illegal gate

y Outward call

y Inward return

N Privileged
instruction
violation

N 110 protection
violation

N Reserved

N Invalid
micro-interrupt
return block

N Unimplemented
instruction

N Reserved

N Invalid form 10
(GIS)

N Invalid attribute
index (GIS)

N Invalid CHARBL T
source (GIS)

Explanation

Bit 2 of the specified PTE contains a O.

Bit 3 of the specified PTE contains a O.

Bit 4 of the specified PTE contains a O.

Bit 0 of the specified SBR or PTE contains a O.

Attempted data access to a location in an inner segment.

More than 15 levels (machine-dependent) of indirection
specified.

Gate number specified in an inward call is greater than or
equal to the maximum number of gates: or a gate bracket
access violation.

Attempted transfer of control from the current segment
to another with an outward subroutine call.

Attempted transfer of control from the current segment
to another segment with an inward return from a
subroutine.

Attempted use of a privileged instruction In a segment
other than segment O.

Attempted use of an 1/0 instruction when bit 3 of the
current segment' s SBR is set to O.

Reserved.

Return block created during a micro-interrupt is incorrect.

Specified instruction opcode Is not implemented on this
machine.

Reserved.

Specified form 10 does not refer to a defined form.

Specified attribute index does not refer to a defined
attribute.

Specified source form is not a one-bit-per-pixel virtual
form.

9-15

Memory and System Management

Abort instruction
execution

Save offending PC,
fault code, and offending

address Internally

Store wide stack
pointer and frame

pointer in page zero
of current segment

Don't store
stack pointer and

frame pointer

Cross to
segment 0

Initialize stack
from segment 0

page zero locations

Yes

No

Figure 9-7 Protection violation sequence

9-16

Push fault return
block onto

segment 0 stack

Set PSR to 0;
Initialize

ACO (offending PC),
ACl (fault cOde),

AC2 (offending address)

Jump to protection
fault handler
(location 368
segment 0)

Yes

Execute first instruction
of protection fault handler

before honoring I/O
interrupts

Push fault
return block

Jump to stack
fault handler

Set PSR to 0;
Initialize

ACO, AC1, AC2

Infinite protection
fault generated

Machine halts

INT-0018l

014-001371

Memory and System Management

Unimplemented Instructions

The processor checks for a valid instruction opcode before executing an instruction. If
the instruction is implemented on your machine. the operation is performed by hardware.

If the instruction is not implemented or the opcode is invalid. the processor takes a
protection fault and reports the fault code for an unimplemented instruction. In the
return block pushed onto the wide stack. the PC and AC2 are undefined (unless the PC
points to a PBX instruction - then AC2 contains the ope ode to execute).

NOTE: Since an unimplemented instruction does not depend on the address translator,
the instruction can cause a protection fault when the machine is in physical
mode. In this case, the processor uses the protection fault handler specified in
physical location 368 ,

User Protection Fault Handler

As an alternative. the operating system may forward the protection fault data to a "user
protection fault handler." This fault handler should exist in the segment of the offending
PC (when the protection fault occurs outside of segment 0).

User protection fault handlers can be invoked if the following two conditions, pertaining
to the segment where the fault originated (faulting segment), are true:

• the segment has a wide stack to receive the return block, and

• page zero location 368 contains a protection fault handler address. (If this location
contains a 0, the processor assumes that the program running in that segment does
not want to be notified of its protection faults.

If location 368 contains a nonzero value. the protection fault can be forwarded to the
faulting segment with a routine that does the following:

1. Preserves the accumulator values (passed to the segment ° protection fault handler)
for transmission to the faulting segment.

2. Copies the return block from the segment 0 stack to the faulting segment's stack.
and adjusts the stack pointer in the faulting segment accordingly.

3. Tests the new stack pointer against the stack limit for that segment. If a stack
overflow condition is detected. then the forwarding procedure must also emulate the
stack fault.

4. Resolves the protection fault handler address contained in location 368 of the
faulting segment. This address must be checked for all access bits required to permit
instruction fetching (valid. read. and execute).

5. Returns control to the faulting segment with a \\'POPB instruction. supplying the
following data:

• Carry (value in return block pushed by the protection fault).

• PC (value resolved in step 4 above).

• ACO-AC3 (values reported to segment 0 protection fault handler).

• PSR (zero).

;\;OTE: If a new protection fault occurs at any step in this procedure, the attempt (0

forward the protection fault to the offending segment should be abandoned.

014-001371 9-17

Memory and System Management

Reserved Memory
The processor reserves certain areas of memory for use by the processor and/or an
operating system - page zero and the state area. Each segment has its own page zero;
each ECLIPSE MV/Family system (which implements it) has a single state area. If these
areas are overwritten (such as by a wide stack which crosses an upper segment boundary
overwriting page zero of that segment), data will be lost, and results will be undefined.

Page Zero

9-18

\Vhen a privileged or nonprivileged fault occurs, the processor transfers control to the
appropriate fault handler. The processor reserves memory locations 0 through 478 of page
zero (locations 0 through 3778) of each segment for storing certain parameters and the
starting addresses of the fault handlers.

The processor interprets page zero locations for segment 0 differently from page zero
locations for segments 1 through 7. For example, segment 0 contains pointers to

privileged fault handlers, and segments 1 through 7 reserve these locations. Segment 0
locations are listed in Table 9-9; segments 1 through 7 locations are listed in Ta ble 9-10.

Specified addresses for the fault handlers are not indirectable unless otherwise specified.
Some pointers are 16 bits long; they can only refer to locations in the first 64 Kbytes of
the segment containing the pointer. If the pointer is indirect. all pointers in the indirect
chain will only refer to the first 64 Kbytes of the segment. With the address translator
enabled, the processor interprets all locations in page zero as logical addresses. With the
address translator disabled, only the contents of page zero in segment 0 are valid; the
processor interprets page zero addresses as physical ones.

014-001371

Memory and System Management

Table 9-9 Page zero locations for segment 0

Location Name
(octal)

0 Interrupt level

I/O handler

2-3 110 return address

4 Vector stack pointer

5 Current 16-blt
narrow mask

6 Vector stack limit

7 Vector stack fault
address

10-11 Breakpoint address

12-13 WXOP origin address

14 Wide stack fault
handler

15-17 Reserved

20-21 WFP

22-23 WSP

24-25 WSL

26-27 WSB

30-31 Page fault handler

32-33 Context block pointer

34-35 WGP

36 Protection fault
handler address

37 Fixed-point fault
handler address

40 Stack pointer

41 Frame pointer

42 Stack limit

43 Narrow stack
fault handler

44 XOPO origin address

45 Floating-point fault
address

46 Declmal/ ASCII fault
handler

47 DERR error handler

014-001371

Contents or Function

Level of interrupt processing:
o base-level processing
nonzero intermediate-level processing

Address of 110 Interrupt handler (Indirectable).

Address of I/O Interrupt return. Location 2 contains the
high-order bits: location 3 contains the low-order bits.

Low-order 16 bits of vector stack pointer. base. and frame
pointer (high-order bits = 0).

Current 16-blt narrow interrupt priority mask.

Low-order 16 bits of vector stack limit.

Address of vector stack fault handler (indjrectable).

Address of breakpoint handler (Indirectable).

Address of beginning of extended operatIons table - see the
WXO P instruction description.

Address of wide stack fault address handler (Indirectable).

Reserved.

Wide frame pointer.

Wide stack pointer.

Wide stack limIt.

Wide stack base.

Address of wide page fault handler.

Address of base of context block save area.

Gate pointer: address of the gate array.

Address of protection fault handler (indirectable).

Address of fixed-point fault handler (Indlrectable).

Address of top of 16-bit narrow stack.

Address of start of current narrow frame minus 1.

Address of last normally usable location In narrow stack.

Address of ECLIPSE 16-blt narrow stack fault handler
(Indlrectable) .

Address of beginning of narrow extended operations table.
See the XOPO Instruction description.

Address of floating-point fault handler (Indirectable).

Address of decimal/ASCII fault handler (Indlrectable).

Address of D ER R Instruction error/trap handler. See the
DERR Instruction description.

9-19

I

I

9-20

Memory and System Management

Table 9-10 Page zero locations for segments 1 through 7

Location Name Contents or Function
(octal)

0-7 Reserved Reserved.

'0-' , Breakpoint address Address of breakpoint handler (indirectable).

12-13

14

15-17

20-21

22-23

24-25

26-27

30-33

34-35

36

37

40

41

42

43

44

45

\\'XO P origin address Address of beginning of extended operations table - see the
WXO P instruction description.

Wide stack fault
handler

Address of wide stack fault address handler (indirectable).

Reserved Reserved.

WFP Wide frame pOinter.

WSP Wide stack painter.

WSL Wide stack limit.

WSB Wide stack base.

Reserved Reserved.

WGP Gate pointer; address of the gate array.

Reserved Reserved (refer to the section, .. Protection Violations,· In
this chapter for further information) .

Fixed-point fault Address of fixed-point fault handler (Indirectable).
handler address

Stack pointer Address of top of 16-bit narrow stack.

Frame pointer. Address of start of current narrow frame minus 1.

Stack limit Address of last normally usable location in narrow stack.

Narrow stack Address of ECLIPSE 16-blt narrow stack fault handler
fault handler (Indirectable).

XOPO origin address Address of beginning of narrow extended operations table.
See the X 0 PO instruction description.

Floating-point fault Address of floating-point fault handler (indirectable).
address

Decimal! ASCII fault Address of decimal/ ASCII fault handler (indirectable).
handler

DERR error handler Address of OERR instruction error/trap handler. See the
DERR instruction description.

014-001371

Memory and System Management

State Area
Some ECLIPSE MV IFamily computers require that a physically contiguous block of main
memory be allocated to the processor for control purposes. This state area is available
for use by the processor as hardware reserved memory and contains information which
the processor can not store in internal processor state. The operating system should treat
this area as an extension of the internal processor state and consider the area as unusable
memory.

On systems that require a state area, use the privileged Store State Pointer (SSPT)
instruction to allocate memory; systems which do not require a state area treat this
instruction as a no-op. The state area is a system-wide entity; when any processor (in a
multiple-processor configuration) issues an SSPT instruction, all of the processors have
knowledge of this.

The operating system must execute the SSPT instruction at system initialization time,
before the address translator is enabled. After execution, the state area is available for
use by the processor.

The state area should be set up as soon as practical after system powerup. The generally
accepted procedure is to execute an SSPT instruction immediately after executing the
Load Control Store instruction (LCS) and "several" ECLIPSE MV/Family instructions.
The "several" instructions should be a few load-, store-, add-, subtract-, and jump-type
instructions which would place the machine in an intermediate state and ready for the
SSPT instruction (the set of valid instructions is machine-specific; these instructions do
not check to determine if there is a valid state area). 110 interrupts should not occur
between the execution of the LCS instruction and the SSPT instruction.

The SSPT instruction stores the base address for the contiguous block from an
accumulator into the state pointer in memory. The operating system then defines the size
of the block. For further information, refer to the SSPT instruction description.

If it becomes necessary to move the state area (for example, as a result of a hard
memory failure within the state area), the operating system should stop any operations
that may change the contents of the state area, such as CIO or WLMP operations.
Then, the operating system may perform the move, reloading the state pointer by
executing an SSPT instruction as a final step. Note that the processor moves the state
pointer, but not the data in the state area.

The information within the state area may be lost when another SSPT instruction is
issued. This information is machine-specific and may include: architectural clock state,
GIS state, cross-interrupt state (multiple processors), all or some of the command I/O
registers, stop-on-store data, and reference and modify bits. Additionally, in a
multiple-processor system, the JPSTATUS instruction may incorrectly report the state of
other processors in the system (unless they are stopped), and a "loaded" processor (in
the JPLOAD instruction sense) may not flush correctly (refer to the appropriate
instruction description for further information). Any emulated device may also have to be
re-initialized with respect to any internal device state (including its mask bit).

End of Chapter

014-001371 9-21

10
ECLIPSE 16-Bit Programming

The ECLIPSE \IV/Family 32-bit processor executes 16-bit processor instructions to

provide upward program compatibility and for development of 1o-bit programs (for
systems such as the ECLIPSE C/350 processor). This chapter discusses these capahilIties
as well as machine-specific restrictions.

Programs that include ECLIPSE 16-bit memory- and stack-reference instructions must
meet certain requirements or restrictions as explained in this chapter.

Refer to the ECLIPSE C13S0 Principles of Operation manual for a further explanation of
ECLIPSE C/350 instructions. terms, and conventions.

This chapLer explains the dilferences and similarities between the ECLIPSE 1o-bit and
ECLIPSE ~1V/Family (32-bit) systems in the areas of:

• registers and accumulators,

• stack operations.

• faults and interrupts.

• program and suhroutine expansion.

• instruction execution,

• program flow.

• fault handling,

• reserved memory.

• cpe identification.

\Vithin this manual. we refer to ECLIPSE 16-bit compatihle instructions as ECLI PSE
instructions. and ECLIPSE J\tfV/Family-specific instructions as ECLIPSE ~1\,/Famjl\'
instructions.

014-001371 10-1

ECLIPSE 16-Bit Programming

ECLIr"'SE Registers

10-2

:: majority of ECLIPSE 16-bit registers are physically one and the same as the
ECLIPSE ~1V/Family registers - the differences are in the formats and the number of
bits affected. For instance. you can load data into an accumulator with an ECLIPSE
16-bit instruction and then manipulate that data using an ECLIPSE \1V/Family 31-bit
instruction. This section describes the correspondence between ECLI PSE 16-bit registers
and ECLIPSE \.1\·/Family registers; Table 10-1 lists the regil.;ters.

The following ECLIPSE i\1V/Family registers are unaffected by the execution of
ECLIPSE 16-bit instructions:

• Processor status register (PSR).

Refer to the description of the Carry flag in this section.

• \Vide stack management registers (\\'SP, \\'FP, \\'SL, \VSB).

ECLIPSE instructions function with the narrow stack. Thus. the instructions use
reserved memory locations in page zero of each segment for stack management
without affecting the stack management registers in ECLIPSE MV/Family systems. The
section, "ECLIPSE Stack," in this chapter describes the narrow stack parameters.

ECLIPSE J\.1V/Family systems implement the following ECLIPSE registers:

• Four 16-bit fixed-point accumulators (ACO. AC 1. AC2, AC3).

The ECLIPSE fixed-point accumulator bits 0 through 15 correspond to the ECLIPSE
f\1 V /Family fixed-point accumulator bits 16 through 31 (see Figure 10-1). \Vhen an
ECLIPSE instruction loads data into an accumulator. bits 16-31 receive the data.
while the contents of bits 0-15 are undefined (unless otherwise noted). When using
these ECLIPSE instructions in the 32-bit environment. zero-extend (ZEX instruction)
or sign-extend (SEX Instruction) the results accordingly. Exceptions to this rule
include the EJSR, ELEF. FRH. JSR and LEF instructions. Refer to the chapter.
"Fixed-Point Computation," for the accumulator formats.

An ECLIPSE instruction (such as the eLM instruction) does not alter the contents of
an accumulator (bits 16-31) when it reads data from the accumulator.

\Vhen using a fixed-point accumulator for accumulator-relative addressing. the
ECLIPSE accumulator hils 1-15 correspond to the ECLIPSE !\1V/Family accumulator
bils 17-31.

• Four 6~-hit floating-point accumulators (FPACO, FPACl, FPAC2. FPAC3).

The ECLIPSE floating-point accumulators are identical to the 64-bit ECLIPSE
I\1V /Family floating-point accumulators. Refer to the chapLer. "Floating-Point
Computation." for the accumulator formats.

• One 32-bit floating-point status register (FPS R).

The ECLIPSE 32-hit floating-point status register corresponds to bits 0 through 15
and 49 through 63 of the FPSR in ECLIPSE MV/Family systems (see Figure 10-1).
Note that bit 48 is reserved and returned as O. Refer to the chapter. "Floating-Point
Computation." for the FPSR contents.

014-001371

ECLIPSE 16-Bit Programming

• One 1-bit carry flag (Carry).

As executing ECLIPSE instructions do not generate fixed-point faults, they do not
affect the processor status register (PSR). Certain ECLIPSE arithmetic instructions
(such as ADD or DIV) set the state of the carry bit (Carry). To detect an appropriate
fault, it is necessary to check the state of Carry upon completion of these instructions.
The carry for ECLIPSE instructions comes from bit 16 of a fixed-point accumulator.
The Instruction Dictionary describes the ECLIPSE 16-bit instruction set and those
instructions which affect Carry.

• One 15-bit program counter (PC).

The ECLIPSE program counter bits 1 through 15 correspond to the ECLIPSE
MV/Family program counter bits 17 through 31 (see Figure 10-1). An ECLIPSE
program flow instruction modifies bits 17-31, while the most significant bits are the
current segment (bits 1-3) and zeros (bits 4-16). This constrains ECLIPSE addressing
to the first 64 Kbytes of the current segment. The following example demonstrates the
results of executing a program flow instruction in both the lower 64 Kb}tes of a
segment and above that limit:

Lower 64 Kbytes: ;No-op

Above 64 Kbytes:

JMP .+1

JMP .+1 ;Resolves to some address in lower 64K memory

N'OTE: Normal program flow and conditional skip instructions are not constrained
to the first 64 Kbytes of memory. For example, the execution of the

instruction MOV# O,O,SNR produces a valid skip or no skip anywhere in
memory.

Table 10-1 Comparison of ECLIPSE 16-bit and ECLIPSE MVIFamily registers

Register ECLIPSE (16-blt)
(applicable bits)

PSR Not applicable

WSP, WFP, WSL, WSB Not applicable

ACO, AC1, AC2, AC3 16-31

FPACO, FPAC1. FPAC2. FPAC3 0-31 (single-precision)

0-63 (double-precision)

FPSR 0-15. 49-63

Carry 0

PC 17-31

014-001371

ECLIPSE MV/Famlly (32-blt)
(applicable bits)

0-15

0-31

0-31

0-31 (single-precision)

0-63 (double-precision)

0-63

o
1-31

10-3

ECLIPSE 16-Sit Programming

I Ei~~g-eglnl A~~U!I!Ulillg[1 D Applicable ECLIPSE bits

1
0 15

1

1
16 311

Elg"110g-EgiC1 S1iUUIi B~gI1i1~r

ANY OVFtUNF tNVf MOFf >TE • f z , N IRNDI Reserved 1 Ib
0 1 I 2 3 I .. I 5 I 6 I 7 I 8 I 9 11 I 12 15

1
16 31

1

132 471

I 48 '··4.

Floatlng~Poir1tj:),.ogram Counter

~I
ECgg[:llrIl ~gUDlIC

1

Current segment

I
0-0

15 1 1 3 ..

1

0

1'7
ECLIPSEeffeetlve address· I 16 31

INT-·xxxxx

Figure 10-1 ECLIPSE MVIFamily registers with applicable ECLIPSE 16-bit register bits

10-4 014-001371

ECLIPSE 16-Bit Programming

ECLIPSE Stack
The ECLIPSE stack (or narrow stack) supports ECLIPSE program development and
upward program compatibility. Unlike the wide stack, the narrow stack uses three
parameters in reserved page zero memory (of each segment) to define and control the
narrow stack.

• The narrow stack limit (location 428) defines the upper limit of the narrow stack.

Although specifying a 16-bit word, the narrow stack limit functions like the wide
stack limit.

• The narrow stack pointer (location 408) initially defines the lower limit of the
narrow stack.

After accessing the narrow stack. the narrow stack pointer defines the currer.t
location of the last word written onto or read from the narrow stack. (Although
specifying a 16-bit word. the narrow stack pointer functions like the wide stack
pointer.)

• The narrow frame pointer (location 418) defines a reference point in the narrow
stack.

Although specifying a 16-bit word. the narrow stack frame pointer functions like
the wide stack frame pointer.

NOTE: There is no parameter for the narrow stack base. To enable narrow stack
underflow, initialize the narrow stack pointer to 4008 and start the narrow
stack area at location 401 8 ,

The standard ECLIPSE (or narrow) return block consists of five words (see Table 10-2).
The return block contains only the least significant 16 bits of the four accumulators, and
the least significant 15 bits of the program counter or the frame pointer. An instruction
that uses the narrow stack such as FPSH (which pushes 18 words) should reserve an
additional six words on the stack. The chapter, "Program Flow Management," presents
narrow stack fault handling.

Table 10-2 Standard ECLIPSE (narrow) return block

Word Number
In Block

Pushed Popped

5

2 4

3 3

4 2

5

014-001371

Name

ACO

AC1

AC2

AC3

CRY/PC

Contents

Contents of accumulator 0 (bits 16-31)

Contents of accumulator 1 (bits 16-31)

Contents of accumulator 2 (bits 16-31)

Contents of accumulator 3 (bits 16-31)

Bit 0 contains Carry.
Bits 1-15 contain the 15 least significant bits of either
the PC return address or the narrow frame pointer
before the push)

10-5

ECLIPSE 16-Bit Programming

ECLIPSE Faults and Interruots
The processor uses the same pointers Co fault or interrupt handlers to service both
ECLIPSE 16-bit and ECLIPSE MV IFamily 32-bit floating-point faults, decimal! ASCII
faults, and I/O interrupts. The ECLIPSE 16-bit processor and the ECLIPSE MV/Family
32-bit processor use different methods to flag an interrupted and resumable EDIT
instruction.

• For floating-point faults. the processor pushes a return block onto either tht! narrow
or the wide stack. Which stack the processor uses depends on whether the first
instruction of the floating-point fault handler is a 16- or 32-bit instruction.

• For decimal! ASCII faults, the processor pushes a return block onto either the
narrow or the wide stack. Which stack the processor uses depends on the contents
of bit 16 in AC 1 (AC 1 contains the fault code). If bit 16 equals 1, this is an
ECLIPSE fault; if bit 16 equals 0, this is an ECLIPSE MV IFamily specific fault.

Thus, you can upgrade a program written for an ECLIPSE 16-bit processor to
incorporate 32-bit processor enhancements. Refer to the chapter, "Program Flow
Management, to for more information on the fault handlers.

• For 110 interrupts, the processor pushes a return block onto either the narrow or
the wide stack. Which stack the processor uses depends on whether the first
instruction of the liD interrupt handler is a 16- or 32-bit instruction.

Again, this allows you to upgrade a program written for an ECLIPSE 16-bit
processor to incorporate 32-bit processor enhancements. Refer to the chapter,
"Device Management, to for more information on the interrupt handler.

• For an interrupted and resumable EDIT instruction, the ECLIPSE 16-bit processor
sets ACO to minus one (1777778)' The ECLIPSE MV/Family 32-bit processor sets
the resume flag (IRES) in the PSR, and checks the flag after completing the
interrupt. For compatibility, the ECLIPSE MV/Family processor also sets ACO to
minus one.

Expanding an ECLIPSE Program

10-6

An ECLIPSE 16-bit program can be expanded by using a specific set of ECLIPSE
MV /Family (32-bit) instructions to

• Expand the program beyond 64 Kbytes.

• Use expanded data areas, such as large arrays.

• Use the ECLIPSE MV/Family 32-bit fixed-point arithmetic instructions.

Several methods are available to expand an ECLIPSE 16-bit program beyond 64 Kbytes.
The most reliable is to rewrite one of the subroutines so it contains ECLIPSE MV/Family
32-bit instructions and to place it in the segment anywhere above the lower 64 Kbytes.
The following requirements must be met when using this method.

• The program must call the expanded subroutine with the XJSR or LJSR instruction.
and establish a wide stack for the subroutine's use.

• The subroutine must begin with a wide special save (WSSVR or WSSVS) instruction
and end with a wide return (\VRTN) instruction.

• The subroutine must use the ECLIPSE MV/Family 32-bit memory-reference
instructions.

014-001371

ECLIPSE 16-Sit Programming

To expand data areas for large arrays or buffers. the processor must perform address
calculations with 32-bit fixed integer arithmetic. and it must refer to data with the 32-bit
memory-reference instructions. The program must then be changed to refer to the
expanded data area.

You can also create additional subroutines to maintain the large arrays and to refer to the
data through these routines. If you write an additional subroutine. be sure that you refer
to the subroutine with the Wide Special Save (WSSVS) and Wide Return (WRTN)
instructions. (U sing SAVE and RTN result in the loss of bits 0 to 15 of the accumulators
and the contents of the processor status register.)

To use 32-bit fixed-point arithmetic. all operations on the data (loading, calculations,
and storing) must be performed with 32-bit instructions. This can be accomplished by
making spot changes or by writing new subroutines; again, care must be taken when
mixing these operations with 16-bit operations.

Expanding an ECLIPSE Subroutine
An ECLIPSE 16-bit subroutine can be called from an ECLIPSE MV /Family 32-bit
routine using the changes listed in Table 10-3.

Table 10-3 Alterations to ECLIPSE subroutines

Changes to ECLIPSE
Subroutine Reason for Change

Replace SAVE with WSSVS or A routine can call the subroutine from an address which
WSSVR and RTN with WRTN. exceeds 16 bits. Also, the accumulators can contain 32-blt

entities.

Check external references for
32 -bit memory reference
instructions.

A routine could pass 32-blt fixed-point data. Also, a called
lower-level subroutine can be located In an address space
which exceeds 16 bits.

Check short negative references
on the stack that may require
32-bit displacements.

Using WSSVS or WSSVR In this subroutine changes the size
of the pushed stack block, requiring the assembler to
recalculate the negative reference.

Change a routine (to save the
31-bit PC) that calls a subroutine
with a J S R through page zero by
using LJ S R or XJ S R in the calling
routine to save the 31-bit PC.

ECLIPSE Instructions

A long address requires 31 bits and can cause the program
to exhaust page zero locations.

This section presents instructions that refer to memory or to the narrow stack. The
remaining ECLIPSE 16-bit instructions (such as ADD) are presented with the other
ECLIPSE MV/Family processor instructions.

Note that NIO[f] ac,CPU instructions (where ac is not specified as 0) are reserved or
assigned an ECLIPSE MV/Family specific function. For example, the NIO CPU is the
Load Control Store instruction (LCS).

The Instruction Dictionary and ECLIPSE MV/Family Instruction Reference Booklet
identify the ECLIPSE 16-bit instructions supported on the ECLIPSE MV/Family
processors. The machine-specific supplement lists all instructions supported by that
particular processor.

014-001371 10-7

ECLIPSE 16-Bit Programming

ECLIPSE MV/Family Instruction Compatibility
The ECLIPSE MV /Family systems limit ECLIPSE (16-bit) program flow instructions to

an addressing range of 0 to 64 Kbytes in the current segment.

ECLIPSE instructions that load AC3 with the address of the next instruction (such as
jump to subroutine) or push the address of the next instruction onto the narrow stack
(such as push and jump) calculate effective addresses within the lower 64 Kbytes of the
present segment.

The ECLIPSE r..1V /Family processors treat certain ECLIPSE instruction opcodes as
ECLIPSE I'vIV /Family specific instructions rather than ECLIPSE 16-bit instructions.
These include the ECLIPSE ALC (arithmetic and logic class) instructions which contain
both the "no-load" and "r:tever skip" codings. and the ECLIPSE XOP and XOPI
opcodes (these have been replaced by XOPO). ECLIPSE (16-bit) programs that contain
these instructions should be rewritten before running on an ECLIPSE MV/Family system.

In addition. the ECLIPSE r..1V /Family systems do not support the following ECLIPSE
instructions:

• Floating-point function instructions (FCOSD, FCOSS, FEXPD, FEXPS, FLOGS.
FSIND, FSINS. FPLYD, FPLYS. FSQRD, FSQRS) .

• VCT. SYC, and LMP.

Note that the results of some ECLIPSE 16-bit instructions may differ when they execute
on an ECLIPSE MV/Family processor and an ECLIPSE 16-bit processor. For instance,
after execution. the ECLIPSE instructions. LDI and STI, return different results to AC3.
If executing on an ECLIPSE MV/Family system, AC3 contains the address of the first
byte following the integer field. If executing on an ECLIPSE 16-bit system, the contents
of AC3 are undefined following execution of these instructions.

ECLIPSE Memory Reference Instructions

10-8

The processor considers the ECLIPSE memory reference instructions to be executing
within the first 32 Kwords (64 Kbytes) of the current segment. If the processor executes
an ECLIPSE memory reference instruction above the 32 K~ord limit, the effective
address reverts to within the ECLIPSE address space (lower 32 Kwords).

To refer to a word with an ECLIPSE memory reference instruction, the processor forms
an effective address as shown in Figure 10-2 and described in Table 10-4. Figure 10-3
illustrates ECLIPSE effective addressing.

Segment 0-0

15 ~ 3 4

Word address

INT-00195

Figure 10-2 ECLIPSE word addressing format

014-001371

ECLIPSE 16-Bit Programming

Table 10-4 ECLIPSE word addressing format description

Bits Contents Description

o @ Indirect bit - When set to 1. forces Indirect addressing through a single
word pointer.

1-3 Segment Number of the current segment.

4-16 0 - 0 The processor sets these bits to O.

17 -31 Word address Identifies a 16-blt word in the first 64 Kbytes of the current segment.

Segment 3

o
Narrow word address

/ A \

I 0 1011 10 I 000 1000 I 000 1000 I 000 1", 1,11 1,00 1 Dod
~~ 4 L-____________ 3_' ____ ~~--,;~--_r

Indirect Specifies
bit segment 3

Word address specifies
a word in memory

Figure 10-3 ECLIPSE effective addressing

o 15
Words in memory

INT-D0196

To refer to a byte with an ECLIPSE memory reference instruction. the processor forms a
byte address as shown in Figure 10-4 and described in Table 10-5. Figure 10-5
illustrates ECLIPSE byte addressing.

Segment 0-0

o 2 3

b I
31

Word address

16

INT-DQ197

Figure 10-4 ECLIPSE byte addressing format

Table 10-5 ECLIPSE byte addressing format description

Bits

0-2

3-15

16-30

31

014-001371

Contents

Segment

0-0

Word address

b

Description

Number of the current segment.

The processor sets these bits to O.

Identifies a 16-blt word In the first 64 Kbytes of the current segment.

Byte Indicator - Specifies the high or low byte. Set to O. indicates the
most significant byte (bits 0-7) of a word: set to 1. Indicates the least
significant byte (bits 8-15) of a word.

10-9

10-10

ECLIPSE 16-Bit Programming

Narrow byte address
I A ,

1000 I 000 I 000 I 000 I 000 I 0 I 000 1100 I 000 I 011 111011 I
~ 3 1516 30 31

Specifies
segment 0
in memory

Word address specifies
a word in memory

Figure 10-5ECLIPSE byte addressing

Segment 0

o

o 15

Words in memory

INT-00198

To refer to a bit with an ECLIPSE memory reference instruction (BTO. BTZ. SNB.
SZB. and SZBO). the processor forms a bit pointer from the contents of two
accumulators (aes and aed). The bit pointer is composed of a word pointer and a bit
identifier. The word pointer consists of an effective address (in the acs accumulator) and
a word offset (in the aed accumulator). The bit identifier is located in the least significant
bits of the aed accumulator.

Figure 10-6 shows the accumulator formats for the BTO. BTZ. SNB. SZB. and SZBO
instructions; Table 10-6 describes the accumulator formats.

acs contents

Segment 0-0

3 15

Word address

31

acd contents

0-0

o 15

J 28

Word offset Bit Identifier

31 16

INT·-00199

Figure 10-6 ECLIPSE bit addressing format

014-001371

ECLIPSE 16-Bit Programming

Table 10-6 ECLIPSE bit addressing format description

Bits Contents Description

8CS

o @ Indirect bit - When set to 1. forces indirect addressing through a single
word pointer.

1-3

4-16

17-31

8cd

Segment

0-0

Word address

0-15 0 - 0

16-27 Word offset

28-31 Bit identifier

Number of the current segment.

The processor sets these bits to O.

Identifies a 16-blt word in the current segment.

The processor sets these bits to O.

The processor adds these bits. an unsigned Integer. to the effective
address to determine a final word address.

Specifies the bit position (0-15) In the final word.

The processor uses the acs accumulator contents to calculate the effective address. For
the BTO, BTZ, SNB, SZB, and SZBO instructions, the processor limits effective
addressing to the first 64 Kbytes of the current segment. If a bit instruction specifies the
two accumulators (acs and acd) as the same accumulator, then the effective address is 0
in the current segment.

In Figure 10-7, notice that the processor adds the word offset, an unsigned integer. to
the effective address to determine a final word address. The processor then locates the
bit using the bit identifier, which specifies the a bit position (in the range of 0 through
15) in the final word.

Segment 6

Must be 0

I " ,

\ 0 \110 \ 0 I 000 I 000 \ 000 I 000 I 000 I 000 I 000 1,11 \111 I 74

~~ 4 16L17 ________________ 3_' __ -.r-~r_--7~~:----r
Indirect Specifies Word address specifies 77
bit segment 6 a word in memory 100

Word offset specifies a word relative to the

I " i
o 15

word speciVed by the word address ~

I 0 \ 000 \ 000 \ 000 I 000 \ 000 I 000 I 000 I 000 \ 011 I 0011 I Words in memory
o 151 16 31

\ I Bit identifier specifies
V a bit in addressed word

Must be 0

V
Word 102

Figure 10-7 BTO, BTZ, SNB, SZB, and SZBO bit addressing

014-001371

INT-D0200

10-11

ECLIPSE 16-8it Programming

ECLIPSE Fixed-Point Instructions

10-12

Table 10-7 lists the ECL IPSE fixed-point instructions that refer to memory. The table
also shows an equivalent ECLIPSE I\1V/Family (32-bit) processor instruction that can be
substituted to expand (within the segment) the memory address range.

Unless otherwise stated. the ECLIPSE instruction and the ECLIPSE ~IV/Family processor
equivalent instruction use identical

• Singleword or double word instruction length

• Argument string

• Data access for writing and for reading (register or memory)

• Data precision of 16 bits

An equivalent ECLIPSE !\1V IFamily instruction. however, uses a doubleword indirect
pointer, while the ECLIPSE instruction uses a single-word indirect pointer.

Table 10-7 ECLIPSE fixed-point computing instructions

ECLIPSE 16-blt
Instruction Operation

Block add and move
Block move
Set bit to one
Set bit to zero
Compare to limits and skip
Character compare
Character move until true
Character move
Count bits
Character translate and compare
Decrement and skip If zero
Edit decimal and alphanumeric 16-bit data
Extended decrement and skip If zero
Extended Increment and skip if zero
Extended load accumulator
Extended load byte (from memory to AC)
Extended store accumulator

ECLIPSE MV/Family
Equivalent Instruction

BAM
BLM
UTO
BTZ
eLM
CMP
CMT
CMV
COB
CTR
DSZ
EDIT
EDSZ
EISZ
ELDA
ELDB
ESTA
ESTB
ISZ
LDA
LDB
LSN
POP
PSII
SNB
SZB
SZBO
STA
STB

Extended store byte (right byte of AC to byte in memory)
Increment and skip if zero

\VBLM
WBTO
\VBTZ
\VCLM
\VCMP
WCMT
WCMV
\VCOB
WCTR
X~DSZ *
WEDIT
XNDSZ
XNISZ
XNLDA
XLDB
XNSTA
XSTH
XNISZ *
XNLDA *
\VLD8
"'LSN
WPOP
\VPSII
WSNB
\\'SZB
WSZBO
XNSTA *
WSTn

Load accumulator
Load byte (from memory to AC)
Load sign
Pop multiple accumulators
Push multiple accumulators
Skip on nonzero bit
Skip on zero bit
Skip on zero bit and set to one
Store accumulator
Store byte (right byte of AC to byte in memory)

The ECLIPSE MVIFamily equivalent instruction is two words in length.

014-001371

ECLIPSE 16-Bit Programming

ECLIPSE Floating-Point Instructions
Table 10-8 lists the ECLIPSE floating-point instructions that refer to memory. The table
also shows an equivalent ECLIPSE ~1Y IFamily instruction that can be substituted to

expand (within the segment) the memory address range.

Unless otherwise stated, the ECLIPSE instruction and the ECLIPSE MY IFamily
equivalent instruction use identical

• Singleword or double word instruction length

• Argument strings

• Data accesses for writing and for reading (register or memory)

• Data precisions of 16, 32, or 64 bits

An equivalent ECLIPSE ~1Y/Family instruction, however, uses a double word indirect
pointer, while the ECLIPSE instruction uses a single-word indirect pointer.

When the processor convens a floating-point number to a fixed-point integer, it correctly
convens the largest negative number without a mantissa overflow. For single-precision,
the processor convens the integer ponion of floating-point numbers to an integer ranging
from -32,768 to +32,767, inclusive. For double-precision, the processor converts the
integer portion to an integer ranging from -2,147,483,648 to +2,147,483,647, inclusive.

Table 10-8 ECLIPSE floating-point computing instructions

ECLIPSE 16-blt ECLIPSE MV IFamily
Instruction Operation Equivalent Instruction

FAMD Add double (memory to FPAC) XFAMD
FAMS Add single (memory to FPAC) XFAMS

FDMD Divide double (FPAC by memory) XFDMD

FDMS Divide single (FPAC by memory) XFDMS

FFMD Fix to memory (FPAC to memory) \VFFAD •

FLDD Load floating-point double XFLDD

FLDS Load floating-point single XFLDS

FLMD Float from memory \VFLAD •

FLST Load floating-point status register LFLST ••

FMMD Multiply double (FPAC by memory) XFMMD

FMMS Multiply single (FPAC by memory) XFMMS

FPOP Pop floating-point state \VFPOP

FPSH Push floating-point state \\'FPSH

FSMD Subtract double (memory from FPAC) XFSMD

FSMS Subtract single (memory from FPAC) XFSMS

FSST Store floating-point status register LFSST ••

FSTD Store floating-point double XFSTD

FSTS Store floating-point single XFSTS

LDI Load integer (memory to FPAC) WLDJ

LDJX Load integer extended (memory to FPAC) WLDJX

STI Store Integer (FPAC to memory) WSTI

STIX Store Integer extended (FPAC to memory) \\'STIX

The WFFAD and WFLAD instructions use the 32 bits of a fixed-point accumulator. while
the equivalent ECLIPSE instructions use two memory words.

014-001371

The LFLST and LFSST instructions are triple--word instructions. while the ECLIPSE
instructions are doubleword instructions.

10-13

ECLIPSE 16-Bit Programming

Floating-Point Numerical Algorithms

10-14

The ECLIPSE floating-point loads (FLDS and FLDD) do nG: 0rrect impure ZE~ro input.
All loads simply move the memory operand to the specified floaling-point accumulator.
No normalization and correction to true zero is performed. The Z and N bits of the
floating-point status register (FPSR) are set to reflect the loaded operand only if the
operand is normalized. The Z and N flags are undefined if the operand is not
normalized.

For all instructions, true zero is guaranteed to be generated for valid inputs only. If an
impure zero is generated with invalid inputs, the result is not necessarily converted to true
zero.

The ECLIPSE FFAS and FFMD instructions leave the Z and N bits of the FPSR
unchanged.

Otherwise, when bit 8 (RND) of the FPSR is 0, the results of the floating-point
computation performed on the ECLIPSE MV/Family processor are identical to those
obtained on an ECLIPSE 16-bit processor.

014-001371

ECLIPSE 16-Bit Programming

ECLIPSE Program Flow Instructions
Table 10-9 lists ECLIPSE program flow instructions that refer to memory. The table also
lists an equivalent ECLIPSE MY/Family instruction that can be substituted to expand
(within the segment) the memory address range and enable use of the wide stack.

Unless otherwise stated. the ECLIPSE instruction and the ECLIPSE MY/Family
equivalent instruction use identical

• Singleword or doubleword instruction length

• Argument strings

• Data accesses for writing and for reading (register or memory)

The data precision changes from 16 to 32 bits.

An equivalent ECLIPSE MY/Family instruction. however. uses a doubleword indirect
pointer. while the ECLIPSE instruction uses a single-word indirect pointer.

Table 10-9 ECLIPSE program flow management instructions

ECLIPSE 16-blt ECLIPSE MV IFamlly
Instruction Operation Equivalent Instruction

DSPA Dispatch LDSP
EJMP Extended Jump XJMP
EJSR Extended jump to subroutine XJSR
ELEF Extended load effective address XLEF
JMP Jump
JMP ,1 Jump, relative to the program counter WDR
JSR Jump to subroutine
LEF Load effective address
POPD Pop block and execute (return from XOPO) WPOPD
POPJ Pop PC and Jump (return with PSHJ) WPOPJ
PSHJ Push Jump (return with POPJ) XPSIIJ
PSIIR Push return address (pop with POPJ)
RSTR Restore (return from veT -- mode E) WRSTR **

RTN Return \\,RTN *

SAVE Save (used with J S R) WSSVR*
WSSVS *

SAVZ Save without arguments (used with J S R) WSSVR*
WSSVS *

XOPO ••• Extended operation (return with POPD) WXOP ***

The WRTN, WSSVS, and WSSVR instructions modify the fixed-point overflow mask (OVK)
in the processor status register, and use a return block Of six doublewords.

014-001371

The WRSTR and XVCT instructions use the wide stack and are equivalent to the ECLIPSE
instructions, RSTR and VCT (mode E).

The XOPO and WXOP instructions are doubleword instructions.

10-15

ECLIPSE 16-Sit Programming

ECLIPSE Stack Instructions

10-16

Table 10-10 lists ECLIPSE stack instructions that refer to memory. The table also lists an
equivalent ECLIPSE MVFamily instruction that can be substituted to expand the memory
address range (within the segment).

Unless otherwise stated, the ECLIPSE instruction and the ECLIPSE MV/Family
equivalent instruction use identical

• Single word or doubleword instruction length

• Argument strings

• Data accesses for writing and for reading (register or memory)

The data precision changes from 16 to 32 bits.

An equivalent ECLIPSE MV/Family instruction, however, uses a doubleword indirect
pointer, while the ECLIPSE instruction uses a single-word indirect pointer.

Table 10-10 ECLIPSE stack management Instructions

ECLIPSE 16-bit ECLIPSE MV/Family
Instruction Operation Equivalent Instruction

MSP Modify stack pointer WMSP
POP Pop multiple accumulators WPOP
POPB Pop block and execute (return from XOPO) WPOPB
POPJ Pop PC and jump WPOPJ
PSH Push multiple accumulators WPSH
PSlIJ Push jump XPSHJ
PSHR Push return address XPEF
RSTR R.'tore (return from veT -- mode E) WRSTR ••

RTN Return WRTN *

SAVE Save (used with J S R) WSSVR*
WSSVS •

SAVZ Save without arguments (used with J S R) WSSVR·
WSSVS *

XOPO·" Extended operation (return with POPB) WXOP ***

The WRTN I WSSVS. and WSSVR instructions modify the fixed-point overflow mask (OVK)
in the processor status register. and use a return ,block of six doub/ewords.

The WRSTR and XVCT instructions use the wide stack and are equivalent to the ECLIPSE
instructions. RSTR and VCT (mode E).

The XOPO and WXOP instructions are doubleword instructions.

014-001371

ECLIPSE 16-Bit Programming

Program Flow
The program counter governs program flow management as described in the chapter,
.. Program Flow Management." The program counter contents are illustrated in the
section, "ECLIPSE Registers," of this chapter.

All ECLIPSE 16-bit instructions should work correctly at any program counter (PC)
value. The exceptions are the following instructions that should not be used above the
lower 64 Kbyles of the segment: LDI, LDIX, STI, STIX, EDIT, and LSN. The
ECLIPSE t\1V/Family equivalent instructions are respectively: \VLDI, \VLDIX, \VSTI,
WSTIX, \\'EDIT, and WLSN.

For any ECLIPSE program executing on an ECLIPSE MV/Family computer, when either
the PC contains 777778 and increments to refer to the next instruction, or an instruction
causes a skip over 777778, the PC does not wrap around to O. The PC increments to the
next value (such as 1000008), and the processor executes the instruction at this location.

When using the ECLIPSE instructions. BAM, BLM. CMP, CMT, CMV. CTR, and
EDIT. address wraparound may not occur at 777778 , This means that an ECLIPSE
program counter can possibly generate logical addresses larger than 64 Kbytes. In this
situation, results are undefined. If any of these instructions move data with descending
addresses and cross a segment boundary, a protection fault occurs, and AC 1 will contain
the protection code 4.

The ECLIPSE program flow instructions load bits 17 through 31 of the PC with the
address generated by the program flow instruction. The segment bits (1 through 3)
remain unchanged, and bits 4 through 16 are set to O.

Fault Handling
ECLIPSE fault handling is identical to the handling of ECLIPSE MV/Family system
nonprivileged faults as described in the chapter, "Program Flow Management." If the
execution of an ECLIPSE instruction causes a fault, the processor uses the narrow stack.

In addition, the ECLIPSE MV IFamily processor responds to floating-point traps upon
completion of the floating-point instruction that caused the fault. In the ECLIPSE C/350
system, the response to a floating-point trap occurs when the next floating-point
instruction is encountered. In either case, the value of the floating-point program counter
(FPPC) in the floating-point status register contains the address of the first floating-point
instruction that caused a fault.

!';ote that an ECLIPSE commercial (decimal/ASCII) fault loads different information into
ACO, AC2. and AC3 after the fault occurs. The size of the return block, the fault code
in AC 1, and the meaning of the PC in the return block are identical to the results
obtained on the ECLIPSE C/350 processor.

\Vhen the ECLIPSE instructions, DIVS or DIVX, produce a result of -32,768, the results
will vary depending on which processor is executing these instructions.

• The ECLIPSE MV /Family processor sets Carry to 0 (meaning no overflow).

• The ECLIPSE C/350 processor sets Carry to 1 (indicating an overflow).

Note that ECLIPSE MV /Family wide divide instructions set overflow to 0 when returning
a result of -32.768.

Refer to the section ... Decimal and ASCII Data Faults," in the chapter, "Program Flow
Management." and the "Fault Codes" appendix for a listing of the error codes returned
to AC 1 when a decimal/ASCII fault occurs.

014-001371 10-17

ECLIPSE 16-Bit Programming

Reserved Memory
Reserved page zero memor} 'Ications differ between ECLIPSE 16-bit systems and
ECLIPSE MV/Family 32-bit systems. For instance, ECLIPSE MV/Family computers do
not implement ECLIPSE auto-increment and auto-decrement locations 208 through 378
(these locations are reserved to store certain system parameters). Refer to the chapter,
.. Memory and System Management," or the appendix, "Reserved Memory Locations,"
for the contents of page zero locations.

CPU Identification

10-18

The ECLID and NCLID instructions return central processor information.

The NCLID instruction loads the CPU identification into bits 16 through 31 of three
accumulators (ACO, AC 1, and AC2). The NCLID instruction can execute only with the
LEF mode disabled. With the LEF bit enabled, this instruction becomes an LEF
instruction.

Accumulator formats are listed in the Instruction Dictionary descriptions for each
instruction and in the "Register Fields" appendix.

End of Chapter

014-001371

A
Register Fields

This appendix describes the formats of registers that programmers can access on the
ECLIPSE MY IFamily computers.

The general information presented in this appendix applies to all ECLIPSE MY IFamily
computers. Refer to the appropriate supplement for machine-specific details.

Table A-I summarizes the registers and their contents.

Table A-1 Registers and contents

Register

Segment Base

Program Counter

Processor Status

Floating-Point Status

DCH/BMC Status

CPU Identification

014-001371

Contents

Information about logical address translation.

Logical address of currently executing Instruction.

Information about fixed-point computations.

Information about floating-point computations.

Information about data channel and burst multiplexor channel maps.

Accumulators with Information pertaining to the processor.

A-1

Register Fields

Segment Base Registers

A-2

The 32-bit segment base registers (SBRs) contain information for the logical address
translation mechanism and for 110 protection. The format is diagrammed next and
explained in Table A-2.

v Reserved

o 10 11 15

Root page table frame

16 31

INT-00188

Table A-2 Segment base register contents

Bit Name

0 V

L

2 LEF

3 I/O

4-10 Reserved

11-31 Root
paget able
frame

Contents or Function

Segment-validity flag. Indicates ability of processor to refer to a segment.

If O. this Is an Invalid segment.
If 1. this is a valid segment.

Translation-level flag.

If O. this is a one-level paget able .
If 1. this is a two-level pagetable.

Mode flag.

If 1. the processor executes the instruction as an LEF instruction.
If O. the processor executes the Instruction as an I/O Instruction.

I/O validity flag.

If O. I/O operations are Illegal from this segment.
If 1. 110 operations are legal from this segment.

Reserved for Internal Data General use.

Specifies the most significant bits of the physical address for the root paget able
page.

014-001371

Register Fields

Program Counter
The 31-bit program counter (PC) contains the logical address of the currently executing
instruction. PC formats are diagrammed and described below.

PC Format for Execution of ECLIPSE MV IFamily Programs

Segment Logical address

3 4

Logical address

16

Table A-3 Program counter format for ECLIPSE MVIFamily programs

Name Bits Meaning

Segment 1-3 Current segment of program execution.

Logical Address 4-31 Logical word address within the segment.

PC Format Altered by ECLIPSE 16-Bit Program Flow Instructions

I
Segment o -- 0

3 4

I
0 I Logical address

16 17

Table A-4 Program counter modified by ECLIPSE 16-bit instructions

Name

Segment

0-0

Bits Meaning

1-3 Current segment of program execution.

4-16 Set to 0 by instruction.

Logical Address 17-31 Logical word address within the segment.

151

31 I

014-001371 A-3

Register Fields

Processor Status Register

A-4

Only ECLIPSE MY IFamily specific instructions affect the 16-bit processor status r€~gister
(PSR). The format of the PSR is diagrammed below and described in Table A-5.

OVK Reserved SIR

o 5 13 14 15

INT-Q0163

Table A-5 Processor status register contents

Bit Mnemonic Function

o OVK Overflow mask.
If O. no fixed-point overflow trap.
If 1. trap on OVR sett to 1.

OVR Fixed-point overflow flag.

2 IRES

3 IXCT

4 FFP

If O. no fixed-point overflow.
If 1. fixed-point overflow occurred.

Interrupt resume flag.
If O. Interrupted Instruction begins Initial execution.
If 1. Interrupted Instruction resumes execution.

Interrupt-executed opcode flag.

If 1. Interrupted Instruction was Inserted Into Instruction stream.

5-13 Reserved

Floating-point fault pending flag.

Reserved for future use.

Software reserved In return block 14-15 SIR

NOTE: Any instruction that loads OVK and OVR as part of its execution does not
cause an overflow fault even if both bits are set to 1. For all ECLIPSE
16-bit instructions, overflow equals 0, leaving OVR unchanged.

014-001371

Register Fields

Floating-Point Status Register
Both ECLIPSE MV IFamily-specific and ECLIPSE 16-bit instructions affect the 64-hit
floating-point status register (FPSR). The format of the FPSR is diagrammed as shown
and described in Table A-6.

Reserved ID

9 11 12 15

Reserved Reserved INP

16 21 I 22 I 23 27 28 31

o I Floating-Point Program Counter (Bits 1-15)

32 I 33 47

Floating-Point Program Counter (Bits 16-31)

48 63

Table A-6 Floating-point status register contents

Bits

0

1

2

3

4

5

6

7

8

9-11

12-15

16-21

22

23-27

28-31

32

33-63

014-001371

Name

ANY

OVF

UNF

INV

MOF

TE

Z
N

RND

Reserved

ID

Reserved

PAR

Reserved

INP

0

Floating-Point
Program Counter

Contents or Function

Error status flag - indicates any of bits 1 through 4 is set to 1.

Exponent overflow flag.

Exponent underflow flag.

Invalid Input argument error flag.

Mantissa overflow flag.

Trap enable mask: if set to 1. setting any bit 1 through 4 results in
floating-point fault.
True zero flag.

Negative flag.

Floating-point rounding flag.

Reserved and returned as zeros.

Floating-point identification code.

Reserved and returned as zeros.

Floating-point operation flag (serial or parallel).

Reserved and returned as zeros.

Invalid input argument Indicator.

Must be O.

If floating-point fault occurs. contains address of first
floating-point instruction that caused fault.

A-5

Register Fields

DCHIBMC Status Registers

A-6

This section describes three registers: 110 channel status register, 110 channel mask
register, and 110 channel definition register.

1/0 Channel Status Register

The read-only JlO channel status register (77008) provides I/O channel status
information. The register format follows; Table A-7 describes the format.

ERR Reserved INT

o 9 15

Table A-7 lID channel status register contents

Bits Name

0 ERR

1-9 Reserved
10 OTO

, , MPE
12 1

13 1
14 CMB

15 INT

Contents or Function

Error. If 1, the 1/0 channel has detected an error. This bit Is set to 1 if
any error-indicating bit in the 10C status register is set to 1.
Reserved for future use and returned as zeros.
OCH time-out error. If 1, a OCH read-modify-write operation time-out error
has occurred.
Map parity error. If 1, a map parity error has occurred.
Always set to 1. Indicating extended OCH map slots and operations are
supported.
Always set to 1.
Current state of the mask bit for this 1/0 channel (refer to the 1/0 channel
mask register format description).
Interrupt pending; if 1. the channel is attempting to interrupt the CPU.

1/0 Channel Mask Register Format

The write-only 1/0 channel mask register (77018) specifies a mask flag for each channel.
The register format follows; Tahle A-8 describes the format.

NOTE: A command lID instruction (CIO, CIOI) that reads the I/O channel mask
register produces undefined results.

Reserved o

o 7 15

Table A-8 I/O channel mask register contents

Bits

0-7
8
9
10
11
12
13
14
15

Name Contents or Function

Reserved Reserved for future use; should be set to O.
CO 1/0 channel 0 mask •
C1 1/0 channell mask •
C2 1/0 channel 2 mask *
C3 1/0 channel 3 mask *
C4 1/0 channel 4 mask *
C5 I/O channel 5 mask *
C6 1/0 channel 6 mask *
0 Reserved and set to O.

If 1, prevents all devices connected to the indicated 110 channel from interrupting the CPU. A
system reset sets CO to zero and C 1 through C6 to ones.

014-001371

Register Fields

1/0 Channel Definition Register Format

The 110 channel definition register (60008) provides status information. The format for
this register is diagrammed below and described in Table A-9.

ICE 1/0 Channel

o 10 13 15

Table A-9 110 channel definition register contents

Bits Name

0 ICE •

1, 2 Reserved

3 BVE *t
4 DVE *t
5 DCH

6 BMC

7 BAP *t
8 BOP *t
9 DIS *

Contents or Function

1/0 channel error flag.
1 Error occurred on 1/0 channel.
o Only when all other error bits are O.

Reserved for future use and returned as O.

BMC validity error flag' if 1. BMC address validity protect error has occurred.

DCH validity error flag: if 1. DCH address validity protect error has occurred.

DCH transfer flag; if 1, a DCH transaction is in progress (read-only bit).

BMC transfer flag: if 1. a BMC transfer is in progress (read-only bitl.

BMC address error: if 1. the channel has detected an address parity error.

BMC data error; If 1, the channel has detected a data parity error.

Disable block transfer; if 1, disables BMC block transfers to and from 1/0
memory port.

10-13 I/O channel 1/0 channel number.

14 DME *
15

DCH mode: if 1, DCH mapping is enabled.

Always set to 1.

* The IORST and PRTRST instructions clear these bits.
t Writing to these bits with a 1 complements them.

CPU Identification
The three Load CPU Identification instructions - LCPID, ECLID, and NCLID - return
processor information to specified accumulators. The accumulator formats and
descriptions foHow.

LCPID and ECLID Instructions
The LCPID and ECLID instructions load a doubleword into ACO.

16

Bits

0-15

16-23
24-31

014-001371

Model Number

15

Microcode Revision Memory Size

Name

Model Number

Microcode Revision

Memory Size

23 24

Contents or Function

Binary value of processor's allocated model number.

Current microcode revision.

31

Amount of physical memory available (measured in increments of
256-kilobyte modules with an origin of 0). Note that the actual memory
size in bytes is equal to: (ACO[24-31) + 1) • 262144'0
For example. 38 indicates 1 megabyte; 78 indicates 2 megabytes.

NOTE: Systems that contain 64 megabytes or more of physical
memory return 377e to bits 24-31 of ACO.

A-7

II

Register Fields

NCLID Instruction

A-a

The NCLID instruction loads its result into the low-order 16 bits of accumulators ACO
through AC2. Bits 0 through 15 of each accumulator are undefined.

ACO

1,6
Model number

31

Bits Name Contents or Function

16-31 Model number Binary value of processor's allocated model number.

ACl

1 Reserved Microcode revision

16 17 23 24 31

If ACI contains 1777778 • load microcode.

Bits Name Contents or Function

Always set to 1. 16
17-23
24-31

Reserved Reserved for future use and returned as Os.
Microcode revision Current microcode revision.

AC2

I .6

Bits Name

16-31 Memory size

Memory size

31

Contents or Function

Amount of physical memory available measured In 32-kllobyte modules
with an origin of 0). Note that the actual memory size in bytes is equal
to (ACO[16-31] + 1) • 32768'0
For example, 32. Indicates 1 megabyte; 64. Indicates 2 megabytes.
NOTE: Systems that contain 2 gigabytes or more of physical memory

return 177777. to bits 16-31 of ACO.

014-001371

B
Fault and Status Codes

This appendix presents general fault code and status information which applies to all
ECLIPSE MV/Family computers.

Tables B-1 through B-6 explain the codes returned in AC1 for the following fault types:

• protection

• page
• stack
• universal power supply controller (UPSC)
• power supply controller (PSC)
• decimal/ASCII

Protection Faults
Table B-1 lists the meanings of codes returned in AC 1 when a protection fault occurs.

Table 8-1 Protection fault codes

Code (octal)

014-001371

o
1
2
3
4
5
6
7
10
11
12
13
14
15
16
17
20
21

Meaning

Read violation
Write violation
Execute violation
Validity violation (SBR or PTE)
Inward address reference
Defer (indirect) violation
Illegal gate: out of bounds or gate bracket access violation
Outward call
Inward return
Privileged Instruction violation
I/O protection violation
Reserved
Invalid micro-interrupt return block
Unimplemented instruction fault
Reserved
Invalid form 10 (GIS)
Invalid attribute index (GIS)
Invalid CHARBLT source (GIS)

B-1

Fault Codes

Page Faults
Table B-2 lists page fault codes that the processor stores in AC 1.

Table 8-2 Page fault codes

Code

o
1
2
3
4

Meaning

Reserved
Reserved
Paget able page fault
Reserved
Normal object reference

Stack Faults
Table B-3 lists stack fault codes. The processor does not return an error code for a
narrow stack fault.

Table 8-3 Stack fault codes

Code
(octal)

000000
000001

000002
000003
000004

Meaning

Overflow on every stack operation other than SAVE, WMSP. or segment crossing.
Underflow or overflow would occur If the Instruction were executed (pertains to the
WMSP, WSSVR, WSSVS, WSAVR, and \\'SAVS Instructions). (PC in return block
refers to the instruction that caused the stack fault.)
Too many arguments on a cross segment call.
Stack underflow.
Overflow due to a return block pushed as a result of a mlcrolnterrupt or fault.

UPSC Faults

8-2

Table B-4 lists the UPSC fault codes by fault category.

Table 8-4 UPSC fault codes

Fault Code
and Category
(Bits 9-15)
Octal Hex

Category 0
000 00
170 78

Category 1
011 09
021 11
031 19
041 21

Category 2
002 02
012 OA
022 12
032 1A
042 22
052 2A
062 32
072 3A

Meaning

System off or no fault or UPSC fault
System off or no fault
Diagnostic mode timeout
(computer failed to complete 110)

Environmental Fault
VNR undervoltage
VNR overvoltage
Power supply overtemperature
Chassis overtemperature

Fan failure
Blower or multiple fans
Fan 1
Fan 2
Fan 3
Fan 4
Fan 5
Fan 6
Cannot set fan signals

Result

Nonfatal

Fatal> 300 msec
Fatal
Fatal> 15 sec
Fatal> 15 sec

Fatal> 15 sec
Fatal> 15 sec
Fatal> 15 sec
Fatal> 15 sec
Fatal> 15 sec
Fatal> 15 sec
Fatal> 15 sec
Nonfatal

(continues)

014-001371

Fault Codes

Table 8-4 UPSC fault codes (concluded)

Fault Code
and Category
(Bits 9-15)
Octal Hex Meaning Result

Category 3
013 OB
Category 4
004 04
014 OC
044 24
054 2C
064 34
074 3C
104 44
114 4C
124 54
134 5C
144 64
154 6C
164 74
174 7C

Category 5
005 05
045 25
055 20
065 35
075 30
lOS 45
115 40
125 55
135 50
145 65
155 60
165 75
175 70

Category 6
006 06

016 OE
026 16
036 1E
046 26
056 2E
066 36
076 3E
106 46
116 4E
126 56
136 5E
146 66
156 6E
166 76
176 7E

Category 7
007 07
177 7F

VNR fault
Battery backup fault indicated Nonfatal unless on batteries

Power supply fault (includes undervoltages)
+5V logiC undervoltage Fatal> 1 msec
+5V logic current not sharing Nonfatal
+SMEM undervoltage. PSl Fatal> 1 msec
+5MEM undervoltage. PS2 Fatal> 1 msec
+5MEM undervoltage. PS3 Fatal> 1 msec
+12MEM or +12V undervoltage. PSl Fatal> 1 msec
+12MEM or +12V undervoltage. PS2 Fatal> 1 msec
+12MEM or +12V undervoltage. PS3 Fatal> 1 msec
-5MEM or -5V undervoltage. PS1 Fatal> 1 msec
-5MEM or -SV undervoltage. PS2 Fatal> 1 msec
-SMEM or -SV undervoltage. PS3 Fatal> 1 msec
Undervoltage PS1. voltage unknown Fatal> 1 msec
Undervoltage PS2. voltage unknown Fatal> 1 msec
Undervoltage PS3. voltage unknown Fatal> 1 msec

Overvoltage fault
+5V
+5MEM. PSl
+5MEM. PS2
+5MEM. PS3
+12V or +12MEM. PS1
+12V or +12MEM. PS2
+12V or +12MEM. PS3
-5V or -5MEM. PS1
-5V or -5MEM. PS2
-5V or -5MEM. PS3
PS1. voltage unknown
PS2. voltage unknown
PS3. voltage unknown

Overcurrent fault
Reed switch sense low. +5V output.
overcurrent to logic slots
+5V. PSl
+5V. PS2
+5V. PS3
+SMEM. PSl
+5MEM. PS2
+SMEM. PS3
+12V or +12MEM. PSl
+12V or +12MEM. PS2
+12V or +12MEM. PS3
-5V or -5MEM. PSl
-5V or -5MEM. PS2
-SV or -5MEM. PS3
PS1. voltage unknown
PS2. voltage unknown
PS3. voltage unknown

UPSC fault
Checksum error on ?ROM (blinks)
LED lamp test at powerup
(short duration) .
If code is displayed for a long duration
(> 5 seconds) without tangible powerup, this
may indicate either insufficient ac voltage to
complete a powerup. or a broken UPSC.

Fatal
Fatal
Fatal
Fatal
Fatal
Fatal
Fatal
Fatal
Fatal
Fatal
Fatal
Fatal
Fatal

Fatal> 1 msec

Fatal> 1 msec
Fatal> 1 msec
Fatal> 1 msec
Fatal> 1 msec
Fatal> 1 msec
Fatal> 1 msec
Fatal> 1 msec
Fatal> 1 msec
Fatal> 1 msec
Fatal> 1 msec
Fatal> 1 msec
Fatal> 1 msec
Fatal> 1 msec
Fatal> 1 msec
Fatal> 1 msec

Fatal at powerup
Nonfatal

NOTE: Codes not listed are not used. The system shuts down when a fatal power

system fault occurs.

014-001371 8-3

Fault Codes

PSC Status and Faults

8-4

Table B-5 contains eight categories of code numbers for the power supply controller
(PSC). The PSC status code numbers are listed under category 0, and the PSC fault code
numbers are listed under categories 1 through 7. (Note that the least significant digit of
each octal code number determines the code number's category.)

The leftmost column of Table B-5 lists the code number in hexadecimal, and the second
column lists the code number in octal. When a fault occurs or status information is
needed. the PSC displays the appropriate hexadecimal code number on the system's front
panel and stores the equivalent octal code number in AC 1.

Table 8-5 PSG status and fault codes

Code
Hex Octal Meaning

Category 0 - PSC status
00 000 System up and OK
08 010 Power system waiting for power on

command from DRP before powering up
10 020 System powering up from power on

command
18 030 System up and OK; no heat and air testing
20 040 Off command received
28 050 Off switch detected
30 060 Margining active
38 070 BBU running
40 100 ROM checksum OK
48 110 System powering up from jumper
50 120 VSR above low level during powerup
58 130 VSR over or under shoot during powerup
60 140 Checked VSR settled during powerup
68 150 + 18V AUX on but not checked
70 160 All voltages on; no undervoltage checks
80 200 BBU test running
88 210 All voltages within tolerance

Category 1 - Temperature/VSR voltage faults
09 011 VSR undervoltage
11 021 VSR overvoltage
21 041 Chassis over temperature
29 051 Chassis under temperature
31 061 Airflow sensor fault
39 071 VSR undervoltage (no BBU Installed)
41 101 VSR undervoltage (BBU disabled

by RNB command)

Category 2 - Fan failure faults
02 002 Blower failure

Category 3 - VSR faults
OB 013 Battery back-up fault Indicated
13 023 AC undervoltage detected (from VSR)
1 B 033 AC overvoltage detected (from VSR)
23 043 VSR DC fault
2B 053 BBU BATLOW (low charge)
33 063 VSR fan fault
3B 073 VSR over temperature
43 103 BBU (battery out of charge)
4 B 113 BBU test; pack 1 fault
53 123 BBUtest; pack 2 fault
5B 133 BBU test; pack 1 and 2 fault
63 143 BBU test; pack 3 fault
6B 153 BBU test; pack 1 and 3 fault
73 163 BBU test; pack 2 and 3 fault
7B 173 BBU test: pack 1,2. and 3 fault
83 203 BBU in high charge test delay
8B 213 VSR not below 40V after 5 seconds

Result (see notes)

Status/Interrupt
Status/interrupt

Status

Status
Status/Interrupt
Status/Interrupt
Statusllnterrupt
Statusllnterrupt
Status
Status
Status
Status
Status
Status
Status
Status/Interrupt
Status

Fatal fault/retry
Fatal fault
Warning (30 seconds)/fatal fault
Status fault
Warning (1 second) /fatal fault
Fatal fault
Fatal fault

Warning (1 second)/fatal fault

Status fault
Status fault
Status fault
Status fault
Status fault
Status fault
Warning (30 seconds) /fatal fault
Fatal fault/retry
Status fault
Status fault
Status fault
Status fault
Status fault
Status fault
Status fault
Status fault
Status fault

(continues)

014-001371

Fault Codes

Table 8-5 PSG status and fault codes (concluded)

Code
Hex Octal Meaning

Category 4 - Power supply faults (includes undervoltage)
04 004 +5V logic undervoltage
24 044 +5MEM undervoltage
3C 074 +12V undervoltage
54 124 -5V undervoltage
84 204 Power module +5V1
8C 214 Power module +SV2
94 224 Power module +5V3
9C 234 Power module t5V4
A4 244 Power module t5V5
AC 254 Power module +5V6
B4 264 Power module +5V7
BC 274 Power module -5V7
C4 304 Power module + 5M4
CC 314 Power module +5M3
04 324 Power module + 12V 1
DC 334 Power module + 12V2
E4 344 Power module + 12V5
EC 354 Power module + 12V7
F4 364 Power module -5V6
FC 374 Power boards in wrong slots

Category 5 - Overvoltage faults
as 005 +5V overvoltage
25 045 +5MEM overvoltage
3D 075 + 12V overvoltage
55 125 -5V overvoltage

Category 6 - Overcurrent faults
06 006 Reed swItch sense low

(+5V output overcurrent to logic slots)

Category 7 - Power supply controller faults
07
OF
17
1F
27
2F
37
3F
47
4F
57
5F
67
6F
77
7F
8F
FF

007
017
027
037
047
057
067
077
107
117
127
137
147
157
167
177
217
377

Program checksum error
+ 12V AUX overvoltage
-12V AUX overvoltage
+ 12V AUX undervoltage
-12V AUX undervoltage
+18V AUX out of tolerance
ASYNC/RNB fault
Checksum error on RNB
Framing error on UART
Parity error on UART
Overrun error on UART
DRP exhausted retries to PSC
Break on UART
UART loopback fault
UART interrupt fault
DRP retried RNB command
PWROK signal went away
PSC stuck; code did not run (but
momentary LED lamp test at powerup is OK)

Result (see notes)

Fatal fault/retry
Fatal fault/retry
Fatal fault/retry
Fatal fault/retry
Status fault
Status fault
Status fault
Status fault
Status fault
Status fault
Status fault
Status fault
Status fault
Status fault
Status fault
Status fault
Status fault
Status fault
Status fault
Fatal fault

Fatal fault
Fatal fault
Fatal fault
Fatal fault

Fatal fault/retry

Fatal fault
Fatal fault
Fatal fault
Fatal fault/retry
Fatal fault/retry
Fatal fault
Status fault
Status fault
Status fault/no interrupt
Status fault/no interrupt
Status fault/no interrupt
DRP code
Status fault/no interrupt
Status fault
Status fault
DRP code
DRP code
Fatal fault

NOTES: Status fault - Interrupts the RNB but does not stop operation of the power
system by itself.

014-001371

Status fault Ino interrupt - Does not stop operation of the power system by
itself and does not interrupt the RNB.

Fatal fault - Causes the system (except for PSC and DRP) to power down
and stay down.

Fatal faultlretry - Causes the system to powerdown; PSC tries three times
to power it up again before quitting.

Warning (xxxx)lfatal fault - Imminent system shutdown with prior warning
interrupt to RNB (time until shutdown shown in parenthesis).

DRP code - Code generated by the DRP, not the PSC.

8-5

I

Fault Codes

Decimal/ASCII Faults

8-6

Table B-6 describes decimal and ASCII fault codes. The first and second columns list
codes that appear in AC 1; the fourth and fifth columns list instructions and conditions

that cause faults.

Table 8-6 Decimal/ASCII fault codes

Code Returned Return
In ACl Block Faulting

Narrow Wide Type Instruction Condition

000000 100000 2 EDIT, WEDIT An Invalid digit or alphabetic character
encountered during execution of one of
the following subopcodes: DMVA,
DMVF, DMVN, DMVO, DMVS.

000001 100001 1 LDIX, STIX Invalid data type (6 or 7).

3 WED IT, WLDIX, Invalid data type (6 or 7).
WSTIX, WDMOV,
WDDEC, WDINC,
WDCMP, EDIT

000002 100002 2 EDIT, WEDIT DMVA or DMVC subopcode with
source data type 5: AC2 contains the
data size and precision.

000003 100003 2 EDIT, WEDIT An Invalid opcode: AC2 contains the
data size and precision.

000004 100004 LDI, STI, STIX, Number too large to convert to specified
WLDI, WSTI, data type. Inumberl> (1016) - 1
WSTIX, WLDIX Number too large to convert to specified

data type. Number> (1032) - 1

000005 3 EDIT, LDI, LDIX, Invalid mlcrointerrupt return block.
STI, STIX (Applies only to ECLIPSE

interrupt-resumable instructions.)

000006 100006 WLSN, \\'LDI. LSN, Sign code is invalid for this data type •
LDI, LDIX, WLDIX

3 EDIT, WEDIT, WDINC,
WDMOV, WDCMP,
WDDEC

000007 100007 WLSN, WLDI. WLDIX, Invalid digit •
LSN, LDI, LDIX

3 WDMOV, WDCMP,
WDINC, WDDEC

A value containing both an invalid sign and one or more invalid digits produces a decimal/ASCII
fault which may indicate either type of error.

End of Appendix

014-001371

c
Reserved Memory Locations

The information in this appendix applies to all ECLIPSE MV IFamily computers. Details
on the ECLIPSE MV/BOOO computer's C/350 MAP are given in the appropriate
machine-specific supplement.

The processor reserves memory locations 0 through 478 of page zero (locations 0 through
3778) of each segment for storing cenain parameters and the staning addresses of the
fault handlers. The processor interprets page zero locations for segment 0 differently from
page zero locations for segments 1 through 7. For example, segment 0 contains pointers
to privileged fault handlers, and segments 1 through 7 reserve these locations. Segment 0
locations are listed in Table C-1; segments 1 through 7 locations are listed in Table C-2.

Specified addresses for the fault handlers are not indirectable unless otherwise specified.
Some pointers are 16 bits long; they can only refer to locations in the first 64 Kbytes of
the segment containing the pointer. If the pointer is indirect, all pointers in the indirect
chain will only refer to the first 64 Kbytes of the segment. With the address translator
enabled, the processor interprets all locations in page zero as logical addresses. With the
address translator disabled, only the contents of page zero in segment 0 are valid; the
processor interprets page zero addresses as physical ones.

014-001371 C-1

Reserved Memory Locations

Table C-1 Page zero location for segment 0

Location Name Contents or Function
(octal)

0 Interrupt level Level of interrupt processing:
0 base-level processing
nonzero Intermediate-level processing

1/0 handler Address of 1/0 Interrupt handler (Indlrectable).

2-3 1/0 return address Address of 110 Interrupt return. Location 2 contains the
high-order bits; location 3 contains the low-order bits.

4 Vector stack pointer Low-order 16 bits of vector stack pointer, base, and frame
pOinter (high-order bits = 0).

5 Current 16-blt Current 16-blt narrow Interrupt priority mask.
narrow mask

6 Vector stack limit Low-order 16 bits of vector stack limit.

7 Vector stack fault Address of vector stack fault handler (Indirectable).
address

10-11 Breakpoint address Address of breakpoint handler (Indlrectable).

I 12-13 WXOP origin address Address of beginning of extended operations table - see the
WXo P Instruction description.

14 Wide stack fault Address of wide stack fault address handler (Indlrectable).
handler

15-17 Reserved Reserved.

20-21 WFP Wide frame pointer.

22-23 WSP Wide stack pointer.

24-25 WSL Wide stack limit.

26-27 WSB Wide stack base.

30-31 Page fault handler Address of wide page fault handler.

32-33 Context block pointer Address of base of context block save area.

34-35 WGP Gate pointer; address of the gate array.

36 Protection fault Address of protection fault handler (Indlrectable).
handler address

37 Fixed-point fault Address of fixed-point fault handler (Indlrectable).
handler address

40 Stack pointer Address of top of 16-blt narrow stack.

41 Frame pointer Address of start of current narrow frame minus 1.

42 Stack limit Address of last normally usable location In narrow stack.

43 Narrow stack Address of ECLIPSE 16-blt narrow stack fault handler
fault handler (Indlrectable) .

44 XO PO origin address Address of beginnIng of narrow extended operations table.
See the XO PO Instruction description.

45 Floating-point fault Address of floating-point fault handler (lndlrectable).
address

46 Declmall ASCII fault Address of decimal! ASCII fault handler (Indlrectable).
handler

47 DERR error handler Address of DERR Instruction errorltrap handler. See the
DERR Instruction description.

C-2 014-001371

Reserved Memory Locations

Table C-2 Page zero locations for segments 1 through 7

Location Name Contents or Function
(octal)

0-7 Reserved Reserved.

10-11 Breakpoint address Address of breakpoint handler (indirectable).

12-13 WXOP origin address Address of beginning of extended operations table - see the I WXOP Instruction description.

14 Wide stack fault Address of wide stack fault address handler (Indirectable).
handler

15-17 Reserved Reserved.

20-21 WFP Wide frame pointer.

22-23 WSP Wide stack pointer.

24-25 WSL Wide stack limit.

26-27 WSB Wide stack base.

30-33 Reserved Reserved.

34-35 WGP Gate pointer; address of the gate array.

36 Reserved Reserved (refer to the ·User Protection Fault Handler" section
In the • Memory and System Management" chapter).

37 Fixed-point fault Address of fixed-point fault handler (Indlrectable).
handler address

40 Stack pointer Address of top of 16-blt narrow stack.

41 Frame pointer Address of start of current narrow frame minus 1.

42 Stack limit Address of last normally usable location In narrow stack.

43 Narrow stack Address of ECLIPSE 16-blt narrow stack fault handler
fault handler (Indlrectable) .

44 XOPO origin address Address of beginning of narrow extended operations table.
See the XOPO Instruction description.

45 Floating-point fault Address of floating-point fault handler (Indlrectable).
address

46 Decimal/ ASCII fault Address of decimal/ASCII fault handler (Indirectable).
handler

47 DERR error handler Address of DERR Instruction error/trap handler. See the
DERR Instruction description.

End of Appendix

014-001371 C-3

D
Load Control Store Instruction

This appendix describes the Load Control Store instruction and its associated microcode
file.

CAUTION: The Load Control Store instruction changes various parIs of the machine's
internal state. This instruction is intended for diagnostic and special system
applications.

Load Control Store
LCS
(error return)
(normal return)

o 7

o
o

7

o

o
6

o

LCS

o 7 7

o o
7 8 11 12 13 15

3 F

The Load Control Store instruction loads and verifies the soft internal states of the
machine (such as. the microstore. decode rams. and scratchpad). In conjunction with bits
16 through 31 of the four accumulators. the LCS instruction loads and verifies. or verifies
only. using the contents of a microcode file. The assembler recognizes LCS to be
equivalent to NIO.CPU.

The LCS instruction loads a certain number of words per instruction (generally 16K
words). Depending on the machine it may be necessary to issue the instruction many
times. This instruction is noninterruptible. Note that some ECLIPSE MV/Family systems
ensure that microcode blocks will be no greater than 1 K words in length.

The formats of the accumulators are diagrammed and described next (bits 0 through 15
of each accumulator are undefined and unused).

014-001371 0-1

0-2

Load Control Store Instruction

ACO

I ~~vl Destination Code

17 31

Bits Name Contents or Function

16 LtV Load/verify option
o Load and verify
1 Verify only

17-31 Destination Code Indicates where data Is to be loaded

AC1

Bit Length

16 31

Bits Name Contents or Function

16-31 Bit Length Bit length of code data

AC2

1,6
Pointer

31

Bits Name Contents or Function

16-31 Pointer Pointer to first block of data (Indirectable)

AC3 (Optional)

I '6
Microcode Options

31

NOTE: ECLIPSE MV/Family systems which do not support microcode options ignore
the contents of AC3.

Bits Name

16-31 Microcode
Options

Contents or Function

Specifies which microcode options to load:
If bits 24-31 are O. perform a normal load (options will be defaulted) .
Bit Mnemonic Option (If set to 1)

16-29 Reserved Unused
30 ARCH Load architectural clock microcode.

31 FPU

(This bit should be used on processors that
support either architectural clocks or the
PIT /RTC combination.)
Do NOT load microcode support for a
hardware floating-point unit (FPU). This
setting should be used In the case where
there is an FPU. but you do not want to use
It. such as during a diagnostic function.

014-001371

Load ContrOl Store Instruction

Follow these steps to load and verify the microcode:

1. Parse microcode file blocks.

a. Load Code blocks.

b. Fill Fill blocks.

c. Ignore Revision blocks.

d. Print Comment blocks.

2. Repeat the sequence listed above until an End block is encountered. (The LCS
instruction is complete when an End block is encountered.)

3. Verify Code blocks that were loaded in step 1; ignore Fill, Comment, and Revision
blocks. To only verify, perform step 3.

Microcode File and Block Format

The microcode file format contains data used in various parts of the machine's state.
Figure D-1 shows the general format for each microcode file. The microcode format is
block-oriented, that is, arranged in packets or blocks. Each block contains a description
of its size and the type of data it contains. As Figure D-1 shows

• Each microcode file must begin with a Title block and conclude with an End block.
OptionalJy, Revision and/or Comment blocks may precede the Title block and
Comment blocks may follow the End block.

• Fill and Code blocks must be placed between the Title/End block pair.

• The Revision block, if any, precedes the first Title block.

• Comment blocks can appear anywhere within the microcode file.

Table 0-1 summarizes the contents and functions of each block type.

Table 0-1 Microcode file format blocks

Block Type

Title

Contents or Function

Data about code word's bit length. and destination code. The program Issuing
the LCS instruction places this data in ACO and AC 1 .

Data needed to continue or terminate LCS instruction. End

Code Code words and starting location for storing each code word. Code blocks must
appear between Title/End block pair.

Fill

Comment

Revision

014-001371

Code words used as background fil/er and to specify locations to receive this
data. Fill blocks must appear between Title/End block pair.

Data that can be output to system console or ignored. Comment blocks can
appear anywhere within the microcode file structure; placement determines
where data is output.

If Comment block is Internal (appears within Title/End block pair). data is
output to system console.

If Comment block is external (appears outside Title/End block pair). program
issuing LCS decides whether to output or ignore the data.

Target CPU model number. Major and minor revision numbers for microcode.
Revision blocks are optional. but If used. they should appear as first block of the
microcode file. Program Issuing LCS instruction determines whether Revision
blocks are Ignored or output to system console.

0-3

Load Control Store Instruction

~

} Opt;ona'
Revision

block

• · • •
Comment } Option.'

block

• • • •
Title
block

· • • •

r---+ < Comment 0 0} block block block Choose one

· • • •
Comment 0 0} block block block Choose one

• • • •

0 block

• · • ·
Comment

} Optlona' block

Iterations of 4

INT-0020S

Figure 0-1 Microcode file format

LCS Implementation

0-4

The following describes the effect of the LCS instruction on Code. Comment. Fill. and
End blocks. The program issuing the LCS instruction must parse and organize the
information from the Title and Revision blocks and from any external Comment blocks.

014-001371

Load Control Store Instruction

The LCS instruction

• Recognizes Code blocks and loads the data into the proper destination addresses;

• Recognizes internal Comment blocks and prints the text string on the system console;

• Recognizes Fill blocks and performs a fill operation of the proper destination;

• Recognizes End blocks and performs a verify operation upon the previously loaded
data;

• Recognizes an error condition (see the section, "Error Returns,") and returns the
proper error code to ACO.

Microcode Blocks
Figure 0-2 shows the general format of each microcode block; Table 0-2 summarizes
the contents of the format. Tables 0-3, 0-4, and 0-6 through 0-9 explain the
individual blocks in more detail.

Word count

Block type

Reserved

Data

Data

• • · • · • · • · •

Data

Length of word count
(in l6-bit words)

INT-00206

Figure 0-2 Microcode block format

Table 0-2 Words used in the microcode block format

Word

1
2
3
4 + n

Name

Word count
Block type
Reserved
Data

Contents or Function

Number of 16-blt words in microcode block.
Type of data contained In block.
Reserved for future use.
Data pertaining to block type.

Table 0-3 Title block format

Word Contents or Function

7
o
Reserved for future use.
Code word's bit length.
Reserved for future use.
Reserved for future use.

Word Count
Block Type
Reserved
Data word 1
Data word 2
Data word 3
Data word 4 Destination code Indicating where data Is to be loaded. (The processor accepts

only positive nonzero 16-blt integers In the range , through 777778 ,)

014-001371 0-5

0-6

Load Control Store Instruction

The data from the first Title block is used by the program issuing the LCS instruction.
For example:

Data word 4 (destination) is placed into ACO.
Data word 1 (bit length of code word) is placed into AC 1.

Table 0-4 End block format

Word

Word Count
Block Type
Reserved
Data word 1

Contents or Function

5

Reserved for future use.
Control word.
Bits Meaning
0-12 Reserved.
13 Destination completion Indicator.

o More code of this destination may follow.
1 No more code.

14 Switch from PROM to RAM Control Store.
o Stay In current mode.
1 Switch to RAM.

15 Start designator.
o Start host (and continue SCP).
1 Start SCP: data word 2 must be an address (see Table 0-5).

Data word 2 Address to be started (Table D-5). If this Is -1 (1777778), continue execution
with LCS normal/error return.

Table D-5 summarizes the combined actions of Data word 1 (bit 15) and Data word 2 of
an End block.

Table 0-5 Combined action of End block data words 1 and 2

Data Word 2
Contains

-1

Address

Data Word 1 (Bit 15) Contains
o 1

Continue host at
l...CS normail.rror r.turn.
Start host at this address;
continue SCP.

Illegal

Start SCP at this address;
host remains halted.

Table 0-6 Code block format

Word

Word Count
Block Type
Reserved
Data word 1
Data word 2 to n+1 (1)
Data word n+2 (1) to 2n+ 1
Data word 2n+2 (1) to 3n+ 1

Contents or Function

Variable
2
Reserved for future use.
Location for storing first code word In this block.
First code word of block.
Code word for next sequential address.
Code word for next sequential address until end of block.

NOTE: Code data is in a word-aligned format: n is the number of J 6-bit words
that contain one code word In = (word-bit-length + 15) /16 J.

014-001371

Load Control Store Instruction

The Fill block enables background filling of certain destinations within the machine. For
example, if an uninitialized location is erroneously entered during execution, it is possible
to zero-fill the control store to induce parity errors.

The function of the Fill block can also be accomplished with Code blocks if they contain
the appropriate data.

Table 0-7 Fill block format

Word

Word Count
Block Type

Contents or Function

n+5
3

[n=(word-bit-Iength + 15)/16]

Reserved Reserved for future use.
Data word 1 Starting location for storing code word.
Data word 2 Ending location for storing code word.
Data word 3 to n+2 Code word to be used as background filler.

Table 0-8 Comment block format

Word

Word Count
Block Type
Reserved
Data word 1

Data word 2 to x+2

Contents or Function

Variable
4
Reserved for future use.
Length of ASCII string, not counting terminating null [s] .
Odd string length Indicates one terminating null: even string length indicates
two terminating nulls.
ASCII string (packed right to lett) terminated by nUll.
[x = (String length + 1)/2]

Table 0-9 Revision block format

Word

Word Count
Block Type
Reserved
Data word 1
Data word 2
Data word 3

Error Return

Content. or Function

6
5
Reserved for future use.
Target CPU model number.
Microcode major revision number.
Microcode minor revision number.

When the processor encounters an error, three accumulators (ACO, AC1, AC2) contain
information indicating the source of the problem. Bits 0 through 15 of each accumulator
are undefined and unused; bits 16 through 31 contain the following:

• ACO contains the code indicating the type of error (refer to Table D-10 for an
explanation of the error codes returned).

• AC 1 contains information dependent upon the error code returned in ACO (refer to
Table D-I0 for the contents of AC1).

• AC2 contains a 16-bit pointer to the erring block. If initial information in ACO or
ACI caused error, then AC2 is unchanged.

The error codes returned to ACO are listed in Table D-10.

014-001371 0-7

Load Control Store Instruction

Table 0-10 Error codes returned to ACO

ACO
Code Meaning

2

3

4

5

6

Verify error

Illegal code
word length

Unexpected
block type

Illegal block
length

Unknown
destination

Illegal option

Definition
(AC1 Contents)
[Possible Cause]

Data not received properly by destination.
(AC1 will contain the code word location In error.)
[Hardware problem]

Disagreement between code word bit length and length of code data
specified by destination word in same Title block.

(AC 1 unchanged.)
[Attempt to load wrong model microcode.]

Block type other than Code, Fill, End, Revision or Comment.
(AC 1 unchanged.)
[Missing block or out of sequence.]

NOTE: If any Title blocks are encountered between the Title/End
block pair. the error" unexpected block type" will occur.

Bloc.k' length error.
(AC1 unchanged.)
[Block length less than four; code block did not contain an
integral number of code words - such as, if code word bit
length is 80, then length of all code blocks must be
4+N· (80+ 15) 116.

N = number of code words per code block.
16 = number of bits per word.
4 = number of words at the beginning of each code block.

In this example, all code blocks must be of length 4+5· N] .

Unknown location for loading of code word.
(AC1 unchanged.)
[Attempt to load incorrect model machine microcode file.]

Microcode option specified In AC3 Is undefined.
(AC1 will contain error code 6.)
[Attempt to use microcode option presently undefined.]

Kernel Functions

0-8

The kernel is the minimum set of microcode necessary for the machine to function
properly. The processor can read target microcode from an 110 device (using the kernel
I/O instructions) and then load this microcode into the control store with the kernel
instruction set (including the LCS instruction).

Since the LCS instruction must return to the host after completion, the kernel instruction
set must exist and be working after each execution of the LCS instruction.

The amount of data that can be loaded with a single LCS instruction is processor-specific
(generally t 16K words). Therefore, several iterations of accessing the 110 device and
executing the LCS instruction may be necessary to completely change the machine from
the kernel to the target.

End of Appendix

014-001371

Glossary

ADDRESS TRANSLATOR. Mechanism used in demand paging to translate the specified
logical address to its physical equivalent.

ATOMIC INSTRUCTIONS. Any instruction which will perform its entire specified
operation without being interrupted (such as a read-modify-write operation).

ATTRIBUTE BLOCK. Graphics block consisting of unsigned 32-bit integers that is
created when a form descriptor is created. Initially, the attribute block is filled with
a set of default values which can be examined with the graphics instruction, Read
Attribute, and modified with the Write Attribute instruction. (See FORM
DESCRIPTOR.)

BIT IDENTIFIER. With the word pointer, forms a bit pointer. The bit identifier is
located in the least significant bits of the ACD accumulator. (See BIT POINTER,
WORD POINTER.)

BIT POINTER. Formed from the contents of two accumulators, the bit pointer contains
a word pointer and a bit identifier. The ECLIPSE memory reference instructions
(BTO, BTZ, SNB, SZB, and SZBO) use the bit pointer to refer to a bit.

BYTE. Eight consecutive bits.

BYTE POINTER. Formed from the contents of an accumulator or from the contents of
the index field and the 16- or 32-bit displacement.

BOUNDING RECTANGLE. Specifies the usable range of values for X and Y
coordinates in a form. (See FORM.)

COMBINATION RULE. Specifies how pixels are to be combined for any instruction
that writes to a form.

CURRENT RING OF EXECUTION (CRE). The segment in which the program is
presently executing.

CURSOR. A pattern that is drawn on the bitmap screen to represent the position of a
pointing device.

CURSOR DESCRIPTOR. Permits the cursor to be managed by the operating system,
even though it is drawn over the user's picture in the form.

DATA CHANNEL MAPS. A set of address translation registers that the user-specified
map defines for the memory references of a data channel used by a particular
device. These maps translate logical addresses to physical addresses when data
channel devices access memory.

DATA ELEMENT. An entry in a queue.

014-001371 Glossary-1

Glossary

DEMA1'D PAGING. A page-swapping mechanism controlled by the page fault handler
which moves pages referred to by an instruction or routine from secondary storage
(such as, a disk) to main physical memory as they are needed.

DEQUEUEING. The process of removing a data element from a queue.

DOUBLEWORD. Two consecutive words of memory (4 bytes or 64 bits).

ENQUEUEING. The process of adding a data element to a queue.

FIXED-POINT COMPUTATION. Fixed-point binary arithmetic operations on signed
and unsigned 16- and 32-bit numbers.

FLOATING-POII\TT COMPUTATION. Floating-point binary arithmetic operations on
signed, single-precision (32-bit) and double-precision (64-bit) numbers.

FONT. A set of shapes for letters, numbers, an~ punctuation marks, also known as a
character set.

FORM. The basic unit of pixel space on which a picture is drwan. All GIS operations
are performed on the form.

FORM DESCRIPTOR. Describes the form and points to related databases such as cursor
descriptors and attributes. The form descriptor block is a double word table of 32-bit
integers.

FORM ~IASK. Used to implement palette sharing, a technique that helps programs to
share a display without destroying each other's data. The form mask in the form
descriptor is a value that specifies which bits in a pixel can be accessed by drawing
operations.

GATE ARRAY. A series of locations specifying entry points (or aates) to a segment.
The processor accesses a gate array through an indirect pointer in page zero of the
destination segment.

GBYTE. Gigabyte (230 bytes).

GUARD DIGIT. One hex digit (four bits) that initially contains zero. To increase the
accuracy of floating-point arithmetic, the processor appends one or two guard digits
to the operands of both mantissas before performing arithmetic calculation.

HEAD. The beginning or first element of a queue.

J~vIPURE ZERO. See NORMALIZED FOR1\·IAT and TRUE ZERO.

INSTRCCTION CACHE. The major component of the instruction processor. The
instruction cache provides input to the instruction decoder.

INSTRUCTION PROCESSOR. Decodes instructions for execution.

INSTRUCTION SET. The instruction set has two subsets: the 16-bit instruction set and
the 32-bit instruction set. The 16-bit instructions are supported by the ECLIPSE
!\tV/Family 32-bit processors and plso supported by ECLIPSE 16-bit computers
(such as the ECLIPSE C/350 computer). The 16-bit instructions are also referred to
as ECLIPSE 16-bit instructions; the 32-bit instructions are also called ECLIPSE
~1 V IFamily instructions.

Glossary-2 014-001371

Glossary

KERNEL. The minimum set of microcode necessary for the machine to function
properly.

LINK. An address used to link together the data elements in a queue. Two links are
required: the forward link contains the effective word address of the following data
elements in a queue; the backward link contains the address of the preceding data
elements in a queue.

LOGICAL ADDRESS. Specifies a segment number and a logical address. The computer
uses 31-bit word addresses and 32-bit byte addresses, which can refer to all 4
Gbytes of the logical address space.

rv1AGNITUDE. The magnitude of a floating-point number is defined as follows:

Mantissa times 16·· Y (y is the true value of the exponent).

MANTISSA. A fraction representing pan of the value of a floating-point number. See
MAGNITUDE.

MAP. For memory allocation and protection unit. The MAP's primary function is
address translation. The MAP divides each user's primary logical address space into
pages and associates each logical page with a physical page. By doing so, the MAP
allows several users access to the same section of physical memory.

MEMORY REFERENCE INSTRUCTION. An instruction that accesses memory for data
or for another instruction. A memory reference instruction contains the information
for determining the effective address of an operand or determining the effective
address of the next nonsequential instruction.

NARROW STACK. A contiguous set of single words that suppons ECLIPSE 16-bit
program development and upward program compatibility.

NONINTERRUPTIBLE INSTRUCTIONS. Any instruction which executes in such a
relatively short time that it will not be interrupted.

NO-OP INSTRUCTION. An instruction that performs no work and does not afect any
data (including the resolution of indirect addresses).

NORMALIZED FORMAT. A nonzero mantissa represents a fraction from 1116 to
1-2-56. A floating-point number represented in this way is said to be normalized
(impure zero is not normalized). Most floating-point instructions require normalized
operands to produce correct results. Floating-point numbers that are not normalized
or not true zero produce undefined results except as noted in this manual.

NOVA-TYPE INSTRUCTIONS. Any instruction originally part of the 16-bit NOVA ®

instruction set.

OPERATION MASK. Specifies which bits in a pixel can be modified by drawing
operations. A zero means do nothing with this bit; a one means operate on this bit
using the combination rule.

PAGE. A 2-Kbyte block of contiguous logical addresses in virtual memory.

PAGE ADDRESS. A page number with 10 zeros following it; the logical address
denoting the first logical address in a page.

014-001371 Glossary-3

Glossary

PAGE FAULT. The condition caused by referring to a page that is not resident in main
physical memory.

PAGE FRAME. A 2-Kbyte block of contiguous physical memory locations (addresses).

PAGE PROTOCOL. Determines the validity of the reference made when a memory
reference instruction addresses the current segment. The page protocols are valid
page. read access. write access. and execute access.

PAGETABLE. One or more pagetable pages that completely specify the logical to
physical address translation for a segment. A pagetable may be one- or two-level. A
one-level pagetable consists of a single pagetable page, and a two-level pagetable
consists of one pagetable page whose PTEs point to pagetable pages.

PAGETABLE ENTRY (PTE). A doubleword used by the processor in translating logical
addresses to physical addresses. A PTE contains a page number and bits defining the
page protocol.

PAGETABLE PAGE. A page consisting of 512 PTEs.

PAGE ZERO. Denotes the first 2K bytes of a segment, but sometimes denotes the first
256 words of a segment (locations 0-3778),

PIXEL. An addressable picture element.

PROTECTION. The system uses a hardware-implemented hierarchical protection system
that allows programs different levels of privileges. Each segment has a different. level,
or ring, of protection associated with it. Each ring governs its associated segment
with a different degree of privilege. Ring 0 has the highest degree of protection;
thus, the kernel of the operating system resides in segment O.

QCEUE. A variable-length list of linked entries typically used by an operating system to
track the processes it must perform, such as printing files on a line printer.

QUEUE DESCRIPTOR. Two 32-bit words indicating the current tail and head of the
queue.

QUEUE MANAGEMENT. The process of inserting. deleting. and searching for
elements in a queue.

RECTANGLE DESCRIPTOR. Describes one of the set of rectangles that make up a
form. (See FORT\1.)

RECTANGLE LIST. A structure used to keep track of which bitmap is used for various
parts of the form. The list consists of one or more rectangle descriptors.

RESTART ABLE INSTRUCTIONS. Any instruction which, after being interrupted.
restarts its specified operation using updated values.

RESU~lABLE INSTRUCTIONS. Any instruction which. after being interrupted,
continues its specified operation at the same point where it was interrupted using its

original values.

RIj\;G. Protection mechanism that safeguards the contents of a segment.

SEG!\lENT. A portion of memory that contains data and programs and can be logically
addressed. There are eight segments; each is a complete address space of 512

!\lbytes.

Glossary-4 014-001371

Glossary

SEGMENT BASE REGISTER (SBR). A processor register used in translating logical to

physical addresses. There is one SBR for each of the eight segments. An SBR
contains the address of the pagetable for the segment and various protection and
privilege bits for the segment.

SNIFFING. A process that checks for memory errors, verifies all memory locations, and
corrects all single-bit errors. Sniffing prevents single-bit errors from collecting in
unused areas of memory and also prevents intermittent single -bit errors from
developing into multiple-bit errors.

STACK. A series of consecutive locations in memory. A program uses the stack to pass
arguments between subroutine calls and to save the program's state when the
processor services a fault. Stack instructions add items to the stack in sequential
order (push) and retrieve them from the stack in reverse order (pop). Although a
program can access many stack areas, it can use only one area at a time.

SYSTEM CACHE. A look-ahead/look-behind buffer for the system, the system cache
reduces the time the CPU and the I/O systems need to access memory.

SUPERVISOR. The part of the operating system that controls system functions, for
instance, selecting unused pages for a new user and prioritizing users' requests.

TAIL. The end or last element of a queue.

TRUE ZERO. Floating-point zero is represented by a number with all bits zero, known
as true zero. If a number has a zero mantissa but not a zero sign or exponent, it is
called impure zero. When representing zero as a floating-point number, use true
zero; impure zero produces undefined results in calculations.

UNDEFINED. Refers to a state that mayor may not have been altered by the execution I
of an instruction. (Identical initial conditions may not always produce the same
results when executing on different processors.)

USER MAPS. A set of address translation functions which the MAP defines for a
particular user. When the processor encounters a memory reference instruction in a
user's program, the user maps translates logical addresses to physical address. (See
~1AP.)

VIRTUAL MEMORY. A 4-Gbyte portion of memory that consists of eight segments and
eight rings and facilitates memory management.

WIDE FRAME POINTER (WFP). Defines a reference point in the wide stack. The
wide frame pointer is unchanged by push and pop operations (unless specified
otherwise) .

WIDE INSTRUCTIONS. Instructions which manipulate data with lengths of 8, 16, or 32
bits. The mnemonics of the instructions indicate the size of the data fields
referenced. A mnemonic preceded by the letter N manipulates 16-bit (narrow) data;
a mnemonic preceded by the letter W manipulates 32-bit (wide) data. No special
prefix precedes those mnemonics that manipulate 8-bit data.

014-001371

Other mnemonic prefixes indicate the addressing range of the instruction. X
indicates that the instruction has a 512-Mbyte (extended) offset addressing range: L

indicates a 4-Gbyte (long) addressing range.

Glossary-5

Glossary

WIDE STACK. A contiguous set of doublewords that supports 32-bit processor
programs.

WIDE STACK BASE (WSB). Defines the lower limit of the wide stack.

WIDE STACK LIMIT (WSL). Defines the upper limit of the wide stack.

WIDE STACK POINTER (WSP). Addresses the top location of the wide stack, which is
either the location of the last word placed onto the stack or the next word available
from the stack.

WORD. Two bytes or 16 bits of memory. The basic unit of addressing in the ECLIPSE
MV IPamily instructions is one or more words in length, and most instructions
manipulate one or more words of data.

WORD ADDRESS. Identifies a 16-bit word in the memory segment.

WORD POINTER. Consists of an effective address (in the source accumulator) and a
word offset (in the destination accumulator).

End of Glossary

Glossary-6 014-001371

Index

Within the index, the page number refers to the
first page for an entry (even if the subject spans
multiple pages). Instruction mnemonics are
printed in boldface type (such as INTEN);
instruction names are printed with initial capital
letters (such as I/O Interrupt Enable).

16-bit, see ECLIPSE 16-bit

A
Absolute addressing 1-11
Access

I/O 8-3
memory 1-8
operand 1-13
page 9-9

validation 9-9
segment 9-2

Accumulator instruction, execute 5-2
Accumulators

fixed-point 1-2, 1-3
floating-point 1-3, 1-4

Adding a data element to queue 6-4
Addition instructions

fixed-point 2-4
floating-point 3-7

Address
absolute 1-11
base register 1-12
bit 1-17

ECLIPSE 16-bit 10-10, 10-11
BMC modes 8-23
byte 1-16

ECLIPSE 16-bit 10-9. 10-10
effective 1-12. 1-13

ECLIPSE 16-bit 10-9
load. instructions 2-21
resolution 1-10

indirect 1-12
indirect field 1-12
logical 1-8

format 9-6
space 1-7. 1-8

modes 1-11
relative 1-12
translation 9-2, 9-6
word, ECLIPSE 16-bit 10-8, 10-9
wraparound 5-1

014-001371

ALARM 8-53

Alarm clock 8-50
instructions 8-50

Alarm instruction, Set 8-53

Aligning floating-point mantissas 3-5

Appending floating-point guard digits 3-5
Architectural clocks 8-49

Arithmetic
decimal 2-15
floating-point, operations 3-5
instructions

decimal 2-20
fixed-point 2-4
floating-point 3-7

ASCII
fault

codes 5-20
data 5-19, 5-21, 5-22

servicing 5-19
manipulation, see Byte manipulation

Attribute block, graphics 7-13

B
Base register

address 1-12
segment 5-11

Base-level interrupt processing 8-12

Binary fixed-point operations 2-2

Bit
address 1-17

ECLIPSE 16-bit 10-10, 10-11
data 1-16
instructions

fixed-point 2-13
modified 9-10
referenced 9-10

least significant 1-2
manipulation, fixed-point 2-13
modified 9-9
most significant 1-2
pattern 1-2
pointer 1-16

format 1-17
referenced 9-9
reserved 1-2

Index-1

Bitmap, graphics
and forms 7-5
physical, definition 7-5
virtual

definition 7-5
windowing with 7-5

BKPT 5-6

Block
counter, device controller 8-31
standard return

narrow 10-5
wide 4-6, 5-5

BMC
address modes 8-23
maps 8-23

instructions 8-22
registers 8-25

slot 8-26
see also Burst multiplexor channel

Boot clock 8-59

Bounding rectangle, graphics 7-6

Breakpoint
handler, return from 5-6
instruction 5-6

Building a queue 6-2

Burst multiplexor channel 1-6, 8-20
burst counter, 8-32
control, 8-4
110 8-1
latency, 8-35

Busy flags 8-7

Byte
address 1-16

ECLIPSE 16-bit 10-9, 10-10
data 1-14
decimal data formats 2-15
decimal operations 2-15
instructions

move 2-19
skip 2-21
swap 2-8

manipulation 2-15
pointer 1-14, 1-16

format 1-15

c
Cache, form 7-21

tag 7-21

Call subroutine
instructions 5-6
sequence 5-9

Index-2

Carry
ECLIPSE 16-bit corresponding bits 10-3
fixed-point

initializing instructions 2-7
operations 2-7

flag 2-7

Central processor 8-36
device control flags 8-36
identification 9-10

ECLIPSE 16-bit 10-18
instructions 8-37

Halt 8-45
110 8-37
identification 9-10

multiple units 8-88

Channel
burst multiplexor 8-20
data 8-20
110

controllers 8-2
instruction

Reset 8-41
Select 8-39

register
definition 8-26
mask 8-27
status 8-27

Character, graphics
color 7-14, 7-17
control 7-14, 7-17
drawing attributes 7-17
fonts 7-17

CIO 8-22

CIOI 8-22

Clippable area, graphics 7-25

Clock
alarm 8-50

instructions 8-50
architectural 8-49
boot 8-59
real-time 8-63

device flag control 8-63
instructions 8-63

time-of-day 8-50
time-slice timer 8-54

Codes. fault
and status B-1
decimall ASCII 5-20
multiple central processing units 8-93
wide stack 5-24

Color. graphics
character 7-14. 7-17
descriptors 7-20
line 7 -14, 7 - 16

style 7-14, 7-16

Combination rule, graphics 7 -13, 7 -·14, 7 -15

014-001371

Computation
fixed-point 1-2. 2-1
floating-point 1-3, 3-1

Contiguous line segments. graphics 7 -16
Control register. CPU dedication 8-28
Control Store. Load instruction D-1
Controller

device 8-2. 8-29
registers 8-29

110 channel 8-2

Conversion instructions
fixed-point 2-3
fixed-point to floating-point and store 2-20
floating-point 3-3

binary 3-3
decimal 3-3

Coordinate system. graphics 7-7

Coordinates. graphics
conversion 7-8
physical 7-7
user 7-7
virtual 7-7

Counter. program 5-1

CPU
dedication control register 8-28
multiple units. see Multiple central processing

units
Skip instruction 8-48
see also Central processor

Current ring of execution 5-9
Current segment 1-9
Cursor descriptor 7-17

cross-hair 7-18. 7-19
image 7-18. 7-19

D
Data

bit 1-16
byte 1-14
channel 8-20

110 1-6. 8-1
control. 8-4
latency. 8-35

double word 1-14
element. queue 6-1
fault

ASCII 5-21. 5-22
decimal 5-21, 5-22
decimal/ASCII 5-19

servicing 5-19
type 2-22

014-001371

formats
byte and decimal 2-15
fixed-point 2-2, 2-12
floating-point 3-2
type indicator 2-15

register 8-31
structures, graphics 7-9
transfer

liD 8-22
initialization 8-3

latency 8-33
type

decimal and byte 2 -17
indicator format 2-16

wide stack instructions 4-5
word 1-14
word-oriented 1-14

DCH
maps 8-23

instructions 8-22
registers 8-25

slot 8-26
see a/so Data channel

Decimal
arithmetic 2-15

example 2-23
data

fault 5-21. 5-22
packed format 2-18
unpacked format 2-18

instructions
arithmetic 2-20
shift 2-21

packed string 2-16
unpacked 2-16

Decimal and byte
data

formats 2-15
types 2-17

instructions. move 2-19
operations 2-15

Decimal/ASCII. fault
codes 2-22. 5-20
data 2-22. 5-19

servicing 5-19
ECLIPSE 16-bit 10-6, 10-17

Decrement and skip instructions. fixed-point
2-6

Demand paging 1-8. 9-9

DEQUE 6-6. 6-7

Destination segment 1-9

Index-3

Device
access, 1/0 8-2
controller, 8-2, 8-29

block counter, 8-31
data transfer latency, 8-33
flag, status, 8-30
programming, 8-32
register

BT\1C burst counter, 8-32
control, 8-30
data, 8-31
memory address, 8-32
status, 8-30

registers, 8-29
word counter, 8-31

external, definition 8-2
flag, control

central processor 8-36
power supply controller 8-80
programmable interval timer 8-60
real-time clock 8-63
SCP 8-68
TTY 8-65

110
control table 8-16
flags 8-7
integral 8-36

internal, definition 8-1
management 1-6, 8-1
maps, 110 8-22
timing 8-49

Disable instruction, 110 Interrupt 8-46
Displacement field 1-11
Division instructions

fixed-point 2-6
floating-point 3-8, 3-9

Done flags 8-7
DO-loop, instructions 5-3

example 5-3
Doubleword

data 1-14
definition 1-2

Drawing attributes, graphics
character 7-17
line 7-16

E
ECLID 10-18
ECLIPSE 16-bit

addressing
bit 10-10, 10-11
byte 10-9, 10-10
effective 10-9
word 10-8, 10-9

Index-4

CPU identification 10-18
compatible instructions 1-8
corresponding bits

Carry 10-3
fixed-point accumulators 10-2
floating-point

accumulators 10-2
status register 10-2

processor status register 10-2
program counter 10-3
registers 10-3, 10-4
wide stack registers 10-2

fault 10-6
decimal/ASCII 10-6, 10-17
floating-point 10-6
handling 10-17

floating-point, numerical algorithms 10-14
instructions 10-7

ECLIPSE MV IFamily compatiblity 10-8
fixed-point 10-12
floating-point 10-13
memory reference 10-8
program flow 10-15
stack 10-16

interrupts 10-6
110 10-6

page zero memory 10-18
program

expansion 10-6
flow 10-17

programming 10-1
registers 10-2
reserved memory 10-18
stack 10-5
subroutine expansion 10-7

Edit
instruction, wide 5-7
subprogram instructions 2-20

Effective address 1-12, 1-13
ECLIPSE 16-bit 10-9
instructions 2-21
resolution 1-10

Enable instruction, 110 Interrupt 8-47

Enable/Disable Error Reporting instruction, SCP
8-71

ENQH 6-7
I

ENQT 6-5, 6-7

Erasing graphics objects 7-15

Execute accumulator instruction 5-2

Expanding an ECLIPSE 16-bit
program 10-6
subroutine 10-7

External device definition 8-1

014-001371

F
Fault 1-18

ASCII, data 5-21
codes

and status B-1
decimal/ASCII 2-22, 5-20
protection 9-15
wide stack 5-24

data
ASCII 5-21, 5-22
decimal 5-21. 5-22

decimal! ASCII
data 2-22, 5-19

servicing 5-19
ECLIPSE 16-bit 10-6, 10-17

ECLIPSE 16-bit 10-6
fixed-point

overflow 2-10
servicing 5-17

flag. overflow 1-3
floating-point 3-12, 5 -18

ECLIPSE 16-bit 10-6
overflow 1-4
servicing 5-18
underflow 1-4

graphics. handling 7-22. 7-23
sequence 7-22, 7-23

handler
protection. user 9-17
stack

narrow 5-25
wide 5-24

handling 5 -16
ECLIPSE 16-bit 10-17

instructions. Set Time-Slice Handler 8-58
mask

floating-point 5-18
overflow 1-3

nonprivileged, sequence 5-16
overflow

fixed-point 5-17
narrow stack 5-24

page 9-11, 9-12
privileged 9-11
protection 9-13
return block

narrow 5-22
wide 5-21

stack 5-23
narrow 5-24

operations 5-24
sequence 5-25

wide 4-8
operations 5-23
overflow 5-23
sequence 5-23
underflow 5-23

types 5-16

014-001371

Final interrupt processing 8-14

Fixed-point
accumulators 1-2. 1-3

ECLIPSE 16-bit corresponding bits 10-2
binary operations 2-2
bit manipulation 2-13
Carry operations 2-7
computation 1-2. 2-1
data formats 2-2, 2-12
fault

overflow 2-10, 5-17
servicing 5-17

graphics, overflow 7-25
instructions

addition 2-4
arithmetic 2-4
bit 2-13
Carry initializing 2-7
conversion to floating-point 2-20
decrement and skip 2-6
division 2-6
ECLIPSE 16-bit 10-12
increment and skip 2-6
logical 2-13

shift 2-14
skip 2-14

move 2-3
multiplication 2-5
precision conversion 2-3
shift 2-7, 2-14
skip 2-9, 2-14
skip on condition 2-9
subtraction 2-5
swap byte 2-8

logical operations 2-12
processor status register 2-10
two's complement format 2-2

Flag
Busy 8-7
Carry 2-7
device control

central processor 8-36
power supply controller 8-80
programmable interval timer 8-60
real-time clock 8-63
SCP 8-68
TTY 8-65

Done 8-7
IXCT 5-6
interrupt 8-7, 8-8

disable, device controllers 8-18
110 devices 8-7
OVR 5-17
powerfail 8-7
status, device controller 8-30

Index-5

Floating-point
accumulators 1-3, 1-4

ECLIPSE 16-bit corresponding bits 10-2
aligning the mantissas 3-5
appending guard digits 3-5
arithmetic operations 3-5
calculating and normalizing the result 3-6
computation 1-3, 3-1
data formats 3-2
exponent 3-2
fault 5-18

and status 3-12
ECLIPSE 16-bit 10-6
mask 5-18
return block

narrow 5-19
wide 5-18

servicing 5 -18
instructions

addition 3-7
arithmetic 3-7
conversion 3-3

binary 3-3
decimal 3-3
from fixed-point and store 2-20

division 3-8, 3-9
ECLIPSE 16-bit 10-13
intrinsics 3-10, 3-11
move 3-4
multiplication 3-8
skip 3-9
skip on condition 3-9
status register 3-12
subtraction 3-7

mantissa 3-2
numerical algorithms, ECLIPSE 16-bit 10-14
registers 1-3
result

storing 3-6
truncating or rounding 3-6

sign bit 3-2
status register 1-3, 1-4, 3-12, 5-18

ECLIPSE 16-bit corresponding bits 10-2

Form
and bitmaps, graphics 7-5
attributes 7-13, 7-14
cache 7-21

miss 7-21
tag 7-21

descriptor 7-9
contents 7-10, 7-11
definition 7-3

graphics 7-4
data structures 7-4
10 definition 7-4
10, user's 7-21

mask 7-12

Index-6

FPSR 3-13
see also Floating-point status register

Frame pointer, narrow 10-5

FTD 5-18

FTE 5-18

Functional capabilities 1-2

FXTD 5-17

FXTE 5-17

G
Gate

array 5-9
format 5-10

bracket 5-11

General 110 instructions 8-6

GIS, see Graphics instruction set

Glossary Glossary-l

Graphics
attribute block 7-13
bitmap

physical 7-5
virtual 7-5

bounding rectangle 7-6
character

color 7-14, 7-17
control 7 -14, 7 -17
drawing attributes 7-17
fonts 7-17

dippable area 7-25
color

descriptors 7-20
line 7-14

combination rule 7-13, 7-14, 7-15
coordinate system 7-7
coordinates

conversion 7-8
physical 7-7
user 7-7
virtual 7-7

cursor descriptor 7 -17
cross-hair 7-18, 7-19
image 7-18, 7-19

data structures 7-9
erasing objects 7-15
fault

fixed-point overflow 7-25
handling 7-22

sequence 7-22, 7-23
overdraw condition 7-25, 7-26, 7-27

014-001371

Graphics (continued)
form 7-4

and bitmaps 7-5
attributes 7-13, 7-14
cache 7-21
data structures 7-4
descriptor 7-9

contents 7-10, 7-11
ID 7-4
mask 7-12

instruction set 1-6
instructions 7-1, 7-2, 7-3

format 7-2
interrupts 7-21

line
color 7-16
control 7-14, 7-16
dra wing attributes 7 -16
style 7-14, 7-16, 7-17

local origin 7-6
management 1-6, 7-1
operation mask 7-13, 7-14
palette sharing 7 -12
rectangle

descriptor 7-6, 7-12
contents 7-13

list 7-6, 7-12
tiling 7-12
undra wing objects 7-15
user's form ID 7-21
windowing 7 - 5

Guard digit, floating-point 3-5

H
HALT 8-45

Halt instruction 8-45

Handler
breakpoint, return from 5-6
fault

protection, user 9-17
stack

narrow 5-25
wide 5-24

Hex shift instructions 2-21

I
lIO

access 8-3
segment base register 8-3

burst multiplexor channel 1-6, 8-1
bus 8-2

014-001371

channel 8-20
controllers 8-2

multiple 8-39, 8-41
multiple central processing units 8-91

register
definition 8-26
mask 8-27
status 8-27

communication 8-2
multiple central processing units 8-91

data channel 1-6, 8-1
data transfers 8-4

control 8-4
device

access 8-2
control table 8-16
flags 8-7
integral 8-36
maps 8-22

instructions
burst multiplexor channel, maps 8-22
central processor 8-37
Channel Reset 8-41
Channel Select 8-39
data channel, maps 8-22
general 8-6
Interrupt

Acknowledge 8-42
Disable 8-46
Enable 8-47

Mask Out 8-44
Reset 8-43

interrupt 8-8
ECLIPSE 16-bit 10-6
multiple central processing units 8-91
servicing 8-10, 8-11
vectored 8-12

primary asynchronous line 8-65
programmed 1-6, 8-4
registers 8-3, 8-25
Skip 8-8

instruction 8-17
validity flag 1-18
transfer sequence 8-21
vector table 8-14, 8-15

Identification, central processor 9-10
ECLIPSE 16-bit 10-18
instructions 9-10

lIS, see Intrinsic instructions
INTA 8-17, 8-42
INTDS 8-46
INTEN 8-18, 8-47
Increment and skip instructions. fixed-point

2-6
Index field 1-11
Indirect. address 1-12

field 1-12
protection violation 1-12

Index-7

Indivisible instructions, multiple central
processing units 8-90

Information transfer, types 8-4

Initial processor 8-88

Initialization
multiple central processing units 8-88
wide stack 4-7

Instructions
compatibility, ECLIPSE MV/Family 10-8
ECLIPSE 16-bit compatibility 1-8
interruption 8-9
interrupts, graphics 7-21
memory reference 1-8, 1-10
processor status register 2-1 °
unimplemented 9-17

Integral devices, 110 8-36

Intermediate-level interrupt processing 8-14

Internal device definition 8-1

Interrupt
Acknowledge 8-17
disable flag, device controllers 8-18
ECLIPSE 16-bit 10-6
flag 8-7, 8-8
graphics instructions 7-21
110 8-8

ECLIPSE 16-bit 10-6
processing

base-level 8-12
final 8-14
intermediate-level 8-14

servicing 8-10, 8-11
vectored 8-12

instructions 8-9
110

Acknowledge 8-42
Disable 8-46
Enable 8-47

multiple central processing units 8-91
priority 8-18

handler 8-19
mask 8-19

service routines 8-17

Interval timer, programmable 8-60

Intra-processor communication, multiple central
processing units 8-92

Intrinsic instructions 3-10, 3-11
format 3-10, 3-11

Inward segment crossing sequence 5-11, 5-13

IOC, see 110 channel controllers

ION, see Interrupt flag

IORST 8-43

IXCT nag 5-6

Index-8

J
Jump, instructions 5-2

to subroutine 5-6

L
LCALL 5-6, 5-9, 5-10, 5-11, 5-12
LeS, see Load Control Store instruction
Line, graphics

color 7-14, 7-16
contiguous segments 7 -16
control 7-14, 7-16
drawing attributes 7 -16
style 7-14, 7-16, 7-17

Links, queue 6-2
backward 6-2
forward 6-2

LJSR 5-6
Load

Character Buffer instruction 8-67
Control Store instruction 0-1
effective address instructions 2-21
map, from 110 device 8-24

Local origin, graphics 7-6
Logical

address 1-8
format 9-6
space 1-7, 1-8

fixed-point
instructions 2-13

shift 2-14
skip 2-14

operations 2-12
memory 9-2

LPHY 8-22
LPTE 9-4
LSBRA 9-2
LSBRS 9-2

M
Mantissa, aligning floating-point 3-5

MAP. See Memory allocation and protection

Map, loading, from 110 device 8-24

Mask
interrupt, priority 8-19
Out, instruction 8-8, 8-44

Memory
accessing 1-8
address Te~ister, device controller 8-32
allocalloll and protection 8-22
logical 9-2
management 1-7, 9-1

014-001371

~lemory (continued)
page zero 9-18

ECLIPSE 16-bit 10-18
locations

segment 0 9-19
segment 1 through 7 9-20

physical 9-2
reference

instructions 1-8, 1-10
byte addressing format 1-10, 1-11
ECLIPSE 16-bit 10-8
word addressing format 1-10

validity 1-18
reserved 9-18

ECLIPSE 16-bit 10-18
locations C-1

segment 1-5
see also Segment

state area 9-21
views, multiple central processing units 8-90

.Modified bit 9-9
instructions 9 -1 0

.M ove instructions
byte 2-19
decimal and byte 2-19
fixed-point 2-3
floating-point 3-4

MSKO 8-8, 8-18, 8-19, 8-44
I\1ultiple centra) processing units 8-88

error codes 8-93
I/O

communication 8-91
interrupt handling 8-91

initialization 8-88
instructions 8-92

indivisible 8-90
serializable 8-90
uninterruptible 8-90

intra-processor communication 8-92
memory views 8-90
multiple I/O channels 8-91

I\1ultiplication instructions
fixed-point 2-5
floating-point 3-8

N
!\:arrow

frame pointer 10-5
return block 10-5

fault 5-· 22
floating-point 5-19

stack 10-5
definition 1-5, 4-1
fault

handler 5-25
operations 5-24

014-001371

overflow 5-24
return block 5-25
sequence 5-25

limit 10-5
pointer 10-5

NCLID 10-18
Nonprivileged fault, sequence 5-16

o
One-level pagetable 9-6, 9-7
Operand access 1-13
Operation mask, graphics 7-13, 7-14
OVK mask 5-17
OVR flag 5-17
Overdraw condition, graphics 7-25, 7-26, 7-27
Overflow, fault

fixed-point 2-10, 5-17
graphics 7-25

flag 1-3
floating-point 1-4
mask 1-3
stack

narrow 5-24
wide 4-8, 5-23

disabling 4-8

p
Packed decimal

data format 2-18
string 2-16

Page
access 9-2, 9-9

validation 9-9
definition 1-8
fault 9-11

sequence 9-12
frames 9-4
protocols 1-9
zero

ECLIPSE 16-bit 10-18
memory 9-18

locations C-1
segment 0 9-19
segment 1 through 7 9-20

Pagetables 9-4
entry 9-4, 9-5
one-·level 9-6, 9-7
two-level 9-6, 9-8

Paging, demand 9-9
Palette sharing, graphics 7-12
PBX 5-6
PC, see Program counter
Physical

bitmap, graphics, definition 7-5
memory 9-2

Index-9

PIO 8-6, 8-17
PIT, see Programmable interval timer
Pointers, trojan horse 5-14
Power supply controller 8-80

device flag control 8-80
instructions 8-81

Read Data From U/PSC 8-86
Request Data From U/PSC 8-85
Write Data to U/PSC 8-82

Powerfail flag 8-7, 8-48

Priority interrupt 8-18
handler 8-19
mask 8-19

Primary asynchronous line 8-65

Privileged faults 9-11
Processor

central 8-36
initial 8-88
interrupt servicing 8-10
state block, multiple central processing units

8-89
status register 1-2, 1-3, 5-17

ECLIPSE 16-bit corresponding bits 10-2
fixed-point 2-10
instructions 2-10

Program
control

segment transfer instructions 5-9
transferring to another segment 5-9, 5-10

counter 1-5, 5-1
ECLIPSE 16-bit corresponding bits 10-3
format 1-5, 1-6

expansion, ECLIPSE 16-bit 10-6
flow

ECLIPSE 16-bit 10-17
instructions 10-15

management 1-5, 5-1
related instructions 5-2

Programmable interval timer 8-60
device flag control 8-60
instructions 8-60

Read Count 8-61
Specify Initial Count 8-62

Programmed 110 1-6, 8-1
control 8-4
instruction 8-6, 8-17
latency 8-33

Protection
capabilities 1-18
faults 1-18
violation 9-13

codes 9-15
handler, user 9-17
indirect address 1-12
priorities 9-13
return block 9-15
sequence 9-13, 9-16

Index-10

Protocols
page 1-9
segment 1-9

PRTRST 8-41

PRTSEL 8-20, 8-39

PSC 8-80

PSR, see Processor status register

PTE, see Pagetables, entry

Q
Queue

building 6-2
data element 6-1
definition 1-6, 6-1
descriptor 6-3

empty queue 6-3
examples 6-3
head 6-1
instructions 6-7
links 6-2
management 1-6, 6-1
setting up and modifying 6-3
tail 6-1

R
Read

Character Buffer instruction 8-66
Count instruction, PIT 8-61
Data From U/PSC instruction 8-86
Switches instruction 8-38
Time of Day instruction 8-51
Time-Slice instruction 8-55

READS 8-38
Real-time clock 8-63

device flag control 8-63
instructions 8-63

Select RTC Frequency 8-64

Rectangle, graphics
bounding 7-6
descriptor 7-12

contents 7-13
definition 7-6

list 7-12
definition 7-6
use of 7-6

Referenced bit 9-9
instructions 9-10

Re gister 1-2
base address 1-12
Bt-.1C 8-25

slot 8-26
CPU dedication control 8-28
DCH 8-25

slot 8-26

014-001371

Re gister (continued)
device controller 8-29

BMC burst counter, 8-32
control, 8-30
data, 8-31
memory address, 8-32
status, 8-30

ECLIPSE 16-bit 10-2
corresponding bits 10-3, 10-4

fields A-I
floating-point 1-3

status 1-3, 1-4, 3-12, 3-13, 5-18
I/O 8-3, 8-25

channel
definition 8-26
mask 8-27
status 8-27

least significant bit 1-2
most significant bit 1-2
processor status 1-2, 1-3, 2-10, 5-17
segment base 1-8, 5-11, 9-2, 9-3
wide stack 4-3

format 4-3
instructions 4-4, 4-5
management 1-5

Relative addressing 1-12
Removing a data element 6-6
Request Data From U/PSC instruction 8-85
Reserved bits 1-2
Reserved memory 9-18

ECLIPSE 16-bit 10-18
locations C-l
page zero 9-18
state area 9-21

Reset instruction
I/O 8-43
I/O Channel 8-41

Return
breakpoint handler 5-6
SCP Status instruction 8-78
subroutine 5 -14

instructions 5-6
wide, instruction sequence 5 -15

Return block
fault

narrow' 5-22
floating-point 5-19
stack 5-25

protection 9-15
wide 5-21

floating-point 5-18
stack 5-23
standard 5-5

narrow 10-5
standard 10-5

wide
stack, instructions 4-6
standard 4-6

014-001371

Ring
current, execution 5-9
definition 1-7

RTC, see Real-time clock
RTOD 8-51
RTS 8-55

s
SBR, see Segment base registers
SCP

device control flag 8-68
instructions 8-68

Enable/Disable Error Reporting 8-71
Return SCP Status 8-78

protocol 8-68
see also System control processor/program

Scale factor, see Data type indicator format
Segment

access 9-2
base register 1-8, 5-11, 9-2, 9-3

I/O access 8-3
crossing sequence, inward 5-11, 5-13
current 1-9
definition 1-5, 1-7
destination 1-9
instructions, program control transfer 5-9
other 1-9
protocols 1-9
sei;' also Gate array

Select RTC Frequency instruction 8-64
Serializable instructions, multiple central

processing units 8-90
Set

Alarm instruction 8-53
Time of Day instruction 8-52
Time-Slice Fault Handler instruction 8-58
Time-Slice instruction 8-56

Shift instructions
decimal 2-21
fixed-point 2-7, 2-14

Sign extend, fixed-point 2-2
Size indicator, see Data type indicator format
Skip instructions 5-2, 5-3

byte 2-21
CPU 8-48
example 5-3
fixed-point 2-9, 2-14
floating-point 3-9
on condition

fixed-point 2-9
floating-point 3-9

SKP CPU 8-48

SKPt 8-8, 8-17
Specify Initial Count instruction, PIT 8-62

Index-11

SPTE 9-4

SSPT 9-21
STOD 8-52

STS 8-56
STSFH 8-58
Stack

definition 1-5, 4-1
ECLIPSE 16-bit 10-5
management 1-5, 4-1
narrow 10-5

definition 4-1
fault

handler 5-25
operations 5-24
overflow 5-24
return block 5-25
sequence 5-25

instructions, ECLIPSE 16-bit 10-16
limit 10-5
pointer 10-5

wide
base 4-3
definition 4-1
example 4-7, 5-7, 5-8
fault 4-8, 5-23

codes 5-24
handler 5-24
operations 5-23
overflow 5-23
return block 5-23
sequence 5-23
underflow 5-23

frame pointer 4-4
initializing 4-7
instructions

data 4-5
register 4-4, 4-5
return block 4-6

limit 4-3
management registers 1-5
parameters 4-2
pointer 4-4
register 4-3

format 4-3
Standard return block

narrow 10-5
wide 4-6, 5-5

Slate area 9-21

State block, multiple CPUs 8-89
Status

codes, and fault B-1
flags 1-3

and register, device controller 8-30
register

floating-point 1-3, 1-4, 3-12, 3-13, 5-18
instructions 3-12

processor 1-2, 1-3, 2-10, 5-17

Index-12

Store State Pointer instruction 9-21

Subroutine 5-4
call sequence 5-9
expansion, ECLIPSE 16-bit 10-7
instructions 5-5

call 5-6
jump to 5-6
return from 5-6
sequence 5-5

return 5-14

Subtraction instructions
fixed-point 2-5
floating-point 3-7

Swap byte instructions, fixed-point 2-8

System
control processor 8-68
control program 8-68
management 1-7, 9-1
overview 1-1

T
Tiling, graphics 7-12

Time of Day instruction
Read 8-51
Set 8-52

Time-of-day clock 8-50

Time-slice
instructions

Read 8-55
Set 8-56
Set Handler 8-58

timer 8-54
instructions 8-54

Timer, programmable interval 8-60

Timing devices 8-49

Transferring program control, another segment
5-9, 5-10

Trojan horse pointers 5 -14

TTY
control flags 8-65
instructions 8-66

Character Buffer
Load 8-67
Read 8-66

see also Primary asynchronous line

Two's complement
format 2-2

fixed-point 2-2
precision 2-2

Two-level pagetable 9-6, 9-8

Type indicator, see Data type indicator format

014-001371

u
Underflow, fault

floating-point 1-4
wide stack 4-8, 5-23

disabling 4-8
Undrawing graphics objects 7-15
Unimplemented instructions 9-17
Uninterruptible instructions, multiple CPUs 8-90
Universal power supply controller 8-80
Unpacked decimal 2-16

data format 2-18
UPSC 8-80
User protection fault handler 9-17
User's form ID, graphics 7-21

v
Validity

check
I/O instruction 1-18
memory reference 1-18

flag, I/O 1-18
VBP 5-14
Vector table, 110 8-14, 8-15
Vectored interrupt processing, 110 8-12
Virtual bitmap. graphics

definition 7-5
windowing with 7-5

v\VP 5-14

w
WASH 2-7

\\'ASHI 2-7

WEDIT 5-7

WFP. see Wide frame pointer

WGCHRBLT 7-17

WGLFORM 7-21

\VGPLINE 7-16

\VGRDPAL 7-20

\\,G\VRPAL 7-20

\\,ide
edit instruction 5-7
return block, fault 5-21

floating-point 5-18
return instruction, sequence 5-15
stack

base 4-3
definition 1-5, 4-1
example 4-7, 5-7, 5-8
fault 4-8

codes 5-24

014-001371

handler 5-24
operations 5-23
overflow 5-23
return block 5-23
sequence 5-23
underflow 5-23

frame pointer 4-4
initializing 4-7
instructions

data 4-5
register 4-4
return block 4-6

limit 4-3
operations 4-2
overflow 4-8

disabling 4-8
parameters 4-2
pointer 4-4
register 4-3

ECLIPSE 16-bit corresponding bits 10-2
format 4-3
instructions 4-5
management 1-5

underflow 4-8
disabling 4-8

\Vindowing with virtual bitmaps, graphics 7-5

WLMP 8-22
WMESS 6-7
Word

address, ECLIPSE 16-bit 10-8, 10-9
counter, device controller 8-31
data 1-14
definition 1-2

Word-oriented data 1-14
\VPOPJ 5-6
Write Data to U/PSC instruction 8-82
\\'RTN 5-6, 5-14

sequence 5-15
WSAVR 5-6
WSAVS 5-6
WSB, see Wide stack base
WSL, see Wide stack limit
WSP. see Wide stack pointer
WSSVR 5-6
\VSSVS 5-6

x
XCALL 5-6, 5-9, 5-10, 5-11, 5-12
XCT 5-2
XJSR 5-6
XVCT 8-12, 8-17

z
Zero extend, fixed-point 2-2

Index-13

TIPS ORDERING PROCEDURES
TO ORDER
1. An order can be placed with the TIPS group in two ways:

a) MAIL ORDER - Use the order form on the opposite page and fill in all requested information. Be sure to

include shipping charges and local sales tax. If applicable, write in your tax exempt number in the space
provided on the order form.

Send your order form with payment to: Data General Corporation
ATTN: Educational Services/TIPS G155
4400 Computer Drive
Westboro, MA 01581-9973

b) TELEPHONE - Call TIPS at (508) 870-1600 for all orders that will be charged by credit card or paid for
by purchase orders over $50.00. Operators are available from 8:30 AM to 5:00 PM EST.

METHOD OF PAYMENT
2. As a customer, you have several payment options:

a) Purchase Order - Minimum of $50. If ordering by mail, a hard copy of the purchase order must
accompany order.

b) Check or Money Order - Make payable to Data General Corporation.
c) Credit Card - A minimum order of $20 is required for Mastercard or Visa orders.

SHIPPING
3. To determine the charge for UPS shipping and handling, check the total quantity of units in your order and

refer to the following chart:
Total Quantity
1-4 Units
5-10 Units
11-40 Units
41-200 Units
Over 200 Units

Shipping & Handling Charge
$5.00
$8.00

$10.00
$30.00

$100.00

If overnight or second day shipment is desired, this information should be indicated on the order form. A
separate charge will be determined at time of shipment and added to your bill.

VOLUME DISCOUNTS
4. The TIPS discount schedule is based upon the total value of the order.

Order Amount Discount
$1-$149.99 0%
$150-$499.99 10%
Over $500 20%

TERMS AND CONDITIONS
5. Read the TIPS terms and conditions on the reverse side of the order form carefully. These must be adhered

to at all times.

DELIVERY
6. Allow at least two weeks for delivery.

RETURNS
7. Items ordered through the TIPS catalog may not be returned for credit.
8. Order discrepancies must be reported within 15 days of shipment date. Contact your TIPS Administrator at

(508) 870-1600 to notify the TIPS department of any problems.

INfERNATIONAL ORDERS
9. Customers outside of the United States must obtain documentation from their local Data General Subsidiary

or Representative. Any TIPS orders received by Data General U. S. Headquaners will be forwarded to the
appropriate DG Subsidiary or Representative for processing.

TIPS ORDER FORM
Mail To: Data General Corporation

Attn: Educational Services/TIPS G 155
4400 Computer Drive
Westboro, MA 01581 - 9973

COMPANY NAME COMPANY NA --------------------------------AnN: ATTN:
--~ ADDRESS ADDRESS (NO PO BOXES)

--------------------------~ CITY CITY
--~ STATE __________ ZIP _____ STATE __________ 21

Priority Code _________________ (See label on back of catalog)

Authorized Signature of Buyer Title Date Phone (Area Code) Ext.
(Agrees tOiiiiiiiiiil

A L;:;::;:::::· B F)/oftJM:e?t)ISCOUmS::: ORDER TOTAL

o UPS
1-4 Items
5-10 Items
11-40 Items
41-200 Items

~
$ 5.00
5 8.00
$ 10.00
$ 30.00

200+ Items 5100.00
Check for faster" .• :
Additional charge to be determined at time of
shipment and added to your bill.

o UPS Blue Label (2 day shipping)
o Red Label (overnight shipping)

C :::
o Purchase Order Attached ($50 minimum)

Order Amount Save

$0 - $149.99 0%
$150 - $499.99 10%
Over $500.00 20%

P.O. number Is (Include hardcopy P.O.)
o Check or Money Order Enclosed
o Visa 0 MasterCard ($20 minimum on credit cards)

Account Number Expiration Date

I

Authorized Signature
(Credit card orders without signature and expiration date cannot be processed.)

Tax Exempt #
or Sales Tax
(if applicable)

Less Discount
See B

SUB TOTAL

sales tax
... ,,J':':-'-.~ and
.Q' '''''" .~ - See A

TOTAL - See C

THANK YOU FOR YOUR ORDER

+

+

PRICES SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.
PLEASE ALLOW 2 WEEKS FOR DELIVERY.

NO REFUNDS NO RETURNS.

* Data General is required by law to collect applicable sales or
use tax on all pUrchases shipped to states where DG maintains
a place of business, which covers all 50 states. Please Include
your local taxes when determining the total value of your order.
If you are uncertain about the correct tax amount, please call
508-870-1600.

Form 702
Hev. 8/87

DATA GENERAL CORPORATION
TECHNICAL INFORMATION AND PUBLICATIONS SERVICE

TERMS AND CONDITIONS
Data General Corporation (M DGC·) provides its Technical Information and Publications Service (TIPS) solely in accordance
with the following terms and conditions and more specifically to the Customer signing the Educational Services TIPS Order
F:orm. These terms and conditions apply to all orders, telephone, telex, or maii. By accepting these products the Customer
Cllccepts and agrees to be bound by these terms and conditions.

1. CUSTOMER CERTIFICATION
Customer hereby certifies that it is the owner or lessee of the DGC equipment and/or licensee/sub-licensee of the software
which Is the subject matter of the publication (s) ordered hereunder.

2 .. TAXES
Customer shall be responsible for all taxes, including taxes paid or payable by DGC for products or services supplied under
this Agreement, exclusive of taxes based on DGC' s net Income, unless Customer provides written proof of exemption.

3 .. DATA AND PROPRIETARY RIGHTS
F'ortions of the publications and materials supplied under this Agreement are proprietary and will be so marked. Customer shall
ClLbide by such markings. DGC retains for itself exclusively all proprietary rights (including manufacturing rights) in and to all
cleslgns, engineering details and other data pertaining to the products described in such publication. Licensed software
rnaterlals are provided pursuant to the terms and conditions of the Program License Agreement (PLA) between the Customer
amd DGC and such PLA is made a part of and Incorporated into this Agreement by reference. A copyright notice on any data
by Itself does not constitute or evidence a publication or public disclosure.

4 .. LIMITED MEDIA WARRANTY
[)GC warrants the Cli Macros media, provided by DGC to the Customer under this Agreement, against physical defects for a
period of ninety (90) days from the date of shipment by DGC. DGC will replace defective media at no charge to you, provided
It Is returned postage prepaid to DGC within the ninety (90) day warranty period. This shall be your exclusive remedy and
[)GC's sole obligation and liability for defective media. This limited media warranty does not apply if the media has been
clamaged by accident, abuse or misuse.

5. DISCLAIMER OF WARRANTY
E;XCEPT FOR THE liMITED MEDIA WARRANTY NOTED ABOVE, DGC MAKES NO WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABiliTY AND FITNESS FOR
F'ARTICULAR PURPOSE ON ANY OF THE PUBLICATIONS, Cll MACROS OR MATERIALS SUPPLIED HEREUNDER.

6;. LIMITATION OF liABILITY
A. CUSTOMER AGREES THAT DGC'S LIABILITY, IF ANY, FOR DAMAGES, INCLUDING BUT NOT LIMITED TO
L.lABILlTY ARISING OUT OF CONTRACT, NEGLIGENCE, STRICT LIABILITY IN TORT OR WARRANTY SHALL NOT
E;XCEED THE CHARGES PAID BY CUSTOMER FOR THE PARTICULAR PUBLICATION OR CLI MACRO INVOLVED.
,'HIS LIMITATION OF LIABiliTY SHALL NOT APPLY TO CLAIMS FOR PERSONAL INJURY CAUSED SOLELY BY
[)GC'S NEGLIGENCE. OTHER THAN THE CHARGES REFERENCED HEREIN, IN NO EVENT SHALL DGC BE LIABLE
F:OR ANY INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES WHATSOEVER, INCLUDING BUT
NOT LIMITED TO LOST PROFITS AND DAMAGES RESULTING FROM LOSS OF USE, OR lOST DATA, OR
[)ELlVERY DELAYS, EVEN IF DGC HAS BEEN ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE POSSIBILITY
,'HEREOF; OR FOR ANY CLAIM BY ANY THIRD PARTY.

EL ANY ACTION AGAINST DGC MUST BE COMMENCED WITHIN ONE (1) YEAR AFTER THE CAUSE OF ACTION
)'CCRUES.

7'. GENERAL
A valid contract binding upon DGC will come Into being only at the time of DGC's acceptance of the referenced Educational
Services Order Form. Such contract Is governed by the laws of the Commonwealth of Massachusetts, excluding Its conflict of
li!w rules. Such contract Is not assignable. These terms and conditions constitute the entire agreement between the parties
with respect to the subject matter hereof and supersedes a/l prior ora' or written communications, agreements and
understandings. These terms and conditions shall prevail notwithstanding any different, conflicting or additional terms and
c:ondltions which may appear on any order submitted by Customer. DGC hereby rejects all such different, conflicting. or
aLdditlonai terms,

EI. IMPORTANT NOTICE REGARDING AOS/VS INTERNALS SERIES (ORDER #1865 & #1875)
Customer understands that Information and material presented in the AOS/VS Internals Series documents may be specific to
2l particular revision of the product. Consequently user programs or systems based on this information and material may be
revision-locked and may not function properly with prior or Mure revisions of the product. Therefore. Data General makes no
representations as to the utility of this Information and material beyond the current revision level which is the subject of the
rnanual. Any use thereof by you or your company is at your own risk. Data General disclaims any liability arising from any such
use and I and my company (Customer) hold Data General completely harmless therefrom.

ECLIPSE®
MV/Fami]y

t32-Bit)
Systems

]Principles of
Operation

I
I
I
I
I
I
I
I
I
I
I

1014-001371-01 I I _______________ L ______________ I

Cut here and insert In binder spine pocket

t. DataGeneml
lOata General Corporation, Westboro, Mauachusetts 01511)

1111111111111111
BI4-BBI371-Bl

