

Warning:
This equipment generates, uses, and can radiate radio frequency energy
and if not installed and used in accordance with the instruction manual,
may cause interference to radio communications. As temporarily permitted
by regulation it has not been tested for compliance with the limits for Class
A computing devices pursuant to Subpart J of Part 15 of FCC Rules, which
are designed to provide reasonable protection against such interference.
Operation of this equipment in a residential area is likely to cause
interference, in which case the user, at his own expense, will be required
to take whatever measures may be required to correct the interference.

ECLIPSE® S/120 Assembly Language

Programmer's Refe .. e~ce .

t.,

_. Data General

NOTICE
Data General Corporation (DGC) has prepared this document
for use by DGC personnel, customers, and prospective custom­
ers. The information contained herein shall not be reproduced
in whole or in part without DGC's prior written approval.

DGC reserves the right to make changes in specifications
and other information contained in this document without
prior notice, and the reader should in all cases consult
DGC to determine whether any such changes have been
made.

THE TERMS AND CONDITIONS GOVERNING
THE SALE OF DGC HARDWARE PRODUCTS
AND THE LICENSING OF DGC SOFTWARE CON­
SIST SOLELY OF THOSE SET FORTH IN THE
WRITTEN CONTRACTS BETWEEN DGC AND
ITS CUSTOMERS. NO REPRESENTATION OR
OTHER AFFIRMATION OF FACT CONTAINED
IN THIS DOCUMENT INCLUDING BUT NOT
LIMITED TO STATEMENTS REGARDING CA­
PACITY, RESPONSE-TIME PERFORMANCE,
SUITABILITY FOR USE OR PERFORMANCE OF
PRODUCTS DESCRIBED HEREIN SHALL BE
DEEMED TO BE A WARRANTY BY DGC FOR
ANY PURPOSE, OR GIVE RISE TO ANY LIABILI­
TY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY
INCIDENTAL, INDIRECT, SPECIAL OR CONSE­
QUENTIAL DAMAGES WHATSOEVER (INCLUD­
ING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS DOCU­
MENT OR THE INFORMATION CONTAINED IN
IT, EVEN IF DGC HAS BEEN ADVISED, KNEW
OR SHOULD HAVE KNOWN OF THE POSSIBILI­
TY OF SUCH DAMAGES.

DASHER, DATAPREP, ECLIPSE, ENTERPRISE,
INFOS, microNOV A, NOVA, PROXI, SUPERNOVA,
ECLIPSE MV /8000, TRENDVIEW, MANAP, and
PRESENT are U.S. registered trademarks of Data Gen­
eral Corporation, and AZ-TEXT, DG/L, ECLIPSE
MV/6000, REV-UP, SWAT, XODIAC, GENAP, DE­
FINE, CEO, SLATE, microECLIPSE, BusiPEN,
BusiGEN, and BusiTEXT are U.S. trademarks of Data
General Corporation.

Ordering No. 014-000686-00
© Data General Corporation, 1982
All Rights Reserved
Printed in the United States of America
Rev. 00, June 1982

the ECLIPSE S/120 Assembly Language Programmer's
Reference is intended for use by programmers and system
engineers.

Organization of This Manual

The organization of each chapter and appendix of this
manual follows:

Chapter 1, "System Overview," summarizes each chapter
as it describes the system block diagram. It introduces
many of the system's capabilities and terms that are
discussed in later chapters.

Chapter 2, "Addressing," illustrates how the S/120
computer uses informatioll in registers and instructions to
form addresses. These addresses can reference data and
other instructions.

Chapter 3, "Fixed-Point Instructions," describes the
fixed-point data type format and summarizes fixed-point
operation. A table lists the fixed-point instructions.

Chapter 4, "Floating-Point Instructions," describes the
floating-point data type format and summarizes floating­
point operation. A table lists the floating-point instruc­
tions.

Chapter 5, "Stack Management," discusses stack opera­
tion, the instructions that are used to manipulate stacks,
and the use of stacks in fault handling.

Chapter 6, "Program Flow Management," discusses
program flow alterations (including jump and conditional
skip) and program interrupts. Program' flow alteration
instructions are listed in a table.

Chapter 7, "Device Management," describes the two types
of input/output (I/O) used on the S/120 computer:
programmed I/O and data channel I/O. It discusses
program interrupts, including the vectored interrupt, and
also briefly describes the programmable interval timer,
the real-time clock, and the asynchronous interface. This
chapter also includes an I/O instruction dictionary. These
instruction entries are organized by function, then listed
alphabetically by mnemonic.

Preface

Chapter 8, "Memory Allocation and Protection," de­
scribes the memory allocation and protection unit (MAP)
and lists the MAP instructions.

Chapter 9, "Virtual Console," describes command for­
mats and functions used in the power-up self-test, in auto
program load, in program debugging, and in changing
the MAP unit or MAP status.

Chapter 10, "Instruction Dictionary," contains a detailed
explanation of all instructions supported by the S/120
computer. The instruction entries are listed alphabetically
by mnemonic.

Appendix A, "Standard I/O Device Codes," is a table of
standard Data General device codes.

Appendix B, "Programming Aids" explains octal and
hexadecimal conversion with a table for conversion to
and from decimal numbers; and ASCII character codes,
with a table of the ASCII character set and the reiated
decimal, octal, and hexadecimal codes.

Appendix C, "Instruction Execution Times;" lists typical
execution times for the .instructions supported by the
S/120 computer.

Appendix D, "Programming Examples," explains short­
hand methods to attain certain programming results.

Appendix E, "Compatibility with ECLIPSE Computers,"
discusses instruction differences between the S /126 'and
other ECLIPSE computers.

Appendix F, "Instruction Summary," presents a short
description of each instruction for quick reference.

Preface

Typesetting Conventions
Since abbreviated instruction mnemonics include a speci­
fied device flag condition, the standard form of the
instruction must be used if different conditions are
desired. For example, to alter the state of the Interrupt
On flag while performing a Mask Out instruction, you
must use the full mnemonic,

DOB/!l ac,CPU

instead of the abbreviated mnemonic (MSKO ac), in
order to set bits 8 and 9 to 00.

The conventions we use for instruction formats are as
follows:

COMMAND

argument

{option}

Upper-case bold indicates mnemonics for
commands and associated symbols that must
be coded exactly as shown.

Lower·case italics indicate required argu­
ments or operands for which numbers or
symbols must be substituted.

Lower-case italics within brackets indicate
optional arguments or operands. The brackets
are not coded; they merely set off the choice.

In addition, we use the following special symbols:

BIT FORMAT

o 5 6

This diagram shows the arrangement of the 16 bits in a
word. The diagram is always divided into 16 boxes,
numbered 0 to 15.

ii Preface

Related Manuals
Other manuals describing aspects of the S/120 system
are:

• ECLIPSE® S/120 Computer System, Hardware
Reference (DGC No. 014-000690) gives a functional
description of the S/120 computer system including
configuration, interfacing, and theory of operation.

• ECLIPSE® S/120 Diagnostic and Maintenance
Manual (DGC No. 015-000116) includes- an
introduction to the virtual console, a checklist for use
with installation data sheets, and replacement
procedures.

• Introduction to Real-Time ECLIPSE® Computers
(DGC No. 014-000687) describes in summary form
the entire line of DG ECLIPSE hardware, both
processors and peripherals. It also contains a complete
bibliography of DG ECLIPSE documentation and
references to introductory software books.

• ECLIPSE® Line Computers Instruction Reference
Card (DGC No. 014-000627)

• MP/AOS Concepts and Facilities (DGC No.
069-400200) gives an overview of the concepts and
facilities of MP / AOS; describes the MP / AOS
operating system, utilities, and programming
languages supported by MP / AOS. For more detailed
information on MP / AOS, consult the related manuals
listed in MP/AOS Concepts and Facilities.

• Introduction to RDOS (DGC No. 069-400011)
familiarizes beginning RDOS users with a conceptual
presentation of RDOS, as the basisJor further reading
in other books. Also provides a map to other RDOS
documentation.

• AOS Software Documentation Guide (DGC No.
069-000020) contains a bibliography of all the AOS
software manuals, including a short description of each.

Preface

Organization of This Manual i
Typesetting Conventions ii
Related Manuals ii

Chapter 1
System Overview

Addressing Modes 1

Central Processing Unit 2
System I/O Controller 2
Memory 2
Memory Allocation and Protection 2
Error Checking and Correction 2
Virtual Console 3

Chapter 2
Addressing

Addressing Conventions 5
Definitions 5
Addressing Modes 6
Absolute Addressing 6
PC Relative Addressing 7
Accumulator Relative Addressing 7
Direct and Indirect Addressing 7
Effective Address Calculation 8
Byte Addressing 8
Bit Addressing 9
Reserved Memory Locations 10

Table of Contents

Chapter 3
Fixed-Point Instructions

Data Format 11
Unsigned Integers 11
Signed Integers 11
Fixed~Point Operation 12.
ALC Format 12
ALC Instructions 12
ALC Instruction Execution 13
Fixed~Point Instruction Lists 16
Arithmetic Instructions 16
Logical Operation Instructions 16
Decimal Arithmetic Instructions 17
Data Movement Instructions 17
Byte Manipulation Instructions 18
Bit Manipulation Instructions 18

Chapter 4
Floating-Point Instructions

Data Format 19
Sign 19
Mantissa 20
Exponent 20
Floating~Point Operation 20
Floating~Point Registers 20
Guard Digits 20
Floating~Point Status Register 20
Floating~Point Faults 21
Floating~Point Instruction Lists 21
Arithmetic Instructions 22
Floating Point Operation 22
Data Movement Instructions 22
Program Flow Alteration Instructions 22
Number Conversion Instructions 23
Status Register Instructions 24

Chapter 5
Stack Management

Stack Operation 25
Return Block 25
Stack Pointer 25
Frame Pointer 25
Stack Limit 26
Stack Control Memory Locations 26
Stack Overflow Protection 26
Overflow Checking 26
Stack Fault Handler 27
Interrupting the Stack Instructions 27
Stack Instructions 27
Examples - Stacks 29

Chapter 6
Program Flow Management

Program Flow 31
Program Flow Alteration 31
Program Flow Alteration Instructions 32
Conditional Skip Instructions 32
Program Flow Interruption 32
Extended Operation 33
Extended Operation Instructions 33

Chapter 7
Device Management

I/O Management 35
Programmed I/O 35
Data Channel I/O 35
I/O Operations 35
I/O Format 36
Program Interrupt 37
Initiating an Interrupt and CPU
Response 37
Servicing an Interrupt 37
Identifying the Interrupting Device 38
Priority Interrupts 39
Dismissing An Interrupt 39
SPU I/O Management 40

Special Mnemonics 40
Asynchronous Interface 40

Real-Time Clock Interface 42
Programmable Interval Timer 43
SPU I/O Operation 44
Power-Up Sequence 44
Auto Program Load Register 44
Power Fail/ Autorestart 45
Error Checking and Correction 45
ERCC Instructions 45
Power Fail Instructions 46
Programming Example 46
I/O Instruction Dictionary 47
Standard I/O Instructions 47
CPU Device Instructions 49
Programmable Interval Timer 52
Real-Time Clock 53
Asynchronous Line Input 53
Asynchronous Interface 54
Asynchronous Line Output 54
ERCC Error Correction 55

Chapter 8
Memory Allocation and Protection

MAP Functions 57
Definitions 57
Address Translation 57
Sharing Physical Memory 57
Mapped Mode 57
User Maps 57
Data Channel MAPS 58
Unmapped Mode 59
ECLIPSE S/120 Address Translation 59
Emulator Trap 59
MAP Protection Capabilities 59
Validity Protection 59
Write Protection 59
Indirect Protection 59
I/O Protection 59
Map Protection Faults 60

Load Effective Address Mode 60

Initial Conditions 60

MAP Instructions 60

Chapter 9
Virtual Console

Entering the Virtual Console 67
Errors 67
The Rubout/Delete Key 68
The K Command 68
Virtual Console Errors 68
Commands 68
Cell Commands 69
Function Commands 70
Miscellaneous Commands 72

Chapter 10
Instruction Dictionary

Coding Aids 75
Setting the Index Field 75
ERCC Error Correction 168
Common Process 162
Mode A 162
Modes B Through E - Part I 162
Modes B through E - Part II 164

Appendix A
1/0 Device Codes

Appendix B
Programming Aids

Octal and Hexadecimal Conversion 171
ASCII Character Codes 172

Appendix C
Instruction Execution Times

Appendix D
Programming Examples

Arithmetic Tests 177
Subroutines 178
Example 180

Appendix E
Compatibility With ECLIPSE Line Computers

Appendix F
Instruction Summary

Index

DG Offices

How to Order Technical Publications

Technical Products Publications Comment Form

Users' Group Membership Form

128-Kbyte

sensor

128-Kbyte
dynamic RAM

128-Kbyte

dynamic RAM

Chapter 1

System Overview

128-Kbyte
dynamic RAM

I/O communications
subsystem

hard copy
interfaces

disk
subsystems

static RAM

Figure 1.1 ECLIPSE S/120 computer system block diagram

The S/120 microcomputer system contains a variety of
powerful standard facilities including:

• Full 16-bit ECLIPSE architecture,
• Byte and bit addressing,
• Decimal add and subtract instructions,
• Fixed-point multiply/divide instructions,
• Floating-point instructions,
• Data manipulation,
• Stack manipulation,
• Vectored interrupt,
• Data channel input/output,

• Error checking and correction
• Virtual console.

DG·08855

Addressing Modes
The S/120 system features direct or indirect addressing
which can be done in the following modes:

Absolute: the intermediate address is the unmodified
displacement.

Program Counter Relative: the intermediate address is
found by adding the displacement to the address of the
word containing the displacement.

Accumulator Relative: the intermediate address is found
by adding the displacement to the contents of a specified
accumulator (AC2 or AC3).

Refer to Chapter 2, "Addressing," for more information.

System Overview 1

Central Processing Unit
Refer to the system block diagram in Figure 1.1. The
central processing unit (CPU) together with the external
microcode.controllers (XMCs) implement the ECLIPSE
instruction set. The instruction groups include:

• Decimal add and subtract. See Chapter 3, "Fixed-Point
Instructions. "

• Signed and unsigned fixed-point including efficient
multiply /divide instructions. Execution times for
multiply instructions average 9.5 microseconds;
execution times for divide instructions range from 13
to 20.5 microseconds. See Chapter 3, "Fixed-Point
Instructions. "

• Data manipulation - efficient handling of bits, bytes,
and character strings. See Chapter 3, "Fixed-Point
Instructions. "

• Floating point - normalized single-precision and
double-precision floating-point arithmetic. See
Chapter 4, "Floating-Point Instructions."

• Stack manipulation - extensive stack support
instructions including save, return, push, and pop. See
Chapter 5, "Stack Management."

• 16-level, programmed priority interrupts including
vectored interrupts. See Chapter 6, "Program Flow
Management" and Chapter 7, "Device Management."

System I/O Controller
The system input/output (SIO) controller monitors the
system bus for I/O instructions from the CPU to devices
that are internal to the SIO controller as well as to
devices that are connected to the ECLIPSE I/O bus.

Devices internal to the SIO controller include the pro­
grammable interval timer (PIT), the real-time clock
(RTC), the asynchronous interface (TTI/TTO), and the
power monitor.

The S/120 computer supports all ECLIPSE peripherals.
The data channel facility allows devices to transfer data
to and from fast memory over the ECLIPSE I/O bus at
speeds of 2.0 megabytes per second for input and 1.3
megabytes per second for output.

Refer to Chapter 7, "Device Management," for more
information.

2 System Overview

Memory
Random access memory (RAM) is a local storage medium
whose contents can be read or modified one word at a
time. The S/120computer uses dynamic RAM of 128
Kbytes per memory board. The S/120 computer system
contains up to 512 Kbytes of read/write memory.

Memory Allocation and Protection
The memory allocation and protection (MAP) feature
performs logical-to-physical address translation between
the CPU and memory. In addition to translating ad­
dresses, the MAP feature also performs the various
protection functions. These functions are validity protec­
tion, write protection, indirect protection, and I/O protec­
tion.

• Validity protection protects one user's memory space
from inadvertent access by another user.

• Write protection allows Ilsers to read the protected
memory locations, but not to write into them.

• Indirect protection allows the supervisor to ensure that
the CPU will not be placed in an indirection loop.

• I/O protection protects the I/O devices in the system
from unauthorized access.

The emulator trap feature is available when the MAP is
on. See Chapter 8, "Memory Allocation and Protection,"
for further information on these MAP features.

Error Checking and Correction
The S /120 error checking and correction (ERCC) facility
generates and appends a 6-bit check code to each word (2
bytes) of data written to memory. In addition, the CPU
checks this 6-bit code for each word read from memory.
Detection of a single-bit error will cause the erroneous bit
to be corrected.

Double-bit and some triple-bit errors are detected but not
corrected. However, their fault addresses and error syn­
drome codes are recorded, and an interrupt (when en­
abled) is issued.

The S/120 also implements an advanced error checking
and correction feature sniffing that continuously tests all
on-board memory at the rate of one location per i6
microseconds. This results in a complete th.eckdf the
S/120 memory every four seconds and minimizes the
accumulation of correctable single-bit errors into multiple
bit errors.

These ERCC instructions-Enable ERCC, Read Memo­
ry Fault Address, and Read Memory Fault code-are
described in the "I/O Instruction Dictionary," in Chapter
7.

Virtual Console
The virtual console allows the programmer to inspect and
modify the system's state. It also aids program debugging.
The virtual console allows the user to:

• Stop, start, and continue program execution;
• Examine and alter CPU registers and memory

locations;
• Initiate program load sequences;
• Change user maps or MAP status.

For more information, refer to Chapter 9, "Virtual
Console."

. System Overview 3

Addressing Conventions
Each of the 32 K logical locations in main memory
contains a 16-bit word. You use a 15-bit logical address
to specify a memory location.

The maximum amount of logical address space available
to the programmer is 32,768 words. The physical address
space, the amount of memory in the system, may be up to
1 Mbyte. In the logical address space, the next sequential
memory location after 777778 is location O.

The memory allocation and protection unit (MAP) con­
trols the relationship between a logical address space and
the physical address space. When the MAP is enabled, it
intercepts each memory reference and translates the
15-bit logical address into a 20-bit physical address.
Unless the MAP itself is being programmed, the transla­
tion process is invisible to the programmer. For more
information on the MAP, see Chapter 8, "Memory
Allocation and Protection."

Definitions

The following definitions introduce some of the concepts
of word addressing.

Addressing modes - four methods of addressing that use
a displacement from some reference point to find the
desired address. These are absolute, program counter,
AC2 relative, and AC3 relative. Different modes use
different reference points.

Indirect addressing - a method of addressing that uses
the contents of one address as a pointer to another address;
in turn, this second address may be used as a pointer to
yet another address. A series of indirect addresses is
called an indirection chain.

Index bits - bits in the instruction that specify the
reference point used to generate an address.

Effective address calculation - the process of converting
the index, indirect, and displacement bits (defined below)
into an address to be used by the instruction. This process
generates a logical address.

Intermediate address - the address obtained by the
effective address calculation before testing for indirection.

Chapter 2

Addressing

Short address field - 11 bits in the instruction which
define the intermediate address. Bit 5 is the indirect bit,
bits 6 and 7 are the index bits, and bits 8 through 15 are
the displacement bits.

DISPLACEMENT

o 4 5 878

short address field

Extended address field - 2 index bits in the instruction,
plus 16 bits of the next sequential word, that define the
intermediate address. Depending on the instruction, either
bits 1 and 2, bits 3 and 4, or bits 6 and 7 are the index
bits. In the word following the instruction, bit 0 is the
indirect bit and bits 1 through 15 are the displacement
bits. Extended address instructions are 2-word instruc­
tions.

o 1 2 3 15

or

o 2 3 4 5 15

or

I I o 5 8 7 8 15

DISPLACEMENT

o 15

Indirect bit - one bit of the instruction or address that
controls the indirection chain at each step of the address­
ing process.

Displacement bits - eight bits of the instruction that
specify the displacement distance, in memory locations,
between some reference point (determined by the mode)
and the desired address.

When the index bits are 00, the displacement is considered
to be an unsigned integer. When the index bits are 01, 10,
or II, the displacement is considered a signed integer.

Addressing 5

Table 2.1 Index bits with corresponding range of displacement
field

Lower page zero -locations 0-3778 in memory.

Page - a memory storage area of 2 kilobytes. The MAP
unit allows any group of up to 32 pages to be organized as
a single logical address space.

Addressing Modes
Word addressing can be done in the following modes:

• Absolute (lower page zero locations 0-3778) mode
(Mode 0) - index bits are 00.

• PC (program counter) relative (Mode 1) - index bits
are 01.

• AC2 relative (Mode 2)- index bits are 10.
• AC3 relative (Mode 3) - index bits are 11.

In addition, direct or indirect addressing can be used in
any of these modes. By choosing the proper mode at the
appropriate time, you can obtain access to any address in
your logical address space.

Figure 2.1 illustrates the four addressing modes.

6 Addressing

Short class

°
Absolute {
addressing

3 778

PC-relative {Pp~
addressing

C+

2°°8 -
1778

{

AC2-

AC2-relatlve AC2
addressmg

AC2+

2°°8 --
1778

{

AC3-

AC3-relatlve AC3
addressing

AC3+

2°°8

1--

1778

Figure 2.1 Addressing modes

Absolute Addressing

M . Extended class
am memory

Page zero

Absolute,

PC-relative,

AC-relative

addressing

DG-04458

In absolute addressing mode, the intermediate address is
set equal to the unmodified displacement. As a result, the
short class of instructions specify locations in the range 0
to 3778 in the absolute mode (short class instructions are
restricted to eight bits in the displacement).

Lower page zero thus becomes very important because
any memory-reference instruction can address this area.
You can use it as a common storage area for items that
you frequently reference throughout a program. Note,
however, that we reserve some of these locations for
special purposes. See Table 2.3 for a list of these locations.

Extended class instructions can reference any logical
memory address from 0 to 777778 using the absolute
addressing mode.

Short Class:

AC or extended op code

• I @ I INDEX
4 5 6' J

Extended Class:

IJ
Depends on instruction

I

8

B •

DISPLACEMENT

DISPLACEMENT

Figure 2.2 Short and extended classes of instructions

PC Relative Addressing

.,,1

OG-08462

In PC relative addressing mode, the intermediate address
is found by adding the displacement which is a two's
complement number to the value of the program counter.
The value of the program counter is equal to the address
of the word containing the displacement.

Accumulator Relative Addressing

In accumulator relative addressing mode, the intermedi­
ate address is found by adding the displacement in a
two's complement number to the value in the accumulator
indicated by the index bits. You may use either AC2 or
AC3.

Table 2.2 Addressing mode range

• Bit 0 of PC, AC2, and AC3 is ignored when calculating the intermediate
logical address.

Di .. ~.ct 1lnd.ln~~rect Addressing
L\fterthe inter~edia~e address is produced from the
di~plaGemenl and indexl:llts, it is translated from a logical
address to a physical address. The processor uses the
indirect bit (bit 0 of the intermediate address) to deter­
mine the final address.

An indirect bit of 0 specifies direct addressing. This means
that the intermediate address is the effective address.

An indirect bit of 1 specifies indirect addressing. Indirect
addressing uses the intermediate address to obtain an
indirect pointer. Bits 1-15 of this pointer are a new
intermediate address. If bit 0 of the pointer is 1, then the
new intermediate address is used to obtain the next
indirect pointer in the indirection chain. If bit 0 of the
pointer is 0, then the indirection chain ends and the new
intermediate address becomes the effective address. With
the MAP indirection protection enabled, the indirect
chain is limited to 15 levels. The flowchart in Figure 2.3
explains the address calculation.

Displacement bits
>~ _________ ---+I go to intermediate

address, as

No

Displacement bits
as signed number
are added to
displacement
address.

Displacement bits
as signed number
are added to
contents of
accumulator 2.

Displacement bits
as signed number
are added to
contents of
accumulator 3.

Fetch word
at intermediate
address.

Yes

Figure 2.3 Effective address calculation

unsigned number.

Least significant
15 bits go to
intermediate
address.

Intermediate
address is
effective

address

OG-00933

Addressing 7

Effective Address Calculation
Figure 2.3 illustrates how the processor calculates an
effective address. First it determines the addressing mode
of the addressing reference and constructs an intermediate
address accordingly. Next it checks for any indirection. If
there is no indirection, the effective address takes on the
value of the intermediate address. If there is indirection,
the processor calculates a new intermediate address. Once
indirection is resolved, the effective address takes on the
value of the last-calculated intermediate address.

NOTE: A memory address is always 15 bits long. When
the results of an addition overflows 15 bits, the overflow
is ignored.

Examples:

Short Class
Program Counter = 777748
Displacement + 0128

Result = 0000068 ; not 10000068

Byte manipulation instructions use a 16-bit byte pointer
as an address to the desired byte of a word. Bits 0-14 of
the byte pointer contain the memory address of the 2-byte
word. Bit 15, the byte indicator, indicates which byte of
the addressed word will be used.

If bit 15 of the byte pointer is 0, the most significant byte
(bits 0-7) of the addressed word is used.

If bit 15 of the byte pointer is 1, the least significant byte
(bits 8-15) of the addressed word is used.

NOTE: A byte address is always a direct address, never
an indirect address.

100 101 102 103 104 107 110 111

Extended Class Address word '----

Program Counter = 0777748
Displacement + 0777748

Result = 0777708 ; not 1777708

Byte Addressing
A word contains two bytes of eight bits each (see Figure
2.4). Data General uses the following bit-numbering
convention:

The most significant bit (MSB) is bit 0 for both bytes
and words. The least significant bit (LSB) is bit 7 for
bytes and bit 15 for words.

Word

Byte Byte

0123456789101112131415
MSB LSB

OG·07577

Figure 2.4 Word addressing format

8 Addressing

OG·0093O

Figure 2.5 Byte addressed as 000213

Bit Addressing
Bit addressing uses a word pointer, consisting of a word
address, a word offset, and a bit pointer to address a bit
in memory (Figure 2.6). The format, loaded into two
accumulators specified in the bit instruction, is

ACS Contents

WORD ADDRESS

o 15

ACD Contents

WORD OFFSET BIT POINTER I
o 11 12 15

The source accumulator (ACS) specified in the instruc­
tion word contains a word address (possibly indirect)
which, upon completion orany indirection chain, is used
as the base address. To obtain the effective address of the
desired word, this base address is added to the unsigned,
positive number contained in bits 0-11. These bits are the
word offset of the destination accumulator (ACD) speci­
fied in the instruction.

Bits 12-15 of ACD contain the unsigned number of the
position of the desired bit within the addressed word.
None of this manipulation affects the original contents of
the two accumulators.

NOTE: If the two accumulators, specified in the bit
instruction, are the same accumulator, then the word
address is assumed to be zero, and the word in memory
is addressed directly using the word offset. For example,
address bit 5 of the word at memory location 104 is
shown in Figure 2.6: Base = 1018, Offset = 38, Bit
desired=58, ACS=OOO101, and ACD=000065.

DG·00931

Figure 2.6 Addressing bit 5 of word 104

Addressing 9

Reserved Memory Locations
Within lower page zero (0 to 3778), some memory
locations have been reserved as storage for data which
have special meaning for the system processing unit
(SPU). The locations are program accessible. Table 2.3
lists these locations, their addresses, names, and functions.

10 Addressing

Tabla 2.3 Reserved memory locations

Data Format
Fixed-point numbers are unsigned and signed binary
integers.

Unsigned Integers

An unsigned integer is represented by using all of the bits
of one or more 16-bit words to represent the magnitude.
Single-precision integers are one word (16 bits) long, and
multiple-precision integers are two or more words long.
See Figure 3.1.

Single precision:
[,
o 15

Unsigned
magnitude

Multiple precision:

,

Unsigned Integers

o 15 0 15 0

Unsigned magnitude

Figure 3.1 Representation of unsigned integers

Signed Integers

15

DG·05506

A signed integer uses a two's complement representation
to distinguish between positive and negative values. (See
Figure 3.2.)

Table 3.1 is an example of two's complement arithmetic.
A positive integer contains a zero in bit 0; a negative
integer contains a one in bit O.

Chapter 3

Fixed-Point Instructions

Table 3.1 Example of two's complement representation

Signed Integers

Single precision:

o 15
~

Two's complement
magnitude

Multiple precision:

o 15 o 15 0 15

Two's complement magnitude

DG·08858

Figure 3.2 Representation of signed Integers

Fixed-Point Instructions 11

Table 3.2 shows the possible range of single- and double­
precision numbers represented by these formats:

Table 3.2 Range of single- and double-precision
Integers

Fixed-Point Operation
The arithmetic logic unit (ALU) is utilized by instructions
that perform arithmetic or logical manipulation on oper­
ands, move data between accumulators, or check for skip
conditions.

There are eight instructions which utilize the ALU for
more than one function at a time and share a common
format. These instructions are referred to as arithme­
tic/logic class (ALC) instructions.

ALC Format
Arithmetic/logic class (ALC) instructions ADC, ADD,
AND, COM, INC, MOV, NEG, and SUB perform a
group of general functions in addition to the function
specified by the instruction. These general functions are
encoded in four fields in the ALC instructions. They are:

• Set carry bit (0, 1, complement, or no change);
• Shift (one bit right, one bit left, swap bytes, or no

change);
• Skip test;
• Load or No Load.

12 Fixed-Point Instructions

The format for the 2-accumulator /multiple operation is:

MNEMONIC[c] Ish] [#] acs,acd[,skip]

which assembles as:

SH ~ I # I SKIP I
o 1 2 3 457 8 9 10 11 12 13 15

ALC Instructions

Table 3.3 lists the ALC instructions and briefly describes
each one.

Table 3.3 ALe instructions

ALe Instruction Execution
·.·.-1 ,"

The logical organization of the ALU is illustrated in
Figure 3.3.

Load/No load

DG.()()927·

Figure 3.3 Arithmetic logic unit

When an ALC instruction begins execution, it loads the
contents of carry and the contents of theaccumulator(s)
to be processed into the ALU. The distinct stages of ALU
operation are discussed separately. Refer to Figure 3.4
for the ALe instruction operation sequence.

Carry

The ALU begins its manipulation of the data by determin­
ing an initial value for carry. This new value is based
upon three things: the old value of carry, bits 10-11 of the
ALC instruction, and the ALC instruction being execut­
ed. The ALU first determines the effect of the instruction
bits 10-11 on the old value of carry. Table 3.4 shows each
of the mnemonics that can be appended to the instruction
mnemonic, the value of bits 10-11 for each choice, and
the action each one takes.

Table 3.4 Carry mnemonics

ALC Specified Function

The ALU next evaluates the effect of the specific function
(bits 5-7) upon the data. For the instructions Move, AND,
and Complement, the ALU performs the function on the
data word(s) and saves the result. The value of carry is as
it was calculated above. For the instructions Add, Add
Complement, Subtract, Negate, and Increment, the result
of the function's action upon the data word(s) may be
larger than 216 - 1. An overflow results. In this situation,
the ALU saves the 16 least significant bits of the function
result, but it complements the value of carry calculated
above.

NOTE: At this stage of operation. the ALU loads neither
the saved value ofthefunction result into the destination
accumulator nor the calculated value of carry into carry.

Fixed';'Point Instructions 13

Figure 3.4 ALe Instruction sequences

Shift Operations

Shift left
(bit 0 to
carry. carry
to bit 15).

L

Next the ALU performs any specified shift operation on
the 17 bits output from the function generator (16 bits of
data plus the calculated value of the carry bit). Depending
on which shift operation is specified in the instruction,
the function generator output can be rotated left or right

14 Fixed-Point Instructions

Swap right and
left bytes.
Carry unchanged.

R

Shift right
(bit 15 to
carry. carry
to bit 0).

DG·08293

one bit, or it can have its bytes swapped. Table 3.5 shows
the different shift operations that can be performed, the
value of bits 8-9 for each choice, and the action each
choice takes. Figure 3.5 shows how each shift operation
works.

Table 3.5 Shift mnemonics

Coded I
Character Shift Operation

L Left rotate one place. Bit 0 is rotated into the
carry position, the carry bit into bit 15.

R

S

~r------0_-15------~

Right rotate one place. Bit 15 is rotated into the
carry po~ition, the carry bit into bit O.

0-15

Swap the halves of the 16-bit result. Carry is
not affected.

I
Figure 3.5 Shift operations

DG·06376

Skip Tests

The AL U can test the result of the shift operation for one
(j)f a variety of conditions, and skip or not skip the next
~otd depending upon the result of the test. Table 3.6
shows the tests that can be performed, the value of bits
13-15 for each choice, and the action each choice takes.

Table 3.6 Skip mnemonics

Load/No Load

If the no-load bit (bit 12) is zero, the ALU loads the
result of the shift operation into the destination accumula­
tor and loads the new value of carry into carry. If the
no-load bit is one, then the ALU does not load the result
of the shift operation into the destination accumulator
and does not load the new value of carry into carry;
however, the skip tests do take place. This no-load option
is particularly convenient to use when you want to test for
some condition without overwriting the contents of the
destination accumulator. Table 3.7 shows how to code
the load/no-load operation.

Table 3.7 Load/no-load symbols

NOTE: These instructions must have neither the
No-Load/Never-Skip nor the No-Load/Skip-Always
options specified at the same time.

Fixed-Point Instructions 15

Fixed-Point
Instruction Lists
Arithmetic Instructions

The fixed-point arithmetic instruction set performs binary
arithmetic on operands in accumulators. The operands
may be 4 or 16 bits in length and may be signed or
unsigned. The instructions appearing in Table 3.8 perform
integer arithmetic (often referred to as fixed-point arith­
metic).

These operations include add, subtract, multiply, divide,
increment, negate, and halve.

Table 3.8 Fixed-point arithmetic instructions

16 Fixed-Point Instructions

The following ALC instructions are usually classified as
fixed-point instructions:

ADC
AD!l
INC
NEG
SUB

Refer to the descriptions of individual instructions in
Chapter 10.

Note that the results of some of the integer arithmetic
instructions can affect the value of carry. Overflow
conditions complement this value.

Logical Operation Instructions

The logical instruction set performs various logical opera­
tions on the contents of accumulators, or the numbers
contained in the immediate field and the contents of
accumulators.

All of the logical operations instructions are shown in
Table 3.9.

The ALC instructions AND and COM, listed in Table
3.3, are. classified as logical operations. Refer to the
descriptions of individual instructions in Chapter 10.

Table 3.9 Logical operations

Decimal Arithmetic Instructions
!:: ;', ~ ,',~ : :" > '.' • :.,;t.,,'("("~'~'':'f:';';,r

The decimal arithmetic instruction set performs addition
aifa;~tibtractiot:H)rt decimal numbers. The decimal arith­
me'tic instructions are shown in Table 3.10.

Table 3.10 Decimal arithmetic

Data Movement Instructions
The data movement instruction set contains instructions
that load and store data between accumulators and
memory; move or exchange data between accumulators;
load the results of an effective address calculation into an
accumulator; and move blocks of data between memory
locations.

The extended forms of the data movement instructions
contain a byte pointer in the instruction coding to
reference bytes. The short forms use an- accumulator to
}lOld the byte pointer. The ALC instruction move (MOV) is
listed in Table 3.3. Refer to the descriptions of individual
Instructions iIi Chapter 10. The data movement instruc­
tions are listed in Table 3.11.

Table 3.11 Data movement

Fixed-Point Instructions 17

Byte Manipulation Instructions
The byte instruction set contains instructions that store
and load bytes between accumulators and memory, or
move strings of bytes between memory locations with
various -control options.

When an instruction moves a byte to an accumulator, it
also clears the most significant byte of the destination
accumulator. When an instruction moves a byte from an
accumulator to memory, it leaves unchanged the other
byte contained in that word of memory.

The extended forms of the byte instructions contain a
byte pointer in the instruction coding to reference bytes.
The short forms use an accumulator to hold the byte
pointer. See Byte Addressing, Chapter 2. Byte manipula­
tion instructions are listed in Table 3.12.

Table 3.12 Byte manipulation Instructions

18 Fixed-Point Instructions

Bit Manipulation Instructions
The instructions that manipulate bits:

• Locate a bit in memory and set it to 0 or 1;
• Add a number to the contents of one accumulator

based on the number of ones or high-order zeroes
found in another accumulator;

• Test a bit, skipping the next word if the specified
condition is true. See Bit Addressing, Chapter 2. Bit
manipulation instructions are listed in Table 3.13.

Table 3.13 Bit manipulation Instructions

Chapter 4

Floating-Point Instructions

Floating-point format allows the use ofvery large numbers
and fractions, and floating-point operations are faster
than mUltiple-precision fixed-point operations.

Data Format
Floating-point numbers occupy either two words (single
precision) or four words, (double precision). The format
of single- and double-precision floating-point numbers is
shown in Figure 4.1. The floating-point number is com­
posed of:

• A sign;
• A mantissa, which is the fractional part of the number,

adjusted to be greater than or equal to 1/16 and less
than 1 after every operation;

• An exponent, which is adjusted to maintain the correct
value of the number.

The magnitude of a floating-point number is defined as

MANTISSA X 16Y

where y is the true value of the exponent.

Floating-point zero is represented by a number with all
bits zero, known as pure zero. When a calculation results
in a zero mantissa, the number is automatically converted
to pure zero. If a number has a zero mantissa but neither
a zero sign nor exponent, it is called impure zero. When
representing zero as a floating-point number, use pure
zero; impure zero produces undefined results in calcula­
tions.

Sign
Bit 0 of the first byte is the sign bit. If the sign bit is zero,
the number is positive. If the sign bit is one, the number
is negative.

Single precision (4 bytes)

" Byte 01 I Byte 1 1 Byte 2 I Byte 3

01 7 8 15 16 23 24 31

Mantissa (6 hex digits)

Word aligned for all floating-point operations;
may be word or byte aligned for most decimal

instructions.

Double precision (8 bytes)

II Byte 0 I
01 7

rE~t
Sign

I Byte 1 I Byte 2 Byte 3

8 15 16 23 24 31

I Byte 4 I I Byte 5 I I Byte 6 I Byte 7

32 39 40 47 48 53 54

Mantissa (14 hex digits)

Word aligned for all floating-point operations;
may be word or byte aligned for most decimal

instructions.

NOTES:
1) Magnitude = mantissa x 16 y

where
Y = true value of exponent.

2) All exponents are represented
in excess 64 notation; thus,
the value represented in bits
1-7 of the number is 64 greater
than the true value of the exponent.

63

DG-04849

Figure 4.1 Single- and double-precision floating-point numbers

Floating-Point Instructions 19

Mantissa

The mantissa is an unsigned fraction. The mantissa of a
single-precision number occupies bytes 1 to 3; the mantis­
sa of a double-precision number occupies bytes 1 to 7.
The single- and double-precision formats follow.

Single Precision

Word 1

I S I EXPONENT 7 8 MANTISSA BITS 0·7 151
\\...0 ____ -.-____ -'' \\....-------,r-------J1

Byte 0 Byte 1

Word 2

MANTISSA BITS 8·23

~---_.r-----JI \\... ____ r-___ --J1S1

Byte 2 Byte 3

Double Precision

Word 1

I S I EXPONENT I MANTISSA BITS 0·7 151
\\...O ____ ,-___ -J'l \\...8 ____ .-___ ---J1

Byte 0

Word 2

I ,0
Byte 2

I ,0
I

Byte 4

Word 4

I ,0
Byte 6

Byte 1

MANTISSA BITS 8·23

1 \ ~-----.---_--~I

MANTISSA BITS 24·29

1\

MANTISSA BITS 40·55

Byte 3

Byte 5

15
1

16
I--------.--------~, 1\

Byte 7

The binary point is located to the left of the first bit of the
mantissa.

To keep the mantissa in the range of 1/16 to I, the
results of each floating-point calculation are normalized.

A mantissa is normalized by shifting one or more hex
digits (four bits) 1-1 left or 1 digit right until the four
most significant bits (the left-most four bits of byte 1)
represent a nonzero quantity. For every hex digit shifted,
the exponent is decreased by one.

20 Floating-Point Instructions

Exponent

Bits 1-7 of the first byte contain the exponent. All
exponents are represented in excess 64 representation.
This means that the value of the number represented in
bits 1-7 is 64 greater than the true value of the exponent.
The range of true value of the exponent field is 0 to 127.
The range of true value of the exponent is - 64 to 63. See
Table 4.1.

Table 4.1 Excess 64 representation

Floating-Point Operation
Floating-point instructions assume normalized input
numbers. Results are undefined for unnormalized input.

Floating-Point Registers

There are five registers available to the programmer in
the floating-point processor. These are the four floating­
point accumulators (FPACs) and the floating-point status
register (FPSR). The FPACs are numbered FACO,
FACI, FAC2, and FAC3. The FPSR is a 32-bit register
that contains information about the present status of the
floating-point processor.

Guard Digits

In order to increase the accuracy of floating-point opera­
tions, a guard digit is appended to the least significant bit
of each mantissa. A guard digit is one hex digit (four
bits) that initially contains zeroes.

When a floating-point operation between two floating­
point operands is specified, the processor first appends
one guard digit.

After appending the guard digit, the processor performs
the specified operation. The result of the operation is
called the intermediate result. The processor normalizes
this value if necessary by shifting the intermediate result
left one hex digit (four bits) at a time until the four most
significant bits (bits 0-3 of the mantissa) represent a
nonzero quantity. Zeroes are filled in on the right. For
every hex digit shifted, the processor decrements the
exponent of the intermediate result by one.

Floating-Point Status Register

The floating-point status register (FPSR) is a I5-bit
register that contains two I6-bit words that give informa­
tion about the present status of the floating-point proces­
sor.

The format of the first word of the FPSR is:

IANVloV+N+VZIMOFI TE I z I N I 0 IRES I 0 i 0 I i FP~<?D i I
o 1 2 3 4 5 6 7 6 9 10 11 12 15

The format of the second word is:

FLOATING-POINT PROGRAM COUNTER

o

Table 4_2 Floating-point format bit description

"This code is J08'

Some floating-point operations cause the following fault
conditions.

Overflow - exponent overflow occurred. (The result is
correct except that the exponent is 128 too small.)

Underflow - exponent underflow occurred. (The result
is correct except that the exponent is 128 too large.)

Divide by Zero - zero divisor detected; division aborted.

Mantissa Overflow - a bit was shifted out of the
most-significant bit of the mantissa during an FSCAL
instruction, or the result of an FF AS or FFMD instruction
does not fit into the destination.

Floating-Point Faults

If the program has set the trap enabling bit (5) in the
floating-point status register to one, a floating-point fault
condition will initiate a floating-point trap.

Before the next sequential instruction is executed, a return
block is pushed onto the stack and the program jumps
indirect via location 458, Location 458 contains the
address of the floating-point fault handler. The return
block pushed has the following format.

Word Description
Pushed

ACO

2 AC1

3 AC2

4 AC3

5 Bit 0 = Carry bit;
Bits 1-15 = Return address

NOTE: The return address pushed in word five is the
address following the floating-pOint instruction that
caused the fault.

When a floating-point fault occurs and the trap enable
bit is one, the trap enable bit is set to zero before control
is transferred to the floating-point fault handler. The
trap enable bit should be set to one before normal
processing resumes.

Floating-Point Instruction Lists
The floating-point instruction set may be divided into
arithmetic, data movement, program flow alteration,
number conversion, and floating-point status register
(FPSR) instructions. Floating-point instructions assume
normalized input numbers; unnormalized input results in
undefined output.

The FPSR is updated after each completed floating-point
instruction. At this time the FPSR is checked for possible
fault conditions.

Floating-Point Instructions 21

The floating-point instructions are shown in Tables 4.2
through 4.6. Note that several instructions have two
forms, one ending in S (for single-precision floating-point
format), and one ending in D (for double-precision
floating-point format). The function of the two forms is
otherwise identical.

Arithmetic Instructions
The floating-point arithmetic instruction set contains
instructions to perform arithmetic functions on both
single- and double-precision floating-point numbers. See
Table 4.3.

Table 4.3 Arithmetic instructions

22 Floating-Point Instructions

Floating Point Operation

Each user must provide stack space for floating point
operations.

To protect against stack overflow in a program using
floating-point arithmetic operations, allocate the follow­
ing number of words to the stack:

Mnemonic

FMD,FMMD
FDS, FDMS
FDD, FDMD

Number of Words
used by Instruction

4
6
14

Data Movement Instructions

The floating-point data movement instruction set contains
instructions to load or store floating-point numbers be­
tween memory and a floating-point accumulator (FPAC),
or move a floating-point number from one accumulator
to another FPAC.

Table 4.4 Data movement instructions

Program Flow Alteration Instructions
The floating-point program flow alteration instruction
set contains instructions to conditionally skip the next
sequential instruction, depending upon certain flag set­
tings in the FPSR. Program flow alteration instructions
are listed in Table 4.5.

Table 4.5 Program flow alteration instructions

Number Conversion Instructions
Th~" ..• fi~~ ting::,,6inl'-::hitin ber conversion instruction set
c9nt!J.ins ins~ructiQns tl;lat return an absolute value, change
the: ,'¢xponent . or' a floating-point number, convert a
floating-poin't. number to an integer or an integer to a
floating-point number, and integerize or normalize a
floating-point number. Number conversion instructions
are listed in Table 4.6.

Table 4.6 Number conversion instructions

Floating-Point Instructions 23

Status Register Instructions
The floating-point status register instruction set contains
instructions that store the FPSR contents into memory,
load the FPSR from memory, clear all errors, and enable
and disable floating-point traps.

Table 4.7 Floating-point status register Instructions

24 Floating-Point Instructions

Stack Operation
A stack is a series of consecutive locations in memory.
Stack instructions add items in sequential order to the
stack (push) or retrieve. them in reverse order (pop). The
processor maintains this, last in/first out (LIFO), or "push
down," stack.

The stack stores temporary data, as well as return blocks,
which contain information that the processor uses when
entering and returning from subroutines. The stack is
managed by four reserved storage locations: stack pointer,
frame pointer, stack limit, and stack fault pointer. An
important byproduct of the stack facility is that storage
locations are reserved only when needed. Once a proce­
dure is finished with its portion of the stack, those memory
locations may be reclaimed by another procedure for
further use.

Stack instructions store the contents of accumulators on
the stack, change the stack register that controls the
stack, define new stacks, and perform other tasks.

Return Block

Return blocks are used to enter or exit from subroutines.
The contents of the return block may vary slightly
depending upon which instruction pushes the block, but
the purpose of the block is always the same - to allow an
orderly return from a called routine. For a discussion of
subroutine call and return, refer to Appendix D, Program­
ming Examples.

The contents of the return block, depending on the
instruction used, are the contents of the four accumulators
(ACO, AC1, AC2, AC3), the program counter, and the
carry bit. Figure 5.1 illustrates a standard return block.
The instructions that use a standard return block are
SYC, VeT (modes C and E), XOP, XOPl, and POPB.
RSTR, RTN, SAVE, FPOP, and FPSH instructions
affecting the stack are contained in Tables 5.3 and 5.4.

NOTE: If an undefined instruction is encountered while
operating in the mapped mode, a return block is pushed
onto the stack. The. program then jumps indirectly
through location 118: This location can contain the
indirect address of an 'emulator routine.

Chapter 5

Stack Management

The instructions affecting the stack are contained in
Tables 5.3 and 5.4.

Stack pointer
after pop

block or return

Stack pointer
before pop

block or return

Figure 5.1 Return block

Stack Pointer

Fifth word
popped

Increasing
addresses

First
word
popped

DG-08275

The stack pointer (SP) is the address of the top (highest)
memory location of the stack reached, thus far. When
you set up the stack, you set the value of the stack pointer
to one less than the address of the first location in the
stack. After initialization, each time you push a word
onto the stack the stack increments by one. The stack
pointer always points to the last element on the stack. For
example, when you pop the top word from the stack, the
pointer decrements by one. If you push or pop as-word
return block, the stack pointer increments or decrements
by five.

Address 4008 is considered a standard starting address
for a stack. Location 408 contains the current value of the
stack pointer.

Frame Pointer

The Save (SAVE) and Return (RTN) instructions use
the frame pointer to store and restore the value of the
stack pointer when entering or leaving subroutines. The
frame pointer points to the top of the last return block
pushed. The frame pointer is not incremented or decre­
mented by operations that affect the stack pointer.

Stack Management 25

If the frame pointer is initially set to the same value as
the stack pointer, it becomes a useful reference, since it
preserves the original value of the stack pointer. Location
408 contains the value of the frame pofnter.

The frame pointer may also define the boundary between
words placed on the stack by different routines in a
program. A routine may then use the frame pointer to
refer back into the stack. In this way, the routine may
retrieve data left in the stack by the preceding procedure.

Stack Limit

The stack limit is the upper limit of the stack area. After
each push or save operation, the value of the stack pointer
is compared with the value of the stack limit. If the stack
pointer is greater than the stack limit, an overflow
condition exists and a stack fault occurs. Therefore, the
stack limit should be initialized to a value greater than
the stack pointer. Figure 5.2 illustrates the location of the
stack pointer and stack limit in main memory.

Location 428 contains the value of the stack limit.

Initial
stack
pointer
(SP)

Stack

Upper
stack
limit
(SL)

Figure 5.2 Main memory

Main memory

Increasing
addresses

Stack Control Memory Locations

Table 5.1 lists stack control memory locations.

Table 5.1 Stack control memory locations

26 Stack Management

DG·08274

Stack Overflow Protection
Stack overflow occurs when a program pushes data into
the area beyond the stack limit. The stack limit protects
the integrity of the program against stack overflow. See
"Stack Limit."

If a stack instruction pushes data onto the stack beyond
the stack limit, a 5-word return block is pushed onto the
stack. Control is transferred to the stack fault handler at
the stack fault address. Since stack overflow is detected
only after completion of a push operation, set the stack
limit up to 23 words less than the address of the last
location in the stack.

To protect against stack overflow in a program not using
floating-point instructions:

• Initialize the stack limit to 10 less than the address of
the last location in the stack.

For floating-point push and pop stack operations:

• Initialize the stack limit to 23 less than the address of
the last location in the stack.

For floating-point arithmetic operations (excluding push
and pop), refer to Table 5.2 for the correct word per
instruction allocation to the stack.

Table 5.2 Allocation of words to the stack

To disable overflow protection, set the stack limit to
1777778.

Overflow Checking

During the course of checking for stack overflow, the
stack pointer and the stack limit are treated as unsigned,
16-bit integers and are compared. If overflow has oc­
curred, the processor:

• Sets bit 0 of the stack pointer to zero,
• Sets bit 0 of the stack limit to one,
• Pushes a 5-word return block onto the stack,
• Executes a Jump Indirect to the stack fault address

(location 438).

Table 5.3 Stack instruction description

Bit 0 of the stack pointer and stack limit are set as
indicated so that the stack limit will (temporarily) be
larger than the stack pointer. In this way, the return
block pushed by the overflow mechanism will not be
interpreted as yet another overflow fault, causing a loop
condition. The program counter in the return block points
to the instruction that immediately follows the stack
instruction that caused the fault.

Stack Fault Handler
The stack fault handler routine is created by the program­
mer and addressed by the stack fault address. The stack
fault handler routine receives control in the event of a
stack overflow and then determines the nature of the
stack fault.

Bit 0 of the stack pointer and the stack limit should be
reset to their original values. Any further action required
of the stack fault handler, such as allocating more stack
space or terminating the program, should be taken at this
time.

Location 438 contains the address (possibly indirect) of
the stack fault handler routine.

Interrupting the Stack Instructions
Stack instructions, with the exception of the floating-point
stack instructions, are noninterruptible. The stack pointer
and program counter are not updated until the completion
of the floating-point pop or push stack instructions;
therefore, any interrupt service routines that return
control to the interrupted program, through the program
counter stored in memory location 0, will correctly restart
the two floating-point stack instructions.

Stack Instructions
The following two tables list the instructions that pop and
push words onto the stack. Table 5.3 presents a brief
description of each instruction with the number of words
affected. Table 5.4 lists the minimum safety margin for
the stack limit, which instruction works in conjunction
with another, and what is pushed on or popped off the
stack.

Stack Management 27

Table 5.4 Stack Instructions

28 Stack Management

Return Block =ACO
=AC1
=AC2
=AC3

Figure 5.4 shows a stack area of 100s words with no
,; , - '. o\f~ff1ow'ptotectieijt.

Examples - Stacks

Bit 0 = Carry bit
Bits 1-15 = PC

Figure 5.3 illustrates a 50s-word stack set up with
overflow protection enabled for fixed-point arithmetic.
The following assembly language instructions may be
used:

.TITl STACK

.EXTN STH

.lOC 400

.BlK 50

.lOC 40
377
377
434
STKHR
. END

Initial
stack

Stack
limit

Top of
stack

(after overflow)

;Declare STH external
;Go to location 400
;Allocate 50s words
;Go to stack control words
;Stack pointer
;Frame pointer
;Stack limit
;Address of stack fault

401

402

First
word
of stack

Figure 5.3 Condition of stack after overflow routine

00-OB27B

" ,.:

Initial stack
pointer
(Set to

1003778)

Stack limit
(Set to
1777778)

400

401

402

500

501

502

First
word
of stack

Top of
stack

00·08278

Figure 5.4 Condition of stack with no overflow protection

NOTE: To disable stack overflow protection. set the
stack limit to 1777778 .

Stack Management 29

Chapter 6

Program Flow Management

Program Flow
Each central processing unit (CPU) instruction is con­
tained in two 16-bit words. Programs for the CPU consist
of sequences of instructions stored in memory. The order
in which these instructions are executed depends on the
IS-bit memory address in the program counter (PC).
During program execution, the CPU sends this address to
memory and fetches the instruction contained in that
memory location. During the execution of an instruction,
information moves between the CPU internal registers
and memory or between the CPU registers and input/ out­
put (I/O) device buffers.

When the instruction is completed, the CPU increments
the PC by one and fetches the contents of the next
sequential memory location. You can address the com­
plete logical address space (locations 0 through 777778
inclusive).

To address the ~ord following location 777778, address
location O. To address the word preceding location 0,
address location 777778.

Program Flow Alteration
Sequential operation can be altered by a jump, a condi­
tional skip instruction, or by program interrupts. Jump
instructions load a new address into the PC, while
conditional skip instructions increment the PC by two if
the condition tested is true. In either case, sequential
operation continues from the updated contents of the PC.
Note that if you attempt to skip over an instruction which
is multiple words in length, the second word of the
instruction is executed as an instruction. Figure 6.1
illustrates program flow without interrupts.

./ ./

}-:: Sequential

---; program

~
flow

---;
~ Increasing n

Jump ~) addresses s :7 Jump

:':2 program

:.::;)0 flow
u

:.: :;;?
c

./

./
a /-r

} ~
Skip

n
Skip program

I:>:}}}::: ..

V flow

/),-'
~
'/

DG·OO543

Figure 6.1 Program flow without interrupts

Program Flow Management 31

Table 6.1 lists the program flow alteration instructions
and gives a brief description of each.

Program Flow Alteration Instructions

The program flow alteration instruction set (Table 6.1)
consists of instructions that change the contents of the
PC either by specifying new contents for the PC or by
causing the PC to be conditionally incremented by one
(or by two if it is a 2~word instruction) and then continuing
sequential operation with the updated PC.

Table 6.1 Program flow alteration Instructions

32 Program Flow Management

Conditional Skip Instructions

Table 6.2 presents the conditional skip instructions.

Table 6.2 Conditional skip Instructions

Program Flow Interruption

When program interrupts occur (from 110 device control­
lers, the internal real-time clock, or a stack overflow
error), the CPU stores the next sequential program
address in location zero. Then the CPU loads the PC with
the starting address of the interrupt handler routine and
continues sequential operation. (See Program Interrupt
in Chapter 7 for specific memory locations.)

Figure 6.2 illustrates program flow with interrupt.

Refer to Appendix D, Programming Examples, fot an'
example and illustrations of a subroutine calland return.

p

a

m

a
n

!

Main
program

Figure 6.2 Program flow with interrupt

DG·00647

Extended Operation
The 'Ext~nded' dper~tfon instruction (XOP) provides an
efficient method of transferring control to and from
procedures. It enables the user to transfer control to any
one of 48 procedure entry points.

Extended Operation Instructions

There are two extended operation instructions in the
ECLIPSE S /120 instruction set. They are shown in Table
6.3.

Table 6.3 Extended operation instructions

Program Flow Management 33

I/O Management
Data may be transferred using two methods. the first
method is between input/output (I/O) devices and accu­
mulators using programmed I/O; the second is directly
between I/O devices and memory, using data channel
I/O.

Most I/O devices are controlled through the manipulation
of Busy and Done flags. Flag values are changed through
the use of optional flag command mnemonics. The effects
of the flag commands are device, dependent.

When the Busy and Done flags are both zero, the I/O
device is idle and cannot perform any operations. To start
a device, the program must set Busy to one and Done to
zero. When the device has finished its operation and is
ready to start another, it sets Busy to zero and Done to
one.

Programmed I/O
Programmed I/O transfers data one word at a time under
direct program control. This type of I/O allows data to
be examined individually as they are transferred.

Data Channel I/O
Data channel I/O permits data to be transferred in blocks
of words, with program control necessary only at the start
and end of the operation. The transfer is made directly to
or from memory. Data channel I/O is an efficient method
of transferring blocks of data between memory and an
I/O device.

Data channel transfers are set up by a series of instructions
that specify the following:

• address of the first word to transfer,
• direction of the transfer (read/write),
• total number of words to transfer.

When a data channel device is ready to send or receive
data, it issues a data channel request. At the beginning of
every memory cycle, the I/O channel synchronizes any
requests that are then being made and controls the
transfers between the I/O bus and the memory. When a
request is honored, a word is transferred directly between
the device and memory over the data channel.

Chapter 7

Device Management

All requests are honored according to the relative position
of the requesting device on the I/O bus. Data channel
service begins with the device that is physically closest on
the bus to the CPU. The next closest device is serviced
next, and so on, until all requests have been honored.
New requests are synchronized concurrently with the
servicing of older requests. If a device continually requests
data channel service, it prevents all devices further out on
the bus from gaining access to the channel.

The ECLIPSE S/120 data channel facility allows devices
to transfer data to and from fast memory over the
ECLIPSE I/O bus at speeds of approximately 2.0
megabytes per second for input and approximately 1.3
megabytes per second for output.

For more information on the data channel, see the
Peripherals Programmer's Reference Manual (DGC No.
014-000632), and the Interface Designer's Reference for
NOV A and ECLIPSE Line Computers (DGC No.
014-000629).

I/O Operations
The CPU can address one of as many as 64 I/O controllers
connected to the ECLIPSE I/O bus by means of the
device code occupying bits 10-15 of an I/O instruction.
The basic I/O instruction set is used to control I/O
devices, to set up data channel operation, and to pass
data to and from these devices. These I/O instructions
are listed in Tables 7.1 and 7.2.

Device Management 35

Table 7.1 Standard 1/0 Instructions

Table 7.2 CPU 1/0 instructions

36 Device Management

I/O Format
The format for the I/O instructions is:

Mnemonic!!f ac,device

which assembles as:

I 0 11 11 I A,C I o~ CO?E I C~RL I DEVICE CODE 15 1
o 2 3 4 5 7 8 9 10

I/O instructions are encoded in the following four fields.
They are Accumulator, Instruction, Control, and Device.

Accumulator Field (bits 3-4) - specifies one of the four
accumulators that will either contain the data to be moved
to a device or receive the data from the device.

Instruction Field (bits 5-7) - specifies the I/O instruction
(what is to be done with the data; that is, move data from
an accumulator to a device, move data from a device to
an accumulator, do nothing with the data, or test the
device flags).

Control Field (bits 8-9) - specifiesJor t depending upon
the type of instruction. The J function can be specified for
all I/O instructions except Skip. An J function tells the
CPU to manipulate the state of the Busy and Done flags
of an I/O device. The Start, Clear, or Pulse commands
specified in the control field by Jare shown in Table 7.3.
Refer to the specific instruction entries in the I/O
instruction dictionary at the end of this chapter.

NOTE: If an attempt is made to test the status of the
Busy and Done flags of a nonexistent device, the CPU
recognizes the Busy and Done flag bits as zero.

Table 7.3 1/0 control flags

The t function can be specified with the Skip instructions
to cause the instruction to perform tests on the Busy and
Done flags of an I/O device. Table 7.4 lists the possible
test conditions and mnemonics for each. Refer to the
SKP, CPU entry in the I/0 instruction dictionary at the
end of this chapter.

Table 7.41/0 test flag (SKP instruction only)

Device Field (bits 10-15) - specifies one of the possible
64 I/0 devices to be addressed. A complete list of
assembler-recognizable mnemonics assigned by Data
General is provided in Appendix A.

Refer to Peripherals Programmer's Reference Manual
(DGC No. 014-000632) for details about programming
specific devices.

Program Interrupt
The I/0 interrupt system in the S/ 120 computer manages
programmed interrupts by permitting the program to
ignore I/O devices until one requires service. After
handling all data channel requests, the processor com­
pletes execution of any incomplete instruction, services
any further data channel requests that were synchronized
while the instruction was executing, then services out­
standing I/O interrupt requests. When all requests have
been serviced, program execution continues.

I/O interrupt control instructions offer the programmer
thefoI16wing selection of I/0 control schemes:

• No interriipts~ the CPU checks I/O device status
under programmed control.

• Interrupts with no priority system- the CPU services
one device at a time in the order determined by the
timing of the interrupt and the physical location of its
controller in the computer chassis.

• Interrupts with a priority system- the CPU services
an interrupt from a selected device in the order
described above, but a higher priority device can
interrupt a lower priority device's interrupt service
routine. The interrupt handler does this by
manipUlating the devices priority mask bits using the
MSKO instruction.

The following aspects of program interrupt are discussed
below:

• Initiating an interrupt,

• Servicing an interrupt,

• Vectored interrupt,

• Control flags,
• Priority interrupts,

• Dismissing an interrupt.

Initiating an Interrupt and CPU Response

When a device requires service, it initiates a program
interrupt request by setting the Done flag to one. If the
device's Interrupt Disable flag is set to zero, the CPU
receives the request. If the Interrupt Disable flag is set to
one, the device will not request service until the device's
Interrupt Disable flag is reset.

If the interrupts are enabled, that means that the ION
flag is set to one. When that occurs, the CPU will service
a program interrupt upon completion of an instruction or
a data channel request.

The CPU responds to a program interrupt request as
follows:

• Sets the ION flag to zero to protect against further
interrupts.

• Stores the contents of the program counter in location
zero so that the interrupted program can resume after
servicing the interrupt.

• Jumps indirect through location one.

Servicing an Interrupt

The purpose of an interrupt service handler is to

• Save the state of the CPU,
• Identify the interrupting device,

• Transfer control to the appropriate service routine,

• Restore the state of the CPU.

Device Management 37

Identifying the Interrupting Device
If interrupt-driven operation is selected, the programmer
can select one of the following methods of identifying the
interrupting device:

• Placing the interrupter's device code in an accumulator
with an INT A instruction. (See the INT A instruction
in the I/O dictionary.)

• Identifying the interrupting device, saving return
information and jumping through a table to an
individual device's interrupt handling routine with a
VeT instruction.

• Testing the device's control flags with an I/O Skip
(SKP) instruction.

Vectored Interrupt

The Vector On Interrupting Device Code (VeT) instruc­
tion can simplify the design of an interrupt handler by
doing many of the required steps in one instruction. It
can also perform different levels of tasks as needed within
the interrupt handler.

The VeT instruction has five different modes that can be
used in different circumstances. Refer to the VeT instruc­
tion in Chapter 10. Depending on the selected mode, it
can perform any or all of the following operations:

• Save the state of the computer,
• Store the user stack parameters,
• Create a new stack,
• Reset the priority mask.

When selecting one of these modes, you must weigh the
importance of its operations against the time used for
each interrupt. You are not committed to one mode
throughout the interrupt handler. It is possible to use
different VeT instruction modes at different times to
serve different needs.

Mode A is used when a device requires immediate
interrupt service. This would be the case for unbuffered
devices with very short latency times, or for real-time
processes that require immediate access. This mode does
not save any information on the state of the computer.

Modes B through E create a priority structure which
permits some interrupting devices to interrupt the service
of certain others. This takes more time than mode A
service, but it permits immediate service for some devices
even if a slower device is already being serviced.

38 Devi,ce Management

Modes D and E both initiate a new stack. You should use
them only when operating in an unmapped mode, since
they set up a new vector stack for use by the interrupt
handier and store the (old) user stack parameters in it.
Once this new stack has been set up, there is no reason to
try to set it up again if a new interrupt occurs before the
old one has finished. Mode E also pushes a return block
onto the stack to make a return to the first interrupt
handler easier. Modes Band C do not initiate a new stack
and are therefore appropriate to use when a device
interrupts the interrupt processing of another device
(mapped mode). Mode C also pushes a new return block
onto the stack.

Interrupt On Flag

The Interrupt On (ION) flag in the CPU indicates the
status of the interrupt system. When the ION flag is set
to one, the interrupt facility is enabled and the CPU can
respond to an interrupt request. When the ION flag is set
to zero, the interrupt facility is disabled and the CPU
ignores all interrupt requests. The f function of any I/O
instruction addressed to the CPU (device code 778) sets
the ION flags as shown in Table 7.5. The Skip instruction
addressed to the CPU tests the state of ION as shown in
Table 7.6.

Table 7.5 Setting Interrupt On (ION) flag in CPU (device 778)

Table 7.6 Testing Interrupt On (ION) flag in CPU (device 778)

Priority Interrupts " ..
.. ": ~._,: ".l

The CPU services an interrupt from a selected device in
the order determined by the timing, of the int¢'rrtipt and
the physical location of its controller tn'the ECLJPSE,
S/120 chassis. A higher priority device can interrupt a
lower priority device's interrupt service routine. The
interrupt handler does this by manipulating the device's
priority mask bits using the Mask Out instruction. Refer
to the MSKO entry in this chapter's I/O instruction
dictionary.

Interrupt Priority Mask

The interrupt priority mask is a 16-bit word. Each I/O
device in a system is assigned a mask bit that governs the
device's Interrupt Disable flag. When the MSKO instruc­
tion sets a particular bit in the mask to one, the Interrupt
Disable flag in the corresponding device is set to one and
the device is masked out or disabled. This means that the
device cannot generate program interrupts. Those devices
whose corresponding mask bits are zero have a higher
priority than the device being serviced. The CPU inter­
rupts service to the lower priority device to honor an
interrupt request from a higher priority device.

The mask bits are assigned to the devices on the hardware
level, so you cannot program them. You can, however,
control the order of priority of these bits. In your program,
you can use the priority mask to rank your I/O devices in
any order. Note that certain I/O devices which operate
at roughly the same speed are assigned the same mask
bit; these devices will always have the same priority.
Appendix A lists the mask bit assignments in addition to
the device code assignments.

Priority Interrupt Handler

To use a priority interrupt instruction in your system, the
interrupt handler must be re-entrant. This means that if
a device service routine is interrupted by a higher priority
device, there will be no loss of the information the handler
needs to restore the state of the machine. For a handler to
be re-entrant, it must be able to save the contents of
location 0 (the return address) and the current priority
mask each time it is entered at a higher level. It should
also be able to perform the following sequence of opera­
tions.

• Save the state of the processor (accumulators, carry,
stack pointer and'ffIftne pointer, contents of location 0,
artd thecurt.ent priority mask),

• Check for current,number of interrupts,
• Identify the device requesting the interrupt,
• Transfer control to the interrupting device's service

routine,
• Establish and store a new priority mask,
• Enable interrupts,
• Service the device,
• Disable interrupts,
• Restore the state of the processor,
• Enable interrupts,
• Transfer control to the return address saved from

location o.
To establish a system of priorities, place a Mask Out
(MSKO) instruction in the interrupt service handler for
each device. This instruction changes the priority mask,
thus controlling which devices can interrupt. Devices that
should not interrupt the device being serviced are masked
out if their mask bits are set to 1. In addition, all pending
interrupt requests from devices controlled by that bit are
disabled. The other mask bits, corresponding to devices
that can interrupt, are set to o.
Dismissing An Interrupt
After servicing the interrupting device, either the periph­
eral service routine or the main interrupt handler should
perform the following sequence of events:

• Clear the device's Done flag to dismiss the interrupt
just honored. (If you leave this out, the undismissed
interrupt will cause another interrupt when you
attempt to transfer control back to the interrupted
program.)

• Restore the state of the CPU.
• Set the ION flag to one to enable interrupts. (Although

interrupts are enabled with one instruction, the CPU
will not respond to an interrupt request until the next
instruction executes.)

• Return to the interrupted program. (This usually is
done by a jump indirect through location zero, since
this is where the CPU placed the valueof the program
counter when it began to service the interrupt.)

Device Management 39

SPU I/O Management
The S/120 system processing unit contains the central
processing unit (CPU). Table 7.7 lists the I/O instructions
which deal with the CPU. All of the instructions grouped
in this table are addressed to device code 77s.

Table 7.7 CPU device Instructions

Special Mnemonics

Most of the instructions in Table 7.7 have two forms. If
you use the standard form of the instruction, DOB, for
example, then you can specify a functionfto act upon the
ION flag. If you use the special form of the instruction
MSKO, you cannot specify a function f to act upon the
ION flag. Refer to the specific instruction entries in this
chapter's I/O instruction dictionary for more information.

The SPU contains three I/O interfaces:

• An asynchronous communications interface (TTl,
TTO).

• A programmable real-time clock interface (RTC).

• A programmable interval timer (PIT).

The CPU responds to TTl, TTO, RTC, and PIT as it
does to any I/O device.

40 Device Management

Asynchronous Interface

The asynchronous interface is a programmed I/O control­
ler which contains both a double-buffered transmitter
and receiver, allowing full-duplex communications be­
tween the CPU and a serial, asynchronous terminal.

NOTE: The S/120 asynchronous communications
interface receives and transmits 8-bit data characters
without parity. If the system console device being used
with the S/120 operates with a data character length of
seven bits, you should configure the device to operate
with "mark parity . .. When receiving data characters from
a 7-bit system console device, software should mask out
the parity bit after the character has been loaded into an
accumulator. The parity bit is the most significant bit of
the character and is contained in bit 8 of the specified
accumulator.

Controller Registers

The following registers are available to the program:

An 8-bit receiver-holding register,
An 8-bit transmitter-holding register.

The receiver-holding register stores the assembled charac­
ter that is received over the communications line in serial
form. It makes the character available to the program
until the receiver overwrites the contents of the register
with the next assembled character.

The transmitter-holding register stores the character sent
to the interface by the program. When Clear To Send is
asserted by the terminal, the transmitter disassembles
the character and sends it over the communications line
in serial form.

Instruction Set

Device Mnemonic
Transmitter TTO
Receiver TIl

Device Code
Transmitter lIs
Receiver lOs

Priority Mask Bit
Transmitter 15
Receiver 14

A list of asynchronous interface instructions are shown in
Table 7.8.

Table 7.8 Asynchronous interface Instructions

Programming

The transmitter (TTO) and receiver (tTl) function as'
separate devices. Each has its own set of Busy'iind Done
flags which are manipulated both by the prograIilarid the
devices.

The asynchronous interface controller transmits and
receives 8-bit characters.

Programming the interface consists of:

Writing characters,
Reading characters.

Write character and set
Busy to one and Done
to zero (DOAS).

No

Yes

Set Done
to zero
(NIOC).

Figure 7.1 Write character

Writing Characters

DG-09006

Before sending a character to the transmitter, check its
Busy flag. If it is one, wait until it is zero. When Busy is
zero, issue a Write Character instruction with a Start
command (DOAS).

Reading Characters

To initiate character reception, use the No I/O Transfer
instruction with a Start command (NIOS). This sets the

When Done is one, issue a Read Character instruction
with"eithei"':a,,sta;tt{DiAS) or Clear (DIAC) command.
This loads the c.haracter in the receiver holding register
into' tl~e specified aC~\lm:ulator. The Start command
restarts the receiver. The Clear command terminates
reception by setting both Busy and Done to zero.

NOTE: The 8/120 asynchronous communications
interface receives and transmits 8-bit data characters
without parity. If the system console device being used
with the 8/120 operates with a data character length of
seven bits, you should configure the device to operate
with "mark parity." When receiving data charactersfrom
a 7-bit system console device, software should mask out
the parity bit after the character has been loaded into an
accumulator. The parity bit is the most significant bit of
the character and is contained in bit 8 of the specified
accumulator.

Timing

After the receiver Done flag is set to one, the character in
the receiver holding register is available to the program
for a time interval determined by the transmission rate
(baud). To avoid possible data loss, the program must
respond to the interrupt request by reading the character
within the time interval indicated in Table 7.9. The time
intervals tabulated are based on the assumption that
characters transmitted at 50 to 110 baud contain. 10 bits
(including 2 stop bits), and characters transmitted at
134.5 to 38,400 baud contain 9 bits (including 1 stop bit).

receiver's Busy flag to one and Done flag to zero. When Table 7.9 Timing considerations

the receiver has a character for the program, it can then
set the Done flag interrupt to one and initiate an interrupt
request if its Interrupt Disable flag is zero.

Device Management 41

No

No

Start the receiver
(NIOS).

Read character
and set Busy and set Busy

and Done to one and Done
to zero to zero

(DIAC). (DIAS).

Figure 7.2 Read character

After the transmitter Done flag is set to one, the program
should provide another character within the time period
indicated in Table 7.10 to maintain the maximum trans­
mission rate.

Power-Up Response

After power up, the transmitter Busy and Done flags and
the receiver Busy and Done flags are zero.

Real-Time Clock Interface

The real-time clock provides a programmable selection of
precise time bases for the S /120 computer system. Four
frequencies are available: 10 Hz, 100 Hz, 1000 Hz, and
line frequency.

Controller Registers

The interface contains a 2-bit frequency select register
that is program-accessible. This register holds a 2-bit
code that selects one of the four available frequencies: 10
Hz, 100 Hz, 1000 Hz, and line frequency.

Instruction Set

Device Mnemonic
Device Code
Priority Mask Bit
Frequencies

RTC
148
13
Line, 10Hz, 100 Hz, 1000 Hz

42 Device Management

Return

D6-08311

A single I/O instruction programs the real-time clock.
The real-time clock instruction is shown in Table 7.10.
For more details refer to the I/O instruction dictionary at
the end of this chapter. The DOAffJ ac, RTC instruction
loads the appropriate two bits of the specified accumulator
field into the frequency select register.

The real-time clock is controlled by manipulating the
interface Busy and Done flags.

Table 7.10 Real-time clock instruction

Table 7.11 RTC flag commands

Programming

Programming the real-time clock consists of

• Selecting the real-time clock frequency,
• Enabling real-time clock interrupt requests,
• Servicing real-time clock interrupt requests.

To select the clock frequency, issue a Select Frequency
instruction (DOA) If] ac, RTC.

To enable a real-time clock interrupt request, issue a
Start command to set Busy to one and Done to zero.
Since the clock is free-running, the generation of the
interrupt request may occur at any time up to one clock
period after the Busy flag is set to one. When the clock
period expires, the real-time clock sets Busy to zero and
Done to one, thus initiating an interrupt request if the
interface's Interrupt Disable flag is reset.

When servicing real-time clock interrupt requests, issue a
No I/O Transfer instruction with either a Start command
(NIOS) or a Clear command (NIOC) instruction. The
Start command enables an interrupt request at the
expiration of the current clock period. The Clear com­
mand inhibits subsequent interrupt requests by setting
both Busy and Done to zero.

Timing

The first interrupt request initiated by the real-time clock
can occur at any time up to the full clock period. If the
program responds to real-time clock interrupt requests
before each succeeding clock period expires, all subse­
quent R TC interrupt requests will occur at the clock
frequency.

Power-Up Response

After power up or when an I/O Reset (IORST) instruction
is performed, the line frequency rate is selected and both
the Busy and Done flags Bre zero.

Programmable Interval Timer
The programmable interval timer (PIT) is a CPU­
independent time base which can be programmed to
initiate program interrupts at fixed intervals ranging from
100 microseconds to 6.5536 seconds in increments of 100
microseconds. The PIT can also be jumpered to run at
other intervals. It can also be sampled with I/O instruc­
tions at any point in its cycle to determine the time until
the next interrupt. The PIT is used in multi program
operating systems to allocate CPU time to different
programs on a "time slice" basis.

Controller Registers

The PIT consists of a 16-bit count register and a 16-bit
counter. During operation, the PIT counter is loaded with
the contents of. the initial count register and is then
incremented at 100 microsecond intervals. A Busy and a
Done flag control the operation of the device. Table 7.12
lists the instructions used to program the PIT.

Instruction Set

Device Mnemonic PIT
Device Code 438
Piority Mask Bit 6

Table 7.12 PIT instructions

Programming

To obtain a particular time interval between program
interrupt requests, load the two's complement of the
number of clock intervals between interrupt requests into
the initial count register. Refer to Table 7.13 for a list of
PIT rates. The time between program interrupt requests
will be the value selected by the contents of the initial
count register. Refer to the specific instruction entries in
the I/O instruction dictionary in this chapter. For the
counter rate switch settings, refer to the ECLIPSE S/120
Computer System, Hardware Reference Series (DGC
No. 014-000690).

Table 7.13 PIT rates

Device Management 43

SPU I/O Operation
Power-Up Sequence

After power is applied to the System Processing Unit
(SPU), the CPU is initialized and enters the HALT
state. At this time, all Busy and Done flags are set to
zero; I/O interface registers are cleared; the state
machines in the ECLIPSE I/O interface are initialized;
bits 0, 9 through 12, 13, 14, and 15 of the MAP status
register are cleared; and the CPU status register is
cleared, except for the power-up bit (bit 4), which is set
to one.

From the HALT sta te, the CPU enters the virtual console,
which clears the power-up bit and performs a short -
about 0.75-second duration - diagnostic routine. If an
error is detected, an error message is displayed. (The
error messages are described in Chapter 9, "Virtual
Console.")

CPU intialized, enters
HALT state; interrupts

. enabled, run light off.

Perform auto
program load
using APL
device code.

Remains in
virtual console.
Wait for
command,

Control G

00-08657

Figure 7.3 Power-up sequence for the ECLIPSE S/120 CPU

44 Device Management

As shown in Figure 7.3, after power-up the CPU remains
in the virtual console if the control panel is unlocked or if
the automatic program load (APL) device code is equal
to zero. If the panel is locked, an automatic program load
is performed from the device specified by the APL
jumpers.

After a program load has been performed, the device
code of the device loaded from is placed in the virtual
console switch register. A READS instruction can then
be used to return the device code.

Auto Program Load Register

The auto load register indicates which device boots the
system. The auto program load register definitions are
listed in Table 7.14. Table 7.15 lists the instructions to
write output register. When the local output register is
written to, it turns on the front console run light. Refer to
the READS instruction in the I/O instruction dictionary.
For more information on auto program load, refer to
Chapter 9, "Virtual Console."

Device Code
Priority Mask Bit

18
None

Table 7.14 Read auto load register definitions

Table 7.15 Write to local output register instructions

Power Fail/ Autorestart

When line power loss is immin~nt, the SPU receives a
power-fail interrupt request. When an abnormal power
condition occurs, the power supply ass~rts a signal that
causes the system I/O IC to issue an interrupt request to
the CPU. The CPU should respond to the request by
entering a user-supplied, power fail interrupt routine. A
typical power fail routine saves the state of the processor
and loads a return instruction into physical location 0,
and halts. An example of such a routine is given in the
section "Programming Example." The power fail routine
can do one of two things:

The user powerfail routine can simply execute a Halt
instruction, or if battery backup is present, the powerfail
routine should save the state of the processor in system
memory, load a return instruction into physical memory
location 0 and then execute a Halt instruction. If no
battery backup is present, the routine should simply halt
the processor. If the Halt instruction is executed within
one millisecond and if the Halt Dispatch SIO operating
characteristic is selected (refer to SIO jumpering in the
ECLIPSE S/120 Computer System Hardware Reference
(DGC 014-000690) the virtual console is entered, other­
wise a hard halt occurs.

As long as the batteries have not been exhausted during
the power disruption, the virtual console will automatical­
ly clear the powerfail interrupt when power is restored.
The action taken by the virtual console then depends on
whether the control panel is locked. If the control panel is
locked, then the instruction contained in physical memory
location 0 is executed, returning control to the user's
program. If the control panel is unlocked, the virtual
console will retain control and issue a prompt character
to the system console when power returns. The user can
then continue by typing R on the system console (refer to
the virtual console chapter), if all of the following
conditions are true:

• Battery backup is present,
• The state of the processor is saved,
• A return instruction is stored in physical memory

location 0 when the power failure occurred.

Otherwise, the user can initiate a program load or take
other appropriate action. If the batteries have been
exhausted the virtual console performs the power-up
response as shown in Figure 7.3. (Refer to the Power-Up
Sequence section in this chapter) The battery backup,
when present and fully charged, will maintain system
memory validity for a minimum of one hour.

Error Checking and Correction
The ECLIPSE S/120 error checking and correction
facility is designed for applications requiring either a
iiigh degree of reliability for the main memory of a system,
or a "fail-soft" capability in the event of memory errors.
The ERCC facility will detect and correct all single-bit
memory errors.

The error checking and correction (ERCC) facility
generates and appends a 6-bit check code to each word (2
bytes) of data written to memory. During memory read
operations, the ERCC facility processes the 22-bit memo­
ry word to determine if an error has occurred. If a
single-bit error has occurred, the erronous bit is corrected
before the word is transferred. The corrected word is also
written to memory along with a new check code. In
addition, the fault address and an error syndrome code
are recorded for transfer to the CPU. An interrupt request
may be issued. This fault address and error syndrome
code can be used to identify a marginal or failing system
memory RAM chip.

Double-bit and some triple-bit errors are detected, but
they are not corrected. However, their fault address and
error syndrome codes are recorded and an interrupt
request may be issued.

In a process called sniffing, the ERCC facility also detects
and corrects single-bit errors during memory refresh
cycles (when enabled). However, their fault addresses
and error syndrome codes are not recorded, and no
interrupt is issued.

ERCC Instructions
One I/O instruction sets the mode of operation of the
ERCC facility. ERCC contains a Done flag which is set
to 1 after an error has been detected and the ERCC
initiates an interrupt request. Two instructions interrogate
ERCC after the detection and correction of an error.

The ERCC facility has no Busy flag and no mask bit in
the priority mask. The device code for the ERCC facility
is 2. The assembler recognizes the mnemonic ERCC for
this device code.

ERCC instructions use a specified accumulator to receive
data or contain the control information.

Device Management 45

Table 7.16 shows the ERCC instructions.

Table 7.16 ERCC Instructions

Power Fail Instructions
The power fail instructions test the state of the power fail
flag. They use device code 778,

The power fail facility has no priority mask bit in the
priority mask. It responds to [NT A and vcr instructions
with device code O.

Table 7.17 references the power fail instructions. Refer
t() the CPU Skip (SKP CPU) instruction entry in the
Instruction Dictionary for more information.

Table 7.17 Power fall instructions

46 Device Management

Programming Example

The following sequence of instructions is an example of a
power failjautorestart program routine.

IHANP: PSH 0,3 ;save accumulators
SUBCL 0,0 ;save carry
PSH 0,0
SKPON CPU
JMP NPFI ;not power fail interrupt

LOA 0,0 ;get program counter
PSH 0,0

LOA O,RSI ;get restart instruction
STA 0,0

ELEF O,PFAR ;get restart address
PSH 0,0 ;save on stack
HALT ;halt

PFAR: POP 0,0 ;get address of interrupt
STA 0,0 ;save

POP 0,0
MOVR 0,0 ;restore carry

POP 3,0 ;restore accumulators
INTEN ;enable interrupt system
JMP @O,O ;return to program

RSI: POPJ ;restart instruction

I/O Instruction Dictionary
This dictionary lists the I/O instructions for the S/120
computer. The functional grouping of I/O instructions
are arranged in alphabetical order by mnemonic. Each
instruction entry includes

• the mnemonic recognized by the assembler,
• the number and format of any arguments,
• the bit format,
• the description of how the instruction works.

In general, I/O instructions can be executed only when
both LEF mode and I/O protection are disabled. See the
Load Effective Address Mode section in Chapter 8.

NOTE: Instructions such as XCf, RSTR, or POPB which
may be used with I/O instructions are listed in the general
instruction dictionary in Chapter 10.

Standard I/O Instructions
You can use the following standard I/O instructions with
any I/O device, using the appropriate device code.

Table 7.18 lists optional mnemonics which you may want
to add to some of your I/O instructions. These mnemonics
are explained in detail earlier in this chapter; the instruc­
tion entries will tell you whether you can use one of these
optional mnemonics with an instruction.

Table 7.18 Optional 1/0 mnemonics

Data In A
DIAff] ac,device

~lo~1 ~I ~I ~A~~~lo~lo~1 7~18~F~'9~170~D_E~vl_cE~c_oD~E~~1
o 2 3 4 5 8 15

Transfers data from the A buffer of an I/O device to an
accumulator.

The contents of the A input buffer in the specified device
are placed in the specified AC. Sets the Busy and Done
flags according to the function specified by f
The format of the AC after the transfer is device,
dependent.

If the specified device does not exist, the AC will contain
1777778 after the transfer.

Data In B
DIDff] aC,device

101 I I A,C 1 0 1 111 ~ DEVICE CODE I
o 2 3 4 5 8 7 8 9 10 15

Transfers data from the B buffer of an I/O device to an
accumulator.

Places the contents of the B input buffer of the specified
device in the specified AC. Sets the Busy and Done flags
according to the function specified by f
The format of the AC after the transfer is device
dependent. If the specified device does not exist, the AC
contains 1777778 after the transfer.

Data In C
DIeff] aC,device

DEVICE CODE
0234587 15

Transfers data from the C buffer of an I/O device to an
accumulator.

Places the contents of the C input buffer in the specified
device in the specified AC. Sets the Busy and Done flags
according to the function specified by f
The format of the AC after the transfer is device
dependent. If the specified device does not exist, the AC
contains 1777778 after the transfer.

Device Management 47

Data In Status
DIS aC,device

I 0 11 11 lAIc 11 11 11 I 0 I 0 I DEVICE CODE 15 1
o 2 3 4 5 8 7 8 9 10

Returns the status of the addressed device and places this
data into the specified accumulator.

The accumulator must be specified as 1,2, or 3. The DIS
instruction uses the same operation code as the SKP
instruction. DIS 0 CPU is equivalent to the SKP 0 CPU
instruction.

The information contained in the specified accumulator
is in the following format for I/O devices:

RESERVED FOR FUTURE USE

Q 1 2 3

D Device is done if set to one.
B Device is busy if set to one.

15

NOTE: If the device does not exist, the contents of the
specified AC will be 0377778,

Data Out A
DOA[!J aC,device

1011111 ~c 1011101 F DEVICE CODE I
o 2 3 4 5 8 7 8 9 10 15

Transfers data from an accumulator to the A buffer of an
I/O device.

Places the contents of the specified AC in the A output
buffer of the specified device. Sets the Busy and Done
flags according to the function specified by f The contents
of the specified AC remain unchanged.

Data Out B
DOB[!J . ac,device

1011111 AIC 1110101 F DEVICE CODE I
o 2 3 4 5 8 7 8 9 10 15

Transfers data from an accumulator to the B buffer of an
I/O device.

Places the contents of the specified AC in the B output
buffer of the specified device. Sets the Busy and Done
flags according to the function specified by f The contents
of the specified AC remain unchanged.

48 Device Management

Data Out C
DOC[!J aC,device

101 I I AIC I I 101 F DEVICE CODE I
o 2 3 4 5 8 7 8 9 10 15

Transfers data from an accumulator to the C buffer of an
I/O device.

Places the contents of the specified AC in the C output
buffer of the specified device. Sets the Busy and Done
flags according to the function specified by f The contents
of the specified AC remain unchanged.

No I/O Transfer
NIO [f] aC,device

I 0 11 11 I 0 I 0 I 0 I 0 I 0 I F DEVICE CODE 15 1
o 2 3 4 5 8 7 8 9 10

Used when a Busy or Done flag must be changed with no
other operation taking place.

Sets the Busy and Done flags in the specified device
according to the function specified by f

110 Skip
SKP [tJ device

10111 0 101 I I IT DEVICE CODE I
o 2 3 4 5 8 7 8 9 10 15

If the test condition, t, is true for the device specified by
the device code, the instruction skips the next sequential
word. The possible values of t are listed in the table.

Instruction: SKPBZ TTO
Checks the setting of the Teletype Busy flag. If the Busy
flag is set to 0 (Teletype is busy), the next sequential
word is skipped.

CPU Device Instructions
I/O instructions addressed to device code 778 are grouped
as CPU device instructions.

Priority Mask Bit - None

CPU Status
DIS[!] ac,CPU

Returns the status of the CPU status register and places
this data into the specified accumulator.

NOTE: DIS 0 CPU is equivalent to the SKP 0 CPU
instruction.

The information contained in the specified accumulator
is in the format:

IPFIIONI1 ERKlpopIHLTloHIIRalpLI·ITRPlsupl M~M I·IOGI
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Device Management 49

CPU Acknowledge
DOAP lac] ac,CPU

101111101010111011111111111111111
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Clears the virtual console interrupts from the CPU status
regHster.

NOTE: If a Halt instruction is performed. the virtual
console clears the power fail interrupt. Never set bit 15.

Halt
HALT
HALTAac
DOClf] ac,CPU

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Stops user program execution and returns to the virtual
console if the Halt dispatch function is enabled by
jumpering. Refer to Chapter 9, "Virtual Console" for
more information.

The DOC!I} ac,CPU instruction sets the Interrupt On
flag according to the function specified in the/field, then
stops the processor. If the Halt dispatch function is not
enabled, then the processor, while stopped, will honor
data channel requests but will not honor program inter­
rupt requests.

NOTE: The assembler recognizes the mnemonic HALT
as equivalent to HALTA O.

Interrupt Acknowledge
INTA
DIB If] ac, CPU

o 2 3 4 5 6 6 9 10 11 12 13 14 15

Places a 6-bit device code in bits 10-15 of the specified
accumulator. This device code identifies the highest
priority device currently requesting an interrupt. Sets
bits 0-9 of the specified accumulator to one.

After the transfer, the DIB mnemonic sets the Interrupt
On flag according to the function specified by f
The INT A mnemonic places the device code into bits
10-15 of the specified accumulator without affecting the
ION flag.

50 Device Management

Interrupt Disable

INTDS
NIOCCPU

101111101010101011101111111111111
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sets Interrupt On flag to zero to disable program
interrupts.

Interrupt Enable

INTEN
NIOSCPU

101111101010101010111111111111111
o 2 3 4 5 6 7 6 9 10 11 12 13 14 15

Sets Interrupt On flag to one to enable interrupts.

If this instruction changes the state of the Interrupt On
flag from zero to one, the CPU allows one more instruction
to execute before the firstl/O . .inter.rupt .. can....occur.
However, if the instruction to be executed can be inter­
rupted, then interrupts can occur as soon as the instruction
begins to execute.

NOTE: If the instruction uses only one CPU cycle. then
the CPU allows two instructions to execute before the
first I/O interrupt can occur. Refer to Appendix C for a
list of CPU cycles.

Reset

IORST
DIClf] ac,CPU

o 2 3 4 5 6 7 6 9 10 11 12 13 14 15

Sets the Busy and Done flags of all I/O devices to zero.

The IORST mnemonic sets the ION flag to zero. The
assembler recognizes the mnemonic IORST as equivalent
to DICC 0, CPU. Positions in ACD and ACS are not
both zero.

The DIC mnemonic sets the 16-bit priority mask to zero.
Sets the ION flag according to the function specified by
f If you use this mnemonic, you must code an accumulator
to avoid an assembly error. The processor, however,
ignores the accumulator field. The specified accumulator
remains unchanged.

The processor performs the equivalent of an IORST
instruction at power-up, when you press the RESET
switch (if the console is not locked), and when you type I
from the virtual console.

NOTE: IORST will not affect any bits in the FPSR.

Mask Out
MSKO ac
DOB!!! ac,CPU

o 3 4 5 6 7 6 9 10 11 12 13 14 15

Sets the priority mask.

The DOB!!! ac, CPU instruction places the contents of
the specified accumulator into the priority mask. After
the transfer, the Interrupt On flag is set according to the
function specified by f The contents of AC remain
unchanged.

If the device priority bit equals I, the instruction sets the
I/O device Interrupt Disable flag. All I/O device control­
lers respond to MSKO, IORST, and INTA. Only the
CPU responds to such instructions as INTEN, INTDS, .
HALT, and VCT.

NOTE: A one in any bit disables interrupt requests from
devices which use that bit as a mask.

BeadVirtuaLGonsole Registers
READS ac
DIA!!! ac,CPU

Places the contents of the virtual console register into and
accumulator.

After the transfer, sets the Interrupt On flag according to
the function specified by f For more information, refer to
Chapter 9, "Virtual Console".

CPU Skip
SKP!t! ac,CPU

o 2 3 4 5 6 6 9 10 11 12 13 14 15

Skips the next sequential word if the test condition
specified by t is true. The possible skip test conditions
(test for interrupt t) are summarized in the following
table.

Using the SKP(t)ac CPU instruction for testing of the
Power Fail flag allows the power-fail option to provide a
"fail-soft" capability in the event of an unexpected power
loss.

Device Management 51

Programmable Interval Timer
I/O instructions addressed to device code 438 are grouped
as programmable interval timer device instructions.

Priority Mask Bit - 6

IORST sets the Busy and Done flags, the interrupt request
flag, the initial count register, the count output buffer,
and the interrupt mask bit (bit 6) to 0; it then stops the
counting cycle.

Table 7.19.1 PIT flag commands

Read Count
DIAff] ac,PIT

o 2 3 4 6 8 7 8 9 10 11 12 13 14 15

Places the value of the programmable interval timer's
counter in bits 0-15 of the specified accumulator de­
stroying the accumulator's previous contents. After the
data transfer, performs the function specified by f The
format of the specified accumulator is

PRESENT COUNT (2·S COMPLEMENT)
, I

o 15

Table 7.19

52 Device Management

Specify Initial Count
DOAff] ac,PIT

o 2 3 4 5 8 7 8 9 10 11 12 13 14 16

Loads bits 0-15 of the specified accumulator into the
programmable interval timer's initial count register. After
the data transfer, performs the function specified by f
The contents of the specified accumulator remain un­
changed. Format of the accumulator is

INITIAL COUNT (2·S COMPLEMENT)
iii i o

Real-Time Clock
I/O instructions addressed to device code 148 are grouped
as real-time clock device instructions.

Priority Mask Bit - 13

fORST sets the Busy and Done flags, the interrupt mask
bit (bit 13) and the clock frequency select bits to zero;
and then disables RTC interrupts.

Table 7.20 RTC flag commands

Select Frequency
DOAff} aC,RTC

o 2 3 4 5 e 7 e 9 10 11 12 13 14 15

Selects the frequency of the real-time clock. Loads the
contents of bits 14 and 15 of the specified accumulator
into the frequency select register. After the data transfer,
performs the function specified by f The contents of the
accumulator remain unchanged. The format of the speci­
fied accumulator is

RESERVED

o 13 14 15

Asynchronous Line Input
The I/O instruction addressed to device code 108 is the
asynchronous line input instruction.

Priority Mask Bit - 14

fORST sets the following receiver flags to zero: Busy,
Done, and Break. It forces the output of the data terminal
ready register to the low state.

Table 7.21 Asynchronous line input flag commands

Device Management S3

Asynchronous Interface

Read Character
DIAlf] ac, TTl

o 2 3 4 5 6 7 6 9 10 11 12 13 14 15

Reads a character received by the communications line.
Loads the contents of the receiver-holding register into
the specified accumulator. After the data transfer, per­
forms the function specified by f

NOTE: The S/120 asynchronous communications
interface receives and transmits 8-bit data characters
without parity. If the system console device being used
with the S/120 operates with a data character length of
seven bits, you should configure the device to operate
with "mark parity . .. When receiving data characters from
a 7-bit system console device, software should mask out
the parity bit after the character has been loaded into an
accumulator. The parity bit is the most significant bit of
the character and is contained in bit 8 of the specified
accumulator.

The format of the specified accumulator is

RESERVED CHARACTER
o 7 8

54 Device Management

Asynchronous Line Output
The I/O instruction addressed to device code 118 is the
asynchronous line output instruction.

Priority Mask Bit -15

fORST sets the following receiver flags to zero: Busy,
DO,ne, and Break. It forces the output of the data terminal
ready register to the low state.

Table 7.22 Asynchronous line output flag commands

Write Character
DOAlf] ac, TTO

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Writes a character to the communications line. Loads
bits 8-15 of the specified accumulator into the transmitter
holding register. After the data transfer, performs the
function specified by f The contents of the specified
accumulator remain unchanged. The format of the speci­
fied accumulator is

CHARACTER
o 7 8

ERCC Error Correction
I/O instructions addressed to device code 28 are grouped
as ERCC Error Correction instructions.

Priority Mask Bit - None

IORST Sets the interrupt request flag, the Done flag, and
the ERCC control flags (bits 14 and 15) to 0; disables
error checking and correction.

Table 7.23 ERCC Error Correction Flag Commands

Read Memory Fault Address
DIAlf] aC,ERCC

Places the sixteen low-order bits of the physical address
of the fault location into the specified accumulator. (The
previous contents of that accumulator are overwritten.)
The instruction sets the Done flag as specified by the flag
command.

The following shows the format of the contents of the
specified accumulator.

o
LOW-ORDER ADDRESS BITS

15

NOTE: The physical address is meaningless unless it is
read after the ERCC facility requests an interrupt and
before a Start or IORST flag command sets the Done
flag to O.

Read Memory Fault Code
DIBlf] ac,ERCt·

Places a 6-bit error identification code in bits 0-5 of the
specified accumulator. The instruction first sets bits 6-11
of the accumulator to 0 and places the four high-order
bits of the physical address of the fault location in bits
12-15. Next, the instruction sets the Done flag as specified
by the flag command.

The following table shows the format of the contents of
the specified accumulator.

FAULT

o 5 6 11 12 15

Device Management 55

NOTE: The address is meaningless unless read after the
ERCC facility requests an interrupt and before a Start
or IORST flag command sets the Done flag to o.

56 Device Management

Enable ERCC

DOAffJ ac,ERCC

Sets the ERCC facility to function according to bits
13-15 of the specified accumulator. Next, the instruction
sets the Done flag and then the Interrupt Request flag, as
specified by the flag command. The instruction disregards
bits 0-12.

The following shows the format of the contents of the
specified accumulator.

o
I MODE I

12 13 15

,",

Chapter 8

Memory Allocation and Protection

MAP Functions
The memory allocation and protection (MAP) unit pro­
vides the necessary hardware to control and use more
than 64 kilobytes of physical memory. In addition; the
MAP provides protection functions to maintain the integ­
rity of a large system.

NOTE: In the following section. MAP refers to the
memory allocation and protection unit. whereas map
refers to a set of memory translation functions used by
the MAP unit.

A MAP unit gives several users access to the resources of
the computer by dividing the memory space available
into blocks assigned to each user. Each time a user
accesses memory, the MAP translates the address that
the user sees-the log~cal address-to an address that the
memory sees-the physical address. This is all transparent
to the user. With software to control the priorities of the
MAP and the CPU, several users can access the computer
without being aware of the presence of the others.

Definitions

The following definitions will help you understand map­
ping.

Logical Address - the address used by the user in all
programming. The logical address space is 32,768 words
long and is addressed by a IS-bit address.

Physical Address - the address used by the MAP to
address the physical memory. The maximum size of the
physical address space in an S /120 system is 512 kilobytes
and it is addressed by an 18-bit address.

Address Translation - the process of translating logical
addresses into physical addresses.

Memory Space - the addresses (physical or logical)
assigned to a particular user.

Page - 1024 (20008) words (2 kilobytes) in memory.

User Map - the set of memory address translation
functions defined for a particular process. They translate
logical addresses to physical addresses for every memory
reference.

Data Channel Map - the set of address translation
functions defined by the user-specified map. They trans­
late logical addresses to physical addresses when data
channel devices address the memory.

Supervisor - the part of the operating system which
controls system functions such as the operation of the
MAP unit.

Address Translation

The primary function of the MAP unit is address
translation. A user map assigns each logical page of a
user to a corresponding physical page. If a user's map is
changed, the address space visible to the user is un­
changed, but the map now translates each logical address
into a different physical address.

A user's physical pages can be in any order in physical
memory. This means that the supervisor can select unused
pages for a new user without concern for maintaining any
particular arrangement. This also allows a more complete
use of the physical memory since no contiguous blocks of
memory larger than 2 kilobytes are required.

Sharing Physical Memory

The MAP allows several users to use the same section of
physical memory. This is useful if several users want to
use a common routine such as trigonometric tables.

Mapped Mode
In mapped mode, the MAP unit provides two types of
maps:

User maps
Data channel map

User Maps

Each user requires a separate user map. The MAP can
hold four user maps, but only one can be enabled at any
one time. This means that when four users exist, the
processor specifies the user map for each and loads them

Memory Allocation and Protection 57

r--------- 15-bit logical address produced by CPU -----~---,

MAP Addre.ss Translation Register

Logical
Page No.

10-Bit Physical
Page Number

Protection
Bits

0 e-Map A 7 20-bit address placed
U~, {

31 For page 31 l on memory bus

0

J
Map U~, [
Status Map B

To CPU

Register 31 maximum of 512-Kbyte
0 memory use 18 address bits U~, [[LXADR<2-4>,LMA< 1-15>]

Map C

31
0

u,~ {
NOTE: When MEMCYC is asserted,

Map D
ADRO selects system memory when = 0,

31
or virtual console memory when = 1.

0
Data
Channel
Map A

31

Do<, {
0

Channel
Map B

31

Do<' {
0

Channel
Map C

31

0

D~ { Channel
Map D

31

L------vr-----~

Loaded with LMP instruction

Figure 8.1 MAP address translation

into the MAP. The supervisor can then enable one or
another as needed. If there are more than four users, new
user maps must be loaded as needed. This is simplified by
the use of the LMP instruction which loads a complete
map with one instruction and uses relatively little time.

Data Channel MAPS

The data channel MAPS can access memory without
direct control from the user's program. Thus, the data
channel can service a user who is not the currently
executing user. This allows the I/O activity of one user to
be overlapped with the execution of another user. The
MAP can hold four data channel maps. Enabling data
channel mapping enables all four data channel maps at

58 Memory Allocation and Protection

DG'0821!4

the same time. The choice of which map to use for data
channel references is made by the I/O controller making
the reference. Those controllers not equipped to make
this distinction use data channel map A by default. See
the Programmer's Reference Manual Peripherals (DGC
No.015-000021).

NOTE: If an instruction changes the current map state
and the two maps involved do not contain equivalent
mapping. the next instruction will be fetched from and
executed in the new map state.

Unmapped Mode
The MAP can also operate in unmapped mode. In this
mode, no address translation occurs, so that addresses
issued by the CPU reference locations in the first 32
kilobytes of physical memory (locations in physical pages
o through 32). If, while operating in unmapped mode, the
program requires access to some other part of memory,
the Page 31 register can be used to accomplish this. Refer
to the DOB, MAP instruction in the instruction dictio­
nary.

ECLIPSE S/120 Address
Translation
Figure 1.2 illustrates the address translation performed
by the S/120 MAP unit. Each user's 64-kilobyte logical
address space consists of 32 1024-word (2-kilobyte) pages.
A program can load an address translation map consisting
of 32 12-bit words for each of up to four users and one
map for a data channel. Each 12-bit word in a user's map
includes 10 bits that specify the physical page and two
bits that indicate a MAP protection code. One map code
bit marks the page as write protected or write enabled
and the other bit specifies that the page is validity
protected or unprotected.

Emulator Trap

The ECLIPSE S/120 emulator trap allows users to
emulate undefined instructions. If an undefined instruc­
tion is encountered while operating in the mapped mode,
a return block is pushed onto the stack. The program
then jumps indirectly through location 11 8, This location
can contain the indirect address of an emulator routine.
If the contents of location 118 are zero, an undefined
instruction simply results in no operation (NOP).

MAP Protection Capabilities
In addition to address translation, the MAP provides four
types of protection. The MAP flags the nature of each
protection violation and causes a MAP protection fault.
The four types of MAP protection are:

Validity protection
Write protection
Indirect protection
I/O protection

Validity Protection

Validity protection protects one user's memory space from
inadvertent access by another user, thereby preserving
the integrity and privacy of the user's memory space.
When a user's map is specified, the blocks of logical

addresses required by the user's program are linked to
blocks of physical addresses. The remaining (unused)
logical blocks are declared invalid to that user, and any
attempt to access them will cause a validity protection
fault.

Validity protection is always enabled, so the supervisor's
responsibility is limited to declaring the appropriate
blocks of logical addresses. If the MAP feature attempts
to translate an invalid logical address for the user, a
MAP protection fault occurs. In this case, the state of the
processor is saved and the program jumps to the
programmer-supplied MAP fault handling routine.

NOTE: No validity traps occur on MAP single-cycle
references. but memory is protected.

Write Protection

Write protection allows users to read the protected
memory locations, but not to write into them. In this way,
the integrity of common areas of memory can be protect­
ed. An attempt to write into a write protected area of
memory will cause a protection fault.

Blocks of logical memory may be write protected when
the map is specified. Write protection can be enabled or
disabled at any time by the supervisor.

For example, a set of trigonometric functions is stored in
a section of memory accessible to all users. This section
should be write protected so that users can read the
functions but cannot change them.

Indirect Protection

Indirect protection allows the supervisor to ensure that
the CPU will not be placed in an indirection loop. When
in an indirection loop without indirect protection, the
CPU would be unable to proceed with any further
instructions, thus effectively halting the system. _

I~
With indirect protection enabled, a chain of M1ndirect
references causes a MAP protection fault. Indirect protec­
tion can be enabled or disabled at any time by the
supervisor.

I/O Protection
I/O protection protects the I/O devices in the system
from unauthorized access. If a user with I/0 protection
enabled attempts to execute an I/O instruction, an I/O
protection fault will occur. Enabling I/0 protection will
prevent execution, of the Load Map (LMP) instruction.
I/0 protection can be enabled or disabled at any time.

J ... L:J:!:r "" ... l.J.", ~ ~CCAS 1..(.1=', I/o) t>LF£ft e<- II\I~ _J.~SI t'~ "h,~v.l,.l.J..'-'~t>IM'
Memory Allocation and Protection 59

Map Protection Faults
When a user violates one of the enabled types of protec­
tion, a protection fault occurs, as follows:

• The current user map is disabled.
• A 5-word return block is pushed onto the system stack.

The program counter pushed will point to the word
following the instruction which caused the MAP fault.

• Control is transferred to the protection fault handler
by an indirect jump through memory location 3 which
should contain the fault handler routine address.

The protection fault handler routine may determine the
type of fault that occurred, using the Read Map Status
DIA MAP instruction, before taking the appropriate
action.

Any attempt to read beyond the maximum physical
address space will result in undefined data being returned.

Any attempt to write beyond the maximum physical
address space will have no effect and will not produce an
error.

Load Effective Address Mode
The Load Effective Address LEF instruction has the
same format as I/O instructions. The MAP has a LEF
mode bit which determines whether an I/O format
instruction will be interpreted as an I/O or a LEF
instruction. When the MAP is enabled and the LEF
mode bit is one (LEF mode enabled), all I/O format
instructions are interpreted as Load Effective Address
instructions. When the LEF mode bit is zero, all I/O
format instructions are interpreted as I/O instructions.

The Load Effective Address instruction is very useful for
loading a constant into an accumulator. In addition, a
user operating in the LEF mode is denied access to any
I/O devices, because all I/O and LEF instructions are
interpreted as LEF instructions in this mode. This means
that LEF mode can be used for I/O protection. The Load
Map instruction, however, does not use the I/O format
and therefore can still be executed.

Initial Conditions
At power up, the user maps and the data channel maps
are undefined, the MAP is in unmapped mode, and
unmapped logical page 31 is mapped to physical page 31.
This means that all addresses issued by the CPU reference
physical pages 0 to 32. While operating in unmapped
mode, page 31 register may be used to access some other
part of memory. Refer to the DOB, MAP instruction in
Chapter 9.

After an I/O Reset, the MAP is in unmapped mode, the
data channel maps are disabled, and unmapped logical
page 31 is mapped to physical page 31.

60 Memory Allocation and Protection

MAP Instructions
The MAP instructions control the actions of the MAP.
They are used by the supervisor program to change the
mapping functions or to check the status of the various
maps.

NOTE: MAP instructions can be executed in mapped
mode if I/O protection and LEF mode are disabled for
the user. When executed in mapped mode, the Read
Map Status, Initiate Page Check, and Page Check
instructions will return the desired information without
changing the map. The Map Single Cycle instruction
will disable the user map after the next memory
reference.

Enabling only LEF mode will convert all I/O instructions
(including MAP instructions) to LEF instructions. The
Load Map instruction, however, does not use the I/O
format and therefore can still be executed. Enabling I/O
protection will prevent execution of the Load Map
instruction. Bit 1 of the MAP status register indicates
the state of the MAP. If bit 1 is set to one, the MAP is
enabled. If bit 1 is set to zero, the MAP is disabled. For
further details, refer to the DIA MAP instruction in
Chapter 10, Instruction Dictionary.

The MAP instructions are shown in T!lble 8.1. All except
Load Map LMP are in I/O format using the device
mnemonic MAP.

Table 8.1 MAP instructions

Load Map
LMP

Loads successive words from memory into the MAP.

Words are loaded in consecutive, ascending order accord­
ing to their addresses.

Three accumulators affect the LMP instruction:

• ACO must contain zero.
• ACI contains an unsigned integer which is the number

of words to be loaded into the MAP.
• AC2 contains the address of the first word to be loaded.

If bit zero is one, the instruction follows the indirection
chain and places the resulting effective address into
AC2.

• AC3 is ignored and its contents remain unchanged.

For each word loaded, the instruction decrements the
number in ACI by one and increments the address in
AC2 by one.

Upon completion of the LMP instruction:

• ACO remains unchanged.
• ACI contains zero.
• AC2 contains the address of the word following the

last word loaded.

The words loaded into the MAP define the address
translation functions for the various user and data channel
maps. The-contents of the MAP field (bits 6-8) of the
MAP status register determine which map is affected by
the LMP instruction. You can alter this field by using
either the Load Map Status (DOA ac,MAP) or the
Initiate Page Check (DOC ac,MAP) instruction.

Tp,e format of (he words loaded into the MAP is

o
LOGICAL PHYSICAL

5 8 15

NOTE: To declare a logical page invalid, set the Write
Protect bit to one and all of bits 6-15 to one.

NOTE: The LMP instruction is interruptible in the same
manner as the BAM instruction.

If you issue this instruction while in mapped mode, with
I/O protection enabled, the map and accumulators are
not altered and a MAP fault occurs.

If the LMP instruction alters the translation of the page
indicated by the program counter for the next instruction
fetch, this causes the instruction to be fetched from the
new translation.

Memory Allocation and Protection 61

Load MAP Status
DOA aC,MAP

The contents of the specified AC are placed in the MAP
status register. The contents of the AC remain unchanged.

The format of the specified AC is

FM~ RESERVED MAP ILEFII/O IwpIINDINM~OCHI UE I
o 5 6 8 9 10 11 12 13 14 15

62 Memory Allocation and Protection

NOTE: If the DOA MAP instruction sets the User Enable
bit to one, the interrupt system is inhibited, and the
MAP waits for an indirect reference or a return-type
instruction. Either event releases the interrupt system
and allows the MAP to begin translating addresses (using
the user map specified by bits 0 and 13 of the MAP
status register.

Address translation resumes:

• after the first level of the next indirect reference; or
• after a POPB, POPJ, RTN, or RSTR instruction.

Read MAP Status
DIA ac,MAP

Reads the status of the current map.

Places the contents of the MAP status register in the
specified AC. The previous contents of the AC are
overwritten. The format of the information placed in the
specified AC is

NOTE: The.JrrST instruction will clear bits 0 through
~ and./:3 fht;l,~ 5 of the MAP status register. IORST
also turns off the map.

Memory Allocation and Protection 63

Initiate Page Check
DOC ac,MAP

The contents of the specified AC are transferred to the
MAP feature for later use by the Page Check or Load
MAP instruction. The contents of the specified AC remain
unchanged. The format of the specified AC is

I I LOGICAL MAP

5 8 8 9 15 o

\

64 Memory Allocation and Protection

Page Check
DIC aC,MAP

The number of the physical page which corresponds to
the logical page specified by the preceding DOC MAP
instruction is placed in bits 6 to 15 of the specified AC.
Places additional information about the correspondence
in bits 0-5. The previous contents of the AC are overwrit­
ten. The format of the information placed in the specified
ACis

IWpl MAP PHYSICAL

o 3 4 5 8 15

NOTE: If all physical page bits including the write
protect bit are one, then the logical page is validity
protected.

Map Supervisor Page 31
DOB aC,MAP

Specifies that mapping take place for a single page of an
unmapped address space. Mapping is always done for
locations 760008 though 777778 (logical page 31). This is
the only page which can be mapped when in unmapped
address space. You can use this instruction to access a
page of a user's memory space when in unmapped mode.
The MAP supervisor Page 31 instruction can only be
used with the MAP off.

Bits 6-15 of the specified AC are transferred to the MAP
feature. These bits specify a physical page number to
which logical page 31 will be' mapped when in the
supervisor mode.

The contents of the specified AC remain unchanged. The
format of the specified AC is

o
RESERVED PHYSICAL

5 8

NOTE: If supervisor page 31 translation is altered while
instructions are being fetched through supervisor page.
31, instructions will be fetched from the new translation.
IORST resets logical address translation to physical
address translation.

Map Single Cycle
Disable User Mode

NIOPMAP

101111101010101011111010101011111
o 2 3 4 5 8 7 8 9 10 11 12 13 14 15

The effect of this instruction depends upon the mode
from which it is issued.

NOTE: The interrupt system is disabled from the
beginning of the MAP Single Cycle instruction until
after the next LDA, ELDA, STA, or ESTA instruction.

From user (mapped) mode:

If the LEF mode and I/O protection are disabled, the
NIOP instruction turns off the MAP. All subsequent
memory references are unmapped until the map is
reactivated with a Load Map Status DOA MAP instruc­
tion.

From the unmapped mode:

The user map is enabled for one memory reference. The
first memory reference of the next LDA, ELDA, STA,or
ESTA instruction is mapped. After the memory cycle is
mapped, the user map is again disabled.

For example, if AC2 contains 4058 and the following
instruction sequence is issued:· .

NIOP MAP ;MAP SINGLE CYCLE
LOA 3,2,2

ti,J'T'S ""V"<" ,\<-k.:L.l
I !-tool .M.S {-~~IJ .. ,'lov\..

"'fhv-..@.~'t-/ r:l:.l~

then the logical address 4078 will be mapped using the
last enabled user map (specified by bits 0 and 13 of the
MAP status register at the time ofthe memory reference).
The word contained in the corresponding physical location
will be placed in AC3.

However, if the following instructiQn.,sequence is issued:
. .:'i;'f.I

NIOP MAP ;MAP SINGLE CYCLE
LOA 3,@2,2

then the logical address 4078 will be mapped using the
user map for the last enabled user. The contents of the
corresponding physical location will be used as the first
level of an indirection chain. The next memory cycle,
which is"the second level of the indirection chain, will not
be mapped.

Memory Allocation and Protection 65

The virtual console is a program that can aid you in
working with the ECLIPSE S/120 computer system. It
allows you to interact with the computer through your
terminal. You enter simple commands on a terminal
keyboard to examine and! or modify any processor register
or memory location. A breakpoint feature allows you to
stop the execution of a program at selected places for
debugging.

NOTE: Input/Output (I/O) interrupts are inhibited when
the virtual console is executing. Also, when the virtual
console is executing, the RUN light on the chassis is not
lighted. When a user program is executing, the RUN
light is lighted. I/O protection is not enabled when the
virtual console is executing.

The virtual console resides in read-only memory (ROM)
chips on the ECLIPSE S/120 system processing unit
(SPU) board. The virtual console has access to 512 bytes
of static random-access memory (RAM), also on the
SPU board, for use as a scratchpad. Since neither virtual
console ROM nor scratch pad RAM is part of the normal
address space, they are transparent to the user.

Entering the Virtual Console
Upon power up, the virtual console firmware first per­
forms a short (0.75-second) self-test routine; then, if the
front panel is locked, it examines the contents of the
automatic program load (APL) register. If the APL
register contains device code 0, the virtual console retains
control. If it contains any other device code, the central
processing unit (CPU) performs an immediate program
load from that device. (See "Program Load Commands"
and the "Power-Up Self-Test" sections.)

In addition to power up, the virtual console is entered
when:

• A HALT instruction is executed (unless HALT
dispatch is disabled).

• The user presses the BREAK key of the system console
(if the Break function on the controller board is not
disabled by jumpering). The virtual console returns to
the user program if the console is locked.

• The user presses the RESET switch on the front console
and the console is not locked.

Chapter 9

Virtual Console

• The program completes execution of an instruction in
the one-step mode (See "Program Debugging"
section).

• A breakpoint is encountered (See "Program
Debugging section").

NOTE: When the user presses the RESET switch to
enter the virtual console, the contents of the program
counter are lost.

The contents of the ACs, the program counter, and the
carry bit are displayed each time the virtual console is
entered, except at power up and when the user presses the
RESET switch.

Once the virtual console has been entered and the user
presses the PR LOAD switch on the front panel, the
virtual console will attempt to program load from the
device selected by the APL register.

Once called, the virtual console displays a ! on the
terminal. This is called the virtual console prompt; it
indicates that the virtual console is ready to accept a
command. A single character preceeding the prompt
indicates the current state of the memory allocation and
protection (MAP) unit:

The MAP is currently off and no address transla­
tion will occur.

A! The MAP is on and user A has been selected.
B! The MAP is on and user B has been selected.
C! The MAP is on and user C has been selected.
D! The MAP is on and user D has been selected.

When a particular user has been selected, the current
state of that user's map will be used in all address
translations. You can change the MAP status from within
the virtual console as explained in "Changing the MAP
or MAP Status" later in this chapter.

Errors
This section discusses two methods for correcting typo­
graphical errors: the Rubout/Delete key and the K
command, The final topic in the section is virtual console
errors, which occur when commands are issued incorrect­
ly. The context of these errors wll be clarified when each
command is discussed later in the chapter.

Virtual Console 67

The Rubout/Delete Key
The Rubout/Delete key deletes the last character you
typed. The virtual console echoes the deletion with an
underscore (_). Typing additional Rubouts deletes digits
from right to left.

If you type any Rubouts immediately after opening a
cell, the virtual console deletes the rightmost digits of the
cell's contents as though you had just typed them yourself.
You may then type in new values for these digits. Refer
to the "Command Formats" section in this chapter for
more information on the Rubout key.

CAUTION: The Rubout/Delete key has no effect on
floating-point accumulators. If you type these
characters, the virtual console will issue a New Line
prompt, without changing any data.

The K Command
If you wish to cancel the entire line that you just entered,
type a K. The virtual console prints a ? followed by a
New Line with a prompt, and also closes the current cell
if it is open. The? followed by a New Line with a prompt
is also printed if you type a character that the virtual
console does not recognize.

Virtual Console Errors
If you attempt to open a nonexistent memory cell, the
data displayed as its contents will be meaningless. To
determine whether a location exists, enter a new value in
the memory cell and then reopen it. If it does not contain
the value just entered, then the location is nonexistent.

The virtual console types a ? followed by a New Line
with a prompt in the following conditions:

• An R command is issued without an argument.
• A set breakpoint command specifies an invalid address.
• A delete breakpoint command specifies a number

greater than 7.
• A set breakpoint command is issued after all eight

breakpoints have been assigned.
• An nM or nC command is issued and no map is on, or

n specifies a logical page number greater than 378,

• An nF command is issued and n specifies a number
greater than 3.

In all of the above cases, the command involved will not
be executed. In fact, the virtual console does nothing,
except discard data that was just entered with an errone­
ous command.

68 Virtual Console

Commands
In the following sections, the virtual console commands
are categorized into three groups:

• Cell commands
• Function commands
• Miscellaneous commands

A virtual console command consists of a single character.
Some commands require a leading argument, which is an
octal number or an expression. Valid numbers and
expression are:

Digits

Hex digits

Period

Signs plus (+)
or minus (-)

Delete or Rubout

must be in the range from 0 through
7. (If the argument is an address, it
must be in the range from 0 through
77777.)
ranging from 0 through 9 or A
through F.
the character "." replaces the value
of the last address used.
may be typed after any valid num­
ber and must be followed by a valid
number. The virtual console will
compute the arithmetic result and
enter it in place of the original
expression.
the delete key may be used to delete
any single digit. The virtual console
displays an underscore character
(_)to indicate that the preceding
character has been deleted. The
delete key will not delete the +, -
or • symbols. If delete is used after a
+ or a - , it has no effect. If it is
used after a period, it deletes the
rightmost digit of the last address.
The virtual console only retains six
digits at any time; therefore, the
delete key will not resolve all errors.

For clarity, all examples in this chapter show data entered
by the user in bold type. On the terminal, user input and
program response are not differentiated.

Cell Commands

Several virtual console instructions operate on cells. A
cell is either a memory location, memory cell, Or an
internal register, internal cell, such as an accumulator, or
a floating-point accumulator (FPAC cell). Each internal
register accessible by the virtual console is assigned an
internal cell number. Table 9.1 lists these registers and
their numbers.

Table 9.1 Internal cells

'Refer to "Search Command" in this chapter for the contents of this register.

To examine or modify any cell, you must open it using
one of the commands listed in Table 9.2. Opening a cell
causes its address and contents to be printed, in octal, at
your terminal. Addresses and memory or internal cell
contents are displayed in octal format, while floating-point
cell contents are displayed in hexadecimal format.

Table 9.2 Virtual console cell commands

I The symbol expr / represents any valid octal number or expression. See
"Command Formats" section.

2 Current cell means the last cell opened.

3Line Feed on non-ANSI standard keyboards.

Internal cell number 10, the virtual console register (Table
9.l)ean'be accessed· while in user mode with a READS
i~struction. This call always contains the device code of
the list deviCe from which a program load was performed.

When you open a memory cell, the virtual console
interprets the address according to the current setting of
the user MAP. That is, the number you enter is interpreted
as a 15-bit address, then translated into a physical address.
If the memory cell address you enter contains more than
five octal digits (I5-bits), only the last five digits are
used. Leading zeroes are not necessary. If for example,
you want to open logical memory location 5, type

5/

Once you have opened a cell, you may change its contents
by typing the octal number or expression whose value is
to be placed in the cell. When you are changing an
internal cell or a memory cell, you do not have to type
leading zeroes. When you are changing floating-point
accumulator cells, the digits are entered most-significant
position first, therefore it is not necessary to enter trailing
zeroes. Terminate the expression with a Carriage Return,
Line Feed, or New Line. Note that if you type Carriage
Return, the next cell will also be opened. This is convenient
when you enter data into several consecutive locations.

NOTE: If you open a cell and immediately type H or L,
the contents of the cell are used as the value of expr for
that command.

If you type an expression starting with a + or -, the value
of the expression will be added to or subtracted from the
current contents of the cell.

NOTE: You cannot type an expression starting with +
or - when alteringjloating-point accumulator (jpac) cells.

Examples showing resolution of expressions, when the
last address entered was 100 are:

• 100000_1 will be replaced by 100001.

• 1000000 will be replaced by 000000 (virtual console
only remembers six digits).

• .-3 will be replaced by 75.

• .7 will be replaced by 1007.

• 0-7 will be replaced by 177771.

• 6+.-3 will be replaced by 103 (6+ 100-3= 103).

• 7S+_Swill be replaced by 102 (75+5=102-the +
is not deleted.).

• 60+._will be replaced by 70 (60+ 10=70 - the _
erased the rightmost 0 of the last address, 100).

NOTE: When altering FP AC cells, you cannot type an
expression starting with = or -, or delete any digits
already entered.

Vi~tual Console 69

If you enter an illegal digit, the virtual console issues a
prompt and does not change the cell content; If you enter
more than 16 bits when altering internal cells or memory
cells, only the last 16 bits entered are used.lf you enter
16 bits when altering floating-point cells, the virtual
console automatically changes the cell content and issues
a prompt.

Examples showing the use of /, New Line, and Carriage
Return, with data entered by the user appearing in
boldface are:

A! 3A 000003A 000100 <CR>
AC3 contains 100. Internal cell 4 is opened as shown on
next line.

000004A 000704 /0000704 024132 <NL>
PC contained 704. Memory location 704 contains 24132.
The next memory location is not opened.

A! 5A 000005A 0000001 <NL>
User changed the carry bit to 1. The next cell is not
opened.

A! 100/000100025037 .<NL>
Changes the contents of memory location 100 to current
address. The next memory location is not opened.

A! 100/000100000100 <CR>
Confirms the preceding commands. Memory location 101
is opened as shown on next line.

000101000602 +1<NL>
Increments contents of 101. The next memory location is
not opened.

A! ./000101 000603
Comfirms preceding step.

In all memory location examples above, there was no
map protection for the logical page. When the logical
page is protected, the type of protection is indicated with
a character displayed between the memory address and
the data as follows.

A! 50/ 000050 X DDDDDD

In this example

X= type of protection; it can be Y, W, WP, or
a space.

Y = validity protected logical page; data dis­
played is invalid.

W = write-protected logical page; data cannot
be changed.

WP = write-protected logical page; and user
write fault is enabled, data cannot be
changed.

space = unprotected logical page.
DDDDDD = data

70 Virtual Console

Function Commands

Table 9.3 lists the virtual console function commands.
Sections that follow explain these commands in detail.

Table 9.3 Virtual console function commands

• Both TG and T V represent the simultaneous depression of the console
CTRL and G or V keys.

Breakpoints and Program Control

The virtual console breakpoint facility allows you to place
breakpoints at· up to eight locations in your program.
When the program encounters the breakpoint during
execution, it enters the virtual console so that you can
examine or modify any cells. Breakpoints are an aid in
debugging a program, since they enable you to stop your
program at locations where there may be problems and
then resume execution with no loss of data.

NOTE: Breakpoints will not work and should not be
used if the Halt Dispatch is not enablerji;~(!.fer tit!lfll.lt,
Dispatch jumper in the "Installation (ih'd)umpettng;l
section of ECLIPSE S/120 ComputEliSyst~I11~~fdware
Reference DGC 014-000690. : ." ,..

Setting Breakpoints

To set a breakpoint, type expr B. This command sets the
breakpoint at the address. specified by argument expr
according to the current user map. Breakpoints can be
used only in the user map from which the user program
will be started.

The virtual console assigns numbers to breakpoints in
reverse order - that is, breakpoint 7 is assigned first,
then 6, and so on. The unassigned breakpoint with the
highest number is always assigned first. For example, if
numbers 7 and 5 are assigned, the next will be 6, not 4.

To delete a breakpoint you must use the number assigned
to it as described below. Typing B with no specified
address causes the virtual console to list all the current
breakpoints along with their assigned numbers.

Examples:

A!423B

A!B
775324
3423
A!623B?

A!

Places a breakpoint at address 423 in user
mapA.
Requests list of all current breakpoints.
Breakpoint 7 is at address 75324.
Breakpoint 3 is at address 423.
Requests a breakpoint at a valid location,
but apparently all eight breakpoints are in
use. User must delete a breakpoint before
setting another.
A prompt always follows a"?".

NOTE: Do not place two breakpoints at the same
location.

NOTE: Breakpoints must never be set in addresses that
are to be executed when the Load Effective Address
mode is enabled or I/O protected.

Deleting Breakpoints

The D command deletes a breakpoint. The command's
format is nD where n specifies the breakpoint number.
This command deletes the breakpoint regardless of the
current state of the map. If no argument ("n") is specified,
D command deletes all breakpoints.

Examples

A!3D
A!12D?

Deletes breakpoint number 3.
Only eight breakpoints (numbers 0-7) are
valid; -- no other number is allowed.

Encountering a Breakpoint

When a breakpoint is encountered during execution of a
user program, the virtual console is entered. The address

of the instruction at which the breakpoint was set is
display~dan~ pl~<,le,djn internal cell number 4, and the
instruction at the location of the breakpoint is not
ekb~ilfbd. tft6n the virtual console displays a prompt,
indicating that the user can now inspect and modify any
internal cell or memory location.

Single Stepping

Use the command 0 to one-step through a program.
Issued when the virtual console has control, the 0
command sets a flag that causes a virtual console
interrrupt to occur as soon as the first main (user) program
instruction has executed. The virtual console then returns
to the main program location specified by the contents of
internal cell 4; the main program executes one instruction,
and then the virtual console resumes control.

You can cause the virtual console to step through n
instructions by typing nO, where n is an octal number
that can range between 0 and 177777. The virtual console
then executes those n instructions. As each instruction is
executed, the virtual console prints the address of the
following instruction, the contents of the ACs and the
condition of the carry bit, that is, the contents of the
program counter, ACs and the carry flip-flop at the time
of instruction execution. This is a convenient way to
locate skips or branches. After the n count of instructions
have been executed, the virtual console resumes control
and issues a prompt.

NOTE: The fact that a user breakpoint may have been
set for an instruction will have no effect on the execution
of the 0 command. When single stepping. interrupts will
not be honored if enabled before entering a virtual
console.

NOTE: The BREAK key interrupts the virtual console
before it finishes stepping through all n instructions. In
response. the virtual console displays the address of the
instruction following the one last executed and then
displays a prompt.

Resuming Program Execution

The virtual console has two commands that allow you to
resume program execution after the virtual console has
been entered through a breakpoint, after single-stepping,
or after the BREAK key has been pressed: P and R.

Typing P restarts program execution at the location
specified by the contents of internal cell number 4, which
specifies the return address (see Table 9.1). Typing nP
restarts program execution in the same manner; however,
the next n breakpoints are ignored.

NOTE: When the virtual console is entered through a
breakpOint. internal cell 4 contains. the address of the
location of the breakpoint. This should be the next
instruction to be executed in order to resume normal

Virtual Console 71

program flow. When the virtual console is entered any
other way, internal cell 4 contains the value of the PC +
1 .. this should also be the next instruction executed in
order to resume normal flow. In either case, the P
instruction produces the required result.

You can also return to a program by typing exprR. In
this case, program execution resumes at the location
specified by expr. When the R command is issued, the
virtual console inserts all previously specified breakpoints,
clears virtual console interrupts, and resumes program
execution at the logical address <expr> in the currently
selected MAP. The R command does not cause an I/O or
system reset. The number specified by expr must be a
valid address in user memory. If this argument is not in
the user range, or is not supplied, the virtual console
simply displays? and then issues a prompt.

Miscellaneous Commands
Changing the MAP or MAP Status

To change user maps, use the U command. In response to
this command, the console immediately prints a ":". Now
you must type a single character: A, B, C, or D. Typing
any other character (including Carriage Return, New
Line), turns off the MAP. After you type a character, the
virtual console displays a prompt reflecting the new state
of the MAP.

You can change the MAP status from within the virtual
console by opening internal cell 1 i, the MAP status
register, with a llA command. Type in the new status,
then close the cell with a New Line. Now issue a U
command, whether or not you want to change maps. (If
you do not want to change maps, simply enter the
character for the current map.) The new map status is
effective only after a U command has been issued.

Examples:

!U:B
No user map selected; user selected the B user map.

B!l1AOOOOIIA 000000 77<NL>
MAP status register cleared; user entered 77.

B!l1AOOOOIIA 000077 <NL>
Confirms preceeding step.

B!U:B
New map status takes effect.

B!U:<NL>

Turns MAP off.

Displaying, Altering, and Dumping User MAPs

Using the M command, displays, and/or alters the
physical page to which a logical page of the currently
selected user map is mapped. This command also displays
the physical page to which all logical pages of all user
maps are mapped.

72 Virtual Console

To display the physical page to which a logical page of
the currently selected user map is mapped, type nM. In
this format, n represents the octal logical page number.
The physical page is displayed in the following format:

WPPPPP

W Signifies write protection: 1 = write-protected,
o = not write-protected.

PPPPP Represents the physical page number in octal (0
- 1777).

After the physical page number is displayed, you can
alter the physical page for the same logical page by
typing the new page number in the same format followed
by <NL> or <CR>.

To display the physical page to which all logical pages of
all user maps are mapped, type M.

Examples:

A!32M 000132 l00120<NL>
A!
User map A, logical page 26 (328 = 2610) is mapped to
physical page 90 (1328 = 9010) and is not write-protected.
User remapped logical page 26 to physical page 80 (1208
= 8010) and set write protection.

A!5MI00030 <CR>
000006000077 <NL>
A!
User map A, logical page 5 is mapped to physical page 24
(308 = 2410) and is write protected. User map A, logical
page 6 is mapped to physical page 63 (778 = 63 10) and is
not write-protected.

Displaying, Altering, and Dumping Data Channel MAPs

The C command displays and/or alters the physical page
to which a logical page of the currently selected data
channel map is mapped. It also displays the physical page
to which all logical pages of all data channel maps are
mapped.

To display the physical page to which a logical page of
the currently-selected data channel map is mapped, type
nCo The display of the physical page is in the same
format described in the section "Displaying, Altering,
and Dumping User MAPs."

To display the physical page to which all logical pages of
all data channel maps are mapped, type C.

Auto Program Load

Before pressing the PROGRAM LOAD switch on the
console, you must prepare the I/O device to read data.

Follow the program load instructions for your operating
system in one of the following manuals:" " '" ,

• Loading and Generating MP/AOS (i)GC' No.
069-400207)

• How to Load and Generate Your RDOS System (DGC
No. 069-400013) ,

• How to Load and Generate Your Advanced Operating
System (DGC No: 093-000217).

When the user presses the PROGRAM LOAD switch on
the front panel, the virtual console loads the program
from the device selected by the auto program load register.
This load register contains the device code plus a bit
which identifies whether it is a programmed I/O or a
data channel program load. If you wish to perform a
program load from a device other than the device selected
by the auto program load register, proceed as follows.

• Type nL to cause the CPU to perform a program load
from a programmed I/O device whose device code is
equal to the octal number n. (Typing device code 0
causes a re-entry to the virtual console; device code 77
is reserved.)

• If n L is typed, the programmed I/O device supplies
data in bits 8-15. The program load program stores
each pair of bytes as a single word in memory: the odd
byte becomes the left half of the word, and the even
byte becomes the right half.

The program load program ignores leading null characters
and does not begin storing any words until it reads a
nonzero synchronization byte. The first word following
this synchronization byte must be the two's complement
of the number of words to be loaded, including the word
count number. The program load program stores a
maximum of 32 kilobytes to be read beginning at memory
location 1008.

Type nH to cause the CPU to perform a program load
from a data channel device whose device code is equal to
n. An 10RST instruction is issued to clear all devices.
This also sets the word count and address registers to
zero. The data channel begins at address zero and loops
at location 3778 until the data transfer places a word into
that location. The program then executes the transferred
word as an instruction. Typically, the instruction is to
halt or to jump to the data that have just been transferred.

NOTE: Some data channel devices transfer more than
256 words at a time. It is up to the device or the program
to control the transfer after 256 words have been read.

Once a program load has begun, the virtual console is no
longer in control.

After a program load has been performed - whether
initiated by nL, nH, or PR LOAD- - the device code of

the, device loaded from is placed in the virtual console
register. Tlle'clevj(S'b c6de shifted left' one bit position, is
also placed in ACt). A READS instruction can be used at
any time to retrive the'device code of the last load device
from the virtual console register.

The I/O Reset Command

The I command causes the virtual console immediately to
execute an I/O RESET instruction to all I/O devices.
This clears all I/O device controller flags (Busy = 0,
Done = 0).

Example:
B!I
!
User map B was selected when the user issued a I
command. I/O Reset disables the MAP and clears the
Map status register.

!llAOOOOIIA OOOOOOO<NL>

Confirms Map status register is cleared.

The Search Command

The exprS command provides you with a means to search
the currently specified logical space (64 kilobytes) for the
value expr. The contents of each searched memory
location are ANDed with a search mask contained in
internal cell 14 before the comparison is made. The
address and contents of each location where a comparison
is found will be displayed as '

AAAAAA DDDDDD

In this format,
AAAAAA = the physical memory address
DDDDDD = the contents

Example This example seaches the currently-specified
logical page for all occurences of any I/O instruction to
device code 22:

A!14A 000014A ?????? 160077<CR>
Sets the search mask to 160077 which will limit the
comparision to all I/O instructions.

A!060022S
Search for all I/O instructions to device 22.
1564360122
1742361322
2365462222

I/O instructions to device code 22 were found in three
locations of the current logical space.

Virtual Console 73

The Power-Up Self-Test

The TG command causes the virtual console to execute
the power-up self-test sequence.

CAUTION: The memory-test portion of the power-up
self-test is destructive to user and virtual console
memory; therefore, a program load must be performed
after the self-test.

Errors that occur are flagged as follows:

I/O fault:
the virtual console displays an I.

Virtual console memory fault:
the virtual console displays an H.

User memory fault:
the virtual console displays an M.

Error checking and correction fault:
the virtual console displays an E.

If the virtual console displays any error flag, the user
must depress the BREAK key to continue. If no errors
are encountered and the front panel is locked, the virtual
console performs a program load. The virtual console will
retain control and issue a prompt under the following
conditions:

• The user depresses the BREAK key after an error
• The APL register contains device code O.
• The front panel is unlocked.

NOTE: The power-up self-test is not a definitive
hardware test. Its primary purpose is to detect faults
that would prevent the loading of diagnostic programs.

The User Read/Write Memory Test

The TV command causes the virtual console to execute a
test sequence of all user read/write memory locations.

CAUTION: The test is destructive to user read/write
memory; therefore, a program load must be performed
after the TV command.

The virtual console displays P each time all locations of
user memory have been tested. Any error that occurs
causes the error location to be displayed as shown below,
and the test continues.

XXXyyyy

In this display

XXX Indicates the physical page number that failed.
The number ranges from 0 to 3778

YYYY Specifies the location within page that failed.
The number ranges from 0 to 17778

To stop the user memory test depress the BREAK key.
The test will stop at the completion of the current pass.

74 Virtual Console

This dictionary contains instructions listed in alphabetical
order according to assembler mnemonics. Refer to the
I/O instruction dictionary in Chapter 7 for specific I/O
instruction information.

Included for each instruction are:

• the assembler mnemonic,
• the format of any arguments involved,
• the bit format produced,
• a functional description of each instruction.

Coding Aids
We use certain conventions and abbreviations throughout
this chapter to help you properly code each instruction
for Data General's assembler. Briefly, they are:

Table 10.1 Type conventions

Chapter 10

Instruction Dictionary

We use the following abbreviations throughout this
chapter.

Table 10~2 Abbreviations

Setting the Index Field
To set the index field, code a comma followed by an
integer between 0 and 3. This will set the index field to
the value you specified. You can also use the period (.) to
set the index field to 01 (PC relative). The period can be
read as the address of the current instruction. When you
use a period, you usually follow it with a plus or minus
sign and the displacement value, such as • + 3 or • -12.

If you are coding extended class instructions, note that
using a period (for example, EJMP • + 5) does not produce
the same effect as coding a comma followed by a 1
(EJMP 5,1). When using a period, the displacement is
added to the address of the instruction (the first word of
a 2-word instruction). When using a comma, the displace­
ment is added to the address of the word containing the
displacement (the second word of a 2-word instruction).
Therefore, EJMP .+5 is equivalent to EJMP 4,1.

Instruction Dictionary 75

Add Complement
ADe{e} {sh} {#} aes,aed{,skip}

SKIP

o 1 2 3 4 5 6 7 8 9 10 11 12 13 15

Adds the logical complement of an unsigned integer to
another unsigned integer.

Sets carry to the specified value. Adds the logical
complement of the unsigned, 16-bit integer in ACS to the
unsigned, 16-bit integer in ACD. If the addition produces
a result greater than 216 _1(65535 10), then the value of
carry is complemented. Places the 17 -bit result (carry
and function result) in the shifter.

Tests the skip condition. Performs the specified shift
operation. If the no-load bit is zero, loads the 17-bit value
into the carry bit and ACD. If the skip condition is true,
skips the next sequential word.

NOTE: If the number in ACS is less than the number in
A CD. the instruction complements the value of carry
before shifting.

Example

Operation Before After

ADC 1.0
Add the
complement
of
010101 8

to 3458

ACO = 0003458 ACO= 1702438

ACl =010101 8 ACl =010101 8

Carry=O Carry=O

76 Instruction Dictionary

Add
ADD {e} {sh} {#}aes,aed,f,skip}

SKIP

o 1 2 3 4 5 6 7 8 9 10 11 12 13 15

Performs unsigned integer addition.

Sets carry to the specified value. Adds the unsigned,
16-bit number in ACS to the unsigned, 16-bit number in
ACD. If the result is greater than 216 -1 (65,535 10),

complements carry. Places the 17-bit value (carry and
the result of the add) into the shifter. Performs the
specified shift operation.

Tests the skip condition. If the no-load bit is zero, places
the 17-bit value in the carry bit and ACD. If the skip
condition is true, skips the next sequential word.

Example

Operation

ADD 1.0
Add 3458 and
010101 8

Before

ACO = 0003458

ACl = 010101 8

Carry = 0

After

ACO = 1702438

ACl = 010101 8

Carry = 0

Extended Add Immediate
ADDI i,ac

I I I I A,e I I I I I I I I 10 10 10 1
o 2 3 4 5 8 7 8 9 10 11 12 13 14 15

IMMEDIATE FIELD

18 31

Adds a signed integer in the range -32768 10 to + 32767 10
to the contents of an accumulator.

Adds the signed 16-bit, two's complement number con­
tained in the immediate field to the signed 16-bit, two's
complement number contained in the specified accumula­
tor. Places the result in the accumulator. Carry remains
unchanged.

Example

Operation

ADDI 303,1
Add 3038 and
0003458,

Before After

ACO = 0003458 ACO = 0006508

Add Immediate
ADI n,ac

o 2 3 4 5 8 7 8 9 10 11 12 13 14 15

Adds an unsigned integer in the range of 1 to 4 to the
contents of an accumulator.

Adds the unsigned, 16-bit number in the specified accu­
mulator to the contents of the immediate field n plus 1.
Carry remains unchanged.

NOTE: DGC assemblers compute N before loading the
immediate field. You coden, which is N + 1. Code the
exact value you want to add.

Example

Operation

ADI 4,2
Add 4 to 1777758,

Before After

AC2 = 1777758 AC2 = 0000018

Instruction Dictionary 77

AND With Complemented Source
ANC acs,acd

Forms the logical AND of the complement of the contents
of ACS and the contents of ACD.

Sets carry to the specified value. Forms the logical AND
of the one's complement of the contents of ACS and the
contents of ACD. Sets a bit in the result to one if the
corresponding bit position in ACS is zero and the
corresponding bit position in ACD is one.

Places the result in ACD. Leaves ACS unchanged.

Example

Operation

ANCO,1
AND the comple­
ment of ACO with
AC1.

Before

ACO = 1777758

78 Instruction Dictionary

After

ACO = 1777758

AND
AND[cJ[shj[#j acs,acd[,skipj

Forms the logical AND of the contents of two accumula­
tors.

Sets the value of carry to the specified value. Places carry
and the logical AND of ACS and ACD in the shifter.
Each bit placed in the shifter is one only if the correspond­
ing bit in both ACS and ACD is one; otherwise, the
resulting bit is zero. The instruction then performs the
specified shift operation anq places the result in carry
and ACD if the no-load bit is zero. If the skip condition is
true, the next sequential word is skipped.

AND Immediate
ANDI i,ac

o 2 3 4 5 8 8 9 10 11 12 13 14 15

IMMEDIATE FIELD

18 31

Forms the logical AND of the contents of the immediate
field and the contents of the specified accumulator.

Block Add And Move
BAM

111010111011111111111010111010101
o 1 2 3 4 5 8 7 e 9 10 11 12 13 14 15

Moves memory words from one location to another,
adding a constant contained in ACO to each one.

Moves words sequentially from one memory location to
another treating them as unsigned, 16-bit integers.

The instruction adds two unsigned, 16-bit integers, one
from ACO and one from the source location, and transfers
the new word to the destination location. Carry remains
unchanged.

Bits I-IS of AC2 contain the address of the source
location. Bits I-IS of AC3 contain the address of the
destination location. The address in bits I-IS of AC2 or
AC3 is an indirect address if bit 0 of that accumulator is
one. In that case, the instruction follows the indirection
chain before placing the resultant effective address into
the accumulator.

The unsigned IS-bit number in ACI is equal to the
number of words to be moved. This number must be
greater than zero and less than or equal to 32,768
(777778), If the number in ACI is outside this range, no
data are moved and the contents of the accumulators
remain unchanged.

For each word moved, the count in ACI is decremented
by one and the source and destination addresses in AC2
and AC3 are incremented by one. Upon completion of
the instruction, the contents of ACO remain unchanged,
ACI contains zeroes, and AC2 and AC3 point to the
address following the last word in their respective fields.

Words are moved in consecutive, ascending order accord­
ing to their addresses. The next address after 777778 is
zero for both fields. The fields may overlap in any way.

NOTE: Because of the potentially long time that may be
required to perform this instruction, it is interruptible.
If a BAM instruction is interrupted, the program counter
is decremented by one before being placed in location 0
so that it points to the interrupted instruction. Any
interrupt service routine that returns control to the
interrupted program via the address stored in location 0
will correctly restart the BAM instruction.

When updating the source and destination addresses, the
BAM instruction forces bit 0 of the result to zero. This
ensures that upon return from an interrupt, the instruction
will not try to resolve an indirect address in either AC2 or
AC3.

Example

Operation Before

Move 20e words ACO = 000031
from memory loca- AC 1 = 000020
tions 077770+ to AC2 = 077770
memory locations AC3 = 034450
034450+, adding
31 e toeach.

After

ACO = 000031
AC1 = 000000
AC2 = 000011
AC3 = 034471

Instruction Dictionary 79

Block Move
BLM

1 1 0 1 I 1 0 1 I I I I 1 0 1 0 1 1 0 1 0 1 0 1 o 1 2 3 4 5 e 7 8 9 10 11 12 13 14 15

Moves memory words from one location to another.

The BLM instruction is the same as the BAM instruction
in all respects except that no addition is performed and
ACO is not used.

NOTE: The BLM instruction is interruptible in the same
manner as the BAM instruction.

80 ,Instruction Dictionary

Set Bit To One
BTO acs,acd

o 1 234
I I 0 I 0 I 0 I 0 I 0 I 0 I I 0 I 0 I 0 I

5 e 7 8 9 10 11 12 13 14 15

Forms a bit pointer from ACS and ACD and sets the
addressed bit in memory to one, leaving ACS and ACD
unchanged.

ACS contains the most-significant 16 bits of the bit
pointer, and ACD contains the least-significant 16 bits.
If you specify ACS and ACD as the same accumulator,
the contents of that accumulator become the least signifi­
cant 16 bits of the bit pointer. The most-significant 16
bits are zero.

NOTE: Bit 0 of the bit pointer must be zero. The bit
pointer contained in ACS and ACD must not make an
indirect memory reference.

Example

Operation Before After

BTO 0,1 ACO = 0234508 ACO = 0234508
Setbit7at234568 AC1 = 0001478 AC1 = 0001478
to 1. 234568=0101038 234568=0105038

Set Bit To Zero
BTZ acs,acd

Sets the addressed bit to zero.

Forms a 32-bit pointer from the contents of ACS and
ACD. ACS contains the most significant 16 bits and
ACD contains the least significant 16 bits of the bit
pointer.

If ACS and ACD are specified as the same accumulator,
the instruction treats the accumulator contents as the
least significant 16 bits of· the bit pointer and assumes
that the most significant 16 bits are zero.

The instruction then sets the addressed bit in memory to
zero, leaving the contents of ACS and ACD unchanged.

Compare To Limits
eLM acs,acd

Compares a signed integer with two other integers and
skips if the first integer is between the other two.

Compares the signed two's complement integer in ACS
to two signed, two's complement limit values, Land H. If
the number in ACS is greater than or equal to L and less
than or equal to H, the next sequential word is skipped. If
the number in ACS is less than L or greater than H, the
next sequential word is executed.

If you specify ACS and ACD as different accumulators,
the address of the limit value L is contained in bits 1-15
of the ACD. The limit value H is contained in the word
following L. Bit 0 of ACD is ignored.

If you specify ACS and ACD as the same accumulator,
that accumulator must contain the integer to be com­
pared. The limit values Land H are in the two words
following the instruction. L is the first word, and H is the
second word. The next sequential word is the third word
following the instruction.

Since the number contained in ACI is between the limit
values the next instruction is skipped.

Example

Compare 0003318 to L stored at 0012348 and H stored at
0012358.
Instructions: eLM 1, 0

Skipped instruction
Executed instruction
ACO = 0012348
ACI = 0003318
Location 0012348 = 0000178
Location 0012358 = 0011128

Since the number in ACI is between the limit values, the
processor skips the next sequential word.

Instruction Dictionary 81

Character Compare
CMP

111110111111111111101110111010101
o 2 3 4 5 8 7 8 9 10 11 12 13 14 15

Compares two strings of bytes and returns a code
reflecting the results of the comparison.

Compares two strings, one byte at a time. Treats each
byte as an unsigned 8-bit binary quantity in the range
0-255 10. If two bytes are not equal, the string whose byte
has the smaller numerical value is, by definition, the
lower valued string. Both strings remain unchanged.

The four accumulators contain parameters passed to the
instruction. Two accumulators speCify the starting ad­
dress, the number of bytes, and the direction of processing
(ascending or descending addressed) for each string.

ACO specifies the length and direction of comparison for
string 2. If the string is compared from its lowest memory
location to its highest, ACO contains the unsigned value
of the number of bytes in string 2. Ifthe string is compared
from its highest memory location to its lowest, ACO
contains the two's complement number of the number of
bytes in string 2.

ACI specifies the length and direction of comparison for
string 1. If the string is compared from its lowest memory
location to its highest, ACI contains the unsigned value
of the number of bytes in string 1. If the string is compared
from its highest memory location to its lowest, ACI
contains the two's complement number of the number of
bytes in string 1.

AC2 contains a byte pointer to the first byte compared in
string 2. When the string is compared in ascending order,
AC2 points to the lowest byte. When the string is
compared in decending order, AC2 points to the highest
byte.

AC3 contains a byte pointer to the first byte compared in
string 1. When the string is compared in ascending order,
AC3 points to the lowest byte. When the string is
compared in descending order, AC3 points to the highest
byte.

The strings may overlap in any way. Overlap will not
affect the results.

82 Instruction Dictionary

After the instruction, ACO contains the number of bytes
left to compare in string 2. ACI contains the return code
as shown in the table below.

AC2 contains a byte pointer either to the failing byte in
string 2 (if an inequality were found) or to the byte
following string 2 (if string 2 were exhausted).

AC3 contains a byte pointer either to the failing byte in
string 1 (if an inequality were found) or to the byte
following string 1 (if string 1 were exhausted). If the two
strings are of unequal length, the instruction pads the
shorter string with space characters <040>8 and contin­
ues the comparison.

If the lengths of both strings 1 and 2 are zero, the
instruction returns zero in ACl.

Example

Operation

Compare the byte
string at memory
locations 000345
to 000400 to the
byte string starting
at location
011123. from the
lowest to the
highest location.

Before

ACO = 0000668
AC 1 = 0000668

AC2 = 0007138

AC3 = 0222478

After

ACO = 000000
AC 1 = code from table
AC2 = 001001 8
AC3 = 223358

Character Move Until True
CMT

11 11 11 10 11 11 11 11 11 10 I j 1. 0 11 10 ,1 010 I
o 2 3 4 6 6 7 6 9 10 11 12 13 14 16

Under control of the four accumulators, moves a string of
bytes from one area of memory to another until either a
table-specified delimiter character is moved or the source
string is exhausted.

The instruction copies the string one byte at a time.
Before it moves a byte, the instruction uses that byte's
value to determine if it is a delimiter. It treats the byte as
an unsigned 8-bit binary integer (in the range 0-255 10)

and uses it as a bit index into a 256-bit delimiter table. If
the indexed bit in the delimiter table is zero, the byte
pending is not a delimiter; and the instruction copies it
from the source string to the destination string. If the
indexed bit in the delimiter table is one, the byte pending
is a delimiter. In this case, the instruction does not copy
the pending byte, so the instruction terminates.

The instruction processes the string in the same direction,
either from lowest memory locations to highest (ascending
order), or from highest memory locations to lowest
(descending order). Processing continues until there is a
delimiter or the source string is exhausted. The four
accumulators contain parameters passed to the instruc­
tion.

The accumulator affects the CMT instruction as follows:

• ACO contains the address (word address), possibly
indirect, of the start of the 256-bit (16-word) delimiter
table.

• AC 1 specifies the length of the strings and the direction
of processing. If the source string is moved to the
destination field in ascending order, ACl contains the
unsigned value of the number of bytes in the source
string. If the source string is moved to the destination
string in descending order, ACl contains the negative
two's complement number of bytes in the source string.

• AC2 contains a byte pointer to the first byte to be
written to in the destination field. When the process is
performed in ascending order, AC2 points to the lowest
byte in the destination string. When the process is
performed in descending order, AC2 points to the
highest byte in the destination string.

• AC3 contains a byte pointer to the first byte to be
processed in the source string. When the process is
p~rformed in ascending order, AC3 points to the lowest
byte in thesbtitce ~tring. When the process is
performed in descending order, AC3 points to the
highest byte in the source string.

• The fields may overlap in any way. However, the
instruction moves bytes one at a time, so certain types
of overlap may produce unusual side effects. If
AC2 = AC3, the instruction reads until it finds a
character or the instruction returns to the address of a
delimiter ..

Upon completion:

• ACO contains the resolved address of the delimiter
tab,e. ;l

• ACl contains the numbe~ of bytes that were not moved.
• AC2 cOQ~ainsa byte pointer to the byte following the
, la1t bytewfitfen in the destination field.

. ·0. AC3' contains a byte pointer either to the delimiter or
to the first byte following the exhausted source string.

NOTE: When the source and destination addresses are
the same, no data are moved. Any other type of overlap
may produce unusual side effects. If ACI contains the
number zero at the beginning of this instruction, no
bytes are fetched and none are stored.

Example

Operation Before

Check the string ACO = 010203
starting at memory AC 1 = 000042
location 001132
for a delimiter, be- AC2 = 002265
ginning at the
string's lowest AC3 = 002265
byte, and replace
the string to its
original location.
The string con-
sists of 426 bytes.

After

010203.
000000 (if no del.imiter
found)
002337 (if no deiimiter
found)
002337 (if no delimiter
found)

Instruction Dictionary 83

Character Move
CMV

1'1'101'101'1'1'1'101'101'1010101
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Moves a string of bytes from one area of memory to
another. Under control of the four accumulators, the
CMV instruction moves a string of bytes from one area of
memory to another and returns a value in the carry bit
reflecting the relative lengths of source and destination
strings.

The instruction copies the source string to the destination
string, one byte at a time. The four accumulators contain
parameters passed to the instruction. Two accumulators
specify the starting address, number of bytes to be copied,
and the direction of processing (ascending or descending
addresses) for each string.

• ACO specifies the length and direction of processing
for the destination string. If the string is processed
from its lowest memory location to the highest, ACO
contains the unsigned value of the number of bytes in
the destination string. If the string is processed from
its highest memory location to the lowest, ACO contains
the two's complement of the number of bytes in the
destination string.

• AC I specifies the length of the strings and the direction
of processing. If the source string is to be moved to the
destination string in ascending order, ACI contains
the unsigned value of the number of bytes in the source
string. If the source string is to be moved to the
destination string in descending order, ACI contains
the two's complement of the number of bytes in the
source string.

• AC2 contains a byte pointer to the first byte to be
written into in the destination string. When the field is
written in ascending order, the value of AC2 points to
the lowest byte. When the field is written in descending
order, AC2 points to the highest byte.

• AC3 contains a byte pointer to the first byte copied in
the source string. When the field is copied in ascending
order, AC3 points to the lowest byte. When the field is
copied in descending order, AC3 points to the highest
byte.

84 Instruction Dictionary

The strings may overlap in any way. However, the
instruction moves bytes one at a time, so certain types of
overlap may produce unusual side effects.

Upon completion:

• ACO contains zero,
• ACI contains the number of bytes left to fetch from

the source field.
• AC2 contains a byte pointer to the byte following the

destination field.
• AC3 contains a byte pointer to the byte following the

last byte fetched from the source field.

NOTE: If ACO contains the number zero at the beginning
of this instruction, no bytes are fetched and none are
stored. If ACI is zero at the beginning of this instruction,
the destination string is filled with space characters.

Example

Operation

Move a string of
bytes starting at
memory location
003321, to the 10·
cation starting at
memory location
001111. The string
to be moved is 308

bytes long, the
destination string
is 408 bytes long,
and both are to be
processed in as·
cending order.

Before

ACO = 000040
AC1 = 000030
AC2 = 002223
AC3 = 006643
Carry = X

After

ACO = 000000
AC1 = 000000
AC2 = 002263
AC3 = 006673
Carry = 0

The last 109 bytes of the destination string are filled with
space characters, and since the source string is shorter
than the destination string, a zero is returned in carry.

Count Bits
COB acs,acd

Adds a number equal to the number of ones in ACS to
the signed, 16-bit, two's complement number in ACD.
The contents of ACS and the value of carry are un­
changed.

NOTE: If you specify ACS and ACD as the same
accumulator, the contents of ACS will be changed.

Example

Operation

COB 1,0

Before

ACO = 123450
AC1 = 000103

After

ACO = 123453
AC1 = 000103

Complement
COM[cj[shj [#j acs,acd[,skipj

11 I A~S I A9D I 0 I, 0 I 0 I S,H I ~ I # I FK'P, I
o 1. 2 3 4 I; 6 7 6 9 10 11' 12 13 15

Forms the logical complement of the contents of an
accumulator:

Sets carry to the specified value. Forms the logical
complement of the number in ACS and places the 17-bit
value (carry and function result) in the shifter. Performs
the specified shift operation and places the result in carry
and ADC if the no-load bit is zero. If the skip condition is
true, the next sequential word is skipped.'

Instruction Dictionary 85

Character Translate

CTR

111111101011111111101110111010101
o 2 3 4 5 6 7 6 9 10 11 12 13 14 15

Translates a string of bytes from one data representation
to another and either moves it to another area of memory
or compares it to a second translated string.

Operating in one of two modes - translate and move, or
translate and compare - the CTR instruction, in conjunc­
tion with the four accumulators, translates a string of
bytes, one byte at a time, from one data representation to
another data representation. It uses each byte as an 8-bit
index into a 256-byte translation table. The byte ad­
dressed by the index then becomes the translated value
and is then either moved to another area of memory or
compared to a second translated string.

The instruction processes both strings from the lowest
memory location to highest (ascending).

NOTE: Thefields may overlap in any way. However, the
instruction processes bytes one at a time, so certain
types of overlap may produce unusual side effects.

Translate and Move Mode

The instruction translates each byte in the source string
and moves it to the destination string. This mode is
specified by a one in bit 0 of AC1.

The accumulators affecting the CTR instruction are:

• ACO contains the address, direct or indirect, of a word
which contains a byte pointer to the first byte in the
translation table.

• ACl contains the two's complement of the number of
bytes in both strings.

NOTE: Since bit 0 of ACI contains a 1 for translate and
move mode, the maximum number of bytes to be moved
is 32,767]0.

• AC2 contains a byte pointer to the first byte in the
destination string.

• AC3 contains a byte pointer to the first byte in the
source string.

Upon completion:

• ACO contains the resolved address of the word that
contains the byte pointer to the translation table.

• ACl contains O.

• AC2 contains a byte pointer to the byte following the
last byte written into the destination string.

• AC3 contains a byte pointer to the byte following the
last byte moved in the source string.

86 Instruction Dictionary

Example

Operation Before

CfR Translate a ACO = 00~1238

50-byte string, AC1 = 1777168
starting at memory AC2 = 0206438
location 010321, AC3 = 0206438
using a pre·
defined translation
table, and return
the string to its
original memory
location. Memory
location 002123
contains the byte
pointer to the
translation table.

After

ACO = 0021238
AC1 = 0000008
AC2 = 0207258
AC3 = 0207258

The source string is now overwritten and its location is
filled with a translated string.

Translate and Compare Mode

This mode is specified by a zero in bit 0 of AC1. The
instruction translates each byte in both string 1 and string
2 and compares the translated values. Each translated
byte is treated as an unsigned, 8-bit binary quantity in
the range 0 to 255 10, If two translated bytes are not
equal, the string whose byte has the smaller numerical
value is defined as the lower valued string. Both strings
remain unchanged.

The accumulators affecting the CTR instruction are:

• ACO contains the address, direct or indirect, of a word
which contains a byte pointer to the first byte in the
translation table.

• ACl contains the unsigned value of the number of
bytes in the strings.

NOTE: Since bit 0 of ACI contains a 0 for translate and
compare mode, the maximum number of bytes that may
be compared is 32,767]0,

• AC2 contains a byte pointer to the first byte in string
2.

• AC3 contains a byte pointer to the first byte in string
1.

Upon completion:

• ACO contains the resolved address of the word that
contains the byte pointer to the translation table.

• ACl contains a return code as calculated in the
following table.

Code Result

-1 Translated value of string 1 < transiated vaiue of string
2

o Translated value of string 1 = translated value of string
2

+ 1 Translated value of string 1 > translated value of string
2

If the length of both strings 1 and 2 is zero, the compare
option returns a zero in ACl.

• AC2 contains a byte pointer to either the failing byte
in string 2 if an inequality is found, or the byte following
the last byte in string 2 if the strings are identical.

• AC3 contains a byte pointer to either the failing byte
in string 1 if an inequality is found, or the byte following
the last byte in string 1 if the strings are identical.

Decimal Add
DAD acs,acd

Performs decimal addition on 4-bit binary coded decimal
(BCD) numbers and uses the value of carry for a decimal
carry.

Adds the unsigned decimal digit contained in ACS bits
12-15 to the unsigned decimal digit contained in ACD
bits 12-15. Adds the value of carry to this result. Places
the decimal units' position of the final result in ACD bits
12-15, and the decimal carry in the carry bit. The contents
of ACS and bits 0-11 of ACD remain unchanged.

NOTE: No validation of the input digits is performed.
Therefore, if bits 12-15 of either ACS or ACD contain a
number greater than 9, the results will be unpredictable.

Example

Assume that bits 12-15 of AC2 contain nine; bits 12-15
of AC3 contain seven; and the value of carry is zero.
After the instruction DAD 2,3 is executed, AC2 rem.ains
the same; bits 12-15 of AC3 contain six; and the value of
carry is one, indicating a decimal carry from this Decimal
Add. (Refer to Figure 10.1.)

Before After

AC2 1 0 10001000100010011001110 10001000100010011001 1
AC3 10 10001000100010001111110 100010001000100011101
Carry 0

DG·08798

Figure 10.1 Decimal addition

Instruction Dictionary 87,

Double Hex Shift Left
nHXL n,ac

o 2 3 4 5 6 7 6 9 10 11 12 13 14 15

Shifts the 32 bits contained in AC (the most significant
16 bits) and AC+ 1 (the least significant 16 bits) left
N + 1 hex digits. Bits shifted out are lost. Vacated bit
positions become zeros. If you specify AC as AC3, AC+ 1
is ACO. Carry remains unchanged.

NOTE: DGC assemblers compute N. You code n, which
is N+ 1. Code the exact number of hex digits you want
shifted. If n is equal to four, all of AC+ 1 shifts i!lto
AC. AC+ 1 fills with zeros.

Example

Operation

DHXL 1,0
Shift the 32·bit
number contained
in ACO (most sig'
nificant bits) and
AC 1 (least signifi·
cant bits) left one
hex digit.

Before

ACO = 0011608

AC1 = 0500108

88 Instruction Dictionary

After

ACO = 0234058

AC 1 = 0002008

Double Hex Shift Right
nHXR n,ac

o 2 3 4 5 6 8 9 10 11 12 13 14 15

Shifts the 32 bits contained in AC (the most-significant
16 bits) and AC+ 1 (the least-significant 16 bits) right
N + 1 hex digits. Bits shifted out are lost. Vacated bit
positions become zeros. If you specify AC as AC3, AC+ 1
is ACO. Carry remains unchanged.

NOTE: DGC assemblers compute N. You code n, which
is N + 1. Code the exact number of hex digits you want
shifted. If n is equal to four, all of AC shifts into
AC+ 1. AC+ 1 fills with zeros.

Example

Operation

DHXR2,O
Divide
234500001038 by
256 10, That's the
same as shifting it
right two hex dig·
its.

Before

ACO = 0011608

AC1 = 0500108

After

ACO = 0234058

AC 1 = 0002008

Data In A
OlAf!] ac,device

101 I lAIc 1010.1 IF DEVicE CODE I
o 2 3 4 5 6 7 6 9 10 15

Transfers data from the A buffer of an I/O device to an
accumulator.

The contents of the Ainput buffer in the specified device
are placed in the speeified AC. Sets the Busy and Done
flags according to the function specified by f
The format of the 'i'\C after the transfer is device,
dependent.

If the specified device does not exist, the AC will contain
177777 8 after the transfer.

Example

Operation Before After

DIAC 1.TTI AC1 = 0101016 AC1 = 0001126

Teletype

A input buffer 1126 1126
Done flag 18 0

Read Memory Fault Address
OlAf!] aC,ERCC

Places the sixteen low-order bits of the physical address
of the fault location into the specified accumulator. (The
previous contents of that accumulator are overwritten.)
The instruction sets the Done flag as specified by the flag
command.

The following shows the format of the contents of the
specified accumulator.
/r---------------------------------------~

I o
LOW·ORDER ADDRESS BITS
I.

15

NOTE: The physical address is meaningless unless it is
read after the ERCC facility requests an interrupt and
before a Start or IORST flag command sets the Done
flag to o. .

Instruction Dictionary 89

Read MAP Status
DIA aC,MAP

Reads the status of the current map.

Places the contents of the MAP status register in the
specified AC. The previous contents of the AC are
overwritten. The format of the information placed in the
specified AC is

NOTE: The fORST instruction will clear bits 0 through
5 and 13 through 15 of the MAP status register. fORST
also turns off the map.

90 Inst,uctionDictionary

Data In B Read Memory Fault Code
. ;

DIB/!} ac,device DIB/!} ac,ERCC

1-1-:-~-+I_l-+I_:..,11-3.,..A""iC_4-+-1-:-~-+I_::-+I-:-;..,11-8.,....,.F-:9-+-"":,0 ... i;.:..D.;.;.E.;..,iV ... 19+;,~~~""?':i;,~""E_"';".i"ii. ;>-lJ.; 1 ~.I 1 21 /~; 1 ~ 1 J,: 1 / 9 1 : 1 ~ 1 ~J ~ 1,~ 1 ~ 1

Transfers data from the B buffer of an I/O device to an
accumulator.

Places the contents of the B input buffer of the specified
device in the specified AC. Sets the Busy and Done flags
according to the function specified by f
The format of the AC after the transfer is device
dependent. If the specified device does not exist, the AC
contains 1777778 after the transfer.

Places a 6-bit error identification code in bits 0-5 of the
specified accumulator. The instruction first sets bits 6-11
of the accumulator to 0 and places the four high-order
bits of the physical address of the fault location in bits
12-15. Next, the instruction sets the Done flag as specified
by the flag command.

The following table shows the format of the contents of
the specified accumulator.

FAULT
o 5 8 11 12 15

Instructiori Dictionary 91

NOTE: The address is meaningless unless read after the
ERCC facility requests an interrupt and before a Start
or IORST flag command sets the Done flag to o.

92 Instruction Dictionary

Data In C
DIe!!] ac,device

I 0 I I I AIC I I 0 I I F DEVICE CODE 151
o 2 3 4 5 6 7 6 9 10

Transfers data from the C buffer of an I/O device to an
accumulator.

Places the contents of the C input buffer in the specified
device in the specified AC. Sets the Busy and Done flags
according to the function specified by f
The format of the AC after the transfer is device
dependent. If the specified device does not exist, the AC
contains 1777778 after the transfer.

Page Check
DIC aC,MAP

The number of the physical page which corresponds to
the logical page specified by the preceding DOC MAP
instruction is placed in bits 6-15 of the specified AC.
Places additional information about the correspondence
in bits 0-5. The previous contents of the AC are overwrit­
ten. The format of the information placed in the specified
AC is

PHYSICAL
o 3 4 5 8

NOTE: If all physical page bits including the write
protect bit are one, then the logical page is validity
protected.

CPU Status
DIS!!] ac,CPU·

Returns the status of the CPU status register and places
this data into the specified accumulator.

NOTE: DIS 0 CPU is equivalent to the SKP 0 CPU
instruction.

The information contained in the specified accumulator
is in the format:

IPFllONll IBR3pupIHLTloHIIROlpLI-ITRPlsURI M~M I-IOGI
o 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15

Instrudion Dictionary 93

Data In Status
DIS!!! ac,device

1011111 AIC 11111110101 DEVICE CODE I
o 2 3 4 5 8 7 8 9 10 15

Returns the status of the addressed device and places this
data into the specified accumulator.

The accumulator must be specified as 1,2, or 3. The DIS
instruction uses the same operation code as the SKP
instruction. DIS 0 CPU is equivalent to the SKP 0 CPU
instruction.

The information contained in the specified accumulator
is in the following format for I/O devices:

RESERVED FOR FUTURE USE

o 1 2 3

D Device is done if set to one.
B Device is busy if set to one.

15

NOTE: If the device does not exist. the contents of the
specified AC will be 0377778.

94 Instruction Dictionary

Unsigned Divide
DIV

I I 101 101 I I I I 10 101 1010 10 1 o 2 3 4 5 8 7 8 9 10 11 12 13 14 15

Divides the unsigned, 32-bit integer in ACO (the most­
significant 16 bits) and ACI (the least-significant 16
bits) by the unsigned, 16-bit number in AC2.

The quotient and remainder are both unsigned, 16-bit
numbers. The quotient occupies ACI, and the remainder
occupies ACO.

Sets carry to zero. Leaves AC2 unchanged.

NOTE: Before performing the divide. the. instruction
compares the number in ACO to the number in AC2.
(This is an unsigned compare.) If the number in ACO is
greater than or equal to that in AC2. an overflow results.
The carry bit becomes one. and the instruction
terminates. All operands remain unchanged.

Example

Operation Before After

DlV ACO = 0000008 ACO = 0000008
Divide 6 by 2. AC 1 = 0000068 ACI = 0000038

AC2 = 0000028 AC2 = 0000028
Carry = 0 Carry = 0

DlV ACO = 0377778 ACO = 0000008
Divide ACI = 0000018 AC 1 = 0777778
77776000018 AC2 = 0777778 AC2 = 0
by 0777778. Carry = 0 Carry = 0

DlV ACO = 1777768 ACO = 1777768
Divide ACI = 0000018 ACI = 0000018
37777400001 8 AC2 = 0777778 AC2 = 0777778
by 1777778 Carry = 0 Carry = 1
Overflow reo
suits.

DlV ACO = 0000008 ACO = 0000018
Divide 7 by 2. AC 1 = 0000078 ACI = 0000038
Get a remainder AC2 = 0000028 AC2 = 0000028
of 1. Carry = 0 Carry = 0

Signed Divide
DIVS

111110111111111111111010111010101
o 2 3 4 5 8 7 8 9 10 11 12 13 14 15

Divides the 32-bit, two's complement number in ACO
(the most-significant 16 bits) and in ACI (the least­
significant 16 bits) by the 16-bit, two's complement
number in AC2.

The quotient and remainder are both 16-bit, two's comple­
ment numbers. The quotient occupies AC1, and the
remainder occupies ACO. The rules of algebra determine
the quotient's sign. The remainder's sign is always the
same as the dividend's sign, except that a zero quotient or
a zero remainder is always positive.

Sets carry to zero. Leaves AC2 unchanged.

NOTE: If the quotient is too large to fit into ACI, an
overflow results. The carry bit becomes one, and the
instruction terminates. When this happens, the contents
of ACO and ACI are unpredictable.

Example

Operation Before After

DIVS ACO = 0000008 ACO = 0000008
Divide 6 by 2. AC 1 = 0000068 ACI = 0000038

AC2 = 0000028 AC2 = 0000028

DIVS ACO = 0377778 ACO = 0000008
Divide ACI = 0000018 AC 1 = 0777778
77776000018 AC2 = 0777778 AC2 = 0777778
by 0777778,

DIVS ACO = 0000008 ACO = 0000008
Divide 1 by ·1 ACI = 0000018 AC 1 = 1777778

AC2 = 1777778 AC2 = 1777778

DIVS ACO = 1777778 ACO = 1777778
Divide ·7 by ·2. AC 1 = 1777778 AC 1 = 0000038
Get a remainder AC2 = 1777768 AC2 = 1777768
of· 1.

Sign Extend And Divide
DIVX

111011111111111 ;11111010111010101
o 1 2 3 4 5 8 8 9 10 11 12 13 14 15

Extends the sign of one accumulator into a second
accumulator and performs a DIVS operation on the result.

Extends the sign of the number in ACI into ACO by
placing a copy of bit 0 of ACI in each bit of ACO. After
extending the sign, the instruction performs a DIVS
operation.

NOTE: If the quotient is too large to fit into ACI, an
overflow results. The processor sets carry to one and
terminates the instruction operation. The contents of
ACO and ACI are unpredictable.

Instruction Dictionary 95

Double Logical Shift
DLSH acs,acd

I, I A?s·1 A?D I 0 I, I 0 1'1' I 01 0 1 t J 0 lolql
o 1 2 3 4 5 6 7 8 9 10 11 12· 13 14 15

Shifts the 32-bit number in ACD (the most significant 16
bits) and in ACD+ 1 (the least significant 16 bits) either
left or right. AC3 + 1 is ACO.

The sign of the 8-bit, two's complement number in bits
8-15 of ACS determines the direction of the shift. If this
number is positive, the shift is to the left. If it is negative,
the shift is to the right. If the number is zero, there is no
shift. Bits 0-7 of ACS remain unchanged.

The magnitude of the 8-bit, two's complement number in
bits 8-15 of ACS determines the number of bits to be
shifted. Bits shifted out are lost. Vacated bit positions
become zeroes.

Carry remains unchanged. ACS also remains unchanged
unless, of course, A CS is A CD + 1.

NOTE: If the magnitude of the number in bits 8-/5 of
ACS is greater than 31 10, all bits of ACD and ACD+ 1
become zero. Carry and ACS remain unchanged.

Examples

Operation Before After

DLSH 0,1 ACO = 0000018 ACO = 0000018
Shift left one bit AC1 = 0123458 AC1 = 0247128

AC2 = 054321 8 AC2 = 1306426

DLSH 0,1 ACO = 0003776 ACO = 0003776
Shift right one AC1 = 0247128 AC1 = 0123458
bit AC2 = 1306428 AC2 = 054321 8

96 Instruction Dictionary

Data Out A
DOAffJ ac,device

I 0 I I I ,AIC I 0 I I 0 I F DEVICE CODE I
o 2 3 4 5 6 7 8 9 10 15

Transfers data from an accumulator to the A buffer of an
I/0 device.

Places the contents of the specified AC in the A output
buffer of the specified device. Sets the Busy and Done
flags according to the function specified by f The contents
of the specified AC remain unchanged.

Enable ERCC

DOA[fJ ac,ERCC

Sets the ERCC facility to function according to bits
13-15 of the specified accumulator. Next, the instruction
sets the Done flag and then the Interrupt Request flag, as
specified by the flag command. The instruction disregards
bits 0-12.

The following shows the format of the contents of the
specified accumulator.

I MODE I
o 12 13 15

Load MAP Status
DOA ac,MAP

Defines the parameters of a new map.

The contents of the specified AC are placed in the MAP
status register. The previous contents of the AC remain
unchanged.

The format of the specified AC is

RESERVED

2 5

. Instruction Dictionary 97

NOTE: If the DOA MAP instruction sets the User Enable
bit to 1. the interrupt system is inhibited. and the MAP
waits for an indirect reference or a return-type
instruction. Either event releases the interrupt system
and allows t he MAP to begin translating addresses (using
the user map specified by bits 0 and 13 of the MAP
status register).

Address translation resumes:

• after the first level of the next indirect reference; or
• after a POPB, POPJ, RTN, or RSTR instruction.

98 .Instruction Dictionary

CPU Acknowledge
DOAP ac,CPU

Clears the virtual console interrupts from the CPU status
register.

NOTE: If a Halt instruction is performed. the virtual
console clears the power fail interrupt. Never set bit 15.

Data Out B

DOB!!l aC,device

1011111 AIC 1110101 F DEVICE CODE I
o 2 3 4 6 6 7 8 9 10 15

Transfers data from an accumulator to the B buffer of an
I/O device.

Places the contents of the specified AC in the B output
buffer of the specified device. Sets the Busy and Done
flags according to the function specified by f The contents
of the specified AC remain unchanged.

Map Supervisor Page 31
DOB!f] aC,MAP

Specifies that mapping take place for a single page of an
unmapped address space. Mapping is always done for
locations 760008 through 777778 (logical page 31). This
is the only page which can be mapped when in unmapped
address space. You can use this instruction to access a
page of a user's memory space when in unmapped mode.
The MAP supervisor Page 31 instruction can only be
used with the MAP off.

Bits 6-15 of the specified AC are transferred to the MAP
feature. These bits specify a physical page number to
which logical page 31 will be mapped when in the
supervisor mode.

The contents of the specified AC remain unchanged. The
format of the specified AC is

o
RESERVED PHYSICAL

5 8

NOTE: If supervisor page 31 translation is altered while
instructions are being fetched through supervisor page
31, instructions will be fetched from the new translation
environment. IORST resets logical address translation
to physical address translation.

Data Out C

DOC!f] aC,device

I d I i 11 lAiC 1111 1,0 I F DEVICE CODE I
o 1 2 3 4 5 8 7 8 9 10 15

Transfers data from an accumulator to the C buffer of an
I/O device.

Places the contents of the specified AC in the C output
buffer of the specified device. Sets the Busy and Done
flags according to the function specified by f The contents
of the specified AC remain unchanged.

Instruction Dictionary 99

Initiate Page Check
DOC aC,MAP

The contents of the specified AC are transferred to the
MAP feature for later use by the DIC MAP or LMP
instruction. The contents of the specified AC remam
unchanged. The format of the specified AC is

I I LOGICAL MAP RESERVED

15 o 5 6 6 9

100 Instruction Dictionary

Decimal Subtract
DSB acs,acd

Performs decimal subtraction on 4-bit binary coded
decimal (BCD) numbers and uses carry as a decimal
borrow.

Subtracts the unsigned decimal digit contained in ACS
bits 12-15 from the unsigned decimal digit contained in
ACD bits 12-15. Subtracts the complement of carry
from this result. Places the decimal units' position of the
final result in ACD bits 12-15 and the complement of
the decimal borrow in carry. In other words, if the final
result is negative, the instruction indicates a borrow by
setting carry to zero. If the final result is positive, the
instruction indicates no borrow by setting carry to one.
The contents of ACS and bits 0-11 of ACD remain
unchanged.

Example

Assume that bits 12-15 of AC2 contain 9; bits 12-15 of
AC3 contain 7; and carry contains zero. After the
instruction DSB 3,2 is executed, AC3 remains the same;
bits 12-15 of AC2 contain one; and carry is set to one,
indicating no borrow from the DSB instruction. (See
Figure 10.2)

Before After

AC2 10 10001000100010011001110 100010001000100010011

AC3 1 0 10001000100010001111110 10001000100010001111 1

Carry 0

OG-06799

Figure 10.2 Decimal subtraction

Dispatch JJo

DSPA ~\

o 234 5

16 17

IIN~EX I 0 I 0 11 11 11 I 01 0 I 0 I
6 7 8 9 10 11 12 13 14 15

DISPLACEMENT
31

Conditionally transfers control to a location whose address
is selected from a table in memory. Figure 10.3 illustrates
the operation of this instruction.

Computes the effective address E. This is the address of
H, the high limit, and L, the low limit. Each is a two's
complement number. H is in location E-], and L is in
location E- 2. The last entry in the dispatch table is in
location E + H - L. Figure 10.4 illustrates the dispatch
table.

Compares the two's complement number in the specified
accumulator to the limit values. If the number is less than
L or greater than H, operation continues with the word
immediately following the DSPA instruction. If the
number is greater than L and less than or equal to H, the
processor fetches the word at location E - L + number.

If the fetched word is 1777778, operation continues with
the word immediately following the DSPA instruction.
Otherwise, the fetched word is the intermediate address
in an effective address calculation.

After resolving the indirection, if any, the instruction
places the effective ad~ress in the program counter.
Operation continues with the word addressed by the
updated program counter.

L

H

E (start of table) Jump address

E+H-L
(last word)

Figure 10.3 DSPA operation

Jump address

DG-09007

Calculate
effective address

Get word at
(E-L) +
number in AC

(E-L) + number

Yes

Yes

Yes

in AC = intermediate

Go to next
instruction
following DSPA
instruction

address

Fetch intermediate
address

Figure 10.4 Dispatch table

DG-08279

Instruction Dictionary 101

Decrement And Skip If Zero
DSZ {@}displacement{.index}

DISPLACEMENT

o 1 2 345 8 7 ~ 15

Decrements the addressed word, then skips if the decre­
mented value is zero.

Computes the effective address. Decrements by one the
addressed word and writes the result back into that
location. If the updated value of the location is zero, the
instruction skips the next sequential word. The CPU
controls the memory bus until the instruction is completed.

102 Instruction Dictionary

Extended Decrement And Skip If Zero
EDSZ {@}displacement{.index}."',

11 1 0 1 0 11 11 11 IIN~EX 1 0 1 0 11 11 11 1 ~ 1 0 1 0 1
o 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15

1 @ 1 DISPLACEMENT

16 17 31

Decrements the addressed word, then skips if the decre­
mented value is zero.

Computes the effective address. Decrements by one the
contents of the addressed word and writes the result back
into that location. If the updated value of the word is
zero, the instruction skips the next sequential word. The
CPU controls the memory bus until the instruction is
completed.

Extended Incr,ement And Skip If Zero
EISZ [@]displacement[,index]

11 1 0 I 0 11 1 0 11 IIN~EX I 0 I 0 11 11 11 1 0 1 0 I 0 I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DISPLACEMENT

16 17 31

Increments the addressed word, then skips if the incre­
mented value is zero.

Computes the effective address. Increments by one the
contents of the location specified by the effective address,
and writes the new value back into memory at the same
address. If the updated value of the location is zero, the
instruction skips the next sequential word. The CPU
controls the memory bus until the instruction is completed.

Extended Jump
EJMP [@]displacement[,index]

11 1 0 1 0 1 0 1 0 11 IIN~EX 1 0 1 0 11 11 11 1 0 I 0 I 0 I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
DISPLACEMENT

16 17 31

Computes the effective address and places it in the
program counter. Operation continues with the word
addressed by the updated program counter.

Example

Instruction: EJMP address
Next Sequential Instruction

Address: Next Executed Instruction

After execution of the EJMP instruction, the assembler
replaces address with a IS-bit displacement. The program
continues by executing the instruction contained at ad­
dress.

Instruction Dictionary 103.

Extended Jump To Subroutine
EJSR [@}displacement[.index}

11 I 0 I 0 I 0 11 11 IIN~EX I 0 I 0 11 11 11 I 0 I 0 I 0 I
o 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15

I @ I DISPLACEMENT I
18 17 31

Increments and stores the value of the program counter
in AC3, then places a new address in the program counter.

Computes the effective address. Places the address of the
next sequential word (the word following the JSR instruc­
tion) in AC3. Places the effective address in the program
counter. Operation continues with the word addressed by
the updated program counter.

NOTE: The instruction computes the effective address
before loading AC3 with the incremented program
counter.

Example

Instruction:

SUBR:

EJSRSUBR
Next Instruction

First SUBR (subroutine) Instruction

After execution of the EJSR instruction, the program
continues operation with the first SUBR instruction and
AC3 contains the address of the next instruction after the
EJSR operation.

104 Instruction Dictionary

Extended Load Accumulator
ELDA ac.[@}displacement[.index}

11 I 0 111 A~ 11 IIN~EX I 0 I 0 11 11 11 I 0 I 0 I 0 I
o 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15

I @ I DISPLACEMENT 31 I
18 17

Moves a copy of the contents of a memory word into the
specified accumulator.

Calculates the effective address. Places the contents of
the addressed location in the specified accumulator. The
addressed location remains unchanged.

Extended Load Byte
ELDB ac,displ,pcement [,index}

11 0 10 1 AIC 1111N~Exloll111 I 10 10 10 1
o 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15

1
18

117 DISPLACEMENT 31 I
Copies a byte from memory into an accumulator.

Forms a byte pointer from the displacement in the
following way: shifts the 16-bit number contained in the
displacement field to the right one bit, ,producing a 15-bit
address and a I-bit byte indicator. Uses the value of the
index bits to determine an offset value. Adds the offset
value to the 15-bit address produced from the displace­
ment to give a memory address. The byte indicator
designates which byte of the addressed word will be loaded
into bits 8-15 of the specified accumulator. The instruc­
tion sets bits 0-7 of the specified accumulator to zero.

The instruction overwrites the previous contents of the
specified accumulator, but it does not alter either the
index value or the displacement.

The argument index selects the source of the index value.
It may have values in the range of 0-3. The meaning of
each value is shown in the following table.

Example

Place the low byte of memory location 000740 into ACI.
Instruction: INST: ELDB I,@BYTAB

BYTAB: 001701

000740: 016753

Before

AC1= 000000

After

ACI = 000353

Load Effective Address
ELEF ac,[@}displacement[,index}

DISPLACEMENT

18 17 31

Places an effective address in an accumulator.

Computes the effective address and places it in bits 1-15
of the specified accumulator. Sets bit 0 ofthe accumulator
to zero. The previous contents of the accumulator are
overwritten.

Example
ELEF 0, TABLE ; The logical address of TABLE

; is placed in ACO.

ELEF 1,·55,3 ; Subtracts 0000558 from
; the unsigned integer in AC3 and
; places the result in AC 1.

ELEF 0, +0 ; Places the logical address of this
;ELEF
; instruction in ACO.

Instruction Dictionary 105

Extended Store Accumulator
ESTA ac.{@}displacement[,index}

DISPLACEMENT

16 17. 31

Stores the contents of an accumulator into a memory
location.

Computes the effective address. Places the contents of
the specified accumulator in the addressed location. The
contents of the specified accumulator remain unchanged.

Example
Operation

ESTA 1, 1123

Before After

AC1 = 010101 AC1 = 010101
Store the contents Location 001123 Location 001123010101
of AC 1 into memo- = XXX XXX
ry location
001123.

106 . Instruction Dictionary

Extended Store Byte
ESTB ac,displacement[,index}

DISPLACEMENT

31

Copies into memory the byte contained in the right half
of an accumulator.

Forms a byte pointer from the displacement as follows:
shifts the I6-bit number contained in the displacement
field to the right one bit, producing a I5-bit address and
a I-bit byte indicator. Uses the value of the index bits to
determine an offset value. Adds the offset value to the
I5-bit address produced from the displacement field to
give a memory address. The byte indicator determines
which byte of the addressed location will receive bits
8-15 of the specified accumulator.

The argument index selects the source of the index value.
It may have values in the range of 0-3; the meaning of
each value is shown in the table.

Absolute Value
FAD Jpac

Sets the sign bit of FPAC to zero. Leaves bits 1-63 of
FPAC unchanged. Updates the Z and N flags in the
FPSR to reflect the new contents of FPAC.

Add Double (FPAC to FPAC)
FAD Jacs,facd

11 1 FA~S 1 FA~D 1 0 1 0 10 1 0 11 11 1 0 11 1 0 1 0 1 0 1
o 1 2 3 4 5 6 7 6 9 10 11 12 13 14 15

Adds the floating-point number in FACS to the floating­
point number in FACD and places the normalized result
in FACD. Overwrites the previous contents of FACD,
leaves the contents of FACS unchanged, and updates the
Z and N flags in the FPSR to reflect the new contents of
FACD.

Floating-point addition consists of an exponent compari­
son and a mantissa addition. The exponents of the two
numbers are compared, and the mantissa of the number
with the smaller exponent is shifted right until its exponent
equals the larger number's exponent. This mantissa
alignment is accomplished by taking the absolute value
of the difference between the two exponents and shifting
the mantissa right that number of hex digits. Hex shifting
is repeated until both exponents are equal or all significant
digits are shifted out of the mantissa. If all significant
digits are shifted out of the mantissa, the operation is
equivalent to adding the number' with the larger exponent
to zero. This requires a shift of at least 14 hex digits.

After alignment, the mantissas are added together. The
result of this addition is termed the intermediate result.
One guard digit is provided for the intermediate result,
which is used if normalization is required. The sign of the
intermediate result is determined from the signs of the
two operands by the rules of algebra. If the mantissa
addition produces a carry out of the most significant bit,
the mantissa in the intermediate result is shifted right
one hex digit and the exponent is incremented by one. If
this shift produces an exponent overflow, the OVF bit is
set in the FPSR, and the number in FACD is correct,
except that the exponent is 128 too small.

If there is no mantissa overflow, the mantissa of the
intermediate result is examined for leading hex zeros. If
the mantissa is found to be all zeros, a true zero is placed
in the F ACD and the instruction terminates.

If the mantissa is nonzero, the intermediate result is
normalized, and then placed in the FACD. If the normal­
ization results in an exponent underflow, the UNF bit is
set in the FPSR and the instruction is terminated. The
number in the FACD is correct except that the exponent
is 128 too large.

Instruction Dictionary 107

Add Double (Memory to FPAC)
FAMD fpac,{@}displacement{,index}

11 IIN~EX I FP,AC I 0 11 I 0 I 0 11 11 I 0 11 I 0 I 0 I 0 I
o 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15

I @ I DISPLACEMENT I
o 15

Adds a double-precision, floating-point number in memo­
ry to the contents of a floating-point accumulator. The
normalized result is located in FPAC.

Computes the effective address which addresses a 4-word
(double-precision) operand in memory. The floating-point
number addressed is added to the floating-point number
in FPAC with the normalized, double-precision result
placed in FPAC. The previous contents of FPAC are
overwritten, the contents of the addressed memory loca­
tion remain unchanged, and the Z and N flags of the
FPSR are updated to reflect the new contents of FPAC.

Addition is accomplished as described in FAD.

108 Instruction Dictionary

Add Single (Memory to FPAC)
FAMS fpac,{@}displacement{,index}

11 IIN~E~ IFP~C I 0 11 I 0 I 0 I 0 11 I 0 11 I 0 I 0 I 0 I
o 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15

I @ I DISPLACEMENT I
o 15

Adds a single-precision, floating-point number from mem­
ory to the contents of a floating-point accumulator.

Computes the effective address which addresses a 2-word
(single-precision) operand in memory. The floating-point
number addressed is added to the floating-point number
in FPAC with the normalized, single-precision result
placed in FPAC. The previous contents of FPAC are
overwritten, the contents of the addressed memory loca­
tion remain unchanged, and the Z and N flags of the
FPSR are updated to reflect the new contents of FPAC.

Single-precision addition is accomplished as described in
FAD with the exception that the mantissa of the smaller
number may be shifted a maximum of six hex digits
before the number is considered as zero.

NOTE: Only 32 bits of the FPAC are used with one
guard digit during single-precision addition. One guard
digit is appended to each number involved in the
operation. In the final result, bits 32-63 are set to zero.

Add Single (FPAC to FPAC)
FAS Jacs/acd

11 I FAles I FA~D I 0 I 0 I 0 I 0 I 0 11 I 01 1 I 0 I 0 I 0 I
o 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15

Adds the floating-point ;number contained in one FPAC
to the contents of another FPAC.

Adds the floating-point number in F ACS to the floating­
point number in F ACD and places the normalized,
single-precision result in F ACD, overwriting the previous
contents of F ACD. The Z and N flags of the FPSR are
updated to reflect the new contents of F ACD; the contents
of FACS remain unchanged.

Single-precision addition is accomplished as described in
FAD with the exception that the mantissa of the smaller
number may be shifted a maximum of six hex digits
before the number is considered as zero.

NOTE: Only 32 bits of the FPAC are used with one
guard digit during single-precision addition. One guard
digit is appended to each number involved in the
operation. In the final result. bits 32-63 are set to zero.

Clear Errors
FCLE

111110111011111011111110111010101
o 2 3 4 5 8 7 8 9 10 11 12 13 14 15

Sets bits 0-4 of the FPSR to zero.

Instruction Dictionary 109

Compare Floating Point
FCMP Jacs/acd

11 1 FA~S 1 FA~O 11 11 11 1 0 1 0 11 1 0 11 1 0 1 0 1 0 1
o 1 2 3 4 5 6 8 9 10 11 12 13 14 15

Compares two floating-point numbers and sets the Z and
N flags in the FPSR accordingly.

Algebraically compares the floating-point numbers in
FACS and F ACD to each other and updates the Z and N
flags in the FPSR to reflect the result. Leaves the contents
of FACS and FACD unchanged. The results of the
compare and the corresponding flag settings are shown in
the table below.

NOTE: Unnormalized operands give unspecified results.

110 Instruction Dictionary

Divide Double (FPAC by FPAC)
FDD Jacs/acd

11 1 FA,CS 1 FA,CO 1 0 1 0 11 11 11 11 1 0 11 1 0 1 0 1 0 1
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Divides the floating-point number in FACD by the
floating-point number in F ACS and places the normalized
result in FACD.

Divides the floating-point number in FACD by the
floating-point number in FACS and places the normal­
ized, double-precision result in FACD. The previous
contents of FACD are overwritten, the contents of FACS
remain unchanged, and the Z and N flags of the FPSR
are updated to reflect the new contents of FACD.

If the mantissa in FACS is zero, the DVZ bit (divide by
zero) is set in the FPSR and the instruction is terminated.
The number in FACD remains unchanged.

If the mantissa in F ACS is nonzero, the two mantissas
are compared. If the mantissa of the number in FACD is
greater than or equal to the mantissa of the number in
F ACS, the mantissa of the number in F ACD is shifted
right one hex digit and the exponent of the number in
F ACD is increased by one.

The mantissa in FACD is then divided by the mantissa in
FACS and the quotient is the mantissa of the intermediate
result. The sign of the intermediate result is determined
from the sign of the two operands by the rules of algebra.

The exponent in F ACS is subtracted from the exponent
in FACD and 64 is added to this result (the addition of
64 maintains the excess 64 notation). The result of the
exponent manipulation becomes the exponent of the
intermediate result. The result is normalized and placed
in FACD. If the exponent processing produces either
overflow or underflow, the corresponding bit in the FPSR
is set (OVF or UNF, respectively); the exponent in FACD
is correct, except that the exponent is 128 too small for
overflow and 128 too large for underflow.

Divide Double (FPAC by
Memory)
FDMD fpac,{@}displacement{,index}

11 IIN~EX I FP~C I 0 11 11 11 11 11 I 0 11 I 0 I 0 I 0 I
o 1 2 3 4 5 e 7 e 9 10 11 12 13 14 15

I @ I DISPLACEMENT I
o 15

Divides the floating point number in FPAC by a double­
precision (64-bit), floating-point number in memory and
places the normalized result in FPAC.

Divides the floating-point number in FPAC by the 4-word
(double-precision) floating-point number addressed by
the effective address and places the normalized, double­
precision result in FPAC. The previous contents of FPAC
are overwritten, the contents of memory remain un­
changed, and the Z and N flags of the FPSR are updated
to reflect the new contents of FPAC.

Division using the FDMD instruction is similar to division
using the FDD instruction with the exception that refer­
ences to FACS should be the effective address.

Divide Single (FPAC by
Memory)
FDMS fpac,{@}rlisplacement{,index}

DISPLACEMENT
o

Divides the floating-point number in FPAC by a single­
precision (32-bit), floating-point number in memory and
places the normalized result in FPAC.

Divides the floating-point number in FPAC by the 2-word
(single-precision) floating-point number addressed by the
effective address and places the normalized, single­
precision result in FPAC. The previous contents of FPAC
are overwritten, and the contents of memory remain
unchanged. The Z and N flags of the FPSR are updated
to reflect the new contents of FPAC.

Division using the FDMS instruction is similar to division
using the FDD instruction with the exception that refer­
ences to F ACS should be the effective address.

NOTE: The instruction initially sets bits 32--63 of the
FP AC to zero. In the final result. bits 32--63 are set to
zero.

Instruction Dictionary 111

Divide Single (FPAC by FPAC)
FDS jacsJacd

11 I FA,CS I FA,CO I 0 I 0 11 11 I 011 I 0 11 I 0 I 0 10 I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Divides the floating-point number in F ACD by the
floating-point number in F ACS and places the normal­
ized, single-precision result in F ACD.

The previous contents of FACD are overwritten, and the
contents of F ACS remain unchanged. The Z and N flags
of the FPSR are updated to reflect the new contents of
FACD.

Division with the FDS instruction is similar to division
with the FDD instruction.

NOTE: Only bits 0 through 31 of the FPAC are used.

112 Instruction Dictionary

Load Exponent
FEXP jpac

Places bits 1-7 of ACO in bits 1-7 of the specified FPAC.
Ignores bits 0 and 8-15 of ACO. Bits 0 and 8-63 of
FPAC and the entire contents of ACO are unchanged.
Leaves bits 1-7 of FPAC unchanged if FPAC contains
true zero. The Z and the N flags of the FPSR are updated
to reflect the contents of the FPAC.

NOTE: The exponent contained in bits 1-7 of ACO is
assumed to be in Excess 64 representation.

Fix To AC
FlF AS ac,fpac

o 1 2 3 4 5 6 8 9 10 11 12 13 14 15

Converts the integer portion of the floating-point number
contained in the specified FPAC to a signed two's
complement integer and places the result in an accumula­
tor.

Forms the absolute value of the integer portion of the
floating-point number in FPAC. Extracts the 15 least­
significant bits from this value and, if the number in
FPAC is negative, forms the two's complement of the
integer. Then places the result in the specified accumula­
tor, sets the Z and N flags in the floating-point status
register to 7~nd leaves the contents 0t FPAC un-
h d:;----";jO'-- i! g.1J Q ,. ",sa-+- 1",- ",,"00) ~s~s

c .. ange . <r _ 31..J-L<

/If'the number in FPAC is less than -~or greater
than + 32,767, this instruction sets the MOF flag in the
floating-point status register to. one.

NOTlE: If the lower 15 bits of the integer formed from
the number in FPAC are all 0, the sign bit of the result
will be zero regardless of the sign of the original number.

Fix To Memory
FFMD !pac.[@]displacement[,index]

11 1 INDEX 1 FPAC 11 1 0 11 11 11 11 1 0 11 1 0 1 0 1 0 1
o 1 I 2 3 I 4 5 6 8 9 10 11 12 13 14 15

1 @ 1 DISPLACEMENT 1

o 15

Converts the integer portion of a floating-point number
to double-precision integer format and stores the result in
two memory locations.

Forms the absolute value of the integer portion of the
floating-point number in FPAC. Extracts the 31 least- IAlslh >.

significant bits from this value and, if the number in
FPAC is negative, forms the two's complement of the
integer. Then places the result into the locations addressed
by E, sets the Z and N flags in the floating-point status
register to 0 and leaves the contents of FPAC unchanged.,.

, - C} If;t) I/~ 3 I (j L{ ~
If the number in FPAC is less than -:-2147,483,64Tor
greater than +2,147,483,647, this instruction sets the
MOF flag in the floating-point status register to one.

NOTE: If the lower 31 bits of the integer formed the
number in FPAC are all 0, the sign bit of the result will
be zero.

Instruction Dictionary 113

Halve
FHLV jpac

11 11 11 1 FP,AC 11 11 1 0 1 0 11 11 1 0 11 1 0 1 0 1 0 1
o 1 2 3 4 6 8 7 8 9 10 11 12 13 14 16

Divides the floating-point number in FPAC by 2.

Shifts the mantissa contained in FPAC right one bit
position, fills the vacated bit position with a zero, and
places the bit shifted out in the guard digit. Normalizes
the number and places the result in FPAC. Sets the UNF
flag in the FPSR to one if the normalization process
causes an exponent underflow. The number in FPAC is
then correct, except that the exponent is 128 too large.
Updates the Z and N flags in the FPSR to reflect the new
contents of FPAC.

114 Instruction Dictionary

Integerize
FINT jpac

11 11 1 0 1 FP~C 11 11 1 0 1 0 11 11 1 0 11 1 0 1 0 1 0 1
o 1 2 3 4 6 8 7 8 9 10 11 12 13 14 16

Zeros the fractional portion (if any) of the number
contained in the specified FPAC, and then normalizes
the number. The instruction updates the Z and N flags in
the FPSR to reflect the new contents of the specified
FPAC.

NOTE: If the absolute value of the number contained in
the specified FPAC is less than one, the specified FPAC
is set to true zero.

Float From AC
FLAS ac,fpac

Converts a two's complement number to floating-point
format.

Converts the signed two's complement number contained
in the specified accumulator to a single-precision floating­
point number, places the result in the specified FPAC,
and sets the 32 least significant bits of the FPAC to zero.
Leaves the contents of the specified accumulator un­
changed and overwrites the previous contents of the
FPAC. Updates the Z and N flags in the FPSR to reflect
the new contents of FPAC.

The range of numbers that can be converted is - 32,768
to +32,767.

Load Floating-Point Double
FLDD Jpac,f@}displacement[,index}

11 IIN~EX 1 FP,AC 11 1 0 1 0 1 0 11 11 1 0 11 1 0 1 0 1 0 1
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DISPLACEMENT

o 15

Moves four words out of memory into a specified FPAC.

Computes the effective address and places the double­
precision floating-point number at that address in FPAC.
Overwrites the previous contents of FPAC.

b +­
NOTE: The data moved are not normalized ertd the Z
and N bits of !he FPSR are Trot" modified.

Instruction Dictionary 115

Load Floating-Point Single
FLDS Jpac,[@}displacement[,index}

11 IIN~EX I FP,AC 11 I 0 I 0 I 0 [011 I 0 11 1,0 I 01 0 I
o 1 2 3 4 5 e 7 8 9 10 11 12 13 14 15

I @ I DISPLACEMENT I
o 15

Moves two words out of memory into a specified FPAC.

Computes the effective address and places the single­
precision, floating-point number at that address in FPAC.
Overwrites the previous contents of FPAC. The 32 least
significant bits of FPAC are set to zero. b",-~

NOTE: The data moved is not normalize4.-Jmtfthe Z and
N bits of the FPSR are'1fflt-modijied.

116 Instruction Dictionary

Float From Memory
FLMD Jpac,f@}displacement[,index}

11 IIN~EX I FP~C I j I 0 11 I 0 11 11 I 0 11 I 0 I 0 I 0 I
o 1 2 3 4 5 6 7 B 9 10 11 12 13 14 15

I @ I DISPLACEMENT I
o 15

Converts the contents of two memory locations to floating­
point format and places the result in a specified FPAC.

Computes the effective address, converts the 32-bit,
signed, two's complement number addressed to a double­
precision floating-point number, and places the result in
the specified FPAC. Overwrites the previous contents of
FPAC, and updates the Z and N flags in the FPSR to
reflect the new contents of the FPAC.

The range of numbers that can be converted is
-2,147,483,648 to +2,147,483,647.

Load IFloating-Point Status
FLST [@jdisplacement[,indexj

11 I 0 11 IIN~EX 11 11 I 0 11 11 11 I 0 11 I 0 I ~ I 0 I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

. DISPLACEMENT
o 15

Moves the contents of two specified memory locations to
the FPSR.

Computes the effective address, places the addressed
32-bit operand in the FPSR, and sets the condition codes
to the values of the loaded bits.

If the FLST instruction sets bits 0 to 4 of the FPSR to
one, then the address of the FLST instruction is loaded
into the FPAC.- F'?S~ 's Pc. /Jo- ~lIn~cc:c:"tD'~c!\

/l> » 14 6~ .. ?tIHMI
For more information on the FPSR, refer to Chapter 4,
"Floating-Point Instructions" under Floating-Point Sta­
tus Register.

NOTE: If bits 0 and 5 of the FPSR are set to one, a
floating-point fault condition will initiate a
floating-point trap.

Multiply Double
(FPAC by FPAC)
FMIJ facsJacd

11 I FAICS I FA~D I 0 I 0 11 I 0 11 11 I 0 11 I 0 I 0 I 0 I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Multiplies a floating-point number by a floating-point
number.

Multiplies the double-precision floating-point number in
F ACD by the double-precision floating-point number in
F ACS. Places the normalized, double-precision result in
FACD. Updates the Z and N flags ofthe FPSR to reflect
the new contents of F ACD. The contents of F ACS remain
unchanged.

The mantissas of the two numbers are multiplied together
to give the mantissa of the intermediate result. If normal­
ization is required, one guard digit is provided for the
intermediate result.

The exponents of the two operands are added together
and 64 is subtracted (the subtraction of 64 maintains the
Excess 64 notation).

The result of the exponent manipulation becomes the
exponent of the intermediate result. The sign of the
intermediate result is determined from the sign of the two
operands by the rules of algebra.

If the exponent processing produces either overflow or
underflow, the result is held until normalization. If
normalization does not correct this condition, the corre­
sponding flag (OVF or UNF) in the FPSR is set to one.
The number in F ACD is correct except that the exponent
is 128 too small for exponent overflow and 128 too large
for exponent underflow.

Instruction Dictionary 117

Multiply Double
(FPAC by Memory)
FMMD Jpac.[@]displacement[,index]

11 IIN~EX I FP~C I 0 11 11 I 0 11 11 I 0 11 I 0 I 0 I 0 I
o 1 2 3 4 5 e 7 e 9 10 11 12 13 14 15

DISPLACEMENT

o

Multiplies a floating-point number in FPAC by a double­
precision, floating-point number in memory.

Multiplies the floating-point number in FPAC by the
double-precision, floating-point number in the location
specified by the effective address and places the normal­
ized, double-precision result in FPAC. The previous
contents of FPAC are overwritten and the contents of the
effective address are unchanged. The Z and N flags of
the FPSR are set to reflect the new contents of FPAC.

Multiplication using the FMMD instruction follows the
format for multiplication using the FMD instruction.

118 Instruction Dictionary

Multiply Single
(FPAC by Memory)
FMMS Jpac,[@]displacement[,index]

DISPLACEMENT

o

Multiplies a floating-point number in FPAC by a, single­
precision, floating-point number in memory.

Multiplies the single-precision floating-point number in
FPAC by the single-precision, floating-point number in
the location specified by the effective address and places
the noqnalized, single-precision result in FPAC. The
previous contents of FPAC are overwritten and the
contents of the effective address are unchanged. The Z
and N flags of the FPSR are set to reflect the new
contents of FPAC.

Multiplication using the FMMS instruction follows the
format for multiplication using the FMD instruction.

NOTE: The instruction initially sets bits 32-63 of the
FPAC to zero. In the final result, bits 32-63 are set to
zero.

Move Floating-Point
FMOV faes/aed

11 I FA~S I FA~D 11 11 11 I 0 I
o 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15

Moves the contents of one FPAC to another FPAC.

Places the contents of F ACS in F ACD and overwrites
the previous contents of FACD. The contents of FACS
are unchanged. The Z and N flags in the FPSR are set to
reflect the new contents of F ACD.

Multiply Single (FPAC by FPAC)
FMS faes/aed

11 I ~AiCS I FA~D I 0 I 0 11 I 0 I 0 11 I 0 11 I 0 I 0 I 0 I
o 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15

Multiplies the single-precision floating-point number in
F ACD by the single-precision floating-point number in
F ACS and places the normalized, single-precision result
in FACD.

The Z and N flags of the FPSR are updated to reflect the
new contents of FACD; the contents of FACS remain
unchanged.

Multiplication using the FMS instruction follows the
format for multiplication using the FMD instruction.

NOTE: The instruction initially sets bits 32-63 of the
FP AC to zero. In the final result, bits 32-63 are set to
zero.

Instruction Dictionary 119

Negate
FNEG jpac

Inverts the sign bit of FPAC. Bits 1-63 of FPAC remain
unchanged. Updates the Z and N flags in the FPSR to
reflect the new contents of FPAC. If FPAC contains pure
zero, the sign bit remains unchanged.

120 Instruction Dictionary

Normalize
FNOM jpac

11 1 0 1 0 1 FP~C 11 11 1 0 1 0 1 0 11 1 0 11 1 0 1 0 1 0 1
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16

Normalizes a floating-point number.

Normalizes the floating-point number contained in
FPAC. If an exponent underflow occurs, the UNF flag in
the FPSR is set. This indicates that the exponent in
FPAC is 128 too large. The Z and N flags of the FPSR
are set to reflect the new contents of FPAC.

NOTE: If all the mantissa bits of the number in FP AC
are zero, then the sign and exponent bits are set to zero
(pure zero).

The FNOM instruction is the only instruction that will
accept impure zero input (zero mantissa with nonzero
exponent or sign).

No Skip
FNS

11 I 0 I 0 I 0 I 0 11 11 I 0 11 I 0 11 I 0 1 1-1 0 I 0 I 0 I
o 1 2 3 4 6 8 7 8 9 10 11 12 13 14 15

The next sequential word is executed.

Pop Floating-Point State
FPOP

I I I 1 0 1 I I 1 0 1 I I 1 0 1 1 0 1 0 1 0 1 o 2 3 4 5 8 7 8 9 10 11 12 13 14 16

Pops an 18-word floating-point return block off the user
stack and alters the state of the floating-point unit. The
words popped and their destinations are shown in Figure
10.5.

NOTE: These instructions are interruptible. Because the
FACD, stack pointer, and program counter are not
updated until the completion of these instructions, any
interrupt service routines that return control to the
interrupted program via the program counter stored in
location 0 will correctly restart these instructions.

Stack -pointe
after FPOP

r L
----. r--

FPS

FPP

R {

cl

--
Bits 0-15

Bits 16-31

r-- --
?

---- -t>~ -r

Increasing

addresses

1

FPACO

FPAC1

FPAC2

FPAC3

{
{
{

Stack pointer
before FPOP

----.

--------~.
--------1--"
--------- ~"

I.;

I----------~"
----------"'.
r------- - k

I.;

--------;
--______ k

1--- - - ---I-"
I.;

-------",.
------- ~.

------- ~.

- - - ~ -

Figure 10.5 Words popped off user stack

OG·00803

Instruction Dictionary 121

Push Floating-Point State
FPSH

1111111010111110111111101110101~1
o 2 3 4 5 6 7 6 9 10 11 12 13 14' 15

Pushes an 18-word floating-point return block onto the
user stack, leaving the contents of the floating-point
accumulators and the FPSR unchanged. The format of
the 18 words pushed is shown in Figure 10.6.

Stack pointer _.J~Ac"""' ___ _
before FPSH ~ r::::... ---.: --"JIll

FPSR { ~;"""-B-itS-O---15--n

FPPC { " Bits 16-31 ./

~ /...-::~

'OO,",,'og "ACO {

addresses . {

1"'"
FPAC2 f

l

------- ~~ _______ 1.'"
_______ l.'"

1-=.....:---- '"
f-------I.-~

f-------'
I

_______ 1.'"

------- '"

......

"AC'{ ______ ~
Stack pointer ~ ~

-------,'"

after FPSH --____,

Figure 10.6 Format of 18-word return block

122 Instruction Dictionary

t--

OG·00604

Read High Word
FRH jpac

Places the 16 most significant bits of FPAC in ACO and
overwrites the previous contents of ACO. This does not
change the contents of FPAC or the Z and N flags in the
FPSR.

Skip Always
FSA

111010101111111011101110111010101
o 1 2 3 4 5 6 7 6 9 10 11 12 13 14 15

Skip the next sequential word.

Scale
FSCAL jpac

11 I 0 I 0 I FP~C 11 11 I 0 I 0 11 11 I 0 11 I 0 I 0 I 0 I
o 1 2 3 4 5 6 7 6 9 10 11 12 13 14 15

Shifts the mantissa of a floating-point number and
replaces its exponent.

Shifts the mantissa of the floating-point number in FPAC
either right or left, depending upon the contents of bits
1-7 of ACO. The contents of ACO remain unchanged.

Treats bits 1-7 of ACO as an exponent in excess 64
representation. Computes the difference between this
exponent and the exponent in FPAC by subtracting the
exponent in FPAC from the number contained in ACO
(bits 1-7).

• If the difference is zero, or the contents of FPAC are
pure zero, the instruction stops.

e If the difference is positive, the instruction shifts the
mantissa contained in FPAC right that number of hex
digits.

• If the difference is negative, tl)e instruction shifts the
mantissa contained in FPAC left that number of hex
digits. The MOF flag in the FPSR is always set if the
difference is negative.

Bits shifted out of either end of the mantissa are
overwritten. If the entire mantissa is shifted out of FPAC,
the instruction sets FPAC to pure zero.

After this shift, the contents of bits 1-7 of ACO replace
the exponent contained in FPAC. If FPAC has previously
been set to pure zero, the contents of FPAC are not
replaced.

The instruction sets the Z and N flags of the FPSR to
reflect the new contents of FPAC.

Instruction Dictionary 123

Subtract Double
(FPAC from FPAC)
FSD

11 I FA,CS I FA~D I 0 I 0 I 0 11 11 11 I 0 11 I 0 I 0 I 0 I
o 1 2 3 4 5 6 7 6 9 10 11 12 13 14 15

Subtracts the double-precision floating-point number in
FACS from the double-precision floating-point number
in FACD and places the normalized result in the FACD.
Overwrites the previous contents of FACD and leaves the
contents of FACS unchanged. Updates the Z and N flags
in the FPSR to reflect the new contents of FACD.

The subtraction is performed by inverting the sign bit of
the source operand and adding. After the sign inversion,
the operation is equivalent to floating-point addition. (See
FAD.)

124 Instruction Dictionary

Skip On Zero
FSEQ

111010111011111011101110111010101
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Skips the next sequential word if the Z flag of the FPSR
is one.

Skip On Greater Than Or Equal To Zero
FSGE

111011101111111011101110111010101
o 1 2 3 4 5 e 7 8 9 10 11 12 13 14 15

Skips the next sequential word if the N flag of the FPSR
is zero.

Skip On Greater Than Zero
FSGt

111011111111111011101110111010101
o 1 2 3 4 5 e 7 8 9 10 11 12 13 14 15

Skips the next sequential word if both the Z and N flags
of the FPSR are zero.

Instruction Dictionary 125

Skip On Less Than Or Equal To Zero
FSLE

Skips the next sequential instruction if either the Z flag
or the N flag of the FPSR is one.

126 Instruction Dictionary

Skip On Less Than Zero
FSLT

1 1011101011111011101110111010101
o 1 2 3 4 5 8 7 8 II 10 11 12 13 14 15

Skips the next sequential word if the N flag of the FPSR
is one.

Subtract Double
(Memory from FPAC)
FSMD jpac;{@]displacement{,index]

11 IIN~EX I FP,AC I 0 11 I 0 11 11 11 roll I 0 I 0 10 I
o 1 2 3. 4 5 8 7 8 9 10 11 12 13 14 15

DISPLACEMENT
o 15

Subtracts the floating-point number in the source location
from the floating-point number in FPAC and places the
normalized result in the FPAC. Overwrites the previous
contents of FPAC and leaves the contents of the source
location unchanged. Updates the Z and N flags in the
FPSR to reflect the new contents of FPAC.

The instruction computes the effective address, which
addresses a 4-word (double-precision) operand.

The subtraction is performed by inverting the sign bit of
the source operand and adding. After the sign inversion,
the operation is equivalent to floating-point addition. (See
FAMD.)

Subtract Sin.gle
(Memory fr'Oi11.FPAC)
FSMS jpac,f@]displacement{,index]

11 IIN~EX I FP,AC I 0 11 I 0 11 I 0 11 I 0 11 I 0 I 0 I 0 I
o . 1 2 3 4 5. 8 7 8 9 10 11 12 13 14 15

DISPLACEMENT
o 15

Subtracts the floating-point number in the source location
from the floating-point number in FPAC and places the
normalized result in the FPAC. Overwrites the previous
contents of FPAC and leaves the contents of the source
location unchanged. Updates the Z and N flags in the
FPSR to reflect the new contents of FPAC.

The instruction computes the effective address, which
addresses a 2-word (single-precision) operand.

The subtraction is performed by inverting the sign bit of
the source operand and adding. After the sign inversion,
the operation is equivalent to floating-point addition. (See
FAMS.)

InstruCtiori Dictionary 127

Skip On No Zero Divide
FSND

111110101111111011101110111010101
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Skips the next sequential program word if the divide by
zero (DVZ) flag of the FPSR is set to zero.

128 Instruction Dictionary

Skip On Nonzero
FSNE

111010111111111011101110111010101
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Skips the next sequential word if the Z flag of the FPSR
IS zero.

Skip On No Error
FSNER

111111111111111011101110111010101
o 2 3 4 5 8 7 8 9 10 11 12 13 14 16

Skips the next sequential word if bits 1-4 of the FPSR
are all zero.

Skip On No Mantissa Overflow
FSNM

II! 1'1 0 I 0-1 0 rIll 1011 1011 1011 10 1010 I
o 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15

Skips the next sequential word if the mantissa overflow
(MOF) flag of the FPSR is zero.

Instruction Dictionary 129

Skip On No Overflow·
FSNO

11 11 11 I 0·1 0 11 11 I 0 11 10 11 I 0 11 I 0 I 0 I 0 I
o 1 2 3 4 5 e 7 e 9 10' 11 12 13 14 15

Skips the next sequential word if the overflow (OVF) flag
of the FPSR is zero.

130lnstructiori ,Dictionary

Skip On No Overflow and No Zero Divide
FSNOD

111111101111111011101110111010101
o 2 3 4 5 e 7' e 9 10 .11 12 13 14 15

Skips the next sequential word if both the overflow (OVF)
flag and the divide by zero (DVZ) flag of the FPSR are
zero.

Skip On No Underflow
FSNU

1111101110111110111011101110 10 10 1
o 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15

Skips the next sequential word if the underflow (UNF)
flag of the FPSR is zero.

Skip On No Underflow And No Zero Divide
FSNUD

111110111111111011101110111010101
o 2 3 4 5 8 7 8 9 10 11 12 13 14 15

Skips the next sequential word if both the underflow
(UNF) flag and the divide by zero (DVZ) flag of the
FPSR are zero.

..Inslruction Dictionary 131

Skip On No Underflow And No Overflow
FSNUO

111111111011111011101110111010101
o 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15

Skips the next sequential word if both the underflow
(UNF) flag and overflow (OVF) flag of the FPSR are
zero.

132 Instruction Dictionary

Subtract Single
(FPAC from FPAC)
FSS facsJacd

11 I FAlcsl FAlCO I 0 I 0 I 0 11 I 0 11 I 0 11 I 0 I 0 I 0 I
o 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15

Subtracts the floating-point number in FACS from the
floating-point number in F ACD and places the normal­
ized result in the F ACD. Overwrites the previous contents
of FACD and leaves the contents of FACS unchanged.
Updates the Z and N flags in the FPSR to reflect the new
contents of F ACD.

The subtraction is performed by inverting the sign bit of
the source operand and adding. After the sign inversion,
the operation is equivalent to floating-point addition.

Store Floating-Point Status
FSST .{@}displacement[,index}

11101011N~EXll111011111110111010101
o 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15

DISPLACEMENT
15

Moves the contents of the FPSR to two specified memory
locations.

Computes the effective address and places the 32-bit
contents of the FPSR in the two consecutive addressed
memory locations. Leaves the contents of the FPSR
unchanged.

For more information on the FPSR, refer to Chapter 4,
"Floating-Point Instructions" under Floating-Point Sta­
tus Register.

Store Floating-Point Double
FSTD fpac.{@}displacement[,index}

11 IIN~EX I FP~C 11 I 0 I 0 11 11 11 I 0 11 10 I 0 I 0 I
o 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15

DISPLACEMENT

Stores the contents of a specified FPAC into four memory
locations.

Computes the effective address and places the floating­
point number contained in FPAC in memory beginning
at the addressed location. Overwrites the previous con­
tents of the addressed memory location and leaves the
contents of FPAC and the condition codes in the FPSR
unchanged.

NOTE: The data moved is not normalized.

Instruction Dictionary 133

Store Floating-Point Single
FSTS fpac,{@}displacementf,index}

11 IIN~EX 1 FP,AC 11 1 0 1 0 11 1 0 11 1 0 11 1 0 1 0 1 0 1
o 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15

/ @ 1 DISPLACEMENT 1

o 15

Stores the contents of a specified FPAC into two memory
locations.

Computes the effective address and places the floating­
point number contained in FPAC in memory beginning
at the addressed location. Overwrites the previous con~
tents of the addressed memory location and leaves the
contents of FPAC and the condition codes in the FPSR
unchanged. For single precision, only the 32 most signifi­
cant bits of FPAC are stored.

NOTE: The data moved is not normalized.

134 . Instruction Dictionary

Trap Disable
FTD

11/11010/111111011111110111010101
o 2 3 4 5 8 7 8 9 10 11 12 13 14 15

Sets the trap enable bit of the FPSR to zero.

Trap Enable
FfE

11 11 I 0 I 0 I 0 11 11 I 0 11 11 11 I 0 11 I 0' I ~ I 0 I
o 2 3 4 5, 6 7 6 9 10 11 12 13 14 15

Sets the trap enable bit of the FPSR to one.

NOTE: When a floating-point fault occurs and the trap
enable bit is one, the trap enable bit is set to zero before
control is transferred to the floating-point error handler.
The trap enable bit should be set to one before normal
processing is resumed,

Halt

nA~~
BALTA at
DOC!!] ac,CPU

o 2 3 4 5 6 7 6, 9 10 11 12 13 14 15

Stops user program execution and returns to the virtual
console program if the Halt Dispatch function is enabled
by jumpering.

The DOC!I] ac,CPU instruction sets the Interrupt On
flag according to the function specified in the I field, then
stops the processor. If the Halt Dispatch function is not
enabled, then while stopped, the processor will honor
data channel requests, but will not honor program inter~
rupt requests.

NOTE: The assembler recognizes the mnemonic HALT
as equivalent to HALTA o.

'Instruction Dictionary ,135

Halve
HLV ac

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Divides the 16-bit two's complement number in the
specified accumulator by two. Truncates the result and
stores it in the specified accumulator.

If the number in the accumulator is positive, the instruc­
tion performs the division by shifting the number right
one bit. If the number in the accumulator is negative, the
instruction performs the division by negating the number,
shifting it right one bit, then negating it again.

Examples

Operation

HLVO
Divide 45238 by 2.

Before After

ACO = 0045238 ACO = 002251 8

HLV 1 ACI = 1777768 ACI = 1777778
Divide -2 by 2.

136 Instruction Dictionary

Hex Shift Left
HXL n,ac

N

o 2 3 4 5 6 8 9 10 11 12 13 14 15

Shifts the contents of the specified accumulator left N + 1
hex digits. Bits shifted out are lost. Vacated bit positions
become zeroes.

NOTE: DGC assemblers compute N. You code n, which
is N+ 1. Code the exact number of hex digits you want
shifted. Ifn isfour, ACfills with zeroes.

Example

Operation

HXL 2,1
Shift the 16-bit
number in AC 1 left
2 hex digits.

Before After

AC1 = 0045238 ACO = 0514008

Hex Shift Right
HXR n,ac

o 2 3 4 5 8 8· 9 10 11 12 13 14 15

Shifts the contents of the specified accumulator right
N + 1 hex digits. Bits shifted out are lost. Vacated bit
positions become zeroes.

NOTE: DGC assemblers compute N. You code n, which
is N+ 1. Code the exact number of hex digits you want
shifted. If n is four, AC fills with zeroes.

Example

Operation

HXR2,l
Shift the 16-bit
number in ACl
right 2 hex digits.

Before After

AC 1 = 0045238 ACO = 0000118

Increment
INC[c} Ish} [#} acs,acd[,skip}

I I A?S I A?D I 0 I I I SoH I ? I # I SKIP I
o 1 2 3 4 5 8 8 9 10 11 12 13 15

Increments the contents of an accumulator.

Sets carry to the specified value. Increments the unsigned,
16-bit number in ACS by one. If the incremented value is
greater than 216-1, complements carry. Places the 17-bit
value (carry and the result of the increment) in the shifter.
Performs the specified shift operation.

Tests the skip condition. If the no-load bit is zero, loads
the 17-bit value into the carry bit and ACD~ If the skip
condition is true, skips the next sequential word.

Ins.ructiO!1 Dictionary 137

Interrupt Acknowledge

INTA
DIB Ifl ac, CPU

o 234 5 8 7 8 9 10 11 12 13 14 15

Places a 6-bit device code in bits 10-15 of the specified
accumulator. This device code identifies the highest
priority device currently requesting an interrupt. Sets
bits 0-9 of the specified accumulator to one.

After the transfer, the DIB mnemonic sets the Interrupt
On flag according to the function specified by f
The INTA mnemonic places the device code into bits
10-15 of the specified accumulator without affecting the
ION flag.

138 Instruction 'DiCtionary

Interrupt Disable
INTDS
NIOCCPU

I 0 I ;r 1 I~ I 0 I 0 I 0 I 0 11 I 0 11 11 11 11 11 11 I
o 2 3 4 5 8 7 8 9 10 11 12 13 14 15

Sets Interrupt On flag to zero. This disables program
interrupts.

Interrupt Enable
INTEN
NIOSCPU

10 11 11 10 1 0 10 1 0 1 0 1 0 11 11 1111 11 11 11 1
o 2 3 4 6 8 7 8 9 10 11 12 13 14 15

Sets Interrupt On flag to one. This enables interrupts.

If this instruction changes the state of the Interrupt On
flag from zero to one, the CPU allows one more instruction
to execute before the first I/O interrupt can occur.
However, if the instruction to be executed can be inter­
rupted, then interrupts can occur as soon as the instruction
begins to execute.

NOTE: If the instruction uses only one CPU cycle, then
the CPU allows two instructions to execute before the
first I/O interrupt can occur. Refer to Appendix C,
"Instruction Execution Times" for a list of CPU cycles.

Inclusive OR
lOR aC,acd

Forms the logical inclusive OR of the contents of ACS
and the contents of ACD. Places the result in ACD.

This instruction sets a bit position in ACD to one if the
corresponding bit positions in ACD and ACS are not
both zero.

Example

Operation Before

lOR 0, 1 ACO = 0022458

Inclusive ORs the AC 1 = 0101338

contents of ACO
with the contents
of AC1.

After

ACO = 0022458

AC1 = 0123778

,Instruction Dictionary 139

Inclusive OR Immediate
IORI i,ac

I I I I I I I I I 0 I 0 I 0 I
o 1 234 5 6 6 9 10 11 12 13 14 15

IMMEDIATE FIELD

16 31

Forms the logical inclusive OR of the contents of the
immediate field and the contents of the specified AC and
places the result in the specified AC.

This instruction sets a bit position in the specified
accumulator to one if the corresponding bit positions in
the accumulator and the immediate field are not both
zero.

140 Instruction Dictionary

Reset
IORST
DIC!!! ac,CPU

o 345 6 8 9 10 11 12 13 14 15

Sets the Busy and Done flags of all I/O devices to zero.

The IORST mnemonic sets the ION flag to zero. The
assembler recognizes the mnemonic IORST as equivalent
to DICC 0, cpu. Positions in ACD and ACS are not
both zero.

The DIC mnemonic sets the ION flag according to the
function specified by f If you use this mnemonic, you
must code an accumulator to avoid an assembly error.
The processor, however, ignores the accumulator field.
The specified accumulator remains unchanged.

The processor performs the equivalent of an IORST
instruction at power-up, when you press the RESET
switch (if the console is not locked), and when you type I
from the virtual console.

NOTE: IORST will not affect any bits in the FPSR.

Increment And Skip If Zero
ISZ {@}displacement{,index}

o 1 234 567 8 15

Increments the addressed word, then skips if the incre­
mented value is zero.

Computes the effective address. Increments the addressed
word by one. Stores the result in the same location. If the
incremented value is zero, the instruction skips the next
sequential word.

The CPU controls the memory bus until the instruction is
completed.

Jump
JMP {@}displacement{,index}

I a I 0 1 0 I 0 I 0 I @ IIN~EX I DISPLACEMENT
o 1 2 3 4 5 6 7 8 15

Computes the effective address and places it in the
program counter. Operation continues with the word
addressed by the updated program counter.

Instruction· Dictionary 141

Jump To Subroutine
JSR [@jdisplacement[,indexj

/ 0 / 0 / 0 / 0 /1 / @ /IN~EX / DISPLACEMENT
o 1 234 6 8 7 8 15

Computes the effective address, then places the address
of the next sequential word in AC3. Places the effective
address in the program counter. Operation continues with
the word addressed by the updated program counter.

NOTE: The instruction computes the effective address
before it places the incremented program counter in
AC3.

142 Instruction Dictionary

Load Accumulator
LDA ac,[@jdisplacement[,indexj

/ 0 / 0 /1 / Ale / @ /IN~EX / DISPLACEMENT
o 1 234 6 8 7 8

Copies a word from memory to an accumulator.

Computes the effective address. Places the word ad­
dressed by the effective address into the specified accumu­
lator. The contents of the addressed location remain
unchanged.

Load Byte
LDB acs,acd

Uses a byte pointer contained in ACS to load a byte from
memory into bits 8-15 of ACD. Sets bits 0-7 of ACD to
zero. The contents of ACS remain unchanged, unless, of
course, ACS and ACD are the same accumulator.

Load Effective Address
LEF ac,f@}displacement{,index}

I 0 11 11 lAiC I @ IIN~EX I DISPLACEMENT
o 1 2 3 4 5 8 7 8 15

Computes an effective address, placing it into an accumu­
lator.

Places the calculated effective address into bits 1-15 of
the specified AC. Bit 0 of the AC is set to zero.

NOTE: The LEF instruction can only be used in a mapped
system while in mapped mode.

With the LEF mode bit set to one, all I/O and LEF
instructions will be interpreted as LEF instructions.

With the LEF mode bit set to zero, all I/O and LEF
instructions will be interpreted as I/O instructions.

Be sure that I/O protection is enabled or the LEF mode
bit is set to one before using the LEF instruction. If you
issue a LEF instruction in the I/O mode, with protection
disabled, the instruction will be interpreted and executed
as an I/O instruction, with possible undesirable results.

LEF O,TABLE

LEF 1,-55,3

LEF 0,. +0

; The logical address of
; TABLE is placed in ACO.

; Subtracts 0000558

; from the unsigned 15-bit integer
; in AC3 and the result is
; placed in AC 1.

; Places the address of this
;LEF
; instruction in ACO.

Instruction Dictionary 143

Load Map
LMP

I 1 0 1 0 I 1 0 1 I I 1 0 1 0 I 0 I 0 I 1 0 1 0 I 0 I
o 1 2 3 4 5 6 6 9 10 11 12 13 14 15

Loads successive words from memory into the MAP.

Words are loaded in consecutive, ascending order accord­
ing to their addresses.

The accumulators affecting the LMP instruction are:

• ACO must contain zero.
• ACI contains an unsigned integer which is the number

of words to be loaded into the MAP.
• AC2 contains the address of the first word to be loaded.

If bit 0 is one, the instruction follows the indirection
chain and places the resultant effective address into
AC2.

• AC3 is ignored and its contents remain unchanged.

For each word loaded, the instruction decrements the
count in ACI by one and increments the source address
in AC2 by one.

Upon completion of the LMP instruction:

• ACO remains unchanged.
• ACI contains zero.
• AC2 contains the address of the word following the

last word loaded.

The words loaded into the MAP define the address
translation functions for the various user and data channel
maps. The contents of the MAP field (bits 6-8) of the
MAP status register determine which map is affected by
the LMP instruction. You can alter this field by using
either the DOA MAP or the DOC MAP instruction.

144 Instruction Dictionary

The format of the words loaded into the MAP is

o
LOGICAL PHYSICAL

5 6 15

NOTE: To declare a logical page invalid, set the Write
Protect bit to 1 and bits 6-15 to 1.

NOTE: The LMP instruction is interruptible. in the same
manner as the BAM instruction.

If you issue this instruction while in mapped mode, with
I/O protection enabled, the map and accumulator con­
tents are not altered, and a MAP fault occurs.

If the LMP instruction alters the translation of the page
indicated by the program counter for the next instruction
fetch, this causes the instruction to be fetched from the
new translation environment.

Locate Lead Bit
LOB acs,acd

111 A~S I A~D 11101110101010111~r~IOI
o 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15

Adds a number equal 'to the number of high-order zeroes
in the contents of ACS to the signed, 16-bit, two's
complement number contained in ACD. The contents of
ACS and the value of carry remain unchanged.

NOTE: If ACS and ACD are specified as the same
accumulator. the instruction functions as described
above. except that since ACS and ACD are the same
accumulator. the contents of ACS will be changed.

Locate and Reset Lead Bit
LRB acs,acd

Performs LOB instruction and sets the lead bit to zero:

Adds a number equal to the number of most significant
zeroes in the contents of ACS to the signed, 16~bit, two's
complement number contained in ACD. Sets the leading
1 in ACS to zero. The value of carry remains unchanged.

NOTE:!f ACS and ACD are specified to be the same
accumulator, then the instruction sets the leading 1 in
that accumulator to zero, and no count is taken.

Instruction Dictionary 145

Logical Shift
LSH acs,acd

Shifts the 16-bit number in ACD either left or right.

The sign of the 8-bit, two's complement number in bits
8-15 of ACS determines the direction of the shift. If this
number is positive, the shift is to the left. If it's negative,
the shift is to the right. If the number is zero, there is no
shift. Bits 0-7 of ACS remain unchanged.

The magnitude of the 8-bit, two's complement number in
bits 8-15 of ACS determines the number of bits to be
shifted. Bits shifted out are lost. Vacated bit positions
become zeros.

The carry bit and ACS remain unchanged.

NOTE: If the magnitude of the number in bits 8-15 of
ACS is greater than 15/0, all bits of ACD become zero.

Examples

Operation

ISH 0,1
Shift left one bit.

ISH 0,1
Shift right one bit.

Before

ACO = 0000018
AC1 = 0123458

ACO = 00037778
AC1 = 0247128

146 Instruction Dictionary

After

ACO = 0000018
AC1 = 0247128

ACO = 0003778
AC1 = 0123458

Move
MOV[cJfsh}[#} acs,acd[,skip}

Moves the contents of an accumulator through the
arithmetic logic unit (ALU).

Sets carry to the specified value. Places carry and the
contents of ACS in the shifter. Performs the specified
shift operation.

Test the skip operation. If the no-load bit is zero, loads
the result of the shift into the carry bit and ACD. If the
skip condition is true, skips the next sequential word.

Mask Out
MSKO ac
DOB!!l ac,CPU

o 2 3 4 5 8 7 8 9 10 11 12 13 14 15

Sets the priority mask.

The D08[fl ac, CPU instruction places the contents of
the specified accumulator into the priority mask. After
the transfer, the CPU Interrupt On flag is set according
to the function specified by f The contents of AC remain
unchanged. .

If the device priority bit equals 1, the instruction sets the
I/O device Interrupt Disable flag. All I/O device control­
lers' respond to MSKO, IORST, and INTA. Only the
CPU responds to such instructions as INTEN, INTDS,
HALT, and vcr.

NOTE: A one in any bit disables interrupt requests from
devices which use that bit as a mask.

Modify Stack Pointer
MSP ac

Changes the value of the stack pointer and tests for
potential overflow.

Adds the 16-bit two's complement number in the specified
accumulator to the stack pointer and places the result in
the stack pointer (location 408).

Checks for overflow by comparing the number now in
location 408 to the stack limit; If the new stack pointer is
greater than the stack limit, restores the stack pointer's
original value and pushes a return block into the stack.
The final stack pointer is the original stack pointer plus
five. Ther return block is in the following format.

The program counter in the return block contains the
address of the MSP instruction.

After pushing the return block, the program counter
contains the address of the stack fault routine. Control
transfers to the stack fault routine.

Instruction Dictionary 147

Unsigned Multiply
MUL

111110101011111111111010111010101
o 2 3 4 5 e 7 8 9 10 11 12 13 14 15

Multiplies the unsigned, 16-bit number in ACI by the
unsigned, 16-bit number in AC2 to yield an unsigned,
32-bit product. Adds the unsigned, 16-bit number in ACO
to the product. The result is an unsigned, 32-bit number
that occupies ACO (the most-significant 16 bits) and
ACI (the least significant 16-bits). AC2 and carry remain
unchanged. Because the result is a double-length number,
overflow cannot occur.

Examples

Operation Before After

MUL ACO = 0000008 ACO = 0000008
Multiply 3 by 2. AC1 = 0000038 AC1 = 0000068

AC2 = 0000028 AC2 = 0000028

MUL ACO = 0000008 ACO = 0377778
Multiply 0777778 AC 1 = 0777778 AC1 = 0000018
by 0777778, AC2 = 0777778 AC2 = 0777778

MUL ACO = 000008 ACO = 1777768
Multiply 1777778 AC1 = 1777778 AC1 = 0000018
by 1777778, AC2 = 1777778 AC2 = 0777778

MUL ACO = 0000018 ACO = 0000008
Multiply 3 by 2 and AC1 = 0000038 AC1 = 0000078
add a remainder of AC2 = 0000028 AC2 = 0000028
1.

148 Instruction Dictionary

Signed Multiply
MULS

111110101111111111111010111010101
o 2 3 4 5 e 7 8 9 10 11 12 13 14 15

Multiplies the unsigned, 16-bit two's complement number
in ACI by the 16-bittwo's complement number in AC2
to yield an 32-bit two's complement product. Adds the
16-bit, two's complement number in ACO to the product.
The result is a 32-bit two's complement number that
occupies ACO (the most-significant 16 bits) and ACI
(the least-significant 16 bits). AC2 and carry remain
unchanged. Because the result is a double-length number,
overflow cannot occur.

Examples

Operation Before After

MULS ACO = 0000008 ACO = 0000008
Multiply 3 by 2. AC 1 = 0000038 AC 1 = 0000068

AC2 = 0000028 AC2 = 0000028

MULS ACO = 0000008 ACO = 0377778
Multiply 0777778 AC 1 = 0777778 AC1 = 0000018
by 0777778, AC2 = 0777778 AC2 = 0777778

MULS ACO = 000008 ACO = 0000008
Multiply ·1 by ·1. AC1 = 1777778 AC1 = 0000018

AC2 = 1777778 AC2 = 1777778

MULS ACO = 1777778 ACO = 1777778
Multiply 3 by - 2 AC 1 = 0000038 AC1 = 1777718
and add a remain· AC2 = 1777768 AC2 = 1777768
der of -1.

Negate
NEG/cJ[shJ[#] acs,acd/,skip]

111 A~S I A~D 10101 I SoH I ~ 1#1 SKIP I
o 1 2 3 4 5 6 7 6 9 10 11 12 13 15

Forms the two's complement of the contents of an
accumulator.

Sets carry to the specified value. Takes the two's comple­
ment of the 16-bit number in ACS. Places the 17-bit
value (carry and the result of the negate) in the shifter.
Performs the specified shift operation.

Tests the skip condition. If the no-load bit is zero, places
the 17-bit value in the carry bit and ACD. If the skip
condition is true, skips the next sequential word.

NOTE: If ACS contains zero, the instruction
complements carry.

No I/O Transfer
NIO /f] aC,device

1011111~'loloTolol F DEVICE CODE I
o 2 3 4 5 6 7 6 9 10 15

Used when a Busy or Done flag must be changed with no
other operation taking place.

Sets the Busy and Done flags in the specified device
according to the function specified by f

Instruction Dictionary 149

Map Single Cycle
Disable User Mode

NIOP MAP

101111101010101011111010101011111
o 2 3 4 5 8 7 8 9 10 11 12 13 14 15

The effect of this instruction depends upon the mode
from which it is issued.

NOTE: The interrupt system is disabled from the
beginning of the MAP Single Cycle instruction until
after the next LDA, ELDA, STA, or ESTA instruction.

From user (mapped) mode:
If the LEF mode and I/O protection are disabled, the
NIOP instruction turns off the MAP. All subsequent
memory references are unmapped until the map is
reactivated with a Load Map Status instruction.

From the unmapped mode:
The user map is enabled for one memory reference. The
first memory reference of the next LDA. ELDA, ST A, or
ESTA instruction is mapped. After the memory cycle is
mapped, the user map is again disabled.

For example, if AC2 contains 4058 and the following
instruction sequence is issued:

NIOP

LOA

MAP

3.2.2

;MAP SINGLE CYCLE

then the logical address 4078 will be mapped using the
last enabled user map (specified by bits 0 and 13 of the
MAP status register at the time of the memory reference).
The word contained in the corresponding physical location
will be placed in AC3.

However, if the following instruction sequence is issued:

NIOP MAP ;MAP SINGLE CYCLE

LOA 3.@2.2

then the logical address 4078 will be mapped using the
user map for the last enabled user. The contents of the
corresponding physical location will be used as the first
level of an indirection chain. The next memory cycle,
which is the second level of the indirection chain, will not
be mapped.

150 Instruction Dictionary

Pop Multiple Accumulators
POP acs,acd

111 A~S I A~D 11111011101010111010101
o 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15

Pops one to four words off the stack and places them in
the specified accumulators.

Loads the accumulators in descending order, starting
with ACS and ending with ACD. ACD-l is AC3. If
you specify ACS and ACD as the same accumulator, the
instruction pops one word off the stack and places it in
that accumulator.

Decrements the stack pointer by the number of accumula­
tors loaded. Leaves the frame pointer unchanged.

Example

Instruction: POP 3,1

Before After

ACO xxxxxx Untouched

ACl xxxxxx Third word popped

AC2 xxxxxx Second word popped

AC3 xxxxxx First word popped

xxxxxx denotes unknown contents which are overwritten.

Pop Block
POPB

111010101111111111111010111010101
o 1 2 3 4 5 8 8 9 10 11 12 13 14 15

Pops five words off the stack and places them in predeter­
mined locations. The words popped and their destinations
are as follows:

Continues operation with the word addressed by the
updated program counter. The frame pointer remains
unchanged.

Pop PC And Jump
POPJ

111010111111111111111010111010101
o 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15

Pops the top word off the stack and places it in the
program counter. Continues execution with the word
addressed by the updated value of the program counter.

Decrements the stack pointer by one. Leaves the frame
pointer unchanged.

Instruction Dictionary 151

Push Multiple Accumulators
PSH acs,acd

Pushes the contents of one to four accumulators onto the
stack.

Pushes accumulators in ascending order starting with
ACS and ending with ACD. AC3 + 1 is ACO. If you
specify ACS and ACD as the same accumulator, the
instruction pushes that accumulator onto the stack.

Increments the stack pointer by the number of accumula­
tors pushed. Leaves the frame pointer unchanged.

Checks for overflow after completing the entire push
operation.

1'52 Instruction Dictionary

Push Jump
PSHJ ,{@]displacementf,index]

11 I 0 I 0 I 0 I 0 11 IIN~EX 11 I 0 11 11 11 I 0 I 0 I 0 I
o 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15

I @ I DISPLACEMENT I
o 15

Pushes the address of the next sequential instruction onto
the stack, computes the effective address, and places it in
the program counter. Continues execution with the word
addressed by the updated value of the program counter.

Push Return Address
PSHR

11 I 0 I 0 I 0 I 0 11 11 11 11 11 I 0 I 0 11 I 01 0 10 I
o 1 2 3 4 5 6 7 6 9 10 11 12 13· 14 15

Pushes the address of this instruction plus 2 onto the
stack.

Read Virtual Console Registers
READSac
DIAlf] ac,CPU

Places the contents of the virtual console register into an
accumulator.

After the transfer, sets the Interrupt On flag according to
the function specified by f

RESERVED DEVICE CODE I
012 9 10 15

Instruction Dictionary 153

Restore
RSTR

1'1'1'101'1'1'1'1'1'10101'1010101 o 3 4 5 6 6 9 10 11 12 13 14 15

Pops nine words off the stack and places them in
predetermined locations. The words popped and their
destinations are as follows:

Continues operation with the word addressed by the
updated program counter.

154 Instruction Dictionary

Return
RTN

Pops a return block off the stack.

Returns control from subroutines that issue a SAVE
instruction at their entry points. The SAVE instruction
loads the current value of the stack pointer into the frame
pointer. The RTN instruction places the contents of the
fram pointer into the stack pointer and pops five words
from the stack.

The operations occur as follows:

1. The contents of the frame pointer are loaded into the
stack pointer.

2. Bit 0 of the location addressed by the new stack
pointer is loaded into carry and bits 1 to 15 are loaded
into the program counter. The stack pointer
decrements by one.

3. The contents of the location now addressed by the
stack pointer are loaded into AC3. The stack pointer
decrements by one.

4. The contents of the location now addressed by the
stack pointer are loaded into AC2. The stack pointer
decrements by one.

5. The contents of the location now addressed by the
stack pointer are loaded into ACl. The pointer
decrements by one.

6. The contents of the location now addressed by the
stack pointer are loaded into ACO. The stack pointer
decrements by one. The stack pointer now points to
the new top of stack.

7. The contents of AC3 are loaded into the frame pointer.

Continues operation with the word addressed by the
updated program counter.

Save
SAVE i

11 11 11 I 0 I 0 11 11 11 11 11 I 0 I 0 11 I 0·1 0 I 0 I
o 2 3 4 5 6 8 9 10 11 12 13 14 15

IMMEDIATE FIELD

o

Saves the information required by the RTN instruction.

Pushes a return block onto the stack. Then, places the
value of the incremented stack pointer in the frame pointer
and in AC3. Leaves ACO, ACl, and AC2 unchanged.
The following table shows the format of the 5-word return
block.

The operations occur as follows:

1. The stack pointer increments by one. The contents of
ACO are written into the location now addressed by
the stack pointer.

2. The stack pointer increments by one. The contents of
ACI are written into the location now addressed by
the stack pointer.

3. The stack pointer increments by one. The contents of
AC2 are written into the location now addressed by
the stack pointer.

4. The stack pointer increments by one. A zero is written
into bit 0, and the contents of the frame pointer are
written into bits 1 to 15 of the location now addressed
by the stack pointer.

5. The stack pointer increments by one. The carry is
written into bit O,and bits 1 to 15 of AC3 are written
into bits 1 to 15 of the location now addressed by the
stack pointer.

6. Checks for stack overflow. An overflow occurs if the
stack pointer exceeds the stack limit. If an overflow
occurs, pushes a stack fault block on the stack,
overwriting the first return block.

7. If an overflow has not occurred, puts the stack pointer
in the frame pointer and in AC3.

8. If an overflow has not occurred, adds the immediate
field to the stack pointer.

The SAVE instruction allocates a portion of the stack for
use by the procedure which executed the SAVE. After
storing the stack pointer in the frame pointer and pushing
the return block, the SA VE instruction adds the unsigned
16-bit integer contained in its immediate field to the
stack pointer. This unsigned integer is called the frame
size.

The frame size defines a portion of the stack not normally
accessed by push and pop operations. The procedure
issuing the SAVE instruction uses this area for temporary
storage of variables, counters, etc. The frame pointer
whose value goes into AC3 points to this storage area.

After pushing the 5-word return block, the SAVE instruc­
tion checks for stack overflow. If the contents of the stack
pointer exceed the contents of the stack limit, a stack
overflow occurs.

Use the SAVE instruction after a JSR instruction. JSR
transfers control to a subroutine and stores the return
address in AC3. SAVE pushes AC3 on the stack, then
puts the frame pointer in AC3.

Instruction Dictionary 155

Subtract Immediate
SBI n,ac

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Subtracts an unsigned integer in the range of one to four
from the contents of an accumulator.

Subtracts the contents of the immediate field plus 1 from
the unsigned, 16-bit number in the specified accumulator.
This is done by adding one to the contents of the
immediate field, forming its two's complement, and
adding the result to the contents of the accumulator.
Places the answer in the specified accumulator. The carry
bit remains unchanged.

NOTE: DGC assemblers compute N before loading the
immediate field. You code n. which is N+ 1. Code the
exact value you want to subtract.

156 Instruction Dictionary

Skip If ACS Greater Than Or Equal To ACO
SGE acs,acd

11 IA~S .1 A~D I 0 11 I 0 I 0 11 I 0 I 0 11 I 0 I 0 I 0 I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Compares two signed integers in two accumulators and
skips if the first is greater than or equal to the second.

Algebraically compares the two's complement number in
ACS to the two's complement number in ACD. Skips the
next sequential word if the number in ACS is greater
than or equal to the number in ACD. The contents of
ACS and ACD remain unchanged.

NOTE: The SGT and SGE instructions treat the contents
of the specified accumulators as signed. two's
complement integers. To compare unsigned integers. use
either the SUB or ADC instruction.

Skip If ACS Greater Than ACO
SGT acs,acd

11 I A?S I A?D I a 11, I a I a I a I a I a 11 I a I a I a I
o 1 2 3 4 5 6·,. 7 8 9 10 11 12 13 14 15

Compares two signed integers in two accumulators and
skips if the first is greater than the second.

Algebraically compares the two's complement number in
ACS to the two's complement number in ACD. Skips the
next sequential word if. the number in ACS is greater
than the number in ACD. The contents of ACS and
ACD remain unchanged.

NOTE: SGT treats. the contents of the specified
accumulators as two's;eomplement integers. To compare
unsigned integers, use either SUB or ADC and set the
{skip] field appropriately.

CPU Skip
SKPftJ ac,CPU

o 2 3 4 5 6 8 9 10 11 12 13 14 15

Skips the next sequential word if the test condition
specified by t is true. The following table shows the
possible skip test conditions.

Using the CPU Skip instruction for testing of the Power
Fail flag allows the power-fail option to provide a
"fail-soft" capability in the event of an unexpected power
loss.

Instruction Dictionary 157

1/0 Skip
SKPftJ device

o 2 3 4 5 8 7 8 9 10

DEVicE CODE
. i

If the test condition, t, is true for the device specified by
the device code, the instruction skips the next sequential
word. The possible values of t are listed in the table.

Instruction: SKPBZ TTO
Checks the setting of the console interface Busy flag. If
the Busy flag is set to 0 (Teletype is not busy), the next
sequential word is skipped.

158 Instruction Dictionary

Skip On Nonzero Bit
SNB aes,aed

Skips the next sequential word if the addressed bit is set
to one.

Forms a bit pointer from ACS and ACD. ACS contains
the effective address. Bits 0-11 of ACD are the word
offset, and bits 12-15 specify the bit. ACS and ACD
remain unchanged.

If you specify ACS and ACD as the same accumulator,
the effective address is zero and the accumulator contains
the word offset and specifies the bit.

Store Accumulator
8TA ac,[@}displacement[,index}

I 011 I 0 I . A,C I @ I. IN~EX I DISPLACEMENT

o 1 234 5 6 7 6 15

Stores the contents of an accumulator into a memory
location.

Places the contents of the specified accumulator in the
word addressed by the effective address. Overwrites the
previous contents of the addressed location. The contents
of the specified accumulator remain unchanged.

Store Byte
8TB acs,acd

Stores the right byte (bits 8-15) of ACD in an addressed
memory byte. ACS contains the byte pointer. ACS and
ACD remain unchanged.

. Instruction Dictionary 159

Subtract
SUB[c][shj[#j acs,acd[,skipj

o 1 2 3 4 5 8 7 8 9 10 11 12 13 15

Performs unsigned interger subtraction.

Sets carry to the specified value. Subtracts the unsigned,
16-bit number in ACS from the unsigned, 16-bit number
in ACD by taking the two's complement of the number in
ACS and adding it to the number in ACD.lfthe operation
produces a carry of one out of the most-significant bit
(bit 0), the instruction complements carry. Places the
17-bit value (carry and the result of the subtraction) in
the shifter. Performs the specified shift operation.

Tests the skip condition. If the no-load bit is zero, places
the 17-bit value in the carry bit and ACD. If the skip
condition is true, skips the next sequential word.

NOTE: If, before execution, the J6-bit, unsigned number
in ACS is less than or equal to the J6-bit, unsigned
number in ACD, the instruction complements carry.

160 Instruction Dictionary

System Call
SYC acs,acd

Pushes a return block and transfers control to the system
call handler.

Disables the MAP, pushes the standard return block on
the stack, and jumps indirect through location 2. ACS
and ACD remain unchanged.

The program counter in the return block contains the
address of the instruction immediately following SYC.

I/O interrupts cannot occur between the time the SYC
instruction is executed and the time the next instruction
is executed.

NOTE: If both accumulators are specified as ACO, the
instruction does not push a return block onto the stack.
ACO remains unchanged.

Data General assemblers recognize the mnemonic SCL
as equivalent to SYCl,l, and SVC as equivalent to SYC
0,0.

Skip On Zero Bit
SZB acs,acd

If the addressed bit is zero, the next sequential word is
skipped.

Forms a bit pointer from ACS and ACD. ACS contains
the effective address. Bits 0-11 of ACD are the word
offset, and bits 12-15 specify the bit. ACS and ACD
remain unchanged.

If you specify ACS and ACD as the same accumulator,
the effective address is zero. The accumulator contains
the word offset and specifies the bit.

Skip On Zero Bit And Set To One
SZBO acs,acd

11 I ~?S I A?~lll ~ I 0 11 111 0 I 0 11 I 0 I 0 I 0 I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

If the addressed bit is zero, sets the bit to one and skips
the next sequential word.

Forms a bit pointer from ACS and ACD. ACS contains
the effective address. Bits 0 to 11 of ACD are the word
offset, and bits 12 to 15 specify the bit. ACS and ACD
remain unchanged.

If you specify ACS and ACD as the same accumulator,
the effective address is zero. The accumulator contains
the word offset and specifies the bit. The CPU controls
the memory bus until the instruction is completed.

NOTE: You can use this instruction to implement bit
maps. You can use bit maps to allocate facilities (such
as memory blocks and I/O devices) to several processes
or tasks that interrupt one another or that run in a
multiprocessor environment.

Instr.uction Dictionary 161

Vector On Interrupting Device Code
veT ,[@}displacement[,index}

I 0 l' l' I 0 I 0 I 0 l' l' l' l' l' l' l' l' l' l' I o 2 3 4 5 e 7 e 9 10 11 12 13 14 15

DISPLACEMENT

o 15

Returns the device code of the interrupting device and
uses that code as an index into a table. The value found in
the table is used in one of two ways: it can be a pointer to
the appropriate interrupt handler (mode A), or as a
pointer to another table (modes B through E). This second
table points to the interrupt handler and contains a new
priority mask. Depending on the mode used, the instruc­
tion can also save the state of the machine by pushing
certain information onto the stack, creating a new vector
stack, setting up a priority structure, and enabling
interrupts.

The flowchart in Figure 10.9 is a complete diagram of
the operation of the VCT instruction. Note that all modes
use the vector table to find the next address used. Mode
A uses the vector table entry as the address of the interrupt
handler and passes control to it immediately. Modes B
through E all use the vector table address as a pointer
into a device control table (DeT), where the address of
the interrupt handler is found, along with a new priority
mask.

Three control bits determine the mode of the VCT
instruction which will be used. (See Figure 10.10.) Their
names and locations are:

Stack Change Bit (S) ---,- Bit 0 of the second word of the
VCT instruction;

Direct Bit (D) - Bit 0 of the selected vector table entry;

Push Bit (P) - Bit 0 of the first word of the selected
device control table.

;r AA..O J..c,v c;..&.. dII.a __ ~~,,~ I 'i).."._~,?

k..Us Ir .. ~~" J...",Ul'cc. e..etk
D 1-'1- &l~ _~k.J. J."""",-

162 Instruction Dicti.onary

, 1-7f-~'f ,-­

,'F at"U'O£46 '<

The value of these bits collectively determine the mode of
the VCT instruction. The bits determine the mode as
follows:

Common Process
All modes perform the initial steps of the vcr instruction.
These steps begin when the instruction returns the
interrupting device code. The instruction adds the device
code to the address of the start of the vector table (bits
1-15 of the second instruction word). The result is the
address of an entry within the vector table. The instruction
fetches the contents of this vector table entry and
examines bit 0 of the entry (the direct bit). If the direct
bit is zero, mode A is selected; otherwise, one of the other
modes (B-E) is selected.

Mode A

The instruction performs the functions of mode A if the
direct bit is zero. The values of the other control bits do
not matter. In mode A, the instruction uses bits 1-15 of
the fetched vector table entry as the address of the
interrupt handler of the interupting device. Control
transfers immediately to the interrupt handler with all
interrupts disabled.

Modes B Through E - Part I

The direct bit has the value one for all of these modes.
The values of the push bit and the stack change bit
determine which of the four modes will take place. The
action of these modes can be divided into two parts: a
first part, whose action varies from mode to mode; and a
second part, whose action is identical for every mode. We
discuss each first part separately, then the common second
part.

A

Start of

Fetch the second
word of the VCT
instruction. Bit
o is the stack
.change bit. Bits
1-15 contain the
address of the
beginning of the

returned above
to the address of the
vector table (displacement
field) and fetch the
word at that
location. Bit 0 is
the ., direct bit."

the fetched
vector table

location 4 in
stack pointer.
Place contents of
location 6 in

stack limit.
Place contents of
location 7 in
stack fault.

Note: Frame

pointer is destroyed

and the contents

Ves

Figure 10.7 Vector Instruction flowchart

Modes B, 0

fetched vector
table entry con­
tain the address
of the device
interrupt routine.

Transfer control
to the device
interrupt routine
by placing bits
, -15 of the fetched
vector table entry
in the program counter.

Transfer
control to

stack fault
routine.

No

All

Fetch the first word
of the·OCT. Bit 0 is
the "push bit." Bits

1-15 contain the
address of the device
interrupt routine.

Push standard
return block.
Bits 1-15of
last word pushed
contain bits 1-15 of

Push the current
interrupt mask
(location 5) onto
the stack.

Plac~ the logical

OR of the current

interrupt mask and

the second word

of the OCT in ACO.

Place the contents
of ACO in the current
interrupt mask
(location 5).

Do a mask out
from ACO and
enable interrupts
(OOBS 0, CPU).

Place contents of
AC2 (address of device
interrupt routine) in

program counter.

DO-OO570

Mode B takes place when the stack change bit and the
push bit both have the value of zero. The instruction uses
the vector table entry as the address of the device control
table (DCT) for the interrupting device. Bits 1-15 of the
first word of the nCT contain the address of The desired

interrupt handler (bit 0 is the push bit). The second word
of the DCT contains information used to construct the
new interrupt priority mask. Succeeding words (if any)
contain information to be used by the device interrupt
handler.

Instruction Dictionary 163

First word
of VCT instruction 0 1 1

Second word of ~L~~~~~~t----/~
VCT instruction

Other
instructions

1

Figure 10.8 Overview of the vector Instruction

Displacement +
device code

Mode C takes place when the stack change bit has the
value zero and the push bit has the value one. This mode
performs the functions of mode B; in addition, mode C
pushes a standard 5-word return block onto the standard
stack. The return block contains the contents of the four
accumulators, . the value of carry, and the contents of
physical location zero (the program counter return value).

Mode D takes place when the stack change bit has the
value one and the push bit has the value zero. This mode
performs the functions of mode B; in addition, mode D
sets up a new stack for the interrupt handler (using the
contents of locations 4, 6, and 7) and pushes the old
contents of physical locations 4~38 (the user stack
control words) onto the new stack.

Mode E takes place when the stack change bit and the
push bit both have the value one. This mode combines the
functions of modes C and D. That is, mode E performs
the functions of mode B, sets up a new stack, and pushes
a 5-word return block and the old stack control words
onto the new stack.

164 Instruction Dictionary

Device control Interrupt

D = 1 Modes 8-E table handler
~r-P~·7A7dd~re-s-s-of~-L---r.S~ta-rt~0~f---'

Vector
table

interrupt handler interrupt handler

iriformation used
to load new mask

D=O
Mode A

Some table entry
Note:
S = Stack change bit
D = Direct bit
P = Push bit

Modes B through E - Part II

DG-05741

Modes B through E use the same procedure for the
remainder of the VeT instruction. During this procedure,
the instruction pushes the current priority mask (location
5) onto the stack. Next, the instruction updates location 5
and performs a MSKO instruction, using the logical OR
of the current mask and the second word of the DCT.
The instruction then sets the Interrupt On flag to one and
passes control to the selected device interrupt handler.
Note that the CPU permits one more instruction to
execute (in this case, the first instruction of the interrupt
handler) before the next I/O interrupt can occur. Returns
from VCT routines may be accomplished with:

Exchange Accumulators
XCH acs,acd

11 I A7s I A7D I 0 I 0 11 11 11 I 0 I 0 11 I 0 I 0-1 0 I
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Exchanges the contents of two accumulators.

Places the original contents of ACS in ACD and the
original contents of ACD in ACS.

Execute
XCT ac

Executes the instruction contained in AC as if it were in
main memory in the location occupied· by the XCT
instruction.

If the instruction in AC is an XCT instruction which
executes the instruction in AC, the processor is placed in
a I-instruction loop. Because of this possibility, an I/O
interrupt can occur just before the processor executes the
instruction AC. If an I/O interrupt occurs at this time,
the program counter in the return block pushed on the
stack contains the address of the XCT instruction. This
capability gives you an effective Wait for I/O Interrupt
instruction.

NOTE: If the specified accumulator contains the first
word of a 2-word instruction, the word following the
xer instruction is used qs the second word. Normal
sequential operation then continues from the second word
after the XCT instruction. Do not use the xer instruction
to execute an instruction that requires all four
accumulators. such as CMV, CMT, CMP, erR, or
BAM.

Instruction Dictionary 165

Extended Operation
XOP acs,acd,operation #

o 1 2 3 4 6 9 10 11 12 13 14 16

Pushes a return block onto the stack. Places ACS's stack
address in AC2; places ACD's stack address in AC3.
Memory location 448 must contain the XOPorigin
address, the starting address of a 3210 word table of
addresses. These addresses are the starting location of the
various XOP operations.

Adds the operation number in the XOP instruction to the
XOP origin address to produce the address of a word in
the XOP table. The instruction fetches that word and
treats it as the intermediate address in the effective
address calculation. If an indirection chain is followed,
the instruction places the effective address in the program
counter. The contents of ACO, AC1, and the XOP origin
address remain unchanged.

The format of the return block pushed by the XOP
instruction is shown in Figure 10.11.

Stack pointer
before XOP

Stack pointer
after XOP

G

G

~ /'

/

..,,-
ACO ..,,-
ACl ..,,-
AC2 ./'
AC3 ..,,-

Carry Icaddress
of XOP+l ./'

~

Figure 10.9 Format of return block pushed by XOP

DG'OO687

This return block is configured so that the XOP procedure
can return control to the calling program through the
POPB instruction.

166 .. Instruction Dictionary

Alternate Extended Operation
XOPI acs,acd,operation #

11 I A7s I A70 1 01 O~ERA~ION, # 11 1111 I 0 I 0 I 0 I·
o 1 2 3 4 6 8 9 10 11 12 13 14 16

This instruction operates like the XOP instruction except
that it adds 3210 to the entry number before it adds the
entry number to the XOP origin address . .In addition, it
can specify only 16 entry locations.

Exclusive OR
XOR acs,acd

Forms the logical exclusive OR of the contents of ACS
and the contents of ACD. Places the result in ACD.

Sets a bit to one if the corresponding bit positions in the
two operands are unlike. Otherwise, sets the bit to zero.
The contents of ACS remain unchanged.

ExampRe

Operation Before

XOR 0.1 ACO=0031568

Exclusive ORs the ACl =020701 8

contents of ACO
with the contents
of AC1.

Action

ACO=0236578

ACl =020701 8

Exclusive OR Immediate
XORI i,ac

o 1 2 3 4 5 8 8 9 10 11 12 13 14 15

IMMEDIATE

18 31

Forms the logical exclusive OR of the contents of the
immediate field and the contents of the specified AC.
Places the result in the specified AC.

Instruction Dictionary 167

.. -,.

1 Code returned by [NT A and used by VCT.

2Can be set up with any unused even device code equal to 40 or above.

3Can be set up with any unused odd device code equal to 41 or above.

4Can be set to any unused device code between I and 76.

5 Micro interrupts are not maskable.

Appendix A

I/O Device Codes

1/0 Device Codes 169

Octal and Hexadecimal Conversion
To convert a number from octal or hexadecimal to
decimal, locate in each column of the appropriate table
the decimal equivalent for the octal or hex digit in that
position. Add the decimal equivalents to obtain the
decimal number.

To convert a decimal number to octal or hexadecimal:
I. Locate the largest decimal value in the appropriate

table that will fit into the decimal number to be
converted;

2. Note its octal or hex equivalent and column position;
3. Find the decimal remainder.
Repeat the process on each remainder. When the remain­
der is 0, all digits will have been generated. Table B.I
and B.2 provide octal and hexadecimal conversion aids.

Table B.1 Octal conversion table

Appendix B

Programming Aids

Table B.2 Hexadecimal conversion table

Programming Aids 171

ASCII Character Codes

KEY
DECIMAL OCT At HEX SYMBOL. MN~MP'k(C

.000.t@a!
"OOl_tAMI
.002_t O "

al°03_tC "

"004.t D 8I
"005_t E aM
.00&.t F "

1II 007IBfG "

aOlolitHIIIS
B011.11 ..
8012.tl lilt
IIB013I1t K "

' 014 111 L , ..

1II1015I1IIMIIM
M01&.t N "

11017. to"
_,020BIPtIW
"021j.'tQ'"
8 022 ' tR lIiIB
B023_'t S "

III 024 &, t T l1li
.0258tuIM
B02&BIlt V "

11'027.' twi"
_'030Bllt x ..
_'031Btv M!
M032_tZ"
Iiii 033l1li ESC II1II
111034_1\ ..
8035B1l tl Ell
• 03& l1li I t l1li
.037_t-'"

Figure B.l ASCII Character Codes

172 Programming Aids

.. 042 .'Q~~"l
'043' #,
11'044. $1
.045. 04'
.04&. & t
.1047"<A~o51

_'050. (
.051 11')
'052 *
_'053. +
.054.',,0:"',1
8,05511 - ,

.057."
8'0&0.0
8jo&111,1
.0&2.2
80&381 3
_10&4111 4
'8'0&5111 5
,,0&&111' &
8'0&7_' 7
'80708,8
.'071.' 9

11'072. :
11'073" ;
11,07411' <
8075111' =

_'07&. >
6,0778 ?

.'100.' @

.'102E, 0

M,103111' C

.,10411' D

_105111 E

11,10&1111 F

"'107.' G

61110.' H

dllll.j I

_'112_1 I

"'113_ K ,

11'114.' L ,

11'115.' MI
Mjll&1II N 1
111117_' 0

81120111 P 8'121.' Q

l1li1122'8' R
_'123. 5

8'124.' T

11,12511' U

l1li'12&. V

81127.' w,
111,130111 X ,

1II,131,a vi
_13211' Z,

KEY
DECIMAL OCTAL HEX SYMBOL

111141111' a

1111428' b

_143.' c

11'144.' d

11'145'" e

11,14&1111 f

111 147.1 g

.,150111' h

.,15111' i

.'152M11 j

a1153111' k 1
8'154_'1
.'155.' m

_,15&111' n

1I,157Mlo
"1&0_ p

111'1&18' q

_'1&21111 r

IIIjl&3_' 5 1
.11&4_' t

11'1&5_' u

_11&&.' v

.1&78 w

_170111' x

BI 171 Mj y

IIj172_ z

DG-05495

" ,~" . ,\ Appendix C

'., Instruction Execution Times

The following tables li~t typical execution times for all
instructions. All time~i.;-are in microseconds. Maximum
I/0 interrupt latency is 110 microseconds.

Table C.1

Notes

1 If skip occurs, add 0.50.

2Ifindirect chain followed, add 0.50 + (number ofindirects-I)·I.OO.

3For each item moved, add the .amount shown.

4Execution time is operand-dependent.

5If ACS<>ACD, add 1.00 + 2(Number of in directs).

6Byte moves require 7.0 p..r/byte; compares require 9.5 p..r/byte.

7This instruction can take afloa-ting point trap, which would add 19p..r to the
execution time.

Table C.1

8This instruction does an effective address calculation, which can add 15p..r
to the execution time.

9 Floating-point divide execution times depend on the number of zero and one
bits in the quotient (the more one's contained in the quotient, the longer the
execution time).

lOFor each word moved, add 1.50.

H For stack overflow, add 9.00 + (Note 2).

12 For each accumulator pushed/popped, add 0.50.

13Vector execution times depend on the mode employed.

14 Add instruction execution time.

Instruction Execution Times 173

Table C.l

Notes

I If skip occurs, add 0.50.

2If indirect chain followed, add 0.50 + (number of indirec-ls- 1)·1.00.

3For each item moved. add the amount shown.

4Execution time is operand-dependent.

5If ACS<>ACD, add 1.00 + 2(Number of in directs).

6 Byte moves require 7.0 p.</byte; compares require 9.5 p.</byte.

7This instruction can take a floating point trap, which would add 19p.< to the
execution time.

8This instruction does an effective address calculation, which can add 15p.<
to the execution time.

9 Floating-point divide execution times depend on the number of zero and one
bits in the quotient (the more one's contained in the quotient, the longer the
execution time).

174 IllstructionExecution Times

Table C.l

JOFor each word moved, add 1.50.

II For stack overflow, add 9.00 + (Note 2).

12For each accumulator pushed/popped, add 0.50.

J3Vector execution times depend on the mode employed.

14 Add instruction execution time.

Table C.1

Notes.

l/f skip occurs. add 0.50.

2!fiiuiirect cbaii.rIoilOw~d. add 0.50 + (number ofindireclS-I)*I.oo.

jFor each item moved. add the amount shown.

4 Execution time is operand-dependent.

5/f ACS<>ACD. add 1.00 + 2(Numberofindirects).

6 Byte moves require 7.0 p.s/byte; compares require 9.5 p.s/byte.

7 This instruction can take a floating point trap. which would add 19p.s to the
execution time.

8This instruction does an effective address calculation. which can add 15p.s
to the execution time.

9Floating-point divide execution times depend on the number of zero and one
bils in the quotient (the more one's contained in the quotient. the longer the
execution time).

10For each word moved, add 1.50.

H For stack overflow. add 9.00 + (Note 2).

12 For each accumulator pushed/popped. add 0.50.

13Vector execution times depend on the mode employed.

14 Add instruction execution time.

Instruction Execution Times 175

Arithmetic Tests

You can use the Subtract instruction to clear an accumu­
lator by subtracting it from itself:

SUB 2,2

SUBO 2,2

;Clears AC2 and complements carry

;Clears both AC2 and carry

Subtract is also useful for comparing quantities:

SUB# 2,3 SNR ;Skips if AC2 and AC3 are unequal, but ;does
not affect either accumulator

You can subtract one from an accumulator, without using
a constant from memory:

NEG AC,AC
COM AC,AC

The Move instruction is particularly useful for checking
accumulator contents.

The following examples show how this may be done.

Test an accumulator for zero.

MOV AC1, ;Tests ACI for zero
AC1,SZR

JMP ;Not zero

;Zero

Check if two accumulators are both zero.

MOV ACS,ACS,SNR

SUB ACS,ACD,SZR

JMP ;Not equal

;Equal

Test an accumulator for -1.

Appendix D

Programming Examples

COM# AC,AC,SZR

JMP ;Not-l

;-1

Test an accumulator for two or greater.

MOVZR#

JMP

AC,AC,SNR

;Less than 2

;2 or greater

Assume that it is known that an accumulator contains 0,
1, 2, or 3; find out which value.

MOVZR# AC,AC,SEZ

JMP THREE ;Was 3

MOV AC,AC,SNR

JMP ZERO ;WasO

MOVZR# AC,AC,SZR

JMP TWO ;Was 2

;Was 1

Check if both bytes in an accumulator are equal.

MOVS ACS,ACD

SUB ACS,ACD,SZR

JMP ;Not equal

;Equal

Compare the signed, two's complement integer contained
in ACS to O.

MOV# ACS,ACS,SZR ;Skip if contents of ACS = 0

MOV# ACS,ACS,SNR ;Skip if contents of ACS * 0

ADDO# ACS,ACS,SBN ;Skip if contents of ACS > 0

MOVL# ACS,ACS,SZC ;Skip if contents of ACS 2:: 0

MOVL# ACS,ACS,SNC ;Skip if contents of ACS < 0

ADDO# ACS,ACS,SEZ ;Skip if contents of ACS :s 0

Test ACI for the unsigned integer 16 -1 (177777, signed
-1).

Programming Examples 177

COM# 1,1 ,SZR ;Skip the next instruction if AC 1 ;contains all
ones.

As the result is not loaded in the above example, you can
specify any accumulator as the destination, for example,

COM# 1,3,SZR

Assume that ACO contains a signed, 16-bit, two's comple­
ment integer. The following three instructions will place
an indicator of the sign of the number in ACO. If the
number is greater than zero, ACO is set to + I. If the
number is less than zero, ACO is set to -I. If the number
is equal to zero, ACO remains O. The previous contents of
the carry bit are overwritten.

AD DO ACO,ACO,SBN ;Skip if > 0

ADCC ACO,ACO,SNC ;ACO gets -1

SUBCL ACO,ACO ;Copy carry into bit 15

This example checks an ASCII character to make sure
that it is a decimal digit. The character is in ACO and is
unchanged by the test. The contents of accumulators
ACI and AC2 are overwritten.

LDA AC1,C60 ;ASCII zero

LDA AC2,C71 ;ASCII nine

ADCZ# AC2,ACO,SNC ;Skips if (ACO>9)

ADCZ# ACO,AC1,SZC ;Skips if (ACO>O)

JMP ;Not digit =

;Digit

C60: 60 ;ASCIIO

C71: 71 ;ASCII9

Multiply an AC by the indicated value.

MOV ACx,ACx ;Multiply by 1

MOVZL ACx,ACx ;Multiply by 2

MOVZL ACx,ACy ;Multiply by 3
ADD ACy,ACx

ADDZL ACx,ACx ;Multiply by 4

MOV ACx,ACy ;Multiply by 5
ADDZL ACx,ACx
ADD ACy,ACx

MOVZL ACx,ACy ;Multiply by 6
ADDZL ACy,ACx

ADDZL ACx,ACx ;Multiply by 8
MOVZL ACx,ACx

Multiplication by other factors of two can be achieved
with the Logical Shift instruction; multiplication by
factors of 16 can be accomplished with the Hex Shift
Left instruction.

178 Programming Examples

You may want to negate the double-length number whose
high-order word is in ACO and low-order word in ACl.
You negate the low-order part, but simply complement
the high-order part, unless the low-order part is zero.

NEG

NEG

COM

1,1,SNR

O,O,SKP

0,0

;Low-order zero

;Low-order nonzero

Note that the magnitude parts of the sequence of negative
numbers from the most negative toward zero are the
positive numbers zero and upward. So in multiple­
precision arithmetic, low-order words can be treated
simply as positive numbers.

In unsigned addition, a carry indicates that the low-order
result is too large, and the high-order part must increased.
The number in AC2 and AC3 is added to the number in
ACO and ACl.

ADDZ 3,1 ,SZC

INC 2,2

ADD 2,0

In two's complement subtraction, a carry should occur
unless the subtrahend is too large. We could increment as
in addition, but since incrementing in the high-order bit
is precisely the difference between a one's complement
and a two's complement, simply subtract the number in
AC2 and AC3 from that in ACO and ACl.

SUBZ 3,1,SZC

SUB 2,0,SKP

ADC 2,0

Together, Add Complement and Subtract allow a pro­
gram to compare the magnitudes of unsigned integers.

SUB# ACS,ACD,SZR ;Skip if (ACS) = (ACD)

SUB# ACS,ACD,SNR ;Skip if (ACS) #' (ACD)

ADCZ# ACS,ACD,SNC ;Skip if (ACS) < (ACD)

SUBZ# ACS,ACD,SNC ;Skip if (ACS) :0; (ACD)

SUBZ# ACS,ACD,SZC ;Skip if (ACS) > (ACD)

ADCZ# ACS,ACD.SZC ;Skip if (ACS) ~ (ACD)

Subroutines
The transfer of control between routines is made easier
and more orderly by using the stack facility. There are
three general ways to effect calls and returns, but more
complex ways may be derived. The three basic methods
of call and return are discussed here.

The first method transfers control to the subroutine via
the JSR instruction. The subroutine executes the SAVE
instruction at the subroutine entry point and returns
control through the RTN instruction.

CALL: JSR

SUBR: SAVEi

RETRN: RTN

SUBR ;In calling program

;Subroutine entry

;Return to

;calling program

This method has the following characteristics:

1. AC3 of the calling program is overwritten by JSR.
2. The call is only one word.
3. Upon return to the calling program, AC3 contains

the calling program's frame pointer.
4. A SAVE instruction is required at each entry point.
5. Arguments are easily passed on the stack, because

SAVE sets up the frame pointer for the called routine
and RTN places the frame pointer for the calling
routine in AC3.

The second method transfers control to the subroutine
through the JSR instruction. Figure D.1 illustrates this
subroutine method. The subroutine executes the PSH
instruction to save the return address and returns control
through the POPJ instruction .

Increasing
addresses

/'

JSR

./' Sequential

.-/ program

.-/ flow

/~ /.
/. /" /'
/. I SAVE a
/, I PSH

~~H /. -~
POPJ~

: RETU~V
~~. Return

/''' Contmued
"/ program

/"fIOW

~
~

Figure D.1 Subroutine call and return

}Save state

}
BOdY of
subroutine

} Restore state

DG·08463

JSR

SUBR: PSH

RET:I POPJ

SUBR

3,3

;In calling program

;Subroutine

;Return to

;calling program

Programming Examples 179

Appendix E

Compatibility With ECLIPSE Line Computers

The microECLIPSE® series computers are compatible
with the ECLIPSE line of computers, up to and including
the ECLIPSE S/140 series computers. Any program
currently running on an ECLIPSE S/140 computer will
run on a microECLIPSE® series computer with the
following changes:

Unique features-Data In Status returns the status of the
addressed device and places this data into the specified
accumulator.

Emulator trap---The CPU in the ECLIPSE S /120 system
has a hardware provision for instruction emulation. If the
CPU encounters an undefined instruction while operating
in the mapped mode, it automatically makes a jump
through location 118, provided that the contents are not
zero. This location can contain the indirect location of an
emulator routine.

Execution timing-The program may not be dependent
on instruction execution times or I/O transfer times.
Times for the ECLIPSE S/140 series computers may be
faster than a MicroECLIPSE® computer, depending upon
the application.

Reserved memory locations-Memory location 11 is now
the location to which the processor will jump for an
emulator trap and should contain the address fault
handler routine.

Virtual Console---Commands are entered on a terminal
keyboard. For more information on virtual console com­
patibility see "Virtual Console Features" in this appendix.

Automatic increment/Automatic decrement locations -
Memory locations 208 to 278 and 308 to 378 are not
available for this purpose on microECLIPSE® series
computers.

Floating-point manipulation-The return address pushed
during a floating-point trap is the address of the instruc­
tion following the instruction that caused the trap.

The floating point program counter is valid only when
ANY is set.

Bit 9 of the FPSR is the resume bit. It should be ignored
and not modified when saving and restoring the floating­
point status register. When initializing the floating-point
status, this should be set to zero.

Stack-No underflow protection is provided automatical­
ly. This can be accomplished with a user subroutine.

Bit 0 of the stack pointer will be set on a stack overflow if
the return block pushed by the stack overflow routine
wraps around from the top location (77777 8) to the bottom
location 0 of memory.

MAP-If an instruction changes the current map state,
the next instruction will be fetched from and executed in
the new map state. See DOA MAP.

During a MAP fault, the program counter produces
unpredictable results.

There are four user maps available.

Any attempt to read beyond the maximum physical
address space will return undefined data. Any attempt to
write beyond the maximum physical address space will
have no effect.

Error Checking- ECLIPSE S /120 computer detects and
corrects all single-bit memory errors. Double-bit and some
triple-bit errors are detected but not corrected. However,
their fault addresses and error syndrome codes are
recorded, and an interrupt (when enabled) is issued.

The S /120 also implements an advanced error checking
and correction feature sniffing that continuously tests all
on-board memory.

Instructions

DIA MAP-Bit 0 will contain the extra map select
bit, bit 1 will be set to 0 if the map is off, and will be set
to 1 if the map is on.

No validity traps occur on map single-cycle references.

DIVS and DIVX- Carry will be set to one only if a
overflow condition occurs.

IORST-Will not affect any bits in the floating point
status register.

SKP-The AC field (bits 3 and 4) must be zero.

Compatibility With ECLIPSE Line Computers 181

LMP-When I/O protection is on, a map fault occurs
and no accumulators are· altered.

ACO must be equal to Oor 3.

NIO:--The AC field (bits 3 and 4) must be zero.

XOPl- Operates like the Extended operation instruc­
tion except that it adds 32 to the entry number before it
adds the entry number to the XOP origin address.

Virtual Console Compatibility

ND = nondeleting
H/L=22H
U/D=User/DCH
R = Part of run command
1= I command

182 Compatibility With ECLIPSE Line Computers

Appendix F

Instruction Summary

The following index alphabetically lists each instruction
by assembler-recognizable mnemonic. It gives the format,
data type used, action performed, and location contents
before and after instruction execution.

The number located beneath each instruction mnemonic
is the base value for that instruction. This base value is
the 6-digit octal number that represents how the instruc­
tion would be assembled if all its options were omitted
and all its operands were zero. For example, the base
value for ADD is 103000. This represents an ADDO,O
instruction.

InsJruction Summary 183

Instruction Format

ADD Ic! Ish! I#! acs.acdl.skip!
103000

ADI n.ac
100010

AND Ic! Ish! I#! acs.acdl.skip!
103400

BAM
113710

BTO acs.acd
102010

eLM acs.acd
102370

184 Instruction Summary

Fixed-point
ACS+ACO=ACO

Fixed-point AC+n=AC

Fixed-point ACS AND
ACO=ACO

Fixed-point memory
location + ACO = memory
location

Bit (ACS and ACO)
(Bit= 1)

Fixed-point ACS>L and
ACS<H=skip

If ACS=ACO

Before

ACS = unsigned integer
ACO = unsigned integer

AC = unsigned integer
n=unsigned integer (1-4)

ACS = unsigned integer
ACO = unsigned integer

ACO=addend
AC1 =number of words
AC2 = source address
AC3 = destination address

ACS=word pointer
ACO=word offset +bit pOinter
Memory location = address bit

ACS=2's complement number
ACO = L address
ACS=2's complement number
L=next word
H=next word

Unchanged
Result

Result
Unchanged

Unchanged
Result

Addend
o
Last+ 1
Last+ 1

Unchanged
Unchanged
1

Unchanged
Unchanged
Unchanged
Unchanged
Unchanged

After

CMV
153650

COB acs,acd
102610

DAD acs,acd
100210

DHXR n,ac
101710

DIB [fl aC,device

DIS [tl aC,device

Character memory location
= memory location
Carry = relative length

Bit ACS (l's)+ACD
=ACD

Decimal ACS+ACD=ACD

Fixed-point AC and AC+ 1

Hex shift right

ACO=destination number of bytes
AC 1 = source number of bytes
AC2=destination byte pointer
AC3=source byte pOinter

ACS = unsigned integer
ACD=2's complement number

ACS = binary-coded decimal
ACD = binary-coded decimal

AC=high order of number
AC+ 1 =Iow order of number
n=unsigned integer (1-4)

I/O device (B buffer) = AC B Buffer= unsigned integer

I/O device status = AC

o
o or unpredictable result
Last+ 1
Last+ 1

Unchanged
Result

Unchanged
Result

Result
Result
Unchanged

AC=Result

AC=Result

Instruction Summary 185

Instruction Format

DlVX
137710

DOA If! aC,device

DOC If! ac,device

DSPA ac,[@!displ.[,index!
142710

EDSZ I@!displacementl,index!
116070

EJMP I@!displacementl,index!
102070

ELDA ac,/@]displ./,index!
122070

Operation

Fixed-point (ACO and
AC1)1 AC2

1/ 0 AC = device (A buffer)

I/O AC=device (C buffer)

Fixed-point AC<L or
AC>H then
(E - L) + unsigned integer
address

Before

ACO=sign of AC1
AC1 =2's complement
AC2=divisor 2's complement

AC = unsigned integer

AC=unsigned integer

AC=2's complement
PC=PC

Remainder
Quotient
Unchanged

Unchanged

After

A buffer = Result

Unchanged
C buffer = Result

Unchanged
Address of PC

Fixed-point memory location Memory locaction = Unsigned integer Unsigned integer
= memory location - 1. If
the value = 0, then skip.

Fixed-point calculated effec- PC=PC
tive address = PC

Fixed-point memory location AC = unknown
= AC Memory location = unsigned integer

Calculated effective address

Unsigned integer
Unchanged

186 Instruction Summary

FADfpac
143050

FAMD fpac.[@]disp/.[,index]
101150

FASfacsJacd
100050

FCMP facsJacd
103450

FDMD fpac.[@]disp/.[,index]
101750

FDSfacsJacd
100650

Floating-point absolute value FPAC=floating-point number
of (FPAC) =FPAC

Floating-point memory
10cation+FPAC =FPAC

FPSR(N,Z)

FPSR(N,Z)

Memory location = double floating­
point number D
FPAC=Floating-point number

FPSR(N,Z)

Floating-point FACS+FACD FACS=Floating-point number
=FACD FACD=Floating-point number

Floating-point FACS com­
pared to FACD

Floating-point FPAC/memo­
ry

location =FPAC

Floating-point FACD I FACS
=FACD

FPSR(N,Z)

FACS = Floating-point number
FACD = Floating-point number
FPSR(N,Z)

Memory location = double floating­
point number D
FPAC=Floating-point number

FPSR(N,Z)

FACS = Floating-point number
FACD=Floating-point number

FPSR(N,Z)

Absolute value of sign
(floating-point number)
Updated

Updated

Unchanged

Floating-point (double preci­
sion)
Updated

Unchanged
Floating-point (single preci­
sion)
Updated

Unchanged
Unchanged
Updated

Unchanged

Floating-point number
(double-precision)
Updated

Unchanged
Floating-point number
(single-precision)
Updated

Instruction Summary 187

Instruction Format

FF AS ac,fpac
102650

FHLV jpac
163150

FLAS ac,fpac
102450

FLDS jpac,f@jdisp/.[,indexj
102050

FLST [@jdisplacement[,indexj
123350

FMMD jpac,f@jdispl.[,indexj
101550

188 Instruction Summary

Operation

Floating-point integer
(FPAC) =AC

Floating-point
FPAC=FPAC/2

Floating-paint AC = FPAC

Floating-paint memory
location = FPAC

Floating-paint memory

location = FPSR

Floating-point (FPAC)(mem­
ory location) =FPAC

Before

FPAC = Floating-paint number
ACO=unknown

FPAC=Floating-point number
FPSR(N,Z)

AC=2's complement number
FPAC=unknown

FPSR(N,Z)

After

Unchanged
Fixed-point number

Result
Updated

Unchanged
Floating-paint (single­
precision)
Updated

Memory location = single floating-paint Unchanged
number
FPAC=unknown

FPSR(N,Z)

Floating-point number
(single-precision)
Updated

Memory location = single floating-point Unchanged
number
FPSR(all)

Memory location = double floating­
paint number
FPAC = Floating-point number

FPSR(N,Z)

Updated

Unchanged

Floating-paint number(double­
precision)
Updated

FMOV facsJacd
103550

FNEGfpac
163050

FNS
103250

FPSH
163350

FSA
107250

FSD facsJacd
100350

FSGE
127250

Floating-point FACS=FACD FACS=Floating-point number
FACD=unknown

Floating-point
-FPAC=FPAC

Floating-point never skip

Floating-point push = stack

Floating-point skip always

FPSR(N,Z)

FPAC = Floating-point number
FPSR(N,Z)

PC=PC

PC=PC

Floating-point FACS-FACD FACS=Floating-point number
=FACD FACD=Floating-point number

Floating-point FPSR
(if N = 0 then skip)

FPSR(N,Z)

Unchanged
FACS
Updated

Floating-point number
Updated

PC

Stack=
FPSR
FPACO
FPAC1
FPAC2
FPAC3

PC+1

Updated
Floating-point number
(double-precision)
Updated

Instruction Summary 189

Instruction Format

FSMD jpac.{@!displ.[.index!
101350

FSND
147250

FSNER
177250

FSNO
163250

FSNU
153250

FSNUO
173250

FSST !@!displacement!.index!
103350

FSTS jpac.{@!displ.[.index!
102250

190 Instruction Summary

Operation

Floating-point FPAC-mem­
ory location =FPAC

Floating-point FPSR
(if DVZ=O then skip)

Floating-point FPSR
(if 1-4=0 then skip)

Floating-point FPSR
(if OVF=O then skip)

Floating-point FPSR
(if UNF=O then skip)

Floating-point FPSR
(if UNF and OVF=O then
skip)

Floating-point FPSR =
memory location

Floating-point FPAC=
memory location

Before

Memory location = double floating­
point
FPAC = Floating-point number

FPSR(N,Z)

Memory location = unknown
FPSR=FPSR

FPAC=Floating-point number
Memory location = unknown

After

Unchanged

Floating-point number
(double-precision)
Updated

Unchanged

Unchanged
Floating-point number
(single-precision)

Instruction Format

FfE
143350

HLVae
143370

HXRn,ae
101510

lOR aes,aed
100410

ISZ [@]displaeement[,index]
010000

JSR [@]displaeement[,index]
004000

LDB aes,aed
102710

LMP
113410

LRB aes,aed
102510

MOV [e][sh][#] aes,aed[,skip]
101000

Operation Before

Floating-point FPSR (5= 1) FPSR (Trap enable bit)

Fixed-point AC/2=AC AC=2's complement

Fixed-point hex shift right n=unsigned integer (1-4)
=AC AC=unsigned integer

Fixed-point ACS or ACS=unsigned integer
ACD=ACD ACD=unsigned integer

Fixed-point if memory loca- Memory location = unsigned integer
tion = memory location + 1
then skip

Fixed-point calculated effec- PC=PC
tive address = PC

Byte memory location =
ACD

ACS=Byte pOinter
ACD=unknown

Map memory location = map AC 1 = unsigned integer loaded
AC2 = 1 st address

Fixed-point ACS(Os)+ACD
=ACD
ACS (high order 0= 1)

Fixed-point ACS=ACD

ACS = unsigned integer
ACD=2's complement number

ACS = unsigned integer
ACD=unsigned integer

Result

Unchanged
Result

Unchanged
Result

After

Unsigned integer+ 1

PC=calculated effective ad­
dress

Unchanged
ACD=byte

o
Last+ 1

New unsigned integer
Result

Unchanged
ACS

Instruction Summary 191

Instruction Format

MUL
143710

NEG Ie! Ish! I#! aes,aedl,skip!
163050

POP aes,aed
103210

POPJ
117710

PSHJ I@!displaeementl,index!
102270

RSTR
167710

SAVE i
163710

SGE aes,aed
101110

192 Instruction ·Summary

Operation

Fixed-point
(AC 1)(AC2) = unsigned inte­
ger
unsigned integer + ACO=
ACO
and AC1

Fixed-point - ACS = ACO

Fixed-point stack = ACS>
ACO

Fixed-point stack = PC

Fixed-point PC+ 1 =stack

Calculated effective
address=PC

Before

AGO==iritermediate unsigned
integer
AC 1 = unsigned integer
AC2 = unsigned integer

ACS = unsigned integer
ACO = unknown

Stack = unknown

Stack = 1 word
PC=unknown

PC=PC
Stack = unknown

Fixed-point stack=destina- Stack=9 words
tion

Fixed-point 5 words+1
=stack

Fixed-point if ACS=ACO
then skip

Stack = unknown

ACS=2's complement
ACO=2's complement

High result

Low result
Unchanged

Unchanged
Result

ACS-ACO

After

- 1 word. Top word of stack

Calculated effective address
PC+1

-9 words. Oestination= Re­
turn block + Stack fault ad­
dress + Stack limit + Frame
pointer + Stack pointer.

ACO
AC1
AC2
Frame pOinter
Carry+AC3

Unchanged
Unchanged

Instruction Format

STA ac./@}displ.{,index}
040000

SKP {t} device

SUB {c]{sh]{#} acs,acd{,skip}
102400

SZB acs,acd
102210

vcr {@}displacement{,index}

xcrac
123370

XOPI acs.acd,operation #
100070

XORI i,ac
123770

Operation.

Fixed-point AC=memory
location

If t is true, then skip

Fixed-point
acd-ACS=ACD

If addressed bit is set to
zero, then skip.

Fixed-point. See Instruction

Fixed point AC=PC

Fixed-point. See XOR

Fixed-point i or AC=AC

Before

AC=unsigned integer
memory location = unknown

ACS= unsigned integer
ACD=unsigned integer

ACS=word pointer
ACD=word offset and bit
pointer
Memory location = unknown

PC=PC
AC = Instruction

AC = unsigned integer
I = unsigned integer

After

Unchanged
Unsigned integer

Memory location = byte

Unchanged
Result

Unchanged
Unchanged

Unchanged

AC instruction
Unchanged

Result
Unchanged

Instruction Sum~ary 193

Arithmetic Operators

+

00
inter

194

addition

subtraction or negation

division

multiplication

intermediate number

Instruction Summary

Underscored page numbers identify dictionary entries.

A

Abbreviations 75
Absolute addressing

extended address field 6
intermediate address 6
short address field 6

Absolute Value (FAB) 107
AC relative addressing, see Accumulator relative
addressing 7
AC2 addressing, see Accumulator relative addressing 7
Accumulator

destination accumulator (ACD) 9
source accumulator (ACS) 9

Accumulator relative addressing, see Addressing 7
ACS (source accumulator), definition 9
ADC

Add Complement 12,76
ADD

Add 12, 76
Add (ADD) 76
Add Complement (ADC) 76
Add Double 107, 108
Add Immediate (ADI) 77
Add instructions

Add 76
Add Complement 76
Add Immediate 77
Block Add and Move 79
Decimal Add 87
Extended Add Immediate 77
Extended Increment and Skip If Zero 103
Floating-Point Add Double-FPAC to FPAC 107
Floating-Point Add Double-Memory to FAPC 108
Floating-Point Add Single-FPAC to FPAC 109
Floating-Point Add Single-Memory to FPAC 108
Increment 137

Add Single 108, 109
ADDI

Extended Add Immediate 16, 77
Address

stack fault 26, 27
Address translation, definition 57
Addressing

absolute 6, 6

AC relative 6
AC2 relative (mode 2) 6
AC3 relative (mode 3) 6
accumulator relative 7
conventions 5
direct and indirect 6, 7
effective address (EF A) calculation 8
extended class instructions 6
I/O controllers 35
indirect 5, 6, 7
intermediate 5, 6
logical 5, 57
maps 2
memory address calculation 8
modes 6
page boundary 6
page zero 6
PC relative addressing 6, 7
physical 5, 57
physical and logical compared 57
reserved memory locations 10
short class instructions 6
summary 2
translation 57

Addressing mode range 7
Addressing modes, definition 5
ADI

Add Immediate 16, 77
ALC, functions 13
ALC format 12
ALC instructions

Add 12
Add Complement 12
AND 12
Complement 12
Increment 12
Move 12
Negate 12
Subtract 12
summary 12

Index

Allocating memory, see also protecting memory 57
Altering user MAPS 72

195

Altering data channel MAPS 72
Alternate Extended Operation (XOPl) 166
ALU

carry 13
shift 14
skip 15

ALU operations 12
ANC

AND With Complemented Source 17, 78
AND

AND 12, 78
AND Immediate (ANDI) 17, 79
AND With Complemented Source (ANC) 78
ANDI

AND Immediate 17, 79
Arithmetic logic class instructions, see ALC
instructions 12
Arithmetic logic unit, see ALU 13
ASCII character codes 172
Asynchronous communications interface 40
Asynchronous interface 40

controller registers 40
instruction set 40
Read Character 41
timing 41
Write Character 41

Asynchronous interface instructions
Read Character 40
Write Character 40

Asynchronous line controller (ALC) 40
Asynchronous Line Input 56, 92

flag commands 53
Read Character 54

Asynchronous Line Output 56, 92
Asynchronous line output

flag commands 54
Write Character 54

Auto program load 72
Auto program load register 44

B

B command 71
BAM

Block Add and Move 17, 79
Battery backup 45
Baud rate 41,41
Bit

addressing 9
displacement 5
indirect 5

Bit manipulation instructions
Count Bits 18
Locate and Reset Lead Bit
Locate Lead Bit 18

196

18

Set Bit to One 18
Set Bit to Zero 18
Skip On Nonzero Bit 18
Skip On Zero Bit 18
Skip On Zero Bit and Set to One 18
summary 18

Bit pointer 9
BLM

Block Move 17, 80
Block Add and Move (BAM) 79
Block Move (BLM) 80
Breakpoints 70

deleting 71
encountering 71
setting 71

BTO
Set Bit to One 18, 80

BTZ
Set Bit to Zero 18, .!li

Busy flag 42
values 35, 36, 37

Byte
addressing 8, 8
indicator 8
pointer 8,8

Byte indicator 8
Byte manipulation instructions

Character Compare 18
Character Move 18
Character Move Until True 18
Character Translate 18
Extended Load Byte 18
Extended Store Byte 18
Load Byte 18
Store Byte 18

c
C command 72
Carry 13
Carry mnemonics 13
Cell commands 69
Character Compare, CMP 82
Character instructions

Character Move 84
Character Compare 82
Character Move Until True 83
Character Translate 86

Character Move (CMV) 84
Character Move Until True (CMT) 83
Character Translate (CTR) 86
Checking, stack overflow 26

Clear Errors (FCLE) 109
CLM

Compare to Limits 32, ~
CMP, Character Compare 18, 82
CMT

Character Move Until True 18, 83
CMV

Character Move 18, 84
COB

Count Bits 18, 85
Coding aids 75
COM

Complement 12, 85
Compare Floating-Point (FCMP) llQ
Compare instructions

Character Compare 82
Compare Floating-Point 110

Compare to limits (CLM) ~
Compatibility 181
Complement (COM) 85
Conditional skip instructions

Decrement and Skip if Zero 32
I/O Skip 32
Increment and Skip if Zero 32
Skip if ACS Greater Than ACD 32
Skip if ACS Greater Than or Equal 32
Skip on Nonzero Bit 32
Skip on Zero Bit 32
Skip on Zero Bit, Set to One 32

Control flags, see also Flag values 37
Conventions 75
Convert instructions

Character Translate 86
FixtoAC 113
Fix to Memory 113
Float From AC 115
Float From Memory 116
Integerize 114
Normalize 120
Scale 123

Count Bits (COB) 85
CPU Acknowledge (DOAP CPU) 5Q, 98
CPU device instructions

CPU Acknowledge 40, 50
CPU Skip 40, 21, 157
Halt 40, 50, 135
Interrupt Acknowledge 40, 50, 138
Interrupt Disable 40, 50, 138
Interrupt Enable 40, 50, 139
Mask Out 40,21, 147
Read Processor Status 40

Read Switches 40
Read Virtual Console Register 21, 153
Reset 40, 50, 140

CPU device mnemonics 49
CPU I/O instructions

Interrupt Acknowledge 36
Interrupt Disable 36
Interrupt Enable 36
Mask Out 36
Read Switches 36
Reset 36
Vector on Interrupting Device 36

CPU I/O operation, see also System I/O operation 40
CPU Skip (SKP CPU) 21, 157
CPU Status (DIS CPU) 49, 93
CTR

Character Translate 18, 86

D

D command 71
DAD

Decimal Add 17, 87
Data channel 73

I/O 35
operations 35
speed of operation 35

Data channel I/O 35
Data channel Map 58
Data channel map

definition 57
initial conditions 60

Data channel MAPS 72
Data format

11 fixed-point
floating-point

Data In A (DIA)
Data In B

DIB 47,21

19
47, 89

Data in B (DIB) 47, 89
Data In C (DIC) 47, 92
Data In Status (DIS) 48, 94
Data management and stack instructions

Alternate Extended Operation 166
Extended Operation 166
Modify Stack Pointer 147
Pop Block 151
Pop Multiple Accumulators 150
Pop PC and Jump 151
Push Floating-Point State 122
Push Jump 152
Push Multiple Accumulators 152
Push Return Address 153
Restore 154

197

Return 154
Save 155
System Call 160
Vector On Interrupting Device 162

Data management and stack instructions, Pop
Floating-Point State 121
Data movement instructions

Block Add and Move 17
Block Move 17
Extended Load Accumulator 17
Extended Load Effective Address 17
Extended Store Accumulator 17
Load Accumulator 17
Load Effective Address 17
Store Accumulator 17

Data Out A (DOA) 48, 96
Data Out B (DOB) 48, 98
Data Out C (DOC) 48, 99
Data transfer

data channel I/O 35
programmed I/O 35

Decimal Add (DAD) 87
Decimal arithmetic instructions

add 17
subtract 17

Decimal Subtract (DSB) 100
Decrement and Skip If Zero (DSZ) J02
Definition, divide by zero 21
Definitions

accumulators 9
address translation 57
addressing modes 5
data channel I/O 35
displacement bits 5
effective address calculation 5
excess 64 representation 20
exponent 20
extended address field 5
extended operation 33
floating-point 19
floating-point format 19
floating-point magnitude 19
floating-point overflow 21
floating-point status register 20
floa ting -poin t underflow 21
FPSR 20
frame pointer 25
guard digits 20
impure zero 19
index bits 5
indirect addressing 5
indirect bit 5
intermediate address 5
load effective address 60
logical address 57

198

lower page zero 5
mantissa 20
mantissa overflow 21
memory space 57
page 6, 57
physical address 57
programmed I/O 35
pure zero 19
push 25
return block 25
short address field 5
sign 19
stack 25
stack control memory locations 26
stack limit 26, 26
stack overflow 26
stack pointer 25
supervisor 57
user map 57
validity protection 59
word 5
write protection 59, 59

Delete/rubout key 68
Device codes 169
DHXL

Double Hex Shift Left 17, 88
DHXR

Double Hex Shift Right 17, 88
DIA

Data In A 35, 47, 89
DIA CPU, Read Virtual Console 153
DIA ERCC

Read Memory Fault Address 56, 92
DIAMAP

Read MAP Status 60, 63, 90
DIA PIT, Read Count 52
DIA TTl

Read Character 40, 54, 56, 92
DIB

Data In B 35, 47, 91
DIB CPU

Interrupt Acknowledge 50, 138
DIB ERCC

Read Memory Fault Code 56, 92
DIC

Data In C 35, 47, 92
DIC CPU

Reset 50, 140
DIC MAP

Page Check 60, 64, 93
Direct addressing 7
Dirty zero, see Impure zero 19

DIS
Data In Status 35, 48, 94

DIS CPU
Read Processor Status 40
CPU Status 93

DIS CPU (CPU Status) 49
Disable User Mode (NIOP MAP) 150
Disabling, stack overflow protection 26
Dismissing an interrupt, see also Program interrupt 39
Dispatch (DSPA) 101
Displacement bit, definition 5
Displaying user MAPS 72
Displaying data channel MAPS 72
DIY

Unsigned Divide 16, 94
Divide by zero, definition 21
Divide Double-FPAC by FPAC (FDD) 110
Divide Double-FPAC by Memory (FDMD) ill
Divide instructions

Divide Double-FPAC by FPAC 110
Divide Double-FPAC by Memory ill
Divide Single-FPAC by FPAC 112
Divide Single-FPAC by Memory ill
Halve 136
Halve-FPAC 114
Sign Extend and Divide 95
Signed Divide 95
Unsigned Divide 94

Divide Single-FPAC by FPAC (FDS) 112
Divide Single-FPAC by Memory (FDMS) 111
DIYS

Signed Divide 16, 95
DIYX

Sign Extend and Divide 16, 95
lDLSH

Double Logical Shift 17, 96
lDOA

Data Out A 35, 48, 96
lDOA ERCC

Enable ERCC 56, 92
lDOA MAP

Load MAP Status 60, 62, 97
DOA PIT, Initial Count· 52
DOARTC

Select RTC Frequency 42, 53

DOA TTO
Write Character 40, 54, 56, 92

DOAPCPU
CPU Acknowledge 40, 50, 98

DOB
Data Out B 35, 48, 98

DOB CPU, Mask Out ~,147

DOBMAP
MAP Supervisor Page 31 60, 65 99

DOC
Data Out C 35, 48, 99

DOC CPU
Halt 50, 135

DOC MAP
Initiate Page Check 60, 100

DOC MAP (Initiate Page Check) 64
Done flag 42

values 35, 36, 37
Double Hex Shift Left (DHXL) 88
Double Hex Shift Right (DHXR) 88
Double Logical Shift (DLSH) 96
DSB, Decimal Subtract 17
DSPA

Dispatch 32, 101
DSZ

Decrement and Skip If Zero 102
Decrement and Skip if Zero 32

Dumping user MAPS 72
Dumping data channel MAPS 72

E

ECLIPSE compatibility 181
EDSZ

Decrement and Skip If Zero (Extended) 102 .
Decrement and Skip if Zero (Extended) 32

EF A (effective address calculation): definition 8
Effective address calculation, definition 5
EISZ

Increment and Skip If Zero (Extended) 103
Increment and Skip if Zero (Extended) 32

EJMP
Extended Jump 32, 103

EJSR
Extended Jump to Subroutine 32, 104

ELDA
Extended Load Accumulator 17, 104

ELDB
Extended Load Byte 18, 105

ELEF, Extended Load Effective Address 17
Enable ERCC 56, 92

DOA ERCC 45,55,168
ERCC flag commands 56, 92
ERCC Instructions 45

Enable ERCC 45,55, 168
Read memory fault address 45, 55, 168
Read memory fault code 45,55, 168

199

Error Checking and Correction 45, 55, 168
Error correction 68
ESTA
Error instruction 55, 168

Extended Store Accumulator 17, 106
ESTB

Extended Store Byte 18, 106
Examples

arithmetic tests 177
stack 29
subroutines 177

Excess 64 representation, definition 20
Exchange Accumulators (XCH) 165
Exclusive OR (XOR) 167
Exclusive OR Immediate (XORI) .l§l
Execute (XCT) 165
Exponent, definition 20
Extended Add Immediate (ADDI) n
Extended address field 75

.. '.:

Extended Decrement and Skip If Zero (EDSZ) 102
Extended Increment and Skip If Zero (EISZ) 103
Extended instructions

Extended Add Immediate 77
Extended Decrement and Skip If Zero 102
Extended Increment and Skip If Zero 103
Extended Jump 103
Extended Jump to Subroutine 104
Extended Load Accumulator 104
Extended Load Byte 105
Extended Operation 166
Extended Store Accumulator 106
Extended Store Byte 106

Extended Jump (EJMP) 103
Extended Jump to Subroutine (EJSR) 104
Extended Load Accumulator (ELDA) 104
Extended Load Byte (ELDB) 105
Extended Operation (XOP) 33 166
Extended Store Accumulator (EST A) 106
Extended Store Byte (ESTB) 106

F

FAB
Absolute Value 23, 107

FAD, Add Double-FPAC to FPAC 22, 107
FAM, Add Double (Memory to FPAC) 22
FAMD, Add Double-Memory to FPAC 108
FAMS, Add Single-Memory to FPAC 22, 108
FAS, Add Single-FPAC to FPAC 22, 109
Fault, stack fault handler 26
FCLE

Clear Errors 24, 109
FCMP

Compare Floating-Point 22, 110

200

FDD
Divide Double-FPAC by FPAC 22, 110
stack initialization 26

FDM
Divide Double (FPAC by Memory) 22
Divide Single (FPAC by Memory) 22

FDMO
Divide Double-FPAC by Memory ill
stack initialization 26

FDMS
Divide Single-FPAC by Memory ill
stack initialization 26

FDS
Divide Single-FPAC by FPAC 22, 112
stack initialization 26

FEXP
Load Exponent 23, 112

FFAS
Fix to AC 23, 113

FFMD
Fix to Memory 23, 113

FHL, Halve (Floating-Point) 22
FHLV, Halve 114
FINT

Integerize 23, 114
Fix to AC (FFAS) 113
Fix to Memory (FFMD) 113
Fixed-point

data format 11, 12
Fixed-point arithmetic instructions

Add Immediate 16
Extended Add Immediate 16
Halve 16
Sign Extend and Divide 16
Signed Divide 16
Signed Multiply 16
Subtract Immediate 16
summary 16
Unsigned Divide 16
Unsigned Multiply 16

Fixed-point instruction lists
arithmetic instructions 16
bit manipulation 18
byte manipulation 18
data movement instructions 17
decimal arithmetic 17
logical operations 17

Fixed-point instructions
Add Immediate 77
Exchange Accumulators 165
Extended Add Immediate 77
Extended Store Accumulator 106
Sign Extend and Divide 95
Signed Divide 95
Signed Multiply 148
Store Accumulator 159
Subtract 160
Subtract Immediate 156
Unsigned Divide 94
Unsigned Multiply 148

Flag commands 56, 56, 92, 92
asynchronous line input 53
asynchronous line output 54
PIT 52
RTC 53

Flag instructions 56, 92
Flag values

Busy 35,36,37,42
Done 35,36,37,42
ION 36,37,38
real-time clock 42
setting ION flag in CPU 38
testing ION flag in CPU 38

FLAS
Float From AC 23, 115

FLDD
Load Floating-Point Double 22,lU

FLDS
Load Floating-Point Single 22, ill

FLMD
Float From Memory 23, 116

Float From AC (FLAS) 115
Float From Memory (FLMD) 116
Float instructions

Float From AC 115
Float From Memory 116

Floating-point
composition 19
data format 19
definition 19
divide by zero 21
double-precision format 19
exponent 19
faults 21
guard digits 20
magnitude 19
mantissa 19,20
mantissa overflow 21
operation 20
overflow 21
pure zero 19
registers 20
sign bit 19
single-precision format
stack allocation 20
status registers 20
trap 21
underflow 21
zero 19

19

.......

Floating-point arithmetic instructions 22
Floating-point data movement instructions 22
Floating-Point Divide Double (FPAC by FPAC), stack

initialization 26
Floating-Point Divide Double (FPAC by Memory),

stack initialization 26
Floating-Point Divide Single (FPAC by FPAC), stack

initialization 26
Floating-Point Divide Single (FPAC by Memory), stack

initialization 26
Floating-point fault, return block 21
Floating-point guard digits, definition 20
Floating-point instruction, status register instructions 24
Floating-point instruction lists 22
Floating-Point Multiply Double, stack initialization 26
Floating-point number conversion instructions 23
Floating-point overflow, definition 21
Floating-point pop, stack initialization 26
Floating-point program alteration instructions 23
Floating-point push, stack initialization 26
Floating-point registers, FPAC 20
Floating-point status register

definition 20, 20
Floating-point status register instructions 24
Floating-point underflow, definition 21
FLST

Load FloatingtPoint Status 24, ill
FMS

Multiply Single (FPAC by FPAC) 22
FMD

Multiply Double-FPAC by FPAC 22, 117
stack initialization 26

FMM
MUltiply Double (Memory by FPAC) 22
Multiply Single (Memory by FPAC) 22

FMMD
Multiply Double-FPAC by Memory 118
stack initialization 26

FMMS, Multiply Single-FPAC by Memory 118
FMOV

Move Floating-Point 22, 119
FMS, Multiply Single-FPAC by FPAC 119
FNE, Negate (Floating-Point) 22
FNEG, Negate 120

201

FNOM
Normalize 23, 120

FNS
No Skip 23, 121

Format
ALC 12
of commands 75

FPOP
Pop Floating-Point State 29, ill

FPSH
Push Floating-Point State 29, 122

FPSR
definition 20
see also Floating-point status register 20

Frame pointer
definition 25
initialization 25

FRH
Read High Word 23, 122

FSA
Skip Always 23, 123

FSCAL
Scale 23, 123

FSD, Subtract Double-FPAC from FPAC 22, 124
FSDN, Skip On No Zero Divide 128
FSEQ

Skip On Zero 23, 124 ~

FSGE
Skip On Greater Than or Equal to Zero 23, 125

FSGT
Skip On Greater Than Zero 23, 125

FSLE .
Skip On Less Than or Equal to Zero 23, 126

FSLT
Skip On Less Than Zero 23, 126

FSM, Subtract Single (Memory from FPAC) 22
FSMD, Subtract Double-Memory from FPAC 22, 127
FSMS, Subtract Single-Memory from FPAC 127
FSND, Skip On No Zero Divide 23
FSNE

Skip On Nonzero 23, 128
FSNER

Skip On No Error 23, 129
FSNM

Skip On No Mantissa Overflow 23, 129

202

FSNO
Skip On No Overflow 23, 130

FSNOD
Skip On No Overflow and No Zero Divide 23, 130

FSNU
Skip Ori No Underflow 23, 131

FSNUD
Skip On No Underflow and No Zero Divide 131
Skip On No Underfow and No Zero Divide 23

FSNUO
Skip On No Underflow and No Overflow 23, 132

FSS, Subtract Single-FPAC from FPAC 22, 132
FSST

Store Floating-Point Status 24, 133
FSTD

Store Floating-Point Double 22, 133
FSTS

Store Floating-Point Single 22, 134
FTD

Trap Disable 24, 134
FTE

Trap Enable 24, 135
Function commands, virtual console 70

G

G command 74
Guard digits, see Floating-point guard digits 20

H

H command 73
HALT

Halt 32, 50, ill
HALTA

Halt 32, 40, ill
Halve (FHL V) 114
Halve (HL V) 136
Hex Shift Left (HXL) 136
Hex Shift Right (HXR) 137
Hexadecimal and octal conversion
HLV

Halve 16, 136

171

HXL
Hex Shift Left 17, 136

HXR
Hex Shift Right 17, 137

I

I command 73
I/O, format 36
I/O bus 2
I/O control flags 36
I/O controllers, addressing of 35
I/O device codes 169
I/O device controller, program flow interruption 32
I/O format 36

accumulator field 36
control field 36
device field 36
instruction field 36

I/O instructions 35
I/O interfaces 40
I/O interrupt instructions

Interrupt Acknowledge 138
Mask Out 147
Vector On Interrupting Device 162

I/O latency 41
I/O management system, summary 2
I/O operations 35
I/O Skip (SKP) 48, 158
I/O test flag (SKP instruction only) 37
Impure zero, definition 19
INC

Increment 12, 137
Inclusive OR (lOR) 139
Inclusive OR Immediate (lORI) 140
Increment (INC) 137
Increment and Skip If Zero (lSZ) 141
Index bits

definition 5
Index field
Index register addressing, see Accumulator relative

addressing
Indirect addressing 7

definition 5
Indirect bit, definition 5
Indirect chain, definition 7
Indirection protection, definition 59
Initiate Page Check (DOC MAP) 64, 100
Input/Output, see I/O 2

Instruction 75
action performed 183
contents after execution 183, 183
data type used 183
examples 177
execution times 173
format 183
summary 183

Instruction error checking and correction 45, 55, 168
Instructions 56, 92

ALC 12
asynchronous interface 40
asynchronous line input 53
asynchronous line output .54
bit manipulation 18
conditional skip 32, 32
CPU device 40, 49
CPU I/O 36 -
decimal arithmetic 17
Extended Operation 33
fixed-point arithmetic 16
floating-point data movement 22
floating-point status register 24
logical operations 17
MAP 60
number conversion 23
power fail 46
program flow alteration 32
programmable interval timer 52
real-time clock 53
stack 27
standard I/O 35, 47

INTA (DIB
CPU), Interrupt Acknowledge 36, 40, 138

INTDS, Interrupt Disable 36, 40, 138
Integerize (FINT) 114
Integers -

double-precision range 11
see also Fixed-point 11
single-precision range 11

INTEN, Interrupt Enable 139
INTEN (NIOS CPU), Interrupt Enable 36, 40 .
Intermediate address

definition 5
extended address field 5
short address field 5

Internal cells 69
Interrupt Acknowledge (DIB CPU) 50 138
Interrupt Acknowledge (lNT A) 138 -, -
Interrupt Disable (lNTDS) 138
Interrupt Disable (NIOC CPU) 50, 138, 138
Interrupt Enable (INTEN) 139 -

203

Interrupt Enable (NIOS CPU) 50, ill, 139
Interrupt handler, see also Program interrupt 37
Interrupt instructions

Interrupt Acknowledge ill
Trap Disable 134
Trap Enable 135

Interrupt On flag 38
Interrupt priority mask 39

see also Program interrupt 39
Interrupt service 37
Instructions

ALC 12
byte manipulation 18
data movement 17
floating-point program flow alteration 22

ION flag
setting or testing 38
values 36, 37, 38

lOR
Inclusive OR 17, 139

IORI
Inclusive OR Immediate 17, 140

IORST (DIC CPU), Reset 36, 40,140
ISZ

Increment and Skip If Zero 32, 111

J

JMP
Jump 32, ill

JSR
Jump to Subroutine 32, 142

Jump (JMP) 141
Jump instructions

Dispatch 101
Extended Jump 103
Extended Jump to Subroutine 104
Jump ill
Jump to Subroutine 142
Pop PC and Jump ill

Jump to Subroutine (JSR) 142

K

K command 68

L

L command 72
LDA

Load Accumulator 17, 142
LDB

Load Byte 18, 143
LEF

Load Effective Address 17, 143
LEF mode, see Load Effective Address
LMP

Load MAP 60,2.1, 144

204

Load Accumulator (LDA) 142
Load Byte (LDB) 143
Load Effective Address CLEF) 143
Load Effective Address mode, definition 60
Load Exponent (FEXP) 112
Load Floating-Point Double (FLDD) 115
Load Floating-Point Single (FLDS) 116
Load Floating-Point Status (FLST) 117
Load instructions

Load Accumulator 142
Load Byte 143
Load Effective Address 143
Load Exponent 112
Load Floating-Point Double 115
Load Floating-Point Single 116
Load Floating-Point Status ill
Load Map 144
Load Map Status 97

Load Map (LMP) Ql, 144
Load MAP Status, (DOA MAP) 62, 97
Load/no load 15
LOB
Locate and Reset Lead Bit (LRB) 145
Locate instructions

Locate and Reset Lead Bit 145
Locate Lead Bit 145

Logic instructions, AND Immediate 79
Logic instructions

Absolute Value 107
AND 78
AND With Complemented Source 78
Character Move Until True 83
Compare Floating-Point 110
Complement 85
Count Bits 85
Double Hex Shift Left 88
Double Hex Shift Right 88
Double Logical Shift 96
Exclusive OR 167
Hex Shift Left 136
Hex Shift Right 137
Inclusive OR 139
Inclusive OR Immediate 167
Locate and Reset Lead Bit 145
Locate Lead Bit 145
Logical Shift 146
Negate 149
Negate (floating-point) 120
Set Bit to One 80
Set Bit to Zero .ll

Logical address
compared to physical 57
defini tion 57

Logical operation instructions 17
Logical Shift (LSH) 146

LRB
Locate and Reset Lead Bit 18, 145

LSH
Logical Shift 17, 146

M

M command 72
Mantissa

definition 20
format 20
normalization 20

Mantissa overflow, definition 21
MAP, changing user 72
Map

data channel 57, 57, 58
MAP, initial conditions 60
Map

modes 57
user 57,57

MAP functions
address translation 57
sharing physical memory 57

MAP instructions
Disable User Mode 150
Initiate Page Check 60, 64, 100
Load Map 60, Ql, 144
Load Map Status 60, 62, 97
Map Single Cycle 60, 65, 150
Map Supervisor Page 31 60, 65, 99
Page Check 60, 64, 93
Read MAP Status 60, 63, 90

Map operations, load effective address 60
MAP protection

I/O 59
Indirect 59
see also MAP 59
Validity 59
Write 59

Map protection faults 60
MAP Single Cycle (NIOP MAP) 65, 150
MAP Supervisor Page 31 (DOB MAP) 65, 99
Mapped mode 57
Mapping

user address space 57,57
MAPS

displaying data channel 72
displaying user MAPS 72

Mask, see also Program interrupt 39
Mask Out (DOB CPU)' .ll, 147

Mask Out (MSKO) 147
Memory

address calculation 8
reserved memory locations 10

Memory allocation, summary 2
Memory allocation and protection

see MAP 57
summary 2

Memory cells 69
Memory protection, summary 2
Memory space, definition 57
MicroECLIPSE compatibility 181
microECLIPSE features 1
Mnemonics 40
Mode 0 addressing, see Addressing, absolute 6
Mode 1 addressing, see Addressing 7
Mode 2 addressing, see Accumulator relative
addressing 7
Mode 3 addressing, see Accumulator relative

addressing 7
Modify Stack Pointer (MSP) 147
MOV

Move 12, 146
Move (MOV) 146
Move Floating-Point (FMOV) 119
Move instructions

Block Add and Move 79
Block Move 80
Character Move 84
Character Move Until True 83
Double Hex Shift Left 88
Double Hex Shift Right 88
Exchange Accumulators 165
Extended Load Accumulator 104
Extended Load Byte 105
Extended Store Accumulator 106
Extended Store Byte 106
Hex Shift Left 136
Hex Shift Right 137
Load Accumulator 142
Load Byte 143
Load Exponent 112
Load Floating-Point Double 115
Load Floating-Point Single 116
Move 146
Move Floating-Point 119
Pop Block 151
Pop Multiple Accumulators 150
Read High Word 122
Store Accumulator 159

205

Store Byte 159
Store Floating-Point Single 134
Trap Disable 134

MSKO, dismissal 39
MSKO (DOB CPU), Mask Out 36, 40
MSP, Modify Stack Pointer 147
MUL

Unsigned Multiply 16, 148
MULS

Signed Multiply 16, 148
Multiply Double-FPAC by FPAC (FMD) 117
Multiply Double-FPAC by Memory (FMMD) 118
Multiply instructions

Multiply Double-FPAC by FPAC 117
Multiply Double-FPAC by Memory 118
Multiply Single-FPAC by FPAC 119
Multiply Single-FPAC by Memory 119
Signed Multiply 148
Unsigned Multiply 148

Multiply Single-FPAC by FPAC (FMS) 119
Multiply Single~FPAC by Memory (FMMS) 118

N

NEG
Negate 12, 149

Negate (FNEG) 120
Negate (NEG) 149
NIO

No I/O Transfer 35, 48, 149
NIOC CPU

Interrupt Disable 50, 138
NIOP MAP

Disable User Mode 150
Map Single Cycle 60" 65, 150

NIOS CPU
Interrupt Enable 50, 139

No I/O Transfer (NIO) 48, 149
No Skip (FNS) 121
Normalization, of mantissa 20
Normalize (FNOM) 120

o
o command 71
Octal and hexadecimal conversion 171
Operation, floating-point 20
Operations

arithmetic logic unit 12
carry 13
data channel 35
floating-point 19
I/O 35,36
integer II
load 15
no load 15
program interrupt 37

206

shift 14
skip 15
stack 25

Optional I/O mnemonics 47
Overflow checking 26
Overflow protection 26, 26

p

P command 74
Page

definition 6, 57
Page Check (DIC MAP) 64, 93
Page zero 5
PC relative addressing, see addressing 7
Physical address

compared to logical 57
definition 57

Physical memory sharing 57
PIT

see Programmable interval timer
Pointer

frame 25
stack 25

Pop, definition 25
POP

Pop Multiple Accumulators 29, 150
Pop Block (POPB) 151
Pop Floating-Point State (FPOP) 121
Pop instructions

Pop Block 151
Pop Floating-Point State 121
Pop Multiple Accumulators 150
Pop PC and Jump 151

Pop Multiple Accumulators (POP) 150
Pop PC and Jump (POPJ) 151
POPB

Pop Block 29, 151
POPJ

Pop PC and Jump 29, 151
Power fail 45
Power fail instructions

Skip If Power Flag Is One 46
Skip If Power Flag Is Zero 46

Power fail/autorestart, example 46
Power-up response 42
Power-up sequence for the CPU 44
Priority interrupt handler 39
Priority interrupts 39
Priority mask, definition 39
Program counter relative addressing, see PC relative

addressing
Program debugging 70
Program flow 31
Program flow alteration 31

Program flow alteration instructions
Compare to Limits 32
Dispatch 32, 101
Extended Operation 32, 166
Halt 32, 135
Jump 32, 141 .
Jump to Subroutine 32, 142
System Call 32, 160
Vector On Interrupting Device 32, 162

Program flow interruption 32
Program interrupts 37,39

priority interrupt handler 39
priority mask 39
with priority 39

Program load register, see Auto program load register 44
Program return 71, 72
Programmable interval timer 40, 43

controller registers 43
flag commands 52
instruction set 43
programming 43

Programmable interval timer instructions
Read Count 52
Specify Initial Count 52

Programmable real-time clock 40
Programmed I/O 35

definition 35
Programmed I/O controller 40
Programming aids 172
Programming examples 177
Protecting memory

see also Allocating memory 59
summary 2

Protecting stack overflow, see also Stack overflow 26
Protection faults 60
PSH

Push Multiple Accumulators 29, l).l
PSHJ

Push Jump 29, 152
PSHR

Push Return Address 29, 153
Pure zero, definition 19
Push, definition 25
Push Floating-Point State (FPSH) 122
Push instructions

Push Floating-Point State 122
Push Jump 152
Push Multiple Accumulators 152
Push Return Address 153

Push Jump (PSHJ) 152
Push Multiple Accumulators (PSH) 152
Push Return Address (PSHR) 153

R

R command 72
Read auto load register definitions 44
Read Character 56, 92
Read Character (DIA TTl) 54
Read Count (DIA PIT) 52
Read High Word (FRH) 122
Read MAP Status

(DIA MAP) 63, 90
Read memory fault address 56, 92

DIA ERCC 45,55, 168
Read memory fault code 56, 92

DIB ERCC 45,55, 168 .
Read Virtual Console (READS) 153
Read Virtual Console (DIA CPU) 153
Read Virtual Console Register (READS) .,~

READS
Read Switches 40
Read Virtual Console Register ~,153

READS (DIA, CPU), Read Switches 36
Real-time clock

flag commands 53
instruction set 42
power-up response 43
program flow interruption 32
programming 43
timing 43

Real-time clock flag commands 42
Real-time clock instruction

Select Frequency 53
Select RTC Frequency 42

Real-time clock interface 42
controller registers 42

Registers
Reserved memory locations 10
Reset (DIC CPU) 50, 140
Reset (IORST) 140
Restore, RSTR 154
Return (R TN) 154
Return block, definition 25
RSTR

Restore 29, 154
RTC 40

see also Real-time clock 42
RTN

Return 29, 154
Rubout/delete key 68

207

s
S command 73
S/120 computer features
SAVE

Save 29, 155
SBI

Subtract Immediate 16, 156
Scale (FSCAL) 123
Select Frequency (DOA RTC) 53
Self-test 74
Servicing an interrupt 37
Set Bit to One (BTO) 80
Set Bit to Zero (BTZ) il
SGE

Skip If ACS Greater Than or Equal to ACD 32, 156
SGT

Skip If ACS Greater Than ACD 32, 157
Shift mnemonics 14
Shift operations 14
Sign, definition 19
Sign Extend and Divide (DIVX) 95
Signed Divide (DIVS) 95
Signed instructions

Signed Divide 95
Signed Multiply 148

Signed Multiply (MULS) 148
Single stepping 71
Skip 15
Skip (conditional)

Decrement and Skip if Zero 32
I/O Skip 32
Increment and Skip if Zero 32
Skip if ACS Greater Than ACD 32
Skip if ACS Greater Than or Equal 32
Skip on Nonzero Bit 32
Skip on Zero Bit 32
Skip on Zero Bit, Set to One 32

Skip Always (FSA) 123
Skip If ACS Greater Than ACD (SGT) 157
Skip If ACS Greater Than or Equal to ACD (SGE) 156
Skip instructions

Skip If ACS Greater Than ACD 157
Skip If ACS Greater Than or Equal to ACD 156
Skip On Greater Than or Equal to Zero 125
Skip On Greater Than Zero 125
Skip On Less Than or Equal to Zero 126
Skip On Less Than Zero 126
Skip On No Error 129
Skip On No Mantissa Overflow 122
Skip On No Overflow 130
Skip On No Overflow and No Zero Divide 130
Skip On No Underflow 131
Skip On No Underflow and No Overflow 130
Skip On No Underflow and No Zero Divide 131

208

Skip On No Zero Divide 128
Skip On Nonzero 128
Skip On Nonzero Bit 158
Skip On Zero 124
Skip On Zero Bit 161
Skip On Zero Bit and Set to One 161

Skip instructions (nonconditional skip), No Skip 121
Skip instructions (nonconditional), Skip Always 123
Skip mnemonics 15
Skip On Greater Than or Equal to Zero (FSGE) 125
Skip On Greater Than Zero (FSGT) 125
Skip On Less Than or Equal to Zero (FSLE) 126
Skip On Less Than Zero (FSLT) 126
Skip On No Error (FSNER) 129
Skip On No Mantissa Overflow (FSNM) 129
Skip On No Overflow (FSNO) 130
Skip On No Overflow and No Zero Divide (FSNOD) 130
Skip On No Underflow (FSNU) 131
Skip On No Underflow and No Overflow (FSNUO) 132
Skip On No Underflow and No Zero Divide

(FSNUD) 131
Skip On No Zero Divide (FSDN) 128
Skip On Nonzero (FSNE) 128
Skip On Nonzero Bit (SNB) 158
Skip On Zero (FSEQ) 124
Skip On Zero Bit (SZB) 161
Skip On Zero Bit and Set to One (SZBO) 161
SKP

I/O Skip 32,35, 48, 158
SKP CPU

CPU Skip 40, ii, 157
SKPDN CPU, Skip if Power Flag Is One 46
SKPDZ CPU, Skip If Power Flag Is Zero 46
SNB

Skip On Nonzero Bit 18,32, 158
Special mnemonics 40
Specify Initial Count (DOA PIT) 52 .
SPU I/O operation, see also System I/O operation 40
STA

Store Accumulator 17, 159
Stack

initialization 25
operation 25
usage 25

Stack and data management, Alternate Extended
Operation 166

Stack and data management instructions
Extended Operation 166
Modify Stack Pointer 147
Pop Block 151
Pop Floating-Point State 121

Pop Multiple Accumulators 150
Pop PC and Jump 151
Push Floating-Point State 122
Push Jump 152
Push Multiple Accumulators 152
Restore 154
Return 154
Save 155
System Call 160
Vector On Interrupting Device 162

Stack and data managment instructions, Push Return
Address 153

Stack control memory locations 26
Stack definition 25
Stack exarnples 29
Stack fault 26
Stack fault address 26
Stack fault handler 26, 27
Stack initialization 25, 26, 26, 26, 26

floating-point pop 26
floating-point push 26

Stack instruction interrupts 27
Stack instructions 29
Stack limit

definition 26, 26
Stack operation

control memory locations 26
frame pointer 25
initialization 25, 26, 26, 26
overflow checking 26
pop 25
protection 26
push 25
stack limit 26, 26
stack pointer 25

Stack overflow
checking 26
definition 26
protection 26
stack fault address 26
stack fault handler 26, 27

Stack overflow error, program flow interruption 32
Stack overflow protection 26

disabling 26
Stack pointer

definition 25
initialization 25

Stack storage locations 25
Standard I/O instruction

Data in A 47, 89
Data in B 47, 89

Standard I/O instructions
Data In B 47, 91
Data In C 47, 92
Data in Status 47, 48 92
I/O Skip 48

Status instructions
Load Floating Point Status 117
Store Floating-Point Status 133
Trap Enable 135

Status register, see Floating-point status register 20
STB

Store Byte 18, 159
Store Accumulator (ST A) 159
Store Byte (STB) 159
Store Floating-Point Double (FSTD) 133
Store Floating-Point Single (FSTS) 134
Store Floating-Point Status (FSST) 133
Store instructions

Store Accumulator 159
Store Byte 159
Store Floating-Point Double 133
Store Floating-Point Single 134
Store Floating-Point Status 133

SUB
Subtract 12, 160

Subroutine instructions
Alternate Extended Operation 166
Extended Jump to Subroutine 104
Extended Operation 166
Jump to Subroutine 142
Push Return Address 153
Restore 154
Return 154
Save 155

Subtract (SUB) 160
Subtract Double-FPAC from FPAC (FSD) 124
Subtract Double-Memory from FPAC (FSMD) 127
Subtract Immediate (SBI) 156
Subtract instructions

Decimal Subtract 100
Decrement and Skip If Zero 102
Extended Decrement and Skip If Zero 102
Subtract 160
Subtract Double-Memory from FPAC 127
Subtract Immediate 156
Subtract Single-FPAC from FPAC 132·
Subtract Single-Memory from FPAC 127

Subtract Single-FPAC from FPAC (FSS) 132
Subtract Single-Memory from FPAC (FSMS) 127
Summaries 2
Summary, ECLIPSE S/20 features 1
Supervisor, definition 57
SYC

209

System Call 29, 32, 160
System block diagram 1
System Call (SYC) 160
System I/O controller 2
System I/O operation

asynchronous interface 2
asynchronous line controller 40
auto program load register 44
data channel transfer 2, 2
power-up sequence 44
programmable interval timer 2, 43
real-time clock 2,42

System overview 1
SZB

Skip On Zero Bit 18,32, 161
SZBO

Skip On Zero Bit and Set to One 18, 32, 161

T

Timing, see Asynchronous interface 41
Translating, addresses 57
Trap Disable (FTD) 134
Trap Enable (FTE) 135
True zero, see Pure zero
TTl 40
TTO 40
Two's complement 11

u
U command 72
Unmapped mode 59
Unsigned Divide (DIV) 94
Unsigned instructions

Unsigned Divide 94
Unsigned Multiply 148

Unsigned Multiply (MUL) 148
User map 57

definition 57
initial conditions 60

User MAPS 72

v
V command 74
Validity protection, definition 59
VCT

Vector On Interrupting Device Code 29,32,26, 162
Vector instruction modes 38
Vector instruction overview 38
Vector On Interrupting Device Code (VCT) 162
Vectored interrupt 38

210

Virtual console
altering data channel MAPS 72
altering user MAPS 72
auto program load 72
B command 71
breakpoints 71, 71, 71
C command 72
cells 69
changing the MAP 72
D command 71
data channel 73
displaying data channel MAPS 72
displaying user MAPS 72
dumping data channel MAPS 72
dumping user MAPS 72
entering 67
error correction 68
function commands 70
G command 74
H command 73
I command 73
interrupt 71
K command 68
L command 72
M command 72
o command 71
P command 74
power-up self-test 74
program debugging 70
prompts 67
R command 72
read/write memory test 74
resuming program execution 71, 72
rubout/delete key 68
S command 73
self-test routine 67
single stepping 71
U command 72
uses 67
V command 74

Virtual console compatibility 181

w
Word 5

addressing format 8
definition 8

Word offset 9
Word pointer 9
Write Character (DOA TTO) 54, 56, 92
Write protection, definition 59

x
XCH

Exchange Accumulators 17, 165
XCT, Exectute 165
XOP

Extended Operation 29, 32, 33, 16~
XOPI

Alternate Extended Operation 32,33, 166
XOR, Exclusive OR 17, 167
XORI

Exclusive OR Immediate 17, 167

211

DG OFFICES

NORTH AMERICAN OFFICES
Alabama: Birmingham

Arizona: Phoenix, Tucson

Arkansas: little Rock

California: Anaheim, EI Segundo, Fresno, Los Angeles, Oakland, Palo Alto, Riverside,

Sacramento, San Diego, San Francisco. Santa Barbara. Sunnyvale, Van Nuys

Colorado: Colorado Springs, Denver

Connecticut: North Branford, Norwalk

!Florida: Ft. Lauderdale, Orlando, Tampa

Georgia: Norcross

Idaho: Boise

Iowa: Bettendorf, Des Moines

Illinois: Arlington Heights, Champaign, Chicago, Peoria, Rockford

Indiana: Indianapolis

Kentucky: Louisville

Louisiana: Baton Rouge, Metairie

Maine: Portland, Westbrook

Maryland: Baltimore

Massachusetts: Cambridge. Framingham, Southboro, Waltham, Wellesley, Westboro,

West Springfield, Worcester

Michigan: Grand Rapids, Southfield

Minnesota: Richfield

Missouri: Creve Coeur, Kansas City

Mississippi: Jackson

Montana: Billings

Nebraska: Omaha

Nevada: Reno

New Hampshire: Bedford, Portsmouth

New Jersey: Cherry Hill, Somerset, Wayne

New Mexico: Albuquerque
New York: Buffalo, Lake Success, Latham, Liverpool. Melville, New York City,

Rochester, White Plains

North Carolina: Charlotte, Greensboro, Greenville, Raleigh, Research Triangle Park

Ohio: Brooklyn Heights, Cincinnati, Columbus. Dayton

Oklahoma: Oklahoma City, Tulsa

Oregon: Lake Oswego

Pennsylvania: Blue Bell, Lancaster, Philadelphia, Pittsburgh

Rhode Island: Providence

South Carolina: Columbia

Tennessee: Knoxville, Memphis, Nashville

Tex.as: Austin, Dallas, EI Paso. Ft. Worth, Houston. San Antonio

Utah: Salt Lake City

Virginia: McLean, Norfolk, Richmond, Salem

Washington: Bellevue, Richland, Spokane

West Virginia: Charleston

Wisconsin: Brookfield, Grand Chute. Madison

DG-O.j97b

INTERNATIONAL OFFICES
Argentina: Buenos Aires

Australia: Adelaide, Brisbane, Hobart, Melbourne, Newcastle, Perth, Sydney

Austria: Vienna

Belgium: Brussels

Bolivia: La Paz

Brazil: Sao Paulo

Canada: Calgary. Edmonton, Montreal, Ottawa. Quebec. Toronto, Vancouver.

Winnipeg

Chile: Santiago

Columbia: Bogata

Costa Rica: San Jose

Denmark: Copenhagen

Ecuador: Quito

Egypt: Cairo

Finland: Helsinki

France: Le Plessis-Robinson. Lille. Lyon. Nantes, Paris, Saint Denis. Strasbourg

Guatemala: Guatemala City

Hong Kong
India: Bombay

Indonesia: Jakarta, Pusat

Ireland: Dublin

Israel: Tel Aviv

Italy: Bologna, Florence. Milan. Padua. Rome. Tourin

Japan: Fukuoka. Hiroshima. Nagoya, Osaka. Tokyo, Tsukuba

Jordan: Amman

Korea: Seoul

Kuwait: Kuwait

Lebanon: Beirut

Malaysia: Kuala Lumpur

Mexico: Mexico City, Monterrey

Morocco: Casablanca

The Netherlands: Amsterdam, Rijswijk

New Zealand: Auckland, Wellington

Nicaragua: Managua

Nigeria: Ibadan, Lagos

Norway: Oslo

Paraguay: Asuncion

Peru: Lima

Philippine Islands: Manila

Portugal: Lisbon

Puerto Rico: Hato Rey

Saudi Arabia: Jeddah, Riyadh

Singapore
South Africa: Cape Town, Durban, Johannesburg, Pretoria

Spain: Barcelona, Bibao. Madrid

Sweden: Gothenburg, Malmo, Stockholm

Switzerland: Lausanne, Zurich

Taiwan: Taipei

Thailand: Bangkok

Turkey: Ankara

United Kingdom: Birmingham. Bristol. Glasgow, Hounslow. London, Manchester

Uruguay: Montevideo

USSR: Espoo

Venezuela: Maracaibo

West Germany: Dusseldorf. Frankfurt. Hamburg, Hannover, Munich, Nuremburg.

Stuttgart

Ordering
Technical Publications

How to Get in
Touch with TIPS

•• Data General

1
.1
1
1

.1
1
1
1

Yes No

o o

o 0

o 0

o 0

Please help us improve our future
publications by answering the questions below.
Use the space provided for your comments.

Technical Products
Publications

CODlDlent FOrDl
Title: __________________ _

014-000686-00 DocurnentNo. ________________________ ___

o You (can, cannot) find things easily. 0 Other:

o Language (is, is not) appropriate.

o Technical terms (are, are not) defined
as needed.

o Learning to use the equipment

o As a reference

o As an introduction to the
product

o Visuals (are,are not) well designed.

o Labels and captions (are,are not) clear.

o Other:

o To instruct a class.

o Other:

Name: ________________________ Title: ____________________ _

Company: ___ Division: ________________________________ _

Address: ________________________ City: ____________________ _

State: ______ . Zip: _____________ Telephone: _____________ Date: ______ _

DG·06895

•• Data General
Data General Corporation, Westboro, Massachusetts 01580

FOLD FOLD

TAPE TAPE

FOLD FOLD

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 26 SOUTHBORO. MA. 01772

Postage will be paid by addressee:

t. Data General
ATTN: Technical Products Publications(C-138)
4400 Computer Drive
Westboro, MA 01581

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

_. DataGeneral
use.s

g POUP Installation Membership Form

Name _________________ Position ________________ Date ____ --

Company, Organization or School ____________________________________ _

Address _________________ City ____________ State ___ Zip _____ _

Telephone: Area Code ______ No. __________ Ext. ___________________ _

o OEM

o End User

o System House

o Government
o Educational

Qty. Installed I Qty. On Order

o AOS o ROOS

o OOS 0 Other

o MP/OS

Specify _____ _

o Algol

DDG/L

o Cobol

o PASCAL

o Business BASIC

o BASIC

o Assembler

o Fortran

o RPGll

o PLll

o Other

Specify ______ _

o Batch (Central)

o Batch (Via RJE)

o On-Line Interactive

o HASP o CAM

o RJE80 o XODIAC

o RCX 70 o Other

Specify

0 ________ _

From whom was your machine(s)
purchased?

o Data General Corp.

o Other
Specify ______ _

Are yoU interested in joining a
special interest or regional
Data General Users Group?

o~---------------

t., DataGeneral
Data General Corporation. Westboro. Massachusetts 01580. (617) 366-8911

FOLD

TAPE

FOLD

" III
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 26 SOUTHBORO, MA. 01772

Postage will be paid by addressee

t. Data General
ATTN: Users Group Coordinator (C-228)
4400 Com put er Drive
West bolO, MA 01581

FOLD

TAPE

FOLD

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

