

,

:!
[I

Ii
.11
I,
'I

Programmer's Reference Series

Eell PSE® S/130

4. DataGeneral
Data General Corporation. Westboro. Massachusetts 01581

NOTICE

Data General Corporation (DGC) has prepared this
manual for use by DGC personnel, licensees, and
customers. The information contained herein is the
property of DGC and shall not be reproduced in whole
or in part without DGC's prior written approval.

Users are cautioned that DGC reserves the right to
make changes without notice in the specifications and
materials contained herein and shall not be
responsible for any damages (including con
sequential) caused by reliance on the materials
presented, including, but not limited to typographical,
arithmetic, or listing errors.

NOVA, INFOS, and ECLIPSE are registered trademarks of
Data General Corporation, Westboro, Massachusetts.
DASHER and microNOVA are trademarks of Data
General Corporation, Westboro, Massachusetts.

FIRST EDITION
(First Printing, June 1979)

Ordering No. 014-000621
C Data General Corporation, 1979

All Rights Reserved
Printed in the United States of America

Rev. 01. June 1979

PREFACE

This manual describes the instruction set of the ECLIPSE®SI130 computer. We assume
that our readers have a basic knowledge of assembly-language programming and of
the binary, octal, and hex numbering systems. For a review of these numbering
systems, Bee Appendix D of this manual.

For a description of the assemblers available for the
S/130, see the following manuals:

• Absolute Assembler (DGe No. 093-000(17)

• Ex.tended Assembler (DGe No. 093-000040>

• Macro Assembler (DGe No. 093-000081)

• AOS A.facro Assembler Reference Manual (DGe
No. 093-000192)

The following subjects are covered in this manual:

Chapter 1: Overview of the S/130; options available;
software and peripheral support available.

Chapter 2: Data and addressing formats used.

Chapter 3: Description of the standard instruction
sets.

4. DataGeneral

Chapter 4: Description of the optional instruction
sets, including the Floating Point, Character, and
Map Instruction Sets.

Chapter 5: Description of the 110 instruction set
including use of the interrupt system and Vector
instruction.

Chapter 6: Use of the console.

Appendices

• Review of binary, octal and hexadecimal
numbering systems.

• Summary of instruction execution times.

• Tables of 110 device codes.

• Tables of ASCII codes.

.----.. -.- .. - .. --.. --.. __ _------_._--

......... _ _---_.-.. _---------------

---------_.

TABLE OF CONTENTS

INTRODUCTION TO THE ECLIPSE 5/130

INTRODUCTION
BASIC FEATURES
OPTIONAL FEATURES
SUPPORTING EQUIPMENT AND SOFTWARE
1/0 Devices
Software
Other Documentation

DATA AND INSTRUCTION FORMATTING

INTRODUCTION
Bit Numbering Convention

DATA FORMATS
I nteger Format
Floating Point Format

Sign

Exponent

Mantissa

Logical Format
Byte Format
Decimal Format

ADDRESSING CONVENTIONS

Word Addressing
Addressing Modes
Absolute Addressing Mode
P.C. Relative Addressing Mode
Accumulator Relative Addressing Mode
Direct and Indirect Addressing
Auto.-Incrementing and -Decrementing

BYTE ADDRESSING
BIT ADDRESSING
ADDRESSING WITH THE MAP

._--- . ----_._--

11·8

II .. '
II .. '
II·'

11-'
11 .. 10
11.10
11~1'
1I!iw1'
11 .. 1'1

:111 •• ,.,'
111-1
111 .. 1
,,1·3
lu .. a
111.1

,"',1,'
1.1+1
I;II~

·"t~.
•• 1 .. 1.2

TABLE OF CONTENTS <Continued)

RESERVED STORAGE LOCATIONS

PROGRAM EXECUTION

Sequential Operation
Program Flow Alteration
Program Flow Interruption

INSTRUCTION FORMAT
Memory Address Formats

Immediate Formats
Two-Accumulator-Multiple Operation Format

1/0 Instruction Format

INSTRUCTION SETS

INTRODUCTION

CODING AIDS
FIXED POINT ARITHMETIC

Programming Examples
Two-Accumulator-Multiple Operation Instructions

Double-Precision Arithmetic

Double-Precision Addition

Double-Precision Subtraction

LOGICAL OPERATIONS

Example
CONDITIONAL INSTRUCTION SET

Programming Examples
BYTE MANIPULATION

Programming Example

BIT MANIPULATION
Programming Example

BLOCK MANIPULATION

Programming Example
THE STACK

Introduction
Stack Control Words

Stack Pointer

Stack Limit

Stack Fault Address

Frame Pointer

ii

T ABLE OF CONTENTS <Continued)

Stack Protection
Stack Overflow

Stack Underflow

Stack Protection Fault
Stack Overflow Protection

Stack Underflow Protection

Stack Fault Handler

Initializing the Stack Control Words

Stack Pointer

Stack Limit

Stack Fault Address

Frame Pointer

Examples
STACK INSTRUCTIONS
Programming Example

PROGRAM FLOW ALTERATION
SUBROUTINE CALLS AND RETURNS

Introduction
Properties of Subroutine Calls and Routines
Programming Examples

Example 1

Example 2

Example 3

EXTENDED OPERATION FEATURE

OPTIONAL FEATURES OF THE ECLIPSE S/130

INTRODUCTION
MEMORY ALLOCATION AND PROTECTION

Address Translation
Sharing of Physical Memory
Types of Maps
Supervisor Mode
MAP Protection Capabilities

Validity Protection

Write Protection

Indirection Protection

1/0 Protection

iii

T ABLE OF CONTENTS (Continued)

MAP Protection Faults
Load Effective Address Mode
Initial Conditions

MAP INSTRUCTIONS
FLOATING POINT ARITHMETIC

Floating Point Registers

Guard Digit
Floating Point Fault Conditions

Floating Point Trap
CHARACTER INSTRUCTION SET

Programming Examples
WRIT ABLE CONTROL STORE

Placing Microcode In WCS

INPUT IOUTPUT

INTRODUCTION
THE S/130 1/0 SYSTEM

Programmed 1/0

Data Channel 1/0

Device Codes
Busy and Done Flags

Data Channel
1/0 INSTRUCTIONS
Programming Example

1/0 Interrupts
Interrupt System Definitions

Processing an Interrupt
Priority Interrupt System
Setting Up a Priority System
Priority Interrupt Handler

Stack Changes
INTERRUPT INSTRUCTIONS
SPECIAL CENTRAL PROCESSOR INSTRUCTIONS
USE OF THE VECTOR INSTRUCTION

Common Process
Mode A

iv

--~-------"----- ------- •......... --.~.~-.. ---.. - •. _---------

TABLE OF CONTENTS <Continued)

ModeB

Mode B - Part I

Mode C - Part I

Mode 0 - Part I

Mode E - Part I

Mode B through E - Part II

Programming Example
ERROR CHECKING AND CORRECTION

Method of Operation
REAL TIME CLOCK
POWER FAil/AUTO-RESTART

BATTERY BACKUP

CONSOLE

INTRODUCTION
CONSOLE SWITCHES

Reset-Stop
Deposit Examine
Exam-Exam Nxt

Inst-Micro/lnst

PR-load-Exec

Start-Cont
Dep-Dep Nxt
Address Compare

Off

Monitor

Stop/Store

Stop/Addr

Power
PROGRAM lOADING

Self Test Function

--_._-- -_._--

v

T ABLE OF CONTENTS <Continued)

ST ANDARD 1/0 DEVICE CODES
OCT AL AND HEXADECIMAL CONVERSION
ASCII CHARACTER CODES
BINARY, OCTAL AND DECIMAL NUMBERING SYSTEMS
COMPATIBILITY WITH NOVA LINE COMPUTERS
INSTRUCTION EXECUTION TIMES
INSTRUCTION USE EXAMPLES

INSTRUCTION INDEX

BIBLIOGRAPHY

vi

This page intentionally left blank.

vii

----------.

CHAPTER I
INTRODUCTION TO THE ECLIPSE®S/130

INTRODUCTION
Data General Corporation's ECLIPSE S/130
computers are general purpose computers intended
for use in all types of system applications, including
instrumentation and control, communications, and
data proce88ing. The important features of the S/130
are summarized below, and covered in detail in the
chapters that follow.

BASIC FEATURES
The basic ECLIPSE S/130 has the following features:

• Word length of 16 bits (two 8-bit bytes).

• Four 16-bit accumulators.

• Direct and indirect addressing of 32,768 words
(64K bytes) of memory.

• Both programmed and data channel I/O for
effi(~ient data transfer between main memory
and peripheral devices.

• Priority interrupt handling, with vectoring
capability for automatic dispatch to the correct
interrupt handler.

• Main-memory resident push-down stacks for
temporary information storage, with a
separately definable stack areas for the
operating system, each user, and the priority
interrupt handler.

• Asynchronous memory and device operation for
maximum speed and flexibility.

• Microprogrammed instruction sets.

• Control store parity checking.

OPTIONAL FEATURES
In addition to the above, the following optional
features are also available:

• Memory Allocation and Protection (MAP)
which increases usable memory to 131,07216-bit
words (256K bytes).

• Floating point instruction set providing up to 17
significant decimal digits within a range of
approximately 5.4 X 10'79 to 7.2 X 10 + 15 Four
64-bit accumulators are provided for floating
point operations.

• Character instruction set for increased
flexibility when manipulating character strings.

• Error Checking and Correction (ERCC) to detect
and correct single-bit memory errors.

• Write able Control Store (WCS) providing 1024
microstore locations for storing user-created
microinstructions.

• User Control Store (UCS) providing 2048
microstore locations for a user-specified custom
instruction set.

• Battery backup for preserving semiconductor
memory during short power failures.

• Automatic power-faillauto-restart capability.

1-1of2

SUPPORTING EQUIPMENT AND
SOFTWARE

The usefulness of the S/130 is increased by the variety
of I/O devices and software available for it. Below is a
summary of available I/O devices and software.

1/0 Devices

• Teletypewriters, video displays, line printers,
and real-time clock.

• Paper tape, magnetic tape and disc storage units.

• Multiplexors and telecommunications adapters.

• Synchronous and asynchronous interfaces,
including an IBM 360/370 interface.

Software

• The Stand-Alone Operating System (SOS), Real
Time Operating System (RTOS), Real Time
Disk Operating System (RDOS) and Mapped
RDOS for systems requiring one or two users.

• The Advanced Operating System (AOS) for
systems requiring more than two users.

• An assembler and macro assembler for
translating assembly-language mnemonics into
machine-language binary representation.

• A microcode assembler and loader for use with
the WCS feature.

• Software to support higher-level languages such
as ALGOL, EXTENDED BASIC, and
FORTRAN5.

1-2

Other Documentation
Below is a list of other documentation you might find
useful:

• S/130 Technical Manual (DOG. No. 015-0000(0)

• Interface Designer's Reference (DOC No.
015-000031)

• Programmer's Reference, Peripherals (DOC No.
015-000021)

• RDOS Reference Manual, (DOC No. 093-0000(5)

• Introduction to RDOS, (DOC No. 093-000083)

• Learning to Use Your RDOS, (DOC No.
093-000223)

• AOS Programmer's Manual, (DOC No.
093-000120)

• Introduction to A OS, (DOC No. 093-000121)

• A OS Microassembler Reference Manual, (DOC
No. 093-000192)

• Learning to Use Your A OS, (DOC No.
093-000196)

• A OS Software Documentation Ouide (DOC No.
093-000202)

CHAPTER II
DATA AND INSTRUCTION FORMATTING

INTRODUCTION
The formatting conventions used for entering data
and instructions in the S/130 are described in this
chapter. Some of the conventions used require a
knowledge of the binary, octal, and hexadecimal
numbering s:ystems. See Appendix D for a review of
these numbering systems.

Bit Numbering Convention

In the S/130, bits contained in bytes and words are
numbered from left to right, with the leftmost
(high-order) bit always numbered 0. Numbering of
bits is always done in the decimal numbering system.

WORD WORD
___ -------A v~--------~A~--------_

BYTE BYTE
2 1 4 $..

234567

11-1 of 14

,--------------------------'----- --

DATA FORMATS

I nteger Format

We represent a signed integer by a twos-complement
number in one or more 16-bit words, with bit 0 of the
first word representing the sign and the remaining
bits representing the magnitude. The sign of the
number is positive if the sign bit is 0 and negative if
the sign bit is 1.

We represent an unsigned integer by a binary
quantity using all the bits of one or more 16-bit words
to represent the magnitude.

SIGNED INTEGERS

SINGLE PRECISION:

II I
01 15

t~
SIGN

MULTIPLE PRECISION:
II II .---------.1 ~ ~I ____ ---..JI r 15 0 15 0 15

SIGN MAGNITUDE

UNSIGNED INTEGERS

SINGLE PRECISION:
1 ,

o 15

y

MAGNITUDE

MULTIPLE PRECISION:
I 1 'I -------., ~I \,-____ ----'1
o 15 0 15 \ 0 15

MAGNITUDE

Single precision integers are one word <16 bits) long,
and multiple precision integers are two or more words
long. As an example, the table below shows the
possible range of single and double precision numbers
represented by this format:

Single Precision Double Precision
Unsigned o to 65,535 o to 4,294,967,295
Signed -32,768 to -2,147,483,648 to

+32,767 +2,147,483,647

In addition,' a carry bit is provided. A change in the
value of the carry bit indicates a carry out during an
add or subtract operation.

II-2

Floating Point Format

Floating point format provides a much larger range
than integer format, at the expense of some precision.
It also provides the capability to operate on fractions.
The maximum range of floating point format is
equivalent to a 16-word multiple precision integer. In
addition, floating point operations are executed faster
than most multiple precision integer operations.

The floating point number is represented by

• a fractional part, called the mantissa, which is
always adjusted to be greater than or equal to
1/16 and less than 1 (i.e., normalized),

• an exponent, which is adjusted with the
mantissa to maintain the correct value of the
number,

• a sign.

SINGLE PRECISION:

" I I L..-I ___ -il
01 78 15 0 15

i
~)\
--y--- y

EXPONENT MANTISSA

SIGN

DOUBLE PRECISION:
II t II ~ -----.1 I I
01 78 15 0 15 ';,-O-----,.,J15

t'-v---'\
\ EXPONENT

SIGN

r
MANTISSA

15

The magnitude of a floating point number is defined
tobe:

(MANTISSA) X (16 RAISED TO THE POWER OF THE TRUE VALUE OF THE
EXPONENT)

Zero is represented by a floating point number with
all bits zero, known as true zero. When a calculation
results in a zero mantissa, the number is
automatically converted to a true zero.

Sign

Bit 0 of the first word is the sign bit. If the sign bit is 0,
the number is positive. If the sign bit is 1, the number
is negative.,

Exponent

Bits 1-7 contain the exponent. We use exce88 64
representation in the exponent field to obtain both
positive and negative exponents. In this
representation, the value in the exponent field is 64
greater than the true value of the exponent. This is
illustrated below:

Exponent Field True Value of Exponent

0 -64

64 0

127 63

Mantissa

Bits 8-31 (single precision) or bits 8-63 (double
precision) contain the mantissa. The binary point is
assumed to be to the left of bit 0 of the mantissa (bit 8
of the whole number). In order to keep the mantissa in
the range of 1/16 to 1, the results of each floating point
calculation are normalized. A mantissa is normalized
by shifting it left one hex digit (4 bits) at a time, until
the high-order four bits represent a nonzero quantity.
For every hex digit shifted, the exponent is decreased
by 1. Since the mantissa is shifted 4 bits at a time, it is
possible for the high-order three bits of a normalized
mantissa to be zero.

~------- ._-_. -----_._-------_._---

II-3

Logical Format

Logical format is used when manipulating logical
entities. Each bit of a 16-bit word is treated as a
separate logical entity. When two words are involved
(logical AND or XOR, for example) only
equal-numbered bits of each word interact. Examples
of logical operations include:

• forming the logical AND of two words,

• forming the logical complement of a word,

• shifting the contents of a word left or right.

Byte Format

Byte format is used when manipulating bytes,
particularly alphanumeric characters. Each 8-bit byte
is treated as an unsigned binary integer and is
selected by a 16-bit byte pointer (See Addre88ing,
below).

Decimal Format

Unsigned decimal numbers are handled one decimal
digit at a time. Each decimal digit is represented by
bits 12-15 of a 16-bit word. Only the values 0-9 16 are
used; the carry bit is used for a decimal carry or
borrow.

ADDRESSING CONVENTIONS
The various methods of addressing memory locations
in the 8/130 give the programmer considerable
flexibility when storing and retrieving data, or
tranferring control to a different procedure.

Each addressed location in main memory consists of a
16-bit word. The first word in memory has the
address 0, the next has the address 1, the next 2, and
so forth. The memory location after location 777778 is
location 0.

Word Addressing
The following definitions are useful for understanding
word addressing in the 8/130:

SHORT CLASS:

AC OR EXTENDED OP CODE

EXTENDED CLASS:

DEPENDS ON INSTRUCTION

I ' i

I IN~EX I b~!~ I \INDEX \ I
o 1 2 3 1 4 5 6 I 7 8 I 9 110 I 11 I 12 113 I 14 I 15

I@o I DISPLACEMENT I
1 I 2 I 3 I 4 I 5 I 6 1 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

Addressing Modes - Three methods of addressing using
a displacement from some reference point to find the
desired address. Different modes use different
reference points.

Indirect Addressing - A method of addressing which
uses the first address found as a pointer to another
address which, in turn, may be used as a pointer to yet
another address, etc. A series of indirect addresses is
called an indirection chain.

11-4

Index Bits - Bits in the instruction which control the
addressing mode used when executing this
instruction.

Indirect Bit - A bit in the instruction or address which
controls the indirection chain at each step of the
addressing process.

Displacement Bits - Bits in the instruction which
control the displacement distance, in memory
locations, between some reference point <determined
by the mode) and the desired address.

Effective Address Calculation - Logical process of
converting the index, indirect, and displacement bits
into an address to be used by the instruction.

Intermediate Address - The address obtained by the
effecti ve address calculation before testing for
indirection.

Page Zero - Locations 0-3778 in memory.

When the index bits are 00, the displacement is
considered an unsigned integer. When the index bits
are 01, 10, or 11, the displacement is considered a
signed integer. Below is a table for the range of the
displacement field under various conditions.

Index Bits Range of Displacement Field

Short Class Extended Class

00 o to 3778 o to 777778
or or

o to 25510 o to 3276810

01 -200 to + 1778 -400008 to 377778
10 or or
11 -128to+127,o -16,38410 to + 16,38310

Addressing Modes
Word addressing in the 8/130 can be done in the
following modes:

• absolute addressing

• P.C. (program counter) relative addressing

• accumulator relative addressing

In addition, direct or indirect addressing can be used
in any of these modes. By choosing the proper mode at
the appropriate time, you can obtain access to any
address in your logical address space.

The figurEl below illustrates the three addressing
modes.

SHORT CLASS

ABSOLUTE {
ADDRESSING

0

3378

{

PC

PC-RELA TIVE PC
ADDRESSING

PC

-2008

-
+1778

{

AC2

AC-RELATIVE
ADDRESSING AC2

AC2

-2008

-
+1778

{

AC

AC-RELATIVE AC3
ADDRESSING

AC3

3-200

-
+1778

DG-04458

MAIN MEMORY

PAGE ZERO

EXTENDED CLASS

ABSOLUTE,
PC-RELATIVE,
AC-RELATIVE
ADDRESSING

11-5

Absolute Addressing Mode
In absolute addressing mode, the effective address is
set equal to the unmodified displacement. AB a result,
the short class of instructions can only address
locations in the range 0-3778 in the absolute mode
(short class instructions are restricted to 8 bits in the
displacement) .

Page zero thus becomes very important because any
memory-reference instruction can address any word
in this page. It is used as a common storage area for
constants that are frequently referenced throughout
the program.

Extended class instructions can address any memory
location using the absolute addressing mode.

P.c. Relative Addressing Mode
In P.C. relative addressing mode, the effective address
is found by adding the displacement to the contents of
the program counter (i.e., to the address of the
memory-reference instruction itself).

Accumulator Relative Addressing Mode
In accumulator relative addressing mode, the effective
address is found by adding the displacement to the
contents of the accumulator indicated by the index
bits (you may use either AC2 or AC3).

Direct and Jndirect Addressing
Direct addressing uses the intermediate address
without modification.

Indirect addressing uses the intermediate address as a
pointer to the next address. If bit 0 of the next address
is 1, this address also is used as a pointer to another
address. The indirection chain is continued until an
address is found with bit 0 equal to O. This address is
then used as the address of the data.

Any number of indirection levels is permitted in the
8/130, but in mapped systems, indirect protection is
available which can limit indirections to 15 levels (see
the MAP section, Chapter IV).

-----_ ... _---_._----_. __ .. __ ._--_ _ ... _----_._ .. _----

Auto-Incrementing and -Decrementing
If the intermediate address of a short class instruction
is in the range 20-278 , and the indirect bit is 1, the
contents of the addressed location are incremented by
one. The incremented value is used to continue the
addressing chain.

If the intermediate address of a short class instruction
is in the range 30-378, and the indirect bit is 1, the
contents of the addressed location are decremented by
one. The decremented value is used to continue the
addressing chain.

NOTE The state of bit 0 before the increment
or decrement determines whether the
indirection chain is continued. For example:
Assume an auto-increment location contains
1777778 (all bits = 1 including bit 0), and the
location is referenced as part of an indirection
chain. After incrementing, the location
contains all zeros. However, bit 0 was 1 before
the increment, so 0 will be the next address m
the chain, rather than the effective address.

Below is a flow diagram of the addressing process.

DG-00933

II-6

BYTE ADDRESSING
There are eight instructions that use byte addressing
in the S/130. Six of these are the instructions in the
character instruction set.

These instructions address bytes using a 16-bit byte
pointer. Bits 0-14 of the byte pointer contain the
memory address of a 2-byte word. Bit 15 <the byte
indicator) indicates which byte of the addressed
location will be used. If bit 15 is 0, the high-order byte
(bits 0-7) will be used. If bit 15 is 1, the low-order byte
(bits 8-15) will be used. See the figure below.

BITS 0-14
ADDRESS WORD '-----m~~

DG-00930

11-7

BIT ADDRESSING
There are five instructions that use bit addressing in
the S/130. These instructions address bits using a
32-bit (2-word) bit pointer.

Bit 0 of the bit pointer is the indirect bit. If this bit is 1,
the indirection chain (using bits 1-15 for the address
each time) will be followed until a word is found with
bit 0 set to O. Bits 1-15 of this word become bits 1-15 of
the bit pointer, and bits 0-15 of the next word become
bits 16-31 of the bit pointer.

The address of the desired bit is obtained as follows:

The address formed by the positive number contained
in bits 1-15 of the bit pointer (the reference address) is
added to the address formed by the 12-bit positive
number contained in bits 16-27 (the displacement
address). The resulting address points to the word
containing the desired bit. Bits 28-31 of the bit pointer
contain a 4-bit positive number which is the number
of the desired bit in the addressed word. None of this
computation affects the original contents of the bit
pointer.

Below is a diagram of the bit-addressing process.

100 101 102 103 104 105 106 107 110 111 112 113

ADDRESSING WITH THE MAP
The MAP increases the amount of usable physical
address space, making multi-user systems practical
since each of several users can then have a full 32K of
memory if that is required. Installation of a MAP has
no effect on addressing from the programmer's point
of view, unless the MAP itself is being programmed.
The maximum amount of logical address space
available to the programmer is 32,768 words.

The MAP intercepts memory references and
translates the 15-bit logical address into a 17-bit
physical address. The translation functions are
programmed into the MAP, but the translation
process is invisible to the regular user.

NOTE For those unmapped systems with less
than 32K, the maximum useful address space
is equal to the amount of memory available.

LOCATION LOCATION LOCATION
ADDRESS NAME FUNCTION

(OctaD

0 1/0 RETURN Return address from 10
ADDRESS interrupt Also first

instruction of Auto-restart
routine

1 1/0 HANDLER Address of the 1/0
ADDRESS interrupt handler

Indirectable

2 SC HANDLER Address of the SYSTEM
ADDRESS CALL instruction handler

Indirectable

3 PF HANDLER Address of the protection
ADDRESS fault handler

Indirectable

4 VECTOR STACK Address of the top of the
POINTER VECTOR STACK

Non-indirectable.

5 CURRENT MASK Current interrupt priority
mask

6 VECTOR STACK Address of the last
LIMIT normaly usable location

in the VECTOR stack.

7 VECTOR STACK Address of the VECTOR
FAUL T ADDRESS stack fault handler.

Indirectable

II-8

RESERVED STORAGE LOCATIONS
There are 32 reserved storage locations in the 8/130.
These locations are used for specific functions by the
CPU and should not be used for other functions.

The addresses of these locations, their names, and
their functions are given below. The notation
indirectable means that bit 0 may be set to indicate
that this is an indirect address.

Note that the first 4 locations in the table must be
physical locations. The next 4 could be physical or
logical, depending on whether the Vector instruction
is executed in mapped mode or not (generally it is
not). The last 8 are all logical locations.

LOCATION LOCATION LOCATION
ADDRESS NAME FUNCTION

(Octall

20-27 AUTO-INCO Auto-incrementing
through locations
AUTO-INC7

30-37 AUTO-DECO Auto-decrementing
through locations.
AUTO-DEC7

40 ST ACK POINTER Address of the top of the
stack. Non-indirectable

41 FR:AME POINTER Address of the start of the
current stack frame minus
1 Non-indirectable

42 STACK LIMIT Address of the last
normally usable location
in the stack

43 STACK FAUL T Address of the stack fault
ADDRESS handler. Indirectable

44 XOP ORIGIN Address of the
ADDRESS beginning of XOP table

Non-indirectable

45 FLOATING POINT Address of the floating
FAUL T ADDRESS point fault handler

Indirectable.

46 Reserved for future use

47 Reserved for future use.

PROGRAM EXECUTION

Sequential Operation
A 15-bit register called the program counter always
contains the address of the instruction currently
being executed. The program counter is incremented
by one after each instruction. It can address the
complete logical address space, i.e., 777778 (32,768 10)

locations. 'rhe address after 777778 is 0, and no
indication is given when the counter rolls from 777778
to 0 in the course of sequential processing.

Program Flow Alteration
The progrflm flow can be altered from sequential
operation by the programmer in two ways. Jump
instructions alter the program flow by inserting a
new value into the program counter. Conditional skip
instructions can alter the program flow by
incrementing the program counter an extra time if a
specified test condition is true. In either case,
sequential operation continues with the instruction
addressed by the updated value of the program
counter.

NOTE Do not U8e a conditional 8kip
immediately before an extended cla88 (2-word)
in8truct;ion8. Doing 80 will re8ult in an attempt
to execute the 8econd word of the in8truction a8
a 8hort cla88 in8truction.

T
INCREASING
ADDRESSES N

1 !
1 !
~-~
DG-00543

JUMP

SKIP

I
SEQUENTIAL
PROGRAM
FLOW

JUMP
PROGRAM
FLOW

SKIP
PROGRAM
FLOW

II-9

Program Flow Interruption
The normal flow of a program may be interrupted by
external or exceptional internal conditions such as
I/O interrupts or various kinds of faults. When this
occurs, the address of the next sequential instruction
in the interrupted program is saved so that after the
interrupt is serviced, control will return to the right
place. The address of the starting instruction for the
proper fault or interrupt handler is then placed in the
program counter and sequential operation continues
within that program. When the fault or interrupt
handler has serviced the interrupt, control is returned
to the interrupted program at the saved address.

I
INCREASING
ADDRESSES

~

I

j
j

I
N
S
T
R
U
C
T
I
o
N
S

~
DG-00544

SEQUENTIAL
~--~ PROGRAM

FLOW 1/0
INTERRUPT
OCCURS

INSTRUCTION FORMAT
The format for each instruction is shown at the
instruction description. Most of the formats are quite
simple and need no additional explanation. Those
that do are discussed in this section.

Below are diagrams of the formats which are
discussed below.

IMMEDIATE FORMAT

SHORT CLASS:

11 IIMMEDI AC I I

01
1
23145

1
617'

OP CODE I
8 I 9 110 I 11 1 12 113 1 14 1 15

EXTENDED CLASS:

I OP CODE I AC I OP CODE I
o 1 1 I 2 3 1 4 5 I 6 I 7 1 8 I 9 110 I 11 1 12 113 1 14 I 15

IMMEDIATE I
o I 1 1 2 1 3 I 4 1 5 1 6 1 7 I 8 I 9 110 1 11 1 12 113 1 14 I 15

TWO ACCUMULATOR-MULTIPLE OPERATION FORMAT

o 1 1

o I 1 I

I/O FORMAT

AC I OP CODE ICONTROLI DEVICE CODE I
3 I 4 5 I 6 I 7 8 I 9 10 I 11 I 12 In I 14 I 15

Memory Address Formats
There are four types of memory address formats - two
with and two without an accumulator reference. The
memory address portion of the format is identical,
however, and was discussed in detail in the section on
Addressing Conventions. When applicable, include the
identity of the accumulator as indicated in the format
diagrams.

Immediate Formats
When a constant is needed only once or twice in a
program, it is more efficient to obtain it by using an
immediate rather than retrieving it from memory. An
immediate is a constant which is stored in the
instruction word itself, or in the next memory word,
and is coded along with the instruction.

The short class of immediate instructions codes the
value of the immediate minus 1 into two bits of the
instruction word. This permits immediates in the
range 1-4 using just 2 bits. When the instruction is
executed, the value in the immediate field is
incremented by 1 before it is used.

The extended class of immediate instruction codes the
value of the immediate into the second instruction
word with no change.

Two Accumulator-Multiple Operation Format
The two accumulator-multiple operation instructions
use an arithmetic unit which can perform several
operations on two data words, using one instruction.
The logical organization of the arithmetic unit is
illustrated below.

[J(; (HI.'I:.'7

II-10

ACD
16 BITS 17 BITS

LOADINO LOAD

The function generator is capable of providing 8·
functions: Add, Subtract, Negate, Add Complementl

Move, Increment, Complement, and AND. Bits 5, 6, and
7 contain the operation code which controls the
function generator.

All the instructions using this arithmetic unit operate
on the contents of 1 or 2 accumulators and the carry
bit. Bits 1 and 2 specify the accumulator containing
the souree operand, and bits 3 and 4 specify the
accumulator containing the destination operand. Bits
10 and 11 specify the initial value of the carry bit.

These instructions specify a shift operation, which is
performed by the shifter in the arithmetic unit. The
shifter operates on the 17-bit quantity consisting of
the 16-bit output of the AL U and the carry bit. The
shifter can rotate this quantity left or right, or swap
the two bytes in the accumulator. Bits 8 and 9 control
the operation of the shifter.

Bits 13-1:5 specify the skip test. The arithmetic unit
can test the result of the function generator/shifter
combination for various conditions, and skip or not
skip the next instruction depending on the results of
the test.

Bit 12 is the no-load bit. If this bit is 1, the results of
the sllift operation are not loaded into the destination
accumulator, but all the other operations (such as
skip tests) take place.

NOTE These instructions must not have both
the No-Load and the Never-Skip options
specified at the same time. These bit
combl:nations are used by other instructions in
the instruction set.

The tabh~ below summarizes the various operations
that can be performed by the two
accumula.tor-multiple operation instruction. The
characters in the column title Format Designator
refers to the designator used in the format diagram.
The Codf~d Character is the character recognized by
the assenlbler that produces the Result Bits shown in
the next eolumn.

II-11

FORMAT

DESIG.

C

SH

SKIP

COOED
CHARACTER

(option omitted)

Z

0

C

(option omitted)

L

R

S

(option omitted)

(option omitted)

SKP

SZC

SNC

SZR

SNR

SEZ

SBN

RESUL T
BITS OPERATION

00 Do not Initialize the carry bit

01 Initialize the carry bit to 0

10 Initialize the carry bit to 1

11 Initialize the carry bit to the
complement of its present
value

00 Leave the result of the
arithmetic or logical operation
unaffected

01 Combine the carry and the
1 6 - bit result into a 1 7 - bit
number and rotate it one bit
left

10 Combine the carry and the
1 6'- bit result into a 1 7 - bit
number and rotate it one bit
right

11 Exchange the two 8 - bit
halves of the 16 - bit result
without affecting the carry

0 Load the result of the shift
operation into ACD

1 Do not load the result of the
shift operation into ACD and
restore carry to its original
state

000 Never skip

001 Always skip

010 Skip if carry = 0

011 Skip if carry =F 0

100 Skip if result = 0

101 Skip if result =1= 0

110 Skip if either carry
or result = 0

111 Skip if both carry
and result =1= 0

The following diagrams illustrate the operation of the
shifter.

Coded
Character

L

Shifter Operation

Left rotate one place Bit 0 IS rotated Into the carry
position, the carry bit Into bit 15

~~ ____ 0_-15 ______ ~1:J
R Right rotate one place Bit 1 5 is rotated Into the

carry position, the carry bit Into bit 0

L~~I ____ 0_-15 ____ ~~
S Swap the halves of the 16-blt result The carry IS

not affected

11-12

1/0 Instruction Format
The I/O instructions control the transfer of data
between the computer and the various I/O devices.
This is done through the manipulation of a Busy and
Done flag in each device (see Chapter V). Depending
on the instruction, bits 8 and 9 contain a code which
either changes the value of the flags or tests one of
them for a certain value.

The tables below summarize the operations
performed by the optional mnemonics used in I/O
instructions. The first table applies to those
instructions which change the Busy and Done flags.

CLASS CODED RESULT

ABBREV. CHARACTER BITS OPERATION

f (option omitted) 00 Does not affect the Busy and
Done flags

S 01 Start the device by setting
Busy to 1 and Done to 0

C 10 Idle the device by setting both
Busy and Done to 0

P 11 Pulse the special in-out bus
control line; the effect, if any,
depends on the device

The next table applies to the I/O SKIP instruction
which tests the Busy and Done flags.

CLASS CODED RESULT
ABBREV. CHARACTER BITS OPERATION

t BN 00 Tests for Busy = 1

BZ 01 Tests for Busy = 0

DN 10 Tests for Done = 1

DZ 11 Tests for Done = 0

The last table applies to 110 instructions with a device
code of '778. These instructions are used by the
Interrupt System and for special CPU functions.
Instead of manipulating or testing the Busy and Done
flags, theBe instructions operate on the Interrupt On
and Power Fail flags.

CLASS CODED RESULT

ABBREV. CHARACTER BITS OPERATION

f (option omitted) 00 Does not affect the state of
the Interrupt On flag

S 01 Set the Interrupt On flag to 1

C 10 Set the Interrupt On flag to 0

P 11 Does not affect the state of
the Interrupt On flag (Used
only in the VCT instruction)

t BN 00 T est for Interrupt On = 1

BZ 01 Tests for Interrupt On = 0

DN 10 Tests for Power Fail = 1

DZ 11 Tests for Power Fail = 0

._-_ .. _--------,

Bits 10-15 contain the device code which identifies the
liD device being addressed by the instruction. In some
cases, bits 3 and 4 identify an accumulator used in the
data transfer.

II-13

--------_._---

II-14

CHAPTER III
INSTRUCTION SETS

INTRODUCTION
This chapter contains a complete description of the
machine-level instructions in the S/130, including:

• the m.nemonic recognized by the assembler;

• the bit format required;

• the format of any arguments involved;

• a functional description of each instruction.

In addition, examples are included to clarify the
function of the instruction.

CODING AIDS
Various c:onventions and abbreviations are used
throughout this manual to aid the programmer in
properly eoding each instruction. Their definitions
are given below:

[], [J Square brackets indicate that the enclosed
symbol (e.g., [,skip)) is an optional operand or
mnemonic, and may be coded or not,
depending upon whether or not the
associated option is desired.

BOLD Operands or mnemonics printed in boldface
must be coded exactly as shown. For example,
the mnemonic for the Move instruction is
coded MOV.

italic Operands or mnemonics printed in italics
require a specific substitution. Replace with a
number or symbol that provides the
assembler with the proper accumulator
number, user-defined symbol, address, etc., as
appropriate.

The following abbreviations are used throughout this
manual:

Either signed two's complement integer in
the range -32,768 to +32.767 or unsigned
integer in the range 0 to +65,535.

N Integer in the range 0-3

n Integer in the range 1-4

AC Accumulator

ACS Source Accumulator

ACD Destination ~ccumulator

FPAC Floating Point Accumulator

FACS Floating Point Source Accumulator

FACD Floating Point Destination Accumulator

III-1 of 32

------ .. _---------------_ .. _ .. _. "-_."'-------"-_.---"-"".""

,------------ ASSEMBLER CONVENTIONS ---------------,

Some of the more important relationships between
assembler and machine instructions are discussed
below. For a detailed discussion of the assembler, see
one of the assembler manuals listed in Chapter I.

RELOCATABILITY

The Relocatable Loader (DGC No. 093-000130)
uses the concept of relocatability to make memory use
more efficient. Code which does not have to be in
some particular memory location is so designated by
the assembler, permitting the loader to place it
wherever is most convenient. Most code is in this
catagory. An example of code which must be placed at
a particular location is the code defining the stack.

PSEUDO-OPS

The assembler expects to find certain expressions in
the user program which control the operation of the
assembler, but do not directly control the processing
of the program after assembly. These expressions are
called pseudo-ops. An example of a pseudo-op is
.END which marks the end of a source program.

PAGE ZERO

Extended class memory reference instructions can
address anyone of 32,768 words (i.e., all of the
maximum logical address space) in memory using
absolute addressing (see Chapter 2, Instruction
Formats). The short class of instruction, however,
has only 8 bits in the displacement field, and therefore
can only address locations 0-377 8 (0-255 10) using
absolute addressing. The first 256 words of memory
are therefore given a special status, because they are
accessible by any memory reference instruction
anywhere in the program, using absolute addressing.
The assembler manuals refer to these first 256
locations as page zero.

Variables can be stored in relocatable form in either
page zero, or in the rest of memory. The assembler
uses the pseudo-op .ZREL to indicate that the lines
following (until otherwise indicated) are to be
assembled in relocatable form in page zero. The
pseudo-op .NREL indicates relocatable code outside of
page zero and .ABS indicates nonrelocatable code
placed in the specified location.

III-2

RADIX

The assembler assumes that all numbers in the source
program are in the numbering system corresponding
to the current radix. The default radix is base 8, or
octal. Decimal, hexadecimal and binary are other
commonly used radices. The assembler radix can be
changed using the .RDX pseudo-op.

MEMORY REFERENCE INSTRUCTIONS

In the instructions which calculate an effective
address, the assembler expects the following coding
conventions to be used:

Coding the symbol @ anywhere in the
effective address operand string sets the
indirect bit to 1.

Coding a comma followed by one of digits
0-3 as the last operand of the operand string
sets that value in the index field. Use the
symbol dot U to set the index bits to 01. Dot
can be read to mean address of the
instruction. When the dot is used, it is
followed by either a plus or minus sign
followed by the displacement, e.g., .+7, or .-2.

NOTE When coding extended class
instructions, setting the index bits to 01
using the dot (e.g., E)MP .+d) does not
produce the same effect as coding a comma
followed by a 1 (E)MP d,1)' When using the dot,
the displacement is added to the address of
the instruction (the first word of a 2-word
instruction). When using the comma, the
displacement is added to the address of the
word containing the displacement (the
second word of a 2-word instruction).
Therefore, E)MP .+3 is equivalent to E)MP 2,1.

FIXED POINT ARITHMETIC
The fixed point instruction set performs binary
arithmetie on operands in accumulators. The
operands are 4, 16, or 32 bits in length and can be
either signed or unsigned.

Load Accumulator

LOA ae,[@}displacementl,index}

1 0 0 1 I AC I @ I INDEX I DISPLACEMENT I
o I 1 I 2 3 I 4 5 (, I 7 8 I 9 110 I 11 I 12 113 I 14 I 15

ELDA ac, [@)displacementl,index}

1 1 0 1 I AC 11 I INDEX I 0 0 1 1 1 0 0 0 I
o I 1 I 2 3 I 4 5 (, I 7 8 I 9 110 I 11 I 12 113 14 I 15

1 @ I DISPLACEMENT I
o 1 I 2 I 3 I 4 I 5 I (, I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

Moves a word out of memory and into an accumulator.

The word addressed by the effective address, E, is
placed in the specified accumulator. The previous
contents of the location addressed by E remain
unchanged.

Store Accumulator

ST A ae, [@ldisplacementl, index)

o
o I

I 0 I AC I @ I INDEX I DISPLACEMENT I
2 3 I 4 5 (, I 7 8 I 9 110 I 11 I 12 113 I 14 I 15

EST A ac, [@/displacementl,index)

1 1 1
o I

o / AC /1 I INDEX , 0 0 1 1 1 0 0 0 I
2 3 I 4 5 (, I 7 8 I 9 110 I 11 I 12 113 I 14 I 15

I@o I DISPLACEMENT I
1 I 2 I 3 I 4 I 5 I (, I 7 I 8 I 9 r 10 I 11 I 12 113 I 14 I 15

Stores the contents of a accumulator into a memory
location.

The contEmts of the specified accumulator are placed
in the word addressed by the effective address, E. The
previous eontents of the location addressed by E are
lost. The eontents of the specified accumulator remain
unchanged.

III-3

Add

ADD [cJ[shJ[#) aC8,acd[,skip}

11 lArS I ACD 11 1 0 I SH I C I # I SKIP I
o 1 2 3 I 4 5 I (, I 7 8 I 9 10 I 11 12 13 I 14 I 15

Performs unsigned integer addition and complements
the carry bit if appropriate.

The carry bit is initialized to the specified value. The
unsigned, 16-bit number in ACS is added to the
unsigned, 16-bit number in ACD and the result is
placed in the shifter. If the addition produces a carry
of lout of the high-order bit, the carry bit is
complemented. The specified shift operation is
performed and the result of the shift is placed in ACD
if the no-load bit is O. If the skip condition is true, the
next sequential word is skipped.

NOTE If the sum of the two numbers being
added is greater than 65,535 10, the carry bit is
complemented.

Subtract

SUB [cJ[shJ[#) acs,acd[,skip}

11 lACS I ACD , 1 0 1 I SH , C I # I SKIP I
o 1 I 2 3 I 4 5 I (, I 7 8 I 9 10 I 11 12 13 I 14 I 15

Performs unsigned integer subtraction and
complements the carry bit if appropriate.

The carry bit is initialized to its specified value. The
unsigned, 16-bit number in ACS is subtracted from
the unsigned, 16-bit number in ACD by taking the
two's complement of the number in ACS and adding it
to the number in ACD. The result of the addition is
placed in the shifter. If the operation produces a carry
of lout of the high-order bit, the carry bit is
complemented. The specified shift operation is
performed and the result of the shift is placed in ACD
if the no-load bit is O. If the skip condition is true, the
next sequential word is skipped.

NOTE If the number in ACS is less than or
equal to the number in A CD, the carry bit is
complemented.

Decimal Add

DAD aC8,acd

1 1 lACS I ACD I 0 0 0 1 0 0 0 1 0 0 0 1
o 1 1 2 3 I 4 5 1 6 I 7 1 8 1 " 110 1 11 1 12 113 1 14 1 15

Performs decimal addition on 4-bit binary coded
decimal (BCD) numbers and uses the carry bit for a
decimal carry.

The unsigned decimal digit contained in ACS bits
12-15 is added to the unsigned decimal digit contained
in ACD bits 12-15. The carry bit is added to this result.
The decimal units' position of the final result is placed
in ACD bits 12-15 and the decimal carry is placed in
the carry bit. The contents of ACS and bits 0-11 of
ACD remain unchanged.

NOTE No validation of the input digits is
performed. Therefore, if bits 12-15 of either ACS
or A CD contain a number greater than 9, the
results will be unpredictable.

Example:

Assume that bits 12-15 of AC2 contain 9; bits 12-15 of
AC3 contain 7; and the carry bit is O. After the
instruction DAD 2,3 is executed, AC2 remains the
same; bits 12-15 of AC3 contain 6; and the carry bit is
1, indicating a decimal carry from this DECIMAL
ADD.

BEFORE AFTER

AC2 1 01 000100010001001100 11 1 010001000100010011001 1

AC3 1 01 0001000100010001111 I I 0 1 0001000100010001110 I
carry bit o

IIl-4

Decimal Subtract

DSB aC8,acd

1 1 lACS , ACD f 0 0 0
01123145

1
617

1

10010001
" 110 1 11 1 12 113 1 14 1 15

Performs decimal subtraction on 4-bi t binary coded
decimal (BCD) numbers and uses the carry bit for a
decimal borrow.

The unsigned decimal digit contained in ACS bits
12-15 is subtracted from the unsigned decimal digit
contained in ACD bits 12-15. The complement of the
carry bit is subtracted from this result. The decimal
units' position of the final result is placed in ACD bits
12-15 and the complement of the decimal borrow is
placed in the carry bit. In other words, if the final
result is negative, a borrow is indicated, and the carry
bit is set to O. If the final result is positive, no borrow is
indicated and the carry bit is set to 1. The contents of
ACS and bits 0-11 of ACD remain unchanged.

Example:

Assume that bits 12-15 of AC2 contain 9; bits 12-15 of
AC3 contain 7; and the carry bit is O. After the
instruction DSB 3,2 is executed, AC3 remains the
same; bits 12-15 of AC2 contain 1; and the carry bit is
set to 1, indicating no borrow from this DECIMAL
SUBTRACT.

BEFORE AFTER

AC2 10 1 00010001000100110011 10100010001000100010011

AC3 101 00010001000100011111 101 00010001000100011111

carry bit o

Add Immediate

ADI n,ae

1 1 I N I AC , 0 0 0 0 0 0 0 1 0 0 0 1
o 1 1 21 I 4 5 1 (, I 7 1 8 1 ') 110 1 11 1 12 113 1 14 1 15

Adds an unsigned integer in the range 1-4 to the
contents of an accumulator.

The contents of the immediate field N, plus 1, are
added to thf:l unsigned, 16-bit number contained in the
specified AC and the result is placed in the specified
AC. The carry bit remains unchanged.

NOTE The assembler takes the coded value of
nand sl'..lbtracts one from it before placing it in
the immediate field. Therefore, the programmer
should code the exact value that he wishes to
add.

Example:

Assume that AC2 contains 1777758. After the
instruction ADI 4,2 is executed, AC2 contains 0000018
and the carry bit is unchanged.

BEFORE AFTER

AC2 ~lllll1111111111 011 I 010001000100010001001 1

carry bit either 0 or 1 unchanged

Extended Add Immediate

ADDI i,ac

1 AC 1 1 1 1 1 1 1 1 0 0 01
5 1 (, I 7 1 8 1 ') 110 1 11 1 12 113 1 14 1 15 o I 3 I

IMMEDIATE FIELD 1
5 1 (, I 7 1 8 1 ') 110 1 11 1 12 113 114 1 15

Adds a signed integer in the range -32,76810 to
+32,76710 to the contents of an accumulator.

The contents of the immediate field are treated as a
signed, 16-bit, two's complement number and added
to the signed, 16-bit, two's complement number
contained in the specified AC and the result is placed
in the specified AC. The carry bit remains unchanged.

Subtract Immediate

S81 n,ac

110 I N I ACD I 0 0 0 0 1 0 0 1 0 00 1
1 2 3 I 4 5 1 (, I 7 1 8 1 ') 110 1 11 1 12 113 1 14 1 15

Subtracts an unsigned integer in the range 1-4 from
the contents of an accumulator.

The contents of the immediate field N, plus 1 are
subtracted from the unsigned 16-bit number
contained in the specified AC and the result is placed
in that AC. The carry bit remains unchanged.

NOTE The assembler takes the coded value of
n and subtracts one from it before placing it in
the immediate field. Therefore, the programmer
should code the exact value that he wishes to
subtract.

Example:

Assume that AC2 contains 0000038. After the
instruction S81 4,2 is executed, AC2 contains 1777778
and the carry bit is unchanged.

III-5

BEFORE AFTER

carry bit either 0 or 1 unchanged

Negate

NEG lcllshll#] acs,acdl,skip]

11 I ACS I ACD I 0 0 1 I S~ I ~ I # I ~KIPI 1
o 1 I 2 3 I 4 5 I (, I 7 8 ') 10 11 12 13 14 15

Forms the twos complement of the contents of an
accumulator.

The carry bit is initialized to the specified value. The
two's complement of the unsigned, 16-bit number in
ACS is placed in the shifter. If the negate operation
produces a carry of 1 out of the high-order bit, the
carry bit is complemented. The specified shift
operation is performed and the result is placed in
ACD if the no-load bit is O. If the skip condition is true,
the next sequential word is skipped.

NOTE If ACS contains 0, the carry bit is
complemented.

Add Complement

ADC fc][sh][#] acs,acdf,skip]

11 I A~S I ACD 11 1 0 0 1 S~ I 9 1 # I SKIP I
o 1 2 3 I 4 5 6 1 7 8 9 10 11 12 13 I 14 I 15

Adds an unsigned integer to the logical complement of
another unsigned integer.

The carry bit is initialized to the specified value. The
logical complement of the unsigned, 16-bit number in
ACS is added to the unsigned, 16-bit number in ACD
and the result is placed in the shifter. If the addition
produces a carry of 1 out of the high-order bit, the
carry bit is complemented. The specified shift
operation is performed, and the result of the shift is
loaded into ACD if the no-load bit is O. If the skip
condition is true, the next sequential word is skipped.

NOTE If the number in ACS is less than the
number in A CD, the carry bit is complemented.

Move

MOV fc][sh][#] acs,acdf,skip]

1 1 lACS I ACD I 0 1 0 I SH I C I # I SKIP I
o 1 1 2 3 I 4 5' 6 I 7 8 1 9 10 1 11 12 13 1 14 1 15

Moves the contents of an accumulator through the
Arithmetic Logic Unit (ALU)'

The carry bit is initialized to the specified value. The
contents of ACS are placed in the shifter. The
specified shift operation is performed and the result of
the shift is loaded into ACD if the no-load bit is O. If
the skip condition is true, the next sequential word is
skipped.

III-6

Increment

INC fc][sh][#] acs,acdf,skip]

1 1 I ATS I ACD I 0, 1 1 I SIH I C I # I SKIP 1
o 1 2 3 I 4 5 6 I 7 8 9 10 1 11 12 13 1 14 1 15

Increments the contents of an accumulator.

The carry bit is initialized to the specified value. The
unsigned, 16-bit number in ACS is incremented by
one and the result is placed in the shifter. If the
incrementation produces a carry of 1 out of the high
order bit, the carry bit is complemented. The specified
shift operation is performed, and the result of the shift
is loaded into ACD if the no-load bit is O. If the skip
condition is true, the next sequential word is skipped.

NOTE If the number in ACS is 1777778 , the
carry bit is complemented.

Exchange Accumulators

XCH acs,acd

11 lACS 1 ACD I 0 0
01

1
23145

1
61

1100 1000 1

I 8 ' 9 110 ' 11 ' 12 113 ' 14 ' 15

Exchanges the contents of two accumulators.

The original contents of ACS are placed in ACD and
the original contents of ACD are placed in ACS.

Unsigned Multiply

MUL

1 1 1 0 0 0
011'2'314'5

1 1 1 1 00 1 0 001

6 I 7 ' 8 ' 9 I 10 ' 11 ' 12 113 ' 14 ' 15

Multiplies the unsigned contents of two accumulators
and adds the result to the unsigned contents of a third
accumulator. The result is an unsigned 32-bit integer
in two accumulators.

The unsigned, 16-bit number in AC1 is multiplied by
the unsigned, 16-bit number in AC2 to yield an
unsigned, 32-bit intermediate result. The unsigned,
16-bit number in ACO is added to the intermediate
result to produce the final result. The final result is an
unsigned, 32-bit number and occupies ACO and AC1.
Bit 0 of ACO is the high-order bit of the result and bit
15 of AC1 is the low-order bit. The contents of AC2
remain unchanged. Because the result is a
double-length number, overflow cannot occur.

Signed Multiply

MULS

I 1 1
o I 1 I

o () 1
I J I 4 I

111 100 100 0 1

(, I 7 I 8 I 9 110 I 11 I 12 113 I H I 15

Multiplies the signed contents of two accumulators
and adds the result to the signed contents of a third
accumulator. The result is a signed 32-bit integer in
two accumulators.

The signed,. 16-bit two's complement number in AC1
is multiplied by the signed, 16-bit two's complement
number in AC2 to yield a signed, 32-bit two's
complement intermediate result. The signed, 16-bit
two's complement number in ACO is added to the
intermedia1~e result to produce the final result. The
final result is a signed, 32-bit two's complement
number which occupies ACO and AC1. Bit 0 of ACO is
the sign bit of the result and bit 15 of AC1 is the
low-order bit. The contents of AC2 remain
unchanged. Because the result is a double-length
number, overflow cannot occur.

Unsigned Divide

DIV

1

o I
010

I 3 I
1 1 1 00 1 0 0 01
(, I i 8 I 9 110 I 11 I 12 113 I 14 I 15

Divides the unsigned 32-bit integer in two
accumulators by the unsigned contents of a third
accumulator. The quotient and remainder each
occupy one accumulator.

The unsigned, 32-bit number contained in ACO and
AC1 is divided by the unsigned, 16-bit number in AC2.
The quotient and remainder are unsigned, 16-bit
numbers and are placed in AC1 and ACO, respectively.
The carry bit is set to O. The contents of AC2 remain
unchanged.

NOTE Before the divide operation takes place,
the number in A CO is compared to the number
in A C2, If the contents of A CO are greater than
or equal to the contents of A C2, an overnow
condition is indicated. The carry bit is set to 1,
and the operation is terminated. All operands
remain unchanged.

Signed Divide

DIVS

11 1
o I 1 I

o 1
I 3 I 4

10010001
9 110 I 11 I 12 113 I 14 I 15

Divides the signed 32-bit integer in two accumulators
by the signed contents of a third accumulator. The
quotient and remainder each occupy one accumulator.

III-7

The signed, 32-bit two's complement number
contained in ACO and AC1 is divided by the signed,
16-bit two's complement number in AC2. The
quotient and remainder are signed, 16-bit numbers
and occupy AC1 and ACO, respectively. The sign of the
quotient is determined by the rules of algebra. The
sign of the remainder is always the same as the sign of
the dividend, except that a zero quotient or a zero
remainder is always positive. The carry bit is set to O.
The contents of AC2 remain unchanged.

NOT E If the magnitude of the quotient is such
that it will not fit into A C1, an overnow
condition is indicated. The carry bit is set to 1,
and the operation is terminated. The contents
of A CO and A C1 are unpredictable.

Sign Extend and Divide

DIVX

11 0
o I 1 I

1

3 I 4

1 0 0 1 0 O· 0 1

9 110 I 11 I 12 113 I 14 I 15

Extends the sign of one accumulator into a second
accumulator and performs a Signed Divide on the
result.

The sign of the number in AC1 is extended into ACO
by placing a copy of bit 0 of AC1 in each bit of ACO.
After the sign extension, a SIGNED DIVIDE is
performed.

Halve

HLV ac

1 1 1 0 I AC I 1 1 0 I 1 1 1 1 1 0 0 0 1
o I 1 I 2 3 I 4 5 I (, I 7 8 I 9 110 I 11 I 12 113 I 14 I 15

Divides the contents of an accumulator by 2 and
rounds the result toward zero.

The signed, 16-bit two's complement number
contained in the specified AC is divided by 2 and
rounded toward O. The result is placed in the specified
AC.

If the number is positive, division is accomplished by
shifting the number right one bit. If the number is
negative, division is accomplished by negating the
number, shifting it right one bit, and negating it
again.

Programming Examples
The following examples illustrate the use of some of
the above instructions.

Two Accumulator-Multiple Operation Instructions

These instructions have the capability to perform
multiple operations on one or two operands, often
doing in one instruction what in a less sophisticated
machine would take two or more. As an example,
consider the problem of determining if the number in
accumulator 3 is positive or negative. This could be
done with two instructions as follows:

SUB 0,0 ;Subtract ACO from itself, producing 0
ADCZ# 3,O,SZC ;Skip next instruction if AC3 is

; greater than or equal to ACO (0)
;Here if AC3 < 0
;Here if AC3 > OR = 0

ACO is subtracted from itself, producing a O. Then the
carry bit is set to 0 (Z), and the number in AC3 is
complemented (ADC). The sign bit is then tested (SZC).

If AC3 was positive, the carry bit will remain 0 when
AC3 is complemented and the next instruction will be
skipped. If AC3 was negative, the carry bit will be
complemented when AC3 is complemented and no
skip will occur.

The above method not only requires 2 instructions,
but also destroys the contents of ACO. A better way to
do this would be as follows:

MOVL# 3,3,SZC ;Shift AC3 Left and test Carry bit
;Here if AC3 < 0
;Here if AC3 > or = 0

Here the Move instruction is used to test AC3. The
contents of AC3 are shifted left one bit (U, putting the
sign bit into the carry bit. The carry bit is then tested
(SZC). If the carry bit is zero, the sign was zero,
indicating either 0 or a positive number. Otherwise,
the number is negative. The no-load option is selected
(#) so that AC3 (and the carry bit) will be unchanged
at the end of the operation.

Double-Precision Arithmetic

Double-length integers are involved in both multiply
and divide operations. Consequently, there is often a
need to do double-precision addition and subtraction.
A double-length number consists of two words
concatenated into a 32-bit string. Bit 0 of the first
word is the sign bit, and bits 1-31 are the magnitude
in twos complement notation. Note that this means
that the high-order word is in ones complement
notation (i.e., negating it requires only a logical
complement), unless the low-order word is all zeros. If
the low-order word consists of all zeros, the
high-order word is in twos complement notation.

III-8

Double-Precision Addition

In double-precision addition, the low-order words are
treated as positive integers. If a carry occurs, 1 is
added to the sum of the high -order words. We add the
double-precision integer in AC2 and AC3 to the
double-precision integer in ACO and AC1.

ADDZ

INC

ADD

3,l,SZC ;Set Carry to 0, add the low-order
; parts, and skip if Carry = 0

0,0 ;Here if Carry 1= 0: add 1 to
; high-order part

2,0 ;Here if Carry = 0 or after ACO is
; incremented; add high-order parts

In the above example, the Add instruction is used to
add the two low- order parts, and also to test for a
carry out from the low-order addition. If a carry is
indicated, the Increment instruction adds one to one of
the high-order operands. Another Add is used to add
the high-order parts. The result is a 32-bit twos
complement integer in ACO (high-order part) and
AC1 <low-order part).

Double-Precision Subtraction

Double-precision subtraction can be performed in a
manner parallel to the procedure used above for
double-precision addition. A carry should occur unless
the subtrahend is too large. We subtract the
double-precision integer in AC2 and AC3 from that in
ACOandAC1.

SUBZ 3,l,SZC ;Set Carry to 0, subtract the low-order
; parts, and skip if Carry = 0

INC 0,0 ;Here if Carry 1=0: add 1 to high-order
; part

ADC 2,0 ;Here if Carry = 0 or after ACO is
incremented; add complement of 1

; high-order part to other

This method uses two instructions for some
situations, and three instruction for other situations.
It is possible, however, to do this executing just two
instruction under all conditions. Note that
incrementing the high-order part is precisely the
difference between creating a ones complement and a
twos complement. We can therefore get the same
result this way:

SUBZ 3,l,SZC ;Set Carry to 0, Subtract the low-order
; parts, and skip if Carry = 0

SUB 2,O,SKP ;Here if Carry /=0: add 2's complement
; of one high-order part to the other

ADC 2,0 ;Here if Carry = 0: add 1 's complement
; of one high-order part to the other

Here the first SUB instruction does the same test as
was done in the previous example. If the carry does
not equal zero, the twos complement of one of the
high -order parts is added to the other high -order
part. If the carry does equal zero, the ones
complement of one of the high-order parts is added to
the other high-order part.

1.0GICAL OPERATIONS
The logical instruction set performs logical operations
on operands in accumulators. Three of the
instructions operate on 32-bit (2 accumulator)
operands, and the rest operate on 16-bit operands.

Load Effective Address

lEF ac,l@ldisplacementl,indexl

1 0 1 1 I AC I @ I INDEX I DISPLACEMENT I
o I 1 I 2 3 I 4 5 b I 7 8 I '} 110 I 11 I 12 113 I 14 I 15

ElEF ac,.l@l displacementl,indexl

11
o I

1 I AC I 1 'INDEX' 0 0 1 1 1 0 0 0 I
2 3 1 4 5 (, 1 7 8 I '} 110 I 11 I 12 113 I 14 I 15

I@o I DISPLACEMENT I
1 I 2 I 3 I 4 I 5 I (, 1 7 I 8 I '} 110 I 11 I 12 113 I 14 I 15

Places an effective address in an accumulator.

Computes t.he effective address E, and places it in bits
1-15 of the specified AC. Sets bit 0 of the AC to 0 and
destroys the previous contents of the AC.

The following applies to the Lefinstruction ONLY:

If an auto-incrementing or auto-decrementing
location is referenced in the course of the effective
address calculation, the contents of the location are
incremented or decremented.

The Lef instruction can only be used in a mapped
system, while in the user mode. With the Lefmode
bit set to 1, all 1/0 and Lef instructions will be
interpreted as Lefinstructions. With the LefMODE
bit set to 0, all 1/0 and Lef instructions will be
interpreted as 1/0 instructions.

INSTRUCTION RESULT

LEF O,TABLE The logical address of TABLE is
placed in ACO.

LEF 2,34,2 34a is added to the unsigned
integer in AC2.

LEF 1,-55,3 558 is subtracted from the unsigned
integer in AC3 and the result
is placed in AC 1.

LEF 0,.+0 The logical address of this
LOAD EFFECTIVE ADDRESS
instruction is placed in ACO.

CAUTION Be sure that I/O protection is
enabled, or the Lef mode bit is set to 1 before
using the Lef instruction. If you issue a Lef
instruction in the I/O mode, with protection
disabled, the instruction will be in.terpreted a.nd
executed as an I/O instruction, with possibly
undesir'able results.

Complement

COM {cJ {sh][# 1 acs,acd{,skipl

1 1 I A~S I ACD I 0 0 0 I SH I C I # I SKIP I
o 1 2 3 I 4 5 I (, I 7 8 I '} 10 I 11 12 13 I 14 I 15

Forms the logical complement of the contents of an
accumulator.

Initializes the carry bit to the specified value, places
the logical complement of the number in ACS, and
performs the specified. shift operation. The result is
placed in ACD if the no-load bit is O. If the skip
condition is true, the next sequential word is skipped.

AND

AND {c][sh][# 1 acs,acd{,skipl

1 1 I A~S I ACD I 1 I 1 1 I SH I C I # I SKIP
o 1 2 3 I 4 5 (, I 7 8 I '} 10 I 11 12 13 I 14 I 15

Forms the logical AND of the contents of two
accum ulators.

Initializes the carry bit to the specified value and
places the logical AND of ACS and ACD in the shifter.
Each bit placed in the shifter is 1 only if the
corresponding bit in both ACS and ACD is one;
otherwise the result bit is O. The specified shift
operation is performed and the result is placed in
ACD if the no-load bit is O. If the skip condition is true,
the next sequential word is ski pped.

AND Immediate

ANDI i,ac

1 01 AC I 1 1 1 1 1 1 1 0 0 01
o I 2 3 I 4 (, I 7 I 8 I '} 110 I 11 I 12 113 I 14 I 15

IMMEDIATE FIELD

o 1 1 2 I 3 I 5 I (, 1 7 I 8 I '} 110 I 11 I 12 113 I 14 I 15
1

III-9

Places the logical AND of the contents of the
immediate field and the contents of the specified AC
in the specified AC.

Inclusive OR

lOR aCB,acd

1 1 I A?S 1 ACD 1 0 0 1 0 0 0 0 1 0 0 0 I
o 1 2 3 I 4 5 1 6 I 7 1 8 1 'I 110 1 11 1 12 113 1 14 1 15

Forms the logical inclusive OR of the contents of ACS
and the contents of ACD and places the result in ACD.
A bit position in the result is set to 1 if the
corresponding bit position in one or both operands
contains a 1; otherwise, the result bit is set to O. The
contents of ACS remain unchanged.

Inclusive OR Immediate

lOR I i,ac

11 0 0 1 AC 11 1 1 1 1 1 1 1 0 0 0 I
011 1 23145 1 617 1 8 1 I 1 1 I 1 1 'I 10 11 12 13 14 15

Forms the logical inclusive OR of the contents of the
immediate field and the contents of the specified AC
and places the result in the specified AC.

Exclusive OR

XOR aCB,acd

1 1 I A?S 1 ACD 1 0 0 1 0 1 0 0 1 0 0 0 I
o 1 2 3 I 4 5 1 6 I 7 1 8 1 'I 110 1 11 1 12 113 1 14 1 15

Forms the logical exclusive OR of the contents of ACS
and the contents of ACD and places the result in ACD.
A bit position in the result is set to 1 if the
corresponding bit positions in the two operands are
unlike; otherwise, the result bit is set to O. The
contents of ACS remain unchanged.

Exciusive.OR Immediate

XORI i,ac

IMMEDIATE FIELD I
1 I I I I 1 1 I 1 1 5 6 7 8 'I 10 11 12 13 14 15

Forms the logical exclusive OR of the contents of the
immediate field and the contents of the specified AC
and places the result in the specified AC.

AN D With Complemented Source

ANC aCB,acd

rTTA?S 1 ACD 1 0 0 1 0 0 0 1 0 0 0 I
~ 2 3 I 4 5 1 6 I 7 I 8 1 'I 110 1 11 1 12 113 1 14 1 15

Forms the logical AND of the logical complement of
the contents of ACS and the contents of ACD and
places the result in ACD. A bit position in the result is
set to 1 if the corresponding bit positions in ACS and
ACD contain a 0 and 1, respectively; otherwise, the
result bit is set to zero. The contents of ACS remain
unchanged.

Logical Shift

LSH aCB,acd

1 1 I A?S 1 ACD 1 0 1 0 1 0 0 0 1 0 0 0 I
o 1 2 3 I 4 1 6 I 7 1 8 1 'I 110 1 11 1 12 113 1 14 1 15

Shifts .the contents of ACD either left or right
dependIng on the number contained in bits 8-15 of
ACS. The signed, 8-bit two's complement number
contained in bits 8-15 of ACS determines the direction
of the shift and the number of bits to be shifted. If the
number in bits 8-15 of ACS is positive, shifting is to
the left; if the number in bits 8-15 of ACS is negative,
shifting is to the right. If the number in bits 8-15 of
ACS is zero, no shifting is performed. Bits 0-7 of ACS
are ignored.

The number of bits shifted is equal to the magnitude
of the number in bits 8-15 of ACS. Bits shifted out are
lost, and the vacated bit positions are filled with
zeroes. The carry bit and the contents of ACS remain
unchanged.

NOTE If the magnitude of the number in bits
8-15 of ACS is greater than 151(), all bits of ACD
are set to O. The carry bit and the contents of
A CS remain unchanged.

III-10

Double Logical Shift

DLSH aos,acd

I 1 I A?S I ACO I 0 ,1 0 1 1 0 0 1 0 0 0 1

o 1 2 3 I 4 5 6 I 7 ' 8 ' 9 110 ' 11 ' 12 113 ' 14 ' 15

Shifts the 32-bit number contained in ACD and
ACD+1 either left or right depending on the number
contained in bits 8-15 of ACS. The signed, 8-bit two's
complement number contained in bits 8-15 of ACS
determines the direction of the shift and the number
of bits to bE~ shifted. If the number in bits 8-15 of ACS
is positive, :shifting is to the left; if the number in bits
8-15 of ACS is negative, shifting is to the right. If the
number in bits 8-15 of ACS is zero, no shifting is
performed. Bits 0-7 of ACS are ignored.

The numbe~r of bits shifted is equal to the magnitude
of the number in bits 8-15 of ACS. Bits shifted out are
lost, and the vacated bit positions are filled with
zeroes. The carry bit and the contents of ACS remain
unchanged.

NOTES If the magnitude of the number in bits
8-15 of ACS is greater than 31j(), all bits of ACD
are set to O. The carry bit and the content8 of
ACS remain unchanged.

If ACD is specified as AC3, then ACD+1 is
A CO.

Hex Shift Left

HXL n,Q.c

11 I ~ I AC I 0 1
0123145'617

o 0 0 0 1 0 0 01

8 ' 9 110 ' 11 ' 12 113 ' 14 I 15

Shifts the contents of AC left a number of hex digits
depending upon the immediate field N. The number of
digits shift43d is equal to N +1. Bits shifted out are lost,
and the vacated bit positions are filled with zeroes. If
N is equal to 3, then all 16 bits of AC are shifted out
and all bits of AC are set to O.

NOTE The assembler takes the coded value of
nand 8'ubtracts one from it before placing it in
the immediate field. Therefore, the programmer
should code the exact number of hex digits that
he wishes to shift.

Hex Shift Right

HXR n,ac

0,1 0 0 1 0 0 01

9 110 ' 11 ' 12 113 ' 14 ' 15

Shifts the contents of AC right a number of hex digits
depending upon the immediate field, N. The number
of digits shifted is equal to N + (Bits shifted out are
lost, and the vacated bit positions are filled with
zeroes. If N is equal to 3, then all 16 bits of AC are
shifted out and all bits of AC are set to O.

NOTE The assembler takes the coded value of
n and subtracts one from it before placing it in
the immediate field. Therefore, the programmer
should code the exact number of hex digits that
he wishes to shift.

Double Hex Shift Left

DHXL n,ac

1 0001 000/

8 ' 9 110 ' 11 I 12 113 ' 14 ' 15

Shifts the 32-bit number contained in AC and AC+1
left a number of hex digits depending upon the
immediate field N. The number of digits shifted is
equal to N + 1. Bits shifted out are lost and the vacated
bit positions are filled with zeroes.

III-11

NOTES If AC is specified as AC3, then AC+ 1
is A CO.

The assembler takes the coded value of nand
subtracts one from it before placing it in the
immediate field. Therefore, the programmer
should code the exact number of hex digits that
he wishes to shift.

If N is equal to 3, the contents of A C + 1 are
placed in A C and A C + 1 is filled with zeroes.

Rev. 01

Double Hex Shift Right

DHXR n,ac

I 1 I N , AC I 0 1 1
01123145

1
617

1

1 0 0 1 0 0 01
'} 110 1 11 1 12 113 1 14 1 15

Shifts the 32-bit number contained in AC and AC+1
right a number of hex digits depending upon the
immediate field N. The number of digits shifted is
equal to N + 1. Bits shifted out are lost and the vacated
bit positions are filled with zeroes.

NOTES If AC is specified as AC3, then AC+ 1
is A CO.

The assembler takes the coded value of nand
subtracts one from it before placing it in the
immediate field. Therefore, the programmer
should code the exact number of hex digits that
he wishes to shift.

If N is equal to 3, the contents of AC are placed
in A C + 1 and A C is filled with zeroes.

Example

The AND WITH COMPLEMENTED SOURCE
instruction can be used to reset bits through a mask. If
the operand in ACD contains bit positions that were
set to 1 through a mask with the INCLUSIVE OR
instruction, the AND WITH COMPLEMENTED
SOURCE instruction will set those bits to 0 using the
same mask.

Assume that ACO contains 0, AC1 contains 0103578

and AC2 contains 1704418 , After the instruction
lOR 1,0 is executed, ACO contains 0103578 ,

BEFORE AFTER

ACO 10 100010001000100010001 I 0 I 00110001011/10111111

AC1 10100110001011110111111 10100110001011110111111

After the instruction lOR 2,0 IS executed ACO
contains 1707578 ,

BEFORE AFTER

ACO 10100110001011110111111 11111110001111110111111

AC2 11 11111000110011001001 1 11 11111000110011001001 1

If it is desired to set to 0 all those bits that were set to
1 by the first INCLUSIVE OR instruction, the AND
WITH COMPLEMENTED SOURCE instructions will
do it. After the instruction ANC 1,0 is executed, ACO
contains 1604008 ,

III-12

BEFORE AFTER

ACO 11 111110001111110111111 11 111010001100100010001

AC1 10100110001011\10111111 10100110001011110111111

CONDITIONAL INSTRUCTION SET

The following instructions test a specified value and
then skip the next sequential instruction if the test
result is true. If the test result is not true, some
instructions will merely permit the next sequential
instruction to be executed, and some will do some
other task, but in either case, the skip does not take
place.

Increment And Skip If Zero

I SZ {@1displacementl,index}

I 0 0 0 1 0 I @ I INDEX I DISPLACEMENT
o I 1 1 2 1 3 I 4 5 {, I 7 8 I '} 110 1 11 1 12 113 14 15

EI SZ {@}displacementl,index}

I 1 0 0 1 0 1 I INDEX I 0 0 1 1 1 0 0 0 1
o I I 2 I 3 I 4 I 5 {, I 7 8 I '} 110 I 11 I 12 113 1 14 I 15

DISPLACEMENT 1
5 1 {, I 7 1 8 1 '} 110 I 11 1 12 113 I 14 I 15

Increments the addressed word, then skips if the
incremented value is zero.

The word addressed by E is incremented by one and
the result is written back into that location. If the
updated value of the location is zero, the next
sequential word is skipped.

Decrement And Skip If Zero

DSZ {@}displacementl,index}

I 0 0 0 1 1 I @ I INDEX I I DISPLACEMENT 1
o I 1 I I 3 I 4 5 {, I 7 8 '} 110 1 11 1 12 113 1 14 I 15

EDSZ {@}displacement{,index}

11 0 0 1 1 1 I INDEX I 0 0 1 1 1 0 0 0 I
o I 1 I 2 I 3 I 4 I 5 {, I 7 8 I '} 110 I 11 I 12 113 I 14 I 15

I@\ I
DISPLACEMENT I

2 I 3 I 4 I 5 I {, I 7 I 8 I '} 110 1 11 I 12 113 I 14 I 15 o 1

Decrements the addressed word, then skips if the
decremented value is zero.

The word addressed by E is decremented by one and
the result is written back into that location. If the
updated value of the location is zero, the next
sequential word is skipped.

Skip If ACS Greater Than ACD

SGT acs,acd

I 1 , ACS I ACD I 0
'0'112'314 1 5 1

1 000001 0001
{, I 7 I I '} 110 I 11 I 12 113 I 14 I 15

Compares two signed integers in two accumulators
and skips if the first is greater than the second.

The signed, two's complement numbers in ACS and
ACD are algebraically compared. If the number in
ACS is greater than the number in ACD, the next
sequential word is skipped. The contents of ACS and
ACD remain unchanged.

Skip If ACS Greater Than Or Equal to ACD

SGE acs,acd

I 1 I A?S I ACD I 0 I 1 0 0 1 0 0 1 0 0 0 I
o 1 2 3 I 4 5 {, I 7 I 8 I '} 110 I 11 I 12 113 I 14 I 15

Compares two signed integers in two accumulators
and skips if the first is greater than or equal to the
second.

The signed two's complement numbers in ACS and
ACD are algebraically compared. If the number in
ACS is greater than or equal to the number in ACD,
the next sequential word is skipped. The contents of
ACS and ACD remain unchanged.

III-13

NOTE The SKIP IF ACS GREATER THAN
ACD and SKIP IF ACS GREATER THAN OR
EQUAL TO ACD instructions treat the
contents of the specified accumulators as
signed, two's complement integers. For
comparison of unsigned integers, the
SUBTRACT and ADD COMPLEMENT
instructions may be used. Use of these
instructions for comparison is described in
Appendix H.

-- --------------- ---- ----- --------------~-"- -----------'"--,-""-"----"----,--------- --.--~--.--,~ ... --.-- "---".-._-""-----

Compare To Limits

elM aes,aed

I 1 I AC
1

S 1 ACD 11 1 0 0
0123145617

1

1 1 1 1 0 0 0 I
9 110 I 11 1 12 In 1 14 1 15

Compares a signed integer with two other integers
and skips if the first integer is between the other two.
The accumulators determine the location of the three
integers.

Compares the signed, two's complement integer in
ACS to two signed, two's complement limit values, L
and H. If the number in ACS is greater than or equal
to L and less than or equal to H, the next sequential
word is skipped. If the number in ACS is less than Lor
greater than H, the next sequential word is executed.

If ACS and ACD are specified as different
accumulators, the address of the limit value L is
contained in bits 1-15 of ACD. The limit value H is
contained in the word following L. Bit 0 of ACD is
ignored.

If ACS and ACD are specified as the same
accumulator, then the integer to be compared must be
in that AC and the limit values Land H must be in the
two words following the instruction. L is the first
word and H is the second word. The next sequential
word is the third word following the instruction.

Dispatch

DSP A ae f@}displaeementf,index}

I 1 0 I AC 11 I INDEX I 0 1 1 1 1 0 0 0 I
o I 2 3 1 4 5 6 1 7 8 1 9 110 1 11 1 12 113 1 14 1 15

DISPLACEMENT I
5 I 6 I 7 I 8 I 9 110 1 11 1 12 113 1 14 1 15

Conditionally transfers control to an address selected
from a table.

Computes the effective address E. This is the address
of a dispatch table. The dispatch table consists of a
table of addresses. Immediately before the table are
two signed, two's complement limit words, Land H:
The last word of the table is in location E+H-L.

III-14
Rev. 01

.............

L

H

E

~ .. ~ E+H-L~

DG-01127

Compares the signed, two's complement number
contained in the accumulator to the limit words. If the
number in the accumulator is less than L or greater
than H, sequential operation continues with the
instruction immediately after the Dispatch
instruction.

If the number in AC is greater than or equal to Land
less than or equal to H, the instruction fetches the
word at location E-L+number. If the fetched word is
equal to 1777778 ,sequential operation continues with
the instruction immediately after the Dispatch
instruction. If the fetched word is not equal to
177777 8 , the instruction treats this word as the
intermediate address in the effective address
calculation. After the indirection chain, if any, has
been followed, the instruction places the effective
address in the program counter and sequential
operation continues with the word addressed by the
updated value of the program counter.

Programming Examples

Consider an interactive program which accepts a
number of one-letter commands from the user's
terminal. We assume that the following routine is
called with one ASCII character already in bits 8-15 of
ACO.

CMDTB is the address of a 26-word table in main
memory, which is preceded by limit words containing
the codes for A and z. ILlCH is the address of a routine
to be exeeuted if the user types some character other
than a letter. BADCM is the address of a routine to be
executed if the user types a letter which has no
command function. Command letters may be
scattered randomly through the alphabet.

;Character now in ACO
OSPA O,CMOTB ;Go to proper routine
JMP ILLCH ;Here if the user didn't type a letter

;This is the dispatch table

101
132

CMOTB: ACOMO
BCOMO
BAOCM
BAOCM
ECOMO

ZCOMO

; Lower limit - octal for "A"
;Upper limit - octal for "z"
;Address of routine for "A" command
;Address for "B" command
; "C" is not a legal command
; Neither is "0"
;But "E" is

; "Z" - the last command

Note tha.t only a single instruction was needed to
analyze the character. Without the Dispatch
instruction, testing each letter for validity might
require a large number of comparison operations. The
Dispatch instruction requires some additional
memory for the dispatch table, but saves considerable
time.

BYTE MANIPULATION

The instructions that manipulate bytes are often used
to perform character operations. Use of the SWAP
option of the two accumulator- multiple operation
instructions gives access to both bytes of the word.

Load Byte

LOB aC8,acd

I 1 I A7S I ACD I
o 1 2 3 I 4

o
(, I 7

1 00 , 0 00\
'I 110 I 11 I 12 113 I 14 I 15

Moves a byte from memory (as addressed by a byte
pointer in one accumulator) to the second
accumulator.

The 8-bit byte addressed by the byte pointer
contained in ACS is placed in bits 8-15 of ACD. Bits
0-7 of ACD are set to O. The eontents of ACS remain
unchanged.

Store Byte

STB aC8,acd

I '0 lACS I ACD I
3 I 4

, 0 0 0 0 0 , 0 0 0\
(, I I 8 I 9 110 I 11 I 12 113 I 14 I 15

Moves the right byte of one accumulator to a byte in
memory. The second accumulator contains the byte
pointer.

Bits 8-15 of ACD are placed in the byte addressed by
the byte pointer contained in ACS. The contents of
ACS and ACD remain unchanged.

111-15

Programming Example

The following instruction sequence will con vert an
unsigned integer to its corresponding octal
representation and place the result in six bytes in
memory. ACO contains the integer, AC3 contains a
byte pointer to the low-order byte of the destination
field.

LOA 2,CON6 ;Get count
STA 2,CNT ;Store it
LOA 2,MASK ; Get mask for char

; and shift count
LOOP: OLSH 2,0 ; Shift one octal

; digit
HXR 1,1 ;Shift AC1 4 bits

; right
MOVZR 1,1 ; Shift AC 1 1 bit

; right
lOR 2,1 ; OR in bits for

; character
MOVS 1,1 ; Put char in low-

; order byte
STB 3,1 ;Store byte
OSZ CNT ;Oone?
JMP +2 ;No
JMP OUT ;Yes
SBI 1,3 ;Oecrement AC3 by 1
JMP LOOP ;00 next digit

CON6: 6
CNT: 0
MASK: 030375 ;Char mask in hi

; byte. Shift count
, in low byte

OUT:

When the routine is finished, and control is
transferred to the location OUT, the integer has been
converted to octal and the byte pointer in AC3 points
to the high-order byte of the result.

BIT MANIPULATION

The instructions in this set operate on individual bits.
Bits can be set to 0 or 1, and lead bits can be located. In
addition, bits can be tested, causing a skip of the next
word if specified conditions are true.

Set Bit To One

BTO acs,acd

I 1 lACS I ACO I 0 0 0 0 0 0 1 0 0 0 1
. 0 . 1 I 2 . 3 I 4 . 5 I (, I 7 I I 9 110 I 11 I 12 113 I 14 I 15

The two accumulators form a bit pointer. Sets the
indicated bit to 1.

A 32-bit bit pointer is formed from the contents of
ACS and ACD. ACS contains the high-order 16 bits
and ACD contains the low-order 16 bits of the bit
pointer. If ACS and ACD are specified as the same
accumulator, the accumulator contents are treated as
the low-order 16-bits of the bit pointer and the
high-order 16 bits are assumed to be O. The addressed
bit in memory is set to 1. The contents of ACS and
ACD remain unchanged.

Set Bit To Zero

BTl acs,acd

o 0 0 1 0 0 1 0 0 01
(, I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

The two accumulators form a bit pointer. Sets the
addressed bit to O.

A 32-bit bit pointer is formed from the contents of
ACS and ACD. ACS contains the high-order 16 bits
and ACD contains the low-order 16 bits of the bit
pointer. If ACS and ACD are specified as the same
accumulator, the accumlator contents are treated as
the low-order 16 bits of the bit pointer and the
high-order 16 bits are assumed to be O. The addressed
bit in memory is set to O. The contents of ACS and
ACD remain unchanged.

III-16

Skip On Zero Bit

SZB aCB,acd

11 I AC
1
S I ACD I 0 0 1 0 0 0 1 0 =o=ol

o 1 2 3 I 4 5 I 6 I 7 I 8 I '} 110 I 11 I 12 113 l-ti

The two accumulators form a bit pointer. If the
addressed bit is zero, the next sequential instruction is
skipped.

A 32-bit bit pointer is formed from the contents of
ACS and ACD. ACS contains the high-order 16 bits
and ACD contains the low-order 16 bits of the bit
pointer. If ACS and ACD are specified as the same
accumulator, the accumulator contents are treated as
the low-order 16 bits of the bit pointer and the
high-order 16 bits are assumed to be O. If the
addressed bit in memory is 0, the next sequential
word is skipped. The contents of ACS and ACD
remain unchanged.

Skip On Non-Zero Bit

SNB aCB,acd

1 1 I A9s , ACD I
o 1 2 3 I 4

o
6 I 7

1 1 1 1 0 0 0 1
'} 110 I 11 I 12 113 14 I 15

The two accumulators form a bit pointer. If the
addressed bit is 1, the next sequential instruction is
skipped.

A 32-bit bit pointer is formed from the contents of
ACS and ACD. ACS contains the high-order 16 bits
and ACD contains the low-order 16 bits of the bit
pointer. If ACS and ACD are specified as the same
accumulator, the accumulator contents are treated as
the low-order 16 bits of the bit pointer and the
high-order 16 bits are assumed to be O. If the
addressed bit in memory is 1, the next sequential
word is skipped. The contents of ACS and ACD
remain unchanged.

Skip On Zero Bit And Set To One

SZBO aCB,acd

11 I A9S I ACD I 1 I 0 0 I
0123145617

00 1 0 0 01
110 I 11 I 12 113 I 14 I 15

The two accumulators form a bit pointer. Sets the
addressed bit to 1. If it was 0 originally, the next
sequential word is skipped.

A 32-bit bit pointer is formed from the contents of
ACS and ACD. ACS contains the high-order 16 bits
and ACD contains the low-order 16 bits of the bit
pointer. If ACS and ACD are specified as the same
accumulator, the accumulator contents are treated as
the low-order 16 bits of the bit pointer and the
high-order 16 bits are assumed to be O. The addressed
bit in memory is set to 1. If the bit was 0 before being
set to 1, the next sequential word is skipped. The
contents of ACS and ACD remain unchanged.

NOTE This instruction facilitates the use of
bit maps for such purposes as allocation of
facilities (memory blocks, I/O devices, etc) to
several processes, or tasks, that may interrupt
one another, or in a multiprocessor
environment. The bit is tested and set to 1 in
one memory cycle.

Locate Lead Bit

LOB aCB,acd

1 1 I A9S I ACD I 0
0123145

1

617

o 0 0 0 1 0 0 01
8 I '} 110 I 11 I 12 113 I 14 I 15

Adds a number equal to the number of high-order
zeros in the contents of the first accumulator to the
contents of the second accumulator.

The contents of ACS are inspected for high-order
zeroes. A number equal to the number of high-order
zeroes is added to the signed, 16-bit, two's
complement number contained in ACD. The contents
of ACS and the state of the carry bit remain
unchanged.

1II-17

NOTE If ACS and ACD are specified as the
same accumulator, the instruction functions as
described above, except that since ACS and
A CD are the same accumulator, the contents of
A CS will be changed.

------- .---------_._----------_._------_ .. _---_._---_.-

Locate And Reset Lead Bit

LRB aC8,acd

I ' 'A~S I ACD I 0
0123145

1

617

o
1

o 0 , 0 0 01
110 1 11 1 12 In 1 14 1 15

Performs a LOCATE LEAD BIT instruction, and sets
the lead bit to O.

The contents of ACS are inspected for high-order
zeroes. A number equal to the number of high-order
zeroes is added to the signed, 16-bit, two's
complement number contained in ACD. The leading 1
in ACS is set to O. The state of the carry bit remains
unchanged.

NOTE If ACS and ACD are specified to be the
same accumulator, then the leading 1 in that
accumulator is set to 0, and no count is taken.

Count Bits

COB aC8,acd

I' I A7
S I ACD I ' 1 0

0123145617

o 0 0 1 0 001
q 110 I 11 1 12 In 1 14 1 15

Adds a number equal to the number of ones in one
accumulator to the contents of the second
accumulator.

The contents of ACS are inspected for l's. A number
equal to the number of l's in ACS is added to the
signed, 16-bit, two's complement number contained in
ACD. The contents of ACS and the state of the carry
bit remain unchanged.

NOTE If ACS and ACD are specified as the
same accumulator, the instruction functions as
described above, except that since A CS and
A CD are the same accumulator, the contents of
A CS will be changed.

Programming Example

The routine below uses the Skip on Non-Zero Bit
instruction to detect a delimiter in a string of input
characters. Delimiters might include carriage return,
line feed, null, rubout, or any arbitrary set of
characters. The routine will stop after reading a
delimiting character. Without bit manipulation,
testing a string for delimiters would be a complex
operation.

In this example we use a table DLMTB, consisting of 16
words containing one bit for each possible character
value. A character is declared to be a delimiter by
setting its bit in the table to 1. For instance, since
carriage return has a value of 158 , (1310), bit 13 in the
first word of DLMTB must be 1 to declare it a delimiter.

GTCHR is a subroutine which places the next character
from the input stream into AC1. AC2 is used for a byte
pointer to the area in memory in which to store the
characters as they are processed.

ACO is loaded with the address of DLMTB to serve as the
first word of the bit pointer. ACl contains the second
word of the bit pointer. The 4 high-order bits of the
character in ACl select one of the 16 words of DLMTB,
and the 4 low-order bits select the bit to be tested.

READ: LEF
LDA

LOOP JSR
STB
INC
SNB
JMP

III-18

O,DLMTB ;Load ACO with address of table
2,BTPTR ;Load AC2 with destination byte pointer

GTCHR
2,1
2,2
0,1
LOOP

; Get next character in AC 1
;Store it in destination area
; Increment byte pointer
;Check bit: a delimiter?
; If not, Get next character
;Here if delimiter found (Exit)

---_. __ . __ ._--_._------------

BLOCK MANIPULATION

Two instructions are provided in the 8/130 for the
rapid movement of a block of data from one area of
memory to another. These instructions move from 1
to 32,768 words in one operation. The Block Add and
Move instruction also adds a constant to each word as
it is mov1ed. This allows easy relocation of address
constants.

Block Add And Move

BAM

\' 0 0 1
o I 1 I 2 I 3 I

o 1 1
I 5 I 6 I

o 0 1 0
110 I 11 I 12 113 14 15

Moves mElmory words from one location to another,
adding a c:onstant to each one.

Words are moved sequentially from one memory
location to another. The words moved are treated as
unsigned, 16-bit integers. After a word has been
fetched from the source location, the unsigned, 16-bit
integer contained in ACO is added to it. If the addition
produces a carry of 1 out of the high-order bit, no
indication is given.

The addrE~ss of the source location is contained in bits
1-15 of AC2. The address of the destination location is
contained in bits 1-15 of AC3. Ifbit 0 of either AC2 and
AC3 is 1, it is assumed that the address contained in
bits 1-15 is an indirect address. Before the data
movement occurs, the indirection chain is followed
and the resultant effective address is placed in the
accum ulator.

The number of words moved is equal to the unsigned,
16-bit number contained in AC1. This number must
be greater than 0 and less than or equal to 1000008. If
the number contained in AC1 is outside these bounds,
no data is moved and the contents of the accumulators
remain unchanged.

AC CONTENTS

0 Addend
1 Number of words to be moved
2 Source address
3 Destination address

For each word moved, the count in AC1 is
decremented by one and the source and destination
addresses in AC2 and AC3 are incremented by one.
Upon completion of the instruction, AC1 contains
zeroes, and AC2 and AC3 point to the word following
the last word in their respective fields. The contents of
ACO remain unchanged.

Words are moved in consecutive, ascending order
according to their addresses. The next address after
777778 is 0 for both fields. The fields may overlap in
any way.

NOTE Because of the potentially long time
that may be required to perform this instruction
in relation to I/O requests, this instruction is
interruptable. If a Block Add And Move
instruction is interrupted, the program counter
is decremented by one before it is placed in
location 0 so that it points to the Block Add
And Move instruction. Because the addresses
and the word count are updated after every
word is stored, any interrupt service routine
that returns control to the interrupted program
via the address stored in memory location 0
will correctly restart the Block Add And Move
instruction.

When updating the source and destination addresses,
the BLOCK ADD AND MOVE instruction forces bit 0
of the result to O. This ensures that upon return from
an interrupt, the BLOCK ADD AND MOVE
instruction will not try to resolve an indirect address
in either AC2 or AC3.

Block Move

BLM

o \1 0
o I 1 I 3 I 4 I 6 1 7

o 0 1 0 0 01
110 I 11 I 12 113 I 14 I 15

Moves memory words from one location to another.

The BLOCK MOVE instruction is equivalent to the
BLOCK ADD AND MOVE instruction in all respects
except that no addition is performed and ACO is not
used.

NOTE The BLOCK MOVE instruction is
interruptable in the same manner as the
BLOCK ADD AND MOVE instruction.

1II-19

------------,

Programming Example

The following sequence of instructions will create a
17-word table of constants. The first word in the table
will have the value 0, the second word will have the
value 1, and so on. The last word in the table will have
the value 1610,

LOA 2,TBLAO ; Put address of
; table in AC2

INC 2,3 ; Put address of
; table + 1 in AC3

SUBO 0,0 ;SET ACO to °
STA 0.0,2 ; Set first word

; of table to °
INC 0,0 ;ACO=addend of 1
MOV 0,1 ; Put 16 (decimal)
HXL 1,1 ;In AC1
BAM ; Create table
JMP TABLE+21 ;Jump around table

; 1 7 (decimal) =
; 21 (octal)

TBLAO: TABLE ;Address of table
TABLE: BLK 21 ;Reserve 21 (octal)

; words for table

The first word moved is moved from TABLE + 0 to
TABLE+1. As it is moved, it is incremented by 1. The
second word moved is moved from TABLE + 1 to
TABLE+2. As it is moved, it is incremented by 1. The'
moving and adding continues until the table is filled.

THE STACK

Introduction
The stack is a series of consecutive locations in
memory. In their simplest form, stack instructions
add items in sequential order to the top of the stack
and retrieve them in the reverse order. Several stack
areas may be defined by the program, but only one
stack may be in use at any time. The S/130 uses the
push -down stack concept to provide easily accessible
temporary storage of data, variables, return
addresses, etc.

The simplest use of the stack is for temporary storage
of the contents of up to four accumulators, which can
be stored or retrieved with one instruction. More
commonly, the stack is used to store a return block
which greatly simplifies the process of entering and
returning from subroutines.

The return block can take several forms, but it usually
consists of five words: the contents of the four
accumulators, the program counter or the frame
pointer (see below), and the carry bit in bit 0 of the
last word pushed. The Vector instruction can put onto
the stack a combination of a return block and
individual words totaling up to 10 words, and the
floating point instruction set uses a return block of 18
words.

Three parameters define a stack: (1) the lower limit,
or starting location; (2) the upper limit, or stack limit;
and (3) the present top of the stack, or stack pointer.
The lower and upper limits define the area in memory
which is reserved for the stack, and the stack pointer
defines the location of the last word placed onto the
stack (or the next word available from the stack). A
diagram of a stack area is shown below:

III-20

MAIN MEMORY

LOWER LIMIT 1----------1

STACK

.. 1--------1

11---------1
POINTER -1--------1 [

~ INCREASING
ADDRESSES

UPPER LIMIT 1--------1

("STACK LIMIT")

DG-04426

To use the stack, define the upper and lower limits,
and then use the stack instructions to put items on
(push onto) or remove items from (pop off) the top of
the stack. It is not necessary to keep track of the
location of the top of the stack. This is done
automatically by the stack pointer. The updated value
of the stack pointer is always stored in location 408 •

The lower limit of the stack is determined by the
initial value of the stack pointer, which is placed in
location 408 when the stack is set up by the program.
The upper limit is controlled by the value in location
428 , This value is also chosen when the stack is set up,
but it can be changed by the program if more stack
area becomes necessary. Two other reserved locations
are used to control the stack. Location 438 contains
the address of the Stack Fault routine. Control is
transferred to the Stack Fault routine when 8, stack
underflow or overflow occurs (see Stack Protection,
below). Location 418 contains the current value of the
frame pointer, which is used as a reference pointer in
the stack.

Stack Control Words
The locations and uses of the stack control words are
discussed in detail below:

Stack Pointer

The stack pointer is the address of the current top of
the stack. Its current value is always in location 408 . A
push operation increments the stack pointer by 1 and
places the pushed word in the location addressed by
the new value of the stack pointer. A pop operation
takes the word addressed by the current value of the
stack pointer, places it in a register and decrements
the stack pointer by 1.

The value of the stack pointer when the stack is set up
determines the lower limit of the stack.

Stack limit

The stack limit is the upper limit of the stack area.
After each push operation, the stack pointer is
compared with the stack limit. If the stack pointer is
greater than the stack limit, an overflow condition is
indicated. The stack limit is contained in location 428 .

Stack Fault Address

If a stack overflow or underflow occurs, control is
transferred to the Stack Fault routine. The address of
this routine, which may be indirect, is contained in
location 438 ,

Frame Pointer

The frame pointer differs from the stack pointer in
that it is not changed by push or pop operations, and
so its value is not incremented or decremented. This
makes it a useful reference pointer when it is set to
the same value as the stack pointer, because it then
preserves the original value of the stack pointer.

The frame pointer is used by the Save and Return
instructions to store and reset the value of the stack
pointer when entering or leaving subroutines. The
frame pointer can also be used to define the boundary
between words placed in the stack by a calling routine
and words placed by a called routine. Using the frame
pointer as a reference, a routine can go back into the
stack and retrieve variables left there by the
preceding procedure.

The frame pointer is contained in location 418 •

III-21

Stack Protection
You can enable protection for two stack error
conditions: overnowand undernow.

Stack Overflow

Stack overflow occurs when a program pushes data
into the area beyond that allocated for the stack, i.e.,
beyond the stack limit. If this occurs, data will be
pushed into areas that are reserved for other
purposes, possibly overwriting data or instructions.

Overflow protection is provided by the stack limit. If a
stack instruction pushes data onto the stack beyond
the stack limit, a return block is pushed onto the
stack, and control is transferred to the stack fault
handler. To disable overflow protection, the stack
limit should be set to 777778 .

NOTE To be meaningful, the stack limit must
be 10 to 23 addresses lower than the last word
in the stack, because stack overnow is detected
only at the end of a push operation (except in
the case of the Save instruction - see details in
the discussion of the Save instruction below).
Thus, it is possible to push a 5- to 18-word
return block starting at the stack limit. Stack
overnow will not be sensed until the last word of
the return block is pushed. After the last word
is pushed, stack overnow will be detected, and
another 5-word return block will be pushed by
the stack overnow mechanism before control is
transferred to the stack fault routine.
Depending on the size of the initial return block
(from the normal 5 words up to the 18 words
used by the noating point instruction set), the
potential overnow can be 10 to 23 words long.

Stack Underflow

Stack underflow occurs when a program pops data
from the area below that allocated for the stack (i.e.,
pops more words off than were pushed on). If this
occurs, the program will be operating with incorrect
and unpredictable information. Furthermore, it is
possible that the program will push data into the
underflow area, overwriting data or instructions.

For underflow protection to be enabled, the area
allocated to the stack must begin at location 4018 and
the stack pointer must be initialized to 4008 , If the
stack pointer is less than 4008 after a pop operation,
an underflow condition is indicated and a stack fault
occurs.

Underflow protection can be disabled in two ways:

III-22

• Start the stack at a location greater than 4018 . A
stack fault will then not occur unless the
program underflows the stack and continues to
pop words off the stack until the stack pointer is
less than 4008 • Note that this does not
completely disable underflow protection - it is
al ways possible to pop enough words off the
stack to underflow it.

• Set bit 0 of both the stack pointer and the stack
limit to 1. If this is done, all or a portion of the
stack may reside in page zero <locations 0-3778 ,),

or the stack may underflow into page zero,
without interference from the stack underflow
mechanism.

Stack Protection Faults

Stack Overflow Protection

After every operation that pushes data onto the stack,
a check is made for overflow. The stack pointer and
stack limit are treated as unsigned 16-bit integers and
compared. If overflow has occurred, the processor:

• sets bit 0 of the stack pointer to 0;

• sets bit 0 of the stack limit to 1;

• pushes a return block onto the stack;

• executes a jump indirect to the stack fault
address.

Bit 0 of the stack pointer and stack limit are set as
indicated so that the stack limit will (temporarily) be
larger than the stack pointer. In this way, the return
block pushed by the overflow mechanism itself will
not be intE~rpreted as yet another overflow fault,
causing a loop condition. The program counter in the
return block points to the instruction immediately
following the stack instruction that caused the fault.

Stack Underflow Protection

After every operation that pops data off the stack, a
check is made for underflow. If the stack pointer is less
than 4008 , and bit 0 of the stack limit is 0, a stack
underflow condition exists. In that case, the
processor:

• sets the stack pointer equal to the stack limit;

• sets bit 0 of the stack pointer to 0;

• sets bit 0 of the stack limit to 1;

• pushes a return block onto the stack;

• executes a jump indirect to the stack fault
address.

Bit 0 of the stack pointer and stack limit are set as
indicated so that the stack limit will (temporarily) be
larger than the stack pointer. In this way, the return
block being pushed onto the stack by the underflow
mechanism (starting at the stack limit) will not cause
an overflow fault. The program counter in the return
block points to the instruction immediately following
the stack instruction that caused the fault.

Stack Fault Handler

The stack fault handler (created by the programmer)
determines the nature of the fault. It also resets the
appropriate values, and takes any other appropriate
action, such as allocating more stack space or
terminating the program. Note that the stack fault
handler must reset bit 0 of the stack pointer and stack
limit to their original values.

Determine the nature of the fault by looking at bits
1-15 of the stack pointer and the stack limit. There are
three possibilities:

III-23

• If the address contained in the stack pointer is
not greater than the address in the stack limit,
then the error was a stack overflow error
resulting from the execution of a Save
instruction.

• If the address in the stack pointer is greater than
the address in the stack limit by a value greater
than 5, then the error was a stack overflow
error.

• If the address in the stack pointer is greater than
the address in the stack limit by exactly 5, then
the error was a stack underflow error.

-------, .. _------------- -------------_. ----- ------

Initializing the Stack Control Words
Initialize the stack control words before the first
operation on the stack is performed. The rules for this
are as follows:

Stack Pointer

• Initialize the stack pointer to the beginning
address of the stack minus one.

• If stack underflow protection is desired,
initialize the stack pointer to 4008 and start the
stack area at 401 8 •

• If stack underflow protection is not desired,
start the stack at some location greater than
4018 .

• If you want to have all or a portion of the stack
area in page zero, or you want to disable
underflow protection, set bit 0 of both the stack
pointer and the stack limit to 1.

Stack Limit

• Initialize the stack limit to a value greater than
the stack pointer.

• If stack overflow protection is desired, initialize
the stack limit to the last address allocated for
the stack minus at least 10.

• If stack overflow protection is not desired,
initialize the stack limit to 777778 .

• If you want to have all or a portion of the stack
area in page zero, set bit 0 of both the stack
pointer and the stack limit to 1.

Stack Fault Address

Initialize the stack fault address to the address of the
routine that is to receive control in the event of a
stack overflow or underflow. Bit 0 may be set to 1 to
indicate an indirect address.

Frame Pointer

If the main user program is going to use the frame
pointer, initialize it to the same value as the stack
pointer. Otherwise, the frame pointer can be
initialized in a subroutine by the Save instruction.

Examples

Stack area of 508 words with overflow and underflow
protection

STACK
POINTER
4008

STACK
LIMIT
4368

DG-OO,9.12a

436

437

440

446

447

450

Stack area of 508 words in page zero with overflow
protection

~ "'"

j FIRST WORD

STACK
POINTER-. 77
1000778 100 /,+-OF STACK

/'

NOTE:BITO\
SET TO 1

STACK ./

LlMIT--+ 135 ./'

1001358 LI

m 150

DG-00932b

III-24

Stack area of 1008 words with no protection

NOTE: BIT 0
SET TO 1

STACK
POINTER
1004378 ----

STACK

LIMIT 1
1777778

DG-00932c

~--

437
440

"T.::

537
540

-

~ B
/"

+-- FIRST WORD
OF STACK

/"

./'

.....
-~

/'

/'

./'

.... i.-J

The first of the preceding stack arrangements could
be set up using the following assembly language
instructions:

.TITL STACK

.EXTN STKHR ;Declare STKHR external

.LOC 401 ; Go to location 401

.BLK 50 ; Allocate 50 (octal) words

.LOC 40 ; Go to stack control words
400 ; Stack pointer
400 ; Frame pointer
436 ; Stack limit
@STKFT ; Stack fault address

STKFT STKHR ; Address of stack handler

.END

ST ACK INSTRUCTIONS
The instructions for use of the stack are listed below.

Push Multiple Accumulators

PSH acs,acd

I 1 I A~S I ACD I
o 1 2 3 I 4

1 0 0 1 0 0 1 0 0 01
(, I 7 I I 9 110 I 11 I 12 113 I 14 I 15

Pushes the contents of 1 to 4 accumulators onto the
stack.

The set of accumulators from ACS through ACD is
pushed onto the stack. The accumulators are pushed
in ascending order, starting with the AC specified by
ACS and continuing up through the AC specified by
ACD, wrapping around if necessary, with ACO
following AC3. The contents of the accumulators
remain unchanged. If ACS equals ACD, only ACS is
pushed.

The stack pointer is incremented by the number of
accumulators pushed and the frame pointer is
unchanged. A check for overflow is made only after
the entire push operation is completed.

Pop Multiple Accumulators

POP acs,acd

I 1 I A?S I ACD I
o 1 2 3 I 4

1 0
(, I 7 I

o 0 0 1 0 0 01
9 110 I 11 I 12 113 I 14 I 15

Pops 1 to 4 words off the stack and places them in the
indicated accumulators.

The set of accumulators from ACS through ACD is
filled with words popped from the stack. The
accumulators are filled in descending order, starting
with the AC specified by ACS and continuing down
through the AC specified by ACD, wrapping around if
necessary, with AC3 following ACO. If ACS is equal to
ACD, only one word is popped and it is placed in ACS.

The stack pointer is decremented by the number of
accumulators popped and the frame pointer is
unchanged. A check for underflow is made only after
the entire pop operation is completed.

III-25

Push Return Address

PSHR

I 1 0 0 0 0
o I 1 I 2 I 3 I 4 I

1

(, I 7

1 1001 0001
8 I 9 110 I 11 I 12 113 I 14 I 15

Pushes the address of the instruction after the next
sequential instruction onto the stack.

Two is added to the present value of the program
counter and the result is pushed onto the stack.

NOTE The Push Return Address instruction
adds 2 to the program counter (rather than 1)

to allow room for a Jump or Jump to
Subroutine instruction.

Save

SAVE

1 1 00 1 0 0 01
8 I 9 110 I 11 I 12 113 I 14 I 15

1

(, I

IMMEDIA TE FIELD 1
(, I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

Saves the information required by the RETURN
instruction.

A return block is pushed onto the stack. After the fifth
word of the return block is pushed, the value of the
stack pointer is placed in the frame pointer and in
AC3. The i6-bit unsigned integer (called the frame
size) contained in the immediate field is added to the
stack pointer. The format of the five words pushed is
as follows:

Word No.
Pushed Contents

1 ACO

2 AC1

3 AC2

4 Frame pointer before
the SAVE.

5 Bit 0 = carry bit
Bits 1-15 =
bits 1-15 of AC3

1II-26

NOTES The Save instruction allocates a
portion of the stack for use by the procedure
which executed the Save. The value of the
frame size determines the number of words in
this stack area. This portion of the stack will
not normally be accessed by push and pop
operations, but will be used by the procedure for
temporary storage of variables, counters, etc.
The frame pointer acts as the reference point
for this storage area.

Before the Save instruction is executed, a check
for stack overflow is performed. If execution of
the instruction would result in a stack overflow,
the instruction is not executed, and control is
transferred to the stack fault routine. The
program counter in the fault return block
contains the address of the Save instruction.

Use the Save instruction with the Jump to
Subroutine instruction, which places the return
value of the program counter in AC3. Save then
pushes the return value (contents of AC3) into
bits 1-15 of the fifth word pushed.

STACK POINTER
BEFORE SAVE

FRAME POINTER
AFTER SAVE

STACK POINTER
AFTER SAVE

DG-00565

ACO

AC1

AC2

- -OLD

FRAME POINTER
BITS 1-15

OF AC3

-----------4"

-------....j.'"

Programming Example
The following example transfers control to the
subroutine LOOP, saves the return information, and
allocates a 6-word block in the stack for use by LOOP.
The variable NUM2 is placed in the first of these 6
words. Note that the value of NUM1, left in ACO by the
calling procedure, is retrieved by the called procedure,
which reac:hes into the return block, using the frame
poin ter as a reference.

LDA
JSR

LOOP: SAVE

LDA
LOA

LDA
ADD
STA

O,NUM1 ;Put NUM1 in AGO
LOOP ;Go to loop subroutine
6 ;Save return info, allocate 6 words

; for temporary storage
2,FP ;Get frame pointer
1,-4,2 ;Get contents of stack word containing

; previous contents of AGO, using
; frame pointer as reference.

3,NUM2 ;Get other number, put in AG3
1,3 ;Add NUM1 + NUM2
3,1,2 ;Put sum in first word of temporary

; storage area.

Modify Stack Pointer

MSP ac

° I 11111°1°1°1
110 11 12 113 14 15

Changes the value of the stack pointer and tests for
potential overflow.

The signed twos-complement number in AC is added
to the stack pointer. If the result is less than the stack
limit, the result is placed in the stack pointer.

If the result is greater than the stack limit, control is
transferred to the stack fault routine. The program
counter in the fault return block is the address of the
Modify Stack Pointer instruction. The stack pointer is
left unchanged.

Pop Block

POPB

1 1 ° ° 1 ° 0 01
8 I 9 110 I 11 I 12 113 I 14 I 15

Returns control from a System Call routine or an I/O
interrupt handler that does not use the stack change
facility of the Vector instruction.

Fi ve words are popped off the stack and placed in
predetermined locations. The words popped and their
destinations are as follows:

STACK POINTER
AFTER POP

BLOCK I---:-::--:--I~ __ 5th WORD

ST ACK POINTER
BEFORE POP

BLOCK

DG-00607

POPPED

1st WORD
------POPPED

Sequential operation is continued with the word
addressed by the updated value of the program
counter.

NOT Elf the I/O interrupt handler uses the
stack change facility of the Vector on
Interrupting Device Code instruction, do not
use the Pop Block instruction. Use the Restore
instruction instead.

Return

RTN

1 1 1 1 001 0001
(, I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

Returns control from subroutines that issue a Save
instruction at their entry points.

The contents of the frame pointer are placed in the
stack pointer and a Pop Block instruction is executed.
The popped value of AC3 is placed in the frame
pointer.

III-27

Restore

RSTR

Returns control from certain types of I/O interrupts.

Nine words are popped off the stack and placed in
predetermined locations. The words popped and their
destinations are as follows:

ST ACK POINTER
BEFORE RESTORE

DG-00606

.. -..

.~ ..-

STACK
POINTER
FRAME

POINTER
STACK
LIMIT

STACK
FAULT

ACO

AC1

AC2

AC3

CARRY rROGRAM
BIT COUNTER

/

/"

../

../

./

/

./

V

V
../

l/

Sequential operation is continued with the word
addressed by the updated value of the program
counter.

NOTES U8e the Restore in8truction to return
control to the program only if the I/O' interrupt
handler U8e8 the 8tack change facility of the
Vector on Interrupting Device Code,
in8truction.

No check for 8tack underflow i8 performed a8
part of the Restore in8truction.

See the Vector in8truction 8ection (Chapter V)
for an example u8ing thi8 in8truction.

PROGRAM FLOW ALTERATION
The processor will retrieve and execute instructions
from sequentially addressed memory locations unless
directed to do otherwise. The following instructions
alter this sequential flow by placing a new value in the
program counter. Sequential operation will then
continue with the instruction addressed by this new
value.

Jump

J M P {@}displacementf, index}

1 0 0 0 0 0 I @ I iNDEX I DISPLACEMENT I

o I 1 I 2 I 3 I 4 5 {, I 7 8 I 9 110 I 11 I 12 113 I 14 I 15

EJMP {@ldisplacementf,index}

1 1 0 0 0 0 I 1 I INDEX I 0 0 1 1 1 0 0 0 I

o I 1 I 2 I 3 I 4 5 {, I 7 8 I 9 110 I 11 I 12 113 I 14 I 15

I@I I I I DISPLACEMENT I
5 I {, I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15 o 1 2 3 4

Computes the effective address, E and places it in the
program counter. Sequential operation continues
with the word addressed by the updated value of the
program counter.

Jump To Subroutine

J SR {@}displacementf, index}

1 0 0 0 0 1 I @ I INDEX I DISPLACEMENT I
o I 1 I 2 I 3 I 4 .5 {, I 7 8 I q 110 I 11 I 12 113 I 14 I 15

EJ SR {@}di8placementf,index}

11 0 0 0
o I 1 I 2 I 3 I 4

I INDEX I 0 0 1 1 1 0 0 0 I
I I I I I

DISPLACEMENT I
5 I {, I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

Increments and stores the value of the program
counter in AC3, and then places a new address in the
program counter.

The effecti ve address, E is computed. Then the
present value of the program counter is incremented
by one for JSR and by two for EJSR and the result is
placed in AC3. E is then placed in the program
counter and sequential operation continues with the
word addressed by the updated value of the program
counter.

III-28

NOTE The computation of E i8 completed
before the incremented program counter is
placed in A C3.

Execute

XCT ac

11 0 I 1 1 AC I
o I 1 2 3 1 4

1 0
(, I 7 I

1 1 1 1 0 0 0 1
9 110 I 11 I 12 113 I 14 I 15

Executes the instruction contained in AC as if it were
in main memory in the location occupied by the
EXECUTE instruction. If the instruction in AC is an
EXECUTE instruction which executes the instruction
AC, the processor is placed in a one-instruction loop.
The Stop switch on the console will not stop the
processor,. but the Reset switch will.

Because of the possibility of AC containing an
EXECUTE instruction, this instruction is
interruptable. An I/O interrupt can occur
immediately prior to each time the instruction in AC
is executed. If an I/O interrupt does oceur, the
program <counter in the return block pushed on the
system stack points to the EXECUTE instruction in
main memory. This capability to execute an
EXECUTE instruction gives the programmer a wait
for I/O int.errupt instruction.

NOTE The results of XCT are undefined if the
specified accumulator contains an instruction
that modifies that same accumulator For
example:

FOO:

LOA
XCT
JMP

FFAS

O,FOO
o
ON

0,0

;UNDEFINED

1II-29

System Call

SYC acs,acd

1

(, I 7

o 1 0 0 1 0 0 01
I 9 110 I 11 I 12 113 I 14 I 15

Pushes a return block and indirectly places the
address of the SYSTEM CALL handler in the
program counter.

If a user map is enabled, it is disabled and a return
block is pushed onto the stack. The program counter
in the return block points to the instruction
immediately following the SYSTEM CALL
instruction. Mter the return block has been pushed, a
jump indirect to location 2 is executed. If this
instruction disabled a user map, then I/O interrupts
cannot occur between the time the SYSTEM CALL
instruction is executed and the time the instruction
pointed to by the contents of location 2 is executed.

NOTES If both accumulators are specified as
A CO, no return block is pushed on the stack.
The contents of A CO remain unchanged. If
either of the accumulators specified is not A CO,
then no special action is taken. The contents of
the specified accumulators remain unchanged.

The assembler recognizes the mnemonic sel as
equi valent to Sye 1,1.

The assembler recognizes the mnemonic sve as
equivalent to sye 0,0.

Push Jump

PSHJ [@)displacementf,index}

1 1 0 0 I 0 0 1 I INDEX 11 0 1 1 1 0 0 0 1
o I 1 I 3 I 4 I 5 (, I 7 8 I 9 110 I 11 I 12 113 I 14 I 15

DISPLACEMENT 1
3 I 4 I 5 I (, 1 7 I 8 I q 110 I 11 I 12 113 I 14 I 15

Pushes the address of the next sequential instruction
onto the stack, computes the effective address E and
places it in the program counter. Sequential operation
continues with the word addressed by the updated
value of the program counter.

Pop PC And Jump

POPJ

11 0 0 I 1
o 1 1 I 3 1 4

1
(, 1 7

1 1 00 1 0 0 01
8 I <) 110 I 11 I 12 113 I 14 I 15

Pops the top word off the stack and places it in the
program counter. Sequential operation continues
with the word addressed by the updated value of the
program counter.

SUBROUTINE CALLS AND RETURNS

I ntrod uction
A subroutine is a section of program code which is
called by some other program, and which, upon
completion, transfers control. back to the program
calling it. Almost all well-structured programs of any
size are broken down into subroutines to improve
their efficiency.

The S/130 provides a number of instructions which
support subroutine linkage. In this section, we discuss
some general properties of subroutine calls and
returns, and then consider some examples.

Properties of Subroutine Calls and Routines

Calling and called routines communicate by means of
arguments whose values or addresses are passed to the
subroutine by the calling program. The arguments
may be numbers which are used by the subroutine
directly, or they may be addresses where the desired
values are found. They may also be addresses where
the subroutine will deposit results.

The subroutine may also use some main memory for
local variables; this memory is needed while the
subroutine is running, but may be used for other
purposes at other times. Local storage is often used to
save the original contents of accumulators before they
are used by the subroutine. The subroutine can then
restore the contents of these accumulators before
returning to the calling program.

Subroutines can also call other subroutines (nesting),
or a subroutine can call itself (recursion). A
subroutine which calls itself is called a recursive
subroutine.

Programming Examples

Example 1

The simplest method of calling a subroutine is by use
of the)SR or E)SR instruction. This instruction places
the contents of the program counter into AC3 and
jumps to the specified address. AC3 will contain the
address of the instruction following the)SR or E)SR

which is the return address. The subroutine return~
by executing a)MP 0,3.

You .can pass arguments when using this procedure by
placIng the values to be passed in the words following
the)SR or E)SR. The subroutine can then use AC3 as an
index register to reference those words, which are
c~lled in-line arguments because they appear in-line
WIth the program code, rather than in a separate data
area.

The following example shows a section of code which
calls a subroutine FUNC. FUNC reads the number stored
in-line as the first argument, performs some function
on it, and places the result in the address specified by
the second argument. Note that FUNC must add 2 to
AC3 before returning, to avoid jumping back into the
arguments.

JSR
NUMBR
ANSWR

ANSWR: .

FUNC: LDA

STA
ADI
JMP

FUNC

0,0,3

2,@1,3
2,3
0,3

;Main program code
; Call subroutine
;Number to use
; Address to place result
;Rest of main program

; Place to put result

; Load argument into ACO
;Process it
; (Result placed in AC2)
;Store it back in calling program
;Adjust return address
; Return

The subroutine linkage shown above is simple and
fast. It does not support nesting or recursion, nor does
the subroutine use any local memory. Also, the action
of)SR requires that AC3 be reserved for the return
address.

III-30

Example 2

The 8/130 stack facility can improve the efficiency of
subroutine linkage in several ways. If the
accumulators do not need to be preserved, arguments
can be passed via the accumulators, and .you can use
P5H) to call subroutines and POP) to return. Nesting
and recursion are possible with P5H)/POP) since the
last-in/first-out operation of the stack insures that
return addresses will be preserved.

The following example performs a factorial function
for 16-bit unsigned integers using a recursive
technique. The first part of the subroutine calls itself
recursively, storing data in the stack which is used in
the second part to calculate the factorial value. The
maximum input value that will not cause an overflow
is 8.

FACT:

L TTLE:

;Input argument (N) in ACO
PSHJ FACT ;Call subroutine

;Output result in AC1
; (Result = 0 if overflow)

MOVZR# O,O,SNR ;Is input argument = 0 or 1?
JMP LTTLE ;Yes, output is 1
PSH 0,0 ; No, output = N" (N-1)! Store N in stack
SBI 1,0 ; Decrement argument by 1
PSHJ FACT ; Loop around to put proper stuff

; in stack
POP 2,2 ; Get argument from stack
SUB 0,0 ;Need to clear ACO for integer multiply
MUL ; Multiply N* (N-1)!
MOV# O,O,SZR ;Overflow? (If ACO not 0)
SUB 1,1 ;Yes, signal overflow with 0 result
POPJ ;Return to next address in stack

SUBZL 1,1 ;Put 1 in AC1
POPJ ; Return to addr in stack

Example 3

The use of the Save and Return instruction with the
)5R provides a powerful subroutine linkage that
supports nesting and recursion with local variables
stored on the stack, and automatic saving of the
accumulators.

Below is a subroutine which is to be called by)5R. It
uses Save to save the accumulators on the stack and
reserve five words of the stack for local variables. It
then loads the words pointed to by two in-line
arguments into the first two words of the local
memory. The subroutine terminates by executing a
RTN, which restores the original condition of the
accumulators and stack.

SUBRT: SAVE

lOA
LDA
STA
LDA
STA

LDA
ADI
STA
RTN

5

2,0,3
1,@O,2
1,1,3
1,@1,2
1,2,3

1,0,3
2,1
1,0,3

;Save AC'S, reserve 5 words for
; local storage
; (AC3 now points to last word pushed
; onto stack)
;Load address of arguments into AC2
; Get first argument
;Store into first local variable
; Get second argument
; Store into second local variable

; Get return address
;Add 2 because of in-line arguments
; Place correct address in frame
;Return to calling program

III-31

EXTENDED OPERATION FEATURE
The extended operation feature (XOP) provides an
efficient method of transferring control to and from
procedures. When used with the WCS, the XOP
feature enables the user to transfer control to anyone
of 16 entry points in WCS. This permits the user to
implement and execute his own specialized
instructions.

Extended Operation

XOP acs, acd, entry number

I 1 lACS I ACD I ~NTRY # I 0 1 1 0 0 0 I
o 1 I 2 3 I 4 5 I 6 I 7 I 8 I <j 10 I 11 I 12 In I 14 I 15

A return block is pushed onto the stack. The address
in the stack of ACS is placed into AC2 and the address
in the stack of ACD is placed into AC3. Memory
location 448 (the XOP origin) must contain the
starting address of a 3210 word table of addresses.
These addresses are the starting location of the
various XOP operations.

The entry number in the XOP instruction is added to
the contents of the XOP origin to produce the address
of a word in the XOP table. That word is fetched and
treated as the intermediate address in the effective
address calculation. After the indirection chain, if
any, has been followed, the effective address is placed
in the program counter. The contents of ACO, AC1,
and the XOP origin remain unchanged.

III-32

The format of the return block pushed by the XOP
instruction is as follows:

STACK POINTER

BEFORE XOP

STACK POINTER
AFTER XOP

This return block is configured so that the XOP
procedure can return control to the calling program
via the POP BLOCK instruction.

When WCS is not installed, the XOP1 instruction,
described in the next section under Writeable Control
Store, serves the same function as the EXTENDED
OPERATION instruction above with the exception
that 3210 is added to the entry number before it is
added to the XOP origin.

CHAPTER IV
OPTIONAL FEATURES OF THE ECLIPSE S/130

INTRODUCTION
In this chapter we discuss the Memory Allocation and
Protection unit (MAP), the floating point and
characte:r instruction sets, and the WritablE! Control
Store (WCS).

MEMORY ALLOCATION AND
PROTECTION

NOTE In the following section, "MAP" refers
to the Memory Allocation and Protection unit,
whereas "map" refers to a set of memory
translation functions used by the MAP.

The S/130 MAP unit provides the hardware necessary
to control and use more than 32K of physical memory.
A MAP is useful for systems with two users and
required for systems with more than two users. In
addition, the MAP provides protection functions
which help protect the integrity of a large system.

IV-1of28

A MAP unit gives several users access to the resources
of the computer by dividing the memory space
available into blocks assigned to each user. Each time
a user accesses memory, the MAP translates the
address the user sees (a logical address) to an address
the memory sees (a physical address). This is all
transparent to the user, and with software to control
the priorities of the MAP and the CPU, several users
can use the computer without being aware of the
presence of the others.

For the following discussion, certain words and
phrases should be defined:

Logical Address - The address used by the user in all
programming. The logical address space is 32,768
words long and is addressed by a 15-bit address.

Physical Address - The address used by the MAP to
address the physical memory. The physical address
space has a maximum size of 131,072 words (128K)
and is addressed by a 17-bit address.

Address Translation - The process of translating logical
addresses into physical addresses, and vice versa.

Memory Space - The addresses (physical or logical)
assigned to a particular user.

Page - 102410 (20008) words in memory.

User Map - The set of memory address translation
functions defined for a particular user.

Data Channel Map - The set of address translation
functions defined for the memory references of a data
channel device used by a particular user or device.

Supervisor - The section of the operating system
(software) which controls system functions such as
the operation of the MAP.

IV-2

Address Translation

The primary function of the MAP is address
translation. In the 8/130, the map divides each user's
logical address space into 1024-word pages and
correlates each logical page with a corresponding
physical page. The address space the user sees is
unchanged, but the map now translates each logical
address into a physical address before memory is
actually accessed.

Note that there is no requirement that the physical
pages assigned to a user be in any particular order in
physical memory. The supervisor can therefore use
physical memory very flexibly, selecting unused pages
for a new user without concern for maintaining any
particular arrangement. Very complete use of the
physical memory is also possible, since no contiguous
blocks of memory larger than 1024 words are
required.

Sharing of Physical Memory

The MAP in the 8/130 is also capable of declaring a
section of physical memory accessible to several users
at once. This is useful if several users need a routine to
perform some common function (e.g., trigonometric
tables>. Without this capability, each user would
require a separate copy of the routine, thus creating
many duplicate copies and wasting considerable
space.

Types of Maps
Two types of maps are provided in the sl1ao. User
maps translate logical addresses to physical addresses
when memory reference instructions are encountered
in the uSHr's program. Data channel maps translate
logical addresses to physical addresses when data
channel devices address the memory.

Each user requires a separate user map. r:fhe MAP can
hold two user maps, but only one can be enabled at
anyone time. Thus if there are two users, the user
map for each is specified and loaded into the MAP.
The supervisor can then enable one or the other as
needed. If there are more than two users, new user
maps mUBt be loaded as needed. In some operating
systems, the operating system itself uses one of the
user mapB, so that a new user map must be loaded
each time another user is serviced. This is not as much
of an overhead burden as it sounds, because the Load
Map instruction loads a complete map with one
instruction, using relatively little time.

Separate data channel maps are needed because data
channel devices can access memory without direct
control from the user's program. There is thus no
assurance that the proper user map would still be
enabled at the time of the data channel request. The
MAP can hold four data channel maps. Enabling data
channel mapping enables all four data channel maps
at the same time. The choice of which map is used for
data channel references is made by the I/O controller
making the reference. Those controllers not equipped
to make this distinction use data channel map A by
default. See the Programmer's Reference Manual -
Peripherals (DGG No. 015-000021).

Supervisor Mode
So far we have assumed operation in the user mode.
The MAP can also operate in the supervisor mode.
The supervisor mode is used to analyze protection
faults (seEl below), load new maps, and, in general,
perform various MAP control functions. In the
supervisor mode, addresses in the range 0-757778
(which form logical pages 0-30> are not translated.
This means that the supervisor program can be as
large as 3:lK and will reside in the lowest section of
memory. In the supervisor mode, addresses in the
range 76000-777778 are translated by the special map
for supervisor's logical page 31. This allows the
supervisor to access portions of user space while in
supervisor mode.

IV-3

MAP Protection Capabilities
In addition to its address translation functions, the
MAP also provides protection functions. These
generally protect the integrity of the system by
preventing unauthorized access to certain parts of
memory or to 1/0 devices. For example, if a set of
trigonometric functions is stored in a section of
memory accessible to all users, this section can be
write protected so that users can read the functions
but cannot change them.

The various types of protection available in the S/130
are discussed separately below.

Validity Protection

Validity protection protects a user's memory space
from inadvertent access by another user, thereby
preserving the integrity and privacy of the user's
memory space. When a user's map is specified, the
pages of logical addresses required by the user's
program are linked to pages of physical addresses.
The remaining (unused) logical pages are declared
invalid to that user, and an attempt to access them
will cause a validity protection fault.

Validity protection is always enabled, so the
supervisor's responsibility is limited to declaring the
appropriate pages of logical addresses in valid.

Write Protection

Write protection permits users to read the protected
memory addresses, but not to write into them. In this
way, the integrity of common areas of memory can be
protected. An attempt to write into a write protected
area of memory will cause a protection fault.

A page of addresses is write protected when the map
is specified. Write protection can be enabled or
disabled at any time by the supervisor.

Indirect Protection

An indirection loop occurs when the effective address
calculation follows a chain of indirect addresses and
never finds a word with bit 0 set to O. Without indirect
protection, the CPU would be unable to proceed with
any further instructions, thus effectively halting the
system.

With indirect protection enabled, a chain of 15
indirect references will cause a protection fault.
Indirect protection can be enabled or disabled at any
time by the supervisor.

1/0 Protection

I/O protection protects the I/O devices in the system
from unauthorized access. In many systems, all I/O
operations are performed through operating system
calls. Clearly, it is undesirable to permit individual
users to execute I/O instructions, since this will
interfere with the operating system. If a user with I/O
protection enabled attempts to execute an I/O
instruction, a protection fault will occur. I/O
protection can be enabled or disabled at any time.

MAP Protection Faults

When a user attempts to violate one of the enabled
types of protection, a protection fault occurs, as
follows:

• The current user map is disabled.

• A 5-word return block is pushed onto the system
stack.

• Control is transferred to the protection fault
handler, through an indirect jump via location 3.

The system programmer must supply the protection
fault handler. It determines the type of fault that
occurred (using the Read Map Status instruction),
and then takes the appropriate action.

A protection fault can occur at any point during the
execution of an instruction. Therefore, the return
address in the fifth word of the return block is not
always correct. For I/O protection faults, the fifth
word will always be the logical address of the
instruction following the instruction that caused the
fault. For all other types of faults, the fifth word will
be a meaningless number.

IV-4

Load Effective Address Mode

The Load Effective Address instruction uses the same
instruction codes as some of the I/O instructions.
Without some other indication, the 8/130 would have
no way of knowing which instruction was intended.
The MAP therefore has a Lef mode bit, which
switches the mode of the 8/130 from Lef mode to I/O
mode. When the Lef mode bit is 1, all I/O format
instructions are interpreted as Load Effective Address
instructions. When the Lefmode bit is 0, all I/O format
instructions are interpreted as I/O instructions.

The Load Effective Address instruction is very useful
for quickly loading a constant into an accumulator. In
addition, a user operating in the Lef mode is
effectively denied access to any I/O devices, because all
I/O and Lef instructions are interpreted as Lef
instructions in this mode. Thus, Lefmode can be used
for I/O protection. Note, however, that no indication
is given if an I/O instruction is interpreted as an Lef
instruction. The contents of the indicated
accumulator will depend on the I/O instruction, but in
general, the results will be undesirable.

When not operating in the Lef mode, all Lef and I/O
instructions are interpreted as I/O instructions. With
I/O protection enabled, these instructions will cause a
protection fault in the normal manner. With I/O
protection disabled, the Lef instruction will be
executed as an I/O instruction if possible. The results
will depend on the instruction, but will probably be
undesirable.

Initial Conditions
At power up, the user maps and the data channel
maps are undefined, the MAP is in the supervisor
mode, and supervisor logical page 31 is mapped to
physical page 31.

After an I/O Reset, the MAP is in supervisor mode, the
data channel maps are disabled, and supervisor logical
page 31 is mapped to physical page 31.

MAP INSTRUCTIONS

The MAP instructions control the action of the MAP.
They are used by the supervisor program to ehange
the mapping functions or check the status of the
various maps.

CAUTION MAP instructions can be executed
in the user mode if I/O protection and Lef mode
are disabled for that user. When executed in
the user mode, the Read Map Status, Initiate
Page Check, and Page Check instructions will
return the desired information without
changing the Map. The Map Single Cycle
instruetion will disable the user map after the
next memory reference. The remainder of' the
instruetions will change the Map while the Map
is enabled, with undesirable results for this
user, another user, or the system as a whole.

load Map

LMP

o 0
I 1 I 2

1 0 0 0 0 1 0 0 01
I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

Loads succHssive words from memory into the MAP
where they are used to define a user or data channel
map.

The number of words to be loaded and the address of
the beginning of the fields are contained in
accumulators 1 and 2. Which address translation
function is being loaded is determined by the contents
of the map filed in the MAP status register.

ACO must eontain O. AC1 must contain an unsigned
integer which is the number of words to be loaded into
the MAP. Bits 1-15 of AC2 must contain the address of
the first word to be loaded. If bit 0 of AC2 is 1, the
instruction follows the indirection chain and places
the resultant effective address in AC2. AC3 is ignored
and its contents remain unchanged.

IV-5

For each word loaded, the count in AC1 is
decremented by one and the source address in AC2 is
incremented by 1. Upon completion of the instruction,
ACO and AC1 contain 0 and AC2 contains the address
of the word following the last word loaded.

This instruction is interruptable in the same manner
as the BLOCK ADD AND MOVE instruction. If this
instruction is issued while in the user mode, with I/O
protection enabled, the map will not be altered. AC1
and AC2 will be used and their contents modified as
described above. No I/O trap will occur.

The words loaded into the MAP define the address
translation functions for the various user and data
channel maps. Which map is to be affected by a LOAD
MAP instruction is determined by the contents of the
MAP field in the MAP status register. This field can be
altered by both the LOAD MAP STATUS and
INITIATE P AG E CHECK instructions.

The format of the words loaded into the MAP is as
follows:

IW_ pi LOGICAL
o 1 I 2 I 3 I 4 I

Bits

o

1-5

6-8

9-15

Name

Write
Protect

Logical
Page

Validity

Physical
Page

VAL

6 I 7 I I PHYSICAL 1

8 9 110 I 11 I 12 113 I 14 I 15

Contents

If 1, this logical page will be write protected
when write protection is enabled.

This is the number of the logical page which is
to be mapped.

These bits must be set to 1 only when
declaring a logical block invalid.
Otherwise, they must be set to O.

This is the number of the physical page of
memory that will hold the logical page defined
by bits 1-5.

NOTE A logical page is declared invalid by
setting the Write Protect bit to 1 and all of bits
6-15 to 1.

._----- ---------- ------------- ---------------------_.-_._---------_._-------------- ---_._- ----------- --_._--_._----

Load Map Status

DOA ac,MAP

1 0 1 1 I AC I 0
011

1

23145

o o 0 0 0 0 0

1 110 1 11 1 12 113 1 14 15

Defines the parameters of a new map.

The contents of the specified AC are placed in the
MAP status register. The contents of the specified AC
remain unchanged. The format of the spcified AC is as
follows:

8 9 10 11 12 13 14 1';

Bits Name Contents

0-5 --- Reserved for future use

6-8 Map Specify which map will be loaded by the next
LOAD MAP instruction as follows

000 User A
001 Reserved for future use
010 User B
011 Reserved for future use
100 Data channel A
101 Data channel C
110 Data channel B
111 Data channel D

9 LEF If 1, the LOAD EFFECTIVE ADDRESS
instruction will be enabled for the next user

10 I/O If 1, liO protection will be enabled for the next
user

11 WP If 1, write protection will be enabled for the
next user

12 IND If 1, indirect protection will be enabled for the
next user

13 AlB If 0, the next user map enabled will be that for
user A
If 1, the next user map enabled will be that for
user B

14 DCH If 1, the mapping of data channel addresses
Enable will be enabled immediately after this

instruction

15 User If 1, mapping of CPU addresses will
Enable commence with the first memory reference

after the next indirect reference or return type
instruction

NOTE If the Load Map Status instruction sets the User Enable bit to 1,
this inhibits the interrupt system and the MAP waits for either an
indirect reference or a return type instruction. Either event releases the
interrupt system and allows the MAP to begin translating addresses
(using the user map specified by bit 13 of the MAP status register).
Address translation resumes (1) after the first level of the next indirect
reference; or (2) after the first Pop Block. Pop Jump. Return or Restore
instruction that does not cause a stack fault.

IV-6

Read Map Status

DIA ac,MAP

0 1 I AC
1

0 0 0 0 0 0 0 0

3 I 4 9 110
1 1

12 113
1

2 5 11 14 15

Reads the status of the current m~p.

The contents of the MAP status register are placed in
the specified AC. The previous contents of the
specified AC are lost. The format of the information
placed in the specified AC is as follows:

Bits Name Contents

0-1 --- Reserved for future use.

2 I/O If 1, the last protection fault was an I/O
protection fault

3 WP If 1, the last protection fault was a write
protection fault.

4 IND If 1, the last protection fault was an indirect
protection fault

5 Single If 1, the last map reference was a MAP
Cycle SINGLE CYCLE instruction.

6-8 Map Specify which map will be loaded by the next
LOAD MAP instruction as follows:
000 User A
001 Reserved for future use
010 User B
011 Reserved for future use
100 Data channel A
101 Data channel C
110 Data channel B
111 Data channel D

9 LEF If 1, the LOAD EFFECTIVE ADDRESS
instruction was enabled by the last LOAD MAP
ST A TUS instruction.

10 I/O If 1, I/O protection was enabled by the last
LOAD MAP STATUS instruction.

11 WP If 1, write protection was enabled by the last
LOAD MAP STATUS instruction.

12 IND If 1, indirect protection was enabled by the last
LOAD MAP STATUS instruction.

13 A/B If 0, the last LOAD MAP STATUS instruction
enabled the user map for user A.
If 1, the last LOADMAP STATUS instruction
enabled the user map for user B.

14 DCH If 1, the mapping of the data channel
Enable addresses is enabled.

15 User If 1, the last I/O interrupt occurred while in
Mode user mode.

Initiate Page Check

DOC ac,MAP

10 1
o I 1

1 1 AC 11 0 0 1 0 0 0 0 0 1 1 I
21 I 4 5 1 & I 7 1 . 9 110 1 11 1 12 113 1 H 1 15 .

Identifies a logical page. The Page Check instruction
will find the corresponding physical page.

Transfers the contents of the specified AC to the MAP
for later use by the Page Check or Load Map
instruction. Leaves the contents of the specified AC
unchanged. The format of the specified AC is as
follows:

F::::\ LOGICAL
•.. ~., 1 1 2 1 :I I 4 1

MAP t::)
& I 7 1 8 "'~'l'~'~T;';"r'~'~'r~~'T"~'~"r'~'~"

Bits Name Contents

0 --- Reserved for future use.

1-5 LO~lical Number of the logical page for which the
Page check is requested.

6-8 Map Specify which map should be used for the
check as follows:

000 User A
001 Reserved for future use.
010 User B
011 Reserved for future use.
100 Data channel A
101 Data channel C
110 Data channel B
111 Data channel D

9-15 -.~- Reserved for future use.

.---

Page Check

DIC ac,MAP

10 1 1 I AC 11 0
011

1

23145
1

&17

00000011\
8 1 9 110 1 11 1 22 In 1 14 ! 15

Provides the identity and some characteristics of the
physical page corresponding to the logical page
identified by the immediately preceding Initiate Page
Check instruction.

Places the number of the physical page which
corresponds to the logical page specified by the
preceding Initiate Page Check or Load Map StatuB
instruction in bits 9-15 of the specified AC. Places
additional information about this page in bits 0-8 and
destroys the previous contents of the AC. The format
of the information placed in the specified AC is as
follows:

Bits Name Contents

0 WP The write protect bit for the logical page
which corresponds to the physical page
specified by bits 8-15.

1-3 Map The map which was used to perform the
translation between logical page number and
physical page number is as follows:
000 User A
001 Reserved for future use.
010 User B
011 Reserved for future use
100 Data channel A
101 Data channel C
110 Data channel B
111 Data channel D

4-5 --- Reserved for future use.

6-8 Validity If these bits are 1. and bit 0 is a 1. the
logical page which corresponds to the
physical page specified by bits 9-1 5 is
validity protected.

9-15 Physical The number of the physical page which
Page corresponds to the logical page given in the

preceding INITIATE PAGE CHECK instruction.

IV-7

Map Supervisor Page 31

DOB ac,MAP

I 0 1 1 I AC 11 0 0 0 0 0 0 0 0 1 1 1
o I 1 I 2 3 I 4 5 I (, I 7 I 8 I Cj 110 I 11 I 12 In I 14 I 15

Specifies the physical page corresponding to logical
page 31 of the supervisor's address space. It is used by
the supervisor to access a user's memory space when
many references will be required.

Bits 9-15 of the specified AC are transferred to the
MAP. These bits specify a physical page number to
which logical page 31 will be mapped when in the
supervisor mode.

The contents of the specified AC remain unchanged.
The format of the specified AC is as follows:

t:::1 PHYSICAL I
·····f·····f······(·····f····y·····r·····(·····l'"····· I I I I I I

o 1 2 3 4 5 (, 7 8 Cj 10 11 12 13 14 15

Bits Name Contents

0-8 --- Reserved for future use.

9-15 Physical The number of the physical page to which
Page logical page 31 should be mapped when

in supervisor mode.

IV-8

Map Single Cycle

NIOP MAP

10 1 1 0 0 0 0 0 1 1 0 0 0 0 1 11
o I 1 I 2 I 3 I I 5 I (, I 7 I 8 I Cj 110 I 11 I 12 113 I 14 I 15

Maps one memory reference using the last user map.
It is used by the supervisor to access a user's memory
space when only one or two references are required.

The user map is enabled for one memory reference.
The first memory reference of the next LDA or 5T A
instruction is mapped. After the memory cycle is
mapped, the user map is again disabled.

NOTE The interrupt system is disabled from
the beginning of the MAP SINGLE CYCLE
instruction until after the next LDA or ST A
instruction.

FLOATING POINT ARITHMETIC
The floating point instruction set performs rapid
arithmetic operations on numbers with a much larger
range than the fixed point instruction set can feasibly
handle. Single-precision floating point operations are
capable of about 7 significant decimal digits, while
double-precision operations are capable of about 16
significant decimal digits.

If the floating point instruction set is not installed,
floating point instructions will be executed as NO
OPS, i.e., JMP .+1 or EJMP .+1 as appropriate.

NOTE The 81130 floating point instruction set
expects normalized input numbers. If
normall:zed input is not provided, the results
will be undefined.

Floating Point Registers
There are five registers available to the programmer
in the floating point processor. These are the four
floating point accumulators (FPAC's) and the
Floating Point Status Register (FPSR)' The FPAC's
are numbered 0-3 and are called FACO, FAC1, FAC2,
and FAC3. The FPSR is a 32-bit register that contains
information about the present status of the floating
point processor. The format of the FPSR is given at
right.

Guard Digit
In order to increase accuracy, a 4-bit (1 hex digit)
guard digir is used during floating point arithmetic
operations. This guard digit accepts and holds up to 4
bits shifted out (to the right) of the mantissa, and is
used in all single precision and double precision
operations until the completion of each instruction.
The guard digit is truncated before the data is stored
at the end of the instruction process.

IV-9

Bits

0

1

2

3

4

5

6

7

8-13

14-15

16

17-31

Name

ANY

OVF

UNF

DVZ

MOV

TE

Z

N

RES

FPMOD

RES

FPPC

Contents

Indicates that any of bits 1 -4 are set

Overflow Indicator--during processing of a
floating point number, an exponent overflow
occured; the result is correct except the
exponent is 1 28 too small.

Underflow Indicator--during the processing of
a floating point number, an exponent
underflow occured; the result is correct except
that the exponent is 128 too large.

Divide by Zero--during the processing of a
floating point number, a zero divisor was
detected; division was aborted and the
operands remain unchanged.

Mantissa Overflow--during a floating point
FSCAL instruction, a significant bit was shifted
out of the high order end of the mantissa;
also, this bit is set, during a FIX instruction, the
result cannot fit into the destination location.

Trap Enable--If this bit is 1, the setting of any
of bits 1 -4 will result in a floating point fault.

Zero bit--The result of the last floating point
operation was equal to zero.

Negative bit--The result of the 1 st floating
point operation was less than zero.

Reserved for future use.

Indicates computer series supporting the
floating point instruction set:

00 S/200, C/300 Series

01 S/1 30 Series

10 Reserved for future use

11 Reserved for future use

Reserved for future use

Floating Point Program Counter--This is the
logical address of the last floating point
instruction executed. In the event of a floating
point fault, this is the address of the floating
point instruction that caused the fault.

Floating Point Fault Conditions
After every floating point operation, the floating
point status register is checked for possible fault
conditions. Four types of floating point fault
conditions can be detected. See the description of the
floating point status register above for more detail on
them.

Floating Point Trap
If the program has set bit 5 of the floating point status
register to 1, a floating point fault condition will
initiate a floating point trap. Immediately before the
next floating point instruction is executed, a return
block is pushed onto the stack and the program
counter jumps indirect via location 458 . Location 458

should contain the address of the floating point fault
handler. The return block pushed has the following
format:

WORD DESCRIPTION
PUSHED

1 ACO

2 AC1

3 AC2

4 AC3

5 Bit 0: Carry; and
Bits 1-15: return address

NOTES The return address is not the address
of the floating point instruction that caused the
fault nor is it (necessarily) the address of the
instruction following the instruction that
caused the fault. It is the address of the
floating point instruction following the
instruction that caused the fault.

If the instruction following the instruction that
caused the fault is a Push Floating Point State
or a Pop Floating Point State, the fault will not
occur immediately. The fault will occur when
the system returns to the same user
environment and is about to execute a floating
point instruction other than a Push Floating
Point State or a Pop Floating Point State. In
this way, the fault will only occur within the
user environment which caused it.

load Floating Point Single

FLDS fpac,[@}displacementf,index}

11 IIN~EX I FPAC I
o 1 2 3 I 4

0000 101 0001
6 I 7 I 8 i 9 110 I 11 i 12 113 I 14 I 15

DISPLACEMENT 1
6 I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

load Floating Point Double

FLDD fpac, [@}displacementf,index}

11 IIND1EX 1 ~PAC 11 0 0 0 1 1 0 1 0 0 0 I
o 1 2 3 I 4 5 I 6 I 7 I 8 I 9 110 I 11 • 12 113 I 14 I 15

DISPLACEMENT 1
6 I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15 o 1 2 3 4

Moves a word out of memory into a specified FP AC.

Computes the effective address E and places the
floating point number at that address in FP AC. Also
sets the sign and exponent to zero if the mantissa is
zero. Destroys the previous contents of FP AC and
updates the Z and N bits in the FPSR to reflect the
new contents of FP AC. For single precision, the
low-order 32 bits of FP AC are set to O.

Store Floating Point Single

FST S fpac, [@}displacementf,index}

3 I 4

DISPLACEMENT 1
6 I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

Store Floating Point Double

FST D fpac, l@}displacementf,index}

I 1 IIN~EX I FPAC I
o 1 2 3 I 4

o 0 1 1 1 0 1 0 0 01
6 I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

DISPLACEMENT I
6 I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

Stores the contents of a specified FPAC into a memory
location.

Computes the effective address E and places the
floating point number contained in FPAC in memory
beginning at the location addressed by E. Destroys the
previous contents of the addresed memory location
and leaves unchanged the contents of FPAC and the
condition codes in the FPSR. For single precision, only
the high -order 32 bits of FP AC are stored.

IV-iO

Float From AC

FLAS ac,fpac

I ' I AC 1 FPAC 11 0 , 0 0 1 0 , 0 0 0 I
I I I I I I I o 1 I 2 :I I 4 5 (, I 7 8 9 110 11 12 113 ,.. 15

Converts the signed two's complement number
contained in the specified accumulator to a single
precision floating point number, places the result in
the specified FPAC. and sets the low-order 32 bits of
the FP AC to 0. Leaves the contents of the specified
accumulator unchanged and destroys the previous
contents of the FPAC. Updates the Z and N bits in the
FPSR to reflect the new contents of FPAC.

The range of numbers that can be converted is
-32,76810 to + 32,76710•

Float From Memory

FLMD fpac, {@)dislacement{,index}

I 1 I INDEX 1 FPAC 11 0 1 0 1 , 0 , 0 0 0 I
o 1 I 2 3 I 4 5 I (, I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

I @ I I I I DISPLACEMENT I
o 1 2 3 4 I 5 I (, I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

Converts the contents of two memory locations to
floating point format and places the result in a
specified FP AC.

Computes the effective address E, converts the 32-bit,
signed, two's complement number addressed by E to a
double preeision floating point number, and places the
result in the specified FP AC. Destroys the previous
contents of FPAC, and updates the Z and N bits in the
FPSR to reflect the new contents of the FP AC.

The range of numbers that can be converted is
-2,147,483,H471O to +2,147,483,64810•

Move Floating Point

FMOV facs,facd

I ' 1 FApS 1 FACD I' I' 1 0 1 , 0 , 0 0 0 I
o 1 2 3 I 4 5 (, I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

Moves the eon tents of one FP AC to another FP AC.

Places the contents ofF ACS in F ACD, destroys the
previous contents of FA CD, and leaves the contents of
FACS unchanged. If the mantissa in FACS is zero, the
sign and exponent in F ACD are also set to zero. The Z
and N bits in the FPSR are set to reflect the new
contents of F ACD.

Fix To AC

FFAS ac,fpac

I 1 I ~Ic I FPAC " 0 1 , 0 1 0 , 0 0 0 I
o 1 2 3 I 4 5 I (, I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

Converts the integer portion of a floating point
number to a signed two's complement integer and
places the result in an accumulator.

Forms the absolute value of the integer portion of the
floating point number in FPAC. Extracts the 15 least
significant bits from this value and, if the number in
FPAC is negative, forms the two's complement of the
integer. Then places the result in the specified
accumulator, sets the Z and N bits in the floating
point status register to 0, and leaves the contents of
FP AC unchanged.

If the number in FP AC is less than -32,76710 or greater
than + 32,76710> this instruction sets the MOF bit in
the floating point status register to 1.

NOTE If the lower 15 bits of the integer formed
from the number in FPA C are all 0, the sign bit
of the result will be zero regardless of the sign
of the original number.

Fix To Memory

FFMD fpac, {@),displacementl,index}

I 1 llNDEX 1 FPAC 11 0 1 1 1 1 0 , 0 0 0 I
o 1 I 2 3 I 4 5 I (, I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

I @ 1 DISPLACEMENT I
o 1 I 2 I 3 I 4 I 5 I (, I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

Converts the integer portion of a floating point
number to double-precision integer format and stores
the result in two memory locations.

Forms the absolute value of the integer portion of the
floating point number in FPAC. Extracts the 31 least
significant bits from this value and, if the number in
FPAC is negative, forms the two's complement of the
integer. Then places the result into the location
addressed by E, sets the Z and N bits in the floating
point status register to 0, and leaves the contents of
FPAC unchanged.

If the number in FPAC is less than -2,147,483,64710 or
greater than +2,147,483,64710• this instruction sets
the MOF bit in the floating point status register to 1.

IV-ii

NOTE If the lower 31 bits of the integer formed
from the number in FPA C are all 0, the sign bit
of the result will be zero regardless of the sign
of the original number.

Add Single (FPAC to FPAC)

FAS facs,facd

11 I ~AlcS I FACD 10 I 0 0 I 0 0 1 0 1 0 0 0 I
o 1 2 3 I 4 5 6 I 7 8 I '} 110 I 11 I 12 113 I 14 I 15

Add Single (memory to FPAC)

FAMS facd, [@}displacementf,index}

1 1 IINDI EX I FACD I 0 I 1 0 0 0 1 0 1 0 0 0 I

o 1 2 3 I 4 5 6 I 7 I 8 I '} 110 I 11 I 12 113 I 14 I 15

1 @ I DISPLACEMENT I

o 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I '} 110 I 11 I 12 113 I 14 I 15 .

Add Double (FPAC to FP AC)

FAD facs,facd

I 1 I FAICS I FACD I 0 I 0 0 I 0 1 1 0 1 0 0 0 I
o 1 2 3 I 4 5 6 I 7 8 I '} 110 I 11 I 12 113 I 14 I 1)

Add Double (memory to FP AC)

FAMD facd, [@}displacementf,index}

11 IINDIEX I FACD I 0 I 1 0 0 1 1 0 1 0 0 0 I
o 1 2 3 I 4 5 6 I 7 I 8 I '} 110 I 11 I 12 113 I 14 I 1.5

DISPLACEMENT I
6 I 7 I 8 I '} 110 I 11 I 12 113 I 14 I 15

Adds the floating point number in the source location
to the floating point number in F ACD and places the
normalized result in F ACD. Destroys the previous
contents of FACD, leaves the contents of the source
location unchanged and updates the Z and N bits in
the FPSR to reflect the new contents of F ACD.

For an add from memory, the effective address E is
computed. E addresses either a 2-word (single
precision) or 4-word double precision) operand.

Floating point addition consists of an exponent
comparison and a mantissa addition. The exponents
of the two numbers are compared, and the mantissa of
the number with the smaller exponent is shifted right.
This mantissa alignment is accomplished by taking
the absolute value of the difference between the two
exponents and shifting the mantissa right that
number of hex digits. One guard digit is provided so
that all but four bits shifted out of the right end of the
mantissa are lost, and do not take part in the addition.
If all significant digits are shifted out of the mantissa,
the operation is equivalent to adding the number with
the larger exponent to zero. This requires a shift of at
least 15 hex digits for double precision, or 7 hex digits
for single precision.

IV-12

After alignment, the mantissas are added together.
The result of this addition is termed the intermediate
result. One guard digit is provided for the
intermediate result, which is used if normalization is
required. The sign of the intermediate result is
determined from the signs of the two operands by the
rules of algebra. If the mantissa addition produces a
carry out of the high-order bit, the mantissa in the
intermediate result is shifted right one hex digit and
the exponent is incremented by one. If this shift
produces an exponent overflow, the OVF bit is set in
the FPSR, and the number in F ACD is correct except
that the exponent is 128 too small.

If there is no mantissa overflow, the mantissa of the
intermediate result is examined for leading hex zeros.
If the mantissa is found to be all zeros, a true zero is
placed in the F ACD and the instruction is terminated.

If the mantissa is non-zero, the intermediate result is
normalized, and the number placed in the FACD. If
the normalization results in an exponent underflow,
the UNF bit is set in the FPSR and the instruction is
terminated. The number in the FACD is correct
except that the exponent is 128 too large.

Subtract Single (FP AC from FPAC)

FSS facs, facd

11 I FAICS I FACD I 0 I 0 0 1 0 1 0 1 0 0 0 I
o 1 2 3 I 4 5 6 I 7 I 8 I '} , 10 I 11 I 12 113 I 14 I 15

Subtract Single (memory from FPAC)

FSMS facd, [@}displacementf,index}

1 1 IINDIEX I FACD , 0 I 1 0 1 0 1 0 1 0 0 0 I

o 1 2 3' 4 5 6' 7 I 8 I '} 110 I 11 I 12 , 13 I 14 I 15

I~I DISPLACEMENT I
6 , 7 I 8 I '} , 10 I 11 I 12 113 I 14 I 15

Subtract Double (FPAC from FPAC)

FSD facs,facd

1 1 I ~AlcS I FACD I 0 I 0 0 1 1 1 0 1 0 0 0 I
o 1 2 3' 4 5 6' 7 I 8 I '} , 10 I 11 I 12 , 13 I 14 I 15

Subtract Double (memory from FPAC)

FSM D facd, l@}displacementl, index}

, 1 \ IN9EX I FACD I 0 1 0 1 1 1 0 1 0 0 u I
o 1 2 3 I 4 5 I 6 I 7 I 8 I q 110 ! 11 I 12 113 I 14 I 15

DISPLACEMENT I
1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I q 110 I 11 I 12 113 I 14 I 15

Subtracts the floating point number in the source
location from the floating point number in F ACD and
places the normalized result in the FACD. Destroys
the previous contents of FACD, leaves the contents of
the sourCl3 location unchanged, and updates the Z and
N bits in the FPSR to reflect the new contents of
FACD.

For a subtract from memory, the effective address E is
computed. E addresses either a 2-word (single
precision) or 4-word (double precision) operand.

The subtraction is performed by inverting the sign bit
of the source operand and adding. Mter the sign
inversion" the operation is equivalent to floating point
addition.

Multiply Single (FPAC by FPAC)

FMS f(lcs, facd

I 1 \ FApS 1 FACD I 0 0 1 0 0 1 0 1 0 0 0 I
o 1 2 3 I 4 5 I 6 I 7 I 8 I q 110 I 11 I 12 113 I 14 I 15

Multiply Single (FPAC by memory)

FMMS facd, l@ldisplacementl,index}

I 1 \ INDEX I FACD 10 1 1 0 0 1 0 1 0 ~
o 1 2 3 I 4 5 6 I 7 8 q 110 11 12 113 ~ I I I I I I '

I @ I DISPLACEMENT:=::J
I I I I I I I I o 1 2 3 I 4 5 6 I 7 8 q 110 11 12 113 ~

Multiply Double (FPAC by FPAC)

FMD ~acs,facd

I 1 I FAICS , FACD , 0 0
0123145

1
61

o 1 1 0 1 0 0 01
q 110 I 11 I 12 113 I 14 I 15

Multiply Double (FPAC by memory)

FMMD facd, l@}displacementl,index}

I 1 \ iN9EX I FACD I 0 1 1 0
012314 1617

1
8

1 1 0 1 0 0 0 I
q 110 I 11 I 12 113 I 14 I 15

DISPLACEMENT I
6 I 7 I 8 . q 110 I 11 I 12 113 I 14 I 15

Multiplies the floating point number in F ACD by the
floating point number in the source location and
places the normalized result in F ACD. Destroys the
previous contents of FACD, leaves the contents of the
source location unchanged, and updates the Z and N
bits in the FPSR are set to reflect the new contents of
FACD.

For a multiply from memory, the effective address Eis
computed. E addresses either a 2-word (single
precision) or 4-word (double precision) operand.

The mantissas of the two numbers are mUltiplied
together to give the mantissa. of the intermediate
result. One guard digit is provided for the
intermediate result, which is used if normalization is
required. The exponents of the two numbers are
added together and 64 is subtracted. This subtraction
of 64 maintains the excess 64 notation. The result of
the exponent manipulation becomes the exponent of
the intermediate result. The sign of the intermediate
result is determined from the sign of the two operands
by the rules of algebra.

If the exponent processing produces either overflow or
underflow, the result is held until normalization, as
that procedure may correct the condition. If
normalization does not correct the condition, the
corresponding bit in the FPSR is set. The number is
correct except that, for exponent overflow, the
exponent is 128 too small, and for exponent
underflow, the exponent is 128 too large.

Divide Single (FPAC by FPAC)

FDS fa cs,fa cd

I 1 I FAICS I FACD 1 0 I 0 1 0 1 0 1 0 0 0 I
o 1 2 3 I 4 5 6 I 7 I 8 I q 110 I 11 I 12 \13 I 14 ! 15

Divide Single (FPAC by memory)

FDMS facd,l@}displacementl,index}

I 1 IIN~EX , FACD I 0 1
0123145

1
617

1 0 1 01 0 0 01
8 I q 110 I 11 I 12 113 I 14 I 15

3 I 4

DISPLACEMENT I
6 I 7 I 8 ! q 110 I 11 I 12 113 I 14 I 15

IV-13

Divide Double (FPAC by FPAC)

FDD facs,facd

Divide Double (FPAC by memory)

FDM D facd, [@}displacementf,index}

I~ I 3 I 4

DISPLACEMENT 1

6 I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

Divides the floating point number in FACD by the
floating point number in the source location and
places the normalized result in F ACD. Destroys the
previous contents of FACD, leaves the contents of the
source location unchanged, and updates the Z and N
bits in the FPSR to reflect the new contents of F ACD.

For a divide from memory, the effective address E is
computed. E addresses either a 2-word (single
precision) or 4-word (double precision) operand.

The source operand is checked for a zero mantissa. If
the mantissa is zero, the DVZ bit is set in the FPSR
and the instruction is terminated. The number in
F ACD remains unchanged. If the mantissa is nonzero,
the previous contents of FACD are lost. The two
mantissas are compared and if the mantissa of the
number in FACD is greater than or equal to the
mantissa of the source operand, the mantissa of the
number in FACD is shifted right one hex digit and the
exponent of the number in F ACD is increased by one.
This process continues until the mantissa of the
number in FACD is less than the mantissa of the
source operand. Since one guard digit is provided, all
but four bits shifted out are lost.

The mantissa in F ACD is then divided by the
mantissa of the source operand and the quotient is the
mantissa of the intermediate result. The exponent of
the source operand is subtracted from the exponent in
F ACD and 64 is added to this result. This addition of
64 maintains the excess 64 notation. The result of the
exponent manipulation becomes the exponent of the
intermediate result. The sign of the intermediate
result is determined from the sign of the two operands
by the rules of algebra. The result is normalized and
placed in FACD.

If the exponent processing produces either overflow or
underflow, the corresponding bit in the FPSR is set.
The number in F ACD is correct except that, for
exponent overflow, the exponent is 128 too small, and
for exponent underflow, the exponent is 128 too large.

Negate

FNEG fpac

1 1 1 1 1 FPAC I' , 0 0 0 , 0 , 0 0 0 1
o I 1 I 2 3 I 4 5 I 6 I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

Inverts the sign bit of FPAC. Bits 1-63 of FPAC
remain unchanged. Also sets the sign and exponent to
zero if the mantissa in FPAC is zero. Updates the Z
and N bits in the FPSR to reflect the new contents of
FPAC. If FPAC contains true zero, the sign bit
remains unchanged.

Normalize

FNOM fpac

I' 0 I 0 I FPAC I
o I 1 2 3 I 4

1 00 0 , 0, 0 0 01
6 I 7 I I 9 110 I 11 I 12 113 I 14 I 15

Normalizes the floating point numbers in FPAC. Sets
a true zero in FP AC if all the bits of the mantissa are
zero. Sets the UNF bit in the FPSR if an exponent
underflow occurs. The number in FP AC is then
correct, except that the exponent is 128 too large.

The Z and N bits in the FPSR are set to reflect the
new contents of FP AC.

Absolute Value

FAR fpac

I' , 0 I FPAC I' , 0 0 0 , 0 , 0 0 0 1
o I 1 I 2 • 3 I 4 5 I 6 I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

Sets the sign bit of FPAC to 0. Also sets the exponent
to zero if the mantissa is zero. Leaves bits 1-63 of
FP AC unchanged, and updates the Z and N bits in the
FPSR to reflect the new contents of FPAC.

Read High Word

FRH fpac

I' 0 1 1 FPAC 11 , 0 0 0 , 0 , 0 0 0 1
o I 1 I 2 . 3 I 4 5 I 6 I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

Places the high-order 16 bits of FPAC in ACO,
destroys the previous contents of ACO, and leaves
unchanged the contents of FP AC and the Z and N bits
in the FPSR.

IV-14

Scale

FSCAL fpac

r;--oo 1 FPAC I' , 0 0 I' , 0 , 0 0 0 I
~ 3 I 4 5 I (, I 7 I 8 9 110 I 11 I 12 113 I 14 I 15

Shifts the mantissa of the floating point number in
FPAC either right or left, depending upon the
contents of bits 1-7 of ACO. Leaves the contents of ACO
unchangl3d.

Bits 1-7 of ACO are treated as an exponent in Exce88
64 representation. The difference between this
exponent and the exponent in FPAC is computed by
subtracting the exponent in FP AC from the number
contained in ACO bits 1-7. If the difference is zero, the
instruction is terminated. If the difference is positive,
the mantissa contained in FPAC is shifted right that
number of hex digits. If the difference is negative, the
mantissa. contained in FP AC is shifted left that
number of hex digits and if bits are lost the MOF bit in
the FPSH. is set. After the shift, the contents of bits 1-7
of ACO r43place the exponent contained in FPAC. Bits
shifted out of either end of the mantissa are lost. If the
entire mantissa is shifted out of FP AC, FP AC is set to
true zero. The Z and N bits in the FPSR a.re set to
reflect the new contents of FPAC.

Load Exponent

FEXP fpac

r;-c>1 I FPAC I' , 0 0 , , 0 , 0 0 0 I
~ 3 I 4 5 I (, I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

Places bits 1-7 of ACO in bits 1-7 of the specified FP AC.
Ignores bits 0 and 8-15 of ACO. Leaves unchanged bits
o and 8-63 of FPAC and the entire contents of ACO.
Also sets bits 0-7 <the sign and exponent) to zero if
bits 8-63 <the mantissa} of FPAC are zero. Leaves bits
1-7 of FPAC unchanged if FPAC contains true zero.

NOTE The exponent contained in bit8 1-7 of
AGO i8 a88umed to be in Excess 64
repre8entation.

Halve

FHLV fpac

I' , , I FPAC I' , 0 0 , , 0 , 0 0 0 I
o I 1 I 2 3 I 4 5 I (, I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

Shifts the mantissa contained in FPAC right one bit
position, fills the vacated bit position with a zero and
places the bit shifted out in the guard digit. Then
normalizes the number and places the result in FPAC.
Sets the UNF bit in the FPSR if the normalization
process causes an exponent underflow. The number in
FPAC is then correct, except that the exponent is 128
too large. Updates the Z and N bits in the FPSR to
reflect the new contents of FP AC.

NOTE The effect of thi8 in8truction i8 to divide
the noating point number contained in FPA G
by 2.

I ntergerize

FINT fpac

I' , 0 I FPAC I' , 0 0 1 1 0 1 0 0 0 I
o I 1 I 2 3 I 4 5 I (, I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

Sets the fractional portion of the floating point
number in the specified FPAC to zero and normalizes
the result. Updates the Z and N bits in the FPSR to
reflect the new contents of the specified FPAC.

IV-15

NOTE If the ab80lute value of the number
contained in the 8pecified FPA G i8 le88 than 1,
the 8pecified FPA G i8 8et to true zero.

Compare Floating Point

FCMP faes, faed

1 1 I FACS 1 FACD 1 ~ 1 1 0 0 1 0 1 0 0 0 1
o 1 1 2 3 I 4 5 1 6 I 7 1 8 1 'l 110 1 11 1 12 113 1 14 1 15

Compares two floating point numbers and sets the Z
and N bits in the FPSR accordingly.

Algebraically compares the floating point numbers in
F ACS and F ACD to each other and updates the Z and
N bits in the FPSR to reflect the result. Leaves the
contents of FACS and FACD unchanged. The results
of the compare and the corresponding bit settings are
shown in the table below.

Z N Result

, 0 FACS = FACD

0 1 FACS > FACD

0 0 FACS < FACD

NOTE Unnormalized operands give
unspecified results.

Load Floating Point Status

FLST I@ldisplaeementl,indexl

11 0 1 1 INDEX I' 1 0 1 1 1 0 1 0 0 0 1
o I 1 1 2 3 I 4 5 I 6 I 7 1 8 1 'l 110 1 11 1 12 113 1 14 1 15

1 @ I DISPLACEMENT 1
1 1 1 1 I I I 1 1 1 o 1 2 3 I 4 5 6 I 7 8 'l 110 11 12 113 14 15

Moves the contents of two specified memory locations
to the FPSR.

Computes the effective address E, places the 32-bit
operand addressed by E in the FPSR, and sets the
condition codes to the values of the loaded bits.

IV-16

Store Floating Point Status

FSST {@ldisplaeementl,indexl

11 0 0 1 INDEX 11 1 0 1 , 1 0 1 0 0 0 1
o I 1 I 2 3 I 4 5 1 6 I 7 1 8 1 'l 110 1 11 1 12 113 1 14 I 15

DISPLACEMENT 1

6 I 7 I 8 1 'l 110 1 11 1 12 113 1 14 1 15

Moves the contents of the FPSR to two specified
memory locations.

Computes the effective address E, and places the
32-bit contents of the FPSR in the memory location
addressed by E, leaving the contents of the FPSR
unchanged.

Trap Enable

FTE

11 , 0 0 0

01112 1 314 1 5
1 0 1

6 I 7 1

1 1 0 1 0 0 0 1
'l 110 1 11 1 12 113 1 14 1 15

Sets the trap enable bit of the FPSR to 1.

NOTE When a noating point fault occurs and
the trap enable bit is 1, the trap enable bit is set
to 0 before control is transferred to the floating
point error handler. The trap enable bit should
be set to 1 before normal processing is resumed.

Trap Disable

FTD

11 1 0 0 1 1 1 0

01112 1 314 1 5 1 617 1
1 1 0 1 0 0 0 1
'l 110 I 11 1 12 113 1 14 I 15

Sets the trap enable bit of the FPSR to O.

NOTE The I/O RESET instruction will set this
bit to O.

Clear Errors

FCLE

11 1 0 1 01 1 01 1 1 01 0001
o I 1 1 2 1 3 I 4 1 5 1 6 I 7 1 8 I 'l 110 I 11 1 12 113 1 14 I 15

Sets bits 0-4 of the FPSR to O.

NOTE The I/O RESET instruction will set
these bits to O.

Push Floating Point State

FPSH

11 1
o I 1

o 0 1
3 I 4 I

1 01 1 01 0001
I I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

Pushes an 18-word floating point return block onto
the user stack, leaving the contents of the floating
point acc:umulators and the FPSR unchanged. The
format of the 18 words pushed is as follows:

STACK POINTER -. ~ -,,-I

BEFORE FPSH ~-------f~'

DG-00603

FPSR BIS 0-15 .-'

FPSR BITS 16-31

I-----------v·
~---------v"

I----------v
.-'

I----------v"
1-----------1--.
"""---- -----","

~

1-----------",
r-----------","
r-----------","

.-'

1----------- ,"
1------ - ----
1----------_

.-'

Pop Floating Point State

FPOP

11 1
o I 1 I

o
3 I 4

o 1
I 7 I 8

1 1 0 1 0 0 0 1
9 110 I 11 I 12 113 I 14 I 15

Pops an 18-word floating point return block off the
user stack and alters the state of the floating point
unit. The words popped and their destinations are as
follows:

IV-17

STACK POINTER..,(_ ;:J
AFTER FPOP ~ I----___ -fl.....-,

FPSR BITS 9-15

FPSR BIS 16-31

{

1----------1.-"
FACO ~---------L..-

I-I-------------------........ ~ ... I

FAC'{

FAC2{

STACK POINTE:
AC
:{

BEFORE FPOP

DG-00604

I-------- __ L..-.

~--------- v'

~--------- ",,"

.-'

"""----- -----""
"""----------",,"
~--------- ...

..-'

"""---------
I------------~

"""-------- -_
.-'

NOTE Because of the potentially long time
required to perform some floating point
instructions in relation to I/O interrupt
requests, these instructions are interruptable.
Because the FA CD, stack pointer, and program
counter are not updated until the completion of
these instructions, any interrupt service
routines that return control to the interrupted
program via the program counter stored in
location 0 will correctly restart these
instructions.

Arithmetic Test
There are eight instructions in the floating point
instruction set that test the Z and N bits in the FPSR
and skip on the result of the test. These instructions
are described below.

No Skip

FNS

11 0 0 0 0 1 1 0 1 0 1 O' 1 0 0 0 1

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I <) 110 I 11 I 12 113 I 14 I 15

The next sequential word is executed.

Skip Always

FSA

11 0 0 0 1 1 1 0 1 0 1 0 1 0 0 01
o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I <) 110 I 11 I 12 113 I 14 I 15

The next sequential word is skipped.

Skip On Greater Than Zero

FSGT

11 0 1 1 1 1 1 0 1 0 1 0 1 0 0 01
o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I <) 110 I 11 I 12 113 I 14 I 15

Skips the next sequential word if both the Z and N
bits of the FPSR are O.

Skip On Less Than Zero

FSLT

11 0 1 0 01 1 0 1 0 1 01 0 0 01
o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I <) 110 I 11 I 12 113 I 14 I 15

Skips the next sequential word if the N bit of the
FPSRis 1.

Skip On Zero

FSEQ

11 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 1
o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I <) 110 I 11 I 12 113 I 14 I 15

Skips the next sequential word if the Z bit on the
FPSR is i.

Skip On Less Than Or Equal To Zero

FSLE

110110110101010001
o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I <) 110 I 11 I 12 113 I 14 I 15

Skips the next sequential instruction if either the Z
bit or the N bit of the FPSR is 1.

Skip On Greater Than Or Equal To Zero

FSGE

11 0 1 0 1 1 1 0 1 01 0 1 0 0 01
o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I <) 110 I 11 I 12 113 I 14 I 15

Skips the next sequential word if the N bit of the
FPSR is O.

Skip On Non-Zero

FSNE

11 0 0 1 1 1 1 0 1 01 0 1 0 0 01
o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I <) 110 I 11 I 12 113 I 14 I 15

Skips the next sequential word if the Z bit of the
FPSR is O.

Error Test

There are eight instructions in the floating point
instruction set that test the error indicators in the
FPSR and skip on the result of the test. These
instructions are described below.

Skip On No Mantissa Overflow

FSNM

11 1 0 00 1 1 0 1 0 1 0 1 0 0 01
o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I <) 110 I 11 I 12 113 I 14 I 15

Skips the next sequential word if the mantissa
overflow (MOF) bit of the FPSR is O.

Skip On No Underflow

FSNU

11 1 0 1 0 1 1 0 1 0 1 0 1 0 0 0 1

o I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I <) 110 I 11 I 12 113 I 14 I 15

Skips the next sequential word if the underflow
(UNF) bit of the FPSR is O.

IV-i8

Skip On No Overflow

FSNO

I' 1 , 0 0 , , 0 , 0 , 0' 0 0 01
o I 1 I 2 I 3 I 4 I 5 I (, I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

Skips the next sequential word if the overflow (OVF)
bit of the FPSR is O.

Skip On No Zero Divide

FSND

I' , 0 0 , , , 0 , 0 , 0 , 0 0 01
o I 1 I 2 I 3 I 4 I 5 I (, I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

Skips the next sequential word if the divide by zero
(DVZ) bit of the FPSR is O.

Skip On No Underflow And No Zero Divide

FSNUD

I' , 0 , , , , 0 , 0 , 0 1 0 0 01
o I 1 I 2 I 3 I 4 I 5 I (, I 7 I 8 1 9 110 1 11 I 12 113 1 14 I 15

Skips the next sequential word if both the underflow
(UNF) bit and the divide by zero (DVZ) bit of the
FPSRareO.

Skip On No Overflow and No Zero Divide

FSNOD

o , , , 0 , 0 , 0 , 0 0 01

3 I 4 1 5 1 (, I 7 1 8 I 9 ; 10 1 11 1 12 113 1 14 1 15

Skips the next sequential word if both the overflow
(OVF) bit and the divide by zero (DVZ) bit of the
FPSRareO.

Skip On No Underflow And No Overflow

FSNUO

I' , , '0' , 0'0'0'0001
o I 1 I 2 I 3 I 4 1 5 1 (, I 7 1 8 I 9 110 I 11 I 12 113 I 14 I 15

Skips the next sequential word if both the underflow
(UNF) bit and overflow (OVF) bit of the FPSR are O.

Skip On No Error

FSNER

I' , , , , , , 0 , 0 , 0 , 0 0 01

o I 1 I 2 1 3 I 4 I 5 1 (, I 7 I 8 I 9 110 1 11 I 12 113 1 14 1 15

Skips the next sequential word if bits 1-4 of the FPSR
are all O.

CHARACTER INSTRUCTION SET
The character instruction set performs operations on
strings of bytes.

NOTE Because of the potentially long time
that may be required to complete any
instruction in the character set (relative to I/O
requests), all instructions in this set are
interruptable. If an instruction is interrupted,
the program counter is decremented by one
before it is placed in location 0 so that it points
to the instruction in progress. All the
instructions maintain their operands in such
an manner that any interrupt service routine
that returns control to the interruupted
program via the address stored in memory
location 0 will correctly restart the interrupted
instruction.

The processor assumes that no interrupt
service program will alter the data being
operated upon by an interrupted instruction.

Character Move

CMV

I' , 0 , 0
01112 1 314

1
5

, , , 0'0' 0001
(, I 7 1 8 1 9 110 1 11 1 12 113 1 14 I 15

Moves a string of bytes from one area of memory to
another under control of the values in the four
accum ulators.

Fetching and storing may proceed from right to left or
from left to right and may be in opposite directions.
Moving continues until the destination field is filled. If
the source field is longer than the destination field the
carry bit is set to 1, otherwise it is set to O. If the
source field is shorter than the destination field, the
destination field is padded with space characters.

ACO must contain the number of bytes in the
destination field. If this number is positive, the
destination will be filled in ascending order, starting
with the byte addressed by AC2. If this number is
negati ve, the destination will be filled in descending
order, starting with the byte addressed by AC2.

AC1 must contain the number of bytes in the source
field. If this number is positive, the source bytes will
be fetched in ascending order, starting with the byte
addressed by AC3. If this number is negative, the
source bytes will be fetched in descending order,
starting with the byte addressed by AC3.

IV-19

------------- ---

AC2 must contain a byte pointer which is the address
of the first destination byte.

AC3 must contain a byte pointer which is the address
of the first byte to be fetched.

The fields may overlap in any way. However,
characters are processed one at a time, so unusual side
effects may be produced by certain types of overlap.

Upon termination, ACO contains 0; AC1 contains the
number of source bytes remaining to be fetched; AC2
contains a byte pointer which is the address of the
next byte after the destination field; and AC3
contains a byte pointer which is the address of the
next byte to be fetched.

NOTES If AGO contains the number 0 at the
beginning of this instruction, no bytes are
fetched and none are stored.

If AGl contains the number 0 at the beginning
of this instruction, the destination field is filled
with space characters.

Character Compare

CMP

11 1 0 1
o I 1 I 2 I I 4 I

1 0 1 0 1 0 0 01
8 I 9 110 I 11 I 12 113 I 14 15

Compares two strings of bytes and returns a code
reflecting the results in AC1.

The strings are processed one byte at a time and each
byte is treated as an unsigned 8-bit binary quantity. If
an inequality is found, the string possessing the lesser
of the two bytes is considered the lesser string. The
strings may be processed from left to right or from
right to left and may be processed in opposite
directions. If one string is shorter than the other,
then, when that string is exhausted, it is treated as if
it were padded with space characters to the length of
the longer string. Comparison continues until an
inequality is found or the longer string is exhausted.
The contents of both strings remain unchanged. The
result of the comparison and the corresponding code
placed in AC1 is as follows:

CODE RESULT

-1 string 1 < string 2

0 string 1 = string 2

+1 string 1 > string 2

IV-20

._--------------_._-_.-_ - .. _-----------------

ACO must contain the number of bytes to be processed
in string 2. If this number is positive, string 2 will be
processed in ascending order, beginning with the byte
addressed by AC2. If this number is negative, string 2
will be processed in descendng order beginning with
the byte addressed by AC2.

AC1 must contain the number of bytes to be processed
in string 1. If this number is positive, string 1 will be
processed in ascending order, beginning with the byte
addressed by AC3. If this number is negative, string 1
will be processed in descending order beginning with
the byte addressed by AC3.

AC2 must contain a byte pointer which is the address
of the first byte to be processed in string 2.

AC3 must contain a byte pointer which is the address
of the first byte to be processed in string 1.

The fields may overlap in any way. However,
processing is done one character at a time, so unusual
side effects may be produced by certain types of
overlap.

Upon termination, ACO contains the number of bytes
remaining to be processed in string 2; AC1 contains
the return code; AC2 contains a byte pointer which is
the address of either the failing byte in string 2 (if an
inequality was found, or the next byte after string 2 (if
string 2 was exhausted); and AC3 contains a byte
pointer which is the address of either the failing byte
in string 1 (if an inequality was found), or th(3 next
byte after string 1 (if string 1 was exhausted>' The
state of the earry bit is undefined.

Character Translate

eTR

11 1
o I 1 I

o 0
I 4 I 6 I 7

o 1 01 0001
I 110 I 11 I 12 113 I 14 I 15

Translates a string of bytes from one data
representation to another and either moves it to
another area of memory or compares it to a second
translated string.

If the compare option is used, a code reflecting the
result of the compare is placed in AC1. The strings are
processed one byte at a time from left to right and
processing continues until string 1 is exhausted. For
the move option, the translated value of string 1
replaces string 2. For the compare option, the
translated value of string 1 is compared to the
translated value of string 2 on a byte for byte basis,
treating both bytes as unsigned 8-bit binary
quantities, until either a inequality is found or until
string 1 is exhausted. If an inequality is found, t~e
string possessing the lesser of the two bytes IS

considered the lesser string. For the move option, the
contents of string 1 remain unchanged. For the
compare option, the contents of both strings remain
unchanged.

The translation is accomplished by treating each byte
as an unsigned 8-bit binary integer and using that
number as an index into a 256-byte translation table.
The byte in the table addressed by using the source
byte as an index is either stored in the next available
byte of string 2 or is used in the compare.

For the compare option, the result of the comparison
and the corresponding code placed in AC1 is as
follows:

CODE RESULT

-1 Translated value of string 1 <
translated value of string 2

0 Translated value of string 1 =
translated value of string 2

+1 Translated value of string 1 >
translated value of string 2

IV-21

ACO must contain an address of a word which
contains a byte pointer which is the address of the
first byte of the 256-byte translation table. If bit 0 of
ACO is set to 1, then the contents of ACO are assumed
to be the beginning of an indirection chain which will
result in the address of a word which contains the
byte pointer to the translation table.

AC1 must contain the number of bytes to be
processed. Both strings will be processed in ascending
order, beginning with the bytes addressed by AC2 and
AC3. If the number in AC1 is negative, the move
option is selected. If the number in AC1 is positive, the
compare option is selected.

AC2 must contain a byte pointer which is the address
of the first byte to be processed in string 2.

AC3 must contain a byte pointer which is the address
of the first byte to be processed in string 1.

The fields may overlap in any way. However,
processing is done one character at a time, so unusual
side effects may be produced by certain types of
overlap.

Upon termination of the instruction with the move
option, ACO contains the resolved address of the w~rd
which contains the byte pointer to the translatIOn
table; AC1 contains 0; AC2 contains a byte pointer
which is the address of the next byte after string 2;
and AC3 contains a byte pointer which is the address
of the next byte after string 1.

Upon termination of the instruction with the
compare option, ACO contains the resolved address of
the word which contains the byte pointer to the
translation table; AC1 contains the return code; AC2
contains a byte pointer which is the address of either
the failing byte in string 2 (if an inequality was found)
or the next byte after string 2 (if no inequality was
found); and AC3 contains a byte pointer which is the
address of either the failing byte in string 1 (if an
inequality was found) or the next byte after string 1
(if no inequality was found).

Character Move Until True

CMT

111101111101010001
. 0 I 1 I 2 I 3 I 4 I 5 ' 6 I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

Moves a string of bytes from one area of memory to
another until either a table-specified delimiter
character is encountered or the source string is
exhausted.

The strings may be processed from left to right or
from right to left, but both strings must be processed
in the same direction. Each byte fetched from the
source string is treated as an unsigned 8-bit binary
integer and used as the bit index into a 256-bit table. If
the addressed bit is 0, the byte is stored in the next
available byte of the destination string and the next
byte is fetched from the source string. If th~ addres~ed
bit is 1, the byte is not stored and the InstructIOn
terminates. Processing continues until either the
source string is exhausted or an addressed bit is 1.

ACO must contain the word address of the first word
of the 256-bit translation table. If bit 0 of ACO is 1, the
contents of ACO are treated as the beginning of an
indirection chain which will result in the word
address of the first word of the translation table.

AC1 must contain the number of bytes to be
processed. If the number is positive, processing will be
in ascending order starting with the bytes addressed
by AC2 and AC3. If the number is negative, processng
will be in descending order starting with the bytes
addressed by AC2 and AC3.

AC2 must contain a byte pointer which is the address
of the first destinaton byte.

AC3 must contain a byte pointer which is the address
of the first byte to be processed in the source string.

The fields may overlap in any way. However,
processing is done one character at a time, so unusual
side effects may be produced by certain types of
overlap.

Upon termination, ACO contains the resolved address
of the translation table; AC1 contains the number of
bytes that were not moved; AC2 contains a byte
pointer which is the address of the next byte in the
destination field; and AC3 contains a byte pointer
which is the address of either the failing byte in the
source string (if an addressed bit was 1) or the next
byte after the source string (if no addressed bit was 1).

IV-22

Extended Load Byte

ELDB ac,displacementf,index}

11 0 I 0 I AC I 1 I INDEX I 0 1 1 1 1 0 0 0 I
o I 1 2 3 I 4 5 (, I 7 8! 9 110 I 11 I 12 113 I 14 I 15

DISPLACEMENT I
5 I (, I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15

A byte pointer is formed by taking the index value,
multiplying it by 2, and adding the low-order 16 bits
of the result to the displacement. The byte addressed
by this byte pointer is placed in bits 8-15 of the
specified AC. Bits 0-7 of the specified AC are set to O.
Neither the index value nor the displacement are
altered by the computation. The previous contents of
the specified AC are lost.

The index value is computed from the index bits as
follows:

INDEX BITS INDEX

00 0

01 Address of the displacement filed

10 Contents of AC2

11 Contents of AC3

Extended Store Byte

EST B ac,displacementf, index)

11 0 1 I AC 11 1 INDEX I 0 1 1 1 1 0 0 0 I
o I 1 I 2 3 I 4 5 (, I 7 8 I 9 110 I 11 I 12 113 I 14 I 15

1 I I I I
DISPLACEMENT I

5 I (, I 7 I 8 I 9 110 I 11 I 12 113 I 14 I 15 o 1 2 3 4

A byte pointer is formed by taking the index value,
multiplying it by 2, and adding the low-order 16 bits
of the result to the displacement. Bits 8-15 of the
specified AC are placed in the byte addressed by this
byte pointer. Neither the index value nor the
displacement are altered by the computation. The
contents of the specified AC remain unchanged.

The index value is computed from the index bits as
follows:

INDEX BITS INDEX

00 0

01 Address of the displacement filed

10 Contents of AC2

11 Contents of AC3

IV-23

Programming Examples

The following sequence of instructions will reverse the
order of a string of bytes contained at SRC, and store
the result at OST.

Cl00:
SRC:
DST:

Rev. 01

LDA
NEG
LEF
MOVZL
LEF

1 ,C 1 00 ; Load length of source
1,0 ; Negative length for destination
3,SRC ;Get address of source
3,3 ;Form bype pointer
2,DST +37 ;Get address of last

MOVOL 2,2
destination word

Form byte pointer
Do it CMV

100
.BLK 40
.BLK 40

Byte count
Area for 64 source bytes
And 64 destination bytes

.~ •.. ---.--~--•. --.----... ------- -.... --..• -~-..• -.. -.•.. -.--...

The next example can be used by a program to
determine whether or not it is running in a processor
which supports the character instruction set. It makes
use of the fact that ELOB, which is a two-word
instruction, is treated as a one-word no-op by
processors that do not support the character
instructions. In this case the displacement, which is in
the word following ELOB, will be executed as an
instruction. The displacement of 402 B is equivalent to
a IMP .+2 instruction.

If the ELOB is supported, 402 B is interpreted as a
pointer to the high-order byte of location 201 8 , This
byte is loaded into ACO and execution is transferred to
a location named HAVCH. Note that if this happens, the
contents of ACO are lost.

ELDB 0,402 Displacement goes in next word
(JMP+2) 402 = JMP
JMP HAVCH Here if ELDB worked

Here if it didn't

IV-24

WRITEABLE CONTROL STORE
The writeable control store (WCS) allows the user to
transfer control to anyone of 16 entry points in WCS.
With these routines the full power of the microcode
processor can be used.

Placing Microcode In WCS

Before the user can use the XOP feature to execute
instructions in WCS, the microcode must be placed in
the WCS locations. This discussion treats only how to
place microeode in WCS. For a detailed discussion of
how to write microprograms see Microprogramming
ECLIPSE Computers with the WCS Feature (DOC No.
015-000069).

Load Control Store Formatted

lCSF

\1 0
o I 1

11 0000 10 001
(, I 7 I 8 I 9 I 10 I 11 I 12 In I 14 I 15

AC1 contains a count of the number of
microinstructions to be loaded. The address of the
source location in main memory is contained in bits
1-15 of AC~:. The address of the destination location,
or control store address, is contained in bits 4-15 of
AC3. If bit 0 of either AC2 or AC3 is 1, it is assumed
that the address contained in bits 1-15 is an indirect
address in main memory. Before the data movement
occurs, the indirection chain is followed and the
resultant effective address is placed in the
accumulator. The LCSF instruction moves words
sequentially from memory to the control store. Each
bit is complemented as it is moved.

The final direct address in AC3 addresses a location in
the WCS memory. The WCS starts at microaddress
4000Fl and extends to 5777 Fl • Since microinstructions
require 57 bits, four 16-bit words are required for each
microcode word. The contents of these four 16-bit
words are entered in the micro.code word as follows:

The complements of bits 0 through 13 of the first word
in main memory are loaded into bits 0, 4. 8, 12, 16, 20.
24. 28. 32. 36. 40. 44, 48 and 52 of the first microcode
word.

The complements of bits 0 through 13 of the second
word in main memory are loaded into bits 1. 5. 9, 13.
17. 21. 25. 29. 33. 37. 41. 45. 49 and 53 of the first
microcode word.

The complements of bits 0 through 13 of the third
word in main memory are loaded into bits 2. 6. 10. 14.
18. 22. 26, 30. 34, 38. 42. 46. 50 and 54 of the first
microcode word.

The complements of bits 0 through 14 of the fourth
word in main memory are loaded into bits 3. 7. 11, 15.
19, 23, 27. 31, 35. 39. 43. 47. 51, 55 and 56 of the first
microcode word.

IV-25

AC 1 MICROINSTRUCTION COUNT

AC2

AC3 @ WCS ADDRESS
L-~~~ __________ ¥

MAIN MEMORY

FO~~~:~~ {1----------++ifo+or:>:>:::::I>
MICROINSTRUCTION

WORD

o

2

3

DG-04375

The next four words in main memory similarly are
loaded into the second microcode word, and so on.

For each microcode word move, the count in ACl is
decremented by one, the source address in AC3 is
incremented by four, and the destination address in
AC3 is incremented by one. Upon completion of the
instruction, ACl contains zero, and AC2 and AC3
point to the word following the last word in their
respective fields. The contents of ACO remain
unchanged.

Words are moved in consecutive ascending order
according to their addresses. The next source address
after 777778 is O. If at any the time the destination
address is outside the range of 40008 to 57778, the
instruction is terminated.

BIT

IV-26

NOTES Because of the potentially long time
that may be required to perform this instruction
in relation to I/O requests, this instruction is
interruptable. If an LCSF instruction is
interrupted, program counter is decremented by
one before it is placed in location 0 so that it
points to the LCSF instruction. Because the
addresses and the word count are updated
after every word stored, an interrupt service
routine that returns control to the interrupted
program via the address stored in memory
location 0 will correctly restart the LCSF
instruction.

The LCSF instruction can be disabled for any
user by enabling I/O protection for that user
with the MAP An attempt by this user to use
the LCSF instruction will cause a protection
fault.

When upda.ting the source and destination addresses.
the LCSF instruction forces bit 0 of the result to O.
This ensurHS that upon return from an interrupt. the
LSCF instruction will not try to resolve an indirect
address in Hither AC2 or AC3.

Enter WCS

XOPl aCB,acd,entry number

I ' lAC, S I ACD I 0 I ~NTRY # I' , , 0 0 0 I
o 1 2 3 I 4 5 (, I 7 I I 9 10 ' 11 ' 12 113 ' 14 ' 15

The microprogram in WCS whose entry number
corresponds to bits 6-9 in the ENTER WCS
instruction is executed. Permissible entry numbers
are 0-15. corresponding to the first 16 locations in
WCS. The executed microprogram controls the use of
accumulators. whether or not they are changed. and
the location of the next instruction.

If the WCS feature is not installed. the ENTER WCS
instruction operates exactly like the EXTENDED
OPERATION instruction except that 3210 is added to
the entry number before it is added to the XOP origin.

IV-27

IV-28

CHAPTER V
INPUT /OUTPUT

INTRODUCTION
This chapter describes the Input/Output <I/O)
instruction set in the 8/130. The I/O instructions
control the operation of the I/O devices connected to
the computer. We will first discuss the operation of
the I/O system, and then the individual instructions.
The I/O interrupt system and the operation of the
VECTOR instruction are discussed separately in later
sections of the chapter.

THE 5/130 I/O SYSTEM
The 8/130 can communicate with I/O devices using
two methods: programmed I/O and data channel I/O.
Programmed I/O is used to transfer data to and from
all slow I/O devices, such as terminals, and to control
data channel devices. Only certain fast devices, such
as discs and tape units, use data channel I/O.

Programmed liD
Programmed I/O transfers data one byte at a time
under direct program control. For slow devices, such
as teletypes, which transfer one character at a time
and require an immediate echo, programmed I/O is
the fastest method of I/O operation.

For faster devices, programmed I/O has several
disadvantages. 8everal instructions are required for
the transfer of each byte and other CPU operations
must wait for the transfer to complete. Furthermore,
data must be transferred to or from an accumulator,
so an additional step is required if the data must be
stored in or retrieved from memory.

V-1 of 17

Data Channel I/O
Data channel I/O permits data to be transferred in
blocks of words, with program control necessary only
at the start of the operation. The CPU stops during
each word transfer but the transfer is made directly
to or from memory, so no additional steps are
required. Data channel I/O is a very efficient method
of transferring large blocks of data between memory
and a fast I/O device. When single words or bytes are
needed, however, programmed I/O is generally faster.

The maximum transfer rate for data channel I/O is as
follows:

• Input: One word every 800 ns, or 1,250,000 words
per second,

• Output: One word every 1400 ns, or 715,000
words per second.

At these rates, the CPU is effectively stopped. At
lower rates, however, processing continues while data
is being transferred.

Device Codes
The S/130 has a 6-bit device selection network,
corresponding to bits 10-15 in the I/O instruction
format. The devices are connected to this network in
such a way that each device only will respond to
commands sent with its own device code. With a 6-bit
device code, 64 separate devices can be individually
controlled. Some of these device codes are reserved for
the CPU and certain processor options, but the
remaining are available for referencing I/O devices.
The assembler recognizes mnemonics for those
devices assigned a code by Data General. A complete
list of these is provided in Appendix A of this manual.

Busy and Done Flags
I/O devices are controlled by manipulating their Busy
and Done flags (but note that data channel devices
require several full programmed I/O instructions to be
properly set up before they can be started with the
flags). You can change the value of these flags using
optional mnemonics appended to the instruction,
corresponding to a code in bits 8 and 9 of the I/O
instruction format. When Busy and Done are both 0,
the device is idle and cannot perform any operations.
To start a device, the program must set Busy to 1 and
Done to O. When the device has finished its operation
and is ready to start another, it sets Busy to 0 and
Done to 1.

V-2

Data Channel
Data channel devices are controlled in two phases.
Phase I specifies the parameters of the transfer, i.e.,
the starting location in memory and the number of
words to be transferred. This is done with
programmed I/O instructions. Phase II consists of
either a Read or a Write command, which are flag
commands similar to those discussed above. nce the
flag command is issued, the data transfer takes place
when both the data channel device and the processor
are ready. 0 further program control is required.

When a data channel device is ready to send or receive
data, it issues a data channel request to the processor .
At the beginning of every memory cycle, the processor
synchronizes any requests that are then being made.
At certain specified points during the execution of an
instruction, the CPU pauses to honor all previously
synchronized requests. When a request is honored, a
word is transferred directly via the data channel
between the device and memory without specific
action by the program.

All requests are honored according the relative
position of the requesting devices on the I/O bus. The
device requesting data channel service which is
physically closest on the bus is serviced first, the next
closest device next, and so on, until all requests have
been honored. The synchronization of new requests
occurs concurrently with the honoring of other
requests. If a device continually requests the data
channel, that device can prevent all devices further
out on the bus from gaining access to the channel.

Mter handling all data channel requests, the
processor then handles all outstanding I/O interrupt
requests. Only then does program execution continue.

For more information on the data channel, see
Programmer's Reference Manual - Peripherals (DGe
No. 015-000021) and User's Manual - Interface
Designer's Reference (DGe No. 015-000031).

1/0 INSTRUCTIONS

No 1/0 Transfer

NIO [fJ device

o 1
o I 1

o 0 0 0 0 I
314

1

5
1

617

F I DEVICE CODE t
1 1 I I I

9 10 11 12 113 14 15

Used whE!n a Busy or Done flag must be changed with
no other operation taking place.

The Busy and Done flags in the specified deviee are set
according to the function specified by F.

Data In A

DIA [fJ ac,device

I 0 1 1 1 I AC I 0 I 0 1 I
01123145617

F I DEVICE CODE I
I 9 10 1 11 1 12 113 ! 14 1 15

Transfers data from the A buffer of an 110 device to an
accum ula,tor.

The contents of the A input buffer in the specified
device are placed in the specified AC. After the data
transfer, the Busy and Done flags are set according to
the function specified by F.

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.
Bits in the AC that do not receive data are set to O.

Data In 8

DIB [fJ ac,device

I 0 1 1 I AC , 0 1 1 I F I DEVICE CODE I
o I 1 1 2 3 I 4 5 1 6 I 7 8 1 9' 10 1 11 1 1 2 I 1 3 1 14 1 1 5

Transfers data from the B buffer of an I/O device to an
accumulator.

The contents of the B input buffer in the specified
device are placed in the specified AC. After the data
transfer, the Busy and Done flags are set according to
the function specified by F.

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.
Bits in the AC that do not receive data are set to O.

V-3

Data In C

ole [fJ ac,device

I 0 1 I 1 I AC , 1 I 0 1 I F I DEVICE CODE I
o I 1 2 3 I 4 5 6 I 7 8 I 9 10 1 11 I 12 113 I 14 1 15

Transfers data from the C buffer of an 110 device to an
accumulator.

The contents of the C input buffer in the specified
device are placed in the specified AC. After the data
transfer, the Busy and Done flags are set according to
the function specified by F.

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.
Bits in the AC that do not receive data are set to O.

Data Out A

DOA [fJ

o
o I

1
I

ac,device

AC , 0 1 0 I F

3145
1
6178

1

I DEVICE CODE I
1 1 1 1

10 11 12 113 14 15

Transfers data from an accumulator to the A buffer of
an I/O device.

The contents of the specified AC are placed in the A
output buffer of the specified device. After the data
transfer, the Busy and Done flags are set according to
the function specified by F. The contents of the
specified AC remain unchanged.

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.

Data Out 8

DOB [fJ ac,device

I 0 1 1 I AC I 1 0 0 I F I DEVICE CODE I
o I 1 1 2 3 1- 4 5 1 6 I 7 8 1 9 10 1 11 1 12 I 13 1 14 I 15

Transfers data from an accumulator to the B buffer of
an 110 device.

The contents of the specified AC are placed in the B
output buffer of the specified device. After the data
transfer, the Busy and Done flags are set according to
the function specified by F. The contents of the
specified AC remain unchanged.

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.

Data Out C

DOC [fl ac,device

Transfers data from an accumulator to the C buffer of
an I/O device.

The contents of the specified AC are placed in the C
output buffer of the specified device. After the data
transfer, the Busy and Done flags are set according to
the function specified by F. The contents of the
specified AC remain unchanged.

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.

liD Skip

SK P [tJ device

o
o 1

1
I I

DEVICE CODE

10 111 1 12 113'14 1

I';

Tests a flag and skips the next instructions if the test
condition is true.

If the test condition specified by T is true, the next
sequential word is skipped.

V-4

Programming Example

In a system with a full-duplex terminal, the program
must echo any characters it reads so that the user can
see what he has typed. The routine below uses
programmed I/O instructions to read a character
from the terminal and echo it back. TTl is the
mnemonic for the keyboard, and TTO is the
mnemonic for the printer or display. The character is
in ACO at the end of the routine.

SKPDN
JMP
DIAC
SKPDN
JMP
DOAS

TTl
.-1
a,TTI
TTO
-1
a,TTO

;Character typed yeP
;No, go back and try again
;Yes, read it into ACa and clear done
;Can we echo it?
;No, wait until printer is ready
;Yes, send character and start printer

See Programmer's Reference Manual - Peripherals
(DGC No. 015-000021) for a more complete set of
examples, including some data channel examples.

1/0 Interrupts
The 110 interrupt system in the S/130 provides a
convenient method of handling programmed 110 with
a minimum of overhead. Instead of polling each 110
device re,peatedly to find out when it is ready to
transmit or receive data, the interrupt system
permits the program to ignore the 110 devices
completel.y until one requires service. At that time,
the devi<:e requests an interrupt. As soon as the
processor is at an interruptable point in its
processing, and has finished servicing data channel
requests, it services the interrupt.

Interrupt System Definitions

Interrupt request line - Common connection between all
110 devices and the computer. An 110 device places a
request on the interrupt request line at the same time
that it sets Busy to 0 and Done to 1, i.e., when it has
finished a, task and is ready to send or receive data. No
information is placed on the line, permitting the
program to determine which device is requesting an
interrupt. This must be done separately.

Interrupt On flag - Flag in the CPU which controls the
status of the interrupt system. If the flag is set to 1,
the CPU will respond to and process interrupts. If the
flag is set to 0, the CPU does not look at the interrupt
request line at all, and therefore does not respond to
any interrupts.

Priority mask - Set of bits in the I/O devices that control
the priority interrupt system. Each I/O device is
connected to one of 16 bits in the priority mask. Some
bits are connected to more than one I/O device. When
a bit is set to 1, the devices connected to it cannot
place a request on the interrupt request line, although
they can Bet their Busy flags to 0 and their Done flags
to 1. Since the mask can be changed by the program,
different devices can be inhibited at different times to
conform to the needs of a priority system.

Base level - The state of a program when no I/O devices
are inhibited (all mask bits are 0) and no interrupt
processing is in progress. This is the environment in
which USE!r program execution takes place.

Non-base level - Any system state in which some I/O
devices are inhibited and/or interrupt processing is in
progress. Interrupt handlers operate at non-base
level.

V-5

Processing an Interrupt
When an I/O device completes its operation and is
ready to send or receive more data, it sets its Busy flag
to 0 and its Done flag to 1. If its priority bit is 0, it also
places a request on the interrupt request line. If the
Interrupt On flag is 1 when the processor is next
interruptable, the interrupt will be serviced.

When servicing an interrupt, the CPU first sets the
Interrupt On flag to 0 so that no devices can interrupt
the first part of the interrupt service routine. If a user
map is enabled, it is disabled. The CPU then places the
contents of the updated program counter into
physical memory location 0 and jumps indirect to
location 1, where it expects to find the address (direct
or indirect) of the interrupt service routine.

The interrupt service routine (supplied by the user)
must save any accumulators that will be used, save
the carry bit if it will be used, determine which device
requested the interrupt, and then service that device
as necessary.

The service routine can identify the interrupting
device by using I/O SKIPinstructions, or the Interrupt
Acknowledge instruction. Or it can save the return
information and identify the interrupting device with
one instruction by using the Vector On Interrupting
Device Code instruction.

The Interrupt Acknowledge instruction returns the
6-bit device code of the device requesting the
interrupt. The Vector instruction, in addition to
saving return information on the stack, performs an
Interrupt Acknowledge instruction and uses the code
returned as an index into a table of addresses. These
addresses are the beginnings of the various device
service routines.

After servicing the device, the interrupt routine
should restore the saved values of the accumulators
and the carry bit, set the Interrupt On flag to 1, and
return to the interrupted program. The Interrupt
Enable instruction sets the Interrupt On flag to 1,
and, if the value of the flag was changed, allows the
processor to execute one more instruction before the
next interrupt can take place.

This next instruction should return control to the
interrupted program. Since the updated value of the
program counter was placed in location 0 by the CPU
at the start of the interrupt service routine, a jump
indirect to location 0 will return control to the proper
location in the interrupted program.

Priority I nterrupt System

The need for a priority interrupt system can be
illustrated as follows:

If the Interrupt On flag remains 0 throughout the
interrupt service routine, the CPU cannot be
interrupted while an I/O device is being serviced. All
other devices therefore must wait until the first device
is finished. If the Interrupt On flag is returned to 1
after the initial portion of the service routine, any I/O
device can interrupt the servicing of any other I/O
device. While it might be reasonable for a disc to
interrupt a teletype, the inverse certainly would not
be true. It is therefore desirable to have a system of
interrupt priorities which will permit some devices to
interrupt certain others without disrupting the
orderly processing of data.

A crude sort of priority system will result from
keeping the Interrupt On flag 0 throughout the
service routine. The priority of the I/O devices is then
determined either by the order in which the I/O SKIP
instructions poll the I/O devices, or (using the
Interrupt Acknowledge or Vector instructions) by the
physical location of the I/O devices on the I/O bus.
Both of these methods are very inflexible, however.

The S/130 has the hardware and instructions for a
more flexible and efficient priority system, with up to
sixteen levels of priority interrupts. The interrupt
service routine has full control of this system, and can
change the priorities of various devices as necessary.

V-6

Setting Up a Priority System

To set up a system of priorities, place a Mask Out
instruction in the interrupt service routine for each
device. This instruction changes the priority mask,
thus controlling which devices can interrupt. All
those devices which should not interrupt the device
being serviced are masked out (prevented from
requesting an interrupt) if their mask bits are 1. In
addition, all pending interrupt requests from devices
controlled by that bit are disabled. The other mask
bits, corresponding to the devices which can
interrupt, are set to O.

If this is done in each interrupt service routine, then
the mask will always mask out those devices which
should not interrupt the device presently being
serviced. This is a dynamic process, changing each
time a different device is serviced, resulting in a
system of priorities. The device with the highest
priority will be able to interrupt all other devices, and
the device with the lowest priority will be
interruptable by all other devices.

Devices which operate at roughly the same speed are
controlled by the same bit in the mask. Appendix A
lists the mask bit assignments in addition to the
device code assignments. Although the bit
assignments are fixed, the priorities are set by the
programmer to fit the situation and are dynamically
adjustable.

Priority Interrupt Handler
A multiple priority level interrupt handler must be
interruptELble without damage. Usually this is not
true for the initial portions of the interrupt handler,
so the Interrupt On flag is initially set to O. The
interrupt handler must first save return information
after rec€!iving control. This information must be
stored in a unique place each time the interrupt
handler is entered so that one level of interrupt does
not overlELY the return information of the previous
level.

Next, the 1C0rrect service routine must be chosen. This
routine must save the current priority mask and
establish a new one. Once this is all completed, the
Interrupt Enable instruction can be used to set the
Interrupt On flag to 1, enabling those devices not
restricted by the priority mask to interrupt if
necessary.

After servicing the interrupt, the interrupt service
routine should:

• disable the interrupt system,

• reset the priority mask to the condition it was in
when the routine was entered,

• restore the accumulators and the carry bit,

• enable the interrupt system,

• return control to the interrupted program.

V-7

Stack Changes
The interrupt handler usually requires use of a stack.
Rather than work with the user stack, you can define
a new stack which is reserved for use by the interrupt
handler. This overcomes the following problems:

• There is no guarantee that a user stack will
al ways be defined,

• The user stack pointer could be just below the
stack limit. The interrupt handler would then
overflow the user stack.

The stack environment should be changed whenever a
transition is made from base level to non-base level or
vice versa.

If an interrupt is already being processed (Le., the
program is not at base leveD when another interrupt
occurs, the stack environment should not be changed,
since this has already been done for the first
interrupt. If desired, return information to permit an
easy return to processing the first interrupt can be
pushed on to the new stack before the second
interrupt is processed.

The Vector instruction handles all these stack
changes by using different modes in different
situations. See the Vector instruction section for more
detail on this.

INTERRUPT INSTRUCTIONS

All the interrupt instructions use the device code 77 8 ,

The assembler recognizes the mnemonic CPU for this
device code. See Chapter II for detailed information on
I/O instruction formatting.

----ASSEMBLER CONVENTIONS -------,

Many of these instructions have special mnemonics
which can be used in place of the standard mnemonics.
The one limitation is that the mnemonics for controlling
the state of the Interrupt On flag cannot be appended to
the special instruction mnemonics.

Thus, if you want to alter the state of the Interrupt On
flag while performing a Mask Out instruction, you
must use the full mnemonic:

008 [f] ac, CPU

instead of the special mnemonic

MSKO ac.

The special mnemonic sets bits 8 and 9 to 00. The
special mnemonics are given first below, followed by
the standard form.

Interrupt Enable

INTEN

NIOS CPU

10 "100100010 '1'" "'1
o I 1 1 2 3 I 4 5 1 6 I 7 8 1 9 10 1 11 1 12 113 1 14 1 15

Sets Interrupt On flag to 1.

If the state of the Interrupt On flag is changed by this
instruction, the CPU allows one more instruction to
execute before the first I/O interrupt can occur.
However, if the instruction is one of those that is
interruptable, then interrupts can occur as soon as
the instruction begins to execute.

Interrupt Disable

INTDS

NIOC CPU

10 , I' 10 0' 01 0 0 I' 0 I' , , , , , 1
o I 1 2 3 I 4 6 I 7 8 1 9 10 1 11 1 12 113 1 14 1 15

Sets Interrupt On flag to O.

Rev. 01 V-8

Interrupt Acknowledge

INTA

DIB ff] ac, CPU

I 0 , I' I AC I 0 I' , ,
01123145617

F I' , , , , , 1

1 9 10 I 11 1 12 113 I 14 I I';

Returns device code of an interrupting device.

The six-bit device code of that device requesting an
interrupt which is physically closest to the CPU on
the bus is placed in bits 10-15 of the specified AC. Bits
0-9 of the specified AC are set to O. After the transfer,
the Interrupt On flag is set according to the function
specified by F.

Mask Out

MSKO

DOB ff] ac, CPU

I 0 , I' , AC I' 0 0 1
01123145

1

617

Changes the priority mask.

F 11 , , , , , 1

1 9 10 1 11 1 12 113 1 14 1 15

The contents of the specified AC are placed in the
priority mask. After the transfer, the Interrupt On
flag is set according to the function specified by F. The
contents of the specified AC remain unchanged.

NOTE A 1 in any bit disables interrupt
requests from devices in the corresponding
priority level.

CPU Skip

SKP [tJ CPU

I 0 , I' 1 0 0 1
o I 1 2 3 I 4

, , I T I' , 1 1 , 1 1
6 I 7 8 1 9 10 1 11 1 12 113 1 14 1 15

If the test condition specified by T is true, the next
sequential word is skipped.

See Programmer's Reference-Peripherals (DGe No.
015-000021) for a complete set of examples on using
the interrupt system.

SPECIAL CENTRAL PROCESSOR
INSTRUCTIONS

This group of instructions perform special functions
for the CPU.

Read Switches

READS ae

DIA [fl (te, CPU

I 0 1 1 1 1 AC I 0, 0 1 1
01123145617

F 11 1 1 1 1~
I '} 10 I 11 1 12 113 1 lH

Places the contents of the console switches into an
accumulator.

The setting of the console data switches is placed in
the specified AC. After the transfer, the Interrupt On
flag is set according to the function specified by F.

Reset

IORST

DIC [fl ae, CPU

I 0 1 I 1 1 AC 11 10 1 I
01123145617

F 11 1 1 1 1 1
I '} 10 I 11 I 12 113 I 14 I 15

Sets all Busy and Done flags and the priority mask to
o.

The Busy and Done flags in all I/O devices are set to O.
The i6-bit priority mask is set to O. The Interrupt On
flag is set according to the function specified by F.

NOTES The assembler recognizes the
mnemonic IORST as equivalent to the in
struction DICC O,CPU.

If the mnemonic DIe is used to perform this
function, an accumulator must be coded to
avoid assembly errors. Regardless of how the
instruction is coded, during execution, the A e
field is ignored and the contents of the A e
remain unchanged.

V-9

,._-_. __ ._ __ ._--_._--_._.--._----------_._-------------------

Halt

HALlA ae

DOC [fJ ae, CPU

1 0 1 11 I AC 11 I 1 0 I
01123145617

F 11 1 1 1 1 1 I
1 '} 10 1 11 I 12 113 1 14 I 15

Stops the processor.

The Interrupt On flag is set according to the function
specified by F and then the processor is stopped. The
data lights display the contents of the specified AC.

NOTE The assembler recognizes the
mnemonic HAL T as equivalent to the instruction
HALTA o.

USE OF THE VECTOR INSTRUCTION
The Vector On Interrupting Device Code instruction
can simplify the design of an interrupt handler by
doing many of the required steps in one instruction. It
can also perform different levels of tasks as needed
within the interrupt handler. This section will
describe the operation and use of the Vector
instruction.

The Vector instruction has five different modes that
can be used in different circumstances. The simplest of
these is scarcely more complex than the Interrupt
Acknowledge instruction. It does not save any
information on the state of the computer at the
interrupt, and takes very little time. The most
complex mode, on the other hand:

• saves considerable information on the state of
the machine,

• stores the user stack parameters,

• creates a new stack,

• resets the priority mask,

and, of course, takes much longer.

When choosing which mode to use, you must weigh
the importance of saving the state of the computer,
having a separate vector stack, and changing the
priority mask, against the time used for each
interrupt. Note that you are not committed to one
mode throughout the interrupt handler. It is possible
to use different Vector instruction modes at different
times to serve different needs. An example at the end
of this section illustrates this.

Mode A is used when a device requires immediate
interrupt service. This would be the case for
unbuffered devices with very short latency times, or
for real time processes that require immediate access.
The price you pay for fast reaction time is that
nothing is saved to make the return from the
interrupt easier.

Modes B through E all create a priority structure
which permits some interrupting devices to interrupt
the service of certain others. This takes longer than
mode A service, but permits devices which need
immediate service to get it even if a slower device is
already being serviced.

V-iO

Modes D and E both initiate a new stack. You should
use them only when operating at base level (no
interrupt processing in progress) since they set up a
new vector stack for use by the interrupt handler and
store the (old) user stack parameters in it. Once this
new stack has been set up, there is no reason to try to
set it up again if a new interrupt occurs before the old
one has finished. Mode E also pushes a return block
onto the stack to make return to the first interrupt
handler easier.

Modes Band C do not initiate a new stack, and are
therefore appropriate to use when operating at
non-base level (that is, when a device interrupts the
interrupt processing of another device). Mode C also
pushes a new return block onto the stack.

Note that using the faster modes gives you faster
reaction time at the interrupt, but requires more
careful design of the interrupt handler that
eventually receives control. The interrupt handler
must do what the Vector instruction did not take the
time to do, i.e., store the contents of the carry bit and
any accumulators it uses when servicing the
interrupt. There are no problems doing this when
using mode A, but mode Buses ACO, destroying the
previous contents.

Vector On Interrupting Device Code

VCT

I 0
o I

f@Jdisplacement

1 1 1 1 1 1 I
110 I 11 I 12 113 I 14 I 15

DISPLACEMENT I
6 1 7 I 8 I <) 110 I 11 I 12 113 I 14 I 15

Returns the device code of the interrupting device and
uses that code as an index into a table. The value
found in the table is then used as a pointer to the
appropriate interrupt handler (Mode A) or as a
pointer to another table which points to the interrupt
handler and contains a new priority mask (Modes B
through E). The instruction can also save the state of
the machine by pushing various words onto the stack,
creating a new vector stack, and setting up a priority
structure.

A

DG-OOfj70

FETCH THE SECOND
WORD OF THE VCT
INSTRUCTION BIT
o IS THE STACK
CHANGE BIT BITS
1-15 CONTAIN THE
ADDRESS OF THE
BEGINNING OF THE
VECTOR TABLE

ADD THE CODE
RETURNED ABOVE
TO THE ADDRESS OF THE
VECTOR TABLE (DISPLACEMENT

FIELD) AND FETCH THE
WORD AT THAT
LOCATION. BIT 0 IS
THE "DIRECT BIT"

YES

BITS 1-15 OF
THE FETCHED
VECTOR TABLE
ENTRY CONTAINS
THE ADDRESS OF
THE DCT

PLACE CONTENTS OF
LOCA TlON 4 IN
STACK POINTER
PLACE CONTENTS OF
LOCATION 6 IN
STACK LIMIT
PLACE CONTENTS OF
LOCA TION 7 IN
STACK FAUL T
NOTE FRAME
POINTER IS DESTROYED
AND THE CONTENTS
ARE UN PREDICT ABLE

I PUSH OLD CONTENTS
OF LOCA TIONS

40-438

MODE A

BITS 1 -1 5 OF THE
FETCHED VECTOR
T ABLE ENTRY CON
T AIN THE ADDRESS
OF THE DEVICE
INTERRUPT ROUTINE

TRANSFER CONTROL
TO THE DEVICE
INTERRUPT ROUTINE
BY PLACING BITS
1 ·15 OF THE FETCHED
VECTOR TABLE ENTRY
IN THE PROGRAM COUNTEFl

V-11

MODES B, D

ALL
MODES

FETCH THE FIRST WORD
OF THE DCT BIT 0 IS
THE "PUSH BIT" BITS

NO

1 -1 5 CONTAIN THE
ADDRESS OF THE DEVICE
INTERRUPT ROUTINE

PUSH STANDARD
RETURN BLOCK
BITS 1-15 OF
LAST WORD PUSHED
CONTAIN BITS 1-15 OF
PHYSICAL LOCATION 0

PUSH THE CURRENT
INTERRUPT MASK
(LOCA TION 5) ONTO

THE STACK

PLACE THE LOGICAL
OR OF THE CURRENT
INTERRUPT MASK AND
THE SECOND WORD
OF THE DCT IN ACO

PLACE THE CONTENTS
OF ACO IN THE CURRENT
INTERRUPT MASK
(LOCATION 5)

DO A MASK OUT
FROM ACO AND
ENABLE INTERRUPTS
IDOBS O.CPU)

PLACE ADDRESS
OF DEVICE INTERRUPT
ROUTINE IN

YES

CONTINUE SEQUENTIAL
OPERA TION WITH THE
WORD ADDRESSED
BY THE PROGRAM
COUNTER

END OF
VCT INSTRUCTION

TRANSFER
CONTROL TO
STACK FAULT
ROUTINE

The accompanying flow chart is a complete diagram
of the operation of the Vector instruction. Note that
all modes use the vector table to find the next address
used. Mode A uses the vector table entry as the
address of the interrupt handler and passes control to
it immediately. Modes B through E all use the vector
table address as a pointer into a device control table
(DCT), where the address of the interrupt handler is
found, along with a new priority mask.

Three control bits determine the mode of the Vector
instruction which will be used. Their names and
locations are:

Direct Bit - Bit 0 of the selected vector table entry;

Stack Change Bit - Bit 0 of the second word of the Vector
instruction;

Push Bit - Bit 0 of the first word of the selected device
control table.

The state of these bits collectively determine which
mode will be used by the Vector instruction. This
relationship is as follows:

Direct Slack Change Push Mode

0 don't care (d.c.) d.c. A
1 0 0 B
1 0 1 C
1 1 0 D
1 1 1 E

The functions performed by the Vector instruction
within each mode are summarized here:

MODE FUNCTION

A Uses device code returned by INT A as table entry
to find address of interrupt handler.

B Mode A plus: resets priority mask (saving old one)
and reenables interrupts.

C Mode B plus: pushes a normal 5-word return
block (4 ACs, the program counter and the carry
bit) onto the stack.

D Mode B plus: sets up a new vector stack for use
by the interrupt handler and saves the old stack
parameters.

E Mode C plus Mode D.

In the following paragraphs, we will consider each
mode and follow the process through step-by-step.

V-12

Common Process

The initial steps taken by the Vector instruction are
done regardless of the mode being used. The device
code of the interrupting device is returned. This code
is added to the address of the start of the vector table,
which is found in the displacement field (bits 1-15 of
the second instruction word), to get a new address
within the vector table. The word at this new location
is fetched and its bit 0 (the direct bit) is examined.

Mode A

If the direct bit is 0, mode A is used and the state of
the other control bits does not matter. Bits 1-15 of the
fetched vector table entry are used as the address of
the interrupt handler for the interrupting device.
Control is immediately transferred to the interrupt
handler.

Mode B

Modes B through E perform different functions
initially, but use a common second part. We discuss
the common second part after discussing each Part I
separately.

Mode B - Part I

Mode B is used if the direct bit is 1 and the other two
control bits are O. The address in the vector table is
now used as the location of the device control table
(DCT) for the interrupting device. Bits 1-15 of the
first word of the DCT contain the address of the
desired interrupt handler (bit 0 is the push bit). The
second word of the DCT is used to contruct the new
interrupt priority mask, and succeeding words (if
any) contain information to be used by the device
interrupt handler.

Mode C - Part I

If the direct bit and push bit are both 1, and the stack
change bit is 0, mode C is used. The mode B functions
are performed, and in addition, a standard 5-word
return block is pushed onto the stack. This block
consists of the contents of the 4 accumulators, the
carry bit, and the contents of physical location 0 (the
program counter return value).

Mode D - Part I

Mode D is used if the direct bit and the stack change
bits are 1 and the push bit is O. The mode B functions
are performed, and in addition, a new stack is set up
for the interrupt handler and the old contents of
physical locations 40-438 (the user stack control
words) are pushed onto the new stack.

Mode E - Part I

Mode E combines the functions of modes C and D.
That is, the functions of mode B are performed, a new
stack is set up, and a 5-word return block and the old
stack control words are pushed onto the (new) stack.

Modes 8 through E - Part II

Modes B through E use the same procedure for the
remainder of the Vector instruction. The current
priority mask is pushed onto the stack. A Mask Out
instruction is then performed, using the logical OR of
the current mask and the second word of the DCT.
Interrupts are enabled and control is passed to the
selected device interrupt handler.

;USE OF ECLIPSE
;VECTOR INSTRUCTION

.LOC 0 ;Start assembly at 0
INTR: 0 ; Interrupt return
INTE: PI ;Address of program

; interrupt routine
SC: SCH ;Address of SCL handler
PF: PFH ;Address of PF handler
VSP: VS ;Vector stack pointer
CURMK: 0 ;Current mask
VSL: VL ;Vector stack limit
VSF: VF ;Vector stack fault handler

.LOC 50 ;Next location is 50 octal
LEVEL: -1 ; Interrupt level count

.LOC 1000 ;Next location is 1000 octal
PI: ISZ LEVEL ;Base level?

JMP .+3 ;No
VCT @VTAB ;Base level vector--

Programming Example
The following example illustrates the use of the
Vector instruction. This example assumes a system
with only three peripherals: an event counter that
requires mode A service; a slow speed input device
(TTY input); and a slow speed output device (TTY
output). The output device is of lower priority than
the in put device.

VTAB: @SPUR ; SPUR is address of DCT
@SPUR ;for spurious interrupt routine
@SPUR
@SPUR
EVENT ; EVENT is address of

;event interrupt handler
@SPUR
@SPUR
@SPUR
@TTIN ;Address of DCT for TTY in
@TTOUT ; Address of DCT for TTY out
@SPUR ; Rest of table

; is filled with
@SPUR

SPUR: @SPURH ; Push bit= 1 ; SPURH = addr.
; of spurious intpt handler

0 ; Do not change current mask
TTIN: @TTIH ;TTIH=Addr. of TTl handler

3 ;Mask out level 14 and 15
TTOUT: @TTOH ;TTOH=Addr. of TTO handler

1 ;Mask out level 15

Sets stack change bit to 1 @
VCT VTAB ;Non-base level vector

;Stack change bit is 0 EVENT: ;Do processing associated
; with event counter

DISMIS: POP 3,3 ;Pop old mask into AC3 DSZ LEVEL
DOBC 3,CPU ;Maskout, disable interrupts JMP .+ 1
STA 3,CURMK ;Store mask into current mask INTEN
LDA 3,LEVEL ;Pick up level JMP @O ; Return to address in loc 0
SBI 1,3 ;Subtract 1 TTIH: ; Do processing associated
STA 3,LEVEL ;Store it back ; with TTY input
COM# 3,3,SZR ;Base level?
JMP .+3 ; No--just return JMP DISMIS ; Go to dismiss routine
INTEN ;Yes TTOH: ; Do processing associated
RSTR ;Restore ; with TTY output
INTEN ; Interrupt enable
POPB ;Return JMP DISMIS ;Go to dismiss routine

V-13

ERROR CHECKING AND
CORRECTION

The Error Checking and Correction (ERCC) feature is
designed for applications where either a high degree
of reliability is required for the main memory of a
system, or where a graceful "fail-soft" capability is
desired in the event of memory errors. The ERCC
feature will detect and correct all single-bit errors
that occur in memories equipped with the option.

Method of Operation

The word length of an ERCC memory is 21 bits. These
21 bits are broken into 16 data bits followed by 5
ERCC bits [CORO-COR41. This check field is
constructed by a hardware encoder from the 16 data
bits and is written each time the memory location is
written into. When the memory location is read, the
encoder checks the ERCC bits read from memory. If
the 21 bits do not generate an error code, the 16 data
bits are passed on to the CPU. Otherwise, a single bit
error has occurred. The memory pauses while the
single bit in error is corrected and the entire corrected
word is rewritten into the memory location. The data
is then passed on to the CPU and the ERCC option
requests an interrupt. If no error occurs, no time is
taken and the cycle time of the memory is unchanged
from its non-ERCC counterpart.

The logic of the ERCC feature is such that all
single-bit errors are detected and corrected. In the
rare event that a multi-bit error occurs, either it is
detected and reported as such with no correction, or it
is incorrectly interpreted as a single-bit error and
that bit is complemented.

The operation of the ERCC option is governed by one
I/O instruction. Two other instructions are used to
interrogate the option after it has detected and
corrected an error. The ERCC option has no Busy flag
and no mask bit in the priority mask. The device code
for the ERCC option is 2. The instructions for the
ERCC option are described below.

Enable ERCC

DOA [fJ ao, ERCC

AC I 0 1
3 I 4 5 I 6 I

o 0
I

00000101
<j 110 I 11 I 12 113 I 14 I 15

The ERCC option is enabled according to the setting
of bits 14-15 of the specified AC. Bits 0-13 of the
specified AC are ignored. The contents of the specified
AC remain unchanged. The format of the specified AC
is as follows:

V-14

Bits Name Contents

0-13 ---- Reserved for future use.

14-15 ERCC Control the ERCC feature as follows

00 Disable checking and correction; write valid
check field.

01 Disable checking and correction; for core
memory, write check field of 11111; for
semiconductior memory, do not alter the
check field.

10 Enable checking and correction; do not
interrupt on memory error.

11 Enable checking and correction; interrupt on
memory error.

After Power Up or I/O reset, the ERCC option is in the
10 state.

NOTE When the ERCC feature detects and
corrects a memory error, it sets its Done flag to
1. The Done flag will remain 1 until the ERCC
feature receives a Start pulse or an I/O RESET
instruction is issued. Receipt of a Start pulse
will also set the fault address to O.

Read Memory Fault Address

DIA [fJ ao, ERCC

I 0 I 1 11 , AIC '0 I 1 11 I ~ I o! 0 1

0 I 0 I 1 1

0 I
o 1 2 3 4 5 6 7 8 <j 10 11 12 13 14 15

The complement of the low-order bits of the physical
address of the memory location in error are placed in
bits 12-15 of the specified AC. The complements of bits
1-4 of the 17-bit physical address are placed in bits 0-3
of the specified AC. The previous contents of the
specified AC are lost. The format of the specified AC is
as follows:

Bits Name Contents

0-3 Page Complement of bits 1 -4 of the physical
address of the memory location in error.

4-11 ---- Reserved for future use.

12-15 LOB The complement of the low-order 4 bits of the
physical address of the memory location in
error.

Read Memory Fault Code

DIB [fJ ac, ERCC

I 0 1 I 1 I AC I 0 I 0 1 I F 1 0 0 0 0 1 0
o I 1 2 3 I 4 5 6 I 7 8 I 9 10 I 11 I 12 113 I 14 I 15

A 5-bit error code is placed in bits 0-4 of the specified
AC. This code tells which bit was in error and has
been correeted. Bits 5-13 of the AC are set to O. The
complement of the high-order bit of the physical
address of the failing location is placed in bit 15. The
format of the specified AC is as follows:

Bits Name Contents

0-4 Code A 5-bit code identifying which bit was in error,
as follows:

00000 No error
00001 Check bit 4
00010 Check bit 3
00011 Data bit 0
00100 Check bit 2

00101 Data bit 1
00110 Multiple bit error
00111 Data bit 3
01000 Check bit 1
01001 Data bit 4

01010 All 21 bits of the memory location are 1
01011 Data bit 6
01100 Data bit 7
01101 Data bit 8
01110 Data bit 9

01111 Multiple bit error
10000 Check bit 0
10001 Data bit 11
10010 Data bit 12
10011 Data bit 13

10100 Data bit 14
10101 All 21 bits of the memory location are 0
10110 Data bit 2
10111 Multiple bit error
11000 Data bit 10

11001 Multiple bit error
11010 Data bit 5
11011 Multiple bit error
11100 Data bit 15
11101 Multiple bit error

11110 Multiple bit error
11111 Multiple bit error

5-14 ---- Reserved for future use.

15 HOB Complement of the high-order bit of the
physical address of the memory location in
error.

V-15

REAL TIME CLOCK
The Real Time Clock (RTC) feature generates a
sequence of pulses that is independent of the CPU
timing. It will generate I/O interrupts at anyone of
four program selectable frequencies. The Busy and
Done flags of the RTC option are controlled by bits 8-9
of the I/O instruction. The RTC option is device code
148 and has the mnemonic RTC. The interrupt disable
bit is priority mask bit 13.

Setting Busy to 1 allows the next pulse from the clock
to set Done to 1 and the R TC option requests an I/O
interrupt if its priority mask bit is O. A SELECT RTC
FREQ UENCY instruction to select the clock
frequency only has to be given once. After each
interrupt, an NIOS RTC instruction will set up the
clock for the next interrupt.

When Busy is first set to 1, the first interrupt can
come at any time up to the clock period. After the first
interrupt has occurred, succeeding interrupts come at
the clock frequency, provided that the program alway
sets Busy to 1 before the clock period expires. After
power up or I/O RESET, the clock is set to the line
frequency. After power up,the line frequency pulses
are available immediately, but five seconds must
elapse before a steady pulse train is available from the
clock for other frequencies.

The RTC frequency is' selected by the following
instruction.

Select RTC Frequency

DOA [fJ ac, RTC

I 0 1 I 1 I AC I 0 I 1 . 0 I
01123145617

F 10011001
I 9 10 I 11 I 12 113 I 14 I 15

The clock frequency is set according to bits 14-15 of
the specified AC. The contents of the specified AC
remain unchanged. Bits 0-13 of the specified AC are
ignored. The format of the specified AC is as follows:

t::l:::j:~:~~::~l~:::;::~:::~:::i:::~:::i::::}:l::l:::~:::~:~l~:::~~:~f::~~:~:i:~~~~:~~~:~~~:i:~:~:l:~:f:~~~;~:~ 1 ~T~ 5 I

Bits Name Contents

0-13 ---- Reserved for future use.

14-15 Select the clock frequency as follows:

00 ac line frequency

01 10Hz

10 100Hz

11 1000Hz

._---------_._----_ __ ._ .•.. _ .. _ .. _----

POWER FAIL/AUTO-RESTART
When power is turned off and then on again, core
memory is unaltered, but the contents of
semiconductor memory are lost unless the battery
back-up option is installed. Without the battery
back-up option the state of the accumulators, the
program counter, and the various flags in the CPU
and SC memory is indeterminate. The power fail
option provides a fail-soft capability in the event of
unexpected power loss.

In the event of power failure, there is a delay of one to
two milliseconds before the processor shuts down. The
power fail option senses the loss of power, sets the
Power Fail flag to 1 and requests an interrupt. The
interrupt service routine can then use this delay to
store the contents of the accumulators, the carry bit,
and the current priority mask. The interrupt service
routine should also save location 0 (to enable return to
the interrupted program), put a JUMP to the desired
restart location in location 0, and then execute a
HALT. One to two milliseconds is enough time to
execute 1000 to 1500 instructions, so there is more
than enough time to perform the power fail routine.

When power is restored, the action taken by the
automatic restart portion of the power fail option
depends upon the position of the power switch on the
front panel. If the switch is in the on position, the CPU
remains stopped after power is restored. If the switch
is in the lock position, then 222ms after power is
restored, the CPU executes the instruction contained
in physical location 0, thereby transferring control to
the restart procedure.

The power fail option has no priority mask bit in the
priority mask and does not respond to the
INTERRUPT ACKNOWLEDGE instruction. It
responds to the VECTOR instruction with device code
O. Testing of the Power Fail flag by the CPU SKIP
instruction is described below:

Skip If Power Fail Flag Is One

SKPDN CPU

1 1

I 6 I 7

o 11 1 1 1 1 1 I
I I I I I

9 10 11 12 In 14 15

If the Power Fail flag is 1 (i.e., power is failing), the
next sequential word is skipped.

V-1S

Skip If Power Fail Flag Is Zero

SKPDZ CPU

1 1
I 6 I 7

1 1 11 1 1 1 1 1 I
I I I I

8 I 9 10 11 12 In 14 15

If the Power Fail flag is 0 (i.e., power is not failing),
the next sequential word is skipped.

NOTE Since the contents of semiconductor
memory will be destroyed by a loss of power,
(unless the battery backup option is installed)
the power fail option should not attempt to
restart the system, even with the power switch
in the LOCK position, if the system contains
semiconductor memory. This can be controlled
by proper positioning of jumpers on the power
fail option.

BATTERY BACKUP

The battery backup feature of the S/130 provides the
capability to continue operation for approximately 1
minute after a power failure. During the period of
battery operation, all operations of the machine are
normal, with the exception of the cooling fans, which
do not operate.

When power is restored, the action taken by the
automatic restart portion of the battery backup
feature depends upon the position of the power switch
on the front panel. If the switch is in the on position,
the CPU remains stopped after power is restored. If
the power switch is in the lock position, the bootstrap
loader is deposited into memory locations 0-378.
Depending upon the position of jumpers on the CPU
board, device code 338 or 738 (moving head disc) will
be placed in ACO. When the selected device indicates
ready, the CPU is started at location 2.

V-17

~ w;'" ~ ~~ '"

_ S130
__ -" "''' "" """- ~ ,,_ , '>0" -""" "'" «< ~ 1

CHAPTER VI
CONSOLE

INTRODUCTION
The console contains all the function switehes and
displays all the information needed to operate the
machine. The function and data switches allow the
operator to perform many useful operations and the
lights reflect the current state of the machine. If a
light is lit, the corresponding bit is 1. If the light is not
lit, the corresponding bit is O. The lights and their
meanings are described below.

Light Meaning When Lit

USER MODE The MAP feature is translating addresses in
the user mode.

ADDR Operation of the machine is suspended
COMPAHE because the comparison requested by the

ADDRESS COMPARE switch has come up
true.

ION The Interrupt On flag is 1.

CARRY The carry bit is 1.

ROM These 1 2 lights display the micro-code
ADDRESS address of the next micro-instruction to be

fetched

DATA These 16 lights display what is currently on
the memory bus or (if in monitor mode) in the
console data register.

ROM a parity error was detected in the last micro
ERROR instruction addressed. The CPU halts.

ADDRESS These 15 lights display what is currently on
the memory address bus.

CONSOLE SWITCHES
In a row along the bottom of the console are 26
switches. These are divided into three groups: 5
function switches, 16 data switches, and 5 more
function switches. The ten function switches are
spring loaded. When pushed up, they perform one
function; when pushed down, they perform another
functon. When released, these switches return to a
neutral off position. The 16 data switches are
two-position toggle switches. When in the up position,
they represent a 1; when in the down position, they
represent a O. These switches have no neutral
position. These 16 switches can be used to enter either
data or addresses. If the switches are to be interpreted
as data, all 16 data switches are used and they
correspond to the bits in an internal 16-bit word. The
leftmost switch of this group corresponds to bit 0 and
the rightmost switch corresponds to bit 15. If the
switches are to be interpreted as an address, only the
rightmost 15 switches are used. When interpreted as
an address, the second switch from the left is the
high-order bit of the address and the rightmost
switch is the low-order bit. All addresses coming from
the console are treated as logical addresses.

Starting from the left of the console and proceeding to
the right, the function switches and their meanings
are described as follows.

VI-10f6

------------_.

Reset-Stop

When this switch is pushed up, the RESET function is
performed and an I/O RESET instruction is executed.
The CPU is stopped after completing the current
processor cycle. The Interrupt On flag, the 16-bit
priority mask, and all Busy and Done flags are set to O.
While in this state, the CPU will honor data channel
requests.

When this switch is pushed down, the STOP function
is performed. The CPU is stopped after completing the
current instruction and the next instruction. After
the CPU stops, the program counter points to the next
instruction to be executed. Interrupt requests made
after the STOP switch is pushed and before the CPU
has stopped are not honored. All outstanding data
channel requests are honored before the CPU is
stopped and data channel requests are honored while
the machine is in the stopped state. After the CPU is
stopped, the address lights display the address of the
next instruction to be executed.

Deposit-Examine

The next four switches are the accumulator
DEPOSIT-EXAMINE switches. The switches are
numbered 0-3 from left to right. Each switch affects
only its corresponding accumulator. When one of
these switches is pushed up, the current setting of the
data switches is deposited into the corresponding
accumulator. The data lights display the information
placed in the AC.

When one of these switches is pushed down, the
contents of the corresponding accumulator are
displayed in the data lights.

Exam-Exam Nxt

When this switch is pushed up, the EXAMINE
function is performed. The address indicated by data
switches 1-15 is placed in the program counter. This
value is displayed in the address lights. The contents
of the word addressed by the program counter are
then read and displayed in the data lights.

When this switch is pushed down, the EXAMINE
NXT function is performed. The current value of the
program counter is incremented by one and the new
value is displayed in the address lights. The contents
of the word addressed by the updated value of the
program counter are then read and displayed in the
data lights.

VI-2

Inst-Mkro/lnst

When this switch is pushed up, the INSTRUCTION
STEP function is performed. The instruction
contained in the word addressed by the current value
of the program counter is executed and then the CPU
is stopped. The address lights display the updated
value of the program counter. The data lights display
the contents of the memory bus.

NOTE If the machine is stopped while in the
user mode and the LOAD EFFECTIVE
ADDRESS instruction is enabled for the
current user, and a LOAD EFFECTIVE
ADDRESS instruction is executed by use of the
instruction step function, the action of the
console is undefined.

When this switch is pushed down, the MICRO
INSTR UCTION STEP function performed. The next
microinstruction in logical sequence is performed and
then the microcode processor is stopped.

The ROM address lights display the microcode
address of the next microinstruction to be fetched.
The address lights display the contents of the memory
address bus, and the data lights display the contents
of the memory bus.

PR-Load-Exec

When this switch is pushed up, the PROGRAM LOAD
function is performed. The contents of the bootstrap
read-only memory are placed in memory locations
0-37R and a JMP 0 instruction is performed.

When this switch is pushed down, the EXECUTE
function is performed. The current setting of the data
switches is interpreted as an instruction and that
instruction is executed as if it were in memory at the
location specified by the program counter. After the
instruction is stopped, the address lights display the
updat(~d value of the program counter.

NOTE If the machine is stopped while in user
mode and the LOAD EFFECTIVE ADDRESS
instruction is enabled for the current user, and
a LOAD EFFECTIVE ADDRESS instructon is
executed by use of the execute function, the
action of the console is undefined.

Start-Cont

When this switch is pushed up, the START function is
performed. The address indicated by data switches
1-15 is placed in the program counter and sequential
operation of the processor begins with the word
addressed by the updated value of the program
counter.

When this switch is pushed down, the CONTINUE
function is performed. Sequential operation of the
processor continues from the current state of the
machine.

Dep-Dep Nxt
When this switch is pushed up, the DEPOSIT function
is performed. The current setting of the data switches
is placed into the word addressed by the current value
of the program counter. The updated value of the
altered word is displayed in the data lights.

When this switch is pushed down, the DEPOSIT NXT
function is performed. The program counter is
incremented by one and the current setting of the
data switl~hes is placed into the word addressE:d by the
updated value of the program counter. The updated
value of the program counter is displayed in the
address hghts and the updated value of the altered
word is displayed in the data lights.

Address Compare
The ADDRESS COMPARE switch is a four- position
rotary switch. The four positions are labeled OFF.
MONITOR, STOP/STORE, and STOP/ADDR. The
functions of these four positions are described below.

Off

When the switch is in the OFF position, the
ADDRESS COMPARE feature is disabled.

VI-3

Monitor

When the switch is in the MONITOR position, it is
possible to examine and monitor locations in memory
while the CPU is running. When the switch is in this
position, the contents of the memory location
addressed by the current setting of the data switches
is displayed in the data lights each time the location is
accessed by the CPU. The data is not displayed until
either the CPU accesses the location or the
EXAM-EXAM NXT switch is pushed up. The data
lights continue to display this information until either
the contents of the addressed location are altered by
the CPU or the setting of the data switches is
changed. In the first case, the updated value of the
location is displayed in the data lights. In the second
case, the old data remains in the lights until either the
CPU accesses the location addressed by the new
switch setting or the EXAM-EXAM NXT switch is
pushed up. As soon as the CPU accesses the location or
the EXAM-EXAM/NXT switches is pushed up, the
contents of the location addressed by the new switch
setting will be displayed in the data lights.

Stop/Store

When the rotary switch is in the STOP/STORE
position, the ADDRESS COMPARE feature suspends
the operation of the CPU if the CPU tries to alter the
location whose address is set in the data switches. The
addressed location is altered. The AD DR COMPARE
light is lit to indicate that the ADDRESS COMPARE
feature has suspended the operation of the machine.

Stop/ Addr

When the rotary switch is in the STOP/ ADDR
position, the ADDRESS COMPARE feature suspends
the operation of the CPU if the CPU tries to access the
location whose address is set in the data switches. The
addressed location is neither read nor written. The
ADDR COMPARE light is lit to indicate that the
ADDRESS COMPARE feature has suspended the
operation of the machine.

Power

The POWER switch is a three posItIOn key switch.
The three positions are labeled OFF. ON, and LOCK.
With the switch in the OFF position, all power to the
CPU is shut off and the machine will not run. Turning
the switch to the ON position turns on the power,
performs a RESET function, and enables all the
switches. Turning the switch to the LOCK position
allows the key to be removed. While the switch is in
the LOCK position, all console functions except the
MONITOR function of the ADDRESS COMPARE
feature are disabled.

---- .. -._--_ ... _-----_._-------------_._-----

PROGRAM LOADING
Before a program can be executed it must be brought
into memory. This requires that a loading program
already reside in memory. If the memory does not
contain a loading program, the operator can either
load a bootstrap loader into memory via the data
switches or he can use the PROGRAM LOAD feature.
Pushing the PR LOAD-EXEC switch on the console to
the up position deposits a 3210 word bootstrap loader
into the first 3210 memory locations and then begins
sequential operation at memory location O. This
bootstrap loader will then read in a loader program
from an I/O device. This bootstrap loader can use
either programmed I/O to read in a loader from a
low-speed device such as the teletypewriter or paper
tape reader, or data channel transfers to read in a
loader from a high-speed device such as magnetic tape
or disc.

To enter a loader program, the operator must first set
up the device that is to be used and set its octal device
code into data switches 10-15. If the device is a data
channel device, set data switch 0 to 1. If the device is
not a data channel device, set data switch 0 to O. After
this is done, push the PR LOAD-EXEC switch to the
up position. The bootstrap loader will be deposited
into memory locations 0-378 and started at location O.

The bootstrap loader reads the data switches, sets up
its own I/O instructions with the specified device
code, and then performs a program load procedure
depending upon the state of data switch O.

If the switch is a 1, the bootstrap loader starts the
device for data channel storage beginning at location 0
and then loops at location 3778 until a data channel
transfer places a word into that location.

NOTE For proper program loading via the
data channel, the device used must be initiated
for reading by an I/O RESET followed by an
NIOS instruction. In addition, it is up to the
device to stop reading after 256 words have
been read.

After a word has been placed in location 3778, it is
executed as an instruction. Typically, this word is
either a HALT or a JUMP into the data that the data
channel has placed in the first 3778 memory locations.

If data switch 0 is a 0, the bootstrap loader reads the
loader program via programmed I/O. The device must
supply 8-bit data bytes, and each pair of bytes is
stored as a single word in memory, wherein the first
and second bytes read become the left and right
halves of the word. To simplify the positioning of the

VI-4

tape in the reader, the bootstrap loader ignores
leading null characters. It does not begin storing any
words until it reads a non-zero synchronization byte.
The first word following this synchronization byte
must be the negative of the total number of words to
be read, including the first word. The number of
words to be read, including the first word may not be
greater than 19210, The bootstrap loader stores these
words beginning at memory location 1008, After
storing the last word read, it transfers control to that
location.

Listed below is the standard 32 word bootstrap loader.
This program is capable of loading in either of the
manners described above.

The usual procedure is to use the bootstrap loader to
bring in a larger program that sizes memory and then
reads in the binary loader, storing it at the top of
memory.

BEG 10RST ;RESET ALL 10
READS 0 ; READ SWITCHES INTO ACO
LDA 1,C77 ,GET DEVICE MASK (000077)
AND 0,1 ;ISOLATE DEVICE CODE
COM 1,1 ,-DEVICE CODE -1

LOOP ISZ OP1 ;COUNT DEVICE CODE INTO ALL
ISZ OP2 ;1 0 INSTRUCTIONS
ISZ OP3
INC 1,1,SZR ;DONE?
JMP LOOP ;NO, INCREMENT AGAIN
LDA 2,C377 ;YES; PUT JMP 377

;INTO LOCATION 377
STA 2,377

OP1 060077 ;START DEVICE; (NIOS 0)-1
MOVL O,O,SZC ,LOW SPEED DEVICE?

,(TEST SWITCH 0)

C377 JMP 377 ;NO, GO TO 377
;AND WAIT FOR CHANNEL

LOOP2 JSR GET+1 ;GET A FRAME
MOVC O,O,SNR ;IS IT NON-ZERO?
JMP LOOP2 ; NO, IGNORE AND GET ANOTHER

LOOP4 JSR GET ;YES, GET FULL WORD
STA l,@C77 ;STORE STARTING AT 1002'S

; COMPLEMENT OF WORD
;COUNT (AUTO-INCREMENT)

ISZ 100 ;COUNT WORD - DONE?
JMP LOOP4 ; NO, GET ANOTHER

C77 JMP 77 ; YES, - LOCATION COUNTER
;AND JUMP
; TO LAST WORD

GET SUBZ 1,1 ;CLEAR AC 1, SET CARRY
OP2
LOOP3, 063577 ;DONE? (SKPDN 0) -1

JMP LOOP3 NO, WAIT
OP3 060477 ;YES, READ IN ACO (DIAS 0,0) -1

ADDCS O,l,SNC ;ADD 2 FRAMES SWAPPED -
;GOT SECOND?

JMP L.00P3 ;NO, GO BACK AFTER IT
MOVS 1,1 ,YES, SWAP THEM
JMP 0,3 ;RETURN WITH FULL WORD
0 ,PADDING

Self Test: Function

The S/130 has a system for performing a simple
self-test flllction just before doing a program load. See
the ECLIPSE S/130 Technical Manual, DGC No.
015-000070 for details about the tests this program
does.

The self-test program is automatically executed by
the CPU if one of the following conditions exists:

• The console is locked (auto-restart), and the
lowest memory locations are semiconductor, as
dete:rmined by jumpers on CPU2;

• The PROGRAM LOAD key is depressed and
switch 4 of the address/data switchess is set to O.

If the self-test program does not produce any errors,
the normal auto-restart or program load function is
initiated.

If the self-test program fails, you can try to program
load without using the self-test program by setting
address/data switch 4 to 1 (along with the standdard
program-load settings) and depressing the
PROGRAM LOAD key.

VI-5

If you would like to run the self-test program, but do
not want to program load, set the address/data
switches to 000000 and press the PROGRAM LOAD
key. The self-test program will continue to run until
an error occurs or address/data switch 0 is set to 1.
The microprogram will then halt at ROM address 2.

NOTE Setting switch 0 to 1 will stop the test
only at the end of a complete run. The STOP key
and the RUNNING EXAMINE key will not
function while the test is executing.

You can make the self-test program loop on errors by
disabling the ROM parity detection logic as follows:

1. Start the self-test program. (Place 000000 in the
address/data switches and press the PROGRAM
LOAD key).

2. Turn the console power switch to LOCK.

Errors will then cause the self-test program to restart.

VI-6

APPENDIX A
S1 ANDARD 1/0 DEVICE CODES

OCTAL OCTAL
DEVICE PRIORITY DEVICE
CODES MNEMONIC MASK BIT DEVICE NAME CODES

00 -_ .. - -- Unused 41 3

01 -- ... - -- Unused 40

02 ERCC -- Error checking and correction 41

03 M.AP -- Memory allocation and protection unit 42

04 43

05 44

06 MCAT 12 Multiprocessor adapter transmitter 45
07 MCAR 12 Multiprocessor adapter receiver 46
10 TTl 14 TTY input 47
11 TTO 15 TTY output 50

12 PTR 11 Paper tape reader 51
13 PTP 13 Paper tape punch 52
14 RTC 13 Real-time clock 53
15 PLT 12 Incremental plotter 54
16 CDR 10 Card reader 55

17 LPT 12 Line printer 56
20 DSK 9 Fixed head disc 57
21 ADCV 8 AID converter 60
22 MTA 10 Magnetic tape 61
23 DACV -- 0/ A converter 62

24 OeM 0 Data communications multiplexor 63
25 64
26 DKB 9 Fixed head DG/Disc 65
27 DPF 7 DG/Disc storage subsystem 66
30 QTY 14 Asynch. hardware multiplexor 67

30 SLA 14 Synchronous line adapter 70
31' IBMl 13 IBM 360/370 interface 70
32 I~M2 13 IBM 360/370 interface 71'
33 DKP 7 Moving head disc 72
34' C}\S 10 Cassette tape 73

34 M)(l 11 Multiline asynchronous controller 74
35 MX2 11 Multiline asynchronous controller 74'
36 IPB 6 Interprocessor bus--half duplex 75
37 IVT 6 IPB watchdog timer 76
40 2 DPI 8 IPB full duplex input 77

1 Code returned by INT A and used by VCT
2 Can be set up with any unused even device code equal to 40 or above
3 Can be set up with any unused odd device code equal to 41 or above

A-lof2

PRIORITY
MNEMONIC MASK BIT DEVICE NAME

DPO 8 IPB full duplex output
SCR 8 Synch. communication receiver
SCT 8 Synch. communication transmitter
010 7 Digital 1/0
DIOT 6 Digital 1/0 timer

MXM 12 Modem control for MX 1 IMX2

MCATl 12 Second multiprocessor transmitter
MCARl 12 Second multiprocessor receiver
TTll 14 Second TTY input

TTOl 15 Second TTY output
PTRl 11 Second paper tape reader
PTPl 13 Second paper tape punch
RTCl 13 Second real-time clock
PL Tl 12 Second incremental plotter

CDRl 10 Second card reader
LPTl 12 Second line printer
DSKl 9 Second fixed head disc
ADCVl 8 Second AID converter
MTAl 10 Second magnetic tape

DACVl -- Second 0' A converter

DKSl 9 Second Fixed Head DG/Disc
DPFl 7 Second DG/Disc storage subsystem

QTYl 14 Second asynch. hardware mux
SLAl 14 Second synchronous line adapter

13 Second IBM 360 /370 interface
13 Second IBM 360 /370 interface

DKPl 7 Second moving head disc

CASl 10 Second cassette tape
11 Second multiline asynch controller
11 Second multiline asynch controller

CPU -- CPU and console functions

A-2

APPENDIX B
OCTAL AND HEXADECIMAL CONVERSION

To (~onvert a number from octal or hexadecimal to decimal.
locat.e in each column of the appropriate t.able thr· decimal
(~quivalent for the octal or hex digit in that position Add t h(~
decimal equivalents 1.0 obtain the decimal number.

To (~on vert a decimal number to octal or hexadeeima I:

1. Lo(~ate the largeHt decimal value in the appropriat(~
t able that will fit into the decimal numher to lw
con verted;

2. Note its octal or hex equivalent and column position;

:3. Find the decimal remainder.

R()poat t.he process on each remainder. When the remainder
is 0, all digit.s will have been generated.

OCT At CONVERSION TABLE
8' 8 4 8' 8 2 8' 8"

0 0 0 0 0 0 0
1 32,768 4,096 512 64 8 1
2 65,536 8,192 1,024 128 16 2
3 98,304 12,228 1,536 192 24 3
4 131,072 16,384 2,048 256 32 4
5 163,840 20.480 2,560 320 40 5
6 196,608 24,576 3,072 384 48 6
7 229,376 28,672 3,584 448 56 7

B-1 of 2

HEXADECIMAL CONVERSION TABLE

16' 16 4 16' 16 2

0 0 0 0 0

1 1,048,576 65,536 4,096 256

2 2,097,152 131,072 8,192 512

3 3,145,728 196,608 12,288 768

4 4,194,304 262,144 16,384 1,024

5 5,242,880 327,680 20.480 1,280

6 6,291.456 393,216 24,576 1.536

7 7,340,032 458,752 28,672 1,792

8 8,388,608 524,288 32,768 2,048

9 9.437,184 589,824 36,864 2,304

A 10.485,760 655,360 40,960 2,560

B 11,534,336 720,896 45,056 2,816

C 12,582,912 786.432 49,152 3,072

D 13,631.488 851,968 53,248 3,328

E 14,680,064 917,504 57,344 3,584

F 15,728,640 983,040 61.440 3,840

16' 16()

0 0

16 1

32 2

48 3

64 4

80 5

96 6

112 7

128 8

144 9

160 10

176 11

192 12

208 13

224 14

240 15

B-2

APPENDIX C
ASCII CHARACTER CODES

KEY KEY KEY KEY
DECIMAL OCTAL HEX SYMBOL MNEMONIC DECIMAL OC TAL HEX SYMBOL DECIMAL OCTAL HEX SYMBOL DECIMAL OCTAL HEX SYMBOL

C-1 of 2

-_ ... _--_._ .. -._ ... _---- ---.-------.-.--. -----_.-----------------,-----, -----

C-2

APPENDIX D
BINARY, OCTAL AND DECIMAL

NUMBERING SYSTEMS

The most familiar numbering system in our society is
the decimal system. For ordinary mental or
pencil-and-paper work it is clearly the easiest to use.
Computers, however, use the binary system, which
becomes very confusing to humans when more than a
few digits are involved. Fortunately, binary can be
easily translated into octal or hexadecimal
representation, both of which are relatively easy for
humans to use.

In this section, we provide some basic background on
the binary, octal and hexadecimal numbering
systems. Most readers will already be familiar with
these, but some may not and others may find the
review helpful.

The binary numbering system is used in computers
because the two binary values can be easily
represented electronically. In the binary system, the
only two permissible digits are 0 or 1, and each
position in a binary number represents some power
of 2. For example, consider the binary number:

101101°2

which is equivalent to the sum (in decimal):

(1 x26) + (Ox2 5) + (1 x24) + (1 x2 3) +
(Ox2 2) + (Ox2') + (1 x2D)

or

64 + 0 + 1 6 + 8 + 0 + 2 + 0 = 90, 0'

If we divide this number into groups of 3 starting at
the right, thus:

1 011 010,

we see that each group of 3 has a range of:

000 = 0

to

111 = 7 = (2 2+ 2' + 2°) = (4 + 2 + 1).

Zero to 7 is the range of digits allowable in the octal
numbering sytem, so we can convert from binary to
octal simply by grouping and evaluating each group
of 3 binary digits by itself. In octal, the number above
becomes:

011 010

or

3 2 = 1328

We can also convert this number to hexadecimal (or
base 16). Zero through nine decimal are unchanged in
the hexadecimal system, but 10-151Oare represented
by the letters A through F.

If we divide the original binary number into groups of
4 instead of 3, starting from the right, we get:

101 1010

The range for one group is now:

0000 = 0

to

1111 = 23+ 22+ 2' + 2°
= (8 + 4 + 2 + 1) = 15'0= F'6

The number in the example above is then:

101 1010

or

5

D-lof2

._------_._-----------._-------_ .. _-----------

Conversion to decimal is not quite so simple. Tables in
Appendix B of this manual can be used to convert
between octal and decimal or between hexadecimal
and decimal. Using them, we find that the above
number is 9010'

The table below shows the correspondence among the
four numbering systems mentioned above for a 4-bit
binary number:

BINARY OCTAL HEX DECIMAL

0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 10 8 8
1001 11 9 9
1010 12 A 10
1011 13 B 11
1100 14 C 12
1101 15 D 13
1110 16 E 14
1111 17 F 15

D-2

In this manual, numbers without a subscript will be
assumed to be in base 10, or decimal, representation.
All other representations will be explicitly noted in a
subscript, thus:

64 10 = 40'6 = 1008

APPENDIX E
COMPATIBILITY WITH NOVA LINE COMPUTERS

The ECLIPSE S/130 computers are compatible with
Data General's NOV A line of computers. Any
program presently running on any NOV A line
computer will run on an ECLIPSE series computer
without change provided that it does not violate any
ofthe following constraints:

• The program may not be dependent on
instruetion execution times or Input/Output <I/O)
transfer times. Times for the ECLIPSE series
computers may be faster than a NOV A line
computer depending upon the application.

• The program may not use any fixed-point
arithmetic instructions that have both the no-load
and no-skip options specified. The ECLIPSE series
computers use these codes to implement
instruetions in the standard instruction set.

• The program may not require the hardware
multiply/divide option available on any NOV A
line computer.

• The program may not utilize the data channel
increment or add-to-memory features.

• The program may not utilize either the memory
management and protection option or the
hardware floating point option currently available
for NOV A line computers.

• The memory and I/O resources available on the
ECLIPSE series computer should be at least
equivalent to those available on the NOVA line
computer for which the program was designed.

A violation of the third constraint can be easily
corrected. The multiply and divide available in the
ECLIPSE series computers standard instruction set
are functionally equivalent to the operations provided
in the hardware multiply/divided option for the
NOV A line computers. Only the operation codes must
be changed to take advantage of the ECLIPSE series
computer's multiply and divide feature. Similarly,
only small changes need be made to a program which
uses the current NOV A line floating point option in
order for that program to take advantage of the
floating point option. The floating point number
formats are the same.

E-lof2

E-2

APPENDIX F
INSTRUCTION

EXECUTION TIMES

The following table gives typical execution times for
representative instructions in the 8/130 instruction
set. These times assume a system with semiconductor
memory and the floating point instruction set option.
All times are in microseconds.

Execution
Instruction Time

ADD 0.6
BLM 2.8 + 1.2/word
CMV 1.8 + 2.9/byte
DIV 4.3
DIVS 5.85
DIVX 5.8
FAS 7.25
FMD 58.6
FMS 13.6
LOA 1.2
MUL 3.2
MULS 4.0
STA 1.2
SUB 0.6
VCT

Short 2.6
Long 20.4

F-1of2

F-2

APPENDIX G
INSTRUCTION USE EXAMPLES

On the following pages are examples of how the
instruction set of the ECLIPSE S/130 may be used to
perform some common functions.

1. Clear an AC and the carry bit.

SUBO AC,AC

2. Clear an AC and preserve the carry bit.

SUBC AC.AC

3. Generate the indicated constants.

SUBZl
ADC
ADCZl

AC,AC
AC,AC
AC,AC

; Generate + 1
; Generate -1
;Generate -2

4. Let AGN be any accumulator whose contents are
zero; generate the indicated constants in ACN.

INCZI_
INCOl
INCS

ACN,ACN
ACN.ACN
ACN,ACN

; Generate + 2
; Generate + 3
;Generate +400 8

5. Check ifboth bytes in an accumulator are equal.

MOVS
SUB
JMP

ACS,ACD
ACS,ACD,SZR

;Not equal
;Equal

6. Check if two accumulators are both zero.

MOVS
SUB
JMP

ACS,ACS,SNR
ACS,ACD,SZR

;Not equal
;Equal

7. Check an ASCII character to make sure it is a
decimal digit. The character is in ACS and is not
destroyed by the test. Accumulators ACx and ACy
are destroyed.

lDA ACx,C60
lDA ACy,C71
ADCZ# ACy,ACS,SNC
ADCZ# ACS,ACx,SZC
JMP

C60: 60
C71 : 71

8. Test an accumulator for zero.

MOV
JMP

AC,AC,SZR

9. Test an accumulator for -1.

COM#
JMP

AC.AC,SZR

;ASCII zero
;ASCII nine
;Skips if (ACS >9)
; Skips if (ACS:::;:' 0)
;Not digit
;Digit
;ASCIIO
;ASCII9

;Not zero
;Zero

;Not -1
; -1

G-1of2

10. Test an accumulator for 2 or greater.

MOVZR#
JMP

AC,AC,SNR
;Less than 2
; 2 or greater

11. Assume that it is known that AC contains 0, 1, 2,
or 3; find out which value.

MOVZR # AC,AC,SEZ

JMP THREE
MOV AC,AC,SNR

JMP ZERO

MOVZR # AC,AC,SZR

JMP TWO

12. Perform the following
comparisons.

SUB#
SUB#
ADCZ#
SUBZ #
SUBZ #
ADCZ #

ACS,ACD,SZR
ACS,ACD,SNR
ACS,ACD,SNC
ACS,ACD,SNC
ACS,ACD,SZC
ACS,ACD,SZC

;Was 3

;WasO

;Was 2
;Was 1

unsigned integer

;Skip if (ACS) = (ACD)
;Skip if (ACS) I(ACD)
;Skip if (ACS)< (ACD)
;Skip if (ACS) s: (ACD)
;Skip if (ACS) > (ACD)
;Skip if (ACS):::: (ACD)

13. Multiply an AC by the indicated value.

G-2

MOV ACx,ACx ;Multiply by 1

MOVZL ACx,ACx ;Multiply by 2

MOVZL ACx,ACy ; Multiply by 3

ADD ACy,ACx

ADDZL ACx,ACx ;Multiply by 4

MOV ACx,ACy ;Multiply by 5

ADDZL ACx,ACx
ADD ACy,ACx

MOVZL ACx,ACy ;Multiply by 6

ADDZL ACy,ACx

ADDZL ACx,ACx ; Multiply by 8

MOVZL ACx,ACx

Multiplication by other factors of 2 can be
achieved with the LOGICAL SHIFT instruction;
multiplication by factors of 16 can be
accomplished with the HEX SHIFT LEFT
instruction.

INSTRUCT-ION INDEX

ADC (Add Complement) 111-6, 111-8*
ADD (Add) 111-3, 111-8,111-27, VI-4
ADDI (Extended Add Immediate) 111-5
ADI (Add Immediate) 111-5, 111-30,111-31
ANC (AND With Complemented Source) 111-10
AND (logical AND) 111-9, VI-4
ANDI (AND Immediate) 111-9

BAM (Block Add And Move) 111-19, 111-20
BlM (Block Move) 111-19
BTO (Set Bit To One) 111-16
BTZ (Set Bit To Zero) 111-16

ClM (Compare To Limits) 111-14
CMP (Character Compare) IV-20
CMT (Character Move Until True) IV-22
CMV (Character Move) IV-19, IV-23
COB (Count Bits) 111-18
COM (Complement) 111-9, V-13, VI-4
CTR (Character Translate) IV-21

* Primary references are in bold type. Others are in light type_

DAD (Decimal Add) 111-4
DHXl (Double Hex Shift left) 111-11
DHXR (Double Hex Shift Right) 111-12
DIA (Data In A) V -3, V-4
DIA ac, CPU (Read Switches) V-9, VI-4
DIA ac, ERCC (Read Memory Fault Address) V-14
DIA ac, MAP (Read MAP Status) IV-6
DIB (Data In B) V-3
DIB ac, CPU (Interrupt Acknowledge) V-5, V-6, V-8
DIB ac, ERCC (Read Memory Fault Code) V-15
DIC (Data In C) V-3
DIC ac, CPU (I/O Reset) IV-4, IV-16, V-9, VI-2, VI-4
DIC ac, MAP (Page Check) IV-7
DIV (Unsigned Divide) 111-7
DIVS (Signed Divide) 111-7
DIVX (Sign Extend And Divide) 111-7
DlSH (Double logical Shift) 111-11, 111-16
DOA (Data Out A) V -3, V-4
DOA ac, ERCC (Enable ERCC) V-14
DOA ac, MAP (load MAP Status) IV-6
DOA ac, RTC (Select RTC Frequency) V-13
DOB (Data Out B) V-3
DOB ac, CPU (Mask Out) V-8, V-13
DOB ac, MAP (Map Supervisor Page 31) IV-8
DOC (Data Out C) V-4
DOC ac, CPU (Halt) V-9
DOC ac, MAP (Initiate Page Check) IV-7
DSB (Decimal Subtract) 111-4
DSPA (Dispatch) 111-14, 111-15
DSZ (Decrement And Skip If Zero) 111-13, 111-16, V-13

X-l of 4

EDSZ (Extended Decrement And Skip If Zero) 111-13
EISZ (Extended Increment And Skip If Zero) 111-13
EJMP (Extended Jump) 111-28
EJSR (Extended Jump To Subroutine) 111-28
ELDA (Extended Load Accumulator) 111-3
ELDB (Extended Load Byte) IV-23, IV-24
ELEF (Extended Load Effective Address) 111-9
ESTA (Extended Store Accumulator) 111-3
ESTB (Extended Store Byte) IV-24

FAB (Absolute Value) IV-14
FAD (Add Double (FPAC to FPAC) IV-12
FAMD (Add Double (memory to FPAC) IV-12
FAMS (Add Single (memory to FPAC) IV-12
FAS (Add Single (FPAC to FPAC) IV-12
FCLE (Clear Errors) IV -16
FCMP (Compare Floating Point) IV-16
FDD (Divide Double (FPAC by FPAC) IV-14
FDMD (Divide Double (FPAC by memory) IV-14
FDMS (Divide Single (FPAC by memory) IV-13
FDS (Divide Single (FPAC by FPAC) IV-13
FEXP (Load Exponent) IV-15
FFAS (Fix To AC) IV-9, IV-11
FFMD (Fix To Memory) IV-9, IV-11
FHLV (Halve) IV-15
FINT (lntegerize) IV -15
FLAS (Float From AC) IV-11
FLDD (Load Floating Point Double) IV-10
FLDS (Load Floating Point Single) IV -10
FLMD (Float From Memory) IV-11
FLST (Load Floating Point Status) IV-16
FMD (Multiply Double (FPAC by FPAC) IV-13
FMMD (Multiply Double (FPAC by memory) IV-13
FMMS (Multiply Single (FPAC by memory) IV-13
FMOV (Floating Point Move) IV-11
FMS (Multiply Single (FPAC by FPAC) IV-13
FNEG (Negate) IV-14
FNOM (Normalize) IV-14
FNS (No Skip) IV-18
FPOP (Pop Floating Point State) IV-10, IV-17
FPSH (Push Floating Point State) IV -10, IV -17
FRH (Read High Word) IV-14

X-2

FSA (Skip Always) IV-18
FSCAL (Scale) IV-9, IV-15
FSD (Subtract Double (FPAC from FPAC) IV-12
FSEQ (Skip On Zero) IV-18
FSGE (Skip On Greater Than Or Equal To Zero) IV-18
FSGT (Skip On Greater Than Zero) IV-18
FSLE (Skip On Less Than Or Equal To Zero) IV -18
FSL T (Skip On Less Than Zero) IV-18
FSMD (Subtract Double (memory from FPAC) IV-13
FSMS (Subtract Single (memory from FPAC) IV-12
FSND (Skip On No Zero Divide) IV-19
FSNE (Skip On Non-Zero) IV-18
FSNER (Skip On No Error) IV-19
FSNM (Skip On No Mantissa Overflow) IV-18
FSNO (Skip On No Overflow) IV-19
FSNOD (Skip On No Overflow And No Zero Divide) IV-19
FSNU (Skip On No Underflow) IV-18
FSNUD (Skip On No Underflow And No Zero Divide) IV-19
FSNUO (Skip On No Underflow And No Overflow) IV -19
FSS (Subtract Single (FPAC from FPAC)) IV-12
FSST (Store Floating Point Status) IV-16
FSTD (Store Floating Point Double) IV-10
FSTS (Store Floating Point Single) IV -10
FTD (Trap Disable) IV-16
FTE (Trap Enable) IV-16

HALT (Halt) V-9
HAL T A (Halt) V-9
HLV (Halve) 111-7
HXL (Hex Shift Left) 111-11,111-20
HXR (Hex Shift Right) 111-11, 111-16

INC (Increment) 111-6, 111-8, 111-18, 111-20, VI-4
INTA (Interrupt Acknowledge) V-5, V-6, V-8
INTDS (Interrupt Disable) V-8
INTEN (Interrupt Enable) V-5, V-8, V-13
lOR (Inclusive OR) 111-10,111-16
10RI (Inclusive OR Immediate) 111-10
10RST (I/O Reset) IV-4, IV-16, V-9, VI-2, VI-4
ISZ (Increment And Skip If Zero) 111-13, V-13, VI-4

JMP (Jump) 111-15, 111-16, 111-18, 111-20, 111-28, 111-29,111-30,
111-31, IV-23, V-4, V-13, VI-4

JSR (Jump To Subroutine) 111-18,111-27,111-28, 111-30, VI-4

LCSF (Load Control Store Formatted) IV-25
LDA (Load Accumulator) 111-3, 111-16,111-18,111-20,111-27,

111-29,111-30,111-31, IV-23, V-13, VI-2
LDB (Load Byte) 111-15
LEF (Load Effective Address) 111-9, 111-18, IV-4, IV-23, VI-2
LOB (Locate Lead Bit) 111-17
LMP (Load Map) IV-5
LRB (Locate And Reset Lead Bit) 111-18
LSH (Logical Shift) 111-10

MOV (Move) 111-6, 111-8, 111-16, 111-20, 111-31, IV-23, VI-4
MSKO (Mask Out) V-8, V-13
MSP (Modify Stack Pointer) 111-27
MUL (Unsi~lned Multiply) 111-6, 111-31
MULS (Signed Multiply) 111-7

NEG (Negate) 111-5, IV-23
NIO (No I/O. Transfer) V-3
NIOC CPU (Interrupt Disable) V-8
NIOP MAP (Map Single Cycle) IV-8
NIOS CPU (Interrupt Enable) V-5, V-8, V-13

POP (Pop Multiple Accumulators) 111-25, 111-31, V -13
POPB (Pop Block) 111-18,111-29, V-13
POPJ (Pop PC And Jump) 111-29, 111-31
PSH (Push iVlultiple Accumulators) 111-25, 111-31
PSHJ (Push Jump) 111-29, 111-31
PSHR (Push Return Address) 111-26

READS (Read Switches) V-9, VI-4
RSTR (Restore) 111-28, V-13
RTN (Return) 111-27, 111-31

X-3

SAVE (Save) 111-26,111-31
SBI (Subtract Immediate) 111-5, 111-16, 111-31, V-13
SGE (Skip If ACS Greater Than Or Equivalent To ACD) 111-13
SGT (Skip If ACS Greater Than ACD) 111-13
SKP (I/O Skip) V-4, V-5
SKP CPU (CPU Skip) V-8
SKPDN CPU (Skip If Power Fail Flag Is One) V-16
SKPDZ CPU (Skip If Power Fail Flag Is Zero) V-16
SNB (Skip On Non-Zero Bit) 111-17, 111-18
ST A (Store Accumulator) 111-3, 111-16, 111-20, 111-27, 111-30,

111-31, V-13, VI-4
STB (Store Byte) 111-15,111-16,111-18
SUB (Subtract) 111-3, 111-8,111-20,111-31, VI-4
SVC (same as SYC 0,0) 111-29
SYC (System Call) 111-29
SYL (same as SYC 1,1) 111-29
SZB (Skip On Zero Bit) 111-17
SZBO (Skip On Zero Bit And Set To One) 111-17

VCT (Vector On Interrupting Device Code)
11-8,111-27, V-5, V-6, V-10ff

XCH (Exchange Accumulators) 111-6
XCT (Execute) 111-29, VI-2
XOP (Extended Operation) 111-32
XOP1 (Extended Operation) 111-32, IV-27
XOR (Exclusive OR) 111-10
XORI (Exclusive OR Immediate) 111-10

------------------------_ .. __ ._---------_._ ..

BIBLIOGRAPHY
The following Data General publications may be of
interest to readers of this manual:

Programmer's Reference, Peripherals,
DGC No. 015-000021.

Programmer's Reference, NOVA Line Computers,
DGC No. 015-000023.

Programmer's Reference, ECLIPSE Line Computers,
DGC No.015-000024.

Programmer's Reference, ECLIPSE C-Series Computers,
DGC No. 015-000047.

Programmer's Reference, Data Control Unit.
DGC No. 015-000060.

Programmer's Reference, DGDAC and Process Controls,
DGC No. 015-000063.

Programmer's Reference, ECLIPSE S/130,
DGC No. 015-000068.

Programmer's Reference, S/130 Microprogramming WCS Feature,
DGC No. 015-000069.

Technical Reference, Data General Communications System,
DGC No. 014-000070.

Technical Manual, 6020 Series Tape Transport,
DGC No. 015-000040.

Technical Manual, Model 6045 6050 6051 Disc Drive (10 Megabyte).
DGC No. 015-000057.

Technical Manual, DG/Disc Storage Subsystem
(6060 Series, 100 Megabyte), DGC No. 015-000061.

Technical Manual, ECLIPSE S/130,
DGC No. 015-000070.

Technical Manual, Model 6063-6065 Fixed Head Disc,
DGC No. 015-000072.

Interface Designer's Reference, NOVA and ECLIPSE Line Computers,
DGC No. 015-000031.

Software Summary and Bibliography,
DGC No. 093-000110.

AOS Software Documentation Guide,
DGC No. 093-000202.

X-4

SALES AND SERVICE OFFICES

Alabama: Birmingham
Arizona: Phoenix. Tucson
Arkansas: Little Rock
California: EI Segundo. Fresno. Palo Alto. Sacramento. San Diego.
San Francisco. Santa Ana. Santa Barbara. Van Nuys
Colorado: Englewood
Connecticut: North Branford
Florida: Ft. Lallderdale. Orlando. Tampa
Georgia: Norcross
Idaho: Boise
Illinois: Peoria. Schaumburg
Indiana: Indianapolis
Kentucky: Louisville
Louisiana: Baton Rouge
Maryland: Baltimore
Massachusetts: Springfield. Wellesley. Worcester
Michigan: Southfield
Minnesota: Richfield
Missouri: Kansas City. St. Louis
Nevada: Las Vegas
New Hampshire: Nashua
New Jersey: Cherry Hill. Wayne
New Mexico: Albuquerque
New York: Buffalo. Latham. Melville. Newfield. New York.
Rochester. Syracuse. White Plains
North Carolina: Charlotte. Greensboro
Ohio: Columbus. Dayton. Brooklyn Heights
Oklahoma: Oklahoma City. Tulsa
Oregon: Portland
Pennsylvania: Blue Bell. Carnegie
Rhode Island: Rumford
South Carolina: Columbia
Tennessee: Knoxville. Memphis
Texas: Austin. Dallas. EI Paso. Ft. Worth. Houston
Utah: Salt Lake City
Virginia: McLe!an. Norfolk. Richmond. Salem
Washington: Kirkland
West Virginia: Charleston
Wisconsin: West Allis

Australia: Melbourne. Victoria
France: Le Plessis Robinson
Italy: Milan. Padua. Rome
The Netherlands: Rijswijk
New Zealand: Auckland. Wellington
Sweden: Gothenburg. Malmoe. Stockholm
Switzerland: Lausanne. Zurich
United Kingdom: Birmingham. Dublin. Glasgow. London. Manchester
West Germany: Filderstadt. Frankfurt. Hamburg. Munich. Ratingen.
Rodelheim

DG-04976

--,._---_._----

MANUFACTURER'S REPRESENTATIVES
& DISTRIBUTORS

Argentina: Buenos Aires
Costa Rica: San Jose
Ecuador: Quito
Egypt: Cairo
Finland: Helsinki
Greece: Athens
Hong Kong: Hong Kong
India: Bombay
Indonesia: Jakarta
Iran: Tehran
Israel: Givatayim
Japan: Tokyo
Jordan: Amman
Korea: Seoul
Kuwait: Kuwait
Lebanon: Beirut
Malaysia: Kuala Lumpur
Mexico: Mexico City
Nicaragua: Managua
Nigeria: Lagos. lbadan
Norway: Oslo
Peru: Lima
Philippine Islands: Manila
Puerto Rico: Hato Rey
Saudi Arabia: Riyadh
Singapore: Singapore:
South Africa: Johannesburg. Pretoria
Spain: Barcelona. Bilbao. Madrid. San Sebastian. Valencia
Taiwan: Taipei
Thailand: Bangkok
Uruguay: Montevideo
Venezuela: Maracaibo

ADMINISTRATION, MANUFACTURING
RESEARCH AND DEVELOPMENT

Massachusetts: Cambridge. Framingham. Westboro. Southboro
Maine: Westbrook
New Hampshire: Portsmouth
California: Anaheim. Sunnyvale
North Carolina: Research Triangle Park. Johnston County

Hong Kong: Kowloon. Tai Po
Thailand: Bangkok

r
I

