


Warning: For devices compliant with FCC Rules 
This equipment generates, uses, and can radiate radio frequency energy 
and if not installed and used in accordance with the instruction manual, 
may cause interference to radio communications. It has been tested and 
found to comply with the limits for Class A computing devices pursuant to 
Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable 
protection against such interference when operated in a commercial envi­
ronment. Operation of this equipment in a residential area is likely to cause 
interference, in which case the user, at his own expense, will be required 
to take whatever measures may be required to correct the interference. 



_. Data General 

ECLIPSE® S/l40 
Programmer's Reference. 



NOTICE 
Data General Corporation (DGC) has prepared this docu­
ment for use by DGC peESonnel, customers, and prospective 
customers. The information contained herein shall not be 
reprQduced in whole or in part without DGC's prior written 
approyal. 

DGC reserves the right to make changes in specifications 
and other information contained in this document without 
prior notice,· and the reader should in all cases consult 
DGC to determine whether. anY such changes have been 
made. 

THE. TERMS AND CONDITIONS GOVERNING THE 
SALE.OF DGC HARDWARE PRODUCTS AND THE 
LICENSING OF DGC SOFTWARE CONSIST SOLELY 
OF THOSE SET FORTH IN THE WRITTEN 
CONTRACTS BETWEEN DGCAND ITS CUSTOMERS. 
NO REPRESENTATION ·OR·OTHER AFFIRMATION 
OF FACT CONTAINED IN THtS DOCUMENT INCL UD­
ING BUT NOT LIMITED TO STATEMENTS REGARD­
ING CAPACITY, RESPONS~~TIME PERFORMANCE, 
SUITABILITY ~ORUSE ()R PERFORMANCE OF 
PRODUCTS . PESCRIBED . ,aEREIN SHALL BE 
DEEMEDTOBEiAWARRANTY BY DGC FOR ANY 
PURPOSE, OR diVE RISE TO ANY LIABILITY OF 

. DGCWHATSOEYER. .. 

IN NO EVENT SHALL DGC BE LIABLE FOR ANY 
INCIDENTAL,INDIRECT, SPECIAL OR CONSEQUEN­
TIAL DAMAGES WHATSOEVER (INCLUDING BUT 
NOT LIMITED TO LOST PROFITS) ARISING OUT OF 
OR RELATED TO THIS DOCUMENT OR THE INFOR­
MATION CONTAINED INIT, EVEN IFDGC HAS BEEN 
ADVISED, KNEW .OR SHOULD HAVE. KNOWN OF 
THE POSSIBILI"I:Y.OF SUCH DAMAGES. 

DASHE~, DATAPREP; ECLIPSE, ENTERPRISE, INFOS, 
microN OVA, NOVA, PROXI, SUPERNOVA, ECLIPSE MV/aOOO, 
TRENDVIEW, MANAp, and PRESENT are U.S. registered 
trademarks of Data. General· Corporation, and AZ-TEXT, 
DG/l, ECLIPSE MV16000, REV-UP, SWAT, XODIAC, GENAP, 
DEFINE, CEO, SLATE, inicroECLIPSE, BusiPEN, BusiGEN, and 
BusiTEXT are U.S. trademarks of Data General Corporation. 

Ordering No. 014-000642 
@Data General Corporation, 1979, 1980, 1981, 1982, 1986 
All Rights Reserved 
Printed in the United States of America 
Rev. 04, September 1986 



CONTENTS 

Introduction to the ECLIPSE S/140 

Main Storage. 
I/O Management 
Main Processor 
Packaging 
Software Support' 
ECLIPSE/NOVA Line Compatibility 

Standard Features 

Addressing Conventions 
Addressing Modes 
Auto-incrementing and Auto-decrementing 

Bit Manipulation 
Bit Instructions 

Byte Manipulation 
Byte Instructions 

Number Manipulation 
Fixed Point Arithmetic Instructions 
Decimal Arithmetic Instructions 

Logical Manipulation 
Logical Operations Instructions 

ALC Manipulation 
ALC Instructions 

The Stack 
Stack Control Words 
Stack Protection 
Initializing the Stack Control Words 
Stack Instructions 

Reserved Storage Locations 
Program Execution 
Program Flow Alteration 
Program Flow Interruption 
Program Flow Alteration Instructions 

Extended Operation Feature 
Extended Operation Instructions 

Input/Output 
Busy and Done Flags 
Programmed I/O 
Data Channel I/O 
I/O Interrupts 
I/O Instructions 



Basic I/O Devices 
Real Time Clock 
Asynchronous Line Controller 

P.ower Fail/Auto-restart 
Power Fail Instructions 

Error Checking and Correction 
ERCC Instructions 

Virtual Console 
Cells 
Cell Commands 
Function Commands 
Virtual Console Errors 

Memory Management and Protection Unit 
MMPU Functions 
MMPU Instructions 

Optional Features 

Floating Point Instructions 
Floating Point Arithmetic 

Character Manipulation Instructions 
Burst Multiplexor Channel 

BMC Address Modes 
BMC Map 

BMC Instructions 

Standard Machine Instructions 

Coding Aids 
Setting the Index Field 

I/O Instructions 

General I/O Instructions 
Central Processor 
Vectored 1/0 Instruction 
Burst Multiplexor Channel 
ERCC Error Correction 
Memory Management and Protection Unit 
Real Time Clock 
Primary Asynchronous Line Input 
Primary Asynchronous Line Output 



The Addressing Process 

Standard I/O Device Codes 

The ASCII Character Codes 





Chapter 1 
Introduction to the ECLIPSE S/140 

The Data General ECLIPSE S/140 is a scientific computer 
combining advanced architecture and high reliability. 
Four main components make· up the ECLIPSE S/140, 
providing processing power and throughput capability. The 
components are: 

• Main Storage system 

• II 0 Management system 

• Main Processor 

• Packaging· 

In addition, a generous selection of software supports the 
S/140 system, and the S/140 is compatible with DGC's 
NOVA computers. 

Main Storage 
Maximum memory capacity ·of the ECLIPSE S/140 is 2 
Mbytes (up to eight boards) in the form of semiconductor 
RAM. Each memory board contains four modules that 
support cycle times as low as 100 nanoseconds for a read 
operation and 200 nanoseconds for a write operation. 

The ECLIPSE SI140 Memory Management and Protection 
Unit (MMPU) provides and protects individual user space 
within memory on a 2 Kbyte page basis. Protection modes 
include address validity, indirect, write, and lIO 
protections. 

The Error Checking and Correction (ERCC) facility detects 
and corrects all single bit .errors that occur on a memory 
board. The ERCC detects and reports errors by maintaining 
address and fault·codes and requesting processor interrupts 
when errors occur. Memory cycle times are left unchanged 
if no error is detected. If an error is found, cycle time is 
increased by 200 nanoseconds. 

1- 3 

1/0 Management 
The S/140 is a powerful and highly reliable scientific 
computer. The advanced architectural features of this 
system provide configurational flexibility to match various 
computing needs. ECLIPSES/140 supports an optional 
Burst Multiplexor Channel for high-speed data transfers. 

The standard NOVA/ECLIPSE data channel provides I/O 
communication for both medium-speed and high-speed 
devices such as cartridge discs, magnetic tape, data channel 
line printers, and synchronous communications. Maximum 
data channel transfer rates are 2.0 Mbytes per second fast 
input, 1.4 Mbytes per second fast output. 

Programmed I/O, with priority interrupt handling and 
vectoring capability for automatic dispatch to the correct 
interrupt handler, provides I/O comm'unication for 
low-speed devices such as CRT terminals, paper tape 
punches, and card readers. 

Main Processor 
The ECLIPSE S/ 140 main processor executes the standard 
ECLIPSE instruction set. Integer multiply/divide 
functions are implemented in firmware. 

The main processor also executes the optional ECLIPSE 
floating point instruction set, using either Floating Point 
microcode, or the high-speed hardware Floating Point 
Processor. 

The Character Instruction Set (CIS) simplifies the handling 
of strings of characters or bytes. It is especially useful in 
communications applications where long strings of bytes 
must be moved, compared, or checked against a reference. 

On power up, the processor executes a self-test; if this test 
is successfully completed, the.CPU enters virtual console 
mode. The virtual console replaces all but three switches 
on the front panel of the ECLIPSE S1140. Only the Power 
On/Off, Lock, and Reset/Program Load function switches 
remain. 

1/0 Management 



Packaging 
The ECLIPSE SI140 is packaged in an easily accessed 
chassis that holds up to sixteen 15" x 15" printed circuit 
boards. The power supply consists of a 100-amp VNR unit 
and a slide-in power supply board. Battery back-up is 
standard. 

Software Support 
Two proven operating systems and many advanced utilities 
and high level languages are available for the ECLIPSE 
S1140. 

The Real-Time Disc Operating System (RDOS) supports 
real-time and batch operations, along with independent 
foreground/background processing. RDOS can manage up 
to 2 Mbytes of main memory in the ECLIPSE S/140. 

The Advanced Operating System (AOS) uses adaptive 
resource management for efficient operat~on in multiuser 
environments. It can manage up to 2 Mbytes of main 
memory in the ECLIPSE S/140 and supports concurrent 
batch, timesharing, and real-time operations. 

Many higher-level languages are also available, including 
FORTRAN IV, FORTRAN 5, Extended BASIC, PLI1, 
DG/L (an ALGOL-derivative, structured programming 
language), and Macroassembler. 

1- 4 

ECLIPSE/NOVA Line Compatibility 
The ECLIPSE S/140 is compatible with Data General's 
NOV A line computers. You may execute any NOV A-based 
program on an ECLIPSE series computer, if several criteria 
are met. First, the program must not be dependent on 
instruction execution times or I/O transfer times, because 
ECLIPSE times may be faster. Second, the ECLIPSE 
system must contain at least as much memory and an 
equal number of I/O devices as your NOV A system. Third, 
it is important that your NOVA-based program does not 
use any of the following: 

• ACL instructions specifying both the no load and the 
never skip options. 

• The NOVA Memory Management and Protection Unit. 

• The data channel increment or add-to-memory features. 

• The instructions PUSH, POPA, SAY, MTSP, MTFP, MFSP, 
MFFP, LDB, STB, RET. 

NOV A and ECLIPSE multiply / divide operations function 
the same way. However, each uses a different operation 
code. 

NOVA and ECLIPSE floating point instructions are 
similar, but do not function the same way. Remember to 
check the instructions formats. Floating point data formats 
are the same for both machines. 



Chapter 2 
Standard Features 

In this chapter we discuss the standard features of the 
ECLIPSE S1140, and the assembly language instructions 
controlling these facilities. In the following chapter we 
describe optional facilities and their instructions. Chapters 
4 and 5 contain complete instruction descriptions. for 
standard and I/O instructions, respectively. 

After explaining the standard addressing conventions of 
the ECLIPSE S/140, we discuss the functions of 

Bit manipulation 
Byte manipulation 
Number manipulation 
Logical manipulation 
ALC manipulation 
The stack 
Reserved storage locations 
Program execution 
Extended operations 
I/O operation, interrupts, and vectoring 
I/O devices 
Power fail I auto-restart 
Error checking and correction 
The virtual console and 
Memory management and protection. 

Addressing Conventions 

In this section we describe the various ways the ECLIPSE 
SI 140 addresses locations in memory. We also define terms 
and concepts useful for understanding the addressing 
process in the ECLIPSE S1140. 

Each addressed location in main memory consists of a 
16-bit word. The first word in memory has the address 0, 
the next has the address 1, the next 2, and so forth. 

The maximum amount of logical address space available 
to the programmer is 32,768 words. The physical address 
space, the amount of memory in the system, may be much 
larger. In the logical address space, the next sequential 
memory location after 777778 is location 0. 

The MMPU controls the relationship between a logical 
address space and the physical address space. When the 
MMPU is enabled, it intercepts each memory reference 

2- 5 

and translates the 15-bit logical address into a 20-bit 
physical address. Unless the MMPU itself is being 
programmed, the translation process is invisible to the 
programmer. 

There are three modes of addressing: Absolute, P.C. 
Relative, and Accumulator Relative. You may use direct 
or indirect addressing in any of these modes. The following 
definitions are useful in understanding ECLIPSE Sf 140 
addressing conventions. 

Direct and Indirect Addressing - Direct addressing uses 
the intermediate address (the first address found) without 
modification. The intermediate address thus becomes the 
effective address. 

Indirect addressing uses the intermediate address as a 
pointer to the next address. If bit ° of that next address is 1, 
the address is used as a pointer to another address. A series 
of indirect addresses is called an indirection chain. The 
chain continues until an address is found with bit ° equal 
to 0. Indirect protection is available to limit indirection 
levels to fifteen. 

Indirect Bit - This is a bit in the instruction or address 
that is checked after each address calculation. If the 
indirect bit is 0, the effective address has been located. If it 
is 1, the word contains another indirect address. 

Index Bits - These are bits in the instruction that control 
which of the three addressing modes the instruction uses. 
The correlation between index bits and addressing mode is 
shown in Table 1.1. 

Index Bits Mode 

00 Absolute 

01 PC relative 

10 AC2 relative 

11 AC3 relative 

Table 1.1 Address mode selection 

Displacement Bits - These are bits in the instruction that 
specify an address in memory. This address, added to an 
address specified by the mode, results in the effective 
address. 

Addressing Conventions 



When the index bits are 00, the displacement is considered 
an unsigned integer. When the index bits are 01, 10, or 11, 
the displacement is considered a signed integer. Table 2.2 
shows the range of the displacement field under various 
conditions. 

Index Bits Range of Displacement Field 

Short Class Extended Class 

00 o to 3778 o to 777778 

or or 

o to 255 10 o to 32,767 10 

01 -2008to 1778 -400008 to 377778 

10 or or 

11 -128 to +127 10 -16,384 to 
+ 16,383 10 

Table 2.2 Ranges of displacement 

Effective Address Calculation - This process converts the 
index, indirect, and displacement bits into an address to be 
used by the instruction. 

Intermediate Address - This address is obtained by the 
effective address calculation before the indirect bit is 
checked. 

Page Zero - The locations 0-3778 in memory comprise 
page zero. 

Addressing Modes 
As mentioned earlier, three modes of addressing can be 
done in the ECLIPSE Sf 140. They are: 

• Absolute addressing 

• P.C. (program counter) relative addressing 

• Accumulator relative addressing 

Figure 2.1 illustrates the three addressing modes. 

Addressing Conventions 

2- 6 

SHORT CLASS 

ABSOLUTE { 
ADDRESSING 

0 

3778 

PC-RELATIVE { PC 
ADDRESSING PC 

PC 

-200. 

-
+1778 

{ 

AC2 

AC-RELA TIVE 
ADDRESSING AC2 

AC2 

-200. 

-
+177. 

{ 

AC 

AC-RELATIVE. AC3 
ADDRESSING 

AC3 

3-200 

-
+177. 

DG.-04458 

Figure 2.1 Addressing modes 

Data General Corporation 

MAIN MEMORY 

PAGE ZERO 

EXTENDED CLASS 

,~ 

ABSOLUTE, 
PC-RELA nVE, 
AC-RELATIVE 
ADDRESSING 

You can use direct or indirect addressing with each of 
these modes. With the right combination, any address in 
your logical address space is accessible. 

Absolute Addressing Mode - In this mode, the intermediate 
address is set equal to the unmodified displacement. As a 
result, short class instructions specify locations in the range 
0-3778 in the absolute mode, because short cl.ass instructions 
are restricted to 8 bits in the displacement. Extended class 
instructions can reference any logical memory address 
using the absolute addressing mode. 

Page zero thus is very important because any 
memory-reference instruction can address this area. You 
can use it as a common storage area for items that you 
frequently reference throughout a program. Note, 
however, that DGC reserves some of these locations for 
special purposes. 

P.C. Relative Addressing Mode - The intermediate address 
is found by adding the displacement to the contents of the 
program counter. 

Accumulator Relative Addressing Mode The 
intermediate address is found by adding the displacement 
to the contents of bits 1-15 of the accumulator indicated by 
the index bits (you may use either AC2 or AC3). 



Standard Features 

Auto-incrementing 
and Auto-decrementing 
During indirect addressing, certain reserved locations 
within the area of 0-3778 (page zero) automatically 
increment or decrement their contents. The process is also 
called auto-indexing. 

Auto-incrementing takes place if the intermediate address 
of a short class instruction falls into the range 20-278, and 
the indirect bit is 1. The contents of the addressed location 
are incremented by 1, and the addressing chain continues, 
using .the incremented value of the addressed location. 

Auto-decrementing takes place if the intermediate address 
of a short class instruction falls into the range 30-378, and 
the indirect bit is 1. The contents of the addressed location 
are decremented by 1, and the addressing chain continues, 
using the decremented value of the addressed location. 

NOTE: The state of bit 0 before the increment or 
decrement determines whether the indirection chain 
is continued. Assume, for example, that an 
auto-increment location contains 1777778 (all bits = 
1, including bit 0), and the location is referenced as 
part of an indirection chain. After incrementing, the 
location contains all zeros. Because bit 0 was 1 before 
the increment, 000000 is treated as an intermediate 
address and the indirection chain continues. 

You will find a flow diagram of the addressing process in 
Appendix A. 

Bit Manipulation 

We use a 32-bit (2-word) bit pointer to address individual 
bits in memory. Bit 0 of the.bit pointer is the indirect bit. If 
this bit is 1, the indirection chain (using bits 1-15 for the 
address each time) will be followed until a word is found 
with bit 0 set to O. Bits 1-15 of this word become bits 1-15 of 
the bit pointer, and bits 0-150f the next word become bits 
16-31 of the bit pointer. . 

To. determine the location of a desired bit, the address 
formed by the unsigned number contained in bits 1-15 of 
the bit pointer (the base address) is added to the number 
formed by the 12-bit unsigned number contained in bits 
16-27 (the offset). The resulting address points to the word 
containing the desired bit. Bits 28-31 of the bit pointer 
contain a 4-bit unsigned number, which is the number of 
the desired bit in the addressed word. 

Figure 2.2 diagrams the bit addressing process. 

2- 7 

DG-0093J 

Figure 2.2 Bit addressing process 

Bit Instructions 
ECLIPSE S/140 instructions that manipulate bits do the 
following: 

• Locate a bit in memory and set it to 0 or 1 

• Test a bit, skipping the next word if the specified 
condition is true 

• Add a number to the contents of one accumulator, based 
on the number of ones or high-order zeros found in the 
other accumulator 

Some bit instructions use a bit pointer to locate a bit in 
memory. Others only affect bits within specified 
accumulators. In addition, a character instruction (CMT), 
uses a bit pointer, bit addressing and a bit table. Table 2.3 
lists the bit instructions. 

Bit Manipulation 



Mnem Instructions Action 

BTO Set Bit To One Sets the bit addressed by the bit pointer 
to 1. 

BTZ Set Bit To Zero Sets the bit addressed by the bit pointer 
to O. 

COB Count Bits Counts the number of ones in one 
accumulator and adds that number to the 
second accumulator. 

LOB Locate Lead Bit Counts the number of high-order zeros in 
one accumulator and adds that number to 
the second accumulator. 

LRB Locate And Reset Performs a Locate Lead Bit instruction 
Lead Bit and sets the lead bit to O. 

SNB Skip On Non-Zero Skips the next sequential word if the bit 
Bit addressed by the bit pointer is 1. 

SZB Skip On Zero Bit Skips the next sequential word if the bit 
addressed by the bit pointer is O. 

SZBO Skip On Zero Bit Sets the bit addressed by the bit pointer 
And Set To One to 1 and skips the next sequential word if 

the bit was originally O. 

Table 2.3 Bit instructions 

Byte Manipulation 

A byte in memory is selected by a sixteen bit byte pointer. 
Bits 0-14 of the byte pointer contain the memory address 
of a two byte word. Bit 15, the byte indicator, indicates 
which byte of the addressed location will be used. If bit 15 
is 0, the high-order byte (bits 0-7) will be used. If bit 15 is 1, 
the low-order byte (bits 8-15) will be used. Figure 2.3 
shows the format of a byte pointer. 

Byte Instructions 

The byte instructions are shown in Table 2.4. Note that 
when an instruction moves a byte to an accumulator it also 
clears the high-order half of the destination accumulator. 
When an instruction moves a byte from an accumulator to 
memory, it leaves unchanged the other byte contained in 
that word of memory. 

The two extended instructions, (ELDB and E5TB,) reference 
bytes with a byte pointer contained in the instruction 
coding. The two short class instructions (LOB and 5TB) use 
an accumulator to hold the byte pointer. The character 
instructions also use byte addressing. 

Number Manipulation 

2- 8 

Data General Corporation 

BITS 0-14 
ADDRESS WORD L-_"';'" 

DG-00930 

Figure 2.3 Byte pointer format 

Mnem Instructions Action 

LOB Load Byte Places a byte of information into an 
ELDB accumulator. 

STB Store Byte Stores the low order byte of an 
ESTB accumulator into a byte of memory. 

Table 2.4 Byte instructions 

Number Manipulation 

We represent a signed integer by a two's-complement 
number in one or more 16-bit words. The sign of the 
number is positive if bit 0 of the first word is 0 and negative 
if that bit is 1. 

We represent an unsigned integer by using all the bits of 
one or more 16-bit words to represent the magnitude. 
Figure 2.4 illustrates integer format. 



Single .precision integers are one word (16 bits) long, and 
multiple precision integers are two or more words long. As 
an example, Table 2.5 shows the range of single and double 
precision numbers represented by this format: 

In addition, there is a value called carry. A change in the 
value of carry indicates an overflow during fixed point 
arithmetic operations. 

Fixed Point Arithmetic Instructions 

There are twenty-six ECLIPSE S/140 instructions which 
perform fixed point arithmetic. These instructions: 

• Perform binary arithmetic on operands in accumulators. 

• Load data from memory to an accumulator. 

• Store data from an accumulator into memory. 

All of the fixed point arithmetic instructions are shown in 
Table 2.6. Some of the instructions appear in both a short 
form and a long or extended form. (The prefix "E" indicates 
an extended instruction form.) 

Short form instructions (sixteen bits) directly specify either 
a memory address from 0 to 3778, or a small area in memory 
surrounding the present value of the program counter or 
an accumulator. Long form instructions, thirty-two bits 
long, directly specify any address from 0 to 777778, 

ADI and ADDI are short and long forms of the same 
instruction. The short form adds a 2-bit immediate in the 
range of 1-4, while the long form adds a 16-bit immediate 
in the range of -32,768 to +32,767. 

SIGNED INTEGERS 

SINGLE PRECISION: 

SIGN.-tl I 
BIT 0. • 1~ 

2'5 COMPLEMENT 
MAGNITUDE 

MUL nPLE PRECISION: ~ ____ ..., I 
SIGN~I --, I 11 ;;:1 ========~I BIT 0 \ 15 0 15 0 15 

DG·04848 

2'5 COMPLEMENT MAGNITUDE 

UNSIGNED INTEGERS 

SIIIIGLE PRECISION: 

~. I 
15 . 

UNSIGNED 
MAGNITUDE 

MUL nPLE PRECISION: ~ ____ ..., 
I I �l'IL-_-_-_-__ -_-_-_-~'1 
o 15 15 ~ 0 15 
\ , 

UNSIGNED MAGNITUDE 

Figure 2.4 Integer format 

Single Double 
Precision Precision 

Unsigned o to 65,535 o to 4,294,967,295 

Signed -32,768 to -2,147.483,648 to 
+32,767 +2,147.483,647 

Table 2.5 Integer ranges 

2- 9 

Number Manipulation 



Mnem Instructions Action 

ADC Add Complement Adds the one's complemenf of the 
contents of one accumulator to the 
contents of another accumulator. 

ADD Add Adds contents of two accumulators. 

ADDI Extended Add Adds a signed integer in the range c32. 768 
Immediate to +32.767 to the contents of an 

accumulator. 

ADI Add Immediate Adds an unsigned integer in the range 1-4 
to the contents of an accumulator. 

DIV Unsigned Divide Divides the unsigned 32-bit integer in two 
accumulators by the unsigned contents of 
a third accumulator. 

DIVS Signed Dil/ide Divides the signed 32-bit integer in two 
accumulators by the signed contents of a 
third accumulator. 

DIVX Sign Extend And Extends the sign 9f one accumulator into a 
Divide second accumulator and performs a e, 

Signed Divide on the result. 

DSZ Decrement And Decrements the addressed word. then 
EDSZ Skip If Zero skips if the decremented value is zero: 

HLV Halve Divides the unsign:e~ contents of an 
accumulator by 2. e 

INC Increment Increments the contents of an 
accumulator. 

ISZ Increment And increments the addressed word. then skips 
EISZ Skip If Zero if the incremented value is zero. 

LDA Load Loads data from memory to an 
ELDA Accumulator accumulator. 

LEF Load Effective Places an effective address in an 
ELEF Address accumulator. 

MOV Move Moves the contents of an 'accumulator 
through the Arithmetic Logic Unit (ALU). 

MUL Unsigned Multiplies the unsigned contents of two 
Multiply accumulators, and adds the results to the 

unsigned contents of a third accumulator. 

MULS Signed Multiply Multiplies the signed contents of two 
accumulators, and adds the results eto the 
signed contents of a third accumulator. 

NEG Negate Forms the two's complement of the 
contents of an accum ulator. 

SBI Subtract Subtracts an unsigned integer in the range 
Immediate 1-4 from the contents of an accumulator. 

STA. Store Stores datae in memory from an 
ESTA Accumulator accumulator. 

SUB Subtract Subtracts contents of one accumulator 
from another. 

XCH Exchange Exchanges the contents of two 
Accumulators accumulators. 

Table 2.6 Fixed point arithmetic instructions 

Logical Manipulation 

2- 10 

Data General Corporation 

Decimal Arithmetic Instructions 
Unsigned decimal numbers are handled one decimal digit 
at a time. Each decimal digit is represented by bits 12-15 of 
a 16-bit word. Only the values 0-916 are used; carry is used 
for a decimal carry or borrow. 

Two instructions in the ECLIPSE Sf 140 operate on decimal 
data. They are shown below, in Table 2.7. 

Mnem Insti'uctiones Action 

DAD Decimal Add Adds together the decimal digits found in 
bits 12-15 oftwo accumulators. 

DSB Decimal Subtract Subtracts the decimal digit in bits 12-15 
of one accumulator from the decimal digit 
in bits 12-15 of another accumulator. 

Table 2.7 Decimal arithmetic instructions 

Logical Manipulation 

We represent logical entities as individual bits in a 16-bit 
word. Each bit is treated as a separate binary value. When 
an instruction operates on two words, only corresponding 
bits of each word interact. The following are examples of 
logical operations: 

Forming the logical AND of two words. 

Forming the logical complement of a word. 

• Shifting the contents of a word left or right. 

Logical Operations Instructions 

All of the logical operations instructions are shown in 
Table 2.8. 

The Load Effective Address and Extended Load Effective 
Address instructions are short and long forms of the same 
instruction. The sixteen bit short form directly specifies 
either a memory address from 0 to 255 or a small area in 
memory surrounding the present value of the program 
counter or an accumulator. The thirty-two bit long form 
directly specifies any address from 0 to 777778, 



Standard Features 

Mnem Instructions Action 

ANC AND With Forms the logical AND of the contents of 
Complemented one accumulator and the logical 
Source complement of the contents of another 

accumulator. 

AND AND Forms the logical AND of the contents of 
two accumulators. 

ANDI AND Immediate Forms the logical AND of a 16-bit number 
contained in the instruction and the 
contents of an accumulator; 

COM Complement Forms the logical complement of the 
contents of an accumulator. 

DHXL Double Hex Shift Shifts the 32-bitcontents of two 
Left accumulators left 1 to 4 hex digits 

depending on the value of Ii 2-bit number 
contained in the instruction. 

DHXR Double Hex Shift Shifts the 32-bit contents of two 
Right accumulators right 1 to 4 hex digits 

depending on the value of a 2-bit number 
contained in the instruction. 

DLSH Double Logical Shifts the 32-bit contents of two 
Shift accumulators left or right depending. on 

the contents of a third accumulator. 

HXL Hex Shift Left Shifts the contents of an accumulator left 
1 to 4 hex digits depending on the value 
of a 2-bit number contained in the 
instruction. 

HXR Hex. Shift Right Shifts the contents of an accumulator right 
t to 4 hex digits depending on the value 
of a 2-bit number contained in the 
instruction. 

lOR Inclusive OR Forms the logical inclusive OR of the 
contents of two accumulators. 

IORI Inclusive OR Forms the logical inclusive OR of a 16-bit 
Immediate number contained in the instruction and 

the contents of an accumulator. 

LEF Load Effective Places an effective address in an 
ELEF Address accumulator. 

LSH Logical Shift Shifts the contents of an accumulator left 
or right depending on the contents of 
another accumulator. 

XOR Exclusive OR Forms the logical exclusive OR of the 
contents of two accumulators. 

XORI Exclusive OR Forms the logical exclusive OR of a 16-bit 
Immediate number contained in the instruction and 

the contents of an accumulator. 

Table 2.8 Logical operations instructions 

ALe Manipulation 

Each of the eight Arithmetic/Logic Class (ALC) 
instructions performs a specific function upon the contents 
of one or two accumulators and carry. The eight functions 
are Add, Subtract, Negate, Add Complement,Move, AND, 
Complement, and Increment. The instructions are 
identified by the mnemonics of the eight functions, which 
are ADD, SUB, NEG, ADC, MOV, AND, COM, and INC. 

In addition to the specific functions performed by an 
individual instruction, there is a group of general functions 
all ALC instructions can perform. These general functions 

2- 11 

include shift operations, which rotate the data left or right, 
or swap the bytes. Also included are various tests that can 
be performed on the data. With each test the instructions 
can check the data for some condition and skip or not skip 
the next sequential word, depending on the outcome of the 
test. Finally, the instructions can load or not load the 
results of the specific and general functions into the 
destination accumulator and carry. The diagram below 
shows the format of the ALC instructions. 

1'1 ACS IACD I· OP 
o , i 2 3 i 4 5 i 

ALe Instructions 

The ALC instructions are listed in Table 2.9. These 
instructions use an Arithmetic Logic Unit (ALU) to process 
data. The logical organization of the AL U is illustrated in 
Figure 2.5. 

Mnem Instructions Action 

ADC Add Complement Adds an unsigned integer to the logical 
complement of another unsigned number. 

ADD Add Adds contents of one accumulator to the 
contents of another. 

AND AND Forms the logical AND of the contents of 
two accumulators. 

COM Complement Forms the logical complement of the 
contents of an accumulator. 

INC Increment Increments the contents of an 
accumulator. 

MOV Move Moves the contents of an accumulator 
through the ALU. 

NEG Negate Forms the two's complement of the 
contents of an accumulator. 

SUB Subtract Subtracts contents of one accumulator 
from the contents of another. 

Table 2.9 Arithmetic/logic class instructions 

ALe Manipulation 



ACD 
16 BITS 

LOAD/NO LOAD 

DG-00927 

Figure 2.5 Logical organization of the ALU 

When an ALe instruction begins execution, it loads the 
contents of carry and the contents of the accumulator(s) to 
be processed into the ALU. There are five distinct stages 
of ALU operation: carry, function, shift operations, skip 
tests, and load/no-Ioad. We will discuss these stages 
separately. 

Carry 

The AL U begins its manipulation of the data by 
determining a new value for carry. This new value is 
based upon three things: the old value of carry, bits 10-11 
of the ALe instruction, and the ALe instruction being 
executed. The AL U first determines the effect of the 
instruction bits 10~11 on the old value of carry. Table 2.10 
shows each of the mnemonics that can be appended to the 
instruction mnemonic, the value of bits 10-11 for each 
choice, and the action each one takes. 

Symbols Value Operation 

[e] omitted 00 Leave carry 
unchanged. 

[e]=Z 01 Initialize carry to O. 

[e]=O 10 Initialize carry to 1. 

[e]=C 11 Complement carry. 

Table 2.10 Selecting the value of carry 

Function 

The AL U next evaluates the effect of the specific f4Pction 
(bits 5-7) upon the data. For the instructions Move, AND, 
and Complement the AL U performs the function on the 
data word(s) and saves the result. The value of carry is as 
it was calculated above. For the instructions Add, Add 
Complement, Subtract, Negate, and Increment the result 
of the function's action upon the data word(s) may be 
larger than 216 - 1. An overflow results. In this situation, 
the ALU saves the low-order 16 bits of the function result, 
but it complements the value of carry calculated above. 

ALe Manipulation 

2- 12 

Data General Corporation 

NOTE: At this stage of operation, the ALU does not 
load either the saved value of the function result into 
the destination accumulator, or the calculated value 
of carry into carry. 

Shift Operations 

Next the ALU performs any specified shift operation on 
the 17 bits output from the function generator (16 bits of 
data plus the calculated value of the carry bit). Depending 
on which shift operation is specified in the instruction, the 
function generator output can be rotated left or right one 
bit, or have its bytes swapped. Table 2.11 shows the 
different shift operations that can be performed, the value 
of bits 8-9 for each choice, and the action each choice 
takes. Figure 2.6 shows .how each shift operation works. 

Symbols Value Operation 

[sh] omitted 00 Do not shift the result of the 
ALC operation. 

[shJ=L 01 Rotate left the 17-bit 
combination of carry bit and ALC 
operation result. 

[sh]=R 10 Rotate right the 17 -bit 
combination of carry bit and ALC 
operation result. 

[sh] =5 11 Swap the two 8-bit halves of 
the ALC operation result without 
affecting carry bit. 

Table 2.11 Selecting the shift operation 

Coded 
Character 

L 

Shifter Operation 

Left rotate one place. Bit 0 is rotated into the carry 
position. the carry ~it into bit 15. 

~~ ____ 0_-1_5 ______ ~~ 
R Right rot;lte one place. Bit 15 is rotated into the 

carry position, the carry bit into bit O. 

S 

L~~I _____ 0-1_5 ____ ~~ 
Swap the halves of the 16-bit result. The carry is 
not affected. 

Figure 2.6 Effects of shift operations 



Standard Features 

Skip Tests 

The ALU can test the result of the shift operation for one 
of a variety of conditions, and skip or not skip the next 
instruction depending upon the result of the test. Table 
2.12 shows the tests that can be performed, the value of 
bits 13-15 for each choice, and the action each choice takes. 

Symbol Value Operation 

[skip] omitted 000 No skip. 

[skip]=SKP 001 Skip unconditionally. 

[skip]=SZC 010 Skip if carry bit is zero. 

[skip]=SNC all Skip if carry bit is nonzero. 

[skip]=SZR 100 Skip if ALC result is zero. 

[skip]=SNR 101 Skip if ALC result is nonzero. 

[skip]=SEZ 110 Skip if either ALC result or carry 
bit is zero. 

[skip]=SBN 111 Skip if both ALC result and carry 
bit are nonzero. 

Table 2.12 Selecting skip tests 

Load/No-Load 

If the no-load bit (bit 12) is 0, the ALU loads the result of 
the shift operation into the destination accumulator, and 
loads the new value of carry into carry. If the no-load bit 
is 1, then the ALU does not load the result of the shift 
operation into the destination accumulator, and does not 
load the new value of carry into carry, but all other 
operations, such as skip tests, take place. This no-load 
option is particularly convenient to use when you want to 
test for some condition without destroying the contents of 
the destination accumulator. Table 2.13 shows how to code 
the load/no-load operation. 

Symbol Value Operation 

# omitted a Load the result of the shift operation 
into ACO. 

# 1 Do not load the .ALC operation result 
into ACO; restore carry bit to value it 
had before shifting. 

Table 2.13 Codes for the load/no load option 

NOTE: These instructions must not have both the 
No-Load and the Never-Skip options specified at the 
same time. This bit combination is used to specify 
other non-ALC instructions. 

The Stack 

The stack is a series of consecutive locations in memory. In 
their simplest form, stack instructions add items in 
sequential order to the top of the stack and retrieve them 
in the reverse order. Several stack areas may be defined 
by the program, but only one stack may be in use at any 
time. The ECLIPSE S/140 uses the push-down stack 

2- 13 

concept to provide easily accessible temporary storage of 
data, variables, return addresses, and the like. 

The simplest use of the stack is for temporary storage of 
the contents of up to four accumulators, which can be 
stored or retrieved with one instruction. More commonly, 
the stack is used to store a return block which greatly 
simplifies the process of entering and returning from 
subroutines. 

The return block can take several forms, but it usually 
consists of five words: the contents of the four accumulators 
in the first four words, and the program counter and carry 
in the last word pushed. 

Three parameters define a stack: (1) the lower limit, or 
starting location; (2) the upper limit, or stack limit; and (3) 
the present top of the stack, or stack pointer. The lower 
and upper limits define the area in memory which is 
reserved for the stack, and the stack pointer defines the 
location of the last word placed onto the stack (or the next 
word available from the stack). A diagram of a stack area 
is shown in Figure 2.7. 

MAIN MEMORY 

LOWER LIMIT 1--------1 

tl-------1 STACK 
POINTER j jlNCREASING 

1------1 ADDRESSES 

UPPER LIMIT 
"STACK LIMIT' 

00·04426 

Figure 2.7 The stack area 

To use the stack, define the upper and lower limits, then 
use the stack instructions to put items on (push onto) or 
remove items from (pop off) the top of the stack. It is not 
necessary to keep track of the location of the top of the 
stack. This is done automatically by one of the stack control 
words(stack pointer). 

Stack Control Words 

The stack control words are: 

• Stack pointer 

• Frame pointer 

• Stack limit 
• Stack fault address 

The Stack 



The locations and uses of the stack control words ate 
discussed in detail below. 

Stack Pointer 

The stack pointer contains the address of the current top 
of the stack. As you do push or pop operations, the value of 
the stack pointer chiinges so that-it always points to the top 
word of the stack. A push operation increments the stack 
pointer contents by one, then stores the word you want to 
push in the new location specified by the stack pointer~ A 
pop operation takes the contents of the word a:ddressed by 
the stack pointer and loads them into a register, then 
decrements the stack pointer value by 1. 

When you set up the stack, you usually set the va:lue of the 
stack pointer to be one less tha:n the address of the first 
stack word. 

Location 408 contains the current value of the stack pointer. 

Frame Pointer 

Unlike the stack pointer, the frame pointer does not change 
its value when push and pop operations occur. If you set 
the frame pointer to contain the original value of the stack 
pointer, you have a useful reference to the first stack 
location. 

The Save and Return instructions use the frame pointer to 
save the value of the stack pointer when entering or exiting 
subroutines. Since the frame pointer remains unchanged, 
it allows you to call a subroutine, perform some operation, 
then return to the calling program without destroying the 
value of the stack pointer. This means you can restore the 
otiginal state of the calling program when you return 
from the subroutine call. 

Location 418 contains the value of the frame pointer. 

Stack Limit 

The stack limit contains the upper limit of the stack area. 
Each push operation compares the stack pointer with the 
stack limit to check if there is space enough to allow the 
push. If the stack pointer is greater than the stack limit, 
then you have exceeded the size of the stack (overflow 
condition). For more information, see the next section on 
"Stack Protection." . 

Location 428 contains the value of the stack limit. 

Stack Fault Address 

If you cause an overflow or underflow, control transfers to . 
the stack fault routine. For more information, see the next 
section on "Stack Protection." 

Location 438 contains the (possibly indirect) ad,dress of the 
stack fault routine. 

Data General Corporation 

Stack Protection 

You can enable protection for two stack error conditions: 
overflow and underflow. 

Stack overflow occurs when a program pushes data into the 
area beyond that allocated for the stack, Le., beyond the 
stack limit. If this occurs, data may be pushed into areas 
which are reserved for other purposes, possibly 
overwriting other data or instructions. 

Overflow protection is provided by the stack limit. If a 
stack instruction pushes data onto the stack beyond the 
stack limit, a return block is pushed onto the stack, and 
control is transferred to the stack fault handler. To disable 
overflow protection, the stack limit should be set to 1777778. 

To be meaningful, the stack limit must be 10 to 23 addresses 
lower than the last word you reserve for the stack, because 
stack overflow is detected only at the end of a push 
operation (except in the case of the Save and the Modify 
Stack Pointer instructions - see details in Chapter 4). Thus, 
it is possible to push a 5- to 18-word return block starting 
at the stack limit. Stack overflow will not be sensed until 
the last word of the return block is pushed. After the last 
word is pushed, stack overflow will be detected, and 

. another 5-word return block will be pushed by the stack 
overflow· mechanism before control is transferred to the 
stack fault routine. Depending on the size of the initial 
return block (from the normal 5 words up to the 18 words 
used by the floating point instruction set), the potential 
overflow can be 10 to 23 words long. 

Stack underflow occurs when a program pops data from the 
area below that allocated for the stack (Le., pops more 
words off than were pushed on). If this occurs, the program 
will be operating' with incorrect and unpredictable 
information. Furthermore, it is possible that the program 
will push data into the underflow area, overwriting data 
or instructions. 

For underflow protection to be enabled, the area allocated 
to the stack must begin at location 4018 and the stack 
pointer must be initialized to 4008. If the stack pointer is 
less than 4008 after a pop operation, an underflow condition 
exists and a stack fault occlirs. 

Underflow protection can be disabled in two ways: 

• Start the stack at a location greater than 4018. A stack 
fault will not occur then unless the program underflows 
the stack and then continues to pop words off the stack 
until the stack pointer is less than 4008. Note that this 
does not completely disable underflow protection - it is 
always possible to pop enough words off the stack to 
underflow it. 

• Set bit 0 of both the stack pointer and the stack limit to 
1. If this is done, all or a portion of the stack may reside 
in . page zero (locations 0-3778), or the stack may 

2- 14 

The Stack 



Standard Features 

underflow into page zero, without interference from 
the stack underflow mechanism. 

Stack Overflow Protection 

The Save and the Modify Stack Pointer instructions check 
for overflow before executing. For every other instruction 
that pushes data onto the stack, a check is made for 
overflow after the execution of the instruction. In both 
cases, the stack pointer and stack limit are treated as 
unsigned 16-bit integers and compared. If overflow has 
occurred, the processor: 

• Sets bit 0 of the stack pointer to O. 

• Sets bit 0 of the stack limit to l. 

• Pushes a return block onto the stack. 

• Executes a jump indirect to the stack fault address. 

Bit 0 of the stack pointer and stack limit are set as indicated 
so that. the stack limit will (temporarily) be larger than the 
stack pointer. In this way, the return block pushed by the 
overflow mechanism itself will not be interpreted as yet 
another overflow fault, causing a loop condition. The 
program counter in the return block points to the 
instruction immediately following the stack instruction 
that caused the fault. 

Stack Underflow Protection 

After every operation that pops data off the stack, a check 
is made for underflow. If the stack pointer is less than 
400s, and bit 0 of the stack limit is 0, a stack underflow 
condition exists. In that case, the processor: 

• Sets the stack pointer equal to the stack limit. 

• Sets bit 0 of the stack pointer to O. 

• Sets bit 0 of the stack limit to l. 

• Pushes a return block onto the stack. 

• Executes a jump indirect to the stack fault address. 

Bit 0 of the stack pointer and stack limit are set as indicated 
so that the stack limit will (temporarily) be larger than the 
stack pointer. In this way, the return block being pushed 
onto the stack by the underflow mechanism (starting at 
the stack limit) will not cause an overflow fault. The 
program counter in the return block points to the 
instruction immediately following the stack instruction 
that caused the fault. 

Stack Fault Handler 

The stack fault handler (created by the programmer) 
determines the nature of the fault. It also resets the 
appropriate values, and takes any other appropriate action, 
such as allocating more stack space or terminating the 
program. Note that the stack fault handler must reset bit 0 
of the stack pointer and stack limit to their original values. 

2- 15 

Initializing the Stack Control Words 

Initialize the stack control words before performing the 
first operation on the stack. The initialization rules are 
discussed below, while Figures 2.8 through 2.10 illustrate 
protected and unprotected stack areas. Figure 2.8 shows a 
stack area of 508 words with underflow protection; Figure 
2.9 shows a stack area of 508 words in page zero with 
overflow protection; and Figure 2.10 shows a stack area of 
100s words with no protection. 

Initialize the stack pointer to the beginning address of the 
stack minus one. If you wish stack underflow protection, 
initialize the stack pointer to 4008 and start the stack at 
4018. Otherwise, start the stack at a location greater than 
401S. To place all or a portion of the stack in page zero, or 
to disable underflow protection, set bit 0 of the stack pointer 
and the stack limit to 1. 

Initialize the stack limit to a value greater than the stack 
pointer. If you wish stack overflow protection, initialize 
the stack limit to the last allocated stack address minus at 
least 1010• Otherwise, initialize the stack limit to 77777s. To 
place all or a portion of the stack in page zero, set bit 0 of 
the stack pointer and the stack limit to 1. 

Initialize the stack fault address to an address (determined 
by the programmer) that contains the routine to handle 
stack overflow or underflow. Bit 0 may be set to 1 to 
indicate an indirect address. 

The frame pointer will have no meaning until the first use 
of the Save instruction. 

STACK 
POINTER 
400a 

STACK 
LIMIT 
4368 

DG-00932a 

l. 

--+ 

~~ .... ~'" 

317 

400 

401 

402 

436 

437 

440 
... 

446 

447 

450 --

./ 

./ 

-' 

-' 
~FIRSTWORD 

OF STACK 

./ 

./ 

./ 

A 

/' 
./ 

~ 

Figure 2.8 Underflow protected stack area 

The Stack 



~,. .... ' ,. ............ ':)ot 

;~~;~~-t--1-~-~-·-· '-' ·.v·LFIRST WORD 

-< 
OF STACK 

NOTE: BIT 0 
SET TO 1 

STACK 
LlMIT~ 135 

1001 358 1---'-:::..::....--1-..1-1 

DG-00932b rnr1 
DG-00932b 

Figure 2.9 Overflow protected page zero stack area 

The Stack 

NOTE: BIT 0 
SET TO 1 

DG-00932c 

STACK 
POINTER 
1004378 -

STACK 

LIMIT 1 
1777778 

Figure 2.10 Unprotected stack area 

2- 16 

Data General Corporation 

~ ... ' 

437 
440 

537 
540 

'«L1 
~ _FIRST WORD 

OF STACK 

:,... 



Stack Instructions 

The instructions that control use of the stack are listed in 
Table 2.14. 

Mnem Instructions Action 

FPOP Pop Floating Pops an 18-word floating point return 
Point State block off the stack. 

FPSH Push Floating Pushes an 1 8-word floating point return 
Point State block onto the stack. 

MSP Modify Stack Changes the value of the stack pointer and 
Pointer checks for overflow. 

POP Pop Multiple Pops 1 to 4 words off the stack and places 
Accumulators them in the indicated accumulators. 

POPB Pop Block Returns control from a System Call 
routine or an I/O interrupt handler that 
does not use the stack change facility of 
the Vector instruction. 

POPJ Pop PC And Jump Pops the top word off the stack and places 
it in the program counter. 

PSH Push Multiple Pushes the contents of 1 to 4 accumulators 
Accumulators on the stack. 

PSHJ Push Jump Pushes the address of the next sequential 
instruction on the stack and places an 
effective address into the program counter. 

PSHR Push Return Pushes the address of the PC, plus 2, 
Address onto the stack. 

RSTR Restore Returns control from certain types of I/O 
interrupts. 

RTN Return Returns control from subroutines that issue 
a Save instruction at their entry points. 

SAVE Save Saves the information required by the 
Return instruction. 

SYC System Call Pushes a return block and indirectly places 
the address of the System Call handler 
in the program counter. 

VCT Vector on Performs various interrupt functions. See 
Interrupting the I/O section in this chapter. 
Device Code 

Table 2. 14 Stack instructions 

2- 17 

Reserved Storage Locations 

The following are reserved storage locations in the 
ECLIPSE S/ 140. The CPU uses them for specific functions; 
you should not use them during normal operations. 

The addresses, names, and functions of these locations are 
given below. The notation indirect able means that bit 0 
may be set to indicate that this is an indirect address. 

The locations shown in Table 2.15 are in unmapped logical 
address space. 

Loc Name Function 

0 I/O RETURN Return address from I/O 
ADDRESS interrupt; first instruction of 

Auto-restart routine. 

1 I/O HANDLER Address of the I/O interrupt 
ADDRESS handler (indirectable). 

2 SC HANDLER Address of the System Call 
ADDRESS instruction handler 

(indirectable). 

3 PF HANDLER Address of the protection fault 
ADDRESS handler (indirectable). 

Table 2.15 Reserved locations in unmapped logical address space 

Reserved Storage Locations 



The locations shown in Table 2.16 may be in unmapped 
logical address space or in Map A or Map B logical address 
space. They are used by the VCT instruction. 

Loc Name Function 

4 VECTOR STACK Address ofthe start of the vector 
POINTER stack (not indirectable). 

5 CURRENT Current interrupt priority mask. 
MASK 

6 VECTOR STACK Address of the last normally 
LIMIT usable location in the vector 

stack (not indirectable). 

7 VECTOR STACK Address of the vector stack fault 
FAULT handler (indirectable). 
ADDRESS 

Table 2.16 Reserved locations used by the Vector instruction 

The locations shown in Table 2.17 are in the same address 
space as the instructions using them. 

Loc Name Function 

20-27 AUTO-INCO Auto-incrementing locations. 
through 
AUTO-INC7 

30-37 AUTO-DECO Auto-decrementing locations. 
through 
AUTO-DEC7 

40 STACK Address of the top of the stack 
POINTER (not indirectable). 

41 FRAME Address of the frame reference 
POINTER within the stack (not 

indirectable). 

42 STACK LIMIT Address of the last normally 
usable location in the stack (not 
indirectablel'. 

43 STACK FAULT Address of the stack fault 
ADDRESS handler (indirectable). 

44 XOP ORIGIN Address of the start of XOP (not 
ADDRESS indirectable). 

45 FLOATING Address of the floating point 
POINT FAULT fault handler (indirectable). 
ADDRESS 

46- 47 - Reserved for future use. 

Table 2.1'7 Reserved locations in the same address space as the 

instructions using them 

Program Execution 

v 

Data General Corporation 

Program Execution 

A 15-bit register called the program counter always 
contains the address of the instruction currently being 
executed. During sequential operation, the program 
counter is incremented by one after each instruction. It 
can normally address the complete logical address space, 
Le., {) through 777778, inclusive, a total of 32,768 word 
locations. The address after 777778 is 0, and no indication is 
given when the counter rolls from 777778 to 0 in the course 
of sequential processing. 

Program Flow Alteration 
You can alter the program flow from sequential operation 
in two ways. Jump instructions alter the program flow by 
inserting a new value into the program counter. 
Conditional skip instruction alter the program flow by 
incrementing the program counter an extra time if a 
specified test condition is true. In either case, sequential 
operation continues with the instruction addressed by the 
updated value of the program counter. Figure 2.11 
illustrates the effects of these instructions. 

NOTE: Do not use a conditional skip immediately 
before a 2-word instruction. The conditional 
instruction causes a l-word skip, which results in an 
attempt to execute the .second word of the instruction 
as a l-word instruction. 



Standard Features 

l 
INCREASING 
ADDRESSES 

j 

~/---r~ 
I----__+'~ 

t-------t"'/ 
./ 

} 
SE. QUENTIAl 

. PROGRAM 
FLOW 

JUMP 
PROGRAM 
FLOW 

j 

I 
N 
S 
T 
R 
U 
C 
T 
I 
o 
N 
S 

I-----Y~y } 

I-----Y~ 
./': 

SKIP 
PROGRAM 
FLOW 

t-------r~ 

DG-00543 

Figure 2.11 Program flow alteration 

Program Flow Interruption 

The normal flow of a program may be interrupted by 
external or exceptional internal conditions, such as 110 
interrupts or MMPU faults. When this occurs, the contents 
of the program counter are saved, so that after the interrupt 
is serviced, control will return to the right place. The 
address of the starting instruction for the proper fault or 
interrupt handler is then placed in the program counter 
and sequential operation continues within that program. 
When the fault or interrupt handler has serviced the 
interrupt, control is returned to the interrupted program 
at the saved address. Figure 2.12 is a diagram of the effect 
of an interrupt on normal program flow. 

I 
INCREASING. 
ADDRESSES 

! 
j 
j 
j 

N 
S 
T 
R 
U 
C 
T 
I 
o 
N 
S 

~ 
DG-00544 

Figure 2.12 Program flow interruption 

CONTINUED 
PROGRAM 
FLOW 

Program Flow Alteration Instructions 

Program flow alteration and conditional instructions are 
shown in Tables 2.18 through 2.21. In Table 2.18, several 
instructions have both short and long forms. The sixteen 
bit short form directly specifies either a memory address 
from 0 to 255 or a small area in memory surrrounding the 
present value of the program counter or an accumulator. 
The thirty-two bit long form directly specifies any address 
from 0 to 777778, 

Table 2.19 summarizes the skip instructions that test 
condition codes in the floating point status register. Table 
2.20 summarizes the condition tests available for the SKP 
[t] instruction. (This instruction tests the condition codes 
of a peripheral device, the power-fail monitor or the 
interrupt system.) And Table 2.21 summarizes the skip 
options of the ALe instructions. 

2- 19 

Program Execution 



Data General Corporation 

Mnem Instructions Action Mnem Instructions Action 

ClM Compare To Compares a signed integer with two other FNS No Skip The next sequential word is executed. 
Limits numbers and skips if first integer is 

between the other two. 

DSPA Dispatch Compares a signed integer with two other 

FSA Skip Always The next sequential instruction is skipped. 

FSEQ Skip On Zero Skips the next sequential word if the Z flag 
in the FPSR is 1. 

numbers and continues sequential 
execution if the integer is not between the 
others; otherwise, uses the integer as an 
index into a table and places indexed value 

FSGE Skip On Greater Skips the next sequential word if the N 
Than Or Equal To flag of the FPSR is O. 
Zero 

in the program counter. FSGT Skip On Greater Skips the next sequential word if both the 

DSZ Decrement And Decrements the addressed word, then 
EDSZ Skip If Zero skips if the decremented value is zero. 

Than Or Equal To Z and N flags of the FPSR are O. 
Zero 

ISZ Increment And Increments the addressed word, then skips 
EISZ Skip If Zero if the incremented value is zero. 

FSlE Skip On less Skips the next sequential word if either 
Than Or Equal To the Z flag or the N flag of the FPSR is 1. 
Zero 

JMP Jump Places an effective address in the program 
EJMP counter. FSlT Skip On less Skips the next sequential word if the N 

JSR Jump To Increments program counter and stores 
EJSR Subroutine incremented value in AC3; then places a 

new address in the program counter. 

Than Zero flag of the FPSR is 1. 

FSND Skip On No Zero Skips the next sequential word if the divide 
Divide by zero (DVZ) flag of the FPSR is O. 

POPB Pop Block Pops a return block off of the stack. 

POPJ Pop PC And Jump Pops the top word off the stack and places 
it in the program counter. 

PSHJ Push Pushes the address of the next sequential 
instruction onto the stack and places a 
new address in the program counter. 

RSTR Restore Returns control from I/O interrupt handlers 
that use the stack change facility of the 
VeT instruction. 

FSNE Skip On Non-Zero Skips the next sequential word if the Z flag 
of the FPSR is O. 

FSNER Skip On No Error Skips the next sequential word if bits 1-4 
of the FPSR are all O. 

FSNM Skip On No Skips the next sequential word if the 
Mantissa mantissa overflow (MOF) flag of the FPSR 
Overflow isO. 

FSNO Skip On No Skips the next sequential word if the 
Overflow overflow (OVF) flag of the FPSR is O. 

RTN Return Returns control from a subroutine entered 
via Save instruction. 

SGE Skip If ACS Compares two signed integers in two 
Greater Than Or accumulators and skips if the first is greater 
Equal To ACD than or equal to the second. 

FSNOD Skip On No Skips the next sequential word if both the 
Overflow And No overflow (OVF) flag and the divide by zero 
Zero Divide (DVZ) flag of the FPSR are O. 

. FSNU Skip On No Skips the next sequential. word if the 
Underflow underflow (UNF) flag of the FPSR is O. 

SGT Skip If ACS Compares two signed integers in 
Greater Than accumulators; skips if first is greater than 
ACD the second. 

FSNUD Skip On No Skips the next sequential word if both the 
Underflow And underflow (UNF) flag and the divide by 
No Zero Divide zero (DVZ) flag of the FPSR are O. 

SKP{tj I/O Skip Skips if the I/O condition t is true. 

SNB Skip On Nonzero References a single bit in memory via bit 
Bit pointer; skips if bit is 1. 

FSNUO Skip On No Skips the next sequential word if both the 
Underflow And underflow (UNF) flag and the overflow 
No Overflow (OVF) flag of the FPSR are O. 

SYC System Call Turns the MAP off if ·on. Pushes a return 
SCl block onto the stack places address of 

Table 2.19 Floating point skip instructions 

SVC System Call handler in program counter. 

SZB Skip On Zero Bit References a single bit in memory via bit 
pointer; skips if bit is O. 

Symbol Value Test 

SZBO Skip On Zero Bit, References a single bit in memory via bit 
Set To 1 pointer; skips if bit is 0 and also sets the {tj=BN 00 Tests Busy flag for nonzero. 

bit to 1. {tj=BZ 01 Tests Busy flag for zero. 
VCT Vector On Identifies highest priority interrupt; passes 

Interrupting control through a table to a handler routine 
Device Code for device. 

{tj=DN 
. 

10 Tests Done flag for nonzero. 

{tj=DZ 11 Tests Done flag for zero. -
XOP Extended Pushes a return block onto the stack, 

XOP1 Operation indexes into the XOP table and transfers Table 2.20 SKP[tj condition tests 

control to another procedure. 

XCT Execute Executes contents of an accumulator as 
an instruction. 

Table 2.18 Program flow alteration and conditional instructions 

2- 20 

Program Execution 



Standard Features 

Symbol Value Operation 

[skip] omitted 000 No skip. 

[skip]=SKP 001 Skip unconditionally. 

[skip]=SZC 010 Skip if Carry bit is 
zero. 

[skip]=SNC 011 Skip if Carry bit is 
nonzero. 

[skip]=SZR 100 Skip if ALC result is 
zero. 

[skip]=SNR 101 Skip if ALC result is 
nonzero. 

[skip]=SEZ 110 Skip if either ALC 
result or ,Carry bit is 
zero. 

[skip]=SBN 111 Skip if both ALC 
result and Carry bit 
are nonzero. 

Table 2.21 ALC skip options 

Extended Operation Feature 

The extended operation feature (XOP) provides an 
efficient method of transferring control to and from 
procedures. It enables the- user to transfer control to any 
one of 48 procedure entry points. 

Extended Operation Instructions 
There are two extended operation instructions in the 
ECLIPSE S/140 instruction set. They are shown in Table 
2.22. 

Mnem Instructions Action 

XOP Extended Pushes a return block on the stack; places 
Operation the address of the specified accumulators 

into AC2 and AC3; and transfers control 
to one of thirty-two other procedures via 
the XOP table. 

XOP1 Extended Same as XOP except that 32 is added to 
Operation the entry number before entering the XOP 

table, and only 16 table entries can be 
specified. 

Table 2.22 Extended operation instructions 

Input/Output 

This section contains descriptions of the Input/Output 
capabilities in the ECLIPSE S/140. We discuss the general 
operation of the liD system, interrupts, and vectoring. 

The ECLIPSE 81140 has a 6-bit device selection network, 
corresponding to bits 10-15 in the liD instruction format. 
The devices are connected to this network in such a way 
that each device will only respond to commands sent with 
its own device code. With a 6-bit device code, 64 separate 
devices can be individually controlled. Certain specific 

2- 21 

codes are reserved for the CPU and certain processor 
options; the remainder reference liD devices. The 
assembler recognizes mnemonics for those devices assigned 
a code by Data General. A complete list of these is provided 
in Appendix B of this manual. 

See the Programmer's Reference Manual - Peripherals 
(DGC No. 014-000632 for details about programming 
specific devices in the II 0 system. 

Busy and Done Flags 
Most liD devices are controlled through the manipulation 
of Busy and Done flags. Flag values are changed through 
the use of optional flag command mnemonics. The effects 
of the flag commands are device dependent. 

Programmed Ifo 

Programmed liD transfers data one word at a time under 
direct program control. For slow devices, such as teletypes, 
which transfer one character at a time and require an 
immediate echo, programmed liD is the fastest method of 
liD operation. 

For faster devices, programmed liD has several 
disadvantages. Several instructions are required for the 
transfer of, each word, and other CPU operations must 
wait for the transfer to be completed. Because data must 
be transferred to or from an accumulator, an additional 
step is required if the data must be stored in or retrieved 
from memory. 

Data ChannellfO 

Data channel liD permits data transfer in blocks of words, 
with program control necessary only at the start of the 
operation. The CPU stops during each word transfer; but 
the transfer is made directly to or from memory, so no 
additional steps are required. Data channel liD very 
efficiently transfers large blocks of data between memory 
and a fast liD device. 

Dual data channel transfer rates are 1.4 Mbytes per second 
normal input, 1.1 Mbytes per second normal output; and 
2.0 Mbytes per second fast input, 1.4 Mbytes per second 
fast output. 

At the fast rates, the CPU is effectively stopped. At normal 
rates, however, processing continues data between 
transfers. 

Data channel devices are controlled in three phases. Phase 
I specifies the starting location in memory for the first 
word to be transferred. Phase II loads the two's 
complement of the number of words to be transferred into 
the machine. These two phases are performed with 
programmed II 0 instructions. Phase III issues a flag 
command. Once a flag command is issued, data transfer 
takes place when both the data channel device and the 
processor are ready. No further program control is 
required. 

Input/Output 



When a data channel device is ready to send or receive 
data, it issues a data channel request to the processor. The 
processor synchronizes any requests that are coming in. At 
certain specified points, the CPU pauses to honor all 
previously synchronized requests. When a request is 
honored, a word is transferred directly via the data channel 
between the device and memory without specific action by 
the program. 

All requests are honored according to the relative position 
of the requesting device on the I/O bus. Data channel 
service begins with the device that is physically closest on 
the bus. The next closest device is serviced next, and so on, 
until all requests have been honored. New requests are 
synchronized concurrently with the servicing of older 
requests. If a device continually requests data channel 
service, it prevents all devices further out on the bus from 
gaining access to the channel. 

For more information on the data channel, see the 
Programmer's Reference Manual - Peripherals (DGC No. 
014-000632) and the User's Manual- Interface Designer's 
Reference (DGC No. 014-000629). 

I/O Interrupts 

The I/O interrupt system in the ECLIPSE S1140manages 
programmed I/O by permitting the program to ignore I/O 
devices until one requires service. After handling all data 
channel requests, the processor completes execution of any 
incomplete instruction, services any further data channel 
requests that were synchronized while the instruction was 
executing, then services outstanding I/O interrupt 
requests. When all requests have been serviced, program 
execution continues. 

The following definitions will assist your understanding 
of system interrupts. 

Interrupt request line - This line is the common 
connection between all I/O devic~s and the computer. In 
general, an I/O device places a request onthe interrupt 
request line while it sets Busy to 0 and Dorie to 1. That is, it 
signals that it is ready to send or receive data. The program 
must use a separate means to determine which device is 
requesting an interrupt. 

Interrupt On flag - This CPU flag controls the status of 
the interrupt system. When the flag is set to 1, the CPU 
will respond to and process interrupts. If the flag is set to 0, 
the CPU will not examine the interrupt request line. 

Priority mask - This set of bits controls the priority 
interrupt system. Every I/ 0 device is connected to at least 
one of the sixteen bits in the priority mask. When a mask 
bit is set to 1, the. devices connected to it cannot place a 
request on the interrupt request line. The devices can set 
their Busy flags to 0 and their Done flags to 1. Since the 
program controls the mask, devices are at times inhibited 
in order to conform to a priority system. 

Input/Output 

Data General Corporation 

. Base level - In this program state, no I/ 0 devices are 
inhibited (all mask bits are 0) and no interrupts are 
processed. User program execution takes place here. 

Non-base' level - In this program state, some I/O devices 
are masked or interrupts are processed. Interrupt handlers 
operate in this state. 

In the next section we will discuss interrupts. We will first 
consider interrupts without a priority system; and then, 
interrupts within a priority system. 

Processing Interrupts With No Priority System 

When a device completes an operation and is ready to send 
or receive more data, it sets the Busy flag to 0 and the 
Done flag to 1. The device bit in the priority mask is 0, so 
the device places a request on the interrupt request line. 
At the next opportunity, the interrupt is serviced. 

To service an interrupt, the CPU first sets the Interrupt 
On flag to 0 to prevent interruption of the first part of the 
interrupt service routine. Second, it disables the User map. 
Then the CPU places the contents of the updated program 
counter into physical memory location 0 and jumps indirect 
via location 1, where it expects to find the address (direct 
or indirect) of the interrupt service routine. 

The interrupt service routine (supplied by the user) must 
save any accumulators and the carry bit if they are used, 
and determine which device requested the interrupt. Then 
the service routine tends to the device. 

The service routine can use the I/O Skip or Interrupt 
Acknowledge instructions to identify the device requesting 
the interrupt. Or it can use the Vector on Interrupting 
Device Code instruction to save the return information and 
identify the interrupting device. 

The Interrupt Acknowledge instruction returns the 6-bit 
device code of the device requesting the interrupt. The 
Vector instruction, in addition to saving return information 
on the stack, performs an Interrupt Acknowledge 
instruction and uses the code returned as an index into a 
table of addresses. These addresses point to the beginnings 
of the various device service routines. 

After servicing the device, the interrupt routine should 
restore the saved values of the accumulators and the carry 
bit, set the Interrupt On flag to 1, and return to the 
interrupted program. The Interrupt Enable instruction sets 
the Interrupt On flag to 1, and allows the processor to 
execute one more instruction before allowing the next 
interrupt. 

This next instruction should return control to the 
interrupted program. Since the updated value of the 
program counter was placed in location 0 by the CPU at 
the start of the interrupt service routine, a jump indirect, 
via location 0, returns control to the proper location in the 
interrupted program. 

2- 22 



Standard Features 

Processing Interrupts With a Priority System 

Two factors explain why a system of priorities for 
interrupts is necessary. First, if the Interrupt On flag 
remains 0 throughout the interrupt service routine, the 
CPU cannot be interrupted while an I/O device is being 
serviced. All other devices, therefore, must wait until the 
first device is finished. Second, if the Interrupt On flag is 
returned to 1 after the initial portion of the service routine, 
any 1/0 device can interrupt the servicing of any other 
I/O device. This might be reasonable for some devices, but 
it is not for others. Therefore, a system of interrupt 
priorities is needed !o permit some devices to interrupt 
certain others without disrupting the orderly processing of 
data. 

A rudimentary priority system will result from keeping 
the Interrupt On flag 0 throughout the service routine. 
The priority of the I/O devices is then determined either 
by the order in which the I/O Skip instructions poll the 
110 devices, or (using the Interrupt Acknowledge or Vector 
instructions) by the physical location on the 110 bus of 
devices requesting an interrupt. Both methods, however, 
are very inflexible. 

The ECLIPSE SI140 has the hardware and instructions 
for a flexible and efficient priority system, with up to 
sixteen levels of priority interrupts. The interrupt service 
routine controls the priority system, and changes the 
priorities of various devices as necessary. 

Using the Mask Out Instruction: To set up a system of 
priorities, place a Mask Out instruction in the interrupt 
service routine for each device. This instruction changes 
the priority mask and prevents certain devices from 
requesting interrupts. If particular bits in the priority mask 
are changed to 1, the devices are masked out. Devices 
controlled by those bits are disabled from requesting 
interrupts. Priority mask bits that correspond to devices 
not masked out, are set to O. 

If the priority interrupt system is called in each interrupt 
service routine, devices that do not merit an interrupt will 
be masked out. The process changes each time a different 
device is serviced, resulting in a system of priorities. The 
device with the highest priority will be able to interrupt 
all other devices; and the lowest priority device will be 
interruptible by other devices. 

Devices which operate at roughly the same speed are 
controlled by the same bit in the mask. Appendix B lists 
the mask bit assignments along with the device code 
assignments. Although the bit assignments are fixed, the 
priorities are set by the programmer to fit the situation 
and are dynamically adjustable. 

Using Interrupt Handlers and Service Routines: The initial 
portions of a multiple priority level interrupt handler may 
be damaged if the routine is interrupted. To prevent this 
from occurring, the processor has automatically set the 

2- 23 

Interrupt On flag set to O. After receiving control, the 
interrupt handler must save return information and store 
it in a unique place to prevent its being overwritten by 
data from another interrupt. 

Next, choose a service routine that will save the current 
priority mask and establish a new one. 

Then, use the Interrupt Enable instruction to set the 
Interrupt On flag to 1. This permits those devices not 
restricted by the priority mask to interrupt if necessary. 

After servicing the interrupt, the interrupt service routine 
should: 

Disable the interrupt system. 

Reset the priority mask to the condition it was in when 
the routine was entered. 

Restore the accumulators and the carry bit. 

Enable the interrupt system. 

• Return control to the interrupted program. 

Making Stack Changes: The interrupt handler uses a stack. 
Instead of working with the user stack, you can define a 
new stack which is reserved for the interrupt handler. 
This overcomes the following two problems: 

• There may not always be a defined user stack. 

The user stack pointer may rest just below the stack 
limit. The interrupt handler would then overflow the 
user stack. 

The stack environment should be changed whenever a 
transition is made from base level to non-base level or 
vice versa. 

If an interrupt is being processed when another interrupt 
occurs, the stack environment should not be changed, since 
this has already been done for the first interrupt. If desired, 
return information to permit an easy return to processing 
the first interrupt can be pushed onto the new stack before 
the second interrupt is processed. 

The Vector instruction handles stack changes by changing 
modes to accommodate different situations. We discuss the 
uses for this instruction in the next section. 

Using the Vector Instruction: The Vector on Interrupting 
Device Code instruction simplifies the design of an interrupt 
handler by streamlining numerous steps into one 
instruction. 

The Vector instruction contains five modes, each suited to 
a different circumstance. 

The simplest mode, similar to the Interrupt Acknowledge 
instruction, executes rapidly and does not save information 
about the processor state at the time of the interrupt. 

Input/Output 



The most complex mode saves information on the state of 
the machine upon interruption, stores the user stack 
parameters, creates a new stack and resets the priority 
mask. This mode executes more slowly than the simpler 
mode described above. 

To choose the correct mode, you must weigh the importance 
of such capabilities as saving the machine state, creating a 
separate vector stack, and changing the priority mask, 
against the time added on to an interrupt. You are not 
committed to one mode throughout the interrupt handler. 

Mode A is used for devices that require immediate interrupt 
service; i.e., unbuffered devices with very short latency 
times, or real time processes that require immediate access. 
This mode executes rapidly and does not save data on the 
machine state at interrupt. 

Modes B through E Each mode creates a priority structure 
that permits a device needing immediate service to 
interrupt the servicing of certain other devices. These 
modes execute more slowly than Mode A. 

Modes D and E Use these modes only when operating at 
base level (not while interrupts are being processed). They 
create a new vector stack. The interrupt handler stores the 
(old) user stack parameters in it. Once the vector stack has 
been created, do not attempt to recreate it if a new interrupt 
occurs before the one in progress finishes. 

Mode E pushes a return block onto the vector stack to 
make the return to the first interrupt handler easier. 

Modes Band C May be used during non-base level 
operations (while interrupts are processed). These modes 
do not create a new stack. 

Mode C also pushes a new return block onto the stack. 

Chapter 5 gives more details on the Vector instruction. 

1/0 Instructions 
Table 2.23 lists the II 0 instructions for the ECLIPSE S/ 140. 
Some of these instructions have special mnemonics which 
can be used in place of the standard mnemonics. Note that 
the mnemonics for controlling the states of flags connot be 
appended to these special instruction mnemonics. 

If you want to alter the state of the Interrupt On flag 
while performing a Mask Out instruction, you must use 
the full mnemonic: 

DOB! ac,CPU 

instead of the special mnemonic: 

MSKO ac 

In this example, the special mnemonic sets bits 8 and 9 to 
00. 

Input/Output 

Data General Corporation 

Mnem Instructions Action 

DIA Data In A Transfers data from the A buffer of an I/O 
device to an accumulator. 

DIB Data In B Transfers data from the B buffer of an I/O 
device to an accumulator. 

DIC Data In C Transfers data from the C buffer of an I/O 
device to an accumulator. 

DOA Data Out A Transfers data from an accumulator to the 
A buffer of an I/O device. 

DOB Data Out B Transfers data from an accumulator to the 
B buffer of an I/O device. 

DOC Data Out C Transfers data from an accumulator to the 
C buffer of an I/O device. 

DOC Halt Stops the processor. 
CPU 

DIB CPU Interrupt Returns the device code of an interrupting 
Acknowledge device. 

INTDS Interrupt Disable Sets I nterrupt On flag to o. 
(NIOC 
CPU) 

INTEN Interrupt Enable Sets Interrupt On flag to 1. 
(NIOS 
CPU) 

DIC CPU Reset Sets all Busy and Done flags and the 
priority mask to o. 

DOB Mask Out Changes the priority mask. 
CPU 

NIO No I/O Transfer Changes a flag without causing any other 
effect. 

DIA CPU Read Switches Places the contents of the console data 
switches into an accumulator. 

SKP I/O Skip Tests a flag and skips the next sequential 
word if the test condition is true. 

SKP CPU CPU Skip Tests the Interrupt On or Power Fail flag 
and skips the next sequential word if the 
test condition is true. 

Table 2.23 I/O instructions 

Table 2.24 summarizes the flag commands issued where 
the optional mnemonics are used in I/O instructions. 

Mnem Instructions Action 

[fJ 00 No operation. 
omitted 

[f]=S 01 Issues a Start command to the device. 

[fJ=C 10 Issues a Clear command to the device. 

[f]=P 11 Issues a Pulse command to the device 

Table 2.24 Flag command functions 

2- 24 



Standard Features 

When an I/O instruction employs a special mnemonic the 
device Busy and Done flags are tested for the conditions 
described earlier in Table 2.20. 

Table 2.25 applies to I/O instructions using the device code 
mnemonic CPU (device code 778), These instructiqns 
operate on the Interrupt On and Power Fail flags, rather 
than testing the Busy and Done flags. 

Mnem Instructions Action 

{f] 00 Does not alter the Interrupt On flag. 
omitted 

{f]=S 01 Sets I nterrupt On flag to 1. 

{f]=C 10 Clears Interrupt On flag to O. 

{f]=P 11 Leaves Interrupt On flag unchanged 

(used only with VCT). 

[tj=BN 00 Tests Interrupt On flag for nonzero. 

[tj=BZ 01 Tests Interrupt On flag for zero. 

[tj=DN 10 Tests Power Fail flag for nonzero. 

[tj=DZ 11 Tests Power Fail flag for zero. 

Table 2.25 Interrupt On and Power Fail flag commands 

Basic I/O Devices 

The ECLIPSE S/140 includes two basic I/O devices. They 
are, the real time clock (RTC) and an asynchronous line 
controller (ALC). 

Real Time Clock 

The real time clock generates low frequency I/O 
interrupts. Use these interrupts in programs that must 
perform time calculations independently of CPU timing. 
A program can select one of four clock frequencies: 10Hz, 
100Hz, 1000Hz, or AC line frequency. 

When the real time clock starts, the first program interrupt 
request can come at any time. After the first interrupt, 
succeeding interrupts come at the clock frequency, 
provided that the program always sets Busy to 1 before the 
clock period expires. After power up or IORST, the clock is 
set to AC line frequency. Line frequency pulses are 
available immediately, but five seconds must elapse before 
a steady pulse train is available from the clock for other 
frequencies. 

2- 25 

A single instruction programs the real time clock. Table 
2.26 illustrates that instruction. 

Mnem Instructions Action 

DOA Select RTC Selects the RTC interrupt frequency. 
Frequency 

Table 2.26 Real time clock instruction 

Asynchronous Line Controller 

The asynchronous line controller is the communications 
interface between the ECLIPSE SI140 and its primary 
terminal. The controllers support communication at 
selected baud rates from 50 to 19200, in seven-bit codes 
with program generated parity, or in eight-bit codes with 
no parity. One or two stop bits may be used with either 
format. ALC input and ALC output each have unique 
device codes and are controlled by their own Busy and 
Done flags. 

The asynchronous line controller is set up to transmit and 
receive 8-bit characters without parity checking. You can 
send and receive 7-bit characters with even, odd, or mark 
parity under program control by using the high order bit 
in the 8-bit character (bit 8 in the AC) as a parity bit. On 
transmission, the program which drives the asynchronous 
line controller may calculate and insert the correct parity 
bit. On reception, the program may calculate and check 
parity on the received character. 

You must also be aware of timing constraints on the 
receiver portion of the controller. As a character is 
received, the controller places it into an input character 
buffer, sets the Done flag to 1, and the Busy flag to O. If the 
program controlling the receiver does not transfer the 
character before the next character is received, the new 
character overwrites contents of the input character buffer, 
and the previous character is lost. At 50 baud, the minimum 
time before the previous character is overwritten is 220 
milliseconds; at 19200 baud the minimum time is 
approximately 521 microseconds. 

One instruction programs the asynchronous line input 
(ALI). The instruction is shown in Table 2.27. 

Mnem Instructions Action 

DIA Read Input Buffer Reads a character from the input buffer. 

Table 2.27 Asynchronous line input instructions 

A single instruction programs the asynchronous line output 
(ALO). See Table 2.28. . 

Basic 1/0 Devices 



Mnem Instructions Action 

DOA Load Output Places a character in the output buffer. 
Buffer 

Table 2.28 Asynchronous line output instruction 

Power Fail/Auto-restart 

When power is turned off, the contents of semiconductor 
memory are lost. The state of the accumulators, the 
program counter, and the various flags in the CPU and SC 
memory then are indeterminate. If you have battery 
backup the power fail facility provides a fail-soft capability 
in the event of unexpected poWer ioss. 

In the event of power failure, there is a delay of one to two 
milliseconds before the processor shuts down. The power 
fail facility senses the loss of power, sets the Power Fail 
flag to 1 and requests an interrupt. The interrupt service 
routine can then use this delay to store the contents of the 
accumulators, the carry bit, and the current priority mask. 
The interrupt service routine should also save location 0 
(to enable return to the interrupted program), put a Jump 
to the desired restart location in location 0, and then execute 
a HALT. One to two milliseconds is enough time to execute 
1000 to 1500 instructions, so there is more than enough 
time to perform the power fail routine. 

As long as the batteries have not been exhausted, (up to 
one hour for minimum memory configuration) when 
power is restored, the action taken by the automatic restart 
portion of the power fail facility depends upon the position 
of the lock switch on the front panel. If the switch is not in 
the lock position, the CPU remains stopped after power is 
restored. If the switch is in the lock position, then after 
power is restored, the CPU executes the instruction 
contained in physical location 0, thereby transferring 
control to the restart procedure. 

Power Fail Instructions 

The power fail instructions test the state of the power fail 
flag. They use the device code 778, The assembler 
recognizes the mnemonic CPU for this device code. 

The power fail facility has no priority mask bit in the 
priority mask. It responds to the Interrupt acknowledge 
and Vector instructions with device code O. 

Power fail has the lowest priority of all devices for the 
Interrupt Acknowledge instruction, but highest priority 
for the Vector instruction. 

The power fail instructions are shown in Table 2.29. 

Error Checking and Correction 

2- 26 

Data General Corporation 

Mnem Instructions Action 

SKPDN. Skip If Power Fail If the Power Fail flag is 1 (i.e .• power is 
CPU Flag Is One failing). the next sequential word is 

skipped. 

SKPDZ. Skip If Power Fail If the Power Fail flag is 0 (i.e .• power is 
CPU Flag Is Zero not failing). the next sequential word is 

skipped. 

Table 2.29 Power fail instructions 

Error Checking and Correction 

The Error Checking and Correction (ERCC) facility is 
designed for applications requiring either a high degree of 
reliability for the main memory of a system, or a graceful 
"fail-soft" capability in the event of memory errors. The 
ERCC facility will detect and correct all single-bit memory 
errors. If no error occurs, memory cycle time is identical 
to non-ERCC cycle time. 

Every ERCC memory word is twenty-one bits long. These 
twenty-one bits consist of sixteen data bits followed by 
five ERCC check bits. Each time the CPU writes data into 
a location, a hardware encoder constructs a 5-bit check 
field from the sixteen data bits. Each time the CPU reads 
data from a memory location, the hardware encoder 
constructs another five bit check field based on the sixteen 
bits read from memory and the five ERCC bits written 
into memory. If that code is all zeroes, no error occurred 
and the ERCC facility passes the sixteen data bits on to the 
CPU. Otherwise, an error occurred. The memory pauses 
while the ERCC facility corrects the single bit, requests an 
interrupt and passes the corrected data on to the CPU. 

ERCC logic can detect and correct all single-bit errors. In 
the rare event that a multi-bit error occurs, ERCC either 
detects it and reports it with no correction, or incorrectly 
interprets it as a single-bit error and complements the bit. 

ERCC Instructions 

One I/O instruction sets the mode of operation of the 
ERCC facility. ERCC contains a Done flag which is set to 1 
after an error has been detected and the ERCC initiates an 
interrupt request. Two instructions interrogate ERCC after 
the detection and correction of an error. 

The ERCC facility has no Busy flag and no mask bit in the 
priority mask. The device code for the ERCC facility is 2. 
The assembler recognizes the mnemonic ERCC for this 
device code. 

ERCC instructions use a specified accumulator to receive 
data or cOhtain the control information. 

Table 2.30 shows the ERCC instructions. 



Standard Features 

Mnem Instructions Action 

DOA Enable ERCC Enables the ERCC facility according to the 
setting of bits 13-15 of the specified 
accumulator. 

DIA Read Memory Returns the low-order bits of the memory 
Fault Address location which has produced an error. 

DIB Read Memory Returns a 5-bit error code that tells which 
Fault Code bit was in error. Also returns the high-order 

bits of the memory fault address. 

Table 2.30 ERCC instructions 

Virtual Console 
The virtual console (VC) allows you to interact with the 
computer through the system terminal connected to the 
CPU's on-board asynchronous communications interface. 
Simple commands which you enter on the terminal 
keyboard allow you to examine and/or modify processor 
registers or memory locations; start, stop, and continue 
program execution; and, initiate a program load from a 
selected device. 

On power up, the computer performs a self-test. After a 
successful completion of the self-test, the following 
message appears on the terminal: 

OK 
!OOOOOO 

OK followed by !OOOOOO indicates that the self-test ran 
successfully. The digits following the! are the contents of 
the program counter; on power-up, they are all zeroes. The 
next! is the VC prompt; it tells you that the virtual console 
is ready and at your service. 

In addition to power-up, the VC is entered when one of 
the following occurs: 

• A HALT instruction is executed. 
• The RESET switch on the front console is pressed and 

the front console is unlocked. 

The BREAK key on the system terminal is pressed, the 
front console is unlocked, and the CPU is not in a 
microcode loop. 

Under these conditions, the incremented contents of the 
program counter are typed when the VC is entered. These 
are followed by the ! VC prompt. For example, if the 
program counter was at location 2077 when the VC is 
entered, the following would be typed: 

002077 

2- 27 

Cells 

The VC operates on 'cells'. A cell is either a memory 
location (memory cell) or an internal register (internal 
cell) such as an accumulator. Each internal register that 
the VC can access has an internal cell number. These cell 
numbers are listed in Table 2.31. 

Internal Internal Register 
Cell 

0-3 The contents of the accumulators ACO through AC3, 
respectively. 

4 Return address (the contents of the program counter 
when VC was entered.) 

5 Reserved for future use. 

6 Reserved for future use. 

7 Interrupt enable flag status bit: 
o = Interrupts off 
1 = Interrupts on 

10 MMPU status bits (when set to 1) before the VC was 
entered: 
0 MAP on before console mode entered 
1 Program MAP enable pending 
2 I/O protection fault 
3 Write protection fault 
4 Indirect protection fault 
5 Last map fault occurred during 

single cycle memory reference 
6-8 Map select: 
000 User A 
001 Reserved for future use 
010 User B 
011 Reserved for future use 
100 Data channel A 
101 Data channel C 
110 Data channel B 
011 Data channel D 
9 Load Effective Address (LEF) mode enabled 
10 I/O protection enabled 
11 Write protection enabled 
12 Indirect protection enabled 
13 User map enable (O=A, 1 =B) 
14 Data channel map enable 
15 Last interrupt occurred in user mode 

12 Data switch register: Replaces the conventional console 
data switches. When the system is in RUN mode (i.e., 
not in console mode), and a READS instruction is 
executed, the 16-bit contents of this register are read by 
the CPU. 

Value of the carry bit. 

Table 2.31 Virtual console internal cells 

Cell Commands 
In order to examine or modify any cell, you must 'open' it. 
Opening a cell causes its contents to be printed, in octal, on 
the terminal. To open a cell, use one of the commands 
listed in Table 2.32. The VC will respond only to octal 
numbers and upper case letters. 

NOTE: In the table, the term 'current cell' means the 
last cell that you opened. 

Virt .. ,,1 Cnnenl .. 



Command Function 

nA Open the internal cell whose internal cell number is equal 
to "n" (See Table 2.31). 

n/ Open the memory location whose physical address is 
equal to the octal number "n··. 

(carriage Close the current cell, and open the next consecutive cell. 
return) 

(line feed or Close the current cell, but do not open another. 
new line) 

/ Close the current cell and open the memory cell whose 
address is equal to the contents of the current memory 
or internal cell. 

Table 2.32 Virtual console cell commands. 

When you open a memory cell, the VC interprets the 
address as a 20-bit physical address. You do not have to 
type leading zeroes. All you have to type is the physical 
address in octal representation. For example, if you want 
to open location 5, type 5/. If you want to examine the top 
location of a system which contains 2Mbytes of memory 
type 3777777/. 

Once you have opened a cell, you may change its contents 
by simply typing (in octal) the number whose value is to 
be placed in the cell. Terminate the expression with a 
Carriage Return, Line Feed or New Line. Note that if you 
type Carriage Return the next cell will also be opened. 
This is convenient when you need to enter data into several 
consecutive locations. 

Function Commands 
Table 2.33 lists the VC function commands. All commands 
must be typed in octal numbers and upper case letters. 

Command Function 

P Starts program execution at the memory location 
specified by the contents of internal cell number 4 
(see Table 2.31). 

nR Issues an I/O Reset, clears the MMPU, and starts program 
execution at the memory location specified by the octal 
number "n". 

I Issues an I/O Reset, and clears the MMPU. 

nL Performs a program load from the device whose device 
code is equal to "n". Bit 0 of "n" is a 0 for a low-speed 
device, and is a 1 for a high-speed device. 

F Performs a DG field service cassette bootstrap load. 
(For DGC use only.) 

K Cancels the entire line just typed, and prints a question 
mark (7). 

Table 2.33 Virtual console function commands 

The VC uses two commands to start program execution. 
Typing P starts program execution at the location specified 
by internal cell number 4 (the return address). See Table 
2.31, Virtual console internal cells. You can also start 

Memory Management and Protection Unit 

Data General Corporation 

program execution by typing nR. In this case, the CPU 
issues an 1/ 0 Reset command, clears the MMPU, and starts 
program execution at the location specified by the octal 
numbern. 

Typing I causes the CPU to issue an I/O Reset command 
and clear the MMPU. 

Type nL to program load from an I/O device, where n is 
the device code, in octal, of the I/O device to be used. Bit 0 
of n should be a 1 if the I/O device is high-speed, and a 0 if 
the I/O device is low-speed. For example, if the program 
load device is a high-speed 6060 disc drive whose device 
code is 27, you would type the following: 

100027L 

You can perform a Data General field service cassette 
bootstrap load by typing F. 

Virtual Console Errors 
If you type a character that the VC does not recognize, it 
will print a ? followed by a New Line. If you wise to cancel 
an entire line you just entered, type a K. In this case the 
VC will respond with a I followed by a New Line. 

If you attempt to open a non-existent memory cell, the 
16-bit contents of the cell printed in octal on the terminal 
will be all l's. You can verify that this location does not 
exist by entering a new value containing O's in the cell and 
then re-opening it. If it still contains alII's, the location is 
non-existent. 

If you attempt to open a non-existent internal cell, the 
terminal will print random and meaningless data. 

Memory Management and 
Protection Unit 

The ECLIPSE SI140 MMPU provides the hardware 
necessary to control and use more than 64 Kbytes of 
physical memory. In addition, the MMPU provides 
protection functions which help protect the integrity of a 
large system. 

An MMPU unit gives several users access to the resources 
of the computer by divding the memory space available 
into blocks assigned to each user. Each time a user accesses 
memory, the MMPU translates the address the user sees, 
the logical address, to an address the memory sees, the 
physical address. This is all transparent to the user. With 
software to control the priorities of the MMPU and the 
CPU, several users can access the computer without being 
aware of the presence of the others. 

2- 28 



Standard Features 

For the purposes of this discussion, we define certain words 
and phrases: 

Logical address-The address used by the user in all 
programming. The logical address space is 32,768 words 
long and is addressed by a 15-bit address. 

Physical address-The address used by the MMPU to 
address the physical memory. The maximum size of the 
physical address space is 2,097,152 bytes (2M) and it is 
addressed by a 20-bit address. 

Address translation-The process of translating logical 
addresses into physical addresses. 

Memory space-The addresses (physical or logical) 
assigned to a particular user. 

Page-l024 (20008) words in memory. 

User map-The set of memory address translation 
functions defined for a particular user. 

Data channel map-The set of address translation functions 
defined for the memory references of a data channel used 
by a particular device. 

Supervisor-The section of the operating system (software) 
which controls system functions such as the operation of 
the MMPU. 

MMPU Functions 
The MMPU's functions include address translation; the 
sharing of physical memory as a space-saving measure; 
the provision of user and data channel maps; operation in 
unmapped mode, primarily for diagnostic purposes; and 
system protection. 

Address Translation 

The primary function of the MMPU is address translation. 
The map divides each user's logical address space into 
1024-word pages and correlates each logical page with a 
corresponding physical page. The address space the user 
sees is unchanged, but the map now translates each logical 
address into a physical address before memory is actually 
accessed. 

Note that there is no requirement that the physical pages 
assigned to a user. be in any particular order in physical 
memory. The supervisor can therefore use physical 
memory very flexibly, selecting unused pages for a new 
user without concern for maintaining any particular 
arrangement. Very complete use of the physical memory 
is also possible, since no contiguous blocks of memory 
larger than 1024 words are required. 

Sharing of Physical Memory 

The MMPU in the ECLIPSE S/140 is also capable of 
declaring a section of physical memory accessible to several 
users at once. This is useful if several users need a routine 

to perform some common function (e.g., trigonometric 
tables). Without this capability, each user would require a 
separate copy of the routine, thus creating many duplicate 
copies and wasting considerable space. 

User and Data Channel Maps 

Two types of maps are provided in the ECLIPSE S1140. 
User maps translate logical addresses to physical addresses 
when memory reference instructions are encountered in 
the user's program. Data channel maps translate logical 
addresses to physical addresses when data channel devices 
address the memory. 

Each user requires a separate user map. The MMPU can 
hold two user maps, but only one can be enabled at any 
one time. Thus, if there are two users, the supervisor 
specifies a user map for each and loads it into the MMPU. 
The supervisor can then enable one or the other as needed. 
If there are more than two users, new user maps must be 
loaded as needed. In some operating systems, the operating 
system itself uses one of the user maps, so that a new user 
map must be loaded each time another user is serviced. 
This is not as much of an overhead burden as it sounds, 
because the Load Map instruction loads a complete map 
with one instruction, using relatively little time. 

Separate data channel maps are needed because data 
channel devices can access memory without direct control 
from the user's program. There is thus no assurance that 

·the proper user map would still be enabled at the time of 
the data channel request. The MMPU can hold four data 
channel maps. Enabling data channel mapping enables all 
four data channel maps at the same time. The choice of 
which map is used for data channel transfer is made by 
the I/O controller making the request. Those controllers 
not equipped to make this distinction use data channel 
map A by default. See the Programmer's Reference Manual 
- Peripherals (DGC No. 014-000632). 

2- 29 

Operation in Unmapped Mode 

So far we have assumed operation in the mapped mode. 
The MMPU can also operate in the unmapped mode. This 
mode is used for diagnostic purposes and for certain MMPU 
control functions. In unmapped mode, addresses in the 
range 0-757778 (which form logical pages 0-30) are not 
translated. In unmapped mode, addresses in the range 
76000-777778 are translated by the special map for logical 
page 31. This allows you to access selected portions of user 
space while in unmapped mode. 

System Protection 

In addition toits address translation functions, the MMPU 
also provides protection functions. These generally protect 
the integrity of the system by preventing unauthorized 
access to certain parts of memory or to I/O devices. For 
example, if a set of trigonometric functions is stored in a 
section of memory accessible to all users, this section can 
be write protected so that users can read the functions, but 
cannot change them. 

The various types of protection available in the ECLIPSE 
SI140 include validity, write, indirect, and I/O protection. 

Memory Management and Protection Unit 



Validity protection protects a user's memory space from 
inadvertent access by another user, thereby preserving 
the integrity and privacy of the user's memory space. When 
a user's map is specified, the blocks of logical addresses 
required by the user's program are linked to blocks of 
physical addresses. The remaining (unused) logical blocks 
are declared invalid to that user, and an attempt to access 
them will cause a validity protection fault. 

Validity protection is always enabled, so the supervisor's 
responsibility is limited to declaring the appropriate blocks 
of logical addresses invalid. 

Write protection permits users to read the protected memory 
addresses, but not to write into them. In this way, the 
integrity of common areas of memory can be protected. 
An attempt to write into a write protected area of memory 
will cause a protection fault. 

When the user map is loaded, its address space is 
automatically write· protected. Write protection can be 
enabled or disabled by the supervisor. 

Indirect protection prevents the CPU f:r;om becoming caught 
in an indirection loop that could stop instruction execution. 
An indirection loop occurs when the effective address 
calculation follows a chain of indirect addresses and never 
finds a word with bit 0 set to O. Without indirect protection, 
the CPU would be unable to execute any further 
instructions, thus effectively halting the system until the 
console RESET switch is pressed. 

With indirect protection enabled, a chain of 15 indirect 
references will cause a protection fault. Indirect protection 
can be enabled or disabled by the supervisor, 

I/O protection protects the I/O devices inthe system from 
unauthorized access. In many systems, all I/Ooperations 
are performed through operating system calls. Clearly, it 
is undesirable to permit individual users to execute I/O 
instructions, since this will interfere with the operating 
system. If a user with I/O protection enabled attempts to 
execute an I/O instruction, a protection fault will occur. 
I/ 0 protection can be enabled or disabled by the supervisor. 

MMPU protection faults occur when a user attempts to violate 
one of the enabled types of protection. A protection fault 
takes the following form. 

• The current user map is disabled. 

• A 5-word return block is pushed onto the stac~. 

• Control· is transferred to the protection fault handler, 
through an indirect jump via location 3. 

Memory Management and Protection Unit 

2- 30 

Data General Corporation 

The system programmer must supply the protection fault 
handler. It determines the type of fault that occurred (using 
the Read Map Status instruction), and then takes the 
appropriate action. 

A protection fault can occur at any point during the 
execl.\tion of an instruction. Therefore, the return addres~ 
in the fifth word of the return block is not always correct 
For I/O protection faults, however, the fifth word will 
always be the logical address of the instruction following 
the instruction that caused the fault. 

MMPU Instructions 

The MMPU instructions control the actions of the MMPU. 
They are used by· the supervisor program to change the 
mapping functions or check status of the various maps. 

Load Effective Address Mode 

The Load Effective Address (LEf) instruction has the same 
format as some of the I/ 0 instructions. The MMPU 
therefore has a Lef mode bit which determines whether an 
I/O format instruction will be interpreted as an I/O or a 
LEf instruction. When the Lef mode bit is 1 (Lef mode 
enabled), all I/O format instructions are interpreted as 
Load Effective Address instructions. When the Lef mode 
bit is 0, all I/O format instructions are interpreted as I/O 
instructions. 

The Load Effective Address instruction is very useful for 
quickly loading a constant into an accumulator. In addition, 
the Lef mode can be used for II 0 protection. A user 
operating in the Lef mode is effectively denied access to 
any I/O devices, because all I/Oand Lef instructions are 
interpreted as Lef instructions in this mode. Note, however, 
that no indication is given if an I/O instruction is 
interpreted as a Lei instruction. 

When the MMPU is not operating in the Lei mode, all Lef 
and I/O instructions are interpreted as I/O instructions. 
With I/O protection enabled, these instructions will cause 
a protection fault in the normal manner. With I/O 
protection disabled, the Lei instruction will be executed 
as· an I/O instruction, if possible. 

Initial Conditions 

At power up, the user maps and the data channel maps are 
undefined, the MMPU is in unmapped mode, and 
unmapped logical page 31 is mapped to physical page 31. 

After an I/O Reset, the MMPU is in unmapped mode, the 
data channel maps are disabled, and unmapped logical 
page 31 is mapped to physical page 31. 







Standard Features 

NOTE: MMPU instructions can be executed in mapped 
mode if I/O protection and Let mode are disabled for 
that user. When executed in mapped mode, the Read 
Map Status, Initiate Page Check, and Page Check 
instructions will return the desired information 
without changing the map. The Map Single Cycle 
instruction will disable the user map after the next 
memory reference. The remainder of the instructions 
will change the map while the map is enabled, with 
undesirable results for this user, another user, or the 
system as a whole. 

Enabling Let mode only will convert all I/O 
instructions (including MMPU instructions) to Let 
instructions. The Load Map instruction, however, does 
not use the I/O format and therefore can still be 
executed. Enabling both Let mode and I/O protection 
will prevent execution of the Load Map instruction. 

The MMPU instructions are shown in Table 2.34. All except 
Load Map are in I/O format using the device mnemonic 
MAP. 

2- 31 

Mnem Instructions Action 

DIA Read Map Status Reads the status of the current map. 

DIC Page Check Provides the identity and some 
characteristics of the physical page 
corresponding to the logical page identified 
by the immediately preceding Initiate 
Page Check instruction. 

DOA Load Map Status Defines the parameters of a new map. 

DOB Map Supervisor Specifies the physical page corresponding 
Page 31 to logical page 31 of unmapped address 

space. 

DOC Initiate Page Identifies a logical page; selects map 
Check without changing status. 

LMP Load Map Loads successive words from memory into 
the MAP where they are used to define a 
user or data channel map. 

NIOP Map Single Cycle 'Maps one memory reference using the last 
user map. 

Table 2.34 MMPU instructions 

Memory Management and Protection Unit 





Chapter 3 
Optional Features 

In this chapter we describe the optional facilities for the 
ECLIPSE S/140 and briefly discuss the instructions that 
program them. These options are: 

• Floating Point Unit 

• Character Instructions 

• Burst Multiplexor Channel 

Chapter 4 contains the descriptions, in dictionary form, of 
all the ECLIPSE SI140 instructions, except those that 
control I/O. Chapter 5 is the I/O instruction dictionary. 

Floating Point Instructions 
The floating point instruction set performs rapid arithmetic 
operations on numbers with a much larger range than the 
fixed point instruction set can handle. Single-precision 
floating point operations are capable of about 7 significant 
decimal digits, while double-precision operations are 
capable of about 16 significant decimal digits. 

3- 33 

If the floating point instruction set is not installed, floating 
point instructions are executed as NO OPS. 

We represent a floating point value using a 4-byte-wide 
(for single-precision) or an 8-byte-wide (for 
double-precision) number. The 4- or 8-byte aggregate 
contains three fields: 

• A sign 

• An exponent, which is adjusted to maintain the correct 
value of the number 

• A fractional part called the mantissa, which, at the end 
of all floating point mathematical operations, is always 
adjusted to be greater than or equal to 1116 and less 
than 1 (Le., normalized) 

Figure 3.1 shows these fields. 

Floating Point Instructions 



Data General Corporation 

SINGLE PRECISION (4 BYTES) 

[IBYTEO I BYTE 2 BYTE 3 
01 7 

I BYTE 1 I 
8 15 16 23 24 31 

.. i~NT MANTISSA (6 HEX DIGITS) 

SIGN 

WORD ALIGNED FOR ALL FLOATING POINT OPERATIONS 

DOUBLE PRECISION (8 BYTES) 

II BYTEO I I BYTE 1 I BYTE 2 I I BYTE3 
01 7 

!WONENT 
8 15 16 23 24 31 

I BYTE4 I 
32 39 

I BYTE5 I 
40 47 

I BYTE 6 I 
48 53 

I BYTE 7 I 
54 63 

.. 
MANTISSA (14 HEX DIGITS) 

SIGN 

WORD ALIGNED FOR ALL FLOATING POINT OPERATIONS 

DG-04849 

Figure 3.1 Floating point format 

The magnitude of a floating point number is defined to be: 

Mantissa X 16(True value of the exponent) 

We represent zero in floating point format by a number 
with all bits zero, known as true zero. When a calculation 
results in a zero mantissa, the number is automatically 
converted to a true zero. 

The sign is bit 0 of the first byte. If the sign bit is 0, the 
number is positive. If the sign bit is 1, the number is 
negative. 

The exponent is contained in the low-order seven bits of 
the first byte. We use excess 64 representation. For both 
positive and negative exponents, the value is sixty-four 
greater than the true value of the exponent. Table 3.1 
illustrates this. 

Exponent True Value of 
Field Exponent 

0 -64 

64 0 

127 +63 

Table 3.1 Exponent fields and values 

Floating Point Instructions 

3- 34 

The mantissa is contained in bytes 1-3 (single precision) or 
bytes 1-7 (double precision). By definition, the hexadecimal 
point lies between byte 0 and byte 1 of a floating point 
number. 

To keep the mantissa in the range of 1/16 to 1, the results 
of each floating point calculation are normalized. A 
mantissa is normalized by shifting it left one hex digit 
(four bits) at a time, until the high-order four bits (the 
left-most four bits of byte 1) represent a nonzero quantity. 
For every hex digit shifted, the exponent is decreased by 
one. 

Floating Point Arithmetic 

Floating point arithmetic instructions require that the 
number be word aligned, so that bit 0 of the first byte of 
the number is bit 0 of the first word of a 2-word or 4-word 
area in memory. 

NOTE: The ECLIPSE Sf 140 floating point instructions 
assume normalized input numbers. Results are 
undefined if the input is not normalized. 



Optional Features 

Floating Point Registers 

There are five registers available to the programmer in 
the floating point processor. These are the four floating 
point accumulators (FP AC's) and the Floating Point Status 
Register (FPSR). The FP AC's are numbered 0-3 and are 
called FPACO, FPACl, FPAC2, and FPAC3. The FPSR is 
a 32-bit register that contains information about the present 
status of the floating point processor. Table 3.2 shows the 
FPSR. 

Guard Digit 

In order to increase accuracy, we use a 4-bit (one hex digit) 
guard digit during floating point arithmetic operations. 
The guard digit accepts and holds up to four bits shifted 
out (to the right) of the mantissa, and is used in all single 
precision and double precision operations. The processor 
truncates the guard digit before storing data at the end of 
the instruction. 

Floating Point Fault Conditions 

After every floating point operation, the floating point 
status register is checked for possible fault conditions. Four 
types of floating point fault conditions can be detected: 

Overflow 

Underflow 

Divide by zero 

Mantissa overflow 

3- 35 

o 1 2 3 456 
11 112 ' FP~OD , 151 

IJ Floating Point Program Counter 

17 ' 

Bits Name Contents or 
Function 

0 ANY Indicates that any of bits 
1-4 are set. 

1 OVF Overflow Indicator-while 
processing a floating point 
number, an exponent 
overflow occurred; the 
result is correct except the 
exponent is 128 too small. 

2 UNF Underflow Indicator-while 
processing a floating point 
number, an exponent 
underflow occurred; the 
result is correct except that 
the exponent is 128 too 
large. 

3 DVZ Divide by Zero-while 
processing a floating point 
number, a zero divisor was 
detected; division was 
aborted and the operands 
remain unchanged. 

4 MOF Mantissa Overflow-during 
a FSCAL instruction, a 
significant bit was shifted 
out of the high order end 
of the mantissa; this bit is 
also set during a Fix 
instruction if the result 
does not fit into the 
destination location. 

5 TE Trap Enable-If this bit is 1, 
setting any of bits 1-4 will 
result in a floating point 
fault. 

6 Z Zero bit-The result of the 
last floating point 
operation was zero. 

Table 3.2 Floating point status register (see continuation) 

Floating Point Instructions 



Bits Name Contents or 
Function 

7 N Negative bit-The result of 
the last floating point 
operation was less than 
zero. 

8-11" Reserved for future use. 

12-15 FPMOD Indicates computer series 
supporting the floating 
point instruction set. 

0000 S/200, C/300, 
S/230, C/330 

0001 S/130, 
S/250 standard FP 

0010 M/600, C/350, 
S/250 optional FP 

0011 S/ 140 hardware 
FP 

0100 Reserved for 
future use. 

0101 8660 SP, 8661 
SP 

0110 C/ 150, S/250 
standard EAU 

0111 Reserved 

1111 S/ 140 firmware FP 

16 Reserved for future use. 

17-31 FPPC Floating Point Program 
Counter - This is the logical 
address of the last floating 
point instruction executed. 
In the event of a floating 
point fault, this is the 
address of the floating 
point instruction that 
caused the fault. 

Table 3.2 Floating point status register (continued) 

*These bits are used as internal flags by the floating point unit; preserve 
them when saving the state of the FPSR. 

Floating Point Trap 

If the program has set bits 0 and 5 of the floating point 
status register to 1, any floating point fault condition 
initiates a floating point trap. When the fault occurs, the 
floating point unit saves the fault state until it detects the 
next floating point instruction that is not a Push Floating 
Point State (FPSH) or a Pop Floating Point State (FPOP). 
Then it pushes a return' block onto the stack. Table 3.3 
shows the format of the return block. 

NOTE: The return address is the address of the next 
floating point instruction to be executed. The address 
of the instruction that caused the fault is in the 
floating point status register. 

Floating Point Instructions 

3- 36 

Data General Corporation 

Word Description 

0 ACO 

1 ACl 

2 AC2 

3 AC3 

4 Bit 0: Carry; Bit 
1-15: return 

address 

Table 3.3 Return block format 

NOTE: When a floating point fault occurs and the 
trap enable bit is 1, the trap enable bit is set to 0 
before control is transferred to the floating point 
error handler. The trap enable bit should be set to 1 
before normal processing resumes. 

Next, the program jumps indirect via location 458, That 
location should contain the address of a software routine 
to handle the floating point fault. The fault handler 
remedies the fault condition and returns program control 
(via the return address in the return block) to the floating 
point instruction whose detection initiated the trap. That 
instruction is carried out. 

Table 3.4 lists all of the floating point instructions. Several 
instructions have two forms: One ends in S, indicating 
single-precision and the other ends in D, indicating 
double-precision formats. Both instruction forms function 
iden ticall y. 

Character Manipulation Instructions 

Four character instructions manipulate strings of 
characters. That is, the instructions move and compare 
characters and words of arbitrary lengths. Each unique 
character in a string occupies one byte. These instructions: 

Compare one byte string to another. 

Move a byte string from one area of memory to another. 

• Translate a character string from one data type to 
another. 

Table 3.5 describes the four character instructions. 



Optional Features 

Mnem Instructions Action Mnem Instructions Action 

FAB Absolute Value Sets the sign bit of an FPAC to O. FSCAL Scale Shifts the mantissa of the floating point 

FAMS Add (memory to Adds the floating point number in memo- number in FPAC either right or left. 

FAMD FPAC) ry to the floating point number in an depending upon the contents of bits 1-7 

FPAC. of ACO. 

FAS. Add (FPAC to Adds the floating point number in one FSEQ Skip On Zero Skips the next sequential word if the Z 

FAD FPAC) FPAC to the floating point number in flag of the FPSR is 1. 

another FPAC. FSGE Skip On Greater Skips the next sequential word if the N 

FCLE Clear Errors Sets bits 0-4 of the FPSR TO O. Than Or Equal To flag of the FPSR is O. 

FCMP Compare Floating Compares two floating point numbers Zero 

Point and sets the Z and N flags accordingly. FSGT Skip On Greater Skips the next sequential word if both 

FDMS Divide (FPAC by Divides the floating point number iii an Than Zero the Z and N flags of the FPSR are O. 

FDMD memory) FPAC by a floating point number in FSLE Skip On Less Skips the next sequential word if either 
memory. Than Or Equal To the Z flag or the N flag of the FPSR is 1. 

FDS Divide (FPAC by Divides the floating point number in one Zero 

FDD FPAC) FPAC by the floating point number in FSLT Skip On Less Than Skips the next sequential word if the N 

another FPAC. Zero flag of the FPSR is 1. 

FEXP Load Exponent Places bits 1-7 of ACO in bits 1-7 of the FSMS. Subtract (memory Subtracts the floating point number in 

specified FPAC. FSMD from FPAC) memory from the floating point number 

FFAS Fix To AC Converts the integer portion of a floating in an FPAC. 

point number to a signed two's comple FSND Skip On No Zero Skips the next sequential word if the 
ment integer and places the result in an Divide divide by zero (DVZ) flag of the FPSR is 
accumulator. O. 

FFMD Fix To Memory Converts the integer portion of a floatin! FSNE Skip On Non-Zero Skips the next sequential word if the Z 
point number to double precision intege flag of the FPSR is O. 
format and stores the result in two FSNER Skip On No Error Skips the next sequential word if bits 
memory locations. 1-4 of the FPSR are all O. 

FHLV Halve Divides the floating point number in FPAC FSNM Skip On No Man- Skips the next sequential word if the 
by 2. tissa Overflow mantissa overflow (MOF) flag of the 

FINT Integerize Sets the fractional portion of the floating FPSR is O. 
point number in the specified FPAC to FSNO Skip On No Over- Skips the next sequential word if the 
zero and normalizes the, result. flow overflow (OVF) flag of the FPSR is O. 

FLAS Float From AC Converts a signed two's complement FSNOD Skip On No Over- Skips the next sequential word if both 
number in an accumulator to a single flow And No Zero the overflow (OVF) flag and the divide b, 
precision floating point number. Divide zero (DVZ) flag of the FPSR are O. 

FLDS Load Floating Copies a floating point number from FSNU Skip On No Skips the next sequential word if the 
FLDD Point memory to a specified FPAC. Underflow underflow (UNF) flag of the FPSR is O. 

FLMD Float From Mem- Converts the contents of two memory FSNUD Skip On No Skips the next sequential word if both 
ory locations in integer format to floating Underflow And the underflow (UNF) flag and the divide 

point format and places the result in a No Zero Divide by zero (DVZ) flag of the FPSR are O. 
specified FPAC. 

FSNUO Skip On No Skips the next sequential word if both 
FLST Load Floating Copies the contents of two specified Underflow And the underflow (UNF) flag and the over-

Point Status memory locations to the FPSR. No Overflow flow (OVF) flag of the FPSR are O. 
FMMS. Multiply (FPAC by Multiplies the floating point number in FSS.FSD Subtract (FPAC Subtracts the floating point number in 
FMMD memory) FPAC by the floating point number in a from FPAC) one FPAC from the floating point number 

memory. in another FPAC. 
FMOV Move Floating Moves the contents of one FPAC to FSST Store Floating Copies the contents of the FPSR to two 

Point another FPAC. Point Status memory locations. 
FMS. Multiply (FPAC by Multiplies the floating point number in 
FMD FPAC) one FPAC by the floating point number 

FSTS. Store Floating Copies the contents of a specified FPAC 
FSTD Point into memory. 

in another FPAC. 
FTD Trap Disable Sets the trap enable flag of the FPSR to 

FNEG Negate Inverts the sign bit of the FPAC. O. 
FNOM Normalize Normalizes the floating point number in FTE Trap Enable Sets the trap enable flag of the FPSR to 

FPAC. 1. 
FNS No Skip No operation. 

FPOP Pop Floating Point Pops an la-word floating point block oft Table 3.4 Floating point instructions (continued) 
State the user stack and alters the state of the 

floating point unit. 

FPSH Push Floating Pushes an la-word floating point block 
Point State onto the user stack. 

FRH Read High Word Places the high-order 16 bits of an FPAC 
In ACO. 

FSA Skip Always, Skips the next sequential word. 

Table 3.4 Floating point instructions (see continuation) 
3- 37 

Floating Point Instructions 



Mnem Instructions Action 

CMP Character Compare one string of characters in 
Compare memory to another string. 

CMT Character Move Move a string of bytes from one area of 
Until True memory to another until it finds a delimiter 

in a user-specified table or until the source 
string is exhausted. 

CMV Character Move Move a string of bytes from one area of 
memory to another under control of the 
four accumulator values. 

CTR Character Translate a string of bytes from one data 
Translate type to another; either move it to another 

area of memory or compare it to a second 
string of bytes. 

Table 3.5 Character instructions 

Burst Multiplexor Channel 

The Burst Multiplexor Channel (BMC) is a high speed 
communications pathway which transfers data directly 
between main memory and high speed peripherals. It is 
controlled by the device controller performing the data 
transfer. No program control or CPU interaction is required 
except to set up the BMC's map tables. As a result, BMC 
data transfers are limited only by the memory speed. If 
the BMC and the CPU attempt to access memory at the 
same time, the CPU has priority, unless the BMC is in 
overdrive mode. 

The BMC enters the overdrive mode when the number of 
concurrent service requests by the device controllers equals 
or exceeds the number selected by hardware switches on 
the BMC-ERCC board. This mode gives prio"rity to the 
BMC. When the number of concurrent requests from 
device controllers drops below the figure selected for 
overdrive condition, the CPU regains priority. 

The maximum data rate for the BMC is: 

Input: 200 nsec per word, or 5 Megawords/second 

Output: 100 nsec per word, or 10 Megawords/second 

BMC Address Modes 

The BMC has two address modes. In the unmapped 
(physical) mode, the BMC receives 20-bit addresses from 
the device controllers and passes them directly to memory. 
As each data word is transferred to or from memory, the 
BMC increments the destination address, causing 
successive words to move to or from consecutive locations 
in memory. 

The other BMC address mode is mapped. When a controller 
initiates a data transfer, it can specify the mapped (logical) 
mode. The high order 10 bits of the logical address form a 
logical page number, which the BMC MAP translates into 
a lO-bit physical page number. This page number, 
combined with the 10 low order bits from the logical 
address, forms a 20-bit physical address which is passed to 
memory. 

Character Manipulation Instructions 

Data General Corporation 

BMC MAP 

The BMC contains its own MAP which consists of 16 map 
tables, each containing 32 map registers. It uses these map 
registers to translate logical page numbers into physical 
page numbers. 

Each map register holds a lO-bit physical page number 
and a: validity protection bit (the controlling program loads 
this information into the tables before I/O transfers begin). 
The BMC uses the logical page number as an index into 
the map table, and the contents of the selected map register 
become the 10 high-order bits of the physical address. If 
the device controller asks the BMC to access a map register 
that has its validity protection bit set, then the BMC will 
flag a validity protect error and terminate the transfer. 

Note that when the BMC performs a mapped transfer, it 
increments the destination address after it moves each 
data word. If the increment causes an overflow out of the 
10 low order bits, this selects a new map register for 
subsequent address translation. Depending on the contents 
of the map tables, this could mean that successive words 
are not transferred to or from consecutive pages in memory. 

BMC Instructions 
Map loads and dumps are initiated by an I/O Start 
command to the BMC. The BMC's Busy flag is set to 1 
when a map load or dump is in progress. There is no Done 
flag and the BMC never causes program interrupts. 

Device code 5 is assigned to the BMC. The assembler 
recognizes the mnemonic BMC for this device code. 

The operation of the BMC is essentially transparent to a 
program executing in the host processor. The program 
must set up the map tables, i.e., load the map registers, but 
the operation of the BMC and its MAP are controlled by 
the device controller performing the data transfer. The 
table below summarizes the BMC instructions. 

Mnem Name Function 

DIC Read Status Places the BMC status in an accumulator. 

DOA Specify Low Selects a map transfer operation and 
Order Address specifies the low order part of the memory 

address for loading or dumping the first 
map register. 

DOB* Specify High Specifies the high order part of a memory 
Order Address address for loading or dumping the first 

map register. 

DOB* Specify Initial Specifies the first map register of a group 
Map Register to be loaded or dumped. 

DOC* Specify Map Specifies the number of map registers to 
Register Count be loaded or dumped. 

DOC* Load Status Used for diagnostic purposes only. 

Table 3.6 Burst multiplexor channel instructions 

*Theseinstructions are dependent on accumulator contents. 

3- 38 



Chapter 4 
Standard Machine Instructions 

This chapter lists all the standard instructions for the 
ECLIPSE Sf 140. They appear in alphabetical order 
according to the mnemonics recognized by the assembler. 
Chapter 5 contains all the I/O instructions. 

For each instruction we include: 

• The mnemonic recognized by the assembler. 

• The bit format required. 

• The format for any arguments involved. 

A functional description of each instruction. 

Coding Aids 

We use certain conventions and abbreviations throughout 
this chapter to help you properly code each instruction for 
Data General's assembler. Briefly, they are these: 

Symbol Means 

[] or [J Square brackets indicate that the enclosed 
symbol (e.g .. [,skip]) is an optional 
operand or mnemonic. Code it only i.f you 
want to specify the option. 

BOLD Code operands or mnemonics printed in 
boldface exactly as shown. For example, 
code the mnemonic for the Move 
instruction: MOV. 

italic For each operand or mnemonic in italics, 
replace the item with a number or symbol 

- that provides the assembler value you need 
for that item (e.g., the proper accumulator 
number, an address, etc. 

We use the following abbreviations throughout this 
chapter: 

Abbr Meaning 

i Signed two's complement integer in the 
range -32,768 to 32,767; or unsigned in 
the range 0 to 65,535. 

N Integer in the range 0-3. 

n Integer in the range 1-4. 

AC Accumulator. 

ACS Source accum ulator. 

ACD Destination accumulator. 

FPAC Floating point accumulator. 

FACS Floating point source accumulator 

FACD Floating point destination accumulator. 

Setting the Index Field 

To set the index field, code a comma followed by an integer 
between 0-3. This will set the index field to the value you 
specified. You can also use the symbol dot (.) to set the 

. index field to 01 (PC relative). Dot can be read as the 

4- 39 

address of the current instruction. When you use dot, you 
usually follow it with a plus or minus sign and the 
displacement value, such as .+3 or .-12. 

If you are coding extended class instructions, note that 
using a dot (e.g., EIMP . +5) does not produce the same 
effect as coding a comma followed by a 1 (EIMP 5,1). When 
using a dot, the displacement is added to the address of the 
instruction (the first word of a two-word instruction). When 
using a comma, the displacement is added to the address of 
the word. containing the displacement (the second word of 
a two-word instruction). Therefore, EIMP . + 5 is equivalent 
to EIMP 4,1. 

Coding Aids 



Add Complement 

ADC[c][shj[#j acs,acd[,skipj 

Adds the logical complement of an unsigned integer to 
another unsigned integer. 

Initializes carry to the specified value, adds the logical 
complement of the unsigned! 16-bit number in ACS to the 
unsigned, -16-bit number in ACD, and places the result in 
the shifter. If the addition produces a carry of lout of the 
high-order bit, carry is complemented. The instruction 
then performs the specified shift operation, and loads the 
result of the shift into ACD if the no-load bit is O. If the 
skip condition is true, the next sequential word is skipped. 

NOTE: If the number in ACS is less than the number 
in ACD, the instruction complements carry. 

Add 

ADD[c][shj[#j acs,acd[,skipj 

Performs unsigned integer addition, and complements 
carry if appropriate. 

Initializes 'carry to the specified value, adds the unsigned, 
16-bit number in ACS to the unsigned, 16-bit number in 
ACD, and places the result in the shifter. If the addition 
produces a carry of lout of the high-order bit, carry is 
complemented. The instruction then performs the specified 
shift operation and places the result of the shift in ACD if 
the no-load bit is O. If the skip condition is true, the next 
sequential word is skipped. 

NOTE: If the sum of the two numbers being added is 
greater than 65,535, the instruction complements 
carry. 

ADI 

Data General Corporation 

Extended Add Immediate 

ADDI i,ac 

IMMEDIATE FIELD ,J o 

Adds a signed integer in the range -32,768 to +32,767 to 
the contents of an accumulator. 

Treats the contents of the immediate field as a signed, 
16-bit, two's complement number and adds it to the signed, 
16-bit, two's complement number contained in the specified 
accumulator, placing the result in the same accumulator. 
Carry remains unchanged. 

Add Immediate 

ADI n,ac 

N I AC I D I D I 0 I 0 I 0 I 0 I 0 1'1 0 10 10 I 
1 ' 2 3 '4 5 6 7 8 9 10 11 12 13 14 15 

4- 40 

Adds an unsigned integer in the range 1-4 to the contents 
of an accumulator. 

Adds the contents of the immediate field N, plus 1, to the 
unsigned, 16-bit number contained in the specified 
accumulator, placing the result in the same accumulator. 
Carry remains unchanged. 

NOTE: The assembler takes the coded value of nand 
subtracts one from it before placing it in the 
immediate field. Therefore, you should code the exact 
value that you wish to add. 

Example - Assume that AC2 contains 1777758, After the 
instruction ADI 4,2 is executed, AC2 contains 0000018 and 
carry is unchanged. 



Standard Machine Instructions 

AND With Complemented Source 

ANC acs,acd 

Forms the logical AND of the logical complement of the 
contents of ACS and the contents of ACD; and places the 
result in ACD. The instruction sets a bit position in the 
result to 1 if the corresponding bit position in ACS contains 
O. The contents of ACS remain unchanged. 

AND 

AND[c][sh][#j acs,acd[,skipj 

Forms the logical AND of the contents of two accumulators. 

Initializes the carry bit to the specified value and places 
the logical AND of ACS and ACD in the shifter. Each bit 
placed in the shifter is 1 only if the corresponding bit in 
both ACS and ACD is 1; otherwise the resulting bit is O. 
The instruction then performs the specified shift operation 
and places the result in ACD if the no-load bit is O. If the 
skip condition is true, the next sequential word is skipped. 

AND Immediate 

ANDI i,ac 

IMMEDIATE FIELD .J o 

Places the logical AND of the contents of the immediate 
field and the contents of the specified accumulator in the 
specified accumulator. 

4- 41 

Block Add and Move 

BAM 

Moves memory words from one location to another, adding 
a constant to each one. 

Moves words sequentially from one memory location to 
another, treating them as unsigned, 16-bit integers. After 
fetching a word from the source location, the instruction 
adds the unsigned, 16-bit integer in ACO to it. If the addition 
produces a carry of lout of the high-order bit, no indication 
is given. 

Bits 1-15 of AC2 contain the address of the source location. 
Bits 1-15 of AC3 contain the address of the destination 
location. The address in bits 1-15 of AC2 or AC3 is an 
indirect address if bit 0 of that accumulator is 1. In that 
case, the instruction follows the indirection ohain before 
placing the resultant effective address in the accumulatqr. 

The unsigned, 16-bit number in ACI is equal to the n9mber 
of words moved. This number must be greater thani 0 and 
less than or equal to 32,768. If the number in ACUsdutside 
these bounds, no data is moved and the· contents of the 
accumulators remain unchanged. 

AC Contents 

0 Addend 

1 Number of words to 
be moved 

2 Source address 

3 Destination address 

For each word moved, the count in ACl is decremented by 
one and the source and destination addresses in AC2 and 
AC3 are incremented by one. Upon completion of the 
instruction, ACl contains zeroes, and AC2 and AC3 point 
to the word following the last word in their respective 
fields. The contents of ACO remain unchanged. 

Words are moved in consecutive, ascending order 
according to their addresses. The next address after 777778 
is 0 for both fields. The fields may overlap in any way. 

NOTE: This instruction may require a long execution 
time. Another process can therefore interrupt it. If a 
Block Add and Move instruction is interrupted, the 
program counter is decremented by one before it is 
placed in location 0, so that it points to the interrupted 
instruction. Because the addresses and the word count 

DA. .... 



are updated after every word stored, any interrupt 
service routine that returns control to the interrupted 
program via the address stored in memory location 0 
will correctly restart the BAM instruction. 

When updating the source and destination addresses, 
the Block Add And Move instruction forces bit 0 of the 
result to O. This ensures that upon return from an 
interrupt, the instruction will not try to resolve an 
indirect address in either AC2 or AC3. 

Block Move 

BlM 

111011111011111111111010111010101 
o 2 3 4 6 8 9 10 11 12 13 14 15 

Moves memory words from one location to another. 

The Block Move instruction is the same as the Block Add 
And Move instruction in all respects except thatno addition 
is performed and ACO is not used. 

NOTE: The Block Move instruction is interrupt.ible in 
the same manner as the Block Add Ana Move 
instruction. 

Set Bit To One 

BTO acs,acd 

Sets the specified bit to 1. 

Forms a 32-bit bit pointer from the contents of ACS and 
ACD. ACS contains the high-order 16 bits and ACD 
containS the low-order 16 bits of the bit pointer. If ACS 
and ACD are specified as the same accumulator, the 
instruction treats the accumulator contents as the 
low-order 16-bits of the bit pointer and assumes the 
high-order 16 bits are O. 

The instruction then sets the addressed bit in memory to.1, 
leaving the contents of ACS and ACDunchanged. 

rl~A 

Set Bit To Zero 

BTl acs,acd 

Sets the addressed bit to O. 

Data General Corporation 

Forms a 32-bit bit pointer from the contents of ACS and 
ACD. ACS· contains the high-order 16 bits and ACD 
contains the low-order. 16 bits of the bit pointer. If ACS 
and ACD are specified as .the same accumulator, the 
instruction treats the accumulator contents as the 
low-order 16 bits of the bit pointer and assumes the 
high-order 16 bits areO. 

The instruction then sets the addressed bit in memory to 0, 
leaving the contents of ACS and ACD unchanged. 

Compare To Limits 

elM acs,acd 

ACS 

1 i 2 

Compares a signed integer with two other integers and 
skips if the first integer is between the other two. The 

. accumulators determine the location of the three integers. 

4- 42 

Compares the signed, two's complement integer in ACS to 
two signed, two's complement limit values, Land H. If the 
number in ACS is greater than or equal to L and less than 
or. equal to H, the next sequential word is skipped. If the 
number in ACS is less than L or greater than H, the next 
sequential word is executed; 

If ACS and ACD are specified as different accumulators, 
the address of the limit value L is contained in bits 1-15 of 
ACD. The limit value H is contained in the word following 
L. Bit 0 of ACD is ignored. 

If ACS and ACD are specified as the same accumulator, 
thf!ll the integer to be compared must be in that AC, and 
the limit values Land H must be in the two words following 
the instruction. L is the first word and H is the second 
word. The next sequential word is the third word following 
the instruction. 



Standard Machine Instructions 

Character Compare 

CMP 

1'1'101'1'1'1'1'1'101'101'1010101 o 2 3 4 6 B 9 10 11 12 13 14 15 

Under control of the four accumulators, compares two 
strings of bytes and returns a code in ACI reflecting the 
results of the comparison. 

The instruction compares the strings one byte at a time. 
Each byte is treated as an unsigned 8-bit binary quantity 
in the range 0-25510, If two bytes are not equal, the string 
whose byte has the smaller numerical value is; by 
definition, the lower valued string. Both strings remain 
unchanged. 

The four accumulators contain parameters passed to the 
instruction. Two accumulators specify the starting address, 
the number of bytes, and the direction of processing 
(ascending or descending addresses) for each string. Carry 
is used as an indicator. 

ACO specifies the length and direction of comparison for 
string 2. If the string is to be compared from its lowest 
memory location to the highest, ACO contains the unsigned 
value of the number of bytes in string 2. If the string is to 
be compared from its highest memory location to the 
lowest, ACO contains the two's complement of the number 
of bytes in string 2. 

ACI specifies the length and direction of comparison for 
string 1. If the string is to be compared from its lowest 
memory location to the highest, ACI contains the unsigned 
value of the nuniber of bytes in string 1. If the string is to 
be compared from its highest memory location to the 
lowest, ACI contains the two's complement of the number 
of bytes in string 1. 

AC2 contains a byte pointer to the first byte compared in 
string 2. When the string is compared in ascending order, 
AC2 points to the lowest byte. When the string is compared 
in descending order, AC2 pOints to the highest byte. 

AC3 contains a byte pointer to the first byte compared in 
string 1. When the string is compared in ascending order, 
AC3 pOints to the lowest byte. When the string is compared 
in descending order, AC3 points to the highest byte. 

The instruction uses carry as an indicator. 

4- 43 

Code Comparison 
Result 

- 1 string 1 < string 2 

0 string 1 = string 2 

+1 string 1 > string 2 

The strings may overlap in any way. Overlap will not 
effect the results of the comparison. 

Upon completion, ACO contains the number of bytes left 
to compare in string 2.ACl contains the return code as 
shown in the table above. AC2 contains a byte pointer 
either to the failing byte in string .2 (if an inequality is 
found), or to the byte following string 2 (if string 2 is 
exhausted). AC3 contains a byte pointer either to the failing 
byte in string 1 (if an inequality is found), or to the byte 
following string 1 (if string 1 is exhausted). Carry contains 
an indeterminate value. 

If the lengths of both strings 1 and 2 are zero, the instruction 
returns 0 in AC1. If the two strings are of unequal length, 
the instruction pads the shorter string with space characters 
<0408> and continues the comparison. 

Character Move Until True 

CMT 

Under control of the four accumulators, moves a string of 
bytes from one area of memory to another until either a 
table-specified delimiter character is moved or the source 
string is exhausted. 

The instruction copies the string one byte at a time. Before 
it moves a byte, the instruction uses that byte's value to 
determine if it is a delimiter. It treats the byte as an 
unsigned 8-bit binary integer (in the range 0-25510) and 
uses it as a bit index into a 256-bit delimiter table. If the 
indexed bit in the delimiter table is 0, the byte pending is 
not a delimiter, and the instruction copies it from the 
source string to the destination string. If the indexed bit in 
the delimiter table is 1, the byte pending is a delimiter; the 
instruction does not copy it, and the instruction terminates. 

The instruction processes both strings in the same direction, 
either from lowest memory locations to highest (ascending 
order), or from highest memory locations to lowest 
(descending order). Processing continues until there is a 
delimiter or the source string is exhausted. The four 
accumulators contain parameters passed to the instruction. 

ACO contains the address (word address), possibly indirect, 
of the start of the 256-bit (16-word) delimiter table. 

CMT 



ACI specifies the length of the strings and the direction of 
processing. If the source string is to be moved to the 
destination string in ascending order, ACI contains the 
unsigned value of the number of bytes in the source string. 
If the source string is to be moved to the destination string 
in descending order, ACI contains the two's complement 
of the number of bytes in the source string. 

AC2 contains byte pointer to the first byte to be written in 
the destination field. When the process is performed in 
ascending order, AC2 points to the lowest byte in the 
destination string. When the process is performed in 
descending order, AC2 points to the highest byte in the 
destination string. 

AC3 contains a byte pointer to the first byte to be processed 
in the source string. When the process is performed in 
ascending order, AC3 points to the lowest byte in the 
source string. When the process is performed in descending 
order, AC3 points to the highest byte in the source string. 

If the strings overlap in any way, a trap occurs. When the 
source and destination addresses are the same (Le., 
AC2 = AC3), no data is moved. Any other type of overlap 
may produce unusual side effects. 

Upon completion, ACO contains the resolved address of 
the translation table and ACI contains the number of bytes 
that were not moved. AC2 contains a byte pointer to the 
byte following the last byte written in the destination 
string. AC3 contains a byte pointer either to the delimiter 
or to the first byte following the source string. 

Character Move 

CMV 

Under control of the four accumulators, moves a string of 
bytes from one area of memory to another and returns a 
value in the Carry bit reflecting the relative lengths of 
. source and destination strings. 

The instruction copies the source string to the destination 
field, one byte at a time. The four accumulators contain 
parameters passed to the instruction. Two accumulators 
specify the starting address, number of bytes to be copied, 
and the direction of processing (ascending or descending 
addresses) for each field. 

ACO specifies the length and direction of processing for 
the destination field. If the field is to be processed from its 
lowest memory location to the highest, ACO contains the 
unsigne,d value of the number of bytes in the destination 
field. If the field is to be processed from its highest memory 
location to the lowest, ACO contains the two's complement 
of the number of bytes in the destination field. 

COB 

4- 44 

Data General Corporation 

ACl specifies the length and direction of processing for 
the source string. If the string is to be processed from its 
lowest memory location to the highest, ACl contains the 
unsigned value of the number of bytes in the source string. 
If the field is to be processed from its highest memory 
location to the lowest, ACl contains the two's complement 
of the number of bytes in the source string. 

AC2 contains a byte pointer to the first byte to be written 
in the destination field. When the field is written in 
ascending order, AC2 points to the lowest byte. When the 
field is written in descending order, AC2 points to the 
highest byte. 

AC3 contains a byte pointer to the first byte copied in the 
source string. When the field is copied in ascending order, 
AC3 points to the lowest byte. When the field is copied in 
descending order, AC3 points to the highest byte. 

The fields may overlap in any way. However, the 
instruction moves bytes one at a time, so certain types of 
overlap may produce unusual side effects. 

Upon completion, ACO contains 0 and ACl contains the 
number of bytes left to fetch from the source field. AC2 
contains a byte pointer to the byte following the destination 
field; and AC3 contains a byte pointer to the byte following 
the last byte fetched from the source field. 

NOTE: If ACO contains the number 0 at the beginning 
of this instruction, no bytes are fetched and none are 
stored. If ACl is 0 at the beginning of this instruction, 
the destination field is filled with space characters. 

If the source field is longer than the destination field, the 
instruction terminates when the destination field is filled 
and sets carry to 1. In any other case, the instruction sets 
carry to O. 

If the source field is shorter than the destination field, the 
instruction pads the destination field with space characters 
<0408>. 

Count Bits 

COB acs,acd 

ACS 

1 i 2 

Adds a number equal to the number of ones in ACS to the 
signed, l6-bit, two's complement number in ACD. The 
instruction leaves the contents of ACS and the state of 
carry unchanged. 

NOTE: If ACS and ACD are the same accumulator, 
the instruction functions as described above, except 
the contents of ACS will be changed. 



Standard Machine Instructions 

COM{C] {On] [:It 1 ULS,ucd[,Jkipj 

11 lACS I ACD 
o 1 '2 3 ' 4 

8 S~ 9 1 10 ~ 11 I : 1 13 ,SKIP, 151 

Forms the logical complement of the contents of an 
accumulator. 

Initializes carry to the specified value, forms the logical 
complement of the number in ACS, and performs the 
specified shift operation. The instruction then places the 
result in ACD if the no-load bit is O. If the skip condition is 
true, the next sequential word is skipped. 

Character Translate 

CTR 

111111101011111111101110111010101 
o 3 4 8 9 10 11 12 13 14 15 

Under control of the four accumulators, translates a string 
of bytes from one data type to another and either moves it 
to another area of memory or compares it to a second 
translated string. 

The instruction operates in two modes: translate and move, 
and translate and compare. 

When operating in translate and move mode, the 
instruction translates each byte in string 1, and places it in 
a corresponding position in string 2. Translation is 
performed by using each byte as an 8-bit index into a 
256-byte translation table. The byte addressed by the index 
then becomes the translated value. 

When operating in translate and compare mode, the 
instruction translates each byte in string 1 and string 2 as 
described above, and compares the translated values. Each 
translated byte is treated as an unsigned 8-bit binary 
quantity in the 0-25510, If two translated bytes are not 
equal, the string whose byte has the smaller numerical 
value is, by definition the lower valued string. Both strings 
remain unchanged. 

ACO specifies the address, either direct or indirect, of a 
word which contains a byte pointer to the first byte in the 
256-byte translation table. 

AC1 specifies the length of the two strings and the mode of 
processing. If string 1 is to be processed in translate and 
move mode, AC1 contains the two's complement of the 
number of bytes in the strings. If the strings are to be 

4- 45 

Pl'oc"s",.,d in translate and comklare mode, ACI contains 
the unsIgned value of the number of bytes in the strings. 
Both strings are processed from lowest memory address to 
highest. 

AC2 contains a byte pointer to the first byte in string 2. 

AC3 contains a byte pointer to the first byte in string 1. 

Upon completion of a translate and move operation, ACO 
contains the address of the word which contains the byte 
pointer to the translation table and AC1 contains O. AC2 
contains a byte pointer to the byte following string 2 and 
AC3 contains a byte pointer to the byte following string 1. 

Upon completion of a translate and compare operation, 
ACO contains the address of the word which contains the 
byte pointer to the translation table. AC1 contains a return 
code as calculated in the table below. AC2 contains a byte 
pointer to either the failing byte in string 2 (if an inequality 
was found) or the byte following string 2 if the strings 
were identical. AC3 contains a byte pointer to either the 
failing byte in string 1 (if an inequality was found) or the 
byte following string 1 if the strings were identical. 

Code Result 

-1 Translated value of string 1 is less than the 
translated value of string 2. 

0 Translated value of string 1 is equal to the 
translated value of string 2. 

+1 Translated value of string 1 is greater than 
the translated value of string 2. 

If the lengths of string 1 and string 2 are both zero, the 
compare option returns a 0 in AC1. 

The fields may overlap in any way. However, processing 
is done one character at a time, so unusual side effects may 
be produced by certain types of overlap. 

Decimal Add 

DAD acs,acd 

ACS 

1 ' 2 

Performs decimal addition on 4-bit binary coded decimal 
(BCD) numbers and uses the carry bit for a decimal carry. 

Adds the unsigned decimal digit contained in ACS bits 
12-15 to the unsigned decimal digit contained in ACD bits 
12-15. The carry bit is added to this result. The instruction 
places the decimal unit result in ACD bits 12-15, and the 
decimal carry in the carry bit. The contents of ACS and 
bits 0-11 of ACD remain unchanged. 

DAD 



NOTE: No validation of the input digits is performed. 
Therefore, if bits 12-15 of either ACS or ACD contain 
a number greater than 9, the results will be 
unpredictable. 

Example - Assume that bits 12-15 of AC2 contain 9; bits 
12-15 of AC3 contain 7; and the carry bit is O. After the 
instruction DAD 2,3 is executed, AC2 remains the same; 
bits 12-15 of AC3 contain 6; and the carry bit is 1, indicating 
a decimal carry from this Decimal Add. 

Double Hex Shift Left 

DHXL n,ac 

1 1 
N 

o 1 j 2 

Shifts the 32-bit number contained in AC and AC+ 1 left a 
number of hex digits depending upon the immediate field 
N. The number of digits shifted is equal to N+ 1. Bits 
shifted out are lost and the vacated bit positions are filled 
with zeroes. 

NOTE: If AC is specified as AC3, then AC+ 1 is ACO. 

The assembler takes the coded value of n and subtracts 
one from it before placing it in the immediate field. 
Therefore, the programmer should code the exact 
number of hex digits that he wishes to shift. 

If n is equal to 3, the contents of AC+ 1 are placed in 
AC and AC+ 1 is filled with zeroes. 

Double Hex Shift Right 

DHXR n,ac 

1 1 
N 

1 j 2 o 10 11 12 13 14 15 

Shifts the 32-bit number contained in AC and AC + 1 right 
a number of hex digits depending upon the immediate 
field N. The number of digits shifted is equal to N+ 1. Bits 
shifted out are lost and the vacated bit positions are filled 
with zeroes. 

NOTE: If AC is specified as AC3, then AC+ 1 is ACO. 
The assembler takes the coded value of n and subtracts 
one from it before placing it in the immediate field. 
Therefore, the programmer should code the exact 
number of hex digits that he wishes to shift. 

If N is equal to 3, the contents of AC are placed in 
AC+ 1 and AC is filled with zeroes. 

DlVS 

4- 46 

Unsigned Divide 

DIV 

Data Gcm:rill Corpm::niftJ\ 

Divides the unsigned 32-bit integer in two accumulators 
by the unsigned contents of a third accumulator. The 
quotient and remainder each occupy one accumulator. 

Divides the unsigned 32-bit nv.:nber contained in ACO and 
AC1 by the unsigned, 16-bit number in AC2. The quotient 
and remainder are unsigned, 16-bit numbers and are placed 
in AC1 and ACO, respectively. Carry is set to O. The contents 
of AC2 remain unchanged. 

NOTE: Before the divide operation takes place, the 
number in ACO is compared to the number in AC2. If 
the contents of ACO are greater than or equal to the 
contents of AC2, an overflow condition is indicated. 
Carry is set to 1, and the operation is terminated. All 
operands remain unchanged. 

Signed Divide 

DIVS 

111110111111111111111010111010101 
o 3 4 8 9 10 11 12 13 14 15 

Divides the signed 32-bit integer in two accumulators by 
the signed contents of a third accumulator. The quotient 
and remainder each occupy one accumulator. 

The signed, 32-bit two's complement number contained in 
ACO and ACI is divided by the signed, 16-bit two's 
complement number in AC2. The quotient and remainder 
are signed, 16-bit numbers and occupy AC1 and ACO, 
respectively. The sign of the quotient is determined by the 
rules of algebra. The sign of the remainder is always the 
same as the sign of the dividend, except that a zero quotient 
or a zero remainder is always positive. Carry is set to O. 
The contents of AC2 remain unchanged. 

NOTE: If the magnitude of the quotient is such that it 
will not fit into AC1, an overflow condition is 
indicated. Carry is set to 1, and the operation is 
terminated. The contents of ACO and AC1 are 
unpredictable. 

Sign Extend and Divide 

DIVX 

Extends the sign of one accumulator into a second 
accumulator and performs a Signed Divide on the result. 



Standard Machine Instructions 

Extends the sign of the number in ACI into ACO by placing 
a copy of bit 0 of ACI in each bit of ACO. After extendiIlg 
the sign, the instruction performs a Signed Divide 
operation. 

Double Logical Shift 

DLSH acs,acd 

ACS 

1 ' 2 

Shifts the 32-bit number contained in ACD and ACD+ 1 
either left or right depending on the number contained in 
bits 8-15 of ACS. The signed, 8-bit two's complement 
number contained in bits 8-15 of ACS determines the 
direction of the shift and the number of bits to be shifted. 
If the number in bits 8-15 of ACS is positive, shifting is to 
the left; if the number in bits 8-15 of ACS is negative, 
shifting is to the right. If the number in bits 8-15 of ACS is 
zero, no shifting is performed. Bits 0-7 of ACS are ignored. 

AC3+ 1 is ACO. The number of bits shifted is equal to the 
magnitude of the number in bits 8-15 of ACS. Bits shifted 
out are lost, and the vacated bit positions are filled with 
zeroes. Carry and the contents of ACS remain unchanged. 

NOTE: If the magnitude of the number in bits 8-15 of 
ACS is greater than 31 10, all bits of ACD are set to O. 
Carry and the contents of ACS remain unchanged. 

Decimal Subtract 

DSB acs,acd 

Performs decimal subtraction on 4-bit binary coded 
decimal (BCD) numbers and uses carry as a decimal 
borrow. 

Subtracts the unsigned decimal digit contained in ACS bits 
12-15 from the unsigned decimal digit contained in ACD 
bits 12-15. Subtracts the complement of carry from this 
result. Places the decimal unit position of the final result 
in ACD bits 12-15 and the complement of the decimal 
borrow in carry. In other words, if the final result is 
negative, the instruction indicates a borrow and sets carry 
to O. If the final result is positive, the instruction indicates 
no borrow and sets carry to 1. The contents of ACS and 
bits 0-11 of ACD remain unchanged. In addition, the result 
is in ten's complement form (Le., it is ten greater than the 
actual binary result.) 

Example - Assume that bits 12-15 of AC2 contain 9; bits 
12-15 of AC3 contain 7; and carry contains O. After the 
instruction DSB 3,2 is executed, AC3 remains the same; 
bits 12-15 of AC2 contain 1; and carry is set to 1, indicating 
no borrow from this Decimal Subtract. 

4- 47 

Dispatch 

DSPA ac,[@]displacement[,index] 

DISPLACEMENT 

Conditionally transfers control to an address selected from 
a table. 

Computes the effective address E. This is the address of a 
dispatch table. The dispatch table consists of a table of 
addresses. Immediately before the table are two signed, 
two's complement limit words, Land H. The last word of 
the table is in location E+ H~L, as shown in Figure 4.1. 

I'!: .......... : .................... ;:::; 

L V 
1-___ H __ --f"V 

E____. V 

l/ 

I ........ 

E+H_L--E3 
Figure 4.1 Diagram of dispatch table 

Compares the signed,two's complement number contained 
in the accumulator to the limit words. If the number in the 
accumulator is less than L or greater than H, sequential 
operation continues with the instruction immediately after 
the Dispatch instruction. 

If the number in AC is greater than or equal to L and less 
than or equal to H, the instruction fetches the word at 
location E-L+number. If the fetched word is equal to 
1777778, sequential operation continues with the instruction 
immediately after the Dispatch instruction. If the fetched 
word is not equal to 1777778, the instruction treats this 

DSPA 



word as the intermediate address in the effective address 
calculation. After the indirection chain, if any, has been 
followed, the instruction places the effective address in 
the program counter and sequential operation continues 
with the word addressed by the updated value of the 
program counter. 

Decrement And Skip If Zero 

DSZ [@]displacement[,index] 

1 @ 1 INDEX 1 . DISPLACEMENT 

4 5 6 '7 8 

Decrements the addressed word, then skips if the 
decremented value is zero. 

Decrements by one the word addressed by E and writes 
the result back into that location. If the updated value of 
the location is zero, the instruction skips the next sequential 
word. 

Extended Decrement and Skip if Zero 

EDSZ [@]displacement[,index] 

DISPLACEMENT ,j 

Decrements the addressed word, then skips if the 
decremented value is zero. 

Computes the effective address, E. Decrements by one the 
contents of the location addressed by E and writes the 
result back into that location. If the updated value of the 
word is zero, the instruction skips the next sequential word. 

Extended Increment And Skip If Zero 

EISZ [@]displacement[,index] 

DISPLACEMENT ,j 

EJSR 

Data General Corporation 

Increments the addressed word, then skips if the 
incremented value is zero. 

Computes the effective address, E . Increments by one the 
contents of the location specified by E, and writes the new 
value back into memory at the same address. If the updated 
value of the location is zero, the instruction skips the next 
sequential word. 

4- 48 

Extended Jump 

EJMP [@]displacement[,index] 

DISPLACEMENT 

Computes the effective address, E, and places it in the 
program counter. Sequential operation continues with the 
word addressed by the updated value of the program 
counter. 

Extended Jump To Subroutine 

EJSR [@]displacement[,index] 

1 0 1 ~ 1 ~ 1 ~ 1 4 1 : 1 ~N~E~ 1 ~ 1 : 110 111 1121 ~31 ~41 ~51 

DISPLACEMENT 

Increments and stores the value of the program counter in 
AC3, then places a new address in the program counter. 

Computes the effective address, E. The instruction then 
places the address of the next sequential instruction (the 
instruction following the EJSR instruction) in AC3. Places 
E in the program counter. Sequential operation continues 
with the word addressed by the updated value of the 
program counter. 

NOTE: The instruction computes E before it places 
the incremented program counter in AC3. 



Standard Machine Instructions 

Extended Load Accumulator 

ELDA ac,[@]displacement[,index] 

DISPLACEMENT 

Moves a copy of the contents of a memory word into the 
specified accumulator. 

Calculates the effective address, E. Places the contents of 
the location addressed by E in the specified accumulator. 
The contents of the location addressed by E remain 
unchanged. 

Extended Load Byte 

ELDB ac ,displacement[,index] 

1 1 
DISPLACEMENT 

o 

Copies a byte from memory into an accumulator. 

Forms a byte pointer from the displacement in the 
following way: shifts the 16-bit number contained in the 
displacement field to the right one bit, producing a 15-bit 
address and a I-bit byte indicator. Uses the value of the 
index bits to determine an offset value. Adds the offset 
value to the 15-bit address produced from the displacement 
to give a memory address. The byte indicator designates 
which byte of the addressed word will be loaded into bits 
8-15 of the specified accumulator. The instruction sets bits 
0-7 of the specified accumulator to O. 

The instruction destroys the previous contents of the 
specified accumulator, but it does not alter either the index 
value or the displacement. 

The argument index selects the source of the index value. 
It may have values in the range of 0-3. The meaning of 
each value is shown below: 

4- 49 

Index Index Value 
Bits 

~ --
00 0 

01 Address of the displacement field (Word 2 
of this instruction) 

10 Contents of AC2 

11 Contents of AC3 

Extended Load Effective Address 

ELEF ac,[@]displacement[,index] 

1 : I' I : I 3 ~C 41 : I ~N~E~ I ~ I ~ 1'0 I" 1'21 ~31 ~41 ~51 

DISPLACEMENT .J 
Places an effective address in an accumulator. 

Computes the effective address, E, and places it in bits 1-15 
of the specified accumulator. Sets bit 0 of the accumulator 
to O. The previous contents of the accumulator are lost. 

Figure 4.2 shows some different uses of the ELEF instruction. 

ELEF O,TABLE 

ELEF 1,-55,3 

ELEF 0,.+0 

DG-06562 

;The logical address of TABLE 

;is placed in ACO. 
;Subtracts 000055 (octail from 

;the unsigned integer in AC3 and 

;places the result in AC 1 . 

;Places the logical address of this 

;Load effective address 
;instruction in ACO. 

Figure 4.2 Examples of ELEF instruction 

ELEF 



Extended Store Accumulator 

ESTA ac,[@]displacement[,index] 

DISPLACEMENT 

Stores the contents of an accumulator into a memory 
location. 

The contents of the specified accumulator are placed in 
the word addressed by the effective address, E. The 
previous contents of the location addressed by E are lost. 
The contents of the specified accumulator remain 
unchanged. 

Extended Store Byte 

ESTD ac,displacement[,index] 

AC INDEX 

3 I 4 6 I 7 8 10 11 12 13 14 15 

I I DISPLACEMENT 

o 

Copies into memory the byte contained in the right half of 
an accumulator. 

Forms a byte pointer from the displacement as follows: 
shifts the 16-bit number contained in the displacement 
field to the right one bit, producing a 15-bit address and a 
I-bit byte indicator. Uses the value of the index bits to 
determine an offset value. Adds the offset value to the 
15-bit address produced from the displacement field to 
give a memory address. The byte indicator determines 
which byte of the addressed location will receive bits 8-15 
of the specified accumulator. 

The argument index selects the source of the index value. 
It may have values in the range of 0-3; the meaning of 
each value is as follows: 

4- 50 

Data General Corporation 

Index Index Value 
Bits 

00 0 

01 Address of the displacement field (Word 2 
of this instruction) 

10 Contents of AC2 

11 Contents of AC3 

Absolute Value 

FAD fpac 

FPAC 

3 I 4 7 8 9 10 11 12 13 14 15 

Sets the sign bit of FP AC to o. Also sets the exponent to 
zero if the mantissa is zero; otherwise leaves bits 1-63 of 
FPAC unchanged. Updates the Z and N flags in the 
floating point status register to reflect the new contents of 
FPAC. 

Add Double (FPAC to FPAC) 

FAD facs,facd 

FACS 

o 1 I 2 

Adds the floating point number in F ACS to the floating 
point number in F ACD and places the normalized result 
in F ACD. Destroys the previous contents of F ACD, leaves 
the contents of F ACS unchanged and updates the Z and N 
flags in the floating point status register to reflect the new 
contents of F ACD. 

Floating point addition consists of an exponent comparison 
and a mantissa addition. The exponents of the two numbers 
are compared, and the mantissa of the number with the 
smaller exponent is shifted right. This mantissa alignment 
is accomplished by taking the absolute value of the 
difference between the two exponents and shifting the 
mantissa right that number of hex digits. One guard digit 
is provided so that all but four bits shifted out of the right 
end of the mantissa are lost, and do not take part in the 
addition. If all significant digits are shifted out of the 
mantissa, the operation is equivalent to adding the number 
with the larger exponent to zero. This requires a shift of at 
least 15 hex digits. 

After alignment, the mantissas are added together. The 
result of this addition is termed the intermediate result. 
One guard digit is provided for the intermediate result, 
which is used if normalization is required. The sign of the 
intermediate result is determined from the signs of the 
two operands by the rules of algebra. If the mantissa 
addition produces a carry out of the high-order bit, the 
mantissa in the intermediate result is shifted right one hex 



Standard Machine Instructions 

digit and the exponent is incremented by one. If this shift 
produces an exponent overflow, the OVF bit is set in the 
floating point status register, and the number in FACD is 
correct, except that the exponent is 128 too small. 

If there is no mantissa overflow, the mantissa of the 
intermediate result is examined for leading hex zeros. If 
the mantissa is found to be all zeros, a true zero is placed in 
the F ACD and the instruction terminates. 

If the mantissa is non-zero, the intermediate result is 
normalized, and the number placed in the FACD. If the 
normalization results in an exponent underflow, the UNF 
bit is set in· the floating point status register and the 
instruction is terminated. The number in theF ACD is 
correct except that the exponent is 128 too large. 

Add Double (Memory to FPAC) 

FAMD fpac,[@]displacement[,index] 

1 : 1 INDEX 1 FPAC 1 0 I' 1 0 1 0 I' 1'1 0 I' 1 0 1 0 1 0 I 
1 0 2 3 0 4 5 6 7 8 9 10· 11 12 13 14 15· 

DISPLACEMENT oj 

Adds the floating point number in the source location to 
the floating point number in FPAC and places the 
normalized result in FP AC. Destroys the previous contents 
of FPAC, leaves the contents of the source location 
unchanged and updates the Z . and N flags in the floating 
point status register to reflect the new contents of FPAC. 

Computes the effective address E which addresses a 4-word 
(double precision) operand. 

Floating point addition consists of an exponent comparison 
and a mantissa addition. The exponents of the two numbers 
are compared, and the mantissa of the number with the 
smaller exponent is shifted right. This mantissa alignment 
is accomplished by taking the absolute value of the 
difference between the two exponents and shifting the 
mantissa right that number of hex digits. One guard digit 
is provided so that all but four bits shifted out of the right 
end of the mantissa are lost, and do not take part in the 
addition. If all significant digits are shifted out of the 
mantissa, the operation is equivalent to adding the number 
with the larger exponent to zero. This requires a shift of at 
least 15 hex digits. 

After alignment, the mantissas are added together. The 
result of this addition is termed the intermediate result. 
One guard digit is provided for the intermediate result, 
which is used if normalization is required. The sign of the 
intermediate result is determined from the signs of the 
two operands by the rules of algebra. If the mantissa 
addition produces a carry out of the high-order bit, the 

4- 51 

mantissa in the intermediate result is shifted right one hex 
digit and the exponent is incremented by one. If this shift 
produces an exponent overflow, the OVF bit is set in the 
floating point status register, and the number in FPAC is 
correct except that the exponent is 128 too small. 

If there is no mantissa overflow, the mantissa of the 
intermediate result is examined for leading hex zeros. If 
the mantissa is found to be all zeros, a true zero is placed in 
the FP AC and the instruction terminates. 

If the mantissa is non-zero, .the intermediate result is 
normalized, and the number placed in the FP AC. If the 
normalization results in an exponent underflow, the UNF 
bit is set in the floating point status register and the 
instruction is terminated. The number in the FP AC is 
correct except that the exponent is 128 too large. 

.Add Single (Memory to FPAC) 

FAMS fpac,[@]displacement[,index] 

DISPLACEMENT oj 

Adds the floating point number in the source location to 
the floating· point number in FP AC and places the 
normalized result iri FP AC. Destroys the previous contents 
of FP AC, leaves the contents of the source location 
unchanged and updates the Z and N flags in the floating 
pointstatus register to reflect the new contents of FPAC. 

Computes the effective address, E, which addresses a 
2-word (single precision) operand. 

Floating point addition consists of an exponent comparison 
and a mantissa addition. The exponents of the two numbers 
are compared, and the mantissa of the number with the 
smaller exponent is shifted right. This mantissa alignment 
is accomplished by taking the absolute value of the 
difference between the two exponents and shifting the 
mantissa right that number of hex digits~ One guard digit 
is provided so that all but four bits shifted out of the right 
end of the mantissa are lost, and do not take part in the 
addition. 

If all significant digits are shifted out of the mantissa, the 
operation is equivalent to adding the number with the 
larger exponent to zero. This requires a shift of 7 hex 
digits. 

After alignment, the mantissas are added together. The 
result of this addition is termed the intermediate result. 
One guard digit is provided for the intermediate result, 
which is used if normalization is required. The sign of the 

FAMS 



intermediate result is determined from the signs of the 
two operands by the rules of algebra. If the mantissa 
addition produces a carry out of the high-order bit, the 
mantissa in the intermediate result is shifted right one hex 
digit and the exponent is incremented by one. If this shift 
produces an exponent overflow, the OVF bit is set in the 
floating point status register, and the number in FPAC is 
correct, except that the exponent is 128 too small. 

If there is no mantissa overflow, the mantissa of the 
intermediate result is examined for leading hex zeros. If 
the mantissa is found to be all zeros, a true zero is placed in 
the FP AC and the instruction terminates. 

If the mantissa is non-zero, the intermediate result is 
normalized, and the number placed in the FP AC. If the 
normalization results in an exponent underflow, the UNF 
bit is set in the floating point status register and the 
instruction is terminated. The number in the FP AC is 
correct except that the exponent is 128 too large. 

Add Single (FP AC to FPAC) 

FAS facs,facd 

Adds the floating point number in F ACS to the floating 
point number in F ACD and places the normalized result 
in FACD. Destroys the previous contents of FACD, leaves 
the contents of F ACS unchanged and updates the Z and N 
flags in the floating point status register to reflect the new 
contents of FACD. 

Floating point addition consists of an exponent comparison 
and a mantissa addition. The exponents of the two numbers 
are compared, and the mantissa of the number with the 
smaller exponent is shifted right. This mantissa alignment 
is accomplished by taking the absolute value of the 
difference between the two exponents and shifting the 
mantissa right that number of hex digits. One guard digit 
is provided so that all but four bits shifted out of the right 
end of the mantissa are lost, and do not take part in the 
addition. If all significant digits are shifted out of the 
mantissa, the operation is equivalent to adding the number 
with the larger exponent to zero. This requires a shift of 7 
hex digits. 

After alignment, the mantissas are added together. The 
result of this addition is termed the intermediate result. 
One guard digit is provided for the intermediate result, 
which is used if normalization is required. The sign of the 
intermediate result is determined from the signs of the 
two operands by the rules of algebra. If the mantissa 
addition produces a carry out of the high-order bit, the 
mantissa in the intermediate result is shifted right one hex 
digit and the exponent is incremented by one. If this shift 
produces an exponent overflow, the OVF bit is set in the 
floating point status register, and the number in F ACD is 

FCMP 

4- 52 

, 

Data General Corporation 

correct, except that the exponent is 128 too small. 

If there is no mantissa overflow, the mantissa of the 
intermediate result is examined for leading hex zeros. If 
the mantissa is found to be all zeros, a true zero is placed in 
the F ACD and the instruction is terminated. 

If the mantissa is non-zero, the intermediate result is 
normalized, and the number placed in the F ACD. If the 
normalization results in an exponent underflow, the UNF 
bit is set in the floating point status register and the 
instruction is terminated. The number in the F ACD is 
correct, except that the exponent is 128 too large. 

Clear Errors 

FCLE 

Sets bits 0-4 of the floating point status register to O. 

NOTE: The I/O RESET instruction will also set these 
bits to O. 

Compare Floating Point 

FCMP facs,facd 

FACS 

1 i 2 

Compares two floating point numbers and sets the Z and N 
flags in the floating point status register accordingly. 

Algebraically compares the floating point numbers in 
F ACS and F ACD to each other and updates the Z and N 
flags in the floating point status register to reflect the 
result. Leaves the contents of F ACS and F ACD unchanged. 
The results of the compare and the corresponding flag 
settings are shown below. 

Z 

1 

0 

0 

N Result 

0 FACS=FACD 

1 FACS>FACD 

0 FACS<FACD 

NOTE: Unnormalized operands give unspecified 
results. 



Standard Machine Instructions 

Divide Double (FPAC by FPAC) 

FDD jacs,facd 

1 : 1 
FACS 

1 :A~~ 1 ~ 1 ~ 1-; 1 B 1 9 110 1 ~1 1121 ~31 ~41 ~51 1 0 2 

Divides the floating point number in FACD by the floating 
point number in F ACS and places the normalized result in 
FACD. Destroys the previous contents of FACD, leaves 
the contents of FACS unchanged, and updates the I and N 
flags in the floating point status register to reflect the new 
contents of F ACD. 

The source operand is checked for a zero mantissa. If the 
mantissa is zero, the DVI bit is set in the floating point 
status register and the instruction is terminated. The 
number in F ACD remains unchanged. If the mantissa is 
nonzero, the previous contents of F ACD are lost. The two 
mantissas are compared and if the mantissa of the number 
in F ACD is greater than or equal to the mantissa of the 
source operand, the mantissa of the number in F ACD is 
shifted right one hex digit and the exponent of the number 
in F ACD is increased by one. 

The mantissa in F ACD is then divided by the mantissa of 
the source operand and the quotient is the mantissa of the 
intermediate result. The exponent of the source operand is 
subtracted from the exponent in F ACD and 64 is added to 
this result. This addition of 64 maintains the excess 64 
notation. The result of the exponent manipulation becomes 
the exponent of the intermediate result. The sign of the 
intermediate result is determined from the signs of the 
two operands by the rules of algebra. The result is placed 
in F ACD. (Because the operands are assumed to be 
normalized, and division with such operands produces a 
normalized result, no normalization of the result takes 
place.) 

If the. exponent processing produces either overflow or 
underflow, the corresponding bit in the floating point status 
register is set. The number in F ACD is correct except that, 
for exponent overflow, the exponent is 128 too small, and 
for exponent underflow, the exponent is 128 too large. 

4- 53 

Divide Double (FPAC by Memory) 

FDMD jpac,[@jdisplacement[,indexj 

1 : 1 INDEX 1 FPACI 0 11 11 11 11 11 1 0 11 1 0 1 0 1 0 I 1 0 2 3 0 4 5 6 7 B 9 10 11 12 1314 15 

DISPLACEMENT oj 

Divides the floating point number in FP AC by the floating 
point number in the source location and places the 
normalized result in FP AC. Destroys the previous contents 
of FPAC, leaves the contents of the source location 
unchanged, and updates the I and N flags in the floating 
point status register to reflect the new contents of FP AC. 

Computes the effective address, E, which addresses a 
4-word (double precision) operand. 

The source operand is checked for a zero mantissa. If the 
mantissa is zero, the DVI bit is set in the floating point 
status register and the instruction is terminated. The 
number in FP AC remains unchanged. If the mantissa is 
nonzero, the previous contents of FPAC are lost. The two 
mantissas are compared and if the mantissa of the number 
in FP AC is greater than or equal to the mantissa of the 
source operand, the mantissa of the number in FP AC is 
shifted right one hex digit and the exponent of the number 
in FP AC is increased by one. 

The mantissa in FPAC is then divided by the mantissa of 
the source operand and the quotient is the mantissa of the 
intermediate result. The exponent of the source operand is 
subtracted from the exponent in FPAC and 64 is added to 
this result. This addition of 64 maintains the excess 64 
notation. The result of the exponent manipulation becomes 
the exponent of the intermediate result. The sign of the 
intermediate result is determined from the sign of the two 
operands by the rules of algebra. The result is placed in. 
FP AC. (Because the operands are assumed to be 
normalized, and division with such operands produces a 
normalized result, no normalization of the result takes 
place.) 

If the exponent processing produces either overflow or 
underflow, the corresponding bit in the floating point status 
register is set. The number in FPAC is correct except that, 
for exponent overflow, the exponent is 128 too small, and 
for exponent underflow, the exponent is 128 too large. 

FDMD 



Divide Single (FPAC by Memory) 

FDMS fpac,[@]displacement[,index] 

DISPLACEMENT oj 

Divides the floating point number in FPAC by the floating 
point number in the source location and places the 
normalized result in FP AC. Destroys the previous contents 
of FP AC, leaves the contents of the source location 
unchanged, and updates the I and N flags in the floating 
point status register to reflect the new contents of FPAC. 

Computes the effective address E which addresses a 2-word 
(single precision) operand. 

The source operand is checked for a zero mantissa. If the 
mantissa is zero, the DVI bit is set in the floating point 
status register and the instruction is terminated. The 
number in FPAC remains unchanged. If the mantissa is 
nonzero, the previous contents of FP AC are lost. The two 
mantissas are compared and if the mantissa of the number 
in FPAC is greater than or equal to the mantissa of the 
source operand, the mantissa of the number in FPAC is 
shifted right one hex digit and the exponent of the number 
in FPAC is increased by one. 

The mantissa in FP AC is then divided by the mantissa of 
the source operand and the quotient is the mantissa of the 
intermediate result. The exponent of the source operand is 
subtracted from the exponent in FPAC and 64.is added to 
this result. This addition of 64 maintains. the excess 64 
. notation. The result of the exponent manipulation becomes 
the .exponent of the intermediate result. The sign of the 
intermediate result is determined from the sign of the two 
operands by the rules of algebra. The result is placed in 
FP AC. (Because the operands are assumed· to be 
normalized, and division with such operands produces a 
normalized result, no normalization of the result takes 
place.) 

If the exponent processing produces either overflow or 
underflow, the corresponding bit in the floating point status 
register is set. The number in FP AC is correct except that, 
for exponent overflow, the exponent is 128 too small, and 
for exponent underflow, the exponent is 128 too large. 

.FEXP 

4- 54 

Data General Corporation 

Divide Single (FPACby FPAC) 

FDS facs,facd 

FACS I :A~~ I ~ I ~ I I 8 I ~ 110 I ~1 1121 ~31 ~41 ~51 1 0 2 

Divides~ the floating point number in FACD by the floating 
point number in F ACS and places the normalized result in 
F ACD. Destroys the previous contents of F ACD, leaves 
the contents of F ACS unchanged; and updates the I and N 
flags in the floating point status register to reflect the new 
contents of FACD. 

The source operand is checked for a zero mantissa. If the 
mantissa is zero, the DVI bit is set· in the floating point 
status register and the instruction is terminated. The 
number in F A,CD remains unchanged. If the mantissa is 
nonzero, the previous contents of F ACD are lost. The two 
mantissas are compared, and if the mantissa of the number 
in FACD is greater than or equal to the mantissa of the 
source operand, the mantissa of the number in F ACD is 
shifted right one hex digit and the exponent ofthe number 
in F ACD is increased by one. 

The mantissa in F ACD is then divided by the mantissa of 
the source operand and the quotient is the mantissa of the 
intermediate result. The exponent of the source operand is 
subtracted from the exponent in F ACD and 64 is added to 
this result. This addition of 64 maintains the excess 64 
notation. The result of the exponent manipulation becomes 
the exponent of the intermediate result. The sign of the 
intermediate result is determined from the sign of the two 
operands by the rules of algebra. The result is placed in 
F ACD. (Because the operands are assumed to be 
normalized, arid division with such operands produces a 
normalized result, no normalization of the result takes 
place.) 

If ·the exponent processing produces either overfiow or 
underflow, the corresponding bit in the floating point status 
register is set. The number in FACD is correct except that, 
for exponent overflow, the exponent is 128 too small, and 
for exponent underflow, the exponent is 128 too large. 

Load Exponent 

FEXP fpac 

FPAC 

3 0 4 

Places bits 1-7 of ACO in bits 1-7 of the specified FPAC. 
Ignores bits 0 and 8-15 of ACO. Leaves unchanged bits 0 
and 8-63 of FP AC and the entire contents of ACO. Also sets 



Standard Machine Instructions 

bits 0-7 (the sign and exponent) to zero if bits 8-63 (the 
mantissa) of FPAC are zero. Leaves bits 1-7 of FPAC 
unchanged if FP AC contains true zero. 

NOTE: The exponent contained in bits 1-7 of ACO is 
assumed to be in Excess 64- representation. 

Fix ToAC 

FFAS ac,fpac 

1 ~C 2 I :p~~1 ~ I ~ I I 8 I ~ 110 I ~ 1121 ~31 ~41 ~51 

Converts the integer portion of the floating point number 
contained in the specified FPAC to a signed two's 
complement integer and places the result in an 
accumulator. 

Forms the absolute value of the integer portion of the 
floating point number in FP AC. Extracts the 15 least 
significant bits from this value and, if the number in FPAC 
is negative, forms the two's complement of the integer. 
Then places the result in the specified accumulator, sets 
the Z and N flags in the floating point status register to 0, 
and leaves the contents of FP AC unchanged. 

If the number in FP AC is less than -32,768 or greater than 
+32,767, this instruction sets the MOF flag in the floating 
point status register to 1. 

NOTE: If the lower 15 bits of the integer formed from 
the number in FPAC are all 0, the sign bit of the 
result will be zero, regardless of the sign of the 
original 'Y1;umber, unless FPAC is equal to -32,768. 

Fix To Memory 

FFMD fpac,[@]displacement[,index] 

I' I INDEX I FPAC I' I D I' I' I' I' I 0 I' I 0 I 0 I 0 I 
o 1 '2 3 '4 5 6 7 8 9 10 11 12 13' 14 15 

DISPLACEMENT ,J 
Converts the integer portion of a floating point number to 
double-precision integer format and stores the result in 
two memory locations. 

4- 55 

Forms the absolute value of the integer portion of the 
floating point number in FPAC. Extracts the 31 least 
significant bits from this value and, if the number in FPAC 
is negative, forms the two's complement of the integer. 
Then places the result into the locations addressed by E, 
sets the Z and N flags in the floating point status register 
to 0, and leaves the contents of FPAC unchanged. 

If the number in FPAC is less than -2,147,483,648 or greater 
than +2,147,483,647, this instruction sets the MOF flag in 
the floating point status register to 1. 

NOTE: If the lower 31 bits of the integer formed from 
the number in FPAC are all 0, the sign bit of the 
result will be zero, .unless FP AC is equal to 
-2,147,483,648. 

Halve 

FHLV fpac 

FPAC 

3 ' 4 

Divides the floating point number in FP AC by 2. 

Shifts the mantissa contained in FPAC right one bit 
position, fills the vacated bit position with a zero and places 
the bit shifted out in the guard digit. Then normalizes the 
number and places the result in FP AC. Sets the UNF flag 
in the floating point status register to 1 if the normalization 
process causes an exponent underflow. The number in 
FPAC is then correct, except that the exponent is 128 too 
large. Updates the Z and N flags in the floating point 
status register to reflect the new contents of FP AC. 

Integerize 

FINT fpac 

FPAC 

3 ' 4 

Zeros the fractional portion (if any) of the number 
contained in the specified FP AC, and then normalizes the 
number. The instruction updates the Z and N flags in the 
floating point status register to reflect the new contents of 
the specified FP AC. 

NOTE: If the absolute value of the number contained 
in the specified FPAC is less than 1, the specified 
FPAC is set to true zero. 

FINT 



Float From AC 

FLAS ac,fpac 

AC 

1 0 2 

Converts a two's complement number to floating point 
format. 

Converts the signed two's complement number contained 
in the specified accumulator to a single precision floating 
point number, places the result in the specified FPAC, and 
sets the low-order 32 bits of the FP AC to O. Leaves the 
contents of the specified accumulator unchanged and 
destroys the previous contents of the FPAC. Updates the Z 
and N flags in the floating point status register to reflect 
the new contents of FP AC. 

The range of numbers that can be converted is -32,768 to 
+32,767. 

Load Floating Point Double 

FLDD fpac,[@]displacement[,index] 

DISPLACEMENT oj 

Moves four words out of memory into a specified FP AC. 

Computes the effective address, E, and places the double 
precision floating point number at that address in FP AC. 
Also sets the sign and exponent to zero if the mantissa is 
zero. Destroys the previous contents of FP AC and updates 
the Z and N flags in the FPSR to reflect the new contents 
of FPAC. 

Load Floating Point Single 

FLDS fpac,[@]displacement[,index] 

DISPLACEMENT 

FLST 

Data General Corporation 

Moves two words out of memory into a specified FP AC. 

Computes the effective address E and places the single 
precision floating point number at that address in FP AC. 
Also sets the sign and exponent to zero if the mantissa is 
zero. Destroys the previous contents of FP AC and updates 
the Z and N flags in the floating point status register to 
reflect the new contents of FPAC. The low-order 32 bits of 
FP AC are set to O. 

Float From Memory 

FLMD fpac,[@]displacement[,index] 

DISPLACEMENT oj 

Converts the contents of two memory locations to floating 
point format and places the result in a specified FP AC. 

Computes the effective address E, converts the 32-bit, 
signed, two's complement number addressed by E to a 
double precision floating point number, and places the 
result in the specified FP AC. Destroys the previous 
contents of FP AC, and updates the Z and N flags in the 
floating point status register to reflect the new contents of 
the FPAC. 

The range of numbers that can be converted is 
-2,147,483,648 to +2,147,483,647. 

4- 56 

Load Floating Point Status 

FLST [@]displacement[,index] 

DISPLACEMENT 

Moves the contents of two specified memory locations to 
the floating point status register. 



Standard Machine Instructions 

Computes the effective address, E, places the 32-bit operand 
addressed by E in the floating point status register, and 
sets the condition codes to the values of the loaded bits. 

Multiply Double (FPAC by FPAC) 

FMD facs,facd 

FACS 

1 :A~~ 1 ~ 1 ~ 1 1 ~ I 9 1'0 1 ~, 1'21 ~31 ~41 ~51 , , 2 

Multiplies the floating point number in FACD by the 
floating point number in FACS and places the normalized 
result in FACD. Destroys the previous contents of FACD, 
leaves the contents of F ACS unchanged, and updates the Z 
and N flags in the floating point status register to reflect 
the new contents of F ACD. 

The mantissas of the two numbers are multiplied together 
to give the mantissa of the intermediate result. One guard 
digit is provided for the intermediate result, which is used 
if normalization is required. The exponents of the two 
numbers are added together and 64 is subtracted. This· 
subtraction of 64 maintains the excess 64 notation. The 
result of the exponent manipulation becomes the exponent 
of the intermediate result. The sign of the intermediate 
result is determined from the signs of the two operands by 
the rules of algebra. 

If the exponent processing produces either overflow or 
underflow, the result is held until normalization, as that 
procedure may correct the condition. If normalization does 
not correct the condition, the corresponding flag in the 
floating· point status register is set to 1. The number is 
correct except that, for exponent overflow, the exponent is 
128 too small, and for exponent underflow, the exponent is 
128 too large. 

Multiply Double (FPAC by Memory) 

FMMD fpac,[@]displacement[,index] 

DISPLACEMENT 

Multiplies the floating point number in FPAC by the 
floating point number in the source location and places the 
normalized result in FP AC. Destroys the previous contents 
of FPAC, leaves the contents of the source location 
unchanged, and updates the Z and N flags in the floating 
point statui; register to reflect the new contents of FP AC. 

4- 57 

Computes the effective address, E, which addresses a 
4-word (double precision) operand. 

The mantissas of the two numbers are multiplied together 
to give the mantissa of the intermediate result. One guard 
digit is provided for the intermediate result, which is used 
if normalization is required. The exponents of the two 
numbers are added together and 64 is subtracted. This 
subtraction of 64 maintains the excess 64 notation. The 
result of the exponent manipulation becomes the exponent 
of the intermediate result. The sign of the intermediate 
result is determined from the signs of the two operands by 
the rules of algebra. 

If the exponent processing produces either overflow or 
underflow, the result is held until normalization, as that 
procedure may correct the condition. If normalization does 
not correct the condition, the corresponding flag in the 
floating point status register is set to 1. The number is 
correct except that, for exponent overflow, the exponent is 
128 too small, and for exponent underflow, the exponent is 
128 too large. 

Multiply Single (FPAC by Memory) 

FMMS fpac,[@]displacement[,index] 

DISPLACEMENT 

Multiplies the floating point number in FP AC by the 
floating point number in the source location and places the 
normalized result inFP AC. Destroys the previous contents 
of FPAC, leaves the contents of the source location 
unchanged, and updates the Z and N flags in the floating 
point status register to reflect the new contents of FP AC. 

Computes the effective address E which addresses a 2-word 
(single precision) operand. 

The mantissas of the two numbers are multiplied together 
to give the mantissa of the intermediate result. One guard 
digit is provided for the intermediate result, which is used 
if normalization is required. The exponents of the two 
numbers are added together and 64 is subtracted. This 
subtraction of 64 maintains the excess 64 notation. The 
result of the exponent manipulation becomes the exponent 
of the intermediate result. The sign of the intermediate 
result is determined from the signs of the two operands by 
the rules of algebra. 

If the exponent processing produces either overflow or 
underflow, the result is held until normalization, as that 
procedure may correct the condition. If normalization does 
not correct the condition, the corresponding flag in the 

FMMS 



floating point status register is set to 1. The number is 
correct except that, for exponent overflow, the exponent is 
128 too small, and for exponent underflow, the exponent is 
128 too large. 

Move' Floating Point 

FMOV 

I I FACS FACD 

1 ' 2· 3 ' 4 o 

Moves the contents of one FPAC to another FPAC. 
I 

flaces the contents ofFACS in FACD, destroys the 
previous contents ofF ACD, and leaves the contents of 
F ACS unchanged. If the mantissa in F ACS is zero, the sign 
and exponent in F ACD are also set to zero. The Z and N 
flags in the floating point status register are set to reflect 
the new contents of F ACD. 

Multiply Single (FPAC by FPAC) 

FMS 

IJ FACS FACD 

1 ' 2 3 ' 4 

Multiplies the floating point number in F ACD by the 
floating point number in F ACS and places the normalized 
result in FACD. Destroys the previous contents of F ACD, 
leaves the contents of F ACS unchanged, and updates the Z 
and N flags in the floating point status register to reflect 
the new contents of F ACD. 

The mantissas of the two numbers are multiplied together 
to give the mantissa of the intermediate result. One guard 
digit is provided for the intermediate result, which is used 
if normalization is required. The exponents of the two 
numbers are added together and 64 is subtracted. This 
subtraction of 64 maintains the excess 64 notation. The 
result of the exponent manipulation becomes the exponent 
of the intermediate result. The sign of the intermediate 
result is determined from the signs of the two operandsby 
the rules of algebra. 

If the exponent processing produces either overflow or 
underflow, the result is held until normalization, as that 
procedure may correct the condition. If normalization does 
not correct the condition, the corresponding flag in the 
floating point status register is set to 1: The number is 
correct except that, for exponent overflow, the exponent is 
128 too small, and for exponent underflow, the exponent is 
128 too large. 

FPOP 

Negate 

FNEG fpac 

FPAC 

3 ' 4 

Data General Corporation 

Inverts the sign bit of FPAC. Bits 1-63 of FPAC remain 
unchanged. Also sets the sign and exponent to zero if the 
mantissa in FPAC is zero. Updates the Z and N flags in 
the floating point status register to reflect the new contents 
of FPAC. If FPAC contains true zero, the sign bit remains 
unchanged. 

'Normalize 

4- 58 

FNOM fpac 

FPAC 

3 ' 4 

Normalizes the floating point numbers in FPAC. Sets a 
true zero in FPAC if all the bits of the mantissa are,zero. 
Sets the UNF flag in the FPSR if an exponent underflow 
occurs. The number in FPAC is then correct, except that 
the exponent is 128 too large. 

The Z and N flags in the floating point status register are 
set to reflect the new contents of FP AC. 

No Skip 

FNS 

The next sequential word is executed. 

Pop Floating Point State 

FPOP 

Pops an 18-word floating point return block off the user 
stack and alters the state of the floating point unit. The ' 
words popped and their destinations are diagrammed in 
Figure 4.3. 



Standard Machine Instructions 

STACK POINTER -.. 
AFTER FPOP 

FACO{ 

FAC'{ 

FAC'{ 

STACK POINT~AC J 
BEFORE FPOP 

DG-00604 

L 

FPSRBITS 0-15 

FPSR BITS 16-31 

1----------
1----------

1----------

1----------
1----------

f----------

----------
f-----------

1----------

----------
1-----------
f----------

~ 

Figure 4.3 Effects of FPOP instruction 

:;:::i 

I ..... 

I ..... 

I ..... 

k 
1.-' 

1.-' 
~ 

1.-' 

k 

k 
..... 

". 
k 
l,..-
...... 

l,..-

,,-
I ...... 

I". 

NOTE: Because of the potentially long time required 
to perform some floating point instructions in 
relation to I/O interrupt requests, these instructions 
are interruptible. Because the F ACD, stack pointer, 
and program counter are not updated until the 
completion of these instructions, any interrupt 
service routines that return control to the interrupted 
program via the program counter stored in location 
o will correctly restart these instructions. 

Push Floating Point State 

FPSH 

\'\'\'\0\0\'\'\0\'\'\'\0\'\0\0\0\ o 3 4 7 8 9 10 11 12 13 14 15 

Pushes an 18-word floating point return block onto the 
user stack, leaving the contents of the floating point 
accumulators and the floating point status register 
unchanged. The format of the 18 words pushed is shown in 
Figure 4.4. 

4- 59 

STACK POINTER-. 
BEFORE FPSH 

FACO{ 

FAC'{ 

FAC'{ 

STACK POINT,:AC 31 
AFTER FPSH ~ 1 

DG-00603 

~ -,:J 

, ..... 
FPSR BIS 0-1 5 I ...... 

FPSR BITS 16-31 ..... 

- _________ v 

1----------v' 
1----------1,... 

..... 

1----------v-
f---------- ~-

1--------- ~-

I ...... 

f---------- -~ 

f---------- 10-' 

f---------- k 
I ...... 

---------
--------- k 

---------
~ 

l....J 

Figure 4.4 Effects of FPSH instruction 

Read High Word 

FRH jpac 

FPAC 

3 ' 4 

Moves the high-order bits of a floating point word to an 
accumulator. 

Places the 16 high-order bits of FPAC into ACO, losing the 
previous contents of ACO, and leaving unchanged the 
contents of FP AC and the floating point status register. 

Skip Always 

FSA 

The next sequential word is skipped. 

FSCAL 



Scale 

FSCAL fpac 

Shifts the mantissa of the floating point number in FPAC 
either right or left, depending upon the contents of bits 
1-7 of ACO. Leaves the contents of ACO unchanged. 

Treats bits 1-7 of ACO as an exponent in Excess 64 
representation. Computes the difference between this 
exponent and the exponent in FP AC by subtracting the 
exponent in FPAC from the number contained in ACO bits 
1-7. If the difference is zero, the instruction stops. If the 
difference is positive, the instruction shifts the mantissa 
contained in FP AC right that number of hex digits. If the 
difference is negative, the instruction shifts the mantissa 
contained in FPAC left that number of hex digits and sets 
the MOF flag in the floating point status register. After the 
shift, the contents of bits 1-7 of ACO replace the exponent 
contained in FP AC. Bits shifted out of either end of the 
mantissa are lost. If the entire mantissa is shifted out of 
FP AC, the instruction sets FP AC to true zero. The 
instruction sets the Z and N flags in the floating point 
status register to reflect the new contents of FPAC. 

Subtract Double (FPAC from FPAC) 

FSD 

FACS :A:~ 1 ~ 1 ~ 1 ~ 1 8 1 9 1'0 1 ~, 1'21 ~31 ~41 ~51 , , 2 

Subtracts the floating point number in F ACS from the 
floating point number in F ACD and places the normalized 
result in the F ACD. Destroys the previous contents of 
F ACD, leaves the contents of F ACS unchanged, and 
updates the Z and N flags in the floating point status 
register to reflect the new contents of F ACD. 

The subtraction is performed by inverting the sign bit of 
the source operand and adding. After the sign inversion, 
the operation is equivalent to floating point addition. (See 
FAD.) 

Skip On Zero 

FSEQ 

Skips the next sequential word if the Z flag of the floating 
point status register is 1. 

FSMD 

Data General Corporation 

Skip On Greater Than Or Equal To Zero 

FSGE 

Skips the next sequential word if the N flag of the floating 
point status register is O. 

4- 60 

Skip On Greater Than Zero 

FSGT 

Skips the next sequential word if both the Z and N flags of 
the floating point status register are O. 

Skip On Less Than Or Equal To Zero 

FSLE 

Skips the next sequential instruction if either the Z flag or 
the N flag of the floating point status register is 1. 

Skip On Less Than Zero 

FSLT 

Skips the next sequential word if the N flag of the floating 
point status register is 1. 

Subtract Double (Memory from FPAC) 

FSMD fpac,[@]displacement[,index] 

DISPLACEMENT ,J 
Subtracts the floating point number in the source location 
from the floating point number in FP AC and places the 
normalized result in the FP AC. Destroys the previous 
conterits of FP AC, leaves the contents of the source location 
unchanged, and updates the Z and N flags in the floating 
point status register to reflect the new contents of FPAC. 



Standard Machine Instructions 

The instruction computes the effective address, E, which 
addresses a 4-word (double precision) operand. 

The subtraction is performed by inverting the sign bit of 
the source operand and adding. After the sign inversion, 
the operation is equivalent to floating point addition. (See 
FAMD.) 

Subtract Single (Memory from FPAC) 

FSMS fpac,[@]displacement[,index] 

DISPLACEMENT 

Subtracts the floating point number in the source location 
from the floating point number in FPAC and places the 
normalized result in the FP AC. Destroys the previous 
contents of FP AC, leaves the contents of the source location 
unchanged, and updates the Z and N flags in the floating 
point status register to reflect the new contents of FPAC. 

The instruction computes the effective address, E, which 
addresses a 2-word (single precision) operand. 

The subtraction is performed by inverting the sign bit of 
the source operand and adding. After the sign inversion, 
the operation is equivalent to floating point addition. (See 
FAMS.) 

Skip On No Zero Divide 

FSND 

Skips the next sequential word if the divide by zero (DVZ) 
flag of the floating point status register is O. 

Skip On Non-Zero 

FSNE 

Skips the next sequential word if the Z flag of the floating 
point status register is O. 

4- 61 

Skip On No Error 

FSNER 

Skips the next sequential word if bits 1-4 of the floating 
point status register are all O. 

Skip On No Mantissa Overflow 

FSNM 

Skips the next sequential word if the mantissa overflow 
(MOF) flag of the floating point status register is O. . 

Skip On No Overflow 

FSNO 

Skips the next sequential word if the overflow (OVF) flag 
of the floating point status register is O. 

Skip On No Overflow and No Zero Divide 

FSNOD 

Skips the next sequential word if both the overflow (OVF) 
flag and the divide by zero (DVZ) flag of the floating point 
status register are O. 

FSNOD 



Skip On No Underflow 

FSNU 

Skips the next sequential word if the underflow (UNF) flag 
of the floating point status register is O. 

Skip On No Underflow And No Zero Divide 

FSNUD 

Skips the next sequential word if both the underflow (UNF) 
flag and the divide by zero (DVl) flag of the floating point 
status register are O. 

Skip On No Underflow And No Overflow 

FSNUO 

Skips the next sequential word if both the underflow (UNF) 
flag and overflow (OVF) flag of the floating point status 
register are O. 

FSST 

4- 62 

Data General Corporation 

Subtract Single (FPAC from FPAC) 

FSS jacs,jacd 

Subtracts the floating point number in F ACS from the 
floating point number in F ACD and places the normalized 
result in the F ACD. Destroys the previous contents of 
F ACD, leaves the contents of F ACS unchanged, and 
updates the Z and N flags in the floating point status 
register to reflect the new contents of F ACD. 

The subtraction is performed by inverting the sign bit of 
the source operand and adding. After the sign inversion, 
the operation is equivalent to floating point addition. 

Store Floating Point Status 

FSST [@Jdisplacement[,indexJ 

DISPLACEMENT ,J 
Moves the contents of the FPSR to two specified memory 
locations. 

Computes the effective address, E, and places the 32-bit 
contents of the FPSR in the two consecutive memory 
locations addressed by E and E + 1. 



Standard Machine Instructions 

Store Floating Point Double 

FSID jpac,[@]displacement[,index] 

DISPLACEMENT 

Stores the contents of a specified FPAC into a memory 
location. 

Computes the effective address, E, and places the floating 
point number contained in FPAC in memory beginning at 
the location addressed by E. Destroys the previous contents 
of the addressed memory location and leaves unchanged 
the contents of FP AC and the condition codes in the FPSR. 

Store Floating Point Single 

FSIS jpac,[@]displacement[,index] 

DISPLACEMENT 

Stores the contents of a specified FP AC into a memory 
location. 

Computes the effective address E and places the floating 
point number contained in FPAC in memory beginning at 
the location addressed by E. Destroys the previous contents 
of the addressed memory location and leaves unchanged 
the contents of FP AC and the condition codes in the FPSR. 
For single precision, only the high-order 32 bits of FPAC 
are stored. 

Trap Disable 

FID 

Sets the trap enable bit of the FPSR to O. 

NOTE: The I/O RESET instruction will set this bit to 
O. 

4- 63 

Trap Enable 

FIE 

Sets the trap enable bit of the FPSR to 1. 

NOTE: When a floating point fault occurs and the 
trap enable bit is 1, the trap enable bit is set to 0 
before control is transferred to the floating point 
error handler. The trap enable bit should be set to 1 
before normal processing is resumed. 

Halve 

HLV ac 

Divides the contents of an accumulator by 2 and rounds 
the result toward zero. 

The signed, 16-bit two's complement number contained in 
the specified AC is divided by 2 and rounded toward O. 
The result is placed in the specified AC. 

If the number is positive, division is accomplished by 
shifting the number right one bit. If the number is negative, 
division is accomplished by negating the number, shifting 
it right one bit, and negating it again. 

Hex Shift Left 

HXL n,ac 

N 

1 ' 2 

Shifts the contents of AC left a number of hex digits 
depending upon the immediate field N. The number of 
digits shifted is equal to N + 1. Bits shifted out are lost, and 
the vacated bit positions are filled with zeroes. If N is equal 
to 3, then all 16 bits of AC are shifted out and all bits of AC 
are set to O. 

NOTE: The assembler takes the coded value of Nand 
subtracts one from it before placing it in the 
immediate field. Therefore, you should code the exact 
number of hex digits that you wish to shift. 

HXL 



Hex Shift Right 

HXR n,ac 

N 

1 ' 2 

Shifts the contents of AC right a number of hex digits 
depending upon the immediate field, N. The number of 
digits shifted is equal to N+1. Bits shifted out are lost, and 
the vacated bit positions are filled with zeroes; If N is equal 
to 3, then all 16 bits of AC are shifted out and all bits of AC 
are set to O. 

NOTE: The assembler takes the coded value of Nand 
subtracts one from it before placing it in the 
immediate field. Therefore, you should code the exact 
number of hex digits that you wish to shift. 

Increment 

INC[c][shJ[#] acs,acd[,skip] 

Increments the contents of an accumulator. 

Initializes carry to the specified value. Increments the 
unsigned, 16-bit number in ACS by one and places the 
result in the shifter. If the incrementation produces a carry 
of lout of the high order bit, the instruction complements 
carry. Performs the specified shift operation, and loads the 
result of the shift into ACD if the no-load bit is O. If the 
skip condition is true, the next sequential word is skipped. 

NOTE: lfthe number in ACS is 1777778 the instruction 
complements carry. 

ISZ 

4- 64 

Data General Corporation 

Inclusive OR 

lOR acs,acd 

Forms the logical inclusive OR of the contents of ACS and 
the contents of ACD and places the result in ACD. Sets a 
bit posi tion in the result to 1 if the corresponding bi t position 
in one or both operands contains a 1; otherwise, the 
instruction sets the result bit to O. The contents of ACS 
remain unchanged. 

Inclusive OR Immediate 

IORI i,ac 

IMMEDIATE FIELD ,,J 
o 

Forms the logical inclusive O~ of the contents of the 
immediate field and the contents of the specified AC and 
places the result in the specified AC. 

Increment And Skip If Zero 

ISZ [@]displacement[,index] 

DISPLACEMENT ,J 
Increments the addressed word, then skips if the 
incremented value is zero. 

Increments the word addressed by E and writes the result 
back into memory at that location. If the updated value of 
the location is zero, the instruction skips the next sequential 
word. 



Standard Machine Instructions 

Jump 

IMP 

I 0 I 0 I 0 I 0 I 0 I @ I INDEX 
o 1 2 3 4 5 6 0 7 

DISPLACEMENT 

8 

Computes the effective address, E, and places it in the 
program counter. Sequential operation continues with the 
word addressed by the updated value of the program 
counter. 

Jump To Subroutine 

ISR [@]displacement[,index] 

DISPLACEMENT oj 

Increments and stores the value of the program counter in 
AC3, and then places a new address in the program counter. 

Computes the effective address, E; then places the address 
of the next sequential instruction in AC3. Places E in the 
program counter. Sequential operation continues with the 
word addressed by the updated value of the program 
counter. 

NOTE: The instruction computes E before it places 
the incremented program counter in AC3. 

Load Accumulator 

LDA ac,[@]displacement[,index] 

AC I @ I INDEX I DISPLACEMENT 

Copies a word from memory to an accumulator. 

Places the word addressed by the effective address, E, in 
the specified accumulator. The previous contents of the 
location addressed by E remain unchanged. 

4- 65 

Load Byte 

LDB acs,acd 

ACS 

1 0 2 

Moves a byte from memory (as addressed by a byte pointer 
in one accumulator) to the second accumulator. 

Places the 8-bit byte addressed by the byte pointer 
contained in ACS in bits 8-15 of ACD. Sets bits 0-7 of ACD 
to O. The contents of ACS remain unchanged unless ACS 
and ACD are the same accumulator. 

Load Effective Address 

LEF ac,[@]displacement[,index] 

DISPLACEMENT 

Computes the effective address, E, and places it in bits 1-15 
of the specified accumulator. Sets bit 0 of the accumulator 
to O. The previous contents of the AC are lost. 

If you reference an auto-incrementing or 
auto-decrementing location during the effective address 
calculation, the instruction increments or decrements as 
appropriate the contents of the auto-incrementing or 
-decrementing location. 

Figure 4.5 shows some different uses of the LEF instruction. 

LEF O,TABLE 

LEF 1,-55,3 

LEF 0,. +0 

DG-06563 

Figure 4.5 Examples of LEF instruction 

;The logical address of 

;TABLE is placed in ACO. 

;Subtracts 000055 (octal) 

;from the unsigned integer 

;in AC3 and the result is 

;placed in AC1. 

;Places the address of this 

;Load effective address 
;instruction in ACO. 

NOTE: The LEF instruction can only be used in a 
mapped system, while in the user mode. With the Let 
mode bit set to 1, all I/O and LEF instructions will be 
interpreted as LEF instructions. 

Be sure that I/O protection is enabled or the Let mode 
bit is set to 1 before using the LEF instruction. If you 
issue a LEF instruction in the I/O mode, with 
protection disabled, the instruction will be interpreted 
and executed as an I/O instruction, with possibly 
undesirable results. 

LEF 



Locate Lead Bit 

LOB acs,acd 

ACS 
1 ' 2 

Adds a number equal to the number of high-order zeroes 
in the contents of ACS to the signed, 16-bit, two's 
complement number contained in ACD. The contents of 
ACS and the state of carry remain unchanged. 

NOTE: If ACS and ACD are specified as the same 
accumulator, the instruction functions as described 
above, except that since ACS and ACD are the same 
accumulator, the contents of ACS will be changed. 

Locate and Reset Lead Bit 

LRB acs,acd 

Performs a Locate Lead Bit instruction, and sets the lead 
bit to O. 

Adds a number equal. to the number of high-order zeroes 
in the contents of ACS to the signed, 16-bit, two's 
complement number contained in ACD.Sets the leading 1 
in ACS to o. The state of carry remains unchanged. 

NOTE: If ACS and ACD are specified to be the same 
accumulator, then the instruction sets the leading 1 
in that accumulator to 0, and no count is taken. 

MSP 

4- 66 

Data General Corporation 

Logical Shift 

LSH acs,acd 

Shifts the contents of ACD either left or right depending 
on the number contained in bits 8-15 of ACS. The signed, 
8-bit two's complement number contained in bits 8-15 of 
ACS determines the direction of the shift and the number 
of bits to be shifted. If the number in bits 8-15 of ACS is 
positive, shifting is to the left; if the numberin bits 8-15 of 
ACS is negative, shifting is to the right. If the numbetin 
bits 8-15 of ACS is zero, no shifting is performed. Bits 0-7 
of ACS are ignored. 

The number of bits shifted is equal to the magnitude of the 
number in bits 8-15 of ACS. Bits shifted out are lost, and 
the vacated bit positions are filled with zeroes. The carry 
bit and the contents of ACS remain unchanged. 

NOTE: If the magnitude of the number in bits 8-15 of 
ACS is greater than 15, all bits ACD are set to O. The 
ca,rry bit and the contents of ACS remain unchanged. 

Move 

MOV[cj{shj{#j acs,acd[,skipj 

Moves the. contents of an accumulator through the 
Arithmetic Logic Unit (ALU). 

Initializes carry to the specified value. Places the contents 
of ACS in the shifter. Performs the specified shift operation 
and loads the result of the shift into ACD if the no-load bit 
is O. If the skip condition is true, the instruction skips the 
next sequential word. 

Modify Stack Pointer 

MSP ac 

Changes the value of the stack pointer and tests for 
potential overflow. 

Adds the signed two's-complement number in the specified 
accumulator to the value of the stack pointer and places 
the result in location 40: The instruction then checks for 
overflow by comparing the result in location 40 with the 



Standard Machine Instructions 

value of the stack limit. If the result in location 40 is less 
than the stack limit, then the instruction ends. 

If the result is greater than the stack limit, the instruction 
changes the value of location 40 back to its original contents 
before the add. The instruction pushes a return block of 
the format shown below: 

Word Contents 
Pushed 

1 ACO 

2 AC1 

3 AC2 

4 AC3 

5 Bit 0 equals carry. 
Bits 1-1 5 equal PC; contain address of 
Modify Stack Pointer instruction. 

The program counter in the return block contains the 
address of the Modify Stack Pointer i.nstruction. 

After pushing the return block, the program counter 
contains the address· of the stack fault routine. The stack 
pointer is updated with the value used to push the return 
block, and control transfers to the stack fault routine. 

4- 67 

Unsigned Multiply 

MUL 

Multiplies the unsigned contents of two accumulators and 
adds the result to the unsigned contents of a third 
accumulator. The result is an unsigned 32-bit integer in 
two accumulators. 

The unsigned, 16-bit number in ACI is multiplied by the 
unsigned, 16-bit number in AC2 to yield an unsigned, 
32-bit intermediate result. The unsigned, 16-bit number in 
ACO is added to the intermediate result to produce the 
final result. The final result is an unsigned, 32-bit number 
and occupies ACO and ACI. Bit 0 ofACO is the high-order 
bit of the result and bit 15 of ACI is the low-order bit. The 
contents of AC2 remain unchanged. Because the result is a 
double-length number, overflow cannot occur. 

Signed Multiply 

MULS 

Multiplies the signed contents of two accumulators and 
adds the result to the signed contents of a third accumulator. 
The result is a signed 32-bit integer in two accumulators. 

The signed, 16-bit two's complement number in ACI is 
multiplied by the signed, 16-bit two's complement number 
in AC2 to yield a signed, 32-bit two's complement 
intermediate result. The signed, 16-bit two's complement 
number in ACO is added to the intermediate result to 
produce the final result. The final result is a signed, 32-bit 
two's complement number which occupies ACO and ACl. 
Bit 0 of ACO is the sign bit of the result and bit 15 of ACt is 
the low-order bit. The contents of AC2 remain unchanged. 
Because the result is a double-length number, overflow 
cannot occur. 

MULS 



Negate 

NEG[c][sh][#j acs,acd[,skipj 

Forms the two's complement of the contents of an 
accumulator. 

Initializes carry to the specified value. Places the two's 
complement of the unsigned, 16-bit number in ACS in the 
shifter. If the negate operation produces a carry of lout of 
the high-order bit, the instruction complements carry. 
Performs the specified shift operation and places the result 
in ACD if the no-load bit is O. If the skip condition is true, 
the instruction skips the next sequential word. 

NOTE: If ACS contains 0, the instruction complements 
carry. 

Pop Multiple Accumulators 

POP acs,acd 

\ : \ \ 3A~D4 \ 5 \ 6 \ ~ \ 8 \ ~ \ ~o \ ~1 \12\ ~3\ ~4\ ~5\ ACS 
1 i 2 

Pops 1 to 4 words off the stack and places them in the 
indicated accumulators. 

The set of accumulators from ACS through ACD is filled 
with words popped from the stack. The accumulators are 
filled in descending order, starting with the AC specified 
by ACS and continuing down through the AC specified by 
ACD, wrapping around if necessary, with AC3 following 
ACO. If ACS is equal to ACD, only one word is popped and 
it is placed in ACS. 

The stack pointer is decremented by the number of 
accumulators popped and the frame pointer is unchanged. 
A check for underflow is made only after the entire pop 
operation is done. 

POPJ 

Pop Block 

POPR 

Data General Corporation 

I 0 I ~ I ~ I ~ I 4 I 5 I 6 I I 8 I 9 I ~o I ~1 1121 ~31 ~41 ~51 

Returns control from a System Call routine or an I/O 
interrupt handler that does not use the stack change facility 
of the Vector instruction. 

Five words are popped off the stack and placed in 
predetermined locations. The words popped and their 

. destinations are shown in Figure 4.6. 

4- 68 

STACK POINTER 
AFTER POP 

BLOCK I-:=---t~-- 5th WORD 
POPPED 

STACK POINTER 
BEFORE POP 

BLOCK 

t~:JPRO"(iRAiiiif .... J.-- 1 st WORD 
POPPED 

DG-00607 

Figure 4.6 Effects of POPB instruction 

Sequential operation is continued with the word addressed 
by the updated value of the program counter. 

NOTE: If the I/O handler uses the stack change facility 
of the Vector on Interrupting Device Code instruction, do 
not use the Pop Block instruction. Use the Restore 
instruction instead. 

Pop PC And Jump 

POP) 

Pops the top word off the stack and places it in the program 
counter. Sequential operation continues with the word 
addressed by the updated value of the program counter. 

The stack pointer is decremented by one and the frame 
pointer is unchanged. A check for underflow occurs after 
the pop operation. 



Standard Machine Instructions 

Push Multiple Accumulators 

PSH acs,acd 

ACS 
, , 2 

Pushes the contents of 1 to 4 accumulators onto the stack. 

The set of accumulators from ACS through ACD is pushed 
onto the stack. The accumulators are pushed in ascending 
order, starting with the AC specified by ACS and 
continuing up through the AC specified by ACD, wrapping 
around if necessary, with ACO following AC3. The contents 
of the accumulators remain unchanged. If ACS equals 
ACD, only ACS is pushed. 

The stack pointer is incremented by the number of 
accumulators pushed and the frame pointer is unchanged. 
A check for overflow is made only after the entire push 
operation finishes. 

Push Jump 

PSHJ [@]displacement[,index] 

I ~ I ~ I ~ I ~ I ~ I : II:~E~ Is I ~ 1'0 I" 1'21 ~31 ~41 ~51 

DISPLACEMENT 

Pushes the address of the next sequential instruction onto 
the stack, computes the effective address, E, and places it 
in the program counter. Sequential operation continues 
with the word addressed by the updated value of the 
program counter. 

Push Return Address 

PSHR 

Pushes the address of this instruction plus 2 onto the 
stack. 

4- 69 

Restore 

RSTR 

Returns control from certain types of 110 interrupts. 

Pops nine words off the stack and places them in 
predetermined locations. The words popped and their 
destinations are shown in Figure 4.7. 

STACK POINTER 
AFTER RESTORE ;---t 

,II" .... " . , 

STACK 
POINTER 
FRAME 

POINTER 
STAeK 
LIMIT 

STACK 
FAULT 

ACO 

AC1 

AC2 

AC3 

./ 

/" 

/" 

./ 

/' 

,./ 

/' 

/' 

V 

V 
STACK POINTER 

BEFORE RESTORE • - CARRY , I~ROGRAIVI: 
BIT "COUNTER' ./" 

'/ 

00.00606 

Figure 4.7 Effects of RSTR instruction 

Sequential operation continues with the word addressed 
by the updated value of the program counter. 

NOTE: Use the Restore instruction to return control 
to the program only if the I/O interrupt handler uses 
the stack change facility of the Vector on Interrupting 
Device Code instruction. 

The Restore instruction does not check for stack 
underflow. 

RSTR 



Return 

RTN 

111011101111111111111010111010101 
o 4 6 8 10 11 12 13 14 15 

Returns control from subroutines that issue a Save 
instruction at their entry points. 

The Save instruction loads the current value of the stack 
pointer into the frame pointer. The Return instructions 
uses this value of the frame pointer to pop a standard 
return block off of the stack. The format of the return 
block is shown below. 

Word Destination 
Popped 

1 Bit 0 is loaded into carry. Bits 1-15 are 
loaded into the PC. 

2 AC3 

3 AC2 

4 AC1 

5 ACO 

After popping the return block, the Return instruction 
loads the decremented value of the frame pointer into the 
stack pointer and the popped value of AC3 into the frame 
pointer. 

SAVE 

Save 

SAVE 

o 
IMMEDIATE FIELD 

Data General Corporation 

.J 
Saves the information required by the Return instruction. 

Saves the current value of the stack pointer in a temporary 
location. Adds five plus the unsigned, 16-bit integer 
contained in the immediate field to the current value of 
the stack pointer and loads the result into location 40. 
Compares this new value of the stack pointer to the stack 
limit to check for overflow. If no overflow condition exists, 
then the instruction places the current value of the frame 
pointer in AC3. Fetches the contents of the temporary 
location and loads them into the frame pointer. The 
instruction uses the value in the frame pointer to push a 
five-word return block. The formats and contents of the 
five-word return block is as follows: 

Word Contents 
Pushed 

1 ACO 

2 AC1 

3 AC2 

4 Frame pointer before the save. 

5 Bit 0 = carry bit. 
Bits 1-15 = bits 1-15 of AC3. 

4- 70 



Standard Machine Instructions 

After pushing the return block, the instruction places the 
value of the frame pointer (which now contains the old 
value of the stack pointer plus five) in AC3. 

If an overflow condition exists, the Save instruction 
transfers control to the stack fault routine. The program 
counter in the fault return block contains the address of 
the Save instruction. 

The Save instruction allocates a portion of the stack for 
use by the procedure which executed the Save. The value 
of the frame size, contained in the immediate field, 
determines the number of words in this stack area. This 
portion of the stack will not normally be accessed by push 
and pop operations, but will be used by the procedure for 
temporary storage of variables, counters, etc. The frame 
pointer acts as the reference point for this storage area. 

Use the Save instruction with the Jump to Subroutine 
instruction. The Jump to Subroutine instruction places the 
return value of the program counter in AC3. Save then 
pushes the return value (contents of AC3) into bits 1-15 of 
the fifth word pushed. 

Subtract Immediate 

SBI n,ac 

N 

, i 2 

Subtracts an unsigned integer in the range 1-4 from the 
contents of an accumulator. 

The contents of the immediate field N, plus 1 are subtracted 
from the unsigned 16-bit number contained in the specified 
AC and the result is placed in ACD. Carry remains 
unchanged. 

NOTE: The assembler takes the coded value of nand 
subtracts one from it before placing it in the 
immediate field. Therefore code the exact value you 
wish to subtract. 

- Assume that AC2 contains 0000038. After the instruction 
5814,2 is executed, AC2 contains 1777778and carry remains 
unchanged. 

Skip If ACS Greater Than Or Equal to ACD 

SGE acs,acd 

ACS 
, i 2 

4- 71 

Compares two signed integers in two accumulators and 
skips if the first is greater than or equal to the second. 

The signed two's complement numbers in ACS and ACD 
are algebraically compared. If the number in ACS is 
greater than or equal to the number in ACD, the next 
sequential word is skipped. The contents of ACS and ACD 
remain unchanged. 

NOTE: The Skip If ACS Greater Than ACD and Skip If ACS 
Greater Than Or Equal To ACD instructions treat the 
contents of the specified accumulators as signed, 
two's complement integers. To compare unsigned 
integers, use the Subtract and Add Complement 
instructions. 

Skip If ACS Greater Than ACD 

SGT acs,acd 

ACS 

o , i 2 

Compares two signed integers in two accumulators and 
skips if the first is greater than the second. 

The signed, two's complement numbers in ACS and ACD 
are algebraically compared. If the number in ACS is 
greater than the number in ACD, the next sequential word 
is skipped. The contents of ACS and ACD remain 
unchanged. 

Skip On Non-Zero Bit 

SNB acs,acd 

ACS 
, i 2 

The two accumulators form a bit pointer. If the addressed 
bit is 1, the next sequential word is skipped. 

Forms a 32-bit bit pointer from the contents of ACS and 
ACD. ACS contains the high-order 16 bits and ACD 
contains the low-order 16 bits of the bit pointer. If ACS 
and ACD are specified as the same accumulator, the 
instruction treats the accumulator contents as the 
low-order 16 bits of the bit pointer and assumes the 
high-order 16 bits are O. 

If the addressed bit in memory is 1, the next sequential 
word is skipped. The contents of ACS and ACD remain 
unchanged. 

SNB 



Store Accumulator 

STA ac,[@jdisplacement[,indexj 

DISPLACEMENT 

Stores the contents of an accumulator into a memory 
location. 

Places the contents of the specified accumulator in the 
word addressed by the effective address, E. The previous 
contents of the location addressed by E are lost. The 
contents of the specified accumulator remain unchanged. 

Store Byte 

STB acs,acd 

I : I 
ACS I 3A~D4 I I 6 I 0 I ~ I ~ I ~o I ~, 1'21 ~31 ~41 ~51 , , 2 

Moves the right byte of ACD to a byte in memory. ACS 
contains the byte pointer. 

Places bits 8-15 of ACD in the byte addressed by the byte 
point~r contained in ACS. The contents of ACS and ACD 
remain unchanged. 

Subtract 

SUB[c][sh][#j acs,acd[,skipj 

Performs unsigned integer subtraction and complements 
carry if appropriate. 

Initializes carry to its specified value. The instruction 
subtracts the unsigned, 16-bit number in ACS from the 
unsigned, 16-bit number in ACD by taking the two's 
complement of the number in ACS and adding it to the 
number in ACD. The instruction places the result of the 
addition in the shifter. If the operation produces a carry of 
lout of the high-order bit, the instruction complements 
carry. The instruction performs the specified shift 
operation and places the result of the shift in ACD if the 
no-load bit is O. If the skip condition is true, the instruction 
skips the next sequential word. 

NOTE: If the number in ACS is less than or equal to 
the number in ACD, the instruction complements 
carry. 

SYC 

4- 72 

Data General Corporation 

System Call 

SYC acs,acd 

Pushes a return block and transfers control to the system 
call handler. 

If a user map is enabled, the instruction disables it and 
pushes a return block onto the stack. The program counter 
in the return block points to the instruction immediately 
following the System call instruction. After pushing the 
return block, the instruction executes a jump indirect to 
location 2, which contains the address of the system call 
handler. 

If this instruction disables a user map, then 110 interrupts 
cannot occur between the time the System call instruction 
is executed and the time the first instruction of the system 
call handler is executed. 

NOTE: If both accumulators are specified as ACO, the 
instruction does not push a return block onto the 
stack. The contents of ACO remain unchanged. 

The assembler recognizes the mnemonic SCL as 
equivalent to SYC 1,1. 

The assembler recognizes the mnemonic SVC as 
equivalent to SYC 0,0. 



Standard Machine Instructions 

Skip On Zero Bit 

SIB acs,acd 

The two accumulators form a bit pointer. If the addressed 
bit is zero, the next sequential word is skipped. 

Forms a 32-bit bit pointer from the contents of ACS and 
ACD. ACS contains the high-order 16 bits and ACD 
contains the low-order 16 bits of the bit pointer. If ACS 
and ACD are specified as the same accumulator, the 
instruction treats the accumulator contents as the 
low-order 16 bits of the bit. pointer and assumes the 
high-order 16 bits are O. 

If the addressed bit in memory is 0, the next sequential 
word is skipped. The contents of ACS and ACD remain 
unchanged. memory references. ") 

Skip On Zero Bit And Set To One 

SIBO acs,acd 

ACS 

1 ' 2 

The two accumulators form a bit pointer. The instruction 
sets the addressed bit to 1. If the addressed bit was 0 before 
being set to 1, the instruction skips the next sequential 
word. The contents of ACS and ACD remain unchanged. 

Forms a 32-bit bit pointer from the contents of ACS and 
ACD. ACS contains the high-order 16 bits and ACD 
contains the low-order 16 bits of the bit pointer. If ACS 
and ACD are specified as the same accumulator, the 
instruction treats the accumulator contents as the 
low-order 16 bits of the bit pointer and assumes the 
high-order 16 bits are O. 

NOTE: This instruction facilitates the use of bit maps 
for such purposes as allocation of facilities (memory 
blocks, I/O devices, etc.} to severa'! processes, or tasks, 
that may interrupt one another, or in a 
multiprocessor environment. The bit is tested and set 
to 1 in one memory cycle. 

4- 73 

Exchange Accumulators 

XCH acs,acd 

Exchanges the contents of two accumulators. 

Places the original contents of ACS in ACD and the original 
contents of ACD in ACS. 

Execute 

XCT ac 

Executes the instruction contained in AC as if it were in 
main memory in the location occupied by the Execute 
instruction. If the instruction in AC is an Execute 
instruction which executes the instruction in AC, the 
processor is placed in a one-instruction loop. The Reset 
switch will stop the processor. 

Because of the possibility of AC containing an Execute 
instruction, this instruction is interruptible. An I/O 
interrupt can occur immediately prior to each time the 
instruction in AC is executed. If an I/O interrupt does 
occur, the program counter in the return block pushed on 
the system stack points to the Execute instruction in main 
memory. This capability to execute an Execute instruction 
gives you a wait for I/O interrupt instruction. 

NOTE: If the specified accumulator contains the first 
word of a two-word instruction, the word following 
the XCI instruction is used as the second word. 
Normal sequential operation then continues from the 
second word after the XCI instruction. 

Do not use the XCI instruction to execute an 
instruction that requires all four accumulators, such 
as CMV, CMI, CMP, CIR, or BAM. 

The results of XCI are undefined if the specified 
accumulator contains an instruction that modifies 
that same accumulator. See Figure 4.8 for an example. 

XCT 



LDA 

XCT 

O,TOT 

o 
JMP ON 

;UNDEFINED 

TOT: ADD 1,0 

DG-06564 

Figure 4,8 Example of XCT instruction 

Extended Operation 

XOP acs,acd,operation # 

Pushes a return block onto the stack. Places ACS's stack 
address in AC2; places ACD's stack address in AC3. 
Memory location 448 must contain the XOP origin address, 
the starting address of a 3210 word table of addresses. These 
addresses are the starting location of the various XOP 
operations. 

Adds the operation number in the XOP instruction to the 
XOP origin address to produce the address of a word in 
the XOP table. The instruction fetches that word and treats 
.it as the intermediate address in the effective address 
calculation. After the indirection chain, if any, has been 
followed, the instruction places the effective address in 
the program counter. The contents of ACO, AC1, and the 
XOP origin address remain unchanged. 

The format of the return block pushed by the XOP 
instruction is shown in Figure 4.9. 

DG-00567 

STACK POINTER~ 

d·:.;·.·.··· . .;·.···;¥.···.;.;·:-;.;··;·· 

./ 

BEFORE XOP ----..I---~-~r'" 
ACO 

ACl 

AC2 

AC3 

STACK POINTER __ ..... C_IA_R_RvIoi~A!..F D~l~~:!:..~...!~....:~-V'" 
AFTER XOP - ..,. 

Figure 4.9 Effects of XOP instruction 

XORI 

4- 74 

Data General Corporation 

This return block is configured so that the XOP procedure 
can return control to the calling program via the Pop 
Block instruction. 

Alternate Extended Operation 

XOP1 acs,acd,operation # 

I 0' lACS I ACD ·1 0 I OPERATION # I' 1 ; I' 1 0 1 ~ 1 0 1 
1 i. 2. 3 i 4 5 6 iii 910 11 12 13 14 15 

This instruction operates exactly like the Extended 
Operation instruction except that it adds 3210 to the entry 
number before it adds the entry number to the XOP origin 
address. In addition, it can specify only 16 entry locations. 

Exclusive OR 

XOR acs,acd 

I : I ACS 

1 i 2 

Forms the logical exclusive OR of the contents of ACS and 
the contents of ACD and places the result in ACD. Sets a 
bit position in the result to 1 if the corresponding bit 
positions in the two operands are unlike; otherwise, the 
instruction sets result bit to O. The contents of ACS remain 
unchanged. 

Exclusive OR Immediate 

XORI i,ac 

IMMEDIATE 

i 151 o 

Forms the logical exclusive OR of the contents of the 
immediate field and the contents of the specified AC and 
places the result in the specified AC. 



Chapter 5 
I/O Instructions 

This chapter lists the ECLIPSE S /140 II 0 instructions and 
the special CPU instructions. It also contains instructions 
intended for specific devices, such as the BMC, ERCC, the 
MMPU, and the real-time clock. We have arranged the 
instructions alphabetically within specific 110 device 
categories. As usual, instructions are alphabetized by the 
mnenomic recognized by the assembler. 

For each instruction we include: 

• The mnemonic recognized by the assembler. 

• The bit format required. 

• The format for any arguments involved. 

• The functional description of each instruction. 

In general, II 0 instructions can be executed only when 
both Lef mode and I/O protection are disabled. (See the 
Memory Management and Protection Unit section in 
Chapter 3 for a discussion of Lefmode and 110 protection.) 

General I/O Instructions 
You can use the following general I/O instructions with 
any 110 device, using the appropriate device code. 

Device Flag Commands 

f=s Issues a Start pulse to the specified device. 

f=C Issues a Clear pulse to the specified device. 

f=P Issues an 110 pulse to the specified device. 

IORST No effect. 

Data In A 

DIA[fJ ac;device 

8 0 9 1 10 0 

DEVICE CODE oj 

Transfers data from the A buffer of an 110 device to an 
accumulator. 

5- 75 

The contents of the A input buffer in the specified device 
are placed in the specified AC. After the data transfer, the 
Busy and Done flags are set according to the function 
specified by F. 

The number of data bits moved depends upon the size of 
the buffer and the mode of operation of the device. Bits in 
the AC that do not receive data are set to O. 

Data in B 

DIB[fJ aC,device 

0 1.5 I DEVICE CODE 

8 0 9 

Transfers data from the B buffer of an 110 device to an 
accumulator. 

Places the contents of the B input buffer in the specified 
device in the specified AC. After the data transfer, sets the 
Busy and Done flags according to the function specified by 
F. 

The number of data bits moved depends upon the size of 
the buffer and the mode of operation of the device. Bits in 
the AC that do not receive data are set to O. 

Data In C 

DIC[fJ ac,device 

1 10 0 

DEVICE CODE 

Transfers data from the C buffer of an 110 device to an 
accumulator. 

Places the contents of the C input buffer in the specified 
device in the specified AC. After the data transfer, sets the 
Busy and Done flags according to the specified F. 

Diem 



The number of data bits moved depends upon the size of 
the buffer and the mode of operation of the device. Bits in 
the AC that do not receive data are set to O. 

Data Out A 

DOA[f] ac,device 

Transfers data from an accumulator to the A buffer of an 
I/O device. 

Places the contents of the specified AC in the A output 
buffer of the specified device. After the data transfer, sets 
the Busy and Done flags according to the function specified 
by F. The contents of the specified AC remain unchanged. 

The number of data bits moved depends upon the size of 
the buffer and the mode of operation of the device. 

Data Out B 

DOB[f] ac,device 

DEVICE CODE .J 8 • 9 

Transfers data from an accumulator to the B buffer of an 
I/O device. 

Places the contents of the specified AC in the B output 
buffer of the specified device. After the data transfer, sets 
the Busy and Done flags according to the function specified 
by F.The contents of the specified AC remain unchanged. 

The number of data bits moved depends upon the size of 
the buffer and the mode of operation of the device. 

Data Out C 

DOC[f] aC,device 

8 • 9 

DEVICE CODE .J 
Transfers data from an accumulator to the C buffer of an 
I/O device. 

Central Processor 

Data General Corporation 

Places the contents of the specified AC in the C output 
buffer of the specified device. After the data transfer, sets 
the Busy and Done flags according to the function specified 
by F. The contents of the specified AC remain unchanged. 

The number of data bits moved depends upon the size of 
the buffer and the mode of operation of the device. 

5- 76 

No 1/0 Transfer 

NIO [f] ac,device 

F 

8 • 9 

DEVICE CODE .J 
Used when a Busy or Done flag must be changed with no 
other operation taking place. 

Sets the Busy and Done flags in the specified device 
according to the function specified by F. 

1/0 Skip 

SKP[t] device 

T 

8 • 9 

DEVICE CODE 

If the test condition specified by T is true, the instruction 
skips the next sequential word. 

Central Processor 
Device Code - 778 (Primary) 

Priority Mask Bit - None 

Device Flag Commands 

Device flag commands to the CPU determine whether the 
current program can be interrupted by a program interrupt 
request. When the interrupt on flag is set to 1, the program 
can be interrupted (once the instruction following the 
enable has begun). When the interrupt on flag is set to 0, 
the program cannot be interrupted. The CPU interrupt on 
flag is controlled by the device flag commands as follows: 

f=S Sets the interrupt on flag to 1. 

f=C Sets the interrupt on flag to O. 

f=P If not an INTA instruction, no effect. If the 
instruction is an INT A instruction, interprets the 
INT A instruction as the first word of a Vector 
instruction. 

IORST Sets the interrupt on flag to O. 



1/0 Instructions 

CPU Skip 

SKP[tj CPU 

If the test condition specified by T is true, the next 
sequential word is skipped. 

The following table lists the possible test conditions. 

Symbol Value Test 

[tJ=BN 00 Tests Interrupt On flag for 1 

[tJ=BZ 01 Tests Interrupt On flag for 0 

[tJ=DN 10 Tests Power Fail flag for 1 

[tJ=DZ 11 Tests Power Fail flag for 0 

See Programmer's Reference-Peripherals (DGC No. 
014-000632) for a complete set of examples on using the 
interrupt system. 

CPU Skip If Power Fail Flag Is One 

SKPDN CPU 

If the Power Fail flag is 1 (Le., power is failing), the 
instruction skips the next sequential word. 

CPU Skip If Power Fail Flag Is Zero 

SKPDZ CPU 

If the Power Fail flag is 0 (Le., power is not failing), the 
instruction skips the next seql1ential word. 

5- 77 

Halt 

DOC[f] ac,CPU 

Stops the processor. 

Sets the Interrupt On flag according to the function 
specified by F, then stops the processor. The data lights 
display the contents of the specified accumulator. 

NOTE: The assembler recognizes the special 
mnemonic HALT as equivalent to the instruction DOC 
O,CPU. 

Interrupt Acknowledge 

INTA 
DIB[f] ac,CPU 

8 ' 9 1'0 I" 1'21'3 1'4 1'5 1 

Returns device code of an interrupting device. 

Places the six-bit device code of that device requesting an 
interrupt which is physically closest to the CPU on the 
110 bus in bits 10-15 of the specified accumulator; sets bits 
0-9 to O. After the transfer, sets the Interrupt On flag 
according to the function specified by F. 

Power fail has the lowest priority for this instruction. 

Interrupt Disable 

INTDS 
NIOC CPU 

Sets Interrupt On flag to o. 

INTDS 



Interrupt Enable 

INTEN 1 
NIOSCPU 

Sets Interrupt On flag to 1. 

If the instruction changes the state of the Interrupt On 
flag, the CPU allows one more instruction to execute before 
the first I/O interrupt can occur. However, if the 
instruction is interruptible, then interrupts· can occur as 
soon as the instruction begins to execute. 

. Reset 

IORST 
DIC[f] ac,CPU 

Sets all Busy and Done flags and the priority mask to O. 

Sets the Busy and Done flags in all I/O devices to O. Sets 
the 16-bit priority mask to O. Sets the Interrupt On flag 
according to the function specified by F. Disables the 
MMPU and clears Map Status R.egister. All other functions 
are device dependent. . 

NOTE: The assembler recognizes the mnemonic IORST 
as equivalent to the instruction DICC O,CPU: 

If the mnemonic DIC is used to perform this function, 
you must code an· ·accumulator to avoid assembly 
errors. During execution, the accumulator field is 
ignored and the contents of the accumulator remain 
unchanged. 

Mask Out 
MSKO 
DOR[f] ac,CPU 

Sets the priority mask. 

Places the contents of the specified accumulator in the 
priority mask. After the transfer, sets the Interrupt On 
flag according to the function specified by F. The contents 
of the speCified AC remain unchanged. 

NOTE: A 1 in any bit disables interrupt requests for 
those devices which use that bit as a mask. 

NOTE: Do not use this instruction when interrupts 
are enabled. 

VCT 

5- 78 

I)ata General Corporation 

Read Switches 

READS ac 
DIA[f] ac,CPU 

Places the contents of the virtual console switch register 
into the specified accumulator. After the transfer, sets the 
Interrupt On flag according to the function specified by F. 

Vectored I/O Instruction 

Vector On Interrupting Device Code 

VCT [@Jdisplacement[,indexJ 

DISPLACEMENT ,J 
Returns the device code of the interrupting device and 
uses that code as an index into a table. The value found in 
the table is used in one of two ways: it can be a pointer to 
the appropriate interrupt handler (Mode A), or as a pointer 
to another table (Modes B through E). This second table 
points to the interrupt handler and contains a new priority 
mask. These operations are shown in Figure 5.1. Depending 
on the mode uSed, the instruction can also save the state of 
the machine by pushing certain information onto the stack, 
create a new vector stack, set up a priority structure, and 
enable interrupts. Obviously, the complexity of an 
operation affects the instruction execution time. 

The flow chart in Figure 5.2 is a complete diagram of the 
operation of the Vector instruction. Note that all modes use 
the vector table to find the next address used. Mode A uses 
the vector table entry as the address of the interrupt 



1/0 Instructions 

handler and passes control to it immediately. Modes B 
through E all use the vector table address as a pointer into 
a device control table (DCT), where the address of the 
interrupt handler is found, along with a new priority mask. 

Three control bits determine the mode of the Vector 
instruction. The names and locations of these bits are: 

Stack Change Bit (S) - Bit 0 of the second word of the 
Vector instruction. 

Direct Bit (D) - Bit 0 of the selected vector table entry. 

Push Bit (P) - Bit 0 of the first word of the selected device 
control table. 

The values of these bits collectively determine the mode 
of the Vector instruction. The table below illustrates mode 
determination. 

Direct Stack Push Mode 

0 - - A 

1 0 0 B 

1 0 1 C 

1 1 0 D 

1 1 1 E 

SOCONDWORDOF~~~~~~~~~~~------~~ 
VCT INSTRUCTION I-

OlliER 
INSTRUCTIONS 

All modes perform the initial steps of the Vector 
instruction. These steps begin when the instruction returns 
the interrupting device code. The instruction adds the 
device code to the address of the start of the vector table 
(bits 1-15 of the second instruction word). The result is the 
address of an entry within the vector table. The instruction 
fetches the contents of this vector table entry and examines 
bit 0 of the entry (the direct bit). If the direct bit is 0, Mode 
A is selected; otherwise one of the other modes (B through 
E) is selected. 

In mode A, the instruction uses bits 1-15 of the fetched 
vector table entry as the address of the interrupt handler 
for the interrupting device. Control transfers immediately 
to the interrupt handler with all interrupts disabled. 

Modes B Through E 

Modes B through E perform different functions initially, 
but use a common second part. The following section 
discusses the common second part after discussing each 
mode separately. 

VECTOR 
TABLE 

DEVICE CONTROL 
TABLE 

P :~~~~~DLER 
INFORMATION USED 
TO LOAD NEW MASK 

INTERRUPT 
HANDLER 

START OF 
·INTERRUPT HANDLER 

D SOME TABLE ENTRY MODE A 

DG-OS741 

Figure 5.1 Overview of the Vector instruction 

5- 79 

NOTE: 
S = STACK CHANGE BIT 
D = DIRECT BIT 
P = PUSH BIT 

VCT 



1/0 Instructions 

A 

DC-057 

Start of 

Fetch the second 

word of the VCT 
instruction. Bit 
Os is the stack 

change bit. Bits 

1-15 contain the 
address of the 

returned above 
to the address of the 
vector table (displacement 
field) and fetch the 
word at that 
location. Bit 0 is 
the "direct bit." 

the fetched 
vector table 

Place contents of 
location 4 in 
stack pointer. 
Place contents of 
location 6 in 
stack limit. 
Place contents of 
location 7 in 
stack fault. 
Note: Frame 

pointer is' destroyed 

and the contents 

Ves 

Figure 5.2 Operation of the Vector instruction 

veT 

Modes B, 0 

Mode A 

Bits 1-15 of the 

fetched vector 
table entry con­
tain the address 
of the device 
interrupt routine. 

Transfer control 
to the device 
interrupt routine 
by placing bits 
1-15 of the fetched 
vector table entry 
in the program counter. 

Transfer 
control to 

stack fault 
routine. 

5- 80 

No 

Fetch the first word 
of the OCT. Bit 0 is 
the "push bit." Bits 

1-15 contain the 
address of the device 
interrupt routine. 

Push standard 
return block. 
Bits 1-15 of 
last word pushed 
contain bits 1-15 of 

Push the current 
interrupt mask 
(location 5) onto 

the stack. 

Place the logical 
OR of the current 

interrupt mask and 

the second word 
of the OCT in ACO. 

Place the contents 
of ACO in the current 
interrupt mask 
(location 5). 

Do a mask out 
from ACO and 
enable interrupts 
(OOBS 0, CPU). 

Place contents of 
AC2 (address of device 
interrupt routine) in 



In Mode B both the stack change and the push bits are O. 
The instruction uses the vector table entry as the address 
of the device control table (DCT) for the interrupting 
device. Bit 1-15 of the first word of the DCT contain the 
address of the desired interrupt handler (bit 0 is the push 
bit). The second word of the DCT contains information 
used to construct the new interrupt priority mask. 
Succeeding words (if any) contain information to be used 
by the device interrupt handler. 

In Mode C the stack change bit is 0 and the push bit is 1. 
This mode performs the functions of mode B and pushes a 
standard five-word return block onto the standard stack. 
The return block contains the contents of the four 
accumulators, the value of carry, and the contents of 
physical location 0 (the program counter return value). 

In Mode D, the stack change bit is 1 and the push bit is O. 
This mode performs the functions of mode B, sets up a new 
stack for the interrupt handler (using the contents of 
locations 4, 6, and 7), and pushes the previous contents of 
physical locations 40-438 (the user stack control words) 
onto the new stack. 

In Mode E, the stack change bit and the push bit are 1. This 
mode combines the functions of modes C and D. That is, it 
performs the functions of mode B, sets up a new stack, and 
pushes a five-word return block and the previous stack 
control words onto the new stack. 

Modes B through E use the same procedure for the remainder 
of the Vector instruction. The instruction pushes the 
current priority mask (location 5) onto the stack, updates 
location 5, and performs a Mask Out instruction (using the 
logical OR of the current mask and the second word of the 
DCT). The instruction then sets the Interrupt On flag to 1 
and passes control to the selected device interrupt handler. 
Note that the CPU permits one more instruction to execute 
(in this case, the first instruction of the interrupt handler) 
before the next I/O interrupt can occur. 

Burst Multiplexor Channel 
Deyice Code - 58 (Primary) 

Priority Mask Bit - None 

Device Flag Commands 

f=S Sets the Busy flag to 1 and initiates a BMC map 
load or dump operation. 

f=C Sets the status register (except bits 1 and 15) to O. 

f=P No effect 

IORST Sets the status register (except bits 1 and 15) to O. 

5- 81 

Read BMC Status 
DIC[f] ac,BMC 

Reads the BMC status. 

Data General Corporation 

Places the contents of the BMC status register into the 
specified accumulator. The previous contents of the 
accumulator are lost. After the data transfer, performs the 
function specified by f. The format of the specified 
accumulator is as follows: 

Bits Name Contents or Function 

0 Error If 1, the B MC detected a validity protect 
error, an address parity error, or a data 
parity error. 

1 Dump If 1, the next map transfer operation will 
be a map dump. 
If 0, the next map transfer operation will 
be a map load. 

2 Diagnostic If 1, the BMC is in two-step diagnostic 
Mode mode. 

3 Validity Error If 1, the BMC detected a validity protect 
error. 

4-6 - Reserved for future use. 

7 Address Error If 1, the BMC detected an address parity 
error. 

S Data Error If 1, the BMC detected a data parity 
error. 

9-14 - Reserved for future use. 

15 BMC If 1, the BMC is present in the system. 

Specify Low-Order Address 
DOA[f] ac,BMC 

Specifies the 10 low-order address bits of the first memory 
location to be loaded or dumped during the next map 
transfer operation. 

Places bits 6-15 of the specified accumulator into the map 
transfer address register. The contents of the accumulator 
remain unchanged. After the data transfer, performs the 
function specified by f. The format of the specified 
accumulator is as follows: 

I ~ I ~ I ~ I ~ I ~ I ~ 18 , 
LOW-ORDER ADDRESS 

i 161 

DOA[fJ 



Bits Name Contents or Function 

0-5 - Must be O. 

6-15· Low-order 
The 10 low-order bits of the20-bit 

Address physical address of the first memory 
location to supply or. receive a word 
to/from the specified map register 
during the next map transfer operation. 

Specify Operation and High-Order 
Address 
DOBff] ac,BMC 

AC F 

3 ' 4 8 ' 9 

Specifies the next map transfer operation (load or dump) 
and the 10 high~order address bits of the first memory 
location to supply or receive a word during the operation. 

Places bits 1 and 6-15 of the specified accumulator into the 
map transfer address register. The contents of the 
accumulator remain unchanged. After the data transfer, 
performs the function specified by f. The contents of the 
accumulator are as follows: 

HIGH-ORDER ADDRESS 

"sI 

Bits Name Contents or Function 

0 - Must be O. 

1 Dump If 1, specifies a dump map as the next 
map transfer operation. 
If 0; specifies Ii load map as the next 
map transfer operation, 

2-5 - Must be O. 

6-15 High-order The 10 high-order bits of the 20-bit 
physical address of tIle first memory 
location to supply or receive a· word 
to/from. the specified map· register 
during the next map transf~r operation. 

Specify Initial Map Register 
DOBff] ac,BMC 

AC F 

3 ' 4 B i 9 

Specifies the first map register to receive or supply a word 
during the next map transfer (load or dump) operation. 

5- 82 

Places bits 1 and 6-15 of the specified accumulator into the 
map register selector. The contents of the accumulator 
remain unchanged. After the data transfer, performs the 
function specified by f. The contents of the accumulator 
are as follows: 

MAP REGISlER , ,51 

. Bits Name Contents or Function 

0 - Must be 1. 

1 Mapped If 1, enables mapping in two-step 
Diagnostic diagnostic mode only. 

Mode 

2-5 - Must be O. 

6-15 Map Register The 10-bit number specifying the first 
map register to either receive or supply 
a word to/from memory during the next 
map transfer operation. The 5 high-order 
bits (bits 6-10) specify the map table 
containing the register and the 5 
low-order bits (bits 11-15) specify the 
~ogical page number that indexes the 
desired map register in the map table. 

Specify Map Register Count 
DOCffjac,BMC. 

AC 
3 ' 4 

Specifies the. number of map registers to be loaded or 
dumped during the next map transfer operation. 

Places bits 9-15 of the specified accumulator into the map 
register counter. The contents of the accumulator remain 
unchanged. After the data transfer, performs the function 
specified by f. The contents of the accumulator are as 
follows: 

Bits Name Contents or Function 

0-8 - Must be O. 

9-15 Map Count Specifies a number that is one less than 
the number of map registers to be loaded 
or dumped during the next map transfer 
operation. 



Map Transfer Operations 

In all BMC map transfers, the map register selector 
specifies the map register involved and the map transfer 
address register specifies the memory . location. During a 
load map operation, the BMC places the l6-bit contents of 
the memory location into the map register. During a dump 
map operation, the BMC places the l6-bit contents of the 
map register into the memory location. 

After the data transfer in each operation, the map register 
selector and the map transfer address register are 
incremented by one to select the next consecutive map 
register and memory location, respectively, and the map 
register counter is decremented by one. The BMC continues 
to transfer data between consecutive map registers and 
memory locations until the contents of the map counter 
equals O. After the last map register in the selected map 
table is accessed, the next consecutive map table is selected. 
Thus, a total of. four consecutive map tables can be 
transferred during one map transfer operation. 

The format of the data in the addressed memory location 
or map register is as follows: 

o , 2 3 4 5 6 i 

Bits Name 

0 Protect 

1-5 -

6-15 Physical Page 

Load BMC Status 
DOC[f] ac,BMC 

PHYSICAL PAGE NUMBER · lsi 
Contents or Function 

If 1. the BMC cannot transfer data to or 
from memory locations in the specified 
physical page. 

Must be O. 

The 10-bit physical page number. 

Defines the diagnostic functions of the BMC. 

Places the contents of the specified accumulator into the 
BMC status register. The contents of the accumulator 
remain unchanged. After the data transfer, performs the 
function specified by f. The contents of the accumulator 
are as follows: 

Bits Name Contents or Function 

0 - Must be 1. 

1 - Must be O. 

2 OM If 1. the BMC enters two-step diagnostic 
mode. 

3 VE If 1. the BMC forces a validity protect 
error. 

4-6 - Must be O. 

7 AE If 1. the BMC forces an address parity 
error. 

S DE If 1. the SMC forces a data parity error. 

9-15 - Must be O. 

ERCC Error Correction 
Device Code - 28 

Priority Mask Bit - None 

Device Flag Commands 

f=S Sets the interrupt request flag and the Done flag to 
O. 

f=C No effect. 

f=P No effect. 

IORST Sets ERCC to 010 state; clears Done flag. 

Read Memory Fault Address 

DIA[f] ac,ERCC 

Places the sixteen low-order bits of the physical address of 
the fault location into the specified accumulator. (The 
previous contents of that accumulator are lost.) The 
instruction sets the Done flag as specified by the flag 
command. 

5- 83 



1/0 Instructions 

The following shows the format of the contents of the 
specified accumulatol. 

LOW-ORDER ADDRESS BITS oj 

Bits Name Contents or 
Function 

0-15 Low-order Address Sixteen low-order bits of 
the physical address of the 
memory fault location. 

NOTE: The physical address is meaningless unless it 
is read after the ERCC facility requests an interrupt 
and before a Start or 10RST flag command sets the 
Done flag to O. 

Read Memory Fault Code 

DIB[fl ac,ERCC 

AC F 

3 0 4 8 0 9 I ~o I ~1 I ~21 ~31141 ~51 
Places? 5-bit error identification code in bits 0-4 of the 
specified accumulator. The instruction first sets bits 5-11 of 
the accumulator to 0 and places the four high-order bits of 
the physical address of the fault location in bits 12-15. 
N ext, the instruction sets the Done flag as specified by the 

flag command. 

The following table shows the format of the contents of 
the specified accumulator. 

FAULT 
o 11 12 0 0 0 15 

I . HOGH·ORDER ADDR I 

DlO[fJ 

Bits Name Contents or 
Function 

0-4 Fault Code 5-bit code, identifies the 
bit in error. 

00000 No error. 

00001 Check bit 4. 

00010 Check bit 3. 

00011 Data bit O. 

00100 Check bit 2. 

00101 Data bit 1. 

00110 Multiple bit error. 

00111 Data bit 3. 

01000 Check bit 1. 

01001 Data bit 4. 

01010 All 21 bits in 
memory are 1. 

01011 Data bit 6. 

01100 Data bit 7. 

01101 Data bit 8. 

01110 Data bit 9. 

01111 Multiple bit error. 

10000 Check bit O. 

10001 Data bit 11. 

10010 Data bit 12. 

10011 Data bit 13. 

10100 Data bit 14. 

10101 All 21 bits in 
memory are O. 

10110 Data bit 2. 

10111 Multiple bit error. 

11000 Data bit 10. 

11001 Multiple bit error. 

11010 Data bit 5. 

11011 Multiple bit error. 

11100 Data bit 15. 

11101 Multiple bit error. 

11110 Multiple bit error. 
11111 Multiple bit error. 

5-11 - Reserved for future use. 

12-15 High Order Address Four high-order bits of 
the physical address of the 
fault location. 

NOTE: The address is meaningless unless read after 
the ERCC facility requests an interrupt and before a 
Start or 10RST flag command sets the Done flag to O. 

5- 84 



Enable ERCC 

DOA[f] aC,ERCC 

AC 

3 i 4 

Sets the ERCC facility to function according to bits 13-15 
of the specified accumulator. Next, the instruction sets the 
Done flag and then the Interrupt Request flag, as specified 
by the flag command. The instruction disregards bits 0-12. 

The following shows the format of the contents of the 
specified accumulator. Modes designated with an asterisk 
(*) were not implemented in previous ERCC instruction 
sets. 

i 12113 ~oD7 15 1 

Bits Name Contents or 
Function 

0-12 - Reserved for future use. 

13-15 MODE Control the ERCC feature 
as follows: 

000 or DOl· 

Write checkword; disable 
checking and correction 
disable interrupts. 

010 

Write checkword; check 
data and check word; send 
correct data to processor; 
disable interrupts. 

011 
Write check word; check 

data and checkword; send 
correct data to processor; 
enable interrupts. 

100* or 101 * 

Duplicate five low-order 
data bits in checkword; 
disable checking and 
correcting; disable 
interrupts. 

110* 

Duplicate five low-order 
data bits in checkword; 
compare five low-order 
bits to checkword; send 
data with checkword to 
processor; disable 
interrupts. 

111 * 
Write five low-order data 
bits as checkword; 
compare five low-order 
bits to check word; send 
data with checkword to 
processor; interrupt on 
error. 

5- 85 

Data General Corporation 

Memory Management and 
Protection Unit 

Device Code - 38 (Primary) 

Priority Mask Bit - None 

Device Flag Commands 

f=s No effect. 

f=C No effect. 

f=P Enables Map Single Cycle. 

IORST Disables MMPU; clears Map Status Register. 

Load Map 

LMP 

Under control of ACI and AC2, loads successive words 
from memory into the MMPU where they are used to 
define a user or data channel map. 

ACI must contain an unsigned integer, which is the number 
of words to be loaded into the MMPU. Bits 1-15 of AC2 
must contain the address of the first word to be loaded. If 
bit 0 of AC2 is 1, the instruction follows the indirection 
chain and places the resultant effective address in AC2. 
ACO and AC3 are ignored and their contents remain 
unchanged. 

For each word loaded, the instruction decrements the count 
in ACI by one and increments the source address in AC2 
by 1. Upon completion of the instruction, ACI contains 0, 
and AC2 contains the address of the word following the 
last word loaded. 

This instruction is interruptible in the same manner as the 
Block Add and Move instruction. 

The words loaded into the MMPU define the address 
translation functions for the various user and data channel 
maps. The contents of the MAP field (bits 6-8) of the MMPU 
status register determine which map is affected by the 
Load Map instruction. You can alter this field using either 
the Load Map Status or the Initiate Page Check instruction. 

LMP 



1/0 Instructions 

The format of the words loaded into the MMPU is as 
follows: 

Bits Name Contents or Function 

0 WRITE PROTECT Must be 0 for data channel 
maps; 1 for for user maps. 

1-5 LOGICAL Logical page number. 

6-15 PHYSICAL Physical page number. 

NOTE: Declare a logical page invalid by setting the 
write protect bit to 1 and all of bits 6-15 to 1. 

If I/O protection is enabled, execution of the Load Map 

instruction will cause a trap. 

DlA[fJ 

Read Map Status 

DIA[fJ ac,MAP 

Reads the status of the current map. 

Places the contents of the MMPU status register in the 
specified AC. The previous contents of the specified AC 
are lost. The format of the information placed in the 
specified AC is as follows: 

5- 86 



o 
MAP I LEF 1 10 I WP liND I AB IDCH~ UMI 

8 9 10 11 12 13 14 15 

Bits Name Contents or 
Function 

0-1 - Reserved for future use. 

2 I/O If 1, the last protection 
fault was an I/O protection 
fault. 

3 WP If 1, the last protection 
fault was a write or validity 
protection fault. 

4 IND If 1, the last protection 
fault was an indirect 
protection fault. 

5 Single Cycle If 1, the last map fault 
occurred during a single 
cycle memory reference. 

6-8 Map Indicates which map will 
be loaded by the next 
Load map instruction: 
000 User A 
001 Reserved for future 
use. 
010 User B 
011 Reserved for future 
use. 
100 Data channel A 
101 Data channel C 
110 Data channel B 
111 Data channel D 

9 LEF If 1, the Load Effective 
Address instruction was 
enabled by the last Load 
Map Status instruction. 

10 I/O If 1, I/O protection was 
enabled by the last Load 
Map Status instruction. 

11 WP If 1, write protection was 
enabled by the last Load 
Map Status instruction. 

12 IND If 1, indirect protection 
was enabled by the last 
Load Map Status 
instruction. 

13 A/B If 0, the last Load Map 
Status instruction 
enabled user map A. If 1, 
the last Load Map 
Status instruction 
enabled user map B. 

14 DCH Enable If 1, the mapping of the 
data channel addresses is 
enabled. 

15 User Mode If 1, the last I/O interrupt 
occurred while in user 
mode. 

5- 87 

Data General Corporation 

Page Check 

ole ac,MAP 

Identifies and provides some characteristics of the physical 
page corresponding to a logical page. The logical page was 
identified by an Initiate Page Check instruction. 

Places the number of the physical page in bits 6-15 of the 
specified AC, places other information about the page in 
bits 0-3, and destroys the previous contents of the AC, The 
format of the information placed in the specified AC is as 
follows: 

Iwpi MAP PHYSICAL 
o l' , 4 6 ' 

Bits Name Contents or 
Function 

0 WP The write protect bit for 
the logical page which 
corresponds to the 
physical page specified by 
bits 6-15. 

1-3 Map The map used to perform 
the translation between 
logical page number and 
physical page number: 
000 User A 
001 Reserved. 
010 User B 
011 Reserved. 
100 Data channel A 
101 Data channel C 
110 Data channel B 
111 Data channel D 

4-5 - Reserved for future use. 

6-15 Physical The number of the physical 
page which corresponds to 
the logical page given in 
the preceding Initiate 
Page Check instruction. 
If all these bits are 1, and 
WP (bit 0) is 1, then the 
logical page is validity 
protected. 

ole 



1/0 Instructions 

Load Map Status 
DOA ac,MAP 

AC I : I 6 I 0 I ~ I ~ I ~o I ~1 I ~21 ~31141151 3 ' 4 

Defines the parameters of a new map. 

Places the contents of the specified AC in the MMPU 
status register. The contents of the specified AC remain 
unchanged. The format of the specified AC is as follows: 

DOA 

o 

5- 88 

MAP 

6 9 10 11 12 13 14 15 

Bits Name Contents or 
Function 

0-5 - Reserved for future use. 

6-8 Map Select Specify which map will be 
loaded by the next Load 
Map instruction: 
000 User A 
001 Reserved for future 
use. 
010 User B 
011 Reserved for future 
use. 
100 Data channel A 
101 Data channel C 
110 Data channel B 
111 Data channel D 

9 Lef If 1, the Load Effective 
Address instruction will be 
enabled for the next user. 

10 I/O If 1, I/O protection will be 
enabled for the next user. 

11 WP If 1, write protection will 
be enabled for the next 
user. 

12 IND If 1, indirect protection will 
be enabled for the next 
user. 

13 A/B If 0, user map A will be 
enabled next. If 1, user 
map 8 will be enabled 
next. 

14 DCH Enable If 1, the mapping of data 
channel addresses will be 
enabled immediately after 
this instruction. 

15 User Enable If 1, mapping of CPU 
addresses will commence 
with the first memory 
reference after the next 
indirect reference or 
return type instruction 
(POPB, POP), RTN, 
RSTR). 

NOTE: If the Load Map Status instruction sets the User 
Enable bit to 1, this inhibits the interrupt system and 
the MMPU waits for either an indirect reference 
(except DSPA, BLM, BAM LMP floating point, bit or 
character instruction) or return type instruction. 
Either event releases the interrupt system and allows 
the MMPU to begin translating addresses (using the 
user map specified by bit 13 of the MMPU status 
register). Address translation resumes (1) after the 
first level of the next indirect reference; or (2) after 
the first Pop Block, Pop Jump, Return, or Restore 
instruction that does not cause a stack fault. 



Map Page 31 

DOB aC,MAP 

Specifies that mapping take place for a single page of an 
unmapped address space. Mapping is always done for 
locations 760008 through 777778 (logical page 31). This is 
the only page which can be mapped when in unmapped 
address space. You can use this instruction to access a page 
of a user's memory space when in unmapped mode. 

Bits 6-15 of the specified AC are transferred to the MMPU. 
These bits specify a physical page number to which logical 
page 31 will be mapped when in the unmapped mode. 

The contents of the specified AC remain unchanged. The 
format of the specified AC is as follows: 

PHYSICAL oj 

Bits Name Contents or 
Function 

0-5 - Reserved for future use. 

6-15 Physical The number of the physical 
page to which logical page 
31 should be mapped 
when in unmapped mode. 

Initiate Page Check 

DOC ac,MAP 

Identifies a logical page. The Page Check instruction will 
find the corresponding physical page. 

Transfers the contents of the specified AC to the MMPU 
for later use by the Page Check or Load Map instruction. 
Leaves the contents of the specified AC unchanged. The 
format of the specified AC is as follows: 

5- 89 

IJ LOGICAL MAP 

689 

Bits Name 

0 -
1-5 Logical Page 

6-8 Map 

9-15 -

Map Single Cycle 
Disable User Mode 

NIOP aC,MAP 

Data General Corporation 

Contents or 
Function 

Reserved for future use. 

Number of the logical 
block for which the check 
is requested. 

Specify which map should 
be used for the check as 
follows: 
000 User A. 
001 Reserved. 
010 User B. 
011 Reserved. 
100 Data channel A. 
101 Data channel C. 
110 Data channel B. 
111 Data channel D. 

Reserved for future use. 

I : I' I : I ~ I ~ I ~ I ~ I ~ I : I : I ~o I ~, I ~21 ~31 ;4 1 ;51 

Issued from unmapped mode, the instruction maps one 
memory reference using the last user map; issued from 
User mode with Lef mode and II 0 protection disabled, the 
instruction simply turns off the map, returning it to 
unmapped mode. It is used by the supervisor to access a 
user's memory space when only one or two references are 
required. It is also used by a privileged user to turn off 
memory mapping. 

From unmapped mode - Enables the user map for one 
memory reference. Maps the first memory reference of 
the next LOA or SIA instruction. After the memory cycle is 
mapped, the instruction again disables the user map. 

The interrupt system is disabled from the beginning of the 
Map Single Cycle instruction until after the next LOA or 
SI A instruction. 

From user mode - If LEF mode and II 0 protection are 
disabled, this instruction turns off the MMPU. All 
subsequent memory references are unmapped until a map 
is reactivated with a Load Map Status instruction. 

NIOP 



1/0 Instructions 

This instruction, when issued to logical page 31, gives 
undefined results. Single cycle memory references to 
validity protected pages also give undefined results. No 
validity trap is generated~ 

Real Time Clock 
Device Code - 148 (Primary) 

Priority Mask Bit - 13 

Device Flag Commands 

f=s Sets the Busy flag to 1, and the Done flag and 
interrupt request flag to 0; enables RTC interrupts. 

f=C Sets the Busy and Done flags and the interrupt 
request flag to 0; disables RTC interrupts. 

f=P No effect. 

10RST Sets the Busy and Done flags, the interrupt request 
flag, the interrupt mask bit (bit 13), and the clock 
frequency select bits to 0; disables RTC interrupts. 

Select RIC Frequency 

DOA[f] ac,RTC 

The clock frequency is set according to bits 14-15 of the 
specified AC. The contents of the specified AC remain 
unchanged. Bits 0-13 of the specified AC are ignored. The 
format of the specified AC is as follows: 

Bits Name Contents or 
Function 

0-13 - Reserved for future use. 
(Set to 0) 

14-15 RTC Selects the dock 
frequency as follows: 
00 AC line frequency 
01 10Hz 
10 . 100Hz 

11 1000Hz 

Primary Asynchronous Line Output 

Primary Asynchronous Line Input 
Device Code - 108 (Primary) 

Priority Mask Bit - 14 

Device Flag Commands 

f=s Sets the Busy flag to 1 and the Done flag to O. 

f==C Sets the Busy and Done flags to O. 

f= P No effect. 

10RST Sets the Busy and Done flags toO. 

Read Character Buffer 

DIA[f] ac,TTI 

Places the contents of the controller's input buffer in bits 
8-15 of the specified accumulator. After the data transfer, 
sets the controller's Busy and Done flags according to the 
function specified by F. The format of the specified 
accumulator is as follows: 

CHARACTER ,J ., 
8 

Bits Name Contents or 
Function 

0-7 - Reserved for future use. 

8-15 Character The character read from 
the input buffer, 
right-justified. 

Primary Asynchronous Line Output 
Device Code - 118 (Primary) 

Priority Mask Bit - 15 

Device Flag Commands 

f=s Sets the Busy flag to 1 and the Done flag to 0; 
begins transmission of the character contained in 
the output buffer. 

f=C Sets the Busy and Done flags and the interrupt 
request flag to O. 

f=P No effect. 

10RST Sets the Busy and Done flags, the interrupt request 
flag, and the interrupt mask bit (bit 15) to O. 

5- 90 



Load Character Buffer 

DOA[f] aC,TTO 

Loads bits 8-15 of the specified accumulator into the 
controller's output buffer. After the data transfer, sets the 
controller's Busy and Done flags according to the function 
specified by F. The contents of the specified accumulator 
remain unchanged. The format of the specified 
accumulator is as follows: 

CHARACTER 

B 

Bits Name Contents or 
Function 

0-7 - Reserved for future use. 

8-15 Character The character, 
right-justified, to be placed 
in the output buffer. 

Data General Corporation 

5- 91 

DOA{f] 





00933 

Appendix A 
The Addressing Process 

DISPLACEMENT BITS 
YES miTO INTERMEDIATE 

;'~~--------------------------"----~ADDRESSAS 

NO 

DISPLACEMENT BITS 
AS SIGNED NUMBER 

LOW ORDER 15 
BITS GO TO 
INTERMEDIATE 
ADDRESS 

UNSIGNED NUMBER 

INDIRECT :>-Y:..:E:::S'--______ ..... ___________ -, 

NO 

BITS 1" 15 GO TO 
INTERMEDIATE 
ADDRESS 

YES 

SUBTRACT 1 FROM 
FETCHED WORD 
AND REPLACE. 
USE NEW VALUE 
TO CONTINUE 

A- 93 

INTERMEDIATE 
ADDRESS IS 
EFFECTIVE 
ADDRESS 





Appendix B 
Standard I/O Device Codes 

/ 

Octal Mnem Priority Device Name Octal Mnem Priority Device Name 
Device Mask Device Mask 
Code Bit Code Bit 

00 Unused 41 3 DPO 8 IPB full-duplex output 
01 WCS Writeable control store option [or APL 41 SCT 8 Synchronous communication transmitter 

[APL) register) Digital I/O 
02 ERCC Error checking and correction 42 010 7 Digital I/O timer 

MAP Memory allocation and protection 43 DIOT 6 Programmable interval timer 
03 43 PIT 11 
04 

44 MXM 12 Modem .control for MX 1 /MX2 
05 BMC Burst multiplexor channel 
06 MCAT 12 Multiprocessor adapter transmitter 45 Second multiprocessor transmitter 

Multiprocessor adapter receiver 46 MCATl 12 Second multiprocessor receiver 
07 MCAR 12 TTY input Second TTY input 

TTY output 47 MCARl 12 
10 TTl 14 
11 TTO 15 50 TTl 1 14 

12 PTR 11 Paper tape reader 51 'TTOl 15 Second TTY output 
13 PTP 13 Paper tape punch 52 PTRl 11 Second paper tape reader 
14 RTC 13 Real-time clock 53 PTPl 13 Second paper tape punch 
15 PLT 12 Incremental plotter 54 RTCl 13 Second real-time clock 
16 CDR 10 Card reader 55 PLn 12 Second incremental plotter 

17 LPT 12 Line printer 56 CDRl 10 Second card reader 
20 DSK 9 Fixed-head disc 57 LPn 12 Second line printer 
21 ADCV 8 A-D converter 60 DSKl 9 Second fixed-head disk 
22 MTA 10 Magnetic tape 61 ADCVl 8 Second A-D converter 
23 DACV None D-A converter 62 MTAl 10 Second magnetic tape 
24 DCM 0 Data communications multiplexor 

63 DACVl None Second D-A converter 

Fixed-head DG/Disc 
64 

25 
65 lOP 1 55 Host to lOP interface 

26 DKB 9 DG/Disk storage subsystem 
66 DKBl 9 Second fixed-head DG/Disk 

27 DPF 7 Asynchronous hardware multiplexor 
67 DPFl 7 Second DG/Disk storage subsY!ltem 

30 QTY 14 
QTY1 14 Second asynchronous hardware multi-70 

30 SLA 14 Synchronous line adapter 
plexor 

31' IBMl 13 IBM 360/370 interface 
70 SLAl 14 Second synchronous line adapter 

32 IBM2 13 IBM 360/370 interface 
Second IBM 360/370 interface 

33 DKP 7 Moving head disk 
71' Second IBM 360/370 interface 

34 CAS' 10 Cassette tape 
13 Second moving head disk 

DCU4 4 Data control unit 72 
34 MXl 11 Multiline asynchronous controller 

DKPl 7 
35 MX2 11 Multiline asynchronous controller 

73 

36 IPB 6 Interprocessor bus-half-duplex 74 CAS 1 10 Second cassette tape 
74' 11 Second multiline asynchronous controller 

37 IVT 6 IPB watchdog timer 75 11 Second multiline asynchronous controller 

402 DPI 8 IPB full-duplex input 76 DPU 4 DCU to host interface 

40 SCR 8 Synchronous communication receiver 77 CPU Central processor and console functions 

lCode TetuTned by INTA and used by VCT. 3Can be set up with any unused odd device code equal to 41 01' above. 

2Can be set up with any unused even device code equal to 40 01' above. 4Can be set to any unused device code between 1 and 76. 

5MicTO inte1'1'Upts aTe not maskable. 

B- 95 





Appendix C 
The ASCII Character Codes 

KEY KEY KEY KEY 
DECIMAL OCTAL HEX SYMBOL MNEMONIC DECIMAL OCTAL HEX SYMBOL DECIMAL OCTAL HEX SYMBOL DECIMAL OCTAl HEX SYMBOl 

~ ~ ~ ~ 
~ ~ ~ ~ 
~ ~ 

~ ~ ~ ~ 
~ ~ ~ ~ 
~ ~ ~ ~ 
~ ~ ~ ~ 
~ ~ ~ ~ 

I 

~ ~ ~ ~ 
~ ~ ~ ~ 
~ ~ ~ ~ 

I 

~ ~ ~ ~ 
~ ~ ~ 

~ ~ ~ .~ 
~ ~ ~ ~ 
~ ~ ~ ~ I 

~ ~ ~ ~ 
~ ~ ~ ~ 
~ ~ ~ ~ 
~ ~ ~ ~ 
~ ~ ~ 
~ ~ ~ 

~ ~ ~ ~ 
~ ~ ~ ~ .. I 

~ ~ ~ ~ 
~ ~ ~ ~ 
~ ~ 
~ ~ 

I 

~ ~ ~ ~ 
~ ~ ~ ~ ,I 

1,1 I 

~ ~ ~ ~ ,. I 
'i I 

~ ~ ~ ~ 
DG-05495 ~ ~ 

I 

c- 97 





DC OFFICES 

NORTH AMERICAN OFFICES 
Alabama: Birmingham 
Arizona: Phoenix, Tucson 
Arkansas: Little Rock 
California: Anaheim, EI Segundo, Fresno, Los Angeles, Oakland, Palo Alto, Riverside, 
Sacramento. San Diego, San Francisco, Santa Barbara, Sunnyvale, Van Nuys 
Colorado: Colorado Springs, Denver 
Connecticut: North Branford, Norwalk 
Florida: Ft. Laude;dale, Orlando, Tampa 
Georgia: Norcross 
Idaho: Boise 
Iowa: Bettendorf, Des Moines 
Illinois: Arlington Heights, Champaign, Chicago, Peoria, Rockford 
Indiana: Indianapolis 
Kentucky: Louisville 
Louisiana: Baton Rouge, Metairie 
Maine: Portland, Westbrook 
Maryland: Baltimore 
Massachusetts: Cambridge, Framingham, Southboro, Waltham, Wellesley, Westboro, 
West Springfield, Worcester 
Michigan: Grand Rapids, Southfield 
Minnesota: Richfield 
Missouri: Creve Coeur, Kansas City 
Mississippi: Jackson 
Montana: Billings 
Nebraska: Omaha 
Nevada: Reno 
New Hampshire: Bedford, Portsmouth 
New Jersey: Cherry Hill, Somerset, Wayne 
New Mexico: Albuquerque 
New York: Buffalo, Lake Success, Latham, Liverpool, Melville, New York City, 
Rochester, White Plains 
North Carolina: Charlotte, Greensboro, Greenville, Raleigh, Research Triangle Park 
Ohio: Brooklyn Heights, Cincinnati, Columbus, Dayton 
Oklahoma: Oklahoma City, Tulsa 
Oregon: Lake Oswego 
Pennsylvania: Blue Bell, Lancaster, Philadelphia, Pittsburgh 
Rhode Island: Providence 
South Carolina: Columbia 
Tennessee: Knoxville, Memphis, Nashville 
Texas: Austin, Dallas, EI Paso, Ft. Worth, Houston, San Antonio 
Utah: Salt Lake City 
Virginia: McLean, Norfolk, Richmond, Salem 
Washington: Bellevue, Richland, Spokane 
West Virginia: Charleston 
Wisconsin: Brookfield, Grand Chute, Madison 

DG-04976 

INTERNA TlONAL OFFICES 
Argentina: Buenos Aires 
Australia: Adelaide, Brisbane, Hobart, Melbourne, Newcastle, Perth, Sydney 
Austria: Vienna 
Belgium: Brussels 
Bolivia: La Paz 
Brazil: Sao Paulo 

Canada: Calgary, Edmonton, Montreal, Ottawa, Quebec, Toronto, Vancouver, 
Winnipeg 
Chile: Santiago 
Columbia: Bogato 
Costa Rica: San Jose 
Denmark: Copenhagen 
Ecuador: Quito 
Egypt: Cairo 
Finland: Helsinki 
France: Le Plessis-Robinson, Lille, Lyon, Nantes, Paris, Saint Denis, Strasbourg 
Guatemala: Guatemala City 
Hong Kong 
India: Bombay 
Indonesia: Jakarta, Pusat 
Ireland: Dublin 
Israel: Tel Aviv 
Italy: Bologna, Florence, Milan, Padua, Rome, Tourin 

Japan: Fukuoka, Hiroshima, Nagoya, Osaka, Tokyo, Tsukuba 
Jordan: Amman 
Korea: Seoul 
Kuwait: Kuwait 
Lebanon: Beirut 
Malaysia: Kuala Lumpur 
Mexico: Mexico City, Monterrey 
Morocco: Casablanca 
The Netherlands: Amsterdam, Rijswijk 
New Zealand: Auckland, Wellington 
Nicaragua: Managua 
Nigeria: Ibadan, Lagos 
Norway: Oslo 
Paraguay: Asuncion 
Peru: Lima 
Philippine Islands: Manila 
Portugal: Lisbon 
Puerto Rico: Hato Rey 
Saudi Arabia: Jeddah, Riyadh 
Singapore 
South Africa: Cape Town, Durban, Johannesburg, Pretoria 
Spain: Barcelona, Bibao, Madrid 
Sweden: Gothenburg, Malmo, Stockholm 
Switzerland: Lausanne, Zurich 
Taiwan: Taipei 
Thailand: Bangkok 
Turkey: Ankara 

United Kingdom: Birmingham, Bristol. Glasgow, Hounslow, London, Manchester 
Uruguay: Montevideo 
USSR: Espoo 
Venezuela: Maracaibo 

West Germany: Dusseldorf, Frankfurt, Hamburg, Hannover, Munich, Nuremburg, 
Stuttgart 





How to Get in 
Touch with TIPS 

•• Data General 





134-755-01 

fold 

moisten & seal 

CUSTOMER DOCUMENTATION COMMENT FOR~ 
Your Name ___________________ Your Title ___________ _ 

Company _________________________________________________ __ 

Sheet ______________________________________________________________ _ 

City _________________________ State ___________ Zip ___ _ 

We wrote this book for you, and we made certain assumptions about who you are and how you would 
use it. Your comments will help us correct our assumptions and improve the manual. Please take a 
few minutes to respond. Thank you. 

Manual Title ____________________ Manual No. _________ _ 

Who are you? OEDP/MIS Manager 
OSenior Systems Analyst 
o Engineer 

o AnalystfProgrammer OOther ______ _ 

o Operator 
OEnd User 

How do you use this manual? (List in order: 1 

_ Introduction to the product 
_ Reference 

Primary Use) 

__ Tutorial Text 
__ Operating Guide 

About the manual: Is it easy to read? 
Is it easy to understand? 
Are the topics logically organized? 
Is the technical information accurate? 
Can you easily find what you want? 

, Does it tell you everything you need to know? 
Do the illustrations help you? 

If you wish to order manuals, use the enclosed TIPS Order Form (USA only). 

Comments: 

_Other 

Yes 
o 
o 
o 
o 
o 
o 
o 

No 
o 
o 
o 
o 
o 
o 
o 



lat 

lO-SSL-v£l 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 26 SOUTHBORO, MA 01T~2 

Postage will be paid by addressee 

t. DataGeneral 
Customer Documentation 
MS E-219 
4400 Computer Drive 
Westboro, MA 01581- 9973 

111'11'1.11.111.1 •• 1 •••• 111.1 •• 1.1 •• 1 ••• 1 •• 11.1 ••• 11 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 






