

I
i

ECLIP8E® 8/280

Assembly Language Programming

4. Data General

Notice
Data General Corporation (DGC) has prepared this document
for use by DGC personnel, customers, and prospective custom­
ers. The information contained herein shall not be reproduced
in whole or in part without DGC's prior written approval.

DGC reserves the right to make changes in specifications and
other information contained in this document without prior
notice, and the reader should in all cases consult DGC to
determine whether any such changes have been made.

THE TERMS AND CONDITIONS GOVERNING THE
SALE OF DGC HARDWARE PRODUCTS AND THE
LICENSING OF DGC SOFTWARE CONSIST SOLELY
OF THOSE SET FORTH IN THE WRITTEN
CONTRACTS BETWEEN DGC AND ITS CUSTOMERS.
NO REPRESENTATION OR OTHER AFFIRMATION OF
FACT CONTAINED IN THIS DOCUMENT INCLUDING
BUT NOT LIMITED TO STATEMENTS REGARDING
CAPACITY, RESPONSE-TIME PERFORMANCE, SUIT­
ABILITY FOR USE OR PERFORMANCE OF PRODUCTS
DESCRIBED HEREIN SHALL BE DEEMED TO BE A
WARRANTY BY DGC FOR ANY PURPOSE, OR GIVE
RISE TO ANY LIABILITY OF DGC WHATSOEVER.

IN NO EVENT SHALL DGC BE LIABLE FOR ANY
INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUEN­
TIAL DAMAGES WHATSOEVER (INCLUDING BUT
NOT LIMITED TO LOST PROFITS) ARISING OUT OF
OR RELATED TO THIS DOCUMENT OR THE INFOR­
MATION CONTAINED IN IT, EVEN IF DGC HAS BEEN
ADVISED, KNEW OR SHOULD HAVE KNOWN OF THE
POSSIBILITY OF SUCH DAMAGES.

DASHER, DATAPREP, ECLIPSE, ENTERPRISE, INFOS,
microNOV A, ' NOVA, PROXI, SUPERNOVA, ECLIPSE
MV /6000, ECLIPSE MV /8000, TRENDVIEW, MANAP, and
PRESENT are U.S. registered trademarks of Data General
Corporation, and AZ-TEXT, ECLIPSE MV /4000, REV-UP,
SWAT, XODIAC, GENAP, DEFINE, CEO, SLATE,
microECLIPSE, BusiPEN, BusiGEN, BusiTEXT and DG /L
are U.S. trademarks of Data General Corporation.

Ordering No. 014-000689

© Data General Corporation, 1983
All Rights Reserved
Printed in the United States of America
Rev. 00, February, 1983

~\
(

This manual and its companion manual, 16-Bit Real­
Time ECLIPSE® Assembly Language Programming
(DGC No. 014-000688), together provide extcnsive infor­
mation for assembly language programmers working with
the ECLIPSE® S/280 computer.

The J 6-Bit Real-Time ECLIPSE Assembly Language
Programming manual explains the 16-bit processor­
independent concepts, functions, and instruction set. The
ECLIPSE S/280 Assembly Language Programming
manual describes the S/280-dependent information such
as physical memory size, address translation implementa­
tion, resident I/0 devices, and instruction execution
times.

Manual Organization
The ECLIPSE S/280 Assembly Language Programming
manual contains eight chapters and five appendices.

Chapter 1, "Technical Summary," explains the system
components and functions available on the ECLIPSE
S/280 computer.

Chapter 2, "Memory Reference and Stack Management,"
summarizes memory referencing and the stack instruc­
tions.

Chapter 3, "Data Manipulation," summarizes fixed- and
floating-point formats and instructions, and offers pro­
gramming suggestions for accelerating data movement.

Chapter 4, "Program Flow Management," explains pro­
gram flow, and interrupt and fault handling.

Preface

Chaptcr 5, "Device Management," explains the
ECLIPSE S/280 I/0 interrupt system, the resident I/0
devices, and applicable instructions.

Chapter 6, "Memory and System Management," de­
scribes the S/280 address translation facilities, memory
protection features, and special system functions for the
operating system designer.

Chapter 7, "Virtual Console," describes the virtual con­
sole features and commands through which the operator
interacts with the S/280 computer.

Chapter 8, "Powerup and Initialization," presents the
S/280 powerup sequence, programming for
powerfail/ autorestart situations, and the initial state of
the S/280 computer after power-up, system reset, and
execution of an I/O Reset instruction.

Appendix A, "Instruction Summary," lists the complete
S/280 instruction set alphabetically by assembler mne­
monic.

Appendix B, "Instruction Execution Times," presents the
typical execution time for each S/280 instruction.

Appendix C, "Register Fields," presents tabular data for
the various program-accessible registers.

Appendix D, "Standard S/280 I/O Device Codes," lists
Data General's standard device codes.

Appendix E, "Compatibility with Earlier ECLIPSE Com­
puters," discusses the programming differences between
the S/280 computer and other 16-bit Real-Time
ECLIPSE computers.

Preface

Conventions and Abbreviations
In this manual, the following conventions and abbrevia­
tions represent assembler statements for instructions.

MNEMONIC Uppercase characters indicate a literal
argument (command mnemonic) in an
assembler statement. When you include
a literal argument with an assembler
statement, use its exact form.

argument Lowercase italic characters indicate a
variable argument in an assembler state­
ment. When you include the argument
with an assembler statement, substitute
a literal value for the variable argument.

[argument} Square brackets enclosing an argument
indicate that it is optional. Do not type
the square brackets; they only indicate
that you have a choice.

ae The ae abbreviation indicates a fixed­
point accumulator.

aes

aed

fpae

faes

faed

The aes abbreviation indicates a source
fixed-point accumulator.

The aed abbreviation indicates a desti­
nation fixed-point accumulator.

The fpae abbreviation indicates a
floating-point accumulator.

Thefaes abbreviation indicates a source
floating-point accumulator.

The faed abbreviation indicates a desti­
nation floating-point accumulator.

In addition, diagrams in the following format show the
arrangement of 16 bits in a word or fixed-point accumula­
tor.

BIT FORMAT

o 6 15

ii Preface

("\
i

Preface

Manual Organization i
Conventions and Abbreviations ii

Chapter 1
Technical Summary

System Overview 1
Memory System 4

Address Translation Facilities 4
Cache 4
Memory Control Unit 5
Memory Modules 5
Memory Refresh and Error
Correction 5

Processing System 6
Central Processor 6
Optional Floating-Point Processor 6

Input/Output System 6
I/0 Transfers 6
Resident I/0 Devices 6

Power System 7
System Console 7

Chapter 2
Memory Reference and Stack Management

Memory Reference 9
Reserved Memory Locations 9
Stack Management 9

Stack Instructions 9

Chapter 3
Data Manipulation

Fixed-Point Manipulation 11
Arithmetic Data Formats 11
Arithmetic Instructions 11
Logical Data Formats 12
Logical Instructions 12
Decimal/Byte Data Formats 13
Decimal/Byte Instructions 13

Table of Contents

Floating-Point Manipulation 13

Floating-Point Data Formats 13

Floating-Point Instructions 14

Floating-point Status Register 15

Accelerating Data Movement 15

Increase Cache Hits 15

Avoid Consecutive Writes 15

Chapter 4
Program Flow Management

Sequential Instruction Flow 17

Non-sequential Instruction Flow 17
Program Flow Instructions 17

Interrupt Handling 18
Fault Handling 18

Chapter 5
Device Management

Input/Output Facilities 19

Programmed I/O 19
Data Channel 19

Burst Multiplexor Channel 19

General I/O Instructions 20

Interrupt System 20

Instructions 20

INTA 21
INTDS 21
INTEN 21

MSKO 22

10RST 22
RSTR 22

SKP CPU 22
VCT 22

Programmable Interval Timer 23
PIT Registers 23
PIT Instructions 23
DIA PIT 24

DOA PIT 24

Programming 24

Real-Time Clock 24

RTC Instructions 24

DOA RTC 25

Programming 25

Powerup Response and Timing 25

Asynchronous Input/Output Line 25
Registers 26

Instructions 26

DIA TTl 26

DOA TTO 26

Programming 27
Powerup Response and Timing 28

Universal Power Supply Controller 28
USPC Instructions 28
DOAS UPSC 29

DOAP UPSC 29

DIA UPSC 30

Programming 31

Chapter 6
Memory and System Management

Memory Allocation and Protection 33
User and Data Channel Address
Translator 33

DOA MAP 35

LMP 36
DIA MAP 36
DOC MAP 37
DIC MAP 37
DOB MAP 38
NIOP MAP 38
BMC Address Translator 39

DIC BMC 40
DOA BMC 40
DOB BMC 41

DOB BMC 41

DOC BMC 42

Programming Address
Translators 42

Fault Handling 43
ERCC Facility 44

Modes 44

ERCC Instructions 45

DOA ERCC 45

DIA ERCC 46

DIB ERCC 46

Programming 47
Timing and Powerup Response 48

System Status and Speci~l Functions 48
System Instructions 48
DOAP CPU 48
HALT 48
NCLID 49
READS 49
SYC 50

Chapter 7
Virtual Console

Entering the Virtual Console 51
Entering Commands 51

Correcting Errors 51
Cells 52

Modes 53
Output Modes 53
Input Modes 53

Function Commands 54
Program Control Commands 54
Program Load Commands 55
I/O Reset Command 56
Search Command 56
Address Translation Commands 56
Confidence Test Command 57

Chapter 8
Powerup and Initialization

Powerup Sequence 59
Normal Powerup 59
Powerup Faults 59
Powerfail/ Autorestart
Programming 59

Initialization 60

Appendix A
Instruction Summary

Appendix B
Instruction Execution Times

Appendix C
Register Fields

Program Counter 79
Processor Status Register 80
Floating-point Status Register 80

User /DCH Address Translator Status
Register 80

Memory Fault Address and Fault
Code Registers 82
BMC Status Register 83
Power System Status Registers 83

63

75

Appendix D 85
Standard ECLIPSE S/280 I/O Device
Codes

Appendix E
Compatibility with Earlier ECLIPSE
Computers

Unique Features 87
Execution Timing 87
Program Flow 87
Memory 87
Address Translation 88
Error Checking and Correction 88
Diagnostic and Special Instructions 88

Index

DG Offices

89

How to Order Technical Publications

Technical Products Publications Comment Form

Users' Group Membership Form

,r'
1

r-.
(

--

The ECLIPSE S/280 enhances the high-end of the 16-bit
real-time ECLIPSE computer family by offering superior
performance in the small system environment. The
ECLIPSE S/280 uses the full 16-bit real-time instruction
set as presented in 16-Bit Real-Time ECLIPSE Assembly
Language Programming (DGC No. 014-000688). This
set includes instructions to manipulate fixed-point data
- including characters - and floating-point data; to
define and manipulate stacks; to alter program flow; to
control system input and output; and to manage memory.

The S/280 systems support all the new NOV A-ECLIPSE
line peripherals as well as most older ones. Input/output
to these peripherals occurs over the NOVA-ECLIPSE
I/O bus and an optional burst multiplexor channel. The
NOVA-ECLIPSE I/O bus includes data channel and
programmed input/output facilities.

The data channel facility supports data transfers between
memory and medium-speed devices such as disk drives,
diskette drives, tape transports, and communications
processors. The programmed I/O facility supports single­
word transfers to and from low-speed devices such as
display terminals and printers. The optional burst multi­
plexor channel transfers blocks of data between memory
and high-speed disks and tape drives.

Chapter 1

Technical Summary

System Overview
The S/280 system incorporates five systems:

• A memory system providing logical-to-physical ad­
dress translation, a cache for look-ahead/look-behind
memory buffering, up to 2 Mbytes of main memory,
and memory error checking and correction.

• A processing system providing ECLIPSE S/280 in­
struction decode and execution and a stack manage­
ment facility.

• An input/output system providing facilities for control
and data transfer between NOVA/ECLIPSE periph­
erals using the standard data channel, the programmed
I/O facility, and the optional burst multiplexor chan­
nel.

• A power system providing power, diagnostic functions,
and optional battery backup.

• A system console providing a virtual (soft) system
console for user interaction with, and control of, the
system.

Figure 1.1 shows the interconnection of these systems.

Technical Summary 1

POWER SYSTEM

Data

Data

Data

Instruction

SYSTEM CONSOLE

Figure 1.1 5/280 computer system

2 Technical Summary

Data (----__ ---------------------------------------L-----' '!

Data
Manipulation

and
Stack Control

Instruction

Instruction

PROCESSING SYSTEM

;-"
f

10-00176

Logical Address

Data (write only)

Data

Address

Translation

second

Data

MEMORY SYSTEM

Logical Address

Physical

Address

2.2 Mbytes/sec .
...

1.67 Mbytes/:ec.

Data

13.3 Mbytes/sec
9.7 Mbytes/sec. -----...

1/0 SYSTEM

Technical Summary 3

Memory System
The S/280 memory system contains address translation
facilities, a cache, a memory control unit, and memory
modules.

Address Translation Facilities

The S/280 architecture has 64 Kbytes of logical address
space available for the programmer and from 512 Kbytes
to 2 Mbytes of physical address space for storage. Because
the logical address space is smaller than the physical
address space, the S/280 uses address translation to store
the 2 Kbyte pages of each logical address space in physical
memory.

The S/280 memory system has address translation facili­
ties for memory access by user, data c"hannel, and burst
multiplexor channel processes. These facilities include
program-accessible map tables which store the address
translations for four user processes, four data channel
processes, and a burst multiplexor process.

In addition to address translation, the facilities also
perform all the hardware checks required by the program­
mable protection system. These checks include validation

of process access, write access, I/O access, and indirec­
tion. The program can enable protection traps to occur
when any of these checks detects a fault condition.

Cache

The cache functions as both a look-ahead and a look-back
buffer for the processing system. This reduces the time
the processing system needs to access main memory. The
input/output system does not use the cache; it accesses
main memory directly.

The cache stores 4 Kbytes of memory data. The data is
organized into two sets of 256 four-word (8-byte) blocks;
each block is associated with certain blocks of four
contiguous locations in main memory. This means that
cache blocks cannot contain arbitrary locations from
memory. As Figure 1.2 shows, up to 1024 pages comprise
memory, and each page contains 256 four-word blocks.
Corresponding blocks in each memory page are mapped
into the same block in each cache set. Thus, block 0 of
either cache set can contain block 0 of any page in main
memory. The cache keeps track of the memory page
which supplied each cache block.

Physical Memory
en pages of 256 4-word blocks)

Block 0

Block 1

Block 2

• • •
Block 256

Cache Set 1

256 4-word blocks;
each block contains
corresponding block

Least-recently-used
flag for block = 0

from any of n memory pages

Figure 1.2 Memory-to-cache mapping

4 Technical Summary

Least-recently-used
flag for block = 1

Block 0

Block 1

Block 2

• • •
Block 256

Cache Set 2

256 4-word blocks;
each block contains
corresponding block
from any of n memory pages

10-00177

r-.
(

r­
I

-

The cache also contains 256 least-recently-used (LRU)
flags, one for each cache block. These flags indicate which
set was NOT accessed the last time data was read from
that cache block.

Whenever the central processor requests data from any
block (n) of a memory page that is not currently in the
cache (cache miss), the cache examines the LRU flag for
cache block n. If the LRU flag is set to 1, the cache stores
block n of the new page in block n of cache set 1; if the
LRU flag is set to 0, the cache stores block n of the new
page in block n of cache set 2. In either case, the cache
overwrites the contents of cache block n with the new
block (cache fill) and then updates the LRU flag for
cache block n. Whenever a process requests data from a
memory block n that is already in the cache (cache hit),
the cache supplies the data from cache block n of the
appropriate cache set and updates the LRU flag for cache
block n appropriately.

Whenever a process requests that data be stored in block
n of a memory page, the data is always written into main
memory. If the block is currently in the cache, the cache
also stores the data in block n of the least-recently-used
cache set. This ensures that the cache and main memory
contain the same data for the same block. If the block is
not in the cache, the cache does nothing; in other words,
the block is not loaded into the cache.

When a data channel device or a burst multiplexor device
writes data to a block in main memory which is also in
the cache, the cache invalidates the cache block. The
next time a process requests data from this block, the
cache retrieves the block from memory, thus ensuring
that the correct data is used. The cache is also invalidated
at powerup and when the processor enters virtual console
mode.

Memory Control Unit

The memory control unit contains three ports: one for the
processing system and two for direct transfers between
memory and the I/0 system. The I/0 system's data
channel uses one of these two ports and its burst
mutiplexor channel uses the other. The control unit
multiplexes the ports' access to the modules on a priority
basis: the data channel has highest priority, the burst
multiplexor channel has priority next, and the processing
system has lowest priority.

Memory Modules

RAM modules are provided in three different sizes and
organized into independent banks.

The 512 Kbyte module consists of four independent banks,
each bank containing 16K pairs of double words. The I
Mbyte and 2 Mbyte modules consists of two and four
independent banks, respectively, each bank containing
64K pairs of double words. Each double-word location
contains two I6-bit data words and seven check-code bits.

On modules with two banks (I Mbyte), each bank
contains every other pair of double words. This means
that bank ° contains words 0, I, 2, 3, 10, II, 12, 13, ... ;
bank I contains words 4, 5, 6, 7, 14, 15, 16, 17, On
modules with four banks (512 Kbytes and 2 Mbytes),
each bank contains every fourth pair of double words.
This means that bank ° contains words 0, I, 2, 3, 20, 21,
22, 23, ... ; bank I contains words 4, 5, 6, 7, 24, 25, 26,
27 ... ; bank 2 contains words 10, I I, 12 ,13, 30, 31, 32,
33, ... ; bank 3 contains words 14, IS, 16, 17, 34, 35, 36,
37

This arrangement allows memory operations to overlap
so that one address can access one double word or two
double words. The address provided to the memory
modules specifies one pair of double words. Control signals
select one or both of the double-words for the memory
operation. In addition, this arranagement can be used to
speed up memory access, since one bank can be addressed
while data is being written into or read from another
bank.

Memory Refresh and Error Correction

Because the S/280 memory modules consist of dynamic
RAM, the memory control unit must refresh the modules.
It performs a refresh cycle every 16 microseconds.

The memory control unit checks the memory modules for
errors when it performs a refresh and when it reads a
memory location. Its error correction logic corrects all
single-bit errors, detects all double-bit and some triple-bit
errors, and stores error information. The program can
enable and disable the error correction logic and read
error information.

When the memory control unit refreshes a module, it also
reads one double word and runs that double word through
its error correction logic. This process is called sniffing. If
the error correction logic detects a single-bit error while
sniffing, it corrects the error and writes the corrected
dou ble word back to memory.

When the memory control unit reads a double word from
a module, it runs that double-word through its error
correction logic. I f this logic detects a single-bit error, it
corrects the error before sending the double word to the
requestor.

Chapter 6 presents information for programming the error
correction logic.

Technical Summary 5

Processing System
The processing system contains a central processor (CP)
and an optional floating-point processor (FP).

Central Processor

The central processor (CP) executes the standard I6-bit
ECLIPSE instruction set, the character instruction set,
and the floating-point instruction set. It fetches the
instruction, which is addressed by its I5-bit program
counter, from main memory and decodes the instruction
into microinstructions. These microinstructions then pro­
duce the control signals that run the central processor's
arithmetic logic unit, access memory, perform I/O trans­
fers, and send floating-point instructions to the floating­
point processor, if this processor is present.

The central processor accelerates instruction execution
with a three-stage pipeline. This pipeline allows the
central processor to overlap instruction fetches with
instruction execution when instructions are sequential in
memory. The central processor clears (flushes) the pipe­
line when a non-skip instruction alters program flow.

On powerup, the central processor automatically executes
a confidence test. The tests check the basic functions of
the processing, memory, and I/O systems to ensure that
software can be loaded.

The central processor contains the following program­
accessible registers for manipulating data and managing
the system:

four 16-bit fixed-point accumulators,
four 64-bit floating-point accumulators,
one 16-bit floating-point status register.

It uses the following program-accessible reserved memory
locations for managing stacks:

one 16-bit stack limit register,
one 16-bit stack pointer register,
one 16-bit frame pointer.

NOTE: The central processor's floating-point registers
are used only when the floating-point processor is not
present.

Optional Floating-Point Processor

The optional floating-point processor operates in parallel
with the central processor. It executes the ECLIPSE
16-bit floating-point instruction set approximately six and
one-half times faster than the central processor. When
the central processor fetches a floating-point instruction,
it sends the instruction to the floating-point processor for
execution. If the instruction references memory, the
central processor also initiates the reference. While the
floating-point processor executes the instruction, the
central processor continues to fetch and execute instruc­
tions until it fetches another floating-point instruction.

6 Technical Summary

In addition to executing instructions, the floating-point
processor also performs hardware checks on floating-point
arithmetic operations. These checks include detection of
exponent overflow and underflow, mantissa overflow, and
division by zero. When any of these fault conditions are
detected, the program can enable a floating-point trap to
occur.

The floating-point processor contains the following
program-accesssible registers for manipulating and man­
aging floating-point data:

four 64-bit floating-point accumulators,
one 16-bit floating-point status register.

Input/Output System
The input/output (I/O) system is electrically and pro­
gram compatible with the NOV A-ECLIPSE I/O bus
and the BMC (burst multiplexor channel) bus used by
the I6-bit Real-Time ECLIPSE family. This means that
the S/280 computer system supports the family of
standard Data General NOVA-ECLIPSE line peripher­
als.

I/O Transfers

Both the data channel and the burst multiplexor channel
transfer data directly to and from the memory system via
an I/O control unit. Data on these channels never passses
through the cache or the processing system.

The data channel transfers data to and from memory at a
rate of up to 1.67 Mbytes per second on output and up to
2.2 Mbytes per second on input. The burst multiplexor
channel transfers blocks of data to and from memory at
the rate of up to 9.7 Mbytes per second on output and up
to 13.3 Mbytes per second on input.

The programmed I/O facility transfers words between
the central processor's accumulators and I/O devices. In
addition to transferring data from low-speed devices, the
programmed I/O facility is used to set up the transfers
for higher-speed channels.

Resident I/O Devices

All S/280 computers have four basic I/O devices: a
programmable interval timer, a real-time clock, and
asynchronous input and output lines.

The programmable interval timer provides a time base
independent of central processor timing. This time base
can be programmed to intitiate program interrupts at a
fixed programmable multiple of an interval in one of four
jumper-selected ranges. The fixed intervals are multiples
of 1, 10, or 100 microseconds, or 1 millisecond, depending
on the selected range.

r--.
i

r

The real-time clock provides a programmable selection
of precise time bases. Four frequencies are available: 10
Hz, 100 Hz, 1000 Hz, and line frequency.

The asynchronous input/output lines provide the commu­
nications link between the central processor and the
master terminal. They support asynchronous transfers at
jumper-selected rates ranging from 50 to 38,400 baud.

Power System
The power system converts ac line power into the dc
voltages necessary to run the components in the computer
chassis. In systems with the battery backup option, the
power system uses battery power to supply the necessary
voltages during an ac power failure.

A microprocessor-based controller governs the operation
of the power system. At initial powerup, the controller
runs a self-test to ensure proper operation. Then the
controller begins to sequence up the output voltages, while
monitoring for faults. If the controller detects a fault, it
displays a fault code on the front console lights and cuts
powers.

The controller contains several 8-bit program-accessible
registers which are useful for monitoring system status,
changing operating modes, and performing diagnostic
functions.

System Console
The S/280 system consists of the resident asynchronous
input/output line, the terminal connected to it, and virtual
console firmware in the central processor. The system
console terminal is the master terminal.

When the master terminal operates under the control of
the operating system software (run mode), it functions as
a system operator's terminal. In this mode, the operator
controls the system with operating system commands and
utilities.

When the master terminal operates under the control of
the virtual console firmware (virtual console mode), it
operates as a diagnostic tool and program debugger. In
this mode, the operator uses virtual console commands to
do such things as access system registers and main
memory, to single-step through a program instruction by
instruction and to run the confidence tests.

Technical Summary 7

r-'
I

~-

-

Chapter 2

Memory Reference and Stack Management

The S/280 processing system references memory and
handles stacks using the same methods as the other
members of the 16-bit Real-Time ECLIPSE computer
family. This chapter summarizes methods for referencing
memory, lists the S/280 memory locations reserved for
special functions, and discusses instructions for manipu­
lating stacks. The J6-Bit Real-Time ECLIPSE Assembly
Language Programming manual provides additional in­
formation on memory reference and stack manipulation.

Memory Reference
When the central processor executes a memory reference
instruction, it calculates an effective logical address. First,
the central processor calculates an intermediate address
using the address mode specified by the instruction. The
three possible address modes are

• Absolute addressing - the intermediate address
comes from the the instruction's displacement field.

• Program-counter-relative addressing - the immedi­
ate address is the sum of the program counter and the
instruction's displacement field.

• Accumulator-relative addressing - the immediate
address is the sum of an accumulator and the instruc­
tion's displacement field.

Next, the central processor resolves any indirection. The
S/280 central processor allows up to 14 levels of indirec­
tion when user address translation is enabled and an
infinite number of levels when user address translation is
disabled. The central processor sends the resolved logical
address (the effective address) to the address translation
facilities. For information on these facilites, refer to
Chapter 6, "Memory and System Management."

Reading and writing to a non-existent memory location
can produce undesirable results. The first time a process
reads such a location, it receives meaningless data, and
the cache writes the same meaningless data into the
appropriate cache block. If a process later writes data to
the same location, the cache stores the data since it
contains the referenced location. As a result, the non­
existent memory location may seem real and memory
sizing routines may size memory incorrectly.

Reserved Memory Locations
Within lower page 0, logical locations 0 through 7 and 40
through 47 are reserved for storing data which has special
meaning. Most of these locations store addresses, some of
which are indirectable and some of which are not. (See
Table 2.1.) The operating system or user program can
access any of the locations using absolute mode addressing
with any memory reference instruction.

The operating system accesses locations 0 through 7 when
it handles I/O interrupts and system calls. Locations 40
through 47 are accessed by either the operating system or
by user programs when they use the stack facility,
extended operation instructions, or floating-point instruc­
tions. Since the operating system and each user can have
their own stack, extended operation tables, and floating­
point handler, each user map table can translate these
logical addresses to different physical locations.

The S/280 system does not have the autoincrementing
and autodecrementing locations (208 through 378) of the
earlier 16-bit Real-Time ECLIPSE computers.

Table 2.1 lists the S/280 reserved memory locations and
their functions.

Stack Management
The S/280 processing system supports the standard 16-bit
ECLIPSE stack facility and provides both stack overflow
and stack underflow protection.

The processing system checks for stack overflow for a
Save (SAVE) or a Modify Stack Pointer (MSP) instruc­
tion before executing the instruction. For any other
instruction that pushes data onto the stack, it checks for
overflow after executing the instruction. It also checks
for stack underflow after executing any instruction that
pops data off the stack.

Stack Instructions

Table 2.2 lists the instructions for manipulating stacks.

Memory Reference and Stack Management 9

Location Name Function Words
(octal) Instruction Action Pushed Required

Mnemonic or Beyond r
0 I/O return Return address from I/O inter- Popped Stack Limit

rupt. Also address of first for Fault
instruction of autorestart routine.

I/O handler Address of the I/O interrupt
handler. Indirectable. FPOP Floating-point pop 18 5

2 System call Address of the system call FPSH Floating-point push 18 23

handler instruction handler. Indirectable. MSP Modify stack pointer

3 Protection fault Address of the protection fault POP Pop multiple 1-4 5
handler handler.lndirectable. accumulators

4 Vector stack Address of the top of the vector POPS Pop block 5 5
pOinter stack. Nonindirectable. POPJ Pop program counter 5

5 Current mask Current interrupt priority mask. and jump

6 Vector stack limit Address of the last normally PSH Push multiple 1-4 6-9
usable location in the vector accumulators
stack. Nonindirectable. PSHJ Push jump to subroutine 6

7 Vector stack fault Address of the vector stack fault PSHR Push return address 1 6
handler handler. Indirectable.

RSTR Restore 9 5
40 Stack pointer Address of top of stack.

RTN Return 5 5 Nonindirectable.

Frame pointer Address of frame reference with-
SAVE

41
Save 5 10

in the stack. Nonindirectable.

42 Stack limit Address of the last normally Table 2.2 Stack instructions

usable location in the stack. NOTE: The program counter pushed onto the stack
Nonindirectable. when the address translators detect a validity or

43 Stack fault handler Address of the stack fault write-protectionfault may not contain the address o/the
handler. Indirectable. instruction that caused the fault.

44 XOP table Address of the beginning of the (
Extended Operation table. I

Nonindirectable.

45 Floating-point fault Address of the floating-point fault
handler handler. Indirectable.

46-47 Reserved for future use.

Table 2.1 Reserved memory locations In logical address space

0-3778

10 Memory Reference and Stack Management

The S/280 computer manipulates data with the same
fixed- and floating-point operations as the other 16-bit
Real-Time ECll PSE computers. This chapter summa­
rizes the data formats and instructions that perform these
operations. For further information, refer to the the
manual 16-Bit Real- Time ECll PSE Assembly Language
Programming (DGC No. 014-000688).

Fixed-Point Manipulation
The fixed-point operations include arithmetic, logical,
and decimal/byte operations.

Arithmetic Data Formats

Fixed-point arithmetic operations manipulate unsigned
or signed two's-complement numbers. The accumulator
formats for these data types are diagrammed below.

Unsigned Single-Precision Format

Word

Two·s·Complement Number

o 15

Unsigned Double Precision Format

Word 1

Two·s·Complement Number

o 15

Word 2

Two·s·Complement Number

o 15

Signed Single-Precision Format

Word

Two's·Complement Number

o 15

S = sign

Chapter 3

Data Manipulation

Signed Double-Precision Format

Word 1

Two's-Complement Number

o 15

Word 2

L Two's-Complement Number ~
--.-----.--.-----.----,.----,------,---.-----r-~---.-, ~

o 15

S = sign

Arithmetic Instructions

Tables 3.1 through 3.5 list the instructions for moving
and manipulating fixed-point data.

Instruction
Mnemonic

BAM

BLM

ELDA

ESTA

LOA

MOV

POP

STA

XCH

Operation

Block move and add

Block move

Extended load accumulator

Extended store accumulator

Load accumulator

Move and skip

Pop accumulators

Store accumulator

Exchange accumulators

Table 3.1 Fixed-point data movement instructions

Instruction
Mnemonic

ADC

ADD

ADDI

ADI

BAM

INC

SUB

SBI

Operation

Add complement

Add

Extended add immediate

Add Immediate

Block move and add

Increment

Subtract

Subtract immediate

Table 3.2 Fixed-point addition and subtraction instructions

Data Manipulation 11

Instruction
Mnemonic

DIV

DIVS

DIVX

HLV

MUL

MULS

Operation

Unsigned divide

Signed divide

Sign extend and divide

Halve

Unsigned multiply

Signed multiply

Table 3.3 Fixed-point multiplication and division Instructions

Instruction
Mnemonic

ADC

ADD

AND

COM

Operation

Add complement with optional carry
initialization

Add with optional carry initialization

AND with optional carry initialization

One's complement with optional carry
initialization

INC Increment with optional carry initialization

MOV Move with optional carry initialization

NEG Negate with optional carry initialization

SUB Subtract with optional carry initialization

Table 3.4 Fixed-point Initialize carry Instructions

Instruction
Mnemonic

ADC

ADD

DSZ

EDSZ

EISZ

INC

ISZ

MOV

NEG

SGE

SGT

SUB

Operation

Add complement with optional shift and option­
al skip

Add with optional shift and optional skip

Decrement and skip if zero

Extended decrement and skip if zero

Extended increment and skip if zero

Increment with optional shift and optional skip

Increment and skip if zero

Move with optional shift and optional skip

Negate with optional skip

Skip if ACS is greater than or equal to ACD

Skip if ACS is greater than ACD

Subtract with optional shift and optional skip

Table 3.5 Fixed-point shift and skip Instructions

Logical Data Formats

Logical operations require binary data that begin on word
boundaries. The accumulator formats for this data type
are diagrammed below.

16-Bit Logical Format
Word

o
Logical Data

12 Data Manipulation

16

32-Bit Logical Data

Word 0

Logical Data

o 15

Word 1

Logical Data

o 15

Logical Instructions

Logical data is moved with the same instructions as
fixed-point data. Refer to Table 3.1 for these instructions.
Tables 3.6 and 3.7 list the instructions for manipulating
logical.data.

Instruction
Mnemonic

ANC

AND

ANDI

COB

COM

DLSH

lOR

IORI

LOB

LRB

LSH

NEG

SNB

SZB

SZBO

XOR

XORI

Operation

AND with complemented source

AND

AND immediate

Count bits

Complement

Double logical shift

Inclusive OR

Inclusive OR immediate

Locate lead bit

Reset lead bit

Logical shift

Negate

Skip on zero bit

Skip on zero bit

Skip on nonzero bit and set bit to one

Exclusive OR

Exclusive OR immediate

Table 3.6 Logical Instructions

Instruction
Mnemonic

AND

COM

DLSH

LSH

NEG

SNB

SZB

SZBO

Operation

AND with optional shift and optional skip

One's complement with optional shift and
optional skip

Double logical shift

Logical shift

Negate with optional shift and optional skip

Skip on nonzero bit

Skip on zero bit

Skip on zero bit and set bit to one

Table 3.7 Logical shift and skip Instructions

Decimal/Byte Data Formats
Decimal operations manipulate unsigned 4-bit binary­
coded decimal (BCD) numbers. Byte operations move
8-bit bytes such as ASCII characters. The accumulator
formats for these data types are diagrammed below.

Binary Coded Decimal (BCD) Format

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I BCD number I
o 1 2 3 4 5 6 6 9 10 11 12 15

Byte Format

Unused Byte

o 8 15

Decimal/ Byte Instructions
Decimal numbers can be moved using any of the instruc­
tions listed in Table 3.1. Table 3.8 lists the instructions
for manipulating decimal numbers and performing hex
shifts. Table 3.9 lists the instructions for moving charac­
ters.

Instruction
Mnemonic

DAD

DSB

DHXL

DHXR

HXL

HXR

Operation

Decimal add

Decimal subtract

Double hex shift left

Double hex shift right

Hex shift left

Hex shift right

Table 3.8 Decimal and hex shift instructions

Instruction
Mnemonic

ELDB

ESTB

LOB

STB

CMP
CMT
CMV

Operation

Extended load byte

Extended store byte

Load byte

Store byte

Character compare

Character move until true

Character move

CTR Character translate and move or compare

Table 3.9 Byte movement instructions

Floating-Point Manipulation
Floating-point operations include arithmetic and numeric
conversion operations.

Floating-Point Data Formats

Floating-point operations manipulate normalized, signed
numbers. These numbers are either single precision
(32-bits) or double precision (64-bits). Single-precision
numbers yield 6 to 7 significant decimal digits and
double-precision numbers yield 15 to 17 decimal digits.

The accumulator formats for these numbers are dia­
grammed below.

Single Precision Format

Word 1

I 5 I Exponent Mantissa

o 8 15

S = sign

Word 2

Mantissa

o 15

Double Precision Format

Word 1

Exponent Mantissa

o 8 15

S = sign

Word 2

Mantissa

o 15

Word 3

Mantissa

o 15

Word 4

Mantissa

o 15

Data Manipulation 13

Floating-Point Instructions

Tables 3.10 through 3.14 list the instructions for manipu­
lating floating-point data.

Instruction
Mnemonic

FAB

FEXP

FFAS

FFMD

FINT

FLAS

FLMD

FNEG

FNOM

FRH

FSCAL

Operation

Compute absolute value (set sign of FPAC
to 0)

Load exponent (ACO<1-7> to FPAC<1-7»

Fix to AC (FPAC to AC)

Fix to memory (FPAC to memory)

Integerize (FPAC)

Float from AC (AC to FPAC)

Float from memory (memory to FPAC)

Negate (FPAC)

Normalize (FPAC)

Read high word (FPAC<0-15> to
ACO<0-15»

Scale floating-point

Table 3.10 Floating-polnt-to-binary conversion operations

Instruction
Mnemonic

FLDD

FLDS

FMOV

FSTD

FSTS

Operation

Load floating-point double

Load floating-point single

Move floating-point (FPAC to FPAC)

Store floating-point double

Store floating-point single

Table 3.11 Floating-point data movement Instructions

Instruction
Mnemonic

FAD

FAS

FAMD

FAMS

FSD

FSMD

FSMS

FSS

Operation

Add double (FPAC to FPAC)

Add single (FPAC to FPAC)

Add double (memory to FPAC)

Add single (memory to FPAC)

Subtract double (FPAC from FPAC)

Subtract double (memory from FPAC)

Subtract single (memory from FPAC)

Subtract single (FPAC from FPAC)

Table 3.12 Floati.ng-polnt addition and subtraction Instructions

14 Data Manipulation

Instruction
Mnemonic

FDD

FDS

FDMD

FDMS

FHLV

FMD

FMMD

FMMS

FMS

Operation

Divide double (FPAC by FPAC)

Divide single (FPAC by FPAC)

Divide double (memory by FPAC)

Divide single (memory by FPAC)

Halve

Multiply double (FPAC by FPAC)

Multiply double (FPAC by FPAC)

Multiply double (memory by FPAC)

Multiply single (FPAC by FPAC)

Table 3.13 Floating-point multiplication and division instructions

Instruction
Mnemonic

FCMP

FNS

FSA

FSEQ

FSGE

FSGT

FSLE

FSLT

FSND

FSNE

FSNER

FSNM

FSNO

FSNOD

FSNU

FSNUD

FSNUO

Operation 1

Compare floating-point (set Nand Z)

No skip

Always skip

Skip on 0 result (Z = 1)

Skip on greater than or equal to 0 (N=O)

Skip on greater than 0 (Z = 0)

Skip on less than or equal to 0 (N=O and
Z=O)

Skip on less than 0 (N = 1)

Skip on no 0 divide (DVZ = 0)

Skip on nonzero (Z = 0)

Skip on no error (ANY = 0)

Skip on no mantissa overflow (MOF =0)

Skip on no overflow (OVF=O)

Skip on no overflow and no 0 divide (OVF = 0
and DVZ=O)

Skip on no underflow (UNF = 0)

Skip on no underflow and no 0 divide (UNF = 0
and DVZ=O)

Skip on no underflow and no overflow (UNF = 0
and OVF=O)

Table 3.14 Floating-point skip instructions

I Parenthesis contain the value of relevant bit(s) in the floating-point status
register. For more information. refer to the next section.

/'
I

,,.-.

Floating-point Status Register

Table 3.15 lists the instructions for manipulating the
floating-point status register (FPSR). The accumulator
format for the FPSR is diagrammed below.

FPID

012345678 11 12 15

I 0 I Floating-Point Progam Counter

0

Bits Name

0 ANY

OVF

2 UNF

3 DVZ

4 MOF

5 TE

6 Z

7 N

8-11

15

Contents or Function

If 1, one or more of bits 1-4 are set to 1.

If 1, exponent overflow occurred. The
result is correct, except that the
exponent is 128 too small.

If 1, exponent underflow occurred. The
result is correct, except that the
exponent is 128 too large.

If 1, division by zero was attempted. The
division operation was aborted, and the
operands remain unchanged.

If 1, a mantissa overflow occurred.

If 1, floating-point traps are enabled.
Setting any of bits 1-4 to 1 causes a
floating-point fault.

If 1, the result is zero.

If 1, the result is negative.

Reserved for future use.

12-15 FPID Floating-point model number. Should be
138 for firmware floating-point and 58 for
hardware floating-point.

16 Reserved for future use.

17-31 Floating- Floating-point program counter. In the
event of a floating-point fault, this is the
address of the floating-point

point
program
counter

Instruction
Mnemonic

instruction that caused the fault.

Operation

FCLE Clear errors (FPSR)

FLST Load FPSR

FPOP Pop floating-point state

FPSH Push floating-point state

FSST Store floating-point state

FTD Floating-point trap disable (sets TE to 0)

FTE Floating-point trap enable (sets TE to 1)

Table 3.15 Floating-point status register instructions

Accelerating Data Movement
Program performance can be enhanced by accelerating
data movement operations as follows.

I ncrease the number of cache hits.

• Avoid consecutive instructions that write to memory.

Increase Cache Hits

The cache stores 512 four-word blocks, each containing
four contiguous words from main memory. Whenever the
processor references memory, the cache checks to see if it
has the cache block containing the referenced word. If
the block is in the cache (cache hit), the cache either
writes the word into the block or reads the word from the
block, depending on the type of memory reference. If the
block is not in the cache (cache miss), the cache's response
depends on the type of reference. For a write operation,
the cache does nothing, and the word is written directly
to main memory; for a read operation, the cache retrieves
the block containing the referenced word before reading
it.

Keeping these conditions and, operations In mind, the
programmer can increase cache hits by

• Using sequential instruction flow whenever possible,

Keeping instruction loops tight,

• Using program modules that require as little memory
as possible.

A void Consecutive Writes

Since main memory's organization is double-word, memo­
ry reference instructions which write data to memory
require one or more single-word write operations. A
single-word write operation involves reading a double
word from main memory, substituting the new single
word for the old one, and rewriting the new double-word
into main memory. Because of the cache's write-through
feature, write operations that result in cache hits also
involve these mutiple memory operations.

The increased memory reference time required by these
multiple memory operations is transparent to the program
except when an instruction that writes to memory is
followed closely by another instruction which also accesses
main memory, such as another write instruction or one
that results in a cache miss.

Some instructions write double-words whenever possible:
for instance, Block Move (BLM), Store Floating-Point
Double or Single (FSTS, FSTD), Vector on Interrupting
Device (yeT), and Save (SA YE). This diminishes both
the effect of consecutive main memory accesses and
instruction execution times. These instructions can be
executed consecutively, without signficantly increasing
program execution time, provided that the addresses
specified by the instruction are even addresses.

Data Manipulation 15

(.

(.
,

Chapter 4

Program Flow Management

Program flow management involves the flow of instruc­
tions, interrupt handling, and fault handling. This chapter
briefly discusses sequential instruction flow, the instruc­
tions that alter sequential flow, interrupt handling and
fault handling. For further information on program flow
management, refer to 16-Bit Real- Time Assembly Lan­
guage Programming.

Sequential Instruction Flow

Like all members of the I6-bit Real-Time ECLIPSE
family, the S/280 processing system uses a IS-bit program
counter (PC) to control the sequence of executing instruc­
tions. The program counter specifies the logical address
of the currently-executing instruction which can be any­
where in the 64 Kbyte logical address space (locations 0
through 777778, except for the reserved memory locations.

To address the next instruction for normal (sequential)
flow, the processor increments the program counter by

• One when executing a one-word instruction (such as
ADD),

• Two when executing a two-word (extended) instruction
(such as ADDI).

If the processor increments the program counter when it
addresses the highest memory locations, 777778, address
wraparound occurs. The program counter will contain
000008 or 000001 8, depending on the instruction's length.

Non-sequential Instruction Flow

To initiate a different program sequence, sequential flow
is altered. In an S/280 system, any of the following
events alter flow:

Execution of an Execute (XCT) instruction
Execution of a jump instruction
Execution of a skip instruction
Execution of a subroutine call or return instruction
Trapping on a fault
Detection of an I/O interrupt request

When any of these events occurs, except for the execution
of a skip instruction, the processor clears (flushes) the
instruction pipeline and forces an address into the pro­
gram counter to initiate the new program sequence. If
the program attempts to skip or jump into the middle of
two-word instruction, the second word of the instruction
will be executed as an instruction.

Program Flow Instructions
Table 4.1 lists the instructions for altering program flow.
Table 4.2 gives the sequence of program flow instructions
for entering and exiting from subroutines. For further
information, refer to the 16-Bit Real-Time ECLIPSE
Assembly Language Programmer's Reference.

Instruction
Mnemonic

DSPA

EJMP

EJSR

JMP

JSR

POPJ

PSHJ

RTN

XCT

XOP

XOP1

Operation

Dispatch

Extended jump

Extended jump to subroutine

Jump

Jump to subroutine

Pop program counter and jump

Push jump

Return

Execute accumulator

Extended operation

Extended operation alternate

Table 4.1 Program flow instructions

Call

JSR

PSHJ

XOP

Instruction Type

Save

SAVE

Return

RTN

POPJ

POPS

Table 4.2 Sequence of subroutine instructions

Program Flow Management 17

Interrupt Handling
When the processor honors an interrupt, it disables further
interrupts by setting the Interrupt On (ION) flag to 0,
disables user address translation, stores the contents of
the program counter in physical location 0, and stops user
program execution to service the interrupt. The processor
then fetches the contents of physical location 1, the
address of the interrupt handler.

If this address is indirect, the processor resolves it into a
final direct address that references the first instruction of
the interrupt handler. Next the processor stores the
contents of the program counter in physical location °
and jumps to the first instruction of the interrupt handler.

How the processor stops program execution when it honors
an interrupt depends on the instruction executing when
the interrupt is honored. The executing instruction is
either noninterruptible or restartable.

Table 4.3 lists the restartable instructions. All unlisted
instructions are noninterruptible.

Restartable from
Beginning

FAD FFAS1 FMS

FAMD FFND1 FNOM1

FAMS FHLy1 FPSH

FAS FINT1 FPOP

FCMP FLAS1 FSD

FDD FLMD1 FSMD

FDMD FMD FSMS

FDMS FMMD FSS

FDS FMMS

Restartable with Updated
Values

BAM

BLM

CMP

CMT

CMY

CTR

LMP

BMC load I dump map table2

Table 4.3 Restartable Instructions

If an instruction is noninterruptible, the processor finishes
executing that instruction before servicing the interrupt.
Examples of noninterruptible instructions are Add
(ADD), Load Accumulator (LOA), and Complement
(COM).

I These instructions are only restartable in certain cases. For example. FH LV
is restartable only when the number being halved is not normalized.

2An interrupted BMC load/dump instruction will not indicate that the BMC
is busy when a SKBZ BMC or SKPBN BMC instruction is executed.

18 Program Flow Management

If an instruction is restartable, the processor services the
interrupt before the instruction finishes. When an inter­
rupt occurs, the processor saves the address of the
interrupted instruction (the contents of the program
counter) before servicing the interrupt. When servicing is
complete, the iprocessor can restart the interrupted in­
struction in one of the following ways.

• If the the parameters of the restartable instruction
have not changed, then the processor restarts the
instruction from the beginning. For example, if an
interrupt occurs during a floating-point divide instruc­
tion, the processor restarts the instruction from the
beginning because the accumulators containing the
operands have not changed.

• If the parameters of the restartable instruction have
changed, the processor restarts execution with the
updated values. This type of instruction, Block Move
(BAM) for example, uses a pointer to source and
destination locations and updates them after each
one-word move. After servicing the interrupt, the
processor restarts execution with the current values of
the source and destination pointers, not the original
values.

Fault Handling
While executing an instruction, the processing system
and address translation facilities check the operation and
data. If either detects an error, then one of the following
faults occurs:

memory protection fault
I/O protection fault
indirection protection
stack fault
floating-point fault

Memory protection faults occur immediately after the
fault condition occurs. Stack, I/O protection, and indirec­
tion protection faults occur immediately after the instruc­
tion causing the fault and before the execution of the next
instruction. A floating-point fault occurs before the
execution of the next floating-point instruction; other
non-floating-point instructions may be executed in be­
tween. The J6-Bit Rea 1-Time Assembly 'Language Pro­
gramming manual describes the handling of these faults.

The power system continually monitors the system for
faults. Table 5.11 (Chapter 5) lists the error codes for
these faults.

r--' (.

The processing system accesses a device through the
programmed I/O facility, data channel facility, or option­
al burst multiplexor channel facility. When a device
requests service via the interrupt system, the operating
system sets up device access through these facilities using
programmed I/O instructions.

This chapter summarizes the I/O facilities, the general
I/O instructions, the instructions for managing the inter­
rupt system, and the instructions for managing the
following basic devices which are integral parts of the
S/280 I/O system:

• Programmble interval timer;

• Real-time clock;

• Asynchronous line input/output;

• Universal power supply controller.

Input/Output Facilities
Programmed I/O

The programmed I/O (PIO) facility transfers single
words between a central processor accumulator and a
device register. The operating system uses the PIO facility
for transferring characters to and from low-speed devices,
such as display terminals and printers, and for transfer­
ring commands and status to and from all devices.

The PIO facility is programmed using the general I/O
instructions.

Data Channel

The data channel (DCH) facility transfers data between
memory and a device buffer at the rate of up to 2.2
Mbytes per second input and 1.67 Mbytes per second
output. The operating system uses the DCH facility for
transferring blocks of data to and from medium-speed
devices such as magnetic tape subsystems, disk, and
network interfaces.

The size of the data blocks in data channel transfers is
device dependent. The data block is transferred word by
word while the processing system continues program
execution between word transfers.

Chapter 5

Device Management

The DC H facility receives a IS-bit logical address from
the device controller for each data word transfer and
passes this address to the memory system's user/DCH
address translator. When data channel address translation
is enabled, the user / DCH address translator receives the
DCH map table selector bits which select one of the four
data channel map tables for address translation. The
user /DCH address translator uses this map table to
convert the IS-bit logical address into a 20-bit physical
address. The physical address accesses the memory loca­
tion for the DCH data transfer. When data channel
address translation is disabled, no address conversion
occurs and the physical address equals the logical address.

Programmed I/O instructions set up the user/DCH
address translator and the parameters of the block
transfer, but the transfer of the data itself proceeds
without program intervention. Programming for the
user /DCH address translator is discussed in Chapter 6,
"Memory and System Management." Programming for
the block transfer is device dependent and varies from
controller to controller.

Burst Multiplexor Channel

The optional burst multiplexor channel (BMC) facility
transfers data between memory and a device buffer at
the rate of up to 13.3 Mbytes per second input and 9.7
Mbytes per second output. The operating system uses the
BMC facility to transfer bursts of data between memory
and high-speed disks.

Data bursts can range from one to 256 words. The
processing system continues program execution during
burst transfers as long as it does not need to access
memory directly, that is, to write to memory or to read a
memory location which is not in the cache. The BMC
facility has priority over the processing system. Thus,
when the processing system needs such memory access,
burst transfers prevent program execution as long as
devices continue to request BMC service. For this reason,
burst size should be limited. Sizes of 8 or 16 words per
burst are recommended.

The BMC facility receives a 20-bit logical address from
the device controller and passes this destination address

Device Management 19

to the memory system's BMC address translator. If the
controller enables address translation, the BMC address
translator converts the logical address into a 20-bit
physical address using the appropriate map table entry.
This address accesses the memory location for the BMC
data transfer. After the BMC transfers each data word to
or from memory, it increments the destination address. If
the increment causes an overflow out of the 10 least­
significant address bits, the next map table entry is used
for the address conversion. Depending on the contents of
the map table, this could mean that the BMC may not
transfer successive words to or from consecutive pages in
memory.

If the controller disables address translation, no address
conversion occurs. As the BMC facility transfers each
data word to or from memory, it increments the destina­
tion address, which, in this case, causes successive words
to move to or from consecutive locations in memory.

The BMC facility checks the parity on each address and
data word received from the device controller. When an
address parity error occurs, the BMC facility informs the
controller of the error, aborts the transfer, and sets the
address parity error bit to 1 in the BMC status register.
The BMC facility expects the controller to also abort the
transfer. When a data parity error occurs, the BMC
facility informs the controller of the error, sets the data
parity error bit to 1 in the BMC status register, and
continues the transfer.

Programmed I/O instructions set up the BMC address
translator and the parameters of the burst transfer, but
the transfer itself proceeds without program intervention.
Programming for the BMC address translator is presented
in Chapter 6, "Memory and System Management."
Programming for the BMC data transfer is device
dependent, varying from controller to controller.

The device handler can speed burst transfers by taking
advantage of main memory's double-word organization.
To do this, the device handler should specify bursts with
an even number of words and start the burst transfer to or
from an even physical memory address.

General I/O Instructions
A general set of I/O instructions provide device indepen­
dent operations. When these instructions are issued to a
specific device code, they communicate with the specified
device to set up data transfers, perform special operations,
read status, and initialize and test device Busy and Done
flags. Table 5.1 lists the general I/O instructions.

20 Device Management

Interrupt System
The operating system controls the interrupt system by
manipulating an Interrupt On (ION) flag, interrupt
mask, and device flags. The Interrupt On flag enables or
disables all interrupt recognition. The interrupt mask
enables or disables selective device interrupt recognition.

The device flags provide the interrupt communications
link between the central processor and the device. By
manipulating the flags and the interrupt mask, the
operating system can ignore all interrupt requests, or
selectively service certain interrupt requests.

If the Interrupt On flag and interrupt mask enable
processor recognition of the interrupt request, the proces­
sor services the interrupt. To service the interrupt, the
processor either halts the currently-executing instruction
or finishes it, depending on the type of instruction. When
execution halts, the processor immediately starts to
execute the I/O interrupt handler by jumping indirectly
through location 1. For more information on the processor
actions to transfer program control to the interrupt
handler and programming for the interrupt handler, refer
to J6-Bit Real-Time ECLIPSE Assembly Language
Programming.

Instructions

The interrupt system responds to I/O instructions issued
to the central processor. The assembler interprets these
instructions using either the standard or special I/O
instruction format. Device flags cannot be appended to
the special format of an interrupt system instruction.
Table 5.4 lists both formats of these instructions.

Device Code

778

Instruction Mnemonic

CPU

Priority Mask Bit

None

Device Flags

Devices flags determine whether the central processor
can recognize an interrupt request and interrupt the
current program to service it.

f=S Sets the Interrupt On (ION) flag to 1, enabling the
interrupt system.

f=C

f=P

Sets the Interrupt On (ION) flag to 0, disabling the
interrupt system.

No effect unless used with the INT A instruction.
The P flag causes the central processor to interpret
the INT A instruction as the first word of the Vector
(VeT) instruction.

Ir-'

r

Instruction
Mnemonic

DIA!!]

DIB!!]

DIC!!]

DOA!!]

DOB!!]

DOC!!]

NIO!!]

SKPt

Operation

Data in A (from A buffer of device)

Data in B (from B buffer of device)

Data in C (from C buffer of device)

Data out A (to A buffer of device)

Data out B (to B buffer of device)

Data out C (to C buffer of device)

No I I 0 transfer (initialize a Busy I Done flag)

1/0 skip (test a Busy/Done flag and skip on
condition)

Table 5.1 General 110 instructions

Instruction
Mnemonic

for f

option
omitted

S

C

P

Bits
8 9

0 0

0

0

I I 0 Device Flag
Busy Done

No effect No effect

Set to 1 Set to 0

Set to 0 Set to 0

Pulses a special
I I 0 control line

Table 5.2 Device flags for general devices

Instruction
Mnemonic

for t

BN

BZ

ON

DZ

Bits
8 9

0 0

0

0

0 0

1/0 Device Flag

Test for Busy = 1

Test for Busy = 0

Test for Done = 1

Test for Done = 0

Table 5.3 Device flags for skip instruction

Instruction Format

Special Standard3 Action

CPU flag
ION2

No effect

Set to 1

Set to 0

No effect

CPU Flag2

Test for ION = 1

Test for ION = 0

Test for
Powerfail = 1

Test for
Powerfail = 0

INTA DIB!!] ac,CPU Interrupt acknowledge

INTDS NIOC CPU Interrrupt system disable

INTEN NIOS CPU Interrupt system enable

MSKO DOB!!] ac,CPU Priority mask out

10RST DIC!!] ac,CPU 1/0 reset

SKPtCPU CPU skip

RSTR Restore

VCT Vector on interrupting device

Table 5.4 Interrupt system instructions

I The [f) or t defines optional device flag handling as summarized in Tables
5.2 and 5.3, respectively.

lION is the. Interrupt On flag.

3The If) or t defines device handling as summarized in Tables 5.2 and 5.3,
respectively.

INTA
Interrupt Acknowledge

INTA ac
DIB!f] ac,CPU

Identifies interrupting device.

Places the 6-bit device code of the highest-priority device
requesting service (the device that is physically closest to
the central processor) into bits 10 through 15 of the
specified accumulator. After the transfer, sets the ION
flag as specified by f The accumulator format after the
operation is diagrammed below.

Device Code

o 9 10 15

Bits Name Meaning or Function

0-9 Reserved for future use.

10-15 Device code Device code of the highest priority device
on the I lObus that is requesting an I I 0
interrupt.

INTDS
Interrrupt Disable

NIOC CPU

Disables the interrupt system.

Sets the ION flag to O.

INTEN
Interrupt Enable

NIOS CPU

10/111101010101010111111111111111
o 3 4 5 6 8 9 10 11 12 13 14 15

Enables the interrupt system.

Sets the ION flag to 1. If this instruction changes the
state of the ION flag, the central processor executes one
more instruction before recognizing an I/O interrupt.
However, if the instruction is interruptible, then the
central processor can recognize the first interrupt soon as
the instruction begins executing.

Device Management 21

MSKO
Mask Out

MSKO ac
DOB/!} ac,CPU

o 2 3 4 5 6 7 8 9 1011 12 13 14 15

Specifies the priority mask.

Places the contents of the specified accumulator in the
priority mask (location 5). After the transfer, sets the
ION flag as specified by f The accumulator before and
after the operation is diagrammed below.

o

Priority Mask Bits

15

Bits Name Meaning or Function

0-15 Priority mask 1 in any bit disables interrupt requests
bits from the devices which use that mask

bit.

IORST
I/O Reset

DIC/!} ac,CPU

o 2 3 4 5 6 8 9 10 11 12 13 14 15

Resets the I/0 system.

Sends a reset signal to all devices to set their Busy and
Done flags to 0 and clear their states. Sets the priority
mask to 0 and the ION flag according to the function
specified by f. Also initializes the computer as described
in Chapter 8, "Powerup and Initialization." The specified
accumulator is ignored and remains unchanged.

NOTE: The IORST mnemnonic is equivalent to DICC
o,CPU. If the DIC [f] ac,CPU mnemonic is used, the
accumulator field (ac) must be coded to avoid an
assembly error even though the accumulator is not used.

RSTR
Restore

Returns control from certain types of I/0 service routines,
including those called by a VCT instruction that changes
the stack. Pops the five words of the stack normally
associated with a standard return block plus four addition­
al words that contain the four stack parameters. Refer to
J6-Bit Real-Time ECLIPSE Assembly Language Pro­
gramming for further details.

22 Device Management

SKP CPU
Central Processor Skip

SKPtCPU

o 2 3 4 5 6 8 9 10 11 12 13 14 15

Tests the ION flag or powerfail flag.

Tests the flag specified by t. If the test condition is true,
the central processor skips the next sequential word.
(Table 5.3 lists the possible test conditions.)

VCT
Vector on Interrupting Device

VCT /@}displacement/,index}

1011/110101011/111111111111111111

o 2 3 4 5 6 8 9 10 11 12 13 14 15

1 @ 1 Displacement 1

16 17 31

Returns the device code of the interrupting device and
uses that code as an index into a vector table. The absolute
displacement (ignoring @) identifies the first entry in the
vector table. Refer to J6-Bit Real-Time ECLIPSE As­
sembly Language Programming for further details.

When a device requests an I/0 interrupt, the central
procesor fetches the first instruction specified by the I/O
interrupt handler address in reserved location 1. The
VCT instruction should be the first instruction fetched. It
is executed before the central processor honors further
interrupts.

To return from the I/0 interrupt handler, use the
instruction identified with the VCT mode as follows.

Mode
A
B
C
D
E

Return Instruction
JMP@O
JMP@O
POPB
(Restore saved stack parameters) JMP20
RSTR

r-...

Programmable Interval Timer
The programmable interval timer (PIT) is a CPU­
independent time base which can be programmed to
initiate program interrupts at fixed intervals in one of the
four ranges listed in Table 5.5. The PIT can also be
sampled with an I/0 instruction at any point in its cycle
to determine the time until the next interrupt. The
operating system can use the PIT for precise time
measurements or in a multiprogramming environment
for allocating processor time to different programs on a
time slice basis.

Time Range

Frequency
(KHz)4

1000

100

10

Minimum
Interval

1 J,lsec.

10 J,lsec.

100 J,lsec.

1 msec.

Maximum
Interval

Increment
Size

65.536 msec. 1 J,lsec.

655.36 msec. 10 J,lsec.

6.5536 sec. 100 J,lsec.

65.536 sec. 1 msec.

Table 5.5 Programmable interval timer rates

4The frequency is selected by the system configuration jumpers as described
in the "Tailoring" section of the Sj280 installation data sheets (DGC No.
010-000338).

PIT Registers

The PIT has two program-accessible registers: an interval
select register and an interval counter.

The interval select register is a 16-bit register that
specifies the number of increments desired between PIT
interrupts.

The interval counter is a 16-bit counter which counts the
number of increments since the last PIT interrupt. When
the count equals the number specified by the interval
select register, the PIT initiates a program interrupt and
continues counting until stopped by the program.

PIT Instructions

The PIT responds to the I/O instructions listed in Table
5.6.

Instruction
Mnemonic

DIA PIT

DOA PIT

IORST

Operation

Reads the current value of the interval counter.

Specifies the time between PIT interrupts.

Sets the Busy and Done flags, interval count
register, and interval counter to 0, disables
interrupt requests, and stops the counting
cycle. (See "Interrupt System" earlier in this
chapter for a detailed description of IORST.)

Table 5.6 Programmable interval timer instructions

Device Code

438

Instruction Mnemonic

PIT

Priority Mask Bit

6

Device Flags

Device flags start and stop the counting cycle.

j=S

j=C

j=P

Sets Busy flag to I and Done flag to 0, and starts the
counting cycle.

Sets Busy and Done flags to 0, and stops the counting
cycle.

No effect.

Device Management 23

DIAPIT
Read Interval Counter

DIAff] ac,PIT

o 2 3 4 5 6 8 9 10 11 12 13 14 15

Returns the amount of time remaining until the next PIT
interrupt.

Places the contents of the interval counter in the specified
accumulator. After the transfer, performs the function
specified by f The accumulator format after the operation
is diagrammed below.

o

Bits Name

0-15 Time

DOA PIT
Specify Interval

DOAff] ac,PIT

Time

15

Meaning or Function

A signed number. If bit 0 is 1, the two's
complement of the number of increments
remaining until the next PIT interrupt. If
bit 0 is 0, the number of increments since
the PIT has been requesting interrupt
service. (The jumper-selected frequency
determines the size of the increments.
See Table 5.5.)

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Specifies the time between PIT interrupts.

Places the contents of the specified accumulator in the
interval select counter. After the transfer, performs the
function specified by f The accumulator format before
and after the operation is diagrammed below.

o

Bits Name

0-15 Interval

Interval

15

. M~anlng or Function

Two's complement of the number of incre­
ments in the desired interval between PIT
interrupts. (The jumper-selected frequen­
cy determines the size of the increments.
See Table 5.5.)

24 Device Management

Programming

To obtain a particular time interval between interrupt
requests, load the interval select counter with the two's
complement of the number of clock increments desired
between interrupts and start the counting cycle using a
Specify Interval instruction with a Start command
(DOAS PIT). The counter continues counting after the
PIT generates an interrupt request until the program
stops it.

To determine the time remaining until the next interrupt
request or the time elapsed since the current interrupt
was first requested, use the Read Interval Counter
instruction (DIA PIT). To stop the counting cycle and
thus clear PIT interrupt requests, use the Clear command
with a Read Interval Counter instruction (DIAC PIT) or
with an No I/O Operation instruction (NIOC. PIT).

Real-Time Clock
The real-time clock (RTC) generates low-frequency I/O
interrupts for performing CPU-independent time calcula­
tions. These interrupts, which occur at regular, predeter­
mined intervals, may be used by the operating system to
keep the time of day.

Four program-selectable frequencies are available: 10Hz,
100 Hz, 1000 Hz, and line frequency.

RTC Instructions

The RTC responds to the I/O instructions listed in Table
5.7.

Instruction
Mnemonic

DOA RTC

IORST

Operation

Selects frequency of RTC interrupts.

Selects line frequency and sets the Busy and
Done flags to O. (See "Interrupt System"
earlier in this chapter for a detailed description
of IORST.

Table 5.7 Real-time clock Instructions

Device Code

148

Instruction Mnemonic

RTC
Priority Mask Bit

13

Device Flags

Device flags enable and disable the real-time clock
(RTC).

f=S Sets Busy flag to 1 and Done flag to 0 and enables
the RTC.

f=C Sets Busy and Done flags to 0 and enables the RTC.

f=P No effect.

(
I

r

DOA RTC
Select Frequency

DOA Ifl ac,RTC

03456 7 8 9 10 11 12 13 14 15

Selects the frequency of RTC interrupts.

Places the contents of the specified accumulator in the
frequency select register. After the transfer, performs the
function specified by f The accumulator format before
and after the operation is diagrammed below.

o

Bits Name

0-13 Reserved

14-15 F SEL

Reserved

13 14 15

Contents or Function

Reserved for future use.

Selects the clock frequency.
Bits Frequency

14 15

o 0
o 1

1 0

Line frequency (50 or 60 Hz)
10 Hz
100 Hz
1000 Hz

Programming

Programming the real-time clock consists of selecting the
clock frequency, enabling clock interrupts, and servicing
clock interrupts.

To select the clock frequency, use the Select Frequency
instruction (DOA RTC). To enable clock interrupts, use
the Start command either with the Select Frequency
instruct!on (DOAS RTC) or with the No I/O Transfer
instruction (N lOS RTC). Since the clock is free-running,
the interrupt request may occur at any time up to one
clock period after the Busy flag is set to 1 by the Start
comand. When the clock period expires, the real-time
clock sets the Busy flag to 0 and the Done flag to 0, thus
initiating an interrupt request if the clock's interrupt
disable flag is not set to 1.

When the interrupt handler services interrupt requests, it
should issue a No I/O Transfer instruction with either a
Start command (NIOS RTC) or a Clear command
(N IOC RTC). The Start command enables an interrupt
request at the expiration of the current clock period. The
Clear command inhibits subsequent clock interrupts.

Powerup Response and Timing

After power-up, the line frequency is selected as the clock
frequency and both the Busy and Done flags are set to o.
The first interrupt request initiated by the real-time clock
can occur at any time up to a full clock period. If the
interrupt handler responds to real-time clock interrupt
requests before each succeeding clock period expires, all
subsequent requests will occur at clock frequency.

Asynchronous,Input/Output Line
The asynchronous input/output line of the system console
provides the communications link between the central
processor and the master terminal. It supports asynchro­
nous communication at jumper-selected rates ranging
from 50 to 38,400 baud in 7-bit codes with program­
generated parity or 8-bit codes with no parity and one or
two stop bits in either format.

Because asynchronous input (TTl) and output (TTO)
can independently generate program interrupts, each has
its own device code and is controlled by its own set of
Busy and Done flags. When the Break key on the master
terminal is pressed, the input line generates a non­
maskable interrupt which gives the virtual console control,
if the front console is not locked. The Break key has no
effect if the program is in an infinite indirection loop.

Device Management 25

Registers

The asynchronous input/output line has two program­
accessible registers: an input buffer and an output buffer.

The 8-bit input buffer stores the assembled character
that is received over the communications line in serial
format. When the input buffer receives a character, the
interface sets the input Busy flag, to 1. The buffer holds
the character until the next assembled character
overwrites it.

The 8-bit output buffer stores the characters sent to the
interface by the program. When the master terminal
asserts a Clear To Send signal, the interface disassembles
the character and sends it over the communications line
in serial form.

Instructions

The asynchronous input/output line responds the the I/O
instructions listed in Table 5.8.

Instruction
Mnemonic

DIA TTl

DOA TTO

IORST

Operation

Reads a character from the master terminal
into an accumulator.

Sends a character from an accumulator to the
master terminal.

Sets the Busy and Done flags to 0; disables
interrupts. (See "Interrupt System" earlier in
this chapter for a detailed description of
IORST.)

Table 5.8 Asynchronous Input! output line Instructions

Device Codes

Input 108

Output 118

Instruction Mnemonics

Input TTl

Output TTO

Priority Mask Bit

Input 14

Output 15

Device Flags

Device flag commands determine the flag settings and
transmission of an output character.

/=s
/=c
/=p

Sets the Busy flag to 1 and the Done flag to o.
Sets the Busy and Done flags to o.
No effect.

26 Device Management

DIA TTl
Read Character

DIAlf] ac,TTI

o 2 3 4 5 6 8 9 10 11 12 13 14 15

Reads a character from the input buffer.

Places the contents of the interface's input buffer into
bits 8 through 15 of the specified accumulator. After the
transfer, performs the function specified by f The accu­
mulator format after the operation is diagrammed below.

Reserved

o

Bits Name

0-7 Reserved

8-15 Character

DOA TTO
Write Character

DOAlf] ac,TTO

Character

7 8 15

Contents or Function

Reserved for future use.

Character read from the input buffer, right
justified.

o 2 3 4 5 8 7 8 9 10 11 12 13 14 15

Writes a character into the output buffer

Places bits 8 through 15 of the specified accumulator in
the interface's output buffer. After the transfer, performs
the function specified by f The accumulator format before
and after the operation is diagrammed below.

Reserved

o

Bits Name

0-7 Reserved

8-15 Character

Character

8 15

Contents or Function

Reserved for future use.

Character to be written into the output
buffer, right-justified.

Programming
The asynchronous input/output line is set up to transmit

/- and receive 8-bit characters without parity checking. A
process may send or receive 7-bit characters with even,
odd, or mark parity by using the most significant bit in
the 8-bit character (bit 8 in the accumulator) as a parity
bit. On transmission, the program that drives the line
calculates and inserts the correct parity bit. On reception,
the program calculates and checks the parity of the
received character.

If the master terminal operates with a character length of
seven bits and does not generate parity, this device should
be configured to operate with mark parity. When the
program receives characters from a 7-bit device, it should
mask out the parity bit after the character has been
loaded into an accumulator. The parity bit, contained in
bit 8 of the specified accumulator, is the most significant
bit of the character.

NOTE: The Data Terminal Ready signal is always
asserted.

Reading Characters

Programming the line to read characters involves the
steps shown in Figure 5.1. Initiate character reception
using a No I/O Transfer instruction with a Start command
(NIOS TTl). This command sets the input Busy flag to 1
and Done flag to O. When the input buffer receives a
character, it then sets the Done flag to 1 and initiates an
interrupt request if interrupts are enabled. When the
Done flag is 1, read the character into an accumulator
using a Read Character instruction with either an S
command (DIAS TTl) or a C command (DIAC TTl).
The S command restarts character reception. The C
command terminates character reception by setting both
the Busy and Done flags to O.

Writing Characters

Programming the interface to write characters involves
the steps shown in Figure 5.2. Before sending a character
to the output buffer, check the output Busy flag using an
I/O Skip instruction (SKPBZ TTO). When Busy is 0,
load a character from an accumulator into the output
buffer using a Write Character instruction with an S
command (DOAS TTO). The S command sets the output
Busy flag to 1 and its Done flag to O. After the line
transmits the character over the communications line, it
sets the Busy flag to 0 and the Done flag to 1, thus
initiating an interrupt request if interrupts are enabled.
After the last character is written, set the Done flag to 0
with an No I/O Transfer instruction (NIOC TTO).

Read character
and set Busy
to one and Done
to zero
(DIASTII)

Figure 5.1 Reading characters

Read character
and set Busy
and Done
to zero
(DIACTII)

Write character and set
Busy to one and Done
to zero (DOAS TIO)

Yes

Set Done
to zero
(NIOC TIO)

Figure 5.2 Writing characters

OG-08311

OG-09006

Device Management 27

Powerup Response and Timing
After powerup, the input and output Busy and Done flags
are o. After the input Done flag is set to 1, the character
in the input buffer is available to the program for a time
interval determined by the transmission rate (baud). To
avoid possible data loss, the interrupt handler must
respond to the interrupt request by reading the character
within the time interval indicated in Table 5.9.

After the output Done flag is set to 1, the interrupt
handler should supply another character within the time
period indicated in Table 5.9 to maintain the maximum
transmission rate.

Baud

50

75

110

134.5

150

200

300

600

1200

1800

2000

2400

4800

9600

19,200

38,400

Maximum Allowable
Programmed 1/0 Latency

(mllliseconds)5

219.00

146.00

100.00

74.35

66.66

54.75

33.33

16.66

8.33

5.55

5.00

4.16

2.08

1.04

0.52

0.26

Table 5.9 Timing considerations, asynchronous Input! output line

Universal Power Supply Controller
The universal power supply controller (UPSC) performs
a powerup self-test; monitors system power; and, under
program control, reports failures, problems, and status to
the ECLIPSE S/280 processor.

The UPSC monitors the system for the following condi­
tions:

• Power supply problems such as excessive temperature
and overcurrent, undervoltages, and overvoltages;

• Ac overvoltage or undervoltage;

'Times assume that characters transmitted at 50 to 110 baud include 8 data
bits and 2 stop bits, and that characters transmitted at 134.5 to 38,400 baud
contain 8 data bits and 1 stop bit.

28 Device Management

• Reed switches for sensing overload on + 5V;
• Power switch On/Off status;

• Battery backup failure for backup systems with a
failure signal;

• Excessive cabinet temperature input for cabinets with
temperature sensors;

• Fan failure.

When failures occur, the UPSC causes the lights on
S/280 chassis front panel to display a code identifying
the type of failure. If UPSC interrupts are enabled, it
also generates a program interrupt. The interrupt handler
can retrieve the fault code that identifies the specific
fault.

USPC Instructions

The UPSC responds to the I/O instructions listed in
Table 5.10.

Instruction
Mnemonic Operation

DOAS UPSC Enables UPSC interrupts on power system
faults and / or masks out powerfail interrupts.

DOAP UPSC

DIA UPSC

IORST

Requests power system status.

Reads power system status.

Clears Busy and Done flags and disables
interrupts. (See "Interrupt System" earlier in
this chapter for a detailed description of
IORST.)

Table 5.10 Universal power supply controller Instructions

Device Code

48

Instruction Mnemonic

UPSC

Priority Mask Bit

13

Device Flags

Device flag commands to the UPSC set up data transfers
and enable and disable UPSC interrupts.

f=S

f=C

f=P

Sets the Busy flag to 1 and the Done flag to O.
Functions as part of the Enable UPSC Fault Inter­
rupts instruction (DOAS UPSC) which write data
to the UPSC control register.

Sets the Busy and Done flags to o.
Sets the Busy flag to 1 and the Done flag to o.
Functions as part of the Enable UPSC Fault Inter­
rupts instruction (DOAP UPSC) which selects the
information to be read during the next Read Power
System Status instruction (DIA UPSC).

-,

DOAS UPSC
Enable USPC Fault Interrupts

DOAS ac,UPSC

o 2 3 4 6 8 9 10 11 12 13 14 15

Enables and disables interrupts from the USCP.

Sets the Busy flag to 1 and the Done flag to 0, then places
the contents of the specified accumulator in the control
register. When the transfer is finished, sets the Busy flag
to ° and the Done flag to 1. The accumulator format
before and after the operation is diagrammed below.

0

Bits

0-7,10

8,9

11

12

13

14

15

Reserved

Name

Reserved

ALT

INT

BBO

8 9 10 11 12 13 14 15

Contents or Meaning When 1

Reserved for future use,

Both bits must be 0 to select the control
register.

Used for diagnostic testing. Must be 0
for normal operation.

If 1, enables alternate powerfail mode to
disable powerfail interrupts from device
code O. As a result, powerfail skip in­
structions (SKPON and SKPOZ) always
function as if there were no powerfail.

If 1, enables UPSC to initiate a program
interrupt when it detects a fault.

If 1, disables battery backup unit.

Used for diagnostic testing. Must be 0
for normal operation.

DOAP UPSC
Request Power System Status

DOAP ac,UPSC

034 8 10 11 12 13 14 15

Sets up the USPC to supply status information when the
next Read USPC Status instruction (DIA UPSC) In­

struction is issued.

Sets the Busy flag to one and the Done flag to 0, then
initializes the UPSC to transfer the information requested
by bits 13 through 15 of the specified accumulator. After
the initialization, the UPSC sets the Busy flag to ° and
the Done flag to 1. The accumulator format before and
after the operation is diagrammed below.

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I Status Sel I
o 3 6 9 10 11 12 13 15

Bits Name

0-12

13-15 Status Sel

Contents or Meaning When 1

Must be O.

Selects the status information to be sup­
plied by next Read Power System Status
instruction (OIA UPSC).

Bits Information
13 14 15 Selected

0 0 0 Control status
0 0 Battery backup status

0 1 1 Most recent fault code
0 0 UPSC microcode revision

Refer to the description of the Read
Power System Status instruction (OIA
UPSC) for details on each type of infor­
mation.

Device Management 29

DIA UPSC
Read Power System Status

DIA ac,UPSC

Returns the status information requested by the previous
Request Power System Status instruction (DOAP
UPSC).

Loads the data requested by the previous Request Power
System Status instruction (DOAP UPSC) into the speci­
fied accumulator. The accumulator format after the
operation is diagrammed below.

Control Status

I 0 I 0 I 0 I 0 I 0 I 0 I

o 1 234 5

Bits Name

0-10

11

12

13

14

15

JFM

ALT

INT

BBD

6 7 8 9 10 11 12 13 14 15

Contents or Meaning When 1

Reserved for future use.

If 1, the UPSC is jumpered for voltage
margining which may degrade the opera­
tion of the system.

If 1, alternate powerfail mode is enabled,
disabling powerfail interrupts from device
code O. As a result, powerfail skip in­
structions (SKPDN and SKPDZ) always
function as if there were no powerfail.

If 1, fault interrupts enabled.

If 1, battery backup disabled.

Used for diagnostic testing. 0 for normal
operation.

Battery Backup Status

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I ci I PT I FL IBATI CH~
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bits Name Contents or Meaning When 1

0-11 Reserved for future use.

12 PT If 1, partial battery backup is present.

13 FL If 1, full battery backup is present.

14 BAT If 1, the system is running on battery
power.

15 CHG If 1, the batteries are recharging.

30 Device Management

Fault Code

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I
Fault Code

o 2 3 4 5 6 7 8 9 15

Bits Name

0-8

9-15 Fault Code

Contents or Meaning When 1

Reserved for future use.

Octal code identifying most recent fault.
Bits 9-12 are the octal number of the
fault in the octal fault type specified by
bits 13-15. The UPSC flashes the octal
fault type on the three front console
lights. Table 5.11 lists the faults by type.

UPSC Microcode Revision

Microcode Revision

o 1 234 5 6 8 15

Bits Name

0-7

8-15 Microcode
Revision

Contents

Reserved for future use.

Current revision of the UPSC microcode.
o indicates the first release of the micro­
code. Successive numbers indicate suc­
cessive microcode modification.

Ir-

Fault

Type Code Meaning
(octal)

0 000 System off or no fault

Environmental fault
011 VNR6 undervoltage

021 VNR6 overvoltage

031 Power supply over temperature

041 Chassis over temperature

2 Fan failure in computer chassis
002 Blower or multiple fan failure
012 Fan 1 failure
022 Fan 2 failure
032 Fan 3 failure
042 Fan 4 failure

052 Fan 5 failure

062 Fan 6 failure
072 UPSC cannot set fan signals

3 VNR6 fault

013 Battery backup fault

4 Power supply fault
(includes undervoltages)

004 Undervoltage on + 5V
014 Current not sharing on + 5V
044 Undervoltage on +5MEM, PSl

054 Undervoltage on +5MEM, PS2

064 Undervoltage on +5MEM, PS3
074 Undervoltage on + 12MEM or + 12V, PS1

104 Undervoltage on + 12MEM or + 12V, PS2
114 Undervoltage on + 12MEM or + 12V, PS3
124 Undervoltage on -5VMEM or -5V, PS1

134 Undervoltage on -5VMEM or -5V, PS2

144 Undervoltage on -5VMEM or -5V, PS3

154 Undervoltage on unknown voltage, PS 1

161 Undervoltage on unknown voltage, PS2

174 Undervoltage on unknown voltage, PS3

5 Overvoltage fault
005 Overvoltage on + 5V
045 Overvoltage on +5MEM, PS1
055 Overvoltage on +5MEM, PS2

065 Overvoltage on +5MEM, PS3

075 Overvoltage on + 12MEM or + 12V, PS1

105 Overvoltage on + 12MEM or + 12V, PS2
115 Overvoltage on + 12MEM or + 12V, PS3
125 Overvoltage on -5MEM or -5V, PSl
135 Overvoltage on -5MEM or -5V, PS2

145 Overvoltage on -5MEM or -5V, PS3

155 Overvoltage on unknown voltage, PS 1

165 Overvoltage on unknown voltage, PS2
175 Overvoltage on unknown voltage, PS3

Table 5.11 Power system fault codes

6 Voltage nonregulated unit

Fault

Type Code Meaning

6

7

(octal)

006
016
026
036
046
156
166
167
106
116
126
136
146
156
166
167

Over-current fault
Reed switch sense low on + 5V output
Overcurrent on +5V, PSl
Overcurrent on +5V, PS2
Overcurrent on +5V, PS3
Overcurrent on + 5MEM, PS 1
Overcurrent on +5MEM, PS2
Overcurrent on + 5MEM, PS3
Overcurrent on + 12MEM or + 12V PS 1
Overcurrent on + 12MEM or + 12V PS2
Overcurrent on + 12MEM or + 12V PS3
Overcurrent on - 5MEM or - 5V PS 1
Overcurrent on - 5MEM or - 5V PS2
Overcurrent on - 5MEM or - 5V PS3
Overcurrent on unknown voltage, PS 1
Overcurrent on unknown voltage, PS2
Overcurrent on unknown voltage, PS3

UPSC fault
007 Checksum error on UPSC ROM
177 LED lamp test at power up

Table 5.11 Power system fault codes (continued)

Programming

When the front console Power switch is switched on, the
UPSC starts a self-test to check its operation before
supplying power to the rest of the Sj280 system. When
the self-test is complete, the UPSC powers up the rest of
the Sj280 system and starts monitoring the power system
for faults.

The UPSC handles a fault as follows:

• Powers down the system, switches on battery backup,
or takes no corrective action;

Updates the fault code register;
Flashes the fault type on the front panel lights for
some faults;

• Notifies the operating system by generating a program
interrupt if UPSC interrupts are enabled.

The UPSC usually powers down the system for all faults,
except VN R undervoltage conditions, fan failures, and
battery backup failures. If the fault is critical - an
overvoltage condition, for instance - the UPSC powers
down the system immediately. If the fault is less severe
- an overcurrent condition, for instance - the U PSC
brings the power down only when the fault persists for at
least a I millisecond. The exceptions are overtemperature
faults and fan failures which are allowed to persist for 15
seconds.

Device Management 31

A VNR undervoltage fault occurs when the ac source
voltage falls below specification. In this case, the UPSC
switches on battery backup if it is present and enabled;
otherwise, the UPSC powers down the system and causes
a non-maskable powerfail interrupt, provided the operat­
ing system has not inhibited powerfail interrupts.

For battery backup failures, the UPSC takes no corrective
action.

When UPSC interrupts are enabled and the UPSC detects
a fault, it initiates a program interrupt. When the
operating system issues an Interrupt Acknowledge in­
struction (lNT A) in response to this interrupt, the UPSC
returns· device code 4. The interrupt handler can then
interrogate the UPSC to determine the interrupt's cause.

A few milliseconds usually elapse between an interrupt
handler's initial request for UPSC status and the UPSC's
transfer of status to the CPU. To handle faults detected
by the UPSC as quickly as possible, the interrupt handler
can shorten this time by enabling UPSC interrupts with
an Enable US PC Fault Interrupts instruction (DOAS
UPSC) as soon as power comes up. When a fault occurs,
the UPSC initiates a program interrupt and selects the
fault code as the source of status information. In response,
the interrupt handler can quickly determine the nature of
the fault by simply issuing a Read Power System Status
instruction (DIA UPSC). It does not need to initialize
the UPSC to read the fault code since the UPSC does
this itself in response to a fault if UPSC interrupts are
enabled. The interrupt handler can access the fault code
in this way until another UPSC interrupt occurs or until
it issues a Request Power System Status instruction
(DOAP UPSC) which selects status other than the fault
code.

To determine the existence and/or state of the battery
backup, the interrupt handler should issue a Request
Power System Status instruction (DOAP UPSC), which
selects battery backup information, and then a Read
Power System Status instruction (DIA UPSC).

32 Device Management

,f

Chapter 6

Memory and System Management

The central processor and memory system supports
memory management and system management facilities
for an operating system. The memory management
facilities provide

• Memory allocation and protection by translating logi­
cal addresses into physical addresses and controlling
access to physical memory;

• Memory integrity by checking and correcting the
contents of physical memory.

The system management facilities provide

• Information about system status and service faults;

• Special system functions.

This chapter summarizes these facilities and presents the
instructions used by the operating system to access and
control them.

Memory Allocation and Protection
The S/280 memory system has address translation facili­
ties that allocate blocks of physical memory between
processes and protect the system from unauthorized
access to certain parts of memory or to I/O devices. All
S/280 computers have a user and data channel address
translator. Computers with the burst multiplexor facility
also have a burst multiplexor address translator.

NOTE: In other Data General documentation an address
translator is often referred to as a "MAP unit" or "MAP";
address translating as "mapping"; and map tables as
"maps.

Both address translators convert the logical address of a
piece of data into a physical address in memory. To
perform the translation, the address translators use a
map table which provides information about the pages in
a process' address space. This map table contains one
entry (map) for each 2 Kbyte logical page. The entry
indicates whether or not the process can access the page
and gives information for logical-to-physical address

. - translation. For more information on logical-to-physical
address translation, refer to J 6-Bit Real-Time ECLIPSE
Assembly Language Programming.

User and Data Channel Address Translator

This address translator can store map tables for four user
processes and four data channel (DCH) processes. These
user and data channel processes are referred to as user A,
B, C, D and data channel A, B, C, and D. The map tables
can be read (loaded) and written (dumped) under pro­
gram control.

The map table entries have the formats diagrammed
below.

User Map Table Entry Format

logical Page Physical Page

o 5 6 15

Bits Name Contents or Function

0 WP Write protection flag for the physical
page addressed by bits 6-15.

If 0, allows write access to the page.
If 1, denies write access to the page.

1-5 Logical Page Logical address of a page in a user's
address space.

6-15 Physical Physical address of the page with the
Page logical address specified by bits 1-5.

DCH Map Table Entry Format

I v I logical Page Physical Page

0 5 15

Bits Name Contents or Function

0 V Access (validity) protection flag for the
logical page addressed by bits 1-5. Ac-
cess to page is invalid if flag is 1 and
bits 6-15 are all ones; otherwise flag must
be o. See "Fault Handling" section of
this chapter.

1-5 Logical Page Logical address of a page in a data
channel device's address space .

6-15 Physical Physical address of the page with the
Page logical address specified by bits 1-5.

Memory and System Management 33

Load Effective Address Flag

The Load Effective Address instruction (LEF) has the
same format as an I/O instruction. The address translator
has a LEF flag that determines whether an I/0 format
instruction is interpreted as an I/O or LEF instruction.
When user address translation is enabled and the LEF
flag is 1, all I/O format instructions are interpreted as
Load Effective Address instructions (LEF). When the
LEF flag is 0, all I/O format instructions are interpreted
as I/O instructions.

Protection

The user /OCH address translator also performs all
protection hardware checks. These checks validate validi­
ty access, write access, I/0 access, and indirection. If any
of these checks fails, the address translator initiates a
protection fault to the operating system. For more infor­
mation about the types of protection checks, refer to
16-Bit Rea 1-Time ECLIPSE Assembly Language Pro­
gramming.

Registers

In addition to the eight map tables, the user /OCH address
translator has three program-accessible registers.

• The 16-bitstatus register specifies the operation of
the address translator.

• The 16-bit page check register selects the map table to
be used when the program needs to check the contents
of specific map table entry.

• The 16-bit page 31 register contains the physical page
address of the memory locations that are referenced
by logical page address 31 when user address transla­
tion is disabled.

Instructions

Though functionally part of the memory system, the
user /OCH address translator is actually a device on the
S/280's I/0 bus and reponds to I/O instructions with
device code 38 or assembler mnemonic MAP. This
translator also responds to a special instruction (LMP).
Table 6.1 lists these instructions.

34 Memory and System Management

Instruction
Mnemonic

DOA MAP

LMP

DIA MAP

DOC MAP

DIC MAP

DOB MAP

NIOP MAP

IORST

Operation

Specifies the operation of the address
translator.

Loads map table entries into the translator
from memory.

Returns translator status.

Selects the map table entry for a specified
logical page without changing the other status
of the translator.

Returns the physical address and some char­
acteristics of the logical page specificied by
the preceding DOC MAP instruction.

When user address translation is disabled,
selects the page 31 register as the map table
entry for translating addresses in logical page
31.

Either translates one memory reference using
the last selected map table or disables user
address translation.

Disables user address translation and clears
all bits in the translator's status register
except for bits 1 and 15. (See "Interrupt
System" in Chapter 5 for a detailed description
of IORST.)

Table 6.1 User IDCH address translation Instructions

Device Code

38

Instruction Mnemonic

MAP

Priority Mask Bit

None

Device Flags

Oevice flags commands enable address translation for a
single memory reference.

f=S No effect.

f=C No effect.

f= P With No I/O Transfer instruction (NIO), either
translates one memory reference using the last user
page table or disables user address translation.

DOAMAP
Load User lOCH Translator Status
(Load Map Status)

DOA ac,MAP

o 3 4 5 6 8 9 10 11 12 13 14 15

Specifies new parameters for the user I DC H address
translator.

Places the contents of specified accumulator in the
translator's status register and the page check register.
The accumulator format before and after the operation is
diagrammed below.

o 5 6 8 9 10 11 12 13 14 15

NOTE: When this instruction sets the USR bit (bit 15)
to 1, the interrupt system is disabled, and the address
translator waits for an indirect reference before enabling
the interrupt system and allowing the address translator
to begin translating addresses with the user map table
selected by bits 0 and 13 of its status register.

Bits Name

0,13 MTE

1-5

6-8

9

10

11

12

14

15

MT SEL

LEF

10

WP

IN

DCH

USR

Contents or Function

Enables the map table for the next user
process.

Bits Map Table
0 13 Enabled

0 0 User A
0 1 User B

0 User C

User D

Reserved for future use.

Selects the page table to be loaded by
the next Load Map Table instruction
(LMP).

Bits Map Table

6 7 8 Selected

0 0 0 User A

0 0 1 User C
0 0 User B
0 1 1 User D

0 0 Data channel A

0 1 Data channel C
0 Data channel B

Data channel D

If 1 and user address translation is en­
abled for the next user (bit 15 = 1), then
all I/O format instructions will be inter­
preted as Load Effective Address in­

structions (LEF) for the next user. If 0, all
I/O format instructions, including LEF
instructions, will be interpreted as I/O

instructions for the next user.

If 1, I/O protection will be enabled for
the next user.

If 1, write protection will be enabled for

the next user.

If 1, indirect protection will be enabled
for the next user.

If 1, data channel address translation will

be enabled immediately after execution
of this instruction.

If 1, user address translation will be
enabled with the first memory reference
after the next indirect reference.

Memory and System Management 35

LMP
Load User IDCH Map Table
(Load Map)

Loads successive words from memory into the selected
map table.

The successive words are loaded in consecutive, ascending
order according to their addresses into the map table
selected by bits 6-8 of the address translator's status
register.

Two accumulators specify parameters for the instruction.

• ACI must contain an unsigned integer equal to the
number of words to be loaded into the map table.

• AC2 must contain the address of the first word to be
loaded. If bit 0 is 1, the instruction follows the
indirection chain and places the resulting effective
address into AC2.

NOTE: Unlike some other real-time ECLIPSE
computers, ACO need not contain 0 for this instruction
to execute properly.

For each word loaded, the instruction decrements the
number in ACI by one and increments the address in
AC2 by one.

After completion of the instruction,

• ACO and AC3 remain unchanged,
• AC 1 contains 0,
• AC2 contains the address of the word following the

last word loaded.

NOTE: If this instruction is issued while user address
translation and I/O protection are enabled, the address
translator and the accumulators are not altered and a
protection fault occurs.

36 Memory and System Management

DIAMAP
,Read User IDCH Translator Status
(Read MAP Status)

OIA ac,MAP

Supplies the current status of the user lOCH address
translator.

Places the contents of the user lOCH address translator
status register in the specified accumulator. The accumu­
lator format before and after the operation is diagrammed
below.

o 23" 5

Bits Name

0, 13 MTE

USR

2 10F

3 WPF

4 IDF

5 SC

6-8 MT SEL

9 LEF

10 10

11 WP

12 IN

14 DCH

15 UI

6 8 9 10 11 12 13 1" 15

Contents or Function

User map table currently enabled.

Bits Map Table
o 13 Enabled

o 0 User A
o 1 User B

o User C
User 0

If 1, user address translation (mapped
mode) is enabled.

If 1, the last protection fault was an 1/ 0
protection fault.

If 1, the last protection fault was a write
protection fault.

If 1, the last protection fault was an
indirect protection fault.

If 1, the last protection fault occurred
during a Translate Single Cycle
instruction (NIOP MAP).

User map table loaded by the last Load.
Map Table instruction (LMP).

Bits Map Table
6 7 8 Selected

0 0 0 User A
0 0 1 User C
0 0 User B
0 1 1 User 0

0 0 Data channel A
0 1 Data channel C

0 Data channel B
Data channel 0

If 1, LEF instruction mode was enabled
for the last user.

If 1, 110 protection was enabled for tne
last user.

If 1, write protection was enabled for the
last user.

If 1, indirect protection was enabled for
the last user.

If 1, data channel address translation has
been enabled.

If 1, the last interrupt occurred while user
address translation was enabled.

-

-

DOC MAP
Initiate Page Check

DOC ac,MAP

Selects a map table and specifies a table entry.

The contents of the specified accumulator are transferred
to the address translator, with bits 6-8 also going to the
page check register for use later by a Page Check
instruction (DIe MAP). The accumulator format before
and after the operation is diagrammed below.

I I Logical Page MT SEL

o 5 6 8 9 15

Bits Name Contents or Function

o
1-5

6-8

9-15

Reserved for future use.

Logical Page Address of an entry in the map table
selected by bits 6-8. This entry will be
read by the next Page Check instruction
(DIC MAP).

MT SEL Selects the page table to be accessed
by the next Page Check instruction (DIC
MAP).

Bits Map Table
6 7 8 Selected

0 0 0 User A
0 0 1 User C
0 0 User B
0 1 1 User 0

0 0 Data channel A
0 1 Data channel C

0 Data channel B
Data channel 0

Reserved for future use.

DICMAP
Page Check

DIe ac,MAP

Returns the physical address and the state of the Write
Protect flag for the logical page specified by the preceding
Initiate Page Check instruction (DOC MAP).

Loads bits 6-8 of the translator's page check register and
bits I and 6-15 of the map table entry specified by the
preceding Initiate Page Check instruction (DOC MAP)
into the specified accumulator. The accumulator format
after the operation is diagrammed below.

I P I MT SEL

o 3

Bits Name

o P

1-3 MT SEL

4-5

6-15 Physical
Page

PhYSical Page

5 6 15

Contents or Function

If 1, specifies the type of protection
provided for the logical page
correponding to the physical page speci­
fied by bits 6-15. If bits 1-3 select a user
map table, write protection is provided
for the specified page; if these bits select
a data channel map table, access (validi­
ty) protection is provided for the page.

The map table selected to perform the
address translation between the logical
page and the physical page.

Bits Map Table
2 3 Selected

0 0 0 User A
0 0 1 User C
0 0 User B
0 1 1 User 0

0 0 Data channel A
0 1 Data channel C

0 Data channel B
Data channel 0

Reserved for future use.

The address of the physical page that
corresponds to the logical page address
given in the preceding Initiate Page Check
instruction (DOC MAP).

Memory and System Management 37

DOBMAP
Translate Page 31
(Map Supervisor Page 31)

DOB ac,MAP

Supplies the physical page address for the translation of
user memory references to logical page 31 when user
mapping is disabled.

Loads bits 6-15 of the specified accumulator into the user
page 31 register. The accumulator format after the
operation is diagrammed below.

o

Bits Name

0-5

6-15 Physical
Page

Physical Page

5 6 15

Contents or Function

Reserved for future use.

The address of the physical page to
which user memory references to logical
page 31 are translated when user ad­
dress translation is disabled.

NOTE: After powerup, a system reset, or an I/O Reset
instruction (fORST), the user page 31 register contains
all ones (378)' thereby translating logical page 31
addresses into physical page 31 addresses.

38 Memory and System Management

NIOPMAP
Translate User Single Cycle (Map Single Cycle)
Disable User Translation (Disable User Mode)

101111101010101011111010101011111
o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Either translates one user memory reference or disables
user address translation.

If issued while user address translation is disabled, this
instruction translates one user memory reference. After
the effective address, E, has been calculated for the next
Load Accumulator instruction (LOA) or Store Accumu­
lator instruction (ST A), the instruction enables user
address translation and translates E using the map table
enabled by bits 1 and 13 of the status register. After the
translation, the instruction disables user address transla­
tion. Thus, any additional memory references required by
the instruction will not be translated.

NOTE: The interrupt system is disabled from the
beginning of the Translate Single Cycle instruction until
the completion of the next LDA or ST A instruction.

If issued while user address translation is enabled and
both LEF mode and I/O protection are disabled, this
instruction disables user address translation. No user
memory references are translated until user address
translation is reenabled with a Load User/Data Channel
Address Translation instruction (DOA MAP).

Examples

AC2 contains 4058 and the following instructions are
issued when user address translation is disabled:

NIOP MAP
LOA 3,2,2

As a result, the logical address 4078 is mapped using the
user m~p table specified by bits 0 and 13 of the translator's
status register, and the word contained in the correspond­
ing physical location is placed in AC3.

However, if the following instructions are issued

NIOP MAP
LOA 3,@2,2

the contents of physical location 407 are used as the first
level of an indirection chain and the indirection chain is
resolved. The resolved address is then translated and the
word contained in the corresponding physical location is
placed in AC3.

f'
I

~.,

I

BMC Address Translator

This address translator stores one map table with 1024
entries. The map table entries have the following format.

BMC Map Table Entry

I v I 0 I 0 I 0 I 0 I 0 I Physical Page

o 2 3 4 5 6 15

Bits Name

o V

1-5

6-15 Physical
Page

Protection

Contents or Function

Access (validity) protection flag for the
logical page associated with this map
table entry.

If 0, allows access to the page.
If 1, denies access to the page.

Must be 0.

Address of a physical page in memory.

The BMC address translator also performs all protection
hardware checks. These checks provide validation of
access, address, and data. If any of these checks fails, the
address translator initiates a protection fault to the
operating system. For more information about access
validation, refer to J6-Bit Real- Time ECLIPSE Assem­
bly Language Programming. For more information on
address and data validation, refer to Chapter 5, "Device
Management. "

Registers

The BMC address translator has three program­
accessible registers.

• A 16-bit BMC status register contains information
about the state of the BMC address translator and the
BMC facility.

• A 16-bit map table transfer address register holds the
logical address of the next memory location to be
accessed during a map table transfer operation (load
or dump).

• A 16-bit map table entry selector holds the logical
page address of the next map table entry to be accessed
during a map table transfer operation (load or dump).

Instructions

Although the BMC address translator is functionally part
of the memory system, it is actually a device on the
S/280's I/O bus and reponds to I/O instructions with
device code 58 or instruction mnemonic BMC. Table 6.2
lists these instructions.

Instruction
Mnemonic

DIC BMC

DOA BMC

DOB BMC

DOC BMC

IORST

Operation

Returns translator and BMC facility status.

Specifies the least-significant bits of the phys­
ical address of the first memory location to be
accessed during a map table transfer.

Depending on the accumulator format, either
enables a map table transfer and specifies
the most-significant bits of the physical
address of the first memory location to be
accessed during the transfer
or

selects the first map table entry to be
accessed during a map table transfer.

Depending on the accumulator format, either
specifies the number of map table entries to
be transferred
or

defines the diagnostic operation of the
translator. 1

Clears all bits in the BMC status register
except bit 15. (See "Interrupt System" in
Chapter 5 for a detailed description of IORST.

Table 6.2 BMC address translation instructions

I For information on this diagnostic instruction, refer to Appendix E.

Device Code

58

Instruction Mnemonic

BMC

Priority Mask Bit

None

Device Flags

Device flags commands enable address translation for a
single memory reference. The BMC address translator
has no Busy or Done flags.

j=S Initiates a BMC map table transfer operation.

j=C Sets all bits of the BMC translator status register to
o except bits I and 15.

j= P No effect.

Memory and System Management 39

DICBMC
Read BMC Status

DIC!!f ac, BMC

o 234 5 6 8 9 10 11 12 13 14 15

Returns the status of the BMC address translator and the
BMC facility.

Places the contents of the user lOCH address translator
status register in the specified accumulator. After the
transfer, performs the function specified by f The accu­
mulator format before and after the operation is dia­
grammed below.

o 1 2 3 4

Bits Name

o FLT

OMP

2

3 VF

4-6

7 AF

8 OF

9-14

15 BMC

6 7 8 9 14 15

Contents or Function

If 1, a validity protection fault, address
parity fault, or data parity fault occurred.

If 1, the next map table transfer operation
will be a load.

If 0, the next map table transfer operation
will be a dump.

Reserved for future use.

If 1, a validity protection fault occurred.

Reserved for future use.

If 1, an address parity faulty occurred.

If 1, a data parity fault occurred.

Reserved for future use.

If 1, the BMC facility is present in the
system.

40 Memory and System Management

DOABMC
Specify Initial Address
(Specify Low-Order Address)

DOA!!f ac, BMC

o 2 3 4 5 6, 7 8 9 10 11 12 13 14 15

Specifies the 10 least significant address bits of the first
memory location to supply 'or receive a word during a
map transfer operation.

Places bits 6-15 of the specified accumulator into the
translator's map transfer address register. After the'
transfer, performs the operation specified by f The
accumulator format before and after the operation ,is
diagrammed below.

I 0 I 0 I 0 I 0 I 0 I 0 I Physical Address

o 1 2 3 4 5 6 15

Bits Name

0-5

6-15 Physical
Address

Contents or Function

Must be O.

Ten least significant physical address
bits of the first memory location to supply
or receive a map table entry during the
next map table transfer operation.

/r"
(

DOB BMC
Specify BMC Map Table Transfer
(Specify Operation and High-Order Address)

DOB!!} ac, BMC

o 2 3 4 5 6 8 9 10 11 12 13 14 15

Specifies the map table transfer operation (load or dump)
and the 10 most significant address bits of the first
memory location to supply or receive a word during the
operation.

Places bits 1 and 6-15 of the specified accumulator in the
translator's status register and map transfer address
register, respectively. After the transfer, performs the
operation specified by f The accumulator format before
and after the operation is diagrammed below.

I 0 IOMPI 0 I 0 I 0 I 0 I Physical Address

o 3 4 5 6 14

Bits Name

o

DMP

2-5

6-15 Physical
Address

Contents or Function

Must be O. (Distinguishes this instruction
from a Select Initial BMC Map Table
Entry instruction which has the same
assembler mnemonic.)

If 1, the next map table transfer operation
is a dump.

If 0, the next map table transfer operation
is a load.

Must be o.
Ten most significant physical address
bits of the first memory location to supply
or receive a map table entry during the
next map table transfer operation.

DOB BMC
Select Initial BMC Map Entry
(Specifiy Initial Map Register)

DOB!!} ac,BMC

AC

o 3 6 9 10 11 12 13 14 15

Selects the first map table entry to receive or supply a
word during the next map table transfer (load or dump)
operation.

Places bits 1 and 6-15 of the specified accumulator into
the translator's status register and the map table transfer
address register, respectively. After the transfer, performs
the operation specified by f The accumulator format
before and after the operation is diagrammed below.

o 3 4

Bits Name

o

2-5

6-15 Initial MTE

Initial MTE

6 15

Contents or Function

Must be 1. (Distinguishes this instruction
from the Specify BMC Map Table Trans­
fer instruction which has the same as­
sembler mnemonic.)

Reserved for future use.

Must be o.
Logical page address of the first map
table entry to receive or supply a word
during the next map table transfer opera­
tion (load or dump).

Memory and System Management 41

DOCBMC
Specify BMC Map Entry Count

DOC/If ac,BMC

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Specifies the number of map table entries to loaded or
dumped during the next map table transfer operation.

Places bits 9-15 of the specified accumulator into the
map table entry selector. After the transfer, performs the
operation specified by f The accumulator format before
and after the operation is diagrammed below.

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I
Count minus 1

o 1 2 3 4 5 6 7 8 9 15

Bits Name Contents or Function

o

1-8

Must be O. (Distinguishes this instruction
from the diagnostic instruction, Load
BMC Status Register, which has the same
assembler mnemonic.)2

Must be O.

9-15 Count minus The number that is one less than the
1 number of map table entries to be loaded

or dumped during the next map table
transfer operation. A total of 128 entries
(four complete map tables) can be trans­
ferred in one operation.

2For information on this diagnostic instruction. refer to Appendix E.

42 Memory and System Management

Programming Address Translators

To manage address translation the memory supervisor
must maintain information about memory usage. It must
track such things as which physical pages are currently
allocated to which processes, which pages the various
processes can access, which pages processes need to share,
which processes currently have map tables stored in the
translators.

The supervisor must also maintain a map table in memory
or on disk for itself and each process that requires address
translation. Normally, the supervisor reserves the user A
map table for itself. When setting up the map table for a
process, the supervisor should invalidate all pages not
needed by the process. This ensures that mistaken refer­
ences to unneeded pages do not result in unwanted access
to memory used by other processes. In other words, if a
process only needs 1210 pages (24 Kbytes), then logical
pages 1310 through 3010 should be invalidated. Invalid~te
a page by setting the write protect bit (user processes) or
the validity protect bit (data channel or BMC processes)
and the physical page bits to 1 in the map table entry for
the page.

NOTE: Physical page 17778 cannot be write-protected
without also validity protecting it.

Loading and Enabling Map Tables

Before a process becomes active in a system using address
translation, the memory supervisor must make sure the
map table for the process is stored in the address
translator. Load a map table into the translator from
memory with the following instruction sequences.

Loading user IDCH map table

• Load User IDCH Translator Status instruction (DOA
MAP) to select the map table to be loaded.

• Load UserlDCH Map Table instruction (LMP) to
start storing the map table.

NOTE: The S/280 user/DCB address translator allows
loading of data channel map tables from a DCB device,
such as Data General's Intelligent Asynchronous
Controller (lAC), which supports this feature.
Instructions from the particular DCB device's
instruction set are used to load data channel map tables
in this way.

Loading BMC map table

• Select Initial BMC Map Entry instruction (DOB
BMC) and Specify BMC Map Entry Count instruction
(DOC BMC) to specify the map table entries to be
loaded.

~
(

• Specify BMC Map Table Transfer instruction with a r
Start command (DOBS BMC) to start storing the
map table entries.

-

Both the Load User/DCH Map Table instruction (LMP)
and any BMC instruction with a Start command (such as
the DOBS BMC instruction above) are interruptible and
resumable. Since neither address translator has a Busy
flag, the supervisor can not tell when the instruction is
finished. For this reason, interrupts should be disabled
with an Interrupt Disable instruction (lNTDS) before
issuing this instruction and then reenabled with an
Interrupt Enable instruction (lNTEN).

While a user or DCH map table is being loaded, a user or
data channel address translation can occur using another
map table.

Before a user or data channel process can use the new
map table, the supervisor must enable the map table
together with user or data channel address translation.
Do this with another Load User/DCH Translator Status
instruction (DOA MAP).

When a Load User /DCH Translator Status instruction
(DOA MAP) instruction enables user translation (sets
bit 15 to 1 in the translator's status register), then the
interrupt system is disabled and the translator waits for
an indirect memory reference. After the FI RST level of
the next indirect reference occurs, the interrupt system ,is
reenabled and address translation starts using the enableg
map table.

The supervisor can enable data channel address transla­
tion with a Load User/DCH Translator Status instruc­
tion (DOA MAP). However, it cannot use this instruction
to enable a map table for the data channel process.
Instead, it must use an I/O instruction for the specific
device associated with the data channel process. This
instruction is usually one of those used to set up the
parameters of a data channel transfer for the device.

Unlike user and data channel address translation, BMC
address translation is always enabled unless disabled by a
BMC device controller. Once BMC map table entries are
loaded, a BMC process can use them without supervisor
intervention.

When a user or data channel map table is enabled that
alters the translation of the logical page indicated by the
program counter for the next instruction fetch, then the
instruction is fetched using the new translation. Likewise,
when a DCH or BMC map table is loaded that alters the
translation of the logical page indicated by the DCH
address register or the BMC address register for the next
DCH or BMC transfer, then this transfer uses the new
translation.

NOTE: Unpredictable results happen if a user memory
write is done when all the following conditions occur
together:
• The write is to a logical page that is different than

the logical page currently being translated. AND

• The logical page for the write translates into the
same physical page as the logical page currently being
translated. AND

• The physical address for the write is one or two
greater than the current program counter.

Fault Handling

Before logical-to-physical address translation occurs, the
processor makes sure that the process is allowed to access
the physical address, i.e., that the physical address is
valid for the process. Whenever a process attempts to
access an invalid physical address, a validity protection
fault occurs.

When a user process causes a validity protection fault,
the following events occur automatically.

• The current user map table is disabled.

• A five-word return block is pushed onto the system
stack.

• Control transfers to the protection fault handler by an
indirect jump through reserved memory location 3
which should contain the address of the protection
fault handler.

When a data channel process causes a validity protection
fault, none of the above events occur, and the operating
system cannot determine that the fault occurred.

In addition to validity protection, the user /DCH address
translator can also provide a user process with write
protection, indirect protection, and I/O protection. When
a process violates one of these types of protection, a fault
occurs. The fault's effect is the same as a validity
protection fault, except the appropriate fault bit is set to
1 in the translator's status register.

The protection fault handler can determine the type of
fault that occurred using a Read User/DCH Translator
Status instruction (DIA MAP).

When a BMC process causes a validity protection fault,
none of the above events occur. Instead, only the validity
protection fault bit is set to 1 in the BMC facility status
register and the status register of the BMC device that
caused the fault. The device handler servicing the BMC
device should check for validity errors when it checks for
data and address errors after a BMC transfer operation
is complete. Check for errors by reading the BMC
facility's status register or the status register for the
BMC device causing the fault.

NOTE: After a validity or write protection fault. the
program counter in the five-word block pushed onto the
stack does not have any connection to the address of the
instruction that caused the fault. Its contents are
undefined.

Memory and System Management 43

ERCC Facility ,
The integrity of the S/280 memory system is enhanced
by the protection facilities of the address translators and
by the error checking and correction (ERCC) facility.
The protection facilities are discussed in the previous
section "Memory Allocation and Protection." The ERCC
facility is discussed here.

During all write operations, the ERCC facility generates
and appends a 7-bit check code to each two 16-bit data
words (double word) and sends all 39-bits to the addressed
memory location.

When the ERCC facility is enabled by the program, it
corrects all single-bit memory errors on read data from
memory locations.

Whenever a memory location is read, the ERCC facility
processes the double word with its check code to determine
if an error has occurred. If a single-bit error has occurred
in either word, the facility corrects the erroneous bit
before sending the addressed word or double word to the
requestor. The facility also detects, but does not correct,
double bit and most triple bit errors. However, when any
error is detected, it stores the fault address and an error
syndrome code. If the program enables interrupts, the
facility sets its Done flag to 1 and issues a program
interrupt request.

The program can transfer the fault address and syndrome
code to accumulators for an error handling routine. The
fault address is the physical address of the first word in
the faulty double word, except when the error is detected
during a cache-fill operation (quad-word read). In this
case, it is the address of the first word in the faulty
quad-word block.

44 Memory and System Management

Modes

The ERCC facility operates in three program-selectable
modes: check, sniff, idle. Normally, the facility operates
in both check and sniff modes.

Check mode is automatically enabled at power-up but
can be disabled by the program. In this mode, the facility
checks and corrects all data read from memory. Since
locations are organized as double words, all single-word
write requests are implemented as read-modify-write
operations in which the memory control unit first reads
the double word containing the addressed word, then
modifies the word in the double word, and finally rewrites
the modified double word. Because of the processor's
16-bit organization, most write requests from the proces­
sor are single-word writes, and, even when they result in a
cache hit, they still require a read-modify-write to memo­
ry because of the cache's write-back feature. Thus, except
for reads from the cache, most memory operations can
result in error checking.

Sniff mode is automatically enabled at powerup but can
be disabled by the program to reduce the refresh time.
Although sniff mode can be disabled without disabling
check mode, it cannot be enabled unless check mode is
also enabled. In sniff mode, the facility checks memory
during refresh by reading a memory location, correcting
any single-bit error, and rewriting the location. Operation
in this mode is called sniffing. Sniffing usually takes 225
nanoseconds; it takes an additional 225 nanoseconds each
time an error is corrected. Normally the program does
not notice this time unless the cache hit rate is as low as
25%.

In idle mode, the facility does not check data; however, it
does continue to generate check codes for each double
word written to memory. The facility is in idle mode
whenever both check and shift modes are disabled. Since
checking and correcting require a small amoun~ of
additional time, programs run fastest in idle mode;
however, the time is so insignificant that running in this
mode is not worth the loss in data reliability that results.

r

ERCC Instructions

Although functionally part of the memory system, the
ERCC facility is actually a device on the S/280's I/O
bus and responds to I/O type instructions with device
code 28 and assembler mnemonic ERCC.

The facility has a Done flag which is enabled only when
ERCC interrupts are enabled. If the Done flag is enabled,
the facility sets it to 1 after detecting an error and initiates
an interrupt request. Interrupts can be enabled for errors
detected during normal operation and/or during sniffing.
The facility has no Busy flag and no mask bit in the
priority mask. Its device code, 2, can be coded as the
mnemonic ERCC when the ECLIPSE assembler is being
used.

The facility responds to the I/O instructions listed in
Table 6.3 and three diagnostic instructions. The diagnos­
tic instructions listed in Appendix E are solely for use by
Data General's diagnostic programs.

Instruction
Mnemonic

DOA ERCC

DIA ERCC

DIB ERCC

IORST

Operation

Enable error checking and correction

Read memory fault address

Read memory fault code and address

Enables check and sniff modes and disables
ERCC interrupts (See "Interrupt System" in
Chapter 5 for a detailed description of IORST.)

Table 6.3 Error checking and correction instructions

Device Code

28

Instruction Mnemonic

ERCC

Priority Mask Bit

None

Device Flags

The ERCC facility responds to the following flag com­
mands.

j=S Sets Done flag and Interrupt Request flag to O.

j=C No effect.

j= P No effect.

DOA ERCC
Enable ERCC

DOA If! ac, ERCC

o 3 6 9 10 11 12 13 14 15

Selects functions of the error checking and correction
(ERCC) facility.

Sets the ERCC facility to function as selected by bits
13-15 of the specified accumulator and performs the
function specified by f The accumulator format before
and after the operation is diagrammed below.

o

Bits Name

0-11 Reserved

12

13

14

15

ISE

DS

EC

IRC

Reserved liSE I OS I EC IIRC I
11 12 13 14 15

Meaning When 1

Reserved for future use

Enables interrupts when data errors are
detected during sniffing if interrupts dur­
ing checking are enabled. (Bit 15 is set
to 1.)

Disables sniffing.

Enables checking.

Enables setting of the Done flag. Also
enables interrupts when data errors are
detected during checking. Note that er­
rors detected during sniffing will not
cause interrupts unless sniffing interrupts
are also enabled. (Bit 12 is set to 1.)

Memory and System Management 45

DIAERCC
Read Memory Fault Address

DIAI!l ac,ERCC

o 2 S 4 5 6 7 8 Ii 10 11 12 13 14 15

Reads the sixteen least significant bits of the memory
fault address.

Loads the sixteen least significant physical address bits of
the memory location with the faulty data into the specified
accumulator. After the transfer, performs the function
specified by f The accumulator format before and after
the transfer is diagrammed below.

o

Bits Name

0-15 Fault
address
least
significant
bits

Fault Address

15

Contents or Function

Sixteen least significant physical
address bits of the double word or quad
word with the faulty data ..

NOTE: The/ault address and fault code (syndrome) are
only valid while the Done flag is set to J. The fault
address is the address of the first word in faulty double
word, except during cache fill operations. when it is the
address of the first word in the faulty quad-word block.

46 Memory and System Management

DIB ERCC
Read Memory Fault Code and Address

DIBI!l aC,ERCC

o 2 3 4 5 8 7 8 9 10 11 12 13 14 15

Reads the fault code and the four most significant bits of
the .memory fault address.

Loads the fault code (syndrome) into bits 0-6 and the
four most significant physical address bits into bits 12-15
of the specified accumulator. Also sets accumulator bit 7
if the error is detected during sniffing. After the transfer,
performs the function specified by f The accumulator
format before the transfer is diagrammed below.

o

Fault Code

Bits Name

0-6 Fault code

7 SE

8-11 Reserved

12-15 Fault
address
most
significant
bits

678 11 12 15

Contents or Function

Fault code (syndrome) indicating no bit.
1 bit. 2 bit, or more than 2-bit errors as
listed in Table 6.4.

Error was detected during sniffing.

Reserved for future use.

Four most significant physical address
bits of the double word or quad word
with the faulty data.

NOTE: Thefault address andfault code (syndrome) are
only valid while the Done flag is set to 1. The fault
address is the address of the first word in the faulty
double word. except during cache fill operations. when
it is the address of the first word in the faulty quad-word
block.

6 0 1 0 1

Bit 5 0 0 1 1

0 1 2 3 4 0 0 0 0

0 0 0 0 X 38 37 T

0 0 0 1 35 T T 27

0 0 1 0 34 T T 25

0 0 1 1 T M 13 T

0 1 0 0 33 T T 24

0 1 0 1 T 1 12 T

0 1 1 0 T M 10 T

0 1 1 1 16 T T M

1 0 0 0 32 T T M

1 0 0 1 T M 11 T

1 0 1 0 T M 9 T

1 0 1 1 M T T 29

1 1 0 0 T M 8 T

1 1 0 1 17 T T 28

1 1 1 0 M T T 26

1 1 1 1 T 0 M T

Table 6.4 Memory fault code interpretation

ERROR KEY:
Number
T
M
X

Bit in error
Two bits in error
More than two bits in error
No errors

NOTE: Bits 32-38 are the check bits.

0 1

0 0

1 1

36 T

T 5

T 3

23 T

T 2

22 T

20 T

T M

T M

21 T

19 T

T 7

18 T

T 6

T 4

M T

0

1

1

T

M

15

T

M

T

T

M

14

T

T

M

T

M

M

T

1

1

1

30

T

T

M

T

M

M

T

T

M

31

T

M

T

T

M

Programming

Programming the ERCC facility involves setting it up to
operate as required by the application and handling
memory faults.

Since the facility is automatically in check and sniff
modes upon powerup, error checking and correction
occurs during all memory reads and refresh operations,
and maximum memory integrity is achieved. The facility
continues to operate in this way unless the program
disables check or sniff modes.

Error checking can be completely disabled or disabled
only during refresh operations by issuing an Enable
ERCC instruction (DOA ERCC) to disable check mode
or sniff mode, respectively. To reenable error checking,
issue the same instruction but enable either check mode
or both check and sniff modes.

Before errors can be handled, the program must determine
when errors occur either by testing the state of the Done
flag, checking for ERCC interrupts, or testing the state
of the Done flag. The usual method is to have the interrupt
handler program check for ERCC interrupts.

Since ERCC interrupts are disabled on powerup, they
can only occur after the interrupt handler issues an Enable
ERCC instruction (DOA ERCC) which enables inter­
rupts. With this instruction, the handler can enable
interrupts only on errors detected during check mode
operation or on errors detected during both check and
sniff mode operation. It cannot enable interrupts only on
errors detected during sniffing.

Since the ERCC facility does not have a mask bit, the
handler cannot mask out ERCC interrupts.

When the interrupt handler detects an ERCC interrupt,
it can determine the memory fault address by issuing a
Read Fault Address instruction (DIA ERCC) and Read
Fault Code and Address instruction (DIB ERCC). The
information DIB returns gives the fault code (syndrome)
and indicates if the error was detected during sniffing.
Only when the error is detected during sniffing can the
handler be sure that the fault address is the physical
address of the first word in the faulty double word. When
the error is detected during check mode operation, the
fault address can be the first word in the faulty double
word or faultly quad-word block. The handler's response
to this information depends on the system application
and/or the program running when the error was detected.

Memory and System Management 47

Timing and Powerup Response

In check mode, error checking requires no extra time. In
sniff mode, error checking requires an additional 225
nanoseconds for each sniff operation (each double word
checked). In either mode, an additional 225 nanoseconds
is required to correct one double-word error.

Upon powerup, the ERCC facility is automatically placed
in check and sniff modes, and all ERCC interrupts are
disabled. Before any other memory operation can occur,
the ERCC facility initializes all check code bits. Starting
with the lowest memory location and continuing until the
top memory location is reached, the facility reads the
double word from the location, corrects the check code,
and writes the double word along with the correct check
code back into the location.

System Status and Special
Functions
The S/280 processing system has system management
facilities that provide information about system status

. and service faults and perform several special functions.

A central processor identification register stores informa­
tion about the type of processor, the microcode revision
level, and the size of memory.

System management facilities allow the operating system
to perform the following special functions:

• Halt program execution,
• Transfer program control to a system call handler,
• Read the virtual console data switch register,
• Clear powerfail interrupts.

System Instructions
Table 6.5 lists the standard and special formats of
instructions for retrieving system information and per­
forming the special functions. Several of these instructions
are I/O instructions issued to the central processor. The
assembler interprets these instructions using either the
standard or special I/O instruction format. Device flags
cannot be appended to the special format of these
instructions.

Instruction Mnemonic

Special

HALT

NCLID

READS ac

SYC acs,acd

Standard Action

DOAP ac,CPU Clear powerfail interrupts.

DOCI!} ac,CPU Stop program execution.

Read central processor identi­
fication.

DIAl!} ac,CPU Read virtual console data
switch register.

Transfer control to the system
call handler.

Table 6.5 System Instructions

48 Memory and System Management

./

DOAPCPU
Clear Powerfail Interrupts

DOAP ac,CPU

Clears powerfail interrupts. The accumulator format
before and after the operation is diagrammed below.

o

Bits Name

o
1-15

HALT
Halt

DOC!!} ac,CPU

15

Contents or Meaning When 1

Must be 1 to clear powerfail interrupts.

Reserved for future use.

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Stops user program execution, enters the virtual console,
and runs the confidence test.

The DOC CPU mnemonic sets the Interrupt On flag
(ION) according to the function specified by f, then stops
the processor. An accumulator must be specified with
this mnemonic even though the accumulator contents
remain unchanged.

r-
I

. -

NCLID
Central Processor Identification

Identifies the processor type and sizes memory.

Loads the central processor identification information
into accumulators ACO through AC3. The accumulator
formats after the transfer are diagrammed below.

0

0

ACO format

ACt format

AC2 format

AC Name

o
Microcode

Microcode Revision
I

15

Memory Size

15

Contents or Function

Machine's model number, 211028 ,

Indicates current revision of the central
Revision processor microcode.

2 Memory Size Number of 32 Kbyte blocks of physical
memory available minus 1 .

READS
Read Switches

READS ac
DIAlf} ac,CPU

o 3 8 9 10 11 12 13 14 15

Returns contents of virtual console switch register.

Places the contents of the virtual console switch register
into the specified accumulator. After the operation, sets
the Interrupt On (ION) flag according to the function
specified by f. The accumulator format after the transfer
is diagrammed below.

I HS I Device Code

0 9 10 15

Bits Name Contents or Function

0 HS If 1, a high-speed device performs the
automatic program boot (load) operation.

1-9 Reserved for future use.

10-15 Device Code Specifies the device to perform the auto-
matic program boot (load) operation.

Memory and System Management 49

SYC
System Call

SYC aes, aed

Disables user address translation, pushes a standard
return block onto the stack, and jumps indirect through
location 2. The source and destination accumulators (aes
and aed) remain unchanged. If both accumulators are
specified as ACO, no return block is pushed onto the
stack and ACO remains unchanged.

The program counter in the return block contains the
address of the instruction immediately following the SYC
instruction.

I/O interrupts cannot occur between the execution of the
SYC instruction and the execution of the next instruction.

NOTE: DGC assemblers recognize the mnemonic SCL
as equivalent to SYC 1,1 and SVC as equivalent to SYC
0,0.

50 Memory and System Management

,f

The virtual console is a firmware program that allows a
user to interact with the S/280 computer system through
the master terminal. Simple commands entered on the
terminal keyboard examine and/or modify computer
processor registers and memory locations. A mnemonic
mode accepts and displays assembler mnemonic state­
ments as input or output of the processor registers and
memory locations. A breakpoint feature stops program
execution at selected places for debugging.

Entering the Virtual Console

Upon powerup, the virtual console performs a confidence
test to determine if the system is functional enough to
boot a program from an I/O device. The virtual console
is also entered when

• The Break key on the master terminal is pressed when
the LOCK switch on the front console is in the OFF
position.

• The reset (RST) switch on the front console is pressed
and the LOCK switch is in the OFF position.

• The program executes a Halt instruction.

• The program encounters a breakpoint.

• The program completes execution of an instruction in
the single-cycle (one-step) mode.

When the virtual console is entered, it displays the
contents of the accumulators, the program counter, and
the carry bit, and finally the virtual console prompt !. The
exception is at powerup when only

Se/f- Test-OK

and the prompt! are displayed.

NOTE: The contents of the program counter displayed
after the RST switch is pressed may be invalid.

The virtual console prompt indicates the virtual console's
readiness to accept a command. When the prompt is not
preceded by a letter, it indicates that user address
translation is disabled. When one of the letters A, B, C,
or D precedes the prompt, the letter indicates that user

Chapter 7

Virtual Console

address translation is enabled for user map table A, B, C,
or D, respectively. The user map table indicated is used
for all address translations. The status of the user /DCH
address translator can be changed from within the virtual
console as explained under "Address Translation Com­
mands" later in this chapter.

When the virtual console is in control, input/output (I/O)
interrupts and I/O protection are disabled and the RUN
light on the chassis front console is not lit. The RUN
light is only lit when a user program is executing.

Entering Commands

A virtual console command consists of a single character.
Some commands require a leading argument that is an
octal number or an expression. Valid numbers and
expressions are

Digits Ranging from 0 through 7. If the argument
is an address, it must range from 0 through
77777.

Period (.) Represents the value of the address last used.

+ or - Entered between valid numbers, the + or -
signs direct the virtual console to compute
an arithmetic result and replace the original
expression with it.

For clarity, all examples in this chapter show data entered
by the user in this typeface:

USER ENTRY

and the system's response in this typeface:

SYSTEM RESPONSE

On the terminal, user input and program response are not
differentiated.

Correcting Errors

Errors made when entering arguments can be corrected
using the Rubout/Delete key or the K command.

Virtual Console 51

RuboutJDelete

The RuboutJDelete key deletes the last character typed
on the master terminal. The virtual console echoes the
deletion with an underscore (_) on the master terminal.
On hardcopy terminals, the underscore indicates that the
character preceding it has been deleted. On display
terminals, the deleted character is no longer displayed.
Typing additional Rubouts deletes digits from right to
left.

The RuboutJDelete key has no effect on the + or -
symbols. Used after a period, the RuboutJDelete key
deletes the rightmost digit of the last address. Since the
virtual console only retains six digits at any time, the
RuboutJDelete key will not resolve all errors.

Typing Rubouts immediately after opening a cell (defined
below), causes the virtual console to delete the rightmost
digits of the cell's contents just as though new contents
had been entered. New values can be entered for these
digits.

K Command

To cancel input in a line, type K. In response, the virtual
console prints a question mark (7) followed by a New
Line and a prompt. It also closes the current cell if it is
open. The 7 followed by a New Line and a prompt is also
printed in response to a typed character the virtual console
does not recognize.

Cells
Several virtual console commands operate on cells. A cell
is either a memory location (memory cell) or an internal
register (internal cell) such as an accumulator (AC) or
the program counter (PC). Each internal register accessi­
ble by the virtual console has an internal cell number.
Table 7.1 lists these registers and their numbers.

Opening Cells

To examine or modify any cell, it must be opened using
one of the commands listed in Table 7.2. The address of
the cell is interpreted as a I5-bit logical address which is
translated into a 20-bit physical address by the user IDCH
address translator if user address translation is enabled.
When a memory cell address of more than five octal
digits (15 bits) is entered, only the last five digits are
used. Leading zeroes are unnecessary. For example, to
open the memory location with logical address 5, type

5/

Opening a cell causes its address and contents to be
displayed on the master terminal. The contents are
displayed either as an octal number or as both an octal
number and its assembler mnemonic equivalent de­
pending on the output mode. Once a cell is opened, its
contents can be changed by entering octal digits or
instruction mnemonic statements.

52 Virtual Console

Closing Cells

To terminate an expression and close the open cell, use a
Carriage Return, Line Feed, or New Line. Note that if
Carriage Return is used, it also opens the next cell. Thus
Carriage Return is convenient for entering data into
consecutive locations.

Number Cell

0-3

4

5

6

7

10

11

12

13

14

15

Accumulators ACO thorugh AC3, respectively.

Either the address of the Break instruction at which
the program halted, if the virtual console was entered
on encountering a Break instruction; or the contents
of the program counter, if the virtual console was
entered in any other way.

Carry bit. Bit 15 of this internal cell is equal to the
value of the carry bit.

Processor status register. 1

Reserved for future use.

Data switch register. Replaces the conventional con­
sole data switches. When the system is not in the
virtual console, this register can be read with a Read
Switches instruction (READS).

User/DCH address translator status register. 1

Map table entry for user page 31.2

Page check register. 1

Search mask.3

Reserved for future use.

Table 7.1 Internal cells

Command Function

exprA Opens the internal cell with the number specified
by octal number expr.4

expr / Opens the memory location specified by octal
number expr.4

Carriage Return Closes the current cell5 and opens the next
consecutive cell.

New Line3 Closes the current cell5 and does not open
another cell.

Closes the current cell and opens the previous
cell.

I Closes the current cell5 and opens the memory
cell whose address is equal to the contents of
the current memory or internal cell.

Places the virtual console in octal output mode.

Places the virtual console in mnemonic output
mode.

Table 7.2 Virtual console cell commands

I Refer to Appendix C for the contents of these registers.

2Refer to the description of the Initiate Page Check (DOC MAP) instruction
in the "User/DCH Address Translator" section of Chapter 2 for the contents
of this register.

3 Refer to "Search Command" later in this chapter for information on the
search mask.

4The symbol expr represents any valid octal number or expression, as
described at the beginning of the preceding "Commands" section.

JCurrent cell refers to the cell that was opened last.

6 Line Feed on non-ANSI standard keyboards.

r

Modes
The virtual console displays values in two modes: octal
output and mnemonic output. Its interpretation of input
depends on whether a location is opened or closed.

Output Modes

The equal sign (=) places the virtual console in octal
ouput mode. In this mode, the octal equivalent of the
contents is displayed. For example,

1=
120001002000 113410

Location 2000 contains 1134108,

The semi-colon (;) places the virtual console in mnemonic
output mode. In this mode, the octal equivalent of the
cells contents are displayed first and then the assembler
instruction mnemonic equivalent of the contents, unless
the cell is an accumulator. Only the octal equivalent of an
accumulator's contents are displayed. For example,

I;
120001002000 113410 LMP

Location 2000 contains 1134108, the octal equivalent for
the assembler LMP instruction (Load User Map Table).

12A 000002 113410

AC2 contains 1134108,

If the = or ; symbol is not entered directly after the
prompt, then the virtual console displays either the octal
or instruction mnemonic equivalent of the value that has
been typed on the line. If neither symbol is used after the
virtual console is entered, the octal equivalent is always
displayed.

When the location contains the first word of a double-word
instruction, the octal contents of the first word are
displayed. In mnemonic mode, the assembler mnemonic
for the double-word instruction is also displayed. If a
Carriage Return was used to terminate the command line
that opened the location, then the next location after the
one containing the second instruction word is opened. If a
location containing the second word of a double-word
instruction is opened in mnemonic mode, then the virtual
console attempts to display the mnemonic equivalent of
the second word.

Input Modes

When a location is opened, all letters typed are interpreted
as part of an instruction mnemonic. For example:

120001002000 145201 LDA 20

Changes the contents of location 2000 (145201 8) to
0300008, the octal equivalent of the assembler statement
LOA 2,0.

When no index mode is entered with the mnemonic, the
virtual console uses the same rules as the ECLIPSE
assembler to calculate the effective address. That is, for
one-word instructions, the virtual console first tries to
calculate the effective address using an index mode of O.
If it cannot calculate the address, it tries again using an
index mode of 1. When the virtual console cannot
calculate the effective address, it returns a question mark
(?). For double-word instructions, the virtual console
always calculates the effective address using an index
mode of 1.

NOTE: The indirect and no-load mnemonic symbols (@
and #. respectively) can appear anywhere and in any
quantity after the letters in the appropriate mnemonic
and still be interpreted correctly.

When a location is not opened, any letter typed is
interpreted as a virtual console command. For example:

110L

Loads a program from the programmed I/0 device with
device code 10 octal.

The virtual console resolves an expression typed without
letters into an octal number. Thus, if an expression
starting with a + or - is typed, the value of the expression
is added to, or subtracted from, the current contents of
the cell.

Examples of expression resolution when the last address
was 100 follow.

100000_ 1 is replaced by 100001.

1000000 will be replaced by 000000, since the virtual
console only remembers six digits.

.-3 is replaced by 75.

. 7

0-7

6+.-3

60+._

is replaced by 1007 .

is replaced by 177771.

is replaced by 103 (6+100-3=103)

is replaced by 102. (75 + 5 = 102; the + IS

not deleted)

is replaced by 70 (60 + 10= 70; the _ deleted
the rightmost 0 of the last address, 100).

If an illegal digit is typed, the virtual console issues a
prompt and does not change the cell contents. If more
than 16 bits are typed when altering internal or memory
cells, only the last 16 bits typed are used.

Virtual Console 53

Examples showing the use of /, Carriage Return (CR),
and New Line (NL) follow. In most of these examples,
the system outputs an "A" before the prompt. This means
that user map table A is enabled and used to translate
addresses.

AI3A 000003A 000100<CR>

AC3 contains 100. Internal cell 4 is opened as shown
next.

000004A 000704 1000704 103000 <NL>

PC contained 704. Memory location 704 contains 103000.
If the virtual console is in mnemonic mode ADD 0 0
would have been displayed after the 103000. The next
memory location is not opened.

A/SA 000005A 000001 <NL>

Changes the carry bit to 1. The next cell is not opened.

A/100/000100 025037. <NL>

Changes the contents of memory location 100 (025037)
to the current address (000100). The next memory
location is not opened.

A/100/000100 000100 <CR>

Confirms the preceding step. Memory location 101 is
opened as shown on the next line.

000101000602 + 1 <NL>

Increments the contents of 101. The next memory loca tion
is not opened.

A/.I000101000603

Confirms preceding step.

In all memory location examples above, the virtual console
was not in mnemonic mode. Had it been in mnemonic
mode, the mnemonic equivalent of the locations' contents
would have been displayed after the octal contents.

Function Commands
The virtual console has special function commands in
addition to the cells commands. Table 7.3 lists these
function commands and the sections that follow explain
them.

Program Control Commands

Several function commands control program flow by
setting and deleting breakpoints, resuming program flow,
and single-stepping through instructions.

54 Virtual Console

Setting and Deleting Breakpoints

The Band D commands set and delete breakpoints.

Typing the exprB command sets a breakpoint at the
address specified by the argument expr using the user
map table which is currently enabled. The breakpoint is
only valid for this map table. Do not place two breakpoints
at the same physical location. If no address is specified,
the B command lists all the current breakpoints and their
assigned numbers.

The virtual console assigns numbers from 0 to 5 to
breakpoints in reverse order - that is, 5 is assigned to
the first breakpoint, 4 is assigned to the next breakpoint,
and so on. A new breakpoint is always assigned the highest
remaining number. For example, if numbers 5 and 3 are
assigned, the next breakpoint will be 4, not 2.

Command Function

exprB

nD

Inserts breakpoint at the memory location specified
by octal number expr. If no expr is specified, all
breakpoints are listed.

Deletes breakpoint number n where n is a number
between 0 and 7. If no n is specified, all breakpoints
are deleted.

CTRL-G7 Executes confidence test.

nH

K

nL

M

nM

Performs program load from the data channel
device whose device code is n.

Executes an I I 0 reset instruction (lOR ST).

Cancels entire line just typed and displays a ques­
tion mark (?).

Performs program load from the programmed I 10
device whose device code is n.

Displays contents of all four user map tables
currently stored in the user/DCH address transla­
tor.

Displays and I or alters the entry for logical page n
in the currently enabled user map table. n is a
number between 0 and 378 ,

nO Steps through n instructions of the user's program.

P

nP

exprR

nS

u

Starts program execution at the memory location
specified by the contents of internal cell number 4.

Same as P, except the next n breakpoints are
ignored.

Starts program execution at the memory location
specified by octal number expr.

Searches for the value n in physical memory which
is accessible using the currently enabled user map
table.

Enables a user map table and user address transla­
tion. Displays a colon (:) after which an A, B, C, or
D must be typed to specify the user map table to
be enabled. If any other character is entered, user
address translation is disabled.

Table 7.3 Virtual console function commands

7 CRTL-G is typed by Simultaneously pressing the CTRL key and the G on
the master terminal.

,.,--.
I

r
!

Typing the nD command deletes a breakpoint, regardless
of whether or not user address translation is enabled. If
no argument (n) is provided, D deletes all breakpoints.

Examples of setting and deleting breakpoints follow.

A!4238

Places a breakpoint at address 423 using user map table
A.

A!6238?
A!

Request a breakpoint at a valid location when all six
breakpoints are in use. You must delete a breakpoint
before setting another. A prompt always follows a ?

AlB

Lists all current breakpoints as shown in the next
examples.

5 075324

Breakpoint 5 is at address 75324.

3 000423

Breakpoint 3 is at address 423.

A!3D

Deletes breakpoint number 3.

A!12D?
A!

Only six breakpoints (numbers 0-5) are valid; no other
number is allowed. A prompt always follows a ?

When a breakpoint is encountered during user program
execution, the virtual console is entered. The address of
the instruction at which the breakpoint was encountered
is displayed and placed in internal cell 4, and that
instruction is not executed. Then the virtual console
displays a prompt indicating that the user can now
examine and modify any internal cell or memory location.

Single Stepping

The 0 command executes a single instruction at a time.
Typing this command causes a nonmaskable interrupt to
occur immediately after the first main user program
instruction has executed. The virtual console then returns
to the main program location specified by the contents of
internal cell 4, executes one instruction, and resumes
control.

Typing 0 without an argument steps through one instruc­
tion. After the instruction is executed, the address of the
instruction is displayed along with the contents of the PC,
the ACs, and the state of the carry bit at the time of
execution. After displaying this information, the virtual
console displays a prompt.

NOTE: Typing an 0 when the program counter points to
an Interrupt Enable instruction (IN TEN) causes both
the INTEN and the following instruction to be executed
before control returns to the virtual console.

Typing nO steps through n instructions, where n is an
octal number ranging between 0 and 177777. As each
instruction is executed, the address of the instruction is
displayed along with the contents of the PC, the ACs,
and the state of the carry bit at the time of instruction
execution. After n instructions have been executed, the
virtual console displays a prompt. The nO command is a
convenient way to locate skips or branches.

Although Breakpoints have no effect during single­
stepping, the Break key does. The Break key will stop the
virtual console before it finishes stepping through all n
instructions. In response, the virtual console displays the
address of the instruction after the one last executed and
then displays a prompt. Interrupts will be honored if the
interrupt system is enabled during single-stepping.

Resuming Program Execution

The P and R commands resume program execution after
the virtual console is entered through a breakpoint, after
single-stepping, or after the Break key is pressed.

Typing P restarts program execution at the location
specified by the contents of internal cell 4, which specifies
the return address. Typing nP restarts program execution
in the same manner; however, the next n breakpoints are
ignored.

When the virtual console is entered through a breakpoint,
internal cell 4 contains the address of the location of the
breakpoint. This should be the next instruction to be
executed to resume normal program flow. When the
virtual console is entered in any other way, internal cell 4
contains the value of the PC plus one (PC + 1); this
should also be the next instruction in the normal program
flow. In either case, the P instruction produces the
required result.

Typing exprR restarts program excution at the location
specified by expr. When the R command is issued, the
virtual console inserts all previously specified breakpoints,
clears nonmaskable interrupts, and resumes program
execution at the logical address (expr) using the currently
enabled user map table. If no address (expr) is specified
or the specified address is invalid for the user, the virtual
console simply displays a question mark (?) followed by a
prompt.

Program Load Commands

The nL and nH commands perform a program load while
in the virtual console. Entering nL loads a program from
the low-speed (programmed I/O) device with device code

Virtual Console 55

equal to n. Entering nH loads a program from the
high-speed (data channel) device with the device code
equal to the octal number n. If n contains more than two
octal digits, only the two least significant digits specify
the device code. Device code 0 is normally not a valid
device code, device code 77 is reserved for the interrupt
system and special programmable system functions, and
device codes 2, 3, 4, 5, 10, 11, 14, and 43 are reserved for
resident devices.

NOTE: The nL command will load a program from a
high-speed device if n is in the range of] 000008 to
]777768,

Once a program load begins, the virtual console is no
longer in control. After any automatic program load has
been performed - whether initiated by the nL or nH
command or the SYSTEM switch on the front console -
the device code of the loading device is placed in the
switch register. The device code, shifted left one bit
position, is also placed in ACO. If a high-speed program
load is specified, the switch register's high-speed bit (bit
0) is set to 1.

I/O Reset Command

The I command causes the virtual console to immediately
issue an I/O Reset instruction (lORST) to all I/O devices.
This instruction disables the interrupt system and
user /DCH address translation, and clears all I/O device
controller Busy and Done flags.

For more information on the effects on the I/O Reset
instruction (lORST), refer to the discussion of the
interrupt system in Chapter 5.

Search Command

The exprS command searches the memory locations
specified by the currently enabled user map table for the
value of expr. The contents of each searched memory
location are logically ANDed with the value of the search
mask contained in internal cell 14 before the comparison
is made. If the result of the AND operation is identical to
the contents of the value of expr, then the address and
contents of the location are displayed as follows.

AAAAAA DDDDDD

where

AAAAAA is the physical memory address

DDDDDD represents the contents of that address

If internal cell 14 contains 0, the search mask is not used.

An example of the use of the S command follows. The
example searches the physical memory locations ad­
dressed by the currently enabled user map for any I/O
instruction to device code 22.

BI14A 000014A DDDDDD 160077 <CR>

S6 Virtual Console

Sets the search mask to 160077, thus limiting the
comparison to all instructions with I/O format.
DDDDDD equals the contents of internal cell 14 when it
was opened.

BI0600228

Searches for all I/O format instructions to device code
22.

015643 060122
017423 061322
023654 062222

I/O instructions to device code 22 were found in three
physical memory locations addressed by user map B.

Address Translation Commands
The status of the user /DCH address translator can be
examined and altered by opening internal cell 6, the
processor status register, with a 6A command. After
typing the 6A command, type in the new status and then
close the cell with a New Line. For information on the
contents of status register, refer to the section "System
Status and Special Functions" in Chapter 6.

The U and M commands enable, examine, and change
user address translation. The U command enables a user
map table for address translation. In response to this
command, the virtual console displays a colon (:). To
enable a different user map table and enable user address
translation (if disabled), type the A, B, C, or D character
associated with the desired map table. Typing any other
character, disables user address translation. For example,
typing A enables user map table A. In response to a valid
character, the virtual console displays a prompt reflecting
the newly (currently) enabled user map table.

The M command displays and/or alters the physical page
to which the specified logical page of the enabled user
map table is translated. Typing nM displays the physical
page to which logical page n is translated in the currently
enabled user map table together with the state of the
write protection flag. n is the octal logical page address
(0-1777). This information is displayed in the format:

wxpppp

where

W is state of the write protection flag.
1 denies write access to the page.
o allows write access to the page.

XPPPPP is an octal number. The 10 least significant
bits of its binary equivalent specify the physical
page address. This address is always in the
range of 0 to 17778,

After this information is displayed, it can be altered by
typing the new state of the write protection flag and
physical page address in the same format followed by a
New Line or a Carriage Return.

l
!

rl

-

Entering M without an argument displays the above
information for each logical page in each of the four user
map tables currently resident in the address translator. In
other words, it displays the write protection and physical
page address information from all of the entries in the
four currently resident map tables.

Examples showing the use of the U and M commands
follow.

lU:B

User address translation is disabled. Command enables
user address translation with user map table B.

BlU:C

Address translation is enabled with user map table B.
Command enables address translation with user map table
C.

Bl11A 000011A 000051 77 <NL>

The user lOCH address translator status register contains
51 8, The command line changes the register's contents to
778,

Bl11A 000011A 000077 <NL>

Confirms preceding step.

BlU:B

New translator status takes effect.

BlU: <NL>

Disables user address translation.

Cl32M 00032M 000132 100120 <NL>
Cl

User map table C translates logical page 26 (328 = 26 10)
into physical page 90 (1328 = 9010) and allows write
access to this page. Command line changes user map
table C to translate logical page 26 to physical page 80
(1208 = 8010) and denies write access to this page (write
protects it).

Cl5M 000005 100030 <CR>
000006M 000077 <NL>
Cl

User map table C translates logical page 5 into physical
page 24 (308 = 2410) and denies write access to this page
(write protects it). The same map table translates logical
page 6 into physical page 63 (778 = 63 10) and allows
write access to this page.

Confidence Test Command

The CTRL-G command runs a confidence test which
detects faults that would prevent the loading of software.
This is the same confidence test that runs automatically
on powerup.

CAUTION: The memory-test section of the confidence
test overwrites all physical memory; therefore, a program
load must be performed after the confidence test.

As each section of the confidence test passes, a single
letter of the following message is displayed on the master
terminal:

Self- Test-OK

The entire message is displayed if the confidence test
completes successfully.

After issuing the complete message, the virtual console
issues its prompt (!) and waits for a virtual console
command to be entered. If a partial message or no message
at all is displayed, then the confidence test failed to
complete successfully because it detected an error. Press­
ing the front console system switch to the Reset position
usually causes the virtual console to issue its prompt (!).

The partial Self- Test-OK message, which is displayed
when the confidence test detects an error, indicates the
sections that completed successfully. Table 7.4 lists the
area tested for each successive letter displayed.

Message

blank

S

Se

Sel

Self

Self­

Self-T

Self-Te

Self-Tes

Self-Test

Self-Test­

Self-Test-O

Self-Test-OK

Areas Tested

Central processor (microcode sequencer and arith­
metic logic unit, system clock circuitry),
programmed I I 0 facility, interprocessor
(intersystem) data bus, real-time clock,
programmable interval timer.

Processor status register, central processor (in­
struction register, program counter, effective
address calculation).

User portion of user lOCH address translator,
physical address bus.

I I 0 control unit, data channel portion of the
user/DCH address translator, BMC address
translator.

Memory control unit, interprocessor (intersystem)
data bus, cache, virtual console.

Central processor (instruction decoding).

Central processor (instruction decoding, effective
address calculation).

Error checking and correction, memory control unit,
physical address bus, 1/0 control unit.

Memory, memory control unit.

Memory, refresh logic.

Hardware floating-point processor.

I I 0 control unit, backpanel, I I 0 data bus, power
supply controller (UPSC).

ECLIPSE instructions.

Table 7.4 Confidence test error messages

Virtual Console 57

Chapter 8

Powerup and Initialization

This chapter describes the sequence of events that occur
when an S/280 computer is powered up, the programming
for powerfail/autorestart conditions, and the initial state
of the computer immediately following powerup, system
reset, and I/O reset.

Powerup Sequence

This section discusses the sequence of events when
powerup occurs normally and the UPSC's handling of
faults on powerup.

Normal Powerup

When the universal power supply controller (UPSC)
receives power, the controller automatically runs a two­
second self-test to ensure that its microprocessor is
working. Next, the UPSC turns on the three front-panel
lights and sequences power to the chassis in an orderly
manner while monitoring for failures. If it detects a
failure, it shuts down and may attempt to startup two
more times. When it shuts down, it displays a fault code
on the front panel lights.

Once the components in the chassis have power, the UPSC
returns the lights to their normal state and starts monitor­
ing power status. At this time, the central processor starts
its powerup process and the UPSC continues to monitor
power status.

While the UPSC is running its self-test, the rest of the
systems are in an idle state. As soon as the central
processor detects that voltages are within the required
limits, it automatically performs a system reset to initial­
ize the computer as described in the next section. Next, it
runs a confidence test to check the parts of the computer
that are needed to load software. The test runs for less
than a minute.

If the confidence test finds an error, the central processor
displays a one-letter code identifying the error on the
master console. Error codes and their meanings are listed
in Table 7.4. After displaying the error code, the central
processor waits for the operator to enter the virtual console
by pressing the Break key on the master terminal.

When the confidence test finishes without finding an
error, then the central processor displays the virtual
console prompt on the master terminal and waits for the
operator to enter a virtual console command on the master
terminal.

Powerup Faults

The UPSC handles faults as follows.

• Powers down the system, switches on battery backup,
or takes no corrective action.

• Updates the fault code register.

• Flashes the fault type on the front panel lights for
certain faults.

• Notifies the operating system by generating a program
interrupt if UPSC interrupts are enabled.

The UPSC usually powers down the system for all faults
except VN R undervoltage conditions, fan failures, and
battery backup failures. If the fault is critical, such as an
overvoltage condition, the UPSC powers down the system
immediately. If the fault is less severe - an overcurrent
condition for example - the UPSC only brings the power
down when the fault persists for at least 1 millisecond.
The exceptions are overtemperature faults and fan fail­
ures which are allowed to persist for about 15 seconds.

A VNR undervoltage fault occurs when the ac source
voltage falls below specification. In this case, the UPSC
switches on battery backup if is is present and enabled;
otherwise, the UPSC powers down the system and causes
a non-maskable powerfail interrupt, provided the operat­
ing system has not yet disabled powerfail interrupts.

The UPSC takes not corrective action for battery backup
failures.

Powerfail/ Autorestart Programming

When the ac source voltage falls below specification, the
UPSC detects a VNR undervoltage fault. The UPSC
normally responds by signaling the I/0 control unit to set
the Powerfail flag to 1 and generate a non-maskable
powerfail interrupt from device code O. The UPSC also

Powerup and Initialization 59

initiates its own interrupt request (device code 4); howev­
er, this request has lower priority than the powerfail
interrupt. When the operating system issues an Interrupt
Acknowledge instruction (lNT A) in response to the
interrupt request, the I/O control unit responds by
returning device code O. Since an INT A instruction issued
when no device is . interrupting also results ina device
code 0 respOllse, the interrupt handler must issue a CPU
Skip instruction that tests the Powerfail flag (SKPDN
CPU). If the Powerfail flag is 1, the interrupt handler
should respond by entering a powerfail routine. The effect
of the powerfail routine depends on whether battery
backup is present.

The powerfail routine can clear the powerfail interrupt
with a Clear Power/ail Interrupt instruction (DOAP
CPU).

If battery backup is present, the powerfail routine should
save the state of the processor in system memory, load a
return instruction into physical memory location 0, and
then execute a Halt instruction. If no battery backup is
present, the routine should simply execute a Halt instruc­
tion. Whenever a Halt instruction is executed, the system
stops user program execution and enters the virtual
console.

In a system with full battery backup that saves the state
of the processor on disk, the interrupt handler can turn
off battery backup after completing this operation to
shorten battery recharge time and extend battery life. To
turn off battery backup, the interrupt handler should
issue an Enable UPSC Fault Interrupts instruction
(DOAS UPSC) that sets the disable battery backup bit
to 1.

When a powerfail interrupt occurs, the interrupt handler
does not have to enter a powerfail routine and execute a
Halt instrution. Instead, the interrupt handler can do one
of the following.

• Ignore the powerfail interrupt by disabling the inter­
rupt system with an Interrupt Disable instruction
(lNTDS). This instruction disables all program inter­
rupt requests from any device, including interrupt
requests from the UPSC.

• Disable powerfail interrupts with an Enable UPSC
Interrupts instruction (DOAS UPSC) which sets the
alternate powerfail mode flag to 1. This instruction
prevents the UPSC from notifying the I/O control
unit of powerfail conditions, and thus only disables
non-maskable powerfail interrupts initiated by the I/O
control unit. The central processor will still receive the
interrupt request initiated by the UPSC because of the
powerfail condition, if UPSC interrupts are enabled,
and from any other device with its interrupts enabled.
This means that when power fails, the interrupt handler
can still set up the UPSC to generate a fault interrupt
as described in the next section.

60 Powerup and Initialization

In either case, the processor continues to execute instruc­
tions until dc voltages fall below specification. At this
point, however, the processor automatically resets the
system, stopping instruction execution. The results of the
instruction executing when a system reset occurs are
indeterminate. For this reason, neither method is recom­
mended, unless the system is backed up by an
uninterruptible power source which is supplied by the
user. In this case, the interrupt handler should disable
non-maskable powerfail interrupts as described above,
and continue to log S/280 powerfails and handle other
power system faults by enabling UPSC interrupts as
described in the next section.

When power is restored to a system supported by battery
backup, the powerfail interrupt is automatically cleared.
If the powerfail routine saved the state of the processor
and stored the address of the return instruction in location
0, then control can be returned to the the user's ·program.
If the front panel is locked, this happens automatically
when power is restored because the processor executes an
indirect jump through location O. If the front panel is
unlocked, the processor enters the virtual console and
issues a prompt to the master terminal. The user can
continue the program by entering OR on the master
terminal.

Initialization
After powerup, a system reset, or the execution of the
I/O Reset instruction (IORST), the S/280 system is in a
given initial state.

When the system first powers up or after a system reset,
the following conditions occur.

• The contents of the cache are declared invalid.

• The contents of main memory are indeterminate.

• All address translation is disabled, which means that
logical addresses are equal to physical addresses.

• Page 31 in the user /DCH address translator contains
3110 (378), which means logical page 31 addresses
equal physical page 31 addresses.

• The contents of all map tables in the user/data channel
address translator and the BMC address translator are
undefined.

• Check and sniff modes of the ERCC unit are enabled
and ERCC interrupts are disabled.

• The processor status register is initialized and bits 0
through 9 of the floating-point status register are set
to O.

• The Interrupt On (ION) flag is set to 0, which disables
the interrupt system, and the I/O interrupt priority
mask is set to O.

• All device Busy and Done flag are set to O.
• The programmable interval timer (PIT) is stopped.
• Ac line frequency is selected as the clock frequency for

the real-time clock (RTC).

• The central processor stops user program execution
and enters virtual console mode.

After the execution of the I/O Reset instruction (lOSRT),
the following conditions occur.

• All address translation is disabled, which means that
logical addresses are equal to physical addresses.

• Page 31 in the user lOCH address translator contains
3110 (378) , which means logical page 31 addresses
equal physical page 31 addresses.

• Check and sniff modes of the ERCC unit are enabled
and ERCC interrupts are disabled.

• The processor status register and bits 0 through 9 of
the floating-point status register are set to o.

• The I/O interrupt priority mask is set to o.
• All device Busy and Done flags are set to o.
• The programmable interval timer (PIT) is stopped.
• Ac line frequency is selected as the clock frequency for

the real-time clock (RTC).

Powerup and Initialization 61

Appendix A

Instruction Summary

The Instruction Summary lists the Sj280 computer
instructions alphabetically by instruction mnemonic, giv­
ing the format, base octal value, data type used, action
performed, and location contents before and after instruc­
tion execution.

The following abbreviations are used throughout the
summary:

+ Addition
Subtraction or negation

00 Multiplication
inter Intermediate number

Instruction Summary 63

Instruction Format Operation Before After

ADC Ie} Ish} I#} aes.aedl.skip} Fixed-point ACS = unsigned integer Unchanged
102000 ACS + ACD = ACD ACD=unsigned integer Result

r"
ADD Ie} Ish} I#} aes.aedl.skip} Fixed-point ACS = unsigned integer Unchanged t

103000 ACS+ ACD = ACD ACD = unsigned integer Result

ADDI i.ae Fixed-point AC+I=AC AC = unsigned integer Result
163770 I = unsigned integer Unchanged

ADI n.ae Fixed-point AC+n=AC AC = unsigned integer Result
100010 n=unsigned integer (1-4) Unchanged

ANC aes.aed Fixed-point ACS AND ACS = unsigned integer Unchanged
100610 ACD=ACD ACD = unsigned integer Result

AND Ie} Ish} I#} aes.aedl.skip} Fixed-point ACS AND ACS = unsigned integer Unchanged
103400 ACD=ACD ACD = unsigned integer Result

ANDI i.ae Fixed-point AC AND AC=unsigned integer Result
143770 immediate field = AC immediate field = unsigned Unchanged

integer

BAM Fixed-point memory ACO=addend Addend
113710 location + ACO = memory AC 1 = number of words 0

location AC2 = source address Last+ 1
AC3=destination address Last+ 1

BLM Fixed-point memory location AC 1 = number of words 0
133710 = memory location AC2 = source address Last+ 1

AC3 = destination address Last+ 1

BTOaes.aed Bit (ACS and ACD) ACS = word pOinter Unchanged
102010 (Bit= 1) ACD=word offset +bit pointer Unchanged ,.,,--,

Memory location = address bit 1 !

BTZ aes.aed Bit (ACS and ACD) ACS=word pointer Unchanged
102110 (Bit=O) ACD = word offset + bit pointer Unchanged

Memory location = Address bit 0

CLM aes.aed Fixed-point ACS>L and
102370 ACS<H=skip ACS=2's complement number Unchanged

ACD = L address Unchanged
If ACS=ACD ACS=2's complement number Unchanged

L=next word Unchanged
H=next word Unchanged

CMP Character string 1 compared ACO=String2 number of bytes o or unpredictable result
157650 to string2 AC 1 = String 1 number of bytes Result

AC2 = String2 byte pOinter Last+ 1
AC3 = String 1 byte pointer Last+ 1

CMT Character memory location ACO=delimiter table address Delimiter table address
167650 = memory location remaining number of bytes in

Delimiter Check made AC 1 = length and direction of string string
AC2 = destination byte pointer Last + 1 or to failing byte
AC3 = source byte pointer Last + 1 or to failing byte

CMV Character memory location ACO=destination number of bytes 0
153650 = memory location AC 1 = source number of bytes o or unpredictable result

Carry = relative length AC2 = destination byte pointer Last+ 1
AC3=source byte pointer Last+ 1

(,
,.

64 Instruction Summary

Instruction Format Operation Before After

CfR Character memory location ACO=Translation table byte pointer Unchanged
163650 = memory location AC 1 = I and 2's complement bytes 0 .- Translates AC2 = destination byte pointer Last+ 1

AC3 = source byte pointer Last+ 1
or ACD=translation table byte pointer Unchanged

AC 1 = length of string and Result
String 1 is compared to number of bytes
string2 AC2 = string2 byte pointer Last + 1 or to failing byte
Translates AC3 = string 1 byte pointer Last + 1 or to failing byte

COD aes,aed Bit ACS (l's)+ACD ACS = unsigned integer Unchanged
102610 =ACD ACD=2's complement number Result

COM Ie} Ish} III} aes,aedl,skip} Fixed-point ACS=ACD ACS = unsigned integer Unchanged
100000 ACD=2's complement number Result

DAD aes,aed Decimal ACS + ACD = ACD ACS = binary-coded decimal Unchanged
100210 ACD = binary-coded decimal Result

DHXL n,ae Fixed-point AC and AC + 1 AC = high order of number Result
101610 hex shift left AC + 1 = low order of number Result

n = unsigned integer (1-4) Unchanged

DHXR n,ae Fixed-point AC and AC + 1 AC = high order of number Result
101710 AC + 1 = low order of number Result

Hex shift right n = unsigned integer (1-4) Unchanged

DIA If} ae,deviee I/O device (A buffer) = AC A Buffer= unsigned integer AC=Result

DIAlf} ae,ERCC Fault address register = AC Fault address register = physical AC = physical address of faulty
address of faulty data data (low-order bits)

.- DIA ae,MAP User / DCH address transla- User / DCH address translator status AC = current translator status
tor status register = AC register = current translator status

DIAlf} ae,PIT PIT interval counter = AC PIT interval counter = current interval AC = current PIT interval count
count

DIAlf} ae,1TI Asynchronous line input Asynchronous line input buffer = AC = character read
buffer = AC character read

DIAlf} ae, UPSC Power system status Power system status register = AC = current power system
register = AC current power system status status

DID If} ae,deviee I/O device (B buffer) = AC B Buffer = unsigned integer AC=Result

DID If} ae,ERCC Fault code register and fault Fault code register = last fault code. AC = last fault code and physi-
address = AC Fault address register = physical cal address of faulty data

address of faulty data (high-order bits)

DIC If} ae,deviee I/O device (C buffer) = AC C Buffer= unsigned integer AC=Result

DIClf} ae,DMC BMC status register = AC BMC status register = current BMC AC = current BMC status
status

DIC ae,MAP Page check register = AC Page check register = map table entry AC = map table entry

DIV Fixed-point (ACO and ACO=high-order number Remainder
153710 AC1)/ AC2 unsigned integer

AC 1 = low-order number Quotient
unsigned integer
AC2 = divisor unsigned integer Unchanged

Instruction Summary 65

Instruction Format Operation Before After

DIVS Fixed-point (ACO and ACO=high-order 2's Remainder

157710 AC1)/ AC2 complement
AC 1 == low-order 2's Quotient f~
complement
AC2=divisor 2's
complement Unchanged

DIVX Fixed-point (A CO and ACO=sign of AC1 Remainder

137710 AC1)/ AC2 AC1 =2's complement Quotient
AC2=divisor 2's complement Unchanged

DLSH acs,acd Fixed-point ACD and ACS=2's complement for shift Unchanged

101310 (ACD+ 1) shift left/right ACD = high order Result
ACD + 1 = low order Result

DOA fll ac,device I/O AC = device (A buffer) AC = unsigned integer Unchanged
A buffer = Result

DOAfl1 ac,ERCC AC = ERCC A buffer AC = control information Unchanged
ERCC A buffer = control
information

DOAac,MAP AC = user / DCH address AC = translation control information Unchanged

translator status register User / DCH address translator
status register = translation
control information

DOAfl1 aC,PIT AC = interval select register AC = number of increments in interval Unchanged
Interval select register = num-
ber of increments in interval

DOAfl1 aC,RTC AC = RTC frequency select AC = clock frequency Unchanged

register RTC frequency select register (\ = clock frequency

DOAfl1 ac,ITO AC = asynchronous line AC = character Unchanged

output buffer Asynchronous line input buffer
= character written

DOAP ac,UPSC AC = UPSC AC = status select information Unchanged

A buffer UPSC A buffer = status select
information

DOAPCPU Clear powerfail interrupts AC = clear powerfail interrupt bit Unchanged

DOAS ac,UPSC AC = UPSC control register AC = control information Unchanged
UPSC control register =
control information

DOBfl1 aC,BMC AC = BMC address AC == BMC map table transfer Unchanged

translator B buffer information B buffer = BMC map table
transfer information

DOBfn ac,BMC AC = BMC address AC = BMC map entry information Unchanged

translator B buffer B buffer = BMC map entry
information

DOB fn ac,device I/O AC = device (B buffer) AC = unsigned integer Unchanged
B buffer = Result
Unchanged

DOBac,MAP AC = page 31 register AC = physical page address Page 31 register == physical
page address

DOCfn ac,BMC AC = BMC map table entry AC == map entry count Unchanged (
selector BMC map table entry

selector = map entry count

66 Instruction Summary

Instruction Format Operation Before After

DOC {f] aC,device 1/0 AC=device (C buffer) AC = unsigned integer Unchanged
..,.-.., C buffer = Result

Result

DOC aC,MAP AC = User lOCH address AC = page check control information Unchanged
translator C buffer C buffer = page check control

information

DSB acs,acd Decimal ACD - ACS = ACD ACS = binary coded decimal Unchanged
100310 ACD = binary coded decimal Result

DSPA ac./@]displ.{,index] Fixed-point AC<L or AC=2's complement Unchanged
142710 AC>H then PC=PC Address of PC

(E - L) + unsigned integer
address

DSZ {@]displacement{,index] Fixed-point memory location Memory location = Unsigned integer Unsigned integer
014000 = memory location - 1. If

the value is 0, then skip.

EDSZ {@]displacement{,index] Fixed-point memory location Memory location = Unsigned integer Unsigned integer
116070 = memory location - 1. If

the value = 0, then skip.

EISZ {@]displacement{,index] Fixed-point memory location Memory location = Unsigned integer Unsigned integer
112070 = memory location + 1. If

the value = 0, then skip.

EJMP {@]displacement{,index] Fixed-point calculated effec- PC=PC Calculated effective address
102070 tive address = PC

EJSR {@]displacement{,index] Fixed-point calculated effec- PC=PC Calculated effective address
106070 tive address = PC AC3 = unknown PC+1

ELDA ac./@]displ.{,index] Fixed-point memory location AC=unknown Unsigned integer
122070 = AC Memory location = unsigned integer Unchanged

ELDB ac,displacement{,index] Byte memory location = AC AC=unknown Unsigned integer
102170 (right) Memory location = unsigned integer Unchanged

ELEF ac./@]displ.{,index] Fixed-point calculated effec- AC= unknown Calculated effective address
tive address = AC Bit 0 = 0

ESTA ac./@]displ.{,index] Fixed-point AC=memory Memory location = unknown AC
142070 location AC = unsigned integer Unchanged

ESTB ac,displacement{,index] Byte AC right half = memory Memory location = unknown AC (right)
122170 location AC = unsigned integer Unchanged

FABfpac Floating-point absolute value FPAC = floating-point number Absolute value of sign
143050 of (FPAC) =FPAC (floating-point number)

FPSR(N,Z) Updated

FAD facs/acd Floating-point F ACS + FACD FACS = Floating-point number Unchanged
100150 =FACD FACD = Floating-point number Floating-point (double preci-

sion)
FPSR(N,Z) Updated

FAMD fpac./@]displ.{,index] Floating-point memory Memory location = double floating- Unchanged
101150 10cation+FPAC =FPAC point number 0

FPAC = Floating-point number Floating-point (double preci-
sion)

FPSR(N,Z) Updated

Instruction Summary 67

Instruction Format Operation Before After

F AMS Ipac,/@/displ./,index/ Floating-point memory Memory location = single floating-point Unchanged
101050 10cation+FPAC =FPAC number S ,,;--,

FPAC = Floating-point number Floating-point (single preci- l
i

sion)
FPSR(N,Z) Updated

FASlacs/acd Floating-point FACS + FACD FACS = Floating-point number Unchanged
100050 =FACD FACD=Floating-point number Floating-point (single precision)

FPSR(N,Z) Updated

FCLE Floating-point FPSR bits FPSR
153350 0-4=0 ANY = unknown 0

OVF = unknown 0
UNF = unknown 0
DVZ = unknown 0
MOF = unknown 0

FCMP lacs/acd Floating-point FACS com- FACS = Floating-point number Unchanged
103450 pared to FACD FACD=Floating-point number Unchanged

FPSR(N,Z) Updated

FDD lacs/acd Floating-point FACD I F ACS FACS = Floating-point number Unchanged
100750 =FACD FACD = Floating-point number Floating-point (double-

precision)
FPSR(N,Z) Updated

FDMD Ipac,/@/displ./,index/ Floating-point FPAC/memo- Memory location = double floating- Unchanged
101750 ry point number 0

location =FPAC FPAC = Floating-point number Floating-point number
(double-precision)

FPSR(N,Z) Updated

FDMS Ipac,/@/displ./,index/ Floating-point Memory location = single floating-point Unchanged
101650 FPAC/memory number S ('

location =FPAC FPAC = Floating-point number Floating-point number
(single-precision)

FPSR(N,Z) Updated

FDSlacs/acd Floating-point FACD I FACS FACS = Floating-point number Unchanged
100650 =FACD FACD = Floating-point number Floating-point number

(single-precision)
FPSR(N,Z) Updated

FEXP Ipac Floating-point ACO=FPAC ACO = unknown Unchanged
123150 FPAC = Floating-point number Floating-point number

(new exponent)
FPSR(N,Z) Updated

FFAS ac/pac Floating-point integer FPAC = Floating-point number Unchanged
102650 (FPAC) =AC ACO=unknown Fixed-point number

FFMD Ipac,/@/displ.{,indexj Floating-point absolute value FPAC=Floating point number Unchanged
102750 of sign (FPAC) =memory 10- Memory location = unknown Fixed-point (double-precision)

cation

FHLV Ipac Floating-point FPAC = Floating-point number Result
163150 FPAC=FPAC/2 FPSR(N,Z) Updated

FINT Floating-point integer FPAC = Floating-point number Result
143150 (FPAC) =FPAC FPSR(N,Z) Updated

FLASac/pac Floating-point AC=FPAC AC=2's complement number Unchanged
102450 FPAC=unknown Floating-point

FPSR(N,Z) (single-precision)
Updated

r

68 Instruction Summary

Instruction Format Operation Before After

FLDD fpae.{@}displ.{,index} Floating-point memory loca- Memory location = double floating- Unchanged
102150 tion = FPAC point number

FPAC = unknown Floating-point (double-
FPSR(N,Z) precision)

Updated

FLDSfpae.{@}displ.{,index} Floating-point memory Memory location = single floating-point Unchanged
102050 location = FPAC number

FPAC=unknown Floating-point number
(single-precision)

FPSR(N,Z) Updated

FLMD fpae.{@}displ.{,index! Floating-point memory Memory location = 2's Unchanged
102550 location = FPAC complement

double floating-point number
FPAC = unknown Floating-point number

(double-precision)
FPSR(N,Z) Updated

FLST {@}displaeement{,index} Floating-point memory Memory location = single floating-point Unchanged
123350 location = FPSR number

FPSR(all) Updated

FMD faes/aed Floating-point FACS = Floating-point number Unchanged
100550 (FACO)(FACS) =FACO FACO = Floating-number Floating-point number

(double-precision)
FPSR(N,Z) Updated

FMMD fpae.{@}displ.{,index} Floating-point (FPAC)(mem- Memory location = double floating- Unchanged
101550 ory location) = FPAC point number

FPAC = Floating-point number Floating-point number(double-
FPSR(N,Z) precision) -, Updated

FMMS fpae.{@}displ.{,index} Floating-point (FPAC) (mem- Memory location = single floating-point Unchanged
101450 ory location) =FPAC number

FPAC = Floating-point number Floating-point number
(single-precision)

FPSR(N,Z) Updated

FMOV faes/aed Floating-point FACS = FACO FACS = Floating-point number Unchanged
103550 F ACO = unknown FACS

FPSR(N,Z) Updated

FMS faes/aed Floating-point FACS = Floating-point number Unchanged
100450 (FACO)(FACS) =FACO FACO = Floating-point number Floating-point number

(single-precision)
FPSR(N,Z) Updated

FNEGfpae Floating-point FPAC = Floating-point number Floating-point number
163050 -FPAC=FPAC FPSR(N,Z) Updated

FNOMfpae Floating-point norm FPAC = Floating-point number Floating-point number
103050 (FPAC)=FPAC FPSR(N,Z) Updated

FNS Floating-point never skip PC=PC PC
103250

FPOP Floating-point stack = pop stack = 18 words FPAC3
167350 FPAC2

FPAC1
FPACO
FPSR

Instruction Summary 69

Instruction Format Operation Before After

FPSH Floating-point push = stack Stack=

163350 FPSR r-..
FPACO I

FPAC1
FPAC2
FPAC3

FRHfpae Floating-point FPAC (high FPAC = Floating-point number Unchanged

123050 order) =ACO ACO=unknown Floating-point number
High 16 bits

FSA Floating-point skip always PC=PC PC+1
107250

FSCALfpae Floating-point ACO- FPAC ACO = unsigned integer Unchanged

103150 (exponent) =FPAC (mantis- FPAC = Floating-point number Result
sa is shifted) ACO = FPAC FPSR(N,Z) Updated
(exponent)

FSD faes/aed Floating-point FACS - FACD FACS = Floating-point number Updated
100350 =FACD FACD = Floating-point number Floating-point number

(double-precision)
FPSR(N,Z) Updated

FSEQ Floating-point FPSR
113250 (if Z=O then skip)

FSGE Floating-point FPSR
127250 (if N=O then skip)

FSGT Floating-point FPSR
137250 (if Z and N=O then skip)

FSLE Floating-point FPSR .. ,r--
133250 (if Z or N = 0 then skip)

FSLT Floating-point FPSR
123250 (if N = 1 then skip)

FSMD fpae,[@}displ.[,index} Floating-point FPAC - mem- Memory location = double floating- Unchanged
101350 ory location = FPAC pOint

FPAC = Floating-point number Floating-point number
(double-precision)

FPSR(N,Z) Updated

FSMS fpae,[@}displ.[,index} Floating-point FPAC - mem- Memory location = single floating-point Unchanged
101250 ory location =FPAC FPAC = Floating-point number Floating-point number

(single-precision)
FPSR(N,Z) Updated

FSND Floating-point FPSR
147250 (if DVZ=O then skip)

FSNE Floating-point FPSR
117250 (if Z=O then skip)

FSNER Floating-point FPSR
177250 (if 1-4=0 then skip)

FSNM Floating-point FPSR
143250 (if MOF=O then skip)

FSNO Floating-point FPSR
163250 (if OVF=O then skip)

,r-

70 Instruction Summary

Instruction Format Operation Before After

FSNOD Floating-paint FPSR
167250 (if OVF and OVZ = 0 then

skip)

FSNU Floating-paint FPSR
153250 (if UNF=O then skip)

FSNUD Floating-point FPSR
157250 (if UNF and OVZ=O then

skip)

FSNUO Floating-point FPSR
173250 (if UNF and OVF=O then

skip)

FSS jacs,facd Floating-paint FACS = Floating-paint number Unchanged
100250 FACO-FACS=FACO FACO = Floating-point number Floating-paint number

(single-precision)
FPSR(N,Z) Updated

FSST (@]displacement(,index] Floating-point FPSR = Memory location = unknown FPSR
103350 memory location FPSR=FPSR Unchanged

FSTD jpac,(@]displ.(,index] Floating-point FPAC = FPAC = Floating-point number Unchanged
102350 memory location Memory location = unknown Floating-point number

(double-precision)

FSTS jpac,(@]displ.(,index] Floating-point FPAC= FPAC = Floating-point number Unchanged
102250 memory location Memory location = unknown Floating-point number

(single-precision)

FTD Floating-point FPSR (5=0) FPSR (Trap enable bit) 0
147350

FTE Floating-point FPSR (5= 1) FPSR (Trap enable bit)
143350

HALT Fixed-point stop

HLVac Fixed-point AC / 2 = AC AC=2's complement Result
143370

HXL n,ac Fixed-point hex shift left n = unsigned integer (1-4) Unchanged
101410 =AC AC = unsigned integer Result

HXR n,ac Fixed-point hex shift right n = unsigned integer (1-4) Unchanged
101510 =AC AC = unsigned integer Result

INC (c] (sh] (II] acs,acd(,skip] Fixed-point ACS + 1 = ACO ACS = unsigned integer Unchanged
101400 ACO = unknown Result

lOR acs,acd Fixed-point ACS or ACS = unsigned integer Unchanged
100410 ACO=ACO ACO = unsigned integer Result

IORI i,ac Fixed-point i or AC=AC I = unsigned integer Unchanged
103770 AC = unsigned integer Result

ISZ (@]displacement(,index] Fixed-point if memory loca- Memory location = unsigned integer Unsigned integer+ 1
010000 tion = memory location + 1

then skip

JMP (@]displacement(,index] Fixed-point calculated effec- PC=PC Calculated effective address
000000 tive address AC3 = unknown

JSR (@]displacement(,index] Fixed-point calculated effec- PC=PC PC = calculated effective ad-
004000 tive address = PC dress

Instruction Summary 71

Instruction Format Operation Before After

LDA ac,/@]displ·l,index] Fixed-point memory location AC = unknown AC3=PC+1

020000 = AC Unchanged r"--,\

LDB acs,acd Byte memory location = ACS = Byte pOinter Unchanged

102710 ACD ACD = unknown ACD = byte
Memory location=byte Memory location = unchanged

LEF ac,/@]displ·l,index] Fixed-point calculated effec- AC = unknown Address

060000 tive address = AC

LMP Map memory location = map AC 1 = unsigned integer loaded 0

113410 AC2 = 1 st address Last+ 1

LOB acs,acd Fixed-point ACS(Os) + ACD ACS = unsigned integer Unchanged

102410 =ACD ACD=2's complement number Result

LRB acs,acd Fixed-point ACS(Os) + ACD ACS = unsigned integer New unsigned integer

102510 =ACD ACD=2's complement number Result
ACS (high order 0 = 1)

LSH acs,acd Fixed-point ACD(shifted) ACS=2's complement (±) Unchanged

101210 =ACD ACD = unsigned integer Result

MOV Ic} Ish} I#} acs,acdl,skip} Fixed-point ACS = ACD ACS = unsigned integer Unchanged

101000 ACD = unsigned integer ACS

MSPac Fixed-point stack pOinter AC=2's complement number Unchanged

103370 + AC = stack pOinter Stack pointer = unsigned integer Result

MUL Fixed-point ACO = intermediate unsigned High result

143710 (AC 1)(AC2) = unsigned inte- integer
ger AC 1 = unsigned integer Low result

Unsigned integer + ACO= AC2 = unsigned integer Unchanged

ACO ~
I

and AC1

MULS Fixed-point ACO=intermediate 2's High result

147710 (AC1)(AC2)=unsigned inte- complement number
ger Low result
Unsigned integer + ACO= AC1 =2's complement number
ACO and AC1 AC2=2's complement number Unchanged

NCLID Processor identication regis- ACO = unknown ACO = machine model num-

064077 ter = ACO and AC 1 and AC2 AC 1 = unknown ber 211028

AC2 = unknown AC1 = processor micro-
code revision

AC2 = memory size

NEG Ic} Ish} /#} acs,acd/,skip} Fixed-point - ACS = ACD ACS = unsigned integer Unchanged

163050 ACD = unknown Result

NlO In device I/O device flags set

NIOPMAP Address translation See instruction

POP acs,acd Fixed-point stack=ACS> Stack = unknown ACS-ACD

103210 ACD

POPB Fixed-point stack = destina- Stack = 5 words - 5 words. Return block

107710 tion

POPJ Fixed-point stack = PC Stack = 1 word -1 word. Top word of stack

117710 PC=unknown

(

72 Instruction Summary

Instruction Format Operation Before After

PSH acs,acd Fixed-point ACS>ACD= Stack = unknown ACS-ACD
103110 stack

PSHJ /@}displacement/,index} Fixed-point PC+ 1 =stack PC=PC Calculated effective address
102270 Stack = unknown PC+1

Calculated effective
address=PC

PSHR Fixed-point PC + 2 = stack Stack = unknown PC+2
103710

RSTR Fixed-point stack = destina- Stack = 9 words - 9 words. Destination = Re-
167710 tion turn block + Stack fault ad-

dress + Stack limit + Frame
pointer + Stack pointer.

RTN Fixed-point stack = destina- Stack pointer = stack pointer Stack pointer
127710 tion Stack = 5 words -5 words

Destination = unknown Carry + PC = 1 st word
AC3 = 2nd word
AC2 = 3rd word
AC 1 = 4th word
ACO = 5th word

SAVEi Fixed-point 5 words + I Stack = unknown ACO
163710 =stack AC1

AC2
Frame pointer
Carry+AC3

SBI n,ac Fixed-point AC - n = AG AC = unsigned integer Result
100110 n = unsigned integer (1-4) Unchanged

.-- SGE acs,acd Fixed-point if ACS=ACD ACS=2's complement Unchanged
101110 then skip ACD=2's complement Unchanged

SGT acs,acd Fixed-point if ACS = AGO ACS=2's complement Unchanged
101010 then skip ACD=2's complement Unchanged

STA ac,f@}disp/./,index} Fixed-point AC=memory AC = unsigned integer Unchanged
040000 location memory location = unknown Unsigned integer

STB acs,acd Byte AC(right) = memory ACS = byte pointer Unchanged
103010 location ACD=byte Unchanged

Memory location = byte

SKP /t} device If t is true, then skip

SNB acs,acd If addressed bit is set to one, ACS = word pointer Unchanged
102770 then skip. ACD = word offset and bit Unchanged

pointer Unchanged
Memory location = unknown

SUB /c} Ish} /I} acs,acd/,skip} Fixed-point ACS = unsigned integer Unchanged
102400 acd - ACS = AGO AGO = unsigned integer Result

SYC acs,acd Fixed-point 5 words ACS = unknown Unchanged
103510 = stack@location 2 = pc ACD = unknown Unchanged

PC=PC @Iocation 2
Stack = unknown Return block

SZB acs,acd If addressed bit is set to ACS = word pointer Unchanged
102210 zero, then skip. ACD=word offset and bit Unchanged

pointer Unchanged
Memory location = unknown -

SZBO acs,acd If addressed bit is zero, set ACS = word pointer Unchanged
102310 bit to one and skip. ACD=word offset and bit Unchanged

pointer
Memory location = unknown

Instruction Summary 73

._---_.

Instruction Format Operation Before After

vcr {@}displaeement{,index} Fixed-point. See Instruction

XCH aes,aed Fixed point ACS = ACO ACS = unsigned integer ACO
r-.
I
\

100710 ACO=ACS ACO = unsigned integer ACS

Xcrae Fixed point AC = PC PC=PC AC instruction
123370 AC = Instruction Unchanged

XOP aes,aed,operation # Fixed-point unsigned integer 44=table address Unchanged
100030 + XOP table address = PC Stack = unknown Return block

PC=PC XOP unsigned integer
AC2 = unknown Stack

Address of ACS
AC3 = unknown Stack

Address of ACO
AC 1 = unknown AC 1 = Unchanged
ACO = unknown ACO = Unchanged

XOPI aes,aed,operation # Fixed-point. See XOR
100070

XOR aes,aed Fixed-point ACS or ACS = unsigned integer Unchanged
100510 ACO=ACO ACO = unsigned integer Result

XORI i,ae Fixed-point i or AC=AC AC = unsigned integer Result
123770 I = unsigned integer Unchanged

r--
!

74 Instruction Summary

.- Appendix B

Instruction Execution Times

Instruction

ADD, AND, INC, SUB, MOV, COM, NEG, ADC

ADDI, ADI, ANC

ANDI

BAM N=# of words

BlM N=# of words
Addresses both even or both odd
Otherwise

BTO,BTZ

ClM H = high limit
ACS=ACD ACS>H
Otherwise
ACS<>ACD ACS>H
Otherwise

CMP N = # of bytes compared

CMT N = # of comparisons

CMV N = # of bytes moved

COB B = # of bits moved

CTR N = # of bytes moved or compared
Move option
Compare option

DAD

DHXl N = # of hex digits

DHXR N = # of hex digits

DIA, DIB, DIC Device code 10, 11,14, or 43
S, C, or P present
Otherwise
Other device codes
S, C, or P present
Otherwise

The following table lists typical execution time for each
S/280 instruction for revision 00 of the central processor
microcode and revision 00 of the hardware floating point
microcode. The times are typical and subject to change
without notice. They may vary for other revisions of the
microcode. All times are in microseconds. Notes follow
the table.

Time (115) # of Reads Notes

.15 1,2

.3

.45 2

1.8+.75N l+N 3.4

2.15+.45(N-2) 1 3.4,5
2.15+.75N l+N

2.7 2 4,6

.6 3
.75 3
.9 3

1.05 3

4.05+3.3N 1+2N 7,8

7.5+6.15(N-l) 1+3N 3,9

4.35+3.45(N-l) 1+2N 7,8

.45(N+ 1)

5.55+4.65(N-l) 1+3N 3
6.0+5.1(N-l) 1+5N 3

1.5

2.4+2.4N

2.55+2.4N

4.8
3.9

4.4
3.0

DOA, DOB, DOC Device code 10, 11, 14, or 43
S, C, or P present 3.9
Otherwise 1.2
Other device codes
S, C, or P present 3.9
Otherwise 1.2

Instruction Execution Times 7S

Instruction Time (/-LS) # of Reads Notes

OIV 3.75 ;-
OIVS 5.7

OIVX 6.15

OLSH N=# of bits
Left 1.8+.6N
Right 1.95+.6N

OSB 1.5

OSPA L = low limit; H = high limit
ACO<L 1.2 3
ACD>H 1.65 3
L<ACD<H 2.25 4 11,6

OSZ .6 2 4,12,13,14

EDSZ,EISZ .75 3 4,12,13,14

EJMP,EJSR .6 4 4,13,14

ELDA .45 3 4,13,14

ELDB .9 4

ELEF .3 2 4,13,15

ESTA .45 2

ESTB 1.95 4

HLV .45 1 16

HXL N = # of hex digits 1.2+.6N

HXR N = # of hex digits 1.2+ 1.2N

INTA 5.2

INTDS 1.5

INTEN 2.55

lOR .3 ,~.

IORI .45 2

IORST 8.1

ISZ .6 2 4,12,18

JMP,JSR .45 3 4,18

LOA .3 2 4,18

LOB 1.05 2

LEF .6

LOB B = Lead bit position .45+.3B

LMP N = # of map table entries to load
User map 2.1 + 1.2N l+N 6,17
Data channel map 2.25+ 1.2N l+N 6,17

LRB .9+.45B

LSH N = # of bits to shift
Left 1.05+.15N 20
Right 1.5+.3N

MSKO 5.7 1

MSP 1.05 3

MUL 3.0

MULS 3.0

NIOS 3.9

POP N=# of ACs to POP
N=l .75 3
N=2 1.05 4
N>l 2.1 + .45(N-l) 2+N

76 Instruction Execution Times

Instruction Time (/oLS) # of Reads Notes

POPB 3.0 7

POPJ 1.95 6

PSH N=# of ACs to PUSH
N=1 1.65 3
N=2 2.65 3
N>2 2.65+ .6(N-1) 3

PSHJ 1.65 6

PSHR 1.8 3

RSTR 4.8 13 21

RTN 3.0 9 21

SAVE 4.0 5

SBI .3

SGE .3 12

SGT .3 12

SKP Device code 10, 11, 14, or 43 5.1 12
Other device code 3.9

SNB 2.7 2 4,6

STA .3 1 4,18

STB 1.65 2

SYC ACS=ACD=O 1.8 4
Otherwise 5.25 5

SZB 2.7 2 4,6

SZBO No skip 2.25 2 4,6
Skip 3.75 4 4,6

VCT Mode A 4.5 4
Mode B 11.3 9
Mode C 12.15 10
Mode D 14.65 15
Mode E 15.15 16

XCH .6

XCT .75 + Instruction 2
Execution Time

XOP 7.5 7 4,6

XOP1 7.2 7 4,6

XOR .3 1

XORI .45 2

Instruction Execution Times 77

NOTES

Explanation Reads

1 Add .3 for skip but no swap. 1 (~

2 Add .3 for swap and no skip or 0
.6 for both swap and skip.

3 Add .45 for first indirection on an AC,
1.05 for the second,

.6 for each additional. 1 each

4 Add 2.4 if instruction enables user address 0
translations

5 Add .75 if starting address is odd and
.6 if ending address is odd.

6 Add .3 for first defer,
1.05 for the second,

.6 for each additional. 1 each

7 Add.3 if ACO<0,.3 if ACl<O. 0

8 Subtract .3 for each byte of an exhausted string. -1 each

9 Add .3 if ACI <0. 0

10 Add .15 for digit overflow. 0

11 Add .6 additional if there is indirection on result, 0
also add times on note 6 for indirection. see note 6

12 Add .3 for skip. 1

13 Add .15 for PC-relative addressing. 0

14 Add .45 for the first defer (.3 if PC relative),
1.05 for the second defer,

.6 for each additional. 1 each

15 Add .6 for the first defer (.3 if PC relative),
1.05 for the second defer,

.6 for each additional. 1 each

16 Add .15 if initial value is >0. 0 (

17 Add .3 for each validity protected page. 0

18 Add .15 on first defer,
1.05 for second,

.6 for each additional. 1 each

19 See note 15, except PC relative is also .6. see note 15

20 Add .3 if N is odd. 0

21 Add 2.55 if instruCtion enables user address 0
translations

78 Instruction Execution Times

Register

Program counter

Processor status

Floating-point status

User / DCH address
translator status

Appendix C

Register Fields

This appendix contains the formats for the following user
or program-accessible registers available on the
ECLIPSE S/280 computer.

Contents Accessible by

Logical address of the currently Program
executing instruction

Information about the current state of Virtual console
the system

Information about floating-point Program
computations

Information about user and data Program and
channel address translation virtual console

Memory fault code and Information about memory data errors Program
memory fault address

BMC status

Power system status

Information about BMC address Program
translation and the BMC facility

Information about the power system Program

Program Counter
The format of the program counter follows.

I I
o

Bits Name

o
1-15 Logical

Address

Logical Address

15

Contents or Function

Reserved for future use.

15-bit logical address of the currently
executing instruction.

Register Fields 79

Processor Status Register
The processor status register occupies reserved memory
location 6. Its format follows.

o 1 234 588 " 10 11 12 13 14 15

Bits Name

o ION

RUN

2 INT

3 USR

4 SS

5 SC

6·8 MT SEL

9 LEF

10

11

12

13

14

15

lOP

WP

INP

TTO

MS

Contents or Function

If 1, the Interrupt On (ION) flag is set to
1.

The central processor is in run mode, not
virtual console mode.

If 1, the interrupt system Is on. This bit is
set to 1 immediately following the execu­
tion of the first instruction after the Inter­
rupt On (ION) flag is set to one.

If 1, user address translation is enabled.

If 1, the virtual console is in single step
mode.

If 1, a translate user single cycle opera­
tion is pending.

The map table currently selected for use.

Bits Currently Selected
6 7 8 Map Table

000
001
o 1 0
o 1 1

o 0

User A
User C
User B
User 0
Unmapped map table
(used when address
translation is disabled)

If 1, LEF instruction mode is enabled for
the current map table (bits 6-8).

If 1, I/O protection is enabled for the
current map table (bits 6-8).

If 1, write protection is enabled for the
current map table (bits 6-8).

If 1, indirection protection Is enabled for
the current map table (bits 6-8).

Reserved for future use.

If 1, the asynchronous output line's Busy
or Done flag is set to 1.

If 1, a load user / OCH address translator
status register operation is pending.
(That is, a Load User/DeH Address
Trans/ator Status instruction (OOA MAP)
that enables user address translation
(with bit 15 = 1) was issued but an
indirect reference or return-type instruc­
tion has not been issued yet.

80 Register Fields

Floating-point Status Register
FPID I

o 1 2 345 e 7 8 11 12 15

18 17

Bits Name

o ANY

OVF

2 UNF

3 OVZ

4 MOF

5 TE

6 Z

7 N

8-11

12-15 FPIO

16

17 -31 Floating-
point
program
counter

Floating-point Program Counter

Contents or Function

If 1, one or more of bits 1-4 are set to 1.

If 1, exponent overflow occurred. The
result is correct except that the exponent
is 128 too small.

If 1, exponent underflow occurred. The
result is correct except that the exponent
is 128 too large.

If 1, division by zero was attempted. The
division operation was aborted and the
operands remain unchanged.

If 1, a mantissa overflow occurred.

If 1, floating-point traps are enabled.
Setting any of bits 1-4 to 1 will cause a
floating-point fault.

If 1, the result is zero.

If 1, the result is negative.

Reserved for future use.

Floating-point model number. Should be
138 for firmware floating-point and 58 for
hardware floating-point.

Reserved for future use.

Floating-point program counter. In the
event of a floating-point fault, this is the
address of the floating-point instruc-
tion that caused the fault.

User IDCH Address Translator
Status Register
The meaning of the contents of this register varies
depending on how the program accesses it. If the program
accesses it with a Load User IDCH Translator Status
instruction (DOA MAP), the contents define the state of
the address translator after the next memory reference
instruction. On the other hand, if the program accesses it
with a Read User IDCH Translator Status instruction
(DIA MAP), the contents describe the current state of
the address translator. The format of the register for each
case follow.

r

o

-

Format using DOA MAP Instruction

Bits Name

0, 13 MTE

1-5

6-8

9

10

11

12

14

15

MTSEL

LEF

10

WP

IN

DCH

USR

5 6 8 9 10 11 12 13 14 15

Contents or Function

Enables the map table for the next user
process.

Bits
o 13

o 0
o 1

o

Map Table
Enabled

User A
User B
User C
User D

Reserved for future use.

Selects the page table to be loaded by
the next Load Map Table instruction
(LMP).

Bits
678

000
001
o 0
o 1

o 0

Map Table
Selected

User A
User C

User B
User D
Data channel A

o 1 Data channel C
o Data channel B

Data channel D

If 1 and user address translation is en­
abled for the next user (bit 15 = 1), then
all I/O format instructions will be inter­
preted as Load Effective Address instruc­
tions (LEF) for the next user.

If 0, all I/O format instructions, including
LEF instructions, will be interpreted as
I/O instructions for the next user.

If 1, I/O protection will be enabled for
the next user.

If 1, write protection will be enabled for
the next user.

If 1, indirect protection will be enabled
for the next user.

If 1, data channel address translation will
be enabled immediately after execution
of this instruction.

If 1, user address translation will be
enabled with the first memory reference
after the next indirect reference.

o

Format using DIA MAP Instruction

3 4 5 6 8 9 10 11 12 13 14 15

Bits Name

0,13 MTE

USR

2 10F

3 WPF

4 IDF

5 SC

6-8 MT SEL

9 LEF

10 10

11 WP

12 IN

14 DCH

15 UI

Contents or Function

User map table currently enabled.

Bits Map Table
o 13 Enabled

o 0 User A
o 1

o
User B
User C

User D

If 1, user address translation (mapped
mode) is enabled.

If 1, the last protection fault was an I/O
protection fault.

If 1, the last protection fault was a write
protection fault.

If 1, the last protection fault was an
indirect protection fault.

If 1, the last protection fault occurred
during a Translate Single Cycle instruc­
tion (NIOP MAP).

User map table loaded by the last Load
Map Table instruction (LMP).

Bits Map Table
6 7 8 Selected

000
001
o 0
o 1 1

o 0
o 1

o

User A
User C

User B
User D
Data channel A
Data channel C

Data channel B
Data channel D

If 1, LEF instruction mode was enabled
for the last user.

If 1, I/O protection was enabled for the
last user.

If 1, write protection was enabled for the
last user.

If 1, indirect protection was enabled for
the last user.

If 1, data channel address translation has
been enabled.

If 1, the last interrupt occurred while user
address translation was enabled.

Register Fields 81

Memory Fault Address
and Fault Code Registers
I Fault Address

16
1

o

o

Bits Name

0-15 Fault
Address
least
significant
bits

Fault Code

Contents or Function

Sixteen least significant physical
address bits of the double-word or quad­
word with the faulty data.

Reserved Fault Address I
678 11 12 16

NOTE: The fault address and fault code (syndrome) is
only valid while the Done flag is set to one. The fault
address is the address of the first word in faulty double
word. except during cache fill operations. when it is the
address of the first word in the faulty quad-word block.

Bits Name Contents or Function

0-6 Fault Code Fault code (syndrome) indicating no bit.
1 bit. 2 bit. or more than 2 bit errors as
listed in Table C.1.

7 SE Error was detected during sniffing.

8-13 Reserved Reserved for future use.

12-15 Fault Four most significant physical address
Address bits of the double word or quad word
most with the faulty data.
significant
bits

82 Register Fields

6 0 1 0 1

Bit 5 0 0 1 1

0 1 2 3 4 0 0 0 0

0 0 0 0 X 38 37 T

0 0 0 1 35 T T 27

0 0 1 0 34 T T 25

0 0 1 1 T M 13 T

0 1 0 0 33 T T 24

0 1 0 1 T 1 12 T

0 1 1 0 T M 10 T

0 1 1 1 16 T T M

1 0 0 0 32 T T M

1 0 0 1 T M 11 T

1 0 1 0 T M 9 T

1 0 1 1 M T T 29

1 1 0 0 T M 8 T

1 1 0 1 17 T T 28

1 1 1 0 M T T 26

1 1 1 1 T 0 M T

Table C.1 Memory fault cod$ Interpretation

ERROR KEY:
Number
T
M
X

Bit in error
Two bits in error
More than two bits in error
No errors

NOTE: Bits 32-38 are the check bits.

0 1 0 1

0 0 1 1

1 1 1 1

36 T T 30

T 5 M T

T 3 15 T

23 T T M

T 2 M T

22 T T M

20 T T M

T M M T

T M 14 T

21 T T M

19 T T 31

T 7 M T

18 T T M

T 6 M T

T 4 M T

M T T M

-

BMC Status Register

o 1 234 6 7 8 9 14 15

Bits Name

o FLT

OMP

2

3 VF

4-6

7 AF

8 OF

9-14

15 BMC

Contents or Function

If 1, a validity protection fault, address
parity fault, or data parity fault occurred.

If 1, the next map table transfer operation
will be a load.
If 0, the next map table transfer operation
will be a dump.

Reserved for future use.

If 1, a validity protection fault occurred.

Reserved for future use.

If 1, an address parity fault occurred.

If 1, a data parity fault occurred.

Reserved for future use.

If 1, the BMC facility is present in the
system.

Power System Status Registers
Control Status

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 IJFMI ALTIINT IBBOI 0

o 3 4 5 6 8 9 10 11 12 13 14 15

Bits

0-10

11

12

13

14

15

Name

JFM

ALT

INT

BBO

Contents or Function

Reserved for future use.

If 1, the UPSC is jumpered for voltage
margining which may degrade the opera­
tion of the system.

If 1, alternate powerfail mode is enabled,
disabling out powerfail interrupts from
device code o. As a result, powerfail skip
instructions (SKPON and SKPOZ) always
function as if there were no powerfail.

If 1, fault interrupts enabled.

If 1, battery backup disabled.

Used for diagnostic testing. 0 for normal
operation.

Battery Backup Status

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I PT I FL IBATICH~
o 3 6 8 9 10 11 12 13 14 15

Bits Name Contents or Function

0-11 Reserved for future use.

12 PT If 1, partial battery backup is present.

13 FL If 1, full battery backup is present.

14 BAT If 1, the system is running on battery
power.

15 CHG If 1, the batteries are recharging.

Fault Code

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I Fault Code

o

Bits

0-8

9-15

3

Name

Fault Code

6 8 9 15

Contents or Function

Reserved for future use.

Octal code identifying most recent fault.
Bits 9-12 are the octal number of the
fault in the octal fault type specified by
bits 13-15. The UPSC flashes the octal
fault type on the three front console
lights. Table C.2 lists the faults by type.

UPSC Microcode Revision

I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I Microcode Revision

o

Bits

0-7

8-15

3 4 5 6 8 15

Name

Microcode
Revision

Contents

Reserved for future use.

Current revision of the UPSC microcode.
a indicates the first release of of the
microcode. Successive numbers indicate
successive modifications to the micro­
code.

Register Fields 83

Fault Fault

Type Code Meaning Type Code Meaning ,r-(octal) (oc'~al)

0 000 System off or no fault 5 Overvoltage fault

Environmental fault 005 Overvoltage on + 5V

011 VNR6 undervoltage 045 Overvoltage on +5MEM, PS1

021 VNR6 overvoltage 055 Overvoltage on + 5MEM, PS2

031 Power supply over temperature 065 Overvoltage on +5MEM, PS3
075 Overvoltage on + 12MEM or + 12V, PS1 041 Chassis over temperature
105 Overvoltage on + 12MEM or + 12V, PS2·

2 Fan failure in computer chassis
115 Overvoltage on + 12MEM or + 12V, PS3

002 Blower or multiple fan failure
125 Overvoltage on -5MEM or -5V, PS1

012 Fan 1 failure
135 Overvoltage on -5MEM or -5V, PS2

022 Fan 2 failure
145 Overvoltage on -5MEM or -5V, PS3

032 Fan 3 failure
155 Overvoltage on unknown voltage, PS 1

042 Fan 4 failure
165 Overvoltage on unknown voltage, PS2

052 Fan 5 failure
175 Overvoltage on unknown voltage, PS3

062 Fan 6 failure
072 UPSC cannot set fan signals 6 Over-current fault

006 Reed switch sense low on + 5V output
3 VNR6 fault

016 Overcurrent on +5V, PS1
013 Battery backup fault

026 Overcurrent on +5V, PS2
4 Power supply fault 036 Overcurrent on +5V, PS3

(includes undervoltages) 046 Overcurrent on + 5MEM, PS 1
004 Undervoltage on +5V 156 Overcurrent on + 5MEM, PS2
014 Current not sharing on + 5V 166 Overcurrent on + 5MEM, PS3
044 Undervoltage on + 5MEM, PS 1 167 Overcurrent on + 12MEM or + 12V PS 1
054 Undervoltage on + 5MEM, PS2 106 Overcurrent on + 12MEM or + 12V PS2
064 Undervoltage on +5MEM, PS3 116 Overcurrent on + 12MEM or + 12V PS3
074 Undervoltage on + 12MEM or + 12V, PS 1 126 Overcurrent on - 5MEM or - 5V PS 1
104 Undervoltage on + 12MEM or + 12V, PS2 136 Overcurrent on - 5MEM or - 5V PS2
114 Undervoltage on + 12MEM or + 12V, PS3 146 Overcurrent on - 5MEM or - 5V PS3 ,""-""
124 Undervoltage on -5VMEM or -5V, PS1 156 Overcurrent on unknown voltage, PS 1
134 Undervoltage on -5VMEM or -5V, PS2 166 Overcurrent on unknown voltage, PS2
144 Undervoltage on -5VMEM or -5V, PS3 167 Overcurrent on unknown voltage, PS3
154 Undervoltage on unknown voltage, PS 1

7 UPSC fault
161 Undervoltage on unknown voltage, PS2

007 Checksum error on UPSC ROM
174 Undervoltage on unknown voltage, PS3

177 LED lamp test at power up

Table C.2 Power system fault codes
Table C.2 Power system fault codes (continued)

6Voitage nonreguiated unit

r

84 Register Fields

--- Appendix D

Standard ECLIPSE S / 280 I/O Device Codes

Octal Mnem Priority Device Name Octal Mnem Priority Device Name
Device Mask Bit Device Mask Bit
Codes Codes

00 Unused 41 DPO 8 IPB full-duplex output

01 ABL Automatic Boot Load 8 Digital 1/0

(ABL) register 42 DIO 7 Digital I I 0 timer

02 ERCC Error checking and correction 43 DIOT 6 Programmable Interval Timer

03 MAP User I DCH address translator PIT 6

04 UPSC 13 Universal power supply controller 44

05 BMC Burst multiplexor channel 45

06 MCAT 12 Multiprocessor adapter 46 MCAT1 12 Second multiprocessor

transmitter transmitter

07 MCAR 12 Multiprocessor adapter receiver 47 MCAR1 12 Second multiprocessor receiver

10 TTl 14 TTY input 50 TTI1 14 Second TTY input

11 TTO 15 TTY output 51 TT01 15 Second TTY output

12 52

13 53

14 RTC 13 Real-time clock 54 RTC1 13 Second real-time clock

15 PLT 12 Incremental plotter 55 PLT1 12 Second incrementsl plotter

16 CDR 10 Card reader 56 CDR1 10 Second card reader

17 LPT 12 Line printer 57 LPT1 12 Second line printer

20 DSK 9 Fixed-head disk 60 DSK 9 Second fixed-head disk

21 61

22 MTA 10 MagnetiC tape 62 MTA1 10 Second magnetic tape

23 63

24 64

25 65

26 DKB 9 Fixed-head DG I Disk 66 DKB1 9 Second fixed-head DG I Disc

27 DPF 7 DG I Disc storage subsystem 67 DPF1 7 Second DG I Disc storage

30
subystem

31
70

32
71

33 DKP 7 Moving head disk
72

34 1 DCU2 4 Data control unit
73 DKP1 7 Second moving head disc

MX1 11 Multiline asynchronous controller 74

35 MX2 11 Multiline asynchronous controller 75

36 IPB 6 Interprocessor bus-half duplex 76 DPU 4 DCU To Host interface

37 IVT 6 IPB watch dog timer 77 CPU CPU and console functions

40 DPI 8 IPB full-duplex input

I Code returned by I NT A and used by VCT.

2Can be set to any unused device code between I and 76.

Standard ECLIPSE 5/280 1/0 Device Codes 85

r---,
(

Appendix E

Compatibility with Earlier ECLIPSE Computers

The ECLIPSE S/280 series computers are program
compatible with the earlier 16-Bit Real-Time ECLIPSE
line of computers. Except for the few differences listed
below, a program that runs on one of these computer also
runs on an ECLIPSE S/280 computer with the same size
memory and same peripheral devices.

NOTE: In microECLIPSE computers, such as the S/120,
implementation of a few functions differs slightly from
the rest of the 16-bit Real-Time ECLIPSE line. For
differences that might affect running a microECLIPSE
program on an S/280 computer, refer to the assembly
language programming manual for the microECLIPSE
computer.

Unique Features

The cache memory in S/280 computers may confuse
memory sizing routines. A memory sizing routine can
only determine if a memory location exists by writing and
then reading to a previously unaccessed memory location.
Any future access to this location may indicate that the
location does exist even when it does not, since the first
read placed the contents of the location in the cache. To
protect against this, the appropriate cache block should
be flushed before any sizing attempt. If the location to be
sized for has address X, then reading any two locations
with addresses having the same ten least significant bits
as X but different physical page numbers (2000+ X or
X-lOOOO, for instance) ensures that X is not in the cache.
The routine can then size for X by writing and then
reading X. Chapter 1 explains cache operation.

The S/280 data channel facility supports down-line
loading of data channel map tables (map slots) from I/O
devices and indivisible read-modify-write operations. Re­
fer to the Interface Designer's Manual for NOVA and
ECLIPSE Line Computers (DG No. 014-000629) for
information on these features.

S/280 computers use a power supply with a universal
power supply controller (UPSC) that allows software to
control several power supply functions. The UPSC inter­
faces to the ECLIPSE I/O bus as device code 4. Chapter
5 contains information on UPSC programming.

Execution Timing
Routines that depend on processor timing to determine
real-time delays produce different results on S/280
computers than on previous ECLIPSE line computers.
All instruction times and I/O times differ. Refer to
Appendix B for instruction times.

Program Flow
Like previous ECLIPSE processors, the contents of the
program counter that the S/280 processor pushes on the
stack after a validity or write protection fault may bear
no resemblance to the address of the instruction that
caused the fault. However, the value pushed by the S/280
processor will differ from that pushed by other processors.

In certain obscure cases, the S/280 processor will not
detect a write operation to a location already stored in its
instruction pipeline, causing unpredictable results. These
cases only occurs if address translation (mapping) is
enabled when the processor writes to an address

• whose least significant 10 bits are one or two greater
than the least significant 10 bits of the address
currently in the program counter,

• on a different logical page than the address in the
program counter,

• on a logical page that translates (maps) to the same
physical page as the address in the program counter.

Memory
The automatic increment and automatic decrement loca­
tions - locations 208 to 278 and 308 to 378 - 'are not
available for this purpose on S/280 computers.

Compatibility with Earlier ECLIPSE Computers 87

Address Translation
In an Sj280 computer, once the user address translation
(mapping) is enabled by setting bit 15 to 1 in the
user JDCH address translator (MAP) status register, any
indirect reference enables user address translation (map­
ping). This is similar to earlier ECLIPSE computers
except that most of them do not enable address translation
when the indirect reference occurs during certain instruc­
tions, such as BAM, BLM, DSPA, floating-point, or
character.

An attempt to read a page with validity protection does
not change the accumuJator and carry values except in
the cases listed below.

• During a Return (R TN) instruction, the carry is set to
o if a protection fault occurs when popping (reading)
the word containing the carry off the stack.

• During a Return (R TN) instruction or a Pop Block
(POPB) instruction, if the stack location storing ACO
has validity protection but the location storing the
program counter does not, then ACO contains 0 after
the processor handles the protection fault.

In an Sj280 computer, bit 5 of the userjDCH address
translator (MAP) status register when read with a Read
User/DeB Translator Status instruction (DIA MAP)
indicates whether or not the last memory protection fault
occurred during a single-cycle operation. In most previous
ECLIPSE computers, this bit indicates whether or not
the last memory reference was a single-cycle operation.

Single cycle references in an Sj280 computer are only
triggered by a Load Accumulator instruction (LDA) or a
Store Accumulator instruction (STA). In previous
ECLIPSE computers, single-cycle references are also
triggered by an Extended Load Accumulator instruction
(ELDA) or an Extended Store Accumulator instruction
(ESTA).

The Sj280 userjDCH address translator (MAP) does
not provide write protection for memory accessed by data
channel processes. It only provides validity protection.
When the Load User/DCB Map Table instruction (LMP)
loads a data channel map table, the write protect bit (bit
0) of each map table entry (map slot) is ignored, unless
the page is also being declared invalid (validity protected).
Chapter 6 proviges more information on validity protec­
tion.

The burst multiplexor channel (BMC) address translator
has no Busy or Done flags so an interrupt handler program
cannot test the Busy flag to determine when a BMC map
table transfer operation (load or dump) is completed. A
BMC instruction with a Start command to initiate a map
table transfer (load or dump) is interruptible and
resumable with updated values.

88 Compatibility with Earlier ECLIPSE Computers

Error Checking and Correction
The instructions for programming the S/280 error check­
ing and correction (ERCC) facility differ because the
S/280 uses memory modules organized around double
words (32 data bits) instead of single words (16 data
bits). The S/280 ERCC facility uses seven check bits for
each double word instead of the five check bits for each
single word used by the ERCC facilities in the earlier
ECLIPSE computers. The ERCC Done flag must be
enabled by a Enable ERCC instruction (DOA ERCC)
before it can be set to 1. The memory fault address and
fault code returned by the Read Memory Fault Address
(DIA ERCC) and the Read Memory Fault Code and
Address (DIB ERCC) instructions are only valid when
the Done flag is set to 1. Chapter 6 provides information
on the S/280 ERCC instructions.

Diagnostic and Special Instructions
The following opcodes listed in Table E.l are used as
diagnostic or other special instructions. These instructions
are for use only by Data General diagnostic or special
systems software since they alter normal system parame­
ters and may degrade system performance.

Opcode Function

062002 Write check bits

062402 Read 39 bits

063002 Write double word

103410 Test memory

117410

123410

153410

Size memory

Test memory

Load special user/DCH map table

Table E.1 Opcodes for diagnostic and other special Instructions

('
I

(
I

.-

Within the index, the letter f following a page entry
indicates and the following page; the lettersJJfollowing
a page entry indicate and the following pages.

/ command 52
; command 52
= command 52
A command 52

A

A command 52
Absolute addressing 9
Accumulator-relative addressing 9
Accumulators

fixed-point 6, 52
floating-point 6

Address translation 4
compatibility 88
BMC 39ff
data channel 33ff
user 33ff
virtual console commands 56f

Addressing
absolute 9
accumulator-relative 9
logical 4, 33ff
physical 4, 33ff
program-counter-relative 9

Arithmetic
da ta formats

fixed-point Ilf
floating-point 13

instructions
fixed-point 11
floating-point 14

Asynchronous input/output line 25ff
device code 26
device flags 26
instruction mnemonic 26
instructions

Read Character 26
Write Character 26

powerup response and timing 28
priority mask bit 26
programming

Index

reading characters 27
writing characters 27

registers
input buffer 26
output buffer 26

timing 28

B

B command 54
BMC. See Burst multiplexor channel.
BMC address translator 39ff
compatibility 88
device code 39
device flags 39
instruction mnemonic 39
instructions 39ff

Read BMC Status 40
Select Initial BMC Map Entry 41
Specify BMC Map Entry Count 42
Specify BMC Map Table Transfer 41
Specify Initial Address 40
Specify Initial Map Register 41
Specify Low-Order Address 40
Specify Operation and High-Order Address 41

map tables
enabling 42f
entry format 39
loading 42f

priority mask bit 39
programming 42f
protection 39
status register 39f

Breakpoints
deleting 54f
setting 54f
virtual console commands 54f

Burst multiplexor channel 19f
address translation 39ff
status register 40, 83

Burst multiplexor channel address translator.
See BMC address translator.

Byte
data formats 13
movement instructions 13

89

c
Cache

block 5
hit 5, 15
miss 5

Carriage return 52
Carry bit 52
Cells

closing 52
commands 52
internal 52
opening 52

Central processor 6
Central Processor Identification instruction 49
Check mode 44
Clear Powerfail Interrupts instruction 48
Compatibility with ECLIPSE computers 87f

address translation 88
diagnostic instructions 88
error checking and correction 88
flow program 87
instruction execution timing 87
memory 87
special instructions 88

Confidence test 57
Confidence test command 57
Console

master terminal 7
system 2, 7
virtual 5Iff

Conversion instructions 14
CTRL-G command 54, 57

D

D command 54
Data channel 19
Data channel, address translation 33ff
Data formats

byte 13
decimal 13
fixed-point 1 Iff
floating-point 13
logical 12

Data manipulation
fixed-point Ilff
floating-point 13ff

Data movement
accelera tion 1 5
instructions

fixed-point 1 1
floating-point 14

Data switch register 52
DCH. See Data channel.
-Decimal

98

data formats 13
instructions 13

Device
codes, standard 85
handler 19
management 19ff

DIA ERCC instruction 46
DIA MAP instruction 36
DIA PIT instruction 24
DIA TTl instruction 26
DIA UPSC instruction 30f
Diagnostic instructions 88
DIB ERCC instruction 46
DIC BMC instruction 40
DIC MAP instruction 37
Disable User Mode instruction 38
Disable User Translation instruction 38
DOA BMC instruction 40
DOA ERCC instruction 45
DOA MAP instruction 35
DOA PIT instruction 24
DOA R TC instruction 25
DOA TTO instruction 26
DOAP CPU instruction 48
DOAP UPSC instruction 29
DOAS UPSC instruction 29
DOB BMC instruction 41
DOB MAP instruction 38
DOC BMC instruction 42
DOC MAP instruction 37
Double-precision

fixed-point data formats 11
floating-point data formats 13

E

Enable ERCC instruction 45
Enable UPSC Fault Interrupts instruction 29
ERCC. See Error checking and correction.
Error checking and cor.rection 44ff
check mode 44
compatibility 88
device code 45
device flags 45
fault codes 47
idle mode 44
instruction mnemonic 45
instructions 45ff

Enable ERCC 45
Read Memory Fault Address 46
Read Memory Fault Code and Address 46

powerup 47
priority mask bit 45
programming 47
memory fault registers 82
sniff mode 5
sniffing 44
timing 47 ,f·:

-

.. -

F

Fault codes 47
Faults
address translation 43
error checking and correction 47
floating-point 18
handling 18, 43
I/O protection 18
memory protection 18
power system 31
powerup 59
protection 18
stack 18

Fixed-point
accumulators 6, 52
data formats Ilff
data manipulation Ilff
instructions Ilff

arithmetic 11
byte 13
data movement 11
decimal 13
initialize carry 12
logical 12
shift 12f
skip 12

Flags,
Interrupt On 18
Load Effective Address 34

Floating-point,
accumulators 6
data formats 13
data manipulation 13ff
faults 18
instructions

arithmetic 14
conversion 14
data movement 14
skip 14
status 15

processor 6
status register 6, 15, 80

FPSR. See Floating-point status register.
Function commands 54

G

General device flags 21
General device instructions 21

H

H command 54ff
HALT instruction 48
Hex shift instructions 13

I

I command 54
I/O. See Input/output.
I/O reset command 55f
I/O Reset instruction 22, 60f
Idle mode 44
I ndirection protection 34
Initialization
I/O Reset instruction 60f
powerup 60f
system reset 60f

Initialize carry instructions 12
Initiate Page Check instruction 37
Input/output 19f

burst multiplexor channel 19f
data channel 19
general instructions 20f
programmed I/O 19
protection 18, 34
standard device codes 85
system 2, 6f
resident devices

asynchronous input/output line 7, 26
programmable interval timer 6, 23f
real-time clock timer 7, 24f
universal power supply controller 7, 28ff

transfers 6
Instruction pipeline 6
Instructions
asynchronous input/output line 26
BMC address translator 39Jf
diagnostic 88
error checking and correction 45ff
execution timing 75ff, 87
fixed-point Ilff

arithmetic Ilf
byte 13
data movement 11
decimal 13
initialize carry 12
logical 12
shift 12f
skip 12

floating-point 14
arithmetic 14
conversion 14
data movement 14
skip 15
status 15

general I/O 20f
interrupt system 20ff
program flow 17

91

programmable interval timer 23/
real-time clock 24/
restartable 18
special 88
stack 9/
subroutine 17
summaries 63//
universal power supply controller 28//
user IDCH address translator 34//

INT A instruction 21
INTDS instruction 21
INTEN instruction 21
Interrupt Acknowledge instruction 21
Interrupt Disable instruction 21
Interrupt Enable instruction 21
Interrupt handling 18j
Interrupt On flag 18
Interrupt system 20//
device code 20
device flags 20
110 Reset instruction 60/
instruction mnemonic 20
instructions 20//
110 Reset 22
Interrupt Acknowledge 21
Interrupt Disable 21
Interrupt Enable 21
Mask Out 22
Restore 22
Vector on Interrupting Device 22

Interrupt On flag 18
priority mask bit 20

ION flag. See Interrupt On flag.
10RST instruction 22

K

K command 52

L

L command 54//
LMP instruction 36
Load Effective Address flag 34
Load Map instruction 36
Load User IDCH Map Table instruction 36
Load User IDCH Translator Status instruction 35
Logical

addressing. See Address translation.
data formats 12
instructions 12

92

M

M command 54, 56/
Management,
device 19//
memory 33//
program flow 17/
stack 9/
system 48//

MAP. See User IDCH address translator and BMC
address translator.

Map Single Cycle instruction 38
Map Supervisor Page 31 instruction 38
Map tables
enabling 42/
format

BMC entry 39
data channel entry 33
user entry 33

loading 42/
user page 31 52

Mask Out instruction 22
Memory
address translation 4
allocation 33//
compatibility 87
error checking and correction 44//
faults 18 82
management 33//
modules 5
protection 18 34 39 82
reference 9
refreshing 5
reserved locations 9/
system 2, 4/
write operations 15

Mnemonic mode 53/
Movement instructions

byte data 13
fixed-point data 11
floating-point data 14

MSKO instruction 22

N

NCLID instruction 49
New line 52
NIOP MAP instruction 38
Non-sequential program flow 17

o
o command 54/
Octal mode 53/
Options

burst multiplexor channel 19/
hardware floating-point processor 6

,..,-.."
,~ .

p

P command 54f
Page Check instruction 37
Page check register 52
Physical addressing. See Address translation.
PIO. See Programmed I/O.
PIT. See Programmable interval timer.
Power system 2, 7

status registers 83f
universal power supply controller 28ff

Powerfail/autorestart programming 59f
Powerup

asynchronous input/output line 28
confidence test 57
error checking and correction 47
faults 59
initialization 60f
normal 59
powerfail/autorestart programming 59f
real-time clock 25
sequence 59f

Processing system 2, 6f
Processor status register 52, 80
Processor

central 6
floating-point 6

Program
control commands

breakpoint 54f
program load 55f
program resumption 55
single stepping 55

counter 9 79
flow,

compatibility 87
instructions 17
management 17f
non-sequential 17
sequential 17

Program-counter-relative addressing 9
Programmable interval timer 23ff

device code 23
device flags 23
instruction mnemonic 23
instructions 23f

Read Interval Counter 24
Specify Interval 24

priority mask bit 23
programming 24
rates 23
registers

interval counter 23
interval select 23

Programmed I/O 19
Programming

asynchronous input/output line 27
BMC address translator 42f
error checking and correction 47
powerfail/autorestart 59f
programmable interval timer 24
real-time clock 25
universal power supply controller 31f
user lOCH address translator 42f

Protection
1/018,34
indirection 18, 34
memory 18, 34, 39, 44ff
stack 18, 9

R

R command 54f
RAM. See Random access memory.
Random access memory 5
Read BMC Status instruction 40
Read Character instruction 26
Read I nterval Counter instruction 24
Read MAP Status instruction 36
Read Memory Fault Address instruction 46
Read Memory Fault Code and Address instruction 46
Read Power System Status instruction 30f
Read Switches instruction 49
Read User lOCH Translator Status instruction 36
READS instruction 49
Real-time clock
device code 24
device flags 24
instruction mnemonic 24
instructions 24f

Select Frequency 25
powerup response and timing 25
priority mask bit 24
programming 25
registers

frequency select 25
Refreshing 5
Registers
asynchronous input/output line 26
BMC address translator status 39f
BMC status 39, 83
data switch 52
fixed-point accumulators 6
floating-point accumulators 6
floating-point status 6, 80
frame pointer 6
memory fault address 82
memory fault code 82
page check 52

93

page 31 register 34
power system status 83f
processor status 52, 80
program counter 79
programmable interval timer 23
real-time clock 25
search mask 52
stack limit 6
stack pointer 6
user /DCH address translator status 34ff, 52, 80f

Request Power System Status instruction 29
Reserved memory locations 9f
Restartable instructions 18
Restore instruction 22
RSTR instruction 22
R TC. See Real-time clock.
Rubout/delete command 52

s
S command 54, 56
Seach command 56
Search mask register 52
Select Frequency instruction 25
Select Initial BMC Map Entry instruction 41
Sequential program flow 17
Shift instructions 12
Single stepping commands 55
Single-precision

fixed-point data formats 11
floating-point data formats 13

Skip instructions
device flags 21
fixed-point 12
floating-point 14

Sniff mode 44
Sniffing 44
Special instructions 88
Specify BMC Map Entry Count instruction 42
Specify BMC Map Table Transfer instruction 41
Specify Initial Address instruction 40
Specify Initial Map Register instruction 41
Specify Interval instruction 24
Specify Low-Order Address instruction 40
Specify Operation and High-Order Address instruction

41
Stack

faults 18

94

frame pointer 6
instructions 9f
limit 6
management 9f
pointer 6

Status registers
BMC 39f, 83
floating-point 6, 15, 80
FPSR. See Floating-point.
power system 83f
processor 52, 80
user /DCH address translator 34ff, 52, 80f

Subroutine instructions 17
SYC instruction 49
System Call instruction 49
System

block diagram 2
console 2, 7
I/O 2, 6f
instructions 48ff

Central Processor Identification 49
Clear Powerfail Interrupts 48
Halt 48
Read Switches 49
System Call 49

interrupt 20ff
management 48ff
memory 2, 4f
overview 1
power 2,7
processing 2, 6f
processor

identification 49
status register 52, 80

reset 60f
special functions 48ff

T

Timing
error checking and correction 47
instruction execution 75ff, 87

Translate Page 31 instruction 38
Translate User Single Cycle instruction 38
Translation, address. See User lOCH address translator

and BMC address translator.
TTL See Asynchronous input/output line.
TTO. See Asynchronous input/output line.

u
U command 54, 56f
Unique features 87
Universal power supply controller 28ff
device code 28
device flags 28
fault codes 31
instruction mnemonic 28

-

instructions 28//
Enable UPSC Fault Interrupts 29
Read Power System Status 30/
Request Power System Status 29

priority mask bit 28
programming 31/

UPSC. See Universal power supply controller.
User and data channel address translation.

See User /DCH address translator.
User /DCH address translator 33//

compatibility 88
device code 34
device flags 34
Effective Address flag 34
instruction mnemonic 34
instructions 34//

Disable User Mode 38
Disable User Translation 38
Initiate Page Check 37
Load Map 36
Load MAP Status 35
Load User /DCH Map Table 36
Load User/DCH Translator Status 35
Map Single Cycle 38
Map Supervisor Page 31, 38
Page Check 37
Read MAP Status 36
Read User /DCH Translator Status 36
Translate Page 31 38
Translate User Single Cycle 38

map tables
enabling 42/
entry formats 33, 52
loading 42/

priority mask bit 34
programming 42/
protection 34
registers

page 31 register 34
page check 52
status 35/, 52, 80/

virtual console commands 56/

v
VCT instruction 22
Vector on Interrupting Device instruction 22
Virtual console 51//

cells
commands 52
cells closing 52
cells opening 52

commands
address translation 56/
breakpoint 54/
cell 52
confidence test 57
entering 51/
function 54//
K 52
I/O reset 55/
program control 54
program load 55/
program resumption 55
Rubout/delete 52
single stepping 55

correcting errors 51/
entering 51
modes

input 53/
mnemonic 53/
octal 53/
output 52

single stepping 55

w
Write Character instruction 26

95

1
j

(\ j
I

(\
I

.--

-

DC OFFICES

NORTH AMERICAN OFFICES
Alabama: Birmingham

Arizona: Phoenix. Tucson

Arkansas: Little Rock

California: Anaheim. EI Segundo. Fresno. Los Angeles. Oakland. Palo Alto. Riverside.

Sacramento. San Diego. San Francisco. Santa Barbara. Sunnyvale. Van Nuys

Colorado: Colorado Springs. Denver

Connecticut: North Branford. Norwalk

Florida: Ft. Lauderdale. Orlando. Tampa

Georgia: Norcross

Idaho: Boise

Iowa: Bettendorf. Des Moines

Illinois: Arlington Heights. Champaign. Chicago. Peoria. Rockford

Indiana: Indianapolis

Kentucky: Louisville

Louisiana: Baton Rouge. Metairie

Maine: Portland. Westbrook

Maryland: Baltimore

Massachusetts: Cambridge. Framingham. Southboro. Waltham. Wellesley. Westboro.

West Springfield. Worcester

Michigan: Grand Rapids. Southfield

Minnesota: Richfield

Missouri: Creve Coeur. Kansas City

Mississippi: Jackson

Montana: Billings

Nebraska: Omaha

Nevada: Reno

New Hampshire: Bedford. Portsmouth

New Jersey: Cherry Hill. Somerset. Wayne
New Mexico: Albuquerque

New York: Buffalo. Lake Success. Latham. Liverpool. Melville. New York City.

Rochester. White Plains

North Carolina: Charlotte. Greensboro. Greenville. Raleigh. Research Triangle Park

Ohio: Brooklyn Heights. Cincinnati. Columbus. Dayton

Oklahoma: Oklahoma City. Tulsa

Oregon: Lake Oswego

Pennsylvania: Blue Bell. Lancaster. Philadelphia. Pittsburgh

Rhode Island: Providence

South Carolina: Columbia

Tennessee: Knoxville. Memphis. Nashville

Texas: Austin. Dallas. EI Paso. Ft. Worth. Houston. San Antonio

Utah: Salt Lake City

Virginia: McLean. Norfolk. Richmond. Salem

Washington: Bellevue. Richland. Spokane

West Virginia: Charleston

Wisconsin: Brookfield. Grand Chute. Madison

DG-{)-l97ti

INTERNATIONAL OFFICES
Argentina: Buenos Aires

Australia: Adelaide. Brisbane. Hobart. Melbourne. Newcastle. Perth. Sydney

Austria: Vienna

Belgium: Brussels

Bolivia: La Paz

Brazil: Sao Paulo

Canada: Calgary. Edmonton. Montreal. Ottawa. Quebec. Toronto. Vancouver.

Winnipeg

Chile: Santiago

Columbia: Bogata

Costa Rica: San Jose

Denmark: Copenhagen

Ecuador: Quito

Egypt: Cairo

Finland: Helsinki

France: Le Plessis-Robinson. Lille. Lyon. Nantes. Paris. Saint Denis. Strasbourg
Guatemala: Guatemala City

Hong Kong
India: Bombay

Indonesia: Jakarta. Pusat

Ireland: Dublin

Israel: Tel Aviv

Italy: Bologna. Florence. Milan. Padua. Rome. Tourin

Japan: Fukuoka. Hiroshima. Nagoya. Osaka. Tokyo. Tsukuba

Jordan: Amman

Korea: Seoul

Kuwait: Kuwait

Lebanon: Beirut

Malaysia: Kuala Lumpur

Mexico: Mexico City. Monterrey

Morocco: Casablanca

The Netherlands: Amsterdam. Rijswijk

New Zealand: Auckland. Wellington

Nicaragua: Managua

Nigeria: Ibadan. Lagos

Norway: Oslo

Paraguay: Asuncion

Peru: Lima

Philippine Islands: Manila

Portugal: Lisbon

Puerto Rico: Hato Rey

Saudi Arabia: Jeddah. Riyadh

Singapore
South Africa: Cape Town. Durban. Johannesburg. Pretoria

Spain: Barcelona. Bibao. Madrid

Sweden: Gothenburg. Malmo. Stockholm
Switzerland: Lausanne. Zurich

Taiwan: Taipei

Thailand: Bangkok

Turkey: Ankara
United Kingdom: Birmingham. Bristol. Glasgow. Hounslow. London. Manchester

Uruguay: Montevideo
USSR: Espoo

Venezuela: Maracaibo
West Germany: Dusseldorf. Frankfurt. Hamburg. Hannover. Munich. Nuremburg.

Stuttgart

r
I J

t. Data General

Ordering
Technical Publications

How to Get in
Touch with TIPS

TIPS is the Technical Information and Publications Service-a new
support system for OGC customers that makes ordering technical
manuals simple and fast. Simple, because TIPS is a central supplier of
literature about OGC products. And fast, because TIPS specializes in
handling publications.

TIPS was designed by OG's Educational Services people to follow
through on your order as soon as it's received. To offer discounts on
bulk orders. To let you choose the method of shipment you prefer. And
to deliver within a schedule you can live with.

Contact your local OGC education center for brochures, prices, and
order forms. Or get in touch with a TIPS administrator directly by calling
(617) 366-8911, extension 4086, or writing to

Data General Corporation
Attn: Educational Services, riPs Administrator
MS F019
4400 Computer Drive
Westborough, MA 01580

TIPS. For the technical manuals you need, when you need them.

DGC Education Centers

Boston Education Center
Route 9
Southboro, Massachusetts 01772
(617) 485-7270

Washington, D.C. Education Center
7927 Jones Branch Drive, Suite 200
McLean, Virginia 22102
(703) 827-9666

Atlanta Education Center
6855 Jimmy Carter Boulevard, Suite 1790
Norcross, Georgia 30071
(404) 448-9224

Los Ange(es Education Center
5250 West Century Boulevard
Los Angeles, California 90045
(213) 670-4011

Chicago Education Center
703 West Algonquin Road
Arlington Heights, Illinois 60005
(312) 364-3045

,.,--\ t :

",.--..
I ,

Yes No

0 0

0 0

[] 0

0 0

Name:

Company:

Address:

State:

DG-Oti895

Please help us improve our future
publications by answering the questions below.
Use the space provided for your comments.

Is this manual easy to read?

In what ways do you find this manual useful?

Do the illustrations help you?

Does the manual tell yoU all you need to know?

What additional information would you like?

Is the information accurate?

(If not please specify with page number and
paragraph,)

Technical Products
Publications

Comment Form
Title: ___________________ _

Document No. ___ 0_1_4_-0_0_0_6_8_9_-0_0 __ _

o You (can, cannot) find things easily. o Other:

o Language (is, is not) appropriate.

o Technical terms (are, are not) defined
as needed.

o Learning to use the equipment o To instruct a class.

o As a reference o Other:

o As an introduction to the
product

o Visuals (are,are not) well designed.

o Labels and captions (are,are not) clear.

o Other:

Title:

Division:

City:

Zip: Telephone: Date:

t. Data General
Data General Corporation. Westboro. Massachusetts 01580

FOLD FOLD

TAPE TAPE

FOLD FOLD

'""'
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 26 SOUTHBORO, MA. 01772

Postage will be paid by addressee:

~. Data General
ATTN: Technical Products Publications (F-131)
4400 Com put er Drive
West boro, MA 01581

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

r\
i ,I

;.wI
~I
-J 1

3]1

tl
01
'"\

3 1

2: 1

3 1

<:(1

:-1
::J
:.JI

t. Data General
users
gpoup Installation Membership Form

Name ____________________________ __ Position ________________________________ _ Date ______ _

Company, Organization or School ___ _

Address ____________________ _ City _____________ State _____ --- Zip ________ _

Telephone: Area Code ________ _
No. ________________ _

Ext

1. Account
Category

2. Hardware

Mj600
MV jSeries ECLIPSE'

Commercial ECLIPSE

Scientific ECLIPSE

Array Processors

CS Series
NOVA' 4 Family

Other NOVAs
microNOVA' Family

MPT Family

Other
(Specify)

3. Software

4. Languages

o OEM

o End User

o System House
o Government

Qty. Installed I Qty. On Order

0 AOS 0 ROOS

0 AOSjVS 0 DOS

0 AOS/RT32 D RTOS

0 MPjOS 0 Other

0 MPjAOS

Specify

0 ALGOL LJ BASIC

::J DG/L 0 Assembler

0 COBOL 0 FORTRAN 77

0 Interactive 0 FORTRAN 5

COBOL 0 RPG II
[J PASCAL 0 PLjl

" Business 0 APL L~~,

BASIC _ ~ Other
Specify

5. Mode of
Operation

6. Communication

7. Application
Description

8. Purchase

9. Users Group

[] Batch (Central)

o Batch (Via RJE)

o On-Line Interactive

0 HASP 0 X.25

0 HASP II 0 SAM

0 RJE80 0 CAM

D RCX 70 0 XODIACTM

0 RSTCP 0 OG/SNA

0 4025 0 3270

0 Other

Specify

°

From whom was your machine{s)
purchased?

L Data General Corp.
C Other

Specify _______ __

Are you interested in joining a
special interest or regional

Data General Users Group?

0 _________ _

t. Data General
Data General Corporation, Westboro, Massachusetts 01580, (617) 366-8911

FOLD

TAPE

FOLD

I II II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 26 SOUTHBORO, MA. 01772

Postage will be paid by addressee:

~. OataGeneral
ATTN: Users Group Coordinator (C-228)
4400 Comput er Drive
Westboro, MA 01581

FOLD

TAPE

FOLD

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

r\
i.)

~ .. \

)

I
!

