

Programmer's Reference Series

NOV A® Line Computers

~. Data General
Data General Corporat ion. W,stboro. Massachusetts 01581

NOTICE
Data General. Corporation (DGC) has prepared this
manual for use by DGC personnel, licensees, and
customers. The information contained herein is the
property of DGC and shall not be reproduced in whole
or in part without DGC's prior written approval.

Users are cautioned that DGC reserves the right to
make changes without notice in the specifications and
materials contained herein and shall not be
responsible for any damages (including con­
sequential) eaused by reliance on the materials
presented, ineiuding, but not limited to typographical,
arithmetic, 01' listing errors.

NOVA, INFOS and ECLIPSE are registered trademarks of
Data General Corporation, Westboro, Massachusetts.
DASHER and microNOV A are trademarks of Data
General Corporation, Westboro, Massachusetts.

FIRST EDITION
Second Printing, July 1979

First Printing December HJ7H

Ordering No. 014-000631
@Data General Corporation, 1978,1979

All Rights Reserved
Printed in the United States of America

Rev. 01, July 1979

TABLE OF CONTENTS

SECTION I

NOVA LINE COMPUTERS

INTRODUCTION " " 1-1
Efficient Basic Instruction Set , 1-1
Stack ... " 1-1
Multiply/Divide , .. 1-1
Floating Point ,'... 1-2
Memory Allocation and Memory Management. 1-2
Memory. " , " 1-2
Auto-Increment/Decrement' ... 0 • • • • • • • • • • • • • •• 1-3
Power Fail/Auto Restart ; 1-3
Real-Time Clock ... 1-3
Input/Output Bus ... ,..................... 1-3

Device Addressability ... 1-3
Interrupt Capability ... 1-3
Data Channel ... 1-3
Ease of Interfacing. .. 1-4

Input/Output Devices .. 1-4
Software ... 1-4

Languages. .. 1-4
Operating Systems .. 1-4

Conclusion. 1-4

SECTION II

INTERNAL STRUCTURE

INTRODUCTION , 11-1

INFORMATION FORMATS.. 11-1
Bit Numbering. .. 11-1
Octal Representation. .. 11-2
Character Codes. 11-2
Information Representation. .. 11-2

Integers ... 11-3
Floating Point .. 11-4
Logical Quantities " .. 11-5
Decimal Numbers. 11-5

INFORMA TION ADDRESSING ... , 11-6
Word Addressing ... , 11-6

Effective Address Calculation. 11-7
Auto-Increment/Decremerr; , 0 •• 11-7

Byte Addressing. .. 11-8
Addressing With Address Translation Hardware ,............... 11-9

PROGRAM EXECUTION. 11-10
Program Flow Alteration .. 11-10
Program Flow Interruption , 11-10

TABLE OF CONTENTS (Continued)

SECTION III

INSTRUCTION SETS

INTRODUCTION••..•......•.•.••...•.•...•..•....••.•.•...••............•.••.••...•• III-l

INSTRUCTION FORMATS•.....•..••...•.•.•....•.••.••....•....•.•. III-l

CODING AIDS. . . .•. •..• .. .•.• .•. . .. •.••. 111-3

FIXED POINT ARITHMETIC •...•... 111-5
LOAD ACCUMULATOR•.•......•......................•................ 111-5
STORE ACCUMULATOR • • . . . • • . • . • . . • 111-5
ADD••..•••.•.•..•..•..•.•.•......••.••.•••••..••..••••••.•.•........•...•• 111-5
SUBTRACT•....•............•...•.....•.......••....••.........•......•...•..... 111-5
NEGATE •..............•....•.••....•.•.........•.......•..•.................•....••... 111-5
ADD COMPLEMENT•.•••.............•....•.......••........•....•..... 111-5
MOVE ••.•....•........•......•......•................•...••••••.......•....•..•.•.•.... 111-6
INCREMENT•........•.....................•.•...•...•.•.•........ 111-6

LOGICAL OPERATIONS•......•.....•........••.••.•.•......•.•.....••. 111-7
COMPLEMENT ••......•....•.......••..................••.•....•..•..••.......•...••... 111-7
AND•.•.....•.••.••..••.....•........•........•..........•.•.......•....•...• 111-7

STACK MANIPULATION ...••.•..•..............•.............................•...•......... 111-8
Stack Pointer •••....•.........•......•.......•................•.•.....••...•..•••.•...•. 111-8
Frame Pointer • . . . • • . • • . • . • • • • • • .. 111-8
Return Block•..........................•...•....•.... 111-8
Stack Frames. .• • •. • . • .• • • • . . . • . . • . . • 111-9
Stack Protection•....•....•.....•.•.•..........•...•....•.......•...•........•...... 111-9
Initialization of the Stack Control Registers•..•.•...•........•..•.•......... III-9

Stack Pointer .•....•....••.•....•.••.....•••.........•...•••..•..•.•....•..•...•.••. III-9
Frame Pointer. . • • • . . • . . . • • . . • • •• 111-9

STACK MANIPULATION INSTRUCTIONS " .. III-lO
PUSH ACCUMULATOR " .. III-lO
POP ACCUMULATOR ".. III-lO
SAVE "•................. , .. III-lO
MOVE TO STACK POINTER , , " ... " •... , "•....................•....... III-lO
MOVE TO FRAME POINTER " .. III-lO
MOVE FROM STACK POINTER " .. III-lO
MOVE FROM FRAME POINTER " .. III-lO

PROGRAM FLOW ALTERATION "•.................. Ill-ll
JUMP ", ..•.........................•....... III-l1
Jl.JMP TO SUBROUTINE .. III-ll
INCREMENT AND SKIP IF ZERO ,•.......................•....•........... III-ll
DECREMENT AND SKIP IF ZERO•................................ III-ll
Extended Instructions ..•........... III-12
RETURN " ... " III-12
TRAP•.........•........... "•............. III-12

ii

TABLE OF CONTENTS (Continued)

SECTION IV

INPUT /OUTPUT

INTRODUCTION. • • • • • • • . • • • • • • . .. IV-1

OPERATION OF I/O DEVICES. •.•.•.. . •.•. IV-1

PRIORITY INTERRUPTS ..•....•....••.••.•.•.... • . . . • • • • . . . • • • . . . • IV-2

DATA CHANNEL.. •.•. •.•. •. .•.. •. •. ••••••..•. IV-3

CODING AIDS•....•......••.•....••..•.•...••••.....•...•....•.......••••.••..••... IV-3

I/O INSTRUCTIONS. . . . • . . . • • • . . • • • • • • . • . • • • . . • • IV-3
DATA IN A ..•...•........•...•.......•....... '•....•.•.•...••....•.•....•.•.. IV-3
DATA IN B ..•..•.•...........••....•.....•......•.•..•...•..•..•••....•....•.•......... IV-3
DATA IN C •........•....••..••••.••••......•......•..•............•.•..•...•.••••.....• IV-3
DATA OUT A ...•......................•...... IV-4
DATA OUT B•.....••........•••.•..... , •....•.••.•.•.••.••••.....•••.•.•..•.••... IV-4
DATA OUT C ..•.•.••••..•..•.••..••.•....•.•. ' .•....•...•••...•.........•••••.•.•••.••.. IV-4
I/O SKIP•...••.................•..••. " ...•....••.•••••.•••.•.••.....•......•...• IV-4
NO I/O TRANSFER .•.....•.•....••........... '.. IV-4

CENTRAL PROCESSOR FUNCTIONS ...•....•...... , ...•..........•..•....•.••..•.......•..... IV-5
INTERRUPT ENABLE .•.•.•..•...•....••...... , •..•..•.•.......•...•.....•....•.....•.•.. IV-5
INTERRUPT DISABLE••.......... " ...•...............•..•............•.•.•.. IV-5
READ SWITCHES ..•..........•.•...................•.........................•..•••.••. IV-5
INTERRUPT ACKNOWLEDGE•... "•...............•.••.•... IV-5
MASK OUT•.....•............•.•...... ' • • • • . . • • . . . • . . • . . • . • . • . • • • . .. IV-6
I/O RESET••..... " .•....•...•.•••••....•.....•.•....••...... IV-6
HALT•......•.............. " .•••............•.....•..•••.•.•........•. IV-6
CPU SKIP ...•.........................•....• " ...•.....•••................••.•.•••.•...• IV-6

SECTION V

PROCESSOR OPTIONS

INTRODUCTION. . • . . • . . . • • • • . • • • • V-1

POWER FAIL•........•.....••. "•......•................•.....••.............. V-1
SKIP IF POWER FAIL FLAG IS ONE" ..•........••.•.•••••........•.•.•••...•..•..•.•...•.. V-1
SKIP IF POWER FAIL FLAG IS ZERO•..•.•...•...•••.......•••...... V-1

MULTIPLy/DIVIDE•................•.. '•..•.•......•...•.•.•.•..•.......... V-1
NOVA Multiply/Divide "•. ,••....•....•....•.•.••..•.•.•.•..•.••... V-1
Non-NOVA Multiply/Divide ...•.....•.•............•..............••..•.•..•...•....•...... V-2
MULTIPLy•.............••.•.••.... ' ..••.......•.•.•..•..•......•......•..•..... V-2
DIVIDE••.....•........•.•••....•..• '. • . • . • • • . . • • . . • • . .. V -2

REAL-TIME CLOCK. • . • • • • . • . . . • • • • • . . • • • . • . • V-3
SELECT RTC FREQUENCY••.. " • • . . • . . • • • . • • . • . • • . . . • . • . •. V-3

iii

TABLE OF CONTENTS (Continued)

SECTION V (Continued)

PROCESSOR OPTIONS

MEMORY PARITY OPTION .0 ••• V-3
Method of Operation. • • • • • • • • • • • . • • . • • . • • . • . . • . • • • • • . • • • • • • • . • • • • • . • • • • • . • • • • . . • . • • . • •• V-3
READ PARITY ERROR ADDRESS .••.••..•••..•..•.•••••.•.....•..•.•..•.....•..•..•.••• V-3.1
READ EXTENDED ERROR ADDRESS • . • . • •. • • • • • • • . • • . • • • • • • • . . • . • • . • • . • • . • . • • . . • • • • . •• V -3.1

MEMORY MANAGEMENT. .. V-4
Background to Address Translation ...•.........•................•.......•.............. V-4

ADDRESS TRANSLATION USING THE NOVA 830 AND 840 MMPU•......•.•......... V-6
LOAD MAP. .. V-6
LOAD DEVICE PROTECTION•.....................•. V-6
LOAD PROTECTION CONTROL .. V-7
ENABLE USER MAP ..•.•................... V-7
INITIATE PAGE CHECK. • V-8
READ STATUS .. V-8
READ INSTRUCTION ADDRESS. • V -8
READ INVALID ADDRESS. .. V-9
ENABLE SINGLE CyCLE .. V-9
SUPERVISOR CALL. • • • . . . • • . . . • V-9

SUPERVISOR PROGRAMMING FOR THE NOVA 830 AND 840 MMPU V-I0
Setting Up For Translation. • . • . • • . • • V -10
MMPU Protection Processing•................•........•.....•.. V-I0

I/O Protection ..•.....•..............• V -10
Validity Protection•..•.. V-ll
Runaway Defer Protection. • .. V -11
Write Protection. • • V -11

Device Interrupt Processing. • • .. V -11

ADDRESS TRANSLATION USING THE MMU•.................••.........•...•. V-12
LOADMAP ..•................................ V-12
INITIATE PAGE CHECK•...............•................. V-13
PAGE CHECK•....•............................... V-13
READ MMU STATUS•............................•.......................... V-13
WRITE MMU STATUS•.........•....................•.......................... V-14
MAP SINGLE CYCLE ... V -14

SUPERVISOR PROGRAMMING FOR THE MMU . • V -15
Setting Up For Translation. • • V -15
Device Interrupt Processing•.......•....................•........... V -15

ADDRESS TRANSLATION USING THE NOVA 3 MMU AND MPU ••••••••••••••••••••••••.••••••• V-15.1
LOAD MAP •..•.••.•..••....•.••.•••••••••••••••••••••••..•.••.••.•..•.••••••••.••••• V-15.1
INITIATE PAGE CHECK ••••.••.•••••.••.•••••••••••••••.••••••••••..•••••••••••••••••• V-15.2
PAGE CHECK ••••.••.••••..•.••.••.•..•.••.••••••••••.••..•.••••.••••••••.••.•..•.••• V-15.2
READ MMPU STATUS ••.•.••.••.••.•..••••••••••.••••.••.•••••.••••.••.••.••.••••.•••• V-15.3
WRITE MMPU STATUS.. • •. • •• •• •• ••• •••. •••• ••••• •• • ••• •• •.••.• • •• • • • •• ••• •• •• ••• ••.• V -15.3
READ VIOLATION DATA ••..•.••.••.••.••.•.••.••....•••••.••••••••••••••••••••••••••• V-15.4
READ VIOLATION ADDRESS •.•.••.••.•..•.••.••.••••.••.••.•••••••.••••••••••.•••••••• V-15.4
MAP SINGLE CYCLE •••••••••••••••••.••.••• V -15.4

iv

TABLE OF CONTENTS (Continued)

SECTION V (Continued)

PROCESSOR OPTIONS

CLEAR VIOLATION.... . •• ••• ••• •••• ••• •. • •.•.• ••• •• • •.. • . • •. . .. •• ••. ••• ••• •. •••••• • •••• V -15.4
CLEAR MAP ' , .. V -15. 4

SUPERVISOR PROGRAMMING FOR THE NOVA 3 MMPU V-15.5
Setting Up for Translation •••••••••.••.••.•••••••• :.' .•••••••••••••••••••••••• 0" ••• • •••• V -15.5
MMPU Protection Processing ••••••.•••••.•.••.••••.• '" •. • •. • • •• •• • ••••• ••. • • • •••••••• V -15.5
I/O Protection. .. V -15. 6
Validity Protection. • • • • • . • • . • . . • . • • • • • . • • . . • • . • • • • • • • • • . • • • • • • • . • • . . . • • • • . . • • • . • • • • • .• V -15. 6
Runaway Defer Protection ••••••••••••••.••••••••••••••••••••••••••••••••••••••• 0 • • • • •• V -15.6
Write Protection ••.•..•.•.••.•••.••••.•.••.••.•••••••.•••.•.••••••••.••••..•.••.••••• V -15.6
Auto-Increment/Decrement Protection. • • • • • • • • • . • . • • • • • • • • • • • • • • •• V -15. 6
pevice Interrupt Processing •••••••••••••.••.••••••••••.• 0.0... •••• • •• • •• • • • ••••••••••• V -15.6

FLOATING POINT ARITHMETIC•....•...•.................... V-16
Floating Point Unit Registers .•................... " , V-16

INSTRUCTION SET•..............•...••. 0 •••••••••••••••••••••••••••••••••• V-17
LOAD SINGLE•.........•....................•............•... V-17
LOAD DOUBLE•.......•....•....•..........•.......................•....... V-17
STORE SINGLE 0 •• V -17
STORE DOUBLE 0 ••••••••••••••• 0 •• V-17
ADD SINGLE • .• V -18
ADD DOUBLE ..••••.......•..................•.......................•......•.......• V-18
SUBTRACT SINGLE. • .. V -18
SUBTRACT DOUBLE ..•..•.•...................................•......•.............•• V-18
MULTIPLY SINGLE ..•.........•........•....... V-19
MULTIPLY DOUBLE•.•.......•........•......................•.......•..... V-19
DIVIDE SINGLE•....•..•.•..•............•.......•............. V-19
DIVIDE DOUBLE•...................................... " V -19
Temporary Buffer Instructions•...........•........................•...•.......... V -20
MOVE FPAC TO TEMP. • • • . • V -20
MOVE TEMP TO FPAC. •• V -20
ADD TEMP TO FPAC (SINGLE) ..•.........•..... V -21
ADD TEMP TO FPAC (DOUBLE) ...•..•..............................•......•.......... V-21
SUBTRACT TEMP FROM FPAC (SINGLE)•............... V-21
SUBTRACT TEMP FROM FPAC (DOUBLE) ,•.................• V-21
MULTIPLY FPAC BY TEMP (SINGLE)•...•............. V-22
MULTIPLY FPAC BY TEMP (DOUBLE)•..............................•.•..•. V-22
DIVIDE FPAC BY TEMP (SINGLE) .. V-22
DIVIDE FPAC BY TEMP (DOUBLE) ... V-22
Shift and Logical Instructions. • . • • .. V -23
ABSOLUTE VALUE••.....•....•............•..................... V-23
CLEAR FPAC•.....•....•..............•.•...................... 0 ••••••••••••••• V-23
LOAD EXPONENT ...•........•..............• V-23
NEGATE•...............•.......•.....•............................•.......•.... V-23
NORMALIZE•.........•....................................... V -23
READ HIGH WORD•.....................•.......... 0 • • • • • • • • • • • • • •• V -23
SCALE•...•................... V-24
Status Instructions .. V -24
READ STATUS. • . • • V -24

v

TABLE OF CONTENTS (Continued)

SECTION V (Continued)

PROCESSOR OPTIONS

WRITE STATUS ..•........................•. V-24
Diagnostic Instructions ..•....... V -25
READ WORD 1 . • V -25
READ WORD 2•...........................•.............................. V -25
READ WORD 3•.......................................•..•......•.•.......•.•...•. V-25
READ WORD 4 ...•....•.......•.....••.......•.....•.................................. V-25
FPU CLOCK. • . • . . • . • .. V -25
Mode Settings For The Floating Point Unit. • • • V -26

Normal Mode. • • • . . • • • • . • . • . . . • . • V -26
Parallel Mode•.............•.....................•.......................•. V -27
Interrupt Enable and Disable • • V -27

FLOATING POINT UNIT MNEMONICS

SECTION VI

FRONT PANEL

V-27

INT RODUCTION •......•..•..•.........••••..........•......•........•...•................ VI-l

DATA SWITCHES•.....................•............................ VI-4

CONSOLE SWITCHES••..........•.•..•..............................• VI-4
Accumulator Deposit--Examine ...•.....................•.......•.................•..... VI-4
Reg Dep--Reg Exam ...•.......•............................•.•......•..........•...... VI-4
Reset--Stop ..•................. VI-4
Start--Continue•.......•.....•.........••..•....••.......•.•...............•... VI-4
Deposit--Deposit Next ..•.........•.•...........•..............•...•...•..•............ VI-4
Examine--Examine Next " ... VI-5
Memory Step--Inst Step•.................•............. VI-5
Program Load•.. , " '" .•.. VI-5
Channel Start•.........•..••......................................• VI-5
Power " ,••......••.•...••..............•..•............•...•...•. VI-5

PROGRAM LOADING•....................•........•....................... VI-6
Manual Loading•.•....•.•..............•...•.•..........•..•.•...•...•.•...•.. VI-6
Automatic Loading ..••................•.....•........•.........•.....•...............• VI-6

vi

TABLE OF CONTENTS (Continued)

APPENDICES

APPENDIX A
I/O DEVICE CODES AND DATA GENERAL MNEMONICS A-2

APPENDIX B
OCTAL AND HEXADECIMAL CONVERSION ... B-1

APPENDIX C
ASCII CHARACTER CODES , , .. C-1

APPENDIX D
DOUBLE PRECISION ARITHMETIC ... D-1

APPENDIX E
INSTRUCTION USE EXAMPLES .. " ... E-1

APPENDIX F
INSTRUCTION EXECUTION TIMES•........................ F-1

vii

viii

SECTION I

NOVA LINE COMPUTERS

INTRODUCTION

The Data General Corporation NOVA line of com­
puters are general purpose, four -accumulator,
stored-program computers, with a word length of
16 bits. The maximum amount of main memory is
32,768 16-bit words. For the NOVA 830 and NOVA
840 computers with the MMPU feature, and for the
NOVA 3/12 computer with the MMU feature and
the NOVA 3/D with the MMU and MPU feature, the
maximum amount of main memory is 131,072
16-bit words. The accumulators are also 16 bits
in length and are used for arithmetic and logical
operations. Furthermore, two of the accumulators
can be used as index registers. Memory can be
addressed either directly or by using indirect
addresseso Chains of indirect addresses can be of
any length. A direct memory access (DMA) data
channel is provided to enable rapid data transfer
between main memory and peripheral devices.
The flexible design of the NOVA line of computers
allows the convenient implementation of applica­
tions in all sectors of the data processing field.

The standard instruction set contains instructions
that perform fixed point arithmetic and logical
operations between accumulators, transfer of
operands between accumulators and main memory,
transfer of program control, and input/output (I/O)
operations. Options are available that add instruc­
tions to this set. These additional instructions
perform such operations as multiply/divide, float­
ing point calculations, memory allocation and pro­
tection' and memory management and protection.

The NOVA line of computers is made up of the
NOVA computer, the SUPERNOVA ® computer, the
NOVA 1200 series, the NOVA 800 series, the
NOVA 2 series, and the NOVA 3 series. The
NOVA 1200 series consists of the NOVA 1200 com­
puter' the NOVA 1210 computer, the NOVA 1220
computer, and the NOVA 1200 Jumbo computer.
The NOVA 800 series consists of the NOVA 800
computer, the NOVA 820 computer, the NOVA 800
Jumbo computer, the NOVA 830 computer, and the
NOVA 840 computer. The NOVA 2 series consists
of the NOVA 2/4 computer and the NOVA 2/10 com­
puter. The NOVA 3 series consists of the NOVA
3/4 computer, the NOVA 3/12 computer, and the

NOVA 3/D computer. While these computers dif­
fer in specifics such as processing speed, they all
share the same general architecture. This means
that, in general, software is compatible across
the entire line. To a somewhat lesser degree,
hardware is also compatible across the line. The
features of the NOVA line are summarized below 0

Efficient Basic Instruction Set

The basic instruction set for the NOVA line of com­
puters contains instructions that perform fixed
point arithmetic and logical operations between ac­
cumulators' transfer of operands between accu­
mulators and main memory, transfer of program
control, and I/O operations. Alll instructions are
one 16-bit word in length. The arithmetic and
logical instructions have the capability to perform,
in one instruction, the following sequence: per­
form an operation, shift the result one bit left or
right, test the result of the shift, and then condi­
tionally skip the next instruction depending upon
the outcome of the test. In addition, it is possible
to perform this entire sequence without affecting
either of the operands. This means that compli­
cated numerical manipulation and testing can be
performed using a small number of instructions.

Stack

A Last-In/First-Out (LIFO) or push-down stack is
maintained by the NOVA 3 processor. This feature
provides a convenient method for the saving of re­
turn information and passing arguments between
subroutines. The stack also provides an expandable
area for the temporary storage of variables and
intermediate results.

Multiply /Oivide

The multiply/divide feature allows the multiplica­
tion and division of operands to be performed
quickly, without resorting to time-consuming soft­
ware routines. Two 16-bit fixed point operands
can be multiplied together to yield a 32 -bit fixed
point result. A 16-bit fixed point operand can be
divided into a 32 -bit fixed point operand to yield a
16-bit fixed point quotient and a 16-bit fixed point
remainder.

I-I of 4
INTRODUCTION

Floating Point

The floating point feature allows the manipulation of
both single precision (32 bits) and double precision
(64 bits) floating point numbers. Single precision
gives 6-7 significant decimal digits while double
precision gives 13-15 significant decimal digits.
The decimal range of a floating point number is
approximately 5. 4x10 -79 to 7. 2x10+ 75 in either
precision.

The floating point feature contains two 64-bit float­
ing point accumulators. Floating point calculations
can take place between these two accumulators or
between one of the accumulators and operands in
main memory.

Memory Allocation and Memory Management

There are three features available with NOVA line
computers that perform memory allocation and
memory management. All of them perform logical­
to-physical address translation, and two of them
allow certain protection features to be implemented.

The memory management and protection unit
(MMPU) is available with the NOVA 830 computer
and the NOVA 840 computer. The memory man­
agement unit (MMU) is available with the NOVA
3/12 computer. The NOVA 3 memory management
unit (MMU) and memory protection unit (MPU) are
available with the NOV A 3/D computer.

The MMPU feature of the NOVA 830 and 840
allows the allocation of memory to a user in blocks
of 1024 words and up to 32 such blocks may be
allocated to a user. A user is prohibited from
accessing those blocks of memory not allocated to
him, thus protecting a user's area of memory
from unauthorized access. The MMPU feature
allows areas of memory to be write -protected and
areas of memory to be allocated to more than one
user, thus allowing the sharing of data and pro­
cedure areas. The blocks of memory allocated to
a user do not have to be contiguous.

The address translation function which correlates
a logical address to the corresponding allocated
physical memory address is called an "address
map" 0 The MMPU feature holds one user map at
a time, but it has the capability of simultaneously
mapping memory references for the data channel
with a different map.

In addition to translating addresses, the feature
also performs various protection functions. A
user is allowed to access only those blocks of mem­
ory allocated to him. This ensures that a user
does not reach out of his own areas of memory for
either instructions or data. Blocks of memory
allocated to a user may be write-protected so that
the user may not modify them. This allows blocks
of memory containing constants or nonself­
modifying procedures to be shared between users.

1-2

The MMPU feature detects and inhibits indirection
chains that go deeper than 16 levels. This protects
the system from becoming disabled by an indirec­
tion loop. The MMPU allows devices to be
declared accessible or inaccessible to a user on an
individual device code basis. This allows any
device to be controlled by the operating system or
dedicated to a user, depending upon user
requirements.

The MMU allows the allocation of memory to a pro­
gram in the same manner as the NOVA 830 and 840
MMPU, but performs no proteetion functions. In
addition, the MMU can hold two program maps and
two data channel maps at the same time. Only one
program map can be enabled at anyone time, but
both data channel maps are enabled at the same
time.

The NOVA 3/D MMU and MPU combination allows
the allocation of memory to a program in the same
manner as the NOVA 830 and 840 MMPU. Like
the MMU, the NOVA 3/D MMU and MPU can hold
two program maps and two data channel maps at
the same timeo Only one program map can be
enabled at anyone time, but both data channel
maps are enabled at the same time.

The NOVA 3/D MMU and MPU protection functions
are similar to those provided by the NOVA 830 and
840 MMPU. The NOVA 3/D combination, however,
does not allow individual devices to be declared
inaccessible to a user. Instead, the I/O protec­
tion feature allows all devices to be declared
accessible or inaccessible to a user.

Memory

Memory is available in many forms for the differ­
ent members of the NOVA line. For the NOVA
computer, core memory is available in modules of
2, 4, and 8K 16-bit words. For the SUPERNOVA
computer, memory is available in both core and
semiconductor forms. Core memory is available
in modules of both 4 and 8K 16-bit words. Semi­
conductor memory is available in both read/write
and read-only forms in modules of 256, 512, and
1024 16-bit words. For the NOVA 1200 series of
computers, both core and semiconductor memory
is available. Core memory is available in modules
of 4, 8, and 16K 16-bit words. Semiconductor
memory is available in both read/write and read­
only forms in modules of 256, 512, and 1024 16-bit
words. For the NOVA 800 and 820 computers, core
memory is available in modules of 4 and 8K 16-bit
words. For the NOVA 830 computer, core mem­
ory is available in modules of 16K 16-bit words.
For the NOVA 840 computer, core memory is
available in modules of 8K 16-bit words. For the
NOVA 2 series of computers, eore memory is
available in modules of 4, 8, and 16K 16-bit words.
For the NOVA 3 series of computers, memory is
available in both core and semiconductor forms.

Core memory is available in modules of both 8 and
16K 16-bit words. Semiconductor memory is
available in modules of 4K, 8K, 16K and32K
16-bit words.

In addition, a memory parity option is available
with the NOVA 3 series which will detect any single
bit error in a word read from main memory. If
desired, the parity option can interrupt the central
processor upon finding an error. This allows a
record to be kept of memory errors.

Auto-Increment /Decrement

If the intermediate address of a short class instruc­
tion is in the range 20-278, and the indirect bit is 1,
the contents of the addressed location are incre­
mented by one, The incremented value is used to
continue the addressing chain,

If the intermediate address of a short class instruc­
tion is in the range 30-378, and the indirect bit is
1, the contents of the addressed location are decre­
mented by one. The decremented value is used to
continue the addressing chain.

NOTE The state of bit 0 BEFORE the
increment or decrement deter­
mines whether the indirection
chain is continued. For example:
Assume an auto-increment location
contains 1777778 (all bits = 1
including bit 0), and the location is
referenced as put of an indirection
chain. After incrementing, the loca­
tion contains all zeros. However,
bit 0 was 1 before the increment,
so 0 will be the next address in the
chain, rather than the effective
address.

Power Fail! Auto Restart

The power fail/auto restart feature of the NOVA
line provides a "fail-soft" capability in the event of
unexpected power loss. In the event of power fail­
ure, there is a delay of one to two milliseconds be­
fore the processor shuts down. The power fail
portion of the feature senses the imminent loss of
power and interrupts the processor. The interrupt
service routine can then use this delay to store the
contents of the accumulators, the program restart
address, and other information that will be needed
to restart the system. One to two milliseconds is
enough time to execute 200 to 1500 instructions de­
pending on the processor, so there is more than
en0ugh time to perform the power fail routine.

When power is restored, the action taken by the
auto-restart portion of the feature depends upon the
position of the power switch on the front panel. If
the switch is in the "on" position, the processor
remains stopped after power is restored. If the

1-3

switch is in the "lock" position, then 50 milli­
seconds after power is restored, the processor
executes the instruction contained in the first loca­
tion of main memory, restarting the interrupted
system.

The battery backup option available with the NOVA
3 series operates in conjunction with the power
fail/auto restart feature to provide security for
semiconductor memories in the event of a power
failure. If power fails, the battery backup option
will supply power to the memories for a period of
up to two hours so that they will not lose their qata.
If further security is desired, an external battery
backup option is available so that the customer can
connect larger batteries and ensure the integrity of
the memories for extended periods of time.

Real-Time Clock

The real-time clock feature of the NOVA line com­
puters generates a sequence of pulses that is inde­
pendent of the timing of the processor. The clock
will interrupt the system at one of four program­
selectable frequencies. The frequencies are: ac
line frequency, 10HZ, 100Hz, and 1000Hz.

Input/Output Bus

The input/output (I/O) bus is that portion of the
computer that carries commands and data between
the central processor and various peripheral de­
vices connected to it. The bus is made up of a six­
line device selection network, interrupt circuitry,
command circuitry, and sixteen data lines.

Device Addressability

Each I/O device in a NOVA line computer system
is connected to the six-line device selection net­
work in such a way that each device will only re­
spond to commands that contain its own device
code. The fact that the selection network is made
up of six lines gives 26 = 64 unique device codes.
Two of these codes are reserved for specific func­
tions, but there are still 62 devIce codes available
for use with I/O devices.

Interrupt Capability

The interrupt circuitry contained in the I/O bus
provides the capability for any I/O device to inter­
rupt the system when that device requires service.
When a device requests an interrupt, the processor
automatically transfers program control to the main
interrupt service routine. This routine can either
p<;>ll all the I/O devices in the system to find out
which one initiated the interrupt or the routine can
use a special instruction to identify the source of
the interrupt.

The interrupt circuitry of the NOVA line also con­
tains the capability to implement up to sixteen

INTRODUCTION

levels of priority interrupts. This is done with a
16-bit priority mask. Each level of device priority
is associated with a bit in this mask. In order to
suppress interrupts from any priority level, the
corresponding bit in the mask is set to 1"

Data Channel

Handling data transfers between external devices
and memory under program control requires an
interrupt plus the execution of several instructions
for each word transferred. To allow greater
transfer rates, the I/O bus contains circuitry for
a direct memory access (DMA) data channel through
which a device, at its own request, can gain direct
access to main memory using a minimum of pro­
cessor time. At the maximum transfer rate, the
data channel effectively stops the processor, but
at lower rates, processing continues while data
is being transferred.

Ease of Interfacing

Due to the straightforward logic and general design
of the NOVA line I/O bus, customer -provided or
customer-designed I/O devices may be easily in­
terfaced to a NOVA line computer system. Informa-·
tion on how to interface to the NOVA line may be
found in "The Interface Designer's Reference
Manual" (DGC 015-000031).

Input/Output Devices

A comprehensive array of I/O devices is available
from Data General for the NOVA line. This wide
choice of devices, ranging from teletypewriters to
line printers to video displays for man-machine
interaction; and from paper tape to magnetic tape
to fixed and moving-head discs for data storage
allows a wide spectrum of possible configurations.
Also available are various multiplexors and tele­
communications adapters including an IBM 360/370
interface.

1-4

Software

The NOVA line is fully supported by proven Data
General software. Because all members of the
NOVA line are program compatible with each other,
it is possible to create a computer system that can
be easily altered or upgraded as the need arises.

Languages

In addition to an assembler and a macro-assembler,
there are powerful higher-level language proces­
sors available for use with the NOVA line. Lan­
guage processors such as ALGOL, EXTENDED
BASIC FORTRAN IV, and FORTRAN 5 can be
used t~ ease the job of implementing application
systems.

Operating Systems

There is a wide array of operating systems avail­
able for the NOV A line. These range from the
Stand-alone Operating System (SOS) to the Real­
Time Operating System (RTOS) to the Real-Time
Disc Operating System (ROOS) , to the Mapped
Real-Time Disc Operating System (MRDOS). SOS,
RTOS, and RDOS software are designed for the
small to medium-size systems, while MRDOS soft­
ware is designed for the large system and gives
full software support for the Memory Management
and Protection Unit.

Conclusion

The internal features, software, and I/O devices
available with the NOVA line of computers ensure
that they will easily meet the continually changing
needs of the data processing industry.

SECTION II

INTERNAL STRUCTURE

INTRODUCTION

The basic structure of a NOVA line data processing
system consists of a central processing unit
(CPU), some amount of main memory, the I/O bus,
the I/O devices connected to the I/O bus, and a
console which is on the front panel of the main
computer chassis.

I/O BUS

06-01128

DISCS

Due to the general-purpose design of the NOVA
line, the type, size, and number of memory mod­
ules and I/O devices have no effect upon the inter­
nallogical structure of the CPU. This chapter

deals with the addressing of information and the
logical representation of information within the
CPU, and is unaffected by those portions of the
system outside the CPU.

INFORMATION FORMATS

The basic piece of information within the processOl
is the binary digit, or "bit". A bit is capable of
representing only two quantities, 0 and 1. How­
ever, a bit cannot represent both these values at
the same time. At anyone point in time, a bit can
either represent a 0 or a 1, never both.

The normal unit of information within the CPU is
the "word". A word is made up of 16 bits. Be­
cause each bit is capable of representing two
qygntities, a word is capable of representing
2 = 65,536 different quantities. A word may be
broken into two "bytes" of 8 bits each. A byte is
capable of representing 28 = 256 different quanti­
ties. I/O devices transfer information in units of
bits, bytes, words or groups of words called
"records" depending upon the device.

Bit Numbering

In order to avoid confusion when talking about the
information contained in bytes and words, the bits
that make up these units of information are num­
bered from left to right, with the leftmost (high­
order) bit always numbered bit O. The numbering
extends to the right and is always carried out in
the decimal number system. The rightmost (low­
order) bit in a byte is bit 7. Thl3 rightmost bit in
a word is bit 15.

II-I of 10 INFORMATION FORMATS

Octal Representation

Because talking about the binary data contained in
bytes and words would quickly become awkward and
confusing if each bit were described, the octal re­
presentation of binary information will be used in
this manual. To convert a piece of binary informa­
tion to its octal representation, the bits in the
quantity are separated into groups of three bits
each, starting from the right and proceeding to the
left. If the number of bits to be represented is not
evenly divisible into groups of three, the leftmost
group will contain one or two bits. Each group of
bits can now be represented by one of eight differ­
ent symbols. The digits 0-7 are used to represent
the quantities 0 -7. Each encoded digit is called an
octal digit. Because each group of bits can contain
anyone of 8 values, this representation is some­
times called "base 8" representation.

Another way to represent binary information is the
hexadecimal or "hex" representation. In hexa­
decimal, the bits in the quantity are separated into
groups of four bits each and each group can be re­
presented by one of 16 different symbols. The
digits 0-9 are used to represent the quantities 0-9.
The letters A-F are used to represent the quantities
10-15. Because each group of bits can contain any
one of 16 values, this representation is sometimes
called "base 16" representation.

The following table gives the correspondEmce be­
tween the various representations.

DECIMAL BINARY HEX BINARY OCTAL

0 0000 0 000 0
1 0001 1 001 1
2 0010 2 010 2
3 0011 3 011 3
4 0100 4 100 4
5 0101 5 101 5
6 0110 6 110 6
7 0111 7 111 7
8 1000 8 1 100 10
9 1001 9 1 001 11

10 1010 A 1010 12
11 1011 B 1011 13
12 1100 C 1 100 14
13 1101 D 1 101 15
14 1110 E 1 110 16
15 1111 F 1 111 17

II-2

Our normal decimal numbering system is some­
times called "base 10" representation. Because
it is sometimes possible to confuse numbers writ­
ten in hex or octal with those written in decimal, a
subscript denoting the base will be used in cases
where confusion might occur. The following ex­
amples illustrate this convention.

6410 = 4016 = 1008

8710 = 5716 = 1278

6310 = 3F16 = 778

In the last example, it is obvious that 3F is a num­
ber written in hex, but the subscript is included to
erase any possible doubts.

Conversion tables for hex to decimal and octal to
decimal are contained in Appendix B of this manual.

Character Codes

Within the processor, all information is repre­
sented by binary quantities. The CPU does not re­
cognize certain bit combinations as characters and
certain other bit combinations as numbers. Sooner
or later, however, this information must be trans­
ferred outside the computer in some form easily
understood by humans. For this reason, some
standard correspondence must be made between cer­
tain bit combinations and printable symbols. The
code used to implement this correspondence in I/O
devices available with the NOV A line is called the
American Standard Code for Information Interchange
(ASCII) . This code can represent 95 printable sym­
boIs plus 33 control functions. A complete table of
the codes and their corresponding characters can
be found in Appendix C of this manual.

Information Representation

Even though the CPU does not intrinsically recog­
nize one information type from another, the differ­
ent instructions in the instruction set expect that
the information to be operated on will be in a spe­
cific format. In general, there are four different,
basic information formats. They are integers,
floating point numbers, logical quantities, and
decimal numbers.

Integers

Integers can be represented as either signed or un­
signed numbers and carried in either single or
multiple precision. Single precision integers are
two bytes long, while multiple precision integers
are four or more bytes long. Unsigned integers
use all the available bits to represent the magnitude
of the number. A single two-byte word can repre­
sent any unsigned number in the inclusive range 0
to 65,535. Two words taken together as an un­
signed, double precision integer can represent any
number in the inclusive range 0 to 4,294,967,295.

For signed operations, the two's complement num­
bering system is used. In this system, the leftmost
or high-order bit is used as a sign bit. If the sign
bit is 0, the number is positive and the remainder
of the bits in the number represent the magnitude
of the number as described above. If the sign bit
is 1, the number is negative and the remainder of
the bits represent the two's complement of the
magnitude of the number.

To create the negative of a number in the two's
complement scheme, complement all the bits of the
number including the sign bit. After the comple­
menting process is finished, add 1 to the rightmost
or low-order bit. If the two's complement of a
negative number is formed, the result will be the
corresponding positive number. There is only one
representation for zero in two's complement arith­
metic: it is the number with all bits zero. Form­
ing the two's complement of zero will produce a
carry out of the high-order bit and leave the num­
ber with all bits zero.

U-3

Examples:

To form the negative of 4:

4 = 0 000 000 000 000 100

complement = 1 111 111 111 111 011

add 1 + ~~ .. __ .. ~.-~~-. .. __ ~1
-4 = 1 111 111 111 111 100

To form the negative of 17158:

17158 = 0 000 001

complement = 1 111 110
add 1 +

-17158 = 1 111 110

To form the negative of -17158:

111

000

000

001

110

110

101

010
1

011

-17158 = 1 111 110 000 110 011

complement = 0 000 0011 111 001 100
~d1 + 1

~-n~--~.'--' .. --~'--'~ 17158 = 0 000 001 111 001 101

To form the negative of 0:

o = 0 000 000 000 000 000

complement = 1 111 111 111 111 111
add 1 + 1

o =0 "---:0"'0""0-=00""0..--"'0=00,.----,0=0"0---;0"'0"'0

Note that 0 is a positive number, i. e., its sign bit
is O.

INfORMATION fORMATS

Because the two's complement scheme has only one
representation for 0, there is always one more
negative number than there are non-negative num­
bers. The most negative number is a number with
a 1 in the sign bit and all other bits O. The positive
value of this number can not be represented in the
same number of bits as used to represent the nega­
tive number.

A single two -byte word can represent any signed
number in the inclusive range -32, 768 to + 32,767.
Two words taken together as a signed, double pre­
cision integer can represent any number in the in­
clusive range -2,147,483,648 to +2,147,483,647.

It is a property of numbers using the two's comple­
ment scheme that addition and subtraction of signed
numbers are identical to addition and subtraction of
unsigned numbers. The CPU just treats the sign
bit as the most significant magnitude bit.

Floating Point

The floating point feature of the NOVA line allows
operations on signed numbers having a much larger
range than those normally represented as integers.
It would take a 16-word multiple precision integer
to represent the range of a NOVA line floating
point number. Since floating point numbers occupy
either two words for single precision or four words
for double precision, and the floating point feature
is much faster than multiple precision integer
software routines, floating point arithmetic is used
when numbers having a large range must be mani­
pulated.

A floating point number is made up of three parts:
the sign, the exponent, and the mantissa. The
value of a floating point number is defined to be:

(MANTISSA) X (16 RAISED TO THE TRUE VALUE
OF THE EXPONENT FIELD)

The number is signed according to the value of the
sign bit. If the sign bit is 0, the number is posi­
tive; if the sign bit is 1, the number is negative.

Floating point numbers are represented internally
by either 32 bits (single precision) or 64 bits
(double precision).

II-4

The formats are shown below:

Single Precision

MANTISSA
I I I I , , , , I

o 1 78 31

Dou ble Precision

o 1 78

Bit zero is the sign bit: 0 for positive, 1 for nega­
tive.

Bits 1-7 contain the exponent. This is the power to
which 16 must be raised in order to give the cor­
rect value to the number. So that the exponent field
may accommodate a large range, "Excess 64"
representation is used. This means that the value
in the exponent field is 64 greater than the true
value of the exponent. If the exponent field is zero,
the true value of the exponent is -64. If the expo­
nent field is 64, the true value of the exponent is O.
If the exponent field is 127, the true value of the
exponent is 63.

Bits 8-31 for single precision and bits 8-63 for
double precision contain the mantissa. This means
that bit 8 of the floating point number is bit 0 of the
mantissa. The mantissa is always a positive frac­
tion greater than or equal to 1/16 and less than 1.
The "binary point" can be thought of as being just
to the left of bit 8. Continuing this concept then,
bit 8 represents the value 1/2, bit 9 represents
the value 1/4, bit 10 represents the value 1/8,
and so on.

In order to keep the mantissa in the range of 1/16
to 1, the results of floating point arithmetic are
"normalized" 0 Normalization is the process
whereby the mantissa is shifted left one hex digit
at a time until the high-order four bits represent
a nonzero quantity. For every hex digit shifted,
the exponent is decreased by one. Since the
mantissa is shifted four bits at a time, it is pos­
sible for the high -order three bits of a normalized
mantissa to be zero.

Zero is represented by a floating point number with
all bits zero. This is true for both single and
double preCision. This is known as "true zero" .
When a calculation results in a zero mantissa, the
floating point processor automatically converts the
number to a true zero. Note that true zero is posi-·
tive. It is not possible to obtain negative zero as
the result of a calculation.

Floating point operands in memory are represented
by two words for single precision and by four words
for double precision. The formats are shown below:

Single Precision

Word 1 EXPONENT I MANTISSA BITS 0-7 I
I I 2 I 3 I 4 I 5 I 6 I 7 8 I 9 I 10 I II I 12 I 13 I 14 ',5

Word 2 I I
MANTISSA BITS 8-23 I

I I 2 I 3 I 4' 5' 6 1 7 ' 8 ' 9 1 ,0'1, "2 1 '3"4 " 5 o

Double Precision

Word 1 Is I ,~XPON~N1 I MfNTISrA BITS 0-7
o , 2 3 I 4 II 6 I 1 8 9 1'0 II "2 1'3' '4 "5

Word 2 I MANTISSA BITS 8-23 I
0 1 , ' 2 I 3 I 4 ' 5' 6 I 7 ' 8 ' 9 1'0 'II "2 1'3 "4 "5

Word 3 I MANTISSA BITS 24-39 I
o I I ' 2 ' 3 I 4' 5' 6 I 7 I 8 I 9 1 '0' II ',2 1,3 '14 "5

Word 4 I "IMAtH!SSIA ~ITr 40-r5, I ' , I
o I, 2 II 4 5 6 7 8 9 I '0 'I 12 III 14 15

Logical Quanities

Logical operations in the NOVA line can be per­
formed upon individual bits, bytes, or words.
When using the logical operations, quantities oper­
ated on are treated as unstructured binary quanti­
ties. The number of bits, bytes, or words
operated upon depends on the particular instruction.

Decimal Numbers

Decimal numbers may be represented internally in
two ways, character decimal and packed decimal.
In character decimal, the number is made up of a
string of ASCII characters and the sign, if present,
may appear in one of four places. The sign of the
number may be indicated by a leading or trailing
byte which contains the ASCII code for plus (2B16)
or minus (2D16). Alternatively, either the higli­
order digit or the low-order digit of the number

1I-5

may indicate the sign in addition to carrying a digit
of the number. The table below gives the corre­
spondence between certain ASCII characters and
the sign and digit values that they carry.

SIGN DIGIT ASCII HEX
VALUE VALUE CHARACTER CODE

+ 0 { 7B
+ 1 A 41
+ 2 B 42
+ 3 C 43
+ 4 D 44
+ 5 E 45
+ 6 F 46
+ 7 G 47
+ 8 H 48
+ 9 I 49
- 0 } 7D
- 1 J 4A
- 2 K 4B
- 3 L 4C
- 4 M 4D
- 5 N 4E
- 6 0 4F
- 7 P 50
- 8 Q 51
- 9 R 52

The digits that are not carrying the sign must be
valid ASCII characters for the digits 0-9
(3016 -3916).

Examples:

In the following examples, the hex value of a byte
is shown inside the box; the corresponding ASCII
character is shown beneath the box.

+ 2,048 (leading sign) 1 2B 1 32 1 30 134 1 38
+ 2 0 4 8

-1,756 (trailing sign) I 31 I 37 I 35 I 36 12D
1 7 5 6 -

+ 1, 850 (high -order sign) I 41 I 38 I 35 I 30 I
A 8 5 0

-3, 970 (low-order sign) I 33 I 39 I 37 I 7D I
3 .9 7 }

For packed decimal, each digit of the decimal num­
ber occupies one hex digit. The sign is specified
by a trailing hex digit. The number must start and
end on a byte boundary. In other words, the num­
bel' cannot start or end halfway through a byte.
This means that a packed decimal number will al­
ways consist of an odd number of digits followed by
the sign. The sign must be either C16 for plus or
D16 for minus. The only valid codes for digits are
0-916 .

INFORMATION FORMATS

Examples:

In the following examples, the hex value of a digit
is shown within the box; the corresponding decimal
digit is shown beneath the box.

Byte Byte Byte
+ 2,048 10121014181c

0 2 0 4 8 +

+32,456 13121415161c
3 2 4 5 6 +

- 1.756 10111715161D
0 1 7 5 6 -

-25,989 12151918191D
2 5 9 8 9 -

INFORMATION ADDRESSING

The information formats described in the preceding
section give a way of representing different types of
data in main memory. Operations cannot be per­
formed upon these data types, however, unless
they can be addressed by the CPU. The address of
a piece of information is its location in main mem­
ory. Once the CPU knows the address of a piece
of information, the desired operation can. be per­
formed.

Word Addressing

Main memory is partitioned into 2 -byte words, and
each word has an address. The first word in mem-

11-6

ory has the address O. The next word has the ad­
dress 1, the next word has the address 2, and so
on. Word addressing is used to address integers,
floating point numbers, and logical quantities that
are formatted in units of words.

ADDRESS WORD
----~.~--~\ r • 1

•

•

•

4008

401 8

4028

•

•
06-00538

,--------------------------------, , , , ,
~--------------------------------~

r - - - - - - - -- - - -- - - - - - - - - - - - - - - - - - -- - --, , , , , L.. __________________________________ ...1

r- - - - - --- --- --- --- -- - ----------., , , , , L ____________________________ ...J

I 1 ' ,BYIT~ , 1 I , 1 ,BY,TE1 ' , I
o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

I I ' ,BY1TE, , 1 I , 1 ,By;rEI ' , I
o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

I 1 ' ,BYIT~ , I I , I ,BY,TE1 ' , I
o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

•

•

Effective Address Calculation

There are six instructions in the NOVA line in­
struction set that directly reference memory using
word addressing. These instructions use eleven
bits in the instruction to define the address of the
desired word. These eleven bits do not directly
specify the address, but are used in a calculation
which results in the address of the desired word.
The resultant address is called the" effective
address" or "E", and the calculation 'is called the
"effective address calculation".

The eleven bits in an instruction that are used in
the effective address calculation, are bits 5-15.
Their format is shown below.

I I I \@ \INDEX\ , DIS~L~CEME~T, \
o I I 2 3 I 4 5 6 I .718 9 I 10 II 121 13 14 15

Bit 5 is called the" indirect bit", bits 6 and 7 are
called the "index bits", and bits 8-15 are called
the "displacement bits" .

If the index bits are 00, the displacement is used as
an unsigned 8-bit number to address one of the first
25610 words in memory. This is called" page
zero addressing" and this first block of 256 words
is known as "page zero" .

If the index bits are 01, the displacement is treated
as a signed, two's complement number, which is
added to the address of the instruction to produce a
m~mory address. This is called "relative addres­
sing". By relative addressing, any instruction
which uses the effective address calculation can
directly address any word in storage whose address
is in the range -12810 to + 12710 from the instruc­
tion.

If the index bits are 10, accumulator 2 is used as
an index register. If the index bits are 11, ac­
cumulator 3 is used as an index register. In this
form of word addressing, known as "index regis­
ter addressing", the displacement is treated as a
signed, two's complement number which is added
to the contents of the selected index register to
produce a memory address. In index register ad­
dressing, the addition of the displacement to the
contents of index register does not change the value
contained in the index register.

II-7

The result of the addition performed in relative
addressing and index register addressing is 1-£,. , ...
"clipped" to 15 bits. In other words, the high­
order bit of the result is set to o. For example,
if accumulator 2 is to be used as an index register
and contains the number 0777748, and the dis­
placement bits contain the number 0128, then the
result of the addition would be 0000068, not
1000068 0

After one of the three types of addresses has been
computed from the index and displacement bits,
the indirect bit is tested. If this bit is zero, the
address already computed is taken as the effective
address. If the indirect bit is one, the word ad­
dressed by the result of the index and displacement
bits is assumed to contain an address. In this
word bit 0 is the indirect bit and bits 1-15 contain
an address. If bit 0 of the referenced word is 1,
another level of indirection is indicated, and bits
1-15 contain the address of the next word in the
indirection chain. The processor will continue to
follow this chain of indirect addresses until a word
is retrieved with bit 0 set to O. Bits 1-15 of this
word are taken to be the effective address.

Auto-Increment /Oecrement

If an indirect address points to a location in the
range 20-278 (auto-increment locations); that word
is fetched, the contents of the word are incre­
mented by one and written back into the location.
This updated value is then used to continue the ad­
dressing chain. If an indirect address points to a
location in the range 30-378 (auto-decrement loca­
tions) , that word is fetched, the contents of the
word are decremented by one and written back into
the location. The updated value is then used to
continue the addressing chain.

NOTE When referencing auto-increment
and auto-decrement locations, the
state of bit 0 before the increment
or decrement is the condition upon
which the continuation of the indi­
rectionchain is based. For exam­
ple: if an auto-increment location
contains 1777778' and the location
is referenced as part of an indi­
rection chain, location 0 will be
the next address in the chain.

INFORMATION ADDRESSING

YES

OG-00539

DISPLACEMENT BITS

">.!.!2.. _____________ ----->1~~~~EISNSTE:~EDIATE

NO

NO

BITS 1-15 GO TO
INTERMEDIATE
ADDRESS

INTERMEDIATE
ADDRESS IS
EFFECTIVE
ADDRESS

LOW ORDER 15
BITS GO TO
INTERMEDIATE
ADDRESS

ADD I TO FETCHED
WORD AND REPLACE.
USE NEW VALUE
TO CONTINUE

SUBTRACT I FROM
FETCHED WORD
AND REPLACE. USE
NEW VALUE TO
CONT INUE

UNSIGNED NUMBER

An effective address is always 15 bits in length.
This means that an instruction which uses the
effective address calculation can address anyone
of 32,76810 words. This gives rise to the concept
of an "address space", which, in the NOVA line,
contains 64K bytes or 32, 768 2 -byte words.

Byte Addressing

While bytes in main memory cannot be directly ad­
dressed by the CPU, there is a convenient program­
ming method for manipulating individual bytes of
information. This technique involves the use of a
"byte pointer". A byte pointer is a word in which
bits 0-14 are ·the address in memory of a 2-byte
word. Bit 15 of the byte pointer is the "byte
indicator". If the byte indicator is 0, the refer­
enced byte is the high-order (bits 0-7) byte of the
word addressed by byte pointer bits 0-14. If the
byte indicator is 1, the referenced byte is the low­
order (bits 8-15) byte of the word addressed by
byte pointer bits 0-14.

Programming routines to load and store individual
bytes using byte pointers are given in Appendix E
of this manual.

II-8

Addressing With Address Translation Hardware

The concept of an address space was introduced in
the discussion of effective address calculation.
The "program" or "logical" address space is that
amount of memory that can be referenced by in­
structions in a program. The maximum logical
address space available to a program running on
a NOVA line computer is 64K bytes or 32K words.

The "physical" address space is that amount of
physical memory that can be referenced by the
CPU. If none of the address translation features
are installed, the maximum physical address
space available to the CPU is 64K bytes or 32K
words, and the logical address space is equal to
the physical space. For a NOVA line coniputer
with either the MMPU or the MMU feature installed,
the maximum physical address space is 256K bytes
and the logical address space is some subset of the
physical space.

Installation of an address translation feature has
no effect on logical addressing. Addressing calcu­
lations remain the same. The address translation
features come into play when the CPU tries to use
a 15-bit address to reference memory. The
address translation features intercept the memory
reference and the 15-bit address. The MMPU and
the MMU features translate the 15 -bit address
from the CPU into a 17 -bit address and use this
new address to perform the memory referenceo

II-9

I LOGICAL ADDRESS IJ

~~-
ADDRESS PHYSICAL

TRANSLATOR MEMORY
FEATURE

)1
r PHYSICAL ADDRESS C :~

06-00542

PROGRAM EXECUTION

PROGRAM EXECUTION

Programs for the NOV A line consist of sequences
of instructions that reside in main memory. The
order in which these instructions are executed de­
pends on a 15-bit counter called the "program
counter". The program counter always eontains
the address of the instruction currently being exe­
cuted. After the completion of each instruction the
program counter is incremented by one and the next
instruction is fetched from this address. This
method of operation is called" sequential operation"
and the instruction fetched from the location ad­
dressed by the incremented program counter is
called the "next sequential instruction".

Program Flow Alteration

Sequential operation can be explicitly altered by the
programmer in two ways. Jump instructions alter
program flow by inserting a new value into the
program counter. Conditional skip instructions can
alter program flow by incrementing the program
counter an extra time if a specified test condition
is true. In the case of a conditional skip instruction
when the test condition is true, the next sequential
instruction is not executed because it is not ad­
dressed. After either a jump instruction or a

.,/' -< I v~ } SEQUEM" "

~
PROGRAM , FLOW

INCREASING ~ ADDRESSES

j
JUMP

I E; ~ JUMP N PROGRAM
S / FLOW T
R

j
U

~
-j

C
T V-
I V-
0 V:;
N

~ } SKIP S

L
SKIP t:; PROGRAM

FLOW

~
:)

0(;-00543

successful conditional skip instruction, sequential
operation continues with the instruction addressed
by the updated value of the program counter.

Bacause the program counter is 15 bits in length,
it can address 32, 768 separate memory locations.
The next memory location after 777778 is location
o and the location before 0 is location 777778. If
the program counter rolls from 777778 to 0 in the
course of sequential operation, no indication is
given and processing continues with the location
addressed by the updated value of the program
counter.

Program Flow Interruption

The normal flow of a program may be interrupted
by external or exceptional conditions such as I/O
interrupts or various kinds of faults. In this case,
the address of the next sequential instruction in
the interrupted program is saved by the CPU so
that the I/O handler or the various fault handlers
can return control to the program at the correct
point. Once the address of the next sequential in­
struction in the program has been placed in the
program counter by the fault handler, sequential
operation of the program resumes.

r
INCREASING
ADDRESSES

j
j

I
N
S
T
R
U
C
T
I
o
N
S I

L
06-00544

n··10

SECTION III

INSTRUCTION SETS

INTRODUCTION

The instruction set implemented on the NOVA line
is divided into 5 instruction sets. There are in­
struction sets available for fixed point arithmetic
logical operations, program flow alteration, float­
ing point arithmetic, and I/O operations. In addi­
tion, instruction sets which are a mixture of I/O
instructions are available for programming the
stack feature, MMPU, MMU, the RTC feature,
the power fail/auto-restart feature, and certain
CPU functions.

INSTRUCTION FORMATS

There are four different formats for instructions
on the NOVA line. These formats allow an exten­
sive instruction set while still keeping the instruc­
tion length to one word. The four formats and
their general layouts are described below.

NO ACCUMULATOR-EFFECTIVE ADDRESS

I 0 I 0 I 0 pP CODEI @ I INDEX I DISPLACEMENT
o I 2 3 I 4 5 6 I 7 8 I 9 I 10 I II I 12 I 13 I 14 15

In the No Accumulator-Effective Address format
instructions, bits 0 -2 are 000, and bits 3 -4 contain
the operation code. The effective address is com­
puted from bits 5-15 as described under" Effective
Address Calculation" .

ONE ACCUMULATOR-EFFECTIVE ADDRESS

o I 2 3 4 5 6 7 8 9 I 10 II 12 I 13 14 15

In the One Accumulator-Effective Address format
instructions, bit 0 is 0, and bits 1-2 contain the
operation code. Bits 3 -4 specify the accumulator
for the operation. The effective address is com­
puted from bits 5-15 as described under" Effective
Address Calculation" .

TWO ACCUMULATOR-MULTIPLE OPERATION

SKIP
, I

o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

In the Two Accumulator-Multiple Operation format
instructions, bit 0 is 1, bits 1 and 2 specify the
source accumulator, bits 3 and 4 specify the desti­
nation accumulator, bits 5 -7 contain the operation
code, bits 8 and 9 specify the aetion of the shifter,
bits 10 and 11 specify the value to which the carry
bit will be initialized, bit 12 specifies whether or
not the result will be loaded into the destination
accumUlator, and bits 13-15 specify the skip test.
Each instruction in this format utilizes an arith­
metic unit whose logical organization is illustrated
below.

- ORGANIZATION OF ARITHMETIC UNIT

06-001127

17 BITS

LOAD/NO LOAD

Each instruction specifies two accumulators to sup­
ply operands to the function generator, which per­
forms the function specified by bits 5 -7 of the
instruction. The function generator also produces
a carry bit whose value depends upon three quan­
tities: an initial value specified by the instruction,
the inputs, and the function performed. The initial
value may be derived from the previous value of
the carry bit, or the instruction may specify an
independent value.

The 17 -bit output of the function generator, made
up of the carry bit and the 16-bit function result,
then goes to the shifter. In the shifter, the 17 -bit
result can be rotated one place right or left, or the

III-1 of 12 INSTRUCTION FORMATS

two 8-bit halves of the function result can be swap­
ped without affecting the carry bit. The 17 -bit out­
put of the shifter can then be tested for a skip. The
skip sensor can test whether the carry bit or the
rest of the 17 -bit result is or is not equal to zero.
After the skip sensor has tested the shifter output,
it can be loaded into the carry bit and the destina­
tion accumulator. Note, however, that loading is
not necessary. An instruction in this format can
perform a complicated arithmetic and shifting
operation and test the result for a skip without af­
fecting the carry bit or either of the operands.

III-2

INPUT /OUTPUT
CONTROL

I 0 I, I I AC lop, COpE I ! I DEyIC~ C9 DE
o I I 2 3 I 4 5 6 7 8 9 10 II 12 13 14 15

In the Input/Output format instructions, bits 0-2
are 011, bits 3 -4 specify the accumulator for the
operation, bits 5 -7 contain the operation code, bits
8 -9 specify the control signal to be used, and bits
10-15 contain the device code of the referenced
device.

CODING AIDS

In the descriptions of the separate instructions,
the general form of how the instruction is coded in
assembly language is given along with the instruc­
tion. The general form of how an instruction may
be coded has the following format:

MNEMONIC<optional mnemonics> OPERAND STRING

The mnemonic must be coded exactly as shown in
the instruction description. Some instructions
have optional mnemonics that may be appended to
the main mnemonic if the option is desired. The
operand string is made up of the operands for the
given instruction.

The symbols <> and = are used in this manual to
aid in defining the instructions. These symbols
are not coded; they act only to indicate how an as­
sembly language instruction may be written. Their
general definition is given below.

< > Indicates optional operands or mnemonics.
The operand enclosed in the brackets (e. g. ,
< # » may be coded or not, depending on
whether or not the associated option is de­
sired.

Indicates specific substitution is required.
Substitute the desired accumulator, address,
name, number, or mnemonic.

The following abbreviations are used throughout
this manual:

AC

ACS

ACD

FPAC

Accumulator

Source Accumulator

Destination Accumulator

Floating Point Accumulator

III-3

In the instructions that utilize an effective address,
the following coding conventions are used:

The indirect bit (bit 5) is set to 1 by coding
the symbol @ anywhere in the effective ad­
dress operand string.

The index bits are set by coding a comma
followed by one of the digits 0 -3 as the last
operand of the operand string. If no index
is coded, the bits are set to 00. The charac­
ter "period" (.) can be used to set the index
bits to 01. "Period" can be read to mean
"address of the current instructions". When
the period is used, it is followed by either a
plus or a minus sign followed by the displace­
ment e. g., ". +7", or ". -2".

The displacement is coded as a signed number in
the current assembler radix. This radix is the
numbering system in which the programmer sup­
plies numbers to the assembler. The default radix
is Base 8 or octal. The assembler radix can be
changed by using the RADIX statement.

The assembler available with the NOV A line allows
the programmer to place labels on instructions or
locations in memory. When the assembler comes
upon a label in the operand string of an effective
address instruction, it automatically sets the index
and displacement bits to the correct values. For
a detailed discussion of the features and operation
of the NOVA line assembler, see the assembler
manual (DGC 093-000017).

The fixed point and logical instructions which use
the two accumulator -multiple operation format
have several options that can be obtained by ap­
pending suffixes to the instruction mnemonic and
by coding optional operands in the operand string.
The characters to be coded are given below with
their results.

CODING AIDS

The characters in the column titled" class abbre­
viation" refer to specific fields in the two accu­
mulator -multiple operation format. The characters
in the column titled" coded character" show the
various characters which may be coded for this
option. The numbers in the column titled" result
bits" show the bit settings in these fields resulting
from each coded character. The comments in the
column titled" operation" describe the effect of
these bit settings.

CLASS CODED RESULT
ABBREVIATION CHARACTER BITS OPERATION

C (option omitted) 00 Do not initialize the carry bit.

Z 01 Initialize the carry bit to O.

0 10 Initialize the carry bit to 1.

C 11 Initialize the carry bit to the
complement of its present
value.

SH (option omitted) 00 Leave the result of the arith-
metic or logical operation un-
affected.

L 01 Com bine the carry and the 16-
bit result into a 17 -bit number
and rotate it one bit left.

R 10 Combine the carry and the 16-
bit result into a 17-bit number
and rotate it one bit right.

S 11 Exchange the two 8 -bit halves
of the 16-bit result without af-
fecting the carry.

(option omitted) a Load the result of the shift
operation into ACD.

1 Do not load the result of the
shift operation into ACD.

The following diagrams illustrate the operation of
the shifter.

Coded
Character Shifter Operation

L Left rotate one place. Bit 0 is rotated
into the carry position, the carry bit
into bit 15.

R

S

~'------0-15--~
Right rotate one place. Bit 15 is ro­
tated into the carry position, the carry
bit into bit o.

~'------0-15 ------,~
Swap the halves of the 16-bit result.
The carry is not affected.

III-4

The following operands initiate operations that test
the result of the shift operation. If the tested con­
dition is true, the next sequential instruction is
skipped.

CLASS CODED RESULT
ABBREVIATION CHARACTER BITS OPERATION

SKIP (option omitted) 000 Never skip.

SKP 001 Always skip.

SZC 010 Skip if carry = o.
SNC all Skip if carry i= O.

SZR 100 Skip if result = O.

SNR 101 Skip if result i= O.

SEZ 110 Skip if either carry or
result = O.

SBN 111 Skip if both carry and
result i= O.

NOTE For the NOVA 3 series of computers,
instructions in the Two Accumulator­
Multiple Operation format must not have
both the "No Load" and the" Never Skip"
options speCified at the same time.
These bit combinations are used by
other instructions in the instruction set.

As an example of how to use these tables, assume
that accumulator 3 contains a signed, two's com­
plement number. Now consider the problem of
determining whether this number is positive or neg­
ative. One way to determine this would be to place
the number zero in another accumulator and use the
SUBTRACT instruction, but this requires an extra
instruction and also destroys the previous contents
of the other accumulator. Another way to deter­
mine the sign of the number in accumulator 3 is to
use the MOVE instruction and the power of the two
accumulator-multiple operation format. With the
MOVE instruction, the contents of AC3 can be
placed in the shifter and shifted one bit to the left.
This places the sign bit in the carry bit. The carry
bit can then be tested for zero. In order to pre­
serve the number in AC3, the instruction can pre­
vent the output of the shifter from being loaded back
into AC3.

The general form of the MOVE instruction is:

MOV < c >< sh >< # >

The general bit pattern of the MOVE instruction is:

SH I 9 I # I ~KI\ I

MOVL# 3,3, SZC

This instruction would assemble into the following
bit pattern:

2 3 4 5 6 7 8 9 10 II 12 13 14 15

FIXED POINT ARITHMETIC

The fixed point instruction set performs binary
arithmetic on operands in accumulators. The op­
erands are 16 bits in length and can be either
signed or unsigned. The instruction set provides
for loading, storing, adding, and subtracting.

LOAD ACCUMULATOR

LDA ac, <@>displacement<,index>
= =

I 0 I 0 , I I AC l@ IINDEX I , DI5\LA,CE~ENT ,
o I 2 3 I 4 5 6 I 7 8 9 I 10 II 12 13 14 15

The word addressed by the effective address, "E",
is placed in the specified accumulator. The pre­
vious contents of the AC are lost. The contents of
the location addressed by "E" remain unchanged.

STORE ACCUMULATOR

STA ac, <@ >displacement<, index>

I 0 II ,0 I AC I @ IINDIEX I , ?15~LA~EMENT, ,
o I 2 3 I 4 5 6 7 8 9 10 II 121 13 14 15

The contents of the specified accumulator are
placed in the word addressed by the effective ad­
dress, "E". The previous contents of the location
addressed by "E" are lost. The contents of the
specified accumulator remain unchanged.

ADD

The carry bit is initialized to the specified value.
The number in ACS is added to the number in ACD
and the result is placed in the shifter. If the addi­
tion produces a carry of 1 out of the high-order bit,
the carry bit is complemented. The specified shift
operation is performed and the result of the shift is
placed in ACD if the no-load bit is O. If the skip
condition is true, the next sequential instruction is
skipped.

NOTE If the sum of the two numbers
being added is greater than
65,53510 , the carry bit is
complemented.

SUBTRACT

SUB< c >< sh >< # > acs, acd<, skip>
== =

II I A~5 I ACD I I ,0 I I 5,H I 9 I # I SKIP
o I 2 3 I 4 5 6 I 7 8 9 10 II 12 13 ' 14 ' 15

The carry bit is initialized to its specified value.
The number in ACS is subtracted from the number
in ACD by taking the two's complement of the num­
ber in ACS and adding it to the number in ACD.
The result of the addition is placed in the shifter.
If the operation produces a carry of 1 out of the
high-order bit, the carry bit is complemented.
The specified shift operation is performed and the
result of the shift is placed in ACD if the no-load
bit is O. If the skip condition is true, the next
sequential instruction is skipped.

NOTE If the number in ACS is less
than or equal to the number
in ACD the carry bit is com­
plemented.

NEGATE

NEG<c ><sh><#> acs,acd<, skip>
== =

I I I A9S I ACD I 0 ,0 I I 5,H I 9 I # I
o I 2 3 I 4 5 6 I 7 8 9 10 II 12

SKIP , ,
13 14 15

The carry bit is initialized to the specified value.
The two's complement of the number in ACS is
placed in the shifter. If the negate operation pro­
duces a carry of 1 out of the high-order bit, the
carry bit is complemented. The specified shift
operation is performed and the result is placed in
ACD if the no-load bit is O. If the skip condition
is true, the next sequential instruction is skipped.

NOTE If ACS contains 0, the carry
bit is complemented.

ADD COMPLEMENT

ADC<c>< sh >< # > acs, acd<, skip>
== ==

I I I A9S I ACD I I ,0 0 I 5,H I 9 I # I
o 2 3 1 4 5 6 1 7 8 9 10 II 12

SKIP
I I

13 14 15

The carry bit is initialized to the specified value.
The logical complement of the number in ACS is ad­
ded to the number in ACD and the result is placed
in the shifter. If the addition produces a carry of 1
out of the high-order bit, the carry bit is comple­
mented. The specified shift operation is performed,
and the result of the shift is loaded into ACD if the
no-load bit is O. If the skip condition is true, the
next sequential instruction is skipped.

NOTE If the number in ACS is less
than the number in ACD, the
carry bit is complemented.

FIXED POINT ARITHMETIC

MOVE

MOV<c ><sh><#> acs,acd<, skip>
.====: = =

SKIP
! ,

13 14 15

The carry bit is initialized to the specified value.
The contents of ACS are placed in the shifter. The
specified shift operation is performed and the re­
sult of the shift is loaded into ACD if the no-load
bit is o. If the skip condition is true, the next
sequential instruction is skipped.

Example:

The MOVE instruction can be used to perform a
signed divide by a power of 2 without using another
accumulator. The following sequence of instruc­
tions will divide the signed, two's complement
number in AC2 by 4 without using another accumu­
lator.

MOVL# 2,2, SZC ;SKIP IF POSITIVE
MOVOR 2,2, SKP ;SHIFT RIGHT WITH 1 AND

; SKIP
MOVZR 2,2, SKP ;SHIFT RIGHT WITH 0 AND

; SKIP
MOVOR 2,2,SKP ;SHIFT RIGHT WITH lAND

; SKIP
MOVZR 2,2 ;SHIFT RIGHT WITH 0 AND

; DON'T SKIP

Shifting a number right one bit position is equiva­
lent to dividing the number by 2 and rounding
down. To perform division of a signed number
in this manner, the bit shifted into the high-order
bit must be equal to the sign bit. The first in­
struction determines whether to shift in a 0 or a 1.

III-6

INCREMENT

INC<c ><sh><#> acs, acd<, skip>
== =

SKIP , ,

o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

The carry bit is initialized to the specified value.
The number in ACS is incremented by one and the
result is placed in the shifter. If the incrementa­
tion produces a carry of lout of the high-order bit,
the carry is complemented. The specified shift
operation is performed, and the result of the shift
is loaded into ACD if the no-load bit is O. If the
skip condition is true, the next sequential instruc­
tion is skipped.

NOTE If the number in ACS is 1777778
the carry bit is complemented.

LOGICAL OPERATIONS

The logical instruction set performs logical opera­
tions on operands in accumulators. The operands
are 16 bits long and are treated as unstructured
binary quantities. The logical operations included
in this set are: AND, and COMPL EMENT .

COMPLEMENT

COM<c ><sh><#> acs, acd<, skip> == =

I I I A~S I ACO I 0 , 0 I 0 I S,H I 9 I # l SKIP
! ,

13 14 15

The carry bit is initialized to the specified value.
The logical complement of the number in ACS is
placed in the shifter. The specified shift operation
is performed and the result is placed in ACD if the
no-load bit is O. If the skip condition is true, the
next sequential instruction is skipped.

III-7

AND

AND<c ><sh><#> acs,acd<, skip>
= = ===== =

II I A~S I A~O II , I I I I S,H I 9 I # I ~KI\
o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

The carry bit is initialized to the specified value.
The logical AND of ACS and ACD is placed in the
shifter. Each bit placed in the shifter is 1 only if
the corresponding bit in both ACS and ACD is one;
otherwise the result bit is O. The specified shift
operation is performed and the result is placed in
ACD if the no-load bit is O. If the skip condition
is true, the next sequential instruction is skipped.

LOGICAL OPERATIONS

STACK MANIPULATION

An important feature of the NOVA 3 series of com­
puters is the stack manipulation facility. A Last­
In/First-Out (LIFO) or "Push-Down" stack is
maintained by the processor. The stack facility
provides an expandable area of temporary storage
for variables, data, return addresses, subroutine
arguments, etc. An important byproduct of the
stack facility is that storage locations are reserved
only when needed. When a procedure is finished
with its portion of the stack, those memory loca­
tions are reclaimed and are available for use by
some other procedure.

The operation of the stack depends upon the con­
tents of two hardware registers. The registers
and their contents are described below.

Stack Pointer

The stack pointer is the address of the "top" of the
stack and is affected by operations that either
"push" objects onto or "pop" objects off of the
stack. A push operation increments the stack
pointer by 1 and then places the "pushed" object
in the word addressed by the new value of the stack
pointer. A pop operation takes the word addressed
by the current value of the stack pointer and places
it in some new location and then decrements the
stack pointer by 1.

STACK POINTER
BEFORE PUSH

STACK POINTER
AFTER PUSH

OG-0056/

---- PUSHED/POPPED
WORD

INCREASING
ADDRESSES

I

./

./

./

./ ;-
4-

./

./

./

STACK POINTER
AFTER POP

STACK POINTER
BEFORE POP

III-8

Frame Pointer

The frame pointer is used to reference an area in
the user stack called a "frame". A frame is that
portion of the stack which is reserved for use by
a certain procedure. The frame pointer usually
points to the first available word minus 1 in the
current frame. The frame pointer is also used by
the RETURN instruction to reset the user stack
pointer.

Return Block

A return block is defined as a block of five words
that is pushed onto the stack in order to allow con­
venient return to the calling program. The format
of the return block, therefore, is determined by
how it is used in the return sequence. The format
of the return block is as follows:

WORD # POPPED DESTINATION

1 Bit 0 placed in the
carry bit.
Bits 1-15 placed in the
program counter.

2 AC3

3 AC2

4 AC1

5 ACO

In the stack, the return block looks like this:

STACK POINTER
AFTER RETURN

STACK POINTER
BEFORE RETURN

---t

DG-00566

~,.,c.· ... ',"",','., : ,·c.'''';/'

ACO

ACI

AC2

AC3

CARRY/ PROGRAM
COUNTER

./
5th WORD
POPPED

.. t--- I sf WORD
POPPED

J'

Stack Frames

In order to implement re-entrant subroutines, a
new area of temporary storage must be available
for each execution of a called subroutine. The
easiest way to accomplish this is for the subrou­
tine to use the stack for temporary storage. A
"stack frame" is defined as that portion of the
stack which is available to the called routine. In
general, the stack frame belonging to a subroutine
begins with the first word in the stack after the
return block pushed by the called routine and con­
tains all words in the stack up to, and including,
the return block pushed by any routine which the
called routine calls. Variables and arguments can
be transmitted from the calling routine to the
called routine by placing them in prearranged
positions in the calling routine's stack frame. Be -
cause the SAVE instruction sets the frame pointer
to the last word in the return block, these variables
and arguments can be referenced by the called
program as a negative displacement from the
frame pointer. The called routine should ensure
that reference to the calling routine's stack frame
is made only with the permission of the calling
routine.

Stack Protection

During every instruction that",J. II.Q;} onto the
stack, a check is made for stack overflow. If the
instruction places data in a word whose address is
an integral multiple of 25610, a stack overflow is
indicated. If a stack overflow is indicated, the in-

III-9

struction is completed, an internal stack overflow
flag is set to 1, and, if the Interrupt On flag is 1,
a stack fault is performed. If the Interrupt On flag
is 0, the stack overflow flag remains set to 1, and
as soon as the interrupt system is enabled, the
stack fault is performed.

When a stack fault is performed, if a program map
is enabled, it is inhibited; the Interrupt On flag is
set to 0; the stack overflow flag is set to 0; the up­
dated program counter is stored in physical loca­
tion 0; and the processor executes a "jump
indirect" to physical location 3.

Initialization of the Stack Control Registers

Before the first operation on the stack can be per­
formed, the stack control registers must be ini­
tialized. The rules for initialization are as follows:

Stack Pointer

The stack pointer must be initialized to the begin­
ning address of the stack area minus one.

Frame Pointer

If the main user program is going to use the frame
pointer, it should be initialized to the same value
as the stack pointer. Otherwise, the frame pointer
can be initialized in a subroutine by the SAVE in­
struction.

STACK MANIPULATION

STACK MANIPULATION INSTRUCTIONS

The stack feature of the NOVA 3 computer is pro­
grammed with eight I/O instructions which use the
device code 01. Although the instructions are in
the standard I/O format, the operation of these in­
structions is in no way similar to I/O instructions.

PUSH ACCUMULATOR

PSHA ac

I 0 I, I I AC I 0 ,I I· 0 0 0 0 0 0 0 I 1
o I I 2 3 I 4 5 6 Il7 1 8 I 9/,10 I II I 12 i 13 ' 14 I 15

The contents of the specified accumulator are
pushed onto the top of the stack. The contents of
the specified accumulator remain unchanged.

POP ACCUMULATOR

POPA ac !

o ,I 2 3.1 4 5 6 ,8 '9 0 'II t2.' I 3 14 15 r y I :
The specified accumulator is filled with l:he word
popped off the top of the stack.

SAVE & L<lCJ II

SAV

10 00 0 000000,0,11

o 2 3 r 4 l5 6 7 8 9, 10 II 12/13 14 15

A return block is pushed onto the stack. After the
fifth word of the return block is pushed, ~he value
of the stack pointer is placed in the frame pointer
and in AC3. The contents of accumulators 0, l,
and 2 remain unchanged. The format of the five
words pushed is as follows:

WORD # PUSHED CONTENTS

1 ACO

2 ACl

3 AC2

4 Bit 0=0
Bits l-15:drame pointer
before the SAVE

5 Bit O=carry bit
Bits 1-15=Bits 1-15 of
AC3

t

MOVE TO STACK POINTER

MTSP ac

I 0 0 0 0 0

o t I 7 8 9; t 10 II 12 I 13

Bits 1-15 of the specified accumulator are placed
in the stack pointer. The contents of the specified
accumulator remain unchanged.

MOVE TO FRAME POINTER

MTFP

1 0 I I
o 1 I

tJ /0

2 3 4 5 6 7 8 9' 10 II 12 13 14 15
I '

Bits~1-~5 of the specified accumulator are placed
in the frame pointer. The contents of the specified
accumulator remain unchanged.

MOVE FROM STACK POINTER
])c:> A- C-

MFSP ac
!

00000011
8 9110 I II I 12 1\ 13 I 14 I 15

The contents of the stack pointer are placed in bits
,1t*,15 of the specified accumulator. Bit 0 of the
specified accumulator is set to O. The contents of
the stack pointer remain unchanged.

MOVE FROM FRAME POINTER

MFFP

10/ I
2 3 I 4 5 I 6 ~ 7 I 8 I 9 I 10 I II I 12 I 13 I 14 I 15 I I o I

The contents of the frame pointer are placed in bits
1-15 of the specified accumulator. Bit 0 of the
specified accumulator is set to O. The contents of
the frame pointer remain unchanged.

III-10

PROGRAM FLOW ALTERATION

As stated previously, the normal method of pro­
gram execution is sequential. That is, the proces­
sor will continue to retrieve instructions from
sequentially addressed locations in memory until
directed to do otherwise. Instructions are pro­
vided in the instruction set that alter this sequen­
tial flow. Program flow alteration is accomplished
by placing a new value in the program counter.
Sequential operations will then continue with the
instruction addressed by this new value. Instruc­
tions are provided that change the value of the
program counter, change the value of the. program
counter and save a return address, or modify a
memory location by incrementing or decrementing
and skip the next sequential instruction if the result
is zero.

JUMP

JMP <@ >displacement<, index>

1 0 I 0 I 0 I 0 I 0 I @ IIN~EX I I IDISpLA,CE~EN~
o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

The effective address, "E" is computed and placed
in the program counter. Sequential operation con­
tinues with the word addressed by the updated value
of the program counter.

JUMP TO SUBROUTINE

JSR <@>displacement<, index>

I 0 0 I 0 I 0 : I I@ IINDEX l -,-DIS~LAYEMENT,
o I I 2 3 4 5 6 i 7 .8 9 i 10 II 12 I 13 14 15

The effective address, "E" is computed. Then the
present value of the program counter is incre­
mented by one and the result is placed in AC3. "E"
is then placed in the program counter and sequential
operation continues with the word addressed by the
updated value of the program counter.

NOTE The computation of "E" is
completed before the incre­
mented program counter is
placed in AC3.

INCREMENT AND SKIP IF ZERO

ISZ <@ > displacement< , index>

l 0 0 I 0 l I I 0 l @lINDfX l I pIS~LA~EMfNT,
o I I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

The word addressed by "E" is incremented by one
and the result is written back into that location. If
the updated value of the location is zero, the next
sequential instruction is skipped.

DECREMENT AND SKIP IF ZERO

DSZ <@ > displacement< , index>

1 0 0 , 0 II I l @ llNDEX l I DIS~LA~EMTNT.
o I I 2 3 I 4 5 6 I 7 8 9 I 10 II 12 13 14 15

The word addressed by "E" is deeremented by one
and the result is written back into that location. If
the updated value of the location is zero, the next
sequential instruction is skipped.

III-ll PROGRAM FLOW ALTERATION

Extended Instructions

The following two program flow alteration instruc­
tions are available with the NOV A 3 series of com­
puters.

RETURN (; L- V 0 {

~ \
RET 1I\C,Q..

10 I 0 0 I 0 1100000011
I

3 I 4
I I

6 1 o I I 2 5 7 I 8 I 9 I 10 I II I I,' I 13 I 14 I 15

The contents of the frame pointer are placed in the
stack pointer and then five words are popped off the
stack and placed in predetermined locations. The
words popped and their destinations are as follows:

WORD # POPPED DESTINATION

1 Bit 0 is placed in the
carry bit.
Bits 1-15 are placed in
the program counter.

2 Bits 1-15 are placed in
the frame pointer.
Bits 0 -15 are placed in
AC3.

3 AC2

4 AC1

5 ACO

Sequential operation continues with the word ad­
dressed by the updated value of the program
counter.

TRAP

TRAP acs, acd, trap number

II I A~S 1 Ace I I TRAPI N~MBER I II 0 I 0 I 0 1
o I 2 3 I 4 5 6 I 7 8 9 I 10 II 12 I 13 14 15

If a program map is enabled, it is inhibited. The
logical address of this instruction is placed in bits
1-15 of physical location 468 and bit 0 of this loca­
tion is set to O. Then the processor executes a
"jump indirect" to physical location 478' The
state of the Interrupt On flag is unaltered.

NOTE The mnemonic TRAP and the in­
struction format illustrated above
will only work with the DGC Macro
Assembler. If the program is to
be assembled using the Assembler
or the Extended Assembler, this
function can be performed by cod­
ingan instruction in the Two Accu­
mulator /Multiple Operation format
with the "No Load" and the "Never
Skip" options both specified. The
trap number can be eonstructed in
bits 5 -11 by specifying the correct
operation code, shift command,
and carry command.

III-12

SECTION IV

INPUT /OUTPUT

INTRODUCTION

In order for the processor to perform useful work
for the user, there must be'some method for the
program to transfer information outside the ma­
chine. The Input/Output (I/O) instruction set pro­
vides this facility. There are eight I/O instructions
which allow the program to communicate with I/O
devices, control the I/O interrupt system, control
certain processor options, and to perform certain
processor functions.

The NOVA line has a 6-bit device selection net­
work, corresponding to bits 10-15 in the I/O in­
struction format. Each device is connected to
this network in such a way that each device will
only respond to commands with its own device code.
Each device also has two flags, Busy and Done,
which control its operation. When Busy and Done
are both 0, the device is idle and cannot perform
any operations. To start a device, the program
must set Busy to 1 and set Done to O. When a
device has finished its operation, it sets Busy to
o and Done to 1. The case of Busy and Done both
set to 1 is a meaningless situation and will pro­
duce unpredictable results.

The format for the I/O instructions is illustrated
below.

I 0 I I , I I Ale I o~ CO~E ICON~ROLI DE~IC~ COpE
o I I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

L l 1 I I
Bits 0-2 are 011, bits 3-4 specify the AC, bits 5-7
contain the operation code, bits 8-9 control the
Busy and Done flags in the device, and bits 10-15
specify the code of the device. The six bits pro­
vided for the device code in the I/O format mean
that 64 unique device codes are available for use.
Some of these device codes, however, are reserved
for the CPU and certain processor options. The
remaining device codes are available for referenc­
ing I/O units. Some of the codes have been assigned
to specific devices by Data General and the assem­
bler recognizes mnemonics for these devices. A
complete listing of device codes, the devices as­
signed to these codes, and the mnemonics assigned
to the devices is available in Appendix A.

OPERATION OF I/O DEVICES

In general, the operation of all I/O devices is done
by manipulation of the Busy and Done flags. In
order to operate a device, the program must first
ensure that the device is not currently performing
some operation. After the program has deter­
mined that the device is available, it can start an
operation on the device by setting Busy to 1 and
Done to O. Once a device has completed its opera­
tion, and set Busy to 0 and Done to 1, it is avail­
able for another operation. The program can
determine this condition in one of two ways. By
using the I/O SKIP instruction, the program can
test the status of the Busy and Done flags. Another
way is to utilize the interrupt system that is stan­
dard on the NOV A line of computers. The inter­
rupt system is made up of an interrupt request line
to which each I/O device is connected, an Interrupt
On flag in the CPU, and a 16 -bit interrupt priority
mask. The Interrupt On flag controls the status of
the interrupt system. If the flag is set to 1, the
CPU will respond to and process interrupts. If the
flag is set to 0, the CPU will not respond to any
interrupts. An interrupt is initiated by an I/O de­
vice when it completes its operation. Upon com­
pleting the operation, the device sets Busy to 0 and
Done to 1. At this time, the device also places an
interrupt request on the interrupt request line,
provided that the bit in the interrupt priority mask
which corresponds to the priority level of. the de­
vice is O. If the mask bit is 1, the device sets
Busy to 0 and Done to 1, but does not place an in­
terrupt request on the interrupt request line.

If the Interrupt On flag is 1 at the time the proces­
sor completes execution of any instruction, the
processor honors any request on the interrupt re­
quest line. If the Interrupt On flag is 0, the CPU
does not look at the interrupt request line; it just
goes on to the next sequential instruction. The
CPU honors an interrupt request by setting the
Interrupt On flag to 0 so that no interrupts can in­
terrupt the first part of the interrupt service
routine. If no program map is enabled, the CPU
places the updated program counter in physical

IV-1 of 6 OPERATION OF I/O DEVICES

memory location 0 and executes a "jump indirect"
to physical memory location 1. It is assumed that
location 1 contains the address, either direct or
indirect, of the interrupt service routine. If a
NOVA 830 or 840 MMPU program map is enabled,
the updated program counter is placed in logical
memory 0, the map is disabled, and the CPU
executes a "jump indirect" to physical memory
location 1. If an MMU or NOVA 3/D MMU and
MPU program map are enabled, it is inhibited;
the updated program counter is placed in physical
memory location 0 and the CPU executes a "jump
indirect" to physical memory location 1.

Once the CPU has transferred control to the inter­
rupt service routine, it is up to that routine to
save any accumulators that will be used, save the
carry bit if it will be used, determine which device
requested the interrupt, and then service the inter­
rupt. The determination of which device needs
service can be done by I/O SKIP instructions or the
routine can use the INTERRUPT ACKNOWLEDGE
instruction.

The INTERRUPT ACKNOWLEDGE instruction re­
turns the 6-bit device code of the device requesting
the interrupt. If more than one device is request­
ing service, the code returned is the code of that
device requesting an interrupt which is physically
closest to the CPU on the I/O bus. After servicing
the device, the interrupt routine should restore all
saved values, set the Interrupt On flag to 1, and
return to the interrupted program. The instruction
that sets the Interrupt On flag to 1 (INT ERRUPT
ENABLE) allows the processor to execute one more
instruction before the next interrupt can take place.
In order to prevent the interrupt service routine
from going into a loop, this next instruction should
be the instruction that returns control to the inter­
rupted program. Since the updated value of the
program counter was placed in location 0 by the
CPU upon honoring the interrupt, all the interrupt
routine has to do, after restoring the AC's and the
carry bit, is execute an INTERRUPT ENABLE in­
struction, a "JMP@O" instruction and control will
be returned to the interrupted program.

PRIORITY INTERRUPTS

If the Interrupt On flag remains 0 through the in­
terrupt service routine, the interrupt routine can­
not be interrupted and there is only one level of
device priority. This level is determined by either
the order in which the I/O SKIP instructions are
issued or (if INTERRUPT ACKNOWLEDGE is used)
by the physical location of the devices on the bus.
In a system with devices of widely differing speed,
such as a teletypewriter versus a fixed head disc,
the programmer may wish to set up a multiple level
interrupt scheme. Hardware and instructions are

. available that allow the implementation of sixteen
levels of priority interrupts.

Each of the I/O devices is connected to a bit in the
16-bit priority mask. Devices which operate at
roughly the same speed are connected to the same
bit in the mask. Even though the standard mask
bit assignments have the higher numbered bits as­
signed to lower speed devices, no impliCit priority
ordering is intended. The manner in which these
priority levels are ordered is completely up to the
programmer. The listing of device codes in
Appendix A also contains the standard Data General
mask bit assignments.

The condition of the priority mask is altered by
the MASK OUT instruction. If a bit in the priority
mask is set to 1, then all devices in the priority
level corresponding to that bit will be prevented
from requesting an interrupt when they complete
an operation. In addition, all pending interrupt
requests from devices in that priority level are
disabled.

To implement a multiple priority level interrupt
handler, the interrupt handler must be written in
such a way that it may be interrupted without dam­
age. For this to be possible, the main interrupt
routine must save the state of the machine upon re­
ceiving control. The state of the machine consists
of the four accumulators, the carry bit, and the
return address. This information should be stored
in a unique place each time the interrupt handler is
entered so that one level of interrupt does not over­
lay the return information that belongs to a lower
priority level. After saving the return information,
the interrupt routine must determine which device
requires service and jump to the correct service
routine. This can be done in the same manner as
for a single level interrupt handler.

After the correct service routine has received con­
trol, that routine should save the current priority
mask, establish the new priority mask, and enable
the interrupt system with the INTERRUPT ENABLE
instruction. After servicing the interrupt, the
routine should disable the interrupt system with the
INTERRUPT DISABLE instruction, reset the pri­
ority mask, restore the state of the machine, en­
able the interrupt system, and return control to the
interrupted program.

IV-2

DATA CHANNEL

Handling data transfers between external devices
and memory under program control requires an
interrupt plus the execution of several instructions
for each word transferred. To allow greater trans­
fer rates the NOV A line contains a data channel
through which a device, at its own request, can
gain direct access to memory using a minimum of
processor time.

When a device is ready to send or receive data, it
requests access to memory ·via the channel. At the
beginning of every memory cycle the processor
synchronizes any requests that are then being
made. At certain specified points during the exe­
cution of an instruction, the CPU pauses to honor
all previously synchronized requests. When a re­
quest is honored, a word is transferred directly
via the channel from the device to memory or from
memory to the device without specific action by the
program. All requests are honored according to
the relative position of the requesting devices on
the I/O bus. That device requesting data channel
service which is physically closest on the bus in
serviced first, then the next closest device, and
so on, until all requests have been honored. The
synchronization of new requests occurs concur­
rently with the honoring of other requests l' so if a
device continually requests the data channel, that
device can prevent all devices further out on the
bus from gaining access to the channel.

Following completion of an instruction, the proces­
sor handles all data channel requests, and then
honors all outstanding I/O interrupt requests.
After all data channel and I/O interrupt requests
have been serviced, the processor continues with
the next sequential instruction. The data channel
is fully described in the" Programmer's Reference
Manual for Peripherals", ordering number
015-000021.

CODING AIDS

The set of I/O instructions has options that can be
obtained by appending mnemonics to the standard
mnemonic. These optional mnemonics and their
result are given below.

CLASS CODED RESULT
ABBREVIA TION CHARACTER BITS OPERATION

f (option omitted) 00 Does not affect the
Busy and Done flags.

S 01 Start the device by
setting Busy to 1 and
Done to O.

C 10 Idle the device by set-
ting both Busy and Done
to O.

P 11 Pulse the special in -out
bus control line. The
effect, if any, depends
upon the deviee.

IV-3

I/O INSTRUCTIONS

DATA IN A

I 0 I I I I AC I 0 I 0 ,
0' I 2 3'45 6 7

DEVICE CODE
! I I I

10 II 12 13 14 15

The contents of the A input buffer in the specified
device are placed in the specified AC. After the
data transfer, the Busy and Done flags are set
according to the function specified by F.

The number of data bits moved depends upon the
size of the buffer and the mode of operation of
the device. Bits in the AC that do not receive
data are set to O.

DATA IN B

DIB< f > ac , device

10 I I I AC 10 I
" , I ~ I DEVICE CODE

I , I

0123456 7 8 9 10 II 12 13 14 15

The contents of the B input buffer in the specified
device are placed in the specified AC. After the
data transfer, the Busy and Done flags are set
according to the function specified by F.

The number of data bits moved depends upon the
size of the buffer and the mode of operation of
the device. Bits in the AC that do not receive
data are set to O.

DATA IN C

DIC<f>

1 0 " I I AC II I 0
0'123'456'7

~ I DEVICE CODE
10 I II I 12 I 13 I 14 15 8 9

The contents of the C input buffer in the specified
device are placed in the specified AC. After the
data transfer, the Busy and Done flags are set
according to the function specified by F.

The number of data bits moved depends upon the
size of the buffer and the mode of operation of the
device. Bits in the AC that do not receive data
are set to O.

I/O INSTRUCTIONS

DATA OUT A

DOA<f> ac, device

1 0 I I I AC 1 0 I
I 01 F

I I I I I

0 I 2 3 4 5 6 7 8 9

DEVICE CODE
! I !

10 II 12 13 14 15

The contents of the specified AC are placed in the
A output buffer oL the specified device. After the
data transfer, the Busy and Done flags are set
according to the function specified by F. The con­
tents of the specified AC remain unchanged.

The number of data bits moved depends upon the
size of the buffer and the mode of operation of the
device.

DATA OUT B

DOB< f > ac, device

I 0 I I I AC I I 0 0 I
I I - I - I I - ~ I DEVICE CODE

I I I

01234567 8 9 10 II 12 13 14 15

The contents of the specified AC are placed in the
B output buffer of the specified device. After the
data transfer, the Busy and Done flags are set
according to the function specified by F. The con­
tents of the specified AC remain unchanged.

The number of data bits moved depends upon the
size of the buffer and the mode of operation of the
device.

Iv-4

DATA OUT C

DOC<f> ac,device

/0 I I I I / AC /1 I I 0 /
o I 2 3 I 4 5 6 I 7

~ 1 DEVICE CODE
! ! I I !

8 9 10 II 12 13 14 15

The contents of the specified AC are placed in the
C output buffer of the specified device. After the
data transfer, the Busy and Done flags are set
according to the function specified by F. The con­
tents of the specified AC remain unchanged.

The number of data bits moved depends upon the
size of the buffer and the mode of operation of the
device.

The I/O SKIP instruction enables the programmer
to make decisions based upon the values of the
Busy and Done flags. Which test is performed is
based upon the value of bits 8 -9 in the instruction.
Bits 8-9 can be set by appending an optional mne­
monic to the I/O SKIP mnemonic. The optional
mnemonics and their results are given below.

CLASS CODED
ABBREVIA TION CHARACTER

t BN
BZ
DN
DZ

I/O SKIP

SKP<P device =
/0 I I I 1 0 0 II I I

0 1 123 1 456 1 7

RESULT
BITS

00
01
10
11

T I
8 9

OPERATION

Tests for Busy = 1.
Tests for Busy = O.
Tests for Done = 1.
Tests for Done = O.

DEVICE CODE
1011,112113114115

If the test condition specified by T is true, the
next sequential instruction is skipped.

NO I/O TRANSFER

10111/00101001
0 1 123 1 456 1 7

F
I

8 9

I DEYICE C~DE I I
10 II 121 13 14 15

The Busy snd Done flags in the specified device
are set according to the function specified by F.

CENTRAL PROCESSOR FUNCTIONS INTERRUPT ENABLE

I/O instructions with a device code of 77 perform INTEN

NIOS CPU
a number of special functions rather than control­
ling a specific device. In all but the I/O SKIP in­
struction, I/O instructions with a device code of
77 use bits 8-9 to control the condition of the
Interrupt On flag. An I/O SKIP instruction with a
device code of 77 uses bits 8-9 to either test the
state of the Interrupt On flag or to test the state of
the Power Fail flag. The mnemonics are the same
as for normal I/O instructions. . The table below
gives the result of these bits for instructions with
a device code of 77.

101,110010,0,010,111,1,1,1,1,1\
o 'I 2 3 '4 5 6 7 8 9 10 II 12 13 14 15

CLASS CODED RESULT
ABBREVIA TION CHARACTER BITS OPERATION

f (omitted) 00 Does not affect the
state of the Interrupt
On flag.

S 01 Set the Interrupt On
flag to 1.

C 10 Set the Interrupt On
flag to O.

P 11 Does not affect the
state of the Interrupt
On flag.

t BN 00 Tests for Interrupt
On = 1.

BZ 01 Tests for Interrupt
On = O.

DN 10 Tests for Power
Fail = 1.

DZ 11 Tests for Power
Fail = O.

The device code of 77 deals mainly with proces­
sor functions and has, therefore, been given the
mnemonic of CPU. In addition, many of the I/O
instructions that reference this device code have
been given special mnemonics. While these
special mnemonics are functionally equivalent to
the corresponding I/O instructions with a device
code of 77, there is the following limitation; the
mnemonics for controlling the state of the Inter­
rupt On flag cannot be appended to them. If the
programmer wishes to alter the state of the Inter­
rupt On flag while performing a MASK OUT in­
struction, for example, he must issue the
appropriate I/O instruction (DOB<f> ac, CPU)
instead of the corresponding special mnemonic
(MSKO ac). If the special mnemonic is used, bits
8-9 are set to 00. In describing the instructions,
the special mnemonic for the corresponding I/O
instruction will be given first, followed by the I/O
instruction.

IV-5

The Interrupt On flag is set to 1. If the state of
the Interrupt On flag is changed by this instruction,
the CPU allows one more instruction to execute
before the first I/O interrupt can occur.

INTERRUPT DISABLE

INTDS

NIOC CPU

10 1 11° 1 °1 0,0,01 ,0 I
o '

, , ,
I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

The Interrupt On flag is set to o.

READ SWITCHES

READS ac

DIA<f> ac,CPU
= =

1 ° I I I AC I ° ° 1 I F
" , "

, ,
01234567 8 9 10 II 12 13 14 15

The setting of the console data switches is placed
in the specified AC. After the transfer, the Inter­
rupt On flag is set according to the function speci­
fied by F.

INTERRUPT ACKNOWLEDGE

INTA ac

DIB<f> ac,CPU

1° I I I 1 I AC 10 , 1
o I 2 3 I 4 5 6 ' 7 14 15

The six-bit device code of that device requesting an
interrupt which is physically closest to the CPU on
the bus is placed in bits 10-15 of the specified AC.
Bits 0-9 of the specified AC are set to O. After the
transfer, the Interrupt On flag is set according to
the function specified by F.

CENTRAL PROCESSOR FUNCTIONS

MASK OUT

MSKO ac

DOB<f> ac,CPU

I ~ I : ' : I tf 4 I : ' ~ I ~ I 10 II 12 13 14 15

The contents of the specified AC are placed in the
priority mask. After the transfer, the Interrupt
On flag is set according to the function specified by
F. The contents of the specified AC remain un­
changed.

NOTE A 1 in any bit disables in­
terrupt requests from de­
vices in the corresponding
priority level.

I/O RESET

10RST

DIC<f> ac, CPU

10 I I I AC II 0
0 1 1'23 1 45'6 1 7 12 I 13 14 15 8 9 10 II

The Busy and Done flags in all I/O devices are set
to O. The 16-bit priority mask is set to O. The
Interrupt On flag is set according to the functiol
specified by F.

NOTE For the NOVA 3 series of com­
puters, if the RESET jumper is
installed in the CPU, the instruc­
tion OOA<P ac, CPU is equiv­
alent to mc< f>- ac, CPU.

= =
If either the mnemonic DIC or

the mnemonic DOA is used to per­
form this function, an accumula­
tor must be coded to avoid
assembly errors. Regardless of
how the instruction is coded, dur­
ing execution, the AC field is ig­
nored and the contents of the AC
remain unchanged.

HALT

HALT

DOC<f> ac, CPU

10 I , I I Af II ,
7 10 II 121 13 14 15

The Interrupt On flag is set according to the func­
tion specified by F and then the processor is
stopped.

NOTE If the mnemonic DOC is used
to perform this function, an
accumulator must be coded to
avoid assembly errors. Dur­
ing execution of this instruc­
tion' the AC field is ignored.

CPU SKIP

SKP<t> CPU

101 ,11 00 1 T I LiJ
o I I 2 3 I 4 5 6 7 8 ' 9 10 II 121 13 14 15

If the test condition specified by T is true, the next
sequential instruction is skipped.

SECTION V

PROCESSOR OPTIONS

INTRODUCTION

Optional equipment for the NOVA line computers
includes a power monitor with the facility for auto­
matic restart after a power failure , multiply/divide,
real-time clock, memory address translation, and
floating point arithmetic.

POWER FAIL

In the NOVA line, when power is turned off and
then on again, core memory is unaltered. How­
ever, when the power is turned on, the state of the
accumulators, the program counter, and the var­
ious flags in the CPU is indeterminate. The power
fail option provides a "fail-soft" capability in the
event of unexpected power loss.

In the event of power failure, there is a delay of
one to two milliseconds before the processor shuts
down. The power fail option senses the imminent
loss of power, sets the Power Fail flag, and re­
quests an interrupt. The interrupt service routine
can then use this delay to store the contents of the
accumulators, the carry bit, and the current pri­
ority mask. The interrupt service routine should
also save location 0 (to enable return to the inter­
rupted program), put a JUMP to the desired re­
start location in location 0, and then execute a
HALT. One to two milliseconds is enough time to
execute 200 to 1500 instructions depending on the
processor, so there is more than enough time to
perform the power fail routine.

When power is restored, the action taken by the
automatic restart portion of the power fail option
depends upon the position of the power switch on
the front panel. If the switch is in the" on" posi­
tion' the CPU remains stopped after power is re­
stored. If the switch is in the "lock" position,
then 50ms after power is restored, the CPU exe­
cutes a "JMP 0" instruction, restarting the inter­
rupted program.

The power fail option has no device code and no
interrupt disable bit in the priority mask. It does
not respond to the INTERRUPT ACKNOWLEDGE
instruction. The Power Fail flag can be tested by
the CPU SKIP instruction. Testing of the Power
Fail flag is described below.

SKIP IF POWER'FAIL FLAG IS ONE

SKPDN CPU

1 0 ,,, 1 0 0 I

o 'I 2 3 ' 4 5 6 7 8 9 10 II

If the Power Fail flag is 1 (i. e., power is failing),
the next sequential instruction is skipped.

SKIP IF POWER FAIL FLAG IS ZERO

SKPDZ CPU

1 0 , I I 1 0 0 I

0 1 I 2 3 1 4 5 6 1 7 8
I' , ,

9 10 I II I 12 1 13 I 14 15

If the Power Fail flag is 0 (i. e., power is not fail­
ing) , the next sequential instruction is skipped.

MULTIPLY / DIVIDE

Multiplication can be performed on the NOVA line
by software routines that utilize the standard in­
struction set, but if many of these operations are
required, a loss of efficiency can result. The
multiply/divide option provides the capability of
performing these operations in hardware, with a
corresponding increase in CPU efficiency and
utilization. Two versions of this option are avail­
able: one for the NOVA computer, and one for the
rest of the computers in the NOVA line. The two
versions of this option and the instructions for each
are described below.

NOVA Multiply /Oivide

The multiply/divide option for the NOVA computer
is an I/O device and is controlled by I/O instruc­
tions. The device code for the NOVA computer
multiply/divide option is 1. It has no Busy and
Done flags and does not respond to the INTERRUPT
ACKNOWLEDGE instruction. It has three buffers:
A, B, and C that can be written and read using stand­
ard I/O instructions. Multiplication and division is
controlled by the setting of the control field in the
I/O instruction. The control field setting and the
resulting operation are described below.

V-1 of 28
POWER FAIL

CLASS CODED RESULT
ABBREVIATION CHARACTER BITS OPERATION

f (option 00 None
omitted)

S 01 The contents of the A and B
buffers are treated as an un-
signed, double length integer,
with the A buffer being the
left half and the B buffer being
the right half. This number is
divided by the unsigned integer
contained in the C buffer. The
quotient is placed in the B buf-
fer and the remainder is placed
in the A buffer. The contents
of the C buffer remain unchanged.

C 10 The A buffer is set to O.

P 11 The unsigned integers contained
in the Band C buffers are mul-
tiplied together to form a double
length, unsigned, int.ermediate
result. The unsigned integer
contained in the A buffer is added
to this number and the final result
is placed in the A and B buffers.
The left half is placed in the A
buffer and the right half is placed
in the B buffer. The contents of
the C buffer remain unchanged.

Non-NOVA Multiply/Divide

The multiply/diVide option for the rest of the com­
puters in the NOVA line is a part of the CPU. For
compatibility, the instructions for the option are
r/o instructions that reference device code 1.
The assembler recognizes the mnemonics MUL
and DIV for these operations. The Mnemonics
and the r/o instructions generated along with a
description of the instructions appear below.

MULTIPLY

MUL

DOCP 2,MDV

01
6 I 7 8 o I 2 3 4 5 9 10 II 12 13 14 15

The 16-bit unsigned number in AC1 is multiplied
by the 16-bit unsigned number in AC2 to yield a
32-bit unsigned intermediate result. The 16-bit
unsigned number in ACO is added to the intermediate
result to produce the final result. The final result
is a 32 -bit unsigned number and occupies ACO and
ACt. Bit 0 of ACO is the high-order bit of the re­
sult and bit 15 of AC1 is the low-order bit. The
contents of AC2 remain unchanged. The carry bit
remains unchanged. Because the result is a
double-length number, overflow cannot occur.

V-2

DIVIDE

DIV

DOCS 2,MDV

10 I
o I I 2 3 I 4 5

010,110000011
6 I 7 8 9 10 ' II ' 12 I 13 ' 14 ' 15

The 32-bit unsigned number contained in ACO and
AC1 is divided by the 16-bit unsigned number in
AC2. Bit 0 of ACO is the high-order bit of the
dividend and bit 15 of AC1 is the low-order bit.
The quotient and remainder are 16-bit unsigned
numbers and are placed in AC1 and ACO, re­
spectively. The carry bit is set to O. The con­
tents of AC2 remain unchanged.

NOTE Before the divide operation
takes place, ACO is com­
pared to AC2. If the number
in ACO is greater than or
equal to the number inAC2,
an overflow condition is in­
dicated. The carry bit is set
to 1 and the operation is ter­
minated. All operands re­
main unchanged.

REAL· TIME CLOCK

The Real-Time Clock (RTC) option available on the
NOVA line generates a sequence of pulses that is
independent of the CPU timing. It will generate
I/O interrupts at anyone of four program select­
able frequencies. The Busy and Done flags of the
RTC option are controlled by bits 8-9 of the I/O
instruction. The RTC option is device code 148 and
has the mnemonic RTC. The interrupt disable bit
is priority mask bit 13.

Setting Busy allows the next pulse from the clock
to set Done, and the RTC option requests an I/O
interrupt if its interrupt disable bit is o. A DATA
OUT A instruction to select the clock frequency
only has to be given once. After each interrupt, an
NIOS instruction will set up the clock for the next
interrupt.

When Busy is first set the first interrupt can come
at any time up to the clock period. After the first
interrupt has occurred, succeeding interrupts
come at the clock frequency, provided that the pro­
gram always sets Busy before the clock period ex­
pires. After power up or I/O reset, the clock is
set to the line frequency. After power up the line
frequency pulses are available immediately, but
five seconds must elapse before a steady pulse train
is available from the crystal for other frequencies.

The RTC frequency is selected by the following
instruction:

SELECT RYC FREQUENCY

DOA<f> ac,RTC
=

I 0 I I , I I AC I 0 ,I 0 I ~
0123 1 456 1 78

10 0 I ,0,0 I
9 10' 11'12 1 1314 15

The clock frequency is set according to bits 14-15
of the specified AC. The contents of the specified
AC remain unchanged.

AC BITS 14-15 FREQUENCY

00 AC line frequency

01 10Hz

10 100Hz

11 1000Hz

V-3

MEMORY PARITY OPTION

The Memory Parity option available on the NOVA
3 series of computers provides a means of detect­
ing single-bit memory errors as they occur. In
the event of a memory error, the parity option
can either directly reset the system or initiate a
program interrupt request. If an interrupt is
requested, the programmer can determine the
physical address of the word in which the error
occurred, and then proceed or halt as desired.

The parity option consists of a parity controller
and memory modules with parity circuitry. It is
possible to have both parity and non-parity memory
modules in the same system. In such a system,
the parity controller will ignore accesses to non­
parity memory modules.

Method of Operation

Parity is a method of detecting single -bit errors,
i. e., one bit in a word unintentionally changed
from a 0 to a 1, or from a 1 to a O. This is done
by adding a single additional bit to each word, and
coding that bit such that the total number of bits
set to 1 in each word is odd or even, depending
upon whether odd or even parity is being used.

The word length of a parity memory is thus 17
bits, consisting of 16 data bits and 1 parity bit.
Each time a memory location is written, the parity
option computes the parity bit and passes it to the
memory along with the data bits. Each time a
location is read, the parity option computes the
parity and checks this parity bit against the parity
bit read from memory. If the two bits are the
same, no error has occurred and the 16 data bits
are passed along with no delay in the cycle time of
the memory. If the two bits are not the same, a
single-bit error has occurred and the parity option
either executes a system reset 0r initiates a pro­
~ram interrupt request.

The parity option may operate with either odd or
even parity. This choice is under program control.
For odd parity, the parity bit will be set so that
the total number of bits set to 1 in the 17-bit mem­
ory word is an odd number. For even parity, the
parity bit will be set so that the total number of
bits set to 1 in the 17 -bit memory word is an even
number. Note that 0 is an even number. This
means that if a memory location fails such that all
17 bits are read as 0, this will be an error with
odd parity, but not with even.

The choice of whether the parity option executes a
system reset or initiates a program interrupt
request upon finding a memory error is selectable
by jumpers on the parity option board.

MEMORY PARITY OPTION

Device code 4 and the mnemonic PAR are assigned
to the parity option. The parity option has a Busy
and a Done flag, with the following meanings:

Done:

Busy:

1 Parity error
o = No parity error

1 = Even parity
o = Odd parity

The flag control commands for the parity option
are as follows:

f = S

f = C

f = P

Set odd parity, enable parity
interrupts.

Clear parity error,
disable parity interrupts.

Set even parity, enable parity
interrupts.

In addition, an I/O RESET instruction will clear
parity error, set odd parity, and disable parity
interrupts. This is also the state that the machine
is in when power is first turned on.

Two instructions are used to find the address which
caused the parity error:

READ PARITY ERROR ADDRESS

DIA <1> ac, PAR

I ° I I I I AC I ° I °
0 1 123 1 456 1 7

F 10 ° ° ° °
8 9' 10 I II I 12 I 13 I 14 I 15

The parity bit associated with the most recent
memory error is placed in bit 0 of the specified
ACo The low-order 15 bits of the physical memory
address where the parity error was found are
placed in bits 1-150 After the transfer, the func­
tion specified by F is performedo The format of
the specified AC is as follows:

PHYSICAL MEMORY ADDRESS IpARI 1 1
- . - . 1 I I 1 I I 1 I I 1

o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

BITS CONTENTS

0 Parity bit associated with memory
erroro

1-15 Physical memory address where
parity error was found.

READ EXTENDED ERROR ADDRESS

DIB <f> ac, PAR

I ° I I I I AC 10 I
0 1 123 1 45 1 6 1 7

F 10 ° ° 10101
8 I 9 10 I II I 12 1 13 14 15

The two high-order bits of the physical memory
address where the most recent parity error was
found are placed in bits 1 and 2 of the specified
AC. Bits 0 and 3-15 are set to O. After the trans­
fer, the function specified by F is performed. The
format of the specified AC is as follows:

BITS CONTENTS

0 Reserved for future use.
1-2 High-order bits of the physical

memory address where the parity
error was found.

3-15 Reserved for future use.

V -3.1

V -:3.2

MEMORY MANAGEMENT

Background to Address Translation

The concept behind the various memory manage­
ment features available with the NOVA line com­
puters is that of "Logical-to-Physical Address
Translation". The amount of memory required by
a user's program is defined to be his "logical ad­
dress space". This space may be as large as 32
1K pages. The areas of physical storage assigned
to the user are defined to be his "physical address
space". The address translation function that con­
verts addresses in the logical space to addresses
in the physical space is called the "address map"
for that user. Each user has his own, unique
logical-to-physical address map. In addition,
there is a map for the data channel which can be,
but does not have to be equal to the user map. The
multiprogramming operating system determines
what these maps are to be, and then transmits this
information to the address translation hardware.
The following instruction shows a possible two-user
configuration.

Figure 1 shows a 128K physical address space and
its utilization by a two-user multiprogramming
system. The supervisor resides in pages 0 -7 of
physical space. The first 16 pages of user #1 are
in pages 8-23 of physical memory. The remain­
ing 16 pages of the address space for user #1 re­
side in pages 40-55 of physical space. User #2
also has his 32K of logical space split into two

V-4

areas. Pages 0-15 of user #2 are in pages 24-39
of physical space and pages 16-31 of user #2 are in
pages 56-71 of physical space. The data channel is
capable of servicing both users. Any data chan­
nel reference to pages 0-15 of logical space will
be mapped to pages 0-15 of the logical space of
user #1. Any data channel reference to logical
pages 16-31 will be mapped fo pages 0-15 of the
logical space of user #2.

USER I
LOGICAL

0

15
16

~

1=

~

0

PHYSICAL
MEMORY

SUPERVISOR

7
8

23
24

39
40

55
56

71
72

r== :=

f¢=

f¢=

'-'===

~~F=

OG-oom W

USER 2
LOGICAL

ro--

t\f----16

L-

DCH
LOGICAL
0-

t\f----16

~

Figure 1 Logical-to -Physical Address Translation

In order to manage memory efficiently, the operat­
ing system makes use of the validity and write pro­
tect features of the address translation hardware,
if possible. Figure 2 shows a two-user configura­
tion where these features are used.

In Figure 2, a "W" in a page means the page is
write-protected. By convention, mapping a logical
page to physical page 127 and write protecting it
makes that page validity protected. Both users
have declared that page 1 of their logical space is
to be write -protected.

Physical page 8 is the logical page 1 for user #1
and physical page 10 is the logical page 1 for user
#2. User #1 is only using 13 pages of his 32 page
logical address space, so logical pages 13-31 have
been declared invalid for him. Any reference by
user #1 to logical pages 13-31 will cause a validity
error . User #2 is only using 21 pages of his logi­
cal address space, so logical pages 21-31 of his
logical space have been declared invalid. Any
reference by user #2 to logical pages 21-31 will
result in a validity error.

The address translation hardware resides between
the memory and the CPU, and the memory and the
data channel, and is transparent to all of them.
When either the CPU or the data channel requests
a memory operation, the address translation hard­
ware intercepts and services the request. The
address translation hardware translates the 15 bit
logical address coming from the CPU or the data
channel into a 17 bit physical address. The mem-
01'y operation is then performed using this 17 bit
address. The memory access cycle time is un­
changed.

The mapping information needed to service a CPU
or data channel request is given to the address
translation hardware by the operating system
through I/O instructions that reference the address
translation hardware. This information is trans­
mitted before the supervisor enables either the
user map or the data channel map.

V·-5

USER I
LOGICAL I

0
W I

2

8
9

12
13

F=

31

OG-00232

PHYSICAL
MEMORY

0

SUPERVISOR

7
8 W

b~ W

12

13

L
19
20

29
30

~

33
34

41
42

127 W

USER 2
LOGICAL

0

I

\¢=::!l
2
3

12
13

f::==-

20
21

r;:::=

~J
31

'"

Figure 2 Logical-to -Physical Address Translation
With Write and Validity Protection

BACKGROUND TO ADDRESS TRANSLATION

ADDRESS TRANSLATION USING
THE NOVA 830 AND 840 MMPU

The Memory Management and Protection Unit
available with the NOVA 830 and NOVA 840 com­
puters is programmed with ten I/O instructions.
Through the use of these instructions, the multi­
programming operating system tells the MMPU
what the address translation functions are to be.
An address translation function is called a "map"

h " " and the two maps for the MMPU are t e user map
and the "data channel map". These two maps are
separate and independent. They can be enabled
concurrently. Enabling the user map allows the
MMPU to translate addresses for the CPU. Enabl­
ing the data channel map allows the MMPU to trans­
late addresses for the data channel.

The MMPU operates in two modes called user mode
and supervisor mode. In user mode, all logical
addresses coming from the CPU are translated us­
ing the user map. Checking is also performed for
all protection features that are enabled. In super­
visor mode, the user map for logical pages 0-30 is
disabled and no protection checking is performed.
All addresses in the range 760008-777778 will be
translated using the user map for logical page 31.
This enables the supervisor to access portions of
user space while in supervisor mode, without re­
sorting to lengthy use of the ENABLE SINGLE
CYCLE instruction. The data channel map can be
enabled or disabled in either of these modes.

When power is first turned on, or after an IORST
instruction, the MMPU is in the supervisor mode
and the data channel map is disabled. Logical
page 31 is mapped to physical page 31. On power
up, the user map, data channel map, and the device
protect codes are undefined. After the first LOAD
MAP instruction, logical page 31 is mapped accord­
ing to whatever address is in that portion of the
MMPU.

The instructions for the MMPU are in the standard
I/O format. The device code for the MMPU is 2.

LOAD MAP

DOA aC,MMPU

10 1,IIAlelo,I 01 0 ,01 0 ,0,° 1°,1,01
o I I 2 3 4 5 6 I 7 8 9 10 II 12 1:3 14 15

The contents of the specified AC are transferred to
the MMPU. The contents of the specified AC re­
main unchanged. The format of the AC is as
follows:

012 3 4 5 6 7 8 9 10 II 12 13 14 15

V-I>

BITS CONTENTS

o Must be O.

1 Must be O.

2 0 = this instruction gives an address trans-
1ation for the CPU (user map).

1 = this instruction gives an address trans­
lation for the data channel (data chan­
nel map).

3 -7 Logical page number. This is an octal
number in the range 0-37. •

8 0 = no write -protect for this page.

1 = this page is to be write -protected.

NOTE: A logical page is validity protected
by mapping it to physical page num­
ber 127 and setting the write­
protect bit.

NOTE: If both the data channel bit and the
write -protect bit are set, the write
protect bit is ignored.

9-15 Physical page number. This is an octal
number in the range 0-177.

This is the instruction that sets up the translation
function from logical memory to physical memory.
After this instruction is issued and the correspond­
ing mapping feature enabled, any address in the
1K logical page is translated to the corresponding
address in the 1K physical page.

Example:

Assume that a LOAD MAP instruction has been is­
sued with bit 2= 0, logical page= 24, and physical
page= 105. With the user map enabled, the CPU
requests data from location 50302. The MMPU
will intercept this request, translate it, and re­
trieve the data from physical location 212302.
This LOAD MAP instruction, mapping logical page
24 to physical page 105, would allow the mapping
of all addresses in the range 50000-51777 of logi­
cal memory. Any request for an address in this
1K page would be translated to locations 212000-
213777 in physical memory.

NOTE All numbers in the above ex­
ample are octaL

LOAD DEVICE PROTECTION

DOA aC,MMPU

010,010 a a a ,01
6 I 7 8 9 10 ' II ' 12 I 13 ' 14 15

The contents of the specified AC are transferred to
the MMPU. The contents of the specified AC re-

main unchanged. The format of the AC is as
follows:

Device Protect Bits

o 2 3 4 5 6 7 8 9 10 II 12 13 14 15

BITS CONTENTS

o Must be O.

1 Must be 1.

2 -4 Ignored.

5-7 :Qevice class. This is an octal number in
the range 0 -7. This is the most significant
digit of the two -digit octal device code.

8-15 Device protect bits. The second digit of
the two-digit octal device code is specified
by the position in this field. A one in any
bit protects the corresponding unit from re­
ceiving any commands directly from the
user. For example, if bits 5-7 are 010 and
bits 8-15 are 01010000, then devices 21 and
23 are protected.

NOTE: Code 77 functions such as HALT,
INTDS, IORST, etc., may be for­
bidden to the user by issuing this
instruction with the contents of the
specified AC set to 043401 (octal).

LOAD PROTECTION CONTROL

DOA ac,MMPU

10 1,IIAlelo,I olo,olO,O,OI(),I,ol
o I I 2 3 4 5 6 1 7 8 9 10 II 12 13 14 15

The contents of the specified AC are transferred to
the MMPU. The contents of the specified AC re­
main unchanged. The format of the AC is as
follows:

II II rOefe,.IW"t.II 10!DCHI I I I I IQn~red I 'I

o I 2 3 4 5 6 7 8 9 10 II 121 13 14 15

BITS CONTENTS

0 Must be 1.

1 Must be 1.

2 o = disable defer protection.

1 = enable defer protection.

3 Write -protect.

o = disable write -protection.

1 = enable write -protection.

4 I/O protect.

o = disable I/O protection.

1 = enable I/O protection.

V-7

BITS CONTENTS

5 Data channel map.

o = disable data channel map.

1 = enable data channel map.

NOTE: If this bit is 1, the data channel
map is enabled immediately.

NOTE: Each protection may be enabled
independently of the others.

6-15 Ignored.

This instruction controls the data channel map and
the protection features of the MMPU.

If a protection is disabled, the MMPU does no
checking for it, and if a violation occurs, takes no
action. If a protection is enabled, the MMPU
checks each instruction for a violation of that pro­
tection and, if one is found, enters the supervisor
mode and transfers control (" traps ") to a specific
physical location in the supervisor. These trap
locations and the conditions that cause the trap are
as follows:

TRAP
LOCATION (octal) TRAP CAUSE

40 I/O protect violation
Validity violation

41 Runaway defer violation
Write violation

These locations should contain jump instructions
that will transfer control to supervisor routines
that will determine the exact error and its severity
and then take action.

NOTE The trap operation is equi­
valent to a direct jump to
one of the trap locations.

ENABLE USER MAP

NIOS MMPU

1°11111° 01°1°01°1110 ° 00 01
o I 2 3 I 4 5 6 I 7 8 9 10 I II I 12 I 13 14 15

The address translation function for the CPU is
enabled. Three fetch or defer cycles are allowed
to elapse, then all CPU requests for memory are
translated according to the previous LOAD MAP

ADDRESS TRANSLATION USING THE MMPU

instructions. Entry into a user program should be
done in the following manner:

NIOS 2
INTEN
JMP @ 0+1

;SOME COMBINATION OF
LOAD PROTECTION
CONTROL, LOAD DE­
VICE PROTECTION, AND
LOAD MAP.

ADDR ;USER START ADDRESS

The contents of AD DR and all succeeding CPU re­
quests for memory are mapped.

INITIATE PAGE CHECK

DOA ac,MMPU

10 I,IIA clo, 1010,010000 01
o I I 2 3 I 4 5 6 I 7 8 9 10' II ' 12 I 13' 14 15

The contents of the specified AC are transferred to
the MMPU for later use by READ STATUS. The
contents of the specified AC remain unchanged.
The format of the AC is as follows:

I I I 0 I ~ I L.Olli,cOI fall' I , I ,llIn~r.d I ' ,
o I 2 3 I 4 5 6 I 7 8 9 10 II 12 13 14 15

BITS CONTENTS

0 Must be 1.

1 Must be O.

2 Data channel bit.

o = this instruction refers to the user map.

1 = this instruction refers to the data chan-
nel map.

3-7 Logical page. This is an octal number in
the range 0-37, and is the number of the
logical page for which status will be re-
quested.

8-15 Ignored.

This instruction is used, in conjunction with the
READ STATUS instruction, to determine the trans­
lation function for a logical page. The INITIATE
PAGE CHECK instruction indicates to the MMPU
which map and logical page should be referenced
for the next READ STATUS instruction.

READ STATUS

DIC aC,MMPU =
10 I,IIA ell 0 110010000 01

o I I 2 3 I 4 5' 6 I 7 8' 9 10' II' 12 I 13' 14 15

V-8

The status bits for the MMPU and the write -protect
bit and physical page number which correspond to
the logical page number given in the last INITIATE
PAGE CHECK'instructiona.re placed in the speci­
fied AC. The previous contents of the specified
AC are lost. The format of the data placed in the
specified AC is as follows:

BITS

o

1

2

3

4

5

6

Physical POQe

9-+ 10 II 12 13 14 15

MEANING IF SET

User mode. The last program interrup~
occurred whIle in user mode.

Write violation. A write violation has
occurred.

I/O violation. An I/O violation has oc­
curred.

Validity violation. A validity violation has
occurred.

Single instruction map. The error oc­
cur red in the map cycle of an ENABLE
SINGLE CYCLE instruction.

Reserved for future use.

Defer violation. The seventeenth level of
a defer loop has been detected.

7 Floating point. A write-protect violation
or validity violation occurred during a
floating point unit data channel cycle.

8 Write-protect. This is the write-protect
bit associated with this physical page.

9-15 Physical page. This is an octal number in
the range 0-177 and is the number of the
physical page which corresponds to the
logical page given in the last INITIATE
PAGE CHECK.

READ INSTRUCTION ADDRESS

DIA ac,MMPU

10 I,IIA clo,O 110,010000 01
o I I 2 3 I 4 5 6 I 7 8 9 10 ' II ' 12 I 13 14 15

The logical address of the instruction that caused
the trap is placed in the specified AC. After the
instruction, bit 0 of the specified AC is cleared
and bits 1-15 contain the address as an octal num­
ber in the range 0-77777. The original contents
of the specified AC are lost.

READ INVALID ADDRESS

DIB ac,MMPU

10 I,IIA clO,1 11 0 ,01 0 ,00 oo::ciJ
o I I 2 3 I 4 5 6 I 7 8 9 10 II' 12 I 13' 14 15

The logical address which caused the trap is placed
in the specified AC. After the instruction, bit 0 of
the specified AC is cleared and bits 1-15 contain
the address as an octal number in the range
0-77777. The original contents of the specified
AC are lost.

ENABLE SINGLE CYCLE

NIOP MMPU

1011,110010,01011,110,0,00,1,01
o I 2 3 I 4 5 6 7 8 9 10 II 12 1 13 14 15

The data fetch portion of an instruction is trans­
lated using the user map. Two fetch or defer
cycles are allowed to elapse and the third fetch or
defer cycle is translated using the user map. Suc­
ceeding fetch or defer cycles are mapped until an
execute cycle occurs. After the first execute cycle,
the user map is disabled and succeeding instruc­
tions are done in supervisor mode.

NOTE No protection features are
enabled during this mapping
process.

This instruction can be used for at least two pur­
poses:

a) to access data out of logical memory when not
in user mode with a minimum of overhead.

b) to execute an instruction in the supervisor as if
it were a user instruction.

NOTE This instruction clears the
status register.

Example:

The following instructions will load the contents of
logical location 4008 into ACO while in supervisor
mode:

NIOP
LDA
JMP
000400

V-9

LOGICAL
0

400 L---.J /1

II

-

15

0

7
8

PHYSICAL
MEMORY

SUPERVISOR

NIOP 2
LDAO,@.+)

JMP.+2
000400

16 rr=---v

23
24

31 J-..

39
40

~
OG-00239

127'

Figure 3 Graphic Representation of Example

SUPERVISOR CALL

NIOC MMPU

01234567 8 9 10 II 12 13 14 15

10 I 110010001
I' 1 'I

The MMPU disables I/O requests, enters the
supervisor mode and the next instruction is fetched
from location 42 (octal) of physical memory. This
instruction can be used to implement supervisor
functions at the discretion of the individual instal­
lation.

ADDRESS TRANSLATION USING THE MMPU

SUPERVISOR PROGRAMMING FOR
THE NOVA 830 AND 840 MMPU

Setting Up For Translation

The information that allows the MMPU to translate
addresses comes from the multiprogramming
supervisor. The instructions used are LOAD
MAP, LOAD DEVICE PROTECTION, and LOAD
PROTECTION CONTROL. By using the LOAD
MAP instruction, the supervisor gives the MMPU
a beginning physical address for each of the 32
logical pages. At any single point in time, all 32
pages should be described. If there is no physical
storage available to hold a logical page (for in­
stance a machine with 16K of storage), then that
page should be mapped to physical pagenumber 127
and write-protected. If this is the case, any
attempted reference to this logical page will gen­
erate a validity trap. The LOAD MAP instruction
is also used to direct the actions of the data chan­
nel. If the user is allowed to directly initiate data
channel activity, the data channel map should be
the same as the user map. If, however, the con­
vention is that the supervisor will perform all I/O,
the data channel map need not be the same as the
user map.

LOAD ,DEVICE PROTECTION tells the MMPU what
devices are to be declared inaccessible to the user.
If the user tries to access a protected device and
I/O protect is enabled, the MMPU will generate an
I/O protect trap and the supervisor can take appro­
priate action. This allows the implementation of
user dedicated devices.

NOTE Although the 8020 Floating
Point Processor is an I/O
device and operates through
the data channel, all float­
ing point operations are pro­
cessedusing the user map.

After issuing the desired LOAD MAP and LOAD
DEVICE PROTECTION instructions, the super­
visor can direct which protect features are to be
enabled by the LOAD PROTECTION CONTROL in­
struction. Each protect feature described in the
LOAD PROTECTION CONTROL instruction can be
enabled separately and independently of the others.
When the supervisor has established the parameters
for address translation, the ENABLE USER MAP
instruction tells the MMPU to begin translating
addresses. The MMPU will continue its mapping
function until it senses a protection violation, at
which point it will trap into the supervisor as
described in the next section.

V-I0

MMPU Protection Processing

In order to achieve efficient processing, the
MMPU must perform its task until an exceptional
condition arises and then tell the supervisor about
the condition in a forthright manner. The MMPU
does this through the use of two trap locations and
three instructions. The trap locations are pre­
determined addresses in physical memory where
the supervisor places instructions that are entries
into supervisor routines. When the MMPU senses
a violation of one of the enabled protect features,
it will disable address translation, and direct the
CPU to fetch the next instruction from one of these
locations depending on the type of condition. The
trap locations and their corresponding condition
types are as follows:

PHYSICAL LOCATION CONDITION
(octal)

40 I/O protect or validity
error

41 Runaway defer or write
protect error

The MMPU instructions that allow the supervisor
to determine what caused the trap are READ IN­
sTRucTIoN ADDRESS, READ INVALID ADDRESS,
and READ STATUS. Upon entry into the I/O pro­
tect, validity error , runaway defer, or write­
protect error routines, the supervisor can use
these instructions to determine the type of error
and its location. After learning this information,
the supervisor can take appropriate action and re­
start or abort the user.

The MMPU performs checking only for these pro­
tection features that are enabled. The four types
of protection and how they are handled in the
MMPU are discussed below.

I/O Protection

If I/O protection is enabled, the MMPU decodes all
I/O instructions and then looks in the I/O protect
table to see if the referenced device is user pro­
tected. If it is not, the MMPU takes no action. If
the device is protected, the MMPU does not allow
execution of the instruction. Instead, the MMPU
stores in both the INSTRUCTION ADDRESS and
INVALID ADDRESS registers the logical address of
the instruction, disables I/O interrupt request,
enters the supervisor mode, and directs the CPU
to fetch the next instruction from physical location
40 (octal).

Validity Protection

By convention, validity protection can not be dis­
abled. Any logical page that is mapped to physical
page 127 and write-protected, is assumed to be
validity protected. The MMPU checks all CPU re­
quests for invalid addresses. If· the address is
found to be valid, the MMPU proceeds with the re­
quired translation. If the address is invalid, the
MMPU stores the invalid address in the INVALID
ADDRESS register and stores the logical afidress
of the instruction in the INSTRUCTION ADDRESS
register. If the invalid address occurred in a
defer or execute cycle, the instruction is allowed
to complete with zeroes as data. Upon the com­
pletion of the instruction, the MMPU disables I/O
interrupt requests, enters the supervisor mode,
and directs the CPU to fetch the next instruction
from physical location 40 (octal). If the invalid
address occurred in a fetch cycle, the MMPU im­
mediately disables the CPU interrupt system,
enters the supervisor mode and directs the CPU
to fetch the next instruction from physical location
40 (octal).

Runaway Defer Protection

If runaway defer protection is enabled, the MMPU
checks memory references to see if they are part
of a defer cycle. If the MMPU detects seventeen
consecutive defer cycle memory requests, it traps.
Upon receiving the seventeenth request, the MMPU
stores the address of the instruction that started
the defer loop in the INSTRUCTION ADDRESS reg­
ister and the address of the sixteenth level of the
defer loop is stored in the INVALID ADDRESS reg­
ister. The MMPU then disables I/O interrupt
requests, enters the supervisor mode, and directs
the CPU to fetch the next instruction from physical
location 41 (octal).

Write Protection

If write-protection is enabled, the MMPU monitors
all modify memory requests and determines whether
or not that logical page is write -protected. If the
page is not write-protected, the MMPU allows the

operation to proceed. If the page is write-protected,
the MMPU stores the instruction address in the
INSTRUCTION ADDRESS register and stores the
memory address in the INVALID ADDRESS register.
The MMPU then disables I/O interrupt requests,
enters the supervisor mode, and directs the CPU
to fetch the next instruction from physical location
41 (octal).

Device Interrupt Processing

Because of the way in which the MMPU disables
I/O interrupt requests upon entry to a trap routine,
the supervisor should execute an INTDS instruction
as soon as possible in the trap routine. If the
supervisor does not issue this INTDS instruction,
then upon issuing the INTEN instruction, the inter­
rupt system is enabled immediately, not after one
more fetch or defer cycle. This means that it is
possible for an interrupt service routine to begin
,executing in user mode.

Example:

;ENTRY TO TRAP ROUTINE

;NO INTDS INSTRUCTION

NIOS 2 F O tOt t ld INTE~ Irs In errup cou
JMP @. + 1 occur here
ADDR ;USER START ADDRESS

The installation of the MMPU causes a small
change in the normal device interrupt procedure.
Normally, when the CPU processes a device inter­
rupt' the Program Counter (PC) is stored in phys­
i.cal location 0 and the CPU does a jump indirect to
physical location 1. With the MMPU installed, the
PC is stored in logical location 0, the MMPU is
placed in supervisor mode, and the CPU does a
jump indirect to physical location 1. This is done
so that the supervisor's job of restarting the user
after handling the interrupt will be simplified.

V -11
MMPU PROGRAMMING

ADDRESS TRANSLATION USING THE MMU

The Memory Management Unit (MMU) available with
the NOVA 3 series of computers is similar to the
MMPU in concept and operation, but it does not
have any of the protection features of that unit.
The instruction set is also somewhat different.

The MMU expands the physical address space of a
NOVA 3 computer to 128K 16-bit words by per­
forming logical-to-physical address translation.
The maximum logical address space is 32K words.
The MMU allows 4 maps (two program maps and
two data channel maps) to be defined at anyone
time. These maps are called program map "A",
program map "B", DCH map "A", and DCH map
"B". Each map consists of 32 1K pages. The
selection of which program map is to be used to
map logical addresses coming from the CPU is
under program control. The selection of which
data channel map is to be used is under control of
the peripheral controllers. Those peripheral con­
trollers not equipped to make this distinction will
use data channel map "A" by default.

The two program maps and the two data channel
maps are completely independent. Only one pro­
gram map may be enabled at a time, but both data
channel maps are enabled at the same time. The
mapping of program addresses and the mapping of
data channel addresses mayor may not be enabled
at the same time depending upon the wishes of the
supervisor program. If either program mapping
or data channel mapping is disabled then, for that
function, the physical address space is equal to the
logical address space and only the lowest 32K words
of memory are accessible.

When power is first turned on, or after a Clear
command to device code 3, both the program map
and data channel map portions of the MMU are dis­
abled. The physical address space is equal to the
logical address space and only the lowest 32K
words of memory are accessible.

The instructions for the MMU are in the standard
I/O format. The MMU takes two device codes: 2
and 3. The mnemonic for device code 2 is MMU.
The mnemonic for device code 3 is MMU1.

Device code 2 has a Done flag which is set to 1 by
the MMU any time address translation is enabled
and not inhibited. Device code 3 does not have a
Busy or a Done flag.

The flag control commands for device code 2 are
as follows:

f = S Reserved for future use.

f = C Reserved for future use.

f = P The second non-data channel memory
address after the issuance of this command
is mapped using the map indicated by the
Single Cycle Select bit in the MMU status
word.

The flag control commands for device code 3 are
as follows:

f=S

f=C

f = P

Reserved for future use.

The program map and data channel map
portions of the MMU are disabled. All
internal MMU logic is initialized.

Reserved for future use~See table under
I/O Coding Aids for bit patterns of the flag
control commands.

LOAD MAP

DOB<~ ac, MMU

I 0 I , I I AC I I ,0 0 I F I 0 0 0 0 I 0 I
o I I 2 3 I 4 5 6 I 7 8 I 9 10 I II I 12' 13 I 14 I 15

The contents of the specified AC are transferred to
the MMU. The contents of the specified AC re­
main unchanged. The format of the AC is as
follows:

ISELI ~og~cal Pag~ \AlBII 0 \ Physical Page
0123 1 456789'10'11112 1 13 1 14'15

BITS CONTENTS

o 0 = this instruction gives an address
translation for the CPU (program map).

1 = this instruction gives an address
translation for the data channel (data
channel map).

1-5 Logical page number. This is an octal
number in the range 0-37.

6 o = this instruction gives an address
translation for map "A" of the map in­
dicated by bit O.

1 = this instruction gives an address
translation for map "B" of the map in­
dicated by bit O.

7 Reserved for future use. Should be O.

8 Must be O.

9-15 Physical page number. This is an octal
number in th~ range 0-177.

WRITE MMU STATUS

DOA<f> ac,MMU

I 0 I I I I AC I 0 I I 0 I ~ I 0 I 0 I 0 0 I

o I I 2 3 I 4 5 6 I 7 8 9 10 II 12 ' 13 14 15

The contents of the specified accumulator are
placed in the MMU status word. The Program Map
Inhibit bit in the MMU status word is set to O.

The new settings of the Program Map Enable bit, the
Program Map Inhibit bit, and the Program Map Se­
lect bit are compared to the settings of these bits be­
fore the instruction was issued. If any of these has
changed, none of them takes effect until the mem­
ory cycle after the next defer cycle. All three of
the bits take effect at that time. This allows the
program to change the settings of these bits and
then transfer control to the new environment in an
orderly manner.

The format of the specified AC is as follows:

Program map enable
,/ ;OCH map enable

Single cycle Program map
select select

I I I I , I I

BITS CONTENTS

0 o = program mapping will be disabled.

1 = program mapping will be enabled.

1 o = data channel mapping will be dis-
abled.

1 = data channel mapping will be en-
abled.

2-9 Reserved for future use. Should be o.
10 o = single cycle mapping will use pro-

gram map "A".

1 = single cycle mapping will use pro-
gram map "B".

11-14 Reserved for future use. Should be O.

15 o = program mapping will be done with
program map "A" .

1 = program mapping will be done with
program map "B".

klo ~~: "l).ef:'"" t.~c.~I' W\.~J b.e- ~f' !>k.cl
o~p",.., '\'" l~,tI1lct.V'< ~+-e"V""lArai­
~lo""",~,\t... cCc.f:r. '3 k I'-d'

V-14

MAP SINGLE CYCLE

NIOP MMU

10 '1'1001010 01 11 0 a a 0' 01
o I I 2 3' 4 5 6' 7 8 9 10 I II 112' 13 1 14 115

The second non-data channel memory reference
after this instruction is issued is mapped with the
user map indicated by the Single Cycle Select bit
in the MMU status word.

CLEAR MAP

NIOC MMU1

10 I , a a a a a , a a a a a
0' I I 2 I 3 I 4 I 5 I 6 ' 7 I 8 I 9 ' 10 I II I 12' 13 I 14 15

The program and data channel maps are disabled,
and all internal MMU logic is initialized.

INITIATE PAGE ,CHECK

OOA <J> . ac, MMU1

\0 1,1\ AC \0, I 0\ ~ 10,0,0 0,
o I I 2 3 I 4 5 6 I 7 8 9 10 II 12 I 13 14 15

The contents of the speCified AC are transferred to
the MMU for later use by the PAGE CHECK in­
struction. The contents of the speCified AC remain
unchanged. The format of the AC is as follows:

\ SELl 70g i~a I Pag~ \A/BJ;;jliig!itg!tjFlr;;il:ii&~;;;l\jrlj~\iiitfk4;;;!J*"'iW&itl@lffSfl
o I 2 3 I 4 5 6 7 8 9 10 II 12 13 14 15

BITS

o

1-5

6

7-15

CONTENTS

o = page check is for a program map.

1 = page check is for a DCH map.

Logical page. This is an octal number
in the range 0-37 and is the number of
the logical page for which the check is
requested.

o = page check is for map "A" of the
map indicated by bit O.

1 = page check is for map "B" of the
map indicated by bit O.

Reserved for future use. Should be O.

PAGE CHECK

DIA< f> ac, MMU1

\ 0 I, I I AC \ 0 ,0 I \ ~ I 0 I 0 I 0 0, I I I
o I I 2 3 I 4 5 6 I 7 8 9 10 II 12 I 13 14 15

The number of the physical page which corresponds
to the logical page number given in the last INI­
TIATE PAGE CHECK instruction is placed in bits
9-15 of the specified AC. The format of the speci­
fied AC is as follows:

ISELI ~ogi~al rag~ \A/Blil!i~I'!li'!!1111 th~sical ~ge, I
o I 2 3 4 5 6 7 8 9 I 10 II 12 I 13 14 15

BITS CONTENTS

0-6 Bits 0 -6 from the last INITIATE PAGE
CHECK instruction.

7-8 Reserved for future use. Set to 0.,

9-15 Physical page. This is an octal number
in the range 0-177 and is the number of
the physical page which corresponds to
the logical page given in the last INI-
TIATE PAGE CHECK instruction.

V-13

READ MMU STATUS

DIA<f> ac, MMU

\ 0 I I I \ AC \ 0 I 0 I I F I 0 0 0 0 I 0 I
o I I 2 3 I 4 5 6 I 7 8 I 9 10 I II I 121 13 I 141 15

The 16-bit MMU status word is placed in the speci­
fied AC. The format of the AC is as follows:

o 2 3 4 5 6 12 13

BITS CONTENTS

o 0 = program mapping is disabled.

1 = program mapping is enabled.

1 0 = data channel mapping is disabled.

1 = data channel mapping is enabled.

2 0 = program mapping is not inhibited.

1 = program mapping is inhibited. If
set, this bit takes precedence over bit O.

3-9 Reserved for future use. Set to O.

10 0 = single cycle mapping will use pro­
gram map "A".

11-14

15

1 = single cycle mapping will use pro­
gram map "B".

Reserved for future use. Set to O.

o = program mapping will be done with
program map "A".

1 = program mapping will be done with
program map "B".

NOTE: The Program Map Inhibit bit is set by a
stack overflow, I/O interrupt, or execu­
tion of a TRAP instruction.

p Ma:. ~l:\O:h. I .. J-e~~LA rho ('),
u+ &.e ... -JoLJ 4M-:t.J~ .

MMU INSTRUCTIONS

SUPERVISOR PROGRAMMING
FOR THE MMU

Setting Up For Translation

The information that allows the MMU to translate
addresses comes from the multiprogramming
supervisor. The instructions used are LOAD
MAP and WRITE MMU STATUS.

By using the LOAD MAP instruction, the super­
visor gives the MMU a physiCal address for the
beginning of a page of logical address space.
Thirty-two LOAD MAP instructions are required
to completely define the map for one logical space.

Although the floating point processor available with
the NOVA line of computers is an I/O device and
operates through the data channel, all floatfng
point operations are processed using the currently
enabled user map.

After defining the maps that will be used, the
supervisor gives the MMU information regarding
how and when the maps are to be enabled via the
WRITE MMU STATUS instruction.

If a WRITE MMU STATUS instruction is issued
with bit ° of the specified accumulator set to 1,
then address translation will begin with the mem-
0ry reference after the next defer cycle. This
provides a convenient method for the supervisor
to transfer control to the user program after the
maps have been defined. One way of transferring
this control is as follows:

LDA O,STAT

; ENOUGH LOAD MAP
INSTRUCTIONS TO
DEFINE ALL THE

; MAPS THAT WiLL
; BE USED.

; RESTORE USER'S
; ACCUMULATORS.
;--USE NO
; INDIRECTION.

JMP @USERPC ;ADDRESS IN
; USERPC WILL
; BE MAPPED

STAT: 140000 ;ENABLE USER MAPPING,
ENABLE DCH MAPPING.
SINGLE CYCLE MAP

FOR USER A,
MAP ADDRESSES

; FOR USER A.
USERPC: ;STARTING ADDRESS

V .. 15

Device Interrupt Processing

The MMU has been designed to allow for orderly
processing of I/O interrupt requests by a super­
visor program. When an I/O device requests an
interrupt, the MMU sets the Program Map Inhibit
bit in the MMU status word to 1. This immediately
disables the translating of user addresses so that
the remainder of the interrupt process happens in
the same manner as those NOVA line computers
that have no address translation hardware. That
is, the Interrupt On flag is set to 0, the updated
program counter is placed in physical memory
location 0, and the CPU executes a "jump indirect"
to physical memory location 1.

To return control to a user after :m I/O interrupt,
the supervisor can follow the method outlined
above. The INTERRUPT ENABLE instruction
should be placed immediately before the
JMP @USERPC instruction.

MMU INSTRUCTIONS

ADDRESS TRANSLATION USING
NOVA 3 MMU AND MPU

The NOVA 3 series of computers is available with
a Memory Protection Unit (MPU) which" when
used with the Memory Management Unit (MMU)
provides mapping and protection features similar
to those available in the NOVA 800 series Memory
Management and Protection Unit (MMPU). The
combination of an MMU and an MPU will therefore
be referred to in this section as an MMPU.

The MMPU expands the physical address space of
a NOVA 3 computer to 128K 16-bit words by per­
forming logical-to-physical address translation.
The maximum logical address space is 32K words.
The MMPU allows four maps (two program maps
and two data channel maps) to be defined at any 0

one time. These maps are called program map
"A", program map "B", DCH map "A", and
DCH map" B". Each map consists of 32 lK
pages. The selection of which program map is to
be used to map logical addresses coming from the
CPU is under program control. The selection of
which data channel map is to be used is under
control of the peripheral controllers. Those
peripheral controllers not equipped to make this
distinction will use data channel map" A" by
default,
The two program maps and the two data channel
maps are completely independent. Only one pro­
gram map may be enabled at a time, but both data
channel maps are enabled at the same time. The
mapping of program addresses and mapping of
data channel addresses mayor may not be enabled
at the same time depending upon the wishes of the
supervisor program. If either program mapping
or data channel mapping is disabled then, for that
function, the physical address space is equal to
the logical address space and only the lowest 32K
words of memory are accessible.

The instructions for the MMPU are in the standard
I/O format. The MMPU takes two deviee codes:
2 and 3. The mnemonic for device code 2 is MAP.
The mnemonic for device code 3 is MAPI.

Device code 2 has a Done flag which is set to 1 by
the MMPU any time address translation is enabled
and not inhibited. Device code 2 also has a Busy
flag which is set when a Data Channel error occurs.
Device code 3 does not have a Busy or a Done flag.

The flag control commands for device code 2 are as
follows:

f = S Reserved for future use.

f = C Clear violation status word.

f = P The second non-data channel memory add
address after the issuance of this com­
mand is mapped using the map indicated by
the Single Cycle Select bit in the MMPU
status word.

The flag control commands for device code 3 are
as follows:

f = S Reserved for future use.

f = C The program map and data channel map
portions of the MMPU are disabled. All
internal MMPU logic is initialized.

f = P Reserved for future use.

See table under I/O Coding Aids for bit patterns of
the flag control commands.

LOAD MAP

OOB <f> ac,MAP

I 0 I I I I AC I I I 0 0 I F I 0 I 0 I 0 0 I I 0 I
o I I 2 3 I 4 5 6 I 7 8 9 10 II 12 I 13 14 15

The contents of the specified AC are transferred
to the MMPU. The contents of the specified AC
remain unchanged. The format of the AC is as
follows:

ISELI ~OGI~AL PA~E IA/BIWpIVpl PHrSI~AL P~GE I
o I 2 3 I 4 5 6 7 8 9 I 10 II 12 I 13 14 15

BITS CONTENTS

0 o = this instruction gives an address trans-
lation for the CPU (program map).

1 = this instructions gives an address trans-
lation for the data channel (data channel
map).

1-5 Logical page number, This is an octal
number in the range 0-37.

6 o = this instruction gives an address trans-
lation for map" A" of the map indicated by
bit O.

1 = this instruction gives an address trans-
lation for map "B" of the map indicated by
bit O.

7 o = Write protect disabled.

1 = Write protect enabled.

8 o = Validity protect disabled.

1 = Validity protect enabled (if bits 7 and
9-15=1).

9-15 Physical page number. This is an octal
number in the range 0-177.

V -15.1

INITIATE PAGE CHECK

DOA <f> ac, MAP1

I 0 I I I I AC I 0 I I 0 I ~ I 0 I 0 I 0 0 I I I I I
o I I 2 3 I 4 5 6 I 7 8 9 10 II 121 13 14 15

The contents of the specified AC are transferred to
the MMPU for later use by the PAGE CHECK
instruction. The contents of the specified AC
remain unchanged. The format of the AC is as
follows:

BITS CONTENTS

o 0 = page check is for a program map.

1 = page check is for a DCH map.

1-5 Logical page. This is an octal number in
the range 0-37 and is the number of the
logical page for which the check is
requested.

6 0 = page check is for map" A" of the map
indicated by bit O.

1 = page check is for map" B" of the map
indicated by bit O.

7-15 Reserved for future use. Should be O.

PAGE CHECK

DIA <p ac, MAP1

I 0 I I I I AC I 0 I 0 I I F I 0 0 0 0 I I I
o I I 2 3 I 4 5 6 I 7 8 I 9 10 I II I 12 I 13 I 14 I 15

The number of the physical page which corres­
ponds to the logical page number given in the last
INITIAGE PAGE CHECK instruction is placed in
bits 9-15 of the specified AC. The format of the
specified AC is as follows:

SEL LOGICAL PAGE PHYSICAL PAGE

o 2 3 4 10 II 12 13 14 15

BITS CONTENTS

0-6 Bits 0-6 from the last INITIATE PAGE
CHE CK instruction.

7 o = Write protect disabled.

1 = Write protect enabled.

8 o = Validity protect disabled,

1 = Validity protect enabled (if bits 7 and
9-15=1).

9-15 Physical page. This is an octal number in
the range 0-177 and is the number of the
physical page which corresponds to the
logical page given in the LAST INITIATE
PAGE CHECK instruction,

V-15.2 NOVA 3 MMPU

READ MMPU STATUS

DIA <!,> ac,MAP

I 0 I I I I AC I 0 I 0 \ I 0 0 0 0 I 0 I
o I I 2 3 I 4 5 6 I 7 8 9 10 I II I 12 I 13 I 14 I 15

The 16 -bit MMPU status word is placed in the
specified AC. The format of the AC is as follows:

IPMIOCMlpMl1jiiii11 ~~ ISSElIA1PI DPlliro IwplAiBI
o , 2 3 4 5 6 7 8 9 10 " 12 13 14 15

BITS

o

1

2

MEANING WHEN 1

Program mapping enabledo

Data channel mapping enabled.

Program map inhibited. Takes prece­
dence over bit O.

3-8 Reserved for future use. Set to 00

9 Single cycle write protect enabled.

10

11

12

13

14

15

Single cycle select. 0 = A, 1 == B.

Auto increment/decrement protect
enabled.

Defer protect enabled.

I/O protect enabled.

Write protect enabled.

Program map select. 0 = A, 1- B.

WRITE MMPU STATUS

DOA <f> ac,MAP

I 0 I I I I AC I 0 I I 0 I F I 0 0 0 0 I 0 I
o 1 I 2 3 I 4 5 6 I 7 8 9 10 I " I 121 13 I 14 15

The contents of the specified accumulator is
placed in the MMPU status word. The Program
Map Inhibit bit in the MMPU status word is set to
O.

The new settings of the Program Map Enable bit,
the Program Map Inhibit bit, and the Program
Map Select bit are compared to the settings of
these bits before the instruction was issued. If
any of these has changed, none of them takes
effect until the memory cycle after the next defer
cycle. All three of the bits take effect at that ti
time. This allows the program to change the set­
tings of these bits and then transfer control to the
new environment in an orderly manner.

The format of the specified AC is as follows:

I PM IOCMI~jlliil ~~ IAS/CBIAI1 Dp16~ IwplAIBI
o I 2 3 4 5 6 7 8 9 10 " 12 13 14 15

BITS MEANING WHEN 1

o Program mapping enabled.

1 Data channel mapping enabled.

2-8 Reserved for future use. Set to O.

9 Single cycle write protect enabled.

10 Single cycle select. 0 = A, 1 = B

11 Auto-increment/decrement protect enabled.

12 Defer protect enabled.

13 I/O protect enabled.

14 Write protect enabled.

15 Program map select. 0 = A, 1 = B.

V-1!5.3

READ VIOLATION DATA

DIB <~> ac, MAP

I ° I , I I AC I ° , I F I ° ° ° 0 , ° I
o I I 2 3 1 4 5 6 1 7 8 19 10 I II I 121 13 1 14 15

The violation status bits for the MMPU are placed
in the specified AC, along with the logical page in
which the violation occurredo The format of the
data placed in the specified AC is as follows:

IVFI LIOGI?AL tAGIE lill SC ! VV 1 AI IDEF!I/olwvIAIsl
o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

BITS

o

1-5

6-8

9

10

11

12

13

14

15

CONTENTS

Violation flag. Set to 1 if any of bits
10-14 = 1.

Logical page number. This is an octal
number in the range 0-37.

Reserved for future use. Set to o.

1 = single cycle was enabled during
violation

1 = validity violation.

1 = auto-increment/decrement violationo

1 = defer violation.

1 = I/O violationo

1 = write violation

o = violation occurred in map I! AI! .

1 = violation occurred in map I! B I! .

READ VIOLATION ADDRESS

DIB <!;> ac, MAPl

10 I I I I AC 1 ° I I I I

0 1 123 1456 1 7 8 9 10 II 12 13 14 15

The logical address of the instruction that caused
the violation is placed in the specified AC. After
the instruction, bit 0 of the specified AC is cleared
and bits 1-15 contain the address as an octal
number in the range 0-77777.

MAP SINGLE CYCLE

NIOP MAP

101111° ° 1° 1°01
0 1 123 1 456 1 7 8 9 10 II 12 13 14 15

The second non-data channel memory reference
after this instruction is issued is mapped with the
user map indicated by the Single Cycle Select bit in
the MMPU status word.

CLEAR VIOLATION

NIOC MAP

101111° 01010 01 1 °1° ° ° ° 101
o I I 2 3 I 4 5 6 I 7 8 I 9 10 I II I 12 I 13 I 14 15

The violation status word for the MMPU is c
clearedo The Busy flag for device code 2, which
indicates data channel errors, is also cleared.

CLEAR MAP

NIOC MAPl

1 01 ,1,0° 1° 1° 01 1 °1° ° ° °
o I I 2 3 1 4 5 6 1 7 8 19 10' 11112113 1 14 15

The program and data channel maps are disabled,
and all internal MMPU logic is initialized.

V -15.4 NOVA 3 MMPU

SUPERVISOR PROGRAMMING
FOR THE NOVA 3 MMPlJ

Setting Up for Translation

The information that allows the MMPU to translate
addresses comes from the multiprogramming
supervisor. The instructions are LOAD MAP and
WRITE MMPU STATUS.

By using the LOAD MAP instruction, the super­
visor gives the MMPU a physical address for the
beginning of a page of logical address space.
Thirty-two LOAD MAP instructions are required
to completely define the map for one logical space.

Although the floating point processor available with
the NOVA line of computers is an I/O device and
operates through the data channel, all floating
point operations are processed using the currently
enabled user map.

After defining the maps that will be used, the
supervisor gives the MMPU information regarding
how and when the maps are to be enabled via the
WRITE MMPU STATUS instruction. This instruc­
tion also defines which protect features are to be
enabled. Each protect feature described in the
WRITE MMPU STATUS instruction can be enabled
separately and independently of the others.

If a WRITE MMPU STATUS instruction is issued
with bit 0 of the specified accumulator set to 1,
then address translation will begin with the memory
reference after the next defer cycle. This provides
a convenient method for the supervisor to transfer
control to the user program after the maps have
been defined. One way of transferring this control
is as follows:

LDA O,STAT
DOA O,MAP

INTEN
JMP@USERPC

STAT: 140000

USERPC:

;ENOUGH LOAD MAP
INSTR UCTIONS TO
DEFINE ALL THE
MAPS THAT WILL
BE USED.

;WRITE MMPU STATUS
;RESTORE USER'S
; ACCUMULATORS.
;--USE NO
; INDIRE CTION.
;ENABLE INTERRUPTS
;ADDRESS IN

USERPC WILL BE
; MAPPED.
;STATUS WORD:

ENABLE USER
MAPPING,

ENABLE DCH
MAPPING.

SINGLE CYCLE MAP
FOR USER A

MAP ADDRESSES
FOR USER A.

;STARTING ADDRESS.

Note that a defer instruction must appear after
WRITE MMPU STATUS instruction and before
the next WRITE MMPU STATUS instruction for
the second instruction to take effect.

MMPU Protedion Processing

When a map violation is detected, interrupts are
inhibited, and address translation is disabled.
The contents of physical location 468 are lost and
the supervisor directs the CPU to "jump indirect"
to location 478' The supervisor can then deter­
mine the type of violation using the READ VIOLA­
TION DATA instruction.

The READ VIOLATION ADDRESS instruction can
be used to find the instruction that caused the prob­
lem. The supervisor can then restart or abort the
user' s process as appropriate.

Note that location 468 is normally
where the return address is found
after a TRAP instruction has been
executed. If the trap is caused by
an MMPU violation, however,
location 468 should be ignored and
the READ VIOLATION instruction
used instead.

V-15.5

The MMPU performs checking only for those pro­
tection features that are enabled. The five types
of protection and how they are handled by the
MMPU are discussed below.

I/O Protedion

If I/O protection is enabled in the NOVA 3 MMPU,
it protects all I/O devices except those using
device codes 1, 74, 75, and 76. Device code 1 is
generally assigned to the NOVA multiply/divide
option, and device codes 74-76 are generally
assigned to the optional Floating Point Unit. The
I/O devices using these device codes are not pro­
tected by I/O protection under any circumstances.

When I/O protection is enabled, the MMPU decodes
all I/O instructions to see if the referenced device
is user protected. If it is, the MMPU does not
allow the execution of the instruction. Instead, it
stores the logical address of the instruction in the
VIOLATION ADDRESS register, disables I/O
interrupt requests, enters the supervisor mode,
and directs the CPU to "jump indirect" to loca­
tion 478.

Validity Protedion

By convention, validity protection cannot be dis­
abled. A logical page is validity protected by
mapping the page to physical page 12710 (1778),
and setting the validity protect and write protect
bits.

Note that it is not necessary for
physical page 12710 to exist.
Validity protection is indicated
by setting the physical page bits
to 1778' and setting the validity
protect and write protect bits.
Since validity protection pre­
vents the writing of the. page,
the existence of the physical
page is not required.

The MMPU checks all CPU requests for invalid
addresses. If the address is found to be valid,
the MMPU proceeds with the required translation.
If the address is invalid, the MMPU stores the
logical address of the instruction in the VIOLA­
TION ADDRE SS register. The MMPU then dis­
abIes I/O interrupt requests, enters the
supervisor mode, and directs the CPU to "jump
indirect" to location 478.

Runaway Defer Protedion

If runaway defer protection is enabled, the MMPU
checks memory references to see if they are part
of a defer cycle. If the MMPU detects 15 consec­
utive defer cycle memory requests, it traps.

Upon receiving the 15 requests, the MMPU stores
the address of the instruction that started the defer
loop in the VIOLATION ADDRESS register. The
MMPU then disables the I/O interrupt requests,
enters the supervisor mode, and directs the CPU
to "jump indirect" to location 478.

Write Protedion

If write protection is enabled, the MMPU monitors
all modify memory requests and determines
whether or not that logical page is write-protected.
If the page is not write-protected, the MMPU
allows the operation to proceed. If the page is
write-protected, the MMPU stores the instruction
address in the VIOLATION ADDRESS register.
The MMPU then disables I/O interrupt requests,
enters the supervisor mode, and directs the CPU
to "jump indirect" to location 478. Any write to
memory is inhibited.

Single cycle write protection works in the same
way as normal write protection, but it can be
enabled separately.

Auto-Increment/Decrement. Protedion I
If autO-increment/decrement protection is enabled,
any indirect reference to memory locations 20-378
will be considered a violation and will therefore
tra p. The system then stores the logical address
of the instruction that caused the violation in the
VIOLATION ADDRESS register, disables I/O in­
terrupt requests, enters the supervisor mode, and
directs the CPU to "jump indirect" to location 478.

Device Interrupt Processing

The MMPU has been designed to allow for orderly
processing of I/O interrupt requests by a super­
visor program. When an I/O device requests an
interrupt, the MMPU sets the Program Map
Inhibit bit in the MMPU status word to 1. This
immediately disables the translating of user
addresses so that the remainder of the interrupt
process happens in the same manner as in those
NOVA line computers that have no address trans­
lation hardware. That is, the Interrupt On flag
is set to 0, the updated program counter is
placed in physical memory location 0, and the
CPU executes a "jump indirect" to physical mem-
0ry location 1. A similar process occurs for
stack overflow, normal trap instructions, and
MMPU violation traps.

To return control after an I/O interrupt, the
supervisor can follow the method outlined previ­
ously (see "Setting Up for Translation"). The
INTERRUPT ENABLE instruction should be
placed immediately before the JMP @USERPC
instruction.

V'-15.6 NOVA 3 MMPU

FLOATING POINT ARITHMETIC

In addition to performing fixed point arithmetic,
computers in the NOVA line can perform floating
point arithmetic if they are equipped with the float­
ing point unit. This feature provides the capability
to perform rapid and convenient arithmetic opera­
tions on numbers with a much larger range than
would be feasible using the fixed point arithmetic
instruction set. The precision with which these
numbers can be manipulated exceeds the precision
readily available with the fixed point instruction
set.

Floating Point Unit Registers

There are three registers available to the pro­
grammer in the Floating Point Unit (FPU).

These are the Floating Point accumulator (FP AC) ,
the Status Register (SR), and the Temporary Buffer
(TEMP). FPAC and TEMP are used for computa­
tions and SR is used to control and monitor the
operation of the FPU.

FPAC and TEMP can both contain either single or
double precision floating point numbers. SR is a
16-bit register containing bits that reflect the cur­
rent status of FPAC and the FPU. The format of
SR is as follows:

STATUS BITS

o I I
I I I I I

2 3 4 5 6 I 7 8 9 10 II 12 13 14 15

r----STATUS REGISTER BITS ----.
BIT MNEMONIC

o

2

3

4

5

6

7

8-12

13

14

15

ANY

OVF

UNF

DVZ

MOF

GTZ

EQZ

LTZ

IND

PPM

DMD

MEANING WHEN SET

Indicates that any of bits
1-4 are set.

Overflow indicator meaning
that during processing of an
FPU instruction, the FPU
detected an exponent over­
flow. The result is correct
except that the exponent is
128 too small.

Underflow indicator mean­
ing that during processing
of an FPU instruction, the
FPU detected an exponent
underflow. The result is
correct except that the ex­
ponent is 128 too large.

During a divide instruction,
the FPU has detected a zero
divisor. The division was
aborted and FPAC remains
unchanged.

Mantissa overflow indicator
meaning that during a scale
instruction, a left shift was
required.

Greater than indicator,
meaning that the operand in
FPAC is positive and the
mantissa is different from
zero.

Equal indicator, meaning
that the operand in FPAC is
equal to true zero. This bit
examines only the mantissa
and sign of FPAC.

Less than indicator, mean­
ing that the operand in FPAC
is less than zero.

Reserved for future use.

Interrupt Disable bit means
that the FPU will not inter­
rupt the program for an ex­
ponent overflow, exponent
underflow, or divide by
zero.

Parallel processing mode
means that the FPU will not
request data channel cycles
for the entire time it is pro­
cessing an instruction.
Therefore, the programmer
must check the BUSY status
of the FPU before issuing
the next FPU instruction.

Diagnostie mode means that
the program can issue clock
pulses and monitor the pro­
gress of the FPU cycle by
cycle. The data channel
will not be held during this
mode.

INSTRUCTION SET

Because the FPU is considered an I/O device by
the CPU, FPU instructions are really I/O instruc­
tions and take the I/O format. The device codes
for the FPU are as follows:

DEVICE
MNEMONIC CODE MEANING

FPU1 748 Floating Point·-Single
Precision

FPU2 758 Floating Point-Double
Precision

FPU 768 Floating Point Unit-
used for status in-
structions and in
diagnostic mode.

The programmer can either write I/O instructions
for the FPU, or he can use the . DUSR and .DIAC
functions of the assembler and define his own
mnemonics. A paper tape containing . DUSR and
. DIAC functions describing the DGC standard float­
ing point mnemonics is supplied with the FPU. A
detailed discussion of this tape can be found under
Floating Point Unit Mnemonics. In describing the
instructions available for the FPU, both the I/O
instruction and the corresponding DGC mnemonic
will be shown. For a further discussion of I/O in­
structions in general, see the I/O section of this
manual.

When processing a floating point instruction, the
FPU assumes the following:

1. In instructions that refer to operands in
memory, the accumulator specified by AC
is assumed to contain the address of the
first word of the storage that contains or
will receive a floating point number. This
area is either 2 or 4 words long, depending
on the precision specified.

2. In instructions that refer to an operand
coming from memory, the number is as­
sumed to be in the format described under
"Number Representation". The number
is assumed to be normalized.

3 . In arithmetic instructions, it is assumed
that a floating point number is already pre­
sent in FP AC.

LOAD SINGLE

· FLDS ac

DOBP ac, FPUI

1°11,11 Ale 11,° 1°1 1,11 1,1,1 1,0,01
o I 2 3 4 5 6 7 8 9 10 II 12 I 13 14 15

LOAD DOUBLE

· FLDD ac

DOBP ac, FPU2

1°11,11 Ale 11,° 1°1 1,11 1 ,1,1 1,0,11
o I 2 3 4 5 6 7 8 9 10 II 121 13 14 15

The FPAC is loaded with the floating point number
contained in storage starting with the address in
the specified AC. The operation proceeds one word
at a time, starting with the most significant word.
Two words are transferred for single precision.
Four words are transferred for double precision .
The operand in storage and the address in the speci­
fied AC remain unchanged. For single precision,
the 32-bit floating point number goes into the high­
order 32 bits of FPAC and the low-order 32 bits of
FPAC are set to zero.

STORE SINGLE

· FSRS ac

DOBS ac, FPU1

1°11,11 Ale 1 1,° 1°1 0 ,11 1,1,1 1,0,01
o I 2 3 4 5 6 7 8 9 10 II 12 I 13 14 15

STORE DOUBLE

· FSRD ac

DOBS ac, FPU2

I ° I I ,I I Ale II , ° ° I ° , I I ° , I '
o 1-2 3 4 5 6 1 7 8 9 10 II 12 13 14 15

V-17

The FPAC is stored into memory starting at the
address contained in the specified AC. The opera­
tion proceeds one word at a time, starting with the
most significant word. Two words are transferred
for single precision. Four words are transferred
for double precision. The number in FPAC and
the address in the specified AC remain unchanged.

FLOATING POINT ARITHMETIC

ADD SINGLE

. FAS ac

OOA &;, FPUI

I 0 I , I I AC 1 0 ,I 0 I 0 0 II I i ° 0
o I I 2 3 I 4 5 6 I 7 8' 9 10' II' 12 I 13' 14' 15

ADD DOUBLE

. FAD ac

OOA ac, FPU2

I 0 I ,I I AC I ° ,I ° I ° , 0 II ,I ,I I, ° , I I
o I I 2 3 I 4 5 6 I 7 8 9 10 II 121 13 14 15

The floating point number which starts at the ad­
dress contained in the specified AC is added to
the floating point number in the FPAC. The result
is normalized and remains in the FPAC. The op­
erand in storage is transferred to the :FPU, most
significant word first, before the add operation
takes place. Two words are transferred for single
precision. Four words are transferred for double
precision. The operand in storage and the ad­
dress in the specified AC remain unchanged. For
single precision, the low-order 32 bits of the
FPAC are turned to zero before the operation.

Floating point addition consists of an exponent
comparison and a mantissa addition. The exponents
of the two numbers are compared, and the mantissa
of the number with the smaller exponent is shifted
right. This exponent alignment is accomplished by
taking the absolute value of the difference between
the two exponents and shifting the mantissa right
that number of hex digits. For double precision,
bits shifted out of the right end of the mantissa are
lost, and do not take part in the addition. For
single preCision, the last 8 bits shifted out are re­
tained as hex "guard" digits. This increases the
accuracy of single preCision addition. If all signif­
icant digits are shifted out of the mantissa, the
operation is equivalent to adding the number with the
larger exponent to zero. This requires a shift of at
least 8 hex digits in single preCision and at least 14
hex digits in double precision.

After alignment, the FPU adds the mantissas to­
gether. The result of this addition is termed the
intermediate result. The sign of the result is
determined from the sings of the two operands by
the rules of algebra. If the mantissa addition
produced a carry out of the high-order bit, the
mantissa in the intermediate result is shifted right
one hex digit and the exponent is incremented by
one. If this shift produces an exponent overflow,
the OVF bit is set in the SR, and the instruction

is terminated. When this condition occurs, the
number in the FPAC is correct except that the ex­
ponent is 128 too small .

If there is no overflow, the mantissa of the inter­
mediate result is examined for leading hex zeroes.
If the mantissa is found to be aIr zeroes, a true
zero is placed in the FPAC and the instruction is
terminated.

If the mantissa is non-zero, the intermediate re­
sult is normalized, and the number placed in
FPAC. If the normalization results in an exponent
underflow, the UNF bit is set in the SR and the
instruction is terminated. The number in the
FPAC is correct except that the exponent is 128
too large.

Upon termination, the FPU sets the appropriate
condition code bits in the SR.

SUBTRACT SINGLE

. FSS ac

OOAS ac, FPU1

I ° I , I I AC I ° ,I ° I ° , I I
o I I 2 3 1 4 5 6 1 7 8 9

,0,01
10 II ' 12 I 13 14 15

SUBTRACT DOUBLE

. FSD ac

OOAS ac, FPU2

I ° I , I I AC I ° ,I ° I ° I II I I I °
o I I 2 3 I 4 5 6 I 7 8' 9 10' II ' 12 I 13' 14' 15

The floating point number which starts at the ad­
dress contained in the specified AC is subtracted
from the floating point number in the FPAC. The
result is normalized and remains in the FP AC.
The operand in storage is transferred to the FPU,
most significant word first, before the subtract
operation takes place. Two words are transferred
for single precision. Four words are transferred
for double precision. The operand in storage and
the address in the specified AC remain unchanged.

Before the operation takes place, the sign bit of
the operand fetched from storage is inverted. Af­
ter the inversion, the operation is equivalent to
addition.

MULnPLY SINGLE

. FMS ac

DOAP ac, FPUI

1°11,11 AIC 10,11°11, II '1,0,01
o I 2 3 4 5 6 7 8 9 10" 12 13 14 15

MULnPLY DOUBLE

. FMD ac

DOAP ac J FPU2

10 I , 'I AF 10 ,
0 1 I 2 3 4 5

01
I ° , I', , I

13 14 15 6 7 8 9 10 II 12

The floating point number in the FPAC is multi­
plied by the floating point number which starts at
the address contained in the specified AC. The
result is normalized and remains in the FPAC.
The operand in storage is transferred to the FPU,
most significant word first, before the multiply
operation takes place. Two words are transferred
for single precision. Four words are transferred
for double precision. The operand in storage and
the address in the specified AC remain unchanged.

For single precision, the low-order 32 bits of the
FPAC are ignored during the operation and are
zeroed in the result.

The mantissas of the two numbers are multiplied
together to give the mantissa of the intermediate
result. The exponents of the two numbers are ad­
ded together and 64 is subtracted. This subtraction
of 64 maintains the "Excess 64" notation. The re­
sult of the exponent manipulation becomes the ex­
ponent of the intermediate result. The sign of the
intermediate result is determined from the signs
of the two operands by the rules of algebra.

If the exponent processing produces either over­
flow or underflow, the result is held until normal­
ization, as that procedure may correct the
condition. If normalization does not correct the
condition, the corresponding bit in the SR is set.
The number in the FPAC is correct except that,
for exponent overflow, the exponent is 128 too
small, and for exponent underflow, the exponent
is 128 too large.

V-19

DIVIDE SINGLE

. FDS ac

OOA(!... ac, FPUI

I ° I I , I 1 AIC 1 ° , I I ° II ,0 II , : I ' 112 I 13' ~4' ~5
o I 2 3 4 5 6 7 8 9 10

DIVIDE DOUBLE

. FDD ac

OOAC ac, FPU2

° 0123456789 10 " 12 13 14 15

The floating point number in the FPAC is divided
by the floating point number which starts at the
address contained in the specified AC. The result
is normalized and remains in the FPAC. The
operand in storage is transferred to the FPU, most
significant word first, before the divide operation
takes place. Two words are transferred for single
precision. Four words are transferred for double
precision. The aperand in storage and the address
in the specified Ay remain unchanged.

For single preCiSion, the low-order 32 bits of the
FPAC are ignored during the operation and are
zeroed in the result.

The operand from storage is checked for a zero
mantissa. If the mantissa is zero, the DVZ bit is
set in the SR and the instruction is terminated. The
number in the FPAC remains unchanged.

The two mantissas are then compared and if the
mantissa of the number in the FPAC is greater
than or equal to the mantissa of the operand from
storage, the mantissa of the number in the FPAC
is shifted right one hex digit and the exponent of
the number in the FPAC is increased by one. Since
all operands are assumed to be normalized, this
guarantees that the mantissa of the number in the
FPAC will always be less than the mantissa of the
operand from storage.

FLOATING POINT ARITHMETIC

The mantissa in the FPAC is then divided by the
mantissa from storage and the quotient is the
mantissa of the intermediate result. The exponent
from storage is subtracted from the exponent in
the FPAC and 64 is added to this result. This
addition of 64 maintains the" Excess 64" notation.
The result of the exponent manipulation becomes
the exponent of the intermediate result. The sign
of the intermediate result is determined from the
sign of the two operands by the rules of algebra.

If the exponent processing produces either over­
flow or underflow, the result is held until normal­
ization, as that procedure may correct the
condition. If normalization does not correct the
condition, the corresponding bit in the SR is set.
The number in the FPAC is correct except that,
for exponent overflow, the exponent is U8 too
small, and for exponent underflow, the exponent
is 128 too large.

Temporary Buffer Instrudions

The Temporary Buffer, or TEMP, is an area
within the FPU capable of holding a single or dou­
ble precision floating point number. The following
instructions make use of this facility.

MOVE FPAC TO TEMP

.FMFT

NIOP FPU2

10 1,11 0 010,0 01
0 1 I 2 3 1 4 5 6 1 78

I 1 0
121 13' 14 15

The double precision floating point number in the
FPAC is moved to the TEMP buffer. The number
in the FPAC remains unchanged.

MOVE TEMP TO FPAC

.FMTF

NIOC FPU2

101,110010,001
0 1 123 1 456 1 7

I I 0
II ' 121 13' 14 15

The double preCision floating point number in the
TEMP buffer is moved to the FPAC. The number
in the TEMP buffer remains unchanged.

NOTE The operands in these two in­
structions are 64 bit floating
point numbers. If the previo1ls
instruction that referred to the
FP AC was a single precision
instruction, then that instruc­
tion zeroed the low-order half
of the FP AC and the FPAC can
be considered a double preci­
sion number with no problem.

ADD TEMP TO FPAC (SINGLE)

. FATS

DOC 0, FPUl

, ° ,0 I
o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

ADD TEMP TO FPAC (DOUBLE)

.FATD

DOC 0,FPU2

I ° I I , I I ° I ° II , I I ° I ° , ° I :0' : I ' I~ I 13' ~4 15 o 123 4 5 6 789

The floating point number in TEMP is added to the
floating point number in the FPAC and the normal­
ized result is placed in the FPAC. The number in
TEMP remains unchanged.

For single precision, only the high-order 32 bits
of TEMP and FPAC participate in the operation.

The ADD TEMP TO FPAC instruction is identical
to the ADD instruction described previously, ex­
cept that the second operand comes from TEMP,
not from memory.

V-·21

SUBTRACT TEMP FROM FPAC (SINGLE)

. FSTS

DOCS 0, FPUl

SUBTRACT TEMP FROM FPAC (DOUBLE)

. FSTD

DOCS 0, FPU2

, ° ,0 I
13 14 15

10 I 1,11° l°ll, 11 °1 0, III, I, 11 1,0
o I 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The floating point number in TEMP is subtracted
from the floating point number in the FPAC and
the normalized result is placed in the FPAC. The
number in TEMP remains unchanged.

For single precision, only the high-order 32 bits
of TEMP and FPAC participate in the operation.

The SUBTRACT TEMP FROM FPAC instruction
is identical to the SUBTRACT instruction described
previously, except that the second operand comes
from TEMP, not from memory.

flOATING POINT ARITHMETIC

MULTIPLY FPAC BY TEMP (SINGLE)

. FMTS

DOCP 0, FPUI

10 I , I 10 ° I
o I I 2 3 I 4 ° ° I ' ,

10 " 9 12 13 14 15

MULTIPLY FPAC BY TEMP (DOUBLE)

.FMTD

DOCP 0, FPU2

[.a 1,11° °1 1 , 10 11 III °
o I I 2 3 I 4 5 6 I 7 8 ' 9 10 ' II ' 12 I 13 ' 14 ' 15

The floating point number in the FPAC is multiplied
by the floating point number in TEMP and the nor­
malized result is placed in the FPAC. The number
in TEMP remains unchanged.

For single precision, only the high-order 32 bits
of TEMP and FPAC participate in the operation.

The MULTIPLY FPAC BY TEMP instruction is
identical to the MULTIPLY instruction described
previously, except that the second operand comes
from TEMP not from memory.

V-22

DIVIDE FPAC BY TEMP (SINGLE)

. FDTS

DOCC 0, FPUI

10 I , I 1° ° I
o I I 2 3 I 4 5 6 7 8 9 10 II 12 13 14 15

DIVIDE FPAC BY TEMP (DOUBLE)

.FDTD

DOCC 0, FPU2

101,110011,1011,°11,1,1 1,0,
o I I 2 3 I 4 5 6 I 7 8 9 10 II 12 I 13 14 15

The floating point number in the FPAC is divided
by the floating point number in TEMP and the
normalized result is placed in the FP AC . The
number in TEMP remains unchanged.

For single precision, only the high-order 32 bits
of TEMP and FPAC participate in the operation.

The DIVIDE FPAC BY TEMP instruction is iden­
tical to the DIVIDE instruction described previ­
ously, except that the second operand comes from
TEMP not from memory.

Shift and Logical Instructions

The following FPU instructions are included to en­
able the programmer to convert numbers from in­
teger representation to floating point representation
and vice-versa. This section also contains in­
structions for logical operations and for working
with the Status Register.

ABSOLUTE VALUE

. FABS

NIOP FPU1

101,110010,001
0 1 I 2 3 1 45 6 1 78

1 I 'I ° ,0
9 10 II 12 13 14 15

The sign bit of the FPAC is forced to zero. Bits
1-63 of the FPAC remain unchanged.

CLEAR FPAC

. FCLR

NIOS FPU1

101,110010,0010,1111,111,0,01
o I I 2 3 I 4 5 6 I 7 8 9 10 ' II 12 13 14 15

All 64 bits of the FPAC are forced to zero. In
other words, the value of the FPAC is forced to
true zero.

LOAD EXPONENT

.FLDX ac

DOBC ac, FPU2

I ° I , I I AC II , ° ° II ° II °
o I I 2 3 I 4 5 6 I 7 8 I 9 10 I II ' 12 I 13! 14 15

Bits 1-7 of the specified AC replace bits 1-7 oJ
the FPAC. Bits 0 and 8-15 of the specified AC are
ignored. Bits 0 and 8-63 of the FPAC remain un­
changed. The entire contents of the specified AC
remain unchanged.

NOTE The exponent is assumed to
be in" Excess 64" represen­
tation.

v-Z3

NEGATE

.FNEG

NIOC FPUl

1° 1,11 0 °1°,0°1
0 1 I 2 3 14 5 6 17 8 9 10 II 12 13 14 15

The sign bit of the FPAC is inverted. Bits 1-63
of the FPAC remain unchanged .

NOTE If the number in the FP AC
is true zero, the sign bit of
the FPAC remains zero.

NORMALIZE

.FNRM

NIOS FPU2

101 ,11 0 01 0,001 0,11 1,1,1 1,0,11
o I I 2 3 1 4 5 6 1 7 8 9 10 II 121 13 14 15

The floating point number in the FPAC is norm­
alized. If all bits of the mantissa are zero, a true
zero is set in the FPAC. If an exponent underflow
occurs, the UNF bit in the SR is set and the number
is correct, except that the exponent is 128 too
large.

READ HIGH WORD

.FHWD ac

DIA ac, FPU1

I ° I I , I I AF I ° , ° I I I ° ,0 II ,I ,I I, ° ,0 I
o 1 2 3 4 5 6 7 8 9 10 II 12 1 13 14 15

The high-order 16 bits of the FPAC are placed in
the specified AC. The previous contents of the
specified AC are lost. The contents of the FPAC
remain unchanged.

FLOATING POINT ARITHMETIC

SCALE

. FSCL ac

DOB ac, FPU2

iO"iACi'OOiOOli
. , [. , . [, . [. [

I 0 , [

o I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

The mantissa of the floating point number in the
FPAC is shifted either right or left, depending
upon the contents of bits 1-7 of the specified AC.
The contents of the specified AC remain un­
changed.

Bits 1-7 of the specified AC are treated as an ex­
ponent in "Excess 64" representation. The differ­
ence between this exponent and the exponent in the
FPAC is computed by subtracting the exponent in
the FPAC from the number contained in bits 1-7 of
the specified AC. If the difference is zero, the
instruction is terminated. If the difference is
positive, the mantissa contained in the FPAC is
shifted right that number of hex digits. If the
difference is negative, the mantissa contained in
the FPAC is shifted left that number of hex digits
and the MOF bit in the FPSR is set. After the
shift, the contents of bits 1-7 of the speeified AC
replace the exponent contained in the FPAC.

Bits shifted out of either end of the mantissa are
lost.

If the entire mantissa is shifted out of the FPAC,
the FPAC is set to true zero.

Status Instructions

READ STATUS

. FRST ac

DIAC ac, FPU

I ° I [I I AC I ° [0 I II [° I
0' 1 2 3' 45 6' 7 8 9 10 II 12 13 14 15

The contents of the 16 bit status register are placed
in the specified AC in the format shown previously.
Bits 0 -4 of the SR are set to zero.

WRITE STATUS

. FWST ac

DOA ac, FPU

I ° I [I I AC lOr I ,0 lOr 0 II [I [I , I [I [0 I
o 'I 2 3 '4 5 6 7 8 9 10 II 12 13 14 15

The contents of the specified AC are placed in the
status register. The contents of the specified AC
remain unchanged.

Diagnostic Instrudions

NOTE The following instructions
are for diagnostic use only.

READ WORD 1

DIA ac, FPU1

READ WORD 2

DIB ac, FPU1

I 0 , , 'I AC I 0 , ' I 0 , 0 I'
o I I 2 3 I 4 5 6 I 7 8 9 10 II

READ WORD 3

DIA ac, FPU2

12 13 14 15

I 0 I,' I AC I 0 ,0 , I 0 0 I' I I , 0
o I I 2 3 14 5 6 17 8 ' 9 10' 11'12 1 13' 14' 15

READ WORD 4

DIB ac, FPU2

I 0 I, I I AC I 0 " I I 0 , 0 II I' 0
0 1 123 1 456 1 78910'11'12 1 13'14'15

These instructions read the four most significant
words of the FPU arithmetic unit. When the FPU
is idle, these words are words 1-4 of the FPAC.
When the FPU is in diagnostic mode, these instruc­
ti:ms, along with the FPU CLOCK instruction, al­
low the program to monitor the output of the FPU
arithmetic unit.

V-25

FPU CLOCK

NIOP FPU

10 ' '100100011 . I ' . I . , I . I', 'I ,0 I
o 2345678 9 10 II 12 13 14 15

When placed in diagnostic mode (bit 15 of the SR)
and issued an instruction, the FPU will initiate
execution, request the data channel cycles required,
and halt. This instruction causes a single clock
pulse in the FPU. The results of any arithmetic
manipulation can then be monitored by the program
by the READ WORD instructions. An IORST will
force the FPU to the idle state or if enough FPU
CLOCK instructions occur, the FPU will eventually
go to the idle state by normal sequence.

NOTE Diagnostic commands are for
diagnostic purposes only and
are not supported in the As­
sembler. The user should use
the STORE FP AC instruction
to retrieve the FPAC.

FLOATING POINT ARITHMETIC

Mode Settings For The Floating Point Unit

The low-order three bits of the Status Register
control the mode in which the FPU operates. The
mode can be changed with the WRITE STATUS in­
struction. Bits 13-15 of the Status Register and
the modes that they imply are summarized in the
following table.

Status Register Modes

BIT 13 BIT 14 BIT 15 PROCESSING MODE

0 0 0 Normal mode - -inter-
rupt enabled

1 0 0 Normal mode -inter-
rupt disabled

0 1 0 Parallel mode - -inter-
rupt enabled

1 1 0 Parallel mode - -inter-
rupt disabled

X X 1 Diagnostic mode

Note: X = May be either zero or one.

Normal Mode

The FPU is defined to be in normal mode when bits
14 and 15 of the Status Register are both set to O.
In this mode, the FPU will request data channel cy­
cles whenever it is busy processing an instruction.
The FPU should always be assigned a lower DCH
priority than any device requiring the data channel
while the FPU is busy.

Normal mode imposes the following restrictions on
instruction ordering, if the FPU is running with
any NOVA line computer other than the NOVA 800
computer or the NOVA 820 computer.

1. FPU instructions must be separated by at
least one non-FPU instruction, which must
not modify the storage operand of the pre­
ceding FPU instructions.

2. The operand of a STORE FPAC instruc­
tion cannot be tested immediately after
the instruction. At least one machine
cycle must elapse.

V-26

Examples:

LDA 1,PTRX

. FLDS 1

.FMS 1

;LOAD AC1 WITH
; POINTER TO X
;LOAD X TO FPAC-­
; SINGLE PRECISION
;MULTIPLY X BY
; ITSELF

In this case there is no non-FPU instruction be­
tween the LOAD and the MULTIPLY. Results will
be unpredictable.

LDA 3,PTRX ;LOAD AC3 WITH
; POINTER TO X

.FLDS 3 ;LOAD X TO FPAC--
; SINGLE PRECISION

STA 3,0,3 ;USE X LOCATIONS
; AS HOLD AREA

.FNRM ;NORMALIZE X

In this case the intervening instruction modifies
the location which holds the floating point number
X. The number loaded into the FPAC would have,
as its high-order 16 bits, the pointer to X.

LDA 1,PTRX ;LOAD AC1 WITH
; POINTER TO X

.FLDS 1 ;LOAD X TO FPAC--
; SINGLE PRECISION

LDA 2,PTRY ;LOAD AC2 WITH
; POINTER TO Y

LDA 3,PTRES ;LOAD AC3 WITH
; POINTER TO
; RESULT

. FSTS 3 ;STORE FPAC INTO
; RESULT

LDA 1,RESULT ;LOAD AC1 WITH
FIRST WORD OF

; RESULT

In this case the last instruction of the example will
not produce the desired effect. Because of the re­
strictions discussed above, RESULT does not hold
the sum of X and Y at the time of the LDA instruc­
tion. After a floating store, one more instruction
cycle must elapse before the receiving area con­
tains the contents of the FPAC.

Parallel Mode

The FPU is defined to be in parallel mode when bit
14 is set to 1 and bit 15 is set to O. In this mode,
the FPU will only request data channel cycles if
they are required to fetch or store an operand.
After the data channel is released, the CPU is free
to process instructions in parallel with the FPU.
Before the programmer issues another FPU in­
struction, however, he must ensure that the FPU
has finished processing the previous instruction.
This may be accomplished in either of two ways:

1. The number of non-FPU instructions be­
tween FPU instructions are of sufficient
number to guarantee that the FPU will be
idle.

2. The programmer must look at the BUSY
flag of the FPU and issue the next in­
struction when the FPU is not busy.

The advantage of parallel processing is that it al­
lows the programmer to use effectively the time
the FPU spends in proceSSing instructions. This
time may be used for moving operands, updating
pointers, etc.

Example:

LDA O,AOP 1 ;LOAD ADDRESS OF
; OP1

.FLDS 0 ;LOAD OP1 TO FPAC--
; SINGLE PRECISION
;SOME LIST OF IN-

STRUCTIONS WHERE
THE TOTAL EXECU-
TION TIME IS GREAT-
ER THAN THAT OF
.FLDS

LDA 1,AOP 2 ;LOAD ADDRESS OF
; OP2

.FMS 1 ;MULTIPLY OPl BY
; OP2--SINGLE PRECI-
; SION

SKPBZ FPU ;BUSY?
JMP . -1 ;YES
. FSTS 1 ;NO, STORE RESULT IN

; OP1

Interrupt Enable and Disable

To provide maximum flexibility, the FPU has an
interrupt disable bit in the status register (bit 13),
and is maskable via the MASK OUT instruction
(bit 5). If both these bits are set to 0, the FPU
will signal an interrupt for exponent overflow, ex­
ponent underflow, or divide by zero. These con­
ditions are represented by bits 1-3 in the status
register. Detailed discussions of these conditions
can be found in the section entitled "Floating Point
Unit Registers". If either or both of the interrupt
disable bits is set to 1, the FPU will not request an
interrupt for any of the above conditions, but will
set the representative bit in the status register and
set bit zero of the status register. These bits will
remain set to 1 until cleared by the programmer.
If running with interrupt disabled, it is the program­
mer's responsibility to test the status register
periodically in order to detect errors in floating
point processing.

NOTE The FPU returns 768 as the
device code in response to
the INTA instruction.

FLOATING POINT UNIT MNEMONICS

To enable implementation of the mnemonics used
throughout this manual, a paper tape (DGC Part
Number 090-001248) is supplied with each floating
point unit. This tape is in assembler-readable for­
mat and contains . DIAC and . DUSR instructions
which define the mnemonics. There. are two ways
to use this tape, depending on whether or not the
user has a supervisor for his machine.

If the user's machine has no supervisor, then he
should read this tape into pass 1 of the assembler,
then read in his program. Aft~r the tape is read
into pass 1 of the assembler, the assembler will
correctly assemble all mnemonics used in this
manual. If the programmer plans on extensive use
of these mnemoniCS, it is advisable that he read in
this paper tape to pass 1 of his assembler and then
punch out this new version of the assembler. This
punched copy of the assembler will always under­
stand the floating point mnemonics.

If the user's machine has a supervisor, either DOS
or RDOS, then this paper tape should be put on disc
as a symbolic file and then specified (with /S switch)
as the first file in a multi -file assembly. If this
tape is not specified as the first file, floating point
mnemonics read into the assembler before this
tape is read in, will be flagged as errors.

A table of these . DUSR and . DIAC instructions
follows.

V-27 FLOATING POINT ARITHMETIC

. DUSR and . DIAC Instructions for Floating Point Unit Mnemonics

DEVICE CODES

. DUSR FPU= 76 ; FLOATING POINT PRIMARY CONTROL

. DUSR FPU1= 74 ; FLOATING POINT SINGLE PRECISION

. DUSR FPU2= 75 ; FLOATING POINT DOUBLE PRECISION

_.
MEMORY REFERENCE INSTRUCTIONS

. D1AC · FLDS= DOBP 0, FPUl ' ;LOAD SINGLE

.DIAC .FLDD= DOBP 0,FPU2 ;LOAD DOUBLE

. DIAC · FSRS= DOBS 0, FPUl • ;STORE SINGLE

. mAC . FSRD= DOBS 0, FPU2 ;STORE DOUBLE

ARITHMETIC INSTRUCTIONS

.DIAC .FAS= DOA 0, FPUl - ;ADD SINGLE

.DIAC . FAD = DOA 0, FPU2 ;ADD DOUBLE

.DIAC · FSS= DOAS 0, FPUl • ;SUBTRACT SINGLE

.DIAC . FSD= DOAS 0, FPU2 ;SUBTRACT DOUBLE

. DIAC .FMS= DOAP 0, FPUl • ;MULTIPLY SINGLE

.DIAC .FMD= DOAP 0, FPU2 ;MULTIPLY DOUBLE

.DIAC .FDS= DOAC 0, FPUl ' ;DIVIDE SINGLE

.DIAC .FDD= DOAC 0, FPU2 ;DIVIDE DOUBLE

TEMP INSTRUCTIONS

. DUSR · FMFT= NIOP FPU2 ;MOVE FPAC TO TEMP

. DUSR .FMTF= NIOC FPU2 ;MOVE TEMP TO FPAC

. DUSR · FATS= DOC 0, FPU1, ;ADD TEMP SINGLE

. DUSR .FATD= DOC 0, FPU2 ;ADD TEMP DOUBLE

. DUSR · FSTS= DOCS 0, FPUl - ;SUBTRACT TEMP SINGLE

. DUSR · FSTD= DOCS 0, FPU2 ;SUBTRACT TEMP DOUBLE

. DUSR · FMTS= DOCP 0, FPU1, ;MULTIPLY TEMP SINGLE

. DUSR .FMTD= DOCP 0, FPU2 ;MULTIPLY TEMP DOUBLE

. DUSR · FDTS= Doce 0, FPUl ;DIVIDE TEMP SINGLE

. DUSR .FDTD= Doce 0, FPU2 ;DIVIDE TEMP DOUBLE

SHIFT AND LOGICAL INSTRUCTIONS

. DUSR · FABS= NIOP FPUl - ;ABSOLUTE VALUE

. DUSR . FCLR= NIOS FPUl
,

;CLEAR FPAC
.DIAC .FLDX= DOBC 0, FPU2 ;LOAD EXPONENT
. DUSR · FNEG= NIOC FPUl . ;NEGATE
. DUSR .FNRM= NIOS FPU2 ;NORMALIZE
. mAC • FSCL= DOB 0, FPU2 ;SCALE
• DIAC .FHWD= DIA 0, FPUl • ;READ HIGH WORD

STATUS INSTRUCTIONS

. mAC .FRST= DIAC O,FPU ;READ STATUS

.DIAC · FWST= DOA O,FPU ;WRITE STATUS

V .. 28

SECTION VI

FRONT PANEL

INTRODUCTION

The front panels of the NOVA line computers con­
tain all the function switches and display all the
information needed to operate them. As shown in
the figure, all the consoles are essentially the
same. The console at the top is for the NOVA
computer, beneath it is the SUPERNOVA computer
console, next is the console for NOVA 1200, NOVA
800, and NOVA 2 computers. Next is the console
found on NOVA 3 computers. The bottom console
is a turnkey console, which is available for all
NOVA line computers. This console is designed

for those computers that will be running in dedi­
cated environments and contains only those switches
needed to initiate processing. These switches, and
the one light, operate exactly the same as those
found on the other consoles.

The function and data switches on the consoles
allow the operator to perform many useful opera­
tions and the lights reflect the current state of the
machine. If a light is lit, it means the correspond­
ing bit is 1. If the light is not lit, the correspond­
ing bit is o. The lights and their meanings are
described below.

FRONT PANEL LIGHTS
LIGHT MEANING WHEN LIT

ADDRESS These 15 lights display what is
currently in the memory address
register.

CARRY The carry bit is 1.

DATA These 16 lights display what is
currently on the memory bus.

DCH The next CPU cycle will be used
by the data channel to gain access
to memory. (NOVA, SUPER­
NOVA, and NOVA 3 computers
only.)

DEFER The next CPU cycle will be used
to follow an indirection chain.

EXECUTE The next CPU cycle will be used
to execute an instruction.

FETCH The next CPU cycle will be used
to fetch an instruction.

INSTRUCTION These 8 lights display the high­
order 8 bits of the instruction
just completed. (NOVA and
SUPERNOVA computers only.)

ION The Interrupt On flag: is 1.

MAP B Program map "B" or data chan­
nel map "B" is enabled.

MAP
ENABLED

06-01929

(NOVA 3 computers only)

One of the two program maps is
enabled and not inhibited or a
data channel map is mapping
addresses. (NOVA 3 computers
only.)

LIGHT

MEM PAR

MEM PWR

ON

OVERLAP

PI

PROTECT

RUN

MEANING WHEN LIT

The memory parity feature has
detected a memory error. (NOVA
3 computers only.)

Power is being supplied to the
semiconductor memories.
(NOVA 3 computers only)

5V power is being supplied to the
CPU. (NOVA 3 computers only.)

Two Accumulator-multiple opera­
tion format instructions are being
executed out of read-only memory
and the CPU is overlapping the
execution of one with the fetching
of the next. (SUPERNOVA com­
puter only.)

The next CPU cycle will be used
to start a program interrupt by
storing the program counter in
location O. (NOVA and SUPER­
NOVA computers only.)

The MAP feature is operating in
user mode. (SUPERNOVA com­
puters only.)

The CPU is executing instructions
or data is being transferred via
the data channel.

For the NOVA 3 series of computers, there is one
row of lights that serves the function of both AD­
DRESS and DATA in the above table. The current
contents of the program counter is displayed in
these lights unless a console function is being per
formed.

VI-1 of 8 FRONT PANEL LIGHTS

IlUN ION

POWER INSTRUCTION 0 I 0 0 0 I 0 0 0 I 0 C- O

ON --
F"ETCH EXECUTE me ADDR(SS I 0 0 0 I c 0 0 I 0 0 0 I 0 0 0 I 0 0 0 0 0

LOCK DEFER

DATA 0 0 I 0 0 0 I 0 0 0 I 0 0 0 I 0 0 0 I 0 0 0
0

CARRY 0 I • , • • • 7 • • 10 \I I. " I. ,.
OCH PI

@ @@@ @@@ @@@ @@@ @@@ 0 0

f
DEPOlrr MO At! Ar.2 AC. Rlln 'TAItT _o.T IXAIlINE MEMORYST'[P _LOAD

I © ._.t@-@-@-@t @ @ @ @) @) @ ©
STOP CDNrINUE ITNIXT EXA-.NEXT INaT STV CHANNEL 'TAitT

I <17 DATA GENERAL CORPORATION I NOVA I I
D6-01872

NOVA

OVERLAP PROTECT RUN ION

POWER INSTRucrto N 0 I 0 0 0 I 0 0 0 I 0 0 0 0 0

ON -------_.- F"ETCH EXECUTE

OFFe

ADDRESS I 0 0 0 I 0 0 0 I 0 0 0 I 0 0 0 I 0 0 0 0 0

LOCK DEFER
0 0 I 0 0 0 I 0 0 0 I 0 0 0 I 0 0 0 I 0 0 0 P DATA

CARRY 0 I • , • • • 7 • • 10 \I
"

13
"

,.
DCH PI

@ @@@ @@@ @@@ @@@ @@@ 0 0

I DE'OIIT ACO ACl Adz: AC! RElET START DEPOSIT [)(AMINE MEMORY STEP PftOGRAIII LOAD

I © ._.t@-@-@-@t ® @ @ @) @) @ ©
STOP CONTINUE DEPOSIT NEXT ~NEXT INIT ITEP CHANNEL START

I <17 DATA GENEAAL CORPORATION I SUPER NOVA I I
06-01871

SUPERNOVA

~~~~~~~~~~~ 
.UN ION 

POWIER ADDRESS 000000000 000 ooc~ 0 0 
ON 

C::==:CARfI"C) e::::»o c:::') c:::::::» ~ c=::::3 c::::J c:=r c:::. c::::::::J. c:::::, c::::::::I c::::I 4=::J c::::::Jo o"e LOCK 

FETCH DEFER EXECUTE 

DATA 0 ~ ~~~ ~~~ ~~~ ~~: ~~~ 
0 0 0 

DEPOSIT ACO ACl AC2. At! REaET START O[llO$IT EXAMINE MEMORY STt:P PfIIOGRAM LOAD 

© ._.t@-@-@-@t @ @ @ @) @) @ © 
STOP CONTINUE DEPOSIT NEXT ~NEXT INIT STEP 

I ( Cb DATA GENERAL CORPORATION I NOVA 2 ) I 
-0601870 

NOVA 800/1200 and NOVA 2 

VI-2 



06-01867 

POWER 

ON 

OF.e LOCI( 

[ 
RUN 

o I PIIDGIIAM LOAD I 
CO~UE S@ I 

RESET 

NOVA 3 

AC~FP 
ACOVPC 

POWER 

~--~--------------------------------------------------------~~~--~ (]p DATA GENERAL CO,.POMTION I NOVA I 

06·01869 

NOVA TURNKEY 

-IGGB~ i I ; -;;; .~-
CONTINUE .. SET ----

~Clu DATA GENERAL I Nervi ! » ) 

06-01868 

NOVA 3 TURNKEY 

VI-3 



DATA SWITCHES 

Beneath the data lights is a row of 16 switches. 
These switches are used to enter either data or ad­
dresses and can be read using the READ SWITCHES 
instruction. Only switches 1-15 are used for enter­
ing addresses. When these switches are in the up 
position, they represent a 1; when down, they re­
present a O. 

CONSOLE SWITCHES 

In addition to the data switches, there are a number 
of function switches. These switches are spring 
loaded. When pushed up, they perform the function 
labeled above the switch, and when pushed down, 
they perform the function labeled below the switch. 
When released, these switches return to a neutral 
"off" position. The switches and their functions 
are explained below. 

Accumulator Deposit--Examine 

On all consoles except the NOVA 3 consoles, the 
left-hand four switches reference the four CPU 
accumulators. The switches are numbered 0-3 
from left to right. Each switch affects only its 
corresponding accumulator. When one of these 
switches is pushed up, the current setting of the 
data switches is deposited into the corresponding 
accumulator. The data lights display the informa­
tion placed in the AC. When one of these switches 
is pushed down, the contents of the corresponding 
accumulator are displayed in the data lights. 

Reg Dep -- Reg Exam 

For the NOVA 3 computers, the accumulator deposit 
and examine functions are performed by the com­
bination of one function switch and a 7 -position 
rotary switch. The seven registers available for 
depositing and examining are the four accumulators, 
the stack pointer, the frame pointer, and the pro­
gram counter. When the function switch is pushed 
up, the contents of the data switches are deposited 
into the register indicated by the current setting of 
the rotary switch. As long as the switch is pushed 
up, the value indicated by the data switches is dis­
played in the lights. When the switch is released, 
the program counter is displayed in the lights. 

VI-4 

When the function switch is pushed down, the con­
tents of the register indicated by the current setting 
of the rotary switch are displayed in the lights. As 
long as the switch is held down, the value is dis­
played in the lights. When the switch is released, 
the program counter is displayed in the lights. 

Reset--Stop 

When this switch is pushed up, the RESET function 
is performed and an I/O RESET instruction is exe­
cuted. The CPU is stopped after completing the 
current processor cycle. The Interrupt On flag, 
the 16-bit priority mask, and all Busy and Done 
flags are set to O. 

When this switch is pushed down, the STOP function 
is performed. The CPU is stopped after complet­
ing the current instruction and before executing the 
next instruction. If an I/O device requests an in­
terrupt during the execution of the current instruc­
tion' it is honored before the CPU is stopped. All 
outstanding data channel requests are honored be­
fore the CPU is stopped. For the NOVA 3 series 
of computers, data channel requests are honored 
while the machine is in the stopped state. After the 
CPU is stopped, the address lights display the ad­
dress of the next instruction to be executed and the 
data lights display the current contents of the mem­
ory bus. 

Start--Continue 

When this switch is pushed up, the START function 
is performed. The address indicated by data 
switches 1-15 is placed in the program counter and 
sequential operation of the processor begins with 
the word addressed by the updated value of the pro­
gram counter. 

When this switch is pushed down, the CONTINUE 
function is performed. Sequential operation of the 
processor continues from the current state of the 
machine. 

Deposit--Deposit Next 

When this switch is pushed up, the DE POSIT func­
tion is performed. The current setting of the data 
switches is placed into the word addressed by the 
current value of the program counter. The up­
dated value of the altered word is displayed in the 
data lights. 



When this switch is pushed down, the DEPOSIT 
NEXT function is performed. The program counter 
is incremented by one and the current setting of the 
data switches is placed into the word addressed by 
the updated value of the program counter. The up­
dated value of the program counter is displayed in 
the address lights and the updated value of the al­
tered word is displayed in the data lights. 

NOTE For the NOVA 3 computers, these 
functions are performed by the 
MEMORYDEP--DEP NEXT switch. 
As long as the switch is held in 
either the up or down position, the 
value indicated by the data switches 
is displayed in the lights. When the 
switch is released, the program 
counter is displayed in the lights. 

Examine--Examine Next 

When this switch is pushed up, the EXAMINE func­
tion is performed. The address indicated by data 
switches 1-15 is placed in the program counter. 
This value is displayed in the address lights. The 
contents of the word addressed by the program 
counter are then read and displayed in the data 
lights. 

When this switch is pushed down, the EXAMINE 
NEXT function is performed. The current value 
of the program counter is incremented by one and 
the new value is displayed in the address lights. 
The contents of the word addressed by the updated 
value of the program counter are then read and 
displayed in the data lights. 

NOTE For the NOVA 3 computers, these 
functions are performed by the 
MEMORY EXAM--EXAM NEXT 
switch. As long as the switch is 
held in either the up or down posi­
tion, the value contained in the mem-
0ry location is displayed in the 
lights. When the switch is released, 
the program counter is displayed in 
the lights. 

Memory Step--Inst Step 

When this switch is pushed up, the MEMORY STEP 
function is performed. The CPU performs a single 
processor cycle and stops. After the processor 
stops, the lights indicate the next cycle to be 
executed. 

When this switch is pushed down, the INSTRUC­
TION STEP function is performed. The instruc­
tion contained in the word addressed by the current 

VI-f; 

value of the program counter is executed and then 
the CPU is stopped. The address lights display 
the updated value of the program counter and the 
data lights display the contents of the memory bus. 

Program Load 

In the NOVA 1200, NOVA 800, and NOVA 2 com­
puters, when this switch is pushed up, the PRO­
GRAM LOAD function is performed if the Program 
Load option is installed on the machine. The con­
tents of the bootstrap read-only memory are placed 
in memory location 0-378 and a "JMP 0" instruc­
tion is performed. If the option is not installed, 
this switch has no effect. 

In the SUPERNOVA computer, when this switch is 
pushed up, the PROGRAM LOAD function is per­
formed. Thirty-three words are read from the de­
vice whose device code is set in data switches 
10-15 on the console. These words are placed in 
locations 0 -408 of main memory. After the last 
word is read, a "JMP 40" instruction is performed. 

NOTE For the NOVA 3 computers, the 
MEMORY STEP function has been 
deleted. The PROGRAM LOAD 
and INSTRUCTION STE P functions 
share the same function switch. 

Channel Start 

When this switch is pushed down, the CHANNEL 
START function is performed. A "JMP 377" in­
struction is placed in location 3778 of main mem­
ory. Then a DATA IN A with a Start (DIAS) 
instruction is issued to the device whose device 
code is set in data switches 10-15 on the console. 
After the instruction is issued, a "JMP 377" in­
struction is performed. 

Power 

The POWER switch is a three position key switch. 
The three positions are labeled "OFF", "ON", and 
"LOCK" . With the switch in the OFF position all 
power to the CPU is shut off and the machine will 
not run. Turning the switch to the ON position 
turns 'on the power and enables all the switches. 

Turning the switch to the LOCK position enables the 
key to be removed. While the CPU is processing 
and the switch is in the LOCK position, all console 
functions are disabled. If the switch is turned to 
the LOCK position while the CPU is stopped or if 
the CPU executes a HALT instruction while the 
switch is in the LOCK position, all the function 
switches are enabled. 

CONSOLE SWITCHES 



PROGRAM LOADING 

Before a program can be executed, it must be 
brought into memory. This requires that a loading 
program already reside in memory. In the event 
that there is no loading program in memory, a 
small, specialized loading program is normally 
placed in memory and used to read in the loading 
program. This small loading program is called a 
''bootstrap loader". The function of the bootstrap 
loader is to read in a more general-purpose load­
ing program which can be used to load the user's 
programs. Two methods are available for entering 
a bootstrap loader into memory. The operator can 
either enter it via the data switches and the deposit 
switch, or, if the computer is so equipped, he can 
use the program load option or the channel start 
feature. 

Manual Loading 

When using a NOVA computer or a computer from 
the NOVA SOO, NOVA 1200, NOVA 2 series or 
NOVA 3 series without the program load option, a 
bootstrap loader must be entered into memory 
manually using the switches on the console. The 
following loader is the bootstrap loader designed 
by DGC for use with binary loader #091-000004. 

LOCATION CONTENTS 

X7757 126440 GET: SUBO 1,1 ;CLEAR ACI AND 
; CARRY 

X7760 0636-- SKPDN -- ;DEVICE BUSY? 
X7761 000777 JMP . -1 ;YES 
X7762 0605-- DIAS 0, - .. ;READ FRAME 

; FROM DEVICE 
X7763 127100 ADDL 1,1 ;SHIFT AC1 LEFT 

; 2 BITS 
X7764 127100 ADDL 1,1 ;SHIFT ACI LEFT 

; 2 BITS 
X7765 107003 ADD 0,1, SNC ;ADD IN NEW 

; FRAME 
X7766 000772 JMP GET+l ;GET NEW FRAME 
X7767 001400 JMP 0,3 ;FULL WORD--

; RETURN 
X7770 0601-- BSTRP: NIOS ; PRIME THE DE-

; VICE 
X7771 004766 JSR GET ;GET A WORD 
X7772 044402 STA 0+2 ;STORE IT 
X7773 004764 JSR GET ;GET ANOTHER 

; WORD 

This loader reads in a specially formatted tape 
from either the paper tape reader or the reader on 
the console teletypewriter. This tape has only 4 
bits per frame and the loader assembles these 
frames into complete words. This bootstrap should 
be placed in memory starting at that location which 
is 20S less than the highest available memory loca­
tion. In other words, for the "X" in the LOCA­
TION column, substitute a 0 for a 4K system, a 
1 for an SK system, a 2 for a 12K system, and so 
on. For the dashes in the CONTENTS column, 
substitute lOS if the console teletypewriter is being 
used, or 12S if the paper tape reader is being used. 
After the bootstrap is entered, start it at location 
X7770. 

Automatic Loading 

When using a SUPERNOVA computer, a loading 
program can be placed in memory by using either 
the PROGRAM LOAD function or the CHANNEL 
START function available on the console. The 
PROGRAM LOAD function reads 66 bytes of data 
from the device whose device code is set in data 
switches 10-15. These 66 bytes are compressed 
into 33 16-bit words and placed in memory loca­
tions 0 -40S. The first two bytes read are placed 
in location 0, with the first byte read being placed 
in bits 0 -7, and the second byte read being placed 
in bits S-15. This process continues until a word 
is placed in location 40S• After a word has been 
stored into location 40S' a "JMP 40" instruction 
is executed. 

This sequence is designed to be used with binary 
loader #091-000041. 

Alternatively, when using a SUPERNOVA computer, 
the CHANNEL START function can be used to bring 
in a loading program. The CHANNEL START func­
tion places a "JMP 377" instruction in location 
377S and then issues a DIAS instruction to the de­
vice whose device code is set in data switches 
10-15. After issuing the DIAS instruction, a 
"JMP 377" instruction is executed. This sequence 
initiates a data channel transfer from the device to 
memory beginning at memory location O. The CPU 
will continue to execute the" JMP 377" instruction 
until the data channel places a word in that location. 
After a word has been placed in location 377S' it is 
executed as an instruction. Typically, this word is 
either a HALT or a JUMP into the data that the data 
channel has placed in the first 377S memory 
locations. 

When using a computer from the NOVA SOO, NOVA 
1200, NOVA 2 series, or NOVA 3 series with the 
program load option, a loading program can be 
placed in memory by using the PROGRAM LOAD 
function available on the console. 

To enter a loader program, the operator must 
first set up the device that is to be used and set its 
octal device code into data switches 10-15. If the 
device is a data channel device, set data switch 0 
to 1. If the device is a low-speed device, set data 
switch 0 to O. After this is done, push the 
PROGRAM LOAD switch to the up position. The 
bootstrap loader will be deposited into memory 
locations 0-37S and started at location O. 

The bootstrap loader reads the data switches, sets 
up its own I/O instructions with the specified de­
vice code, and then performs a program load pro­
cedure depending upon the state of data switch O. 

If the switch is a 1, the bootstrap loader starts the 
device for data channel storage beginning at loca-

VI-6 



tion 0 and then loops at location 3778 until a data 
channel transfer places a word into that location. 

After a word has been placed in location 3778' it 
is executed as an instruction. Typically, this 
word is either a HALT or a JUMP into the data 
that the data channel has placed in the first 3778 
memory locations. 

If data switch 0 is a 0, the bootstrap loader reads 
the loader program via programmed I/O. The 
device must supply 8 -bit data bytes, and each pair 
of bytes is stored as a single word in memory; 
wherein the first and second bytes read become 
the left and right halves of the word. To simplify 
the positioning of the tape in the reader, the boot­
strap loader ignores leading null characters. It 
does not begin storing any words until it reads a 
non-zero synchronization byte. The first word 
following this synchronization byte must be the 

negative of the total number of words to be read, 
including the first word. The number of words to 
be read, including the first word may not be 
greater than 19210 . The bootstrap loader stores 
these words beginning at memory location 1008. 
After storing the last word read, it transfers 
control to that location. 

NOTE For proper program loading 
via the data channel, the de­
vice used must be initiated for 
reading by an I/O RESET fol­
lowed by an NIOS instruction. 
In addition, it is up to the de­
vice to stop reading after 256 
words have been read. 

Listed below is the standard 32 word bootstrap 
loader. This program is capable of loading in 
either of the manners described above. 

BOOTSTRAP LOADER ------------------------~ 

BEG: IORST 
READS ° 
LDA 1, C77 
AND 0,1 
COM 1,1 

LOOP: ISZ OP1 
ISZ 
ISZ 
INC 
JMP 

LDA 
STA 

OP1: 060077 

OP2 
OP3 
1,1,SZR 
LOOP 

2, C377 
2,377 

;RESET ALL I/O 
;READ SWITCHES INTO ACO 
;GET DEVICE MASK (000077) 
;ISOLATE DEVICE CODE 
; - DEVICE CODE - II 

;COUNT DEVICE CODE INTO ALL 
;1/0 INSTRUCTIONS 

;DONE? 
;NO, INCREMENT AGAIN 

;YES, PUT JMP 377 INTO LOCATION 377 

;START DEVICE: (NIOS 0) - 1 
MOVL O,O,SZC ;LOW SPEED DEVICE? (TEST SWITCH 0) 

C377: JMP 

LOOP2: JSR 
MOVC 
JMP 

LOOP4: JSR 

377 ;NO, GO TO 377 ANI) WAIT FOR CHANNEL 

GET+1 ;GET A FRAME 
O,O,SNR ;IS IT NON-ZERO? 
LOOP2 ;NO, IGNORE AND GET ANOTHER 

;YES, GET FULL WORD 
STA 

GET 
1,@C77 ;STORE STARTING AT 1002's COMPLEMENT OF WORD COUNT 

; (AUTOINCREMENT) 

C77: 
GET: 
OP2: 

ISZ 
JMP 
JMP 
SUBZ 

100 
LOOP4 
77 
1,1 

;COUNT WORD - DONE? 
;NO, GET ANOTHER 
;YES - LOCATION COUNTER AND JUMP TO LAST WORD 
;CLEAR AC1, SET CARRY 

LOOP3: 063577 ;DONE?: (SKPDN 0) - 1 
JMP LOOP3 ;NO, WAIT 

OP3: 060477 ;YES, READ IN ACO: (DIAS 0,0) - 1 
ADDCS 0,1, SNC ;ADD 2 FRAMES SWAPPED - GOT SECOND? 
JMP LooP3 ;NO, GO BACK AFTER IT 
MOVS 1,1 ;YES, SWAP THEM 
JMP 0.3 ;RETURN WITH FULL WORD 
o ; PADDING 

VI-"[ PROGRAM LOADING 



VI-8 



APPENDICES 

• I/O DEVICE CODES AND 

DATA GENERAL MNEMONICS 

• OCTAL AND HEXADECIMAL 

CONVERSION 

• ASCII CHARACTER CODES 

• DOUBLE PRECISION ARITHMETIC 

• INSTRUCTION USE EXAMPLES 

• INSTRUCTION EXECUTION TIMES 

A-l of 4 



APPENDIX A 

I/O DEVICE CODES AND DATA GENERAL MNEMONICS 

OCTAL 
DEVICE PRIORITY 
CODE MNEMONIC MASK BIT DEVICE NAME 

00 ---- -- Unused 
01 MDV -- Multiply/Divide 
02 MMU } -- Memory Management Unit 
03 MMUI 
02 MMPU -- Memory Management and Protection Unit 
04 

05 
06 MCAT 12 Multiprocessor adapter transmitter 
07 MCAR 12 Multiprocessor adapter receiver 
10 TTl 14 TTY input 
11 TTO 15 TTY output 

12 PTR 11 Paper tape reader 
13 PTP 13 Paper tape punch 
14 RTC 13 Real-time clock 
15 PLT 12 Incremental plotter 
16 CDR 10 Card reader 

17 LPT 12 Line printer 
20 DSK 9 Fixed head disc 
21 ADCV 8 A/D converter 
22 MTA 10 Magnetic tape 
23 DACV -- D/ A converter 

24 DCM 0 Data communications multiplexor 
25 
26 
27 
30 QTY 14 Asynchronous hardware multiplexor 

30 SLA 14 Synchronous line adapter 
312 IBMI } 13 IBM 360/370 interface 32 IBM2 
33 DKP 7 Moving head disc 
34 CAS 10 Cassette tape 

342 MUX 8} 11 Multiline asynchronous controller 35 CRC 
36 IPB 6 Interprocessor bus--half duplex 
37 IVT 6 IPB watchdog timer 
40 DPI 8 IPB full duplex input 

41 DPO 8 IPB full duplex output 
403 SCR 8 Synchronous communication receiver 
414 SCT 8 Synchronous communication transmitter 
42 DIO 7 Digital I/O 
43 DIOT 6 Digital I/O timer 

D6-0/932 

2Code returned by INT A 

3Can be set up with any unused even device code equal to 40 or above 

4Can be set up with any unused odd device code equal to 41 or above 

A-2 



OCTAL 
DEVICE 

CODE 

44 
45 
46 
47 
50 

51 
52 
53 
54 
55 

56 
57 
60 
61 
62 

63 
642 
65 
66 
67 

70 
702 
71 } 72 
73 

74 
742 } 752 
74 
75 
76 
77 

APPENDIX A (Continued) 

I/O DEVICE CODES AND 
DATA GENERAL MNEMONICS 

PRIORITY 
MNEMONIC MASK BIT DEVICE NAME 

MXM 12 Modem control for MXl/MX2 

MCATI 12 Second multiprocessor transmitter 
MCARI 12 Second multiprocessor receiver 
TTIl 14 Second TTY input 

TTOI 15 Second TTY output 
PTRI 11 Second paper tape reader 
PTPI 13 Second paper tape punch 
RTCI 13 Second real-time clock 
PLTI 12 Second incremental plotter 

CDRI 10 Second card reader 
LPTI 12 Second line printer 
DSKI 9 Second fixed head disc 
ADCVl 8 Second A/D converter 
MTAI 10 Second magnetic tape 

DACVl -- Second D/A converter 
FPUI 

1 FPU2 5 Alternate location for floating point 
FPU 

QTYI 14 Second asynchronous hardware multiplexor 
SLAI 14 Second synchronous line adapter 

13 Second IBM 360/370 interfaee 

DKPI 7 Second moving head disc 

CASI 10 Second cassette tape 

11 Second multiline asynchronous controller 

FPUI I FPU2 5 Floating point 
FPU 
CPU -- Central processor and console functions 

2 Code returned by INT A 

3Can be set up with any unused even device code equal to 40 or above 

4Can be set up with any unused odd device code equal to 41 or above 

A-3 



A-4 



APPENDIX B 

OCTAL AND HEXADECIMAL CONVERSION 

To convert a number from octal or hexadecimal to 
decimal, locate in each column of the appropriate 
table the decimal equivalent for the octal or hex 
digit in that position. Add the decimal equivalents 
to obtain the decimal number 

To convert a decimal number to octal or hexa­
decimal: 

1. Locate the largest decimal value in the 
appropriate table that will' fit into the 
decimal number to be converted; 

2. note its octal or hex equivalent and column 
position; 

3. find the decimal remainder. 

Repeat the process on each remainder. When the 
remainder is 0, all digits will have been generated. 

85 84 83 82 81 80 

0 0 0 0 0 0 0 

1 32,768 4,096 512 64 8 1 

2 65,536 8,192 1,024 128 16 2 

3 98,304 12,228 1,536 192 24 3 

4 131,072 16,384 2,048 256 32 4 

5 163,840 20,480 2,560 320 40 5 

6 196,608 24,576 3,072 384 48 6 

7 229,376 28,672 3,584 448 56 7 

! 

i 

B-1 of :~ 

165 164 163 162 

0 0 0 0 0 

1 1,048,576 65,536 4,09{) 256 

2 2,097,152 131,072 8,19:l 512 

3 3,145,728 196,608 12,288 768 

4 4,194,304 262,144 16,384 1,024 

5 5,242,880 327,680 20,480 1,280 

6 6,291,456 393,216 24,576 1,536 

7 7,340,032 458,752 28,672 1,792 

8 8,388,608 524,288 32,768 2,048 

9 9,437,184 589,824 36,864 2,304 

A 10,485,760 655,360 40,960 2,560 

B 11,534,336 720,896 45,056 2,816 

C 12,582.,912 786,432 49,152 3,072 

D 13,631,488 851,968 53,248 3,328 

E 14,680,064 917,504 57,344 3,584 

F 15,728,640 983,040 61,440 3,840 

161 160 

0 0 

16 1 

32 2 

48 3 

64 4 

80 5 

96 6 

112 7 

128 8 

144 9 

160 10 

176 11 

192 12 

208 13 

224 14 

240 15 



B-2 



APPENDIXC 

ASCII CHARACTER CODES 

To Produce 
ASCII Control On TTY Mod 33, 35 Even Parity 

Decimal Octal Hex Character Function Cntrl Shift Char 8-bit code 

0 000 00 NUL Null ./ ./ P 00 
1 001 01 SOH Start of Heading ./ A 81 
2 002 02 STX Start of Text ./ B 82 
3 003 03 ETX End of Text ./ C 03 
4 004 04 EOT End of Transmission ./ D 84 

5 005 05 ENQ Enquiry ./ E 05 
6 006 06 ACK Acknowledge ./ F 06 
7 007 07 BEL Bell ./ G 87 
8 010 08 BS Backspace ./ H 88 
9 011 09 HT Horizontal Tab ./ I 09 

10 012 OA NL New Line line feed OA 
./ J OA 
./ line feed 8A1 

11 013 OB VT Vertical Tab ./ K 8B 
12 014 OC FF Form Feed ./ L OC 
13 015 OD RT Return return 8D 

./ M 8D1 

./ return OD 
14 016 OE SO Shift Out ./ N 8E 

15 017 OF SI Shift In ./ 0 OF 
16 020 10 DLE Data Link Escape ./ P 90 
17 021 11 DC1 Device Control 1 ./ Q 11 
18 022 12 DC2 Device Control 2 ./ R 12 
19 023 13 DC3 Device Control 3 ./ S 93 

20 024 14 DC4 Device Control 4 ./ T 14 
21 025 15 NAK Negative Acknowledge ./ U 95 
22 026 16 SYN Synchronous Idle ./ V 96 
23 027 17 ETB End Transmission Block ./ W 17 
24 030 15 CAN Cancel ./ X 18 

25 031 19 EM End of Medium ./ Y 99 
26 032 1A SUB Substitute ./ Z 9A 
27 033 1B ESC Escape esc 1B 

./ ./ K IB 
28 034 1C FS File Separator ,/ ,/ L 9C 
29 035 1D GS Group Separator ./ ,/ M 1D 

30 036 IE RS Record Separator ,/ ./ N IE 
31 037 IF US Unit Separator ,/ ,/ 0 9F 
32 040 20 SP Space space AO 
33 041 21 ! ./ 1 21 
34 042 22 " ./ 2 22 

35 043 23 # ./ 3 A3 
36 044 24 $ ./ 4 24 
37 045 25 % ,/ 5 A5 
38 046 26 & ,/ 6 A6 
39 047 27 , 

,/ 7 27 

40 050 28 ( ,/ 8 28 
41 051 29 ) ,/ 9 A9 

-0501939 

IOn even parity TTY's, these codes are odd parity 

C-l of 4 



APPENDIX C ( Continued) 

ASCII CHARACTER CODES 

To Produce 
ASCII On TTY Mod 33, 35 Even Parity 

Decimal Octal Hex Character Cntrl Shift Char 8-bit code 

42 052 2A * ,/ : AA 
43 053 2B + ,/ ; 2B 
44 054 2C , , 2C 

45 055 2D - - 2D 
46 056 2E 2E 
47 057 2F / / AF 

- 48 060 30 0 0 30 
49 061 31 1 1 B1 

50 062 32 2 2 B2 
51 063 33 3 3 33 
52 064 34 4 4 B4 
53 065 35 5 5 35 
54 066 36 6 6 36 

55 067 37 7 7 B7 
56 070 38 8 8 B8 
57 071 39 9 9 39 
58 072 3A : : 3A 
59 073 3B ; ; BB 

60 074 3C < ./ , 36 
61 075 3D = ,/ - BD 
62 076 3E > ,/ BE 
63 077 3F ? ,/ / 3F 
64 100 40 @ ./ P CO 

65 101 41 A A 41 
66 102 42 B B 42 
67 103 43 C C C3 
68 104 44 D D 44 
69 105 45 E E C5 

70 106 46 F F C6 
71 107 47 G G 47 
72 110 48 H H 48 

"'73 111 49 I I C9 
74 112 4A J J CA 

~, 

75 113 4B K K 4B 
76 114 4C L L CC 
77 115 4D M M 4D 
78 116 4E N N 4E 
79 117 4F 0 0 CF 

80 120 50 P P 50 
81 121 51 Q Q D1 
82 122 52 R R D2 
83 123 53 S S 53 
84 124 54 T T D4 

06-01939 

C-2 



APPENDIX C (Continued) 

ASCII CHARACTER CODES 

To Produce 
ASCII On TTY Mod 33, 35 Even Parity 

Decimal Octal Hex Character Cntrl Shift Char 8-bit code 

85 125 55 U U 55 
86 126 56 V V 56 
87 127 57 W W D7 
88 130 58 X X D8 
89 131 59 Y Y 59 

90 132 5A Z Z 5A 
91 133 5B [ .,/ K DB 
92 134 5C \ .,/ L 5C 
93 135 5D ] ./ M DD 
94 136 5E II .,/ N DE 

95 137 5F - ./ 0 5F 
96 140 60 \ 60 
97 141 61 a E1 
98 142 62 b E2 
99 143 63 c 63 

100 144 64 d E4 
101 145 65 e 65 
102 146 66 f 66 
103 147 67 g E7 
104 150 68 h E8 

105 151 69 i 69 
106 152 6A j 6A 
107 153 6B k EB 
108 154 6C I 6C 
109 155 6D m ED 

110 156 6E n EE 
111 157 6F 0 6F 
112 160 70 P FO 
113 161 71 q 71 
114 162 72 r 72 

115 163 73 s F3 
116 164 74 t 74 
117 165 75 u F5 
118 166 76 v F6 
119 167 77 w 77 

120 170 78 x 78 
121 171 79 y F9 
122 172 7A z FA 
123 173 7B I 7B 
124 174 7C FC 

125 175 7D } 7D 
126 176 7E '" 7E 
127 177 7F DEL rubout FF 

06-0/939 

C-3 



C·-4 



APPENDIX D 

DOUBLE PRECISION ARITHMETIC 

A double length number consists of two words con­
catenated into a 32 -bit string wherein bit ° is the 
sign and bits 1-31 are the magnitude in two's com­
plement notation. The high-order part of a nega­
tive number is therefore in one's complement form 
unless the low-order part is null (at the right only 
D's are null regardless of sign). Hence, in pro­
cessing double length numbers, two's complement 
operations are usually confined to the low-order 
parts, whereas one's complement operations are 
generally required for the high -order parts. 

Suppose we wish to negate the double length num­
ber whose high and low-order words respectively 
are in ACO and ACl. We negate the low-order part, 
but we simply complement the high-order part 
unless the low order part is zero. Hence 

NEG 1,1,SNR 
NEG O,O,SKP ;LOW ORDER ZERO 
COM 0, ° ;LOW ORDER NON -ZERO 

Note that the magnitude parts of the sequence of 
negative numbers from the most negative toward 
zero are the positive numbers from zero upward. 
In other words, the negative representation -x is 
the sum of x and the most negative number. Hence, 
in multiple precision arithmetic, low-order words 
can be treated simply as positive numbers. In 
unsigned addition a carry indicates that the low­
order result is just too large and the high-order 
part must be increased. We add the number in 
AC2 and AC3 to the number in ACO and AC1. 

ADDZ 3,1, SZC 
INC 0,0 
ADD 2,0 

In two's complement subtraction a carry should oc­
cur unless the subtrahend is too large. We could 
increment as in addition, but since incrementing 
in the high-order part is precisely the difference 
between a one's complement and a two's comple­
ment, we can always manage with only two instruc­
tions. We subtract the number in AC2 and AC3 
from that in ACO and ACl. 

SUBZ 3,1, SZC 
SUB 2,0, SKP 
ADC 2, ° 

D-1 of 2 



D-2 



APPENDIX E 

INSTRUCTION USE EXAMPLES 

On the following pages arE~ examples of how 
the instruction set of the NOVA line of com­
puters may be used to perform some com­
mon functions. 

1. Clear an AC and the carry bit. 

SUBO AC,AC 

2. Clear an AC and preserve the carry bit. 

SUBC AC,AC 

3. Generate the indicated constants. 

SUBZL 
ADC 
ADCZL 

AC,AC 
AC,AC 
AC,AC 

;GENERATE + 1 
; GENERATE -1 
;GENERATE -2 

4. Let ACX be any accumulator whose contents are zero. 
Generate the indicated constants in ACX. 

INCZL 
INCOL 
INCS 

ACX,ACX 
ACX,ACX 
ACX,ACX 

;GENERATE +2 
;GENERATE +3 
;GENERATE +4008 

5. Subtract 1 from an accumulator without using a constant from memory. 

NEG AC,AC 
COM AC,AC 

6. Check if both bytes in an accumulator are equal. 

MOVS 
SUB 
JMP 

ACS,ACD 
ACS, ACD, SZR 

;NOT EQUAL 
; EQUAL 

7. Check if two accumulators are both zero. 

MOV 
SUB# 
JMP 

ACS, ACS, SNR 
ACS,ACD,SZR 

;NOT BOTH ZERO 
;BOTH ZERO 

8. Check an ASCn character to make sure it is a decimal digit. The character is in ACS and is not 
destroyed by the test. Accumulators ACX and ACY are destroyed. 

LDA ACX, C60 ;ACX=ASCII ZERO 
LDA ACY, cn ;ACY =ASCn NINE 
ADCZ# ACY, ACS, SNC ;SKIPS IF (ACS) > 9 
ADCZ# ACS, ACX, SZC ;SKIPS IF (ACS) > 0 
JMP ;NOT DIGIT -

;DIGIT 

C60: 60 ;ASCII ZERO 
C71: 71 ;ASCII NINE 

9. Test an accumulator for zero. 

MOV 
JMP 

AC,AC,SZR 
;NOT ZERO 
;ZERO 

E-1 of 6 



APPENDIX E (Continued) 
INSTRUCTION USE EXAMPLES 

10. Test an accumulator for -1. 

COM# 
JMP 

AC,AC,SZR 
;NOT -1 
;-1 

11. Test an accumulator for 2 or greater. 
MOVZR# AC,AC,SNR 
JMP ;LESS THAN 2 

;2 OR GREATER 

12. Assume it is known that AC contains 0, 1, 2, or 3. Find out which one. 

MOVZR# AC,AC,SEZ 
JMP THREE ;WAS 3 
MOV AC,AC,SNR 
JMP ZERO ;WAS 0 
MOVZR# AC,AC,SZR 
JMP TWO :;WAS 2 

:;WAS 1 

13. Multiply an AC by the indicated value. 

MOV ACX,ACX ;MULTIPLY BY 1 

MOVZL ACX,ACX ;MULTIPLY BY 2 

MOVZL ACX,ACY ;MULTIPLY BY 3 
ADD ACY,ACX 

ADDZL ACX,ACX ;MULTIPLY BY 4 

MOV ACX,ACY ;MULTIPLY BY 5 
ADDZL ACX,ACX 
ADD ACY,ACX 

MOVZL ACX,ACY ;MULTIPLY BY 6 
ADDZL ACY,ACX 

MOVZL ACX,ACY ;MULTIPLY BY 7 
ADDZL ACY,ACY 
SUB ACX,ACY ;IN ACY 

ADDZL ACX,ACX ;MULTIPLY BY 8 
MOVZL ACX,ACX 

MOVZL ACX,ACY ;MULTIPLY BY 9 
ADDZL ACY,ACY 
ADD ACY,ACX 

MOV ACX,ACY ;MULTIPLY BY 1010 
ADDZL ACX,ACX 
ADDZL ACY,ACX 

MOVZL ACX,ACY ;MULTIPLY BY 1210 
ADDZL ACY,ACX 
MOVZL ACX,ACX 

MOVZL ACX,ACY ;MULTIPLY BY 1810 
ADDZL ACY,ACY 
ADDZL ACY,ACX 

E·-2 



APPENDIX E (Continued) 
INSTRUCTION USE EXAMPLES 

14. Perform the inclusive OR of the operands in ACO and ACl. The result is placed in ACl. The carry 
bit is unchanged. 

COM 0,0 
AND 0,1 
ADC 0,1 

15 Perform the exclusive OR of the operands in ACO and ACl. The result is placed in ACl. The con-
tents of AC2 and the carry bit are destroyed. 

MOV 1,2 
ANDZL 0,2 
ADD 0,1 
SUB 2,1 

16. Move 30 words from locations 20008 .- 20358 to locations 30008 - 30358. Two auto-·increment loca­
tions are used to hold the source and destination addresses. 

17. 

18. 

LDA 
STA 
LDA 
STA 

LOOP: LDA 
STA 
DSZ 
JMP 

ADDRS: 1777 
ADDRD: 2777 
CNT: 36 

O,ADDRS 
0,20 
O,ADDRD 
0,21 
0,@20 
0,@21 
CNT 
LOOP 

;SET UP SOURCE ADDRESS 

;SET UP DESTINATION ADDRESS 

;INCREMENT SOURCE ADDRESS AND GET WORD 
;INCREMENT DESTINATION ADDRESS AND STORE WORD 
;DECREMENT COUNT 
;GO BACK FOR NEXT WORD 
;SKIP HERE WHEN COUNT IS ZERO 

;SOURCE ADDRESS MINUS ONE 
;DESTINATION ADDRESS MINUS ONE 
;WORD COUNT--368 EQUALS 3010 

Perform the following unsigned integer comparisons. 

SUB# ACS, ACD, SZR ;SKIP IF CONTENTS OF ACS CONTENTS OF ACD 

SUB# ACS, ACD, SNR ;SKIP IF CONTENTS OF ACS #: CONTENTS OF ACD 

ADCZ# ACS, ACD, SNC ;SKIP IF CONTENTS OF ACS /' CONTENTS OF ACD '-

SUBZ# ACS, ACD, SNC ;SKIP IF CONTENTS OF ACS < CONTENTS OF ACD 

SUBZ# ACS, ACD, SZC ;SKIP IF CONTENTS OF ACS > CONTENTS OJ; ACD 

ADCZ# ACS, ACD, SZC SKIP IF CONTENTS OF ACS ;;> CONTENTS OF ACD 

Compare the signed, two's complement 
integer contained in ACS to O. 

MOV# ACS, ACS, SZR ;SKIP IF CONTENTS OF ACS EQ 0 
MOV# ACS, ACS, SNR ;SKIP IF CONTENTS OF ACS NE 0 
ADDO# ACS, ACS, SBN ;SKIP IF CONTENTS OF ACS GT 0 
MOVL# ACS, ACS, SZC ;SKIP IF CONTENTS OF ACS GE 0 
MOVL# ACS, ACS, SNC ;SKIP IF CONTENTS OF ACS LT 0 
ADDO# ACS, ACS, SEZ ;SKIP IF CONTENTS OF ACS LE 0 

E-3 



19. 

20. 

APPENDIX E (Continued) 
INSTRUCTION USE EXAMPLES 

Simulate the operation of the MULTIPLY instruction. 

. MPYU: SUBC 0,0 ;CLEAR ACO, DON'T DISTURB CARRY 

. MPYA: STA 3,. CB03 ;SAVE RETURN 
LDA 3,. CB20 ;GET STEP COUNT 

· CB99: MOVR 1,1, SNC ;CHECK NEXT MULTIPLIER BIT 
MOVR O,OSKP ;0 SHIFT 

ADDZR 2,0 ;1 - ADD MULTIPLICAND AND SHIFT 
INC 3,3,SZR ;COUNT STEP, COMPLEMENTING CARRY ON FINAL COUNT 
JMP .CB99 ;ITERATE LOOP 

MOVCR 1,1 ;SHIFT IN LAST LOW BIT (WHICH WAS COMPLEMENTED BY 
;FINAL COUNT) AND 

JMP @. CB03 ;RESTOHE CARRY 

.CB03: 0 

.CB20: -20 ;1610 STEPS 

Simulate the operation of the DIVIDE instruction. 

· DIVI: SUB 0,0 ;INTEGER DIVIDE CLEAR HIGH PART 
.DIVU: STA 3,. CC03 ;SA VE RETURN 

SUBZ# 2,0,SZC ;TEST FOR OVERFLOW 
JMP . CC99 ;YES, EXIT (ACO> AC2) 
LDA 3,. CC20 ;GET STEP COUNT 
MOVZL 1,1 ;SHIFT DIVIDEND LOW PART 

.CC98: MOVL 0,0 ;SHIFT DIVIDEND HIGH PART 
SUB# 2,0, SZC ;DOES DIVISOR GO IN? 
SUB 2,0 ;YES 
MOVL 1,1 ;SHIFT DIVIDEND LOW PART 
INC 3,3,SZR ;COUNT STEP 
JMP CC98 ;ITERATE LOOP 
SUBO 3,3,SKP ;DONE, CLEAR CARRY 

· CC99: SUBZ 3,3 ;SET CARRY 
JMP @.CC03 ;RETURN 

.CC03: 0 

.CC20: -20 ;1610 ST1<~PS 

E-4 



APPENDIX E (Continued) 
INSTRUCTION USE EXAMPLES 

21. Load a byte from memory. The routine is called via a JSR. The byte pointer for the requested byte 
is in AC2. The requested byte is returned in the right half of ACO. The left half of ACO is set to 0. 
AC1, AC2, and the carry bit are unchanged. AC3 is destroyed. 

LBYT: STA 
LDA 
MOVR 

MOVS 
LDA 
AND 

MOVS 
MOVL 
JMP 

LRET: ° MASK: 377 

3,LRET 
3, MASK 
2,2, SNC 

3,3 
0,0,2 
3,0,SNC 

0,0 
2,2 
@LRET 

;SA VE RETURN ADDRESS 

;TURN BYTE POINTER INTO WORD ADDRESS AND SKIP IF 
; REQUEST BYTE IS RIGHT BYTE 
;SWAP MASK IF REQUESTED BYTE IS LEFT BYTE 
;PLACE WORD IN ACO 
;MASK OFF UNWANTED BYTE AND SKIP IF SWAP IS NOT 
; NEEDED 
;SWAP REQUESTED BYTE INTO RIGHT HALF OF ACO 
;RESTORE BYTE POINTER AND CARRY 
;RETURN 
;RETURN LOCATION 

22. Store a byte in memory. The routine is called via a JSR. The byte to be stored is in the right half 
of ACO with the left half of ACO set to 0. The byte pointer is in AC2. The word written is returned 
in ACO. AC1, AC2, and the carry bit are unchanged. AC3 is destroyed. 

SBYT: STA 
STA 
LDA 
MOVR 

MOVS 
MOVS 
LDA 
AND 
ADD 
STA 
MOVL 
LDA 
JMP 

SRET: ° SAC1: ° MASK: 377 

3,SRET 
1,SAC1 
3, MASK 
2,2,SNC 

0,0, SKP 
3,3 
1,0,2 
3,1 
1,0 
0,0,2 
2,2 
1,SAC1 
@SRET 

;SA VE RETURN 
;SAVE AC1 

;CONVERT BYTE POINTER TO WORD ADDRESS AND SKIP IF 
; BYTE IS TO BE RIGHT HALF 
;SWAP BYTE AND LEAVE MASK ALONE 
;SWAP MASK 
;LOAD WORD THAT IS TO RECEIVE BYTE 
;MASK OFF BYTE THAT IS TO RECEIVE NEW BYTE 
;ADD MEMORY WORD ON TOP OF NEW BYTE 
;STORE WORD WITH NEW BYTE 
;RESTORE BYTE POINTER AND CARRY 
;RESTORE AC1 
;RETURN 
:;RETURN LOCATION 

E-5 



APPENDIX E (Continued) 
INSTRUCTION USE EXAMPLES 

23. The transfer of control between routines is made easier and more orderly by using the stack facility 
of the NOVA 3 series of computers. 

The basic method of transferring control to a subroutine is via a JUMP TO SUBROUTINE instruction. 
The subroutine executes a SAVE instruction at the subroutine entry point and returns control via the 
RETURN instruction. 

CALL: 

SUBR: 

RETRN: 

;CALLING PROGRAM 
JSR SUBR 

; SUBROUTINE 
SAV 

RET 

This method has the following characteristics: 

1. AC3 of the calling program is destroyed by the JSR. 

2. The call is only one word. 

3. Upon return to the calling program, AC3 contains the calling program's frame pointer. 

4, A SAVE instruction is required at each entry point. 

5. Arguments are easily passed on the stack because SAVE sets up the frame pointer for the 
called routine and RETURN places the frame pointer of the calling routine in AC3. 

24. Assume that ACO contains a signed, 16-bit, two's complement integer. The following three instruc­
tions will place an indicator of the sign of the number in ACO. If the number is greater than 0, ACO 
is set to + 1. If the number is less than zero, ACO is set to -1. If the number is equal to 0, ACO 
remains O. The previous contents of the carry bit are lost. 

ADOO 
ADCC 
SUBCL 

ACO, ACO, SBN 
ACO, ACO, SNC 
ACO,ACO 

E-6 

;SKIP IF GT 0 
;ACO GETS -1 
;COPY CARRY INTO BIT 15 



APPENDIX F 

INSTRUCTION EXECUTION TIMES 
SUPERNOVA read-only time equals semiconductor time, except 
add 0.2 for LDA, STA, ISZ, and DSZ if reference is to core. 
NOVA times are for core; for read·-only subtract O. 2 except 
subtract 0.4 for LDA, STA, ISZ, and DSZ if reference is to 
read-only memory. When two numbers are given, the one at 
the left of the slash is the time for an isolated transfer, 
the one at the right is the minimum time between consecutive 
transfers. All times are in microseconds. 

SUPERNOVA 1200 800,820 
NOVA SC CORE SERIES 840 

LDA 5.2 1.2 1.6 2.55 1.6 
STA 5.5 1.2 1.6 2.55 1.6 
ISZ, DSZ 5 2 1.4 1.8 3.15 1.8 
JMP z,v?- --ct::.b 0.6 0.8 1. 35 0.8 
JSR 3.5 1.2 1.4 1. 35 0.8 
COM, NEG, MOV, INC 5.6 0.3 0.8 1. 35 0.8 
ADC, SUB, ADD, AND 5.9 0.3 0.8 1. 35 0.8 

Each level of @, add 2.6 0.6 0.8 1.2 0.8 
Each autoindex, add 0.0 0.2 0.2 0.6 0.2 
Base register addr, add 0.3 0.0 0.0 0.0 0.0 
If skip occurs, add 0.0 * 0.8 1. 35 0.2 

I/O input (except INTA) 4.4 2.8 2.9 2.55 2.2 
INTA 4.4 3.6 3.7 2.55 2.2 
I/O output 4.7 3.2 3.3 3.15 2.2 
NIO 4.4 3.2 3.3 3.15 2.2 
I/O skips 4.4 2.8 2.9 2.55 1.4 

If skip occurs, add 0.0 0.0 0.0 0.0 0.2 
For S, C, or P; add 0.0 0.0 0.0 0.0 0.6 

MUL 
Average 11.1 3.7 3.8 3.75 8.8 
Maximum 11.1 5.3 5.4 3.75 8.8 

DIV 
Successful 11. 9 6.8 6.9 4.05 8.8 
Unsuccessful 11. 9 1.5 1.6 2.55 1.6 

P.I. CYCLE 5.2 1.8 2.2 3.0 1.6 
INTERRUPT LATENCY 

With MUL/DIV 12.0 9.0 9.0 7.0 10.6 
Without MUL/DIV 12.0 5.0 5.0 7.0 4.6 

DATA CHANNEL 
Input 3.5 2.3 2.3 1.2 2.0 
Output 4.4 2.8 2.8 1. 2/1. 8 2.0 
Increment 4.4 2.8 2.8 1. 8/2. 4 2.2 
Add to memory 5.3 2.8 2.8 ---- ----
Latency" 

With MUL/DIV 17.3 11. 8 11. 8 9.4 5.8 
Without MUL/DIV 17.3 7.8 7.8 9.4 5.8 

HIGH SPEED DATA CHANNEL 
Input N/A 0.8 0.8 N/A 0.8 
Output 0.8/1. 0 0.8/1.0 0.8/1. 0 
Increment 1.0/1.2 1. 0/1. 2 1. 0/1. 2 
Add to memory 1.0/1.2 1.0/1.2 ---- ----

Latency" 
With MUL/DIV 5.7 5 .. 7 4.8 
Without MUL/DIV 3.7 3 .. 7 3.2 

*If 2AC-multiple operation instruction is skipped, add 0.3; otherwise add 0.6. 
+For highest priority peripheral on I/O bus. 
06-01131 

F-l of 4 

830 

2.0 
2.0 
2.2 
1.0 
1.0 
1.0 
1.0 
1.0 
0.2 
0.0 
0.2 
2.4 
2.4 
2.4 
2.4 
1.6 
0.2 
0.6 

9.0 
9.0 

9.0 
2.0 
2.0 

12.0 
6.0 

2.2 
2.2 
2.4 

N/A 

6.4 
6.4 

1.0 
1.0/1. 2 
1. 2/1. 4 

N/A 

5.4 
3.6 

NOVA 2 
8K 16K 

1.6 2.0 
1.6 2.0 
1.7 2.1 
0.8 1.0 
1.1 1.2 
0.8 1.0 
0.8 1.0 
0.8 1.0 
0.5 0.5 
0.0 0.0 
0.3 0.2 
1.4 1.5 
1.4 1.5 
1.6 1.7 
1.6 1.7 
1.1 1.2 
0.3 0.2 
0.3 0.3 

6.1 6.2 
6.1 6.2 

6.4 6.5 
6.4 6.5 
2.2 2.5 

5.8 5.9 
1.9 2.3 

2.0 2.1 
2.1 2.2 
2.2 2.3 
.- -- ---

[i.2 5.3 
[i.2 5.3 

0.8 0.9/1.0 
1.2 1.3 
1.3 1.4 
.. _- ---

4.3 4.4 
4.3 4.4 



APPENDIX F (Continued) 

INSTRUCTION EXECUTION TIMES 

Floating Point Unit Instruction Execution Times* 

I TOT AL EXE CUT ION TIME 
FPU BASE TIME FOR NOVA 800 WITH HIGH 

INSTRUCTION (Mic roseconds) SPEED DATA CHANNEL 

MAXIMUM MINIMUM MAXIMUM MINIMUM 

· FLDS 102 1.2 6.3 6.3 
.FLDD 0.8 0.8 7.9 7.9 
· FSRS 0.4 0.4 5.4 5.4 
. FSRD 0.0 0.0 

I 
7.1 7.1 

.FAS 3.8 3.7 I 8.3 8.2 

. FAD 3.4 3.3 

i 

9.9 9.8 
· FSS 

I 
3.8 3.7 8.9 8.8 

.FSD 3.4 3.3 10.5 10.4 

.FMS 6.9 6.9 12.0 12.0 

.FMD 12.9 12.9 20.0 20.0 

.FDS 10.1 9.3(2.0)** 15.2 14.4(7.1)** 

.FDD 16.1 15.3(1. 6) 23.2 22.4(8.7) 

.FMFT 1.0 0.9 3.8 3.7 

.FMTF 1.0 0.9 3.8 3.7 

. FATS 3.6 3.4 5.8 5.6 

.FATD 3.6 3.4 5.8 5.6 
· FSTS 3.6 3.4 6.4 6.2 
. FSTD 3.6 3.4 6.4 6.2 
.FMTS 6.7 6.6 9.5 9.4 
.FMTD 13.1 13.0 15.9 15.8 
.FDTS 9.9 9.0(1. 7) ** 12.7 11.8(4.5)** 
.FDTD 16.3 15. 4( 1. 7) 19.1 18.2(4.5) 

.FABS 1.0 0.9 3.8 3.7 

. FCLR 1.0 0.9 3.8 3.7 

.FLDX 1.0 0.9 3.8 3.7 

.FNEG 1.0 0.9 3.8 3.7 

.FNRM 1.1 1.0 3.9 3.8 

. FSCL 1.1 1.0 3.3 3.2 

.FHWD 0.0 0.0 2.2 2.2 

.FRST 0.0 0.0 2.8 2.8 

. FWST 0.0 0.0 2.2 2.8 

*Total Execution time = Base time + I/O instruction time + Data Channel time (if any). 
**Times in parentheses are times if "divide -by-zero" is sensed. 
OG-01365 

F-2 



APPENDIX F (Continued) 

INSTRUCTION EXECUTION TIMES 

NOVA 3 INSTRUCTION EXECUTION TIMES 

8K CORE 16K CORE SEMICONDUCTOR 
INSTRUCTION MIN MAX MIN MAX MIN MAX 

LDA 1.3 1.6 1.5 2.0 1.1 1.2 
STA 1.3 1.6 1.5 2. 0 1.1 1.5 
ISZ, DSZ 1. 7* 2.0 1. 9* 2.4 1. 6* 2. 1 
JMP .8 .8 .9 1.0 .7 .7 
JSR 1.1 1.1 1.2 1.2 1.0 1.0 
COM, NEG, MOV, INC .8* .8* .9* 1. 0* .7* .7* 
ADC, SUB, ADD, AND .8* .8* .9* 1. 0* .7* .7* 

Each level of @, add .7 .8 .8 1.0 .5 .7 
Each autoindex, add 1.1 1.2 1.2 1.4 .8 1.3 
*If skip occurs, add .3 .3 .2 .2 .3 .3 

I/O input (except INTA) 2.1 2. 1 2.2 2.2 2.0 2.0 
INTA 2.1 2.1 2.2 2.2 2.0 2.0 
NIO 2. 1 2. 1 2.2 2.2 2.0 2.0 
I/O output 2. 1 2. 1 2.2 2.2 2.0 2.0 
I/O skips 2.1* 2.1* 2.2* 2.2* 2.0* 2.0* 

*If skip occurs, add .3 .3 .3 .3 .3 .3 
For S, C, or P, add .0 .0 .0 .0 .0 .0 

MUL 5.9 5.9 6.0 6.0 5.8 5.8 
DIV 

Successful 6.5 6.B 6.6 6.9 6.4 Ei.7 
Unsuccessful 1.4 1.4 1.5 1.5 1.3 1.3 

PSHA 1.6 1. 15 1.8 1.9 1.4 1.5 
POPA 1.9 1.11 2. 1 2. 1 1.7 1.7 
SAY 5.4 5.4 6.4 6.5 5.2 5. 2 
RET 5.4 5.4 6.4 6.5 4.8 4.8 
MTFP .8 .8 .9 1.0 .7 .7 
MTSP .8 .8 .9 1.0 .7 .7 
MFFP .8 .8 .9 1.0 .7 .7 
MFSP .8 .8 .9 1.0 .7 .7 
TRAP 2.3 2.8 2.6 3.3 2.0 2. 6 

INTERRUPT LATENCY 
With MUL/DIV 10.8 11. 7 10.6 
Without MUL/DIV 9. 4 11. 3 9.1 

DA T A CHANNEL I 
Input 1.7 1.8 1.8 2.0 1.6 1..8 
Output 2.0 2.0 2. 1 2. 1 1.9 2. 1 
Latency .6 4.5 .6 5.0 .6 4.6 

HIGH-SPEED DATA CHANNEL 
Input 1.0 1.2 1.1 1.4 .9 1.2 
Output 1.1 1.1 1.2 1.3 1.0 1.2 
Latency .6 4.5 .6 5.0 .6 4.6 

06-01873 

F-3 



:10'-4 






