

NOVA® 4
PROGRAMMER'S REFERENCE

MANUAL

_. Data General
Data General Corporation.Westboro. Massachusetts 01581

NOTICE

Data General Corporation (DGC) has prepared this
manual for use by DGC personnel, licensees, and
customers. The information contained herein is the
property of DGC and shall not be reproduced in whole
or in part without DGC's prior written approval.

Users are cautioned that DGC reserves the right to
make changes without notice in the specifications and
materials contained herein and shall not be
responsible for any damages (including con­
sequential) caused by reliance on the materials
presented, including, but not limited to typographical,
arithmetic, or listing erro~s.

NOVA, INFOS, and ECLIPSE are registered trademarks of
Data General Corporation, Westboro, Massachusetts.
DASHER and microNOVA are trademarks of Data
General Corporation, Westboro, Massachusetts.

Ordering No. 014-000617
©Data General Corporation, 1978, 1980

All Rights Reserved
Printed in the United States of America

Rev. 01, July, 1980

CHAPTER I

1

CHAPTER II

1

1

4

6

CHAPTER III

1

1

4

4

7

8

9

11

13

CHAPTER IV

1

1

2

2

3

5

8

9

CONTENTS

NOVA 4 SYSTEM

INTRODUCTION

INTERNAL STRUCTURE

INTRODUCTION

INFORMATION FORMATS

INFORMATION ADDRESSING

PROGRAM EXECUTION

INSTRUCTIONS SETS

INTRODUCTION

INSTRUCTION FORMATS

CODING AIDS

FIXED POINT ARITHMETIC

LOGICAL OPERATIONS

STACK MANIPULATION

ST ACK MANIPULATION INSTRUCTIONS

PROGRAM FLOW ALTERATION

BYTE INSTRUCTIONS

INPUT/OUTPUT

INTRODUCTION

OPERATION OF 1/0 DEVICES

PRIORITY INTERRUPTS

DATA CHANNEL

CODING AIDS

CENTRAL PROCESSOR FUNCTIONS

POWER FAIL

REAL-TIME CLOCK

CHAPTER V

1

1

3

5

10

12
13

CHAPTER VI

APPENIDIX A

APPENDIX B

APPENDIX C

PROCESSOR OPTIONS

INTRODUCTION

MUL TIPL Y IDIVIDE

MEMORY MANAGEMENT

MEMORY ALLOCATION AND PROTECTION

SUPERVISOR PROGRAMMING FOR THE NOVA 4

FLOATING POINT UNIT

INSTRUCTION SET

VIRTUAL CONSOLE (VC)

1/0 DEVICE CODES AND DATA GENERAL MNEMONICS

OCTAL AND HEXADECIMAL CONVERSION

ASCII CHARACTER CODES

11

Chapter I
NOVA 4 SYSTEM

INTRODUCTION

The NOVA 4 is a general purpose, four-accumulator,
stored-program computer, with a word length of 16
bits. The maximum amount of main memory is 64
Kbytes without a MAP and 256 Kbytes or 131,072
16-bit words with a MAP.

Memory can be addressed either directly or by using
indirect addresses. A data channel is provided to
enable rapid data transfer between main memory
and peripheral devices.

The standard instruction set contains instructions
that perform fixed point arithmetic and logical
operations between accumulators, transfer of
operands between accumulators and main memory,
transfer of program control, and input/output(l/O)
operations. Options are available that add
instructions to t.his set. These additional instructions
perform such operations as multiply/divide, floating
point calculations, and memory allocation and
protection.

Efficient Basic I nstruction Set

The basic instruction set for the NOVA 4 contains
instructions that perform fixed point arithmetic and
logical operations between accumulators, transfer of
operands between accumulators and main memory,
transfer of program control, and I/O operations. All
instructions arB one 16-bit word in length. The
arithmetic and logical instructions have the
capability to perform, in one instruction, the
following sequence: perform an operation, shift the
result one bit left or right, test the result of the shift,
and then conditionally skip the next instruction
depending upon the outcome of the test. In addition,
it is possible to perform this entire sequence without
affecting either of the operands. this means that
complicated numerical manipulation and testing can
be performed using a small number of instructions.

014-000617-01

1- 1

Stack

A Last-In/First-Out (LIFO) or push-down stack is
maintained by the NOVA 4 processor. This feature
provides a convenient method for saving return
information and passing arguments between
subroutines. The stack also provides an expandable
area for the temporary storage of variables and
intermediate results.

Floating Point

The floating point fElature allows the manipulation of
both single precision (32 bits) and double precision
(64 bits) floating point numbers. Single precision
gives 6-7 significant decimal digits while double
precision gives 15-1'7 significant decimal digits. The
decimal range of a floating point number is
approximately 5.4x10- 79 to 7.2x10 +75 in either
precision.

The floating point feature contains two 64-bit
floating point accumulators. Floating point.
calculations can take place between these two
accumulators or between one of the accumulators and
operands in main memory.

Memory Allocation and Protection

The optional Memory Allocation and Protection tmit
(MAP) translates logical addresses within the user
space to physical memory addresses. The MAP
feature holds two user maps and two data channel
maps at a time. Only one user map can be enabled ax
anyone time, but both data ehannel maps are
enabled at the same time.

In addition to translating addresses, the feature also
performs various protection functions. A user LiS
allowed to access only those blocks of memory
allocated to him. This ensures that a user does not
reach out of his own areas of memory for either
instructions or data. Blocks of memory allocated to a

INTRODUCTION

user may be write-protected so that the user may not
modi~y . them. This allows blocks of memory
controning constants or non self-modifying
procedures to be shared between users.

The MAP detects and inhibits indirection chains that
go deeper than 16 levels. This protects the system
from becoming disabled by an indirection loop. The
MAP also provides I/O protection which allows all
I/O devices to be declared accessible or inaccessible to
a user.

Memory

Memory for the NOV A 4 is available in 32 Kbyte, 64
Kbyte, 128 Kbyte and 256 Kbyte modules. All
memory is semiconductor.

Auto-I n crementl Decrement

If the intermediate address of a short class
instruction is in the range 20-278, and the indirect bit
is 1, the contents of the addressed location are
incremented by one. The incremented value is used to
continue the addressing chain.

If the intermediate address of a short class instruction is in
the range 30-378, and the indirect bit is 1, the contents of
the addressed location are decremented by one. the
decremented value is used to continue the addressing chain.

NOTE: The 8tate of bit 0 before the increment or
decrement determine8 whether the indirection
chain i8 continued. For example: A88ume an
auto-increment location contain8 1777778 (all
bit8 = 1 including bit 0), and the location is
referenced a8 part of an indirection chain. After
incrementing, the location contain8 all zer08.
However, bit 0 was 1 before the increment, 80 0
will be the next addre88 in the chain rather than
the effective addre88.

Power Fail/Auto Restart

The power fail/auto restart feature of the NOVA 4
provides a fail-80ft capability in the event of
unexpected power loss. In the event of power failure,
there is a delay of one to two milliseconds before the
processor shuts down. The power fail portion of the
feature senses the imminent loss of power and
interrupts the processor. The interrupt service
routine can then use this delay to store the contents
of the accumulators, the program restart address,
and other information that will be needed to restart
the system.

When power is :restored, the action taken by the
auto-restart portion of the feature depends upon the
position of the loek switch on the front panel. If the
switch is not in the lock position, the processor
remains stopped after power is restored. If the switch
is in the lock position and battery backup is

INTRODUCTION

1- 2

Data General Corporation

operational, then after power is restored, the
processor executes the instruction contained in the
first location of main memory, restarting the
interrupted system.

The battery backup option available with the NOV A
4 ope:rates in conjunction with the power fail/auto
restart feature to provide security for semiconductor
memories in the event of a power failure. If power
fails, the battery backup option will supply power to
the memories for a period of up to one-and-one-half
hours (depending on the number of memory boards)
so that they will not lose their data. If further
security is desired, a larger external battery can be
attached to ensure the integrity of the memories for
extended periods of time.

Real-Time Clock

The real-time clock feature of the NOVA 4 generates
a sequence of pulses that is independent of the timing
of the processor. The clock will interrupt the system
at one of four program -selectable frequencies. The
frequencies are: ac line frequency, 10Hz, 100Hz, and
1000Hz.

Input/Output Bus

The input/output (I/O) bus is that portion of the
computer that carries commands and data between
the central processor and various peripheral devices
connected to it. The bus is made up of a six-line
device selection network, interrupt circuitry,
command circuitry, and sixteen data lines.

Device Addressability

Each I/O device in a NOV A 4 is connected to the
six-line device selection network in such a way that
each device will only respond to commands that
contain its own device code. The fact that the
selection network is made up of six lines gives 26 = 64
unique device codes. Ten of these codes are reserved
for specific functions, but there are still 54 device
codes available for use with I/O devices.

Interrupt Capability

The interrupt circuitry contained in the I/O bus
provides the capability for any I/O device to interrupt
the system when that device requires service. When a
device requests an interrupt, the processor
automatically transfers program control to the main
interrupt service routine. This routine can either poll
all the I/O devices in the system to find out which one
initiated the interrupt, or the routine can use a
special instruction to identify the source of the
interrupt.

The interrupt circuitry of the NOV A 4 also contains
the capability to implement up to sixteen levels of
priority interrupts. This is done with a 16-bit priority
mask. Each level of dE~vice priority is associated with

014-000617-01

NOVA 4 SYSTEM

a bit in this mask. In order to suppress interrupts
from any priority level, the corresponding bit in the
mask is set to 1.

Data Channel

Handling data. transfers between external devices
and memory under program control requires an
interrupt plus the execution of several instructions
for each word transferred. To allow greater transfer
rates, the lIO bus contains circuitry for a data
channel through which a device, at its own request,
can gain direct access to main memory using a
minimum of processor time. At the maximum
transfer rate, the data channel effectively stops the
processor, but at lower rates, processing continues
while data is being transferred.

Ease of Interfacing

Due to the straightforward logic and general design
of the NOV A 4 I/O bus, customer-provided or
customer-designed lIO devices may be easily
interfaced to a NOVA 4. Information on how to
interface to the NOV A 4 may be found in "The
Interface Designer's Reference Manual" (DGC
015-000031) .

Input/Output Devices

A comprehensive array of lIO devices is available
from Data General for the NOVA 4. This wide choice
of devices, ranging from teletypewriters to line
printers to video displays for man-machine
interaction; and from paper tape to magnetic tape to
fixed and moving-head discs for data storage allows a
wide spectrum of possible configurations. Also
available are various multiplexors and
telecommunications adapters, including an IBM
360/370 interface.

Software

A wide variety of software support is available for the
NOVA 4.

Operating systems include the Disc Operating
System (DOS), the Real-Time Operating System
(RTOS), and the Real-Time Disc Operating system
(RDOS).

An assembler is available with all of these operating
systems. In addition, many higher-level languages are
available. These include Fortran IV and V, DGIL™,
ALGOL, Extended BASIC, and Business BASIC. Note
that not all languages are available in all operating
systems.

014-000617-01

1- 3

INTRODUCTlor~

1- 4

Chapter II
INTERNAL STRUCTURE

INTRODUCTION

The basic structure of a NOV A 4 data processing
system consists of a central processing unit (CPU),
some amount of main memory, the I/O bus, the I/O
devices connected to the I/O bus.

1/0 BUS

f- CPU

~ /"C-O-NS~O-~E-~
~ __ J

DG-05588

014-000617-01

II-1

Due to the general-purpose design of the NOVA 4,
the type, size, and number of memory modules and
I/O devices have no effect upon the internal logical
structure of the CPU. This chapter deals with the
addressing of information and the logical
representation of information within the CPU, and is
unaffected by those portions of the system outside the
CPU.

INFORMATION FORMATS

The basic piece of information within the processor is
the binary digit, or bit. A bit is capable of
representing only two quantities, 0 and 1. However, a
bit cannot represent both these values at the same
time. At anyone point in time, a bit can either
represent a 0 or a 1, never both.

The normal unit of information within the CPU is
the word. A word is made up of 16 bits. Because each
bit is capable of representing two quantities, a word
is capable of representing 216 = 65,536 different
quantities. A word may be broken into two bytes of 8
bits each. A byte is capable of representing 28 = 256
different quantities. I/O devices transfer information
in units of bits, bytes, words or groups of words called
"records" depending upon the device.

Bit Numbering

In order to avoid confusion when talking about the
information contained in bytes and words, the bits
that make up these units of information are
numbered from lElft to right, with the leftmost
(highorder) bit always numbered bit O. The
numbering extends to the right and is always carried
out in the decimal number system. The rightmost
Qow order) bit in a byte is bit 7. The rightmost bit in
a word is bit 15.

INFORMATION FORMAT~j

WORD WORD

~~--------~~------- ~-------~---------

Octal Representation

Because talking about the binary data contained in
bytes and words would quickly become awkward and
confusing if each bit were described, the octal
representation of binary information will be used in
this manual. To convert a piece of binary information
to its octal representation, the bits in the quantity
are separated into groups of three bits each, starting
from the right and proceeding to the left. If the
number of bits to be represented is not evenly
divisible into groups of three, the leftmost group will
contain one or two bits. Each group of bits can now
be represented by one of eight different symbols. The
digits 0-7. Each eneoded digit is called an octal digit.
Because each group of bits can contain anyone of 8
values, this representation is sometimes called base 8
representation.

Another way to represent binary information is the
hexadecimal or hex representaion. In hexadecimal,
the bits in the quantity are separated into groups of
four bits each and each group can be represented by
one of 16 different symbols. The digits 0-9 are used to
represent the quantities 0-9. The letters A-F are used
to represent the quantities 10-15. Because each group
of bits can contain anyone of 16 values, this
representation is sometimes called base 16
representation.

Our normal decimal numbering system is sometimes
called base 10 representation. Because it is sometimes
possible to confuse numbers written in hex or octal
with those written in decimal, a subscript denoting
the base will be used in cases where confusion might
occur. Conversion tables for hex to decimal and octal
to decimal are contained in Appendix B of this
manual.

Character Codes

Within the processor, all information is represented
by binary quantities. The CPU does not recognize
certain bit combinations as characters and certain
other bit combinations as numbers. Sooner or later,
however, this information must be transferred
outside the computer in some form easily understood
by humans. For this reason, some standard
correspondence must be made between certain bit
combinations and printable symbols. The code used
to implement this correspondence in I/O devices
available with the NOVA 4 is called the American
Standard Code for Information Interchange (ASCll).
This code can represent 95 printable symbols plus 33

INFORMATION FORMATS

II-2

Data General Corporation

control functions. A complete table of the codes and
their corresponding characters can be found in
Appendix C of this manual.

Information Representation

Even though the CPU does not intrinsically recognize
one information type from another, the different
instructions in the instruction set expect that the
information to be operated on will be in a specific
format. In general, there are three different, basic
information formats. They are integers, floating point
numbers, and logical quantities.

Integers

Integers can be represented as either signed or
unsigned numbers and carried in either single or
multiple precision. Single precision integers are two
bytes long, while multiple precision integers are four
or more bytes long. Unsigned integers use all the
available bits to represent the magnitude of the
number. A single two-byte word can represent any
unsigned number in the inclusive range 0 to 65,535.
Two words taken together as an unsigned, double
precision integer can represent any number in the
inclusive range 0 to 43,294,967,295.

For signed operations, the two's complement
numbering system is used. In this system, the
leftmost or high-order bit is used as a sign bit. If the
sign bit is 0, the number is positive and the
remainder of the bits in the number represent the
magnitude of the number as described above. If the
sign bit is 1, the number is negative and the
remainder of the bits represents the magnitude of the
number.

To create the negative of a number in the two's
complement scheme, complement all the bits of the
number including the sign bit. After the
complementing process is finished, add 1 to the
rightmost or low-order bit. If the two's complement
of a negative number is formed, the result will be the
corresponding positive number.

There is only one representation for zero in two's
complement arithmetic: it is the number with all bits
zero. Forming the two's complement of zero will
produce a carry out of the high-order bit and leave
the number with all bits zero. Note that 0 is a positive
number, i.e., its sign bit is O.

Because the two's complement scheme has only one
representation for 0, there is always one more
negative number than there are non-negative
numbers. The most negative number is a number
with a 1 in the sign bit and all other bits O. The
positive value of this number can not be represented
in the same number of bits as used to represent the
negative number.

014-000617-01

a true zero. Note that true zero is positive. It is not
possible to obtain negative zero as the result of a
calculation.

Logical Quanities

Logical operations in the NOV A 4 can be performed
upon individual bits, bytes, or words. When using the
logical operations, quantities operated on are treated
as unstructured binary quantities. The number of
bits, bytes, or words operated upon depends on the
particular instruction.

INFORMATION ADDRESSING

The information formats described in the preceding
section give a way of representing different types of
data in main memory. Operations cannot be
performed upon these data types, however, unless
they can be addressed by the CPU. The address of a
piece of information is its location in main memory.
Once the CPU knows the address of a piece of
information, the desired operation can be performed.

Word Addressing

Main memory is partitioned into 2-byte words, and
each word has an address. The first word in memory
has the address O. The next word has the address 1,
the next word has the address 2, and so on. Word
addressing is used to address integers, floating point
numbers, and logical quantities that are formatted in
units of words.

INFORMATION ADDRESSING

II- 4

Data General Corporation

ADDRESS WORD
~--J·~--~\(r------·--------~·~ ______________ ~

•
~---------------------------- --~

I I

~------------------------ -------~

•
L ________ .. ________________________ _

•
i - - - - - -- - - "- - - -- - - - - - - - - - - - - - - - -- - - -,
I ,
L _ _ _ _ _ " __ . _ _ _ __ _ _ _ _ __ _ _ _ _ _ "_ _ _ _ __ _ _-.J

400S

40l S

402. s

•

DG00538

Effective Address Calculation

There are six instructions in the NOV A 4 instruction
set that directly reference memory using word
addressing. These instructions use eleven bits in the
instruction to define the address of the desired word.
The resultant address is called the effective address
or E, and the calculation is called the effective
address calculation.

The eleven bits in an instruction that are used in the
effective address calculation, are bits 5-15. Their
format is shown below.

Bit 5 is called the indirect bit, bits 6 and 7 are called
the index bits, and bits 8-15 are called the
displacement bits.

If the index bits are 00, the displacement is used as an
unsigned 8-bit number to address one of the first 25610
words in memory. This is called page zero addressing
and this first block of 256 words is known as page
zero.

If the index bits are 01, the displacement is treated as
a signed, two's complement number, which is added
to the address of the instruction to produce a memory
address. This is called relative addressing. By relative
addressing, any instruction which uses the effective
address calculation can directly address any word in

014-000617-01

INTERNAL STRUCTURE

A single two-byte word can represent any signed
number in the inclusive range -32,768 to +32,767.
Two words taken together as a signed, double
precision integE~r can represent any number in the
inclusive range -2,147,483,648 to +2,147,483,647.

It is a property of numbers using the two's
complement scheme that addition and subtraction of
signed numbers are identical to addition and
subtraction of unsigned numbers. The CPU just
treats the sign bit as the most significant magnitude
bit.

Floating Point

The floating point feature of the NOV A 4 allows
operations on signed numbers having a much larger
range than those normally represented as integers. It
would take a 16-word multiple precision integer to
represent the range of a NOV A 4 floating point
number. Since floating point numbers occupy either
two words for single precision or four words for
double precision, and the floating point feature is
much faster than multiple precision integer software
routines, floating point arithmetic is used when
numbers having a large range must be manipulated.

A floating point number is made up of three parts:
the sign, the exponent, and the mantissa. The value
of a floating point number is defined to be:

Single Precision

Dou ble Precision

Bit zero is the sign bit: 0 for positive, 1 for negative.

Bits 1-7 contain the exponent. This is the power to
which 16 must be raised in order to give the correct
value to the number. So that the exponent field may
accommodate a large range, Excess 64 representation
is used. This means that the value in the exponent
field is 64 greater than the true value of the exponent.
If the exponent field is zero, the true value of the
exponent is -64. If the exponent field is 64, the true
value of the exponent is O. If the exponent field is 127,
the true value of the exponent is 63.

MANTISSA X 16RAISED TO THE TRUE VALUE OF THE EXPONENT FIELD

Bits 8-31 for single precision and bits 8-63 for double
precision contain the mantissa. This means that bit 8
of the floating point number is bit 0 of the mantissa.
The mantissa is always a positive fraction greater
than or equal to 1/tE> and less than 1. The binary point
can be thought of as being just to the left of bit 8.
Continuing this concept then, bit 8 represents the
value 1/2, bit 9 represents the value 1/4, bit 10
represents the value 1/8, and so on.

The number is signed according to the value of the
sign bit. If the sign bit is 0, the number is positive; if
the sign bit is 1, the number is negative.

Floating point numbers are represented internally by
either 32 bits <single precision) or 64 bits <double
precision).

The formats are shown below:

014-000617-01

II-3

In order to keep the mantissa in the range of 1/16 to
1, the results of floating point arithmetic are
normalized. Normalization is the process whereby the
mantissa is shifted left one hex digit at a time until
the high-order four bits reI?lesent a nonzero quantity.
For every hex digit shifter,the exponent is decreased
by one. Since the mantissa is shifted four bits at a
time, it is possible for the high-order three bits of a
normalized mantissa to be zero.

Zero is represented by a floating point number with
all bits zero. This is true for both single and double
precision. This is known as true zero. When a
calculation results in a zero mantissa, the floating
point processor automatically converts the number to

INFORMATION FORMATS

INTERNAL STRUCTURE

storage whose address is in the range -12810 to + 12710
from the instruction.

If the index bits are 10, accumulator 2 is used as an
index register. If the index bits are 11, accumulator 3
is used as an index register. In this form of word
addressing, known as index register addressing, the
displacement is treated as a signed, two's
complement number which is added to the contents
of the selected index register to produce a memory
address. In ind€~x register addressing, the addition of
the displacement to the contents of index register
does not change the value contained in the index
register.

The result of the addition performed in relative
addressing and index register addressing is clipped to
15 bits. In other words, the high order bit of the
result is set to O. For example, if accumulator 2 is to
be used as an index register and contains the number
0777748, and the displacement bits contain the
number 0128, then the result of the addition would be
0000068, not 1000068,

After one of the three types of addresses has been
computed from the index and displacement bits, the
indirect bit is tested. If this bit is zero, the address
already computed is taken as the effective address. If
the indirect bit is one, the word addressed by the
result of the index and displacement bits is assumed
to contain an address. In this word bit 0 is the
indirect bit and bits 1-15 contain an address. If bit 0
of the referenced word is 1, another level of
indirection is indicated, and bits 1-15 contain the
address of the next word in the indirection chain.
The processor will continue to follow this chain of
indirect addresses until a word is retrieved with bit 0
set to O. Bits 1-15 of this word are taken to be the
effecti ve address.

Auto-I ncrementl Decrement

If an indirect address points to a location in the range
20-278 (auto-increment locations); that word is
fetched, the contents of the word are incremented by
one and written back into the location. This updated
value is then uSI~d to continue the addressing chain. If
an indirect address points to a location in the range
30-378 (auto-dI3crement location), that word is
fetched, the contents of the word are decremented by
one and written back into the location. The updated
value is then uSE~d to continue the addressing chain.

NOTE: When referencing auto-increment and
auto-decremEmt locations, the state of bit 0
before the increment or decrement is the
condition upon which the continuation of the
indirection chain is based. For example: if an
auto-increment location contains 1777778, and
the location LS referenced as part of an
indirection chain, location 0 will be the next
address in the chain.

014-000617-01

II-5

: l,lSPLACEME f\Jr 81 rs
/'-'YE=S ________________ o e,C TO INTEHM'[)I"F

1~l)DRt. S~ AS

IM)lfi~CT

H' r =0

) t S

DC 00539

,- .. l~IO

:,; ~~;':;';~'H I
A[JDRE 55

LOW O'lDER 15
BITS GO TO
INTERMEDlt,TE
ADDRESS

~~. :

,,// WOkl> '-, 11' .. 0[, I TC" F E T(-~HE[)
---irT~H~lfWC~J'-"'YES: AN[J~r:-PLf\(:r

<~, L':A.;.ATlor,'-'·~ '~JSE NEW VA~LUE
.20-;Y TO CO,T ~UE

'}o ,------'
/ WORD- ~ I FROM

WORe
r fTCrlE L F'-<OM ", Yf:.S <" LOCATION' ~ ~ND REf'LACE USE

-~~Of-~'r ' ~~~T;~~~E TC
-~-~-~---:

BITS I.,sjc TC
INTERMEClt,TE
ADDRESS

-r

\ If\JSj(-;~;l C, \Jljur""r h'

An effective address is always 15 bits in length. This
means that an instruction which uses the effective
address calculation can address anyone of 32,76810
words. This gives rise to the concept of an address
space, which, in the NOVA 4, contains 64K bytes or
32,768 2-byte words.

Byte Addressing

While bytes in main memory eannot be directly
addressed by the CPU, there is a convenient
programming method for manipulating individual
bytes of information. This technique in vol ves the use
of a byte pointer. A byte pointer is a word in whieh

INFORMATION ADDRESSING

bits 0-14 are the address in memory of a 2-byte word.
Bit 15 is the byte indicator. If the byte indicator is 0,
the byte pointer references the high-order byte (bits
0-7) of the word in memory; if it is 1, the pointer
references the low order byte (bits 8-15).

I 00 I 0 I I 02 I 0 3

BI TS 0 - 14 p...:..~~~->-=....:.;.L~~
ADDRESS WORD "---.....,,_~~!ol

BYTE 0
POINTER~~~~~~~~~~~~~~~

Addressing With Address Translation
Hardware

The concept of an address space was introduced in
the discussion of effective address calculation. The
program or logical address space is that amount of
memory that can be referenced by instructions in a
program. The maximum logical address space
available to a program running on a NOVA 4 is 64K
bytes or 32K words.

The physical address space is that amount of physical
memory that can be referenced by the CPU. If the
MAP is not installed, the maximum physical address
space available to the CPU is 64K bytes or 32K words,
and the logical address space is equal to the physical
space. For a NOV A 4 with the MAP installed, the
maximum physical address space is 256K bytes and
the logical address space is some subset of the
physical space.

Installation of a MAP has no effect on logical
addressing. Addressing calculations remain the same.
The MAP translates the 15-bit address from the CPU
into a 17-bit address and uses this new address to
perform the memory reference.

PROGRAM EXECUTION

II- 6

Data General Corporation

PROGRAM EXECUTION

Programs for the NOVA 4 consist of sequences of
instructions that reside in main memory. The order
in which these instructions are executed depends on
a 15-bit counter called the program counter. The
program counter always contains the address of the
instruction currently being executed. Mter the
completion of each instruction, the program counter
is incremented by one and the next instruction is
fetched from this address. This is called sequential
operation, and the instruction fetched from the
location addressed by the incremented program
counter is called the next sequential instruction.

Program Flow Alteration

Sequential operation can be explicitly altered by the
programmer in two ways: jump instructions alter
program flow by inserting a new value into the
program counter: conditional skip instructions can
alter program flow by incrementing the program
counter an extra time if a specified test condition is
true. In the case of a conditional skip instruction,
when the test condition is true, the next sequential
instruction is not executed because it is not
addressed. After either a jump instruction or a
successful conditional skip instruction, sequential
operation continues with the instruction addressed
by the updated value of the program counter.

I
• INCREASING

ADDRESSES

DGOO543

j

j

I
N
S
T
R
U
C
T
I
o
N

L

JUMP

SKIP

}

SEQUENTIAL
PROGRAM
FLOW

JUMP
PROGRAM
FLOW

Because the program counter is 15 bits in length, it
can address 32,768 separate memory locations. The
next memory location after 777778 is location 0, and
the location before ° is location 777778, If the
program counter rolls from 777778 to ° in the course
of sequential operation, no indication is given and
processing continues with the location addressed by
the updated value of the program counter.

014-000617-01

INTERNAL STRUCTURE

Program Flow Interruption

The normal flow of a program may be interrupted by
external or exceptional conditions such as I/O
interrupts or various kinds of faults. In this case, the
address of the next sequential instruction in the
interrupted program is saved by the CPU so that the
1/0 handler, or the various fault handlers, can return
control to the program at the correct point. Once the
address of the next sequential instruction in the
program has been placed in the program counter by
the fault handler, sequential operation of the
program resumes.

INCREASING
ADDRESSES

j
j

j

I
N
S
T
R
U
C
T
I
o
N
S

L
DG00544

014-000617-01

II-7

PROGRAM EXECUTIO~j

II-8

Chapter III

INSTRUCTIONS SETS

INTRODUCTION

The instruction set implemented on the NOVA 4 is
divided into ,5 sets. There are instruction sets
available for fixed point arithmetic, logical
operations, program flow alteration, floating point
arithmetic, and I/O operations. In addition,
instructions are available for programming the stack,
MAP, the Real Time Clock, power fail/auto-restart,
and certain CPU functions.

INSTRUCTION FORMATS

There are four different formats for instructions on
the NOVA 4. These formats allow an extensive
instruction set while still keeping the instruction
length to one word. The four formats and their
general layouts are described below.

In the No Accumulator-Effective Address format
instructions, bits 0-2 are 000, and bits 3-4 contain the
operation code. The effective address is computed
from bits 5-15 as described under Effective Address
Calculation.

In the One Accumulator-Effective Address format
instructions, bit 0 is 0, and bits 1-2 contain the
operation code, Bits 3-4 specify the accumulator for
the operation. The effective address is computed from
bits 5-15 as described under Effective Address
Calculation.

In the Input/Output format instructions, bits 0-2 are

014-000617-01

III- 1

OIL bits 3-4 specify the accumulator for the
operation, bits 5-7 contain the operation code, bits 8-9
specify the control signal to be used, and bits 10-15
contain the device code of the referenced device.

I 1 lACS I ACD I OP CODE I SH I C I # , SKIP
o 1 I 2 3 I 4 5 I 6 I 7 8 I 9 10 I 11 12 13 I 14 I 15

In the Arithmetic/Logical Class instructions, bit 0 is
1, bits 1 and 2 specify the source accumulator, bits 3
and 4 specify the destination accumulator, bits 5-7
contain the operation code, bits 8 and 9 specify the
action of the shifter, bits 10 and 11 specify the value
to which the carry bit will be initialized, bit 12
specifies whether or not the result will be loaded into
the destination accumulator, and bits 13-15 specify
the skip test.

ALe Instruction Execution

The ALC instructions use an Arithmetic Logic Unit
(AL U) to process data. The logical organization of the
ALU is illustrated below.

- ORGANIZATION OF ARITHMETIC UNIT

06-00927

11 BITS

LOAD/NO LOAD

INSTRUCTION FORMAn,

When an ALe instruction begins execution, it loads
the contents of the carry bit and the contents of the
accumulator<s) to be processed into the ALU. There
are five distinct stages of ALU operation. We will
discuss these stages separately.

Carry

The AL U begins its manipulation of the data by
determining a new value for the carry bit. This new
value is based upon three things: the old value of the
carry, bits 10-11 of the ALe instruction, and the ALe
instruction being executed. The AL U first determines
the effect of the instruction bits 10-11 on the old value
of the carry. The table below shows each of the
mnemonics that can be appended to the instruction
mnemonic, the value of bits 10-11 for each choice, and
the action each one takes.

SYMBOL VAL.UE OPERATION

{e] omitted 00 Leave Carry bit unchanged

{e]=Z 01 Initialize Carry bit to 0

{e]=O 10 Initialize Carry bit to 1

{e]=C 11 Complement the Carry bit

Function

The ALU next evaluates the effect of the specific
function (bits 5-7) upon the data. For the instructions
Move, AND, and Complement the AL U performs the
function on the data word (s) and saves the result.
The value of the carry is as it was calculated above.
For the instructions Add, Add Complement, Subtract,
Negate, and Increment the result of the function's
action upon the data word (s) may be larger than 216 -
1. A carry out results. In this situation, the AL U
saves the low-order 16 bits of the function result, but
it complements the value of the carry calculated
above.

NOTE: At this stage of operation, the ALU does
not load either the saved value of the function
result into the destination accumulator, or the
saved value of the carry into the carry bit.

Shift Operations

Next the AL U performs any specified shift operation
on the 17 bits output from the function generator (16
bits of data plus the calculated value of the carry
bit). Depending on which shift operation is specified
in the instruction, the function generator output can
be rotated left or right one bit, or have its bytes
swapped. The first table below shows the different
shift operations that can be performed, the value of
bits 8-9 for each c:hoice, and the action each choice
takes. The second table shows how each shift
operation works.

INSTRUCTION FORMATS

III- 2

Data General Corporation

SYMBOL VALUE OPERATION

{sh] omitted 00 Do not shift the result
of the ALC operation

{sh]=L 01 Rotate left the 1 7 -bit
combination of Carry bit
and ALC operation result

{sh]=R 10 Rotate right the 1 7 -bit
combination of Carry bit
and ALC operation result

{sh]=s 11 Swap the two a-bit halves
of the ALC operation result
without affecting Carry bit

CODED
CHARACTER

SHIFTER OPERATION

L Left rotate one place. Bit 0 is rotated into the
carry position, the carry bit into bit 15

4J~ 0-15 ~
R Right rotate one place Bit 15 is rotated into the

carry position, the carry bit into bit 0

4=H 0-15 t-J
S Swap the halves of the 16-bit result. The carry

bit is not affected

I
I 0-7 I 8-15 I

>< I 0-7 I 8-15 I
DO 04423

Skip Tests

The AL U can test the result of the shift operation for
one of a variety of conditions, and skip or not skip the
next instruction depending upon the result of the
test. The table below shows the tests that can be
performed, the value of bits 13-15 for each choice, and
the action each choice takes.

014-000617-01

INSTRUCTIONS SETS

SYMBOL VALUE OPERATION

{skip] omitted 000 No skip

{skip]=SKP 001 Skip unconditionally

{skip]=SZC 010 Skip if Carry bit is zero

{skip]=SNC 011 Skip if Carry bit is nonzero

{skip]=SZR 100 Skip if ALC result is zero

{skip]=SNR 101 Skip if ALC result is nonzero

{skip]=SEZ 110 Skip if either ALC result
or Carry bit is zero

{skip]=SBN 111 Skip if both ALC result
and Carry bit is nonzero

Load/No-Load

If the no-load bit (bit 12) is 0, the ALU loads the
result of the shift operation into the destination
accumulator, and loads the new value of the carry
into the carry bit. If the no-load bit is 1, then the
AL U does not load the result of the shift operation
into the destination accumulator, and does not load
the new value of the carry into the carry bit, but all
other operations, such as skip tests, take place. This
no-load option is particularly convenient to use when
you want to test for some condition without
destroying the contents of the destination
accumulator. The table below shows how to code the
load/no-load operation.

SYMBOL VALUE OPERATION

omitted 0 Load the result of the

shift operation into ACD

1 Do not load the ALC
operation result into ACD;
restore Carry bit to value
it had before shifting

NOTE: These instructions must not have both the
No-Load and the Never-Skip options specified at
the same time. These bit combinations are used
by other instructions in the instruction set.

As an example of how to use these tables, assume
that accumulator 3 contains a signed, two's
complement number. Now consider the problem of
determining whether this number is positive or
negative. One way to determine this would be to
place the number zero in another accumulator and
use the Subtract instruction, but this requires an
extra instruction and also destroys the previous
contents of the other accumulator. Another way to
determine the sign of the number in accumulator 3 is
to use the Move instruction and power of the two
accumulator-multiple operation format. With the
Move instruction, the contents of AC3 can be placed
in the shifter and shifted one bit to the left. This
places the sign bit in the carry bit. The carry bit can
then be tested for zero. In order to preserve the
number in AC3, the instruction can prevent the

014-000617-01

output of the shifter from being loaded back into AC3

The general form of the Move instruction is:

MOV leI lshI l# I aes,aedl,skipI
The general bit pattern of the MOVE instruction is:

I ' lACS I ACO I 0 , 0 I SH I C I # I SKIP
o 1 1 2 3 1 4 1 5 1 6 1 7 I 8 1 9 10 1 11 12 13 1 141 15

To shift the number in AC3 one bit left without
destroying the number, and skip the next sequential
instruction if the bit shifted into the carry bit is zero,
the following instruction could be coded:

MOVL # 3,3,SIC

This instruction assembles into the following bit
pattern:

I' , , , , 0 , 0 0 , 0 0 , 0 ,
01

01 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 121 13 1 141 15

III- 3

INSTRUCTION FORMATS

CODING AIDS

We use certain conventions and abbreviations
throughout this chapter to help you properly code
each instruction for Data General's assembler.
Briefly, they are thl3se:

[] [] Square brackets indicate that the enclosed
symbol (e.g., [,skip)) is an optional operand or
mnemonic. Code it only if you want to specify
the option.

BOLD Code operands or mnemonics printed in
boldface exactly as shown. For example, code
the mnemonic for the Move instruction: MOV.

italic For each operand or mnemonic in italics,
replace the item with a number or symbol that
provides the assembler value you need for that
item (e.g., the proper accumulator number, an
address, etc.).

We use the following abbreviations throughout this
chapter:

ABBR MEANING

AC Accumulator
ACS Source accumulator
ACD Destination accumulator
FPAC Floating point accumulator

In the instructions that use an effective address, the
following coding conventions are used:

The indirect bit (bit 5) is set to 1 by coding the
symbol @ anywhere in the effective address
operand string.

The index bits are set by coding a comma followed
by one of the digits 0-3 as the last operand of the
operand string. If no index is coded, the bits are set
to 00. The character period U can be used to set
the index bits to 01. Period can be read to mean
address of th~! current instructions. When the
period is used, it is followed by either a plus or a
minus sign followed by the displacement e.g., .+7,
or .-2.

The displacement is coded as a signed number in the
current assembler radix. This radix is the numbering
system in which the programmer supplies numbers
to the assembler. The default radix is Base 8 or octal.
The assembler radix can be changed by using the
RADIX statement.

The assembler available with the NOVA 4 allows the
programmer to place labels on instructions or
locations in memory. When the assembler comes upon
a label in the opE,rand string of an effective address
instruction, it automatically sets the index and
displacement bits to the correct values.

LOA

Data General Corporation

FIXED POINT ARITHMETIC

The fixed point instruction set performs binary
arithmetic on operands in accumulators. The
operands are 16 bits in length and can be either
signed or unsigned. The instruction set provides for
loading, storing, adding, and subtracting.

Load Accumulator

LDA ac, [@ ldisplacement[,indexl

Copies a word from memory to an accumulator.

Places the word addressed by the effective address, E,
in the specified accumulator. The previous contents of
the location addressed by E remain unchanged.

III- 4

014-000617-01

INSTRUCTIONS SETS

Store Accumulator

STA ac, [@ }displacementl, index}

Stores the contents of an accumulator into a memory
location.

Places the contents of the specified accumulator in
the word addressed by the effective address, E. The
previous contents of the location addressed by E are
lost. The contents of the specified accumulator
remain unchanged.

Add
ADD [c}[sh}[#} acs,acd[,skipi

Performs unsigned integer addition and complements
the carry bit if appropriate.

Initializes the carry bit to the specified value, adds
the unsigned, 1.6-bit number in ACS to the unsigned,
i6-bit number in ACD, and places the result in the
shifter. If the addition produces a carry of i out of the
high-order bit, the carry bit is complemented. The
instruction then performs the specified shift
operation and places the result of the shift in ACD if
the no-load bit is O. If the skip condition is true, the
next sequential word is skipped.

NOTE: If the sum of the two numbers being added
is greater than 65,535, the instruction
complements the Carry bit.

014-000617-01

Subtract

SUB [c} [sh} [#} acs,acd[,skip}

1 ~ I ;fs
2 1 :1°4 \ : I ~ I ~ ~ BS~ 91,o~ ,,1,: 1'3IS~~P! ,5

1

Performs unsigned integer subtraction and
complements the carry bit if appropriate.

Initializes the carry bit to its specified value. Tho
instruction subtracts the unsigned, i6-bit number in
ACS from the unsigned, i6-bit number in ACD by
taking the two's complement of the number in ACS
and adding it to the number in ACD. The instructioL
places the result of the addition in the shifter. If thE)
operation produces a carry of i out of the high-order
bit, the instruction complements the carry bit. The
instruction performs the specified shift operation anc.
places the result of the shift in ACD if the no-load bit
is O. If the skip condition is true, the instruction skipE:
the next sequential word.

NOTE: If the number in ACS is less than or equal
to the number in A CD, the instruction
complements the carry bit.

Negate

NEG [c} [sh} [#} acs,acd[,skipi

Forms the two's complement of the contents of an
accumulator.

Initializes the carry bit to the specified value. PlaceE,
the two's complement of the unsigned, i6-bit numbeI'
in ACS in the shifter. If the negate operation
produces a carry of i out of the high-order bit, thE'
instruction complements the carry bit. Performs thE
specified shift operation and places the result in ACD
if the no-load bit is O. If the skip condition is true, thE'
instruction skips the next sequential word.

III-5

NOTE: If ACS contains 0, the instruction
complements the carry bit.

NEe

Add Complement

ADC [cl [shl [# 1 acs,acd[,skipl

I 1 I ACS I ACD ~ 1 0 0 I . SH f C ,# I SKIP I
o 1 1 2 3 I 4 ~i 1 6 I 7 8 1 9 10 1 11 12 13 1 141 15

Adds an unsigned integer to the logical complement
of another unsigned integer.

Initializes the carry bit to the specified value, adds
the logical complement of the unsigned, 16-bit
number in ACS to the unsigned, 16-bit number in
ACD, and places the result in the shifter. If the
addition produces a carry of 1 out of the high-order
bit, the carry bit is complemented. The instruction
then performs the specified shift operation, and loads
the result of the shift into ACD if the no-load bit is O.
If the skip condition is true, the next sequential word
is skipped.

NOTE: If the number in ACS is less than the
number in A CD, the instruction complements the
Carry bit.

Move

MOV [cl [shl [# 1 acs,acd[,skipl

I 1 lACS I ACD I 0 1 0 I SH I C I # , SKIP I
o 1 1 2' 3 I 4 5 1 6 I 7 8 1 9 10 1 11 12 131 141 15

Moves the contents of an accumulator through the
Arithmetic Logic Unit (ALU).

Initializes the carry bit to the specified value. Places
the contents of ACS in the shifter. Performs the
specified shift operation and loads the result of the
shift into ACD if the no-load bit is O. If the skip
condition is true, the instruction skips the next
sequen tial word.

INC

Data General Corporation

Increment

INC [cl[shl[#l acs,acd[,skipl

Increments the contents of an accumulator.

Initializes the carry bit to the specified value.
Increments the unsigned, 16-bit number in ACS by
one and places the result in the shifter. If the
incrementation produces a carry of 1 out of the high
order bit, the instruction complements the carry bit.
Performs the specified shift operation, and loads the
result of the shift into ACD if the no-load bit is O. If
the skip condition is true, the next sequential word is
skipped.

III- 6

NOTE: If the number in ACS is 1777778 the
instruction complements the carry bit.

014-000617-01

INSTRUCTIONS SETS

LOGICAL OPERATIONS

The logical instruction set performs logical
operations on operands in accum ulators. The
operands are 16 bits long and are treated as
unstructured binary quantities. The logical
operations included in this set are: And, and
Complement.

Complement

COM Ie] Ish] 1#] aes,aedl,skip]

Forms the logical complement of the contents of an
accumulator.

Initializes the carry bit to the specified value, forms
the logical complement of the number in ACS, and
performs the specified shift operation. The
instruction then places the result in ACD if the
no-load bit is O. If the skip condition is true, the next
sequential word is skipped.

014-000617-01

AND

AND Ie] Ish] 1#] acs,aedl,skip]

Forms the logical AND of the contents of two
accumulators.

Initializes the carry bit to the specified value and
places the logical AND of ACS and ACD in the
shifter. Each bit placed in the shifter is 1 only if the
corresponding bit in both ACS and ACD is one;
otherwise the resulting bit is O. The instruction then
performs the specified shift operation and places thE~
result in ACD if the no-load bit is O. If the skip
condition is true, the next sequential word is skipped.

111- 7
AND

ST ACK MANIPULATION

An important fea1~ure of the NOV A 4 is the stack
manipulation facility. A Last-In/First-Out (LIFO) or
Push-Down stack is maintained by the processor. The
stack facility provides an expandable area of
temporary storage for variables, data, return
addresses, subroutine arguments, etc. An important
byproduct of thE) stack facility is that storage
locations are reserved only when needed. When a
procedure is finished with its portion of the stack,
those memory locations are reclaimed and are
available for use by some other procedure.

The operation of the stack depends upon the contents
of two hardware registers. The registers and their
contents are described below.

Stack Pointer

The stack pointer is the address of the top of the
stack and is affected by operations that either push
objects onto or pop objects off the stack. A push
operation increments the stack pointer by 1 and then
places the pushed object in the word addressed by the
new value of the stack pointer. A pop operation takes
the word addressed by the current value of the stack
pointer and places it in some new location and then
decrements the stack pointer by 1.

STACK POINTER
BEFORE PUSH -

STACK POINTER -
AFTER PUSH

DO 00561

Frame Pointer

--

~. ~

PUSHED/POPPED
WORD

INCREASING
ADDRESSES

j

V-
V-
V-

~
V-
•

1/
1/
1/
V-
i/

I/.

-
f--

STACK POINTER
AFTER POP

STACK POINTER
BEFORE POP

The frame pointer is used to reference an area in the
user stack called a frame. A frame is that portion of
the stack which is reserved for use by a certain
procedure. The £I'ame pointer usually points to the
first available word minus 1 in the current frame.
The frame pointer is also used by the Return

5T ACK MANIPULATION

Data General Corporation

instruction to reset the user stack pointer.

Return Block

A return block is defim~d as a block of five words that
is pushed onto the stack in order to allow convenient
return to the calling program. The format of the
return block, therefore, is determined by how it is
used in the return sequence. The format of the return
block is as follows:

WORD POPPED DESTINA TION

1 Bit 0 placed in the
carry bit.
Bits 1 -1 5 placed in
the program counter.

2 AC3
3 AC2
4 AC1
5 ACO

In the stack, the return block looks like this:

III- 8

STACK POINTER
AFTER RETURN

STACK POINTER
BEFORE RETURN

DO 00566

Stack Frames

INCREASING
ADDRESSES

~

5th WORD
POPPED

1st WORD
POPPED

In order to implement re-entrant subroutines, a new
area of temporary storage must be available for each
execution of a called subroutine. The easiest way to
accom plish this is for the subroutine to use the stack
for temporary storage. A stack frame is defined as
that portion of the stack which is available to the
called routine. In general, the stack frame belonging
to a subroutine begins with the first word in the
stack after the retw'n block pushed by the called
routine and contains all words in the stack up to, and
including, the return calls. Variables and arguments
can be transmitted from the calling routine to the
called routine by placing them in prearranged

014-000617-01

INSTRUCTIONS SETS

positions in the stack frame of the calling routine.
Because the Save instruction sets the frame pointer
to the last word in the return block, these variables
and arguments can be referenced by the called
program as a negative displacement from the frame
pointer. The called routine should ensure that
reference to the stack frome of the calling routine is
made only with the permission of the calling routine.

Stack Protection

During every instruction that pushes data onto the
stack, a check is made for stack overflow. If the
instruction places data in a word whose address is an
integral multiple of 25610, a stack overflow is
indicated. If a stack overflow is indicated, the
instruction is completed, an internal stack overflow
flag is set to 1, and, if the Interrupt On flag is 1, a
stack fault is performed. If the Interrupt On flag is 0,
the stack overflow flag remains set to 1, and as soon
as the interrupt system is enabled, the stack fault is
performed.

When a stack fault is performed: if a program map is
enabled, it is inhibited; the Interrupt On flag is set to 0; the
stack overflow flag is set to 0; the updated program counter
is stored in physical location 0; and the processor executes
a jump indirect to physical location 3.

Initialization of the Stack Control Registers

Before the first operation on the stack can be
performed, the stack control registers must be
initialized. The rules for initialization are as follows:

Stack Pointer

The stack pointer must be initialized to the beginning
address of the stack area minus one.

Frame Pointer

If the main user program is going to use the frame
pointer, it should be initialized. to the same value as
the stack pointer. Otherwise, the frame pointer can
be initialized in a subroutine by the Save instruction.

014-000617-01

STACK MANIPULATION
INSTRUCTIONS

The stack feature of the NOVA 4 computer :.s
programmed with eight I/O instructions which m,e
the device code 01. Although the instructions are in
the standard I/O format, the operation of theE:e
instructions is in no way similar to I/O instructions.

Push Accumulator

PSHA ac

15

Pushes the contents of the specified accumulator on1;o
the stack, and increments the stack pointer by one.

111-9

PSI-IA

Pop Accumulator

POPA ac

Pops 1 word off the stack, places it in the indicated
accumulator, and decrements the stack pointer by
one.

Save

SAV

Pushes a return block onto the stack. After the fifth
word of the return block is pushed, the value of the
stack pointer is placed in the frame pointer and in
AC3. The format of the five words pushed is as
follows:

WORD PUSHED CONTENTS

1 ACO
2 AC1
3 AC2
4 Frame pointer before the save
5 Bit 0 = carry bit

Bits 1-15 = bits 1-15 of AC3

Data General Corporation

Move To Stack Pointer

MTSP ac

Places bits 1-15 of the specified accumulator in the
stack pointer. The contents of the specified
accumulator remain unchanged.

Move To Frame Pointer

MTFP ac

Places bits 1-15 of the specified accumulator in the
frame pointer. The contents of the specified
accumulator remain unchanged.

III- 10

MTFP 014-000617-01

INSTRUCTIONS SETS

Move From Stack Pointer

MFSP ac

Places the contents of the stack pointer in bits 1-15 of
the specified accumulator. Sets bit 0 of the
accumulator to O. The contents of the stack pointer
remain unchanged.

Move From Frame Pointer

MFFP ac

Places the contents of the frame pointer in bits 1-15 of
the specified accumulator. Sets bit 0 of the
accumulator to O. The contents of the specified
accumulator remain unchanged.

PROGRAM FLOW ALTERATION

As stated previously, the normal method of program
execution is sequential. That is, the processor will
continue to retrieve instructions from sequentially
addressed locations in memory until directed to do
otherwise. Instruetions are provided in the
instruction set that alter this sequential flow.
Program flow alteration is accomplished by placing a
new value in the program counter. Sequential
operations will then continue with the instruction
addressed by this new value. Instructions are
provided that change the value of the program
counter, change the value of the program counter and
save a return addrElss, or modify a memory location
by incrementing or decrementing and skip the next
sequential instruction if the result is zero.

Jump

JMP

Computes the effective address, E, and places it in the
program counter. Sequential operation continues
with the word addressed by the updated value of the
program counter.

III- 11

014-000617-01 JMP

Jump To Subroutine

)SR [@ ldisplacementl, indexl

Increments and stores the value of the program
counter in AC3, and then places a new address in the
program counter.

Computes the effective address, E; then places the
address of the next sequential instruction in AC3.
Places E in the program counter. Sequential
operation continues with the word addressed by the
updated value of the program counter.

NOTE: The instruction computes E before it places
the incremented program counter in A C3.

Increment And Skip If Zero

ISZ [@ ldisplacementl,indexl

Increments the addressed word, then skips if the
incremented value is zero.

Increments the word addressed by E and writes the
result back into memory at that location. If the
updated value of the location is zero, the instruction
skips the next sequential word.

Data General Corporation

Decrement And Skip If Zero

DSZ [@ ldisplacementl,indexl

Decrements the addressed word, then skips if the
decremented value is zero.

Decrements by one the word addressed by E and
writes the result back into that location. If the
updated value of the location is zero, the instruction
skips the next sequential word.

Return

RET

Places the contents of the frame pointer in the stack
pointer and pops five words off the stack, placing
them in the following locations:

WORD # POPPED DESTINATION

1 Bit 0 placed in the
carry bit.
Bits 1 -1 5 placed in
the program counter.

2 Bits 1 -1 5 placed in
the frame pointer.
Bits 0- 1 5 placed in
AC3

3 AC2

4 AC1

5 ACO

Sequential operation continues with the word
addressed by the updated value of the program
counter.

III- 12

RET 014-000617-01

INSTRUCTIONS SETS

Trap

TRAP acs,acd,trap number

Disables the user map if enabled. Then places the
logical address of this instruction in bits 1-15 of
physical location 468, sets bit 0 of this location to 0,
and jumps indirect via location 478, The state of the
Interrupt On flag is unaltered.

BYTE INSTRUCTIONS

The following instructions move bytes to or from
memory locations. Note that when an instruction
moves a byte from memory to an accumulator, it also
clears the high-order half of the destination
accumulator. When an instruction moves a byte from
an accumulator to memory, it leaves unchanged the
other byte contained in that word of memory.

Load Byte

LDB acs,acd

Moves a byte from memory (as addressed by a byte
pointer in one accumulator) to the second
accumulator.

Places the 8-bit byte addressed by the byte pointer
contained in ACS in bits 8-15 of ACD. Sets bits 0-7 of
ACD to O. The contents of ACS remain unchanged
unless ACS and ACD are the same accumulator.

III- 13

014-000617-01 LOB

Store Byte

STB acs,acd

Moves the right byte of one accumulator to a byte in
memory. The second accumulator contains the byte
pointer.

Places bits 8-15 of ACD in the byte addressed by the
byte pointer contained in ACS. The contents of ACS
and ACD remain lillchanged.

III- 14

STB

Data General Corporation

014-000617-01

Chapter IV
INPUT /OUTPUT

INTRODUCTION

In order for the processor to perform useful work for
the user, there must be some method for the program
to transfer information outside the machine. The
Input/Output (I/O) instruction set provides this
facility. There are eight I/O instructions which allow
the program to communicate with I/O devices,
control certain processor options, and perform
certain processor functions.

The NOVA 4 has a 6-bit device selection network,
corresponding to bits 10-15 in the I/O instruction
format. Each device is connected to this network in
such a way that each device will only respond to
commands with its own device code. Each device also
has two flags, Busy and Done, which control its
operation. When Busy and Done are both 0, the device
is idle and cannot perform any operations. To start a
device, the program must set Busy to 1 and set Done
to O. When a device has finished its operation, it sets
Busy to 0 and Done to 1. The case of Busy and Done
both set to 1 is a meaningless situation and will
produce unpredictable results.

The format for the I/O instructions is illustrated
below.

Bits 0-2 are 011, bits 3-4 specify the AC, bits 5-7
contain the operation code, bits 8-9 control the Busy
and Done flags in the device, and bits 10-15 specify
the code of the device. The six bits provided for the
device code in the I/O format mean that 64 unique
device codes are available for use. Some of these
device codes, however, are reserved for the CPU and
certain processor options. The remaining device codes
are available for referencing I/O units. Some of the
codes have been assigned to specific devices by Data
General and the assembler recognizes mnemonics for
these devices. A complete listing of device codes, the

014-000617-01

IV- 1

devices assigned to these codes, and the mnemonics
assigned to the devices is available in Appendix A.

OPERATION OF 1/0 DEVICES

In general, the operation of all I/O devices is done by
manipulation of the Busy and Done flags. In order t,)
operate a device, the program must first ensure that
the device is not currently performing som'3
operation. After the program has determined that
the device is available, it can start an operation on
the device by setting Busy to 1 and Done to O. Once a
device has completed its operation, and set Busy to 0
and Done to 1, it is available for another operation.
The program can determine this condition in one of
two ways. By using the I/O Skip instruction, the
program can test the status of the Busy and Don(~
flags. Another way is to use the interrupt system thac
is standard on the NOV A 4. The interrupt system i:3
made up of an int43rrupt request line to which each
I/O device is connected, an Interrupt On flag in the
CPU, and a 16-bit interrupt priority mask. The
Interrupt On flag controls the status of the interrup·~
system. If the flag is set to 1, the CPU will respond to
and process interrupts. If the flag is set to 0, the CPU
will not respond to any interrupts. An interrupt i:,
initiated by an I/O device when it completes itB
operation.

Upon completing the operation, the device sets Busy
to 0 and Done to 1. At this time, the device also placeB
an interrupt requElst on the interrupt request line,
provided that the bit in the interrupt priority masl~
which corresponds to the priority level of the devicEl
is O. If the mask bit is 1, the device sets Busy to 0 and
Done to 1, but does not place an interrupt request on
the interrupt request line.

If the Interrupt On flag is 1 at the time the processQ]'
com pletes execution of any instruction, the processOl'
honors any request on the interrupt request line. If
the Interrupt On flag is 0, the CPU does not look at
the interrupt requElst line; it just goes on to the next

OPERATION OF 1/0 DEVICES

sequential instruction. The CPU honors an interrupt
request by setting the Interrupt On flag to 0 so that
no interrupts can interrupt the first part of the
interrupt serivce routine. If no program map is
enabled, the CPU places the updated program
counter in physical memory location 0 and executes a
jump indirect to physical memory location 1. It is
assumed that location 1 contains the address, either
direct or indirect, of the interrupt service routine. If
the optional MAP is installed, it is inhibited; the
updated program counter is placed in physical
memory location 0 and the CPU executes a jump
indirect to physical memory location 1.

Once the CPU has transferred control to the
interrupt service routine, it is up to that routine to
save any accumulators that will be used, save the
carry bit if it will be used, determine which device
requested the interrupt, and then service the
interrupt. The determination of which device needs
service can be done by I/O Skip instructions or the
routine can use the Interrupt acknowledge
instruction.

The Interrupt acknowledge instruction returns the
6-bit device code of the device requesting the
interrupt. If more than one device is requesting
service, the code returned is the code of that device
requesting an interrupt which is physically closest to
the CPU on the I/O bus. After servicing the device,
the interrupt routine should restore all saved values,
set the Interrupt On flag to 1, and return to the
interrupted program. The instruction that sets the
Interrupt On flag to 1 <Interrupt enable) allows the
processor to execute one more instruction before the
next interrupt can take place. In order to prevent the
interrupt service routine from going into a loop, this
next instruction should be the instruction that
returns control to the interrupted program. Since the
updated value of the program counter was placed in
location 0 by the CPU upon honoring the interrupt,
all the interrupt routine has to do, after restoring the
AC's and the carry bit, is to execute an Interrupt
enable instruction, a IMP 0 instruction, and control
will be returned to the interrupted program.

PRIORITY INTERRUPTS

If the Interrupt On flag remains 0 through the
interrupt service routine, the interrupt routine
cannot be interrupted and there is only one level of
device priority. This level is determined by either the
order in which the I/O Skip instructions are issued or
(if Interrupt Acknowledge is used) by the physical
location of the devices on the bus. In a system with
devices of widely differing speed, such as a
teletypewriter versus a fixed head disc, the
programmer may wish to set up a multiple level
interrupt scheme. Hardware and instructions are
available that allow the implementation of sixteen
levels of priority interrupts.

DATA CHANNEL

Data General Corporation

Each of the I/O devices is connected to a bit in the
16-bit priority mask. Devices which operate at
roughly the same speed are connected to the same bit
in the mask. Even though the standard mask bit
assignments have the higher numbered bits assigned
to lower speed devices, no implicit priority ordering is
intended. The manner in which these priority levels
are ordered is completely up to the programmer. The
listing of device codes in Appendix A also contains
the standard Data General mask bit assignments.

The condition of the priority mask is altered by the
Mask out instruction. If a bit in the priority mask is
set to 1, then all devices in the priority level
corresponding to that bit will be prevented from
requesting an interrupt when they complete an
operation. In addition, all pending interrupt requests
from devices in that priority level are disabled.

To implement a multiple priority level interrupt
handler, the interrupt handler must be written in
such a way that it may be interrupted without
damage. For this to be possible, the main interrupt
routine must save the state of the machine upon
receiving control. The state of the machine consists of
the four accumulators, the carry bit, and the return
address. This information should be stored in a
unique place each time the interrupt handler is
entered so that one level of interrupt does not overlay
the return information. The interrupt routine must
determine which deviCE) requires service and jump to
the correct service routine. This can be done in the
same manner as for a single level interrupt handler.

After the correct service routine has received control,
that routine should save the current priority mask,
establish the new priority mask, and enable the
interrupt system with the Interrupt enable
instruction. After servicing the interrupt, the routine
should disable the interrupt system with the
Interrupt disable instruction, reset the priority mask,
restore the state of the machine, enable the interrupt
system, and return control to the interrupted
program.

DATA CHANNEL

Handling data transfers between external devices
and memory under program control requires an
interrupt plus the execution of several instructions
for each word transferred. To allow greater transfer
rates, the NOV A 4 contains a data channel through
which a device, at its own request, can gain direct
access to memory, using a minimum of processor
time.

IV- 2

When a device is ready to send or receive data, it
requests access to memory via the channel. At the
beginning of every memory cycle the processor
synchronizes any requests that are then being made.
At certain specified points during the execution of an
instruction, the CPU pauses to honor all previously

014-000617-01

INPUT IOUTPUT

synchronized requests. When a request is honored, a
word is transferred directly via the channel from the
device to memory or from memory to the device
without specific action by the program. All requests
are honored aecording to the relative position of the
requesting devices on the I/O bus. That device
requesting data channel service which is physically
closest on the bus is serviced first, then the next
closest device, and so on, until all requests have been
honored. The synchronization of new requests occurs
concurrently with the honoring of other requests, so
if a device continually requests the data channel, that
device can prevent all devices further out on the bus
from gaining access to the channel.

Following completion of an instruction, the processor
handles all data channel requests, and then honors all
outstanding I/O interrupt requests. After all data
channel and I/O interrupt requests have been
serviced, the processor continues with the next
sequential instruction. The data channel is fully
described in the Programmer's Reference Manual for
Peripherals, DGC number 015-000021.

CODING AIDS

We use certain conventions throughout this chapter
to help you properly code each instruction for Data
General's assembler. Briefly, they are:

[] [] Square brackets indicate that the enclosed
symbol (e.g., [,skip] is an optional operand or
mnemonic. Code it only if you want to specify
the option.

BOLD Code operands or mnemonics printed in
boldface exactly as shown. For example, code
the mnemonic for the Move instruction: MOV.

italic For each operand or mnemonic in italics,
replace the item with a number or symbol that
provides the assembler value you need for that
item (e.g., the proper accumulator number, an
address, etc.).

We use the following abbreviations throughout this
chapter:

for F Device Flag Command

AGor AC Accumulator

014-000617-01

The 1/0 instructions have optional mnemonics tha':
can be appended to the standard mnemonic. These
optional mnemonics control the Busy and Done flag:3
of the I/O device addressed by the instruction. Thev
are described in the following table. .

SYMBOL VALUE OPERATION

[f] omitted 00 Does not alter the
Busy and Done flags

[f]=S 01 Starts the device;
Sets Busy flag to 1
Sets Done flag to 0

[f]=C 10 Idles the device;
Sets Busy flag to 0
Sets Done flag to 0

[f]=p 11 I/O pulse;
effect, if any depends
on the device

The I/O Skip instruction allows you to test the state
of the Busy and Done flags. You can perform anyone
of four tests by appending an optional mnemonic to
the SKP mnenomic. The optional mnemonics are
shown in the following table.

SYMBOL VALUE OPERATION

It]=BN 00 Tests Busy flag for nonzero

[t]=BZ 01 Tests Busy flag for zero

[tJ=DN 10 Tests Done flag for nonzero

[tJ=DZ 11 Tests Done flag for zero

IV- 3

CODING AIDS

Data In A

DIAff] ac,deviee

Transfers data from the A buffer of an 1/0 device to
an accumulator.

The contents of the A input buffer in the specified
device are placed in the specified AC. After the data
transfer, the Busy and Done flags are set according to
the function specified by F.

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.
Bits in the AC that do not receive data are set to O.

Data in B

DIBff] ac,device

I 0 1 1 I AC I 0 1
01,1 23 145 1 6

Transfers data from the B buffer of an 1/0 device to
an accumulator.

Places the contents of the B input buffer in the
specified device in the specified AC. After the data
transfer, sets the Busy and Done flags according to
the function specified by F.

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.
Bits in the AC that do not receive data are set to O.

DOA

Data General Corporation

Data In C

DICff] ac,device

I 0 1 1 1 AC ~ 1 0 1
01,1 2 i 3145 1 61

Transfers data from the C buffer of an I/O device to
an accumulator.

Places the contents of the C input buffer in the
specified device in the specified AC. Mter the data
transfer, sets the Busy and Done flags according to
the specified F.

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.
Bits in the AC that do not receive data are set to O.

Data Out A

DOA ff] ac,device

I 0 1 1 \ AC \ 0 1 I)

01,1 23 145 1 61

Transfers data from an accumulator to the A buffer
of an 1/0 device.

Places the contents of the specified AC in the A
output buffer of the specified device. After the data
transfer, sets the Busy and Done flags according to
the function specified by F. The contents of the
specified AC remain unchanged.

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.

IV- 4

014-000617-01

INPUT /OUTPUT

Data Out B

DOO[f] ac,device

I 0 1 1 I AC I 1 0 0
7
I

011 1 2 31~. 5 1 61 I
F , DEVICE CODE

8 1 9 10 1 11 1 121 13 1 14 1 15

Transfers data from an accumulator to the B buffer of
an liD device.

Places the contents of the specified AC in the B
output buffer of the specified device. After the data
transfer, sets the Busy and Done flags according to
the function specified by F. The contents of the
specified AC remain unchanged.

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.

Data Out C

DOC [f] ac,device

I 0 1 1 I AC I 1 1 0
7
I F I DEVICE CODE

o 1 1 1 2 3 1 4 5 1 6 1 8 1 9 10 1 11 1 121 13 1 14 1 15

Transfers data from an accumulator to the C buffer of
an liD device.

Places the contents of the specified AC in the C
output buffer of the specified device. After the data
transfer, sets the Busy and Done flags according to
the function specified by F. The contents of the
specified AC remain unchanged.

The number of data bits moved depends upon the size
of the buffer and the mode of operation of the device.

014-000617-01

IV- 5

liD Skip

SKP ltJ device

I 0 1 1 0 0 1

01112 1 314 1 5

If the test condition specified by T is true, the
instruction skips the next sequential word.

No liD Transfer

NIO [fJ device

o 1 1 1 2 1 3 1 4 1 5 I 6 1 8 i 9 10 1 11 1 121 13 1 14 I 15

Used when a Busy or Done flag must be changed with
no other operation taking place.

Sets the Busy and Done flags in the specified deviee
according to the function specified by F.

CENTRAL PROCESSOR FUNCTIONS

liD instructions with a device code of 77 perform a
number of special functions rather than eontrolling a
specific device. Device eode 77 has been given the
mnemonic CPU. In all but the I/O Skip instruetion, I/O
instructions with a device code of 77 use bits 8-9 to
control the condition of the Interrupt On flag. An 110
Skip instruction with a device code of 77 uses bits 8-9
to either test the state of the Interrupt On flag or Lo

test the state of the Power Fail flag. The mnemonieE
are the same as for the normal liD instructions. ThE
table below gi ves the result of these bits for
instructions with a device code of 77.

CENTRAL PROCESSOR FUNCTION~,

SYMBOL VALUE OPERATION

[fJ omitted 00 Does not alter the
Interrupt On flag

{f]=s 01 Sets Interrupt On flag to 1

{f]=C 10 Clears Interrupt On flag to 0

[fJ=p 11 Leaves Interrupt On flag
unchanged

{t]=BN 00 Tests Interrupt On flag for nonzero

{t]=BI 01 Tests Interrupt On flag for zero

ftl=DN 10 Tests Power Fail flag for nonzero

{t]=DI 11 Tests Power Fail flag for zero

Special Mnemonics

Some of the NOV A 4 I/O instructions which use
device code 77 have special mnemonics which can be
used in place of the standard mnemonics. Note that
the mnemonics for controlling the state of flags
cannot be appended to these special instruction
mnemonics.

Thus, if you want to alter the state of the Interrupt
On flag while performing a Mask Out instruction,
you must use the full mnemonic:

DOBf ac,CPU

instead of the speeial mnemonic:

MSKOac

The special mnemonic sets bits 8 and 9 to 00.

INTDS

Interrupt Enable

INTEN
NIOS CPU

Sets Interrupt On flag to 1.

Data General Corporation

If the instruction changes the state of the Interrupt
On flag, the CPU allows one more instruction to
execute before the first I/O interrupt can occur.
However, if the instruction is interruptible, then
interrupts can occur as soon as the instruction begins
to execute.

Interrupt Disable

INTDS
NIOC CPU

Sets Interrupt On flag to O.

IV- 6

014-000617-01

INPUT/OUTPUT

Read Switches

READS
DIAff]

I 0 1

01 1 1

Places

ac
ac,CPU

: I 3A

I41 ~ 1

the contents

0 : I F

6 1 8 1

of the
register into an accumulator.

911~ 1
1 1 1 1 1 I

11 1 121 13 1 14 1 15

virtual console switch

Places the contents of the virtual console switch
register in the specified accumulator. After the
transfer, sets the Interrupt On flag according to the
function specified by F.

NOTE: See Chapter VI for more information about
the virtual console.

Interrupt Acknowledge

INTA
DIBff] ac,CPU

Returns devicEl code of an interrupting device.

Places the six-bit device code of that device
requesting an interrupt which is physically closest to
the CPU on the I/O bus in bits 10-15 of the specified
accumulator; sets bits 0-9 to O. Mter the transfer, sets
the Interrupt On flag according to the function
specified by F.

014-000617-01

Mask Out

MSKO
DOB ff] ac,CPU

I 0 1 1 f AC I 1 0 0
7

I F I ; 1 1 1 1 1 I
o 1 1 1 2 t 3 1 4 5 I 6 1 8 I 9 10 I 11 1 121 13 I 141 15

Sets the priority mask.

Places the content.s of the specified accumulator in
the priority mask. Mter the transfer, sets th3
Interrupt On flag according to the function specified
by F. The contents of the specified AC remain
unchanged.

NOTE: A 1 in any bit disables interrupt requests
at devices which use that bit as a mask.

NOTE: Do not use this instruction when interrupts
are enabled.

Reset

IORST
DICHl ac,CPU

Sets all Busy and Done flags and the priority mask to
O.

Sets the Busy and Done flags in all I/O devices to O.
Sets the 16-bit priority mask to O. Sets the Interrupt
On flag according to the function specified by F.

NOTE: The assembler recognizes the mnemonic
IORST as equivalent to the instruction DICC O,CPU.

If the mnemonic DIC is used to perform this
function, you must code an accumulator to avoid
assembly errors. During execution, the
accumulator field is ignored and the contents of
the accumulator remain unchanged.

IV- 7
IORST

Halt

HALT
DOC [fl ac,CPU

Stops the processor.

Sets the Interrupt On flag according to the function
specified by F, then stops the processor and transfers
control to the virtual console.

CPU Skip

SKP [tJ CPU

I 0 1 1 0 0 1 ~ , T 911~ 1
1 1 1 1 1 I

o 1 1 1 2 1 3 1 4 1 5 I 6 1 8 1 111 121 13 1 141 15

If the test condition specified by T is true, the next
sequential word is skipped.

See Programmer's Reference-Peripherals (DOC No.
015-000021) for a complete set of examples on using
the interrupt system.

POWER FAil

In the NOVA 4, when power is turned off and on
again, the state of the accumulators, the program
counter, and the various flags in the CPU is
indeterminate. The power fail facility, along with the
optional battery-backup facility, provides a "fail-soft"
capability in the event of unexpected power loss.

In the event of power failure, there is a delay of one to
two milliseconds before the processor shuts down.
The power fail facility senses the imminent loss of
power, sets the Power Fail flag, and requests an
interrupt. The interrupt service routine can then use
this delay to store the contents of the accumulators,
the carry bit, and the current priority mask. The
interrupt service routine should also save location °

SKPDN CPU

Data General Corporation

(to enable return to the interrupted program), put a
Jump to the desired restart location in location 0, and
then execute a Halt. One to two milliseconds is more
than enough time to perform the power fail routine.

When power is restored, the action taken by the
automatic restart portion of the power fail facility
depends upon the position of the lock switch on the
front panel. If the switch is not in the lockposition,
the CPU remains stopped after power is restored. If
the switch is in the lock position and battery backup
is operational, than after power is restored, the CPU
executes a JMP 0 instruction, restarting the
interrupted program. If the switch is in the lock
position and battery backup is notoperational, then
after power is restored the CPU transfers control to
the virtual console.

The power fail facility has no device code and no
interrupt disable bit in the priority mask. It does not
respond to the Interrupt Acknowledge instruction.
The Power Fail flag can be tested by the CPU Skip
instruction.

CP,U Skip If Power Fail Flag Is One

SKPDN CPU

I 0 1 1 0 0 1 1

01112 1 314 1 5 1 617 1

1 0 1 1 1 1 1 1 I
8 1 9 1 10 1 11 1 121 13 1 14 1 15

If the Power Fail flag is 1 (i.e., power is failing), the
instruction skips the next sequential word.

IV- 8

014-000617-01

INPUT/OUTPUT

CPU Skip If Power Fail Flag Is Zero

SKPDZ CPU

I 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 I
o I 1 I 2 I 3 I 4 I 5 I 6 1 7 I 8 I 9 1 10 I 11 I 12 1 13 I 14 I 15

If the Power Fail flag is 0 (i.e., power is not failing),
the instruction skips the next sequential word.

REAL-TIME CLOCK

The Real-Time Clock (RTC) facility on the NOV A 4
generates a sequence of pulses that is independent of
the CPU timing. It will generate I/O interrupts at
anyone of four program selectable frequencies. The
Busy and Done flags of the RTC are controlled by bits
8-9 of the I/O instruction. The RTC is device code 148
and has the mnemonic RTC. The interrupt disable bit
is priority mask bit 13.

Setting Busy allows the next pulse from the clock to
set Done, and the RTC requests an I/O interrupt if its
interrupt disable bit is O. A Data out A instruction to
select the cloek frequency only has to be given once.
Mter each interrupt, an NIOS instruction will set up
the clock for the next interrupt.

When Busy is first set, the first interrupt can come at
any time up to the clock period. After the first
interrupt has occurred, succeeding interrupts come at
the clock frequency, provided that the program
al ways sets Busy before the clock period expires.
Mter power up or I/O reset, the clock is set to the line
frequency.

The RTC frequency is selected by the following
instruction:

014-000617-01

Select RTC Frequency

DOA [fJ ac,RTC

I 0 1 1 r AC I () 1 0
7

1 F roo 1 1 0 0
o 1 1 I 2 \ 3 I 4 !3 I 6 1 8 I 9' 10 I 11 I 12 1 13 I 14 I 15

The clock frequency is set according to bits 14-15 of
the specified AC. The contents of the specified AC
remain unchanged. Bits 0-13 of the specified AC al'e
ignored. The format of the specified AC is as follows:

I ! RTC I

o 1 1 I 2 I 3 1 4 I !3 I 6 1 7 I 8 I 9 1 10 I 11 I 121 13 ~ 14 I 15

--
BITS NAME CONTENTS or FUNCTION

--
0-13 --- Reserved for future use, (Set to 0)
14-15 RTe Selects the clock frequency as follows:

00 ac line frequency
01 10Hz
10 100Hz
11 1000Hz

--

IV- 9

DOA

IV-lO

Chapter V

PROCESSOR OPTIONS

INTRODUCTION

In this chapter, we discuss the optional equipment for
the NOVA 4. This includes the Multiply/Divide
option, the Floating Point option, and the Memory
Allocation and Protection unit (MAP).

014-000617-01

V-1

MUL TIPL Y IDIVIDE

Multiplication can be performed on the NOV A linE
by software routines that utilize the standard
instruction set, but if many of these operations arE'
required, a loss of efficiency can result. The!
multiply/divide option provides the capability of
performing these operations in firmware ane.
hardware, with a corresponding increase in speed.

The multiply/divide option is part of the CPU. Fo)'
compatibility, the instructions for the option are 1/0
instructions that reference device code 1. ThEl
assembler recognizes the mnemonics MUl and DIV fOl'
unsigned multiply and divide, and MUlS and DIVS fOl'
signed multiply and divide.

MUl TlPl Y IDIVIDE

Unsigned Multiply

MUl
DOCP 2,MDV

\ 0 1 1 1 0 1 0

01112 1 314 1 5 1 617 1

1 1 0 0 0 0 0----;-1

8 I 9 1 10 1 11 1 121 13 1 14~

Multiplies the unsigned contents of two accumulators
and adds the result to the unsigned contents of a
third accumulator. The result is an unsigned 32-bit
integer in two accumulators.

The unsigned, 16-bit number in AC1 is multiplied by
the unsigned, 16-bit number in AC2 to yield an
unsigned, 32-bit intermediate result. The unsigned,
16-bit number in ACO is added to the interml3diate
result to produce the final result. The final result is
an unsigned, 32-bit number and occupies ACO and
AC1. Bit 0 of ACO is the high-order bit of the result
and bit 15 of AC1 is the low-order bit. The contents of
AC2 remain unchanged. Because the result is a
double-length number, overflow cannot occur.

Unsigned Divide

DIV
DOCS 2,MDV

\0 1,1 1 0 1 1 00 1 000 0 (~
o 1 1 i 2 1 3 1 4 I 5 I 6 1 7 I 8 I 9 1 10 I 11 I 12 1 13 I 14li5

J

Divides the unsigned 32-bit integer in
accumulators by the unsigned contents of a
accumulator. The quotient and remainder
occupy one accumulator.

two
third
each

Divides the unsigned 32-bit number contained in ACO
and AC1 by the unsigned, 16-bit number in AC2. The
quotient and r'3mainder are unsigned, 16-bit numbers
and are placed in AC1 and ACO, respectively. The
carry bit is set to O. The contents of AC2 remain
unchanged.

NOTE: Before the divide operation takes place, the
number in .A CO is compared to the number in
A C2. If the contents of A CO are greater than or
equal to the contents of A C2, an overnow
condition is indicated. The carry bit is set to 1,
and the operation is terminated. All operands
remain unchanged.

DIVS

Signed Multiply

MUlS
DOCC 3,MDV

Data General Corporation

\0 1 1 1 1 1 1 0 1 000000 1\

o 1 1 1 2 I 3 I 4 I 5 1 6 1 7 1 8 1 9 1 10 I 11 I 121 13 I 14 I 15

Multiplies the signed contents of two accumulators
and adds the result to the signed contents of a third
accumulator. The result is a signed 32-bit integer in
two aecumulators.

The signed, 16-bit two's complement number in AC1
is multiplied by the signed, 16-bit two's complement
number in AC2 to yield a signed, 32-bit two's
complement intermediate result. The signed, 16-bit
two's complement number in ACO is added to the
intermediate result to produce the final result. The
final result is a signed, 32-bit two's complement
number which occupies ACO and AC1. Bit 0 of ACO is
the sign bit of the result and bit 15 of AC1 is the
low-order bit. The contents of AC2 remaIn
unchanged. Because the result is a double-length
number, overflow cannot occur.

Signed Divide

DIVS
DOC 3,MDV

\0 1 1 1 1 1 1 00000000 1\

o I 1 I 2 1 3 1 4 I 5 I 6 1 7 I 8 I 9 1 10 I 11 I 121 13 I 14 I 15

Divides the signed 32-bit integer in two accumulators
by the signed contents of a third accumulator. The
quotient and remainder each occupy one
accumulator.

The signed, 32-bit two's complement number
contained in ACO and AC1 is divided by the signed,
16-bit two's complement number in AC2. The
quotient and remainder are signed, 16-bit numbers
and occupy AC1 and ACO. respectively. The sign of
the quotient is determined by the rules of algebra.
The sign of the remainder is always the same as the
sign of the dividend, except that a zero quotient or a
zero remainder is always positive. The carry bit is set
to O. The contents of AC2 remain unchanged.

V-2

NOTE: If the magn£tude of the quotient is such
that it will not fit into AC1, an overnow condition
is indicated. The earry bit is set to 1, and the
operation is terminated. The contents of A CO
and ACl are unpredictable.

014-000617-h1

PROCESSOR OPT IONS

MEMORY MANAGEMENT
Background to Address Translation

The concept behind the various memory
management feature available with the NOVA 4 is
that of Logical-to-Physical Address Translation. The
amount of memory required by a user's program is
defined to be his logical address space. This space
may be as large as 32 2-Kbyte pages. The areas of
physical storal~e assigned to the user are defined to be
his physical address space. The address translation
function that con verts addresses in the logical space
to addresses in the physical space is called the
address map for that user. Each user has his own,
unique logical-to-physical address map. In addition,
there is a map for the data channel which can be, but
does not have to be equal to the user map. The
multiprogramming operating system determines
what these maps are to be, and then transmits this
information to the address translation hardware. The
following illustration shows a possible two-user
configuration.

This figure shows a 128K word physical address space
and its utilization by a two-user mUltiprogramming
system. The supervisor resides in pages 0-7 of
physical space. The first 16 pages of user #1 reside in
pages 40-55 of physical space. User #2 also has his
32K of logical space split into two areas. Pages 0-15 of
user #2 are in pages 24-39 of physical space and pages
16-31 of user #2 are in pages 56-71 of physical space.
The data channel is capable of servicing both users.
Any data channel reference to pages 0-15 of logical
space will be mapped to pages 0-15 of the logical
space of user #1. Any data channel reference to
logical pages 16-31 will be mapped to pages 0-15 of
the logical space of user #2.

014-000617-01

V-3

USER I
lOGICAL

o

15
16

31

DG00233

PHYSICAL
\1EMORY

o
SUPERVISOR

23
24

39
40

L __ J

~'

L-==

USER 2
lOG ICAl

o

31

DCH
lOGICAL
o

~--

In order to manage memory efficiently, the operating
system makes USE~ of the validity and write protect
features of the address translation hardware, if
possible. The next figure shows a two-US3r
configuration where these features are used.

In the second figure, a "W" in a page means the pa5e
is write-protected. By convention, mapping a logical
page to physical page 127 and write protecting it
makes that page validity protected. Both users have
declared that page 1 of their logical space is tOJe
write-protected.

Physical page 8 is the logical page 1 for user #1 and
physical page 10 is the logical page 1 for user #2. UEer
#1 is only using 13 pages of his a2 page logical addr€lSS
space, so logical pages 13-31 have been declared
invalid for him. Any reference by user #1 to logieal
pages 13-31 will cause a validity error. User #2 is orlly
using 21 pages of his logical space, so logical pa~;es

MEMORY MANAGEMENT

21-31 of his logical space have been declared invalid.
Any reference by user #2 to logical pages 21-31 will
result in a validity error.

The address translation hardware resides between
the memory and the CPU, and the memory and the
data channel, and is: transparent to all of them. When
either the CPU Oll' the data channel requests a
memory operation, the address translation hardware
in tercepts and services the request. The address
translation hardware translates the 15 bit logical
address coming from the CPU or the data channel
into a 17 bit physical address. The memory operation
is then performed using this 17 bit address. The
memory access cycle time is unchanged.

The mapping information needed to service a CPU or
data channel request is gi ven to the address
translation hard ware by the operating system
through I/O instructions that reference the address
translation hardware. This information is
transmitted before the supervisor enables either the
user map or the data channel map.

MEMORY MANAGEMENT

V-4

USER I
LOGICAL ff-- J--,

o II

;-~F=ll[b

~
8
9

---~

12
13

I=-=- ~

31

0

PHYSICAL
MEMORY

SUPERVISOR

7 ____ ~_
8 W

~--- -=
10 W
-~~--

I-'-_~ __ -
12

13

19
--=--~-

20

29
~~-

~3 ____
34

i._I~ __
42

Data General Corporation

USER 2
LOGICAL

0

I

~
-- 2

3

12
13

f¢=-

20
21

r;:::=

¢=

31

DO 00232
-~-

In w ==-J_L

014-000617-01

PROCESSOR OPTIONS

MEMC)RY ALLOCATION AND
PROTECTION

The NOV J? 4 is available with a Memory Allocation
and Protection unit (MAP) which provides memory
mapping and protection features.

The MAP expands the physical address space of a
NOVA 4 to 512Kbytes thy performing logical­
to-physical address translation. The maximum
logical address space is 64Kbytes. The MAP allows
four maps (two user maps and two data channel
maps) to be dE3fined at anyone time. These maps are
called user map A, user map B, DCH map A, and
DCH map B. Each map consists of 32 2-Kbyte pages.
The selection of which user map is to be used to map
logical addresses coming from the CPU is under
program control. The selection of which data channel
map is to be used is under control of the peripheral
controllers. Those peripheral controllers not
equipped to make this distinction will use data
channel map A by default.

The two user maps and the two data channel maps
are completely independent. Only one user map may
be enabled at a time, but both data channel maps are
enabled at the same time. The mapping of program
addresses and mapping of data channel addresses
mayor may not be enabled at the same time
depending upon the supervisor program. If either
user mapping or data channel mapping is disabled
then, for that function, the physical address space is
equal to the logical address space and only the lowest
64 Kbytes of memory are accessible.

The instructions for the MAP are in the standard I/O
format. The MAP takes two device codes: 2 and 3.
The mnemonic for device code 2 is MAP. The
mnemonic for device code 3 is MAP1.

014-000617-01

V-5

Device code 2 has a Done flag which is set to 1 by th'3

MAP any time address translation is enabled and not
inhibited. Device code 2 also has a Busy flag which is
set when a Data Channel error occurs. Device code 3
does not have a Busy or a Done flag.

The flag control commands for device code 2 are as
follows:

f=s Reserved for future use.

f=c Clear violation status word.

f=p The sec.ond non-data channel memory
address after the issuance of this command is
mapped using the map indicated by the
Single Cyde Select bit in the MAP status
word.

IORST No effect.

The flag control commands for device code 3 are as
follows:

f=s Reserved for future use.

f=c Disables the user map and data channel map
portions of the MAP. Initializes all internhl
MAP logic. For diagnostic use only.

f=p Reserved for future use.

IORST No effect.

See the table under I/O Coding Aids for bit patterns
of the flag control eommands.

MEMORY ALLOCATION AND PROTECTION

Load MAP

DORff] ac,MAP

I 0 1 1 I AC I 1 0 0
7

1 F I 0 0 0 0 1 0 I
o 1 1 1 2' 3 1 4 1 5 1 6 1 8 1 9 I 10 1 11 1 121 13 1 141 15

Transfers the contents of the specified AC to the
MAP. Leaves the contents of the specified AC
unchanged. The format of the AC is as follows:

ISEL I LOGICAL I AlB
0112 1 314 1 56

BITS NAME CONTENTS or FUNCTION

0 SEL Specifies which type of map
will be loaded by this
instruction, as follows:

0 User map
1 Data channel map

1-5 Logical Logical page number. This is a
number in the range 0-378 .

6 AlB Specifies map A or map B of
the type specified by bit 0
as follows:

0 MapA
1 Map B

7 WP If 1, write protection is
enabled for this page.

8 VP If 1, validity protection
is enabled for this page
(if bits 7 and 9-15 = 1).

9-15 Physical Physical page number. This
is a number in the range
0- 1778.

MAP

V-6

Data General Corporation

Initiate page check

DOA [fJ aC,MAP1

I 0 1 l' AC '0 1 (I, Flo 0 0 0 1 1 I
o 1 1 1 2 3 1 4 5 1 6 1/"8 1 9 10 1 11 1 121 13 1 14 1 15

Transfers the contents of the specified AC to the
MAP for later use by the Page check instruction.
Leaves the contents of the specified AC unchanged.
The format of the AC is as follows:

ISEL ! LOGICAL I AlB [

o I 1 1 2 1 3 1 4 1 5 I 61 7 1 8 1 9 1 10 1 11 121 13 1 141 15

-
BITS NAME CONTENTS or FUNCTION

0 SEL Selects type of map as follows:
0 User map
1 Data channel map

1-5 Logical Logical page number. This is
a number in the range 0-378
and ils the number of the logical
page being checked.

6 AlB Selects map A or Map B of the
type selected by bit 0, as
follows:

0 MapA
1 Map B

7-15 --- Reserved for future use.
Should be o.

014-000617-01

PROCESSOR OPTIONS

Page check

DIAlf} ac,MAP1

I 0 1
: , 3

A

l
c J ~ I

0 : I F sI 0 0 0 0 1 11
o 1 1 I 6 1 8 I 101 11 I 121 13 I 141 15

Places the physical page number corresponding to the
logical page number specified in the last Initiate page
check instruction into bits 9-15 of the specified AC.
The format of the AC is as follows:

-
BITS NAME CONTENTS or FUNCTION

0 SEL Map select bit from last
Initiate page check
instruction.

1-5 Logical Logical page number from last
Initiate page check
instruction.

6 AlB AlB select bit from last
Initiate page check
instruction.

7 WP If 1. write protection is
enabled for this page.

8 VP If 1. validity protection is
enabled for this page (if
bits 7 and 9-1 5 = 1).

9-15 Physical Physical page number
corresponding to logical
page number in bits 0-6.

-

014-000617 -0'1

V-7

Read MAP status

DIAlf} aC,MAP

I 0 1 : \ AC \ 0 0 : \ F J 0 0 0 0 1 01
o 1 1 I 3 1 4 5 I 6 1 8 I 101 111 121 13 I 141 15

Places the 16-bit 1\1AP status word in the specified
AC. The format of t.he AC is as follows:

BITS NAME CONTENTS or FUNCTION

0 UM If 1. user mapping is enabled.

1 DCM If 1. data channel mapping is
enabled.

2 PMI If 1. user mapping is inhibited.
Takes precedence over bit O.

3-8 --- Reserved for future use. Set to O.

9 SC/WP If 1. single cycle write
protection is enabled.

10 SC/AB Single cycle map.
0 MapA
1 Map B

11 AlP If 1. auto increment1e~ement •
protection is enable .

12 IND If 1. defer protection is enabled.

13 110 If 1. I/O protection is enabled.

14 WP If 1. write protection is
enabled.

15 AlB User map select bit:
0 MapA
1 Map B

MAP

Write MAP Status

DOAH] aC,ac,MAP

I 0 1 1 I AC I 0 1 0
7

I F I 0 0 0 0 1 0 1
01 11 2 31 4 51 61 ~ 8 1 9 10 1 11 112113 1 14 1 15

Places the content.s of the specified accumulator in
the MAP status word and sets the User Map Inhibit
bit in the MAP status word to O.

The instruction changes some of the bits in the MAP
status word immediately, and changes others at the
next indirect memory reference. The table below
shows these differences.

The format of the specified AC is as follows:

BITS NAME CONTENTS or FUNCTION

0 UM" If 1, user mapping will
be enabled.

1 OCH If 1, data channel mapping
will be enabled.

2-8 --- Reserved for future use.
Should be set to O.

9 SC/WP If 1, single cycle write
protection will be enabled.

10 SC/AB Selects the map for single cyle
operations as follows:

0 MapA
1 Map B

11 AlP" If 1, auto increment/decrement
protection will be enabled.

12 INO" If 1, indirect protection
will be enabled.

13 I/O" If 1, I/O protection will
be enabled.

14 WP" If 1, write protection will
be enabled.

15 A/B Selects user map as follows:
0 MapA
1 Map B

* These bits are set at the next indirect memory reference.

MAP

V-8

Data General Corporation

Read Violation Data

DIBff] aC,MAP

Places the MAP violation status bits in the specified
AC, along with the logical page in which the violation
occurred. The format of the AC is as follows:

BITS NAME CONTENTS or FUNCTION

0 ANY Violation flag. Set to 1 if any
of bits 1 0- 1 4 = 1.

1-5 Logical Number of logical page in which
violation occurred.

6-8 --- Reserved for future use.
Set to O.

9 SC If1, single cycle was enabled
during violation.

10 VV If 1, validity violation.

11 AIV If 1, auto increment/decrement
violation.

12 INO If1 , defer violation.

13 I/O If 1, I/O violation.

14 WP If 1, write violation.

15 A/B Map specifier bit:
0 MapA
1 Map B

014-000617-01

PROCESSOR OPTIONS

Read Violation Address

DI8[f] aC,MAP1

Places the logical address of the instruction that
caused the violation in bits 1-15 of the specified AC.
Sets bit 0 to zero.

Map Single Cycle

NIOP MAP

Enables the user map for one memory reference and
maps the first memory reference of the next LOA or
ST A instruction. After the memory cycle is mapped,
the instruction returns the map to the state it was in
when the Map Single Cycle instruction was executed.

NOTE: The LOA or ST A instruction cannot use an
indirect memory reference, and must immediately
follow the Map Single Cycle instruction.

\J~oU ~ "'rr-,.., tL, +-~ i .,-e...J::Io
w-.. t- &411' "" C!b J ~ V" .~~< , "',.OC. ~J ","0 ~ Co.(I

014-000617-01

V-9

Clear Violation

Nloe MAP

Clears the MAP violation status word and the Busy
flag for device code 2, which indicates data channel
errors.

Clear MAP

Nloe MAPl

Disabled the user and data channel maps and
initializes all internal MAP logic.

NOTE: For diagnostic use only.

MAP

SUPERVISOR PROGRAMMING FOR
THE NOVA 4

Setting Up for Translation

The information that allows the MAP to translate
addresses comes from the multiprogramming
supervisor. The instructions are Load MAP and Write
MAP status .

By using the Load MAP instruction, the supervisor
gives the MAP a physical address for the beginning of
a page of logical address space. Thirty-two Load MAP
instructions are required to completely define the
map for one logical space.

Although the floating point processor available with
the NOV A 4 is an I/O device and operates through
the data channE~l, all floating point operations are
processed using the currently enabled user map.

After defining the maps that will be used, the
supervisor gives the MAP information regarding how
and when the maps are to be enabled via the Write
MAP status instruction. This instruction also defines
which protect features are to be enabled. Each
protect feature described in the Write MAP status
instruction can be enabled separately and
independently of the others.

If a Write MAP status instruction is issued with bit 0
of the specified accumulator set to 1, then address
translation will begin with the memory reference
after the next defer cycle. This provides a convenient
method for the supervisor to transfer control to the
user program after the maps have been defined. One
way of transferring this control is as follows:

LDA O,STAT
DOA 0, MAP

INTEN
JMP @USERPC

STAT: 140000

USERPC:

;ENOUGH LOAD MAP
; INSTRUCTIONS TO
; DEFINE ALL THE
; MAPS THAT WILL
; BE USED.

;WRITE MMPU STATUS
;RESTORE USER'S
; ACCUMULATORS.
;--USE NO
; INDIRECTION.
;ENABLE INTERRUPTS
;ADDRESS IN
; USERPC WILL BE
; MAPPED.

; STATUS WORD:
; ENABLE USER
; MAPPING,
; ENABLE DCH
; MAPPING.
; SINGLE CYCLE MAP
; FOR USER A
; MAP ADDRESSES
; FOR USER A.

; STARTING ADDRESS.

SUPERVISOR PROGRAMMING FOR THE NOVA 4

Data General Corporation

Note that a defer instruction must appear after the
Write MAP status instruction and before the next
Write MAP status instruction for the second
instruction to take effect.

MAP Protection Processing

When a map violation is detected, interrupts are
inhibited, and address translation is disabled. The
contents of physical location 468 are lost and the
supervisor directs the CPU to jump indirect to
location 478, The supervisor can then determine the
type of violation using the Read violation data
instruction.

The Read violation address instruction can be used to
find the instruction that caused the problem.

NOTE: Location 468 is normally where the return
address is found after a Trap instruction has
been executed. If the trap is caused by a MAP
violation, however, location 468 should be ignored
and the Read violation instruction used instead.

The MAP performs checking only for those
protection features that are enabled. The five types of
protection and how they are handled by the MAP are
discussed below.

liD Protection

If 110 protection is enabled in the NOVA 4 MAP, it
protects all 110 devices except those using device
codes 1, 74, 75, and 76. Device code 1 is generally
assigned to the NOVA 4 multiply/divide option, and
device codes 74-76 are generally assigned to the
optional Floating Point Unit. The I/O devices using
these device codes are not protected by I/O protection
under any circumstances.

When 110 protection is enabled, the MAP decodes all
I/O instructions to see if the referenced device is user
protected. If it is, the MAP does not allow the
execution of the instruction. Instead, it stores the
logical address of the instruction in the Violation
address register, disables 110 interrupt requests,
enters the supervisor mode, and directs the CPU to
jump indirect to location 478,

Validity Protection

By convention, validity protection cannot be disabled.
A logical page is validity protected by mapping the
page to physical page 25510(3778), and setting the
validity protect and write protect bits to 1.

NOTE: It is not necessary for physical page 25510
to exist. Validity protection is indicated by
setting the physical page bits to 3778, and setting
the write protect bit to 1. Since validity protection
prevents the writing of the page, the existence of
the physical page is not required.

V-10

014-000617-01

PROCESSOR OPTIONS

The MAP checks all CPU requests for in valid
addresses. If the address is found to be valid, the MAP
proceeds with the required translation. If the address
is in valid, the MAP stores the logical address of the
instruction in the Violation address register. The
MAP then disables I/O interrupt requests, enters the
supervisor mode, and directs the CPU to jump
indirect to location 478.

Runaway Defer Protection

If runaway defer protection is enabled, the MAP
checks memory references to see if they are part of a
defer cycle. If the MAP detects 15 consecutive defer
cycle memory requests, it traps.

Upon receiving the 15 requests, the MAP stores the
address of the instruction that started the defer loop
in the Violati:on address register. The MAP then
disables the I/O interrupt requests, enters the
supervisor mode, and directs the CPU to jump
indirect to location 478.

Write Protection

If write protection is enabled, the MAP monitors all
modify memory requests and determines whether or
not that logical page is write-protected. If the page is
not write-protected, the MAP allows the operation to
proceed. If the page is write-protected, the MAP
stores the instruction address in the Violation
address register. The MAP then disables I/O
interrupt requests, enters the supervisor mode, and
directs the CPU to jump indirect to location 478. Any
write to memory is inhibited.

Single cycle write protection works in the same way
as normal write protection, but it can be enabled
separately.

014-000617-01

Auto-I ncrement/ Decrement Protection

If auto-increment/decrement protection is enabled,
any indirect reference to memory locations 20-37E
will be considered a violation and will therefore trap,
The system then stores the logical address of thE
instruction that caused the violation in the Violatior"
address register, disables I/O interrupt requests,
enters the supervisor mode, and directs the CPU tc
jump indirect to location 478. ~,- c.o..LL.4,n -+1. i"

s \-.-.. .l ... co"..,lt\4~~-o
• A)J.tIMA" I)) r:.. L4'c:. ... ~.-r'

Device Interrupt Processing) .. :p~ {, T"
The MAP has been designed to allow for orderly
processing of I/O interrupt requests by a supervisor
program. When an I/O device requests an interrupt.
the MAP sets the Program Map Inhibit bit in thEl
MAP status word to 1. This immediately disables thEl
translating of user addresses. That is, the Interrupt
On flag is set to 0, the updated program counter if!
placed in physical memory location 0, and the CPU
executes a jump indirect to physical memory location
1. A similar process occurs for stack overflow, norma l
trap instructions, and MAP violation traps.

To return control after an I/O interrupt, thn
supervisor can follow the method outlined previously
(see Setting Up for Translation). The Interrupt enable
instruction should be placed immediately before thB
)MP USER PC instruction.

v- 11

SUPERVISOR PROGRAMMING FOR THE NOVA 4

FLOATING POINT UNIT

In addition to performing fixed point arithmetic, the
NOV A 4 can perform floating point arithmetic if it is
equipped with the floating point unit. This feature
provides the capability to perform rapid and
convenient arithmetic operations on numbers with a
much larger range than would be feasible using the
fixed point arithmetic instruction set. The precision
with which these numbers can be manipulated
exceeds the precision readily available with the fixed
point instruction set.

Floating Point Unit Registers

There are three registers available to the
programmer in the Floating Point Unit (FPU).

These are the Floating Point accumulator (FPAC),
the Floating Point Status Register (FPSR), and the
Tern porary Buffer (TEMP). FP AC and TEMP are
used for computations and FPSR is used to control
and monitor the operation of the FPU.

FPAC and TEMP can both contain either single or
double precision floating point numbers. FPSR is a
16-bit register containing bits that reflect the current
status of FPAC and the FPU. The format of FPSR is
as follows:

FLOATING POINT UNIT

Data General Corporation

BITS NAME CONTENTS or FUNCTION

0 ANY Indicates that any of bits 1 -4 are set.

1 OVF Overflow Indicator--while processing
a floating point number, an exponent
overflow occurred; the result is correct
except the exponent is 1 28 too small.

2 UNF Underflow Indicator - while processing
a floating point number, an exponent
underflow occurred; the result is
correct except that the exponent is
1 28 too large.

3 DVZ Divide by Zero - while processing a
floating point number, a zero divisor
was detected; division was aborted
and the operands remain unchanged.

4 MOF Mantissa Overflow - during a
.FSCL instruction, a left shift
was required.

5 GTZ Greater Than indicator;
the operand in FPAC is
positive and the mantissa is
different from zero.

6 EQZ Equal indicator; the
operand in FPAC is equal to true zero.
This bit examines only the mantissa
and sign of FPAC.

7 LTZ Less Than indicator; the
operand in FPAC is less than zero.

8-12 --- Reserved for future use.

13 IOF Interrupt off bit; the
FPU will not interrupt the program
for an exponent overflow, exponent
underflow, or divide by zero.

14-15 --- Reserved for future use.

Interrupt Enable and Disable

To provide maximum flexibility, the FPU has an
interrupt disable bit in the status register (bit 13),
and is maskable via the Mask out instruction (bit 5 of
the priority mask). If both these bits are set to 0, the
FPU will signal an interrupt for exponent overflow,
exponent underflow, or divide by zero. These
conditions are represented by bits 1-3 in the status
register. If either or both of the interrupt disable bits
is set to 1, the FPU will not request an interrupt for
any of the above conditions, but will set to one the
representative bit in the status register and bit zero
of the status register. These bits will remain set to 1
until cleared by the programmer. If running with
interrupt disabled, it is the programmer's
responsibility to test the status register periodically
in order to detect errors in floating point processing.

NOTE: The FPU returns 768 as the device code in
response to the INTA instruction.

V-12

014-000617-01

PROCESSOR OPTIONS

INSTRUCTION SET

Because the FPU is considered an I/O device by the
CPU, FPU instructions are really I/O instructions
and take the I/O format. The device codes for the
FPU are as follows:

MNEMONIC DEVICE CODE MEANING

FPU1 748 Floating Point -
Single Precision

FPU2 758 Floating Point -
Double Precision

FPU3 768 Floating Point Unit -
used for status
instructions and in
diagnostic mode.

When processing a floating point instruction, the
FPU assumes the following:

1. In instructions that refer to operands in memory,
the accumulator specified by AC is assumed to
contain the address of the first word of the storage
that contains or will receive a floating point
number. This area is either 2 or 4 words long,
depending on the precision specified.

2. In instructions that refer to an operand coming
from memory, the number is assumed to be in the
format described under Number Representation.
The number is assumed to be normalized.

3. In arithmet.ic instructions, it is assumed that a
floating point number is already present in FPAC.

014-000617-01

Load Floating Point Single

.FLDS ac
DOBP aC,FPU1

t
Moves two words out of memory into a specified
FPAC.

Retrieves the single precision floating point number
starting at the address contained in the specified AC
and places it in FPAC. The low-order 32 bits of FPAC
are set to O. The operand in memory and the address
in the specified AC remain unchanged.

Load Floating Point Double

.FLDD ac
DOBP aC,FPU2

Moves four words out of memory into FP AC.

Retrieves the double precision floating point number
starting at the address contained in the specified AC
and places it in FPAC. The operand in memory and
the address in the specified AC remain unchanged.

V-13

.FLDD

Store Floating Point Single

.FSRS ac
008S aC,FPUl

9

;
Stores the contents of FPAC into two sequential
memory locations.

Places the floating point number contained in FPAC
in memory beginning at the location addressed by the
contents of the specified AC. Destroys the previous
contents of the addressed memory location and leaves
unchanged the contents of FPAC and the specified
AC. Only the high-order 32 bits of FPAC are stored.

Store Floating Point Double

.FSRO ac
008S aC,FPU2

Stores the contents of a specified FP AC into four
sequential memory locations.

Places the floating point number contained in FPAC
in memory beginning at the location contained in the
specified AC. Destroys the previous contents of the
addressed memory location and leaves unchanged the
contents of FPAC and the specified AC.

.FAS

Add Single

.FAS
OOA

ac
aC,FPUl

Data General Corporation

Retrieves the single precision floating point number
starting at the location addressed by the contents of
the specified AC and adds it to the floating point
number in FPAC, placing the normalized result in
FPAC. Destroys the previous contents of FP AC, and
leaves the contents of the source location and the
address in the specified AC unchanged. Sets the
low-order 32 bits of FPAC to zero.

Floating point addition consists of an exponent
comparison and a mantissa addition. The exponents
of the two numbers are compared, and the mantissa
of the number with the smaller exponent is shifted
right. This mantissa alignment is accomplished by
taking the absolute value of the difference between
the two exponents and shifting the mantissa right
that number of hex digits. The last 8 bits shifted out
are retained as hex guard digits.

If all significant digits are shifted out of the mantissa,
the operation is equivalent to adding the number
with the larger exponent to zero. This requires a shift
of at least 8 hex digits in single precision.

After alignment, the mantissas are added together.
The result of this addition is termed the intermediate
result. The sign of the intermediate result is
determined from the signs of the two operands by the
rules of algebra. If the mantissa addition produces a
carry out of the high-order bit, the mantissa in the
intermediate result is shifted right one hex digit and
the exponent is incremented by one. If this shift
produces an exponent overflow, the OVF bit is set in
the SR, and the instruction is terminated. In this
case, the number in FPAC is correct except that the
exponent is 128 too small.

If there is no mantissa overflow, the mantissa of the
intermediate result is examined for leading hex zeros.
If the mantissa is found to be all zeros, a true zero is
placed in FP AC and the instruction terminates.

If the mantissa is non-zero, the intermediate result is
normalized, and the number placed in FP AC. If the
normalization results in an exponent underflow, the
UNF bit is set in the SR and the instruction is
terminated. The number in FPAC is correct except
that the exponent is 128 too large.

V-14

014-000617-01

PROCESSOR OPTIONS

Add Double

.FAD
DOA

ac
ac.FPU2

Retrieves the double precision floating point number
starting at the location addressed by the contents of
the specified AC and adds it to the floating point
number in FP AC, placing the normalized result in
FPAC. Destroys the previous contents of FP AC, and
leaves the contents of the source location and the
address in the spElcified AC unchanged.

Floating point addition consists of an exponent
comparison and a mantissa addition. The exponents
of the two numbers are compared, and the mantissa
of the number with the smaller exponent is shifted
right. This mantissa alignment is accomplished by
taking the absolute value of the difference between
the two exponents and shifting the mantissa right
that number of hex digits. The bits shifted out of the
right end of the mantissa are lost and do not take
part in the addition.

If all significant digits are shifted out of the mantissa,
the operation is equivalent to adding the number
with the larger exponent to zero. This requires a shift
of at least 14 hex digits in double precision.

Mter alignment, the mantissas are added together.
The result of this addition is termed the intermediate
result. The sign of the intermediate result is
determined from the signs of the two operands by the
rules of algebra. If the mantissa addition produces a
carry out of the high-order bit, the mantissa in the
intermediate result is shifted right one hex digit and
the exponent is incremented by one. If this shift
produces an exponent overflow, the OVF bit is set in
the SR, and the instruction is terminated. In this
case, the number in FPAC is correct except that the
exponent is 128 too small.

If there is no mantissa overflow, the mantissa of the
intermediate result is examined for leading hex zeros.
If the mantissa is found to be all zeros, a true zero is
placed in FP AC and the instruction terminates.

If the mantissa is non-zero, the intermediate result is
normalized, and the number placed in FPAC. If the
normalization results in an exponent underflow, the
UNF bit is set in the SR and the instruction is
terminated. The number in FP AC is corre('t except
that the exponent is 128 too large.

014-000617-01

Subtract Single

.FSS ac
DOAS ac,FPUl

Retrieves the single precision floating point number
starting at the location addressed by the contents of
the specified AC and subtracts it from the floating
point number in FPAC, placing the normalized result
in FP AC. Destroys the previous contents of FP AC,
and leaves the contents of the source location and the
address in the specified AC unchanged. Sets the
low-order 32 bits of FPAC to zero.

Before the operation takes place, the sign bit of the
operand fetched from memory is inverted. Mter the
inversion, the operation is equivalent to addition.

Subtract Double

.FSD
DO AS

ac
ac,FPU2

Retrieves the double precision floating point number
starting at the location addressed by the contents of
the specified AC and subtracts it from the floating
point number in FPAC, placing the normalized result
in FPAC. Destroys the previous contents of FP AC,
and leaves the contents of the source location and the
address in the specified AC unchanged.

Before the operation takes place, the sign bit of the
operand fetched from memory is inverted. After the
inversion, the operation is equivalent to addition.

V-15

.FSD

Multiply Single

.FMS ac
DOAP ac,FPUl

Retrieves the single precision floating point number
starting at the location addressed by the contents of
the specified AC and multiplies it by the floating
point number in FPAC, placing the normalized result
in FPAC. Destroys the previous contents of FP AC,
and leaves the contents of the source location and the
address in the specified AC unchanged. Ignores the
low-order 32 bits of FPAC during the operation and
sets them to zero in the result. The mantissas of the
two numbers are multiplied together to give the
mantissa of the intermediate result. The exponents of
the two numbers are added together and 64 is
subtracted. This subtraction of 64 maintains the
excess 64 notation. The result of the exponent
manipulation becomes the exponent of the
intermediate result. The sign of the intermediate
result is determined from the sign of the two
operands by the rules of algebra.

If the exponent processing produces either overflow
or underflow, the result is held until normalization,
as that procedure may correct the condition. If
normalization does not correct the condition, the
corresponding bit in the SR is set to 1. The number is
correct except that, for exponent overflow, the
exponent is 128 too small, and for exponent
underflow, the exponent is 128 too large.

.FMD

Multiply Double

.FMD
DOAP

ac
ac,FPU2

Data General Corporation

Retrieves the double precision floating point number
starting at the location addressed by the contents of
the specified AC and multiplies it by the floating
point number in FPAC, placing the normalized result
in FP AC. Destroys the previous contents of FP AC,
and leaves the contents of the source location and the
address in the specified AC unchanged.

The mantissas of the two numbers are multiplied
together to give the mantissa of the intermediate
result. The exponents of the two numbers are added
together and 64 is subtracted. This subtraction of 64
maintains the excess 64 notation. The result of the
exponent manipulation becomes the exponent of the
intermediate result. The sign of the intermediate
result is determined from the sign of the two
operands by the rules of algebra.

If the exponent processing produces either overflow
or underflow, the result is held until normalization,
as that procedure may correct the condition. If
normalization does not correct the condition, the
corresponding bit in the SR is set to 1. The number is
correct except that, for exponent overflow, the
exponent is 128 too small, and for exponent
underflow, the exponent is 128 too large.

V-16
014-000617-01

PROCESSOR OPTIONS

Divide Single

.FDS ac
DOAc.. aC,FPUl

Divides the floating point number in FPAC by the
single precision floating point number starting at the
location addressed by the contents of the specified
AC. Then places the normalized result in
FPAC. Destroys the previous contents of FPAC, and
leaves the contents of the source location and the
address in the specified AC unchanged. Ignores the
low-order 32 bits of FPAC during the operation and
sets them to zero in the result.

The source operand is checked for a zero mantissa. If
the mantissa is zero, the DVl bit is set in the SR and
the instruction is terminated. The number in FP AC
remains unchanged.

If the mantissa is nonzero, the previous contents of
FPAC are lost. The two mantissas are compared and
if the mantissa of the number in FPAC is greater
than or equal to the mantissa of the source operand,
the mantissa of the number in FPAC is shifted right
one hex digit and the exponent of the number in
FP AC is increased by one. Since all operands are
assumed to be normalized, this guarantees that the
mantissa of the number in FPAC will always be less
than the mantissa of the source operand.

The mantissa in FPAC is then divided by the
mantissa of the source operand and the quotient is
the mantissa of the intermediate result. The
exponent of the source operand is subtracted from
the exponent in FP AC and 64 is added to this result.
This addition of 64 maintains the excess 64 notation.
The result of the exponent manipulation becomes the
exponent of the intermediate result. The sign of the
intermediate result is determined from the sign of the
two operands by the rules of algebra. The result is
normalized and placed in FP AC.

If the exponent processing produces either overflow
or underflow, the result is held until normalization,
as that procedure may correct the condition. If
normalization does not correct the condition, the
corresponding bit in the SR is set to 1. The number in
FPAC is correct except that, for exponent overflow,
the exponent is 128 too small, and for exponent
underflow, the exponent is 128 too large.

MO ! 'i-~ ~q'+~",u.i. I!O.-s:...,
'o~ -ct~ '~'il \,.""- $ I

014-000617-01

Divide Double

.FDD
DOAC

ac
aC,FPU2

I 0 1 1 \ AC \ 0 1 0 1 0 1 1 1 1 0 1 I
o 1 1 1 2 3 1 4 5 1 6 1 7 1 8 1 9 1 10 1 11 1 121 13 1 141 15

Divides the floating point number in FPAC by the
double precision floating point number starting at
the location addressed by the contents of the specified
AC. Then places the normalized result in
FP AC. Destroys the previous contents of FP AC, and
leaves the contents of the source location and the
address in the specified AC unchanged.

The source operand is checked for a zero mantissa. If
the mantissa is zero, the DVl bit is set in the SR and
the instruction is terminated. The number in FPAC
remains unchanged.

If the mantissa is nonzero, the previous contents of
FPAC are lost. The two mantissas are compared and
if the mantissa of the number in FPAC is greater
than or equal to the mantissa of the source operand,
the mantissa of the number in FPAC is shifted right
one hex digit and the exponent of the number in
FP AC is increased by one. Since all operands are
assumed to be normalized, this guarantees that the
mantissa of the number in FPAC will always be less
than the mantissa of the source operand.

The mantissa in FPAC is then divided by the
mantissa of the source operand and the quotient is
the mantissa of the intermediate result. The
exponent of the source operand is subtracted from
the exponent in FP AC and 64 is added to this result.
This addition of 64 maintains the excess 64 notation.
The result of the exponent manipulation becomes the
exponent of the intermediate result. The sign of the
intermediate result is determined from the sign of the
two operands by the rules of algebra. The result is
normalized and plac:ed in FP AC.

If the exponent processing produces either overflow
or underflow, the result is held until normalization,
as that procedure may correct the condition. If
normalization does not correct the condition, the
corresponding bit in the SR is set to 1. The number in
FPAC is correct except that, for exponent overflow,
the exponent is 1:28 too small, and for exponent
underflow, the exponent is 128 too large.

v- 17
.FDD

Temporary Buffer Instructions

The Temporary buffer, or TEMP, is a register in the
FPU capable of holding a single or double precision
floating point number. The following instructions use
this register.

.FMTF

Move FPAC to TEMP

.FMFT
NIOP FPU2

~

Data General Corporation

9

1
The double precision floating point number in FPAC
is moved to the TEMP buffer. The number in FPAC
remains unchanged.

If the previous instruction that referred to FP AC was
a single precision instruction, then that instruction
zeroed the low-order half of FPAC and the contents
of FP AC can be handled as a double precision
number.

Move Temp to FPAC

.FMTF
NIOe FPU2

The double precision floating point number in the
TEMP buffer is moved to FPAC. The number in the
TEMP buffer remains unchanged.

If the previous instruction that referred to the TEMP
buffer was a single precision instruction, then that
instruction zeroed the low -order half of the TEMP
buffer and the contents of the TEMP buffer can be
handled as a double precision number.

V-18

014-000617-01

PROCESSOR OPTIONS

Add TEMP to FPAC (Single)

.FATS
DOC O,FPU1

Adds the floating point number in TEMP to the
floating point number in FPAC and places the
normalized result in FP AC. Leaves unchanged the
number in TEMP. Only the high-order 32 bits of
TEMP and FP AC participate in the operation.

This instruction is identical to the Add single
instruction, except that the second operand comes
from TEMP instead of memory.

Add TEMP to FPAC (Double)

.FATD
DOC O,FPU2

Adds the floating point number in TEMP to the
floating point number in FPAC and places the
normalized result in FPAC. Leaves unchanged the
number in TEMP.

This instruction is identical to the Add double
instruction, except that the second operand comes
from TEMP instead of memory.

014-000617-01

Subtract TEMP from FPAC (Single)

.FSTS
DOCS O,FPU1

Subtracts the floating point number in TEMP from
the floating point number in FPAC and places the
normalized result in FPAC. Leaves unchanged the
number in TEMP. Only the high-order 32 bits of
TEMP and FP AC participate in the operation.

This instruction is identical to the Subtract single
instruction, except that the second operand comes
from TEMP instead of memory.

Subtract TEMP from FPAC (Double)

.FSTD
DOCS O,FPU2

101 1 00 1 1 001 1 1 1 1 011
o \ 1 I 2 I 3 \ 4 I 5 I 6 \ 7 I 8 I 9 \ 10 I 11 I 12\ 13 I 14 I 15

Subtracts the floating point number in TEMP from
the floating point number in FPAC and places the
normalized result in FPAC. Leaves unchanged the
number in TEMP.

This instruction is identical to the Subtract double
instruction, except that the second operand comes
from TEMP instead of memory.

V-19
.FSTD

Multiply FPAC by TEMP (Single)

.FMTS
Dacp O,FPU1

Multiplies the floating point number in FPAC by the
floating point number in TEMP and places the
normalized result in FPAC. Leaves unchanged the
number in TEMP. Only the high-order 32 bits of
TEMP and FPAC participate in the operation.

This instruction is identical to the Multiply single
instruction, except that the second operand comes
from TEMP instead of memory.

Multiply FPAC by TEMP (Double)

.FMTD
Dacp O,FPU2

Multiplies the floating point number in FPAC by the
floating point number in TEMP and places the
normalized result in FPAC. Leaves unchanged the
number in TEMP.

This instruction is identical to the Multiply double
instruction, except that the second operand comes
from TEMP instead of memory.

.FOlO

Data General Corporation

Divide FPAC by TEMP (Single)

.FDTS
Dacc O,FPU1

Divides the floating point number in FP AC by the
floating point number in TEMP and places the
normalized result in FP AC. Leaves unchanged the
number in TEMP. Only the high-order 32 bits of
TEMP and FPAC participate in the operation.

This instruction is identical to the Divide single
instruction, except that the second operand comes
from TEMP instead of memory.

Divide FPAC by TEMP (Double)

.FDTD
Dacc O,FPU2

Divides the floating point number in FPAC by the
floating point number in TEMP and places the
normalized result in FPAC. Leaves unchanged the
number in TEMP.

This instruction is identical to the Divide double
instruction, except that the second operand comes
from TEMP instead of memory.

\ - 20

014-000617-01

PROCESSOR OPTIONS

Shift and Logical Instructions

The FPU instructions are included to enable the
programmer to convert numbers from integer
representation to floating point representation and
vice-versa. This section also contains instructions for
logical operations and for working with the Status
Register.

014-000617-01

Absolute Value

.FADS
NIOP FPU1

10 1 1 00000 1 1 1 1 1 1 001

01 11 21 31 4 1 51 61 7 1 8 1 9110 1 11 112113 1 14 1 15

Forces the sign bit of FPAC to zero. Leaves bits 1-63
of FP AC unchanged.

Clear FPAC

.FCLR
NIOS FPU1

Forces all 64 bits of FPAC to zero. That is, the value
of FP AC is forced to true zero.

v- 21
FCLl~

Load Ex ponent

.FlDX ac
DORC aC,FPU2

Places bits 1-7 of the specified AC in bits 1-7 of
FP AC. Ignores bits 0 and 8-15 of the specified AC.
Leaves unchanged bits 0 and 8-63 of FPAC and the
entire contents of the specified AC.

NOTE: The instruction assumes that the exponent
contained in bits 1-7 of A C is in Excess 64
representation.

Negate

.FNEG
NIOC FPUl

Inverts the sign bit of FPAC. Bits 1-63 of FPAC
remain unchanged. If FP AC contains true zero, the
sign bit remains unchanged.

.FHWD

Normalize

.FNRM
NIOS FPU2

Data General Corporation

Normalizes the floating point number in FP AC. Sets
a true zero in FP AC if all the bits of the mantissa are
zero. Sets the UNF flag in the SR if an exponent
underflow occurs. The number in FPAC is then
correct, except that the exponent is 128 too large.

Read High Word

.FHWD
DIA

ac
aC,FPUl

Places the high-order 16 bits of FPAC in the specified
AC, destroys the previous contents of AC, and leaves
unchanged the contents of FPAC.

v- 22

014-000617-01

PROCESSOR OPTIONS

Scale

.FSCL
DOB

ac
ac,FPU2

Shifts the mantissa of the floating point number in
FPAC either right or left, depending upon the
contents of bits 1-7 of the specified AC. Leaves the
contents of AC lmchanged.

Treats bits 1-7 of the specified AC as an exponent in
Excess 64 representation. Computes the difference
between this exponent and the exponent in FP AC by
subtracting the exponent in FPAC from the number
contained in bits 1-7 of the specified AC. If the
difference is zero, the instruction is terminated. If the
difference is positive. the instruction shifts the
mantissa contained in FP AC right that number of
hex digits. If the difference is negative. the
instruction shifts the mantissa contained in FPAC
left that number of hex digits and the MOF bit in the
SR is set to 1. After the shift. the contents of bits 1-7
of AC replace the exponent contained in FPAC. Bits
shifted out of either end of the mantissa are lost. If
the entire mantissa is shifted out of FPAC. the
instruction sets FPAC to true zero. ~./\)

(A.9C'+ 0 "'-O\l".Ia-'~ I\JOV*

014-000617-01

Read Status

.FRST
DIAC

ac
aC,FPU

I ~ I ~ I : I 3AIC J ~ I ~ I : I : I ~ I ,~ I ,', I ,~ I ,~ I ,~ I ,~ I
Places the contents of the 16-bit status register (SR)
into the specified AC in the following format and sets
bits 0-4 of the SR to zero.

BITS NAME CONTENTS or FUNCTION

0 ANY Indicates that any of bits 1 -4 are set.
-I--

OVF Overflow Indicator--while processing 1
a floating point number, an exponent
overflow occurred; the result is correct
except the exponent is 1 28 too small.

,2 UNF Underflow Indicator - while processing
a floating point number, an exponent
underflow occurred; the result is
correct except that the exponent is
128 too large.

3 DVZ Divide by Zero - while processing a
floating point number, a zero divisor

- +- was detected; division was aborted
and the operands remain unchanged.

4 MOF Mantissa Overflow - during a
.FSCL instruction, a left shift
was required.

5 GTZ Greater Than indicator;
the operand in FPAC is
positive and the mantissa is
different from zero.

6 EQZ Equal indicator; the
operand in FPAC is equal to true zero.

-~ This bit examines only the mantissa
and sign of FPAC.

7 LTZ Less Than indicator; the
operand in FPAC is less than zero.

8-12 --- Reserved for future use.

13 IOF Interrupt off bit; the
FPU will not interrupt the program
for an exponent overflow, exponent
underflow, or divide by zero.

14-15 --- Reserved for future use.

v- 23

.FRST

Write Status

.FWST
DOA

ac
aC,FPU

()

Places the contents of the EWcified AC in the status
register. Leaves unchangea the contents of the
specified AC.

C4. t,.., FD L? i
)

lJovA ~ I~~. v.AJPk

VIA)L, 1-~ FPAc- L~:r
»/8)'J ?-~ F4'~C. r.. I]
VI'")C J 1':) Ft>/tC. [..1-J
l>IB /f., 1~- ~PAe....t3"]

tJ /o-?)()'JCf ,0. let k'f C c,.. i=t'(J b~ 15~f.

v- 24

.FWST

Data General Corporation

014-000617-01

Chapter VI

VIRTUAL CONSOLE (VC)

VC is a program which permits you to perform
control panel functions via the operator's console.
Simple commands which you enter on a terminal
keyboard allow you to examine and/or modify any
processor register or memory location.

VC is supplied by Data General on the NOV A 4 as a
set of read-only memory (ROM) units. They are not
in the normal address space, so they are transparent
to program operation.

The CPU may enter the VC program either upon
power-up, or in response to the RESET switch or the
console BREAK key. Certain conditions must be met
by the state of the console keyswitch and the logic
signal from the power supply which indicates that
the contents of memory have been destroyed since
power-down. The CPU may also execute a self-test
routine to check the processor and the first 16k words
of memory. The following table summarizes the
CPU's response to various actions.

014-000617-01

Keyswitch Locked Unlocked

MEMORY DATA DATA DATA' DATA
STATE OK LOST OK LOST
Action:

Power-up Restart Self-test Enter VC Self-test
user and (no and
program. enter VC self-test) . enter

VC

RESET No No Enter VC Self-test
switch function. function. (no and

self -test). enter
VC

Console No No Enter VC Enter
VC

BREAK key function. function. (no (no
self-test). self-

test).

If it executes the self-test, VC types the letters OK on
the console. Then it types an octal number, which is
the value of the program counter when VC was
entered. (On power-up, this number is 0,) VC then
types a ! on the terminal. This is the prompt; it tells
you that VC is in control and ready to accept a
command.

VI- 1

VIRTUAL CONSOLE (VO

Command Format

A VC command consists of a single character. Some
commands must be preceded by an argument which is
any octal number. Numbers that are used as memory
addresses may be up to 17 bits long, to support the
MAP. Numbers which are used as data are truncated
to 16 bits.

If you wish to cancel the entire line that you have just
entered, type a K. VC prints a ? followed by a new
line, and also closes the current cell if it is open
(described in detail below). The ? followed by a new
line is also printed if you type a character which VC
does not recognize, or in case VC detects a user error.

Cells

VC operates on cells. A cell is either a physical
memory location, or an internal processor register (
internal cell) such as an accumulator. In order to
examine or modify any cell, you must open it.
Opening a cell causes its contents to be printed, in
octal, on your terminal.

To open an internal cell, use the command nA where
n is one of the numbers listed in the table below.

INTERNAL CEllS

NUMBER OCTAL CELL

0-3 The accumulators ACO through AC3.
4 Return address: the contents of the

program counter when VC
was called.

5 Stack pointer.
6 Frame pointer.
7 bit 1 5: Interrupt enable flag:

o = interrupts off.
1 = interrupts on.

10 MAP status word.
11 Switch register: the contents of this

location are placed in an accumulator
when a user program executes
a READS instruction.

12 Bit 15: carry bit.

To open a memory location, use the / command.
Typing n/ opens the location addressed by n. Typing /
without an argument opens the cell addressed by the
currently open cell (the current cell).

VIRTUAL CONSOLE (VO

VI- 2

Data General Corporation

Modifying a Cell

Once you have opened a cell, you may change its
contents by simply typing the number whose value is
to be placed in the eell. Terminate the number by
typing a earriage return or newline. If you type a
newline, the next consecutive memory location or
internal cell will be opened. This is convenient when
you need to enter data into several consecutive cells.

Program Control

When VC is entered, it places the contents of the
program counter into the 4A internal cell. Typing p

causes VC to return to the location specifed by 4A.

You can also return to a program by typing nR. In
this case, the CPU executes an IORST instruction, and
resumes program execution at the location specifed
by n (truncated to 15 bits).

Other commands which VC accepts are listed in the
table below.

Command Function

I Initialize the system: execute an
IORST, and clear the MAP.

nL Perform a program load from device code
n. (Bit 0 of n must be 1
for a data channel device.)

F Perform a field service cassette load
(for Data General use only).

014-000617-01

APPENDIX A

I/O DEVICE CODES AND DATA GENERAL MNEMONIC!;

OCTAL
DEVICE PRIORITY

CODE MNEMONIC MASK BIT DEVICE NAME

00 ---- - - Unused
01 MDV -- Multiply/Divide
02 MAP } - - Memory Management Unit
03 MAPl

I I I
05
06 MCAT 12 Multiprocessor adapter transmitter
07 MCAR 12 Multiprocessor adapter receiver
10 TTl 14 TTY input
11 TTO 15 TTY output

12 PTR 11 Paper tape reader
13 PTP 13 Paper tape punch
14 RTC 13 Real-time clock
15 PLT 12 Incremental plotter
16 CDR 10 Card reader

17 LPT 12 Line printer
20 DSK 9 Fixed head disc
21 ADCV 8 A/D converter
22 MTA 10 Magnetic tape
23 DACV -- D/ A converter

24 DCM 0 Data communications multiplexor
25
26
27
30 QTY 14 Asynchronous hardware multiplexor

30 SLA 14 Synchronous line adapter
31 2 IBM1 } 13 IBM 360/370 interface 32 IBM2
33 DKP 7 Moving head disc
34 CAS 10 Cassette tape

342 MUX 8 } 11 Multiline asynchronous controller
35 CRC
36 IPB 6 Interprocessor bus--half duplex
37 IVT 6 IPB watchdog timer
40 DPI 8 IPB full duplex input

41 DPO 8 IPB full duplex output
403 SCR 8 Synchronous communication receiver
414 SCT 8 Synchronous communication transmitter
42 DIO 7 Digital I/O
43 DIOT 6 Digital I/O timer

DG-0/932

2Code returned by INT A

3Can be set up with any unused even device code equal to 40 or above

4Can be set up with any unused odd device code equal to 41 or above

A-I of 2

I

OCTAL
DEVICE

CODE

44
45
46
47
50

51
52
53
54
55

56
57
60
61
62

63
64
65
66
67

70
70
712 } 72
73

742

75
76

I 77

APPENDIX A (Continued)

I/O DEVICE CODES AND
DATA GENERAL MNEMONICS

PRIORITY
MNEMONIC MASK BIT DEVICE NAME

MXM 12 Modem control for MXl/MX2

MCATI 12 Second multiprocessor transmitter
MCARI 12 Second multiprocessor receiver
TTIl 14 Second TTY input

TTOI 15 Second TTY output
PTRI 11 Second paper tape reader
PTPI 1 :3 Second paper tape punch
RTCI 13 Second real-time clock
PLTI 12 Second incremental plotter

CDRI 10 Second card reader
LPTI 12 Second line printer
DSKI 9 Second fixed head disc
ADCV1 8 Second A/D converter
MTA1 10 Second magnetic tape

DACV1 -- Second D/A converter

QTY1 14 Second asynchronous hardware multiplexor
SLAI 14 Second synchronous line adapter

13
I

Second IBM 360/370 interface

DKP1 7 Second moving head disc

FPU1 l FPU2
~

5 Floating point
FPU
CPU -- Central processor and console functions

2 Code returned by [NT A

3Can be set up with any unused even device code equal to 40 or above

4Can be set up with any unused odd device code equal to 41 or above

A-2

APPENDIX B

OCTAL AND HEXADECIMAL CONVERSION

To convert a number from octal or hexadecimal to
decimal, locate in each column of the appropriate
table the decimal equivalent for the octal or hex
digit in that position. Add the decimal equivalents
to obtain the decimal number

To convert a decimal number to octal or hexa­
decimal:

1. Locate the largest decimal value in the
appropriate table that will fit into the
decimal number to be converted;

2. note its octal or hex equivalent and column
position;

3. find the decimal remainder.

Repeat the process on each remainder. When the
remainder is 0, all digits will have been generated.

85 84 83 82 81 8°

° ° ° ° ° ° °
1 32,768 4,096 512 64 8 1

2 65,536 8,192 1,024 128 16 2

3 98,304 12,228 1,536 192 24 3

4 131,072 16,384 2,048 256 32 4

5 163,840 20,480 2,560 320 40 5

6 196,608 24,576 3,072 384 48 6

7 229,376 28,672 3,584 448 56 7

°
1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

B-1 of 2

165
164 163 162

° ° ° °
1,048,576 65,536 4,096 256

2,097,152 131,072 8,192 512

3,145,728 196,608 12,288 768

4,194,304 262,144 16,384 1,024

5,242,880 327,680 20,480 1,280

6,291,456 393,216 24,576 1,536

7,340,032 458,752 28,672 1,792

8,388,608 524,288 32,768 2,048

9,437,184 589,824 36,864 2,304

10,485,760 655,360 40,960 2,560

11,534,336 720,896 45,056 2,816

12,582,912 786,432 49,152 3,072

13,631,488 851,968 53,248 3,328

14,680,064 917,504 57,344 3,584

15,728,640 983,040 61,440 3,840

161 16°

° °
16 1

32 2

48 3

64 4

80 5

96 6

112 7

128 8

144 9

160 10

176 11

192 12

208 13

224 14

240 15

B-2

APPENDIXC

ASCII CHARACTER CODES

,-

To Produce
ASCII Control On TTY Mod 33, 35 Even Parity

Decimal Octal Hex Character Function Cntr I Shift Char 8-bit code

0 000 00 NUL Null ./ ./ P 00
1 001 01 SOH Start of Heading ./ A 81
2 002 02 STX Start of Text ./ B 82
3 003 03 ETX End of Text ./ C 03
4 004 04 EOT End of Transmission ./ D 84

5 005 05 ENQ Enquiry ./ E 05
6 006 06 ACK Acknowledge ./ F 06
7 007 07 BEL Bell ./ G 87
8 010 08 BS Backspace ./ H 88
9 011 09 HT Horizontal Tab ./ I 09

10 012 OA NL New Line line feed OA
./ J OA
./ line feed 8A1

11 013 OB VT Vertical Tab ./ K 8B
12 014 OC FF Form Feed ./ L OC
13 015 OD RT Return return 8D

./ M 8D

./ return OD1

14 016 OE SO Shift Out ./ N 8E

15 017 OF SI Shift In ./ 0 OF
16 020 10 DLE Data Link Escape ./ P 90
17 021 11 DC1 Device Control 1 ./ Q 11
18 022 12 DC2 Devic e Control 2 ./ R 12
19 023 13 DC3 Device Control 3 ./ S 93

20 024 14 DC4 Device Control 4 ./ T 14
21 025 15 NAK Negative Acknowledge ./ U 95
22 026 16 SYN Synchronous Idle ./ V 96
23 027 17 ETB End Transmission Block ./ W 17
24 030 15 CAN Cancel ./ X 18

25 031 19 EM End of Medium ./ Y 99
26 032 1A SUB Substitute ./ Z 9A
27 033 1B ESC Escape esc 1B

./ ./ K 1B
28 034 1C FS File Separator ./ ./ L 9C
29 035 1D GS Group Separator ./ ./ M 1D

30 036 IE RS Record Separator ./ ./ N IE
31 037 IF US Unit Separator ./ ./ 0 9F
32 040 20 SP Space space AO
33 041 21 ! ./ 1 21
34 042 22 " ./ 2 22

35 043 23 # ./ 3 A3
36 044 24 $./ 4 24
37 045 25 % ./ 5 A5
38 046 26 & ./ 6 A6
39 047 27 , ./ 7 27

40 050 28 (./ 8 28
41 051 29) ./ 9 A9

OG-01939

IOn even parity TTY's, these codes are odd parity

C-l

Decimal

42
43
44

45
46
47
48
49

50
51
52
53
54

55
56
57
58
59

60
61
62
63
64

65
66
67
68
69

70
71
72
73
74

75
76
77
78
79

80
81
82
83
84

06-0/939

APPENDIX C (Continued)
ASCII CHARACTER CODES

To Produce
ASCII On TTY Mod 33, 35

Octal Hex Character Cntrl Shift Char

052 2A * /
053 2B + / ,
054 2C , ,

055 2D - -
056 2E
057 2F / /
060 30 0 0
061 31 1 1

062 32 2 2
063 33 3 3
064 34 4 4
065 35 5 5
066 36 6 6

067 37 7 7
070 38 8 8
071 39 9 9
072 3A
073 3B , ,

074 3C /' / ,
075 3D = / -
076 3E > /
077 3F ? / /
100 40 @ / P

101 41 A A
102 42 B B
103 43 C C
104 44 D D
105 45 E E

106 46 F F
107 47 G G
110 48 H H
111 49 I I
112 4A J J

113 4B K K
114 4C L L
115 4D M M
116 4E N N
117 4F 0 0

120 50 P P
121 51 Q Q
122 52 R R
123 53 S S
124 54 T T

C-2

Even Parity
8-bit code

AA
2B
2C

2D
2E
AF
30
B1

B2
33
B4
35
36

B7
B8
39
3A
BB

36
BD
BE
3F
CO

41
42
C3
44
C5

C6
47
48
C9
CA

4B
CC
4D
4E
CF

50
D1
D2
53
D4

Decimal

85
86
87
88
89

90
91
92
93
94

95
96
97
98
99

100
101
102
103
104

105
106
107
108
109

110
111
112
113
114

115
116
117
118
119

120
121
122
123
124

125
126
127

06-0/939

APPENDIX C (Continued)

ASCII CHARACTER CODES

To Produce
ASCII On TTY Mod 33, 35

Octal Hex Character Cntrl Shift Char

125 55 U U
126 56 V V
127 57 W W
130 58 X X
131 59 Y Y

132 5A Z Z
133 5B r / K
134 5C \ / L
135 5D] / M
136 5E 1\ / N

137 5F - / 0
140 60 \

141 61 a
142 62 b
143 63 c

144 64 d
145 65 e
146 66 f
147 67 g
150 68 h

151 69 i
152 6A j
153 6B k
154 6C 1
155 6D m

156 6E n
157 6F 0

160 70 p
161 71 q
162 72 r

163 73 s
164 74 t
165 75 u
166 76 v
167 77 w

170 78 x
171 79 y
172 7A z
173 7B I
174 7C

175 7D }
176 7E rv

177 7F DEL rubout

C-3

Even Parity
8-bit code

55
56
D7
D8
59

5A
DB
5C
DD
DE

5F
60
E1
E2
63

E4
65
66
E7
E8

69
6A
EB
6C
ED

EE
6F
FO
71
72

F3
74
F5
F6
77

78
F9
FA
7B
FC

7D
7E
FF

DG OFFICES

SALES AND SERVICE OFFICES

Alabama: Birmingham

Arizona: Phoenix, Tucson

Arkansas: Little Rock

California: EI Segundo, Fresno, Los Angeles, Oakland, Palo Alto, Pasadena,

Sacramento, San Diego, San Francisco, Santa Ana, Santa Barbara, Van Nuys

Colorado: Denver, Englewood

Connecticut: North Branford, Norwalk

Florida: Ft. Lauderdale, Orlando, Tampa

Georgia: Norcross

Idaho: Boise

Iowa: Cedar Rapids Bettendorf

Illinois: Arlington Heights, Champaign, Chicago, Peoria, Rockford, Schaumburg

Indiana: Indianapolis

Kentucky: Louisville

Louisiana: Baton Rouge, Metairie

Maine: Portland

Maryland: Baltimore

Massachusetts: CambridgB, Springfield, Wellesley, Worcester

Michigan: Grand Rapids, Southfield

Minnesota: Richfield

Missouri: Creve Coeur, Kansas City, St. Louis

Mississippi: Jackson

Montana: Billings

Nebraska: Omaha

Nevada: Las Vegas, Reno

New Hampshire: Bedford, Nashua

New Jersey: Cherry Hill, Somerset, Wayne

New Mexico: Albuquerqu,~

New York: Albany, Buffalo, Lake Success, Latham, Melville, Newfield, New York,

Rochester, Syracuse, White Plains

North Carolina: Charlotte, Greensboro, Greenville, Raleigh

Ohio: Brooklyn Heights, Cil1cinnatti, ColumbuS, Dayton

Oklahoma: Oklahoma City, Tulsa

Oregon: Lake Oswego, Portland

Pennsylvania: Blue Bell, Carnegie, Lancaster, Philidelphia, Pittsburgh

Rhode Island: Providence, Rumford

South Carolina: Columbia

Tennessee: Knoxville, Memphis, Nashville

Texas: Austin, Dallas, EI Paso, Ft. Worth, Houston, San Antonio

Utah: Salt Lake City

Virginia: McLean, Norfolk, Richmond, Salem

Washington: BellBvue, Kirkland, Richland, Spokane

West Virginia: Charleston

Wisconsin: Brookfield, Madison, West Allis

INTERNATIONAL SUBSIDIARIES

Australia: Adelaide, Melbourne, New Castle, Sydney, Tasmania, Queensland, Victoria

Brazil: Sao Paulo
Canada: Calgary, Edmonton, Montreal, Ottawa, Quebec, Toronto, Vancouver, Winnipeg

France: Lille, Lyon, Nantes, Paris

Italy: Florence, Milan, Padua, Rome, Tourin

Japan: Tokyo

The Netherlands: Amsterdam, Rijswijk

New Zealand: Auckland, Wellington

Sweden: Gothenburg, Malmoe, Stockholm

Switzerland: Lausanne, Zurich

United Kingdom: Birmingham, Bristol, Chesire, Glasgow, Hounslow, London,

Manchester
West Germany: Dusseldorf, Filderstadt, Frankfurt, Hamburg, Hannover, Munich,

Nuremburg, Munich, Ratingen, Rodelheim, Stuttgart

DG-04976

REPRESENTATIVES & DISTRIBUTORS

Argentina: Buenos Aires

Bolivia: Novadata

Chile: Santiago

Columbia: Bogato

Costa Rica: San Jose

Ecuador: Quito

Egypt: Cairo

Finland: Helsinki

Guatemala: Guatemala City

Hong Kong: Hong Kong

India: Bombay

Indonesia: Jakarta

Israel: Givatayim

Korea: Seoul

Kuwait: Kuwait

Lebanon: Beirut

Malaysia: Kuala Lumpur

Mexico: Mexico City, Nuevo Leon

Morocco: Casablanca

Nicaragua: Managua

Nigeria: Ibadan, Lagos

Norway: Oslo

Paraguay: Asuncion

Peru: Lima

Philippine Islands: Manila

Portugal: Lisbon

Puerto Rico: Hato Rey

Saudi Arabia: Jaddah, Riyadh

Singapore: Singapore

South Africa: Capetown, Durban, Johannesburg, Pretoria

Spain: Barcelona, Bibao, Madrid, San Sebastian, Valencia

Taiwan: Taipei

Thailand: Bangkok

Turkey: Ankara

Uruguay: Montevideo

Venezuela: Maracaibo

ADMINISTRATION, MANUFACTURING
RESEARCH AND DEVELOPMENT

Massachusetts: Cambridge, Framingham, Southboro, Westboro

Maine: Westbrook

New Hampshire: Portsmouth

California: Anaheim, Sunnyvale

North Carolina: Research Triangle Park, Johnston County

Texas: Austin

Hong Kong: Kowloon, Tai Po

Thailand: Bangkok

LJ.J
Z
-..J

0
LJ.J
I--
I--
0
0

<.9
Z
0
-..J

«
I--
~
U

~ • Data General
users
gpoup Installation Membership Form

Name ______________ Position _______________ Date ___ _

Address ______________ City State ___ Zip ___ _

Telephone: Area Code ______ No. __________ Ext. _________________ _

1. Account
Category

2. Hardware

M/600
COMMERCIAL ECLIPSE

SCIENTIFIC ECLIPSE

API130

CS Series

Mapped NOVA

Unmapped NOV A

microNOVA

Other
(Specify)

3. Software

4. Languages

o OEM

o End User

o System House

o Government

o Educational

Qty. Installed I Qty. On Order

o AOS o RDOS

o DOS 0 Other

o MP/OS

Specify ____ _

o Algol

ODG/L

o Cobol

o PASCAL

o Assembler

o Fortran

o RPGII

o PLll

o BUSiness BASIC 0 Other

o BASIC

Specify ______ _

5. Mode of
Operation

6. Communications

7. Application
Description

8. Purchase

9. User. Group

o Batch (Central)

o Batch (Via RJE)

o On-Line InteractivE

o HASP o CP.M

o RJE80 o XODIAC

o RCX 70 o Other

Specify

0 _______ _

From whom was your machine(s)
purchased ?

o Data General Corp.

o Other
Specify ____ _

Are you interested in joininl~ a

special interest or regional
Data General Users Group ~l

0 _______ _

t. DataGeneral
Data General Corporation. Westboro. Massachusetts 01581. (617) 366-8911

FOLD FOLf)

STAPLE STAPLE

FOLD FOil)

---_._-----

III I
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 26 SOUTHBORO, MA. 01772

Postage will be paid by addressee

~. Data General
ATTN: Users Group Coordinator
4400 Computer Drive
Westboro, MA 01581

NO POSTAGE
NECESSARY

IF MA!LED
IN THE

UNITED STATES

UJ
Z
--.J

0
UJ
~
~
0
0

<.9
Z
0
--.J
«
~
:J
U

Yes No

o 0

o 0

0 0

0 0

Please help us improve our future
publications by answering the questions below.
Use the space provided for your comments.

Engineering
Publications
Comment Form
Title: ___ . ______________ _

Document No. ______________ _

o You (can ,cannot) find things easily.

o Language (is,is not) appropriate.

o Technical terms (are,are not) defined
as needed.

o Learning to use the equipment

o As a reference

o As an introduction to the
product

o Visuals (are,are not) well designed.

o Labels and captions (are,are not) clear.

o Other:

o Other:

o To instruct a class.

o Other:

Name: _, _______________________ Title: __________________ _

Company: ________________________ Division:_, _______________ _

Address: ______________________ City: __________________ _

State: _. ______ Zip: ___________ Telephone: ______________ Date: _____ _

DG-05809

~. Data General
Data General Corporation, Westboro, Massachusetts 01581

FOLD FOLD

STAPLE STAPLE

FOLD FOLD

IIII

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 26 SOUTHBORO, MA. 01772

Postage will be paid by addressee

~. Data General
ATTN: ENGINEERING PUBLICATIONS
4400 Computer Drive
Westboro, MA 01581

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

