

ISA Version 1.1

10/24/2007
SP-03483-001_v1.1

NVIDIA Compute

PTX: Parallel
Thread Execution

PTX ISA Version 1.1 i
10/24/2007

Document Change History

Version Date Responsible Reason for Change
_v1.0 June 15, 2007 RJ Preliminary release

_v1.1 October 24, 2007 RJ, TS Release

ii PTX ISA Version 1.1
 10/24/2007

PTX ISA Version 1.1 iii
10/24/2007

Table of Contents

Chapter 1. Introduction..1
1.1. Data-Parallel Computing Using GPUs... 1
1.2. Goals of PTX ... 1
1.3. The Document’s Structure... 2

Chapter 2. Programming Model ..3
2.1. A Highly Multithreaded Coprocessor ... 3
2.2. Thread Batching .. 3

2.2.1. Cooperative Thread Arrays ... 3
2.2.2. Grid of Cooperative Thread Arrays.. 4

Chapter 3. Parallel Thread Execution Machine Model..7
3.1. A Set of SIMD Multiprocessors with On-Chip Shared Memory....................................... 7
3.2. Execution Model .. 9

Chapter 4. Syntax ...11
4.1. Source Format ... 11
4.2. Comments ... 11
4.3. Statements... 12

4.3.1. Directive Statements.. 12
4.3.2. Instruction Statements ... 12

4.4. Identifiers ... 13
4.5. Immediate Constants... 14

4.5.1. Integer Immediate Constants .. 14
4.5.2. Floating-point Immediate Constants.. 14
4.5.3. Predicate Immediate Constants .. 14
4.5.4. Constant Expressions.. 14

Chapter 5. State Spaces, Types, and Variables ...15
5.1. State Spaces ... 15

5.1.1. Register State Space... 16
5.1.2. Special Register Space ... 16
5.1.3. Constant State Space.. 16
5.1.4. Global State Space.. 17
5.1.5. Local State Space.. 17

iv PTX ISA Version 1.1
 10/24/2007

5.1.6. Parameter State Space ... 17
5.1.7. Shared State Space... 17
5.1.8. Texture State Space.. 18
5.1.9. Surface State Space.. 18

5.2. Types ... 19
5.2.1. Fundamental Types ... 19
5.2.2. Restricted Use of Sub-word Sizes... 19

5.3. Variables.. 20
5.3.1. Variable Declarations... 20
5.3.2. Vectors... 20
5.3.3. Array Declarations ... 21
5.3.4. Structures and Unions ... 21
5.3.5. Initializers... 22
5.3.6. Alignment... 22

Chapter 6. Instruction Operands ...23
6.1. Operand Type Information... 23
6.2. Source Operands... 23
6.3. Destination Operands.. 23
6.4. Using Addresses, Arrays, Vectors, Structures, and Unions .. 24

6.4.1. Addresses as Operands .. 24
6.4.2. Arrays as Operands... 25
6.4.3. Vectors as Operands ... 25
6.4.4. Structures and Unions as Operands ... 26
6.4.5. Immediate Values as Operands .. 26

6.5. Type Conversion.. 26
6.5.1. Scalar Conversions.. 26
6.5.2. Rounding Modes.. 28
6.5.3. Vector Conversions ... 29

6.6. Operand Costs... 30
Chapter 7. Instruction Set ...31

7.1. Format and Semantics of Instruction Descriptions.. 31
7.2. PTX Instructions .. 31
7.3. Predicated Execution... 32

7.3.1. Comparisons.. 33
7.3.1.1. Integer and Bit-Size Comparisons... 33

PTX ISA Version 1.1 v
10/24/2007

7.3.1.2. Floating-point Comparisons... 33
7.3.2. Manipulating Predicates .. 34

7.4. Type Information for Instructions and Operands ... 35
7.5. Divergence of Threads in Control Constructs ... 35
7.6. Semantics .. 36

7.6.1. Machine-specific Semantics of 16-bit Code .. 36
7.7. Instructions .. 37

7.7.1. Arithmetic Instructions ... 37
7.7.2. Comparison and Selection Instructions ... 45
7.7.3. Logic and Shift Instructions ... 49
7.7.4. Data Movement and Conversion Instructions.. 52
7.7.5. Texture Instruction ... 56
7.7.6. Control Flow Instructions ... 57
7.7.7. Parallel Synchronization and Communication Instructions 60
7.7.8. Floating-point Instructions.. 62
7.7.9. Miscellaneous Instructions .. 65

Chapter 8. Special Registers ..67
Chapter 9. Directives...71

9.1. Specifying CTAs and Functions .. 71
9.2. Debugging Directives... 73
9.3. Other Directives ... 74

Chapter 10. Release Notes...77
10.1. New Features .. 77
10.2. Unimplemented Features Removed From ISA ... 77
10.3. Changes to Rounding Modifiers .. 77
10.4. Changes to Saturation... 78
10.5. Unimplemented Features in Version 1.1 ... 78

10.5.1. Syntax restrictions ... 78
10.5.2. State Spaces ... 78
10.5.3. Variables and Operands.. 78
10.5.4. Instructions .. 79

10.6. Summary of Instruction Changes .. 79

vi PTX ISA Version 1.1
 10/24/2007

List of Figures

Figure 1. Thread Batching .. 5
Figure 2. Machine Model A set of SIMD multiprocessors with on-chip shared memory 8
Figure 3. Memory Model ... 10

PTX ISA Version 1.1 vii
10/24/2007

List of Tables

Table 1. PTX Directives ... 12
Table 2. Reserved Instruction Keywords... 13
Table 3. Predefined identifiers ... 13
Table 4. State Spaces ... 15
Table 5. Properties of State Spaces.. 16
Table 6. Fundamental Specifiers... 19
Table 7. CVT Instruction Precision and Format... 27
Table 8. Floating-point Rounding Modes... 28
Table 9. Integer Rounding Modes ... 28
Table 10. Conversions Between Scalar Values and Vector Values... 29
Table 11. Cost estimates for accessing state-spaces ... 30
Table 12. Operators for Signed Integer, Unsigned Integer, and Bit-size Types........................ 33
Table 13. Floating-point Comparison Operators ... 33
Table 14. Floating-Point Comparison Operators Accepting NaN.. 34
Table 15. Floating-Point Comparison Operators Testing for NaN... 34
Table 16. Arithmetic Instructions: ADD... 38
Table 17. Arithmetic Instructions: SUB... 38
Table 18. Arithmetic Instructions: MUL... 39
Table 19. Arithmetic Instructions: MAD .. 40
Table 20. Arithmetic Instructions: MUL24... 41
Table 21. Arithmetic Instructions: MAD24 .. 41
Table 22. Arithmetic Instructions: SAD... 42
Table 23. Arithmetic Instructions: DIV .. 42
Table 24. Arithmetic Instructions: REM .. 43
Table 25. Arithmetic Instructions: ABS ... 43
Table 26. Arithmetic Instructions: NEG .. 43
Table 27. Arithmetic Instructions: MIN.. 44
Table 28. Arithmetic Instructions: MAX .. 44
Table 29. Comparison and Selection Instructions: SET... 46
Table 30. Comparison and Selection Instructions: SETP .. 47
Table 31. Comparison and Selection Instructions: SELP... 48

viii PTX ISA Version 1.1
 10/24/2007

Table 32. Comparison and Selection Instructions: SLCT... 48
Table 33. Logic and Shift Instructions: AND... 49
Table 34. Logic and Shift Instructions: OR ... 49
Table 35. Logic and Shift Instructions: XOR... 50
Table 36. Logic and Shift Instructions: NOT... 50
Table 37. Logic and Shift Instructions: CNOT .. 50
Table 38. Logic and Shift Instructions: SHL ... 51
Table 39. Logic and Shift Instructions: SHR... 51
Table 40. Data Movement and Conversion Instructions: MOV .. 52
Table 41. Data Movement and Conversion Instructions: LD.. 53
Table 42. Data Movement and Conversion Instructions: ST.. 54
Table 43. Data Movement and Conversion Instructions: CVT ... 55
Table 44. Texture Instruction: TEX... 56
Table 45. Control Flow Instructions: { }... 57
Table 46. Control Flow Instructions: @ .. 57
Table 47. Control Flow Instructions: BRA... 58
Table 48. Control Flow Instructions: CALL ... 58
Table 49. Control Flow Instructions: RET... 59
Table 50. Control Flow Instructions: EXIT .. 59
Table 51. Parallel Synchronization and Communication Instructions: BAR............................. 60
Table 52. Parallel Synchronization and Communication Instructions: ATOM.......................... 61
Table 53. Floating-point Instructions: RCP... 62
Table 54. Floating-point Instructions: SQRT .. 62
Table 55. Floating-point Instructions: RSQRT.. 63
Table 56. Floating-point Instructions: SIN .. 63
Table 57. Floating-point Instructions: COS... 63
Table 58. Floating-point Instructions: LG2.. 63
Table 59. Floating-point Instructions: EX2.. 64
Table 60. Miscellaneous Instructions: TRAP.. 65
Table 61. Miscellaneous Instructions: BRKPT ... 65
Table 62. Special Registers: %tid... 67
Table 63. Special Registers: %ntid... 68
Table 64. Special Registers: %ctaid... 68
Table 65. Special Registers: %nctaid... 69
Table 66. Special Registers: %gridid.. 69

PTX ISA Version 1.1 ix
10/24/2007

Table 67. Special Registers: %clock .. 69
Table 68. Directives: .entry ... 71
Table 69. Directives: .func .. 72
Table 70. Debugging Directives: .section ... 73
Table 71. Debugging Directives: .file .. 73
Table 72. Debugging Directives: .loc.. 73
Table 73. Debugging Directives: .byte.. 73
Table 74. Other Directives: .extern... 74
Table 75. Other Directives: .visible... 74
Table 76. Other Directives: .version ... 74
Table 77. Other Directives: .target.. 75
Table 78. Summary of Instruction Changes in Version 1.1 ... 79

PTX ISA Version 1.1 1
10/24/2007

Chapter 1.
Introduction

1.1. Data-Parallel Computing
Using GPUs
This document describes PTX, a low-level parallel thread execution virtual machine (VM) and
virtual instruction set architecture (ISA). PTX exposes the GPU as a data-parallel
computing device.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets such as arrays can use a data-parallel programming
model to speed up the computations. Data-parallel mapping is efficient for SIMD, vector,
and highly multi-threaded parallel architectures. In 3D rendering, large sets of pixels and
vertices are mapped to parallel threads. Similarly, image and media processing applications
such as post-processing of rendered images, video encoding and decoding, image scaling,
stereo vision, and pattern recognition can map image blocks and pixels to parallel processing
threads. Many compute-intensive applications map well to data-parallel processing. In
general, all algorithms that can be formulated as parallel computations operating over
datasets are good candidates for acceleration by data-parallel processing.

PTX defines a virtual machine and virtual ISA for general purpose parallel thread execution.
PTX programs are translated at install time to the target hardware instruction set. The PTX
to GPU translator and driver enables NVIDIA GPUs to be used as programmable parallel
computers.

1.2. Goals of PTX
PTX provides a stable programming model and instruction set for general purpose parallel
programming. It is designed to be efficient on NVIDIA GPUs supporting the computation
features defined for G80 and subsequent GPUs. High level language compilers for
languages such as C and C++ generate PTX instructions, which are optimized for and
translated to native target-architecture instructions.

The goals for PTX include the following:

 Provide a stable virtual ISA and VM that spans multiple GPU generations.

 Achieve performance in compiled applications comparable to native GPU performance.

 Provide a machine-independent ISA for C/C++ and other compilers to target.

 Provide a code distribution ISA for application and middleware developers.

Chapter 1. Introduction

2 PTX ISA Version 1.1
 10/24/2007

 Provide a common source-level ISA for optimizing code generators and translators,
which map PTX to specific target machines.

 Programmability – facilitate hand-coding of libraries, performance kernels, and
architecture tests.

 Scalability – VM programming model spans GPU sizes from single unit to many parallel
units.

 Provide a relatively low-level ISA and machine model that can be usefully thought of as
representing the target GPU architecture.

 VM and virtual ISA will become publicly visible.

 Component of the NV Compute product.

 Compatibility – version 1 programs execute on later translators.

 Sufficient quality and usability to evolve into an industry standard.

1.3. The Document’s Structure
The information in this document is organized into the following Chapters:

 Chapter 2 outlines the programming model.

 Chapter 3 gives an overview of the PTX virtual machine model.

 Chapter 4 describes the basic syntax of the PTX language.

 Chapter 5 describes state spaces, types, and variable declarations.

 Chapter 6 describes instruction operands.

 Chapter 7 describes the instruction set.

 Chapter 8 lists special registers.

 Chapter 9 lists the assembly directives supported in PTX.

 Chapter 10 provides release notes for Release 1.1 of PTX Version 1.1.

PTX ISA Version 1.1 3
10/24/2007

Chapter 2.
Programming Model

2.1. A Highly Multithreaded
Coprocessor
The GPU is a compute device capable of executing a very high number of threads in parallel.
It operates as a coprocessor to the main CPU, or host: In other words, data-parallel,
compute-intensive portions of applications running on the host are off-loaded onto the
device.

More precisely, a portion of an application that is executed many times, but independently
on different data, can be isolated into a function that is executed on the GPU as many
different threads. To that effect, such a function is compiled to the PTX instruction set and
the resulting kernel is translated at install time to the target GPU instruction set.

2.2. Thread Batching
The batch of threads that executes a kernel is organized as a grid of cooperative thread
arrays as described in this section and illustrated in Figure 1.

2.2.1. Cooperative Thread Arrays
The Parallel Thread Execution (PTX) programming model is explicitly parallel – a PTX
program specifies the execution of a given thread of a parallel thread array. A Cooperative
Thread Array, or CTA, is an array of threads that execute a kernel concurrently or in parallel.

Threads within a CTA can communicate with each other. To coordinate the communication
of the threads within the CTA, one can specify synchronization points, where threads are
suspended until they all reach the synchronization point.

Each thread has a unique thread id (tid) within the CTA. Programs use a data parallel
decomposition to partition inputs, work, and results across the threads of the CTA. Each
CTA thread uses its tid to determine its assigned role, assign specific input and output
position, compute addresses, and select work to perform. The tid is a 3-component vector,
tid.0, tid.1, and tid.2, that specifies the thread’s position within a 1D, 2D, or 3D CTA.
Alternate component names are tid.x, tid.y, and tid.z. Each tid component ranges from 0 up
to the number of thread id’s in that CTA dimension.

Chapter 2. Programming Model

4 PTX ISA Version 1.1
 10/24/2007

Each CTA has a a 1D, 2D, or 3D shape, specified by a 3-component vector, ntid, which
specifies the number of threads in each CTA dimension. The ntid components are
accessible as ntid.0, ntid.1, and ntid.2.

Threads within a CTA execute in SIMD fashion in groups called warps. A warp is a
maximal subset of threads from a single CTA, such that the threads execute the same
instructions at the same time. Threads within a warp are sequentially numbered. The warp
size is a machine-dependent constant. Typically, a warp has 16 or 32 threads. Some
applications may be able to maximize performance with knowledge of the warp size, so PTX
includes a run-time immediate constant, WARP_SZ, which may be used in any instruction
where an immediate operand is allowed.

2.2.2. Grid of Cooperative Thread Arrays
There is a maximum number of threads that a CTA can contain. However, CTAs that
execute the same kernel can be batched together into a grid of CTAs, so that the total
number of threads that can be launched in a single kernel invocation is very large. This
comes at the expense of reduced thread communication and synchronization, because
threads in different CTAs cannot communicate and synchronize with each other.

Multiple CTAs may execute concurrently and in parallel, or sequentially, depending on the
platform. Each CTA has a unique CTA id (ctaid) within a grid of CTAs. Each grid of CTAs
has a 1D, 2D , or 3D shape specified by the parameter nctaid. Each grid also has a unique
temporal grid id (gridid). Threads may read and use these values through predefined, read-
only special registers %tid, %ntid, %ctaid, %nctaid, and %gridid.

The host issues a succession of kernel invocations to the device. Each kernel is executed as
a batch of threads organized as a grid of CTAs (Figure 1).

 Chapter 2. Programming Model

PTX ISA Version 1.1 5
10/24/2007

Figure 1. Thread Batching

Host

Kernel

Kernel
2

GPU

Grid 1

CTA
(0, 0)

CTA
(1, 0)

CTA
(2, 0)

CTA
(0, 1)

CTA
(1, 1)

CTA
(2, 1)

Grid 2

CTA (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Chapter 2. Programming Model

6 PTX ISA Version 1.1
 10/24/2007

This page is blank.

PTX ISA Version 1.1 7
10/24/2007

Chapter 3.
Parallel Thread Execution Machine Model

3.1. A Set of SIMD
Multiprocessors with On-
Chip Shared Memory
The PTX machine model is implemented as a set of multiprocessors as illustrated in Figure
2Error! Reference source not found.. Each multiprocessor has a Single Instruction, Multiple
Data architecture (SIMD): At any given clock cycle, each processor of the multiprocessor
executes the same instruction, but operates on different data.

Both the host and the device maintain their own local memory, referred to as host memory
and device memory, respectively. The device memory may be mapped and read or written
by the host, or, for more efficient transfer, copied from the host memory through optimized
API calls that utilize the device’s high-performance Direct Memory Access (DMA) engine.

Each multiprocessor has on-chip memory of the four following types:

 One set of local 32-bit registers per processor,

 Shared memory that is shared by all the processors,

 A read-only constant cache that is shared by all the processors and speeds up reads from
the constant memory, which is a read-only region of the device memory,

 A read-only texture cache that is shared by all the processors and dedicated to texture
sampling.

Chapter 3. Parallel Thread Execution Machine Model

8 PTX ISA Version 1.1
 10/24/2007

Figure 2. Machine Model
A set of SIMD multiprocessors with on-chip shared memory

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Device Memory

Shared Memory

Instruction
Unit

Processor 1

Registers

…Processor 2

Registers

Processor M

Registers

Constant
Cache

Texture
Cache

 Chapter 3. Parallel Thread Execution Machine Model

PTX ISA Version 1.1 9
10/24/2007

3.2. Execution Model
A grid of CTAs is executed on the device by executing one or more CTAs on each
multiprocessor using time slicing: Each CTA is split into SIMD groups of threads called
warps; each of these warps contains the same number of threads, called the warp size, and is
executed by the multiprocessor in a SIMD fashion; a thread scheduler periodically switches
from one warp to another to maximize the use of the multiprocessor’s computational
resources.

The way a CTA is split into warps is always the same; each warp contains threads of
consecutive, increasing thread indices with the first warp containing thread 0.

A CTA is processed by only one multiprocessor, so that threads within a CTA can use the
on-chip shared memory to efficiently share data among them. More precisely, threads can
perform general reads from and writes to the on-chip shared memory through a per-CTA
shared memory partition and coordinate these memory accesses through synchronization
mechanisms.

A multiprocessor can process several CTAs concurrently by partitioning its resources (e.g.
registers and shared memory) among them.

Threads can access several other memory partitions:

 Threads can perform general cached reads from the constant memory through a per-
grid constant memory partition.

 Threads can perform general non-cached reads from and writes to the device memory
through two device memory partitions: a per-thread local memory partition and a per-
grid global memory partition.

 At last, another way to perform general cached reads from the device memory is
through texture sampling.

This memory model is illustrated in Figure 3.

The issue order of the CTAs within a grid is not defined and there is no synchronization
mechanism between CTAs, so threads from two different CTAs of the same grid cannot
safely communicate with each other through the device memory.

Figure 3 shows

Chapter 3. Parallel Thread Execution Machine Model

10 PTX ISA Version 1.1
 10/24/2007

Figure 3. Memory Model

Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Shared memory and registers
are on chip. Texture memory,
constant memory, local
memory, and global memory are
in device memory. Reads from
texture memory and constant
memory are cached. Reads
from and writes to local and
global memory are not cached.

PTX ISA Version 1.1 11
10/24/2007

Chapter 4.
Syntax

PTX programs are a collection of text source files. PTX source files have an assembly-
language style syntax with instruction operation codes and operands. Pseudo-operations
specify symbol and addressing management. The ptxas program assembles PTX source files
to produce corresponding binary object files.

4.1. Source Format
Source files are ASCII text. Lines are separated by the newline character (‘\n’).

All whitespace characters are equivalent; whitespace is ignored except for its use in
separating tokens in the language.

The C preprocessor cpp may be used to process PTX source files. Lines beginning with #
are preprocessor directives. The following are common preprocessor directives:

#include, #define, #if, #ifdef, #else, #endif, #line, #file

C: A Reference Manual by Harbison and Steele provides a good description of the C
preprocessor.

PTX is case sensitive and uses lowercase for keywords.

Each PTX file must begin with a .version directive specifying the PTX language version,
followed by a .target directive specifying the target architecture assumed. See Section 9 for a
more information on these directives.

4.2. Comments
Comments in PTX follow C/C++ syntax, using non-nested /* and */ for comments that may
span multiple lines, and using // to begin a comment that extends to the end of the current
line.

Comments in PTX are treated as whitespace.

Chapter 4. Syntax

12 PTX ISA Version 1.1
 10/24/2007

4.3. Statements
A PTX statement is either a directive or an instruction. Statements begin with an optional
label and end with a semicolon.

Examples:
 .reg .b32 r1, r2;
 .global .f32 array[N];

start: mov.b32 r1, %tid.0;
 shl.b32 r1, r1, 2; // shift thread id by 2 bits
 ld.b32 r2, array[r1]; // thread[tid] gets array[tid]
 add.f32 r2, r2, 0.5; // add 1/2

4.3.1. Directive Statements
Directive keywords begin with a dot, so no conflict is possible with user-defined identifiers.
The directives in PTX are listed in Table 1 and described in Chapter 5 and Chapter 9.

Table 1. PTX Directives
.align .func .section .tex
.byte .global .shared .union
.const .local .sreg .version
.entry .loc .struct .visible
.extern .param .surf
.file .reg .target

4.3.2. Instruction Statements
Instructions are formed from an instruction opcode followed by a comma-separated list of
zero or more operands, and terminated with a semicolon. Operands may be register
variables, constant expressions, address expressions, or label names. Instructions have an
optional guard predicate which controls conditional execution. The guard predicate follows
the optional label and precedes the opcode, and is written as @p, where p is a predicate
register. The guard predicate may be optionally negated, written as @!p.

The destination operand is first, followed by source operands.

Instruction keywords are listed in Table 2. All instruction keywords are reserved tokens in
PTX.

 Chapter 4. Syntax

PTX ISA Version 1.1 13
10/24/2007

Table 2. Reserved Instruction Keywords
abs ex2 not sin
add exit or slct
and ld rcp sqrt
atom lg2 rem st
bar mad ret sub
bra mad24 rsqrt tex
brkpt max sad trap
call min selp vote
cnot mov set xor
cos mul setp
cvt mul24 shl
div neg shr

4.4. Identifiers
User-defined identifiers follow extended C++ rules: they start with an alphabetic character,
underscore, dollar sign, or percentage sign ([A-Za-z_$%]) and are followed by zero or more
alphanumeric, underscore, or dollar sign characters ([A-Za-z_$]).

Many high-level languages such as C and C++ follow similar rules for identifier names,
except that the percentage sign is not allowed. PTX allows the percentage sign as the first
character of an identifier. The percentage sign can be used to avoid name conflicts, e.g.
between user-defined variable names and compiler-generated names.

PTX predefines a small number of special registers that begin with the percentage sign, listed
in Table 3.

Table 3. Predefined identifiers
%clock %ctaid %ntid
%gridid %nctaid %tid

Chapter 4. Syntax

14 PTX ISA Version 1.1
 10/24/2007

4.5. Immediate Constants
Immediate constants in PTX are restricted to integer and floating-point types.

4.5.1. Integer Immediate Constants
Integer immediate constants may be written in decimal, hexadecimal, octal, or binary
notation.

Decimal constants begin with a nonzero digit followed by zero or more digits (0-9).

Hexadecimal constants begin with 0x or 0X followed by one or more hex digits (from the set
[0-9a-fA-F]).

Octal constants begin with zero 0 followed by zero or more octal digits (0-7).

Binary constants begin with 0b or 0B followed by one or more binary digits (01).

4.5.2. Floating-point Immediate Constants
Floating-point immediate constants may be written with an optional decimal point and an
optional signed exponent. Unlike C and C++, there is no suffix letter to specify size (e.g.
float or double).

PTX includes a second representation of floating-point constants, where the exact machine
representation is given as a hexadecimal constant. For 64-bit floating point values, the
constant begins with 0d or 0D followed by 16 hex digits. For 32-bit floating point values, the
constant begins with 0f or 0F followed by 8 hex digits.

4.5.3. Predicate Immediate Constants
Predicate immediate constants for the Boolean values TRUE and FALSE are written as
binary digits 1 and 0, respectively.

4.5.4. Constant Expressions
Constant expressions are evaluated at compile time to form simple values for use in
immediate operands and addressing expressions. Both integer and floating-point constant
expressions are supported, however, note that floating-point constant expressions may
evaluate to a different value than would be computed on the target architecture, since the
compiler may evaluate the expression using greater precision than the target architecture.

Constant expressions are formed from lexical constants, basic arithmetic operators (addition,
subtraction, multiplication, division), and parentheses. Integer constant expressions may
include remainder (%), shift operators (<< and >>), and logical operators (&, |, and ^).

The meaning of operators in PTX is the same as in C or C++.

PTX ISA Version 1.1 15
10/24/2007

Chapter 5.
State Spaces, Types, and Variables

While the specific resources available in a given target GPU will vary, the kinds of resources
will be common across platforms, and these resources are abstracted in PTX through state
spaces and data types.

5.1. State Spaces
A state space is a storage area with particular characteristics. All variables reside in some
state space. The characteristics of a state space include its size, addressability, access speed,
access rights, and level of sharing between threads.

The state spaces defined in PTX are a byproduct of parallel programming and graphics
programming. The list of state spaces is shown in Table 4, and properties of state spaces are
shown in Table 5.

Table 4. State Spaces
Name Description

.reg Registers, fast.

.sreg Special registers. Read-only; pre-defined; platform-specific.

.const Per-CTA, shared, read-only memory.

.global Global memory, shared by all threads.

.local Local memory, private to each thread.

.param User parameters for a program, available at CTA entry.

.shared Addressable memory shared between threads in 1 CTA.

.surf Global surface memory.

.tex Global texture memory.

Chapter 5. State Spaces, Types, and Variables

16 PTX ISA Version 1.1
 10/24/2007

Table 5. Properties of State Spaces
Name Addressible Initializable Access Sharing

.reg No No R/W per-thread

.sreg No No RO per-CTA

.const Yes Yes RO per-grid

.global Yes Yes R/W Context

.local Yes No R/W per-thread

.param Yes No RO per-grid

.shared Yes No R/W per-CTA

.surf via LD/ST, SURF
instructions

Yes R/W Context

.tex via TEX
instruction

Yes RO Context

5.1.1. Register State Space
Registers (.reg state space) are fast storage locations. The number of registers is limited, and
will vary from platform to platform. When the limit is exceeded, register variables will be
spilled to memory, causing changes in performance. For each architecture, there is a
recommended maximum number of registers to use (see Error! Reference source not found.
for details).

Registers may be typed (signed integer, unsigned integer, floating point, predicate) or
untyped. Register size is restricted; aside from predicate registers which are 1-bit, registers
have a width of 16-, 32-, or 64-bits.

Registers differ from the other state spaces in that they are not fully addressable, i.e., it is not
possible to refer to the address of a register.

Registers may have alignment boundaries required by multi-word loads and stores.

5.1.2. Special Register Space
The special register (.sreg) state space holds predefined, platform-specific registers, such as
grid, CTA, and thread parameters, clock counters, and performance monitoring registers.
All special registers are predefined.

5.1.3. Constant State Space
The constant (.const) state space is a read-only memory, initialized by the host. The size may
be limited, and there are typically many banks of constant memory, denoted by an integer
index. The size and number of banks are listed in the appendix for different hardware.

 Chapter 5. State Spaces, Types, and Variables

PTX ISA Version 1.1 17
10/24/2007

5.1.4. Global State Space
The global (.global) state space is memory that is accessible by all threads in a context. It is
the mechanism by which different CTAs and different grids can communicate. Use ld.global,
st.global, and atom.global to access global variables.

For any thread in a context, all addresses are in global memory are shared.

Global memory is not sequentially consistent. Consider the case where one thread executes
the following two assignments:
 a = a + 1;
 b = b – 1;

If another thread sees the variable b change, the store operation updating a may still be in
flight. This reiterates the kind of parallelism available in machines that run PTX. Threads
must be able to do their work without waiting for other threads to do theirs, as in lock-free
and wait-free style programming.

Sequential consistency is provided by the bar.sync instruction. Threads wait at the barrier
until all threads in the CTA have arrived. All memory writes prior to the bar.sync instruction
are guaranteed to be visible to any reads after the barrier instruction.

5.1.5. Local State Space
The local state space (.local) is private memory for each thread to keep its own data. It is
typically standard memory with cache. The size is limited, as it must be allocated on a per-
thread basis. Use ld.local and st.local to access local variables.

5.1.6. Parameter State Space
The parameter (.param) state space provides addressable user parameters to CTAs. User
parameters begin at address zero, and the address space is shared across CTAs within a grid.

The location of parameter space is implementation specific. For example, in some
implementations, parameter space resides in global memory. No access protection is
provided between parameter and global space in this case.

5.1.7. Shared State Space
The shared (.shared) state space is a per-CTA region of memory for threads in a CTA to
share data. An address in shared memory can be read and written by any thread in a CTA.
Use ld.shared and st.shared to access shared variables.

Shared memory typically has some optimizations to support the sharing. One example is
broadcast; where all threads read from the same address. Another is sequential access from
sequential threads.

Chapter 5. State Spaces, Types, and Variables

18 PTX ISA Version 1.1
 10/24/2007

5.1.8. Texture State Space
The texture (.tex) state space is global memory for the texture instructions. It is shared by all
threads in a context.

The GPU hardware has a fixed number of texture bindings that can be accessed within a
single program (typically 128). The .tex[i] directive will bind the named texture memory
variable to the hardware texture id ‘i’. If no id number is given, PTX will assign texture id’s
sequentially, beginning with zero. Multiple names may be bound to the same physical
texture id. An error is generated only if the texture id assigned is out of the physical texture
id range (e.g., 0..127).

Texture memory is read-only.

Example:
.tex tex_a; // bound to physical texture 0

 .tex[2] tex_b; // bound to physical texture 2
 .tex tex_c; // bound to physical texture 1
 .tex tex_d; // bound to physical texture 2
 .tex[42] tex_e; // bound to physical texture 42
 .tex tex_f; // bound to physical texture 3

5.1.9. Surface State Space
The surface (.surf) state space is similar to global memory, but is 2D in nature. It takes a 2D
address (i and j components), and with respect to cache, spatial locality generally works well
in a 2D neighborhood. This allows tiled decompositions to perform quite well.

 Chapter 5. State Spaces, Types, and Variables

PTX ISA Version 1.1 19
10/24/2007

5.2. Types

5.2.1. Fundamental Types
In PTX, the fundamental types reflect the native data types supported by the target
architectures. A fundamental type specifies both a basic type and a size. Register variables
are always of a fundamental type, and instructions operate on these types. The same type-
size specifiers are used for both variable definitions and for typing instructions, so their
names are intentionally short.

The following table lists the fundamental type specifiers for each basic type:

Table 6. Fundamental Specifiers
Basic Type Fundamental Type Specifiers

Signed integer .s8, .s16, .s32, .s64
Unsigned integer .u8, .u16, .u32, .u64
Floating-point .f16, .f32, .f64
Bits (untyped) .b8, .b16, .b32, .b64
Predicate .pred

Most instructions have one or more type specifiers, needed to fully specify instruction
behavior. Operand types and sizes are checked against instruction types for compatibility.

Two fundamental types are compatible if they have the same basic type and are the same
size. Signed and unsigned integer types are compatible if they have the same size. The bit-
size type is compatible with any fundamental type having the same size.

In principle, all variables could be declared using only bit-size types, but typed variables
enhance program readability and allow for better operand type checking.

5.2.2. Restricted Use of Sub-word Sizes
The .u8 and .s8 types are restricted to ld, st, and cvt instructions. The ld and st instructions
also accept .b8 type. Byte-size integer load instructions zero- or sign-extended the value to
the size of the destination register.

The .f16 floating-point type is allowed only in conversions to and from .f32 and .f64 types.
All floating-point instructions operate only on .f32 and .f64 types.

Chapter 5. State Spaces, Types, and Variables

20 PTX ISA Version 1.1
 10/24/2007

5.3. Variables
In PTX, a variable declaration describes both the variable’s type and its state space. In
addition to fundamental types, PTX supports types for aggregate objects such as vectors,
arrays, structures and unions.

5.3.1. Variable Declarations
All storage for data is specified with variable declarations. Every variable must reside in one
of the state spaces enumerated in the previous section.

A variable declaration names the space in which the variable resides, its type and size, its
name, an optional array size, an optional initializer, and an optional fixed address for the
variable.

Examples:
 .global .u32 loc;
 .reg .s32 i = 0;
 .shared .f32 bias[] = {-1.0, 1.0};
 .local .u8 bg[4] = {0, 0, 0, 0};
 .reg .v3 .f32 accel;
 .struct float4 { .f32[4] v };
 .global float4 coord;

Note that texture and surface variables do not have an associated type and size.

5.3.2. Vectors
Limited-length vector types are supported. Vectors of length 2, 3, and 4 of any fundamental
type can be declared by prefixing the type with .v2, .v3, or .v4. Vectors must be based on a
fundamental type, and they may reside in the register space.

Examples:
 .global .v4 .f32 V; // a length-4 vector of floats
 .shared .v2 .u16 uv; // a length-2 vector of unsigned ints
 .reg .v4 .pred vpred; // a vector of predicates registers

 Chapter 5. State Spaces, Types, and Variables

PTX ISA Version 1.1 21
10/24/2007

5.3.3. Array Declarations
Array declarations are provided to allow the programmer to reserve space. To declare an
array, the variable name is followed with dimensional declarations similar to fixed-size array
declarations in C. The size of the dimension is either a constant expression, or is left empty,
being determined by an array initializer. Here are some examples:
 .local .u16 kernel[19][19];
 .shared .u8 mailbox[128];
 .shared .s32 offset[][] = { {-1, 0}, {0, -1}, {1, 0}, {0, 1} };

The size of the array specifies how many elements should be reserved. For the kernel
declaration above, 19*19 (361) halfwords are reserved (722 bytes).

5.3.4. Structures and Unions
A structure definition specifies a sequence of fields (consisting of a type/size and a name) as a
block of memory. This is analogous to the structures in C. Once defined, the structure can
be used as a type designator in subsequent variable declarations.

Example:
 .struct somestruct { .s32 i; .s32 j; .f32 x; .f32 y; };
 .global somestruct p;
 .reg .b32 ptr;
…
 ld.s32 r0, [p.x];
 mov.b32 ptr, p; // get address of structure p

Unions definitions use the same syntax as struct definitions, with the keyword .struct
replaced by .union. The difference between a struct and a union is that in a struct, the fields
are laid out sequentially in memory, while in a union, the fields all use the same memory.
Unions provide a way to reuse memory in a relatively type-safe manner. Here is an example
that provides storage for a float or an integer:
 .union intOrFloat { .s32 i; .f32 f; };

Structure and union declarations may be nested. The shortcut syntax of C++ with
anonymous unions is also supported.

Chapter 5. State Spaces, Types, and Variables

22 PTX ISA Version 1.1
 10/24/2007

5.3.5. Initializers
All declarations may specify an initial value for the variable being declared (including
predicates). The initializers follow the conventions of C/C++, where the variable name is
followed by an equals sign and the value or values for the initial values of the variable. A
scalar takes a single value; while vectors and arrays take nested lists of values inside of curly
braces (the nesting matches the dimensionality of the declaration). Structures take a list of
values that matches the fields in a structure.

Examples:
 .global .s32 n = 10;
 .shared .f16 blur_kernel[][]
 = {{.05,.1,.05},{.1,.4,.1},{.05,.1,.05}};
 .global .v3 .u8 rgb[3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};

Initializers for thread-private memory all initialize their variables to the same value. There is
no syntax for per-thread initializers.

5.3.6. Alignment
Byte alignment of storage for all addressable variables can be specified in the variable
declaration. Alignment is specified using an optional .align byte_count specifier immediately
following the space-state specifier. The variable will be aligned to an address which is an
integer multiple of byte_count. For arrays, structures, and unions, alignment specifies the
address alignment for the starting address of the entire structure, not for individual elements.

Examples:
// allocate array at 4-byte aligned address. Elements are bytes.
 .const .align 4 .b8 bar[8] = {0,0,0,0,2,0,0,0};

PTX ISA Version 1.1 23
10/24/2007

Chapter 6.
Instruction Operands

6.1. Operand Type Information
All operands in instructions have a known type from their declarations. Each operand type
must be compatible with the type determined by the instruction template and instruction
type. There is no automatic conversion between types.

The bit-size type is compatible with every type having the same size. Integer types of a
common size are compatible with each other. Operands having type different from but
compatible with the instruction type are silently cast to the instruction type.

6.2. Source Operands
The source operands are denoted in the instruction descriptions by the names a, b, and c.
PTX describes a load-store machine, so operands for ALU instructions must all be in
variables declared in the .reg register state space. For most operations, the sizes of the
operands must be consistent.

The cvt (convert) instruction takes a variety of operand types and sizes, as its job is to
convert from nearly any data type to any other data type (and size).

The ld, st, mov, and cvt instructions copy data from one location to another. Instructions ld
and st move data from/to addressable state spaces to/from registers. The mov instruction
copies data between registers.

Most instructions have an optional predicate guard that controls conditional execution, and a
few instructions have additional predicate source operands. Predicate operands are denoted
by the names p, q, r, s.

6.3. Destination Operands
PTX instructions that produce a single result store the result in the field denoted by d (for
destination) in the instruction descriptions. The result operand can be any declared variable,
array element, structure/union member, vector or vector element.

Chapter 6. Instruction Operands

24 PTX ISA Version 1.1
 10/24/2007

6.4. Using Addresses, Arrays,
Vectors, Structures, and
Unions
Using scalar variables as operands is straightforward. The interesting capabilities begin with
pointers, composite structures, and arrays.

6.4.1. Addresses as Operands
Address arithmetic is performed using integer arithmetic and logical instructions. Examples
include pointer arithmetic and pointer comparisons. All addresses and address
computations are byte-based; there is no support for C-style pointer arithmetic.

The mov instruction can be used to move the address of a variable into a pointer. Load and
store operations move data between registers and locations in addressable state spaces. The
syntax is similar to that used in many assembly languages, where scalar variables are simply
named and addresses are de-referenced by enclosing the address expression in square
brackets. Address expressions include variable names, address registers, address register plus
byte offset, and immediate address expressions which evaluate at compile-time to a constant
address.

Here are a few examples:
 .shared .u16 x;
 .reg .u16 r0;
 .global .v4 .f16 V;
 .reg .v4 .f16 W;
 .const .s32 tbl[256];
 .reg .b32 p;
 .reg .s32 q;

 ld.u16 r0,[x];
 ld.v4.f16 W, [V];
 ld.s32 q, [tbl+12];
 mov.b32 p, tbl;

 Chapter 6. Instruction Operands

PTX ISA Version 1.1 25
10/24/2007

6.4.2. Arrays as Operands
Arrays of all types can be declared, and the identifier becomes an address constant in the
space where the array is declared. The size of the array is a constant in the program.

Array elements can be accessed using an explicitly calculated byte address, or by indexing
into the array using square-bracket notation. The expression within square brackets is either
a constant integer, a register variable, or a simple “register with constant offset” expression,
where the offset is a constant expression that is either added or subtracted from a register
variable. If more complicated indexing is desired, it must be written as an address
calculation prior to use. Examples are
 ld.u32 s, a[0];
 ld.u32 s, a[N-1];
 mov.u32 s, a[1]; // move address of a[1] into s

6.4.3. Vectors as Operands
Vectors can be treated as a collection of elements simply by naming them. Vector variables
can typically replace scalar variables in most PTX instructions, and the meaning is to
perform the operation on an element-by-element basis.
 .reg .v4 .f16 v1, v2, v3;
 add.v4.s32 v3, v2, v1;

Vector elements can be extracted from the vector with the suffixes .0, .1, .2, and .3 or .x, .y,
.z and .w suffixes, as well as the typical color fields .r, .g, .b and .a.

Vectors can be swizzled or reordered with swizzling suffixes, which are a combination of the
digits or characters that represent the elements of a vector (0123, xyzw, rgba). The swizzling
suffixes allow arbitrary duplication and reordering of vector elements. Swizzling is allowed
only in mov instructions, and the source and destination must be distinct.

A brace-enclosed list is used for pattern matching to pull apart vectors. Wide loads and
stores can be specified to multiple targets using vector loads, specifying multiple scalars
within the brace-enclosed list. Here are some examples:
 .reg .v3 .f32 V;
 .reg .f32 a, b, c;
 mov.v3.f32 {a,b,c}, V;

Vector loads and stores can be used to implement wide loads and stores, which may improve
memory performance. The registers in the load/store operations can be a vector, or a brace-
enclosed list of similarly typed scalars. Here is an example:

ld.v4.f32 {a,b,c,d}, [Vmem];

Elements in a brace-enclosed vector, say {Ra, Rb, Rc, Rd}, correspond to extracted elements
as follows:
Ra = V.0 = V.x = V.r
Rb = V.1 = V.y = V.g
Rc = V.2 = V.z = V.b
Rd = V.3 = V.w = V.a

Chapter 6. Instruction Operands

26 PTX ISA Version 1.1
 10/24/2007

6.4.4. Structures and Unions as Operands
Structures and unions can only access their members; there are no instructions that take
entire structures as operands.

6.4.5. Immediate Values as Operands
Immediate values (or constants) can be used in most instructions. Only one immediate
operand is permitted in an instruction. In ALU instructions, it is typically the b or c
operand. In load and store instructions, an immediate offset to a register or an immediate
absolute address is permitted. In instruction with only one source operand, the source
operand may be an immediate. The size of the immediate value may be specified with a type
suffix like .u16, and defaults to the size of the instruction source operand.

For directly specifying IEEE-752 single and double precision floating point numbers, a
hexadecimal value may be used as an immediate operand in floating point operations. The
immediate value syntax is as follows:
0[fF]{hexdigit}{8} // single-precision floating point
0[dD]{hexdigit}{16} // double-precision floating point

Example:
 mov.f32 $f3, 0F3f800000; // 1.0

This format may also be used when initializing variables.

6.5. Type Conversion
All operands to all arithmetic, logic, and data movement instruction must be of the same
type and size, except for operations where changing the size and/or type is part of the
definition of the instruction. Operands of different sizes or types must be converted prior
to the operation.

6.5.1. Scalar Conversions
Table 6 shows what precision and format the cvt instruction uses given operands of differing
types. For example, if a cvt.s32.u16 instruction is given a u16 source operand and s32 as a
destination operand, the u16 is zero-extended to s32.

Conversions to floating-point that are beyond the range of floating-point numbers are
represented with the maximum floating-point value (IEEE Inf for f32 and f64, and ~131,000
for f16).

 Chapter 6. Instruction Operands

PTX ISA Version 1.1 27
10/24/2007

Table 7. CVT Instruction Precision and Format
Destination Format

s8 s16 s32 s64 u8 u16 u32 u64 f16 f32 f64

s8 - sext sext sext - sext sext sext s2f s2f s2f

s16 chop1 - sext sext chop1 - sext sext s2f s2f s2f

s32 chop1 chop1 - sext chop1 chop1 - sext s2f s2f s2f

s64 chop1 chop1 chop - chop1 chop1 chop - s2f s2f s2f

u8 - zext zext zext - zext zext zext u2f u2f u2f

u16 chop1 - zext zext chop1 - zext zext u2f u2f u2f

u32 chop1 chop1 - zext chop1 chop1 - zext u2f u2f u2f

u64 chop1 chop1 chop - chop1 chop1 chop - u2f u2f u2f

f16 f2s f2s f2s f2s f2u f2u f2u f2u - f2f f2f

f32 f2s f2s f2s f2s f2u f2u f2u f2u f2f - f2f

So
ur

ce
 F

or
m

at

f64 f2s f2s f2s f2s f2u f2u f2u f2u f2f f2f -

Notes

sext = sign extend; zext = zero-extend; chop = keep only low bits that fit;
s2f = signed-to-float; f2s = float-to-signed;
u2f = unsigned-to-float; f2u = float-to-unsigned;
f2f = float-to-float;

1 If the destination register is wider than the destination format, the result is extended to the
destination register width after chopping. The type of extension (sign or zero) is based on the
destination format. For example, cvt.s16.u32 targeting a 32-bit register will first chop to 16-bits,
then sign-extend to 32-bits.

Chapter 6. Instruction Operands

28 PTX ISA Version 1.1
 10/24/2007

6.5.2. Rounding Modes
Conversion instructions may specify a rounding modifier. In PTX, there are four integer
rounding modes and four floating-point rounding modes. The following tables summarize
the rounding modes.

Table 8. Floating-point Rounding Modes
Modifier Description

.rn mantissa LSB rounds to nearest even

.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

Table 9. Integer Rounding Modes
Modifier Description

.rni round to nearest integer, choosing even integer if source is equidistant
between two integers.

.rzi round to nearest integer in the direction of zero

.rmi round to nearest integer in direction of negative infinity

.rpi round to nearest integer in direction of positive infinity

 Chapter 6. Instruction Operands

PTX ISA Version 1.1 29
10/24/2007

6.5.3. Vector Conversions
Conversions between scalar values and vector values are supported, allowing operations like
adding the scalar value 1 to a vector. Scalar values are spread out to match the size of the
vector. Short vectors are zero-extended to longer vectors, and long vectors are truncated
when assigned to shorter vectors. The table below describes the conversions, where s is a
scalar value and v is a vector.

Table 10. Conversions Between Scalar Values
and Vector Values

Destination Scalar-Vector
Vector-Vector
Conversions scalar v2 v3 v4

scalar - [s, s] [s, s, s] [s, s, s, s]

v2 v.0 - [v.0, v.1, 0] [v.0, v.1, 0, 0]

v3 v.0 [v.0, v.1] - [v.0, v.1, v.2, 0]
Source

v4 v.0 [v.0, v.1] [v.0, v.1, v.2] -

Vector immediate values are specified similarly to aggregate initialization, but are not
necessary unless the values are different (scalars are spread automatically). Some examples
are shown below.
 .global .v3 .f32 V;
 add.v3.f32 V, V, 1;

Chapter 6. Instruction Operands

30 PTX ISA Version 1.1
 10/24/2007

6.6. Operand Costs
Operands from different state spaces affect the speed of an operation. Registers are fastest,
while global memory is slowest. Much of the delay to memory can be hidden in a number of
ways. The first is to have multiple threads of execution so that the hardware can issue a
memory operation and then switch to other execution. Another way to hide latency is to
issue the load instructions as early as possible, as execution is not blocked until the desired
result is used in a subsequent (in time) instruction. The register in a store operation is
available much more quickly. Table 11 gives estimates of the costs of using different kinds
of memory.

Table 11. Cost estimates for accessing state-spaces
Space Time Notes

Register 0

Shared 0

Constant 0 Amortized cost is low, first access is high

Local > 100 clocks

Parameter 0

Immediate 0

Global > 100 clocks

Texture > 100 clocks

Surface > 100 clocks

PTX ISA Version 1.1 31
10/24/2007

Chapter 7.
Instruction Set

7.1. Format and Semantics of
Instruction Descriptions
This section describes each PTX instruction. In addition to the name and the format of the
instruction, the semantics are described, followed by some examples that attempt to show
several possible instantiations of the instruction.

7.2. PTX Instructions
PTX instructions generally have from zero to four operands, plus an optional guard
predicate appearing after an ‘@’ symbol to the left of the opcode:

 @P opcode;

 @P opcode A;

 @P opcode D, A;

 @P opcode D, A, B;

 @P opcode D, A, B, C;

For instructions that create a result value, the D operand is the destination operand, while A,
B, and C are the source operands.

The setp instruction writes two destination registers. We use a ‘|’ symbol to separate
multiple destination registers.
 setp.s32.lt p|q, a, b; // p = (a < b); q = !(a < b);

For some instructions the destination operand is optional. A “bit bucket” operand denoted
with an underscore (‘_’) may be used in place of a destination register.

Chapter 7. Instruction Set

32 PTX ISA Version 1.1
 10/24/2007

7.3. Predicated Execution
In PTX, predicate registers are virtual and have .pred as the type specifier. So, predicate
registers can be declared as
 .reg .pred p, q, r

All instructions have an optional “guard predicate” which controls conditional execution of
the instruction. The syntax to specify conditional execution is to prefix an instruction with
“@[!]p”, where p is a predicate variable, optionally negated. Instructions without a guard
predicate are executed unconditionally.

Predicates are most commonly set as the result of a comparison performed by the SETP
instruction.

As an example, consider the high-level code
 if (i < n)
 j = j + 1;

This can be written in PTX as
 setp.lt.s32 p, i, n; // p = (i < n)
@p add.s32 j, j, 1; // if i < n, add 1 to j

To get a conditional branch or conditional function call, use a predicate to control the
execution of the branch or call instructions. To implement the above example as a true
conditional branch, the following PTX instruction sequence might be used:
 setp.lt.s32 p, i, n; // compare i to n
@!p bra L1; // if false, branch over
 add.s32 j, j, 1;
L1: …

 Chapter 7. Instruction Set

PTX ISA Version 1.1 33
10/24/2007

7.3.1. Comparisons

7.3.1.1. Integer and Bit-Size Comparisons
The signed integer comparisons are the traditional eq (equal), ne (not-equal), lt (less-than), le
(less-than-or-equal), gt (greater-than), and ge (greater-than-or-equal). The unsigned
comparisons are eq, ne, lo (lower), ls (lower-or-same), hi (higher), and hs (higher-or-same).
The bit-size comparisons are eq and ne; ordering comparisons are not defined for bit-size
types. The following table shows the operators for signed integer, unsigned integer, and bit-
size types.

Table 12. Operators for Signed Integer, Unsigned Integer, and Bit-
size Types

Meaning Signed Operator Unsigned Operator Bit-Size Operator
a == b EQ EQ EQ

a != b NE NE NE

a < b LT LO

a <= b LE LS

a > b GT HI

a >= b GE HS

7.3.1.2. Floating-point Comparisons
The ordered comparisons are eq, ne, lt, le, gt, ge. If either operand is NaN, the result is false.

Table 13. Floating-point Comparison Operators
Meaning Floating-Point Operator
a == b && !isNaN(a) && !isNaN(b) EQ

a != b && !isNaN(a) && !isNaN(b) NE

a < b && !isNaN(a) && !isNaN(b) LT

a <= b && !isNaN(a) && !isNaN(b) LE

a > b && !isNaN(a) && !isNaN(b) GT

a >= b && !isNaN(a) && !isNaN(b) GE

Chapter 7. Instruction Set

34 PTX ISA Version 1.1
 10/24/2007

To aid comparison operations in the presence of NaN values, unordered versions are
included: equ, neu, ltu, leu, gtu, geu. If both operands are numeric values (not NaN), then
these comparisons have the same result as their ordered counterparts. If either operand is
NaN, then the result of these comparisons is true.

Table 14. Floating-Point Comparison Operators Accepting NaN
Meaning Floating-Point Operator
a == b || isNaN(a) || isNaN(b) EQU

a != b || isNaN(a) || isNaN(b) NEU

a < b || isNaN(a) || isNaN(b) LTU

a <= b || isNaN(a) || isNaN(b) LEU

a > b || isNaN(a) || isNaN(b) GTU

a >= b || isNaN(a) || isNaN(b) GEU

To test for NaN values, two operators num (numeric) and nan (isNaN) are provided. num
returns true if both operands are numeric values (not NaN), and nan returns true if either
operand is NaN.

Table 15. Floating-Point Comparison Operators Testing for NaN
Meaning Floating-Point Operator
!isNaN(a) && !isNaN(b) NUM

isNaN(a) || isNaN(b) NAN

7.3.2. Manipulating Predicates
Predicate values may be computed and manipulated using the following instructions: and, or,
xor, not, and mov.

There is no direct conversion between predicates and integer values, and no direct way to
load or store predicate register values. However, setp can be used to generate a predicate
from an integer, and the predicate-based select (selp) instruction can be used to generate an
integer value based on the value of a predicate; for example:
 selp.u32 %r1,1,0,%p; // convert predicate to 32-bit value

 Chapter 7. Instruction Set

PTX ISA Version 1.1 35
10/24/2007

7.4. Type Information for
Instructions and Operands
Instructions that have a type must have a type suffix, e.g. add.u16 or add.f32. The operand
type must agree with the instruction type suffix. The bit-size types agree with any type of
the same size. For example, the add instruction requires type and size information to
properly perform the addition operation (signed, unsigned, float, different sizes), and this
information must be specified as a suffix to the opcode.

Example:
 add.u16 d, a, b; // perform a 16-bit unsigned add

Integer types are compatible provided they have the same size, and integer operands are
silently cast to the instruction type if needed. For example, an unsigned integer operand
used in a signed integer instruction will be treated as a signed integer by the instruction.

Example:
 .reg .u32 x;
 .reg .s32 a;

 neg.s32 a, x; // signed negation of x

Some instructions require multiple type and size declarations, most notably the data
conversion instruction cvt. It requires types for the result and source, and these are placed
in the same order as the operands. For example:
 cvt.f32.u16 d, a; // convert 16-bit unsigned to 32-bit float

7.5. Divergence of Threads in
Control Constructs
Threads in a CTA execute together, at least in appearance, until they come to a conditional
control construct such as a conditional branch, conditional function call, or conditional
return. If threads execute down different control flow paths, the threads are called divergent.
If all of the threads act in unison and follow a single control flow path, the threads are called
uniform. Both situations occur often in programs.

A CTA with divergent threads may have lower performance than a CTA with uniformly
executing threads, so it is important to have divergent threads reconverge as soon as
possible. All control constructs are assumed to be divergent points unless the control-flow
instruction is marked as uniform, using the .uni suffix. For divergent control flow, the
optimizing code generator automatically determines points of reconvergence. Therefore, a
compiler or code author targeting PTX can ignore the issue of divergent threads, but has the
opportunity to improve performance by marking branch points as uniform when the
compiler or author can guarantee that the branch point is non-divergent.

Chapter 7. Instruction Set

36 PTX ISA Version 1.1
 10/24/2007

7.6. Semantics
The goal of the semantic description of an instruction is to describe the results in all cases in
as simple language as possible. The semantics are described using C, until C is not
expressive enough.

7.6.1. Machine-specific Semantics of 16-bit Code
A PTX program may execute on a GPU with either a 16-bit or a 32-bit datapath. When
executing on a 32-bit datapath, 16-bit registers in PTX are mapped to 32-bit physical
registers, and 16-bit computations are “promoted” to 32-bit computations. This can lead to
computational differences between code run on a 16-bit machine versus the same code run
on a 32-bit machine, since the “promoted” computation may have bits in the high-order
half-word of registers that are not present in 16-bit physical registers. These extra precision
bits can become visible at the application level, for example, by a right-shift instruction.

At the PTX language level, one solution would be to define semantics for 16-bit code that is
consistent with execution on a 16-bit datapath. This approach introduces a performance
penalty for 16-bit code executing on a 32-bit datapath, since the translated code would
require many additional masking instructions to suppress extra precision bits in the high-
order half-word of 32-bit registers.

Rather than introduce a performance penalty for 16-bit code running on 32-bit GPUs, the
semantics of 16-bit instructions in PTX is machine-specific. A compiler or programmer may
chose to enforce portable, machine-independent 16-bit semantics by adding explicit
conversions to 16-bit values at appropriate points in the program to gurantee portability of
the code. However, for many performance-critical applications, this is not desirable, and for
many applications the difference in execution is preferable to limiting performance.

 Chapter 7. Instruction Set

PTX ISA Version 1.1 37
10/24/2007

7.7. Instructions
All PTX instructions may be predicated. In the following descriptions, the optional guard
predicate is omitted from the syntax.

7.7.1. Arithmetic Instructions
Arithmetic instructions operate on the numeric types in register, vector, and constant
immediate forms. The arithmetic instructions are:

 ADD

 SUB

 MUL

 MAD

 MUL24

 MAD24

 SAD

 DIV

 REM

 ABS

 NEG

 MIN

 MAX

Chapter 7. Instruction Set

38 PTX ISA Version 1.1
 10/24/2007

Table 16. Arithmetic Instructions: ADD
ADD Add two values

Syntax add[.rnd][.sat].type d, a, b;

.type = { .u16, .u32, .u64,
 .s16, .s32, .s64,
 .f32, .f64 };

Description Performs addition and writes the resulting value into a destination register.

Semantics d = a + b;

Integer Notes No integer rounding modes.

Saturation modifier:
.sat limits result to MININT..MAXINT (no overflow) for the size of the operation.

Applies only to .s32 type.

Floating Point
Notes

Rounding modes (default is .rn):
.rn mantissa LSB rounds to nearest even
.rz mantissa LSB rounds towards zero

Saturation modifier:
.sat limits result to (0.0, 1.0).

Applies only to .f32 type.

Examples @p add.u32 x,y,z;
 add.sat.s32 c,c,1;
 add.rz.f32 f1,f2,f3;

Table 17. Arithmetic Instructions: SUB
SUB Subtract one value from another

Syntax sub[.rnd][.sat].type d, a, b;
.type = { .u16, .u32, .u64,
 .s16, .s32, .s64,
 .f32, .f64 };

Description Performs subtraction and writes the resulting value into a destination register.

Semantics d = a – b;

Integer Notes No integer rounding modes.

Saturation modifier:
.sat limits result to MININT..MAXINT (no overflow) for the size of the operation.

Applies only to .s32 type.

Floating Point
Notes

Rounding modes (default is .rn):
.rn mantissa LSB rounds to nearest even
.rz mantissa LSB rounds towards zero

Saturation modifier:
.sat limits result to (0.0, 1.0).

Applies only to .f32 type.

Examples sub.s32 c,a,b;

 Chapter 7. Instruction Set

PTX ISA Version 1.1 39
10/24/2007

Table 18. Arithmetic Instructions: MUL
MUL Multiply two values

Syntax mul[.hi,.lo,.wide][.rnd][.sat].type d, a, b;

.type = { .u16, .u32, .u64,

 .s16, .s32, .s64,

 .f32, .f64 };

Description Compute the product of two values.

Semantics t = a * b;
n = bitwidth of type;
d = t; // for floating-point and .wide
d = t<2n-1..n>; // for .hi variant
d = t<n-1..0>; // for .lo variant

Integer Notes The type of the operation represents the types of the a and b operands. If .hi or .lo is
specified, then d is the same size as a and b, and either the upper or lower half of the
result is written to the destination register. If .wide is specified, then d is twice as wide
as a and b to receive the full result of the multiplication.

The .wide suffix is supported only for 16- and 32-bit integer types.
No integer rounding modes.
No integer saturation.

Floating Point
Notes

For floating-point multiplication, all operands must be the same size.

Rounding modes (default is .rn):
.rn mantissa LSB rounds to nearest even
.rz mantissa LSB rounds towards zero

Saturation modifier:
.sat limits result to (0.0, 1.0).

Applies only to .f32 type.

Examples mul.wide.s16 fa,fxs,fys; // 16*16 bits yields 32 bits

 mul.lo.s16 fa,fxs,fys; // 16*16 bits, save only the low 16 bits

 mul.wide.s32 z,x,y; // 32*32 bits, creates 64 bit result

 mul.f32 circumf,radius,pi // a single-precision multiply

Chapter 7. Instruction Set

40 PTX ISA Version 1.1
 10/24/2007

Table 19. Arithmetic Instructions: MAD
MAD Multiply two values and add a third value

Syntax mad[.hi,.lo,.wide][.sat].type d, a, b, c;

.type = { .u16, .u32, .u64,

 .s16, .s32, .s64,

 .f32, .f64 };

Description Multiplies two values and adds a third, and then writes the resulting value into a
destination register.

Semantics t = a * b;

n = bitwidth of type;

d = t + c; // for floating-point and .wide

d = t<2n-1..n> + c; // for .hi variant

d = t<n-1..0> + c; // for .lo variant

Integer Notes The type of the operation represents the types of the a and b operands. If .hi or .lo is
specified, then d and c are the same size as a and b, and either the upper or lower half
of the result is written to the destination register. If .wide is specified, then d and c are
twice as wide as a and b to receive the result of the multiplication.

The .wide suffix is supported only for 16- and 32-bit integer types.
No integer rounding modes.

Saturation modifier:
.sat limits result to MININT..MAXINT (no overflow) for the size of the operation.

Applies only to .s32 type in .hi mode.

Floating Point
Notes

Saturation modifier:
.sat limits result to (0.0, 1.0).

Applies only to .f32 type.

Examples mad.lo.s32 d,a,b,c;

 mad.lo.s32 r,p,q,r;

@p mad.f32 d,a,b,c;

 Chapter 7. Instruction Set

PTX ISA Version 1.1 41
10/24/2007

Table 20. Arithmetic Instructions: MUL24
MUL24 Multiply two 24-bit integer values

Syntax mul24[.hi,.lo].type d, a, b;

.type = { .u32, .s32 };

Description Compute the product of two 24-bit integer values held in 32-bit source registers, and
return either the high or low 32-bits of the 48-bit result.

Semantics t = a * b;

d = t<47..16>; // for .hi variant

d = t<31..0>; // for .lo variant

Notes Integer multiplication yields a result that is twice the size of the input operands, i.e. 48-
bits.
mul24.hi performs a 24x24-bit multiply and returns the high 32 bits of the 48-bit result.
mul24.lo performs a 24x24-bit multiply and returns the low 32 bits of the 48-bit result.
All operands are of the same type and size.
No saturation.
mul24.hi may be less efficient on machines without hardware support for 24-bit
multiply.

Examples mul24.lo.s32 d,a,b; // low 32-bits of 24x24-bit
 signed multiply.

Table 21. Arithmetic Instructions: MAD24
MAD24 Multiply two 24-bit integer values and add a third value.

Syntax mad24[.hi,.lo][.sat].type d, a, b, c;

.type = { .u32, .s32 };

Description Compute the product of two 24-bit integer values held in 32-bit source registers, and
add a third, 32-bit value to either the high or low 32-bits of the 48-bit result. Return
either the high or low 32-bits of the 48-bit result.

Semantics t = a * b;

d = t<47..16> + c; // for .hi variant

d = t<31..0> + c; // for .lo variant

Notes Integer multiplication yields a result that is twice the size of the input operands, i.e. 48-
bits.
mad24.hi performs a 24x24-bit multiply and adds the high 32 bits of the 48-bit result to
a third value.
mad24.lo performs a 24x24-bit multiply and adds the low 32 bits of the 48-bit result to
a third value. All operands are of the same type and size.

Saturation modifier:
.sat limits result of 32-bit signed addition to MININT..MAXINT (no overflow).

Applies only to .s32 type in .hi mode.

mad24.hi may be less efficient on machines without hardware support for 24-bit
multiply.

Examples mad24.lo.s32 d,a,b,c; // low 32-bits of 24x24-bit
 signed multiply.

Chapter 7. Instruction Set

42 PTX ISA Version 1.1
 10/24/2007

Table 22. Arithmetic Instructions: SAD
SAD Sum of absolute differences.

Syntax sad.type d, a, b, c;

.type = { .u16, .u32, .u64,
 .s16, .s32, .s64,
 .f32, .f64 };

Description Adds the absolute value of a-b to c and writes the resulting value into a destination
register.

Semantics d = c + ((a<b) ? (b-a) : (a-b));

Examples sad.s32 d,a,b,c;

 sad.u32 d,a,b,d; // running sum

 sad.f32 w,x,y,z;

Table 23. Arithmetic Instructions: DIV
DIV Divide one value by another.

Syntax div[.wide][.sat].type d, a, b;

.type = { .u16, .u32, .u64,

 .s16, .s32, .s64,

 .f32, .f64 };

Description Divides a by b, stores result in d.

Semantics d = a / b;

Integer Notes The .wide suffix specifies that a is twice the size of b and d. Otherwise, all three
operands are the same size.
The .wide suffix is supported only for 16- and 32-bit integer types.
Division by zero yields an unspecified, machine-specific value.
No integer saturation.

Floating Point
Notes

Division by zero creates a value of infinity (with same sign as a).
Division rounds to nearest even.
Saturation modifier:
.sat limits result to (0.0, 1.0).

Applies only to .f32 type.

Release Notes div.wide and div.{u64,s64} are unimplemented.

Examples div.s32 b,n,i;

 div.wide.s32 d,an_s64_var,b;

 div.f32 diam,circum,3.14159;

 Chapter 7. Instruction Set

PTX ISA Version 1.1 43
10/24/2007

Table 24. Arithmetic Instructions: REM
REM The remainder of integer division.

Syntax rem[.wide].type d, a, b;

.type = { .u16, .u32, .u64,
 .s16, .s32, .s64 };

Description Divides a by b, store the remainder in d.

Semantics d = a % b;

Integer Notes The .wide suffix specifies that a is twice the size of b and d. Otherwise, all three
operands are the same size.
The .wide suffix is supported only for 16- and 32-bit integer types.

The behavior for negative numbers is machine-dependent and depends on whether
divide rounds towards zero or negative infinity.

Floating Point
Notes

No floating-point support.

Release Notes rem.wide and rem.{u64,s64} are unimplemented.
Examples rem.s32 x,x,8; // x = x%8;

Table 25. Arithmetic Instructions: ABS
ABS Absolute value.

Syntax abs.type d, a;

.type = { .s16, .s32, .s64,
 .f32, .f64 };

Description Take the absolute value of a and store it in d.

Semantics d = |a|;

Examples abs.s32 r0,a;

 abs.f32 x,f0;

Table 26. Arithmetic Instructions: NEG
NEG Arithmetic negate.

Syntax neg.type d, a;

.type = { .s16, .s32, .s64,
 .f32, .f64 };

Description Subtract a from zero and store the result in d.

Semantics d = 0-a;

Notes Only for signed integers and floating-point numbers.

Examples neg.s32 r0,a;

 neg.f32 x,f0;

Chapter 7. Instruction Set

44 PTX ISA Version 1.1
 10/24/2007

Table 27. Arithmetic Instructions: MIN
MIN Find the minimum of two values.

Syntax max.type d, a, b;

.type = { .u16, .u32, .u64,
 .s16, .s32, .s64,
 .f32, .f64 };

Description Store the minimum of a and b in d.

Semantics d = (a < b) ? a : b; // Integer (signed and unsigned)

d = isNaN(a) ? b : isNan(b) ? a : (a < b) ? a : b; // FP

Integer Notes Signed and unsigned differ.

Floating Point
Notes

If either source operand is NaN, then the result is the other operand.

Examples min.s32 r0,a,b;

@p min.u16 h,i,j;

 min.f32 z,z,x;

Table 28. Arithmetic Instructions: MAX
MAX Find the maximum of two values.

Syntax min.type d, a, b;

.type = { .u16, .u32, .u64,

 .s16, .s32, .s64,

 .f32, .f64 };

Description Store the maximum of a and b in d.

Semantics d = (a > b) ? a : b; // Integer (signed and unsigned)

d = isNan(a) ? b : isNan(b) ? a : (a > b) a : b; // FP

Integer Notes Signed and unsigned differ.

Floating Point
Notes

If either source operand is NaN, then the result is the other operand.

Examples max.f32 f0,f1,f2;

 max.u32 d,a,b;

 max.s32 q,q,0;

 Chapter 7. Instruction Set

PTX ISA Version 1.1 45
10/24/2007

7.7.2. Comparison and Selection Instructions
The comparison select instructions are:

 SET
 SETP
 SELP
 SLCT

Chapter 7. Instruction Set

46 PTX ISA Version 1.1
 10/24/2007

Table 29. Comparison and Selection Instructions: SET

SET Compare two numeric values with a relational operator, and optionally combine this
result with a predicate value by applying a Boolean operator.

Syntax set.CmpOp.dtype.stype d, a, b;
set.CmpOp.BoolOp.dtype.stype d, a, b, [!]c;

.dtype = { .u32, .s32, .f32 };

.stype = { .b16, .b32, .b64,
 .u16, .u32, .u64,
 .s16, .s32, .s64,
 .f32, .f64 };

Description Compares two numeric values and optionally combines the result with another
predicate value by applying a Boolean operator. If this result is True, 1.0f is written for
floating-point destination types, and 0xFFFFFFFF is written for integer destination
types. Otherwise, 0x00000000 is written.

The comparison operator is a suffix on the instruction, and can be one of:
eq, ne, lt, le, gt, ge
lo, ls, hi, hs
equ, neu, ltu, leu, gtu, geu
num, nan

The Boolean operator BoolOp(A,B) is one of: and, or, xor

Semantics t = (a CmpOp b) ? 1 : 0;
if (isFloat(dtype))

 d = BoolOp(t, c) ? 1.0f : 0x00000000;

else

 d = BoolOp(t, c) ? 0xFFFFFFFF : 0x00000000;

Integer Notes The signed and unsigned comparison operators are eq, ne, lt, le, gt, ge.

For unsigned values, the comparison operators lo, ls, hi, and hs for lower, lower-or-
same, higher, and higher-or-same may be used instead of lt, le, gt, ge,
respectively.

The untyped, bit-size comparisons are eq and ne.

Floating Point
Notes

The ordered comparisons are eq, ne, lt, le, gt, ge. If either operand is NaN,
the result is false.

To aid comparison operations in the presence of NaN values, unordered versions are
included: equ, neu, ltu, leu, gtu, geu. If both operands are numeric values
(not NaN), then these comparisons have the same result as their ordered counterparts.
If either operand is NaN, then the result of these comparisons is true.

num returns true if both operands are numeric values (not NaN), and nan returns true if
either operand is NaN.

Examples set.lt.and.f32.s32 d,a,b,r;
 set.eq.u32.u32 d,i,n;

 Chapter 7. Instruction Set

PTX ISA Version 1.1 47
10/24/2007

Table 30. Comparison and Selection Instructions: SETP

SETP Compare two numeric values with a relational operator, and (optionally) combine this
result with a predicate value by applying a Boolean operator.

Syntax setp.CmpOp.type p[|q], a, b;

setp.CmpOp.BoolOp.type p[|q], a, b, [!]c;

.type = { .b16, .b32, .b64,

 .u16, .u32, .u64,

 .s16, .s32, .s64,

 .f32, .f64 };

Description Compares two values and combines the result with another predicate value by applying
a Boolean operator. This result is written to the first destination operand. A related
value computed using the complement of the compare result is written to the second
destination operand.

Applies to all numeric types. The destinations p and q must be .pred variables.

The comparison operator is a suffix on the instruction, and can be one of:
eq, ne, lt, le, gt, ge
lo, ls, hi, hs
equ, neu, ltu, leu, gtu, geu
num, nan

The Boolean operator BoolOp(A,B) is one of: and, or, xor

Semantics t = (a CmpOp b) ? 1 : 0;

p = BoolOp(t, c);

q = BoolOp(!t, c);

Integer Notes The signed and unsigned comparison operators are eq, ne, lt, le, gt, ge.

For unsigned values, the comparison operators lo, ls, hi, and hs for lower, lower-
or-same, higher, and higher-or-same may be used instead of lt, le, gt, ge,
respectively.

The untyped, bit-size comparisons are eq and ne.

Floating Point
Notes

The ordered comparisons are eq, ne, lt, le, gt, ge. If either operand is NaN,
the result is false.

To aid comparison operations in the presence of NaN values, unordered versions are
included: equ, neu, ltu, leu, gtu, geu. If both operands are numeric values
(not NaN), then these comparisons have the same result as their ordered counterparts.
If either operand is NaN, then the result of these comparisons is true.

num returns true if both operands are numeric values (not NaN), and nan returns true if
either operand is NaN.

Examples setp.lt.and.s32 p|q,a,b,r;

 setp.eq.u32 p,i,n;

Chapter 7. Instruction Set

48 PTX ISA Version 1.1
 10/24/2007

Table 31. Comparison and Selection Instructions: SELP
SELP Select between source operands, based on the value of the predicate source operand.

Syntax selp.type d, a, b, c;

.type = { .b16, .b32, .b64,
 .u16, .u32, .u64,
 .s16, .s32, .s64,
 .f32, .f64 };

Description Conditional selection. If c is True, a is stored in d, b otherwise. Operands d, a, and b
must be of the same type. Operand c is a predicate.

Semantics d = (c == 1) ? a : b;

Examples selp.s32 r0,r,g,p;

 selp.f32 f0,t,x,xp;

Table 32. Comparison and Selection Instructions: SLCT
SLCT Select one source operand, based on the sign of the third operand.

Syntax slct.dtype.ctype d, a, b, c;

.dtype = { .b16, .b32, .b64,
 .u16, .u32, .u64,
 .s16, .s32, .s64,
 .f32, .f64 };
.ctype = { .s32, .f32 };

Description Conditional selection. If c>=0, a is stored in d, b otherwise. Operands d, a, and b are
treated as a bitsize type of the same width as the first instruction type; operand c must
match the second instruction type.

Semantics d = (c >= 0) ? a : b;

For .f32 comparisons, if operand c is a denorm, it is flushed to zero, resulting in
selection of operand a. If operand c is NaN, the comparison is unordered and operand
b is selected.

Floating Point
Notes

For .f32 data selections, denorm results are flushed to zero.

Examples slct.u32.s32 x, y, z, val;

 slct.u64.f32 A, B, C, fval;

 Chapter 7. Instruction Set

PTX ISA Version 1.1 49
10/24/2007

7.7.3. Logic and Shift Instructions
The logic and shift instructions are fundamentally untyped, performing bit-wise operations
on operands of any type, provided the operands are of the same size. This permits bit-wise
operations on floating point values without having to define a union to access the bits.
Instructions and, or, xor, and not also operate on predicates.

The logical shift instructions are:

 AND

 OR

 XOR

 NOT

 CNOT

 SHL

 SHR

Table 33. Logic and Shift Instructions: AND
AND Bitwise AND.

Syntax and.type d, a, b;

.type = { .pred, .b16, .b32, .b64 };

Description Compute the bit-wise and operation for the bits in a and b.

Semantics d = a & b;

Notes The size of the operands must match, but not necessarily the type.
Allowed types include predicate registers.

Examples and.b32 x,q,r;

 and.b32 sign,fpvalue,0x80000000;

Table 34. Logic and Shift Instructions: OR
OR Bitwise OR.

Syntax or.type d, a, b;

.type = { .pred, .b16, .b32, .b64 };

Description Compute the bit-wise or operation for the bits in a and b.

Semantics d = a | b;

Notes The size of the operands must match, but not necessarily the type.
Allowed types include predicate registers.

Examples or.b32 mask mask,0x00010001

 or.pred p,q,r;

Chapter 7. Instruction Set

50 PTX ISA Version 1.1
 10/24/2007

Table 35. Logic and Shift Instructions: XOR
XOR Bitwise exclusive-OR (inequality).

Syntax xor.type d, a, b;

.type = { .pred, .b16, .b32, .b64 };

Description Compute the bit-wise exclusive-or operation for the bits in a and b.

Semantics d = a ^ b;

Notes The size of the operands must match, but not necessarily the type.
Allowed types include predicate registers.

Examples xor.b32 d,q,r;
 xor.b16 d,x,0x0001;

Table 36. Logic and Shift Instructions: NOT
NOT Bitwise negation; one’s complement.

Syntax not.type d, a;

.type = { .pred, .b16, .b32, .b64 };

Description Invert the bits in a.

Semantics d = ~a;

Notes The size of the operands must match, but not necessarily the type.
Allowed types include predicates.

Examples not.b32 mask,mask;
 not.pred p,q;

Table 37. Logic and Shift Instructions: CNOT
CNOT C/C++ style logical negation.

Syntax xor.type d, a, b;

.type = { .pred, .b16, .b32, .b64 };

Description Compute the logical negation using C/C++ semantics.

Semantics d = (a==0) ? 1 : 0;

Notes The size of the operands must match, but not necessarily the type.

Examples cnot.b32 d,a;

 Chapter 7. Instruction Set

PTX ISA Version 1.1 51
10/24/2007

Table 38. Logic and Shift Instructions: SHL
SHL Shift bits left, zero-fill on right.

Syntax shl.type d, a, b;

.type = { .b16, .b32, .b64 };

Description Shift a left by the amount specified by b.

Semantics d = a << b;

Notes Shift amounts greater than the register width N are clamped to N.
The size of the operands must match, but not necessarily the type.

Examples shl.b32 q,a,2;

Table 39. Logic and Shift Instructions: SHR
SHR Shift bits right, sign or zero fill on left.

Syntax shr.type d, a, b;

.type = { .b16, .b32, .b64,

 .u16, .u32, .u64,

 .s16, .s32, .s64 };

Description Shift a right by the amount specified by b. Signed shifts fill with the sign bit, unsigned
and untyped shifts fill with 0.

Semantics d = a >> b;

Notes Shift amounts greater than the register width N are clamped to N.
Bit-size types are included for symmetry with SHL.

Examples shr.u16 c,a,2;

 shr.s32 i,i,1;

 shr.b16 k,i,j;

Chapter 7. Instruction Set

52 PTX ISA Version 1.1
 10/24/2007

7.7.4. Data Movement and Conversion Instructions
These instructions copy data from place to place, and from state space to state space,
possibly converting it from one format to another.

The Data Movement and Conversion Instructions are:

 MOV

 LD

 ST

 CVT

Table 40. Data Movement and Conversion Instructions: MOV
MOV Set a register variable with the value of a register variable or an immediate value.

Syntax mov.type d, a;
mov.type d, sreg; // sizes must match
mov.type d, avar; // move address of variable into
destination reg

.type = { .pred,
 .b16, .b32, .b64,
 .u16, .u32, .u64,
 .s16, .s32, .s64,
 .f32, .f64 };

Description Write register d with the value of a.
Operand a may be a register, special register, immediate, or addressable variable.

Semantics d = a;

Notes Although only predicate and bit-size types are required, we include the arithmetic types
for the programmer’s convenience: their use enhances program readability and allows
additional type checking.

Examples mov.f32 d,a;
 mov.u16 u,v;
 mov.f32 k,0.1;
 mov.u32 ptr, A; // move address of A into ptr
 mov.u32 ptr, A[5]; // move address of A[5] into ptr

 Chapter 7. Instruction Set

PTX ISA Version 1.1 53
10/24/2007

Table 41. Data Movement and Conversion Instructions: LD
LD Load a register variable from an addressable state space variable.

Syntax ld.space.type d,[a]; // load from address
ld.space.vec.type d,[a]; // vector load from address

ld.volatile.space.type d,[a]; // load from address
ld.volatile.space.vec.type d,[a]; // vector load from address

.space = { .const, .global, .local, .param, .shared };

.vec = { .v2, .v3, .v4 };

.type = { .b8, .b16, .b32, .b64,
 .u8, .u16, .u32, .u64,
 .s8, .s16, .s32, .s64,
 .f32, .f64 };

Description Load register variable d from the location specified by the source address operand a.

The addressable operand a is one of:
[avar] the name of an addressable variable var,
[areg] a register reg containing a byte address,
[areg+immOff] a sum of register reg containing a byte address plus a constant integer

byte offset (signed, 32-bit), or
[immAddr] an immediate absolute byte address (unsigned, 32-bit).

The address size may be either 32-bit or 64-bit. Addresses are zero-extended to the
specified width as needed, and truncated if the register width exceeds the state space
address width for the target architecture.

The instruction must carry a .space suffix. A register containing an address may be
declared as a bit-size type or integer type.

ld.volatile may be used with .global and .shared spaces to inhibit optimization of
references to volatile memory. This may be used, for example, to enforce sequential
consistency between threads accessing shared memory.

Semantics d = a; // named variable a

d = *a; // register

d = *(a+immOff); // register-plus-offset

d = *(immAddr); // immediate address

Notes Destination d must be in the .reg state space.
For integer loads, if the destination register is wider than the specified type, the value
loaded is extended to the destination register width. The type of extension (sign or
zero) is determined by the .type field.
.f16 data may be loaded using ld.b16, and then converted to .f32 or .f64 using cvt.

Examples ld.global.f32 d,[a];

 ld.shared.b32 d,[p];

 ld.const.s32 d,[p+4];

 ld.global.v4.f32 Q,[p];

 ld.local.b64 x,[240];

Chapter 7. Instruction Set

54 PTX ISA Version 1.1
 10/24/2007

Table 42. Data Movement and Conversion Instructions: ST
ST Store a register variable to an addressable state space variable.

Syntax st.space.type [d],a; // store to address
st.space.vec.type [d],a; // vector store to address

st.volatile.space.type [d],a; // store to address
st.volatile.space.vec.type [d],a; // vector store to address

.space = {.global, .local, .shared };

.vec = { .v2, .v3, .v4 };

.type = { .b8, .b16, .b32, .b64,
 .u8, .u16, .u32, .u64,
 .s8, .s16, .s32, .s64,
 .f32, .f64 };

Description Store the value of register variable a in the location specified by the destination address
operand d.

The addressable operand d is one of:
[var] the name of an addressable variable var,
[reg] a register reg containing a byte address,
[reg+immOff] a sum of register reg containing a byte address plus a constant integer

byte offset (signed, 32-bit), or
[immAddr] an immediate absolute byte address (unsigned, 32-bit).

The address size may be either 32-bit or 64-bit. Addresses are zero-extended to the
specified width as needed, and truncated if the register width exceeds the state space
address width for the target architecture.

The instruction must carry a .space suffix. A register containing an address may be
declared as a bit-size type or integer type.

st.volatile may be used with .global and .shared spaces to inhibit optimization of
references to volatile memory. This may be used, for example, to enforce sequential
consistency between threads accessing shared memory.

Semantics d = a; // named variable d
*d = a; // register
*(d+immOffset) = a; // register-plus-offset
*(immAddr) = a; // immediate address

Notes Operand a must be in the .reg state space.

.f16 data resulting from a cvt instruction may be stored using st.b16.

Examples st.global.f32 [d],a;

 st.local.b32 [q+4],a;

 st.global.v4.s32 [p],Q;

 st.shared.s32 [100],r7;

 Chapter 7. Instruction Set

PTX ISA Version 1.1 55
10/24/2007

Table 43. Data Movement and Conversion Instructions: CVT
CVT Convert a value from one type to another.

Syntax cvt[.rnd][.sat].dtype.atype d, a;

.dtype = .atype = { .u8, .u16, .u32, .u64,
 .s8, .s16, .s32, .s64,
 .f16, .f32, .f64 };

Description Convert between different types and sizes.
See the Integer and Floating-point Notes below for details of rounding modes.

Semantics d = convert(a);

Integer Notes Integer rounding is required for float-to-integer conversions, and for same-size float-to-
float conversions where the value is rounded to an integer. Integer rounding is illegal in
all other instances.
Integer rounding modes:
.rni round to nearest integer, choosing even integer if source is equidistant between

two integers.
.rzi round to nearest integer in the direction of zero
.rmi round to nearest integer in direction of negative infinity
.rpi round to nearest integer in direction of positive infinity

Saturation modifier:
.sat limits result to MININT..MAXINT (no overflow) for the size of the operation.

Applies to both signed and unsigned integer types.

Floating Point
Notes

Floating-point rounding is required for float-to-float conversions that result in loss of
precision, and for integer-to-float conversions. Floating-point rounding is illegal in all
other instances.
Floating-point rounding modes:
.rn mantissa LSB rounds to nearest even
.rz mantissa LSB rounds towards zero
.rm mantissa LSB rounds towards negative infinity
.rp mantissa LSB rounds towards positive infinity

A floating-point value may be rounded to an integral value using the integer rounding
modes (see Integer Notes). The operands must be of the same size. The result is an
integral value, stored in floating-point format.

Saturation modifier:
.sat limits result to (0.0, 1.0).

Applies to .f16, .f32, and .f64 types.
NaN is preserved, except for .f16 (no NaN available).

Examples cvt.f32.s32 f,i;

 cvt.sat.s32.f64 j,r;

 cvt.rni.f32.f32 x,y; // round fp val to nearest int, result
is fp

Chapter 7. Instruction Set

56 PTX ISA Version 1.1
 10/24/2007

7.7.5. Texture Instruction

Table 44. Texture Instruction: TEX
TEX Perform a texture memory lookup.

Syntax tex.geom.dtype.btype d, a, b;

.geom = { .1d, .2d, .3d };

.dtype =

.btype = { .b16, .b32, .b64,
 .u16, .u32, .u64,
 .s16, .s32, .s64,
 .f32, .f64 };

Description Texture lookup using a texture coordinate vector.

Examples tex.3d.v4.s32.f32 {r1,r2,r3,r4},tex_a,{f1,f2,f3};

 tex.1d.v4.s32.f32 {r1,r2,r3,r4},tex_a,{f1};

 Chapter 7. Instruction Set

PTX ISA Version 1.1 57
10/24/2007

7.7.6. Control Flow Instructions
The following PTX instructions and syntax are for controlling execution in a PTX program:

 { }

 @

 BRA

 CALL

 RET

 EXIT

Table 45. Control Flow Instructions: { }
{ } Instruction grouping.

Syntax { instructionList }

Description The curly braces create a group of instructions, used primarily for defining a function
body. The curly braces also provide a mechanism for determining the scope of a
variable: any variable declared within a scope is not available outside the scope.

Examples { add.s32 a,b,c; mov.s32 d,a; }

Table 46. Control Flow Instructions: @
@ Predicated execution.

Syntax @[!]p instruction;

Description Execute an instruction or instruction block for threads that have the guard predicate
true. Threads with a false guard predicate do nothing.

Semantics If [!]p then instruction

Examples setp.eq.f32 p,y,0; // is y zero?

@!p div.f32 ratio,x,y // avoid division by zero

@q bra L23; // conditional branch

Chapter 7. Instruction Set

58 PTX ISA Version 1.1
 10/24/2007

Table 47. Control Flow Instructions: BRA
BRA Branch to a target and continue execution there.

Syntax bra[.uni] target;

Description Continue execution at the target. Conditional branches are specified with the ‘@’
prefix.

Semantics pc = target;

Notes A bra is assumed to be divergent unless the .uni suffix is present, indicating that the
branch is guaranteed to be non-divergent.

Release Notes Indirect branch through a register is unimplemented.

Examples setp.eq.f32 p,y,0; // is y zero?

@!p div.f32 ratio,x,y // avoid division by zero

@q bra L23; // conditional branch

Table 48. Control Flow Instructions: CALL
CALL Call a function, recording the return location.

Syntax call[.uni] fname;
call[.uni] fname, (param-list);
call[.uni] (ret-param), fname, (param-list);

Description Call a function, storing current execution information for subsequent return.

Notes The call instruction stores the address of the next instruction, so execution can resume
at that point after executing a RET instruction.

The called location can be either a symbolic function name or an address held in a
register.

A call is assumed to be divergent unless the .uni suffix is present, indicating that the
call is guaranteed to be non-divergent.

Input and return parameters are optional. Parameters must be of register type, and
parameters are pass-by-value. In the current ptx release, parameters are passed
through statically allocated ptx registers; i.e., there is no support for recursive calls..

Release Notes Indirect call through a register is unimplemented.

Examples call init; // call function ‘init’

 call.uni g, (a); // call function ‘g’ with parameter ‘a’

@p call (d), h, (a, b); // return value into register d

 Chapter 7. Instruction Set

PTX ISA Version 1.1 59
10/24/2007

Table 49. Control Flow Instructions: RET
RET Return from function to instruction after call.

Syntax ret[.uni];

Description Return execution to caller’s environment. A divergent return suspends threads until all
threads are ready to return to the caller. This allows multiple divergent “ret”
instructions.

Notes A ret is assumed to be divergent unless the .uni suffix is present, indicating that the
return is guaranteed to be non-divergent.
Any values returned from a function should be moved into the return parameter register
variables prior to executing the RET instruction.
A return instruction executed in a top-level entry routine will terminate thread execution.

Examples ret;

@p ret;

Table 50. Control Flow Instructions: EXIT
EXIT Terminate a thread.

Syntax exit;

Description Ends execution of a thread.

Examples exit;

@p exit;

Chapter 7. Instruction Set

60 PTX ISA Version 1.1
 10/24/2007

7.7.7. Parallel Synchronization and Communication
Instructions

These instructions are:

 BAR

 ATOM

Table 51. Parallel Synchronization and Communication
Instructions: BAR

BAR Signal arrival at a barrier and wait.

Syntax bar.sync d;

Description Mark7s the arrival of threads at a barrier and waits for all other threads to arrive.

The barrier resource is named via a small integer, typically in the range 0..15. The
barrier number may be given as an immediate.

Notes The hardware has a limited, implementation-specific number of barrier resources,
typically sixteen or fewer. Since a CTA will not launch until all allocated resources are
available, a program should minimize the number of distinct barrier variables allocated.
Ideally, a program uses a single, global barrier that is re-used throughout the program.

Examples bar.sync 0;

 Chapter 7. Instruction Set

PTX ISA Version 1.1 61
10/24/2007

Table 52. Parallel Synchronization and Communication
Instructions: ATOM

ATOM Atomic reduction operations for thread-to-thread communication.

Syntax atom.space.operation.type d, a, b[, c];

.space = { .global };

.operation = { .and, .or, .xor, // .b32
 .cas, .exch, // .b32

 .add, // .u32, .s32,
 .inc, .dec, // .u32 only
 .min, .max }; // .u32, .s32,
.type = { .b32, .u32, .s32 };

Description Atomically loads the original value at location a into destination register d, and stores
the result of the specified operation at location a, overwriting the original value. The a
operand specifies a location in the specified state space.

The addressable operand a is one of:
[avar] the name of an addressable variable avar,
[areg] a de-referenced register areg containing a byte address,
[areg+immOff] a de-referenced sum of register areg containing a byte address plus a

constant integer byte offset, or
[immAddr] an immediate absolute byte address.

The address size may be either 32-bit or 64-bit. Addresses are zero-extended to the
specified width as needed, and truncated if the register width exceeds the state space
address width for the target architecture.

The instruction must carry a .space suffix. A register containing an address may be
declared as a bit-size type or integer type.
The bit-size operations are and, or, xor, cas (compare-and-swap), and exch
(exchange).
The integer operations are add, inc, dec, min, max. The inc and dec operations
return a result in the range [0..b].

Semantics atomic {
 d = *a;
 a = (operation == cas) ? operation(*a, b, c)

 : operation(*a, b);
}

where
 inc(r, s) = (r >= s) ? 0 : r+1;
 dec(r, s) = (r > s) ? s : r-1;
 exch(r, s) = s;
 cas(r,s,t) = (r == s) ? t : r;

Notes Operand a must reside the global state space.
Simple reductions may be specified by using the “bit bucket” destination operand ‘_’.

Target ISA Notes atom.global requires sm_11 or later.

Examples atom.global.add.s32 d,[a],1;
@p atom.global.cas.b32 d,[p],my_val,my_new_val;

Chapter 7. Instruction Set

62 PTX ISA Version 1.1
 10/24/2007

7.7.8. Floating-point Instructions
These instructions are for floating-point types in register, vector, and constant immediate
forms. These instructions are:

 RCP

 SQRT

 RSQRT

 SIN

 COS

 LG2

 EX2

Table 53. Floating-point Instructions: RCP
RCP Take the reciprocal of a value.

Syntax rcp.type d, a;

.type = { .f32, .f64 };

Description Compute 1/a..
Semantics d = 1/a;

Examples rcp.f32 ri,r;

Table 54. Floating-point Instructions: SQRT
SQRT Take the square root of a value.

Syntax sqrt.type d, a;

.type = { .f32, .f64 };

Description Compute sqrt(a); store in d.

Semantics d = sqrt(a);

Floating Point
Notes

If a < 0; d = NaN;

The sqrt instruction always yields the positive root of a number, except for sqrt(-0.0)
which yields -0.0.

Examples sqrt.f32 r,x;

 Chapter 7. Instruction Set

PTX ISA Version 1.1 63
10/24/2007

Table 55. Floating-point Instructions: RSQRT
RSQRT Take the reciprocal of the square root of a value.

Syntax rsqrt.type d, a;

.type = { .f32, .f64 };

Description Compute 1/sqrt(a); store the result in d
Semantics d = 1/sqrt(a);

Floating Point
Notes

if a < 0; d = NaN;
if a == 0, d = Inf;

The rsqrt instruction always yields a positive value, except for rsqrt(-0.0) which yields
-0.0.

Examples rsqrt.f32 isr,x;

Table 56. Floating-point Instructions: SIN
SIN Find the sine of a value.

Syntax sin.type d, a;

.type = { .f32 };

Description Find the sine of the angle a (in radians).

Semantics d = sin(a);

Notes Applies only to .f32.

Examples sin.f32 sa,a;

Table 57. Floating-point Instructions: COS
COS Find the cosine of a value.

Syntax cos.type d, a;

.type = { .f32 };

Description Find the cosine of the angle a (in radians).

Semantics d = cos(a);

Notes Applies only to .f32.

Examples cos.f32 cb,b;

Table 58. Floating-point Instructions: LG2
LG2 Find the log, base 2, of a value.

Syntax lg2.type d, a;

.type = { .f32 };

Description Determine the log2 of a..

Semantics d = log(a)/log(2);

Notes Applies only to .f32.

Examples @p lg2.f32 q,a;

Chapter 7. Instruction Set

64 PTX ISA Version 1.1
 10/24/2007

Table 59. Floating-point Instructions: EX2
EX2 Exponentiate a value, base 2.

Syntax ex2.type d, a;

.type = { .f32 };

Description Raise 2 to the power a.
Semantics d = 2 ^ a;

Notes Applies only to .f32.

Examples ex2.f32 q,r;

 Chapter 7. Instruction Set

PTX ISA Version 1.1 65
10/24/2007

7.7.9. Miscellaneous Instructions
The Miscellaneous instructions are:

 TRAP

 BRKPT

Table 60. Miscellaneous Instructions: TRAP
TRAP Perform trap operation.

Syntax trap

Description Abort execution and generate an interrupt to the host CPU.

Examples trap;

@p trap;

Table 61. Miscellaneous Instructions: BRKPT
BRKPT Breakpoint – suspend execution.

Syntax brkpt

Description Suspends execution
Target ISA Notes Requires sm_11 or later.

Examples brkpt;

@p brkpt;

Chapter 7. Instruction Set

66 PTX ISA Version 1.1
 10/24/2007

This page is blank.

PTX ISA Version 1.1 67
10/24/2007

Chapter 8.
Special Registers

PTX includes a number of predefined, read-only variables, which are visible as special
registers and accessed through MOV or CVT instructions.

The special registers are:

 %tid

 %ntid

 %ctaid

 %nctaid

 %gridid

 %clock

Table 62. Special Registers: %tid
%tid Thread ID within a CTA.

Syntax .sreg .v3 .u16 %tid; // thread id vector

.sreg .u16 %tid.0, %tid.1, %tid.2; // individual thread id
components

.sreg .u16 %tid.x, %tid.y, %tid.z; // alternate component
names

Description A predefined, read-only, per-thread special register initialized with the thread ID within
the CTA. The %tid special register is a 1D, 2D, or 3D vector to match the CTA shape;
the %tid value in unused dimensions is 0. The number of threads in each dimension
are specified by the predefined special register %ntid.
Every thread in the CTA has a unique %tid.
%tid component values range from 0 through %ntid–1 in each CTA dimension. %tid.1
== %tid.2 == 0 in 1D CTAs. %tid.2 == 0 in 2D CTAs.
It is guaranteed that:

0 <= %tid.0 < %ntid.0
0 <= %tid.1 < %ntid.1
0 <= %tid.2 < %ntid.2

Notes 3D CTA initialization code separates hardware %tid R0 bit fields [15:0, 25:16, 31:26]
into three .u16 components in R0L, R0H, and R1L, and %tid maps to [R0L, R0H, R1L]
in half words. 2D and 1D CTAs require no %tid initialization code.

Preserve %tid for debugging.

Examples mov.b16 r0,%tid.0; // zero-extends tid.0 to r0

 cvt.u32.u16 r2,%tid.2; // zero-extends tid.2 to r2

Chapter 8. Special Registers

68 PTX ISA Version 1.1
 10/24/2007

Table 63. Special Registers: %ntid
%ntid Number of thread IDs per CTA.

Syntax .sreg .v3 .u16 %ntid; // CTA shape vector

.sreg .u16 %ntid.0, %ntid.1, %ntid.2; // CTA dimensions

.sreg .u16 %ntid.x, %ntid.y, %ntid.z; // alternate component
names

Description A predefined, read-only special register initialized with the number of thread ids in each
CTA dimension. CTA dimensions are non-zero. The total number of threads in a CTA
is (%ntid.0 * %ntid.1 * %ntid.2).
The CTA dimensions are initialized in the predefined variable %ntid. The value of
each element of the vector is at least 1.
%ntid.1 == %ntid.2 == 1 in 1D CTAs. %ntid.2 == 1 in 2D CTAs.

Notes

Examples mov.b16 r0,%tid.0;

 mov.b16 h1,%tid.1;

 mov.u16 h2,%ntid.0;

 mad.u16 r0,h1,h2,r0; // r0 = unified tid for 2D CTA

Table 64. Special Registers: %ctaid
%ctaid CTA id within a grid.

Syntax .sreg .v3 .u16 %ctaid; // CTA id vector

.sreg .u16 %ctaid.0, %ctaid.1, %ctaid.2; // CTA id components

.sreg .u16 %ctaid.x, %ctaid.y, %ctaid.z; // alternate
component names

Description A predefined, read-only special register initialized with the CTA id within the CTA grid.
%ctaid is a 1D, 2D, or 3D vector, depending on the shape and rank of the CTA grid.
The value of each element of the vector is >= 0 and < 65535.
It is guaranteed that:

0 <= %ctaid.0 < %nctaid.0
0 <= %ctaid.1 < %nctaid.1
0 <= %ctaid.2 < %nctaid.2

Notes The G80 translator maps ctaid.0 to grid parameters g[6].u16, ctaid.1 to g[7].u16, and
ctaid.2 to user parameter g[8].u16.

Examples mov.u32 %r1,%ctaid.1;

 Chapter 8. Special Registers

PTX ISA Version 1.1 69
10/24/2007

Table 65. Special Registers: %nctaid
%nctaid Number of CTA ids per grid.

Syntax .sreg .v3 .u16 %nctai // Grid shape vector

.sreg .u16 %nctaid.0, %nctaid.1, %nctaid.2; // Grid
dimensions

.sreg .u16 %nctaid.x, %nctaid.y, %nctaid.z; // alternate
component names

Description A predefined, read-only special register initialized with the number of CTAs in each grid
dimension. %nctaid is a 1D, 2D, or 3D vector, depending on the shape and rank of the
CTA grid.
The size of the grid of CTAs is stored in the predefined special register %nctaid. It is a
3D vector, and each member has a value of at least 1.
It is guaranteed that:

1 <= nctaid.* < 65,536

Notes The G80 translator maps nctaid.0 to grid parameters g[4].u16, nctaid.1 to g[5].u16, and
nctaid.2 to user parameter g[9].u16

Examples mov.u32 r1,%nctaid;

Table 66. Special Registers: %gridid
%gridid Grid ID.

Syntax .sreg .u16 %gridid; // initialized when the grid is launched

Description A predefined, read-only special register initialized with the per-grid temporal grid ID
number. This is used by debuggers to distinguish CTAs within concurrent (small) CTA
grids.
During execution, repeated launches of programs may occur, where each launch starts
a grid-of-CTAs. This variable provides the temporal grid launch number for this
context.

Notes The driver assigns a counting sequential gridid to each grid launched.
The G80 translator maps gridid to grid parameter g[0].u16, “flags”.

Examples mov.u32 r1,%gridid;

Table 67. Special Registers: %clock
%clock A predefined, read-only 32-bit unsigned cycle counter.

Syntax

Description Special register %clock is an unsigned 32-bit read-only cycle counter that wraps
silently.

Notes

Examples mov.u32 r1,%clock;

Chapter 8. Special Registers

70 PTX ISA Version 1.1
 10/24/2007

This page is blank.

PTX ISA Version 1.1 71
10/24/2007

Chapter 9.
Directives

9.1. Specifying CTAs and Functions
Directives exist for specifying CTA entry points, the default number of threads in a
CTA, functions, and other things. Some can be overridden later on.

Table 68. Directives: .entry
.entry Defines a CTA entry point name, CTA rank, and optional CTA dimensions.

Syntax .entry name [NTID.2][NTID.1][NTID.0]; // 3D CTA: RANKTID = 3.
.entry name [NTID.1][NTID.0]; // 2D CTA: RANKTID = 2.
.entry name [NTID.0]; // 1D CTA: RANKTID = 1.
.entry name [NTID.2][NTID.1][NTID.0] { per-CTA naming scope }

Description Specifies a CTA entry point and name. The number of bracket pairs specifies the CTA
rank constant RANKTID to be 1, 2, or 3. Constant expressions within the bracket pairs
define the CTA dimension constants NTID.0, NTID.1, and NITD.2. Omitted dimension
values define their constant dimension as 0. Omitted bracket pairs define their
constant dimension as 1.
Empty bracket pairs have unspecified dimensions that vary at run time, as specified by
ntid.0, ntid.1, or ntid.2.

Optionally specify a per-CTA naming scope enclosed in { } braces, for .shared and
.param variable declarations. PTX appends an exit instruction following the code in the
braces.

PTX defines an anonymous 3D CTA entry point at the first instruction encountered
outside of a .entry or .func block. PTX appends an exit instruction after the last
instruction of an anonymous entry point.

Semantics Specify the entry point for a CTA program. Defines the constants RANKTID, NTID.0,
NTID.1, and NTID.2.

At run time, the CTA parameters ntid.0, ntid.1, and ntid.2 are initialized with the actual
CTA dimensions. The programmer may use the constant dimensions rather than the
runtime dimensions if the CTA is always invoked with the constant dimensions.

Notes CTA dimensions are positive integers; zero means a dimension is unknown until
runtime. G80 limits the product of dimensions to 512.

Examples .entry cta_fft[256]; // 1D CTA with max 256 threads.

 .entry filter[16][16] { code; … } // 2D CTA

Chapter 9. Directives

72 PTX ISA Version 1.1
 10/24/2007

Table 69. Directives: .func
.func Function definition.

Syntax .func fname function-body
.func fname (param-list) function-body
.func (ret-param) fname (param-list) function-body

Description Defines a function, including input and return parameters and function body.

Semantics Specifies the entry point and parameter names for a function. The parameter lists bind
register names in the caller’s namespace to register names in the callee namespace.

The implementation of parameter passing is left to the optimizing translator, which may
use a combination of registers and stack locations to pass parameters. In the current
ptx release, parameters are passed through statically allocated ptx registers; i.e., there
is no support for recursive calls.

Notes The input and return parameters are enclosed in parentheses. Parameters must be
base types in the register space. Parameter passing is call-by-value.

A .func directive with no body may be used to declare a function prototype.

Examples .func (.reg .b32 rval) foo (.reg .b32 arg0, .reg .f64 arg1)

 {

 .reg .b32 localVar;

 … use arg0;

 other code;

 mov.b32 rval,result;

 ret;

 }

 …

 call (fooval), foo, (val0, val1); // return value in fooval

 …

 Chapter 9. Directives

PTX ISA Version 1.1 73
10/24/2007

9.2. Debugging Directives
The following directives are needed to communicate Dwarf-format debug information.
Details TBD.

Table 70. Debugging Directives: .section
.section PTX section definition

Syntax .section section_type, section_name

Description

Semantics

Notes

Examples .section .debug_info, "",@progbits

Table 71. Debugging Directives: .file
.file Source file information

Syntax .file filename

Description

Semantics

Notes

Examples

Table 72. Debugging Directives: .loc
.loc Source file location

Syntax .loc line_number

Description

Semantics

Notes

Examples

Table 73. Debugging Directives: .byte
.byte Byte data

Syntax .byte data-list

Description Defines a sequence of data bytes.

Semantics

Notes

Examples .byte 0x7d,0x01,0x00,0x00,0x02,0x00

Chapter 9. Directives

74 PTX ISA Version 1.1
 10/24/2007

9.3. Other Directives
Table 74. Other Directives: .extern

.extern External symbol declaration

Syntax .extern identifier

Description Declares identifier to be defined externally.

Semantics

Notes

Examples .extern foo // variable foo is declared in another file

 .b32 foo;

Table 75. Other Directives: .visible
.visible Visible (externally) symbol declaration

Syntax .visible identifier

Description Declares identifier to be externally visible.

Semantics

Notes

Examples .visible foo // variable foo will be externally visible

 .b32 foo;

Table 76. Other Directives: .version
.version PTX version number

Syntax .version major.minor // major, minor are integers

Description Specifies the PTX language version number. Increments to the major number indicate
incompatible changes to PTX.

Semantics Indicates that this file must be compiled with tools having the same major version
number and an equal or greater minor version number.

Each ptx file must begin with a .version directive. Duplicate .version directives are
allowed provided they match the original .version directive.

Notes Cuda Release 1.1 supports PTX ISA Versions 1.0 and 1.1.

Examples .version 1.1

 Chapter 9. Directives

PTX ISA Version 1.1 75
10/24/2007

Table 77. Other Directives: .target
.target Architecture and Platform target

Syntax .target stringlist // comma separated list of target specifiers

string = { compute_10, compute_11, // virtual arch targets
 sm_10, sm_11, // gpu target architectures
 map_f64_to_f32 // platform option
 };

Description Specifies the target architecture for which the current ptx code was generated.

The target identifier strings are platform-specific.

Semantics PTX features are checked against the specified target architecture, and an error is
generated if an unsupported feature is used.

The map_f64_to_f32 specifier indicates that all double-precision instructions will be
mapped to single-precision regardless of the target architecture. This feature enables
compilers for high-level languages such as Cuda to compile programs containing type
double.

Each PTX file must begin with a .version directive, immediately followed by a .target
directive. Duplicate .target directives are allowed provided they match the original
.target directive.

Notes

Examples .target sm_11 // baseline target architecture

 // allow .f64 ops, but map them to .f32 in the translator

 .target sm_11, map_f64_to_f32

Chapter 9. Directives

76 PTX ISA Version 1.1
 10/24/2007

This page is blank.

PTX ISA Version 1.1 77
10/24/2007

Chapter 10.
Release Notes

This section describes ISA and implementation changes between PTX ISA Version 1.0 and
Version 1.1. The changes may be summarized as (1) addition of new features, (2) removal of
unimplemented features and instructions from the ISA, (3) better specification of rounding
modifiers, and (4) better specification of saturation,

10.1. New Features
Instructions LD and ST now support a .volatile modifier. See the instruction
descriptions in Chapter 7 for details.

10.2. Unimplemented Features Removed From ISA
PTX ISA version 1.0 contained a number of instructions and features that were
unimplemented in the CUDA tools in release 1.0. Since these features were not
implemented, their removal from PTX ISA version 1.1 does not create an
incompatibility with any valid PTX version 1.0 code.

The vector instructions CROSS, DOT, MAG, and VRED have been removed from
PTX. These instructions were unimplemented in version 1.0.

Instructions EXTRACT, INSERT, MEMBAR, and NOP were removed from the list of
reserved PTX keywords shown in Table 2. The description of MEMBAR was removed
form Chapter 7. These instructions were unimplemented in version 1.0.

Support for .f64 type in SIN, COS, LG2, and EX2 has been removed from the ISA.
These were unimplemented in version 1.0.

ATOM.{cas,exch} operations have been restricted to bitsize types. ATOM was
unimplemented in PTX version 1.0.

10.3. Changes to Rounding Modifiers
PTX 1.0 did not fully specify rounding behavior for all instructions, nor did it define a
default round behavior in cases where such defaults exist.

Rounding behavior not fully specified in PTX version 1.0 has been defined in version
1.1, with the following changes noted as errata for version 1.0:

Chapter 10. Release Notes

78 PTX ISA Version 1.1
 10/24/2007

• Instructions ADD, SUB, and MUL have round-to-nearest documented as
their default rounding behavior.

• Instructions MAD no longer supports a rounding modifier.

• SAD, and DIV no longer support a rounding modifier. For double-
precision, DIV implements round-to-nearest-even by default.

• Rounding modifiers are now required in some cases and illegal in other
cases for the CVT instruction (see description). Hand-written version 1.0
PTX code may exist that violates these new restrictions.

10.4. Changes to Saturation
Saturation support has been removed from a number of instructions. None of these
cases were used by the CUDA 1.0 compiler, and many were not implemented. These
restrictions are compatible with PTX 1.0 code generated by the CUDA compiler tools.

• Integer saturation has been removed from instructions MUL, MUL24,
MAD.wide, MAD.lo, MAD24.lo, SAD, DIV, and REM no longer support
saturation.

• The CVT instruction supports saturation for both signed and unsigned
integer types.

10.5. Unimplemented Features in Version 1.1
In Release 1.1 of the PTX ISA Version 1,1, a number of features are not supported.
This section summarizes the unsupported features.

10.5.1. Syntax restrictions
Predicate constant immediates are not supported.

Constant expressions are not supported.

10.5.2. State Spaces
Declarations and instructions using .surf space are not supported.

The constant space is restricted to a single bank. This may be written as .const or
.const[0].

10.5.3. Variables and Operands
Vector declarations, initialization, and conversions are not supported.

Vector operands are not generally supported. The LD, ST, and TEX instructions do
support limited use of vector operands written using the tuple notation.

 Chapter 10. Release Notes

PTX ISA Version 1.1 79
10/24/2007

10.5.4. Instructions
The FRC instruction is deprecated and will be removed in the next release.

See individual instruction descriptions in Section 7.7 for restrictions of the current
release.

10.6. Summary of Instruction Changes
The following table summarizes changes to instructions in this release.

Table 78. Summary of Instruction Changes in Version 1.1
Instruction Implementation Change
ADD Default rounding of .rn documented.

SUB Default rounding of .rn documented.

MUL Integer saturation removed from parser.
Default rounding of .rn documented.

MUL24 Integer saturation removed from parser.

MAD Integer saturation removed from .wide and .lo modes.
Rounding removed.

MAD24 Integer saturation removed from .lo mode.

SAD Saturation removed (both int and float); rounding removed.

DIV Integer saturation removed; rounding modifier removed.
Document that DIV rounds to nearest even.

CVT Rounding modes required when not illegal. See instruction description for details.
Saturation extended to unsigned integer types.

LD, ST Added .volatile modifier.

SET, SETP Allow lt, le, ge, gt comparison operators to be used with unsigned integers.

CROSS, DOT,
MAG, VRED

Removed. These were unimplemented in PTX 1.0.

SIN, COS, LG2,
EX2

Remove .f64. This was unimplemented in PTX 1.0.

FRC FRC is deprecated and will not be supported in the next PTX release.

ATOM ATOM.{cas,exch} restricted to bitsize types. ATOM was not implemented in PTX 1.0.

EXTRACT,
INSERT,
MEMBAR, NOP

Removed keywords and descriptions for unimplemented instructions.

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”)
ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS
ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation
assumes no responsibility for the consequences of use of such information or for any
infringement of patents or other rights of third parties that may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This
publication supersedes and replaces all information previously supplied. NVIDIA Corporation
products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in
the United States and other countries. Other company and product names may be trademarks of
the respective companies with which they are associated.

Copyright

© 2007 NVIDIA Corporation. All rights reserved.

