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Chapter 1. 
Introduction 

1.1. Data-Parallel Computing 
Using GPUs 
This document describes PTX, a low-level parallel thread execution virtual machine (VM) and 
virtual instruction set architecture (ISA).  PTX exposes the GPU as a data-parallel 
computing device.  

Data-parallel processing maps data elements to parallel processing threads.  Many 
applications that process large data sets such as arrays can use a data-parallel programming 
model to speed up the computations.  Data-parallel mapping is efficient for SIMD, vector, 
and highly multi-threaded parallel architectures.  In 3D rendering, large sets of pixels and 
vertices are mapped to parallel threads.  Similarly, image and media processing applications 
such as post-processing of rendered images, video encoding and decoding, image scaling, 
stereo vision, and pattern recognition can map image blocks and pixels to parallel processing 
threads.  Many compute-intensive applications map well to data-parallel processing.  In 
general, all algorithms that can be formulated as parallel computations operating over 
datasets are good candidates for acceleration by data-parallel processing. 

PTX defines a virtual machine and virtual ISA for general purpose parallel thread execution.  
PTX programs are translated at install time to the target hardware instruction set.  The PTX 
to GPU translator and driver enables NVIDIA GPUs to be used as programmable parallel 
computers. 

1.2. Goals of PTX 
PTX provides a stable programming model and instruction set for general purpose parallel 
programming.  It is designed to be efficient on NVIDIA GPUs supporting the computation 
features defined for G80 and subsequent GPUs.  High level language compilers for 
languages such as C and C++ generate PTX instructions, which are optimized for and 
translated to native target-architecture instructions.   

The goals for PTX include the following: 

 Provide a stable virtual ISA and VM that spans multiple GPU generations. 

 Achieve performance in compiled applications comparable to native GPU performance. 

 Provide a machine-independent ISA for C/C++ and other compilers to target. 

 Provide a code distribution ISA for application and middleware developers. 
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 Provide a common source-level ISA for optimizing code generators and translators, 
which map PTX to specific target machines. 

 Programmability – facilitate hand-coding of libraries, performance kernels, and 
architecture tests. 

 Scalability – VM programming model spans GPU sizes from single unit to many parallel 
units. 

 Provide a relatively low-level ISA and machine model that can be usefully thought of as 
representing the target GPU architecture. 

 VM and virtual ISA will become publicly visible. 

 Component of the NV Compute product. 

 Compatibility – version 1 programs execute on later translators. 

 Sufficient quality and usability to evolve into an industry standard. 

1.3. The Document’s Structure 
The information in this document is organized into the following Chapters: 

 Chapter 2 outlines the programming model. 

 Chapter 3 gives an overview of the PTX virtual machine model. 

 Chapter 4 describes the basic syntax of the PTX language. 

 Chapter 5 describes state spaces, types, and variable declarations. 

 Chapter 6 describes instruction operands. 

 Chapter 7 describes the instruction set. 

 Chapter 8 lists special registers. 

 Chapter 9 lists the assembly directives supported in PTX. 

 Chapter 10 provides release notes for Release 1.1 of PTX Version 1.1. 
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Chapter 2. 
Programming Model 

2.1. A Highly Multithreaded 
Coprocessor 
The GPU is a compute device capable of executing a very high number of threads in parallel.  
It operates as a coprocessor to the main CPU, or host: In other words, data-parallel, 
compute-intensive portions of applications running on the host are off-loaded onto the 
device. 

More precisely, a portion of an application that is executed many times, but independently 
on different data, can be isolated into a function that is executed on the GPU as many 
different threads.  To that effect, such a function is compiled to the PTX instruction set and 
the resulting kernel is translated at install time to the target GPU instruction set. 

2.2. Thread Batching 
The batch of threads that executes a kernel is organized as a grid of cooperative thread 
arrays as described in this section and illustrated in Figure 1. 

2.2.1. Cooperative Thread Arrays 
The Parallel Thread Execution (PTX) programming model is explicitly parallel – a PTX 
program specifies the execution of a given thread of a parallel thread array.  A Cooperative 
Thread Array, or CTA, is an array of threads that execute a kernel concurrently or in parallel. 

Threads within a CTA can communicate with each other.  To coordinate the communication 
of the threads within the CTA, one can specify synchronization points, where threads are 
suspended until they all reach the synchronization point. 

Each thread has a unique thread id (tid) within the CTA.  Programs use a data parallel 
decomposition to partition inputs, work, and results across the threads of the CTA.  Each 
CTA thread uses its tid to determine its assigned role, assign specific input and output 
position, compute addresses, and select work to perform.  The tid is a 3-component vector, 
tid.0, tid.1, and tid.2, that specifies the thread’s position within a 1D, 2D, or 3D CTA.  
Alternate component names are tid.x, tid.y, and tid.z.  Each tid component ranges from 0 up 
to the number of thread id’s in that CTA dimension. 
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Each CTA has a a 1D, 2D, or 3D shape, specified by a 3-component vector, ntid, which 
specifies the number of threads in each CTA dimension.  The ntid components are 
accessible as ntid.0, ntid.1, and ntid.2. 

Threads within a CTA execute in SIMD fashion in groups called warps.  A warp is a 
maximal subset of threads from a single CTA, such that the threads execute the same 
instructions at the same time.  Threads within a warp are sequentially numbered.  The warp 
size is a machine-dependent constant.  Typically, a warp has 16 or 32 threads.  Some 
applications may be able to maximize performance with knowledge of the warp size, so PTX 
includes a run-time immediate constant, WARP_SZ, which may be used in any instruction 
where an immediate operand is allowed. 

2.2.2. Grid of Cooperative Thread Arrays 
There is a maximum number of threads that a CTA can contain.  However, CTAs that 
execute the same kernel can be batched together into a grid of CTAs, so that the total 
number of threads that can be launched in a single kernel invocation is very large.  This 
comes at the expense of reduced thread communication and synchronization, because 
threads in different CTAs cannot communicate and synchronize with each other. 

Multiple CTAs may execute concurrently and in parallel, or sequentially, depending on the 
platform.  Each CTA has a unique CTA id (ctaid) within a grid of CTAs.  Each grid of CTAs 
has a 1D, 2D , or 3D shape specified by the parameter nctaid.  Each grid also has a unique 
temporal grid id (gridid).  Threads may read and use these values through predefined, read-
only special registers %tid, %ntid, %ctaid, %nctaid, and %gridid. 

The host issues a succession of kernel invocations to the device.  Each kernel is executed as 
a batch of threads organized as a grid of CTAs (Figure 1). 
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Figure 1. Thread Batching 
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Chapter 3. 
Parallel Thread Execution Machine Model 

3.1. A Set of SIMD 
Multiprocessors with On-
Chip Shared Memory 
The PTX machine model is implemented as a set of multiprocessors as illustrated in Figure 
2Error! Reference source not found..  Each multiprocessor has a Single Instruction, Multiple 
Data architecture (SIMD): At any given clock cycle, each processor of the multiprocessor 
executes the same instruction, but operates on different data. 

Both the host and the device maintain their own local memory, referred to as host memory 
and device memory, respectively.  The device memory may be mapped and read or written 
by the host, or, for more efficient transfer, copied from the host memory through optimized 
API calls that utilize the device’s high-performance Direct Memory Access (DMA) engine. 

Each multiprocessor has on-chip memory of the four following types: 

 One set of local 32-bit registers per processor, 

 Shared memory that is shared by all the processors, 

 A read-only constant cache that is shared by all the processors and speeds up reads from 
the constant memory, which is a read-only region of the device memory, 

 A read-only texture cache that is shared by all the processors and dedicated to texture 
sampling. 
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Figure 2. Machine Model 
A set of SIMD multiprocessors with on-chip shared memory 
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3.2. Execution Model 
A grid of CTAs is executed on the device by executing one or more CTAs on each 
multiprocessor using time slicing: Each CTA is split into SIMD groups of threads called 
warps; each of these warps contains the same number of threads, called the warp size, and is 
executed by the multiprocessor in a SIMD fashion; a thread scheduler periodically switches 
from one warp to another to maximize the use of the multiprocessor’s computational 
resources. 

The way a CTA is split into warps is always the same; each warp contains threads of 
consecutive, increasing thread indices with the first warp containing thread 0. 

A CTA is processed by only one multiprocessor, so that threads within a CTA can use the 
on-chip shared memory to efficiently share data among them.  More precisely, threads can 
perform general reads from and writes to the on-chip shared memory through a per-CTA 
shared memory partition and coordinate these memory accesses through synchronization 
mechanisms. 

A multiprocessor can process several CTAs concurrently by partitioning its resources (e.g. 
registers and shared memory) among them.  

Threads can access several other memory partitions: 

 Threads can perform general cached reads from the constant memory through a per-
grid constant memory partition. 

 Threads can perform general non-cached reads from and writes to the device memory 
through two device memory partitions: a per-thread local memory partition and a per-
grid global memory partition. 

 At last, another way to perform general cached reads from the device memory is 
through texture sampling. 

This memory model is illustrated in Figure 3. 

The issue order of the CTAs within a grid is not defined and there is no synchronization 
mechanism between CTAs, so threads from two different CTAs of the same grid cannot 
safely communicate with each other through the device memory. 

Figure 3 shows  
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Figure 3. Memory Model
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Chapter 4. 
Syntax 

PTX programs are a collection of text source files.  PTX source files have an assembly-
language style syntax with instruction operation codes and operands.  Pseudo-operations 
specify symbol and addressing management.  The ptxas program assembles PTX source files 
to produce corresponding binary object files. 

4.1. Source Format 
Source files are ASCII text.  Lines are separated by the newline character (‘\n’). 

All whitespace characters are equivalent; whitespace is ignored except for its use in 
separating tokens in the language. 

The C preprocessor cpp may be used to process PTX source files.  Lines beginning with # 
are preprocessor directives.  The following are common preprocessor directives:  

#include, #define, #if, #ifdef, #else, #endif, #line, #file 

C: A Reference Manual by Harbison and Steele provides a good description of the C 
preprocessor. 

PTX is case sensitive and uses lowercase for keywords. 

Each PTX file must begin with a .version directive specifying the PTX language version, 
followed by a .target directive specifying the target architecture assumed.  See Section 9 for a 
more information on these directives. 

4.2. Comments 
Comments in PTX follow C/C++ syntax, using non-nested /* and */ for comments that may 
span multiple lines, and using // to begin a comment that extends to the end of the current 
line. 

Comments in PTX are treated as whitespace. 
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4.3. Statements 
A PTX statement is either a directive or an instruction.  Statements begin with an optional 
label and end with a semicolon. 

Examples: 
        .reg     .b32 r1, r2;  
        .global  .f32  array[N];  
 
start:  mov.b32   r1, %tid.0; 
        shl.b32   r1, r1, 2;        // shift thread id by 2 bits 
        ld.b32    r2, array[r1];    // thread[tid] gets array[tid] 
        add.f32   r2, r2, 0.5;      // add 1/2 

 

4.3.1. Directive Statements 
Directive keywords begin with a dot, so no conflict is possible with user-defined identifiers.  
The directives in PTX are listed in Table 1 and described in Chapter 5 and Chapter 9.   

Table 1. PTX Directives 
.align .func .section .tex 
.byte .global .shared .union 
.const .local .sreg .version 
.entry .loc .struct .visible 
.extern .param .surf  
.file .reg .target  

 

4.3.2. Instruction Statements 
Instructions are formed from an instruction opcode followed by a comma-separated list of 
zero or more operands, and terminated with a semicolon.  Operands may be register 
variables, constant expressions, address expressions, or label names.  Instructions have an 
optional guard predicate which controls conditional execution.  The guard predicate follows 
the optional label and precedes the opcode, and is written as @p, where p is a predicate 
register.  The guard predicate may be optionally negated, written as @!p. 

The destination operand is first, followed by source operands. 

Instruction keywords are listed in Table 2.  All instruction keywords are reserved tokens in 
PTX. 

 

 



 Chapter 4.  Syntax   

    

 

 
PTX ISA Version 1.1  13 
10/24/2007  

Table 2. Reserved Instruction Keywords 
abs ex2 not sin 
add exit or slct 
and ld rcp sqrt 
atom lg2 rem st 
bar mad ret sub 
bra mad24 rsqrt tex 
brkpt max sad trap 
call min selp vote 
cnot mov set xor 
cos mul setp  
cvt mul24 shl  
div neg shr  

 

4.4. Identifiers 
User-defined identifiers follow extended C++ rules: they start with an alphabetic character, 
underscore, dollar sign, or percentage sign ([ A-Za-z_$% ]) and are followed by zero or more 
alphanumeric, underscore, or dollar sign characters ([ A-Za-z_$ ]). 

Many high-level languages such as C and C++ follow similar rules for identifier names, 
except that the percentage sign is not allowed.  PTX allows the percentage sign as the first 
character of an identifier.  The percentage sign can be used to avoid name conflicts, e.g. 
between user-defined variable names and compiler-generated names.  

PTX predefines a small number of special registers that begin with the percentage sign, listed 
in Table 3. 

Table 3. Predefined identifiers 
%clock %ctaid %ntid 
%gridid %nctaid %tid 
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4.5. Immediate Constants 
Immediate constants in PTX are restricted to integer and floating-point types. 

4.5.1. Integer Immediate Constants 
Integer immediate constants may be written in decimal, hexadecimal, octal, or binary 
notation. 

Decimal constants begin with a nonzero digit followed by zero or more digits (0-9).   

Hexadecimal constants begin with 0x or 0X followed by one or more hex digits (from the set 
[0-9a-fA-F]). 

Octal constants begin with zero 0 followed by zero or more octal digits (0-7). 

Binary constants begin with 0b or 0B followed by one or more binary digits (01). 

4.5.2. Floating-point Immediate Constants 
Floating-point immediate constants may be written with an optional decimal point and an 
optional signed exponent.  Unlike C and C++, there is no suffix letter to specify size (e.g. 
float or double). 

PTX includes a second representation of floating-point constants, where the exact machine 
representation is given as a hexadecimal constant.  For 64-bit floating point values, the 
constant begins with 0d or 0D followed by 16 hex digits.  For 32-bit floating point values, the 
constant begins with 0f or 0F followed by 8 hex digits. 

4.5.3. Predicate Immediate Constants 
Predicate immediate constants for the Boolean values TRUE and FALSE are written as 
binary digits 1 and 0, respectively. 

4.5.4. Constant Expressions 
Constant expressions are evaluated at compile time to form simple values for use in 
immediate operands and addressing expressions.  Both integer and floating-point constant 
expressions are supported, however, note that floating-point constant expressions may 
evaluate to a different value than would be computed on the target architecture, since the 
compiler may evaluate the expression using greater precision than the target architecture.  

Constant expressions are formed from lexical constants, basic arithmetic operators (addition, 
subtraction, multiplication, division), and parentheses.  Integer constant expressions may 
include remainder (%), shift operators (<< and >>), and logical operators (&, |, and ^). 

The meaning of operators in PTX is the same as in C or C++. 
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Chapter 5. 
State Spaces, Types, and Variables 

While the specific resources available in a given target GPU will vary, the kinds of resources 
will be common across platforms, and these resources are abstracted in PTX through state 
spaces and data types. 

5.1. State Spaces 
A state space is a storage area with particular characteristics.  All variables reside in some 
state space.  The characteristics of a state space include its size, addressability, access speed, 
access rights, and level of sharing between threads. 

The state spaces defined in PTX are a byproduct of parallel programming and graphics 
programming.  The list of state spaces is shown in Table 4, and properties of state spaces are 
shown in Table 5. 

 

Table 4. State Spaces 
Name Description 

.reg Registers, fast. 

.sreg Special registers.  Read-only; pre-defined; platform-specific. 

.const Per-CTA, shared, read-only memory. 

.global Global memory, shared by all threads. 

.local Local memory, private to each thread. 

.param User parameters for a program, available at CTA entry. 

.shared Addressable memory shared between threads in 1 CTA. 

.surf Global surface memory. 

.tex Global texture memory. 
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Table 5. Properties of State Spaces 
Name Addressible Initializable Access Sharing 

.reg No No R/W per-thread 

.sreg No No RO per-CTA 

.const Yes Yes RO per-grid 

.global Yes Yes R/W Context 

.local Yes No R/W per-thread 

.param Yes No RO per-grid 

.shared Yes No R/W per-CTA 

.surf via LD/ST, SURF 
instructions 

Yes R/W Context 

.tex via TEX 
instruction 

Yes RO Context 

 

5.1.1. Register State Space 
Registers (.reg state space) are fast storage locations.  The number of registers is limited, and 
will vary from platform to platform.  When the limit is exceeded, register variables will be 
spilled to memory, causing changes in performance.  For each architecture, there is a 
recommended maximum number of registers to use (see Error! Reference source not found. 
for details). 

Registers may be typed (signed integer, unsigned integer, floating point, predicate) or 
untyped.  Register size is restricted; aside from predicate registers which are 1-bit, registers 
have a width of 16-, 32-, or 64-bits. 

Registers differ from the other state spaces in that they are not fully addressable, i.e., it is not 
possible to refer to the address of a register. 

Registers may have alignment boundaries required by multi-word loads and stores. 

5.1.2. Special Register Space 
The special register (.sreg) state space holds predefined, platform-specific registers, such as 
grid, CTA, and thread parameters, clock counters, and performance monitoring registers.  
All special registers are predefined. 

5.1.3. Constant State Space 
The constant (.const) state space is a read-only memory, initialized by the host.  The size may 
be limited, and there are typically many banks of constant memory, denoted by an integer 
index.  The size and number of banks are listed in the appendix for different hardware. 
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5.1.4. Global State Space 
The global (.global) state space is memory that is accessible by all threads in a context.  It is 
the mechanism by which different CTAs and different grids can communicate.  Use ld.global, 
st.global, and atom.global to access global variables.   

For any thread in a context, all addresses are in global memory are shared. 

Global memory is not sequentially consistent.  Consider the case where one thread executes 
the following two assignments: 
      a = a + 1; 
      b = b – 1; 

If another thread sees the variable b change, the store operation updating a may still be in 
flight.  This reiterates the kind of parallelism available in machines that run PTX.  Threads 
must be able to do their work without waiting for other threads to do theirs, as in lock-free 
and wait-free style programming. 

Sequential consistency is provided by the bar.sync instruction.  Threads wait at the barrier 
until all threads in the CTA have arrived.  All memory writes prior to the bar.sync instruction 
are guaranteed to be visible to any reads after the barrier instruction. 

5.1.5. Local State Space 
The local state space (.local) is private memory for each thread to keep its own data.  It is 
typically standard memory with cache.  The size is limited, as it must be allocated on a per-
thread basis.  Use ld.local and st.local to access local variables.   

5.1.6. Parameter State Space 
The parameter (.param) state space provides addressable user parameters to CTAs.  User 
parameters begin at address zero, and the address space is shared across CTAs within a grid. 

The location of parameter space is implementation specific.  For example, in some 
implementations, parameter space resides in global memory.  No access protection is 
provided between parameter and global space in this case. 

5.1.7. Shared State Space 
The shared (.shared) state space is a per-CTA region of memory for threads in a CTA to 
share data.  An address in shared memory can be read and written by any thread in a CTA.  
Use ld.shared and st.shared to access shared variables.   

Shared memory typically has some optimizations to support the sharing.  One example is 
broadcast; where all threads read from the same address.  Another is sequential access from 
sequential threads. 
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5.1.8. Texture State Space 
The texture (.tex) state space is global memory for the texture instructions.  It is shared by all 
threads in a context. 

The GPU hardware has a fixed number of texture bindings that can be accessed within a 
single program (typically 128).  The .tex[i] directive will bind the named texture memory 
variable to the hardware texture id ‘i’.  If no id number is given, PTX will assign texture id’s 
sequentially, beginning with zero.  Multiple names may be bound to the same physical 
texture id.  An error is generated only if the texture id assigned is out of the physical texture 
id range (e.g., 0..127). 

Texture memory is read-only. 

Example: 
.tex     tex_a;  // bound to physical texture 0 

 .tex[2]  tex_b;  // bound to physical texture 2 
 .tex     tex_c;  // bound to physical texture 1 
 .tex     tex_d;  // bound to physical texture 2 
 .tex[42] tex_e;  // bound to physical texture 42 
 .tex     tex_f;  // bound to physical texture 3 

 

5.1.9. Surface State Space 
The surface (.surf) state space is similar to global memory, but is 2D in nature.  It takes a 2D 
address (i and j components), and with respect to cache, spatial locality generally works well 
in a 2D neighborhood.  This allows tiled decompositions to perform quite well. 
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5.2. Types 

5.2.1. Fundamental Types 
In PTX, the fundamental types reflect the native data types supported by the target 
architectures.  A fundamental type specifies both a basic type and a size.  Register variables 
are always of a fundamental type, and instructions operate on these types.  The same type-
size specifiers are used for both variable definitions and for typing instructions, so their 
names are intentionally short. 

The following table lists the fundamental type specifiers for each basic type: 

Table 6. Fundamental Specifiers  
Basic Type Fundamental Type Specifiers 

Signed integer .s8, .s16, .s32, .s64 
Unsigned integer .u8, .u16, .u32, .u64 
Floating-point .f16, .f32, .f64 
Bits (untyped) .b8, .b16, .b32, .b64 
Predicate .pred 

 

Most instructions have one or more type specifiers, needed to fully specify instruction 
behavior.  Operand types and sizes are checked against instruction types for compatibility. 

Two fundamental types are compatible if they have the same basic type and are the same 
size.  Signed and unsigned integer types are compatible if they have the same size.  The bit-
size type is compatible with any fundamental type having the same size. 

In principle, all variables could be declared using only bit-size types, but typed variables 
enhance program readability and allow for better operand type checking. 

5.2.2. Restricted Use of Sub-word Sizes 
The .u8 and .s8 types are restricted to ld, st, and cvt instructions.  The ld and st instructions 
also accept .b8 type.  Byte-size integer load instructions zero- or sign-extended the value to 
the size of the destination register. 

The .f16 floating-point type is allowed only in conversions to and from .f32 and .f64 types.  
All floating-point instructions operate only on .f32 and .f64 types. 
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5.3. Variables 
In PTX, a variable declaration describes both the variable’s type and its state space.  In 
addition to fundamental types, PTX supports types for aggregate objects such as vectors, 
arrays, structures and unions. 

5.3.1. Variable Declarations 
All storage for data is specified with variable declarations.  Every variable must reside in one 
of the state spaces enumerated in the previous section. 

A variable declaration names the space in which the variable resides, its type and size, its 
name, an optional array size, an optional initializer, and an optional fixed address for the 
variable. 

Examples: 
      .global .u32 loc; 
      .reg .s32 i = 0; 
      .shared .f32 bias[] = {-1.0, 1.0}; 
      .local .u8 bg[4] = {0, 0, 0, 0}; 
      .reg .v3 .f32 accel; 
      .struct float4 { .f32[4] v }; 
      .global float4 coord; 

Note that texture and surface variables do not have an associated type and size. 

5.3.2. Vectors 
Limited-length vector types are supported.  Vectors of length 2, 3, and 4 of any fundamental 
type can be declared by prefixing the type with .v2, .v3, or .v4.  Vectors must be based on a 
fundamental  type, and they may reside in the register space. 

Examples: 
      .global .v4 .f32 V;  // a length-4 vector of floats 
      .shared .v2 .u16 uv; // a length-2 vector of unsigned ints 
      .reg .v4 .pred vpred; // a vector of predicates registers 
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5.3.3. Array Declarations 
Array declarations are provided to allow the programmer to reserve space.  To declare an 
array, the variable name is followed with dimensional declarations similar to fixed-size array 
declarations in C.  The size of the dimension is either a constant expression, or is left empty, 
being determined by an array initializer.  Here are some examples: 
      .local .u16 kernel[19][19]; 
      .shared .u8 mailbox[128]; 
      .shared .s32 offset[][] = { {-1, 0}, {0, -1}, {1, 0}, {0, 1} }; 

The size of the array specifies how many elements should be reserved.  For the kernel 
declaration above, 19*19 (361) halfwords are reserved (722 bytes). 

5.3.4. Structures and Unions 
A structure definition specifies a sequence of fields (consisting of a type/size and a name) as a 
block of memory.  This is analogous to the structures in C.  Once defined, the structure can 
be used as a type designator in subsequent variable declarations. 

Example: 
      .struct somestruct { .s32 i; .s32 j; .f32 x; .f32 y; }; 
      .global somestruct p; 
      .reg .b32 ptr; 
… 
      ld.s32  r0, [p.x]; 
      mov.b32 ptr, p;    // get address of structure p 

Unions definitions use the same syntax as struct definitions, with the keyword .struct 
replaced by .union.  The difference between a struct and a union is that in a struct, the fields 
are laid out sequentially in memory, while in a union, the fields all use the same memory.  
Unions provide a way to reuse memory in a relatively type-safe manner.  Here is an example 
that provides storage for a float or an integer: 
      .union intOrFloat { .s32 i; .f32 f; }; 

Structure and union declarations may be nested.  The shortcut syntax of C++ with 
anonymous unions is also supported. 
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5.3.5. Initializers 
All declarations may specify an initial value for the variable being declared (including 
predicates).  The initializers follow the conventions of C/C++, where the variable name is 
followed by an equals sign and the value or values for the initial values of the variable.  A 
scalar takes a single value; while vectors and arrays take nested lists of values inside of curly 
braces (the nesting matches the dimensionality of the declaration).  Structures take a list of 
values that matches the fields in a structure. 

Examples: 
      .global .s32 n = 10; 
      .shared .f16 blur_kernel[][] 
                     = {{.05,.1,.05},{.1,.4,.1},{.05,.1,.05}}; 
      .global .v3 .u8 rgb[3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}; 

Initializers for thread-private memory all initialize their variables to the same value.  There is 
no syntax for per-thread initializers. 

 

5.3.6. Alignment 
Byte alignment of storage for all addressable variables can be specified in the variable 
declaration.  Alignment is specified using an optional .align byte_count specifier immediately 
following the space-state specifier.  The variable will be aligned to an address which is an 
integer multiple of byte_count.  For arrays, structures, and unions, alignment specifies the 
address alignment for the starting address of the entire structure, not for individual elements. 

Examples: 
// allocate array at 4-byte aligned address.  Elements are bytes. 
      .const .align 4 .b8 bar[8] = {0,0,0,0,2,0,0,0}; 
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Chapter 6. 
Instruction Operands 

6.1. Operand Type Information 
All operands in instructions have a known type from their declarations.  Each operand type 
must be compatible with the type determined by the instruction template and instruction 
type.  There is no automatic conversion between types. 

The bit-size type is compatible with every type having the same size.  Integer types of a 
common size are compatible with each other.  Operands having type different from but 
compatible with the instruction type are silently cast to the instruction type. 

6.2. Source Operands 
The source operands are denoted in the instruction descriptions by the names a, b, and c.  
PTX describes a load-store machine, so operands for ALU instructions must all be in 
variables declared in the .reg register state space.  For most operations, the sizes of the 
operands must be consistent. 

The cvt (convert) instruction takes a variety of operand types and sizes, as its job is to 
convert from nearly any data type to any other data type (and size). 

The ld, st, mov, and cvt instructions copy data from one location to another.  Instructions ld 
and st move data from/to addressable state spaces to/from registers.  The mov instruction 
copies data between registers. 

Most instructions have an optional predicate guard that controls conditional execution, and a 
few instructions have additional predicate source operands.  Predicate operands are denoted 
by the names p, q, r, s. 

6.3. Destination Operands 
PTX instructions that produce a single result store the result in the field denoted by d (for 
destination) in the instruction descriptions.  The result operand can be any declared variable, 
array element, structure/union member, vector or vector element. 
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6.4. Using Addresses, Arrays, 
Vectors, Structures, and 
Unions 
Using scalar variables as operands is straightforward.  The interesting capabilities begin with 
pointers, composite structures, and arrays. 

6.4.1. Addresses as Operands 
Address arithmetic is performed using integer arithmetic and logical instructions.  Examples 
include pointer arithmetic and pointer comparisons.  All addresses and address 
computations are byte-based; there is no support for C-style pointer arithmetic. 

The mov instruction can be used to move the address of a variable into a pointer.  Load and 
store operations move data between registers and locations in addressable state spaces.  The 
syntax is similar to that used in many assembly languages, where scalar variables are simply 
named and addresses are de-referenced by enclosing the address expression in square 
brackets.  Address expressions include variable names, address registers, address register plus 
byte offset, and immediate address expressions which evaluate at compile-time to a constant 
address. 

Here are a few examples: 
      .shared .u16 x; 
      .reg .u16 r0; 
      .global .v4 .f16 V; 
      .reg .v4 .f16 W; 
      .const .s32 tbl[256]; 
      .reg .b32 p; 
      .reg .s32 q; 
       
      ld.u16    r0,[x]; 
      ld.v4.f16 W, [V]; 
      ld.s32    q, [tbl+12]; 
      mov.b32   p, tbl; 
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6.4.2. Arrays as Operands 
Arrays of all types can be declared, and the identifier becomes an address constant in the 
space where the array is declared.  The size of the array is a constant in the program. 

Array elements can be accessed using an explicitly calculated byte address, or by indexing 
into the array using square-bracket notation.  The expression within square brackets is either 
a constant integer, a register variable, or a simple “register with constant offset” expression, 
where the offset is a constant expression that is either added or subtracted from a register 
variable.  If more complicated indexing is desired, it must be written as an address 
calculation prior to use.  Examples are  
      ld.u32  s, a[0]; 
      ld.u32  s, a[N-1]; 
      mov.u32 s, a[1];  // move address of a[1] into s 

6.4.3. Vectors as Operands 
Vectors can be treated as a collection of elements simply by naming them.  Vector variables 
can typically replace scalar variables in most PTX instructions, and the meaning is to 
perform the operation on an element-by-element basis. 
      .reg .v4 .f16 v1, v2, v3; 
      add.v4.s32 v3, v2, v1; 

Vector elements can be extracted from the vector with the suffixes .0, .1, .2, and .3 or .x, .y, 
.z and .w suffixes, as well as the typical color fields .r, .g, .b and .a. 

Vectors can be swizzled or reordered with swizzling suffixes, which are a combination of the 
digits or characters that represent the elements of a vector (0123, xyzw, rgba).  The swizzling 
suffixes allow arbitrary duplication and reordering of vector elements.  Swizzling is allowed 
only in mov instructions, and the source and destination must be distinct. 

A brace-enclosed list is used for pattern matching to pull apart vectors.  Wide loads and 
stores can be specified to multiple targets using vector loads, specifying multiple scalars 
within the brace-enclosed list.  Here are some examples: 
      .reg .v3 .f32 V; 
      .reg .f32 a, b, c; 
      mov.v3.f32 {a,b,c}, V; 

Vector loads and stores can be used to implement wide loads and stores, which may improve 
memory performance.  The registers in the load/store operations can be a vector, or a brace-
enclosed list of similarly typed scalars.  Here is an example: 

ld.v4.f32 {a,b,c,d}, [Vmem]; 

Elements in a brace-enclosed vector, say {Ra, Rb, Rc, Rd}, correspond to extracted elements 
as follows: 
Ra = V.0 = V.x = V.r 
Rb = V.1 = V.y = V.g 
Rc = V.2 = V.z = V.b 
Rd = V.3 = V.w = V.a 
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6.4.4. Structures and Unions as Operands 
Structures and unions can only access their members; there are no instructions that take 
entire structures as operands. 

6.4.5. Immediate Values as Operands 
Immediate values (or constants) can be used in most instructions.  Only one immediate 
operand is permitted in an instruction.  In ALU instructions, it is typically the b or c 
operand.  In load and store instructions, an immediate offset to a register or an immediate 
absolute address is permitted.  In instruction with only one source operand, the source 
operand may be an immediate.  The size of the immediate value may be specified with a type 
suffix like .u16, and defaults to the size of the instruction source operand.  

For directly specifying IEEE-752 single and double precision floating point numbers, a 
hexadecimal value may be used as an immediate operand in floating point operations.  The 
immediate value syntax is as follows: 
0[fF]{hexdigit}{8} // single-precision floating point 
0[dD]{hexdigit}{16} // double-precision floating point 

 

Example: 
      mov.f32  $f3, 0F3f800000;        //  1.0 

This format may also be used when initializing variables. 

 

6.5. Type Conversion 
All operands to all arithmetic, logic, and data movement instruction must be of the same 
type and size, except for operations where changing the size and/or type is part of the 
definition of the instruction.  Operands of different sizes or types must be converted prior 
to the operation. 

6.5.1. Scalar Conversions 
Table 6 shows what precision and format the cvt instruction uses given operands of differing 
types.  For example, if a cvt.s32.u16 instruction is given a u16 source operand and s32 as a 
destination operand, the u16 is zero-extended to s32. 

Conversions to floating-point that are beyond the range of floating-point numbers are 
represented with the maximum floating-point value (IEEE Inf for f32 and f64, and ~131,000 
for f16). 
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Table 7. CVT Instruction Precision and Format  
Destination Format  

s8 s16 s32 s64 u8 u16 u32 u64 f16 f32 f64 

s8 - sext sext sext - sext sext sext s2f s2f s2f 

s16 chop1 - sext sext chop1 - sext sext s2f s2f s2f 

s32 chop1 chop1 - sext chop1 chop1 - sext s2f s2f s2f 

s64 chop1 chop1 chop - chop1 chop1 chop - s2f s2f s2f 

u8 - zext zext zext - zext zext zext u2f u2f u2f 

u16 chop1 - zext zext chop1 - zext zext u2f u2f u2f 

u32 chop1 chop1 - zext chop1 chop1 - zext u2f u2f u2f 

u64 chop1 chop1 chop - chop1 chop1 chop - u2f u2f u2f 

f16 f2s f2s f2s f2s f2u f2u f2u f2u - f2f f2f 

f32 f2s f2s f2s f2s f2u f2u f2u f2u f2f - f2f 

So
ur

ce
 F

or
m

at
 

f64 f2s f2s f2s f2s f2u f2u f2u f2u f2f f2f - 

Notes 

sext = sign extend;   zext = zero-extend;   chop = keep only low bits that fit; 
s2f = signed-to-float;   f2s = float-to-signed; 
u2f = unsigned-to-float;   f2u = float-to-unsigned; 
f2f = float-to-float; 
 
1  If the destination register is wider than the destination format, the result is extended to the 
destination register width after chopping.  The type of extension (sign or zero) is based on the 
destination format.  For example, cvt.s16.u32 targeting a 32-bit register will first chop to 16-bits, 
then sign-extend to 32-bits. 
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6.5.2. Rounding Modes 
Conversion instructions may specify a rounding modifier.  In PTX, there are four integer 
rounding modes and four floating-point rounding modes.  The following tables summarize 
the rounding modes. 

Table 8. Floating-point Rounding Modes 
Modifier Description 

.rn mantissa LSB rounds to nearest even 

.rz mantissa LSB rounds towards zero 

.rm mantissa LSB rounds towards negative infinity 

.rp mantissa LSB rounds towards positive infinity 

 

Table 9. Integer Rounding Modes 
Modifier Description 

.rni round to nearest integer, choosing even integer if source is equidistant 
between two integers. 

.rzi round to nearest integer in the direction of zero 

.rmi round to nearest integer in direction of negative infinity 

.rpi round to nearest integer in direction of positive infinity 
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6.5.3. Vector Conversions 
Conversions between scalar values and vector values are supported, allowing operations like 
adding the scalar value 1 to a vector.  Scalar values are spread out to match the size of the 
vector.  Short vectors are zero-extended to longer vectors, and long vectors are truncated 
when assigned to shorter vectors.  The table below describes the conversions, where s is a 
scalar value and v is a vector. 

Table 10. Conversions Between Scalar Values  
and Vector Values 

Destination Scalar-Vector 
Vector-Vector 
Conversions scalar v2 v3 v4 

scalar - [s, s] [s, s, s] [s, s, s, s] 

v2 v.0 - [v.0, v.1, 0] [v.0, v.1, 0, 0] 

v3 v.0 [v.0, v.1] - [v.0, v.1, v.2, 0] 
Source 

v4 v.0 [v.0, v.1] [v.0, v.1, v.2] - 

 

Vector immediate values are specified similarly to aggregate initialization, but are not 
necessary unless the values are different (scalars are spread automatically).  Some examples 
are shown below. 
      .global .v3 .f32 V; 
      add.v3.f32 V, V, 1; 
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6.6. Operand Costs 
Operands from different state spaces affect the speed of an operation.  Registers are fastest, 
while global memory is slowest.  Much of the delay to memory can be hidden in a number of 
ways.  The first is to have multiple threads of execution so that the hardware can issue a 
memory operation and then switch to other execution.  Another way to hide latency is to 
issue the load instructions as early as possible, as execution is not blocked until the desired 
result is used in a subsequent (in time) instruction.  The register in a store operation is 
available much more quickly.  Table 11 gives estimates of the costs of using different kinds 
of memory. 

Table 11. Cost estimates for accessing state-spaces 
Space Time Notes 

Register 0  

Shared 0  

Constant 0 Amortized cost is low, first access is high 

Local > 100 clocks  

Parameter 0  

Immediate 0  

Global > 100 clocks  

Texture > 100 clocks  

Surface > 100 clocks  
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Chapter 7. 
Instruction Set 

7.1. Format and Semantics of 
Instruction Descriptions 
This section describes each PTX instruction.  In addition to the name and the format of the 
instruction, the semantics are described, followed by some examples that attempt to show 
several possible instantiations of the instruction. 

7.2. PTX Instructions 
PTX instructions generally have from zero to four operands, plus an optional guard 
predicate appearing after an ‘@’ symbol to the left of the opcode: 

 @P    opcode; 

 @P    opcode A; 

 @P    opcode D, A; 

 @P    opcode D, A, B; 

 @P    opcode D, A, B, C; 

For instructions that create a result value, the D operand is the destination operand, while A, 
B, and C are the source operands. 

The setp instruction writes two destination registers.  We use a ‘|’ symbol to separate 
multiple destination registers. 
      setp.s32.lt p|q, a, b;  // p = (a < b); q = !(a < b); 

For some instructions the destination operand is optional.  A “bit bucket” operand denoted 
with an underscore (‘_’) may be used in place of a destination register. 
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7.3. Predicated Execution 
In PTX, predicate registers are virtual and have .pred as the type specifier.  So, predicate 
registers can be declared as 
      .reg .pred p, q, r 

All instructions have an optional “guard predicate” which controls conditional execution of 
the instruction.  The syntax to specify conditional execution is to prefix an instruction with 
“@[!]p”, where p is a predicate variable, optionally negated.  Instructions without a guard 
predicate are executed unconditionally. 

Predicates are most commonly set as the result of a comparison performed by the SETP 
instruction. 

As an example, consider the high-level code 
  if (i < n) 
      j = j + 1; 

This can be written in PTX as 
      setp.lt.s32 p, i, n; // p = (i < n) 
@p    add.s32 j, j, 1;  // if i < n, add 1 to j 

To get a conditional branch or conditional function call, use a predicate to control the 
execution of the branch or call instructions.  To implement the above example as a true 
conditional branch, the following PTX instruction sequence might be used: 
      setp.lt.s32 p, i, n; // compare i to n 
@!p   bra L1;   // if false, branch over 
      add.s32 j, j, 1;   
L1:  … 
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7.3.1. Comparisons 

7.3.1.1. Integer and Bit-Size Comparisons 
The signed integer comparisons are the traditional eq (equal), ne (not-equal), lt (less-than), le 
(less-than-or-equal), gt (greater-than), and ge (greater-than-or-equal).  The unsigned 
comparisons are eq, ne, lo (lower), ls (lower-or-same), hi (higher), and hs (higher-or-same).  
The bit-size comparisons are eq and ne; ordering comparisons are not defined for bit-size 
types.  The following table shows the operators for signed integer, unsigned integer, and bit-
size types. 

Table 12. Operators for Signed Integer, Unsigned Integer, and Bit-
size Types 

Meaning Signed Operator Unsigned Operator Bit-Size Operator 
a == b EQ EQ EQ 

a != b NE NE NE 

a < b LT LO  

a <= b LE LS  

a > b GT HI  

a >= b GE HS  

 

7.3.1.2. Floating-point Comparisons 
The ordered comparisons are eq, ne, lt, le, gt, ge.  If either operand is NaN, the result is false. 

Table 13. Floating-point Comparison Operators 
Meaning Floating-Point Operator 
a == b && !isNaN(a) && !isNaN(b) EQ 

a != b && !isNaN(a) && !isNaN(b) NE 

a < b && !isNaN(a) && !isNaN(b) LT 

a <= b && !isNaN(a) && !isNaN(b) LE 

a > b && !isNaN(a) && !isNaN(b) GT 

a >= b && !isNaN(a) && !isNaN(b) GE 
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To aid comparison operations in the presence of NaN values, unordered versions are 
included: equ, neu, ltu, leu, gtu, geu.  If both operands are numeric values (not NaN), then 
these comparisons have the same result as their ordered counterparts.  If either operand is 
NaN, then the result of these comparisons is true. 

Table 14. Floating-Point Comparison Operators Accepting NaN 
Meaning Floating-Point Operator 
a == b || isNaN(a) || isNaN(b) EQU 

a != b || isNaN(a) || isNaN(b) NEU 

a < b || isNaN(a) || isNaN(b) LTU 

a <= b || isNaN(a) || isNaN(b) LEU 

a > b || isNaN(a) || isNaN(b) GTU 

a >= b || isNaN(a) || isNaN(b) GEU 

 

To test for NaN values, two operators num (numeric) and nan (isNaN) are provided.  num 
returns true if both operands are numeric values (not NaN), and nan returns true if either 
operand is NaN. 

Table 15. Floating-Point Comparison Operators Testing for NaN 
Meaning Floating-Point Operator 
!isNaN(a) && !isNaN(b) NUM 

isNaN(a) || isNaN(b) NAN 

 

7.3.2. Manipulating Predicates 
Predicate values may be computed and manipulated using the following instructions: and, or, 
xor, not, and mov. 

There is no direct conversion between predicates and integer values, and no direct way to 
load or store predicate register values.  However, setp can be used to generate a predicate 
from an integer, and the predicate-based select (selp) instruction can be used to generate an 
integer value based on the value of a predicate; for example: 
      selp.u32 %r1,1,0,%p;  // convert predicate to 32-bit value  
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7.4. Type Information for 
Instructions and Operands 
Instructions that have a type must have a type suffix, e.g. add.u16 or add.f32.  The operand 
type must agree with the instruction type suffix.  The bit-size types agree with any type of 
the same size.  For example, the add instruction requires type and size information to 
properly perform the addition operation (signed, unsigned, float, different sizes), and this 
information must be specified as a suffix to the opcode. 

Example: 
      add.u16 d, a, b;    // perform a 16-bit unsigned add 

Integer types are compatible provided they have the same size, and integer operands are 
silently cast to the instruction type if needed.  For example, an unsigned integer operand 
used in a signed integer instruction will be treated as a signed integer by the instruction. 

Example: 
      .reg .u32 x; 
      .reg .s32 a; 
 
      neg.s32 a, x;       // signed negation of x 

 

Some instructions require multiple type and size declarations, most notably the data 
conversion instruction cvt.  It requires types for the result and source, and these are placed 
in the same order as the operands.  For example: 
      cvt.f32.u16 d, a;   // convert 16-bit unsigned to 32-bit float 

7.5. Divergence of Threads in 
Control Constructs 
Threads in a CTA execute together, at least in appearance, until they come to a conditional 
control construct such as a conditional branch, conditional function call, or conditional 
return.  If threads execute down different control flow paths, the threads are called divergent.  
If all of the threads act in unison and follow a single control flow path, the threads are called 
uniform.  Both situations occur often in programs. 

A CTA with divergent threads may have lower performance than a CTA with uniformly 
executing threads, so it is important to have divergent threads reconverge as soon as 
possible.  All control constructs are assumed to be divergent points unless the control-flow 
instruction is marked as uniform, using the .uni suffix.  For divergent control flow, the 
optimizing code generator automatically determines points of reconvergence.  Therefore, a 
compiler or code author targeting PTX can ignore the issue of divergent threads, but has the 
opportunity to improve performance by marking branch points as uniform when the 
compiler or author can guarantee that the branch point is non-divergent. 
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7.6. Semantics 
The goal of the semantic description of an instruction is to describe the results in all cases in 
as simple language as possible.  The semantics are described using C, until C is not 
expressive enough. 

7.6.1. Machine-specific Semantics of 16-bit Code 
A PTX program may execute on a GPU with either a 16-bit or a 32-bit datapath.  When 
executing on a 32-bit datapath, 16-bit registers in PTX are mapped to 32-bit physical 
registers, and 16-bit computations are “promoted” to 32-bit computations.  This can lead to 
computational differences between code run on a 16-bit machine versus the same code run 
on a 32-bit machine, since the “promoted” computation may have bits in the high-order 
half-word of registers that are not present in 16-bit physical registers.  These extra precision 
bits can become visible at the application level, for example, by a right-shift instruction. 

At the PTX language level, one solution would be to define semantics for 16-bit code that is 
consistent with execution on a 16-bit datapath.  This approach introduces a performance 
penalty for 16-bit code executing on a 32-bit datapath, since the translated code would 
require many additional masking instructions to suppress extra precision bits in the high-
order half-word of 32-bit registers. 

Rather than introduce a performance penalty for 16-bit code running on 32-bit GPUs, the 
semantics of 16-bit instructions in PTX is machine-specific.  A compiler or programmer may 
chose to enforce portable, machine-independent 16-bit semantics by adding explicit 
conversions to 16-bit values at appropriate points in the program to gurantee portability of 
the code.  However, for many performance-critical applications, this is not desirable, and for 
many applications the difference in execution is preferable to limiting performance. 
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7.7. Instructions 
All PTX instructions may be predicated.  In the following descriptions, the optional guard 
predicate is omitted from the syntax. 

7.7.1. Arithmetic Instructions 
Arithmetic instructions operate on the numeric types in register, vector, and constant 
immediate forms. The arithmetic instructions are: 

 ADD 

 SUB 

 MUL 

 MAD 

 MUL24 

 MAD24 

 SAD 

 DIV 

 REM 

 ABS 

 NEG 

 MIN 

 MAX 
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Table 16. Arithmetic Instructions:  ADD 
ADD Add two values 

Syntax add[.rnd][.sat].type d, a, b; 

 

.type = { .u16, .u32, .u64, 
          .s16, .s32, .s64, 
                .f32, .f64 }; 

Description Performs addition and writes the resulting value into a destination register. 

Semantics d = a + b; 

Integer Notes No integer rounding modes. 
 
Saturation modifier: 
.sat limits result to MININT..MAXINT (no overflow) for the size of the operation. 

Applies only to .s32 type. 

Floating Point 
Notes 

Rounding modes (default is .rn): 
.rn mantissa LSB rounds to nearest even 
.rz mantissa LSB rounds towards zero 
 
Saturation modifier: 
.sat limits result to (0.0, 1.0). 

Applies only to .f32 type. 

Examples @p  add.u32     x,y,z; 
    add.sat.s32 c,c,1; 
    add.rz.f32  f1,f2,f3; 

 

Table 17. Arithmetic Instructions:  SUB 
SUB Subtract one value from another 

Syntax sub[.rnd][.sat].type d, a, b; 
.type = { .u16, .u32, .u64, 
          .s16, .s32, .s64, 
                .f32, .f64 }; 

Description Performs subtraction and writes the resulting value into a destination register. 

Semantics d = a – b; 

Integer Notes No integer rounding modes. 
 
Saturation modifier: 
.sat limits result to MININT..MAXINT (no overflow) for the size of the operation. 

Applies only to .s32 type. 

Floating Point 
Notes 

Rounding modes (default is .rn): 
.rn mantissa LSB rounds to nearest even 
.rz mantissa LSB rounds towards zero 
 
Saturation modifier: 
.sat limits result to (0.0, 1.0). 

Applies only to .f32 type. 

Examples     sub.s32 c,a,b; 
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Table 18. Arithmetic Instructions:  MUL 
MUL Multiply two values 

Syntax mul[.hi,.lo,.wide][.rnd][.sat].type d, a, b; 
 
.type = { .u16, .u32, .u64, 

          .s16, .s32, .s64, 

                .f32, .f64 }; 

Description Compute the product of two values. 

Semantics t = a * b; 
n = bitwidth of type; 
d = t;                           // for floating-point and .wide  
d = t<2n-1..n>;            // for .hi variant 
d = t<n-1..0>;              // for .lo variant 

Integer Notes The type of the operation represents the types of the a and b operands.  If .hi or .lo is 
specified, then d is the same size as a and b, and either the upper or lower half of the 
result is written to the destination register.  If .wide is specified, then d is twice as wide 
as a and b to receive the full result of the multiplication. 
 
The .wide suffix is supported only for 16- and 32-bit integer types. 
No integer rounding modes. 
No integer saturation. 

Floating Point 
Notes 

For floating-point multiplication, all operands must be the same size. 
 
Rounding modes (default is .rn): 
.rn mantissa LSB rounds to nearest even 
.rz mantissa LSB rounds towards zero 
 
Saturation modifier: 
.sat limits result to (0.0, 1.0). 

Applies only to .f32 type. 

Examples     mul.wide.s16 fa,fxs,fys;   // 16*16 bits yields 32 bits 

    mul.lo.s16 fa,fxs,fys;     // 16*16 bits, save only the low 16 bits 

    mul.wide.s32 z,x,y;        // 32*32 bits, creates 64 bit result 

    mul.f32 circumf,radius,pi  // a single-precision multiply 
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Table 19. Arithmetic Instructions:  MAD 
MAD Multiply two values and add a third value 

Syntax mad[.hi,.lo,.wide][.sat].type d, a, b, c; 

 

.type = { .u16, .u32, .u64, 

          .s16, .s32, .s64, 

                .f32, .f64 }; 

Description Multiplies two values and adds a third, and then writes the resulting value into a 
destination register. 

Semantics t = a * b; 

n = bitwidth of type; 

d = t + c;                   // for floating-point and .wide 

d = t<2n-1..n> + c;          // for .hi variant 

d = t<n-1..0> + c;           // for .lo variant 

Integer Notes The type of the operation represents the types of the a and b operands.  If .hi or .lo is 
specified, then d and c are the same size as a and b, and either the upper or lower half 
of the result is written to the destination register.  If .wide is specified, then d and c are 
twice as wide as a and b to receive the result of the multiplication. 
 
The .wide suffix is supported only for 16- and 32-bit integer types. 
No integer rounding modes. 
 
Saturation modifier: 
.sat limits result to MININT..MAXINT (no overflow) for the size of the operation.  

Applies only to .s32 type in .hi mode. 

Floating Point 
Notes 

Saturation modifier: 
.sat limits result to (0.0, 1.0). 

Applies only to .f32 type. 

Examples     mad.lo.s32 d,a,b,c; 

    mad.lo.s32 r,p,q,r; 

@p  mad.f32 d,a,b,c; 
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Table 20. Arithmetic Instructions:  MUL24 
MUL24 Multiply two 24-bit integer values 

Syntax mul24[.hi,.lo].type d, a, b; 

 

.type = { .u32, .s32 }; 

Description Compute the product of two 24-bit integer values held in 32-bit source registers, and 
return either the high or low 32-bits of the 48-bit result. 

Semantics t = a * b; 

d = t<47..16>;                    // for .hi variant 

d = t<31..0>;                     // for .lo variant 

Notes Integer multiplication yields a result that is twice the size of the input operands, i.e. 48-
bits.   
mul24.hi performs a 24x24-bit multiply and returns the high 32 bits of the 48-bit result.  
mul24.lo performs a 24x24-bit multiply and returns the low 32 bits of the 48-bit result.   
All operands are of the same type and size. 
No saturation. 
mul24.hi may be less efficient on machines without hardware support for 24-bit 
multiply. 

Examples     mul24.lo.s32 d,a,b;     // low 32-bits of 24x24-bit 
                               signed multiply. 

 

Table 21. Arithmetic Instructions:  MAD24 
MAD24 Multiply two 24-bit integer values and add a third value. 

Syntax mad24[.hi,.lo][.sat].type d, a, b, c; 

 

.type = { .u32, .s32 }; 

Description Compute the product of two 24-bit integer values held in 32-bit source registers, and 
add a third, 32-bit value to either the high or low 32-bits of the 48-bit result.  Return 
either the high or low 32-bits of the 48-bit result. 

Semantics t = a * b; 

d = t<47..16> + c;            // for .hi variant 

d = t<31..0> + c;             // for .lo variant 

Notes Integer multiplication yields a result that is twice the size of the input operands, i.e. 48-
bits.   
mad24.hi performs a 24x24-bit multiply and adds the high 32 bits of the 48-bit result to 
a third value.   
mad24.lo performs a 24x24-bit multiply and adds the low 32 bits of the 48-bit result to 
a third value.  All operands are of the same type and size. 
 
Saturation modifier: 
.sat limits result of 32-bit signed addition to MININT..MAXINT (no overflow). 

Applies only to .s32 type in .hi mode. 
 
mad24.hi may be less efficient on machines without hardware support for 24-bit 
multiply. 

Examples     mad24.lo.s32 d,a,b,c;   // low 32-bits of 24x24-bit 
                               signed multiply. 
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Table 22. Arithmetic Instructions:  SAD 
SAD Sum of absolute differences. 

Syntax sad.type d, a, b, c; 

 

.type = { .u16, .u32, .u64, 
          .s16, .s32, .s64, 
                .f32, .f64 }; 

Description Adds the absolute value of a-b to c and writes the resulting value into a destination 
register. 

Semantics d = c + ((a<b) ? (b-a) : (a-b)); 

Examples     sad.s32 d,a,b,c; 

    sad.u32 d,a,b,d; // running sum 

    sad.f32 w,x,y,z; 

 

Table 23. Arithmetic Instructions:  DIV 
DIV Divide one value by another. 

Syntax div[.wide][.sat].type d, a, b; 

 

.type = { .u16, .u32, .u64, 

          .s16, .s32, .s64, 

                .f32, .f64 }; 

Description Divides a by b, stores result in d. 

Semantics d = a / b; 

Integer Notes The .wide suffix specifies that a is twice the size of b and d.  Otherwise, all three 
operands are the same size. 
The .wide suffix is supported only for 16- and 32-bit integer types. 
Division by zero yields an unspecified, machine-specific value. 
No integer saturation. 

Floating Point 
Notes 

Division by zero creates a value of infinity (with same sign as a). 
Division rounds to nearest even. 
Saturation modifier: 
.sat limits result to (0.0, 1.0). 

Applies only to .f32 type. 

Release Notes div.wide and div.{u64,s64} are unimplemented. 

Examples     div.s32      b,n,i; 

    div.wide.s32 d,an_s64_var,b; 

    div.f32      diam,circum,3.14159; 
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Table 24. Arithmetic Instructions:  REM 
REM The remainder of integer division. 

Syntax rem[.wide].type d, a, b; 

 

.type = { .u16, .u32, .u64, 
          .s16, .s32, .s64 }; 

Description Divides a by b, store the remainder in d. 

Semantics d = a % b; 

Integer Notes The .wide suffix specifies that a is twice the size of b and d.  Otherwise, all three 
operands are the same size. 
The .wide suffix is supported only for 16- and 32-bit integer types. 
 
The behavior for negative numbers is machine-dependent and depends on whether 
divide rounds towards zero or negative infinity. 

Floating Point 
Notes 

No floating-point support. 

Release Notes rem.wide and rem.{u64,s64} are unimplemented. 
Examples     rem.s32  x,x,8;    // x = x%8; 

 

Table 25. Arithmetic Instructions:  ABS 
ABS Absolute value. 

Syntax abs.type d, a; 

 

.type = { .s16, .s32, .s64, 
                .f32, .f64 }; 

Description Take the absolute value of a and store it in d. 

Semantics d = |a|; 

Examples     abs.s32  r0,a; 

    abs.f32  x,f0; 

 

Table 26. Arithmetic Instructions:  NEG 
NEG Arithmetic negate. 

Syntax neg.type d, a; 

.type = { .s16, .s32, .s64, 
                .f32, .f64 }; 

Description Subtract a from zero and store the result in d. 

Semantics d = 0-a; 

Notes Only for signed integers and floating-point numbers. 

Examples     neg.s32  r0,a; 

    neg.f32  x,f0; 
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Table 27. Arithmetic Instructions:  MIN 
MIN Find the minimum of two values. 

Syntax max.type d, a, b; 

 

.type = { .u16, .u32, .u64, 
          .s16, .s32, .s64, 
                .f32, .f64 }; 

Description Store the minimum of a and b in d. 

Semantics d = (a < b) ? a : b;            // Integer (signed and unsigned) 

d = isNaN(a) ? b : isNan(b) ? a : (a < b) ? a : b;   // FP 

Integer Notes Signed and unsigned differ. 

Floating Point 
Notes 

If either source operand is NaN, then the result is the other operand. 

Examples     min.s32  r0,a,b; 

@p  min.u16  h,i,j; 

    min.f32  z,z,x; 

 

Table 28. Arithmetic Instructions:  MAX 
MAX Find the maximum of two values. 

Syntax min.type d, a, b; 

 

.type = { .u16, .u32, .u64, 

          .s16, .s32, .s64, 

                .f32, .f64 }; 

Description Store the maximum of a and b in d. 

Semantics d = (a > b) ? a : b;            // Integer (signed and unsigned) 

d = isNan(a) ? b : isNan(b) ? a : (a > b) a : b;   // FP 

Integer Notes Signed and unsigned differ. 

Floating Point 
Notes 

If either source operand is NaN, then the result is the other operand. 

Examples     max.f32  f0,f1,f2; 

    max.u32  d,a,b; 

    max.s32  q,q,0; 
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7.7.2. Comparison and Selection Instructions 
The comparison select instructions are: 

  SET 
  SETP 
  SELP 
  SLCT 



Chapter 7.  Instruction Set 

    

 

 
46  PTX ISA Version 1.1 
  10/24/2007 

Table 29. Comparison and Selection Instructions:  SET 

SET Compare two numeric values with a relational operator, and optionally combine this 
result with a predicate value by applying a Boolean operator.  

Syntax set.CmpOp.dtype.stype d, a, b; 
set.CmpOp.BoolOp.dtype.stype d, a, b, [!]c; 

 

.dtype = { .u32, .s32, .f32 }; 

.stype = { .b16, .b32, .b64, 
           .u16, .u32, .u64, 
           .s16, .s32, .s64, 
                 .f32, .f64 }; 

Description Compares two numeric values and optionally combines the result with another 
predicate value by applying a Boolean operator.  If this result is True, 1.0f is written for 
floating-point destination types, and 0xFFFFFFFF is written for integer destination 
types.  Otherwise, 0x00000000 is written. 
 
The comparison operator is a suffix on the instruction, and can be one of: 
eq, ne, lt, le, gt, ge 
lo, ls, hi, hs 
equ, neu, ltu, leu, gtu, geu 
num, nan 

 
The Boolean operator BoolOp(A,B) is one of:  and, or, xor 

Semantics t = (a CmpOp b) ? 1 : 0; 
if (isFloat(dtype)) 

  d = BoolOp(t, c) ? 1.0f : 0x00000000; 

else 

  d = BoolOp(t, c) ? 0xFFFFFFFF : 0x00000000; 

Integer Notes The signed and unsigned comparison operators are eq, ne, lt, le, gt, ge. 
 
For unsigned values, the comparison operators lo, ls, hi, and hs for lower, lower-or-
same, higher, and higher-or-same may be used instead of lt, le, gt, ge, 
respectively. 
 
The untyped, bit-size comparisons are eq and ne. 

Floating Point 
Notes 

The ordered comparisons are eq, ne, lt, le, gt, ge.  If either operand is NaN, 
the result is false. 
 
To aid comparison operations in the presence of NaN values, unordered versions are 
included: equ, neu, ltu, leu, gtu, geu.  If both operands are numeric values 
(not NaN), then these comparisons have the same result as their ordered counterparts.  
If either operand is NaN, then the result of these comparisons is true. 
 
num returns true if both operands are numeric values (not NaN), and nan returns true if 
either operand is NaN. 

Examples     set.lt.and.f32.s32  d,a,b,r; 
    set.eq.u32.u32      d,i,n; 
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Table 30. Comparison and Selection Instructions:  SETP 

SETP Compare two numeric values with a relational operator, and (optionally) combine this 
result with a predicate value by applying a Boolean operator.  

Syntax setp.CmpOp.type p[|q], a, b; 

setp.CmpOp.BoolOp.type p[|q], a, b, [!]c; 

 

.type = { .b16, .b32, .b64, 

          .u16, .u32, .u64, 

          .s16, .s32, .s64, 

                .f32, .f64 }; 

Description Compares two values and combines the result with another predicate value by applying 
a Boolean operator.  This result is written to the first destination operand.  A related 
value computed using the complement of the compare result is written to the second 
destination operand. 
 
Applies to all numeric types.  The destinations p and q must be .pred variables. 
 
The comparison operator is a suffix on the instruction, and can be one of: 
eq, ne, lt, le, gt, ge 
lo, ls, hi, hs 
equ, neu, ltu, leu, gtu, geu 
num, nan 

 
The Boolean operator BoolOp(A,B) is one of:  and, or, xor 

Semantics t = (a CmpOp b) ? 1 : 0; 

p = BoolOp(t, c); 

q = BoolOp(!t, c); 

Integer Notes The signed and unsigned comparison operators are eq, ne, lt, le, gt, ge. 
 
For unsigned values, the comparison operators lo, ls, hi, and hs for lower, lower-
or-same, higher, and higher-or-same may be used instead of lt, le, gt, ge, 
respectively. 
 
The untyped, bit-size comparisons are eq and ne. 

Floating Point 
Notes 

The ordered comparisons are eq, ne, lt, le, gt, ge.  If either operand is NaN, 
the result is false. 
 
To aid comparison operations in the presence of NaN values, unordered versions are 
included: equ, neu, ltu, leu, gtu, geu.  If both operands are numeric values 
(not NaN), then these comparisons have the same result as their ordered counterparts.  
If either operand is NaN, then the result of these comparisons is true. 
 
num returns true if both operands are numeric values (not NaN), and nan returns true if 
either operand is NaN. 

Examples     setp.lt.and.s32  p|q,a,b,r; 

    setp.eq.u32      p,i,n; 
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Table 31. Comparison and Selection Instructions:  SELP 
SELP Select between source operands, based on the value of the predicate source operand. 

Syntax selp.type d, a, b, c; 

 

.type = { .b16, .b32, .b64, 
          .u16, .u32, .u64, 
          .s16, .s32, .s64, 
                .f32, .f64 }; 

Description Conditional selection.  If c is True, a is stored in d, b otherwise.  Operands d, a, and b 
must be of the same type.  Operand c is a predicate. 

Semantics d = (c == 1) ? a : b; 

Examples     selp.s32  r0,r,g,p; 

    selp.f32  f0,t,x,xp; 

 

Table 32. Comparison and Selection Instructions:  SLCT 
SLCT Select one source operand, based on the sign of the third operand. 

Syntax slct.dtype.ctype d, a, b, c; 

 

.dtype = { .b16, .b32, .b64, 
           .u16, .u32, .u64, 
           .s16, .s32, .s64, 
                 .f32, .f64 }; 
.ctype = { .s32, .f32 }; 

Description Conditional selection.  If c>=0, a is stored in d, b otherwise.  Operands d, a, and b are 
treated as a bitsize type of the same width as the first instruction type; operand c must 
match the second instruction type. 

Semantics d = (c >= 0) ? a : b; 

For .f32 comparisons, if operand c is a denorm, it is flushed to zero, resulting in 
selection of operand a.  If operand c is NaN, the comparison is unordered and operand 
b is selected. 

Floating Point 
Notes 

For .f32 data selections, denorm results are flushed to zero. 

Examples     slct.u32.s32  x, y, z, val; 

    slct.u64.f32  A, B, C, fval; 
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7.7.3. Logic and Shift Instructions 
The logic and shift instructions are fundamentally untyped, performing bit-wise operations 
on operands of any type, provided the operands are of the same size.  This permits bit-wise 
operations on floating point values without having to define a union to access the bits.  
Instructions and, or, xor, and not also operate on predicates.  

The logical shift instructions are: 

  AND 

  OR 

  XOR 

  NOT 

  CNOT 

  SHL 

  SHR 

 

Table 33. Logic and Shift Instructions:  AND 
AND Bitwise AND. 

Syntax and.type d, a, b; 

 

.type = { .pred, .b16, .b32, .b64 }; 

Description Compute the bit-wise and operation for the bits in a and b. 

Semantics d = a & b; 

Notes The size of the operands must match, but not necessarily the type. 
Allowed types include predicate registers. 

Examples     and.b32  x,q,r;     

    and.b32  sign,fpvalue,0x80000000; 

 

Table 34. Logic and Shift Instructions:  OR 
OR Bitwise OR. 

Syntax or.type d, a, b; 

 

.type = { .pred, .b16, .b32, .b64 }; 

Description Compute the bit-wise or operation for the bits in a and b. 

Semantics d = a | b; 

Notes The size of the operands must match, but not necessarily the type. 
Allowed types include predicate registers. 

Examples     or.b32  mask mask,0x00010001 

    or.pred  p,q,r; 
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Table 35. Logic and Shift Instructions:  XOR 
XOR Bitwise exclusive-OR (inequality). 

Syntax xor.type d, a, b; 

.type = { .pred, .b16, .b32, .b64 }; 

Description Compute the bit-wise exclusive-or operation for the bits in a and b. 

Semantics d = a ^ b; 

Notes The size of the operands must match, but not necessarily the type. 
Allowed types include predicate registers. 

Examples     xor.b32  d,q,r; 
    xor.b16  d,x,0x0001; 

 

Table 36. Logic and Shift Instructions:  NOT 
NOT Bitwise negation; one’s complement. 

Syntax not.type d, a; 

.type = { .pred, .b16, .b32, .b64 }; 

Description Invert the bits in a. 

Semantics d = ~a; 

Notes The size of the operands must match, but not necessarily the type. 
Allowed types include predicates. 

Examples     not.b32  mask,mask; 
    not.pred  p,q; 

 

Table 37. Logic and Shift Instructions:  CNOT 
CNOT C/C++ style logical negation. 

Syntax xor.type d, a, b; 

.type = { .pred, .b16, .b32, .b64 }; 

Description Compute the logical negation using C/C++ semantics. 

Semantics d = (a==0) ? 1 : 0; 

Notes The size of the operands must match, but not necessarily the type. 

Examples     cnot.b32 d,a;     
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Table 38. Logic and Shift Instructions:  SHL 
SHL Shift bits left, zero-fill on right. 

Syntax shl.type d, a, b; 

.type = { .b16, .b32, .b64 }; 

Description Shift a left by the amount specified by b. 

Semantics d = a << b; 

Notes Shift amounts greater than the register width N are clamped to N. 
The size of the operands must match, but not necessarily the type. 

Examples     shl.b32  q,a,2; 

 

Table 39. Logic and Shift Instructions:  SHR 
SHR Shift bits right, sign or zero fill on left. 

Syntax shr.type d, a, b; 

 

.type = { .b16, .b32, .b64, 

          .u16, .u32, .u64, 

          .s16, .s32, .s64 }; 

Description Shift a right by the amount specified by b.  Signed shifts fill with the sign bit, unsigned 
and untyped shifts fill with 0. 

Semantics d = a >> b; 

Notes Shift amounts greater than the register width N are clamped to N. 
Bit-size types are included for symmetry with SHL.  

Examples     shr.u16  c,a,2; 

    shr.s32  i,i,1; 

    shr.b16  k,i,j; 
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7.7.4. Data Movement and Conversion Instructions 
These instructions copy data from place to place, and from state space to state space, 
possibly converting it from one format to another.  

The Data Movement and Conversion Instructions are: 

 MOV 

 LD 

 ST 

 CVT 

 

Table 40. Data Movement and Conversion Instructions:  MOV 
MOV Set a register variable with the value of a register variable or an immediate value. 

Syntax mov.type d, a; 
mov.type d, sreg;       // sizes must match 
mov.type d, avar;       // move address of variable into 
destination reg 

 

.type = { .pred, 
          .b16, .b32, .b64, 
          .u16, .u32, .u64, 
          .s16, .s32, .s64, 
                .f32, .f64 }; 

Description Write register d with the value of a. 
Operand a may be a register, special register, immediate, or addressable variable. 

Semantics d = a; 

Notes Although only predicate and bit-size types are required, we include the arithmetic types 
for the programmer’s convenience: their use enhances program readability and allows 
additional type checking. 

Examples     mov.f32  d,a; 
    mov.u16  u,v; 
    mov.f32  k,0.1; 
    mov.u32  ptr, A;    // move address of A into ptr 
    mov.u32  ptr, A[5]; // move address of A[5] into ptr 
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Table 41. Data Movement and Conversion Instructions:  LD 
LD Load a register variable from an addressable state space variable. 

Syntax ld.space.type d,[a];                // load from address 
ld.space.vec.type d,[a];            // vector load from address 

 

ld.volatile.space.type d,[a];       // load from address 
ld.volatile.space.vec.type d,[a];   // vector load from address 

 

.space = { .const, .global, .local, .param, .shared }; 

.vec   = { .v2, .v3, .v4 }; 

.type  = { .b8, .b16, .b32, .b64, 
           .u8, .u16, .u32, .u64, 
           .s8, .s16, .s32, .s64, 
                      .f32, .f64 }; 

Description Load register variable d from the location specified by the source address operand a.   
 
The addressable operand a is one of: 
[avar] the name of an addressable variable var,  
[areg] a register reg containing a byte address,  
[areg+immOff] a sum of register reg containing a byte address plus a constant integer 

byte offset (signed, 32-bit), or 
[immAddr] an immediate absolute byte address (unsigned, 32-bit). 
 
The address size may be either 32-bit or 64-bit.  Addresses are zero-extended to the 
specified width as needed, and truncated if the register width exceeds the state space 
address width for the target architecture. 
 
The instruction must carry a .space suffix.  A register containing an address may be 
declared as a bit-size type or integer type. 
 
ld.volatile may be used with .global and .shared spaces to inhibit optimization of 
references to volatile memory.  This may be used, for example, to enforce sequential 
consistency between threads accessing shared memory. 

Semantics d = a;               // named variable a 

d = *a;              // register 

d = *(a+immOff);     // register-plus-offset 

d = *(immAddr);      // immediate address 

Notes Destination d must be in the .reg state space. 
For integer loads, if the destination register is wider than the specified type, the value 
loaded is extended to the destination register width.  The type of extension (sign or 
zero) is determined by the .type field. 
.f16 data may be loaded using ld.b16, and then converted to .f32 or .f64 using cvt. 

Examples     ld.global.f32 d,[a]; 

    ld.shared.b32 d,[p]; 

    ld.const.s32  d,[p+4]; 

    ld.global.v4.f32 Q,[p]; 

    ld.local.b64  x,[240]; 

 



Chapter 7.  Instruction Set 

    

 

 
54  PTX ISA Version 1.1 
  10/24/2007 

Table 42. Data Movement and Conversion Instructions:  ST 
ST Store a register variable to an addressable state space variable. 

Syntax st.space.type [d],a;                // store to address  
st.space.vec.type [d],a;            // vector store to address 

 

st.volatile.space.type [d],a;       // store to address  
st.volatile.space.vec.type [d],a;   // vector store to address 

 

.space = {.global, .local, .shared }; 

.vec   = { .v2, .v3, .v4 }; 

.type  = { .b8, .b16, .b32, .b64, 
           .u8, .u16, .u32, .u64, 
           .s8, .s16, .s32, .s64, 
                      .f32, .f64 }; 

Description Store the value of register variable a in the location specified by the destination address 
operand d. 
 
The addressable operand d is one of: 
[var] the name of an addressable variable var,  
[reg] a register reg containing a byte address,  
[reg+immOff] a sum of register reg containing a byte address plus a constant integer 

byte offset (signed, 32-bit), or 
[immAddr] an immediate absolute byte address (unsigned, 32-bit). 
 
The address size may be either 32-bit or 64-bit.  Addresses are zero-extended to the 
specified width as needed, and truncated if the register width exceeds the state space 
address width for the target architecture. 
 
The instruction must carry a .space suffix.  A register containing an address may be 
declared as a bit-size type or integer type. 
 
st.volatile may be used with .global and .shared spaces to inhibit optimization of 
references to volatile memory.  This may be used, for example, to enforce sequential 
consistency between threads accessing shared memory. 

Semantics d = a;                 // named variable d 
*d = a;                // register 
*(d+immOffset) = a;    // register-plus-offset 
*(immAddr) = a;        // immediate address 

Notes Operand a must be in the .reg state space. 
 
.f16 data resulting from a cvt instruction may be stored using st.b16. 

Examples     st.global.f32  [d],a; 

    st.local.b32   [q+4],a; 

    st.global.v4.s32 [p],Q; 

    st.shared.s32  [100],r7; 
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Table 43. Data Movement and Conversion Instructions:  CVT 
CVT Convert a value from one type to another. 

Syntax cvt[.rnd][.sat].dtype.atype d, a; 

 

.dtype = .atype = { .u8, .u16, .u32, .u64, 
                    .s8, .s16, .s32, .s64, 
                         .f16, .f32, .f64 }; 

Description Convert between different types and sizes. 
See the Integer and Floating-point Notes below for details of rounding modes. 

Semantics d = convert(a); 

Integer Notes Integer rounding is required for float-to-integer conversions, and for same-size float-to-
float conversions where the value is rounded to an integer.  Integer rounding is illegal in 
all other instances. 
Integer rounding modes: 
.rni round to nearest integer, choosing even integer if source is equidistant between 

two integers. 
.rzi round to nearest integer in the direction of zero 
.rmi round to nearest integer in direction of negative infinity 
.rpi round to nearest integer in direction of positive infinity 
 
Saturation modifier: 
.sat limits result to MININT..MAXINT (no overflow) for the size of the operation.  

Applies to both signed and unsigned integer types. 

Floating Point 
Notes 

Floating-point rounding is required for float-to-float conversions that result in loss of 
precision, and for integer-to-float conversions.  Floating-point rounding is illegal in all 
other instances. 
Floating-point rounding modes: 
.rn mantissa LSB rounds to nearest even 
.rz mantissa LSB rounds towards zero 
.rm mantissa LSB rounds towards negative infinity 
.rp mantissa LSB rounds towards positive infinity 
 
A floating-point value may be rounded to an integral value using the integer rounding 
modes (see Integer Notes).  The operands must be of the same size.  The result is an 
integral value, stored in floating-point format. 
 
Saturation modifier: 
.sat limits result to (0.0, 1.0). 

Applies to .f16, .f32, and .f64 types. 
NaN is preserved, except for .f16 (no NaN available). 

Examples     cvt.f32.s32     f,i; 

    cvt.sat.s32.f64 j,r; 

    cvt.rni.f32.f32 x,y; // round fp val to nearest int, result 
is fp 
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7.7.5. Texture Instruction 

Table 44. Texture Instruction:  TEX 
TEX Perform a texture memory lookup. 

Syntax tex.geom.dtype.btype d, a, b; 

 

.geom  = { .1d, .2d, .3d }; 

.dtype = 

.btype =  { .b16, .b32, .b64, 
            .u16, .u32, .u64, 
            .s16, .s32, .s64, 
                  .f32, .f64 }; 

Description Texture lookup using a texture coordinate vector. 

Examples     tex.3d.v4.s32.f32  {r1,r2,r3,r4},tex_a,{f1,f2,f3}; 

    tex.1d.v4.s32.f32  {r1,r2,r3,r4},tex_a,{f1}; 
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7.7.6. Control Flow Instructions 
The following PTX instructions and syntax are for controlling execution in a PTX program: 

 { } 

 @ 

 BRA 

 CALL 

 RET 

 EXIT 

 

Table 45. Control Flow Instructions:  { } 
{ } Instruction grouping. 

Syntax { instructionList } 

Description The curly braces create a group of instructions, used primarily for defining a function 
body.  The curly braces also provide a mechanism for determining the scope of a 
variable: any variable declared within a scope is not available outside the scope. 

Examples     { add.s32  a,b,c; mov.s32  d,a; } 

 

Table 46. Control Flow Instructions:  @ 
@ Predicated execution. 

Syntax @[!]p    instruction; 

Description Execute an instruction or instruction block for threads that have the guard predicate 
true.  Threads with a false guard predicate do nothing. 

Semantics If [!]p then instruction 

Examples     setp.eq.f32  p,y,0;     // is y zero? 

@!p div.f32      ratio,x,y  // avoid division by zero 

 

@q  bra L23;                // conditional branch 
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Table 47. Control Flow Instructions:  BRA 
BRA Branch to a target and continue execution there. 

Syntax bra[.uni] target; 

Description Continue execution at the target.  Conditional branches are specified with the ‘@’ 
prefix. 

Semantics pc = target; 

Notes A bra is assumed to be divergent unless the .uni suffix is present, indicating that the 
branch is guaranteed to be non-divergent. 

Release Notes Indirect branch through a register is unimplemented.  

Examples     setp.eq.f32  p,y,0;     // is y zero? 

@!p div.f32      ratio,x,y  // avoid division by zero 

 

@q  bra L23;                // conditional branch 

 

Table 48. Control Flow Instructions:  CALL 
CALL Call a function, recording the return location. 

Syntax call[.uni] fname; 
call[.uni] fname, (param-list); 
call[.uni] (ret-param), fname, (param-list); 

Description Call a function, storing current execution information for subsequent return. 

Notes The call instruction stores the address of the next instruction, so execution can resume 
at that point after executing a RET instruction. 
 
The called location can be either a symbolic function name or an address held in a 
register. 
 
A call is assumed to be divergent unless the .uni suffix is present, indicating that the 
call is guaranteed to be non-divergent. 
 
Input and return parameters are optional.  Parameters must be of register type, and 
parameters are pass-by-value.  In the current ptx release, parameters are passed 
through statically allocated ptx registers; i.e., there is no support for recursive calls.. 

Release Notes Indirect call through a register is unimplemented.  

Examples     call     init;     // call function ‘init’ 

    call.uni g, (a);  // call function ‘g’ with parameter ‘a’ 

@p  call     (d), h, (a, b);  // return value into register d 
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Table 49. Control Flow Instructions:  RET 
RET Return from function to instruction after call. 

Syntax ret[.uni]; 

Description Return execution to caller’s environment.  A divergent return suspends threads until all 
threads are ready to return to the caller.  This allows multiple divergent “ret” 
instructions. 

Notes A ret is assumed to be divergent unless the .uni suffix is present, indicating that the 
return is guaranteed to be non-divergent. 
Any values returned from a function should be moved into the return parameter register 
variables prior to executing the RET instruction. 
A return instruction executed in a top-level entry routine will terminate thread execution. 

Examples     ret; 

@p  ret; 

 

Table 50. Control Flow Instructions:  EXIT 
EXIT Terminate a thread. 

Syntax exit; 

Description Ends execution of a thread. 

Examples     exit; 

@p  exit; 
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7.7.7. Parallel Synchronization and Communication 
Instructions 

These instructions are: 

 BAR 

 ATOM 

 

Table 51. Parallel Synchronization and Communication 
Instructions:  BAR 

BAR Signal arrival at a barrier and wait. 

Syntax bar.sync d; 

Description Mark7s the arrival of threads at a barrier and waits for all other threads to arrive. 
 
The barrier resource is named via a small integer, typically in the range 0..15.  The 
barrier number may be given as an immediate. 

Notes The hardware has a limited, implementation-specific number of barrier resources, 
typically sixteen or fewer.  Since a CTA will not launch until all allocated resources are 
available, a program should minimize the number of distinct barrier variables allocated.  
Ideally, a program uses a single, global barrier that is re-used throughout the program. 

Examples     bar.sync  0; 
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Table 52. Parallel Synchronization and Communication 
Instructions:  ATOM 

ATOM Atomic reduction operations for thread-to-thread communication. 

Syntax atom.space.operation.type d, a, b[, c]; 

 

.space = { .global }; 

.operation = { .and, .or, .xor,        // .b32 
               .cas, .exch,            // .b32 

               .add,                   // .u32, .s32, 
               .inc, .dec,             // .u32 only 
               .min, .max };           // .u32, .s32, 
.type = { .b32, .u32, .s32 }; 

Description Atomically loads the original value at location a into destination register d, and stores 
the result of the specified operation at location a, overwriting the original value.  The a 
operand specifies a location in the specified state space. 
 
The addressable operand a is one of: 
[avar] the name of an addressable variable avar,  
[areg] a de-referenced register areg containing a byte address,  
[areg+immOff] a de-referenced sum of register areg containing a byte address plus a 

constant integer byte offset, or 
[immAddr] an immediate absolute byte address. 
 
The address size may be either 32-bit or 64-bit.  Addresses are zero-extended to the 
specified width as needed, and truncated if the register width exceeds the state space 
address width for the target architecture. 
 
The instruction must carry a .space suffix.  A register containing an address may be 
declared as a bit-size type or integer type. 
The bit-size operations are and, or, xor, cas (compare-and-swap), and exch 
(exchange). 
The integer operations are add, inc, dec, min, max.  The inc and dec operations 
return a result in the range [0..b]. 

Semantics atomic { 
    d = *a; 
    a = (operation == cas) ? operation(*a, b, c) 

                           : operation(*a, b); 
} 

where 
    inc(r, s) = (r >= s) ? 0 : r+1; 
    dec(r, s) = (r > s) ? s : r-1; 
    exch(r, s) = s; 
    cas(r,s,t) = (r == s) ? t : r; 

Notes Operand a must reside the global  state space. 
Simple reductions may be specified by using the “bit bucket” destination operand ‘_’. 

Target ISA Notes atom.global requires sm_11 or later. 

Examples     atom.global.add.s32  d,[a],1; 
@p  atom.global.cas.b32  d,[p],my_val,my_new_val; 
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7.7.8. Floating-point Instructions 
These instructions are for floating-point types in register, vector, and constant immediate 
forms.   These instructions are: 

  RCP 

  SQRT 

  RSQRT 

  SIN 

  COS 

  LG2 

  EX2 

 

Table 53. Floating-point Instructions:  RCP 
RCP Take the reciprocal of a value. 

Syntax rcp.type d, a; 

.type = { .f32, .f64 }; 

Description Compute 1/a.. 
Semantics d = 1/a; 

Examples     rcp.f32  ri,r; 

 

Table 54. Floating-point Instructions:  SQRT 
SQRT Take the square root of a value. 

Syntax sqrt.type d, a; 

.type = { .f32, .f64 }; 

Description Compute sqrt(a); store in d. 

Semantics d = sqrt(a); 

Floating Point 
Notes 

If a < 0; d = NaN; 

The sqrt instruction always yields the positive root of a number, except for sqrt(-0.0) 
which yields -0.0. 

Examples     sqrt.f32  r,x; 
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Table 55. Floating-point Instructions:  RSQRT 
RSQRT Take the reciprocal of the square root of a value. 

Syntax rsqrt.type d, a; 

.type = { .f32, .f64 }; 

Description Compute 1/sqrt(a); store the result in d  
Semantics d = 1/sqrt(a); 

Floating Point 
Notes 

if a < 0; d = NaN; 
if a == 0, d = Inf; 

The rsqrt instruction always yields a positive value, except for rsqrt(-0.0) which yields 
-0.0. 

Examples     rsqrt.f32  isr,x; 

 

Table 56. Floating-point Instructions:  SIN 
SIN Find the sine of a value. 

Syntax sin.type d, a; 

.type = { .f32 }; 

Description Find the sine of the angle a (in radians). 

Semantics d = sin(a); 

Notes Applies only to .f32. 

Examples     sin.f32  sa,a; 

 

Table 57. Floating-point Instructions:  COS 
COS Find the cosine of a value. 

Syntax cos.type d, a; 

.type = { .f32 }; 

Description Find the cosine of the angle a (in radians). 

Semantics d = cos(a); 

Notes Applies only to .f32. 

Examples     cos.f32  cb,b; 

 

Table 58. Floating-point Instructions:  LG2 
LG2 Find the log, base 2, of a value. 

Syntax lg2.type d, a; 

.type = { .f32 }; 

Description Determine the log2 of a.. 

Semantics d = log(a)/log(2); 

Notes Applies only to .f32. 

Examples @p  lg2.f32  q,a; 
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Table 59. Floating-point Instructions:  EX2 
EX2 Exponentiate a value, base 2. 

Syntax ex2.type d, a; 

.type = { .f32 }; 

Description Raise 2 to the power a. 
Semantics d = 2 ^ a; 

Notes Applies only to .f32. 

Examples     ex2.f32  q,r; 
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7.7.9. Miscellaneous Instructions 
The Miscellaneous instructions are: 

  TRAP 

  BRKPT 

Table 60. Miscellaneous Instructions:  TRAP 
TRAP Perform trap operation. 

Syntax trap 

Description Abort execution and generate an interrupt to the host CPU.  

Examples     trap; 

@p  trap; 

 

Table 61. Miscellaneous Instructions:  BRKPT 
BRKPT Breakpoint – suspend execution. 

Syntax brkpt 

Description Suspends execution   
Target ISA Notes Requires sm_11 or later. 

Examples     brkpt; 

@p  brkpt; 
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Chapter 8. 
Special Registers 

PTX includes a number of predefined, read-only variables, which are visible as special 
registers and accessed through MOV or CVT instructions. 

The special registers are: 

  %tid 

  %ntid 

  %ctaid 

  %nctaid 

  %gridid 

  %clock 

 

Table 62. Special Registers:  %tid 
%tid Thread ID within a CTA. 

Syntax .sreg .v3 .u16 %tid;                  // thread id vector 

.sreg .u16 %tid.0, %tid.1, %tid.2;    // individual thread id 
components 

.sreg .u16 %tid.x, %tid.y, %tid.z;    // alternate component 
names 

Description A predefined, read-only, per-thread special register initialized with the thread ID within 
the CTA.  The %tid special register is a 1D, 2D, or 3D vector to match the CTA shape; 
the %tid value in unused dimensions is 0.  The number of threads in each dimension 
are specified by the predefined special register %ntid. 
Every thread in the CTA has a unique %tid. 
%tid component values range from 0 through %ntid–1 in each CTA dimension.  %tid.1 
== %tid.2 == 0 in 1D CTAs.  %tid.2 == 0 in 2D CTAs.   
It is guaranteed that: 

0  <=  %tid.0 <  %ntid.0 
0  <=  %tid.1 <  %ntid.1 
0  <=  %tid.2 <  %ntid.2 

Notes 3D CTA initialization code  separates hardware %tid R0 bit fields [15:0, 25:16, 31:26] 
into three .u16 components in R0L, R0H, and R1L, and %tid maps to [R0L, R0H, R1L] 
in half words.  2D and 1D CTAs require no %tid initialization code. 
 
Preserve %tid for debugging. 

Examples     mov.b16      r0,%tid.0;  // zero-extends tid.0 to r0 

    cvt.u32.u16  r2,%tid.2;  // zero-extends tid.2 to r2 
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Table 63. Special Registers:  %ntid 
%ntid Number of thread IDs per CTA. 

Syntax .sreg .v3 .u16 %ntid;                   // CTA shape vector 

.sreg .u16 %ntid.0, %ntid.1, %ntid.2;   // CTA dimensions 

.sreg .u16 %ntid.x, %ntid.y, %ntid.z;   // alternate component 
names 

Description A predefined, read-only special register initialized with the number of thread ids in each 
CTA dimension.  CTA dimensions are non-zero.  The total number of threads in a CTA 
is (%ntid.0 * %ntid.1 * %ntid.2). 
The CTA dimensions are initialized in the predefined variable %ntid.  The value of 
each element of the vector is at least 1. 
%ntid.1 == %ntid.2 == 1 in 1D CTAs.  %ntid.2 == 1 in 2D CTAs.   

Notes  

Examples     mov.b16  r0,%tid.0; 

    mov.b16  h1,%tid.1; 

    mov.u16  h2,%ntid.0; 

    mad.u16  r0,h1,h2,r0;  // r0 = unified tid for 2D CTA 

 

Table 64. Special Registers:  %ctaid 
%ctaid CTA id within a grid. 

Syntax .sreg .v3 .u16 %ctaid;                      // CTA id vector 

.sreg .u16 %ctaid.0, %ctaid.1, %ctaid.2;    // CTA id components 

.sreg .u16 %ctaid.x, %ctaid.y, %ctaid.z;    // alternate 
component names 

Description A predefined, read-only special register initialized with the CTA id within the CTA grid.  
%ctaid is a 1D, 2D, or 3D vector, depending on the shape and rank of the CTA grid. 
The value of each element of the vector is >= 0 and < 65535. 
It is guaranteed that: 

0  <=  %ctaid.0 <  %nctaid.0 
0  <=  %ctaid.1 <  %nctaid.1 
0  <=  %ctaid.2 <  %nctaid.2 

Notes The G80 translator maps ctaid.0 to grid parameters g[6].u16, ctaid.1 to g[7].u16, and 
ctaid.2 to user parameter g[8].u16. 

Examples     mov.u32  %r1,%ctaid.1; 
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Table 65. Special Registers:  %nctaid 
%nctaid Number of CTA ids per grid. 

Syntax .sreg .v3 .u16 %nctai                      // Grid shape vector 

.sreg .u16 %nctaid.0, %nctaid.1, %nctaid.2;      // Grid 
dimensions 

.sreg .u16 %nctaid.x, %nctaid.y, %nctaid.z;      // alternate 
component names 

Description A predefined, read-only special register initialized with the number of CTAs in each grid 
dimension.  %nctaid is a 1D, 2D, or 3D vector, depending on the shape and rank of the 
CTA grid. 
The size of the grid of CTAs is stored in the predefined special register %nctaid.  It is a 
3D vector, and each member has a value of at least 1. 
It is guaranteed that: 

1 <= nctaid.* < 65,536 

Notes The G80 translator maps nctaid.0 to grid parameters g[4].u16, nctaid.1 to g[5].u16, and 
nctaid.2 to user parameter g[9].u16 

Examples     mov.u32  r1,%nctaid; 

 

Table 66. Special Registers:  %gridid 
%gridid Grid ID. 

Syntax .sreg .u16 %gridid;     // initialized when the grid is launched 

Description A predefined, read-only special register initialized with the per-grid temporal grid ID 
number.  This is used by debuggers to distinguish CTAs within concurrent (small) CTA 
grids. 
During execution, repeated launches of programs may occur, where each launch starts 
a grid-of-CTAs.  This variable provides the temporal grid launch number for this 
context. 

Notes The driver assigns a counting sequential gridid to each grid launched. 
The G80 translator maps gridid to grid parameter g[0].u16, “flags”.   

Examples     mov.u32  r1,%gridid; 

 

Table 67. Special Registers:  %clock 
%clock A predefined, read-only 32-bit unsigned cycle counter. 

Syntax  

Description Special register %clock is an unsigned 32-bit read-only cycle counter that wraps 
silently. 

Notes  

Examples     mov.u32  r1,%clock; 
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Chapter 9. 
Directives 

9.1. Specifying CTAs and Functions 
Directives exist for specifying CTA entry points, the default number of  threads in a 
CTA, functions, and other things.  Some can be overridden later on. 

Table 68. Directives:  .entry 
.entry Defines a CTA entry point name, CTA rank, and optional CTA dimensions. 

Syntax .entry name [NTID.2][NTID.1][NTID.0];     // 3D CTA: RANKTID = 3.  
.entry name [NTID.1][NTID.0];                  // 2D CTA: RANKTID = 2.  
.entry name [NTID.0];                                // 1D CTA: RANKTID = 1.  
.entry name [NTID.2][NTID.1][NTID.0] { per-CTA naming scope } 

Description  Specifies a CTA entry point and name.  The number of bracket pairs specifies the CTA 
rank constant RANKTID to be 1, 2, or 3.  Constant expressions within the bracket pairs 
define the CTA dimension constants NTID.0, NTID.1, and NITD.2.  Omitted dimension 
values define their constant dimension as 0.  Omitted bracket pairs define their 
constant dimension as 1.  
Empty bracket pairs have unspecified dimensions that vary at run time, as specified by 
ntid.0, ntid.1, or ntid.2.   
 
Optionally specify a per-CTA naming scope enclosed in { } braces, for .shared and 
.param variable declarations.  PTX appends an exit instruction following the code in the 
braces.   
 
PTX defines an anonymous 3D CTA entry point at the first instruction encountered 
outside of a .entry or .func block.  PTX appends an exit instruction after the last 
instruction of an anonymous entry point.   

Semantics Specify the entry point for a CTA program.  Defines the constants RANKTID, NTID.0, 
NTID.1, and NTID.2.   
 
At run time, the CTA parameters ntid.0, ntid.1, and ntid.2 are initialized with the actual 
CTA dimensions.  The programmer may use the constant dimensions rather than the 
runtime dimensions if the CTA is always invoked with the constant dimensions. 

Notes CTA dimensions are positive integers; zero means a dimension is unknown until 
runtime.  G80 limits the product of dimensions to 512.   

Examples     .entry cta_fft[256];   // 1D CTA with max 256 threads.   

    .entry filter[16][16] { code; … }  // 2D CTA 
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Table 69. Directives:  .func 
.func Function definition. 

Syntax .func fname function-body 
.func fname (param-list) function-body 
.func (ret-param) fname (param-list) function-body 

Description Defines a function, including input and return parameters and function body. 

Semantics Specifies the entry point and parameter names for a function.  The parameter lists bind 
register names in the caller’s namespace to register names in the callee namespace. 
 
The implementation of parameter passing is left to the optimizing translator, which may 
use a combination of registers and stack locations to pass parameters.  In the current 
ptx release, parameters are passed through statically allocated ptx registers; i.e., there 
is no support for recursive calls. 

Notes The input and return parameters are enclosed in parentheses.  Parameters must be 
base types in the register space.  Parameter passing is call-by-value. 
 
A .func directive with no body may be used to declare a function prototype. 

Examples     .func (.reg .b32 rval) foo (.reg .b32 arg0, .reg .f64 arg1)  

    { 

    .reg .b32 localVar; 

 

    … use arg0; 

    other code; 

 

    mov.b32 rval,result; 

    ret; 

    } 

 

    … 

    call (fooval), foo, (val0, val1);  // return value in fooval 

    … 
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9.2. Debugging Directives 
The following directives are needed to communicate Dwarf-format debug information.  
Details TBD. 

Table 70. Debugging Directives:  .section 
.section PTX section definition 

Syntax .section section_type, section_name 

Description  

Semantics  

Notes  

Examples     .section .debug_info, "",@progbits 

 

Table 71. Debugging Directives:  .file 
.file Source file information 

Syntax .file filename 

Description  

Semantics  

Notes  

Examples  

 

Table 72. Debugging Directives:  .loc 
.loc Source file location 

Syntax .loc line_number 

Description  

Semantics  

Notes  

Examples  

 

Table 73. Debugging Directives:  .byte 
.byte Byte data 

Syntax .byte data-list 

Description Defines a sequence of data bytes. 

Semantics  

Notes  

Examples     .byte  0x7d,0x01,0x00,0x00,0x02,0x00 
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9.3. Other Directives 
Table 74. Other Directives:  .extern 

.extern External symbol declaration 

Syntax .extern identifier 

Description Declares identifier to be defined externally. 

Semantics  

Notes  

Examples     .extern foo  // variable foo is declared in another file 

    .b32 foo; 

 

Table 75. Other Directives:  .visible 
.visible Visible (externally) symbol declaration 

Syntax .visible identifier 

Description Declares identifier to be externally visible. 

Semantics  

Notes  

Examples     .visible foo  // variable foo will be externally visible 

    .b32 foo; 

 

Table 76. Other Directives:  .version 
.version PTX version number 

Syntax .version major.minor    // major, minor are integers 

Description Specifies the PTX language version number.  Increments to the major number indicate 
incompatible changes to PTX. 

Semantics Indicates that this file must be compiled with tools having the same major version 
number and an equal or greater minor version number. 
 
Each ptx file must begin with a .version directive.  Duplicate .version directives are 
allowed provided they match the original .version directive. 

Notes Cuda Release 1.1 supports PTX ISA Versions 1.0 and 1.1. 

Examples     .version 1.1 
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Table 77. Other Directives:  .target 
.target Architecture and Platform target 

Syntax .target stringlist         // comma separated list of target specifiers 
 
string = { compute_10, compute_11,           // virtual arch targets 
                sm_10, sm_11,                            // gpu target architectures 
                map_f64_to_f32                           // platform option 
             }; 

Description Specifies the target architecture for which the current ptx code was generated. 
 
The target identifier strings are platform-specific. 

Semantics PTX features are checked against the specified target architecture, and an error is 
generated if an unsupported feature is used. 
 
The map_f64_to_f32 specifier indicates that all double-precision instructions will be 
mapped to single-precision regardless of the target architecture.  This feature enables 
compilers for high-level languages such as Cuda to compile programs containing type 
double. 
 
Each PTX file must begin with a .version directive, immediately followed by a .target 
directive.  Duplicate .target directives are allowed provided they match the original 
.target directive. 

Notes  

Examples     .target sm_11    // baseline target architecture 

 

    // allow .f64 ops, but map them to .f32 in the translator 

   .target sm_11, map_f64_to_f32 
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Chapter 10. 
Release Notes 

This section describes ISA and implementation changes between PTX ISA Version 1.0 and 
Version 1.1.  The changes may be summarized as (1) addition of new features, (2) removal of 
unimplemented features and instructions from the ISA, (3) better specification of rounding 
modifiers, and (4) better specification of saturation, 

10.1. New Features 
Instructions LD and ST now support a .volatile modifier.  See the instruction 
descriptions in Chapter 7 for details. 

10.2. Unimplemented Features Removed From ISA 
PTX ISA version 1.0 contained a number of  instructions and features that were 
unimplemented in the CUDA tools in release 1.0.  Since these features were not 
implemented, their removal from PTX ISA version 1.1 does not create an 
incompatibility with any valid PTX version 1.0 code. 

The vector instructions CROSS, DOT, MAG, and VRED have been removed from 
PTX.  These instructions were unimplemented in version 1.0. 

Instructions EXTRACT, INSERT, MEMBAR, and NOP were removed from the list of  
reserved PTX keywords shown in Table 2.  The description of  MEMBAR was removed 
form Chapter 7.  These instructions were unimplemented in version 1.0.  

Support for .f64 type in SIN, COS, LG2, and EX2 has been removed from the ISA.  
These were unimplemented in version 1.0. 

ATOM.{cas,exch} operations have been restricted to bitsize types.  ATOM was 
unimplemented in PTX version 1.0. 

10.3. Changes to Rounding Modifiers 
PTX 1.0 did not fully specify rounding behavior for all instructions, nor did it define a 
default round behavior in cases where such defaults exist. 

Rounding behavior not fully specified in PTX version 1.0 has been defined in version 
1.1, with the following changes noted as errata for version 1.0: 
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•  Instructions ADD, SUB, and MUL have round-to-nearest documented as 
their default rounding behavior. 

•  Instructions MAD no longer supports a rounding modifier. 

•  SAD, and DIV no longer support a rounding modifier.  For double-
precision, DIV implements round-to-nearest-even by default. 

•  Rounding modifiers are now required in some cases and illegal in other 
cases for the CVT instruction (see description).  Hand-written version 1.0 
PTX code may exist that violates these new restrictions. 

10.4. Changes to Saturation 
Saturation support has been removed from a number of  instructions.  None of  these 
cases were used by the CUDA 1.0 compiler, and many were not implemented.  These 
restrictions are compatible with PTX 1.0 code generated by the CUDA compiler tools. 

•  Integer saturation has been removed from instructions MUL, MUL24, 
MAD.wide, MAD.lo, MAD24.lo, SAD, DIV, and REM no longer support 
saturation. 

•  The CVT instruction supports saturation for both signed and unsigned 
integer types. 

10.5. Unimplemented Features in Version 1.1 
In Release 1.1 of  the PTX ISA Version 1,1, a number of  features are not supported.  
This section summarizes the unsupported features. 

10.5.1. Syntax restrictions 
Predicate constant immediates are not supported. 

Constant expressions are not supported. 

10.5.2. State Spaces 
Declarations and instructions using .surf  space are not supported. 

The constant space is restricted to a single bank.  This may be written as .const or 
.const[0]. 

10.5.3. Variables and Operands 
Vector declarations, initialization, and conversions are not supported. 

Vector operands are not generally supported.  The LD, ST, and TEX instructions do 
support limited use of  vector operands written using the tuple notation. 
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10.5.4. Instructions 
The FRC instruction is deprecated and will be removed in the next release. 

See individual instruction descriptions in Section 7.7 for restrictions of  the current 
release. 

10.6. Summary of Instruction Changes 
The following table summarizes changes to instructions in this release. 

 

Table 78. Summary of Instruction Changes in Version 1.1 
Instruction Implementation Change 
ADD Default rounding of .rn documented. 

SUB Default rounding of .rn documented. 

MUL Integer saturation removed from parser. 
Default rounding of .rn documented. 

MUL24 Integer saturation removed from parser. 

MAD Integer saturation removed from .wide and .lo modes. 
Rounding removed. 

MAD24 Integer saturation removed from .lo mode. 

SAD Saturation removed (both int and float); rounding removed. 

DIV Integer saturation removed; rounding modifier removed. 
Document that DIV rounds to nearest even. 

CVT Rounding modes required when not illegal.  See instruction description for details. 
Saturation extended to unsigned integer types. 

LD, ST Added .volatile modifier. 

SET, SETP Allow lt, le, ge, gt comparison operators to be used with unsigned integers. 

CROSS, DOT, 
MAG, VRED 

Removed.  These were unimplemented in PTX 1.0. 

SIN, COS, LG2, 
EX2 

Remove .f64.  This was unimplemented in PTX 1.0. 

FRC FRC is deprecated and will not be supported in the next PTX release. 

ATOM ATOM.{cas,exch} restricted to bitsize types.  ATOM was not implemented in PTX 1.0. 

EXTRACT, 
INSERT, 
MEMBAR, NOP 

Removed keywords and descriptions for unimplemented instructions. 
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