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Chapter 1. 

Introduction 

This document describes PTX, a low-level parallel thread execution virtual machine and 
instruction set architecture (ISA).  PTX exposes the GPU as a data-parallel computing device.  

1.1. Scalable Data-Parallel Computing Using GPUs 

Driven by the insatiable market demand for realtime, high-definition 3D graphics, the 
programmable GPU has evolved into a highly parallel, multithreaded, manycore processor 
with tremendous computational horsepower and very high memory bandwidth.  The GPU is 
especially well-suited to address problems that can be expressed as data-parallel 
computations – the same program is executed on many data elements in parallel – with high 
arithmetic intensity – the ratio of arithmetic operations to memory operations. Because the 
same program is executed for each data element, there is a lower requirement for 
sophisticated flow control; and because it is executed on many data elements and has high 
arithmetic intensity, the memory access latency can be hidden with calculations instead of big 
data caches. 

Data-parallel processing maps data elements to parallel processing threads. Many 
applications that process large data sets can use a data-parallel programming model to speed 
up the computations. In 3D rendering large sets of pixels and vertices are mapped to parallel 
threads. Similarly, image and media processing applications such as post-processing of 
rendered images, video encoding and decoding, image scaling, stereo vision, and pattern 
recognition can map image blocks and pixels to parallel processing threads. In fact, many 
algorithms outside the field of image rendering and processing are accelerated by data-
parallel processing, from general signal processing or physics simulation to computational 
finance or computational biology. 

PTX defines a virtual machine and ISA for general-purpose parallel thread execution.  PTX 
programs are translated at install time to the target hardware instruction set.  The PTX-to-
GPU translator and driver enable NVIDIA GPUs to be used as programmable parallel 
computers. 

1.2. Goals of PTX 

PTX provides a stable programming model and instruction set for general purpose parallel 
programming.  It is designed to be efficient on NVIDIA GPUs supporting the computation 
features defined by the Tesla architecture.  High level language compilers for languages such 
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as CUDA and C/C++ generate PTX instructions, which are optimized for and translated to 
native target-architecture instructions.   

The goals for PTX include the following: 

� Provide a stable ISA that spans multiple GPU generations. 

� Achieve performance in compiled applications comparable to native GPU performance. 

� Provide a machine-independent ISA for C/C++ and other compilers to target. 

� Provide a code distribution ISA for application and middleware developers. 

� Provide a common source-level ISA for optimizing code generators and translators, 
which map PTX to specific target machines. 

� Facilitate hand-coding of libraries, performance kernels, and architecture tests. 

� Provide a scalable programming model that spans GPU sizes from a single unit to many 
parallel units. 

1.3. The Document’s Structure 

The information in this document is organized into the following Chapters: 

� Chapter 2 outlines the programming model. 

� Chapter 3 gives an overview of the PTX virtual machine model. 

� Chapter 4 describes the basic syntax of the PTX language. 

� Chapter 5 describes state spaces, types, and variable declarations. 

� Chapter 6 describes instruction operands. 

� Chapter 7 describes the instruction set. 

� Chapter 8 lists special registers. 

� Chapter 9 lists the assembly directives supported in PTX. 

� Chapter 10 provides release notes for PTX Version 1.2. 

 

 



 

 

 

PTX ISA Version 1.2  3 
7/7/2008  

Chapter 2. 

Programming Model 

2.1. A Highly Multithreaded Coprocessor 

The GPU is a compute device capable of executing a very large number of threads in 
parallel.  It operates as a coprocessor to the main CPU, or host: In other words, data-parallel, 
compute-intensive portions of applications running on the host are off-loaded onto the 
device. 

More precisely, a portion of an application that is executed many times, but independently 
on different data, can be isolated into a kernel function that is executed on the GPU as many 
different threads.  To that effect, such a function is compiled to the PTX instruction set and 
the resulting kernel is translated at install time to the target GPU instruction set. 

2.2. Thread Hierarchy 

The batch of threads that executes a kernel is organized as a grid of cooperative thread 
arrays as described in this section and illustrated in Figure 1.  Cooperative thread arrays 
(CTAs) implement CUDA thread blocks. 

2.2.1. Cooperative Thread Arrays 
The Parallel Thread Execution (PTX) programming model is explicitly parallel: a PTX 
program specifies the execution of a given thread of a parallel thread array.  A cooperative 
thread array, or CTA, is an array of threads that execute a kernel concurrently or in parallel. 

Threads within a CTA can communicate with each other.  To coordinate the communication 
of the threads within the CTA, one can specify synchronization points where threads wait 
until all threads in the CTA have arrived. 

Each thread has a unique thread id within the CTA.  Programs use a data parallel 
decomposition to partition inputs, work, and results across the threads of the CTA.  Each 
CTA thread uses its thread id to determine its assigned role, assign specific input and output 
positions, compute addresses, and select work to perform.  The thread id is a three-element 
vector tid, (with elements tid.x, tid.y, and tid.z) that specifies the thread’s position within a 
1D, 2D, or 3D CTA.  Each thread id component ranges from 0 up to the number of thread 
ids in that CTA dimension. 

Each CTA has a 1D, 2D, or 3D shape specified by a three-element vector ntid (with 
elements ntid.x, ntid.y, and ntid.z). The vector ntid specifies the number of threads in each 
CTA dimension. 
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Threads within a CTA execute in SIMT (single-instruction, multiple-thread) fashion in 
groups called warps.  A warp is a maximal subset of threads from a single CTA, such that the 
threads execute the same instructions at the same time.  Threads within a warp are 
sequentially numbered.  The warp size is a machine-dependent constant.  Typically, a warp 
has 32 threads.  Some applications may be able to maximize performance with knowledge of 
the warp size, so PTX includes a run-time immediate constant, WARP_SZ, which may be 
used in any instruction where an immediate operand is allowed. 

2.2.2. Grid of Cooperative Thread Arrays 
There is a maximum number of threads that a CTA can contain.  However, CTAs that 
execute the same kernel can be batched together into a grid of CTAs, so that the total 
number of threads that can be launched in a single kernel invocation is very large.  This 
comes at the expense of reduced thread communication and synchronization, because 
threads in different CTAs cannot communicate and synchronize with each other. 

Multiple CTAs may execute concurrently and in parallel, or sequentially, depending on the 
platform.  Each CTA has a unique CTA id (ctaid) within a grid of CTAs.  Each grid of CTAs 
has a 1D, 2D , or 3D shape specified by the parameter nctaid.  Each grid also has a unique 
temporal grid id (gridid).  Threads may read and use these values through predefined, read-

only special registers %tid, %ntid, %ctaid, %nctaid, and %gridid. 

The host issues a succession of kernel invocations to the device.  Each kernel is executed as 
a batch of threads organized as a grid of CTAs (Figure 1). 
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A cooperative thread array (CTA) is a set of concurrent threads that execute the same kernel program.  A grid is 
a set of CTAs that execute independently. 

Figure 1. Thread Batching 

Host 

Kernel 1 

Kernel 2 

GPU 

Grid 1 

 

CTA 
(0, 0) 

CTA 
(1, 0) 

CTA 
(2, 0) 

CTA 
(0, 1) 

CTA 
(1, 1) 

CTA 
(2, 1) 

Grid 2 

CTA (1, 1) 

Thread 
(0, 1) 

Thread
(1, 1) 

Thread 
(2, 1) 

Thread 
(3, 1) 

Thread
(4, 1) 

Thread 
(0, 2) 

Thread
(1, 2) 

Thread 
(2, 2) 

Thread 
(3, 2) 

Thread
(4, 2) 

Thread

(0, 0) 

Thread 

(1, 0) 

Thread

(2, 0) 

Thread

(3, 0) 

Thread

(4, 0) 



Chapter 2:  Programming Model 

    

 

 

6  PTX ISA Version 1.2 
  7/7/2008 

2.3. Memory Hierarchy 

PTX threads may access data from multiple memory spaces during their execution as 
illustrated by Figure 2. Each thread has a private local memory. Each thread block (CTA) 
has a shared memory visible to all threads of the block and with the same lifetime as the 
block. Finally, all threads have access to the same global memory. 

There are also two additional read-only memory spaces accessible by all threads: the constant 
and texture memory spaces. The global, constant, and texture memory spaces are optimized 
for different memory usages. Texture memory also offers different addressing modes, as well 
as data filtering, for some specific data formats. 

The global, constant, and texture memory spaces are persistent across kernel launches by the 
same application. 

Both the host and the device maintain their own local memory, referred to as host memory and 
device memory, respectively.  The device memory may be mapped and read or written by the 
host, or, for more efficient transfer, copied from the host memory through optimized API 
calls that utilize the device’s high-performance Direct Memory Access (DMA) engine. 
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Figure 2. Memory Hierarchy 
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Chapter 3. 

Parallel Thread Execution Machine Model 

3.1. A Set of SIMT Multiprocessors with On-Chip 
Shared Memory 

The Tesla architecture is built around a scalable array of multithreaded Streaming 
Multiprocessors (SMs). When a host program invokes a kernel grid, the blocks of the grid 
are enumerated and distributed to multiprocessors with available execution capacity. The 
threads of a thread block execute concurrently on one multiprocessor. As thread blocks 
terminate, new blocks are launched on the vacated multiprocessors. 

A multiprocessor consists of multiple Scalar Processor (SP) cores, a multithreaded 
instruction unit, and on-chip shared memory. The multiprocessor creates, manages, and 
executes concurrent threads in hardware with zero scheduling overhead. It implements a 
single-instruction barrier synchronization. Fast barrier synchronization together with 
lightweight thread creation and zero-overhead thread scheduling efficiently support very 
fine-grained parallelism, allowing, for example, a low granularity decomposition of problems 
by assigning one thread to each data element (such as a pixel in an image, a voxel in a 
volume, a cell in a grid-based computation). 

To manage hundreds of threads running several different programs, the multiprocessor 
employs a new architecture we call SIMT (single-instruction, multiple-thread). The 
multiprocessor maps each thread to one scalar processor core, and each scalar thread 
executes independently with its own instruction address and register state. The 
multiprocessor SIMT unit creates, manages, schedules, and executes threads in groups of 
parallel threads called warps. (This term originates from weaving, the first parallel thread 
technology.) Individual threads composing a SIMT warp start together at the same program 
address but are otherwise free to branch and execute independently. 

When a multiprocessor is given one or more thread blocks to execute, it splits them into 
warps that get scheduled by the SIMT unit. The way a block is split into warps is always the 
same; each warp contains threads of consecutive, increasing thread IDs with the first warp 
containing thread 0. 

At every instruction issue time, the SIMT unit selects a warp that is ready to execute and 
issues the next instruction to the active threads of the warp. A warp executes one common 
instruction at a time, so full efficiency is realized when all threads of a warp agree on their 
execution path. If threads of a warp diverge via a data-dependent conditional branch, the 
warp serially executes each branch path taken, disabling threads that are not on that path, 
and when all paths complete, the threads converge back to the same execution path. Branch 
divergence occurs only within a warp; different warps execute independently regardless of 
whether they are executing common or disjointed code paths. 
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SIMT architecture is akin to SIMD (Single Instruction, Multiple Data) vector organizations 
in that a single instruction controls multiple processing elements. A key difference is that 
SIMD vector organizations expose the SIMD width to the software, whereas SIMT 
instructions specify the execution and branching behavior of a single thread. In contrast with 
SIMD vector machines, SIMT enables programmers to write thread-level parallel code for 
independent, scalar threads, as well as data-parallel code for coordinated threads. For the 
purposes of correctness, the programmer can essentially ignore the SIMT behavior; 
however, substantial performance improvements can be realized by taking care that the code 
seldom requires threads in a warp to diverge. In practice, this is analogous to the role of 
cache lines in traditional code: Cache line size can be safely ignored when designing for 
correctness but must be considered in the code structure when designing for peak 
performance. Vector architectures, on the other hand, require the software to coalesce loads 
into vectors and manage divergence manually. 

As illustrated by Figure 3, each multiprocessor has on-chip memory of the four following 
types: 

� One set of local 32-bit registers per processor, 

� A parallel data cache or shared memory that is shared by all scalar processor cores 
and is where the shared memory space resides, 

� A read-only constant cache that is shared by all scalar processor cores and speeds 
up reads from the constant memory space, which is a read-only region of device 
memory, 

� A read-only texture cache that is shared by all scalar processor cores and speeds up 
reads from the texture memory space, which is a read-only region of device 
memory; each multiprocessor accesses the texture cache via a texture unit that 
implements the various addressing modes and data filtering. 

The local and global memory spaces are read-write regions of device memory and are not 
cached. 

How many blocks a multiprocessor can process at once depends on how many registers per 
thread and how much shared memory per block are required for a given kernel since the 
multiprocessor’s registers and shared memory are split among all the threads of the batch of 
blocks. If there are not enough registers or shared memory available per multiprocessor to 
process at least one block, the kernel will fail to launch. A multiprocessor can execute as 
many as eight thread blocks concurrently. 

If a non-atomic instruction executed by a warp writes to the same location in global or 
shared memory for more than one of the threads of the warp, the number of serialized 
writes that occur to that location and the order in which they occur is undefined, but one of 
the writes is guaranteed to succeed. If an atomic instruction executed by a warp reads, 
modifies, and writes to the same location in global memory for more than one of the threads 
of the warp, each read, modify, write to that location occurs and they are all serialized, but 
the order in which they occur is undefined. 
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A set of SIMT multiprocessors with on-chip shared memory. 

Figure 3. Hardware Model 
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Chapter 4. 

Syntax 

PTX programs are a collection of text source files.  PTX source files have an assembly-
language style syntax with instruction operation codes and operands.  Pseudo-operations 
specify symbol and addressing management.  The ptxas program assembles PTX source files 
to produce corresponding binary object files. 

4.1. Source Format 

Source files are ASCII text.  Lines are separated by the newline character (‘\n’). 

All whitespace characters are equivalent; whitespace is ignored except for its use in 
separating tokens in the language. 

The C preprocessor cpp may be used to process PTX source files.  Lines beginning with # 
are preprocessor directives.  The following are common preprocessor directives:  

#include, #define, #if, #ifdef, #else, #endif, #line, #file 

C: A Reference Manual by Harbison and Steele provides a good description of the C 
preprocessor. 

PTX is case sensitive and uses lowercase for keywords. 

Each PTX file must begin with a .version directive specifying the PTX language version, 
followed by a .target directive specifying the target architecture assumed.  See Section 9 for a 
more information on these directives. 

4.2. Comments 

Comments in PTX follow C/C++ syntax, using non-nested /* and */ for comments that may 
span multiple lines, and using // to begin a comment that extends to the end of the current 
line. 

Comments in PTX are treated as whitespace. 



Chapter 4:  Syntax 

    

 

 

14  PTX ISA Version 1.2 
  7/7/2008 

4.3. Statements 

A PTX statement is either a directive or an instruction.  Statements begin with an optional 
label and end with a semicolon. 

Examples: 
        .reg     .b32 r1, r2;  

        .global  .f32  array[N];  

 

start:  mov.b32   r1, %tid.x; 

        shl.b32   r1, r1, 2;        // shift thread id by 2 bits 

        ld.b32    r2, array[r1];    // thread[tid] gets array[tid] 

        add.f32   r2, r2, 0.5;      // add 1/2 

 

4.3.1. Directive Statements 

Directive keywords begin with a dot, so no conflict is possible with user-defined identifiers.  
The directives in PTX are listed in Table 1 and described in Chapter 5 and Chapter 9.   

Table 1. PTX Directives 

.align .global .shared .union 

.const .local .sreg .version 

.entry .loc .struct .visible 

.extern .param .surf  

.file .reg .target  

.func .section .tex  

 

4.3.2. Instruction Statements 

Instructions are formed from an instruction opcode followed by a comma-separated list of 
zero or more operands, and terminated with a semicolon.  Operands may be register 
variables, constant expressions, address expressions, or label names.  Instructions have an 
optional guard predicate which controls conditional execution.  The guard predicate follows 
the optional label and precedes the opcode, and is written as @p, where p is a predicate 
register.  The guard predicate may be optionally negated, written as @!p. 

The destination operand is first, followed by source operands. 

Instruction keywords are listed in Table 2.  All instruction keywords are reserved tokens in 
PTX. 

 

 



 Chapter 4.  Syntax   

    

 

 

PTX ISA Version 1.2  15 
7/7/2008  

Table 2. Reserved Instruction Keywords 

abs cos min ret sqrt 

add cvt mov rsqrt st 

addc div mul sad sub 

and ex2 mul24 selp tex 

atom exit neg set trap 

bar ld not setp vote 

bra lg2 or shl xor 

brkpt mad rcp shr  

call mad24 red sin  

cnot max rem slct  

 

4.4. Identifiers 

User-defined identifiers follow extended C++ rules: they either start with a letter followed 
by zero or more letters, digits, underscore, or dollar characters; or they start with an 
underscore, dollar, or percentage character followed by one or more letters, digits, 
underscore, or dollar characters: 

 followsym: [a-zA-Z0-9_$] 
 identifier: [a-zA-Z]{followsym}* | {[_$%]{followsym}+ 

PTX does not specify a maximum length for identifiers and suggests that all 
implementations support a minimum length of at least 1024 characters. 

Many high-level languages such as C and C++ follow similar rules for identifier names, 
except that the percentage sign is not allowed.  PTX allows the percentage sign as the first 
character of an identifier.  The percentage sign can be used to avoid name conflicts, e.g. 
between user-defined variable names and compiler-generated names.  

PTX predefines one constant and a small number of special registers that begin with the 
percentage sign, listed in Table 3. 

 

Table 3. Predefined Identifiers 

%clock %ctaid %ntid 

%gridid %nctaid %tid 

WARP_SZ   
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4.5. Constants 

PTX supports integer and floating-point constants and constant expressions.  These 
constants may be used in data initialization and as operands to instructions.  Type checking 
rules remain the same for integer, floating-point, and bit-size types.  For predicate-type data 
and instructions, integer constants are allowed and are interpreted as in C, i.e., zero values 
are FALSE and non-zero values are TRUE. 

4.5.1. Integer Constants 
Integer constants are 64-bits in size and are either signed or unsigned, i.e., every integer 
constant has type .s64 or .u64.  The signed/unsigned nature of an integer constant is needed 
to correctly evaluate constant expressions containing operations such as division and ordered 
comparisons, where the behavior of the operation depends on the operand types.  When 
used in an instruction or data initialization, each integer constant is converted to the 
appropriate size based on the data or instruction type at its use. 

Integer literals may be written in decimal, hexadecimal, octal, or binary notation.  The syntax 
follows that of C.  Integer literals may be followed immediately by the letter ‘U’ to indicate 
that the literal is unsigned. 

 hexadecimal literal: 0[xX]{hexdigit}+U? 
 octal literal:  0{octal digit}+U? 
 binary literal:  0[bB]{bit}+U? 
 decimal literal  {nonzero-digit}{digit}*U? 

Integer literals are non-negative and have a type determined by their magnitude and optional 
type suffix as follows: literals are signed (.s64) unless the value cannot be fully represented in 
.s64 or the unsigned suffix is specified, in which case the literal is unsigned (.u64). 

There is a predefined integer constant, WARP_SZ, whose value is 32. 

4.5.2. Floating-Point Constants 
Floating-point constants are represented as 64-bit double-precision values, and all floating-
point constant expressions are evaluated using 64-bit double precision arithmetic.  The only 
exception is the 32-bit hex notation for expressing an exact single-precision floating-point 
value; such values retain their exact 32-bit single-precision value and may not be used in 
constant expressions.  Each 64-bit floating-point constant is converted to the appropriate 
floating-point size based on the data or instruction type at its use. 

Floating-point literals may be written with an optional decimal point and an optional signed 
exponent.  Unlike C and C++, there is no suffix letter to specify size; literals are always 
represented in 64-bit double-precision format.  

PTX includes a second representation of floating-point constants for specifying the exact 
machine representation using a hexadecimal constant.  To specify IEEE-752 double-
precision floating point values, the constant begins with 0d or 0D followed by 16 hex digits.  
To specify IEEE-752 single-precision floating point values, the constant begins with 0f or 
0F followed by 8 hex digits. 
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0[fF]{hexdigit}{8} // single-precision floating point 

0[dD]{hexdigit}{16} // double-precision floating point 

Example: 
      mov.f32  $f3, 0F3f800000;        //  1.0 

4.5.3. Predicate Constants 

In PTX, integer constants may be used as predicates.  For predicate-type data initializers and 
instruction operands, integer constants are interpreted as in C, i.e., zero values are FALSE 
and non-zero values are TRUE. 

4.5.4. Constant Expressions 

In PTX, constant expressions are formed using operators as in C and are evaluated using 
rules similar to those in C, but simplified by restricting types and sizes, removing most casts, 
and defining full semantics to eliminate cases where expression evaluation in C is 
implementation dependent.   

Constant expressions are formed from constant literals, unary plus and minus, basic 
arithmetic operators (addition, subtraction, multiplication, division), comparison operators, 
the conditional ternary operator ( ? : ), and parentheses.  Integer constant expressions also 
allow unary logical negation (!), bitwise complement (~), remainder (%), shift operators (<< 

and >>), bit-type operators (&, |, and ^), and logical operators (&&, ||). 

Constant expressions in ptx do not support casts between integer and floating-point. 

Constant expressions are evaluated using the same operator precedence as in C.  The 
following table gives operator precedence and associativity.  Operator precedence is highest 
for unary operators and decreases with each line in the chart.  Operators on the same line 
have the same precedence and are evaluated right-to-left for unary operators and left-to-right 
for binary operators. 
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Table 4. Operator Precedence 

Kind   Operator Symbols Operator Names Associates 

Primary () parenthesis n/a 

Unary +   -   !   ~ plus, minus, negation, complement right 

 (.s64)   (.u64) casts right 

Binary *   /   % multiplication, division, remainder left 

 +   - addition, subtraction  

 >>   << shifts  

 <   >   <=   >= ordered comparisons  

 ==   != equal, not equal  

 & bitwise AND  

 ^ bitwise XOR  

 | bitwise OR  

 && logical AND  

 || logical OR  

Ternary ? : conditional right 

 

4.5.5. Integer Constant Expression Evaluation 
Integer constant expressions are evaluated at compile time according to a set of rules that 
determine the type (signed .s64 versus unsigned .u64) of each sub-expression.  These rules 
are based on the rules in C, but they've been simplified to apply only to 64-bit integers, and 
behavior is fully defined in all cases (specifically, for remainder and shift operators). 

• Literals are signed unless unsigned is needed to prevent overflow, or unless the literal 
uses a 'U' suffix. 

Example:  42, 0x1234, 0123 are signed. 

Example:  0xFABC123400000000, 42U, 0x1234U are unsigned. 

• Unary plus and minus preserve the type of the input operand. 

Example:  +123, -1, -(-42) are signed 

Example:  -1U, -0xFABC123400000000 are unsigned. 

• Unary logical negation (!) produces a signed result with value 0 or 1. 

• Unary bitwise complement (~) interprets the source operand as unsigned and produces 
an unsigned result. 

• Some binary operators require normalization of source operands.  This normalization is 
known as the usual arithmetic conversions and simply converts both operands to unsigned 
type if either operand is unsigned. 

• Addition, subtraction, multiplication, and division perform the usual arithmetic 
conversions and produce a result with the same type as the converted operands.  That is, 
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the operands and result are unsigned if either source operand is unsigned, and is 
otherwise signed. 

• Remainder (%) interprets the operands as unsigned.  Note that this differs from C, 
which allows a negative divisor but defines the behavior to be implementation 
dependent. 

• Left and right shift interpret the second operand as unsigned and produce a result with 
the same type as the first operand.  Note that the behavior of right-shift is determined 
by the type of the first operand: right shift of a signed value is arithmetic and preserves 
the sign, and right shift of an unsigned value is logical and shifts in a zero bit. 

• AND (&), OR (|), and XOR (^) perform the usual arithmetic conversions and produce 
a result with the same type as the converted operands. 

• AND_OP (&&), OR_OP (||), Equal (==), and Not_Equal (!=) produce a signed 
result.  The result value is 0 or 1. 

• Ordered comparisons (<, <=, >, >=) perform the usual arithmetic conversions on 
source operands and produce a signed result.  The result value is 0 or 1. 

• Casting of expressions to signed or unsigned is supported using (.s64) and (.u64) casts. 

• For the conditional operator ( ? : ) , the first operand must be an integer, and the second 
and third operands are either both integers or both floating-point.  The usual arithmetic 
conversions are performed on the second and third operands, and the result type is the 
same as the converted type. 



Chapter 4:  Syntax 

    

 

 

20  PTX ISA Version 1.2 
  7/7/2008 

4.5.6. Summary of Constant Expression Evaluation Rules 

These rules are summarized in the following table. 

 

Table 5. Constant Expression Evaluation Rules 

Kind             Operator Operand 
Types 

Operand Interpretation Result Type 

Primary () any type same as source same as source 

 constant literal n/a n/a .u64, .s64, or .f64 

Unary  +   - any type same as source same as source 

 !  integer zero or non-zero .s64 

 ~ integer .u64 .u64 

Cast (.u64) integer .u64 .u64 

 (.s64) integer .s64 .s64 

Binary +   -   *   / .f64 

integer 

.f64 

use usual conversions 

.f64 

converted type 

 <   >   <=   >= .f64 

integer 

.f64 

use usual conversions 

.s64 

.s64 

 ==   != .f64 

integer 

.f64 

use usual conversions 

.s64 

.s64 

 % integer .u64 .u64 

 >>   << integer 1
st
 unchanged, 2

nd
 is .u64 same as 1

st
 operand 

 &   |   ^ integer .u64 .u64 

 &&   || integer zero or non-zero .s64 

Ternary ? : int ?.f64 : .f64 

int ? int : int 

same as sources 

use usual conversions 

.f64 

converted type 
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Chapter 5. 

State Spaces, Types, and Variables 

While the specific resources available in a given target GPU will vary, the kinds of resources 
will be common across platforms, and these resources are abstracted in PTX through state 
spaces and data types. 

5.1. State Spaces 

A state space is a storage area with particular characteristics.  All variables reside in some 
state space.  The characteristics of a state space include its size, addressability, access speed, 
access rights, and level of sharing between threads. 

The state spaces defined in PTX are a byproduct of parallel programming and graphics 
programming.  The list of state spaces is shown in Table 4, and properties of state spaces are 
shown in Table 5. 

 

Table 6. State Spaces 

Name Description 

.reg Registers, fast. 

.sreg Special registers.  Read-only; pre-defined; platform-specific. 

.const Shared, read-only memory. 

.global Global memory, shared by all threads. 

.local Local memory, private to each thread. 

.param User parameters for a program, available at CTA entry. 

.shared Addressable memory shared between threads in 1 CTA. 

.surf Global surface memory. 

.tex Global texture memory. 
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Table 7. Properties of State Spaces 

Name Addressable Initializable Access Sharing 

.reg No No R/W per-thread 

.sreg No No RO per-CTA 

.const Yes Yes RO per-grid 

.global Yes Yes R/W Context 

.local Yes No R/W per-thread 

.param Yes No RO per-grid 

.shared Yes No R/W per-CTA 

.surf via surface instructions  Yes, via driver R/W Context 

.tex via texture instruction TEX Yes, via driver RO Context 

 

5.1.1. Register State Space 

Registers (.reg state space) are fast storage locations.  The number of registers is limited, and 
will vary from platform to platform.  When the limit is exceeded, register variables will be 
spilled to memory, causing changes in performance.  For each architecture, there is a 
recommended maximum number of registers to use (see the “NVIDIA CUDA Compute 
Unified Device Architecture Programming Guide” for details). 

Registers may be typed (signed integer, unsigned integer, floating point, predicate) or 
untyped.  Register size is restricted; aside from predicate registers which are 1-bit, registers 
have a width of 16-, 32-, or 64-bits. 

Registers differ from the other state spaces in that they are not fully addressable, i.e., it is not 
possible to refer to the address of a register. 

Registers may have alignment boundaries required by multi-word loads and stores. 

5.1.2. Special Register State Space 
The special register (.sreg) state space holds predefined, platform-specific registers, such as 
grid, CTA, and thread parameters, clock counters, and performance monitoring registers.  
All special registers are predefined. 

5.1.3. Constant State Space 
The constant (.const) state space is a read-only memory, initialized by the host.  The size is 
limited and device-dependent. 
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5.1.4. Global State Space 

The global (.global) state space is memory that is accessible by all threads in a context.  It is 
the mechanism by which different CTAs and different grids can communicate.  Use ld.global, 
st.global, and atom.global to access global variables.   

For any thread in a context, all addresses are in global memory are shared. 

Global memory is not sequentially consistent.  Consider the case where one thread executes 
the following two assignments: 

      a = a + 1; 

      b = b – 1; 

If another thread sees the variable b change, the store operation updating a may still be in 
flight.  This reiterates the kind of parallelism available in machines that run PTX.  Threads 
must be able to do their work without waiting for other threads to do theirs, as in lock-free 
and wait-free style programming. 

Sequential consistency is provided by the bar.sync instruction.  Threads wait at the barrier 
until all threads in the CTA have arrived.  All memory writes prior to the bar.sync instruction 
are guaranteed to be visible to any reads after the barrier instruction. 

5.1.5. Local State Space 
The local state space (.local) is private memory for each thread to keep its own data.  It is 
typically standard memory with cache.  The size is limited, as it must be allocated on a per-
thread basis.  Use ld.local and st.local to access local variables.   

5.1.6. Parameter State Space 

The parameter (.param) state space provides addressable user parameters to CTAs.  User 
parameters begin at address zero, and the address space is shared across CTAs within a grid. 

The location of parameter space is implementation specific.  For example, in some 
implementations, parameter space resides in global memory.  No access protection is 
provided between parameter and global space in this case. 

5.1.7. Shared State Space 

The shared (.shared) state space is a per-CTA region of memory for threads in a CTA to 
share data.  An address in shared memory can be read and written by any thread in a CTA.  
Use ld.shared and st.shared to access shared variables.   

Shared memory typically has some optimizations to support the sharing.  One example is 
broadcast; where all threads read from the same address.  Another is sequential access from 
sequential threads. 
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5.1.8. Texture State Space 

The texture (.tex) state space is global memory accessed via the texture instruction.  It is 
shared by all threads in a context. 

The GPU hardware has a fixed number of texture bindings that can be accessed within a 
single program (typically 128).  The .tex directive will bind the named texture memory 
variable to a hardware texture id, where texture ids are allocated sequentially beginning with 
zero.  The .tex[n] directive will bind the named texture memory variable to hardware texture 
id ‘n’.  Multiple names may be bound to the same physical texture id.  An error is generated 
only if the texture id assigned is out of the physical texture id range (e.g., 0..127).  The 
texture name must be of type .u32 or .u64. 

Texture memory is read-only.  A texture’s base address is assumed to be aligned to a 16-byte 
boundary. 

Example: 
.tex     .u32 tex_a;    // bound to physical texture 0 

 .tex[2]  .u32 tex_b;    // bound to physical texture 2 

 .tex     .u32 tex_c, tex_d;   // both bound to physical texture 1 

 .tex     .u32 tex_d;    // bound to physical texture 2 

 .tex[42] .u32 tex_e;    // bound to physical texture 42 

 .tex     .u32 tex_f;    // bound to physical texture 3 

 

5.1.9. Surface State Space 
The surface (.surf) state space is unimplemented in the current release. 
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5.2. Types 

5.2.1. Fundamental Types 
In PTX, the fundamental types reflect the native data types supported by the target 
architectures.  A fundamental type specifies both a basic type and a size.  Register variables 
are always of a fundamental type, and instructions operate on these types.  The same type-
size specifiers are used for both variable definitions and for typing instructions, so their 
names are intentionally short. 

The following table lists the fundamental type specifiers for each basic type: 

Table 8. Fundamental Specifiers  

Basic Type 

 

Fundamental Type Specifiers 

Signed integer .s8, .s16, .s32, .s64 

Unsigned integer .u8, .u16, .u32, .u64 

Floating-point .f16, .f32, .f64 

Bits (untyped) .b8, .b16, .b32, .b64 

Predicate .pred 

 

Most instructions have one or more type specifiers, needed to fully specify instruction 
behavior.  Operand types and sizes are checked against instruction types for compatibility. 

Two fundamental types are compatible if they have the same basic type and are the same 
size.  Signed and unsigned integer types are compatible if they have the same size.  The bit-
size type is compatible with any fundamental type having the same size. 

In principle, all variables could be declared using only bit-size types, but typed variables 
enhance program readability and allow for better operand type checking. 

5.2.2. Restricted Use of Sub-Word Sizes 
The .u8 and .s8 types are restricted to ld, st, and cvt instructions.  The ld and st instructions 
also accept .b8 type.  Byte-size integer load instructions zero- or sign-extended the value to 
the size of the destination register. 

The .f16 floating-point type is allowed only in conversions to and from .f32 and .f64 types.  
All floating-point instructions operate only on .f32 and .f64 types.   
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5.3. Variables 

In PTX, a variable declaration describes both the variable’s type and its state space.  In 
addition to fundamental types, PTX supports types for aggregate objects such as vectors, 
arrays, structures and unions. 
 

NOTE: The current version of PTX does not implement structures or unions, and 
provides limited support for vectors.  Specifically, vector variable declarations are not 
implemented, but vector operands (in the form of scalar tuples; see Section 6.4.3) and 
vector instruction types are supported. 

5.3.1. Variable Declarations 

All storage for data is specified with variable declarations.  Every variable must reside in one 
of the state spaces enumerated in the previous section. 

A variable declaration names the space in which the variable resides, its type and size, its 
name, an optional array size, an optional initializer, and an optional fixed address for the 
variable. 

Examples: 
      .global .u32 loc; 

      .reg    .s32 i = 0; 

      .const  .f32 bias[] = {-1.0, 1.0}; 

      .global .u8  bg[4] = {0, 0, 0, 0}; 

      .reg    .v4 .f32 accel; 

 

      .struct float4 { .f32 v0,v1,v2,v3 }; // typedef 

      .global .struct float4 coord; 

5.3.2. Vectors 

Limited-length vector types are supported.  Vectors of length 2 and 4 of any fundamental 
type can be declared by prefixing the type with .v2 or .v4.  Vectors must be based on a 
fundamental  type, and they may reside in the register space.  Vectors cannot exceed 128-bits 
in length; for example, .v4.f64 is not allowed.  Three-element vectors may be handled by 
using a .v4 vector, where the fourth element provides padding.  This is a common case for 
three-dimensional grids, textures, etc. 

Examples: 
      .global .v4 .f32 V;  // a length-4 vector of floats 

      .shared .v2 .u16 uv;  // a length-2 vector of unsigned ints 

      .reg .v4 .pred vpred; // a vector of predicates registers 
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5.3.3. Array Declarations 

Array declarations are provided to allow the programmer to reserve space.  To declare an 
array, the variable name is followed with dimensional declarations similar to fixed-size array 
declarations in C.  The size of the dimension is either a constant expression, or is left empty, 
being determined by an array initializer.  Here are some examples: 

      .local  .u16 kernel[19][19]; 

      .shared .u8  mailbox[128]; 

      .global .s32 offset[][] = { {-1, 0}, {0, -1}, {1, 0}, {0, 1} }; 

The size of the array specifies how many elements should be reserved.  For the kernel 
declaration above, 19*19 (361) halfwords are reserved (722 bytes). 

5.3.4. Structures and Unions 
A structure definition specifies a sequence of fields (consisting of a type/size and a name) as a 
block of memory.  This is analogous to the structures in C.  Once defined, the structure can 
be used as a type designator in subsequent variable declarations. 

Example: 
      .struct somestruct { .s32 i; .s32 j; .f32 x; .f32 y; }; 

      .global somestruct p; 

      .reg .b32 ptr; 

… 

      ld.s32  r0, [p.x]; 

      mov.b32 ptr, p;    // get address of structure p 

Union definitions use the same syntax as struct definitions, with the keyword .struct replaced 
by .union.  The difference between a struct and a union is that in a struct, the fields are laid 
out sequentially in memory, while in a union, the fields all use the same memory.  Unions 
provide a way to reuse memory in a relatively type-safe manner.  Here is an example that 
provides storage for a float or an integer: 

      .union intOrFloat { .s32 i; .f32 f; }; 

Structure and union declarations may be nested.  The shortcut syntax of C++ with 
anonymous unions is also supported. 
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5.3.5. Initializers 

Declared variables may specify an initial value using a syntax similar to C/C++, where the 
variable name is followed by an equals sign and the initial value or values for the variable.  A 
scalar takes a single value, while vectors and arrays take nested lists of values inside of curly 
braces (the nesting matches the dimensionality of the declaration).  Structures take a list of 
values that matches the fields in a structure.  Initializers are allowed for  all types except .f16. 

Examples: 
      .global .s32 n = 10; 

      .const  .f32 blur_kernel[][] 

                     = {{.05,.1,.05},{.1,.4,.1},{.05,.1,.05}}; 

      .global .v4 .u8 rgba[3] = {{1,0,0,0}, {0,1,0,0}, {0,0,1,0}}; 

Currently, variable initialization is supported only for constant and global state spaces. 

5.3.6. Alignment 
Byte alignment of storage for all addressable variables can be specified in the variable 
declaration.  Alignment is specified using an optional .align byte-count specifier immediately 
following the state-space specifier.  The variable will be aligned to an address which is an 
integer multiple of byte-count.  For arrays, structures, and unions, alignment specifies the 
address alignment for the starting address of the entire structure, not for individual elements. 

Examples: 
// allocate array at 4-byte aligned address.  Elements are bytes. 

      .const .align 4 .b8 bar[8] = {0,0,0,0,2,0,0,0}; 

Note that all PTX instructions that access memory require that the address be aligned to a 
multiple of the transfer size. 

5.3.7. Parameterized Variable Names 

Since PTX supports virtual registers, it is quite common for a compiler frontend to generate 
a large number of register names.  Rather than require explicit declaration of every name, 
PTX supports a syntax for creating a set of variables having a common prefix string 
appended with integer suffixes.  For example, suppose a program uses a large number, say 
one hundred, of .b32 variables, named %r0, %r1, ..., %r99.  These 100 register variables can 
be declared as follows: 

      .reg .b32 %r<100>;    // declare %r0, %r1, …, %r99 

This shorthand syntax may be used with any of the fundamental types and with any state 
space, and may be preceded by an alignment specifier.  Array, structure, and union variables 
cannot be declared this way, nor are initializers permitted. 
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Chapter 6. 

Instruction Operands 

6.1. Operand Type Information 

All operands in instructions have a known type from their declarations.  Each operand type 
must be compatible with the type determined by the instruction template and instruction 
type.  There is no automatic conversion between types. 

The bit-size type is compatible with every type having the same size.  Integer types of a 
common size are compatible with each other.  Operands having type different from but 
compatible with the instruction type are silently cast to the instruction type. 

6.2. Source Operands 

The source operands are denoted in the instruction descriptions by the names a, b, and c.  
PTX describes a load-store machine, so operands for ALU instructions must all be in 
variables declared in the .reg register state space.  For most operations, the sizes of the 
operands must be consistent. 

The cvt (convert) instruction takes a variety of operand types and sizes, as its job is to 
convert from nearly any data type to any other data type (and size). 

The ld, st, mov, and cvt instructions copy data from one location to another.  Instructions ld 
and st move data from/to addressable state spaces to/from registers.  The mov instruction 
copies data between registers. 

Most instructions have an optional predicate guard that controls conditional execution, and a 
few instructions have additional predicate source operands.  Predicate operands are denoted 
by the names p, q, r, s. 

6.3. Destination Operands 

PTX instructions that produce a single result store the result in the field denoted by d (for 
destination) in the instruction descriptions.  The result operand is a scalar or vector variable 
in the register state space. 

. 
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6.4. Using Addresses, Arrays, Vectors, Structures, 
and Unions 

Using scalar variables as operands is straightforward.  The interesting capabilities begin with 
addresses, arrays, vectors, structures and unions. 

6.4.1. Addresses as Operands 
Address arithmetic is performed using integer arithmetic and logical instructions.  Examples 
include pointer arithmetic and pointer comparisons.  All addresses and address 
computations are byte-based; there is no support for C-style pointer arithmetic. 

The mov instruction can be used to move the address of a variable into a pointer.  Load and 
store operations move data between registers and locations in addressable state spaces.  The 
syntax is similar to that used in many assembly languages, where scalar variables are simply 
named and addresses are de-referenced by enclosing the address expression in square 
brackets.  Address expressions include variable names, address registers, address register plus 
byte offset, and immediate address expressions which evaluate at compile-time to a constant 
address. 

Here are a few examples: 

      .shared .u16 x; 

      .reg .u16 r0; 

      .global .v4 .f32 V; 

      .reg .v4 .f32 W; 

      .const .s32 tbl[256]; 

      .reg .b32 p; 

      .reg .s32 q; 

       

      ld.u16    r0,[x]; 

      ld.v4.f32 W, [V]; 

      ld.s32    q, [tbl+12]; 

      mov.b32   p, tbl; 
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6.4.2. Arrays as Operands 

Arrays of all types can be declared, and the identifier becomes an address constant in the 
space where the array is declared.  The size of the array is a constant in the program. 

Array elements can be accessed using an explicitly calculated byte address, or by indexing 
into the array using square-bracket notation.  The expression within square brackets is either 
a constant integer, a register variable, or a simple “register with constant offset” expression, 
where the offset is a constant expression that is either added or subtracted from a register 
variable.  If more complicated indexing is desired, it must be written as an address 
calculation prior to use.  Examples are  

      ld.u32  s, a[0]; 

      ld.u32  s, a[N-1]; 

      mov.u32 s, a[1];  // move address of a[1] into s 

6.4.3. Vectors as Operands 

Vector operands are supported by a limited subset of instructions, which include mov, ld, st, 
and tex.  Vectors may also be passed as arguments to called functions. 

Vector elements can be extracted from the vector with the suffixes .x, .y, .z and .w, as well as 
the typical color fields .r, .g, .b and .a. 

A brace-enclosed list is used for pattern matching to pull apart vectors. 

      .reg .v4 .f32 V; 

      .reg .f32 a, b, c, d; 

      mov.v4.f32 {a,b,c,d}, V; 

Vector loads and stores can be used to implement wide loads and stores, which may improve 
memory performance.  The registers in the load/store operations can be a vector, or a brace-
enclosed list of similarly typed scalars.  Here are examples: 

      ld.v4.f32   {a,b,c,d}, [addr+offset]; 

      ld.v2.u32   V2, [addr+offset2]; 

Elements in a brace-enclosed vector, say {Ra, Rb, Rc, Rd}, correspond to extracted elements 
as follows: 

       Ra = V.x = V.r 

       Rb = V.y = V.g 

       Rc = V.z = V.b 

       Rd = V.w = V.a 

6.4.4. Structures and Unions as Operands 

Structures and unions can only access their members; there are no instructions that take 
entire structures as operands. 
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6.4.5. Labels and Function Names as Operands 

Labels and function names can be used only in branch and call instructions, and in move 
instructions to get the address of the label or function into a register, for use in an indirect 
branch or call. 

6.5. Type Conversion 

All operands to all arithmetic, logic, and data movement instruction must be of the same 
type and size, except for operations where changing the size and/or type is part of the 
definition of the instruction.  Operands of different sizes or types must be converted prior 
to the operation. 

6.5.1. Scalar Conversions 
Table 6 shows what precision and format the cvt instruction uses given operands of differing 
types.  For example, if a cvt.s32.u16 instruction is given a u16 source operand and s32 as a 
destination operand, the u16 is zero-extended to s32. 

Conversions to floating-point that are beyond the range of floating-point numbers are 
represented with the maximum floating-point value (IEEE Inf for f32 and f64, and ~131,000 
for f16). 
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Table 9. CVT Instruction Precision and Format  

 Destination Format 

s8 s16 s32 s64 u8 u16 u32 u64 f16 f32 f64 

S
o

u
rc

e
 F

o
rm

a
t 

s8 - sext sext sext - sext sext sext s2f s2f s2f 

s16 chop
1
 - sext sext chop

1
 - sext sext s2f s2f s2f 

s32 chop
1
 chop

1
 - sext chop

1
 chop

1
 - sext s2f s2f s2f 

s64 chop
1
 chop

1
 chop - chop

1
 chop

1
 chop - s2f s2f s2f 

u8 - zext zext zext - zext zext zext u2f u2f u2f 

u16 chop
1
 - zext zext chop

1
 - zext zext u2f u2f u2f 

u32 chop
1
 chop

1
 - zext chop

1
 chop

1
 - zext u2f u2f u2f 

u64 chop
1
 chop

1
 chop - chop

1
 chop

1
 chop - u2f u2f u2f 

f16 f2s f2s f2s f2s f2u f2u f2u f2u - f2f f2f 

f32 f2s f2s f2s f2s f2u f2u f2u f2u f2f - f2f 

f64 f2s f2s f2s f2s f2u f2u f2u f2u f2f f2f - 

Notes 

sext = sign extend;   zext = zero-extend;   chop = keep only low bits that fit; 

s2f = signed-to-float;   f2s = float-to-signed; 

u2f = unsigned-to-float;   f2u = float-to-unsigned; 

f2f = float-to-float; 

 
1  

If the destination register is wider than the destination format, the result is extended to the 
destination register width after chopping.  The type of extension (sign or zero) is based on the 
destination format.  For example, cvt.s16.u32 targeting a 32-bit register will first chop to 16-bits, 
then sign-extend to 32-bits. 
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6.5.2. Rounding Modifiers 

Conversion instructions may specify a rounding modifier.  In PTX, there are four integer 
rounding modifiers and four floating-point rounding modifiers.  The following tables 
summarize the rounding modifiers. 

Table 10. Floating-Point Rounding Modifiers 

Modifier Description 

.rn mantissa LSB rounds to nearest even 

.rz mantissa LSB rounds towards zero 

.rm mantissa LSB rounds towards negative infinity 

.rp mantissa LSB rounds towards positive infinity 

 

Table 11. Integer Rounding Modifiers 

Modifier Description 

.rni round to nearest integer, choosing even integer if source is equidistant 
between two integers. 

.rzi round to nearest integer in the direction of zero 

.rmi round to nearest integer in direction of negative infinity 

.rpi round to nearest integer in direction of positive infinity 
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Chapter 7. 

Instruction Set 

7.1. Format and Semantics of Instruction 
Descriptions 

This section describes each PTX instruction.  In addition to the name and the format of the 
instruction, the semantics are described, followed by some examples that attempt to show 
several possible instantiations of the instruction. 

7.2. PTX Instructions 

PTX instructions generally have from zero to four operands, plus an optional guard 
predicate appearing after an ‘@’ symbol to the left of the opcode: 

� @P    opcode; 

� @P    opcode A; 

� @P    opcode D, A; 

� @P    opcode D, A, B; 

� @P    opcode D, A, B, C; 

For instructions that create a result value, the D operand is the destination operand, while A, 
B, and C are the source operands. 

The setp instruction writes two destination registers.  We use a ‘|’ symbol to separate 
multiple destination registers. 

      setp.s32.lt p|q, a, b;  // p = (a < b); q = !(a < b); 

For some instructions the destination operand is optional.  A “bit bucket” operand denoted 
with an underscore (‘_’) may be used in place of a destination register. 
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7.3. Predicated Execution 

In PTX, predicate registers are virtual and have .pred as the type specifier.  So, predicate 
registers can be declared as 

      .reg .pred p, q, r 

All instructions have an optional “guard predicate” which controls conditional execution of 
the instruction.  The syntax to specify conditional execution is to prefix an instruction with 
“@[!]p”, where p is a predicate variable, optionally negated.  Instructions without a guard 
predicate are executed unconditionally. 

Predicates are most commonly set as the result of a comparison performed by the SETP 
instruction. 

As an example, consider the high-level code 

  if (i < n) 

      j = j + 1; 

This can be written in PTX as 

      setp.lt.s32 p, i, n;    // p = (i < n) 

@p    add.s32 j, j, 1;        // if i < n, add 1 to j 

To get a conditional branch or conditional function call, use a predicate to control the 
execution of the branch or call instructions.  To implement the above example as a true 
conditional branch, the following PTX instruction sequence might be used: 

      setp.lt.s32 p, i, n;    // compare i to n 

@!p   bra L1;                 // if false, branch over 

      add.s32 j, j, 1;   

L1:  … 
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7.3.1. Comparisons 

7.3.1.1. Integer and Bit-Size Comparisons 

The signed integer comparisons are the traditional eq (equal), ne (not-equal), lt (less-than), le 
(less-than-or-equal), gt (greater-than), and ge (greater-than-or-equal).  The unsigned 
comparisons are eq, ne, lo (lower), ls (lower-or-same), hi (higher), and hs (higher-or-same).  
The bit-size comparisons are eq and ne; ordering comparisons are not defined for bit-size 
types.  The following table shows the operators for signed integer, unsigned integer, and bit-
size types. 

Table 12. Operators for Signed Integer, Unsigned Integer, and Bit-
Size Types 

Meaning Signed Operator Unsigned Operator Bit-Size Operator 

a == b EQ EQ EQ 

a != b NE NE NE 

a < b LT LO  

a <= b LE LS  

a > b GT HI  

a >= b GE HS  

 

7.3.1.2. Floating-Point Comparisons 

The ordered comparisons are eq, ne, lt, le, gt, ge.  If either operand is NaN, the result is false. 

Table 13. Floating-Point Comparison Operators 

Meaning Floating-Point Operator 

a == b && !isNaN(a) && !isNaN(b) EQ 

a != b && !isNaN(a) && !isNaN(b) NE 

a < b && !isNaN(a) && !isNaN(b) LT 

a <= b && !isNaN(a) && !isNaN(b) LE 

a > b && !isNaN(a) && !isNaN(b) GT 

a >= b && !isNaN(a) && !isNaN(b) GE 
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To aid comparison operations in the presence of NaN values, unordered versions are 
included: equ, neu, ltu, leu, gtu, geu.  If both operands are numeric values (not NaN), then 
these comparisons have the same result as their ordered counterparts.  If either operand is 
NaN, then the result of these comparisons is true. 

Table 14. Floating-Point Comparison Operators Accepting NaN 

Meaning Floating-Point Operator 

a == b || isNaN(a) || isNaN(b) EQU 

a != b || isNaN(a) || isNaN(b) NEU 

a < b || isNaN(a) || isNaN(b) LTU 

a <= b || isNaN(a) || isNaN(b) LEU 

a > b || isNaN(a) || isNaN(b) GTU 

a >= b || isNaN(a) || isNaN(b) GEU 

 

To test for NaN values, two operators num (numeric) and nan (isNaN) are provided.  num 
returns true if both operands are numeric values (not NaN), and nan returns true if either 
operand is NaN. 

Table 15. Floating-Point Comparison Operators Testing for NaN 

Meaning Floating-Point Operator 

!isNaN(a) && !isNaN(b) NUM 

isNaN(a) || isNaN(b) NAN 

 

7.3.2. Manipulating Predicates 

Predicate values may be computed and manipulated using the following instructions: and, or, 
xor, not, and mov. 

There is no direct conversion between predicates and integer values, and no direct way to 
load or store predicate register values.  However, setp can be used to generate a predicate 
from an integer, and the predicate-based select (selp) instruction can be used to generate an 
integer value based on the value of a predicate; for example: 

      selp.u32 %r1,1,0,%p;  // convert predicate to 32-bit value  
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7.4. Type Information for Instructions and Operands 

Instructions that have a type must have a type suffix, e.g. add.u16 or add.f32.  The operand 
type must agree with the instruction type suffix.  The bit-size types agree with any type of 
the same size.  For example, the add instruction requires type and size information to 
properly perform the addition operation (signed, unsigned, float, different sizes), and this 
information must be specified as a suffix to the opcode. 

Example: 
      add.u16 d, a, b;    // perform a 16-bit unsigned add 

Integer types are compatible provided they have the same size, and integer operands are 
silently cast to the instruction type if needed.  For example, an unsigned integer operand 
used in a signed integer instruction will be treated as a signed integer by the instruction. 

Example: 
      .reg .u32 x; 

      .reg .s32 a; 

 

      neg.s32 a, x;       // signed negation of x 

 

Some instructions require multiple type and size declarations, most notably the data 
conversion instruction cvt.  It requires types for the result and source, and these are placed 
in the same order as the operands.  For example: 

      cvt.f32.u16 d, a;   // convert 16-bit unsigned to 32-bit float 

7.5. Divergence of Threads in Control Constructs 

Threads in a CTA execute together, at least in appearance, until they come to a conditional 
control construct such as a conditional branch, conditional function call, or conditional 
return.  If threads execute down different control flow paths, the threads are called divergent.  
If all of the threads act in unison and follow a single control flow path, the threads are called 
uniform.  Both situations occur often in programs. 

A CTA with divergent threads may have lower performance than a CTA with uniformly 
executing threads, so it is important to have divergent threads re-converge as soon as 
possible.  All control constructs are assumed to be divergent points unless the control-flow 
instruction is marked as uniform, using the .uni suffix.  For divergent control flow, the 
optimizing code generator automatically determines points of re-convergence.  Therefore, a 
compiler or code author targeting PTX can ignore the issue of divergent threads, but has the 
opportunity to improve performance by marking branch points as uniform when the 
compiler or author can guarantee that the branch point is non-divergent. 
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7.6. Semantics 

The goal of the semantic description of an instruction is to describe the results in all cases in 
as simple language as possible.  The semantics are described using C, until C is not 
expressive enough. 

7.6.1. Machine-Specific Semantics of 16-Bit Code 
A PTX program may execute on a GPU with either a 16-bit or a 32-bit data path.  When 
executing on a 32-bit data path, 16-bit registers in PTX are mapped to 32-bit physical 
registers, and 16-bit computations are “promoted” to 32-bit computations.  This can lead to 
computational differences between code run on a 16-bit machine versus the same code run 
on a 32-bit machine, since the “promoted” computation may have bits in the high-order 
half-word of registers that are not present in 16-bit physical registers.  These extra precision 
bits can become visible at the application level, for example, by a right-shift instruction. 

At the PTX language level, one solution would be to define semantics for 16-bit code that is 
consistent with execution on a 16-bit data path.  This approach introduces a performance 
penalty for 16-bit code executing on a 32-bit data path, since the translated code would 
require many additional masking instructions to suppress extra precision bits in the high-
order half-word of 32-bit registers. 

Rather than introduce a performance penalty for 16-bit code running on 32-bit GPUs, the 
semantics of 16-bit instructions in PTX is machine-specific.  A compiler or programmer may 
chose to enforce portable, machine-independent 16-bit semantics by adding explicit 
conversions to 16-bit values at appropriate points in the program to guarantee portability of 
the code.  However, for many performance-critical applications, this is not desirable, and for 
many applications the difference in execution is preferable to limiting performance. 
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7.7. Instructions 

All PTX instructions may be predicated.  In the following descriptions, the optional guard 
predicate is omitted from the syntax. 

7.7.1. Arithmetic Instructions 
Arithmetic instructions operate on the numeric types in register and constant immediate 
forms. The arithmetic instructions are: 

� ADD 

� ADDC 

� SUB 

� MUL 

� MAD 

� MUL24 

� MAD24 

� SAD 

� DIV 

� REM 

� ABS 

� NEG 

� MIN 

� MAX 
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Table 16. Arithmetic Instructions:  ADD 

ADD Add two values 

Syntax add[.sat].itype d, a, b; 

add[.rnd][.sat].ftype d, a, b; 

 

.itype = { .u16, .u32, .u64, 

           .s16, .s32, .s64 }; 

.ftype = {       .f32, .f64 }; 

Description Performs addition and writes the resulting value into a destination register. 

Semantics d = a + b; 

Integer Notes No integer rounding modifiers. 

 

Saturation modifier: 

.sat limits result to MININT..MAXINT (no overflow) for the size of the operation. 
Applies only to .s32 type. 

Floating Point 
Notes 

Rounding modifiers (default is .rn): 

.rn mantissa LSB rounds to nearest even 

.rz mantissa LSB rounds towards zero 

.rm mantissa LSB rounds towards negative infinity 

.rp mantissa LSB rounds towards positive infinity 
 

Saturation modifier: 

.sat limits result to (0.0, 1.0). 
Applies only to .f32 type. 

 

An ADD instruction with an explicit rounding modifier treated conservatively by the code 
optimizer.  An ADD instruction with no rounding modifier defaults to round-to-nearest-
even and may be optimized aggressively by the code optimizer.  In particular, 
MUL/ADD sequences with no rounding modifiers may be optimized to use fused-
multiply-add instructions on the target device. 

Target ISA Notes add.f64 requires sm_13 or later. 

 

Rounding modifiers have the following target requirements: 

.rn, .rz      supported by all targets 

.rm, .rp      for add.f64, requires sm_13 

              for add.f32, unimplemented 

Examples @p  add.u32     x,y,z; 

    add.sat.s32 c,c,1; 

    add.rz.f32  f1,f2,f3; 
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Two instructions, add and addc, reference an implicitly specified condition code register (CC) 
having a single carry flag bit (CC.CF) holding carry-in or carry-out.  These instructions 
support extended-precision integer addition.  No other instructions access the condition 
code, and there is no support for setting, clearing, or testing the condition code. 

 

Table 17. Arithmetic Instructions:  ADD 

ADD Add two values with optional carry-out 

Syntax add[.cc].type d, a, b; 

 

.type = { .u32, .s32 }; 

Description Performs 32-bit integer addition and optionally writes the carry-out value into the 
condition code register. 

Semantics d = a + b; 

if .cc specified, carry-out written to CC.CF 

Integer Notes No integer rounding modifiers. 

No saturation. 

Behavior is the same for unsigned and signed integers. 

Examples @p  add.cc.b32   x1,y1,z1;   // extended-precision addition of 

@p  addc.cc.b32  x2,y2,z2;   // two 128-bit values 

@p  addc.cc.b32  x3,y3,z3; 

@p  addc.cc.b32  x4,y4,z4; 

 

Table 18. Arithmetic Instructions:  ADDC 

ADDC Add two values with carry-in and optional carry-out 

Syntax addc[.cc].type d, a, b; 

 

.type = {.u32, .s32 }; 

Description Performs 32-bit integer addition with carry-in and optionally writes the carry-out value 
into the condition code register. 

Semantics d = a + b + CC.CF; 

if .cc specified, carry-out written to CC.CF 

Integer Notes No integer rounding modifiers. 

No saturation. 

Behavior is the same for unsigned and signed integers. 

Examples @p  add.cc.b32   x1,y1,z1;   // extended-precision addition of 

@p  addc.cc.b32  x2,y2,z2;   // two 128-bit values 

@p  addc.cc.b32  x3,y3,z3; 

@p  addc.cc.b32  x4,y4,z4; 
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Table 19. Arithmetic Instructions:  SUB 

SUB Subtract one value from another 

Syntax sub[.sat].itype d, a, b; 

sub[.rnd][.sat].ftype d, a, b; 

 

.itype = { .u16, .u32, .u64, 

           .s16, .s32, .s64 }; 

.ftype = {       .f32, .f64 }; 

Description Performs subtraction and writes the resulting value into a destination register. 

Semantics d = a – b; 

Integer Notes No integer rounding modifiers. 

 

Saturation modifier: 

.sat limits result to MININT..MAXINT (no overflow) for the size of the operation. 
Applies only to .s32 type. 

Floating Point 
Notes 

Rounding modifiers (default is .rn): 

.rn mantissa LSB rounds to nearest even 

.rz mantissa LSB rounds towards zero 

.rm mantissa LSB rounds towards negative infinity 

.rp mantissa LSB rounds towards positive infinity 

 

Saturation modifier: 

.sat limits result to (0.0, 1.0). 
Applies only to .f32 type. 

 

An SUB instruction with an explicit rounding modifier treated conservatively by the code 
optimizer.  A SUB instruction with no rounding modifier defaults to round-to-nearest-
even and may be optimized aggressively by the code optimizer.  In particular, 
MUL/SUB sequences with no rounding modifiers may be optimized to use fused-
multiply-add instructions on the target device. 

Target ISA Notes sub.f64 requires sm_13 or later. 

 

Rounding modifiers have the following target requirements: 

.rn,  .rz  available for all targets 

.rm, .rp  for sub.f64, requires sm_13 
for sub.f32, unimplemented 

Examples     sub.s32 c,a,b; 
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Table 20. Arithmetic Instructions:  MUL 

MUL Multiply two values 

Syntax mul[.hi,.lo,.wide].itype d, a, b; 

mul[.rnd][.sat].ftype d, a, b; 

 

.itype = { .u16, .u32, .u64, 

           .s16, .s32, .s64 }; 

.ftype = {       .f32, .f64 }; 

Description Compute the product of two values. 

Semantics t = a * b; 

n = bitwidth of type; 

d = t;                           // for floating-point and .wide  

d = t<2n-1..n>;            // for .hi variant 

d = t<n-1..0>;              // for .lo variant 

Integer Notes The type of the operation represents the types of the a and b operands.  If .hi or .lo is 
specified, then d is the same size as a and b, and either the upper or lower half of the 
result is written to the destination register.  If .wide is specified, then d is twice as wide 
as a and b to receive the full result of the multiplication. 

 

The .wide suffix is supported only for 16- and 32-bit integer types. 

No integer rounding modifiers. 

No integer saturation. 

Floating Point 
Notes 

For floating-point multiplication, all operands must be the same size. 

 

Rounding modifiers (default is .rn): 

.rn mantissa LSB rounds to nearest even 

.rz mantissa LSB rounds towards zero 

.rm mantissa LSB rounds towards negative infinity 

.rp mantissa LSB rounds towards positive infinity 

 

Saturation modifier: 

.sat limits result to (0.0, 1.0). 
Applies only to .f32 type. 

 

A MUL instruction with an explicit rounding modifier treated conservatively by the code 
optimizer.  A MUL instruction with no rounding modifier defaults to round-to-nearest-
even and may be optimized aggressively by the code optimizer.  In particular, 
MUL/ADD sequences with no rounding modifiers may be optimized to use fused-
multiply-add instructions on the target device. 

Target ISA Notes mul.f64 requires sm_13 or later. 

 

Rounding modifiers have the following target requirements: 

.rn, .rz available for all targets 

.rm, .rp for mul.f64, requires sm_13 
for mul.f32, unimplemented 

Examples     mul.wide.s16 fa,fxs,fys;   // 16*16 bits yields 32 bits 

    mul.lo.s16 fa,fxs,fys;     // 16*16 bits, save only the low 16 bits 

    mul.wide.s32 z,x,y;        // 32*32 bits, creates 64 bit result 

    mul.f32 circumf,radius,pi  // a single-precision multiply 
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Table 21. Arithmetic Instructions:  MAD 

MAD Multiply two values and add a
 
third value 

Syntax mad[.hi,.lo,.wide][.sat].itype d, a, b, c; 

mad[.rnd][.sat].ftype d, a, b, c; 

 

.itype = { .u16, .u32, .u64, 

           .s16, .s32, .s64 }; 

.ftype = {       .f32, .f64 }; 

Description Multiplies two values and adds a third, and then writes the resulting value into a 
destination register. 

Semantics t = a * b; 

n = bitwidth of type; 

d = t + c;                   // for floating-point and .wide 

d = t<2n-1..n> + c;          // for .hi variant 

d = t<n-1..0> + c;           // for .lo variant 

Integer Notes The type of the operation represents the types of the a and b operands.  If .hi or .lo is 
specified, then d and c are the same size as a and b, and either the upper or lower half 
of the result is written to the destination register.  If .wide is specified, then d and c are 
twice as wide as a and b to receive the result of the multiplication. 

 

The .wide suffix is supported only for 16- and 32-bit integer types. 

No integer rounding modifiers. 

 

Saturation modifier: 

.sat limits result to MININT..MAXINT (no overflow) for the size of the operation.  
Applies only to .s32 type in .hi mode. 

Floating Point 
Notes 

mad.f32 computes the product of a and b at double precision, and then the mantissa is 
truncated to 23 bits, but the exponent is preserved.  Note that this is different from 
computing the product with mul, where the mantissa can be rounded and the exponent 
will be clamped.  The exception for mad.f32 is when c = +/-0.0, in that case mad.f32 is 
identical to the result computed using separate mul and add instructions.  In future 
target devices, mad.f32 may be implemented as a fused multiply-add with greater 
precision, rounding modifiers, and IEEE754 compliance.  In this case, mad.f32 may 
produce slightly different numeric results on future target devices, and backward 
compatibility is not guaranteed in this case. 

 

mad.f64 computes the product of a and b to infinite precision and then adds c to this 
product, again in infinite precision. The resulting value is then rounded to double 
precision using the rounding mode specified by .rnd.  Unlike mad.f32, the treatment of 
denorm inputs and output follows IEEE754 standard. 

 

Rounding modifiers (default is .rn): 

.rn mantissa LSB rounds to nearest even 

.rz mantissa LSB rounds towards zero 

.rm mantissa LSB rounds towards negative infinity 

.rp mantissa LSB rounds towards positive infinity 

 

Saturation modifier: 

.sat limits result to (0.0, 1.0). 
Applies only to .f32 type. 

Target ISA Notes mad.f64 requires sm_13 or later. 

 

Rounding modifiers have the following target requirements: 

.rn,.rz,.rm,.rp   for mad.f64, requires sm_13 

.rn,.rz,.rm,.rp   for mad.f32, unimplemented 
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Examples     mad.lo.s32 d,a,b,c; 

    mad.lo.s32 r,p,q,r; 

@p  mad.f32 d,a,b,c; 
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Table 22. Arithmetic Instructions:  MUL24 

MUL24 Multiply two 24-bit integer values 

Syntax mul24[.hi,.lo].type d, a, b; 

 

.type = { .u32, .s32 }; 

Description Compute the product of two 24-bit integer values held in 32-bit source registers, and 
return either the high or low 32-bits of the 48-bit result. 

Semantics t = a * b; 

d = t<47..16>;                    // for .hi variant 

d = t<31..0>;                     // for .lo variant 

Notes Integer multiplication yields a result that is twice the size of the input operands, i.e. 48-
bits.   

mul24.hi performs a 24x24-bit multiply and returns the high 32 bits of the 48-bit result.  
mul24.lo performs a 24x24-bit multiply and returns the low 32 bits of the 48-bit result.   

All operands are of the same type and size. 

No saturation. 

mul24.hi may be less efficient on machines without hardware support for 24-bit 
multiply. 

Examples     mul24.lo.s32 d,a,b;     // low 32-bits of 24x24-bit 

                               signed multiply. 

 

Table 23. Arithmetic Instructions:  MAD24 

MAD24 Multiply two 24-bit integer values and add a third value. 

Syntax mad24[.hi,.lo][.sat].type d, a, b, c; 

 

.type = { .u32, .s32 }; 

Description Compute the product of two 24-bit integer values held in 32-bit source registers, and 
add a third, 32-bit value to either the high or low 32-bits of the 48-bit result.  Return 
either the high or low 32-bits of the 48-bit result. 

Semantics t = a * b; 

d = t<47..16> + c;            // for .hi variant 

d = t<31..0> + c;             // for .lo variant 

Notes Integer multiplication yields a result that is twice the size of the input operands, i.e. 48-
bits.   

mad24.hi performs a 24x24-bit multiply and adds the high 32 bits of the 48-bit result to 
a third value.   
mad24.lo performs a 24x24-bit multiply and adds the low 32 bits of the 48-bit result to 
a third value.  All operands are of the same type and size. 

 

Saturation modifier: 

.sat limits result of 32-bit signed addition to MININT..MAXINT (no overflow). 
Applies only to .s32 type in .hi mode. 

 

mad24.hi may be less efficient on machines without hardware support for 24-bit 
multiply. 

Examples     mad24.lo.s32 d,a,b,c;   // low 32-bits of 24x24-bit 

                               signed multiply. 
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Table 24. Arithmetic Instructions:  SAD 

SAD Sum of absolute differences. 

Syntax sad.type d, a, b, c; 

 

.type = { .u16, .u32, .u64, 

          .s16, .s32, .s64 }; 

Description Adds the absolute value of a-b to c and writes the resulting value into a destination 
register. 

Semantics d = c + ((a<b) ? b-a : a-b); 

Target ISA Notes  

Examples     sad.s32 d,a,b,c; 

    sad.u32 d,a,b,d; // running sum     

 

Table 25. Arithmetic Instructions:  DIV 

DIV Divide one value by another. 

Syntax div[.wide][.sat].type d, a, b; 

 

.type = { .u16, .u32, .u64, 

          .s16, .s32, .s64, 

                .f32, .f64 }; 

Description Divides a by b, stores result in d. 

Semantics d = a / b; 

Integer Notes The .wide suffix specifies that a is twice the size of b and d.  Otherwise, all three 
operands are the same size. 

The .wide suffix is supported only for 16- and 32-bit integer types. 

Division by zero yields an unspecified, machine-specific value. 

No integer saturation. 

Floating Point 
Notes 

Division by zero creates a value of infinity (with same sign as a). 

Division rounds to nearest even. 

Saturation modifier: 

.sat limits result to (0.0, 1.0). 
Applies only to .f32 type. 

Target ISA Notes div.f64 requires sm_13 or later. 

Release Notes div.wide is unimplemented. 

Examples     div.s32      b,n,i; 

    div.wide.s32 d,an_s64_var,b; 

    div.f32      diam,circum,3.14159; 
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Table 26. Arithmetic Instructions:  REM 

REM The remainder of integer division. 

Syntax rem[.wide].type d, a, b; 

 

.type = { .u16, .u32, .u64, 

          .s16, .s32, .s64 }; 

Description Divides a by b, store the remainder in d. 

Semantics d = a % b; 

Integer Notes The .wide suffix specifies that a is twice the size of b and d.  Otherwise, all three 
operands are the same size. 

The .wide suffix is supported only for 16- and 32-bit integer types. 

 

The behavior for negative numbers is machine-dependent and depends on whether 
divide rounds towards zero or negative infinity. 

Floating Point 
Notes 

No floating-point support. 

Target ISA Notes  

Release Notes rem.wide is unimplemented. 

Examples     rem.s32  x,x,8;    // x = x%8; 

 

Table 27. Arithmetic Instructions:  ABS 

ABS Absolute value. 

Syntax abs.type d, a; 

 

.type = { .s16, .s32, .s64, 

                .f32, .f64 }; 

Description Take the absolute value of a and store it in d. 

Semantics d = |a|; 

Target ISA Notes abs.f64 requires sm_13 or later. 

Examples     abs.s32  r0,a; 

    abs.f32  x,f0; 

 

Table 28. Arithmetic Instructions:  NEG 

NEG Arithmetic negate. 

Syntax neg.type d, a; 

 

.type = { .s16, .s32, .s64, 

                .f32, .f64 }; 

Description Subtract a from zero and store the result in d. 

Semantics d = 0-a; 

Notes Only for signed integers and floating-point numbers. 

Target ISA Notes neg.f64 requires sm_13 or later. 

Examples     neg.s32  r0,a; 

    neg.f32  x,f0; 
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Table 29. Arithmetic Instructions:  MIN 

MIN Find the minimum of two values. 

Syntax max.type d, a, b; 

 

.type = { .u16, .u32, .u64, 

          .s16, .s32, .s64, 

                .f32, .f64 }; 

Description Store the minimum of a and b in d. 

Semantics d = (a < b) ? a : b;            // Integer (signed and unsigned) 

d = isNaN(a) ? b : isNan(b) ? a : (a < b) ? a : b;   // Floating 

Point 

Integer Notes Signed and unsigned differ. 

Floating Point 
Notes 

If either source operand is NaN, then the result is the other operand. 

Target ISA Notes min.f64 requires sm_13 or later. 

Examples     min.s32  r0,a,b; 

@p  min.u16  h,i,j; 

    min.f32  z,z,x; 

 

Table 30. Arithmetic Instructions:  MAX 

MAX Find the maximum of two values. 

Syntax min.type d, a, b; 

 

.type = { .u16, .u32, .u64, 

          .s16, .s32, .s64, 

                .f32, .f64 }; 

Description Store the maximum of a and b in d. 

Semantics d = (a > b) ? a : b;            // Integer (signed and unsigned) 

d = isNan(a) ? b : isNan(b) ? a : (a > b) a : b;   // Floating 

Point 

Integer Notes Signed and unsigned differ. 

Floating Point 
Notes 

If either source operand is NaN, then the result is the other operand. 

Target ISA Notes max.f64 requires sm_13 or later. 

Examples     max.f32  f0,f1,f2; 

    max.u32  d,a,b; 

    max.s32  q,q,0; 
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7.7.2. Comparison and Selection Instructions 

The comparison select instructions are: 

�  SET 

�  SETP 

�  SELP 

�  SLCT 
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Table 31. Comparison and Selection Instructions:  SET 

SET 
Compare two numeric values with a relational operator, and optionally combine this 
result with a predicate value by applying a Boolean operator.  

Syntax set.CmpOp.dtype.stype d, a, b; 

set.CmpOp.BoolOp.dtype.stype d, a, b, [!]c; 

 

.dtype = { .u32, .s32, .f32 }; 

.stype = { .b16, .b32, .b64, 

           .u16, .u32, .u64, 

           .s16, .s32, .s64, 

                 .f32, .f64 }; 

Description Compares two numeric values and optionally combines the result with another 
predicate value by applying a Boolean operator.  If this result is True, 1.0f is written for 
floating-point destination types, and 0xFFFFFFFF is written for integer destination 
types.  Otherwise, 0x00000000 is written. 

 

The comparison operator is a suffix on the instruction, and can be one of: 
eq, ne, lt, le, gt, ge 

lo, ls, hi, hs 

equ, neu, ltu, leu, gtu, geu 

num, nan 

 

The Boolean operator BoolOp(A,B) is one of:  and, or, xor 

Semantics t = (a CmpOp b) ? 1 : 0; 

if (isFloat(dtype)) 

  d = BoolOp(t, c) ? 1.0f : 0x00000000; 

else 

  d = BoolOp(t, c) ? 0xFFFFFFFF : 0x00000000; 

Integer Notes The signed and unsigned comparison operators are eq, ne, lt, le, gt, ge. 

 

For unsigned values, the comparison operators lo, ls, hi, and hs for lower, lower-or-

same, higher, and higher-or-same may be used instead of lt, le, gt, ge, 
respectively. 

 

The untyped, bit-size comparisons are eq and ne. 

Floating Point 
Notes 

The ordered comparisons are eq, ne, lt, le, gt, ge.  If either operand is NaN, 
the result is false. 

 

To aid comparison operations in the presence of NaN values, unordered versions are 
included: equ, neu, ltu, leu, gtu, geu.  If both operands are numeric values 
(not NaN), then these comparisons have the same result as their ordered counterparts.  
If either operand is NaN, then the result of these comparisons is true. 

 

num returns true if both operands are numeric values (not NaN), and nan returns true if 
either operand is NaN. 

Target ISA Notes set with .f64 source type requires sm_13. 

Examples     set.lt.and.f32.s32  d,a,b,r; 

    set.eq.u32.u32      d,i,n; 

 



Chapter 7:  Instruction Set 

    

 

 

54  PTX ISA Version 1.2 
  7/7/2008 

Table 32. Comparison and Selection Instructions:  SETP 

SETP 
Compare two numeric values with a relational operator, and (optionally) combine this 
result with a predicate value by applying a Boolean operator.  

Syntax setp.CmpOp.type p[|q], a, b; 

setp.CmpOp.BoolOp.type p[|q], a, b, [!]c; 

 

.type = { .b16, .b32, .b64, 

          .u16, .u32, .u64, 

          .s16, .s32, .s64, 

                .f32, .f64 }; 

Description Compares two values and combines the result with another predicate value by applying 
a Boolean operator.  This result is written to the first destination operand.  A related 
value computed using the complement of the compare result is written to the second 
destination operand. 

 

Applies to all numeric types.  The destinations p and q must be .pred variables. 

 

The comparison operator is a suffix on the instruction, and can be one of: 

eq, ne, lt, le, gt, ge 

lo, ls, hi, hs 

equ, neu, ltu, leu, gtu, geu 

num, nan 

 

The Boolean operator BoolOp(A,B) is one of:  and, or, xor 

Semantics t = (a CmpOp b) ? 1 : 0; 

p = BoolOp(t, c); 

q = BoolOp(!t, c); 

Integer Notes The signed and unsigned comparison operators are eq, ne, lt, le, gt, ge. 

 

For unsigned values, the comparison operators lo, ls, hi, and hs for lower, lower-

or-same, higher, and higher-or-same may be used instead of lt, le, gt, ge, 
respectively. 

 

The untyped, bit-size comparisons are eq and ne. 

Floating Point 
Notes 

The ordered comparisons are eq, ne, lt, le, gt, ge.  If either operand is NaN, 
the result is false. 

 

To aid comparison operations in the presence of NaN values, unordered versions are 

included: equ, neu, ltu, leu, gtu, geu.  If both operands are numeric values 
(not NaN), then these comparisons have the same result as their ordered counterparts.  
If either operand is NaN, then the result of these comparisons is true. 

 

num returns true if both operands are numeric values (not NaN), and nan returns true if 
either operand is NaN. 

Target ISA Notes setp with .f64 source type requires sm_13 or later. 

Examples     setp.lt.and.s32  p|q,a,b,r; 

    setp.eq.u32      p,i,n; 
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Table 33. Comparison and Selection Instructions:  SELP 

SELP Select between source operands, based on the value of the predicate source operand. 

Syntax selp.type d, a, b, c; 

 

.type = { .b16, .b32, .b64, 

          .u16, .u32, .u64, 

          .s16, .s32, .s64, 

                .f32, .f64 }; 

Description Conditional selection.  If c is True, a is stored in d, b otherwise.  Operands d, a, and b 
must be of the same type.  Operand c is a predicate. 

Semantics d = (c == 1) ? a : b; 

Target ISA Notes selp.f64 requires sm_13 or later. 

Examples     selp.s32  r0,r,g,p; 

    selp.f32  f0,t,x,xp; 

 

Table 34. Comparison and Selection Instructions:  SLCT 

SLCT Select one source operand, based on the sign of the third operand. 

Syntax slct.dtype.ctype d, a, b, c; 

 

.dtype = { .b16, .b32, .b64, 

           .u16, .u32, .u64, 

           .s16, .s32, .s64, 

                 .f32, .f64 }; 

.ctype = { .s32, .f32 }; 

Description Conditional selection.  If c>=0, a is stored in d, b otherwise.  Operands d, a, and b are 
treated as a bitsize type of the same width as the first instruction type; operand c must 
match the second instruction type. 

Semantics d = (c >= 0) ? a : b; 

For .f32 comparisons, if operand c is a denorm, it is flushed to zero, resulting in 
selection of operand a.  If operand c is NaN, the comparison is unordered and operand 
b is selected. 

Floating Point 
Notes 

For .f32 data selections, denorm results are flushed to zero. 

Target ISA Notes slct.f64 requires sm_13 or later. 

Examples     slct.u32.s32  x, y, z, val; 

    slct.u64.f32  A, B, C, fval; 
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7.7.3. Logic and Shift Instructions 

The logic and shift instructions are fundamentally untyped, performing bit-wise operations 
on operands of any type, provided the operands are of the same size.  This permits bit-wise 
operations on floating point values without having to define a union to access the bits.  
Instructions and, or, xor, and not also operate on predicates.  

The logical shift instructions are: 

�  AND 

�  OR 

�  XOR 

�  NOT 

�  CNOT 

�  SHL 

�  SHR 

Table 35. Logic and Shift Instructions:  AND 

AND Bitwise AND. 

Syntax and.type d, a, b; 

 

.type = { .pred, .b16, .b32, .b64 }; 

Description Compute the bit-wise and operation for the bits in a and b. 

Semantics d = a & b; 

Notes The size of the operands must match, but not necessarily the type. 

Allowed types include predicate registers. 

Examples     and.b32  x,q,r;     

    and.b32  sign,fpvalue,0x80000000; 

 

Table 36. Logic and Shift Instructions:  OR 

OR Bitwise OR. 

Syntax or.type d, a, b; 

 

.type = { .pred, .b16, .b32, .b64 }; 

Description Compute the bit-wise or operation for the bits in a and b. 

Semantics d = a | b; 

Notes The size of the operands must match, but not necessarily the type. 

Allowed types include predicate registers. 

Examples     or.b32  mask mask,0x00010001 

    or.pred  p,q,r; 
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Table 37. Logic and Shift Instructions:  XOR 

XOR Bitwise exclusive-OR (inequality). 

Syntax xor.type d, a, b; 

 

.type = { .pred, .b16, .b32, .b64 }; 

Description Compute the bit-wise exclusive-or operation for the bits in a and b. 

Semantics d = a ^ b; 

Notes The size of the operands must match, but not necessarily the type. 

Allowed types include predicate registers. 

Examples     xor.b32  d,q,r; 

    xor.b16  d,x,0x0001; 

 

Table 38. Logic and Shift Instructions:  NOT 

NOT Bitwise negation; one’s complement. 

Syntax not.type d, a; 

 

.type = { .pred, .b16, .b32, .b64 }; 

Description Invert the bits in a. 

Semantics d = ~a; 

Notes The size of the operands must match, but not necessarily the type. 

Allowed types include predicates. 

Examples     not.b32  mask,mask; 

    not.pred  p,q; 

 

Table 39. Logic and Shift Instructions:  CNOT 

CNOT C/C++ style logical negation. 

Syntax cnot.type d, a; 

 

.type = { .b16, .b32, .b64 }; 

Description Compute the logical negation using C/C++ semantics. 

Semantics d = (a==0) ? 1 : 0; 

Notes The size of the operands must match, but not necessarily the type. 

Examples     cnot.b32 d,a;     
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Table 40. Logic and Shift Instructions:  SHL 

SHL Shift bits left, zero-fill on right. 

Syntax shl.type d, a, b; 

 

.type = { .b16, .b32, .b64 }; 

Description Shift a left by the amount specified by unsigned 32-bit value in b. 

Semantics d = a << b; 

Notes Shift amounts greater than the register width N are clamped to N. 

The sizes of the destination and first source operand must match, but not necessarily 
the type.  The b operand must be a 32-bit value, regardless of the instruction type. 

Examples     shl.b32  q,a,2; 

 

Table 41. Logic and Shift Instructions:  SHR 

SHR Shift bits right, sign or zero fill on left. 

Syntax shr.type d, a, b; 

 

.type = { .b16, .b32, .b64, 

          .u16, .u32, .u64, 

          .s16, .s32, .s64 }; 

Description Shift a right by the amount specified by unsigned 32-bit value in b.  Signed shifts fill 
with the sign bit, unsigned and untyped shifts fill with 0. 

Semantics d = a >> b; 

Notes Shift amounts greater than the register width N are clamped to N. 

The sizes of the destination and first source operand must match, but not necessarily 
the type.  The b operand must be a 32-bit value, regardless of the instruction type. 

Bit-size types are included for symmetry with SHL.  

Examples     shr.u16  c,a,2; 

    shr.s32  i,i,1; 

    shr.b16  k,i,j; 
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7.7.4. Data Movement and Conversion Instructions 

These instructions copy data from place to place, and from state space to state space, 
possibly converting it from one format to another.  mov, ld, and st operate on both scalar 
and vector types. 

The Data Movement and Conversion Instructions are: 

� MOV 

� LD 

� ST 

� CVT 

Table 42. Data Movement and Conversion Instructions:  MOV 

MOV Set a register variable with the value of a register variable or an immediate value. 

Syntax mov.type d, a; 

mov.type d, sreg; 

mov.type d, avar;       // get address of variable  

mov.type d, label;      // get address of label or function 

 

.type = { .pred, 

          .b16, .b32, .b64, 

          .u16, .u32, .u64, 

          .s16, .s32, .s64, 

                .f32, .f64 }; 

Description Write register d with the value of a. 

Operand a may be a register, special register, immediate, variable in an addressable 
memory space, label, or function name. 

Semantics d = a; 

d = sreg; 

d = &avar; 

d = &label; 

Notes Although only predicate and bit-size types are required, we include the arithmetic types 
for the programmer’s convenience: their use enhances program readability and allows 
additional type checking. 

Target ISA Notes mov.f64 requires sm_13 or later. 

Examples     mov.f32  d,a; 

    mov.u16  u,v; 

    mov.f32  k,0.1; 

    mov.u32  ptr, A;        // move address of A into ptr 

    mov.u32  ptr, A[5];     // move address of A[5] into ptr 

    mov.b32  addr, myFunc;  // get address of myFunc 
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Table 43. Data Movement and Conversion Instructions:  LD 

LD Load a register variable from an addressable state space variable. 

Syntax ld.space.type d,[a];                // load from address 

ld.space.vec.type d,[a];            // vector load from address 

 

ld.volatile.space.type d,[a];       // load from address 

ld.volatile.space.vec.type d,[a];   // vector load from address 

 

.space = { .const, .global, .local, .param, .shared }; 

.vec   = { .v2, .v4 }; 

.type  = { .b8, .b16, .b32, .b64, 

           .u8, .u16, .u32, .u64, 

           .s8, .s16, .s32, .s64, 

                      .f32, .f64 }; 

Description Load register variable d from the location specified by the source address operand a.   

 

The addressable operand a is one of: 

[avar] the name of an addressable variable var,  

[areg] a register reg containing a byte address,  

[areg+immOff] a sum of register reg containing a byte address plus a constant integer 
byte offset (signed, 32-bit), or 

[immAddr] an immediate absolute byte address (unsigned, 32-bit). 

 

The address must be naturally aligned to a multiple of the access size.  If an address is 
not properly aligned, the resulting behavior is undefined; i.e., the access may proceed 
by silently masking off low-order address bits to achieve proper rounding, or the 
instruction may fault. 
 

The address size may be either 32-bit or 64-bit.  Addresses are zero-extended to the 
specified width as needed, and truncated if the register width exceeds the state space 
address width for the target architecture. 

The instruction must carry a .space suffix.  A register containing an address may be 
declared as a bit-size type or integer type. 

ld.volatile may be used with .global and .shared spaces to inhibit optimization of 
references to volatile memory.  This may be used, for example, to enforce sequential 
consistency between threads accessing shared memory. 

Semantics d = a;               // named variable a 

d = *a;              // register 

d = *(a+immOff);     // register-plus-offset 

d = *(immAddr);      // immediate address 

Notes Destination d must be in the .reg state space. 

For integer loads, if the destination register is wider than the specified type, the value 
loaded is extended to the destination register width.  The type of extension (sign or 
zero) is determined by the .type field. 

.f16 data may be loaded using ld.b16, and then converted to .f32 or .f64 using cvt. 

Target ISA Notes ld.f64 requires sm_13 or later. 

Examples     ld.global.f32 d,[a]; 

    ld.shared.b32 d,[p]; 

    ld.const.s32  d,[p+4]; 

    ld.global.v4.f32 Q,[p]; 

    ld.local.b64  x,[240]; 
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 Table 44. Data Movement and Conversion Instructions:  ST 

ST Store a register variable to an addressable state space variable. 

Syntax st.space.type [d],a;                // store to address  

st.space.vec.type [d],a;            // vector store to address 

 

st.volatile.space.type [d],a;       // store to address  

st.volatile.space.vec.type [d],a;   // vector store to address 

 

.space = {.global, .local, .shared }; 

.vec   = { .v2, .v4 }; 

.type  = { .b8, .b16, .b32, .b64, 

           .u8, .u16, .u32, .u64, 

           .s8, .s16, .s32, .s64, 

                      .f32, .f64 }; 

Description Store the value of register variable a in the location specified by the destination address 
operand d. 

 

The addressable operand d is one of: 

[var] the name of an addressable variable var,  

[reg] a register reg containing a byte address,  

[reg+immOff] a sum of register reg containing a byte address plus a constant integer 
byte offset (signed, 32-bit), or 

[immAddr] an immediate absolute byte address (unsigned, 32-bit). 

 

The address must be naturally aligned to a multiple of the access size.  If an address is 
not properly aligned, the resulting behavior is undefined; i.e., the access may proceed 
by silently masking off low-order address bits to achieve proper rounding, or the 
instruction may fault. 
 

The address size may be either 32-bit or 64-bit.  Addresses are zero-extended to the 
specified width as needed, and truncated if the register width exceeds the state space 
address width for the target architecture. 

The instruction must carry a .space suffix.  A register containing an address may be 
declared as a bit-size type or integer type. 

st.volatile may be used with .global and .shared spaces to inhibit optimization of 
references to volatile memory.  This may be used, for example, to enforce sequential 
consistency between threads accessing shared memory. 

Semantics d = a;                 // named variable d 

*d = a;                // register 

*(d+immOffset) = a;    // register-plus-offset 

*(immAddr) = a;        // immediate address 

Notes Operand a must be in the .reg state space. 

 

.f16 data resulting from a cvt instruction may be stored using st.b16. 

Target ISA Notes st.f64 requires sm_13 or later. 

Examples     st.global.f32  [d],a; 

    st.local.b32   [q+4],a; 

    st.global.v4.s32 [p],Q; 

    st.shared.s32  [100],r7; 
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Table 45. Data Movement and Conversion Instructions:  CVT 

CVT Convert a value from one type to another. 

Syntax cvt[.rnd][.sat].dtype.atype d, a; 

 

.dtype = .atype = { .u8, .u16, .u32, .u64, 

                    .s8, .s16, .s32, .s64, 

                         .f16, .f32, .f64 }; 

Description Convert between different types and sizes. 

See the Integer and Floating-point Notes below for details of saturation and rounding 
modifiers. 

Semantics d = convert(a); 

Integer Notes Integer rounding is required for float-to-integer conversions, and for same-size float-to-
float conversions where the value is rounded to an integer.  Integer rounding is illegal in 
all other instances. 

Integer rounding modifiers: 

.rni round to nearest integer, choosing even integer if source is equidistant between 
two integers. 

.rzi round to nearest integer in the direction of zero 

.rmi round to nearest integer in direction of negative infinity 

.rpi round to nearest integer in direction of positive infinity 

 

Saturation modifier: 

.sat For integer destination types, .sat limits the result to MININT..MAXINT for the 
size of the operation.  Note that saturation applies to both signed and unsigned 
integer types. 
 
Saturation is illegal for small-to-large integer-to-integer conversions, except for 
the signed-to-unsigned case. 
 
For float-to-integer conversions, the result is clamped to the destination range 
by default; i.e, .sat is redundant. 

Floating Point 
Notes 

Floating-point rounding is required for float-to-float conversions that result in loss of 
precision, and for integer-to-float conversions.  Floating-point rounding is illegal in all 
other instances. 

Floating-point rounding modifiers: 

.rn mantissa LSB rounds to nearest even 

.rz mantissa LSB rounds towards zero 

.rm mantissa LSB rounds towards negative infinity 

.rp mantissa LSB rounds towards positive infinity 

 

A floating-point value may be rounded to an integral value using the integer rounding 
modifiers (see Integer Notes).  The operands must be of the same size.  The result is 
an integral value, stored in floating-point format. 

 

Saturation modifier: 

.sat For floating-point destination types, .sat limits the result to the range [0.0, 1.0]. 
Applies to .f16, .f32, and .f64 types. 

NaN is preserved, except for .f16 (no NaN available). 

Target ISA Notes cvt to or from .f64 requires sm_13 or later. 

Examples     cvt.f32.s32 f,i; 

    cvt.s32.f64 j,r;     // float-to-int saturates by default 

    cvt.rni.f32.f32 x,y; // round to nearest int, result is fp 
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7.7.5. Texture Instruction 

This instruction provides access to texture memory. 

� TEX 

Table 46. Texture Instruction:  TEX 

TEX Perform a texture memory lookup. 

Syntax tex.geom.v4.dtype.btype d, [a, b]; 

 

.geom  = { .1d, .2d, .3d }; 

.dtype = { .u32, .s32, .f32 }; 

.btype = {       .s32, .f32 }; 

Description Texture lookup using a texture coordinate vector.  The instruction loads data from the 
texture named by operand a at coordinates given by operand b into destination d.   
Operand b is a scalar or singleton tuple for 1d textures; is a two-element vector for 2d 
textures; and is a four-element vector for 3d textures, where the fourth element is 
ignored. 

The instruction always returns a four-element vector of 32-bit values.  Coordinates may 
be given in either signed 32-bit integer or 32-bit floating point form. 
 
A texture base address is assumed to be aligned to a 16-byte address, and the 
address given by the coordinate vector must be naturally aligned to a multiple of the 
access size.  If an address is not properly aligned, the resulting behavior is undefined; 
i.e., the access may proceed by silently masking off low-order address bits to achieve 
proper rounding, or the instruction may fault. 

Notes For compatibility with prior versions of PTX, the square brackets are not required and 
.v4 coordinate vectors are allowed for any geometry, with the extra elements being 
ignored. 

Examples     tex.3d.v4.s32.s32  {r1,r2,r3,r4}, [tex_a, {f1,f2,f3,f4}]; 

    tex.1d.v4.s32.f32  {r1,r2,r3,r4}, [tex_a, {f1}]; 
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7.7.6.  Control Flow Instructions 

The following PTX instructions and syntax are for controlling execution in a PTX program: 

� { } 

� @ 

� BRA 

� CALL 

� RET 

� EXIT 

 

Table 47. Control Flow Instructions:  { } 

{ } Instruction grouping. 

Syntax { instructionList } 

Description The curly braces create a group of instructions, used primarily for defining a function 
body.  The curly braces also provide a mechanism for determining the scope of a 
variable: any variable declared within a scope is not available outside the scope. 

Examples     { add.s32  a,b,c; mov.s32  d,a; } 

 

Table 48. Control Flow Instructions:  @ 

@ Predicated execution. 

Syntax @[!]p    instruction; 

Description Execute an instruction or instruction block for threads that have the guard predicate 
true.  Threads with a false guard predicate do nothing. 

Semantics If [!]p then instruction 

Examples     setp.eq.f32  p,y,0;     // is y zero? 

@!p div.f32      ratio,x,y  // avoid division by zero 

 

@q  bra L23;                // conditional branch 
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Table 49. Control Flow Instructions:  BRA 

BRA Branch to a target and continue execution there. 

Syntax bra[.uni] target; // target is a label 

bra[.uni] a;      // indirect branch through register ‘a’ 

Description Continue execution at the target.  Conditional branches are specified by using a guard 
predicate. 

Semantics pc = target; 

pc = a; 

Notes A bra is assumed to be divergent unless the .uni suffix is present, indicating that the 
branch is guaranteed to be non-divergent. 

Release Notes Indirect branch through a register is unimplemented.  

Examples     bra.uni  L_exit;    // uniform unconditional jump 

@q  bra      L23;       // conditional branch 

    mov.b32  %r, Done; 

    bra      %r;        // indirect branch 

 

Table 50. Control Flow Instructions:  CALL 

CALL Call a function, recording the return location. 

Syntax call[.uni] func; 

call[.uni] func, (param-list); 

call[.uni] (ret-param), func, (param-list); 

Description The call instruction stores the address of the next instruction, so execution can resume 
at that point after executing a RET instruction.  A call is assumed to be divergent 
unless the .uni suffix is present, indicating that the call is guaranteed to be non-
divergent. 

 

The called location func can be either a symbolic function name or an address of a 
function held in a register. 

 

Input and return parameters are optional.  Parameters must be of register type, and 
parameters are pass-by-value. 

Notes In the current ptx release, parameters are passed through statically allocated ptx 
registers; i.e., there is no support for recursive calls. 

Release Notes Indirect call through a register is unimplemented.  

Examples     call     init;    // call function ‘init’ 

    call.uni %fptr;   // call function at address in register 

    call.uni g, (a);  // call function ‘g’ with parameter ‘a’ 

@p  call     (d), h, (a, b);  // return value into register d 
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Table 51. Control Flow Instructions:  RET 

RET Return from function to instruction after call. 

Syntax ret[.uni]; 

Description Return execution to caller’s environment.  A divergent return suspends threads until all 
threads are ready to return to the caller.  This allows multiple divergent “ret” 
instructions. 

A ret is assumed to be divergent unless the .uni suffix is present, indicating that the 
return is guaranteed to be non-divergent. 

Any values returned from a function should be moved into the return parameter register 
variables prior to executing the RET instruction. 

A return instruction executed in a top-level entry routine will terminate thread execution. 

Notes  

Examples     ret; 

@p  ret; 

 

Table 52. Control Flow Instructions:  EXIT 

EXIT Terminate a thread. 

Syntax exit; 

Description Ends execution of a thread. 

Examples     exit; 

@p  exit; 
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7.7.7. Parallel Synchronization and Communication 
Instructions 

These instructions are: 

� BAR 

� ATOM 

� RED 

� VOTE 
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Table 53. Parallel Synchronization and Communication 
Instructions:  BAR 

BAR Signal arrival at a barrier and wait. 

Syntax bar.sync d; 

Description Marks the arrival of threads at a barrier and waits for all other threads to arrive. 

 

The barrier resource is named via a small integer, typically in the range 0..15.  The 
barrier number may be given as an immediate. 

Notes The hardware has a limited, implementation-specific number of barrier resources, 
typically sixteen or fewer.  Since a CTA will not launch until all allocated resources are 
available, a program should minimize the number of distinct barrier variables allocated.  
Ideally, a program uses a single, global barrier that is re-used throughout the program. 

Examples     bar.sync  0; 
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Table 54. Parallel Synchronization and Communication 
Instructions:  ATOM 

ATOM Atomic reduction operations for thread-to-thread communication. 

Syntax atom.space.operation.type d, a, b[, c]; 

 

.space = { .global, .shared }; 

.operation = { .and, .or, .xor,        // .b32 only 

               .cas, .exch,            // .b32, .b64 

               .add,                   // .u32, .s32, .f32, .u64 

               .inc, .dec,             // .u32 only 

               .min, .max };           // .u32, .s32, .f32 

.type = { .b32, .b64, 

          .u32, .u64, 

          .s32, 

          .f32 }; 

Description Atomically loads the original value at location a into destination register d, performs a 
reduction operation with operand b and the value in location a, and stores the result of 
the specified operation at location a, overwriting the original value.  The a operand 
specifies a location in the specified state space. 

The addressable operand a is one of: 

[avar] the name of an addressable variable avar,  

[areg] a de-referenced register areg containing a byte address,  

[areg+immOff] a de-referenced sum of register areg containing a byte address plus a 
constant integer byte offset, or 

[immAddr] an immediate absolute byte address. 

 

The address must be naturally aligned to a multiple of the access size.  If an address is 
not properly aligned, the resulting behavior is undefined; i.e., the access may proceed 
by silently masking off low-order address bits to achieve proper rounding, or the 
instruction may fault. 
 

The address size may be either 32-bit or 64-bit.  Addresses are zero-extended to the 
specified width as needed, and truncated if the register width exceeds the state space 
address width for the target architecture. 

The instruction must carry a .space suffix.  A register containing an address may be 
declared as a bit-size type or integer type. 

The bit-size operations are and, or, xor, cas (compare-and-swap), and exch 
(exchange). 

The integer operations are add, inc, dec, min, max.  The inc and dec operations 
return a result in the range [0..b]. 

The floating-point operations are add, min, and max.  The floating-point add, min, and 
max operations are 32-bit operations. 

Semantics atomic { 

    d = *a; 

    *a = (operation == cas) ? operation(*a, b, c) 

                            : operation(*a, b); 

} 

where 

    inc(r, s)  = (r >= s) ? 0 : r+1; 

    dec(r, s)  = (r > s)  ? s : r-1; 

    exch(r, s) =  s; 

    cas(r,s,t) = (r == s) ? t : r; 

Notes Operand a must reside in either the global or shared state space. 

Simple reductions may be specified by using the “bit bucket” destination operand ‘_’. 
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Target ISA Notes atom.global requires sm_11 or later. 

atom.shared requires sm_12 or later. 

64-bit atom.global.{add,cas,exch} requires sm_12 or later.  Note that 
64-bit atomic operations are only supported on global addresses. 

Release Notes Floating-point atomic operations are unimplemented. 

Examples     atom.global.add.s32  d,[a],1; 

    atom.shared.max.f32  d,[x+4],0; 

@p  atom.global.cas.b32  d,[p],my_val,my_new_val; 
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Table 55. Parallel Synchronization and Communication 
Instructions:  RED 

RED Reduction operations on global and shared memory. 

Syntax red.space.operation.type a, b; 

 

.space = { .global, .shared }; 

.operation = { .and, .or, .xor,        // .b32 only 

               .add,                   // .u32, .s32, .f32, .u64 

               .inc, .dec,             // .u32 only 

               .min, .max };           // .u32, .s32, .f32 

.type = { .b32, .b64, 

          .u32, .u64, 

          .s32, 

          .f32 }; 

Description Performs a reduction operation with operand b and the value in location a, and stores 
the result of the specified operation at location a, overwriting the original value.  The a 
operand specifies a location in the specified state space. 

 

The addressable operand a is one of: 

[avar] the name of an addressable variable avar,  

[areg] a de-referenced register areg containing a byte address,  

[areg+immOff] a de-referenced sum of register areg containing a byte address plus a 
constant integer byte offset, or 

[immAddr] an immediate absolute byte address. 

 

The address must be naturally aligned to a multiple of the access size.  If an address is 
not properly aligned, the resulting behavior is undefined; i.e., the access may proceed 
by silently masking off low-order address bits to achieve proper rounding, or the 
instruction may fault. 
 

The address size may be either 32-bit or 64-bit.  Addresses are zero-extended to the 
specified width as needed, and truncated if the register width exceeds the state space 
address width for the target architecture. 

 

The instruction must carry a .space suffix.  A register containing an address may be 
declared as a bit-size type or integer type. 

 

The bit-size operations are and, or, and xor. 

The integer operations are add, inc, dec, min, max.  The inc and dec operations 
return a result in the range [0..b]. 

The floating-point operations are add, min, and max.  The floating-point add, min, and 
max operations are 32-bit operations. 

Semantics *a = operation(*a, b); 

 

where 

    inc(r, s) = (r >= s) ? 0 : r+1; 

    dec(r, s) = (r > s)  ? s : r-1; 

Notes Operand a must reside in either the global or shared state space. 

Target ISA Notes red.global requires sm_11 or later; red.shared requires sm_12 or later. 

64-bit red.global.add requires sm_12 or later.  Note that 64-bit 
reductions are only supported on global addresses. 

Release Notes Floating-point reductions are unimplemented. 

Examples     red.global.add.s32  [a],1; 

    red.shared.max.f32  [x+4],0; 

@p  red.global.and.b32  [p],my_val; 
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Table 56. Parallel Synchronization and Communication 
Instructions:  VOTE 

VOTE Vote across thead group. 

Syntax vote.mode.pred  d, [!]a; 

 

.mode = { .all, .any, .uni }; 

Description Performs a reduction of the source predicate across threads in a warp.  The destination 
predicate value is the same across all threads in the warp. 

 

The reduction modes are: 

.all True if source predicate is True for all active threads in warp. Negate the source 
predicate to compute .none. 

.any True if source predicate is True for some active thread in warp. Negate the 
source predicate to compute .not_all. 

.uni True if source predicate has the same value in all active threads in warp. 
Negating the source predicate also computes .uni. 

Target ISA Notes vote requires sm_12 or later. 

Release Notes Note that vote applies to threads in a single warp, not across an entire CTA.  

Examples     vote.all.pred  p,q; 

    vote.uni.pred  p,q; 
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7.7.8. Floating-Point Instructions 

These instructions are for floating-point types in register and constant immediate forms.   
These instructions are: 

�  RCP 

�  SQRT 

�  RSQRT 

�  SIN 

�  COS 

�  LG2 

�  EX2 

 

Table 57. Floating-Point Instructions:  RCP 

RCP Take the reciprocal of a value. 

Syntax rcp.type d, a; 

 

.type = { .f32, .f64 }; 

Description Compute 1/a.. 

Semantics d = 1/a; 

Target ISA Notes rcp.f64 requires sm_13 or later. 

Examples     rcp.f32  ri,r; 

 

Table 58. Floating-Point Instructions:  SQRT 

SQRT Take the square root of a value. 

Syntax sqrt.type d, a; 

 

.type = { .f32, .f64 }; 

Description Compute sqrt(a); store in d. 

Semantics d = sqrt(a); 

Floating Point 
Notes 

If a < 0; d = NaN; 

The sqrt instruction always yields the positive root of a number, except for sqrt(-0.0) 
which yields -0.0. 

Target ISA Notes sqrt.f64 requires sm_13 or later. 

Examples     sqrt.f32  r,x; 
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Table 59. Floating-Point Instructions:  RSQRT 

RSQRT Take the reciprocal of the square root of a value. 

Syntax rsqrt.type d, a; 

 

.type = { .f32, .f64 }; 

Description Compute 1/sqrt(a); store the result in d  

Semantics d = 1/sqrt(a); 

Floating Point 
Notes 

if a < 0; d = NaN; 

if a == 0, d = Inf; 

The rsqrt instruction always yields a positive value, except for rsqrt(-0.0) which yields 
-0.0. 

Target ISA Notes rsqrt.f64 requires sm_13 or later. 

Examples     rsqrt.f32  isr,x; 

 

Table 60. Floating-Point Instructions:  SIN 

SIN Find the sine of a value. 

Syntax sin.type d, a; 

 

.type = { .f32 }; 

Description Find the sine of the angle a (in radians). 

Semantics d = sin(a); 

Notes Applies only to .f32. 

Examples     sin.f32  sa,a; 

 

Table 61. Floating-Point Instructions:  COS 

COS Find the cosine of a value. 

Syntax cos.type d, a; 

 

.type = { .f32 }; 

Description Find the cosine of the angle a (in radians). 

Semantics d = cos(a); 

Notes Applies only to .f32. 

Examples     cos.f32  cb,b; 
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Table 62. Floating-Point Instructions:  LG2 

LG2 Find the log, base 2, of a value. 

Syntax lg2.type d, a; 

 

.type = { .f32 }; 

Description Determine the log2 of a.. 

Semantics d = log(a)/log(2); 

Notes Applies only to .f32. 

Examples @p  lg2.f32  q,a; 

 

Table 63. Floating-Point Instructions:  EX2 

EX2 Exponentiate a value, base 2. 

Syntax ex2.type d, a; 

 

.type = { .f32 }; 

Description Raise 2 to the power a. 

Semantics d = 2 ^ a; 

Notes Applies only to .f32. 

Examples     ex2.f32  q,r; 
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7.7.9. Miscellaneous Instructions 

The Miscellaneous instructions are: 

�  TRAP 

�  BRKPT 

Table 64. Miscellaneous Instructions:  TRAP 

TRAP Perform trap operation. 

Syntax trap 

Description Abort execution and generate an interrupt to the host CPU.  

Examples     trap; 

@p  trap; 

 

Table 65. Miscellaneous Instructions:  BRKPT 

BRKPT Breakpoint – suspend execution. 

Syntax brkpt 

Description Suspends execution   

Target ISA Notes brkpt requires sm_11 or later. 

Examples     brkpt; 

@p  brkpt; 
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Chapter 8. 

Special Registers 

PTX includes a number of predefined, read-only variables, which are visible as special 
registers and accessed through mov or cvt instructions. 

The special registers are: 

�  %tid 

�  %ntid 

�  %ctaid 

�  %nctaid 

�  %gridid 

�  %clock 

Table 66. Special Registers:  %tid 

%tid Thread ID within a CTA. 

Syntax .sreg .v4 .u16 %tid;                  // thread id vector 

.sreg .u16 %tid.x, %tid.y, %tid.z;    // thread id components 

Description A predefined, read-only, per-thread special register initialized with the thread ID within 
the CTA.  The %tid special register contains a 1D, 2D, or 3D vector to match the CTA 
shape; the %tid value in unused dimensions is 0.  The fourth element is unused and 
always returns zero.  The number of threads in each dimension are specified by the 
predefined special register %ntid. 

 

Every thread in the CTA has a unique %tid. 

%tid component values range from 0 through %ntid–1 in each CTA dimension.  %tid.y 
== %tid.z == 0 in 1D CTAs.  %tid.z == 0 in 2D CTAs.   

 

It is guaranteed that: 

0  <=  %tid.x <  %ntid.x 

0  <=  %tid.y <  %ntid.y 

0  <=  %tid.z <  %ntid.z 

Notes 3D CTA initialization code separates hardware %tid R0 bit fields [15:0, 25:16, 31:26] 
into three .u16 components in R0L, R0H, and R1L, and %tid maps to [R0L, R0H, R1L] 
in half words.  2D and 1D CTAs require no %tid initialization code. 
 

Preserve %tid for debugging. 

Examples     mov.b16      r0,%tid.x;  // zero-extends tid.x to r0 

    cvt.u32.u16  r2,%tid.z;  // zero-extends tid.z to r2 

 



Chapter 8:  Special Registers 

    

 

 

78  PTX ISA Version 1.2 
  7/7/2008 

Table 67. Special Registers:  %ntid 

%ntid Number of thread IDs per CTA. 

Syntax .sreg .v4 .u16 %ntid;                   // CTA shape vector 

.sreg .u16 %ntid.x, %ntid.y, %ntid.z;   // CTA dimensions 

Description A predefined, read-only special register initialized with the number of thread ids in each 
CTA dimension.  The %ntid special register contains a 3D CTA shape vector that holds 
the CTA dimensions.  CTA dimensions are non-zero; the fourth element is unused and 
always returns zero.  The total number of threads in a CTA is (%ntid.x * %ntid.y * 
%ntid.z). 

 

%ntid.y == %ntid.z == 1 in 1D CTAs.  %ntid.z == 1 in 2D CTAs.   

Notes  

Examples     mov.u16  r0,%tid.x; 

    mov.u16  h1,%tid.y; 

    mov.u16  h2,%ntid.x; 

    mad.u16  r0,h1,h2,r0;  // r0 = unified tid for 2D CTA 

 

Table 68. Special Registers:  %ctaid 

%ctaid CTA id within a grid. 

Syntax .sreg .v4 .u16 %ctaid;                      // CTA id vector 

.sreg .u16 %ctaid.x, %ctaid.y, %ctaid.z;    // CTA id components 

Description A predefined, read-only special register initialized with the CTA id within the CTA grid.  
The %ctaid special register contains a 1D, 2D, or 3D vector, depending on the shape 
and rank of the CTA grid.  The value of each element of the vector is >= 0 and < 
65535.  The fourth element is unused and always returns zero. 
 

It is guaranteed that: 

0  <=  %ctaid.x <  %nctaid.x 

0  <=  %ctaid.y <  %nctaid.y 

0  <=  %ctaid.z <  %nctaid.z 

Notes The G80 translator maps ctaid.x to grid parameter g[6].u16, ctaid.y to g[7].u16, and 
ctaid.z to user parameter g[8].u16. 

Examples     mov.u16  %r1,%ctaid.y; 
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Table 69. Special Registers:  %nctaid 

%nctaid Number of CTA ids per grid. 

Syntax .sreg .v4 .u16 %nctaid                      // Grid shape vector 

.sreg .u16 %nctaid.x,%nctaid.y,%nctaid.z;   // Grid dimensions 

Description A predefined, read-only special register initialized with the number of CTAs in each grid 
dimension.  The %nctaid special register contains a 3D grid shape vector, with each 
element having a value of at least 1.  The fourth element is unused and always returns 
zero. 

It is guaranteed that: 

1 <= %nctaid.{x,y,z} < 65,536 

Notes The G80 translator maps nctaid.x to grid parameter g[4].u16, nctaid.y to g[5].u16, and 
nctaid.z to user parameter g[9].u16 

Examples     mov.u16  r1,%nctaid.x; 

 

Table 70. Special Registers:  %gridid 

%gridid Grid ID. 

Syntax .sreg .u16 %gridid;     // initialized when the grid is launched 

Description A predefined, read-only special register initialized with the per-grid temporal grid ID 
number.  The %gridid is used by debuggers to distinguish CTAs within concurrent 
(small) CTA grids. 

 

During execution, repeated launches of programs may occur, where each launch starts 
a grid-of-CTAs.  This variable provides the temporal grid launch number for this 
context. 

Notes The driver assigns a counting sequential gridid to each grid launched. 

The G80 translator maps gridid to grid parameter g[0].u16, “flags”.   

Examples     mov.u32  r1,%gridid; 
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Table 71. Special Registers:  %clock 

%clock A predefined, read-only 32-bit unsigned cycle counter. 

Syntax  

Description Special register %clock is an unsigned 32-bit read-only cycle counter that wraps 
silently. 

Notes  

Examples     mov.u32  r1,%clock; 
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Chapter 9. 

Directives 

9.1. Specifying Kernel Entry Points and Functions 

The following directives specify kernel entry points and functions. 

Table 72. Directives:  .entry 

.entry Defines a kernel entry point and body. 

Syntax .entry kernel-name kernel-body 

Description Defines a kernel entry point name and body for the kernel function.  Parameters are 
passed via .param space memory, and may be loaded into registers using ld.param 
instructions within the kernel body. 

The shape and size of the CTA executing the kernel are available in special registers.  

Semantics Specify the entry point for a kernel program. 

 

At run time, the CTA parameters ntid.x, ntid.y, and ntid.z are initialized with the actual 
CTA dimensions. 

Examples     .entry cta_fft 

 

    .entry filter 

    { 

       .reg .b32 %r<99>; 

       ld.param %r1, …; 

       … 

    } 
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Table 73. Directives:  .func 

.func Function definition. 

Syntax .func fname function-body 

.func fname (param-list) function-body 

.func (ret-param) fname (param-list) function-body 

Description Defines a function, including input and return parameters and function body. 

Semantics Specifies the entry point and parameter names for a function.  The parameter lists bind 
register names in the caller’s namespace to register names in the callee namespace. 

 

The implementation of parameter passing is left to the optimizing translator, which may 
use a combination of registers and stack locations to pass parameters.  In the current 
ptx release, parameters are passed through statically allocated ptx registers; i.e., there 
is no support for recursive calls. 

Notes The input and return parameters are enclosed in parentheses.  Parameters must be 
base types in the register space.  Parameter passing is call-by-value. 

 

A .func directive with no body may be used to declare a function prototype. 

Examples     .func (.reg .b32 rval) foo (.reg .b32 arg0, .reg .f64 arg1)  

    { 

    .reg .b32 localVar; 

 

    … use arg0; 

    other code; 

 

    mov.b32 rval,result; 

    ret; 

    } 

 

    … 

    call (fooval), foo, (val0, val1);  // return value in fooval 

    … 
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9.2. Debugging Directives 

The following directives are needed to communicate Dwarf-format debug information.  
Details TBD. 

Table 74. Debugging Directives:  .section 

.section PTX section definition 

Syntax .section section_type, section_name 

Description  

Semantics  

Notes  

Examples     .section .debug_info, "",@progbits 

 

Table 75. Debugging Directives:  .file 

.file Source file information 

Syntax .file filename 

Description  

Semantics  

Notes  

Examples  

 

Table 76. Debugging Directives:  .loc 

.loc Source file location 

Syntax .loc line_number 

Description  

Semantics  

Notes  

Examples  
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9.3. Other Directives 

Table 77. Other Directives:  .extern 

.extern External symbol declaration 

Syntax .extern identifier 

Description Declares identifier to be defined externally. 

Semantics  

Notes  

Examples     .extern foo  // variable foo is declared in another file 

    .b32 foo; 

 

Table 78. Other Directives:  .visible 

.visible Visible (externally) symbol declaration 

Syntax .visible identifier 

Description Declares identifier to be externally visible. 

Semantics  

Notes  

Examples     .visible foo  // variable foo will be externally visible 

    .b32 foo; 

 

Table 79. Other Directives:  .version 

.version PTX version number 

Syntax .version major.minor    // major, minor are integers 

Description Specifies the PTX language version number.  Increments to the major number indicate 
incompatible changes to PTX. 

Semantics Indicates that this file must be compiled with tools having the same major version 
number and an equal or greater minor version number. 

 

Each ptx file must begin with a .version directive.  Duplicate .version directives are 
allowed provided they match the original .version directive. 

Notes CUDA Release 2.0 supports PTX ISA Versions 1.0, 1.1, and 1.2. 

Examples     .version 1.2 
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Table 80. Other Directives:  .target 

.target Architecture and Platform target 

Syntax .target stringlist         // comma separated list of target specifiers 

 

string = { sm_10, sm_11, sm_12, sm_13,       // target architectures 

                map_f64_to_f32                              // platform option 

             }; 

Description Specifies the set of features in the target architecture for which the current ptx code 
was generated. 

 

The target identifier strings are platform-specific. 

Semantics PTX features are checked against the specified target architecture, and an error is 
generated if an unsupported feature is used.  The following table summarizes the 
features in PTX that vary according to target architecture. 

 

Target Description 

sm_10 Baseline feature set. 

Requires map_f64_to_f32 if any .f64 instructions used. 

sm_11 Adds {atom,red}.global, brkpt instructions. 

Requires map_f64_to_f32 if any .f64 instructions used. 

sm_12 Adds {atom,red}.shared, 64-bit {atom,red}.global, vote instructions. 

Requires map_f64_to_f32 if any .f64 instructions used. 

sm_13 Adds double-precision support, including expanded rounding modifiers. 

Disallows use of map_f64_to_f32. 

 

The map_f64_to_f32 specifier indicates that all double-precision instructions will be 
mapped to single-precision regardless of the target architecture.  This feature enables 
compilers for high-level languages such as CUDA to compile programs containing type 
double when the target device does not support double precision operations.  Note 
that .f64 storage remains as 64-bits, with only half being used by instructions converted 
from .f64 to .f32. 

 

Each PTX file must begin with a .version directive, immediately followed by a .target 
directive.  Duplicate .target directives are allowed provided they match the original 
.target directive. 

Notes Targets of the form ‘compute_xx’ are also accepted as synonyms for ‘sm_xx’ targets. 

Examples     .target sm_10       // baseline target architecture 

    .target sm_13       // supports double-precision 

 

    // allow .f64 instructions, but map them to .f32 

    .target sm_10, map_f64_to_f32 

 

    .target compute_10  // alternative name for target sm_10 

 



Chapter 9:  Directives 

    

 

 

86  PTX ISA Version 1.2 
  7/7/2008 

 

 

This page is blank. 

 



 

 

 

PTX ISA Version 1.2  87 
7/7/2008  

Chapter 10. 

Release Notes 

This section describes the history of change in the PTX ISA and implementation.  The first 
section describes ISA and implementation changes in the current CUDA 2.0 release of PTX 
ISA 1.2, and the second section provides a record of changes in ISA version 1.1 with respect 
to ISA version 1.0. 

10.1. Changes in Versions 1.2 

10.1.1. New Features 

An addc instruction has been added, and 32-bit integer add has been extended to read and 
write a carry flag in order to support efficient extended-precision addition in PTX. 

A separate red instruction for computing atomic reductions where the intermediate results 
are not required has been added. 

Support for constant expressions has been added to PTX. 

A compact syntax for defining a set of variables having a common prefix and sequentially 
numbered suffixes has been added. 

10.1.2. Semantic Changes and Clarifications 
Memory instructions in PTX require naturally aligned addresses, where the address is a 
multiple of the access size.  This requirement was previously undocumented. 

The tex instruction always generates a four-element result.  This requirement was previously 
undocumented.  The list of instruction types for tex has been restricted to supported types.  
Previous implementations required a four-element coordinate vector; the current 
implementation only requires that the coordinate vector contain at least as many elements as 
the instruction’s geometry. 

Vector types no longer allow three-element vectors, i.e., .v3 has been removed from the 
language.  Previous versions of PTX used .v3 as the implicit type for special registers.  These 
registers are now defined as four-element vectors (e.g. .v4.u16), with the fourth element 
being unused. 

Vectors are now restricted to a maximum overall length of 128 bits, which precludes four-
element vectors with 64-bit elements, e.g. .v4.f64. 

The shl and shr instruction descriptions have been updated to indicate that the shift amount 
operand is interpreted as an unsigned value regardless of the instruction type. 
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Floating-point instructions add, sub, and mul default to round-to-nearest-even behavior.  
This allows better optimization in the default case, such as folding mul+add into a single 
fused-multiply add instruction on the target device. 

Details of precision and rounding have been added for instruction mad.  The 32-bit mad is 
currently implemented with less precision than a fused multiply-add, and future 
implementations reserve the right to map mad.f32 to fused multiply-add. 

10.1.3. Unimplemented or Unused Features Removed 
sad.f32 and sad.f64 have been removed from PTX Version 1.2.  While these where 
implemented in previous releases, they were unused by the CUDA compiler and were not 
well-characterized with respect to precision and rounding behavior. 

The unimplemented frc instruction has been removed from the ISA. 

The .entry directive no longer supports explicit CTA parameters.  These were 
unimplemented. 

The unimplemented .byte directive has been removed. 

Unimplemented vector features such as vector element swizzling and vector-scalar 
conversions have been removed from the ISA. 

10.1.4. Syntax Restrictions 

Instructions ld, st, atom, red, and tex now require square brackets around the address 
expression.  Previous versions of the ISA showed square brackets only for ld and st, and 
these were not required by the parser. 

Numeric vector-element selectors (.0, .1, .2, and .3) have been removed.  These were 
unimplemented in previous versions of the parser. 

Variables of type .f16 no longer support initializations. 

Constant banks have been removed.  This feature was unimplemented. 

The .tex declaration now requires a type of .u32 or .u64. 

10.1.5. Unimplemented Features Remaining 
Vector types, structures, and unions remain unimplemented in this version of PTX. 

Instructions div.{u64,s64} and rem.{u64,s64} remain unimplemented. 
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10.2. Changes in Version 1.1 

This section describes changes in the PTX ISA and implementation between version 1.0 and 
version 1.1.  The changes may be summarized as (1) addition of new features, (2) removal of 
unimplemented features and instructions from the ISA, (3) better specification of rounding 
modifiers, and (4) better specification of saturation behavior. 

10.2.1. New Features 
Instructions ld and st now support a .volatile modifier.  See the instruction descriptions 
in Chapter 7 for details. 

10.2.2. Unimplemented Features Removed 
PTX ISA version 1.0 contained a number of  instructions and features that were 
unimplemented in the CUDA tools in release 1.0.  Since these features were not 
implemented, their removal from PTX ISA version 1.1 does not create an 
incompatibility with any valid PTX version 1.0 code. 

The vector instructions cross, dot, mag, and vred have been removed from PTX.  These 
instructions were unimplemented in version 1.0. 

Instructions extract, insert, membar, and nop were removed from the list of  reserved 
PTX keywords shown in Table 2.  The description of  membar was removed from 
Chapter 7.  These instructions were unimplemented in version 1.0.  

Support for .f64 type in sin, cos, lg2, ex2, and frc has been removed from the ISA.  These 
were unimplemented in version 1.0. 

atom.{cas,exch} operations have been restricted to bitsize types.  atom was 
unimplemented in PTX version 1.0. 

10.2.3. Changes to Rounding Modifiers and Saturation 
PTX 1.0 did not fully specify rounding behavior for all instructions, nor did it define a 
default round behavior in cases where such defaults exist. 

Rounding behavior not fully specified in PTX version 1.0 has been defined in version 
1.1, with the following changes noted as errata for version 1.0: 

• Instructions add, sub, and mul have round-to-nearest documented as their 
default rounding behavior. 

• Instruction mad no longer supports a rounding modifier. 

• sad and div no longer support a rounding modifier, although div is 
guaranteed to implement round-to-nearest-even by default. 

• Rounding modifiers are now required in some cases and illegal in other 
cases for the cvt instruction (see description).  Hand-written version 1.0 
PTX code may exist that violates these new restrictions. 
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Saturation support has been removed from a number of  instructions.  None of  these 
cases were used by the CUDA 1.0 compiler, and many were not implemented.  These 
restrictions are compatible with PTX 1.0 code generated by the CUDA compiler tools. 

• Integer saturation has been removed from instructions mul, mul24, 
mad.wide, mad.lo, mad24.lo, sad, div, and rem no longer support saturation. 

• The cvt instruction supports saturation for both signed and unsigned 
integer types. 

10.2.4. Unimplemented Features Remaining 
In Release 1.1 of  the PTX ISA Version 1,1, a number of  features are not supported.  
This section summarizes the unsupported features. 

Syntax restrictions 

Predicate constant immediates are not supported. 

Constant expressions are not supported. 

State Spaces 

Declarations and instructions using .surf space are not supported. 

The constant space is restricted to a single bank.  This may be written as .const or 
.const[0]. 

Variables and Operands 

Vector declarations, initialization, and conversions are not supported. 

Vector operands are not generally supported.  The ld, st, and tex instructions do support 
limited use of  vector operands written using the tuple notation. 

Instructions 

See individual instruction descriptions in Section 7.7 for restrictions of  the current 
release. 
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10.2.5. Summary of Instruction Changes 

The following table summarizes changes to instructions in PTX Version 1.1 

Table 81. Summary of Instruction Changes in Version 1.1 

Instruction Implementation Change 

add Default rounding of .rn documented. 

sub Default rounding of .rn documented. 

mul Integer saturation removed from parser. 

Default rounding of .rn documented. 

mul24 Integer saturation removed from parser. 

mad Integer saturation removed from .wide and .lo modes. 

Rounding removed. 

mad24 Integer saturation removed from .lo mode. 

sad Saturation removed (both int and float); rounding removed. 

div Integer saturation removed; rounding modifier removed. 

Document that div rounds to nearest even. 

cvt Rounding modes required when not illegal.  See instruction description for details. 

Saturation extended to unsigned integer types. 

ld, st Added .volatile modifier. 

set, setp Allow lt, le, ge, gt comparison operators to be used with unsigned integers. 

cross, dot, mag, 
vred 

Removed.  These were unimplemented in PTX 1.0. 

sin, cos, lg2, 
ex2, frc 

Remove .f64.  This was unimplemented in PTX 1.0. 

atom atom.{cas,exch} restricted to bitsize types.  atom was not implemented in PTX 1.0. 

extract, insert, 
membar, nop 

Removed keywords and descriptions for unimplemented instructions. 
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