

2008-07-07
SP-03483-001_v1.2

NVIDIA Compute

PTX: Parallel Thread Execution

ISA Version 1.2

PTX ISA Version 1.2 i
7/7/2008

Document Change History

Version Date Responsible Reason for Change

_v1.0 June 15, 2007 RJ Preliminary release

_v1.1 October 24, 2007 RJ, TS Release

_v1.2 July 7, 2008 RJ Release

ii PTX ISA Version 1.2
 7/7/2008

This page is blank.

PTX ISA Version 1.2 iii
7/7/2008

Table of Contents

Chapter 1. Introduction .. 1

1.1. Scalable Data-Parallel Computing Using GPUs .. 1

1.2. Goals of PTX ... 1

1.3. The Document’s Structure ... 2

Chapter 2. Programming Model .. 3

2.1. A Highly Multithreaded Coprocessor ... 3

2.2. Thread Hierarchy ... 3

2.2.1. Cooperative Thread Arrays ... 3

2.2.2. Grid of Cooperative Thread Arrays .. 4

2.3. Memory Hierarchy ... 6

Chapter 3. Parallel Thread Execution Machine Model ... 9

3.1. A Set of SIMT Multiprocessors with On-Chip Shared Memory 9

Chapter 4. Syntax ... 13

4.1. Source Format ... 13

4.2. Comments ... 13

4.3. Statements ... 14

4.3.1. Directive Statements .. 14

4.3.2. Instruction Statements ... 14

4.4. Identifiers ... 15

4.5. Constants ... 16

4.5.1. Integer Constants .. 16

4.5.2. Floating-Point Constants ... 16

4.5.3. Predicate Constants .. 17

4.5.4. Constant Expressions .. 17

4.5.5. Integer Constant Expression Evaluation ... 18

4.5.6. Summary of Constant Expression Evaluation Rules ... 20

Chapter 5. State Spaces, Types, and Variables .. 21

5.1. State Spaces ... 21

5.1.1. Register State Space ... 22

5.1.2. Special Register State Space .. 22

5.1.3. Constant State Space .. 22

iv PTX ISA Version 1.2
 7/7/2008

5.1.4. Global State Space .. 23

5.1.5. Local State Space .. 23

5.1.6. Parameter State Space ... 23

5.1.7. Shared State Space ... 23

5.1.8. Texture State Space .. 24

5.1.9. Surface State Space .. 24

5.2. Types ... 25

5.2.1. Fundamental Types ... 25

5.2.2. Restricted Use of Sub-Word Sizes .. 25

5.3. Variables .. 26

5.3.1. Variable Declarations ... 26

5.3.2. Vectors ... 26

5.3.3. Array Declarations ... 27

5.3.4. Structures and Unions ... 27

5.3.5. Initializers ... 28

5.3.6. Alignment ... 28

5.3.7. Parameterized Variable Names ... 28

Chapter 6. Instruction Operands.. 29

6.1. Operand Type Information ... 29

6.2. Source Operands ... 29

6.3. Destination Operands .. 29

6.4. Using Addresses, Arrays, Vectors, Structures, and Unions .. 30

6.4.1. Addresses as Operands .. 30

6.4.2. Arrays as Operands ... 31

6.4.3. Vectors as Operands ... 31

6.4.4. Structures and Unions as Operands ... 31

6.4.5. Labels and Function Names as Operands .. 32

6.5. Type Conversion .. 32

6.5.1. Scalar Conversions .. 32

6.5.2. Rounding Modifiers .. 34

Chapter 7. Instruction Set .. 35

7.1. Format and Semantics of Instruction Descriptions .. 35

7.2. PTX Instructions .. 35

7.3. Predicated Execution ... 36

7.3.1. Comparisons .. 37

PTX ISA Version 1.2 v
7/7/2008

7.3.1.1. Integer and Bit-Size Comparisons ... 37

7.3.1.2. Floating-Point Comparisons .. 37

7.3.2. Manipulating Predicates .. 38

7.4. Type Information for Instructions and Operands ... 39

7.5. Divergence of Threads in Control Constructs ... 39

7.6. Semantics .. 40

7.6.1. Machine-Specific Semantics of 16-Bit Code ... 40

7.7. Instructions .. 41

7.7.1. Arithmetic Instructions ... 41

7.7.2. Comparison and Selection Instructions ... 52

7.7.3. Logic and Shift Instructions ... 56

7.7.4. Data Movement and Conversion Instructions ... 59

7.7.5. Texture Instruction ... 63

7.7.6. Control Flow Instructions ... 64

7.7.7. Parallel Synchronization and Communication Instructions 67

7.7.8. Floating-Point Instructions ... 73

7.7.9. Miscellaneous Instructions... 76

Chapter 8. Special Registers ... 77

Chapter 9. Directives ... 81

9.1. Specifying Kernel Entry Points and Functions .. 81

9.2. Debugging Directives... 83

9.3. Other Directives ... 84

Chapter 10. Release Notes ... 87

10.1. Changes in Versions 1.2.. 87

10.1.1. New Features .. 87

10.1.2. Semantic Changes and Clarifications .. 87

10.1.3. Unimplemented or Unused Features Removed .. 88

10.1.4. Syntax Restrictions .. 88

10.1.5. Unimplemented Features Remaining .. 88

10.2. Changes in Version 1.1 ... 89

10.2.1. New Features .. 89

10.2.2. Unimplemented Features Removed .. 89

10.2.3. Changes to Rounding Modifiers and Saturation .. 89

10.2.4. Unimplemented Features Remaining .. 90

10.2.5. Summary of Instruction Changes .. 91

vi PTX ISA Version 1.2
 7/7/2008

List of Figures

Figure 1. Thread Batching .. 5

Figure 2. Memory Hierarchy ... 7

Figure 3. Hardware Model .. 11

PTX ISA Version 1.2 vii
7/7/2008

List of Tables

Table 1. PTX Directives ... 14

Table 2. Reserved Instruction Keywords ... 15

Table 3. Predefined Identifiers ... 15

Table 4. Operator Precedence .. 18

Table 5. Constant Expression Evaluation Rules ... 20

Table 6. State Spaces ... 21

Table 7. Properties of State Spaces .. 22

Table 8. Fundamental Specifiers ... 25

Table 9. CVT Instruction Precision and Format ... 33

Table 10. Floating-Point Rounding Modifiers .. 34

Table 11. Integer Rounding Modifiers ... 34

Table 12. Operators for Signed Integer, Unsigned Integer, and Bit-Size Types 37

Table 13. Floating-Point Comparison Operators ... 37

Table 14. Floating-Point Comparison Operators Accepting NaN .. 38

Table 15. Floating-Point Comparison Operators Testing for NaN ... 38

Table 16. Arithmetic Instructions: ADD ... 42

Table 17. Arithmetic Instructions: ADD ... 43

Table 18. Arithmetic Instructions: ADDC .. 43

Table 19. Arithmetic Instructions: SUB ... 44

Table 20. Arithmetic Instructions: MUL ... 45

Table 21. Arithmetic Instructions: MAD .. 46

Table 22. Arithmetic Instructions: MUL24 ... 48

Table 23. Arithmetic Instructions: MAD24 .. 48

Table 24. Arithmetic Instructions: SAD ... 49

Table 25. Arithmetic Instructions: DIV .. 49

Table 26. Arithmetic Instructions: REM .. 50

Table 27. Arithmetic Instructions: ABS ... 50

Table 28. Arithmetic Instructions: NEG .. 50

Table 29. Arithmetic Instructions: MIN .. 51

Table 30. Arithmetic Instructions: MAX .. 51

Table 31. Comparison and Selection Instructions: SET ... 53

viii PTX ISA Version 1.2
 7/7/2008

Table 32. Comparison and Selection Instructions: SETP .. 54

Table 33. Comparison and Selection Instructions: SELP ... 55

Table 34. Comparison and Selection Instructions: SLCT ... 55

Table 35. Logic and Shift Instructions: AND ... 56

Table 36. Logic and Shift Instructions: OR ... 56

Table 37. Logic and Shift Instructions: XOR ... 57

Table 38. Logic and Shift Instructions: NOT ... 57

Table 39. Logic and Shift Instructions: CNOT .. 57

Table 40. Logic and Shift Instructions: SHL ... 58

Table 41. Logic and Shift Instructions: SHR ... 58

Table 42. Data Movement and Conversion Instructions: MOV .. 59

Table 43. Data Movement and Conversion Instructions: LD .. 60

Table 44. Data Movement and Conversion Instructions: ST .. 61

Table 45. Data Movement and Conversion Instructions: CVT ... 62

Table 46. Texture Instruction: TEX ... 63

Table 47. Control Flow Instructions: { } ... 64

Table 48. Control Flow Instructions: @ .. 64

Table 49. Control Flow Instructions: BRA ... 65

Table 50. Control Flow Instructions: CALL ... 65

Table 51. Control Flow Instructions: RET ... 66

Table 52. Control Flow Instructions: EXIT .. 66

Table 53. Parallel Synchronization and Communication Instructions: BAR 68

Table 54. Parallel Synchronization and Communication Instructions: ATOM 69

Table 55. Parallel Synchronization and Communication Instructions: RED 71

Table 56. Parallel Synchronization and Communication Instructions: VOTE 72

Table 57. Floating-Point Instructions: RCP .. 73

Table 58. Floating-Point Instructions: SQRT .. 73

Table 59. Floating-Point Instructions: RSQRT ... 74

Table 60. Floating-Point Instructions: SIN .. 74

Table 61. Floating-Point Instructions: COS .. 74

Table 62. Floating-Point Instructions: LG2 ... 75

Table 63. Floating-Point Instructions: EX2 ... 75

Table 64. Miscellaneous Instructions: TRAP .. 76

Table 65. Miscellaneous Instructions: BRKPT ... 76

Table 66. Special Registers: %tid ... 77

PTX ISA Version 1.2 ix
7/7/2008

Table 67. Special Registers: %ntid ... 78

Table 68. Special Registers: %ctaid ... 78

Table 69. Special Registers: %nctaid ... 79

Table 70. Special Registers: %gridid .. 79

Table 71. Special Registers: %clock .. 80

Table 72. Directives: .entry ... 81

Table 73. Directives: .func .. 82

Table 74. Debugging Directives: .section ... 83

Table 75. Debugging Directives: .file .. 83

Table 76. Debugging Directives: .loc .. 83

Table 77. Other Directives: .extern ... 84

Table 78. Other Directives: .visible ... 84

Table 79. Other Directives: .version ... 84

Table 80. Other Directives: .target .. 85

Table 81. Summary of Instruction Changes in Version 1.1 ... 91

PTX ISA Version 1.2 1
7/7/2008

Chapter 1.

Introduction

This document describes PTX, a low-level parallel thread execution virtual machine and
instruction set architecture (ISA). PTX exposes the GPU as a data-parallel computing device.

1.1. Scalable Data-Parallel Computing Using GPUs

Driven by the insatiable market demand for realtime, high-definition 3D graphics, the
programmable GPU has evolved into a highly parallel, multithreaded, manycore processor
with tremendous computational horsepower and very high memory bandwidth. The GPU is
especially well-suited to address problems that can be expressed as data-parallel
computations – the same program is executed on many data elements in parallel – with high
arithmetic intensity – the ratio of arithmetic operations to memory operations. Because the
same program is executed for each data element, there is a lower requirement for
sophisticated flow control; and because it is executed on many data elements and has high
arithmetic intensity, the memory access latency can be hidden with calculations instead of big
data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model to speed
up the computations. In 3D rendering large sets of pixels and vertices are mapped to parallel
threads. Similarly, image and media processing applications such as post-processing of
rendered images, video encoding and decoding, image scaling, stereo vision, and pattern
recognition can map image blocks and pixels to parallel processing threads. In fact, many
algorithms outside the field of image rendering and processing are accelerated by data-
parallel processing, from general signal processing or physics simulation to computational
finance or computational biology.

PTX defines a virtual machine and ISA for general-purpose parallel thread execution. PTX
programs are translated at install time to the target hardware instruction set. The PTX-to-
GPU translator and driver enable NVIDIA GPUs to be used as programmable parallel
computers.

1.2. Goals of PTX

PTX provides a stable programming model and instruction set for general purpose parallel
programming. It is designed to be efficient on NVIDIA GPUs supporting the computation
features defined by the Tesla architecture. High level language compilers for languages such

Chapter 1: Introduction

2 PTX ISA Version 1.2
 7/7/2008

as CUDA and C/C++ generate PTX instructions, which are optimized for and translated to
native target-architecture instructions.

The goals for PTX include the following:

� Provide a stable ISA that spans multiple GPU generations.

� Achieve performance in compiled applications comparable to native GPU performance.

� Provide a machine-independent ISA for C/C++ and other compilers to target.

� Provide a code distribution ISA for application and middleware developers.

� Provide a common source-level ISA for optimizing code generators and translators,
which map PTX to specific target machines.

� Facilitate hand-coding of libraries, performance kernels, and architecture tests.

� Provide a scalable programming model that spans GPU sizes from a single unit to many
parallel units.

1.3. The Document’s Structure

The information in this document is organized into the following Chapters:

� Chapter 2 outlines the programming model.

� Chapter 3 gives an overview of the PTX virtual machine model.

� Chapter 4 describes the basic syntax of the PTX language.

� Chapter 5 describes state spaces, types, and variable declarations.

� Chapter 6 describes instruction operands.

� Chapter 7 describes the instruction set.

� Chapter 8 lists special registers.

� Chapter 9 lists the assembly directives supported in PTX.

� Chapter 10 provides release notes for PTX Version 1.2.

PTX ISA Version 1.2 3
7/7/2008

Chapter 2.

Programming Model

2.1. A Highly Multithreaded Coprocessor

The GPU is a compute device capable of executing a very large number of threads in
parallel. It operates as a coprocessor to the main CPU, or host: In other words, data-parallel,
compute-intensive portions of applications running on the host are off-loaded onto the
device.

More precisely, a portion of an application that is executed many times, but independently
on different data, can be isolated into a kernel function that is executed on the GPU as many
different threads. To that effect, such a function is compiled to the PTX instruction set and
the resulting kernel is translated at install time to the target GPU instruction set.

2.2. Thread Hierarchy

The batch of threads that executes a kernel is organized as a grid of cooperative thread
arrays as described in this section and illustrated in Figure 1. Cooperative thread arrays
(CTAs) implement CUDA thread blocks.

2.2.1. Cooperative Thread Arrays
The Parallel Thread Execution (PTX) programming model is explicitly parallel: a PTX
program specifies the execution of a given thread of a parallel thread array. A cooperative
thread array, or CTA, is an array of threads that execute a kernel concurrently or in parallel.

Threads within a CTA can communicate with each other. To coordinate the communication
of the threads within the CTA, one can specify synchronization points where threads wait
until all threads in the CTA have arrived.

Each thread has a unique thread id within the CTA. Programs use a data parallel
decomposition to partition inputs, work, and results across the threads of the CTA. Each
CTA thread uses its thread id to determine its assigned role, assign specific input and output
positions, compute addresses, and select work to perform. The thread id is a three-element
vector tid, (with elements tid.x, tid.y, and tid.z) that specifies the thread’s position within a
1D, 2D, or 3D CTA. Each thread id component ranges from 0 up to the number of thread
ids in that CTA dimension.

Each CTA has a 1D, 2D, or 3D shape specified by a three-element vector ntid (with
elements ntid.x, ntid.y, and ntid.z). The vector ntid specifies the number of threads in each
CTA dimension.

Chapter 2: Programming Model

4 PTX ISA Version 1.2
 7/7/2008

Threads within a CTA execute in SIMT (single-instruction, multiple-thread) fashion in
groups called warps. A warp is a maximal subset of threads from a single CTA, such that the
threads execute the same instructions at the same time. Threads within a warp are
sequentially numbered. The warp size is a machine-dependent constant. Typically, a warp
has 32 threads. Some applications may be able to maximize performance with knowledge of
the warp size, so PTX includes a run-time immediate constant, WARP_SZ, which may be
used in any instruction where an immediate operand is allowed.

2.2.2. Grid of Cooperative Thread Arrays
There is a maximum number of threads that a CTA can contain. However, CTAs that
execute the same kernel can be batched together into a grid of CTAs, so that the total
number of threads that can be launched in a single kernel invocation is very large. This
comes at the expense of reduced thread communication and synchronization, because
threads in different CTAs cannot communicate and synchronize with each other.

Multiple CTAs may execute concurrently and in parallel, or sequentially, depending on the
platform. Each CTA has a unique CTA id (ctaid) within a grid of CTAs. Each grid of CTAs
has a 1D, 2D , or 3D shape specified by the parameter nctaid. Each grid also has a unique
temporal grid id (gridid). Threads may read and use these values through predefined, read-

only special registers %tid, %ntid, %ctaid, %nctaid, and %gridid.

The host issues a succession of kernel invocations to the device. Each kernel is executed as
a batch of threads organized as a grid of CTAs (Figure 1).

 Chapter 2. Programming Model

PTX ISA Version 1.2 5
7/7/2008

A cooperative thread array (CTA) is a set of concurrent threads that execute the same kernel program. A grid is
a set of CTAs that execute independently.

Figure 1. Thread Batching

Host

Kernel 1

Kernel 2

GPU

Grid 1

CTA
(0, 0)

CTA
(1, 0)

CTA
(2, 0)

CTA
(0, 1)

CTA
(1, 1)

CTA
(2, 1)

Grid 2

CTA (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

Chapter 2: Programming Model

6 PTX ISA Version 1.2
 7/7/2008

2.3. Memory Hierarchy

PTX threads may access data from multiple memory spaces during their execution as
illustrated by Figure 2. Each thread has a private local memory. Each thread block (CTA)
has a shared memory visible to all threads of the block and with the same lifetime as the
block. Finally, all threads have access to the same global memory.

There are also two additional read-only memory spaces accessible by all threads: the constant
and texture memory spaces. The global, constant, and texture memory spaces are optimized
for different memory usages. Texture memory also offers different addressing modes, as well
as data filtering, for some specific data formats.

The global, constant, and texture memory spaces are persistent across kernel launches by the
same application.

Both the host and the device maintain their own local memory, referred to as host memory and
device memory, respectively. The device memory may be mapped and read or written by the
host, or, for more efficient transfer, copied from the host memory through optimized API
calls that utilize the device’s high-performance Direct Memory Access (DMA) engine.

 Chapter 2. Programming Model

PTX ISA Version 1.2 7
7/7/2008

Figure 2. Memory Hierarchy

Global memory

Grid 0

Block (2, 1) Block (1, 1) Block (0, 1)

Block (2, 0) Block (1, 0) Block (0, 0)

Grid 1

Block (1, 1)

Block (1, 0)

Block (1, 2)

Block (0, 1)

Block (0, 0)

Block (0, 2)

Thread Block

Per-block shared
memory

Thread

Per-thread local
memory

Chapter 2: Programming Model

8 PTX ISA Version 1.2
 7/7/2008

This page is blank.

PTX ISA Version 1.2 9
7/7/2008

Chapter 3.

Parallel Thread Execution Machine Model

3.1. A Set of SIMT Multiprocessors with On-Chip
Shared Memory

The Tesla architecture is built around a scalable array of multithreaded Streaming
Multiprocessors (SMs). When a host program invokes a kernel grid, the blocks of the grid
are enumerated and distributed to multiprocessors with available execution capacity. The
threads of a thread block execute concurrently on one multiprocessor. As thread blocks
terminate, new blocks are launched on the vacated multiprocessors.

A multiprocessor consists of multiple Scalar Processor (SP) cores, a multithreaded
instruction unit, and on-chip shared memory. The multiprocessor creates, manages, and
executes concurrent threads in hardware with zero scheduling overhead. It implements a
single-instruction barrier synchronization. Fast barrier synchronization together with
lightweight thread creation and zero-overhead thread scheduling efficiently support very
fine-grained parallelism, allowing, for example, a low granularity decomposition of problems
by assigning one thread to each data element (such as a pixel in an image, a voxel in a
volume, a cell in a grid-based computation).

To manage hundreds of threads running several different programs, the multiprocessor
employs a new architecture we call SIMT (single-instruction, multiple-thread). The
multiprocessor maps each thread to one scalar processor core, and each scalar thread
executes independently with its own instruction address and register state. The
multiprocessor SIMT unit creates, manages, schedules, and executes threads in groups of
parallel threads called warps. (This term originates from weaving, the first parallel thread
technology.) Individual threads composing a SIMT warp start together at the same program
address but are otherwise free to branch and execute independently.

When a multiprocessor is given one or more thread blocks to execute, it splits them into
warps that get scheduled by the SIMT unit. The way a block is split into warps is always the
same; each warp contains threads of consecutive, increasing thread IDs with the first warp
containing thread 0.

At every instruction issue time, the SIMT unit selects a warp that is ready to execute and
issues the next instruction to the active threads of the warp. A warp executes one common
instruction at a time, so full efficiency is realized when all threads of a warp agree on their
execution path. If threads of a warp diverge via a data-dependent conditional branch, the
warp serially executes each branch path taken, disabling threads that are not on that path,
and when all paths complete, the threads converge back to the same execution path. Branch
divergence occurs only within a warp; different warps execute independently regardless of
whether they are executing common or disjointed code paths.

Chapter 3: Parallel Thread Execution Machine Model

10 PTX ISA Version 1.2
 7/7/2008

SIMT architecture is akin to SIMD (Single Instruction, Multiple Data) vector organizations
in that a single instruction controls multiple processing elements. A key difference is that
SIMD vector organizations expose the SIMD width to the software, whereas SIMT
instructions specify the execution and branching behavior of a single thread. In contrast with
SIMD vector machines, SIMT enables programmers to write thread-level parallel code for
independent, scalar threads, as well as data-parallel code for coordinated threads. For the
purposes of correctness, the programmer can essentially ignore the SIMT behavior;
however, substantial performance improvements can be realized by taking care that the code
seldom requires threads in a warp to diverge. In practice, this is analogous to the role of
cache lines in traditional code: Cache line size can be safely ignored when designing for
correctness but must be considered in the code structure when designing for peak
performance. Vector architectures, on the other hand, require the software to coalesce loads
into vectors and manage divergence manually.

As illustrated by Figure 3, each multiprocessor has on-chip memory of the four following
types:

� One set of local 32-bit registers per processor,

� A parallel data cache or shared memory that is shared by all scalar processor cores
and is where the shared memory space resides,

� A read-only constant cache that is shared by all scalar processor cores and speeds
up reads from the constant memory space, which is a read-only region of device
memory,

� A read-only texture cache that is shared by all scalar processor cores and speeds up
reads from the texture memory space, which is a read-only region of device
memory; each multiprocessor accesses the texture cache via a texture unit that
implements the various addressing modes and data filtering.

The local and global memory spaces are read-write regions of device memory and are not
cached.

How many blocks a multiprocessor can process at once depends on how many registers per
thread and how much shared memory per block are required for a given kernel since the
multiprocessor’s registers and shared memory are split among all the threads of the batch of
blocks. If there are not enough registers or shared memory available per multiprocessor to
process at least one block, the kernel will fail to launch. A multiprocessor can execute as
many as eight thread blocks concurrently.

If a non-atomic instruction executed by a warp writes to the same location in global or
shared memory for more than one of the threads of the warp, the number of serialized
writes that occur to that location and the order in which they occur is undefined, but one of
the writes is guaranteed to succeed. If an atomic instruction executed by a warp reads,
modifies, and writes to the same location in global memory for more than one of the threads
of the warp, each read, modify, write to that location occurs and they are all serialized, but
the order in which they occur is undefined.

 Chapter 3. Parallel Thread Execution Machine Model

PTX ISA Version 1.2 11
7/7/2008

A set of SIMT multiprocessors with on-chip shared memory.

Figure 3. Hardware Model

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Device Memory

Shared Memory

Instruction
Unit

Processor 1

Registers

… Processor 2

Registers

Processor M

Registers

Constant
Cache

Texture
Cache

Chapter 3: Parallel Thread Execution Machine Model

12 PTX ISA Version 1.2
 7/7/2008

This page is blank.

PTX ISA Version 1.2 13
7/7/2008

Chapter 4.

Syntax

PTX programs are a collection of text source files. PTX source files have an assembly-
language style syntax with instruction operation codes and operands. Pseudo-operations
specify symbol and addressing management. The ptxas program assembles PTX source files
to produce corresponding binary object files.

4.1. Source Format

Source files are ASCII text. Lines are separated by the newline character (‘\n’).

All whitespace characters are equivalent; whitespace is ignored except for its use in
separating tokens in the language.

The C preprocessor cpp may be used to process PTX source files. Lines beginning with #
are preprocessor directives. The following are common preprocessor directives:

#include, #define, #if, #ifdef, #else, #endif, #line, #file

C: A Reference Manual by Harbison and Steele provides a good description of the C
preprocessor.

PTX is case sensitive and uses lowercase for keywords.

Each PTX file must begin with a .version directive specifying the PTX language version,
followed by a .target directive specifying the target architecture assumed. See Section 9 for a
more information on these directives.

4.2. Comments

Comments in PTX follow C/C++ syntax, using non-nested /* and */ for comments that may
span multiple lines, and using // to begin a comment that extends to the end of the current
line.

Comments in PTX are treated as whitespace.

Chapter 4: Syntax

14 PTX ISA Version 1.2
 7/7/2008

4.3. Statements

A PTX statement is either a directive or an instruction. Statements begin with an optional
label and end with a semicolon.

Examples:
 .reg .b32 r1, r2;

 .global .f32 array[N];

start: mov.b32 r1, %tid.x;

 shl.b32 r1, r1, 2; // shift thread id by 2 bits

 ld.b32 r2, array[r1]; // thread[tid] gets array[tid]

 add.f32 r2, r2, 0.5; // add 1/2

4.3.1. Directive Statements

Directive keywords begin with a dot, so no conflict is possible with user-defined identifiers.
The directives in PTX are listed in Table 1 and described in Chapter 5 and Chapter 9.

Table 1. PTX Directives

.align .global .shared .union

.const .local .sreg .version

.entry .loc .struct .visible

.extern .param .surf

.file .reg .target

.func .section .tex

4.3.2. Instruction Statements

Instructions are formed from an instruction opcode followed by a comma-separated list of
zero or more operands, and terminated with a semicolon. Operands may be register
variables, constant expressions, address expressions, or label names. Instructions have an
optional guard predicate which controls conditional execution. The guard predicate follows
the optional label and precedes the opcode, and is written as @p, where p is a predicate
register. The guard predicate may be optionally negated, written as @!p.

The destination operand is first, followed by source operands.

Instruction keywords are listed in Table 2. All instruction keywords are reserved tokens in
PTX.

 Chapter 4. Syntax

PTX ISA Version 1.2 15
7/7/2008

Table 2. Reserved Instruction Keywords

abs cos min ret sqrt

add cvt mov rsqrt st

addc div mul sad sub

and ex2 mul24 selp tex

atom exit neg set trap

bar ld not setp vote

bra lg2 or shl xor

brkpt mad rcp shr

call mad24 red sin

cnot max rem slct

4.4. Identifiers

User-defined identifiers follow extended C++ rules: they either start with a letter followed
by zero or more letters, digits, underscore, or dollar characters; or they start with an
underscore, dollar, or percentage character followed by one or more letters, digits,
underscore, or dollar characters:

 followsym: [a-zA-Z0-9_$]
 identifier: [a-zA-Z]{followsym}* | {[_$%]{followsym}+

PTX does not specify a maximum length for identifiers and suggests that all
implementations support a minimum length of at least 1024 characters.

Many high-level languages such as C and C++ follow similar rules for identifier names,
except that the percentage sign is not allowed. PTX allows the percentage sign as the first
character of an identifier. The percentage sign can be used to avoid name conflicts, e.g.
between user-defined variable names and compiler-generated names.

PTX predefines one constant and a small number of special registers that begin with the
percentage sign, listed in Table 3.

Table 3. Predefined Identifiers

%clock %ctaid %ntid

%gridid %nctaid %tid

WARP_SZ

Chapter 4: Syntax

16 PTX ISA Version 1.2
 7/7/2008

4.5. Constants

PTX supports integer and floating-point constants and constant expressions. These
constants may be used in data initialization and as operands to instructions. Type checking
rules remain the same for integer, floating-point, and bit-size types. For predicate-type data
and instructions, integer constants are allowed and are interpreted as in C, i.e., zero values
are FALSE and non-zero values are TRUE.

4.5.1. Integer Constants
Integer constants are 64-bits in size and are either signed or unsigned, i.e., every integer
constant has type .s64 or .u64. The signed/unsigned nature of an integer constant is needed
to correctly evaluate constant expressions containing operations such as division and ordered
comparisons, where the behavior of the operation depends on the operand types. When
used in an instruction or data initialization, each integer constant is converted to the
appropriate size based on the data or instruction type at its use.

Integer literals may be written in decimal, hexadecimal, octal, or binary notation. The syntax
follows that of C. Integer literals may be followed immediately by the letter ‘U’ to indicate
that the literal is unsigned.

 hexadecimal literal: 0[xX]{hexdigit}+U?
 octal literal: 0{octal digit}+U?
 binary literal: 0[bB]{bit}+U?
 decimal literal {nonzero-digit}{digit}*U?

Integer literals are non-negative and have a type determined by their magnitude and optional
type suffix as follows: literals are signed (.s64) unless the value cannot be fully represented in
.s64 or the unsigned suffix is specified, in which case the literal is unsigned (.u64).

There is a predefined integer constant, WARP_SZ, whose value is 32.

4.5.2. Floating-Point Constants
Floating-point constants are represented as 64-bit double-precision values, and all floating-
point constant expressions are evaluated using 64-bit double precision arithmetic. The only
exception is the 32-bit hex notation for expressing an exact single-precision floating-point
value; such values retain their exact 32-bit single-precision value and may not be used in
constant expressions. Each 64-bit floating-point constant is converted to the appropriate
floating-point size based on the data or instruction type at its use.

Floating-point literals may be written with an optional decimal point and an optional signed
exponent. Unlike C and C++, there is no suffix letter to specify size; literals are always
represented in 64-bit double-precision format.

PTX includes a second representation of floating-point constants for specifying the exact
machine representation using a hexadecimal constant. To specify IEEE-752 double-
precision floating point values, the constant begins with 0d or 0D followed by 16 hex digits.
To specify IEEE-752 single-precision floating point values, the constant begins with 0f or
0F followed by 8 hex digits.

 Chapter 4. Syntax

PTX ISA Version 1.2 17
7/7/2008

0[fF]{hexdigit}{8} // single-precision floating point

0[dD]{hexdigit}{16} // double-precision floating point

Example:
 mov.f32 $f3, 0F3f800000; // 1.0

4.5.3. Predicate Constants

In PTX, integer constants may be used as predicates. For predicate-type data initializers and
instruction operands, integer constants are interpreted as in C, i.e., zero values are FALSE
and non-zero values are TRUE.

4.5.4. Constant Expressions

In PTX, constant expressions are formed using operators as in C and are evaluated using
rules similar to those in C, but simplified by restricting types and sizes, removing most casts,
and defining full semantics to eliminate cases where expression evaluation in C is
implementation dependent.

Constant expressions are formed from constant literals, unary plus and minus, basic
arithmetic operators (addition, subtraction, multiplication, division), comparison operators,
the conditional ternary operator (? :), and parentheses. Integer constant expressions also
allow unary logical negation (!), bitwise complement (~), remainder (%), shift operators (<<

and >>), bit-type operators (&, |, and ^), and logical operators (&&, ||).

Constant expressions in ptx do not support casts between integer and floating-point.

Constant expressions are evaluated using the same operator precedence as in C. The
following table gives operator precedence and associativity. Operator precedence is highest
for unary operators and decreases with each line in the chart. Operators on the same line
have the same precedence and are evaluated right-to-left for unary operators and left-to-right
for binary operators.

Chapter 4: Syntax

18 PTX ISA Version 1.2
 7/7/2008

Table 4. Operator Precedence

Kind Operator Symbols Operator Names Associates

Primary () parenthesis n/a

Unary + - ! ~ plus, minus, negation, complement right

 (.s64) (.u64) casts right

Binary * / % multiplication, division, remainder left

 + - addition, subtraction

 >> << shifts

 < > <= >= ordered comparisons

 == != equal, not equal

 & bitwise AND

 ^ bitwise XOR

 | bitwise OR

 && logical AND

 || logical OR

Ternary ? : conditional right

4.5.5. Integer Constant Expression Evaluation
Integer constant expressions are evaluated at compile time according to a set of rules that
determine the type (signed .s64 versus unsigned .u64) of each sub-expression. These rules
are based on the rules in C, but they've been simplified to apply only to 64-bit integers, and
behavior is fully defined in all cases (specifically, for remainder and shift operators).

• Literals are signed unless unsigned is needed to prevent overflow, or unless the literal
uses a 'U' suffix.

Example: 42, 0x1234, 0123 are signed.

Example: 0xFABC123400000000, 42U, 0x1234U are unsigned.

• Unary plus and minus preserve the type of the input operand.

Example: +123, -1, -(-42) are signed

Example: -1U, -0xFABC123400000000 are unsigned.

• Unary logical negation (!) produces a signed result with value 0 or 1.

• Unary bitwise complement (~) interprets the source operand as unsigned and produces
an unsigned result.

• Some binary operators require normalization of source operands. This normalization is
known as the usual arithmetic conversions and simply converts both operands to unsigned
type if either operand is unsigned.

• Addition, subtraction, multiplication, and division perform the usual arithmetic
conversions and produce a result with the same type as the converted operands. That is,

 Chapter 4. Syntax

PTX ISA Version 1.2 19
7/7/2008

the operands and result are unsigned if either source operand is unsigned, and is
otherwise signed.

• Remainder (%) interprets the operands as unsigned. Note that this differs from C,
which allows a negative divisor but defines the behavior to be implementation
dependent.

• Left and right shift interpret the second operand as unsigned and produce a result with
the same type as the first operand. Note that the behavior of right-shift is determined
by the type of the first operand: right shift of a signed value is arithmetic and preserves
the sign, and right shift of an unsigned value is logical and shifts in a zero bit.

• AND (&), OR (|), and XOR (^) perform the usual arithmetic conversions and produce
a result with the same type as the converted operands.

• AND_OP (&&), OR_OP (||), Equal (==), and Not_Equal (!=) produce a signed
result. The result value is 0 or 1.

• Ordered comparisons (<, <=, >, >=) perform the usual arithmetic conversions on
source operands and produce a signed result. The result value is 0 or 1.

• Casting of expressions to signed or unsigned is supported using (.s64) and (.u64) casts.

• For the conditional operator (? :) , the first operand must be an integer, and the second
and third operands are either both integers or both floating-point. The usual arithmetic
conversions are performed on the second and third operands, and the result type is the
same as the converted type.

Chapter 4: Syntax

20 PTX ISA Version 1.2
 7/7/2008

4.5.6. Summary of Constant Expression Evaluation Rules

These rules are summarized in the following table.

Table 5. Constant Expression Evaluation Rules

Kind Operator Operand
Types

Operand Interpretation Result Type

Primary () any type same as source same as source

 constant literal n/a n/a .u64, .s64, or .f64

Unary + - any type same as source same as source

 ! integer zero or non-zero .s64

 ~ integer .u64 .u64

Cast (.u64) integer .u64 .u64

 (.s64) integer .s64 .s64

Binary + - * / .f64

integer

.f64

use usual conversions

.f64

converted type

 < > <= >= .f64

integer

.f64

use usual conversions

.s64

.s64

 == != .f64

integer

.f64

use usual conversions

.s64

.s64

 % integer .u64 .u64

 >> << integer 1
st
 unchanged, 2

nd
 is .u64 same as 1

st
 operand

 & | ^ integer .u64 .u64

 && || integer zero or non-zero .s64

Ternary ? : int ?.f64 : .f64

int ? int : int

same as sources

use usual conversions

.f64

converted type

PTX ISA Version 1.2 21
7/7/2008

Chapter 5.

State Spaces, Types, and Variables

While the specific resources available in a given target GPU will vary, the kinds of resources
will be common across platforms, and these resources are abstracted in PTX through state
spaces and data types.

5.1. State Spaces

A state space is a storage area with particular characteristics. All variables reside in some
state space. The characteristics of a state space include its size, addressability, access speed,
access rights, and level of sharing between threads.

The state spaces defined in PTX are a byproduct of parallel programming and graphics
programming. The list of state spaces is shown in Table 4, and properties of state spaces are
shown in Table 5.

Table 6. State Spaces

Name Description

.reg Registers, fast.

.sreg Special registers. Read-only; pre-defined; platform-specific.

.const Shared, read-only memory.

.global Global memory, shared by all threads.

.local Local memory, private to each thread.

.param User parameters for a program, available at CTA entry.

.shared Addressable memory shared between threads in 1 CTA.

.surf Global surface memory.

.tex Global texture memory.

Chapter 5: State Spaces, Types, and Variables

22 PTX ISA Version 1.2
 7/7/2008

Table 7. Properties of State Spaces

Name Addressable Initializable Access Sharing

.reg No No R/W per-thread

.sreg No No RO per-CTA

.const Yes Yes RO per-grid

.global Yes Yes R/W Context

.local Yes No R/W per-thread

.param Yes No RO per-grid

.shared Yes No R/W per-CTA

.surf via surface instructions Yes, via driver R/W Context

.tex via texture instruction TEX Yes, via driver RO Context

5.1.1. Register State Space

Registers (.reg state space) are fast storage locations. The number of registers is limited, and
will vary from platform to platform. When the limit is exceeded, register variables will be
spilled to memory, causing changes in performance. For each architecture, there is a
recommended maximum number of registers to use (see the “NVIDIA CUDA Compute
Unified Device Architecture Programming Guide” for details).

Registers may be typed (signed integer, unsigned integer, floating point, predicate) or
untyped. Register size is restricted; aside from predicate registers which are 1-bit, registers
have a width of 16-, 32-, or 64-bits.

Registers differ from the other state spaces in that they are not fully addressable, i.e., it is not
possible to refer to the address of a register.

Registers may have alignment boundaries required by multi-word loads and stores.

5.1.2. Special Register State Space
The special register (.sreg) state space holds predefined, platform-specific registers, such as
grid, CTA, and thread parameters, clock counters, and performance monitoring registers.
All special registers are predefined.

5.1.3. Constant State Space
The constant (.const) state space is a read-only memory, initialized by the host. The size is
limited and device-dependent.

 Chapter 5. State Spaces, Types, and Variables

PTX ISA Version 1.2 23
7/7/2008

5.1.4. Global State Space

The global (.global) state space is memory that is accessible by all threads in a context. It is
the mechanism by which different CTAs and different grids can communicate. Use ld.global,
st.global, and atom.global to access global variables.

For any thread in a context, all addresses are in global memory are shared.

Global memory is not sequentially consistent. Consider the case where one thread executes
the following two assignments:

 a = a + 1;

 b = b – 1;

If another thread sees the variable b change, the store operation updating a may still be in
flight. This reiterates the kind of parallelism available in machines that run PTX. Threads
must be able to do their work without waiting for other threads to do theirs, as in lock-free
and wait-free style programming.

Sequential consistency is provided by the bar.sync instruction. Threads wait at the barrier
until all threads in the CTA have arrived. All memory writes prior to the bar.sync instruction
are guaranteed to be visible to any reads after the barrier instruction.

5.1.5. Local State Space
The local state space (.local) is private memory for each thread to keep its own data. It is
typically standard memory with cache. The size is limited, as it must be allocated on a per-
thread basis. Use ld.local and st.local to access local variables.

5.1.6. Parameter State Space

The parameter (.param) state space provides addressable user parameters to CTAs. User
parameters begin at address zero, and the address space is shared across CTAs within a grid.

The location of parameter space is implementation specific. For example, in some
implementations, parameter space resides in global memory. No access protection is
provided between parameter and global space in this case.

5.1.7. Shared State Space

The shared (.shared) state space is a per-CTA region of memory for threads in a CTA to
share data. An address in shared memory can be read and written by any thread in a CTA.
Use ld.shared and st.shared to access shared variables.

Shared memory typically has some optimizations to support the sharing. One example is
broadcast; where all threads read from the same address. Another is sequential access from
sequential threads.

Chapter 5: State Spaces, Types, and Variables

24 PTX ISA Version 1.2
 7/7/2008

5.1.8. Texture State Space

The texture (.tex) state space is global memory accessed via the texture instruction. It is
shared by all threads in a context.

The GPU hardware has a fixed number of texture bindings that can be accessed within a
single program (typically 128). The .tex directive will bind the named texture memory
variable to a hardware texture id, where texture ids are allocated sequentially beginning with
zero. The .tex[n] directive will bind the named texture memory variable to hardware texture
id ‘n’. Multiple names may be bound to the same physical texture id. An error is generated
only if the texture id assigned is out of the physical texture id range (e.g., 0..127). The
texture name must be of type .u32 or .u64.

Texture memory is read-only. A texture’s base address is assumed to be aligned to a 16-byte
boundary.

Example:
.tex .u32 tex_a; // bound to physical texture 0

 .tex[2] .u32 tex_b; // bound to physical texture 2

 .tex .u32 tex_c, tex_d; // both bound to physical texture 1

 .tex .u32 tex_d; // bound to physical texture 2

 .tex[42] .u32 tex_e; // bound to physical texture 42

 .tex .u32 tex_f; // bound to physical texture 3

5.1.9. Surface State Space
The surface (.surf) state space is unimplemented in the current release.

 Chapter 5. State Spaces, Types, and Variables

PTX ISA Version 1.2 25
7/7/2008

5.2. Types

5.2.1. Fundamental Types
In PTX, the fundamental types reflect the native data types supported by the target
architectures. A fundamental type specifies both a basic type and a size. Register variables
are always of a fundamental type, and instructions operate on these types. The same type-
size specifiers are used for both variable definitions and for typing instructions, so their
names are intentionally short.

The following table lists the fundamental type specifiers for each basic type:

Table 8. Fundamental Specifiers

Basic Type

Fundamental Type Specifiers

Signed integer .s8, .s16, .s32, .s64

Unsigned integer .u8, .u16, .u32, .u64

Floating-point .f16, .f32, .f64

Bits (untyped) .b8, .b16, .b32, .b64

Predicate .pred

Most instructions have one or more type specifiers, needed to fully specify instruction
behavior. Operand types and sizes are checked against instruction types for compatibility.

Two fundamental types are compatible if they have the same basic type and are the same
size. Signed and unsigned integer types are compatible if they have the same size. The bit-
size type is compatible with any fundamental type having the same size.

In principle, all variables could be declared using only bit-size types, but typed variables
enhance program readability and allow for better operand type checking.

5.2.2. Restricted Use of Sub-Word Sizes
The .u8 and .s8 types are restricted to ld, st, and cvt instructions. The ld and st instructions
also accept .b8 type. Byte-size integer load instructions zero- or sign-extended the value to
the size of the destination register.

The .f16 floating-point type is allowed only in conversions to and from .f32 and .f64 types.
All floating-point instructions operate only on .f32 and .f64 types.

Chapter 5: State Spaces, Types, and Variables

26 PTX ISA Version 1.2
 7/7/2008

5.3. Variables

In PTX, a variable declaration describes both the variable’s type and its state space. In
addition to fundamental types, PTX supports types for aggregate objects such as vectors,
arrays, structures and unions.

NOTE: The current version of PTX does not implement structures or unions, and
provides limited support for vectors. Specifically, vector variable declarations are not
implemented, but vector operands (in the form of scalar tuples; see Section 6.4.3) and
vector instruction types are supported.

5.3.1. Variable Declarations

All storage for data is specified with variable declarations. Every variable must reside in one
of the state spaces enumerated in the previous section.

A variable declaration names the space in which the variable resides, its type and size, its
name, an optional array size, an optional initializer, and an optional fixed address for the
variable.

Examples:
 .global .u32 loc;

 .reg .s32 i = 0;

 .const .f32 bias[] = {-1.0, 1.0};

 .global .u8 bg[4] = {0, 0, 0, 0};

 .reg .v4 .f32 accel;

 .struct float4 { .f32 v0,v1,v2,v3 }; // typedef

 .global .struct float4 coord;

5.3.2. Vectors

Limited-length vector types are supported. Vectors of length 2 and 4 of any fundamental
type can be declared by prefixing the type with .v2 or .v4. Vectors must be based on a
fundamental type, and they may reside in the register space. Vectors cannot exceed 128-bits
in length; for example, .v4.f64 is not allowed. Three-element vectors may be handled by
using a .v4 vector, where the fourth element provides padding. This is a common case for
three-dimensional grids, textures, etc.

Examples:
 .global .v4 .f32 V; // a length-4 vector of floats

 .shared .v2 .u16 uv; // a length-2 vector of unsigned ints

 .reg .v4 .pred vpred; // a vector of predicates registers

 Chapter 5. State Spaces, Types, and Variables

PTX ISA Version 1.2 27
7/7/2008

5.3.3. Array Declarations

Array declarations are provided to allow the programmer to reserve space. To declare an
array, the variable name is followed with dimensional declarations similar to fixed-size array
declarations in C. The size of the dimension is either a constant expression, or is left empty,
being determined by an array initializer. Here are some examples:

 .local .u16 kernel[19][19];

 .shared .u8 mailbox[128];

 .global .s32 offset[][] = { {-1, 0}, {0, -1}, {1, 0}, {0, 1} };

The size of the array specifies how many elements should be reserved. For the kernel
declaration above, 19*19 (361) halfwords are reserved (722 bytes).

5.3.4. Structures and Unions
A structure definition specifies a sequence of fields (consisting of a type/size and a name) as a
block of memory. This is analogous to the structures in C. Once defined, the structure can
be used as a type designator in subsequent variable declarations.

Example:
 .struct somestruct { .s32 i; .s32 j; .f32 x; .f32 y; };

 .global somestruct p;

 .reg .b32 ptr;

…

 ld.s32 r0, [p.x];

 mov.b32 ptr, p; // get address of structure p

Union definitions use the same syntax as struct definitions, with the keyword .struct replaced
by .union. The difference between a struct and a union is that in a struct, the fields are laid
out sequentially in memory, while in a union, the fields all use the same memory. Unions
provide a way to reuse memory in a relatively type-safe manner. Here is an example that
provides storage for a float or an integer:

 .union intOrFloat { .s32 i; .f32 f; };

Structure and union declarations may be nested. The shortcut syntax of C++ with
anonymous unions is also supported.

Chapter 5: State Spaces, Types, and Variables

28 PTX ISA Version 1.2
 7/7/2008

5.3.5. Initializers

Declared variables may specify an initial value using a syntax similar to C/C++, where the
variable name is followed by an equals sign and the initial value or values for the variable. A
scalar takes a single value, while vectors and arrays take nested lists of values inside of curly
braces (the nesting matches the dimensionality of the declaration). Structures take a list of
values that matches the fields in a structure. Initializers are allowed for all types except .f16.

Examples:
 .global .s32 n = 10;

 .const .f32 blur_kernel[][]

 = {{.05,.1,.05},{.1,.4,.1},{.05,.1,.05}};

 .global .v4 .u8 rgba[3] = {{1,0,0,0}, {0,1,0,0}, {0,0,1,0}};

Currently, variable initialization is supported only for constant and global state spaces.

5.3.6. Alignment
Byte alignment of storage for all addressable variables can be specified in the variable
declaration. Alignment is specified using an optional .align byte-count specifier immediately
following the state-space specifier. The variable will be aligned to an address which is an
integer multiple of byte-count. For arrays, structures, and unions, alignment specifies the
address alignment for the starting address of the entire structure, not for individual elements.

Examples:
// allocate array at 4-byte aligned address. Elements are bytes.

 .const .align 4 .b8 bar[8] = {0,0,0,0,2,0,0,0};

Note that all PTX instructions that access memory require that the address be aligned to a
multiple of the transfer size.

5.3.7. Parameterized Variable Names

Since PTX supports virtual registers, it is quite common for a compiler frontend to generate
a large number of register names. Rather than require explicit declaration of every name,
PTX supports a syntax for creating a set of variables having a common prefix string
appended with integer suffixes. For example, suppose a program uses a large number, say
one hundred, of .b32 variables, named %r0, %r1, ..., %r99. These 100 register variables can
be declared as follows:

 .reg .b32 %r<100>; // declare %r0, %r1, …, %r99

This shorthand syntax may be used with any of the fundamental types and with any state
space, and may be preceded by an alignment specifier. Array, structure, and union variables
cannot be declared this way, nor are initializers permitted.

PTX ISA Version 1.2 29
7/7/2008

Chapter 6.

Instruction Operands

6.1. Operand Type Information

All operands in instructions have a known type from their declarations. Each operand type
must be compatible with the type determined by the instruction template and instruction
type. There is no automatic conversion between types.

The bit-size type is compatible with every type having the same size. Integer types of a
common size are compatible with each other. Operands having type different from but
compatible with the instruction type are silently cast to the instruction type.

6.2. Source Operands

The source operands are denoted in the instruction descriptions by the names a, b, and c.
PTX describes a load-store machine, so operands for ALU instructions must all be in
variables declared in the .reg register state space. For most operations, the sizes of the
operands must be consistent.

The cvt (convert) instruction takes a variety of operand types and sizes, as its job is to
convert from nearly any data type to any other data type (and size).

The ld, st, mov, and cvt instructions copy data from one location to another. Instructions ld
and st move data from/to addressable state spaces to/from registers. The mov instruction
copies data between registers.

Most instructions have an optional predicate guard that controls conditional execution, and a
few instructions have additional predicate source operands. Predicate operands are denoted
by the names p, q, r, s.

6.3. Destination Operands

PTX instructions that produce a single result store the result in the field denoted by d (for
destination) in the instruction descriptions. The result operand is a scalar or vector variable
in the register state space.

.

Chapter 6: Instruction Operands

30 PTX ISA Version 1.2
 7/7/2008

6.4. Using Addresses, Arrays, Vectors, Structures,
and Unions

Using scalar variables as operands is straightforward. The interesting capabilities begin with
addresses, arrays, vectors, structures and unions.

6.4.1. Addresses as Operands
Address arithmetic is performed using integer arithmetic and logical instructions. Examples
include pointer arithmetic and pointer comparisons. All addresses and address
computations are byte-based; there is no support for C-style pointer arithmetic.

The mov instruction can be used to move the address of a variable into a pointer. Load and
store operations move data between registers and locations in addressable state spaces. The
syntax is similar to that used in many assembly languages, where scalar variables are simply
named and addresses are de-referenced by enclosing the address expression in square
brackets. Address expressions include variable names, address registers, address register plus
byte offset, and immediate address expressions which evaluate at compile-time to a constant
address.

Here are a few examples:

 .shared .u16 x;

 .reg .u16 r0;

 .global .v4 .f32 V;

 .reg .v4 .f32 W;

 .const .s32 tbl[256];

 .reg .b32 p;

 .reg .s32 q;

 ld.u16 r0,[x];

 ld.v4.f32 W, [V];

 ld.s32 q, [tbl+12];

 mov.b32 p, tbl;

 Chapter 6. Instruction Operands

PTX ISA Version 1.2 31
7/7/2008

6.4.2. Arrays as Operands

Arrays of all types can be declared, and the identifier becomes an address constant in the
space where the array is declared. The size of the array is a constant in the program.

Array elements can be accessed using an explicitly calculated byte address, or by indexing
into the array using square-bracket notation. The expression within square brackets is either
a constant integer, a register variable, or a simple “register with constant offset” expression,
where the offset is a constant expression that is either added or subtracted from a register
variable. If more complicated indexing is desired, it must be written as an address
calculation prior to use. Examples are

 ld.u32 s, a[0];

 ld.u32 s, a[N-1];

 mov.u32 s, a[1]; // move address of a[1] into s

6.4.3. Vectors as Operands

Vector operands are supported by a limited subset of instructions, which include mov, ld, st,
and tex. Vectors may also be passed as arguments to called functions.

Vector elements can be extracted from the vector with the suffixes .x, .y, .z and .w, as well as
the typical color fields .r, .g, .b and .a.

A brace-enclosed list is used for pattern matching to pull apart vectors.

 .reg .v4 .f32 V;

 .reg .f32 a, b, c, d;

 mov.v4.f32 {a,b,c,d}, V;

Vector loads and stores can be used to implement wide loads and stores, which may improve
memory performance. The registers in the load/store operations can be a vector, or a brace-
enclosed list of similarly typed scalars. Here are examples:

 ld.v4.f32 {a,b,c,d}, [addr+offset];

 ld.v2.u32 V2, [addr+offset2];

Elements in a brace-enclosed vector, say {Ra, Rb, Rc, Rd}, correspond to extracted elements
as follows:

 Ra = V.x = V.r

 Rb = V.y = V.g

 Rc = V.z = V.b

 Rd = V.w = V.a

6.4.4. Structures and Unions as Operands

Structures and unions can only access their members; there are no instructions that take
entire structures as operands.

Chapter 6: Instruction Operands

32 PTX ISA Version 1.2
 7/7/2008

6.4.5. Labels and Function Names as Operands

Labels and function names can be used only in branch and call instructions, and in move
instructions to get the address of the label or function into a register, for use in an indirect
branch or call.

6.5. Type Conversion

All operands to all arithmetic, logic, and data movement instruction must be of the same
type and size, except for operations where changing the size and/or type is part of the
definition of the instruction. Operands of different sizes or types must be converted prior
to the operation.

6.5.1. Scalar Conversions
Table 6 shows what precision and format the cvt instruction uses given operands of differing
types. For example, if a cvt.s32.u16 instruction is given a u16 source operand and s32 as a
destination operand, the u16 is zero-extended to s32.

Conversions to floating-point that are beyond the range of floating-point numbers are
represented with the maximum floating-point value (IEEE Inf for f32 and f64, and ~131,000
for f16).

 Chapter 6. Instruction Operands

PTX ISA Version 1.2 33
7/7/2008

Table 9. CVT Instruction Precision and Format

 Destination Format

s8 s16 s32 s64 u8 u16 u32 u64 f16 f32 f64

S
o

u
rc

e
 F

o
rm

a
t

s8 - sext sext sext - sext sext sext s2f s2f s2f

s16 chop
1
 - sext sext chop

1
 - sext sext s2f s2f s2f

s32 chop
1
 chop

1
 - sext chop

1
 chop

1
 - sext s2f s2f s2f

s64 chop
1
 chop

1
 chop - chop

1
 chop

1
 chop - s2f s2f s2f

u8 - zext zext zext - zext zext zext u2f u2f u2f

u16 chop
1
 - zext zext chop

1
 - zext zext u2f u2f u2f

u32 chop
1
 chop

1
 - zext chop

1
 chop

1
 - zext u2f u2f u2f

u64 chop
1
 chop

1
 chop - chop

1
 chop

1
 chop - u2f u2f u2f

f16 f2s f2s f2s f2s f2u f2u f2u f2u - f2f f2f

f32 f2s f2s f2s f2s f2u f2u f2u f2u f2f - f2f

f64 f2s f2s f2s f2s f2u f2u f2u f2u f2f f2f -

Notes

sext = sign extend; zext = zero-extend; chop = keep only low bits that fit;

s2f = signed-to-float; f2s = float-to-signed;

u2f = unsigned-to-float; f2u = float-to-unsigned;

f2f = float-to-float;

1

If the destination register is wider than the destination format, the result is extended to the
destination register width after chopping. The type of extension (sign or zero) is based on the
destination format. For example, cvt.s16.u32 targeting a 32-bit register will first chop to 16-bits,
then sign-extend to 32-bits.

Chapter 6: Instruction Operands

34 PTX ISA Version 1.2
 7/7/2008

6.5.2. Rounding Modifiers

Conversion instructions may specify a rounding modifier. In PTX, there are four integer
rounding modifiers and four floating-point rounding modifiers. The following tables
summarize the rounding modifiers.

Table 10. Floating-Point Rounding Modifiers

Modifier Description

.rn mantissa LSB rounds to nearest even

.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

Table 11. Integer Rounding Modifiers

Modifier Description

.rni round to nearest integer, choosing even integer if source is equidistant
between two integers.

.rzi round to nearest integer in the direction of zero

.rmi round to nearest integer in direction of negative infinity

.rpi round to nearest integer in direction of positive infinity

PTX ISA Version 1.2 35
7/7/2008

Chapter 7.

Instruction Set

7.1. Format and Semantics of Instruction
Descriptions

This section describes each PTX instruction. In addition to the name and the format of the
instruction, the semantics are described, followed by some examples that attempt to show
several possible instantiations of the instruction.

7.2. PTX Instructions

PTX instructions generally have from zero to four operands, plus an optional guard
predicate appearing after an ‘@’ symbol to the left of the opcode:

� @P opcode;

� @P opcode A;

� @P opcode D, A;

� @P opcode D, A, B;

� @P opcode D, A, B, C;

For instructions that create a result value, the D operand is the destination operand, while A,
B, and C are the source operands.

The setp instruction writes two destination registers. We use a ‘|’ symbol to separate
multiple destination registers.

 setp.s32.lt p|q, a, b; // p = (a < b); q = !(a < b);

For some instructions the destination operand is optional. A “bit bucket” operand denoted
with an underscore (‘_’) may be used in place of a destination register.

Chapter 7: Instruction Set

36 PTX ISA Version 1.2
 7/7/2008

7.3. Predicated Execution

In PTX, predicate registers are virtual and have .pred as the type specifier. So, predicate
registers can be declared as

 .reg .pred p, q, r

All instructions have an optional “guard predicate” which controls conditional execution of
the instruction. The syntax to specify conditional execution is to prefix an instruction with
“@[!]p”, where p is a predicate variable, optionally negated. Instructions without a guard
predicate are executed unconditionally.

Predicates are most commonly set as the result of a comparison performed by the SETP
instruction.

As an example, consider the high-level code

 if (i < n)

 j = j + 1;

This can be written in PTX as

 setp.lt.s32 p, i, n; // p = (i < n)

@p add.s32 j, j, 1; // if i < n, add 1 to j

To get a conditional branch or conditional function call, use a predicate to control the
execution of the branch or call instructions. To implement the above example as a true
conditional branch, the following PTX instruction sequence might be used:

 setp.lt.s32 p, i, n; // compare i to n

@!p bra L1; // if false, branch over

 add.s32 j, j, 1;

L1: …

 Chapter 7. Instruction Set

PTX ISA Version 1.2 37
7/7/2008

7.3.1. Comparisons

7.3.1.1. Integer and Bit-Size Comparisons

The signed integer comparisons are the traditional eq (equal), ne (not-equal), lt (less-than), le
(less-than-or-equal), gt (greater-than), and ge (greater-than-or-equal). The unsigned
comparisons are eq, ne, lo (lower), ls (lower-or-same), hi (higher), and hs (higher-or-same).
The bit-size comparisons are eq and ne; ordering comparisons are not defined for bit-size
types. The following table shows the operators for signed integer, unsigned integer, and bit-
size types.

Table 12. Operators for Signed Integer, Unsigned Integer, and Bit-
Size Types

Meaning Signed Operator Unsigned Operator Bit-Size Operator

a == b EQ EQ EQ

a != b NE NE NE

a < b LT LO

a <= b LE LS

a > b GT HI

a >= b GE HS

7.3.1.2. Floating-Point Comparisons

The ordered comparisons are eq, ne, lt, le, gt, ge. If either operand is NaN, the result is false.

Table 13. Floating-Point Comparison Operators

Meaning Floating-Point Operator

a == b && !isNaN(a) && !isNaN(b) EQ

a != b && !isNaN(a) && !isNaN(b) NE

a < b && !isNaN(a) && !isNaN(b) LT

a <= b && !isNaN(a) && !isNaN(b) LE

a > b && !isNaN(a) && !isNaN(b) GT

a >= b && !isNaN(a) && !isNaN(b) GE

Chapter 7: Instruction Set

38 PTX ISA Version 1.2
 7/7/2008

To aid comparison operations in the presence of NaN values, unordered versions are
included: equ, neu, ltu, leu, gtu, geu. If both operands are numeric values (not NaN), then
these comparisons have the same result as their ordered counterparts. If either operand is
NaN, then the result of these comparisons is true.

Table 14. Floating-Point Comparison Operators Accepting NaN

Meaning Floating-Point Operator

a == b || isNaN(a) || isNaN(b) EQU

a != b || isNaN(a) || isNaN(b) NEU

a < b || isNaN(a) || isNaN(b) LTU

a <= b || isNaN(a) || isNaN(b) LEU

a > b || isNaN(a) || isNaN(b) GTU

a >= b || isNaN(a) || isNaN(b) GEU

To test for NaN values, two operators num (numeric) and nan (isNaN) are provided. num
returns true if both operands are numeric values (not NaN), and nan returns true if either
operand is NaN.

Table 15. Floating-Point Comparison Operators Testing for NaN

Meaning Floating-Point Operator

!isNaN(a) && !isNaN(b) NUM

isNaN(a) || isNaN(b) NAN

7.3.2. Manipulating Predicates

Predicate values may be computed and manipulated using the following instructions: and, or,
xor, not, and mov.

There is no direct conversion between predicates and integer values, and no direct way to
load or store predicate register values. However, setp can be used to generate a predicate
from an integer, and the predicate-based select (selp) instruction can be used to generate an
integer value based on the value of a predicate; for example:

 selp.u32 %r1,1,0,%p; // convert predicate to 32-bit value

 Chapter 7. Instruction Set

PTX ISA Version 1.2 39
7/7/2008

7.4. Type Information for Instructions and Operands

Instructions that have a type must have a type suffix, e.g. add.u16 or add.f32. The operand
type must agree with the instruction type suffix. The bit-size types agree with any type of
the same size. For example, the add instruction requires type and size information to
properly perform the addition operation (signed, unsigned, float, different sizes), and this
information must be specified as a suffix to the opcode.

Example:
 add.u16 d, a, b; // perform a 16-bit unsigned add

Integer types are compatible provided they have the same size, and integer operands are
silently cast to the instruction type if needed. For example, an unsigned integer operand
used in a signed integer instruction will be treated as a signed integer by the instruction.

Example:
 .reg .u32 x;

 .reg .s32 a;

 neg.s32 a, x; // signed negation of x

Some instructions require multiple type and size declarations, most notably the data
conversion instruction cvt. It requires types for the result and source, and these are placed
in the same order as the operands. For example:

 cvt.f32.u16 d, a; // convert 16-bit unsigned to 32-bit float

7.5. Divergence of Threads in Control Constructs

Threads in a CTA execute together, at least in appearance, until they come to a conditional
control construct such as a conditional branch, conditional function call, or conditional
return. If threads execute down different control flow paths, the threads are called divergent.
If all of the threads act in unison and follow a single control flow path, the threads are called
uniform. Both situations occur often in programs.

A CTA with divergent threads may have lower performance than a CTA with uniformly
executing threads, so it is important to have divergent threads re-converge as soon as
possible. All control constructs are assumed to be divergent points unless the control-flow
instruction is marked as uniform, using the .uni suffix. For divergent control flow, the
optimizing code generator automatically determines points of re-convergence. Therefore, a
compiler or code author targeting PTX can ignore the issue of divergent threads, but has the
opportunity to improve performance by marking branch points as uniform when the
compiler or author can guarantee that the branch point is non-divergent.

Chapter 7: Instruction Set

40 PTX ISA Version 1.2
 7/7/2008

7.6. Semantics

The goal of the semantic description of an instruction is to describe the results in all cases in
as simple language as possible. The semantics are described using C, until C is not
expressive enough.

7.6.1. Machine-Specific Semantics of 16-Bit Code
A PTX program may execute on a GPU with either a 16-bit or a 32-bit data path. When
executing on a 32-bit data path, 16-bit registers in PTX are mapped to 32-bit physical
registers, and 16-bit computations are “promoted” to 32-bit computations. This can lead to
computational differences between code run on a 16-bit machine versus the same code run
on a 32-bit machine, since the “promoted” computation may have bits in the high-order
half-word of registers that are not present in 16-bit physical registers. These extra precision
bits can become visible at the application level, for example, by a right-shift instruction.

At the PTX language level, one solution would be to define semantics for 16-bit code that is
consistent with execution on a 16-bit data path. This approach introduces a performance
penalty for 16-bit code executing on a 32-bit data path, since the translated code would
require many additional masking instructions to suppress extra precision bits in the high-
order half-word of 32-bit registers.

Rather than introduce a performance penalty for 16-bit code running on 32-bit GPUs, the
semantics of 16-bit instructions in PTX is machine-specific. A compiler or programmer may
chose to enforce portable, machine-independent 16-bit semantics by adding explicit
conversions to 16-bit values at appropriate points in the program to guarantee portability of
the code. However, for many performance-critical applications, this is not desirable, and for
many applications the difference in execution is preferable to limiting performance.

 Chapter 7. Instruction Set

PTX ISA Version 1.2 41
7/7/2008

7.7. Instructions

All PTX instructions may be predicated. In the following descriptions, the optional guard
predicate is omitted from the syntax.

7.7.1. Arithmetic Instructions
Arithmetic instructions operate on the numeric types in register and constant immediate
forms. The arithmetic instructions are:

� ADD

� ADDC

� SUB

� MUL

� MAD

� MUL24

� MAD24

� SAD

� DIV

� REM

� ABS

� NEG

� MIN

� MAX

Chapter 7: Instruction Set

42 PTX ISA Version 1.2
 7/7/2008

Table 16. Arithmetic Instructions: ADD

ADD Add two values

Syntax add[.sat].itype d, a, b;

add[.rnd][.sat].ftype d, a, b;

.itype = { .u16, .u32, .u64,

 .s16, .s32, .s64 };

.ftype = { .f32, .f64 };

Description Performs addition and writes the resulting value into a destination register.

Semantics d = a + b;

Integer Notes No integer rounding modifiers.

Saturation modifier:

.sat limits result to MININT..MAXINT (no overflow) for the size of the operation.
Applies only to .s32 type.

Floating Point
Notes

Rounding modifiers (default is .rn):

.rn mantissa LSB rounds to nearest even

.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

Saturation modifier:

.sat limits result to (0.0, 1.0).
Applies only to .f32 type.

An ADD instruction with an explicit rounding modifier treated conservatively by the code
optimizer. An ADD instruction with no rounding modifier defaults to round-to-nearest-
even and may be optimized aggressively by the code optimizer. In particular,
MUL/ADD sequences with no rounding modifiers may be optimized to use fused-
multiply-add instructions on the target device.

Target ISA Notes add.f64 requires sm_13 or later.

Rounding modifiers have the following target requirements:

.rn, .rz supported by all targets

.rm, .rp for add.f64, requires sm_13

 for add.f32, unimplemented

Examples @p add.u32 x,y,z;

 add.sat.s32 c,c,1;

 add.rz.f32 f1,f2,f3;

 Chapter 7. Instruction Set

PTX ISA Version 1.2 43
7/7/2008

Two instructions, add and addc, reference an implicitly specified condition code register (CC)
having a single carry flag bit (CC.CF) holding carry-in or carry-out. These instructions
support extended-precision integer addition. No other instructions access the condition
code, and there is no support for setting, clearing, or testing the condition code.

Table 17. Arithmetic Instructions: ADD

ADD Add two values with optional carry-out

Syntax add[.cc].type d, a, b;

.type = { .u32, .s32 };

Description Performs 32-bit integer addition and optionally writes the carry-out value into the
condition code register.

Semantics d = a + b;

if .cc specified, carry-out written to CC.CF

Integer Notes No integer rounding modifiers.

No saturation.

Behavior is the same for unsigned and signed integers.

Examples @p add.cc.b32 x1,y1,z1; // extended-precision addition of

@p addc.cc.b32 x2,y2,z2; // two 128-bit values

@p addc.cc.b32 x3,y3,z3;

@p addc.cc.b32 x4,y4,z4;

Table 18. Arithmetic Instructions: ADDC

ADDC Add two values with carry-in and optional carry-out

Syntax addc[.cc].type d, a, b;

.type = {.u32, .s32 };

Description Performs 32-bit integer addition with carry-in and optionally writes the carry-out value
into the condition code register.

Semantics d = a + b + CC.CF;

if .cc specified, carry-out written to CC.CF

Integer Notes No integer rounding modifiers.

No saturation.

Behavior is the same for unsigned and signed integers.

Examples @p add.cc.b32 x1,y1,z1; // extended-precision addition of

@p addc.cc.b32 x2,y2,z2; // two 128-bit values

@p addc.cc.b32 x3,y3,z3;

@p addc.cc.b32 x4,y4,z4;

Chapter 7: Instruction Set

44 PTX ISA Version 1.2
 7/7/2008

Table 19. Arithmetic Instructions: SUB

SUB Subtract one value from another

Syntax sub[.sat].itype d, a, b;

sub[.rnd][.sat].ftype d, a, b;

.itype = { .u16, .u32, .u64,

 .s16, .s32, .s64 };

.ftype = { .f32, .f64 };

Description Performs subtraction and writes the resulting value into a destination register.

Semantics d = a – b;

Integer Notes No integer rounding modifiers.

Saturation modifier:

.sat limits result to MININT..MAXINT (no overflow) for the size of the operation.
Applies only to .s32 type.

Floating Point
Notes

Rounding modifiers (default is .rn):

.rn mantissa LSB rounds to nearest even

.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

Saturation modifier:

.sat limits result to (0.0, 1.0).
Applies only to .f32 type.

An SUB instruction with an explicit rounding modifier treated conservatively by the code
optimizer. A SUB instruction with no rounding modifier defaults to round-to-nearest-
even and may be optimized aggressively by the code optimizer. In particular,
MUL/SUB sequences with no rounding modifiers may be optimized to use fused-
multiply-add instructions on the target device.

Target ISA Notes sub.f64 requires sm_13 or later.

Rounding modifiers have the following target requirements:

.rn, .rz available for all targets

.rm, .rp for sub.f64, requires sm_13
for sub.f32, unimplemented

Examples sub.s32 c,a,b;

 Chapter 7. Instruction Set

PTX ISA Version 1.2 45
7/7/2008

Table 20. Arithmetic Instructions: MUL

MUL Multiply two values

Syntax mul[.hi,.lo,.wide].itype d, a, b;

mul[.rnd][.sat].ftype d, a, b;

.itype = { .u16, .u32, .u64,

 .s16, .s32, .s64 };

.ftype = { .f32, .f64 };

Description Compute the product of two values.

Semantics t = a * b;

n = bitwidth of type;

d = t; // for floating-point and .wide

d = t<2n-1..n>; // for .hi variant

d = t<n-1..0>; // for .lo variant

Integer Notes The type of the operation represents the types of the a and b operands. If .hi or .lo is
specified, then d is the same size as a and b, and either the upper or lower half of the
result is written to the destination register. If .wide is specified, then d is twice as wide
as a and b to receive the full result of the multiplication.

The .wide suffix is supported only for 16- and 32-bit integer types.

No integer rounding modifiers.

No integer saturation.

Floating Point
Notes

For floating-point multiplication, all operands must be the same size.

Rounding modifiers (default is .rn):

.rn mantissa LSB rounds to nearest even

.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

Saturation modifier:

.sat limits result to (0.0, 1.0).
Applies only to .f32 type.

A MUL instruction with an explicit rounding modifier treated conservatively by the code
optimizer. A MUL instruction with no rounding modifier defaults to round-to-nearest-
even and may be optimized aggressively by the code optimizer. In particular,
MUL/ADD sequences with no rounding modifiers may be optimized to use fused-
multiply-add instructions on the target device.

Target ISA Notes mul.f64 requires sm_13 or later.

Rounding modifiers have the following target requirements:

.rn, .rz available for all targets

.rm, .rp for mul.f64, requires sm_13
for mul.f32, unimplemented

Examples mul.wide.s16 fa,fxs,fys; // 16*16 bits yields 32 bits

 mul.lo.s16 fa,fxs,fys; // 16*16 bits, save only the low 16 bits

 mul.wide.s32 z,x,y; // 32*32 bits, creates 64 bit result

 mul.f32 circumf,radius,pi // a single-precision multiply

Chapter 7: Instruction Set

46 PTX ISA Version 1.2
 7/7/2008

Table 21. Arithmetic Instructions: MAD

MAD Multiply two values and add a

third value

Syntax mad[.hi,.lo,.wide][.sat].itype d, a, b, c;

mad[.rnd][.sat].ftype d, a, b, c;

.itype = { .u16, .u32, .u64,

 .s16, .s32, .s64 };

.ftype = { .f32, .f64 };

Description Multiplies two values and adds a third, and then writes the resulting value into a
destination register.

Semantics t = a * b;

n = bitwidth of type;

d = t + c; // for floating-point and .wide

d = t<2n-1..n> + c; // for .hi variant

d = t<n-1..0> + c; // for .lo variant

Integer Notes The type of the operation represents the types of the a and b operands. If .hi or .lo is
specified, then d and c are the same size as a and b, and either the upper or lower half
of the result is written to the destination register. If .wide is specified, then d and c are
twice as wide as a and b to receive the result of the multiplication.

The .wide suffix is supported only for 16- and 32-bit integer types.

No integer rounding modifiers.

Saturation modifier:

.sat limits result to MININT..MAXINT (no overflow) for the size of the operation.
Applies only to .s32 type in .hi mode.

Floating Point
Notes

mad.f32 computes the product of a and b at double precision, and then the mantissa is
truncated to 23 bits, but the exponent is preserved. Note that this is different from
computing the product with mul, where the mantissa can be rounded and the exponent
will be clamped. The exception for mad.f32 is when c = +/-0.0, in that case mad.f32 is
identical to the result computed using separate mul and add instructions. In future
target devices, mad.f32 may be implemented as a fused multiply-add with greater
precision, rounding modifiers, and IEEE754 compliance. In this case, mad.f32 may
produce slightly different numeric results on future target devices, and backward
compatibility is not guaranteed in this case.

mad.f64 computes the product of a and b to infinite precision and then adds c to this
product, again in infinite precision. The resulting value is then rounded to double
precision using the rounding mode specified by .rnd. Unlike mad.f32, the treatment of
denorm inputs and output follows IEEE754 standard.

Rounding modifiers (default is .rn):

.rn mantissa LSB rounds to nearest even

.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

Saturation modifier:

.sat limits result to (0.0, 1.0).
Applies only to .f32 type.

Target ISA Notes mad.f64 requires sm_13 or later.

Rounding modifiers have the following target requirements:

.rn,.rz,.rm,.rp for mad.f64, requires sm_13

.rn,.rz,.rm,.rp for mad.f32, unimplemented

 Chapter 7. Instruction Set

PTX ISA Version 1.2 47
7/7/2008

Examples mad.lo.s32 d,a,b,c;

 mad.lo.s32 r,p,q,r;

@p mad.f32 d,a,b,c;

Chapter 7: Instruction Set

48 PTX ISA Version 1.2
 7/7/2008

Table 22. Arithmetic Instructions: MUL24

MUL24 Multiply two 24-bit integer values

Syntax mul24[.hi,.lo].type d, a, b;

.type = { .u32, .s32 };

Description Compute the product of two 24-bit integer values held in 32-bit source registers, and
return either the high or low 32-bits of the 48-bit result.

Semantics t = a * b;

d = t<47..16>; // for .hi variant

d = t<31..0>; // for .lo variant

Notes Integer multiplication yields a result that is twice the size of the input operands, i.e. 48-
bits.

mul24.hi performs a 24x24-bit multiply and returns the high 32 bits of the 48-bit result.
mul24.lo performs a 24x24-bit multiply and returns the low 32 bits of the 48-bit result.

All operands are of the same type and size.

No saturation.

mul24.hi may be less efficient on machines without hardware support for 24-bit
multiply.

Examples mul24.lo.s32 d,a,b; // low 32-bits of 24x24-bit

 signed multiply.

Table 23. Arithmetic Instructions: MAD24

MAD24 Multiply two 24-bit integer values and add a third value.

Syntax mad24[.hi,.lo][.sat].type d, a, b, c;

.type = { .u32, .s32 };

Description Compute the product of two 24-bit integer values held in 32-bit source registers, and
add a third, 32-bit value to either the high or low 32-bits of the 48-bit result. Return
either the high or low 32-bits of the 48-bit result.

Semantics t = a * b;

d = t<47..16> + c; // for .hi variant

d = t<31..0> + c; // for .lo variant

Notes Integer multiplication yields a result that is twice the size of the input operands, i.e. 48-
bits.

mad24.hi performs a 24x24-bit multiply and adds the high 32 bits of the 48-bit result to
a third value.
mad24.lo performs a 24x24-bit multiply and adds the low 32 bits of the 48-bit result to
a third value. All operands are of the same type and size.

Saturation modifier:

.sat limits result of 32-bit signed addition to MININT..MAXINT (no overflow).
Applies only to .s32 type in .hi mode.

mad24.hi may be less efficient on machines without hardware support for 24-bit
multiply.

Examples mad24.lo.s32 d,a,b,c; // low 32-bits of 24x24-bit

 signed multiply.

 Chapter 7. Instruction Set

PTX ISA Version 1.2 49
7/7/2008

Table 24. Arithmetic Instructions: SAD

SAD Sum of absolute differences.

Syntax sad.type d, a, b, c;

.type = { .u16, .u32, .u64,

 .s16, .s32, .s64 };

Description Adds the absolute value of a-b to c and writes the resulting value into a destination
register.

Semantics d = c + ((a<b) ? b-a : a-b);

Target ISA Notes

Examples sad.s32 d,a,b,c;

 sad.u32 d,a,b,d; // running sum

Table 25. Arithmetic Instructions: DIV

DIV Divide one value by another.

Syntax div[.wide][.sat].type d, a, b;

.type = { .u16, .u32, .u64,

 .s16, .s32, .s64,

 .f32, .f64 };

Description Divides a by b, stores result in d.

Semantics d = a / b;

Integer Notes The .wide suffix specifies that a is twice the size of b and d. Otherwise, all three
operands are the same size.

The .wide suffix is supported only for 16- and 32-bit integer types.

Division by zero yields an unspecified, machine-specific value.

No integer saturation.

Floating Point
Notes

Division by zero creates a value of infinity (with same sign as a).

Division rounds to nearest even.

Saturation modifier:

.sat limits result to (0.0, 1.0).
Applies only to .f32 type.

Target ISA Notes div.f64 requires sm_13 or later.

Release Notes div.wide is unimplemented.

Examples div.s32 b,n,i;

 div.wide.s32 d,an_s64_var,b;

 div.f32 diam,circum,3.14159;

Chapter 7: Instruction Set

50 PTX ISA Version 1.2
 7/7/2008

Table 26. Arithmetic Instructions: REM

REM The remainder of integer division.

Syntax rem[.wide].type d, a, b;

.type = { .u16, .u32, .u64,

 .s16, .s32, .s64 };

Description Divides a by b, store the remainder in d.

Semantics d = a % b;

Integer Notes The .wide suffix specifies that a is twice the size of b and d. Otherwise, all three
operands are the same size.

The .wide suffix is supported only for 16- and 32-bit integer types.

The behavior for negative numbers is machine-dependent and depends on whether
divide rounds towards zero or negative infinity.

Floating Point
Notes

No floating-point support.

Target ISA Notes

Release Notes rem.wide is unimplemented.

Examples rem.s32 x,x,8; // x = x%8;

Table 27. Arithmetic Instructions: ABS

ABS Absolute value.

Syntax abs.type d, a;

.type = { .s16, .s32, .s64,

 .f32, .f64 };

Description Take the absolute value of a and store it in d.

Semantics d = |a|;

Target ISA Notes abs.f64 requires sm_13 or later.

Examples abs.s32 r0,a;

 abs.f32 x,f0;

Table 28. Arithmetic Instructions: NEG

NEG Arithmetic negate.

Syntax neg.type d, a;

.type = { .s16, .s32, .s64,

 .f32, .f64 };

Description Subtract a from zero and store the result in d.

Semantics d = 0-a;

Notes Only for signed integers and floating-point numbers.

Target ISA Notes neg.f64 requires sm_13 or later.

Examples neg.s32 r0,a;

 neg.f32 x,f0;

 Chapter 7. Instruction Set

PTX ISA Version 1.2 51
7/7/2008

Table 29. Arithmetic Instructions: MIN

MIN Find the minimum of two values.

Syntax max.type d, a, b;

.type = { .u16, .u32, .u64,

 .s16, .s32, .s64,

 .f32, .f64 };

Description Store the minimum of a and b in d.

Semantics d = (a < b) ? a : b; // Integer (signed and unsigned)

d = isNaN(a) ? b : isNan(b) ? a : (a < b) ? a : b; // Floating

Point

Integer Notes Signed and unsigned differ.

Floating Point
Notes

If either source operand is NaN, then the result is the other operand.

Target ISA Notes min.f64 requires sm_13 or later.

Examples min.s32 r0,a,b;

@p min.u16 h,i,j;

 min.f32 z,z,x;

Table 30. Arithmetic Instructions: MAX

MAX Find the maximum of two values.

Syntax min.type d, a, b;

.type = { .u16, .u32, .u64,

 .s16, .s32, .s64,

 .f32, .f64 };

Description Store the maximum of a and b in d.

Semantics d = (a > b) ? a : b; // Integer (signed and unsigned)

d = isNan(a) ? b : isNan(b) ? a : (a > b) a : b; // Floating

Point

Integer Notes Signed and unsigned differ.

Floating Point
Notes

If either source operand is NaN, then the result is the other operand.

Target ISA Notes max.f64 requires sm_13 or later.

Examples max.f32 f0,f1,f2;

 max.u32 d,a,b;

 max.s32 q,q,0;

Chapter 7: Instruction Set

52 PTX ISA Version 1.2
 7/7/2008

7.7.2. Comparison and Selection Instructions

The comparison select instructions are:

� SET

� SETP

� SELP

� SLCT

 Chapter 7. Instruction Set

PTX ISA Version 1.2 53
7/7/2008

Table 31. Comparison and Selection Instructions: SET

SET
Compare two numeric values with a relational operator, and optionally combine this
result with a predicate value by applying a Boolean operator.

Syntax set.CmpOp.dtype.stype d, a, b;

set.CmpOp.BoolOp.dtype.stype d, a, b, [!]c;

.dtype = { .u32, .s32, .f32 };

.stype = { .b16, .b32, .b64,

 .u16, .u32, .u64,

 .s16, .s32, .s64,

 .f32, .f64 };

Description Compares two numeric values and optionally combines the result with another
predicate value by applying a Boolean operator. If this result is True, 1.0f is written for
floating-point destination types, and 0xFFFFFFFF is written for integer destination
types. Otherwise, 0x00000000 is written.

The comparison operator is a suffix on the instruction, and can be one of:
eq, ne, lt, le, gt, ge

lo, ls, hi, hs

equ, neu, ltu, leu, gtu, geu

num, nan

The Boolean operator BoolOp(A,B) is one of: and, or, xor

Semantics t = (a CmpOp b) ? 1 : 0;

if (isFloat(dtype))

 d = BoolOp(t, c) ? 1.0f : 0x00000000;

else

 d = BoolOp(t, c) ? 0xFFFFFFFF : 0x00000000;

Integer Notes The signed and unsigned comparison operators are eq, ne, lt, le, gt, ge.

For unsigned values, the comparison operators lo, ls, hi, and hs for lower, lower-or-

same, higher, and higher-or-same may be used instead of lt, le, gt, ge,
respectively.

The untyped, bit-size comparisons are eq and ne.

Floating Point
Notes

The ordered comparisons are eq, ne, lt, le, gt, ge. If either operand is NaN,
the result is false.

To aid comparison operations in the presence of NaN values, unordered versions are
included: equ, neu, ltu, leu, gtu, geu. If both operands are numeric values
(not NaN), then these comparisons have the same result as their ordered counterparts.
If either operand is NaN, then the result of these comparisons is true.

num returns true if both operands are numeric values (not NaN), and nan returns true if
either operand is NaN.

Target ISA Notes set with .f64 source type requires sm_13.

Examples set.lt.and.f32.s32 d,a,b,r;

 set.eq.u32.u32 d,i,n;

Chapter 7: Instruction Set

54 PTX ISA Version 1.2
 7/7/2008

Table 32. Comparison and Selection Instructions: SETP

SETP
Compare two numeric values with a relational operator, and (optionally) combine this
result with a predicate value by applying a Boolean operator.

Syntax setp.CmpOp.type p[|q], a, b;

setp.CmpOp.BoolOp.type p[|q], a, b, [!]c;

.type = { .b16, .b32, .b64,

 .u16, .u32, .u64,

 .s16, .s32, .s64,

 .f32, .f64 };

Description Compares two values and combines the result with another predicate value by applying
a Boolean operator. This result is written to the first destination operand. A related
value computed using the complement of the compare result is written to the second
destination operand.

Applies to all numeric types. The destinations p and q must be .pred variables.

The comparison operator is a suffix on the instruction, and can be one of:

eq, ne, lt, le, gt, ge

lo, ls, hi, hs

equ, neu, ltu, leu, gtu, geu

num, nan

The Boolean operator BoolOp(A,B) is one of: and, or, xor

Semantics t = (a CmpOp b) ? 1 : 0;

p = BoolOp(t, c);

q = BoolOp(!t, c);

Integer Notes The signed and unsigned comparison operators are eq, ne, lt, le, gt, ge.

For unsigned values, the comparison operators lo, ls, hi, and hs for lower, lower-

or-same, higher, and higher-or-same may be used instead of lt, le, gt, ge,
respectively.

The untyped, bit-size comparisons are eq and ne.

Floating Point
Notes

The ordered comparisons are eq, ne, lt, le, gt, ge. If either operand is NaN,
the result is false.

To aid comparison operations in the presence of NaN values, unordered versions are

included: equ, neu, ltu, leu, gtu, geu. If both operands are numeric values
(not NaN), then these comparisons have the same result as their ordered counterparts.
If either operand is NaN, then the result of these comparisons is true.

num returns true if both operands are numeric values (not NaN), and nan returns true if
either operand is NaN.

Target ISA Notes setp with .f64 source type requires sm_13 or later.

Examples setp.lt.and.s32 p|q,a,b,r;

 setp.eq.u32 p,i,n;

 Chapter 7. Instruction Set

PTX ISA Version 1.2 55
7/7/2008

Table 33. Comparison and Selection Instructions: SELP

SELP Select between source operands, based on the value of the predicate source operand.

Syntax selp.type d, a, b, c;

.type = { .b16, .b32, .b64,

 .u16, .u32, .u64,

 .s16, .s32, .s64,

 .f32, .f64 };

Description Conditional selection. If c is True, a is stored in d, b otherwise. Operands d, a, and b
must be of the same type. Operand c is a predicate.

Semantics d = (c == 1) ? a : b;

Target ISA Notes selp.f64 requires sm_13 or later.

Examples selp.s32 r0,r,g,p;

 selp.f32 f0,t,x,xp;

Table 34. Comparison and Selection Instructions: SLCT

SLCT Select one source operand, based on the sign of the third operand.

Syntax slct.dtype.ctype d, a, b, c;

.dtype = { .b16, .b32, .b64,

 .u16, .u32, .u64,

 .s16, .s32, .s64,

 .f32, .f64 };

.ctype = { .s32, .f32 };

Description Conditional selection. If c>=0, a is stored in d, b otherwise. Operands d, a, and b are
treated as a bitsize type of the same width as the first instruction type; operand c must
match the second instruction type.

Semantics d = (c >= 0) ? a : b;

For .f32 comparisons, if operand c is a denorm, it is flushed to zero, resulting in
selection of operand a. If operand c is NaN, the comparison is unordered and operand
b is selected.

Floating Point
Notes

For .f32 data selections, denorm results are flushed to zero.

Target ISA Notes slct.f64 requires sm_13 or later.

Examples slct.u32.s32 x, y, z, val;

 slct.u64.f32 A, B, C, fval;

Chapter 7: Instruction Set

56 PTX ISA Version 1.2
 7/7/2008

7.7.3. Logic and Shift Instructions

The logic and shift instructions are fundamentally untyped, performing bit-wise operations
on operands of any type, provided the operands are of the same size. This permits bit-wise
operations on floating point values without having to define a union to access the bits.
Instructions and, or, xor, and not also operate on predicates.

The logical shift instructions are:

� AND

� OR

� XOR

� NOT

� CNOT

� SHL

� SHR

Table 35. Logic and Shift Instructions: AND

AND Bitwise AND.

Syntax and.type d, a, b;

.type = { .pred, .b16, .b32, .b64 };

Description Compute the bit-wise and operation for the bits in a and b.

Semantics d = a & b;

Notes The size of the operands must match, but not necessarily the type.

Allowed types include predicate registers.

Examples and.b32 x,q,r;

 and.b32 sign,fpvalue,0x80000000;

Table 36. Logic and Shift Instructions: OR

OR Bitwise OR.

Syntax or.type d, a, b;

.type = { .pred, .b16, .b32, .b64 };

Description Compute the bit-wise or operation for the bits in a and b.

Semantics d = a | b;

Notes The size of the operands must match, but not necessarily the type.

Allowed types include predicate registers.

Examples or.b32 mask mask,0x00010001

 or.pred p,q,r;

 Chapter 7. Instruction Set

PTX ISA Version 1.2 57
7/7/2008

Table 37. Logic and Shift Instructions: XOR

XOR Bitwise exclusive-OR (inequality).

Syntax xor.type d, a, b;

.type = { .pred, .b16, .b32, .b64 };

Description Compute the bit-wise exclusive-or operation for the bits in a and b.

Semantics d = a ^ b;

Notes The size of the operands must match, but not necessarily the type.

Allowed types include predicate registers.

Examples xor.b32 d,q,r;

 xor.b16 d,x,0x0001;

Table 38. Logic and Shift Instructions: NOT

NOT Bitwise negation; one’s complement.

Syntax not.type d, a;

.type = { .pred, .b16, .b32, .b64 };

Description Invert the bits in a.

Semantics d = ~a;

Notes The size of the operands must match, but not necessarily the type.

Allowed types include predicates.

Examples not.b32 mask,mask;

 not.pred p,q;

Table 39. Logic and Shift Instructions: CNOT

CNOT C/C++ style logical negation.

Syntax cnot.type d, a;

.type = { .b16, .b32, .b64 };

Description Compute the logical negation using C/C++ semantics.

Semantics d = (a==0) ? 1 : 0;

Notes The size of the operands must match, but not necessarily the type.

Examples cnot.b32 d,a;

Chapter 7: Instruction Set

58 PTX ISA Version 1.2
 7/7/2008

Table 40. Logic and Shift Instructions: SHL

SHL Shift bits left, zero-fill on right.

Syntax shl.type d, a, b;

.type = { .b16, .b32, .b64 };

Description Shift a left by the amount specified by unsigned 32-bit value in b.

Semantics d = a << b;

Notes Shift amounts greater than the register width N are clamped to N.

The sizes of the destination and first source operand must match, but not necessarily
the type. The b operand must be a 32-bit value, regardless of the instruction type.

Examples shl.b32 q,a,2;

Table 41. Logic and Shift Instructions: SHR

SHR Shift bits right, sign or zero fill on left.

Syntax shr.type d, a, b;

.type = { .b16, .b32, .b64,

 .u16, .u32, .u64,

 .s16, .s32, .s64 };

Description Shift a right by the amount specified by unsigned 32-bit value in b. Signed shifts fill
with the sign bit, unsigned and untyped shifts fill with 0.

Semantics d = a >> b;

Notes Shift amounts greater than the register width N are clamped to N.

The sizes of the destination and first source operand must match, but not necessarily
the type. The b operand must be a 32-bit value, regardless of the instruction type.

Bit-size types are included for symmetry with SHL.

Examples shr.u16 c,a,2;

 shr.s32 i,i,1;

 shr.b16 k,i,j;

 Chapter 7. Instruction Set

PTX ISA Version 1.2 59
7/7/2008

7.7.4. Data Movement and Conversion Instructions

These instructions copy data from place to place, and from state space to state space,
possibly converting it from one format to another. mov, ld, and st operate on both scalar
and vector types.

The Data Movement and Conversion Instructions are:

� MOV

� LD

� ST

� CVT

Table 42. Data Movement and Conversion Instructions: MOV

MOV Set a register variable with the value of a register variable or an immediate value.

Syntax mov.type d, a;

mov.type d, sreg;

mov.type d, avar; // get address of variable

mov.type d, label; // get address of label or function

.type = { .pred,

 .b16, .b32, .b64,

 .u16, .u32, .u64,

 .s16, .s32, .s64,

 .f32, .f64 };

Description Write register d with the value of a.

Operand a may be a register, special register, immediate, variable in an addressable
memory space, label, or function name.

Semantics d = a;

d = sreg;

d = &avar;

d = &label;

Notes Although only predicate and bit-size types are required, we include the arithmetic types
for the programmer’s convenience: their use enhances program readability and allows
additional type checking.

Target ISA Notes mov.f64 requires sm_13 or later.

Examples mov.f32 d,a;

 mov.u16 u,v;

 mov.f32 k,0.1;

 mov.u32 ptr, A; // move address of A into ptr

 mov.u32 ptr, A[5]; // move address of A[5] into ptr

 mov.b32 addr, myFunc; // get address of myFunc

Chapter 7: Instruction Set

60 PTX ISA Version 1.2
 7/7/2008

Table 43. Data Movement and Conversion Instructions: LD

LD Load a register variable from an addressable state space variable.

Syntax ld.space.type d,[a]; // load from address

ld.space.vec.type d,[a]; // vector load from address

ld.volatile.space.type d,[a]; // load from address

ld.volatile.space.vec.type d,[a]; // vector load from address

.space = { .const, .global, .local, .param, .shared };

.vec = { .v2, .v4 };

.type = { .b8, .b16, .b32, .b64,

 .u8, .u16, .u32, .u64,

 .s8, .s16, .s32, .s64,

 .f32, .f64 };

Description Load register variable d from the location specified by the source address operand a.

The addressable operand a is one of:

[avar] the name of an addressable variable var,

[areg] a register reg containing a byte address,

[areg+immOff] a sum of register reg containing a byte address plus a constant integer
byte offset (signed, 32-bit), or

[immAddr] an immediate absolute byte address (unsigned, 32-bit).

The address must be naturally aligned to a multiple of the access size. If an address is
not properly aligned, the resulting behavior is undefined; i.e., the access may proceed
by silently masking off low-order address bits to achieve proper rounding, or the
instruction may fault.

The address size may be either 32-bit or 64-bit. Addresses are zero-extended to the
specified width as needed, and truncated if the register width exceeds the state space
address width for the target architecture.

The instruction must carry a .space suffix. A register containing an address may be
declared as a bit-size type or integer type.

ld.volatile may be used with .global and .shared spaces to inhibit optimization of
references to volatile memory. This may be used, for example, to enforce sequential
consistency between threads accessing shared memory.

Semantics d = a; // named variable a

d = *a; // register

d = *(a+immOff); // register-plus-offset

d = *(immAddr); // immediate address

Notes Destination d must be in the .reg state space.

For integer loads, if the destination register is wider than the specified type, the value
loaded is extended to the destination register width. The type of extension (sign or
zero) is determined by the .type field.

.f16 data may be loaded using ld.b16, and then converted to .f32 or .f64 using cvt.

Target ISA Notes ld.f64 requires sm_13 or later.

Examples ld.global.f32 d,[a];

 ld.shared.b32 d,[p];

 ld.const.s32 d,[p+4];

 ld.global.v4.f32 Q,[p];

 ld.local.b64 x,[240];

 Chapter 7. Instruction Set

PTX ISA Version 1.2 61
7/7/2008

 Table 44. Data Movement and Conversion Instructions: ST

ST Store a register variable to an addressable state space variable.

Syntax st.space.type [d],a; // store to address

st.space.vec.type [d],a; // vector store to address

st.volatile.space.type [d],a; // store to address

st.volatile.space.vec.type [d],a; // vector store to address

.space = {.global, .local, .shared };

.vec = { .v2, .v4 };

.type = { .b8, .b16, .b32, .b64,

 .u8, .u16, .u32, .u64,

 .s8, .s16, .s32, .s64,

 .f32, .f64 };

Description Store the value of register variable a in the location specified by the destination address
operand d.

The addressable operand d is one of:

[var] the name of an addressable variable var,

[reg] a register reg containing a byte address,

[reg+immOff] a sum of register reg containing a byte address plus a constant integer
byte offset (signed, 32-bit), or

[immAddr] an immediate absolute byte address (unsigned, 32-bit).

The address must be naturally aligned to a multiple of the access size. If an address is
not properly aligned, the resulting behavior is undefined; i.e., the access may proceed
by silently masking off low-order address bits to achieve proper rounding, or the
instruction may fault.

The address size may be either 32-bit or 64-bit. Addresses are zero-extended to the
specified width as needed, and truncated if the register width exceeds the state space
address width for the target architecture.

The instruction must carry a .space suffix. A register containing an address may be
declared as a bit-size type or integer type.

st.volatile may be used with .global and .shared spaces to inhibit optimization of
references to volatile memory. This may be used, for example, to enforce sequential
consistency between threads accessing shared memory.

Semantics d = a; // named variable d

*d = a; // register

*(d+immOffset) = a; // register-plus-offset

*(immAddr) = a; // immediate address

Notes Operand a must be in the .reg state space.

.f16 data resulting from a cvt instruction may be stored using st.b16.

Target ISA Notes st.f64 requires sm_13 or later.

Examples st.global.f32 [d],a;

 st.local.b32 [q+4],a;

 st.global.v4.s32 [p],Q;

 st.shared.s32 [100],r7;

Chapter 7: Instruction Set

62 PTX ISA Version 1.2
 7/7/2008

Table 45. Data Movement and Conversion Instructions: CVT

CVT Convert a value from one type to another.

Syntax cvt[.rnd][.sat].dtype.atype d, a;

.dtype = .atype = { .u8, .u16, .u32, .u64,

 .s8, .s16, .s32, .s64,

 .f16, .f32, .f64 };

Description Convert between different types and sizes.

See the Integer and Floating-point Notes below for details of saturation and rounding
modifiers.

Semantics d = convert(a);

Integer Notes Integer rounding is required for float-to-integer conversions, and for same-size float-to-
float conversions where the value is rounded to an integer. Integer rounding is illegal in
all other instances.

Integer rounding modifiers:

.rni round to nearest integer, choosing even integer if source is equidistant between
two integers.

.rzi round to nearest integer in the direction of zero

.rmi round to nearest integer in direction of negative infinity

.rpi round to nearest integer in direction of positive infinity

Saturation modifier:

.sat For integer destination types, .sat limits the result to MININT..MAXINT for the
size of the operation. Note that saturation applies to both signed and unsigned
integer types.

Saturation is illegal for small-to-large integer-to-integer conversions, except for
the signed-to-unsigned case.

For float-to-integer conversions, the result is clamped to the destination range
by default; i.e, .sat is redundant.

Floating Point
Notes

Floating-point rounding is required for float-to-float conversions that result in loss of
precision, and for integer-to-float conversions. Floating-point rounding is illegal in all
other instances.

Floating-point rounding modifiers:

.rn mantissa LSB rounds to nearest even

.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

A floating-point value may be rounded to an integral value using the integer rounding
modifiers (see Integer Notes). The operands must be of the same size. The result is
an integral value, stored in floating-point format.

Saturation modifier:

.sat For floating-point destination types, .sat limits the result to the range [0.0, 1.0].
Applies to .f16, .f32, and .f64 types.

NaN is preserved, except for .f16 (no NaN available).

Target ISA Notes cvt to or from .f64 requires sm_13 or later.

Examples cvt.f32.s32 f,i;

 cvt.s32.f64 j,r; // float-to-int saturates by default

 cvt.rni.f32.f32 x,y; // round to nearest int, result is fp

 Chapter 7. Instruction Set

PTX ISA Version 1.2 63
7/7/2008

7.7.5. Texture Instruction

This instruction provides access to texture memory.

� TEX

Table 46. Texture Instruction: TEX

TEX Perform a texture memory lookup.

Syntax tex.geom.v4.dtype.btype d, [a, b];

.geom = { .1d, .2d, .3d };

.dtype = { .u32, .s32, .f32 };

.btype = { .s32, .f32 };

Description Texture lookup using a texture coordinate vector. The instruction loads data from the
texture named by operand a at coordinates given by operand b into destination d.
Operand b is a scalar or singleton tuple for 1d textures; is a two-element vector for 2d
textures; and is a four-element vector for 3d textures, where the fourth element is
ignored.

The instruction always returns a four-element vector of 32-bit values. Coordinates may
be given in either signed 32-bit integer or 32-bit floating point form.

A texture base address is assumed to be aligned to a 16-byte address, and the
address given by the coordinate vector must be naturally aligned to a multiple of the
access size. If an address is not properly aligned, the resulting behavior is undefined;
i.e., the access may proceed by silently masking off low-order address bits to achieve
proper rounding, or the instruction may fault.

Notes For compatibility with prior versions of PTX, the square brackets are not required and
.v4 coordinate vectors are allowed for any geometry, with the extra elements being
ignored.

Examples tex.3d.v4.s32.s32 {r1,r2,r3,r4}, [tex_a, {f1,f2,f3,f4}];

 tex.1d.v4.s32.f32 {r1,r2,r3,r4}, [tex_a, {f1}];

Chapter 7: Instruction Set

64 PTX ISA Version 1.2
 7/7/2008

7.7.6. Control Flow Instructions

The following PTX instructions and syntax are for controlling execution in a PTX program:

� { }

� @

� BRA

� CALL

� RET

� EXIT

Table 47. Control Flow Instructions: { }

{ } Instruction grouping.

Syntax { instructionList }

Description The curly braces create a group of instructions, used primarily for defining a function
body. The curly braces also provide a mechanism for determining the scope of a
variable: any variable declared within a scope is not available outside the scope.

Examples { add.s32 a,b,c; mov.s32 d,a; }

Table 48. Control Flow Instructions: @

@ Predicated execution.

Syntax @[!]p instruction;

Description Execute an instruction or instruction block for threads that have the guard predicate
true. Threads with a false guard predicate do nothing.

Semantics If [!]p then instruction

Examples setp.eq.f32 p,y,0; // is y zero?

@!p div.f32 ratio,x,y // avoid division by zero

@q bra L23; // conditional branch

 Chapter 7. Instruction Set

PTX ISA Version 1.2 65
7/7/2008

Table 49. Control Flow Instructions: BRA

BRA Branch to a target and continue execution there.

Syntax bra[.uni] target; // target is a label

bra[.uni] a; // indirect branch through register ‘a’

Description Continue execution at the target. Conditional branches are specified by using a guard
predicate.

Semantics pc = target;

pc = a;

Notes A bra is assumed to be divergent unless the .uni suffix is present, indicating that the
branch is guaranteed to be non-divergent.

Release Notes Indirect branch through a register is unimplemented.

Examples bra.uni L_exit; // uniform unconditional jump

@q bra L23; // conditional branch

 mov.b32 %r, Done;

 bra %r; // indirect branch

Table 50. Control Flow Instructions: CALL

CALL Call a function, recording the return location.

Syntax call[.uni] func;

call[.uni] func, (param-list);

call[.uni] (ret-param), func, (param-list);

Description The call instruction stores the address of the next instruction, so execution can resume
at that point after executing a RET instruction. A call is assumed to be divergent
unless the .uni suffix is present, indicating that the call is guaranteed to be non-
divergent.

The called location func can be either a symbolic function name or an address of a
function held in a register.

Input and return parameters are optional. Parameters must be of register type, and
parameters are pass-by-value.

Notes In the current ptx release, parameters are passed through statically allocated ptx
registers; i.e., there is no support for recursive calls.

Release Notes Indirect call through a register is unimplemented.

Examples call init; // call function ‘init’

 call.uni %fptr; // call function at address in register

 call.uni g, (a); // call function ‘g’ with parameter ‘a’

@p call (d), h, (a, b); // return value into register d

Chapter 7: Instruction Set

66 PTX ISA Version 1.2
 7/7/2008

Table 51. Control Flow Instructions: RET

RET Return from function to instruction after call.

Syntax ret[.uni];

Description Return execution to caller’s environment. A divergent return suspends threads until all
threads are ready to return to the caller. This allows multiple divergent “ret”
instructions.

A ret is assumed to be divergent unless the .uni suffix is present, indicating that the
return is guaranteed to be non-divergent.

Any values returned from a function should be moved into the return parameter register
variables prior to executing the RET instruction.

A return instruction executed in a top-level entry routine will terminate thread execution.

Notes

Examples ret;

@p ret;

Table 52. Control Flow Instructions: EXIT

EXIT Terminate a thread.

Syntax exit;

Description Ends execution of a thread.

Examples exit;

@p exit;

 Chapter 7. Instruction Set

PTX ISA Version 1.2 67
7/7/2008

7.7.7. Parallel Synchronization and Communication
Instructions

These instructions are:

� BAR

� ATOM

� RED

� VOTE

Chapter 7: Instruction Set

68 PTX ISA Version 1.2
 7/7/2008

Table 53. Parallel Synchronization and Communication
Instructions: BAR

BAR Signal arrival at a barrier and wait.

Syntax bar.sync d;

Description Marks the arrival of threads at a barrier and waits for all other threads to arrive.

The barrier resource is named via a small integer, typically in the range 0..15. The
barrier number may be given as an immediate.

Notes The hardware has a limited, implementation-specific number of barrier resources,
typically sixteen or fewer. Since a CTA will not launch until all allocated resources are
available, a program should minimize the number of distinct barrier variables allocated.
Ideally, a program uses a single, global barrier that is re-used throughout the program.

Examples bar.sync 0;

 Chapter 7. Instruction Set

PTX ISA Version 1.2 69
7/7/2008

Table 54. Parallel Synchronization and Communication
Instructions: ATOM

ATOM Atomic reduction operations for thread-to-thread communication.

Syntax atom.space.operation.type d, a, b[, c];

.space = { .global, .shared };

.operation = { .and, .or, .xor, // .b32 only

 .cas, .exch, // .b32, .b64

 .add, // .u32, .s32, .f32, .u64

 .inc, .dec, // .u32 only

 .min, .max }; // .u32, .s32, .f32

.type = { .b32, .b64,

 .u32, .u64,

 .s32,

 .f32 };

Description Atomically loads the original value at location a into destination register d, performs a
reduction operation with operand b and the value in location a, and stores the result of
the specified operation at location a, overwriting the original value. The a operand
specifies a location in the specified state space.

The addressable operand a is one of:

[avar] the name of an addressable variable avar,

[areg] a de-referenced register areg containing a byte address,

[areg+immOff] a de-referenced sum of register areg containing a byte address plus a
constant integer byte offset, or

[immAddr] an immediate absolute byte address.

The address must be naturally aligned to a multiple of the access size. If an address is
not properly aligned, the resulting behavior is undefined; i.e., the access may proceed
by silently masking off low-order address bits to achieve proper rounding, or the
instruction may fault.

The address size may be either 32-bit or 64-bit. Addresses are zero-extended to the
specified width as needed, and truncated if the register width exceeds the state space
address width for the target architecture.

The instruction must carry a .space suffix. A register containing an address may be
declared as a bit-size type or integer type.

The bit-size operations are and, or, xor, cas (compare-and-swap), and exch
(exchange).

The integer operations are add, inc, dec, min, max. The inc and dec operations
return a result in the range [0..b].

The floating-point operations are add, min, and max. The floating-point add, min, and
max operations are 32-bit operations.

Semantics atomic {

 d = *a;

 *a = (operation == cas) ? operation(*a, b, c)

 : operation(*a, b);

}

where

 inc(r, s) = (r >= s) ? 0 : r+1;

 dec(r, s) = (r > s) ? s : r-1;

 exch(r, s) = s;

 cas(r,s,t) = (r == s) ? t : r;

Notes Operand a must reside in either the global or shared state space.

Simple reductions may be specified by using the “bit bucket” destination operand ‘_’.

Chapter 7: Instruction Set

70 PTX ISA Version 1.2
 7/7/2008

Target ISA Notes atom.global requires sm_11 or later.

atom.shared requires sm_12 or later.

64-bit atom.global.{add,cas,exch} requires sm_12 or later. Note that
64-bit atomic operations are only supported on global addresses.

Release Notes Floating-point atomic operations are unimplemented.

Examples atom.global.add.s32 d,[a],1;

 atom.shared.max.f32 d,[x+4],0;

@p atom.global.cas.b32 d,[p],my_val,my_new_val;

 Chapter 7. Instruction Set

PTX ISA Version 1.2 71
7/7/2008

Table 55. Parallel Synchronization and Communication
Instructions: RED

RED Reduction operations on global and shared memory.

Syntax red.space.operation.type a, b;

.space = { .global, .shared };

.operation = { .and, .or, .xor, // .b32 only

 .add, // .u32, .s32, .f32, .u64

 .inc, .dec, // .u32 only

 .min, .max }; // .u32, .s32, .f32

.type = { .b32, .b64,

 .u32, .u64,

 .s32,

 .f32 };

Description Performs a reduction operation with operand b and the value in location a, and stores
the result of the specified operation at location a, overwriting the original value. The a
operand specifies a location in the specified state space.

The addressable operand a is one of:

[avar] the name of an addressable variable avar,

[areg] a de-referenced register areg containing a byte address,

[areg+immOff] a de-referenced sum of register areg containing a byte address plus a
constant integer byte offset, or

[immAddr] an immediate absolute byte address.

The address must be naturally aligned to a multiple of the access size. If an address is
not properly aligned, the resulting behavior is undefined; i.e., the access may proceed
by silently masking off low-order address bits to achieve proper rounding, or the
instruction may fault.

The address size may be either 32-bit or 64-bit. Addresses are zero-extended to the
specified width as needed, and truncated if the register width exceeds the state space
address width for the target architecture.

The instruction must carry a .space suffix. A register containing an address may be
declared as a bit-size type or integer type.

The bit-size operations are and, or, and xor.

The integer operations are add, inc, dec, min, max. The inc and dec operations
return a result in the range [0..b].

The floating-point operations are add, min, and max. The floating-point add, min, and
max operations are 32-bit operations.

Semantics *a = operation(*a, b);

where

 inc(r, s) = (r >= s) ? 0 : r+1;

 dec(r, s) = (r > s) ? s : r-1;

Notes Operand a must reside in either the global or shared state space.

Target ISA Notes red.global requires sm_11 or later; red.shared requires sm_12 or later.

64-bit red.global.add requires sm_12 or later. Note that 64-bit
reductions are only supported on global addresses.

Release Notes Floating-point reductions are unimplemented.

Examples red.global.add.s32 [a],1;

 red.shared.max.f32 [x+4],0;

@p red.global.and.b32 [p],my_val;

Chapter 7: Instruction Set

72 PTX ISA Version 1.2
 7/7/2008

Table 56. Parallel Synchronization and Communication
Instructions: VOTE

VOTE Vote across thead group.

Syntax vote.mode.pred d, [!]a;

.mode = { .all, .any, .uni };

Description Performs a reduction of the source predicate across threads in a warp. The destination
predicate value is the same across all threads in the warp.

The reduction modes are:

.all True if source predicate is True for all active threads in warp. Negate the source
predicate to compute .none.

.any True if source predicate is True for some active thread in warp. Negate the
source predicate to compute .not_all.

.uni True if source predicate has the same value in all active threads in warp.
Negating the source predicate also computes .uni.

Target ISA Notes vote requires sm_12 or later.

Release Notes Note that vote applies to threads in a single warp, not across an entire CTA.

Examples vote.all.pred p,q;

 vote.uni.pred p,q;

 Chapter 7. Instruction Set

PTX ISA Version 1.2 73
7/7/2008

7.7.8. Floating-Point Instructions

These instructions are for floating-point types in register and constant immediate forms.
These instructions are:

� RCP

� SQRT

� RSQRT

� SIN

� COS

� LG2

� EX2

Table 57. Floating-Point Instructions: RCP

RCP Take the reciprocal of a value.

Syntax rcp.type d, a;

.type = { .f32, .f64 };

Description Compute 1/a..

Semantics d = 1/a;

Target ISA Notes rcp.f64 requires sm_13 or later.

Examples rcp.f32 ri,r;

Table 58. Floating-Point Instructions: SQRT

SQRT Take the square root of a value.

Syntax sqrt.type d, a;

.type = { .f32, .f64 };

Description Compute sqrt(a); store in d.

Semantics d = sqrt(a);

Floating Point
Notes

If a < 0; d = NaN;

The sqrt instruction always yields the positive root of a number, except for sqrt(-0.0)
which yields -0.0.

Target ISA Notes sqrt.f64 requires sm_13 or later.

Examples sqrt.f32 r,x;

Chapter 7: Instruction Set

74 PTX ISA Version 1.2
 7/7/2008

Table 59. Floating-Point Instructions: RSQRT

RSQRT Take the reciprocal of the square root of a value.

Syntax rsqrt.type d, a;

.type = { .f32, .f64 };

Description Compute 1/sqrt(a); store the result in d

Semantics d = 1/sqrt(a);

Floating Point
Notes

if a < 0; d = NaN;

if a == 0, d = Inf;

The rsqrt instruction always yields a positive value, except for rsqrt(-0.0) which yields
-0.0.

Target ISA Notes rsqrt.f64 requires sm_13 or later.

Examples rsqrt.f32 isr,x;

Table 60. Floating-Point Instructions: SIN

SIN Find the sine of a value.

Syntax sin.type d, a;

.type = { .f32 };

Description Find the sine of the angle a (in radians).

Semantics d = sin(a);

Notes Applies only to .f32.

Examples sin.f32 sa,a;

Table 61. Floating-Point Instructions: COS

COS Find the cosine of a value.

Syntax cos.type d, a;

.type = { .f32 };

Description Find the cosine of the angle a (in radians).

Semantics d = cos(a);

Notes Applies only to .f32.

Examples cos.f32 cb,b;

 Chapter 7. Instruction Set

PTX ISA Version 1.2 75
7/7/2008

Table 62. Floating-Point Instructions: LG2

LG2 Find the log, base 2, of a value.

Syntax lg2.type d, a;

.type = { .f32 };

Description Determine the log2 of a..

Semantics d = log(a)/log(2);

Notes Applies only to .f32.

Examples @p lg2.f32 q,a;

Table 63. Floating-Point Instructions: EX2

EX2 Exponentiate a value, base 2.

Syntax ex2.type d, a;

.type = { .f32 };

Description Raise 2 to the power a.

Semantics d = 2 ^ a;

Notes Applies only to .f32.

Examples ex2.f32 q,r;

Chapter 7: Instruction Set

76 PTX ISA Version 1.2
 7/7/2008

7.7.9. Miscellaneous Instructions

The Miscellaneous instructions are:

� TRAP

� BRKPT

Table 64. Miscellaneous Instructions: TRAP

TRAP Perform trap operation.

Syntax trap

Description Abort execution and generate an interrupt to the host CPU.

Examples trap;

@p trap;

Table 65. Miscellaneous Instructions: BRKPT

BRKPT Breakpoint – suspend execution.

Syntax brkpt

Description Suspends execution

Target ISA Notes brkpt requires sm_11 or later.

Examples brkpt;

@p brkpt;

PTX ISA Version 1.2 77
7/7/2008

Chapter 8.

Special Registers

PTX includes a number of predefined, read-only variables, which are visible as special
registers and accessed through mov or cvt instructions.

The special registers are:

� %tid

� %ntid

� %ctaid

� %nctaid

� %gridid

� %clock

Table 66. Special Registers: %tid

%tid Thread ID within a CTA.

Syntax .sreg .v4 .u16 %tid; // thread id vector

.sreg .u16 %tid.x, %tid.y, %tid.z; // thread id components

Description A predefined, read-only, per-thread special register initialized with the thread ID within
the CTA. The %tid special register contains a 1D, 2D, or 3D vector to match the CTA
shape; the %tid value in unused dimensions is 0. The fourth element is unused and
always returns zero. The number of threads in each dimension are specified by the
predefined special register %ntid.

Every thread in the CTA has a unique %tid.

%tid component values range from 0 through %ntid–1 in each CTA dimension. %tid.y
== %tid.z == 0 in 1D CTAs. %tid.z == 0 in 2D CTAs.

It is guaranteed that:

0 <= %tid.x < %ntid.x

0 <= %tid.y < %ntid.y

0 <= %tid.z < %ntid.z

Notes 3D CTA initialization code separates hardware %tid R0 bit fields [15:0, 25:16, 31:26]
into three .u16 components in R0L, R0H, and R1L, and %tid maps to [R0L, R0H, R1L]
in half words. 2D and 1D CTAs require no %tid initialization code.

Preserve %tid for debugging.

Examples mov.b16 r0,%tid.x; // zero-extends tid.x to r0

 cvt.u32.u16 r2,%tid.z; // zero-extends tid.z to r2

Chapter 8: Special Registers

78 PTX ISA Version 1.2
 7/7/2008

Table 67. Special Registers: %ntid

%ntid Number of thread IDs per CTA.

Syntax .sreg .v4 .u16 %ntid; // CTA shape vector

.sreg .u16 %ntid.x, %ntid.y, %ntid.z; // CTA dimensions

Description A predefined, read-only special register initialized with the number of thread ids in each
CTA dimension. The %ntid special register contains a 3D CTA shape vector that holds
the CTA dimensions. CTA dimensions are non-zero; the fourth element is unused and
always returns zero. The total number of threads in a CTA is (%ntid.x * %ntid.y *
%ntid.z).

%ntid.y == %ntid.z == 1 in 1D CTAs. %ntid.z == 1 in 2D CTAs.

Notes

Examples mov.u16 r0,%tid.x;

 mov.u16 h1,%tid.y;

 mov.u16 h2,%ntid.x;

 mad.u16 r0,h1,h2,r0; // r0 = unified tid for 2D CTA

Table 68. Special Registers: %ctaid

%ctaid CTA id within a grid.

Syntax .sreg .v4 .u16 %ctaid; // CTA id vector

.sreg .u16 %ctaid.x, %ctaid.y, %ctaid.z; // CTA id components

Description A predefined, read-only special register initialized with the CTA id within the CTA grid.
The %ctaid special register contains a 1D, 2D, or 3D vector, depending on the shape
and rank of the CTA grid. The value of each element of the vector is >= 0 and <
65535. The fourth element is unused and always returns zero.

It is guaranteed that:

0 <= %ctaid.x < %nctaid.x

0 <= %ctaid.y < %nctaid.y

0 <= %ctaid.z < %nctaid.z

Notes The G80 translator maps ctaid.x to grid parameter g[6].u16, ctaid.y to g[7].u16, and
ctaid.z to user parameter g[8].u16.

Examples mov.u16 %r1,%ctaid.y;

 Chapter 8. Special Registers

PTX ISA Version 1.2 79
7/7/2008

Table 69. Special Registers: %nctaid

%nctaid Number of CTA ids per grid.

Syntax .sreg .v4 .u16 %nctaid // Grid shape vector

.sreg .u16 %nctaid.x,%nctaid.y,%nctaid.z; // Grid dimensions

Description A predefined, read-only special register initialized with the number of CTAs in each grid
dimension. The %nctaid special register contains a 3D grid shape vector, with each
element having a value of at least 1. The fourth element is unused and always returns
zero.

It is guaranteed that:

1 <= %nctaid.{x,y,z} < 65,536

Notes The G80 translator maps nctaid.x to grid parameter g[4].u16, nctaid.y to g[5].u16, and
nctaid.z to user parameter g[9].u16

Examples mov.u16 r1,%nctaid.x;

Table 70. Special Registers: %gridid

%gridid Grid ID.

Syntax .sreg .u16 %gridid; // initialized when the grid is launched

Description A predefined, read-only special register initialized with the per-grid temporal grid ID
number. The %gridid is used by debuggers to distinguish CTAs within concurrent
(small) CTA grids.

During execution, repeated launches of programs may occur, where each launch starts
a grid-of-CTAs. This variable provides the temporal grid launch number for this
context.

Notes The driver assigns a counting sequential gridid to each grid launched.

The G80 translator maps gridid to grid parameter g[0].u16, “flags”.

Examples mov.u32 r1,%gridid;

Chapter 8: Special Registers

80 PTX ISA Version 1.2
 7/7/2008

Table 71. Special Registers: %clock

%clock A predefined, read-only 32-bit unsigned cycle counter.

Syntax

Description Special register %clock is an unsigned 32-bit read-only cycle counter that wraps
silently.

Notes

Examples mov.u32 r1,%clock;

PTX ISA Version 1.2 81
7/7/2008

Chapter 9.

Directives

9.1. Specifying Kernel Entry Points and Functions

The following directives specify kernel entry points and functions.

Table 72. Directives: .entry

.entry Defines a kernel entry point and body.

Syntax .entry kernel-name kernel-body

Description Defines a kernel entry point name and body for the kernel function. Parameters are
passed via .param space memory, and may be loaded into registers using ld.param
instructions within the kernel body.

The shape and size of the CTA executing the kernel are available in special registers.

Semantics Specify the entry point for a kernel program.

At run time, the CTA parameters ntid.x, ntid.y, and ntid.z are initialized with the actual
CTA dimensions.

Examples .entry cta_fft

 .entry filter

 {

 .reg .b32 %r<99>;

 ld.param %r1, …;

 …

 }

Chapter 9: Directives

82 PTX ISA Version 1.2
 7/7/2008

Table 73. Directives: .func

.func Function definition.

Syntax .func fname function-body

.func fname (param-list) function-body

.func (ret-param) fname (param-list) function-body

Description Defines a function, including input and return parameters and function body.

Semantics Specifies the entry point and parameter names for a function. The parameter lists bind
register names in the caller’s namespace to register names in the callee namespace.

The implementation of parameter passing is left to the optimizing translator, which may
use a combination of registers and stack locations to pass parameters. In the current
ptx release, parameters are passed through statically allocated ptx registers; i.e., there
is no support for recursive calls.

Notes The input and return parameters are enclosed in parentheses. Parameters must be
base types in the register space. Parameter passing is call-by-value.

A .func directive with no body may be used to declare a function prototype.

Examples .func (.reg .b32 rval) foo (.reg .b32 arg0, .reg .f64 arg1)

 {

 .reg .b32 localVar;

 … use arg0;

 other code;

 mov.b32 rval,result;

 ret;

 }

 …

 call (fooval), foo, (val0, val1); // return value in fooval

 …

 Chapter 9: Directives

PTX ISA Version 1.2 83
7/7/2008

9.2. Debugging Directives

The following directives are needed to communicate Dwarf-format debug information.
Details TBD.

Table 74. Debugging Directives: .section

.section PTX section definition

Syntax .section section_type, section_name

Description

Semantics

Notes

Examples .section .debug_info, "",@progbits

Table 75. Debugging Directives: .file

.file Source file information

Syntax .file filename

Description

Semantics

Notes

Examples

Table 76. Debugging Directives: .loc

.loc Source file location

Syntax .loc line_number

Description

Semantics

Notes

Examples

Chapter 9: Directives

84 PTX ISA Version 1.2
 7/7/2008

9.3. Other Directives

Table 77. Other Directives: .extern

.extern External symbol declaration

Syntax .extern identifier

Description Declares identifier to be defined externally.

Semantics

Notes

Examples .extern foo // variable foo is declared in another file

 .b32 foo;

Table 78. Other Directives: .visible

.visible Visible (externally) symbol declaration

Syntax .visible identifier

Description Declares identifier to be externally visible.

Semantics

Notes

Examples .visible foo // variable foo will be externally visible

 .b32 foo;

Table 79. Other Directives: .version

.version PTX version number

Syntax .version major.minor // major, minor are integers

Description Specifies the PTX language version number. Increments to the major number indicate
incompatible changes to PTX.

Semantics Indicates that this file must be compiled with tools having the same major version
number and an equal or greater minor version number.

Each ptx file must begin with a .version directive. Duplicate .version directives are
allowed provided they match the original .version directive.

Notes CUDA Release 2.0 supports PTX ISA Versions 1.0, 1.1, and 1.2.

Examples .version 1.2

 Chapter 9: Directives

PTX ISA Version 1.2 85
7/7/2008

Table 80. Other Directives: .target

.target Architecture and Platform target

Syntax .target stringlist // comma separated list of target specifiers

string = { sm_10, sm_11, sm_12, sm_13, // target architectures

 map_f64_to_f32 // platform option

 };

Description Specifies the set of features in the target architecture for which the current ptx code
was generated.

The target identifier strings are platform-specific.

Semantics PTX features are checked against the specified target architecture, and an error is
generated if an unsupported feature is used. The following table summarizes the
features in PTX that vary according to target architecture.

Target Description

sm_10 Baseline feature set.

Requires map_f64_to_f32 if any .f64 instructions used.

sm_11 Adds {atom,red}.global, brkpt instructions.

Requires map_f64_to_f32 if any .f64 instructions used.

sm_12 Adds {atom,red}.shared, 64-bit {atom,red}.global, vote instructions.

Requires map_f64_to_f32 if any .f64 instructions used.

sm_13 Adds double-precision support, including expanded rounding modifiers.

Disallows use of map_f64_to_f32.

The map_f64_to_f32 specifier indicates that all double-precision instructions will be
mapped to single-precision regardless of the target architecture. This feature enables
compilers for high-level languages such as CUDA to compile programs containing type
double when the target device does not support double precision operations. Note
that .f64 storage remains as 64-bits, with only half being used by instructions converted
from .f64 to .f32.

Each PTX file must begin with a .version directive, immediately followed by a .target
directive. Duplicate .target directives are allowed provided they match the original
.target directive.

Notes Targets of the form ‘compute_xx’ are also accepted as synonyms for ‘sm_xx’ targets.

Examples .target sm_10 // baseline target architecture

 .target sm_13 // supports double-precision

 // allow .f64 instructions, but map them to .f32

 .target sm_10, map_f64_to_f32

 .target compute_10 // alternative name for target sm_10

Chapter 9: Directives

86 PTX ISA Version 1.2
 7/7/2008

This page is blank.

PTX ISA Version 1.2 87
7/7/2008

Chapter 10.

Release Notes

This section describes the history of change in the PTX ISA and implementation. The first
section describes ISA and implementation changes in the current CUDA 2.0 release of PTX
ISA 1.2, and the second section provides a record of changes in ISA version 1.1 with respect
to ISA version 1.0.

10.1. Changes in Versions 1.2

10.1.1. New Features

An addc instruction has been added, and 32-bit integer add has been extended to read and
write a carry flag in order to support efficient extended-precision addition in PTX.

A separate red instruction for computing atomic reductions where the intermediate results
are not required has been added.

Support for constant expressions has been added to PTX.

A compact syntax for defining a set of variables having a common prefix and sequentially
numbered suffixes has been added.

10.1.2. Semantic Changes and Clarifications
Memory instructions in PTX require naturally aligned addresses, where the address is a
multiple of the access size. This requirement was previously undocumented.

The tex instruction always generates a four-element result. This requirement was previously
undocumented. The list of instruction types for tex has been restricted to supported types.
Previous implementations required a four-element coordinate vector; the current
implementation only requires that the coordinate vector contain at least as many elements as
the instruction’s geometry.

Vector types no longer allow three-element vectors, i.e., .v3 has been removed from the
language. Previous versions of PTX used .v3 as the implicit type for special registers. These
registers are now defined as four-element vectors (e.g. .v4.u16), with the fourth element
being unused.

Vectors are now restricted to a maximum overall length of 128 bits, which precludes four-
element vectors with 64-bit elements, e.g. .v4.f64.

The shl and shr instruction descriptions have been updated to indicate that the shift amount
operand is interpreted as an unsigned value regardless of the instruction type.

Chapter 10: Release Notes

88 PTX ISA Version 1.2
 7/7/2008

Floating-point instructions add, sub, and mul default to round-to-nearest-even behavior.
This allows better optimization in the default case, such as folding mul+add into a single
fused-multiply add instruction on the target device.

Details of precision and rounding have been added for instruction mad. The 32-bit mad is
currently implemented with less precision than a fused multiply-add, and future
implementations reserve the right to map mad.f32 to fused multiply-add.

10.1.3. Unimplemented or Unused Features Removed
sad.f32 and sad.f64 have been removed from PTX Version 1.2. While these where
implemented in previous releases, they were unused by the CUDA compiler and were not
well-characterized with respect to precision and rounding behavior.

The unimplemented frc instruction has been removed from the ISA.

The .entry directive no longer supports explicit CTA parameters. These were
unimplemented.

The unimplemented .byte directive has been removed.

Unimplemented vector features such as vector element swizzling and vector-scalar
conversions have been removed from the ISA.

10.1.4. Syntax Restrictions

Instructions ld, st, atom, red, and tex now require square brackets around the address
expression. Previous versions of the ISA showed square brackets only for ld and st, and
these were not required by the parser.

Numeric vector-element selectors (.0, .1, .2, and .3) have been removed. These were
unimplemented in previous versions of the parser.

Variables of type .f16 no longer support initializations.

Constant banks have been removed. This feature was unimplemented.

The .tex declaration now requires a type of .u32 or .u64.

10.1.5. Unimplemented Features Remaining
Vector types, structures, and unions remain unimplemented in this version of PTX.

Instructions div.{u64,s64} and rem.{u64,s64} remain unimplemented.

 Chapter 10: Release Notes

PTX ISA Version 1.2 89
7/7/2008

10.2. Changes in Version 1.1

This section describes changes in the PTX ISA and implementation between version 1.0 and
version 1.1. The changes may be summarized as (1) addition of new features, (2) removal of
unimplemented features and instructions from the ISA, (3) better specification of rounding
modifiers, and (4) better specification of saturation behavior.

10.2.1. New Features
Instructions ld and st now support a .volatile modifier. See the instruction descriptions
in Chapter 7 for details.

10.2.2. Unimplemented Features Removed
PTX ISA version 1.0 contained a number of instructions and features that were
unimplemented in the CUDA tools in release 1.0. Since these features were not
implemented, their removal from PTX ISA version 1.1 does not create an
incompatibility with any valid PTX version 1.0 code.

The vector instructions cross, dot, mag, and vred have been removed from PTX. These
instructions were unimplemented in version 1.0.

Instructions extract, insert, membar, and nop were removed from the list of reserved
PTX keywords shown in Table 2. The description of membar was removed from
Chapter 7. These instructions were unimplemented in version 1.0.

Support for .f64 type in sin, cos, lg2, ex2, and frc has been removed from the ISA. These
were unimplemented in version 1.0.

atom.{cas,exch} operations have been restricted to bitsize types. atom was
unimplemented in PTX version 1.0.

10.2.3. Changes to Rounding Modifiers and Saturation
PTX 1.0 did not fully specify rounding behavior for all instructions, nor did it define a
default round behavior in cases where such defaults exist.

Rounding behavior not fully specified in PTX version 1.0 has been defined in version
1.1, with the following changes noted as errata for version 1.0:

• Instructions add, sub, and mul have round-to-nearest documented as their
default rounding behavior.

• Instruction mad no longer supports a rounding modifier.

• sad and div no longer support a rounding modifier, although div is
guaranteed to implement round-to-nearest-even by default.

• Rounding modifiers are now required in some cases and illegal in other
cases for the cvt instruction (see description). Hand-written version 1.0
PTX code may exist that violates these new restrictions.

Chapter 10: Release Notes

90 PTX ISA Version 1.2
 7/7/2008

Saturation support has been removed from a number of instructions. None of these
cases were used by the CUDA 1.0 compiler, and many were not implemented. These
restrictions are compatible with PTX 1.0 code generated by the CUDA compiler tools.

• Integer saturation has been removed from instructions mul, mul24,
mad.wide, mad.lo, mad24.lo, sad, div, and rem no longer support saturation.

• The cvt instruction supports saturation for both signed and unsigned
integer types.

10.2.4. Unimplemented Features Remaining
In Release 1.1 of the PTX ISA Version 1,1, a number of features are not supported.
This section summarizes the unsupported features.

Syntax restrictions

Predicate constant immediates are not supported.

Constant expressions are not supported.

State Spaces

Declarations and instructions using .surf space are not supported.

The constant space is restricted to a single bank. This may be written as .const or
.const[0].

Variables and Operands

Vector declarations, initialization, and conversions are not supported.

Vector operands are not generally supported. The ld, st, and tex instructions do support
limited use of vector operands written using the tuple notation.

Instructions

See individual instruction descriptions in Section 7.7 for restrictions of the current
release.

 Chapter 10: Release Notes

PTX ISA Version 1.2 91
7/7/2008

10.2.5. Summary of Instruction Changes

The following table summarizes changes to instructions in PTX Version 1.1

Table 81. Summary of Instruction Changes in Version 1.1

Instruction Implementation Change

add Default rounding of .rn documented.

sub Default rounding of .rn documented.

mul Integer saturation removed from parser.

Default rounding of .rn documented.

mul24 Integer saturation removed from parser.

mad Integer saturation removed from .wide and .lo modes.

Rounding removed.

mad24 Integer saturation removed from .lo mode.

sad Saturation removed (both int and float); rounding removed.

div Integer saturation removed; rounding modifier removed.

Document that div rounds to nearest even.

cvt Rounding modes required when not illegal. See instruction description for details.

Saturation extended to unsigned integer types.

ld, st Added .volatile modifier.

set, setp Allow lt, le, ge, gt comparison operators to be used with unsigned integers.

cross, dot, mag,
vred

Removed. These were unimplemented in PTX 1.0.

sin, cos, lg2,
ex2, frc

Remove .f64. This was unimplemented in PTX 1.0.

atom atom.{cas,exch} restricted to bitsize types. atom was not implemented in PTX 1.0.

extract, insert,
membar, nop

Removed keywords and descriptions for unimplemented instructions.

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”)
ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS
ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation
assumes no responsibility for the consequences of use of such information or for any
infringement of patents or other rights of third parties that may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This
publication supersedes and replaces all information previously supplied. NVIDIA Corporation
products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in
the United States and other countries. Other company and product names may be trademarks of
the respective companies with which they are associated.

Copyright

© 2008 NVIDIA Corporation. All rights reserved.

