

 April 21, 2010

NVIDIA Compute

PTX: Parallel Thread Execution

ISA Version 2.1

PTX ISA Version 2.1

 April 21, 2010

April 21, 2010 i

Table of Contents

PTX: Parallel Thread Execution ISA Version 2.1 ... 1

Chapter 1. Introduction .. 1

1.1. Scalable Data-Parallel Computing Using GPUs .. 1

1.2. Goals of PTX ... 1

1.3. PTX ISA Version 2.1 .. 2

1.4. The Document’s Structure ... 3

Chapter 2. Programming Model .. 5

2.1. A Highly Multithreaded Coprocessor ... 5

2.2. Thread Hierarchy ... 5

2.2.1. Cooperative Thread Arrays ... 5

2.2.2. Grid of Cooperative Thread Arrays .. 6

2.3. Memory Hierarchy ... 8

Chapter 3. Parallel Thread Execution Machine Model ... 11

3.1. A Set of SIMT Multiprocessors with On-Chip Shared Memory 11

Chapter 4. Syntax ... 15

4.1. Source Format ... 15

4.2. Comments ... 15

4.3. Statements ... 16

4.3.1. Directive Statements .. 16

4.3.2. Instruction Statements ... 16

4.4. Identifiers ... 18

4.5. Constants ... 19

4.5.1. Integer Constants .. 19

4.5.2. Floating-Point Constants ... 19

4.5.3. Predicate Constants .. 20

4.5.4. Constant Expressions .. 20

4.5.5. Integer Constant Expression Evaluation ... 21

4.5.6. Summary of Constant Expression Evaluation Rules ... 23

Chapter 5. State Spaces, Types, and Variables .. 25

5.1. State Spaces ... 25

5.1.1. Register State Space ... 26

PTX ISA Version 2.1

ii April 21, 2010

5.1.2. Special Register State Space .. 27

5.1.3. Constant State Space .. 28

5.1.4. Global State Space .. 28

5.1.5. Local State Space .. 28

5.1.6. Parameter State Space ... 29

5.1.7. Shared State Space ... 31

5.1.8. Texture State Space (deprecated) .. 31

5.2. Types ... 32

5.2.1. Fundamental Types ... 32

5.2.2. Restricted Use of Sub-Word Sizes .. 32

5.3. Texture, Sampler, and Surface Types ... 33

5.3.1. Channel Data Type and Channel Order Fields ... 35

5.4. Variables .. 37

5.4.1. Variable Declarations ... 37

5.4.2. Vectors ... 37

5.4.3. Array Declarations ... 38

5.4.4. Initializers ... 38

5.4.5. Alignment ... 39

5.4.6. Parameterized Variable Names ... 39

Chapter 6. Instruction Operands.. 41

6.1. Operand Type Information ... 41

6.2. Source Operands ... 41

6.3. Destination Operands .. 41

6.4. Using Addresses, Arrays, and Vectors .. 42

6.4.1. Addresses as Operands .. 42

6.4.2. Arrays as Operands ... 43

6.4.3. Vectors as Operands ... 43

6.4.4. Labels and Function Names as Operands .. 43

6.5. Type Conversion .. 44

6.5.1. Scalar Conversions .. 44

6.5.2. Rounding Modifiers .. 46

6.6. Operand Costs ... 47

Chapter 7. Abstracting the ABI .. 49

7.1. Function declarations and definitions .. 49

7.1.1. Changes from PTX ISA Version 1.x .. 52

7.2. Variadic functions .. 53

7.3. Alloca ... 54

April 21, 2010 iii

Chapter 8. Instruction Set .. 55

8.1. Format and Semantics of Instruction Descriptions .. 55

8.2. PTX Instructions .. 55

8.3. Predicated Execution ... 56

8.3.1. Comparisons .. 57

8.3.2. Manipulating Predicates .. 58

8.4. Type Information for Instructions and Operands ... 59

8.4.1. Operand Size Exceeding Instruction-Type Size .. 60

8.5. Divergence of Threads in Control Constructs ... 62

8.6. Semantics .. 62

8.6.1. Machine-Specific Semantics of 16-bit Code .. 62

8.7. Instructions .. 63

8.7.1. Integer Arithmetic Instructions ... 63

8.7.2. Floating-Point Instructions ... 81

8.7.3. Comparison and Selection Instructions ... 101

8.7.4. Logic and Shift Instructions ... 105

8.7.5. Data Movement and Conversion Instructions ... 109

8.7.6. Texture and Surface Instructions ... 123

8.7.7. Control Flow Instructions ... 130

8.7.8. Parallel Synchronization and Communication Instructions 135

8.7.9. Video Instructions .. 144

8.7.10. Miscellaneous Instructions... 151

Chapter 9. Special Registers ... 153

Chapter 10. Directives ... 163

10.1. PTX Version and Target Directives ... 163

10.2. Specifying Kernel Entry Points and Functions .. 166

10.3. Control Flow Directives .. 168

10.4. Performance-Tuning Directives ... 170

10.5. Debugging Directives ... 175

10.7. Linking Directives ... 177

Chapter 11. Release Notes ... 179

11.1. Changes in PTX ISA Version 2.1 .. 180

11.1.1. New Features .. 180

11.1.2. Semantic Changes and Clarifications .. 180

11.1.3. Features Unimplemented in PTX ISA Version 2.1 .. 180

11.2. Changes in PTX ISA Version 2.0 .. 181

11.2.1. New Features .. 181

PTX ISA Version 2.1

iv April 21, 2010

11.2.2. Semantic Changes and Clarifications .. 183

Appendix A. Descriptions of .pragma Strings... 185

April 21, 2010 v

List of Tables

Table 1. PTX Directives ... 16

Table 2. Reserved Instruction Keywords ... 17

Table 3. Predefined Identifiers ... 18

Table 4. Operator Precedence .. 21

Table 5. Constant Expression Evaluation Rules ... 23

Table 6. State Spaces ... 25

Table 7. Properties of State Spaces .. 26

Table 8. Fundamental Type Specifiers .. 32

Table 9. Opaque Type Fields in Unified Texture Mode ... 34

Table 10. Opaque Type Fields in Independent Texture Mode .. 34

Table 11. OpenCL 1.0 Channel Data Type Definition ... 35

Table 12. OpenCL 1.0 Channel Order Definition ... 36

Table 13. Convert Instruction Precision and Format ... 45

Table 14. Floating-Point Rounding Modifiers .. 46

Table 15. Integer Rounding Modifiers ... 46

Table 16. Cost Estimates for Accessing State-Spaces ... 47

Table 17. Operators for Signed Integer, Unsigned Integer, and Bit-Size Types 57

Table 18. Floating-Point Comparison Operators ... 57

Table 19. Floating-Point Comparison Operators Accepting NaN .. 58

Table 20. Floating-Point Comparison Operators Testing for NaN ... 58

Table 21. Type Checking Rules ... 59

Table 22. Relaxed Type-checking Rules for Source Operands .. 60

Table 23. Relaxed Type-checking Rules for Destination Operands .. 61

Table 24. Integer Arithmetic Instructions: add .. 64

Table 25. Integer Arithmetic Instructions: sub .. 64

Table 26. Integer Arithmetic Instructions: add.cc ... 65

Table 27. Integer Arithmetic Instructions: addc .. 65

Table 28. Integer Arithmetic Instructions: sub.cc .. 66

Table 29. Integer Arithmetic Instructions: subc .. 66

Table 30. Integer Arithmetic Instructions: mul .. 67

Table 31. Integer Arithmetic Instructions: mad ... 68

Table 32. Integer Arithmetic Instructions: mul24 .. 69

PTX ISA Version 2.1

vi April 21, 2010

Table 33. Integer Arithmetic Instructions: mad24 ... 70

Table 34. Integer Arithmetic Instructions: sad .. 71

Table 35. Integer Arithmetic Instructions: div ... 71

Table 36. Integer Arithmetic Instructions: rem .. 71

Table 37. Integer Arithmetic Instructions: abs .. 72

Table 38. Integer Arithmetic Instructions: neg .. 72

Table 39. Integer Arithmetic Instructions: min .. 73

Table 40. Integer Arithmetic Instructions: max ... 73

Table 41. Integer Arithmetic Instructions: popc .. 74

Table 42. Integer Arithmetic Instructions: clz .. 74

Table 43. Integer Arithmetic Instructions: bfind .. 75

Table 44. Integer Arithmetic Instructions: brev ... 76

Table 45. Integer Arithmetic Instructions: bfe ... 77

Table 46. Integer Arithmetic Instructions: bfi .. 78

Table 47. Integer Arithmetic Instructions: prmt ... 79

Table 48. Summary of Floating-Point Instructions ... 82

Table 49. Floating-Point Instructions: testp .. 83

Table 50. Floating-Point Instructions: copysign .. 83

Table 51. Floating-Point Instructions: add .. 84

Table 52. Floating-Point Instructions: sub .. 85

Table 53. Floating-Point Instructions: mul .. 86

Table 54. Floating-Point Instructions: fma .. 87

Table 55. Floating-Point Instructions: mad ... 88

Table 56. Floating-Point Instructions: div ... 90

Table 57. Floating-Point Instructions: abs .. 91

Table 58. Floating-Point Instructions: neg .. 91

Table 59. Floating-Point Instructions: min .. 92

Table 60. Floating-Point Instructions: max ... 92

Table 61. Floating-Point Instructions: rcp ... 93

Table 62. Floating-Point Instructions: rcp.approx.ftz.f64 .. 94

Table 63. Floating-Point Instructions: sqrt .. 95

Table 64. Floating-Point Instructions: rsqrt ... 96

Table 65. Floating-Point Instructions: sin ... 97

Table 66. Floating-Point Instructions: cos .. 98

Table 67. Floating-Point Instructions: lg2 ... 99

Table 68. Floating-Point Instructions: ex2 .. 100

Table 69. Comparison and Selection Instructions: set ... 102

April 21, 2010 vii

Table 70. Comparison and Selection Instructions: setp ... 103

Table 71. Comparison and Selection Instructions: selp ... 104

Table 72. Comparison and Selection Instructions: slct .. 104

Table 73. Logic and Shift Instructions: and .. 106

Table 74. Logic and Shift Instructions: or ... 106

Table 75. Logic and Shift Instructions: xor ... 107

Table 76. Logic and Shift Instructions: not ... 107

Table 77. Logic and Shift Instructions: cnot .. 107

Table 78. Logic and Shift Instructions: shl .. 108

Table 79. Logic and Shift Instructions: shr ... 108

Table 80. Cache Operators for Memory Load Instructions ... 110

Table 81. Cache Operators for Memory Store Instructions ... 111

Table 82. Data Movement and Conversion Instructions: mov .. 112

Table 83. Data Movement and Conversion Instructions: mov .. 113

Table 84. Data Movement and Conversion Instructions: ld .. 114

Table 85. Data Movement and Conversion Instructions: ldu .. 116

Table 86. Data Movement and Conversion Instructions: st .. 117

Table 87. Data Movement and Conversion Instructions: prefetch, prefetchu 119

Table 88. Data Movement and Conversion Instructions: isspacep .. 120

Table 89. Data Movement and Conversion Instructions: cvta .. 120

Table 90. Data Movement and Conversion Instructions: cvt .. 121

Table 91. Texture and Surface Instructions: tex ... 124

Table 92. Texture and Surface Instructions: txq ... 125

Table 93. Texture and Surface Instructions: suld ... 126

Table 94. Texture and Surface Instructions: sust ... 127

Table 95. Texture and Surface Instructions: sured... 128

Table 96. Texture and Surface Instructions: suq .. 129

Table 97. Control Flow Instructions: { } ... 130

Table 98. Control Flow Instructions: @ .. 130

Table 99. Control Flow Instructions: bra ... 131

Table 100. Control Flow Instructions: call ... 132

Table 101. Control Flow Instructions: ret .. 134

Table 102. Control Flow Instructions: exit .. 134

Table 103. Parallel Synchronization and Communication Instructions: bar 136

Table 104. Parallel Synchronization and Communication Instructions: membar 138

Table 105. Parallel Synchronization and Communication Instructions: atom 139

Table 106. Parallel Synchronization and Communication Instructions: red 141

PTX ISA Version 2.1

viii April 21, 2010

Table 107. Parallel Synchronization and Communication Instructions: vote 143

Table 108. Video Instructions: vadd, vsub, vabsdiff, vmin, vmax ... 146

Table 109. Video Instructions: vshl, vshr .. 147

Table 110. Video Instructions: vmad .. 148

Table 111. Video Instructions: vset... 150

Table 112. Miscellaneous Instructions: trap ... 151

Table 113. Miscellaneous Instructions: brkpt ... 151

Table 114. Miscellaneous Instructions: pmevent .. 151

Table 115. Special Registers: %tid ... 154

Table 116. Special Registers: %ntid ... 154

Table 117. Special Registers: %laneid ... 155

Table 118. Special Registers: %warpid .. 155

Table 119. Special Registers: %nwarpid .. 155

Table 120. Special Registers: %ctaid ... 156

Table 121. Special Registers: %nctaid ... 156

Table 122. Special Registers: %smid ... 157

Table 123. Special Registers: %nsmid ... 157

Table 124. Special Registers: %gridid .. 157

Table 125. Special Registers: %lanemask_eq ... 158

Table 126. Special Registers: %lanemask_le .. 158

Table 127. Special Registers: %lanemask_lt ... 158

Table 128. Special Registers: %lanemask_ge ... 159

Table 129. Special Registers: %lanemask_gt .. 159

Table 130. Special Registers: %clock .. 160

Table 131. Special Registers: %clock64 .. 160

Table 132. Special Registers: %pm0, %pm1, %pm2, %pm3 ... 160

Table 133. Special Registers: %envreg<32> ... 161

Table 134. PTX File Directives: .version... 163

Table 135. PTX File Directives: .target ... 164

Table 136. Kernel and Function Directives: .entry .. 166

Table 137. Kernel and Function Directives: .func ... 167

Table 138. Control Flow Directives: .branchtargets .. 168

Table 139. Control Flow Directives: .calltargets ... 168

Table 140. Control Flow Directives: .callprototype ... 169

Table 141. Performance-Tuning Directives: .maxnreg ... 171

Table 142. Performance-Tuning Directives: .maxntid .. 172

Table 143. Performance-Tuning Directives: .reqntid .. 172

April 21, 2010 ix

Table 144. Performance-Tuning Directives: .minnctapersm .. 173

Table 145. Performance-Tuning Directives: .maxnctapersm (deprecated) 173

Table 146. Performance-Tuning Directives: .pragma ... 174

Table 147. Debugging Directives: @@DWARF ... 175

Table 148. Debugging Directives: .section ... 176

Table 149. Debugging Directives: .file .. 176

Table 150. Debugging Directives: .loc .. 176

Table 151. Linking Directives: .extern... 177

Table 152. Linking Directives: .visible... 177

Table 153. Pragma Strings: “nounroll” ... 185

PTX ISA Version 2.1

x April 21, 2010

April 21, 2010 1

Chapter 1.

Introduction

This document describes PTX, a low-level parallel thread execution virtual machine and
instruction set architecture (ISA). PTX exposes the GPU as a data-parallel computing device.

1.1. Scalable Data-Parallel Computing Using GPUs

Driven by the insatiable market demand for real-time, high-definition 3D graphics, the
programmable GPU has evolved into a highly parallel, multithreaded, many-core processor
with tremendous computational horsepower and very high memory bandwidth. The GPU is
especially well-suited to address problems that can be expressed as data-parallel
computations – the same program is executed on many data elements in parallel – with high
arithmetic intensity – the ratio of arithmetic operations to memory operations. Because the
same program is executed for each data element, there is a lower requirement for
sophisticated flow control; and because it is executed on many data elements and has high
arithmetic intensity, the memory access latency can be hidden with calculations instead of big
data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model to speed
up the computations. In 3D rendering large sets of pixels and vertices are mapped to parallel
threads. Similarly, image and media processing applications such as post-processing of
rendered images, video encoding and decoding, image scaling, stereo vision, and pattern
recognition can map image blocks and pixels to parallel processing threads. In fact, many
algorithms outside the field of image rendering and processing are accelerated by data-
parallel processing, from general signal processing or physics simulation to computational
finance or computational biology.

PTX defines a virtual machine and ISA for general purpose parallel thread execution. PTX
programs are translated at install time to the target hardware instruction set. The PTX-to-
GPU translator and driver enable NVIDIA GPUs to be used as programmable parallel
computers.

1.2. Goals of PTX

PTX provides a stable programming model and instruction set for general purpose parallel
programming. It is designed to be efficient on NVIDIA GPUs supporting the computation
features defined by the NVIDIA Tesla architecture. High level language compilers for
languages such as CUDA and C/C++ generate PTX instructions, which are optimized for
and translated to native target-architecture instructions.

PTX ISA Version 2.1

2 April 21, 2010

The goals for PTX include the following:

� Provide a stable ISA that spans multiple GPU generations.

� Achieve performance in compiled applications comparable to native GPU performance.

� Provide a machine-independent ISA for C/C++ and other compilers to target.

� Provide a code distribution ISA for application and middleware developers.

� Provide a common source-level ISA for optimizing code generators and translators, which map
PTX to specific target machines.

� Facilitate hand-coding of libraries, performance kernels, and architecture tests.

� Provide a scalable programming model that spans GPU sizes from a single unit to many
parallel units.

1.3. PTX ISA Version 2.1

PTX ISA version 2.1 introduces the following new features:

• The underlying, stack-based ABI is supported in PTX ISA version 2.1 for sm_2x
targets.

• Support for indirect branches and calls has been implemented for sm_2x targets.

• New directives, .branchtargets and .calltargets, have been added for specifying
potential targets for indirect branches and indirect function calls. A .callprototype
directive has been added for declaring the type signatures for indirect function calls.

• The names of .global and .const variables can now be specified in variable initializers
to represent their addresses.

• A set of thirty-two driver-specific execution environment special registers has been
added. These are named %envreg0..%envreg31.

• Textures and surfaces have new fields for channel data type and channel order , and
the txq and suq instructions support queries for these fields.

• Directive .minnctapersm has replaced the .maxnctapersm directive.

• Directive .reqntid has been added to allow specification of exact CTA dimensions.

• A new instruction, rcp.approx.ftz.f64, has been added to compute a fast, gross
approximate reciprocal.

 Chapter 1. Introduction

April 21, 2010 3

1.4. The Document’s Structure

The information in this document is organized into the following Chapters:

� Chapter 2 outlines the programming model.

� Chapter 3 gives an overview of the PTX virtual machine model.

� Chapter 4 describes the basic syntax of the PTX language.

� Chapter 5 describes state spaces, types, and variable declarations.

� Chapter 6 describes instruction operands.

� Chapter 7 describes the function and call syntax, calling convention, and PTX support
for abstracting the Application Binary Interface (ABI).

� Chapter 8 describes the instruction set.

� Chapter 9 lists special registers.

� Chapter 10 lists the assembly directives supported in PTX.

� Chapter 11 provides release notes for PTX ISA version 2.1.

PTX ISA Version 2.1

4 April 21, 2010

April 21, 2010 5

Chapter 2.

Programming Model

2.1. A Highly Multithreaded Coprocessor

The GPU is a compute device capable of executing a very large number of threads in
parallel. It operates as a coprocessor to the main CPU, or host: In other words, data-parallel,
compute-intensive portions of applications running on the host are off-loaded onto the
device.

More precisely, a portion of an application that is executed many times, but independently
on different data, can be isolated into a kernel function that is executed on the GPU as many
different threads. To that effect, such a function is compiled to the PTX instruction set and
the resulting kernel is translated at install time to the target GPU instruction set.

2.2. Thread Hierarchy

The batch of threads that executes a kernel is organized as a grid of cooperative thread
arrays as described in this section and illustrated in Figure 1. Cooperative thread arrays
(CTAs) implement CUDA thread blocks.

2.2.1. Cooperative Thread Arrays
The Parallel Thread Execution (PTX) programming model is explicitly parallel: a PTX
program specifies the execution of a given thread of a parallel thread array. A cooperative
thread array, or CTA, is an array of threads that execute a kernel concurrently or in parallel.

Threads within a CTA can communicate with each other. To coordinate the communication
of the threads within the CTA, one can specify synchronization points where threads wait
until all threads in the CTA have arrived.

Each thread has a unique thread identifier within the CTA. Programs use a data parallel
decomposition to partition inputs, work, and results across the threads of the CTA. Each
CTA thread uses its thread identifier to determine its assigned role, assign specific input and
output positions, compute addresses, and select work to perform. The thread identifier is a
three-element vector tid, (with elements tid.x, tid.y, and tid.z) that specifies the thread’s
position within a 1D, 2D, or 3D CTA. Each thread identifier component ranges from zero
up to the number of thread ids in that CTA dimension.

Each CTA has a 1D, 2D, or 3D shape specified by a three-element vector ntid (with
elements ntid.x, ntid.y, and ntid.z). The vector ntid specifies the number of threads in each
CTA dimension.

PTX ISA Version 2.1

6 April 21, 2010

Threads within a CTA execute in SIMT (single-instruction, multiple-thread) fashion in
groups called warps. A warp is a maximal subset of threads from a single CTA, such that the
threads execute the same instructions at the same time. Threads within a warp are
sequentially numbered. The warp size is a machine-dependent constant. Typically, a warp
has 32 threads. Some applications may be able to maximize performance with knowledge of
the warp size, so PTX includes a run-time immediate constant, WARP_SZ, which may be
used in any instruction where an immediate operand is allowed.

2.2.2. Grid of Cooperative Thread Arrays
There is a maximum number of threads that a CTA can contain. However, CTAs that
execute the same kernel can be batched together into a grid of CTAs, so that the total
number of threads that can be launched in a single kernel invocation is very large. This
comes at the expense of reduced thread communication and synchronization, because
threads in different CTAs cannot communicate and synchronize with each other.

Multiple CTAs may execute concurrently and in parallel, or sequentially, depending on the
platform. Each CTA has a unique CTA identifier (ctaid) within a grid of CTAs. Each grid
of CTAs has a 1D, 2D , or 3D shape specified by the parameter nctaid. Each grid also has a
unique temporal grid identifier (gridid). Threads may read and use these values through
predefined, read-only special registers %tid, %ntid, %ctaid, %nctaid, and %gridid.

The host issues a succession of kernel invocations to the device. Each kernel is executed as
a batch of threads organized as a grid of CTAs (Figure 1).

 Chapter 2. Programming Model

April 21, 2010 7

A cooperative thread array (CTA) is a set of concurrent threads that execute the same kernel program. A grid is
a set of CTAs that execute independently.

Figure 1. Thread Batching

Host

Kernel 1

Kernel 2

GPU

Grid 1

CTA
(0, 0)

CTA
(1, 0)

CTA
(2, 0)

CTA
(0, 1)

CTA
(1, 1)

CTA
(2, 1)

Grid 2

CTA (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

PTX ISA Version 2.1

8 April 21, 2010

2.3. Memory Hierarchy

PTX threads may access data from multiple memory spaces during their execution as
illustrated by Figure 2. Each thread has a private local memory. Each thread block (CTA)
has a shared memory visible to all threads of the block and with the same lifetime as the
block. Finally, all threads have access to the same global memory.

There are also two additional read-only memory spaces accessible by all threads: the constant
and texture memory spaces. The global, constant, and texture memory spaces are optimized
for different memory usages. Texture memory also offers different addressing modes, as well
as data filtering, for some specific data formats.

The global, constant, and texture memory spaces are persistent across kernel launches by the
same application.

Both the host and the device maintain their own local memory, referred to as host memory and
device memory, respectively. The device memory may be mapped and read or written by the
host, or, for more efficient transfer, copied from the host memory through optimized API
calls that utilize the device’s high-performance Direct Memory Access (DMA) engine.

 Chapter 2. Programming Model

April 21, 2010 9

Figure 2. Memory Hierarchy

Global memory

Grid 0

Block (2, 1) Block (1, 1) Block (0, 1)

Block (2, 0) Block (1, 0) Block (0, 0)

Grid 1

Block (1, 1)

Block (1, 0)

Block (1, 2)

Block (0, 1)

Block (0, 0)

Block (0, 2)

Thread Block
Per-block shared

memory

Thread

Per-thread local
memory

PTX ISA Version 2.1

10 April 21, 2010

April 21, 2010 11

Chapter 3.

Parallel Thread Execution Machine Model

3.1. A Set of SIMT Multiprocessors with On-Chip
Shared Memory

The NVIDIA Tesla architecture is built around a scalable array of multithreaded Streaming
Multiprocessors (SMs). When a host program invokes a kernel grid, the blocks of the grid
are enumerated and distributed to multiprocessors with available execution capacity. The
threads of a thread block execute concurrently on one multiprocessor. As thread blocks
terminate, new blocks are launched on the vacated multiprocessors.

A multiprocessor consists of multiple Scalar Processor (SP) cores, a multithreaded
instruction unit, and on-chip shared memory. The multiprocessor creates, manages, and
executes concurrent threads in hardware with zero scheduling overhead. It implements a
single-instruction barrier synchronization. Fast barrier synchronization together with
lightweight thread creation and zero-overhead thread scheduling efficiently support very
fine-grained parallelism, allowing, for example, a low granularity decomposition of problems
by assigning one thread to each data element (such as a pixel in an image, a voxel in a
volume, a cell in a grid-based computation).

To manage hundreds of threads running several different programs, the multiprocessor
employs a new architecture we call SIMT (single-instruction, multiple-thread). The
multiprocessor maps each thread to one scalar processor core, and each scalar thread
executes independently with its own instruction address and register state. The
multiprocessor SIMT unit creates, manages, schedules, and executes threads in groups of
parallel threads called warps. (This term originates from weaving, the first parallel thread
technology.) Individual threads composing a SIMT warp start together at the same program
address but are otherwise free to branch and execute independently.

When a multiprocessor is given one or more thread blocks to execute, it splits them into
warps that get scheduled by the SIMT unit. The way a block is split into warps is always the
same; each warp contains threads of consecutive, increasing thread IDs with the first warp
containing thread 0.

At every instruction issue time, the SIMT unit selects a warp that is ready to execute and
issues the next instruction to the active threads of the warp. A warp executes one common
instruction at a time, so full efficiency is realized when all threads of a warp agree on their
execution path. If threads of a warp diverge via a data-dependent conditional branch, the
warp serially executes each branch path taken, disabling threads that are not on that path,
and when all paths complete, the threads converge back to the same execution path. Branch
divergence occurs only within a warp; different warps execute independently regardless of
whether they are executing common or disjointed code paths.

PTX ISA Version 2.1

12 April 21, 2010

SIMT architecture is akin to SIMD (Single Instruction, Multiple Data) vector organizations
in that a single instruction controls multiple processing elements. A key difference is that
SIMD vector organizations expose the SIMD width to the software, whereas SIMT
instructions specify the execution and branching behavior of a single thread. In contrast with
SIMD vector machines, SIMT enables programmers to write thread-level parallel code for
independent, scalar threads, as well as data-parallel code for coordinated threads. For the
purposes of correctness, the programmer can essentially ignore the SIMT behavior;
however, substantial performance improvements can be realized by taking care that the code
seldom requires threads in a warp to diverge. In practice, this is analogous to the role of
cache lines in traditional code: Cache line size can be safely ignored when designing for
correctness but must be considered in the code structure when designing for peak
performance. Vector architectures, on the other hand, require the software to coalesce loads
into vectors and manage divergence manually.

As illustrated by Figure 3, each multiprocessor has on-chip memory of the four following
types:

• One set of local 32-bit registers per processor,

• A parallel data cache or shared memory that is shared by all scalar processor cores and
is where the shared memory space resides,

• A read-only constant cache that is shared by all scalar processor cores and speeds up
reads from the constant memory space, which is a read-only region of device
memory,

• A read-only texture cache that is shared by all scalar processor cores and speeds up
reads from the texture memory space, which is a read-only region of device
memory; each multiprocessor accesses the texture cache via a texture unit that
implements the various addressing modes and data filtering.

The local and global memory spaces are read-write regions of device memory and are not
cached.

How many blocks a multiprocessor can process at once depends on how many registers per
thread and how much shared memory per block are required for a given kernel since the
multiprocessor’s registers and shared memory are split among all the threads of the batch of
blocks. If there are not enough registers or shared memory available per multiprocessor to
process at least one block, the kernel will fail to launch. A multiprocessor can execute as
many as eight thread blocks concurrently.

If a non-atomic instruction executed by a warp writes to the same location in global or
shared memory for more than one of the threads of the warp, the number of serialized
writes that occur to that location and the order in which they occur is undefined, but one of
the writes is guaranteed to succeed. If an atomic instruction executed by a warp reads,
modifies, and writes to the same location in global memory for more than one of the threads
of the warp, each read, modify, write to that location occurs and they are all serialized, but
the order in which they occur is undefined.

 Chapter 3. Parallel Thread Execution Machine Model

April 21, 2010 13

A set of SIMT multiprocessors with on-chip shared memory.

Figure 3. Hardware Model

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Device Memory

Shared Memory

Instruction
Unit

Processor 1

Registers

… Processor 2

Registers

Processor M

Registers

Constant
Cache

Texture
Cache

PTX ISA Version 2.1

14 April 21, 2010

April 21, 2010 15

Chapter 4.

Syntax

PTX programs are a collection of text source files. PTX source files have an assembly-
language style syntax with instruction operation codes and operands. Pseudo-operations
specify symbol and addressing management. The ptxas optimizing backend compiler
optimizes and assembles PTX source files to produce corresponding binary object files.

4.1. Source Format

Source files are ASCII text. Lines are separated by the newline character (‘\n’).

All whitespace characters are equivalent; whitespace is ignored except for its use in
separating tokens in the language.

The C preprocessor cpp may be used to process PTX source files. Lines beginning with #
are preprocessor directives. The following are common preprocessor directives:

#include, #define, #if, #ifdef, #else, #endif, #line, #file

C: A Reference Manual by Harbison and Steele provides a good description of the C
preprocessor.

PTX is case sensitive and uses lowercase for keywords.

Each PTX file must begin with a .version directive specifying the PTX language version,
followed by a .target directive specifying the target architecture assumed. See Section 9 for a
more information on these directives.

4.2. Comments

Comments in PTX follow C/C++ syntax, using non-nested /* and */ for comments that may
span multiple lines, and using // to begin a comment that extends to the end of the current
line.

Comments in PTX are treated as whitespace.

PTX ISA Version 2.1

16 April 21, 2010

4.3. Statements

A PTX statement is either a directive or an instruction. Statements begin with an optional
label and end with a semicolon.

Examples:
 .reg .b32 r1, r2;

 .global .f32 array[N];

start: mov.b32 r1, %tid.x;

 shl.b32 r1, r1, 2; // shift thread id by 2 bits

 ld.global.b32 r2, array[r1]; // thread[tid] gets array[tid]

 add.f32 r2, r2, 0.5; // add 1/2

4.3.1. Directive Statements
Directive keywords begin with a dot, so no conflict is possible with user-defined identifiers.
The directives in PTX are listed in Table 1 and described in Chapter 5 and Chapter 10.

Table 1. PTX Directives

.align .extern .maxnctapersm .reg .tex

.branchtargets .file .maxnreg .reqntid .version

.callprototype .func .maxntid .section .visible

.calltargets .global .minnctapersm .shared

.const .local .param .sreg

.entry .loc .pragma .target

4.3.2. Instruction Statements
Instructions are formed from an instruction opcode followed by a comma-separated list of
zero or more operands, and terminated with a semicolon. Operands may be register
variables, constant expressions, address expressions, or label names. Instructions have an
optional guard predicate which controls conditional execution. The guard predicate follows
the optional label and precedes the opcode, and is written as @p, where p is a predicate
register. The guard predicate may be optionally negated, written as @!p.

The destination operand is first, followed by source operands.

Instruction keywords are listed in Table 2. All instruction keywords are reserved tokens in
PTX.

 Chapter 4. Syntax

April 21, 2010 17

Table 2. Reserved Instruction Keywords

abs div or slct vshl

add ex2 pmevent sqrt vshr

addc exit popc st vsub

and fma prefetch sub vote

atom isspacep prefetchu subc xor

bar ld prmt suld

bfe ldu rcp sured

bfi lg2 red sust

bfind mad rem suq

bra mad24 ret tex

brev max rsqrt txq

brkpt membar sad trap

call min selp vabsdiff

clz mov set vadd

cnot mul setp vmad

cos mul24 shl vmax

cvt neg shr vmin

cvta not sin vset

PTX ISA Version 2.1

18 April 21, 2010

4.4. Identifiers

User-defined identifiers follow extended C++ rules: they either start with a letter followed
by zero or more letters, digits, underscore, or dollar characters; or they start with an
underscore, dollar, or percentage character followed by one or more letters, digits,
underscore, or dollar characters:

 followsym: [a-zA-Z0-9_$]

 identifier: [a-zA-Z]{followsym}* | {[_$%]{followsym}+

PTX does not specify a maximum length for identifiers and suggests that all
implementations support a minimum length of at least 1024 characters.

Many high-level languages such as C and C++ follow similar rules for identifier names,
except that the percentage sign is not allowed. PTX allows the percentage sign as the first
character of an identifier. The percentage sign can be used to avoid name conflicts, e.g.
between user-defined variable names and compiler-generated names.

PTX predefines one constant and a small number of special registers that begin with the
percentage sign, listed in Table 3.

Table 3. Predefined Identifiers

%clock %laneid %lanemask_gt %pm0, …, %pm3

%clock64 %lanemask_eq %nctaid %smid

%ctaid %lanemask_le %ntid %tid

%envreg<32> %lanemask_lt %nsmid %warpid

%gridid %lanemask_ge %nwarpid WARP_SZ

 Chapter 4. Syntax

April 21, 2010 19

4.5. Constants

PTX supports integer and floating-point constants and constant expressions. These
constants may be used in data initialization and as operands to instructions. Type checking
rules remain the same for integer, floating-point, and bit-size types. For predicate-type data
and instructions, integer constants are allowed and are interpreted as in C, i.e., zero values
are FALSE and non-zero values are TRUE.

4.5.1. Integer Constants
Integer constants are 64-bits in size and are either signed or unsigned, i.e., every integer
constant has type .s64 or .u64. The signed/unsigned nature of an integer constant is needed
to correctly evaluate constant expressions containing operations such as division and ordered
comparisons, where the behavior of the operation depends on the operand types. When
used in an instruction or data initialization, each integer constant is converted to the
appropriate size based on the data or instruction type at its use.

Integer literals may be written in decimal, hexadecimal, octal, or binary notation. The syntax
follows that of C. Integer literals may be followed immediately by the letter ‘U’ to indicate
that the literal is unsigned.

 hexadecimal literal: 0[xX]{hexdigit}+U?

 octal literal: 0{octal digit}+U?

 binary literal: 0[bB]{bit}+U?

 decimal literal {nonzero-digit}{digit}*U?

Integer literals are non-negative and have a type determined by their magnitude and optional
type suffix as follows: literals are signed (.s64) unless the value cannot be fully represented in
.s64 or the unsigned suffix is specified, in which case the literal is unsigned (.u64).

The predefined integer constant WARP_SZ specifies the number of threads per warp for
the target platform; the sm_1x and sm_20 targets have a WARP_SZ value of 32.

4.5.2. Floating-Point Constants
Floating-point constants are represented as 64-bit double-precision values, and all floating-
point constant expressions are evaluated using 64-bit double precision arithmetic. The only
exception is the 32-bit hex notation for expressing an exact single-precision floating-point
value; such values retain their exact 32-bit single-precision value and may not be used in
constant expressions. Each 64-bit floating-point constant is converted to the appropriate
floating-point size based on the data or instruction type at its use.

Floating-point literals may be written with an optional decimal point and an optional signed
exponent. Unlike C and C++, there is no suffix letter to specify size; literals are always
represented in 64-bit double-precision format.

PTX includes a second representation of floating-point constants for specifying the exact
machine representation using a hexadecimal constant. To specify IEEE 754 double-
precision floating point values, the constant begins with 0d or 0D followed by 16 hex digits.
To specify IEEE 754 single-precision floating point values, the constant begins with 0f or
0F followed by 8 hex digits.

0[fF]{hexdigit}{8} // single-precision floating point

PTX ISA Version 2.1

20 April 21, 2010

0[dD]{hexdigit}{16} // double-precision floating point

Example:
 mov.f32 $f3, 0F3f800000; // 1.0

4.5.3. Predicate Constants

In PTX, integer constants may be used as predicates. For predicate-type data initializers and
instruction operands, integer constants are interpreted as in C, i.e., zero values are FALSE
and non-zero values are TRUE.

4.5.4. Constant Expressions
In PTX, constant expressions are formed using operators as in C and are evaluated using
rules similar to those in C, but simplified by restricting types and sizes, removing most casts,
and defining full semantics to eliminate cases where expression evaluation in C is
implementation dependent.

Constant expressions are formed from constant literals, unary plus and minus, basic
arithmetic operators (addition, subtraction, multiplication, division), comparison operators,
the conditional ternary operator (? :), and parentheses. Integer constant expressions also
allow unary logical negation (!), bitwise complement (~), remainder (%), shift operators (<<

and >>), bit-type operators (&, |, and ^), and logical operators (&&, ||).

Constant expressions in ptx do not support casts between integer and floating-point.

Constant expressions are evaluated using the same operator precedence as in C. The
following table gives operator precedence and associativity. Operator precedence is highest
for unary operators and decreases with each line in the chart. Operators on the same line
have the same precedence and are evaluated right-to-left for unary operators and left-to-right
for binary operators.

 Chapter 4. Syntax

April 21, 2010 21

Table 4. Operator Precedence

Kind Operator Symbols Operator Names Associates

Primary () parenthesis n/a

Unary + - ! ~ plus, minus, negation, complement right

 (.s64) (.u64) casts right

Binary * / % multiplication, division, remainder left

 + - addition, subtraction

 >> << shifts

 < > <= >= ordered comparisons

 == != equal, not equal

 & bitwise AND

 ^ bitwise XOR

 | bitwise OR

 && logical AND

 || logical OR

Ternary ? : conditional right

4.5.5. Integer Constant Expression Evaluation
Integer constant expressions are evaluated at compile time according to a set of rules that
determine the type (signed .s64 versus unsigned .u64) of each sub-expression. These rules
are based on the rules in C, but they’ve been simplified to apply only to 64-bit integers, and
behavior is fully defined in all cases (specifically, for remainder and shift operators).

• Literals are signed unless unsigned is needed to prevent overflow, or unless the literal
uses a ‘U’ suffix.

Example: 42, 0x1234, 0123 are signed.

Example: 0xFABC123400000000, 42U, 0x1234U are unsigned.

• Unary plus and minus preserve the type of the input operand.

Example: +123, -1, -(-42) are signed

Example: -1U, -0xFABC123400000000 are unsigned.

• Unary logical negation (!) produces a signed result with value 0 or 1.

• Unary bitwise complement (~) interprets the source operand as unsigned and produces
an unsigned result.

PTX ISA Version 2.1

22 April 21, 2010

• Some binary operators require normalization of source operands. This normalization is
known as the usual arithmetic conversions and simply converts both operands to unsigned
type if either operand is unsigned.

• Addition, subtraction, multiplication, and division perform the usual arithmetic
conversions and produce a result with the same type as the converted operands. That is,
the operands and result are unsigned if either source operand is unsigned, and is
otherwise signed.

• Remainder (%) interprets the operands as unsigned. Note that this differs from C,
which allows a negative divisor but defines the behavior to be implementation
dependent.

• Left and right shift interpret the second operand as unsigned and produce a result with
the same type as the first operand. Note that the behavior of right-shift is determined
by the type of the first operand: right shift of a signed value is arithmetic and preserves
the sign, and right shift of an unsigned value is logical and shifts in a zero bit.

• AND (&), OR (|), and XOR (^) perform the usual arithmetic conversions and produce
a result with the same type as the converted operands.

• AND_OP (&&), OR_OP (||), Equal (==), and Not_Equal (!=) produce a signed
result. The result value is 0 or 1.

• Ordered comparisons (<, <=, >, >=) perform the usual arithmetic conversions on
source operands and produce a signed result. The result value is 0 or 1.

• Casting of expressions to signed or unsigned is supported using (.s64) and (.u64) casts.

• For the conditional operator (? :) , the first operand must be an integer, and the second
and third operands are either both integers or both floating-point. The usual arithmetic
conversions are performed on the second and third operands, and the result type is the
same as the converted type.

 Chapter 4. Syntax

April 21, 2010 23

4.5.6. Summary of Constant Expression Evaluation Rules
These rules are summarized in the following table.

Table 5. Constant Expression Evaluation Rules

Kind Operator Operand Types Operand Interpretation Result Type

Primary
() any type same as source same as source

constant literal n/a n/a .u64, .s64, or .f64

Unary
+ - any type same as source same as source

! integer zero or non-zero .s64

~ integer .u64 .u64

Cast
(.u64) integer .u64 .u64

(.s64) integer .s64 .s64

Binary
+ - * / .f64

integer

.f64

use usual conversions

.f64

converted type

< > <= >= .f64

integer

.f64

use usual conversions

.s64

.s64

== != .f64

integer

.f64

use usual conversions

.s64

.s64

% integer .u64 .u64

>> << integer 1

st
 unchanged, 2

nd
 is .u64 same as 1

st
 operand

& | ^ integer .u64 .u64

&& || integer zero or non-zero .s64

Ternary
? : int ?.f64 : .f64

int ? int : int

same as sources

use usual conversions

.f64

converted type

PTX ISA Version 2.1

24 April 21, 2010

April 21, 2010 25

Chapter 5.

State Spaces, Types, and Variables

While the specific resources available in a given target GPU will vary, the kinds of resources
will be common across platforms, and these resources are abstracted in PTX through state
spaces and data types.

5.1. State Spaces

A state space is a storage area with particular characteristics. All variables reside in some
state space. The characteristics of a state space include its size, addressability, access speed,
access rights, and level of sharing between threads.

The state spaces defined in PTX are a byproduct of parallel programming and graphics
programming. The list of state spaces is shown in Table 4, and properties of state spaces are
shown in Table 5.

Table 6. State Spaces

Name Description

.reg Registers, fast.

.sreg Special registers. Read-only; pre-defined; platform-specific.

.const Shared, read-only memory.

.global Global memory, shared by all threads.

.local Local memory, private to each thread.

.param Kernel parameters, defined per-grid; or

Function or local parameters, defined per-thread.

.shared Addressable memory shared between threads in 1 CTA.

.tex Global texture memory (deprecated).

PTX ISA Version 2.1

26 April 21, 2010

Table 7. Properties of State Spaces

Name Addressable Initializable Access Sharing

.reg No No R/W per-thread

.sreg No No RO per-CTA

.const Yes Yes RO per-grid

.global Yes Yes R/W Context

.local Yes No R/W per-thread

.param (as input to kernel) Yes
1
 No RO per-grid

.param (used in functions) Restricted
2
 No R/W per-thread

.shared Yes No R/W per-CTA

.tex No
3
 Yes, via driver RO Context

5.1.1. Register State Space
Registers (.reg state space) are fast storage locations. The number of registers is limited, and
will vary from platform to platform. When the limit is exceeded, register variables will be
spilled to memory, causing changes in performance. For each architecture, there is a
recommended maximum number of registers to use (see the “CUDA Programming Guide”
for details).

Registers may be typed (signed integer, unsigned integer, floating point, predicate) or
untyped. Register size is restricted; aside from predicate registers which are 1-bit, scalar
registers have a width of 8-, 16-, 32-, or 64-bits, and vector registers have a width of 16-, 32-,
64-, or 128-bits. The most common use of 8-bit registers is with ld, st, and cvt instructions,
or as elements of vector tuples.

Registers differ from the other state spaces in that they are not fully addressable, i.e., it is not
possible to refer to the address of a register.

Registers may have alignment boundaries required by multi-word loads and stores.

1 Accessible only via the ld.param instruction. Address may be taken via mov instruction.

2 Accessible via ld.param and st.param instructions. Device function input parameters may have their
address taken via mov; the parameter is then located on the stack frame and its address is in the .local

state space.

3 Accessible only via the tex instruction.

 Chapter 5. State Spaces, Types, and Variables

April 21, 2010 27

5.1.2. Special Register State Space
The special register (.sreg) state space holds predefined, platform-specific registers, such as
grid, CTA, and thread parameters, clock counters, and performance monitoring registers.
All special registers are predefined.

PTX ISA Version 2.1

28 April 21, 2010

5.1.3. Constant State Space
The constant (.const) state space is a read-only memory, initialized by the host. The constant
memory is organized into fixed size banks. For the current devices, there are eleven 64KB
banks. Banks are specified using the .const[bank] modifier, where bank ranges from 0 to 10.
If no bank number is given, bank zero is used.

By convention, bank zero is used for all statically-sized constant variables. The remaining
banks may be used to implement “incomplete” constant arrays (in C, for example), where
the size is not known at compile time. For example, the declaration

.extern .const[2] .b32 const_buffer[];

results in const_buffer pointing to the start of constant bank two. This pointer can then
be used to access the entire 64KB constant bank. Note that statically-sized variables cannot
be declared in the same bank as an incomplete array since the size of the array is unknown.
Multiple incomplete array variables declared in the same bank become aliases, each pointing
to the start address of the specified constant bank.

To access data in contant banks 1 through 10, the bank number must be provided in the
state space of the load instruction. For example, an incomplete array in bank 2 is accessed as
follows:

.extern .const[2] .b32 const_buffer[];

ld.const[2].b32 %r1, [const_buffer+4]; // load second word

5.1.4. Global State Space

The global (.global) state space is memory that is accessible by all threads in a context. It is
the mechanism by which different CTAs and different grids can communicate. Use ld.global,
st.global, and atom.global to access global variables.

For any thread in a context, all addresses are in global memory are shared.

Global memory is not sequentially consistent. Consider the case where one thread executes
the following two assignments:

 a = a + 1;

 b = b – 1;

If another thread sees the variable b change, the store operation updating a may still be in
flight. This reiterates the kind of parallelism available in machines that run PTX. Threads
must be able to do their work without waiting for other threads to do theirs, as in lock-free
and wait-free style programming.

Sequential consistency is provided by the bar.sync instruction. Threads wait at the barrier
until all threads in the CTA have arrived. All memory writes prior to the bar.sync instruction
are guaranteed to be visible to any reads after the barrier instruction.

5.1.5. Local State Space
The local state space (.local) is private memory for each thread to keep its own data. It is
typically standard memory with cache. The size is limited, as it must be allocated on a per-
thread basis. Use ld.local and st.local to access local variables.

In implementations that support a stack, the stack is in local memory. Module-scoped local
memory variables are stored at fixed addresses, whereas local memory variables declared

 Chapter 5. State Spaces, Types, and Variables

April 21, 2010 29

within a function or kernel body are allocated on the stack. In implementations that do not
support a stack, all local memory variables are stored at fixed addresses and recursive
function calls are not supported.

5.1.6. Parameter State Space

The parameter (.param) state space is used (1) to pass input arguments from the host to the
kernel, (2a) to declare formal input and return parameters for device functions called from
within kernel execution, and (2b) to declare locally-scoped byte array variables that serve as
function call arguments, typically for passing large structures by value to a function. Kernel
function parameters differ from device function parameters in terms of access and sharing
(read-only versus read-write, per-kernel versus per-thread). Note that PTX ISA versions 1.x
supports only kernel function parameters in .param space; device function parameters were
previously restricted to the register state space. The use of parameter state space for device
function parameters was introduced in PTX ISA version 2.0 and requires target architecture
sm_20.

Note: The location of parameter space is implementation specific. For example, in some
implementations kernel parameters reside in global memory. No access protection is
provided between parameter and global space in this case. Similarly, function parameters are
mapped to parameter passing registers and/or stack locations based on the function calling
conventions of the Application Binary Interface (ABI). Therefore, PTX code should make
no assumptions about the relative locations or ordering of .param space variables.

5.1.6.1. Kernel Function Parameters

Each kernel function definition includes an optional list of parameters. These parameters
are addressable, read-only variables declared in the .param state space. Values passed from
the host to the kernel are accessed through these parameter variables using ld.param
instructions. The kernel parameter variables are shared across all CTAs within a grid.

The address of a kernel parameter may be moved into a register using the mov instruction.
The resulting address is in the .param state space and is accessed using ld.param instructions.

Example:
.entry foo (.param .b32 N, .param .align 8 .b8 buffer[64])

{

.reg .u32 %n;

.reg .f64 %d;

ld.param.u32 %n, [N];

ld.param.f64 %d, [buffer];

…

Example:
.entry bar (.param .b32 len)

{

.reg .u32 %ptr, %n;

mov.u32 %ptr, len;

ld.param.u32 %n, [%ptr];

…

PTX ISA Version 2.1

30 April 21, 2010

5.1.6.2. Device Function Parameters

PTX ISA version 2.0 extended the use of parameter space to device function parameters.
The most common use is for passing objects by value that do not fit within a PTX register,
such as C structures larger than 8 bytes. In this case, a byte array in parameter space is used.
Typically, the caller will declare a locally-scoped .param byte array variable that represents a
flattened C structure or union. This will be passed by value to a callee, which declares a
.param formal parameter having the same size and alignment as the passed argument.

Example:
// pass object of type struct { double d; int y; };

.func foo (.reg .b32 N, .param .align 8 .b8 buffer[12])

{

.reg .f64 %d;

.reg .s32 %y;

ld.param.f64 %d, [buffer];

ld.param.s32 %y, [buffer+8];

…

}

// code snippet from the caller

// struct { double d; int y; } mystruct; is flattened, passed to foo

…

.reg .f64 dbl;

.reg .s32 x;

.param .align 8 .b8 mystruct;

…

st.param.f64 [mystruct+0], dbl;

st.param.s32 [mystruct+8], x;

call foo, (4, mystruct);

…

See the section on function call syntax for more details.

Function input parameters may be read via ld.param and function return parameters may be
written using st.param; it is illegal to write to an input parameter or read from a return
parameter.

Aside from passing structures by value, .param space is also required whenever a formal
parameter has its address taken within the called function. In PTX, the address of a function
input parameter may be moved into a register using the mov instruction. Note that the
parameter will be copied to the stack if necessary, and so the address will be in the .local state
space and is accessed via ld.local and st.local instructions. It is not possible to use mov to get
the address of a return parameter or a locally-scoped .param space variable.

 Chapter 5. State Spaces, Types, and Variables

April 21, 2010 31

5.1.7. Shared State Space
The shared (.shared) state space is a per-CTA region of memory for threads in a CTA to
share data. An address in shared memory can be read and written by any thread in a CTA.
Use ld.shared and st.shared to access shared variables.

Shared memory typically has some optimizations to support the sharing. One example is
broadcast; where all threads read from the same address. Another is sequential access from
sequential threads.

5.1.8. Texture State Space (deprecated)
The texture (.tex) state space is global memory accessed via the texture instruction. It is
shared by all threads in a context.

The GPU hardware has a fixed number of texture bindings that can be accessed within a
single program (typically 128). The .tex directive will bind the named texture memory
variable to a hardware texture identifier, where texture identifiers are allocated sequentially
beginning with zero. Multiple names may be bound to the same physical texture identifier.
An error is generated if the maximum number of physical resources is exceeded. The
texture name must be of type .u32 or .u64.

Physical texture resources are allocated on a per-module granularity, and .tex variables are
required to be defined in the global scope.

Texture memory is read-only. A texture’s base address is assumed to be aligned to a 16-byte
boundary.

Example:
 .tex .u32 tex_a; // bound to physical texture 0

 .tex .u32 tex_c, tex_d; // both bound to physical texture 1

 .tex .u32 tex_d; // bound to physical texture 2

 .tex .u32 tex_f; // bound to physical texture 3

Note: use of the texture state space is deprecated, and programs should instead reference
texture memory through variables of type .texref. The .tex directive is retained for backward
compatibility, and variables declared in the .tex state space are equivalent to module-scoped
.texref variables in the .global state space. For example, a legacy PTX definitions such as

 .tex .u32 tex_a;

is equivalent to

 .global .texref tex_a;

See Section 5.3 for the description of the .texref type and Section 8.7.6 for its use in texture
instructions.

PTX ISA Version 2.1

32 April 21, 2010

5.2. Types

5.2.1. Fundamental Types
In PTX, the fundamental types reflect the native data types supported by the target
architectures. A fundamental type specifies both a basic type and a size. Register variables
are always of a fundamental type, and instructions operate on these types. The same type-
size specifiers are used for both variable definitions and for typing instructions, so their
names are intentionally short.

The following table lists the fundamental type specifiers for each basic type:

Table 8. Fundamental Type Specifiers

Basic Type Fundamental Type Specifiers

Signed integer .s8, .s16, .s32, .s64

Unsigned integer .u8, .u16, .u32, .u64

Floating-point .f16, .f32, .f64

Bits (untyped) .b8, .b16, .b32, .b64

Predicate .pred

Most instructions have one or more type specifiers, needed to fully specify instruction
behavior. Operand types and sizes are checked against instruction types for compatibility.

Two fundamental types are compatible if they have the same basic type and are the same
size. Signed and unsigned integer types are compatible if they have the same size. The bit-
size type is compatible with any fundamental type having the same size.

In principle, all variables (aside from predicates) could be declared using only bit-size types,
but typed variables enhance program readability and allow for better operand type checking.

5.2.2. Restricted Use of Sub-Word Sizes
The .u8, .s8, and .b8 instruction types are restricted to ld, st, and cvt instructions. The .f16
floating-point type is allowed only in conversions to and from .f32 and .f64 types. All
floating-point instructions operate only on .f32 and .f64 types.

For convenience, ld, st, and cvt instructions permit source and destination data operands to
be wider than the instruction-type size, so that narrow values may be loaded, stored, and
converted using regular-width registers. For example, 8-bit or 16-bit values may be held
directly in 32-bit or 64-bit registers when being loaded, stored, or converted to other types
and sizes.

 Chapter 5. State Spaces, Types, and Variables

April 21, 2010 33

5.3. Texture, Sampler, and Surface Types

PTX includes built-in “opaque” types for defining texture, sampler, and surface descriptor
variables. These types have named fields similar to structures, but all information about
layout, field ordering, base address, and overall size is hidden to a PTX program, hence the
term “opaque”. The use of these opaque types is limited to:

• Variable definition within global (module) scope and in kernel entry parameter lists.

• Static initialization of module-scope variables using comma-delimited static
assignment expressions for the named members of the type.

• Referencing textures, samplers, or surfaces via texture and surface load/store
instructions (tex, suld, sust, sured).

• Retrieving the value of a named member via query instructions (txq, suq).

• Creating pointers to opaque variables using mov.{u32,u64} reg, opaque_var; the
resulting pointer may be stored to and loaded from memory, passed as a parameter
to functions, and de-referenced by texture and surface load, store, and query
instructions, but the pointer cannot otherwise be treated as an address, i.e., accessing
the pointer with ld and st instructions, or performing pointer arithmetic will result in
undefined results.

The three built-in types are .texref, .samplerref, and .surfref. For working with textures and
samplers, PTX has two modes of operation. In the unified mode, texture and sampler
information is accessed through a single .texref handle. In the independent mode, texture and
sampler information each have their own handle, allowing them to be defined separately and
combined at the site of usage in the program. In independent mode the fields of the .texref type
that describe sampler properties are ignored, since these properties are defined by
.samplerref variables.

The following tables list the named members of each type for unified and independent
texture modes. These members and their values have precise mappings to methods and
values defined in the texture HW class as well as exposed values via the API.

PTX ISA Version 2.1

34 April 21, 2010

Table 9. Opaque Type Fields in Unified Texture Mode

Member .texref values .surfref values

width in elements

height in elements

depth in elements

channel_data_type enum type corresponding to source language API

channel_order enum type corresponding to source language API

normalized_coords 0, 1 N/A

filter_mode nearest, linear N/A

addr_mode_0
wrap, mirror,

clamp_ogl,

clamp_to_edge,

clamp_to_border

N/A

addr_mode_1 N/A

addr_mode_2 N/A

Table 10. Opaque Type Fields in Independent Texture Mode

Member .samplerref values .texref values .surfref values

width N/A in elements

height N/A in elements

depth N/A in elements

channel_data_type N/A enum type corresponding to

source language API

channel_order N/A enum type corresponding to

source language API

normalized_coords N/A 0, 1 N/A

filter_mode nearest, linear ignored N/A

addr_mode_0 wrap, mirror,

clamp_ogl,

clamp_to_edge,

clamp_to_border

ignored N/A

addr_mode_1 ignored N/A

addr_mode_2 ignored N/A

 Chapter 5. State Spaces, Types, and Variables

April 21, 2010 35

Variables using these types may be declared at module scope or within kernel entry
parameter lists. At module scope, these variables must be in the .global state space. As
kernel parameters, these variables are declared in the .param state space.

Example:
 .global .texref my_texture_name;

 .global .samplerref my_sampler_name;

 .global .surfref my_surface_name;

When declared at module scope, the types may be initialized using a list of static expressions
assigning values to the named members.

Example:
 .global .texref tex1;

 .global .samplerref tsamp1 = { addr_mode_0 = clamp_to_border,

 filter_mode = nearest

 };

5.3.1. Channel Data Type and Channel Order Fields
The channel_data_type and channel_order fields have enumeration types corresponding to
the source language API. Currently, OpenCL is the only source language that defines these
fields. The following tables show the enumeration values defined in OpenCL version 1.0 for
channel data type and channel order.

Table 11. OpenCL 1.0 Channel Data Type Definition

CL_SNORM_INT8 0x10D0

CL_SNORM_INT16 0x10D1

CL_UNORM_INT8 0x10D2

CL_UNORM_INT16 0x10D3

CL_UNORM_SHORT_565 0x10D4

CL_UNORM_SHORT_555 0x10D5

CL_UNORM_INT_101010 0x10D6

CL_SIGNED_INT8 0x10D7

CL_SIGNED_INT16 0x10D8

CL_SIGNED_INT32 0x10D9

CL_UNSIGNED_INT8 0x10DA

CL_UNSIGNED_INT16 0x10DB

CL_UNSIGNED_INT32 0x10DC

CL_HALF_FLOAT 0x10DD

CL_FLOAT 0x10DE

PTX ISA Version 2.1

36 April 21, 2010

Table 12. OpenCL 1.0 Channel Order Definition

CL_R 0x10B0

CL_A 0x10B1

CL_RG 0x10B2

CL_RA 0x10B3

CL_RGB 0x10B4

CL_RGBA 0x10B5

CL_BGRA 0x10B6

CL_ARGB 0x10B7

CL_INTENSITY 0x10B8

CL_LUMINANCE 0x10B9

 Chapter 5. State Spaces, Types, and Variables

April 21, 2010 37

5.4. Variables

In PTX, a variable declaration describes both the variable’s type and its state space. In
addition to fundamental types, PTX supports types for simple aggregate objects such as
vectors and arrays.

5.4.1. Variable Declarations
All storage for data is specified with variable declarations. Every variable must reside in one
of the state spaces enumerated in the previous section.

A variable declaration names the space in which the variable resides, its type and size, its
name, an optional array size, an optional initializer, and an optional fixed address for the
variable.

Predicate variables may only be declared in the register state space.

Examples:
 .global .u32 loc;

 .reg .s32 i;

 .const .f32 bias[] = {-1.0, 1.0};

 .global .u8 bg[4] = {0, 0, 0, 0};

 .reg .v4 .f32 accel;

 .reg .pred p, q, r;

 .struct float4 { .f32 v0,v1,v2,v3 }; // typedef

 .global .struct float4 coord;

5.4.2. Vectors

Limited-length vector types are supported. Vectors of length 2 and 4 of any non-predicate
fundamental type can be declared by prefixing the type with .v2 or .v4. Vectors must be
based on a fundamental type, and they may reside in the register space. Vectors cannot
exceed 128-bits in length; for example, .v4.f64 is not allowed. Three-element vectors may be
handled by using a .v4 vector, where the fourth element provides padding. This is a common
case for three-dimensional grids, textures, etc.

Examples:
 .global .v4 .f32 V; // a length-4 vector of floats

 .shared .v2 .u16 uv; // a length-2 vector of unsigned ints

 .global .v4 .b8 v; // a length-4 vector of bytes

By default, vector variables are aligned to a multiple of their overall size (vector length times
base-type size), to enable vector load and store instructions which require addresses aligned
to a multiple of the access size.

PTX ISA Version 2.1

38 April 21, 2010

5.4.3. Array Declarations
Array declarations are provided to allow the programmer to reserve space. To declare an
array, the variable name is followed with dimensional declarations similar to fixed-size array
declarations in C. The size of the dimension is either a constant expression, or is left empty,
being determined by an array initializer. Here are some examples:

 .local .u16 kernel[19][19];

 .shared .u8 mailbox[128];

 .global .s32 offset[][] = { {-1, 0}, {0, -1}, {1, 0}, {0, 1} };

The size of the array specifies how many elements should be reserved. For the kernel
declaration above, 19*19 (361) halfwords are reserved (722 bytes).

5.4.4. Initializers
Declared variables may specify an initial value using a syntax similar to C/C++, where the
variable name is followed by an equals sign and the initial value or values for the variable. A
scalar takes a single value, while vectors and arrays take nested lists of values inside of curly
braces (the nesting matches the dimensionality of the declaration).

Variable names appearing in initializers represent the address of the variable; this can be used
to statically initialize a pointer to a variable. Only variables in .global or .const state spaces
may be used in initializers. For .global variables used in initializers, the resulting address is a
generic address; for .const variables used in initializers, the resulting address is the offset in
the constant bank in which the variable is declared. Label names appearing in initializers
represent the address of the next instruction following the label; this can be used to initialize
a jump table to be used with indirect branches or calls. Variables that hold addresses of
variables or instructions should be of type .u32 or .u64.

Initializers are allowed for all types except .f16 and .pred.

Examples:
 .global .s32 n = 10;

 .global .f32 blur_kernel[][]

 = {{.05,.1,.05},{.1,.4,.1},{.05,.1,.05}};

 .global .v4 .u8 rgba[3] = {{1,0,0,0}, {0,1,0,0}, {0,0,1,0}};

 .global .b32 ptr = rgba; // generic address of rgba into ptr

Currently, variable initialization is supported only for constant and global state spaces.

 Chapter 5. State Spaces, Types, and Variables

April 21, 2010 39

5.4.5. Alignment
Byte alignment of storage for all addressable variables can be specified in the variable
declaration. Alignment is specified using an optional .align byte-count specifier immediately
following the state-space specifier. The variable will be aligned to an address which is an
integer multiple of byte-count. For arrays, alignment specifies the address alignment for the
starting address of the entire array, not for individual elements.

The default alignment for scalar and array variables is to a multiple of the base-type size.
The default alignment for vector variables is to a multiple of the overall vector size.

Examples:
// allocate array at 4-byte aligned address. Elements are bytes.

 .const .align 4 .b8 bar[8] = {0,0,0,0,2,0,0,0};

Note that all PTX instructions that access memory require that the address be aligned to a
multiple of the transfer size.

5.4.6. Parameterized Variable Names
Since PTX supports virtual registers, it is quite common for a compiler frontend to generate
a large number of register names. Rather than require explicit declaration of every name,
PTX supports a syntax for creating a set of variables having a common prefix string
appended with integer suffixes. For example, suppose a program uses a large number, say
one hundred, of .b32 variables, named %r0, %r1, ..., %r99. These 100 register variables can
be declared as follows:

 .reg .b32 %r<100>; // declare %r0, %r1, …, %r99

This shorthand syntax may be used with any of the fundamental types and with any state
space, and may be preceded by an alignment specifier. Array variables cannot be declared
this way, nor are initializers permitted.

PTX ISA Version 2.1

40 April 21, 2010

April 21, 2010 41

Chapter 6.

Instruction Operands

6.1. Operand Type Information

All operands in instructions have a known type from their declarations. Each operand type
must be compatible with the type determined by the instruction template and instruction
type. There is no automatic conversion between types.

The bit-size type is compatible with every type having the same size. Integer types of a
common size are compatible with each other. Operands having type different from but
compatible with the instruction type are silently cast to the instruction type.

6.2. Source Operands

The source operands are denoted in the instruction descriptions by the names a, b, and c.
PTX describes a load-store machine, so operands for ALU instructions must all be in
variables declared in the .reg register state space. For most operations, the sizes of the
operands must be consistent.

The cvt (convert) instruction takes a variety of operand types and sizes, as its job is to
convert from nearly any data type to any other data type (and size).

The ld, st, mov, and cvt instructions copy data from one location to another. Instructions ld
and st move data from/to addressable state spaces to/from registers. The mov instruction
copies data between registers.

Most instructions have an optional predicate guard that controls conditional execution, and a
few instructions have additional predicate source operands. Predicate operands are denoted
by the names p, q, r, s.

6.3. Destination Operands

PTX instructions that produce a single result store the result in the field denoted by d (for
destination) in the instruction descriptions. The result operand is a scalar or vector variable
in the register state space.

.

PTX ISA Version 2.1

42 April 21, 2010

6.4. Using Addresses, Arrays, and Vectors

Using scalar variables as operands is straightforward. The interesting capabilities begin with
addresses, arrays, and vectors.

6.4.1. Addresses as Operands

Address arithmetic is performed using integer arithmetic and logical instructions. Examples
include pointer arithmetic and pointer comparisons. All addresses and address
computations are byte-based; there is no support for C-style pointer arithmetic.

The mov instruction can be used to move the address of a variable into a pointer. The
address is an offset in the state space in which the variable is declared. Load and store
operations move data between registers and locations in addressable state spaces. The
syntax is similar to that used in many assembly languages, where scalar variables are simply
named and addresses are de-referenced by enclosing the address expression in square
brackets. Address expressions include variable names, address registers, address register plus
byte offset, and immediate address expressions which evaluate at compile-time to a constant
address.

Here are a few examples:

 .shared .u16 x;

 .reg .u16 r0;

 .global .v4 .f32 V;

 .reg .v4 .f32 W;

 .const .s32 tbl[256];

 .reg .b32 p;

 .reg .s32 q;

 ld.shared.u16 r0,[x];

 ld.gloal.v4.f32 W, [V];

 ld.const.s32 q, [tbl+12];

 mov.u32 p, tbl;

 Chapter 6. Instruction Operands

April 21, 2010 43

6.4.2. Arrays as Operands
Arrays of all types can be declared, and the identifier becomes an address constant in the
space where the array is declared. The size of the array is a constant in the program.

Array elements can be accessed using an explicitly calculated byte address, or by indexing
into the array using square-bracket notation. The expression within square brackets is either
a constant integer, a register variable, or a simple “register with constant offset” expression,
where the offset is a constant expression that is either added or subtracted from a register
variable. If more complicated indexing is desired, it must be written as an address
calculation prior to use. Examples are

 ld.global.u32 s, a[0];

 ld.global.u32 s, a[N-1];

 mov.u32 s, a[1]; // move address of a[1] into s

6.4.3. Vectors as Operands

Vector operands are supported by a limited subset of instructions, which include mov, ld, st,
and tex. Vectors may also be passed as arguments to called functions.

Vector elements can be extracted from the vector with the suffixes .x, .y, .z and .w, as well as
the typical color fields .r, .g, .b and .a.

A brace-enclosed list is used for pattern matching to pull apart vectors.

 .reg .v4 .f32 V;

 .reg .f32 a, b, c, d;

 mov.v4.f32 {a,b,c,d}, V;

Vector loads and stores can be used to implement wide loads and stores, which may improve
memory performance. The registers in the load/store operations can be a vector, or a brace-
enclosed list of similarly typed scalars. Here are examples:

 ld.global.v4.f32 {a,b,c,d}, [addr+offset];

 ld.global.v2.u32 V2, [addr+offset2];

Elements in a brace-enclosed vector, say {Ra, Rb, Rc, Rd}, correspond to extracted elements
as follows:

 Ra = V.x = V.r

 Rb = V.y = V.g

 Rc = V.z = V.b

 Rd = V.w = V.a

6.4.4. Labels and Function Names as Operands

Labels and function names can be used only in branch and call instructions, and in move
instructions to get the address of the label or function into a register, for use in an indirect
branch or call.

PTX ISA Version 2.1

44 April 21, 2010

6.5. Type Conversion

All operands to all arithmetic, logic, and data movement instruction must be of the same
type and size, except for operations where changing the size and/or type is part of the
definition of the instruction. Operands of different sizes or types must be converted prior
to the operation.

6.5.1. Scalar Conversions
Table 6 shows what precision and format the cvt instruction uses given operands of differing
types. For example, if a cvt.s32.u16 instruction is given a u16 source operand and s32 as a
destination operand, the u16 is zero-extended to s32.

Conversions to floating-point that are beyond the range of floating-point numbers are
represented with the maximum floating-point value (IEEE 754 Inf for f32 and f64, and
~131,000 for f16).

 Chapter 6. Instruction Operands

April 21, 2010 45

Table 13. Convert Instruction Precision and Format

Destination Format

s8 s16 s32 s64 u8 u16 u32 u64 f16 f32 f64

S
o

u
rc

e
 F

o
rm

a
t

s8 - sext sext sext - sext sext sext s2f s2f s2f

s16 chop
1
 - sext sext chop

1
 - sext sext s2f s2f s2f

s32 chop
1
 chop

1
 - sext chop

1
 chop

1
 - sext s2f s2f s2f

s64 chop
1
 chop

1
 chop - chop

1
 chop

1
 chop - s2f s2f s2f

u8 - zext zext zext - zext zext zext u2f u2f u2f

u16 chop
1
 - zext zext chop

1
 - zext zext u2f u2f u2f

u32 chop
1
 chop

1
 - zext chop

1
 chop

1
 - zext u2f u2f u2f

u64 chop
1
 chop

1
 chop - chop

1
 chop

1
 chop - u2f u2f u2f

f16 f2s f2s f2s f2s f2u f2u f2u f2u - f2f f2f

f32 f2s f2s f2s f2s f2u f2u f2u f2u f2f - f2f

f64 f2s f2s f2s f2s f2u f2u f2u f2u f2f f2f -

Notes

sext = sign extend; zext = zero-extend; chop = keep only low bits that fit;

s2f = signed-to-float; f2s = float-to-signed;

u2f = unsigned-to-float; f2u = float-to-unsigned;

f2f = float-to-float;

1

If the destination register is wider than the destination format, the result is extended to the
destination register width after chopping. The type of extension (sign or zero) is based on the
destination format. For example, cvt.s16.u32 targeting a 32-bit register will first chop to 16-bits,
then sign-extend to 32-bits.

PTX ISA Version 2.1

46 April 21, 2010

6.5.2. Rounding Modifiers
Conversion instructions may specify a rounding modifier. In PTX, there are four integer
rounding modifiers and four floating-point rounding modifiers. The following tables
summarize the rounding modifiers.

Table 14. Floating-Point Rounding Modifiers

Modifier Description

.rn mantissa LSB rounds to nearest even

.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

Table 15. Integer Rounding Modifiers

Modifier Description

.rni round to nearest integer, choosing even integer if source is equidistant
between two integers.

.rzi round to nearest integer in the direction of zero

.rmi round to nearest integer in direction of negative infinity

.rpi round to nearest integer in direction of positive infinity

 Chapter 6. Instruction Operands

April 21, 2010 47

6.6. Operand Costs

Operands from different state spaces affect the speed of an operation. Registers are fastest,
while global memory is slowest. Much of the delay to memory can be hidden in a number of
ways. The first is to have multiple threads of execution so that the hardware can issue a
memory operation and then switch to other execution. Another way to hide latency is to
issue the load instructions as early as possible, as execution is not blocked until the desired
result is used in a subsequent (in time) instruction. The register in a store operation is
available much more quickly. Table 11 gives estimates of the costs of using different kinds
of memory.

Table 16. Cost Estimates for Accessing State-Spaces

Space Time Notes

Register
0

Shared
0

Constant
0 Amortized cost is low, first access is high

Local
> 100 clocks

Parameter
0

Immediate
0

Global
> 100 clocks

Texture
> 100 clocks

Surface
> 100 clocks

PTX ISA Version 2.1

48 April 21, 2010

April 21, 2010 49

Chapter 7.

Abstracting the ABI

Rather than expose details of a particular calling convention, stack layout, and Application
Binary Interface (ABI), PTX provides a slightly higher-level abstraction and supports
multiple ABI implementations. In this section, we describe the features of PTX needed to
achieve this hiding of the ABI. These include syntax for function definitions, function calls,
parameter passing, support for variadic functions (“varargs”), and memory allocated on the
stack (“alloca”).

7.1. Function declarations and definitions

In PTX, functions are declared and defined using the .func directive. A function declaration
specifies an optional list of return parameters, the function name, and an optional list of
input parameters; together these specify the function’s interface, or prototype. A function
definition specifies both the interface and the body of the function. A function must be
declared or defined prior to being called.

The simplest function has no parameters or return values, and is represented in PTX as
follows:

.func foo

{

 …

 ret;

}

 …

 call foo;

 …

Here, execution of the call instruction transfers control to foo, implicitly saving the return
address. Execution of the ret instruction within foo transfers control to the instruction
following the call.

Scalar and vector base-type input and return parameters may be represented simply as
register variables. At the call, arguments may be register variables or constants, and return
values may be placed directly into register variables. The arguments and return variables at
the call must have type and size that match the callee’s corresponding formal parameters.

PTX ISA Version 2.1

50 April 21, 2010

Example:

.func (.reg .u32 %res) inc_ptr (.reg .u32 %ptr, .reg .u32 %inc)

{

 add.u32 %res, %ptr, %inc;

 ret;

}

 …

 call (%r1), inc_ptr, (%r1,4);

 …

Objects such as C structures and unions are flattened into registers or byte arrays in PTX
and are represented using .param space memory. For example, consider the following C
structure, passed by value to a function:

struct {

 double dbl;

 char c[4];

};

In PTX, this structure will be flattened into a byte array. Since memory accesses are required
to be aligned to a multiple of the access size, the structure in this example will be a 12 byte
array with 8 byte alignment so that accesses to the .f64 field are aligned. The .param state
space is used to pass the structure by value:

.func (.reg .s32 out) bar (.reg .s32 x, .param .b8 .align 8 y[12])

{

 .reg .f64 f1;

 .reg .b32 c1, c2, c3, c4;

…

 ld.param.f64 f1, [y+0];

 ld.param.b8 c1, [y+8];

 ld.param.b8 c2, [y+9];

 ld.param.b8 c3, [y+10];

 ld.param.b8 c4, [y+11];

…

 … // computation using x,f1,c1,c2,c3,c4;

}

{

 .param .b8 .align 8 py[12];

…

 st.param.b64 [py+ 0], %rd;

 st.param.b8 [py+ 8], %rc1;

 st.param.b8 [py+ 9], %rc2;

 st.param.b8 [py+10], %rc1;

 st.param.b8 [py+11], %rc2;

 // scalar args in .reg space, byte array in .param space

 call (%out), bumpptr, (%x, py);

…

In this example, note that .param space variables are used in two ways. First, a .param
variable y is used in function definition bar to represent a formal parameter. Second, a
.param variable py is declared in the body of the calling function and used to set up the
structure being passed to bar.

 Chapter 7. Abstracting the ABI

April 21, 2010 51

The following is a conceptual way to think about the .param state space use in device
functions.

For a caller,

• The .param state space is used to set values that will passed to a called function
and/or to receive return values from a called function. Typically, a .param byte
array is used to collect together fields of a structure being passed by value.

For a callee,

• The .param state space is used to receive parameter values and/or pass return values
back to the caller.

The following restrictions apply to parameter passing.

For a caller,

• Arguments may be .param variables, .reg variables, or constants.

• In the case of .param space formal parameters that are byte arrays, the argument
must also be a .param space byte array with matching type, size, and alignment. A
.param argument must be declared within the local scope of the caller.

• In the case of .param space formal parameters that are base-type scalar or vector
variables, the corresponding argument may be either a .param or .reg space variable
with matching type and size, or a constant that can be represented in the type of the
formal parameter.

• In the case of .reg space formal parameters, the corresponding argument may be
either a .param or .reg space variable of matching type and size, or a constant that
can be represented in the type of the formal parameter.

• For .param arguments, all st.param and ld.param instructions used for argument
passing must be contained in the basic block with the call instruction. This enables
backend optimization and ensures that the .param variable does not consume extra
space in the caller’s frame beyond that needed by the ABI. The .param variable
simply allows a mapping to be made at the call site between data that may be in
multiple locations (e.g., structure being manipulated by caller is located in registers
and memory) to something that can be passed as a parameter or return value to the
callee.

For a callee,

• Input and return parameters may be .param variables or .reg variables.

• Parameters in .param memory must be aligned to a multiple of 1, 2, 4, 8, or 16 bytes.

• The .reg state space can be used to receive and return base-type scalar and vector
values. Supporting the .reg state space in this way provides legacy support.

Note that the choice of .reg or .param state space for parameter passing has no impact on
whether the parameter is ultimately passed in physical registers or on the stack. The
mapping of parameters to physical registers and stack locations depends on the ABI
definition and the order, size, and alignment of parameters.

PTX ISA Version 2.1

52 April 21, 2010

7.1.1. Changes from PTX ISA Version 1.x
In PTX ISA version 1.x, formal parameters were restricted to .reg state space, and there was
no support for array parameters. Objects such as C structures were flattened and passed or
returned using multiple registers. PTX ISA version 1.x supports multiple return values for
this purpose.

In PTX ISA version 2.x, formal parameters may be in either .reg or .param state space, and
.param space parameters support arrays. For sm_2x targets, PTX ISA version 2.x restricts
functions to a single return value, and a .param byte array should be used to return objects
that do not fit into a register. PTX ISA version 2.x continues to support multiple return
registers for sm_1x targets.

NOTE: PTX ISA version 2.x implements a stack-based ABI only for sm_2x targets.

 Chapter 7. Abstracting the ABI

April 21, 2010 53

7.2. Variadic functions

NOTE: The current version of PTX does not support variadic functions.

To support functions with a variable number of arguments, PTX provides a high-level
mechanism similar to the one provided by the stdarg.h and varargs.h headers in C.

In PTX, variadic functions are declared with an ellipsis at the end of the input parameter list,
following zero or more fixed parameters:

.func baz (.reg .u32 a, .reg .u32 b, …)

.func okay (…)

Built-in functions are provided to initialize, iteratively access, and end access to a list of
variable arguments. The function prototypes are defined as follows:

.func (.reg .u32 ptr) %va_start

.func (.reg .b32 val) %va_arg (.reg .u32 ptr, .reg .u32 sz, .reg .u32 align)

.func (.reg .b64 val) %va_arg64 (.reg .u32 ptr, .reg .u32 sz, .reg .u32 align)

.func %va_end (.reg .u32 ptr)

%va_start returns a handle to whatever structure is used by the ABI to support variable
argument lists. This handle is then passed to the %va_arg and %va_arg64 built-in functions,
along with the size and alignment of the next data value to be accessed. For %va_arg, the size
may be 1, 2, or 4 bytes; for %va_arg64, the size may be 1, 2, 4, or 8 bytes. In both cases, the
alignment may be 1, 2, 4, 8, or 16 bytes. Once all arguments have been processed, %va_end is
called to free the variable argument list handle.

Here’s an example PTX program using the built-in functions to support a variable number
of arguments:

 // compute max over N signed integers

 .func (.reg .s32 result) maxN (.reg .u32 N, ...)

 {

 .reg .u32 ap, ctr;

 .reg .s32 val;

 .reg .pred p;

 call (ap), %va_start;

 mov.b32 result, 0x8000000; // default to MININT

 mov.b32 ctr, 0;

Loop: setp.u32.ge p, ctr, N;

@p bra Done;

 call (val), %va_arg, (ap, 4, 4);

 max.s32 result, result, val;

 bra Loop;

Done:

 call %va_end, (ap);

 ret;

 }

…

 call (%max), maxN, (3, %r1, %r2, %r3);

…

 call (%max), maxN, (2, %s1, %s2);

…

PTX ISA Version 2.1

54 April 21, 2010

7.3. Alloca

NOTE: The current version of PTX does not support alloca.

PTX provides another built-in function for allocating storage at runtime on the per-thread
local memory stack. To allocate memory, a function simply calls the built-in function
%alloca, defined as follows:

.func (.reg .u32 ptr) %alloca (.reg .u32 size)

The resulting pointer is to the base address in local memory of the allocated memory. The
array is then accessed with ld.local and st.local instructions.

If a particular alignment is required, it is the responsibility of the user program to allocate
additional space and adjust the base pointer to achieve the desired alignment. The built-in
%alloca function is guaranteed only to return a 4-byte aligned pointer.

April 21, 2010 55

Chapter 8.

Instruction Set

8.1. Format and Semantics of Instruction Descriptions

This section describes each PTX instruction. In addition to the name and the format of the
instruction, the semantics are described, followed by some examples that attempt to show
several possible instantiations of the instruction.

8.2. PTX Instructions

PTX instructions generally have from zero to four operands, plus an optional guard
predicate appearing after an ‘@’ symbol to the left of the opcode:

� @P opcode;

� @P opcode A;

� @P opcode D, A;

� @P opcode D, A, B;

� @P opcode D, A, B, C;

For instructions that create a result value, the D operand is the destination operand, while A,
B, and C are the source operands.

The setp instruction writes two destination registers. We use a ‘|’ symbol to separate
multiple destination registers.

 setp.s32.lt p|q, a, b; // p = (a < b); q = !(a < b);

For some instructions the destination operand is optional. A “bit bucket” operand denoted
with an underscore (‘_’) may be used in place of a destination register.

PTX ISA Version 2.1

56 April 21, 2010

8.3. Predicated Execution

In PTX, predicate registers are virtual and have .pred as the type specifier. So, predicate
registers can be declared as

 .reg .pred p, q, r

All instructions have an optional “guard predicate” which controls conditional execution of
the instruction. The syntax to specify conditional execution is to prefix an instruction with
“@{!}p”, where p is a predicate variable, optionally negated. Instructions without a guard
predicate are executed unconditionally.

Predicates are most commonly set as the result of a comparison performed by the setp

instruction.

As an example, consider the high-level code

 if (i < n)

 j = j + 1;

This can be written in PTX as

 setp.lt.s32 p, i, n; // p = (i < n)

@p add.s32 j, j, 1; // if i < n, add 1 to j

To get a conditional branch or conditional function call, use a predicate to control the
execution of the branch or call instructions. To implement the above example as a true
conditional branch, the following PTX instruction sequence might be used:

 setp.lt.s32 p, i, n; // compare i to n

@!p bra L1; // if false, branch over

 add.s32 j, j, 1;

L1: …

 Chapter 8. Instruction Set

April 21, 2010 57

8.3.1. Comparisons

8.3.1.1. Integer and Bit-Size Comparisons

The signed integer comparisons are the traditional eq (equal), ne (not-equal), lt (less-than), le
(less-than-or-equal), gt (greater-than), and ge (greater-than-or-equal). The unsigned
comparisons are eq, ne, lo (lower), ls (lower-or-same), hi (higher), and hs (higher-or-same).
The bit-size comparisons are eq and ne; ordering comparisons are not defined for bit-size
types. The following table shows the operators for signed integer, unsigned integer, and bit-
size types.

Table 17. Operators for Signed Integer, Unsigned Integer, and Bit-
Size Types

Meaning Signed Operator Unsigned Operator Bit-Size Operator

a == b EQ EQ EQ

a != b NE NE NE

a < b LT LO

a <= b LE LS

a > b GT HI

a >= b GE HS

8.3.1.2. Floating-Point Comparisons

The ordered comparisons are eq, ne, lt, le, gt, ge. If either operand is NaN, the result is false.

Table 18. Floating-Point Comparison Operators

Meaning Floating-Point Operator

a == b && !isNaN(a) && !isNaN(b) EQ

a != b && !isNaN(a) && !isNaN(b) NE

a < b && !isNaN(a) && !isNaN(b) LT

a <= b && !isNaN(a) && !isNaN(b) LE

a > b && !isNaN(a) && !isNaN(b) GT

a >= b && !isNaN(a) && !isNaN(b) GE

PTX ISA Version 2.1

58 April 21, 2010

To aid comparison operations in the presence of NaN values, unordered versions are
included: equ, neu, ltu, leu, gtu, geu. If both operands are numeric values (not NaN), then
these comparisons have the same result as their ordered counterparts. If either operand is
NaN, then the result of these comparisons is true.

Table 19. Floating-Point Comparison Operators Accepting NaN

Meaning Floating-Point Operator

a == b || isNaN(a) || isNaN(b) EQU

a != b || isNaN(a) || isNaN(b) NEU

a < b || isNaN(a) || isNaN(b) LTU

a <= b || isNaN(a) || isNaN(b) LEU

a > b || isNaN(a) || isNaN(b) GTU

a >= b || isNaN(a) || isNaN(b) GEU

To test for NaN values, two operators num (numeric) and nan (isNaN) are provided. num
returns true if both operands are numeric values (not NaN), and nan returns true if either
operand is NaN.

Table 20. Floating-Point Comparison Operators Testing for NaN

Meaning Floating-Point Operator

!isNaN(a) && !isNaN(b) NUM

isNaN(a) || isNaN(b) NAN

8.3.2. Manipulating Predicates

Predicate values may be computed and manipulated using the following instructions: and, or,
xor, not, and mov.

There is no direct conversion between predicates and integer values, and no direct way to
load or store predicate register values. However, setp can be used to generate a predicate
from an integer, and the predicate-based select (selp) instruction can be used to generate an
integer value based on the value of a predicate; for example:

 selp.u32 %r1,1,0,%p; // convert predicate to 32-bit value

 Chapter 8. Instruction Set

April 21, 2010 59

8.4. Type Information for Instructions and Operands

Typed instructions must have a type-size modifier. For example, the add instruction requires
type and size information to properly perform the addition operation (signed, unsigned, float,
different sizes), and this information must be specified as a suffix to the opcode.

Example:
 .reg .u16 d, a, b;

 add.u16 d, a, b; // perform a 16-bit unsigned add

Some instructions require multiple type-size modifiers, most notably the data conversion
instruction cvt. It requires separate type-size modifiers for the result and source, and these
are placed in the same order as the operands. For example:

 .reg .u16 a;

 .reg .f32 d;

 cvt.f32.u16 d, a; // convert 16-bit unsigned to 32-bit float

Each operand’s type must agree with the corresponding instruction-type modifier. The rules
for operand and instruction type conformance are as follows:

• Bit-size types agree with any type of the same size.

• Signed and unsigned integer types agree provided they have the same size, and
integer operands are silently cast to the instruction type if needed. For example, an
unsigned integer operand used in a signed integer instruction will be treated as a
signed integer by the instruction.

• Floating-point types agree only if they have the same size; i.e., they must match
exactly.

The following table summarizes these type checking rules.

Table 21. Type Checking Rules

Operand Type

.bX .sX .uX .fX

In
s
tr

u
c
ti

o
n

T

y
p

e

.bX ok ok ok ok

.sX ok ok ok inv

.uX ok ok ok inv

.fX ok inv inv ok

PTX ISA Version 2.1

60 April 21, 2010

8.4.1. Operand Size Exceeding Instruction-Type Size
For convenience, ld, st, and cvt instructions permit source and destination data operands to
be wider than the instruction-type size, so that narrow values may be loaded, stored, and
converted using regular-width registers. For example, 8-bit or 16-bit values may be held
directly in 32-bit or 64-bit registers when being loaded, stored, or converted to other types
and sizes. The operand type checking rules are relaxed for bit-size and integer (signed and
unsigned) instruction types; floating-point instruction types still require that the operand
type-size matches exactly, unless the operand is of bit-size type.

When a source operand has a size that exceeds the instruction-type size, the source data is
truncated (“chopped”) to the appropriate number of bits specified by the instruction type-
size. The following table summarizes the relaxed type-checking rules for source operands.
Note that some combinations may still be invalid for a particular instruction; for example,
the cvt instruction does not support .bX instruction types, so those rows are invalid for cvt.

Table 22. Relaxed Type-checking Rules for Source Operands

Source Operand Type

b8 b16 b32 b64 s8 s16 s32 s64 u8 u16 u32 u64 f16 f32 f64

In
s
tr

u
c
ti

o
n

 T
y
p

e

b8 - chop chop chop - chop chop chop - chop chop chop chop chop chop

b16 inv - chop chop inv - chop chop inv - chop chop - chop chop

b32 inv inv - chop inv inv - chop inv inv - chop inv - chop

b64 inv inv inv - inv inv inv - inv inv inv - inv inv -

s8 - chop chop chop - chop chop chop - chop chop chop inv inv inv

s16 inv - chop chop inv - chop chop inv - chop chop inv inv inv

s32 inv inv - chop inv inv - chop inv inv - chop inv inv inv

s64 inv inv inv - inv inv inv - inv inv inv - inv inv inv

u8 - chop chop chop - chop chop chop - chop chop chop inv inv inv

u16 inv - chop chop inv - chop chop inv - chop chop inv inv inv

u32 inv inv - chop inv inv - chop inv inv - chop inv inv inv

u64 inv inv inv - inv inv inv - inv inv inv - inv inv inv

f16 inv - chop chop inv inv inv inv inv inv inv inv - inv inv

f32 inv inv - chop inv inv inv inv inv inv inv inv inv - inv

f64 inv inv inv - inv inv inv inv inv inv inv inv inv inv -

Notes

chop = keep only low bits that fit; “-“ = allowed, no conversion needed; inv = invalid, parse error.

1. Source register size must be of equal or greater size than the instruction-type size.

2. Bit-size source registers may be used with any appropriately-sized instruction type. The data is truncated
(“chopped”) to the instruction-type size and interpreted according to the instruction type.

3. Integer source registers may be used with any appropriately-sized bit-size or integer instruction type. The
data is truncated to the instruction-type size and interpreted according to the instruction type.

4. Floating-point source registers can only be used with bit-size or floating-point instruction types. When
used with a narrower bit-size type, the data will be truncated. When used with a floating-point instruction
type, the size must match exactly.

 Chapter 8. Instruction Set

April 21, 2010 61

When a destination operand has a size that exceeds the instruction-type size, the destination
data is zero- or sign-extended to the size of the destination register. If the corresponding
instruction type is signed integer, the data is sign-extended; otherwise, the data is zero-
extended. The following table summarizes the relaxed type-checking rules for destination
operands.

Table 23. Relaxed Type-checking Rules for Destination Operands

Destination Operand Type

b8 b16 b32 b64 s8 s16 s32 s64 u8 u16 u32 u64 f16 f32 f64

In
s
tr

u
c
ti

o
n

 T
y
p

e

b8 - zext zext zext - zext zext zext - zext zext zext zext zext zext

b16 inv - zext zext inv - zext zext inv - zext zext - zext zext

b32 inv inv - zext inv inv - zext inv inv - zext inv - zext

b64 inv inv inv - inv inv inv - inv inv inv - inv inv -

s8 - sext sext sext - sext sext sext - sext sext sext inv inv inv

s16 inv - sext sext inv - sext sext inv - sext sext inv inv inv

s32 inv inv - sext inv inv - sext inv inv - sext inv inv inv

s64 inv inv inv - inv inv inv - inv inv inv - inv inv inv

u8 - zext zext zext - zext zext zext - zext zext zext inv inv inv

u16 inv - zext zext inv - zext zext inv - zext zext inv inv inv

u32 inv inv - zext inv inv - zext inv inv - zext inv inv inv

u64 inv inv inv - inv inv inv - inv inv inv - inv inv inv

f16 inv - zext zext inv inv inv inv inv inv inv inv - inv inv

f32 inv inv - zext inv inv inv inv inv inv inv inv inv - inv

f64 inv inv inv - inv inv inv inv inv inv inv inv inv inv -

Notes

sext = sign extend; zext = zero-extend; “-“ = Allowed but no conversion needed; inv = Invalid, parse error.

1. Destination register size must be of equal or greater size than the instruction-type size.

2. Bit-size destination registers may be used with any appropriately-sized instruction type. The data is sign-
extended to the destination register width for signed integer instruction types, and is zero-extended to the
destination register width otherwise.

3. Integer destination registers may be used with any appropriately-sized bit-size or integer instruction type.
The data is sign-extended to the destination register width for signed integer instruction types, and is zero-
extended to the destination register width for bit-size and unsigned integer instruction types.

4. Floating-point destination registers can only be used with bit-size or floating-point instruction types. When
used with a narrower bit-size instruction type, the data will be zero-extended. When used with a floating-
point instruction type, the size must match exactly.

PTX ISA Version 2.1

62 April 21, 2010

8.5. Divergence of Threads in Control Constructs

Threads in a CTA execute together, at least in appearance, until they come to a conditional
control construct such as a conditional branch, conditional function call, or conditional
return. If threads execute down different control flow paths, the threads are called divergent.
If all of the threads act in unison and follow a single control flow path, the threads are called
uniform. Both situations occur often in programs.

A CTA with divergent threads may have lower performance than a CTA with uniformly
executing threads, so it is important to have divergent threads re-converge as soon as
possible. All control constructs are assumed to be divergent points unless the control-flow
instruction is marked as uniform, using the .uni suffix. For divergent control flow, the
optimizing code generator automatically determines points of re-convergence. Therefore, a
compiler or code author targeting PTX can ignore the issue of divergent threads, but has the
opportunity to improve performance by marking branch points as uniform when the
compiler or author can guarantee that the branch point is non-divergent.

8.6. Semantics

The goal of the semantic description of an instruction is to describe the results in all cases in
as simple language as possible. The semantics are described using C, until C is not
expressive enough.

8.6.1. Machine-Specific Semantics of 16-bit Code

A PTX program may execute on a GPU with either a 16-bit or a 32-bit data path. When
executing on a 32-bit data path, 16-bit registers in PTX are mapped to 32-bit physical
registers, and 16-bit computations are “promoted” to 32-bit computations. This can lead to
computational differences between code run on a 16-bit machine versus the same code run
on a 32-bit machine, since the “promoted” computation may have bits in the high-order
half-word of registers that are not present in 16-bit physical registers. These extra precision
bits can become visible at the application level, for example, by a right-shift instruction.

At the PTX language level, one solution would be to define semantics for 16-bit code that is
consistent with execution on a 16-bit data path. This approach introduces a performance
penalty for 16-bit code executing on a 32-bit data path, since the translated code would
require many additional masking instructions to suppress extra precision bits in the high-
order half-word of 32-bit registers.

Rather than introduce a performance penalty for 16-bit code running on 32-bit GPUs, the
semantics of 16-bit instructions in PTX is machine-specific. A compiler or programmer may
chose to enforce portable, machine-independent 16-bit semantics by adding explicit
conversions to 16-bit values at appropriate points in the program to guarantee portability of
the code. However, for many performance-critical applications, this is not desirable, and for
many applications the difference in execution is preferable to limiting performance.

 Chapter 8. Instruction Set

April 21, 2010 63

8.7. Instructions

All PTX instructions may be predicated. In the following descriptions, the optional guard
predicate is omitted from the syntax.

8.7.1. Integer Arithmetic Instructions

Integer arithmetic instructions operate on the integer types in register and constant
immediate forms. The Integer arithmetic instructions are:

� add

� sub

� add.cc, addc

� sub.cc, subc

� mul

� mad

� mul24

� mad24

� sad

� div

� rem

� abs

� neg

� min

� max

� popc

� clz

� bfind

� brev

� bfe

� bfi

� prmt

PTX ISA Version 2.1

64 April 21, 2010

Table 24. Integer Arithmetic Instructions: add

add Add two values.

Syntax add.type d, a, b;

add{.sat}.s32 d, a, b; // .sat applies only to .s32

.type = { .u16, .u32, .u64,

 .s16, .s32, .s64 };

Description Performs addition and writes the resulting value into a destination register.

Semantics d = a + b;

Notes Saturation modifier:

.sat limits result to MININT..MAXINT (no overflow) for the size of the operation.
Applies only to .s32 type.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples @p add.u32 x,y,z;

 add.sat.s32 c,c,1;

Table 25. Integer Arithmetic Instructions: sub

sub Subtract one value from another.

Syntax sub.type d, a, b;

sub{.sat}.s32 d, a, b; // .sat applies only to .s32

.type = { .u16, .u32, .u64,

 .s16, .s32, .s64 };

Description Performs subtraction and writes the resulting value into a destination register.

Semantics d = a – b;

Notes Saturation modifier:

.sat limits result to MININT..MAXINT (no overflow) for the size of the operation.
Applies only to .s32 type.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples sub.s32 c,a,b;

 Chapter 8. Instruction Set

April 21, 2010 65

Instructions add.cc, addc, sub.cc and subc reference an implicitly specified condition code
register (CC) having a single carry flag bit (CC.CF) holding carry-in/carry-out or borrow-
in/borrow-out. These instructions support extended-precision integer addition and
subtraction. No other instructions access the condition code, and there is no support for
setting, clearing, or testing the condition code. The condition code register is not preserved
across branches or calls and therefore should only be used in straight-line code sequences for
computing extended-precision integer addition and subtraction.

Table 26. Integer Arithmetic Instructions: add.cc

add.cc Add two values with carry-out.

Syntax add.cc.type d, a, b;

.type = { .u32, .s32 };

Description Performs 32-bit integer addition and writes the carry-out value into the condition code
register.

Semantics d = a + b;

carry-out written to CC.CF

Notes No integer rounding modifiers.

No saturation.

Behavior is the same for unsigned and signed integers.

PTX ISA Notes Introduced in PTX ISA version 1.2.

Target ISA Notes Supported on all target architectures.

Examples @p add.cc.b32 x1,y1,z1; // extended-precision addition of

@p addc.cc.b32 x2,y2,z2; // two 128-bit values

@p addc.cc.b32 x3,y3,z3;

@p addc.cc.b32 x4,y4,z4;

Table 27. Integer Arithmetic Instructions: addc

addc Add two values with carry-in and optional carry-out.

Syntax addc{.cc}.type d, a, b;

.type = {.u32, .s32 };

Description Performs 32-bit integer addition with carry-in and optionally writes the carry-out value
into the condition code register.

Semantics d = a + b + CC.CF;

if .cc specified, carry-out written to CC.CF

Notes No integer rounding modifiers.

No saturation.

Behavior is the same for unsigned and signed integers.

PTX ISA Notes Introduced in PTX ISA version 1.2.

Target ISA Notes Supported on all target architectures.

Examples @p add.cc.b32 x1,y1,z1; // extended-precision addition of

@p addc.cc.b32 x2,y2,z2; // two 128-bit values

@p addc.cc.b32 x3,y3,z3;

@p addc.cc.b32 x4,y4,z4;

PTX ISA Version 2.1

66 April 21, 2010

Table 28. Integer Arithmetic Instructions: sub.cc

sub.cc Subract one value from another, with borrow-out.

Syntax sub.cc.type d, a, b;

.type = { .u32, .s32 };

Description Performs 32-bit integer subtraction and writes the borrow-out value into the condition
code register.

Semantics d = a – b;

borrow-out written to CC.CF

Notes No integer rounding modifiers.

No saturation.

Behavior is the same for unsigned and signed integers.

PTX ISA Notes Introduced in PTX ISA version 1.3.

Target ISA Notes Supported on all target architectures.

Examples @p sub.cc.b32 x1,y1,z1; // extended-precision subtraction

@p subc.cc.b32 x2,y2,z2; // of two 128-bit values

@p subc.cc.b32 x3,y3,z3;

@p subc.cc.b32 x4,y4,z4;

Table 29. Integer Arithmetic Instructions: subc

subc Subtract one value from another, withborrow-in and optional borrow-out.

Syntax subc{.cc}.type d, a, b;

.type = {.u32, .s32 };

Description Performs 32-bit integer subtraction with borrow-in and optionally writes the borrow-out
value into the condition code register.

Semantics d = a - (b + CC.CF);

if .cc specified, borrow-out written to CC.CF

Notes No integer rounding modifiers.

No saturation.

Behavior is the same for unsigned and signed integers.

PTX ISA Notes Introduced in PTX ISA version 1.3.

Target ISA Notes Supported on all target architectures.

Examples @p sub.cc.b32 x1,y1,z1; // extended-precision subtraction

@p subc.cc.b32 x2,y2,z2; // of two 128-bit values

@p subc.cc.b32 x3,y3,z3;

@p subc.cc.b32 x4,y4,z4;

 Chapter 8. Instruction Set

April 21, 2010 67

Table 30. Integer Arithmetic Instructions: mul

mul Multiply two values.

Syntax mul{.hi,.lo,.wide}.type d, a, b;

.type = { .u16, .u32, .u64,

 .s16, .s32, .s64 };

Description Compute the product of two values.

Semantics t = a * b;

n = bitwidth of type;

d = t; // for .wide

d = t<2n-1..n>; // for .hi variant

d = t<n-1..0>; // for .lo variant

Notes The type of the operation represents the types of the a and b operands. If .hi or .lo is
specified, then d is the same size as a and b, and either the upper or lower half of the
result is written to the destination register. If .wide is specified, then d is twice as wide
as a and b to receive the full result of the multiplication.

The .wide suffix is supported only for 16- and 32-bit integer types.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples mul.wide.s16 fa,fxs,fys; // 16*16 bits yields 32 bits

 mul.lo.s16 fa,fxs,fys; // 16*16 bits, save only the low 16 bits

 mul.wide.s32 z,x,y; // 32*32 bits, creates 64 bit result

PTX ISA Version 2.1

68 April 21, 2010

Table 31. Integer Arithmetic Instructions: mad

mad Multiply two values and add a

third value.

Syntax mad{.hi,.lo,.wide}.type d, a, b, c;

mad.hi.sat.s32 d, a, b, c;

.type = { .u16, .u32, .u64,

 .s16, .s32, .s64 };

Description Multiplies two values and adds a third, and then writes the resulting value into a
destination register.

Semantics t = a * b;

n = bitwidth of type;

d = t + c; // for .wide

d = t<2n-1..n> + c; // for .hi variant

d = t<n-1..0> + c; // for .lo variant

Notes The type of the operation represents the types of the a and b operands. If .hi or .lo is
specified, then d and c are the same size as a and b, and either the upper or lower half
of the result is written to the destination register. If .wide is specified, then d and c are
twice as wide as a and b to receive the result of the multiplication.

The .wide suffix is supported only for 16- and 32-bit integer types.

Saturation modifier:

.sat limits result to MININT..MAXINT (no overflow) for the size of the operation.
Applies only to .s32 type in .hi mode.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples @p mad.lo.s32 d,a,b,c;

 mad.lo.s32 r,p,q,r;

 Chapter 8. Instruction Set

April 21, 2010 69

Table 32. Integer Arithmetic Instructions: mul24

mul24 Multiply two 24-bit integer values.

Syntax mul24{.hi,.lo}.type d, a, b;

.type = { .u32, .s32 };

Description Compute the product of two 24-bit integer values held in 32-bit source registers, and
return either the high or low 32-bits of the 48-bit result.

Semantics t = a * b;

d = t<47..16>; // for .hi variant

d = t<31..0>; // for .lo variant

Notes Integer multiplication yields a result that is twice the size of the input operands, i.e. 48-
bits.

mul24.hi performs a 24x24-bit multiply and returns the high 32 bits of the 48-bit result.
mul24.lo performs a 24x24-bit multiply and returns the low 32 bits of the 48-bit result.

All operands are of the same type and size.

mul24.hi may be less efficient on machines without hardware support for 24-bit
multiply.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples mul24.lo.s32 d,a,b; // low 32-bits of 24x24-bit

 signed multiply.

PTX ISA Version 2.1

70 April 21, 2010

Table 33. Integer Arithmetic Instructions: mad24

mad24 Multiply two 24-bit integer values and add a third value.

Syntax mad24{.hi,.lo}.type d, a, b, c;

mad24.hi.sat.s32 d, a, b, c;

.type = { .u32, .s32 };

Description Compute the product of two 24-bit integer values held in 32-bit source registers, and
add a third, 32-bit value to either the high or low 32-bits of the 48-bit result. Return
either the high or low 32-bits of the 48-bit result.

Semantics t = a * b;

d = t<47..16> + c; // for .hi variant

d = t<31..0> + c; // for .lo variant

Notes Integer multiplication yields a result that is twice the size of the input operands, i.e. 48-
bits.

mad24.hi performs a 24x24-bit multiply and adds the high 32 bits of the 48-bit result to
a third value.
mad24.lo performs a 24x24-bit multiply and adds the low 32 bits of the 48-bit result to
a third value.

All operands are of the same type and size.

Saturation modifier:

.sat limits result of 32-bit signed addition to MININT..MAXINT (no overflow).
Applies only to .s32 type in .hi mode.

mad24.hi may be less efficient on machines without hardware support for 24-bit
multiply.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples mad24.lo.s32 d,a,b,c; // low 32-bits of 24x24-bit

 signed multiply.

 Chapter 8. Instruction Set

April 21, 2010 71

Table 34. Integer Arithmetic Instructions: sad

sad Sum of absolute differences.

Syntax sad.type d, a, b, c;

.type = { .u16, .u32, .u64,

 .s16, .s32, .s64 };

Description Adds the absolute value of a-b to c and writes the resulting value into a destination
register.

Semantics d = c + ((a<b) ? b-a : a-b);

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples sad.s32 d,a,b,c;

 sad.u32 d,a,b,d; // running sum

Table 35. Integer Arithmetic Instructions: div

div Divide one value by another.

Syntax div.type d, a, b;

.type = { .u16, .u32, .u64,

 .s16, .s32, .s64 };

Description Divides a by b, stores result in d.

Semantics d = a / b;

Notes Division by zero yields an unspecified, machine-specific value.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples div.s32 b,n,i;

Table 36. Integer Arithmetic Instructions: rem

rem The remainder of integer division.

Syntax rem.type d, a, b;

.type = { .u16, .u32, .u64,

 .s16, .s32, .s64 };

Description Divides a by b, store the remainder in d.

Semantics d = a % b;

Notes The behavior for negative numbers is machine-dependent and depends on whether
divide rounds towards zero or negative infinity.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples rem.s32 x,x,8; // x = x%8;

PTX ISA Version 2.1

72 April 21, 2010

Table 37. Integer Arithmetic Instructions: abs

abs Absolute value.

Syntax abs.type d, a;

.type = { .s16, .s32, .s64 };

Description Take the absolute value of a and store it in d.

Semantics d = |a|;

Notes Only for signed integers.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples abs.s32 r0,a;

Table 38. Integer Arithmetic Instructions: neg

neg Arithmetic negate.

Syntax neg.type d, a;

.type = { .s16, .s32, .s64 };

Description Negate the sign of a and store the result in d.

Semantics d = -a;

Notes Only for signed integers.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples neg.s32 r0,a;

 Chapter 8. Instruction Set

April 21, 2010 73

Table 39. Integer Arithmetic Instructions: min

min Find the minimum of two values.

Syntax min.type d, a, b;

.type = { .u16, .u32, .u64,

 .s16, .s32, .s64 };

Description Store the minimum of a and b in d.

Semantics d = (a < b) ? a : b; // Integer (signed and unsigned)

Notes Signed and unsigned differ.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples min.s32 r0,a,b;

@p min.u16 h,i,j;

Table 40. Integer Arithmetic Instructions: max

max Find the maximum of two values.

Syntax max.type d, a, b;

.type = { .u16, .u32, .u64,

 .s16, .s32, .s64 };

Description Store the maximum of a and b in d.

Semantics d = (a > b) ? a : b; // Integer (signed and unsigned)

Notes Signed and unsigned differ.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples max.u32 d,a,b;

 max.s32 q,q,0;

PTX ISA Version 2.1

74 April 21, 2010

Table 41. Integer Arithmetic Instructions: popc

popc Population count.

Syntax popc.type d, a;

.type = { .b32, .b64 };

Description Count the number of one bits in a and place the resulting ‘population count’ in 32-bit
destination register d.

Semantics d = 0;

while (a != 0) {

 if (a&0x1) d++;

 a = a >> 1;

}

PTX ISA Notes Introduced in PTX ISA version 2.0.

Target ISA Notes popc requires sm_20 or later.

Examples popc.b32 d, a;

 popc.b64 cnt, X; // cnt is .u32

Table 42. Integer Arithmetic Instructions: clz

clz Count leading zeros.

Syntax clz.type d, a;

.type = { .b32, .b64 };

Description Count the number of leading zeros in a starting with the most-significant bit and place
the result in 32-bit destination register d. For .b32 type, the number of leading zeros is
between 0 and 32, inclusively. For .b64 type, the number of leading zeros is between 0
and 64, inclusively.

Semantics d = 0;

if (.type == .b32) { max = 32; mask = 0x80000000; }

else { max = 64; mask = 0x8000000000000000; }

while (d < max && (a&mask == 0)) {

 d++;

 a = a << 1;

}

PTX ISA Notes Introduced in PTX ISA version 2.0.

Target ISA Notes clz requires sm_20 or later.

Examples clz.b32 d, a;

 clz.b64 cnt, X; // cnt is .u32

 Chapter 8. Instruction Set

April 21, 2010 75

Table 43. Integer Arithmetic Instructions: bfind

bfind Find most significant non-sign bit.

Syntax bfind.type d, a;

bfind.shiftamt.type d, a;

.type = { .u32, .u64,

 .s32, .s64 };

Description
Find the bit position of the most significant non-sign bit in a and place the result in d.
Operand a has the instruction type, and operand d has type .u32. For unsigned
integers, bfind returns the bit position of the most significant “1”. For signed integers,
bfind returns the bit position of the most significant “0” for negative inputs and the most
significant “1” for non-negative inputs.

If .shiftamt is specified, bfind returns the shift amount needed to left-shift the found bit
into the most-significant bit position.

bfind returns 0xFFFFFFFF if no non-sign bit is found.

Semantics msb = (.type==.u32 || .type==.s32) ? 31 : 63;

d = -1;

for (i=msb; i>=0; i--) {

 if (a & (1<<i)) { d = i; break; }

}

if (.shiftamt && d != -1) { d = msb - d; }

PTX ISA Notes Introduced in PTX ISA version 2.0.

Target ISA Notes bfind requires sm_20 or later.

Examples bfind.u32 d, a;

 bfind.shiftamt.s64 cnt, X; // cnt is .u32

PTX ISA Version 2.1

76 April 21, 2010

Table 44. Integer Arithmetic Instructions: brev

brev Bit reverse.

Syntax brev.type d, a;

.type = { .b32, .b64 };

Description Perform bitwise reversal of input.

Semantics msb = (.type==.b32) ? 31 : 63;

for (i=0; i<=msb; i++) {

 d[i] = a[msb-i];

}

PTX ISA Notes Introduced in PTX ISA version 2.0.

Target ISA Notes brev requires sm_20 or later.

Examples brev.b32 d, a;

 Chapter 8. Instruction Set

April 21, 2010 77

Table 45. Integer Arithmetic Instructions: bfe

bfe Bit Field Extract.

Syntax bfe.type d, a, b, c;

.type = { .u32, .u64,

 .s32, .s64 };

Description
Extract bit field from a and place the zero or sign-extended result in d. Source b gives
the bit field starting bit position, and source c gives the bit field length in bits.

Operands a and d have the same type as the instruction type, and operands b and c
are type .u32.

The sign bit of the extracted field is defined as:

.u32, .u64: zero

.s32, .s64: msb of input a if the extracted field extends beyond the msb of a

msb of extracted field, otherwise

If the bit field length is zero, the result is zero.

The destination d is padded with the sign bit of the extracted field. If the start position
is beyond the msb of the input, the destination d is filled with the replicated sign bit of
the extracted field.

Semantics msb = (.type==.u32 || .type==.s32) ? 31 : 63;

pos = b;

len = c;

if (.type==.u32 || .type==.u64 || len==0)

 sbit = 0;

else

 sbit = a[min(pos+len-1,msb)];

d = 0;

for (i=0; i<=msb; i++) {

 d[i] = (i<len && pos+i<=msb) ? a[pos+i] : sbit;

}

PTX ISA Notes Introduced in PTX ISA version 2.0.

Target ISA Notes bfe requires sm_20 or later.

Examples bfe.b32 d,a,start,len;

PTX ISA Version 2.1

78 April 21, 2010

Table 46. Integer Arithmetic Instructions: bfi

bfi Bit Field Insert.

Syntax bfi.type f, a, b, c, d;

.type = { .b32, .b64 };

Description
Align and insert a bit field from a into b, and place the result in f. Source c gives the
starting bit position for the insertion, and source d gives the bit field length in bits.

Operands a, b, and f have the same type as the instruction type, and operands c and d
are type .u32.

If the bit field length is zero, the result is b.

If the start position is beyond the msb of the input, the result is b.

Semantics msb = (.type==.b32) ? 31 : 63;

pos = c;

len = d;

f = b;

for (i=0; i<len && pos+i<=msb; i++) {

 f[pos+i] = a[i];

}

PTX ISA Notes Introduced in PTX ISA version 2.0.

Target ISA Notes bfi requires sm_20 or later.

Examples bfi.b32 d,a,b,start,len;

 Chapter 8. Instruction Set

April 21, 2010 79

Table 47. Integer Arithmetic Instructions: prmt

prmt Permute bytes from register pair.

Syntax prmt.b32{.mode} d, a, b, c;

.mode = { .f4e, .b4e, .rc8, .ecl, .ecr, .rc16 };

Description Pick four arbitrary bytes from two 32-bit registers, and reassemble them into a 32-bit
destination register.

In the generic form (no mode specified), the permute control consists of four 4-bit

selection values. The bytes in the two source registers are numbered from

0 to 7: {b, a} = {{b7, b6, b5, b4}, {b3, b2, b1, b0}}. For each byte in

the target register, a 4-bit selection value is defined.

The 3 lsbs of the selection value specify which of the 8 source bytes should

be moved into the target position. The msb defines if the byte value should

be copied, or if the sign (msb of the byte) should be replicated over all 8

bits of the target position (sign extend of the byte value); msb=0 means copy

the literal value; msb=1 means replicate the sign. Note that the sign extension

is only performed as part of generic form.

Thus, the four 4-bit values fully specify an arbitrary byte permute, as a 16b

permute code.

default mode d.b3

source select

d.b2

source select

d.b1

source select

d.b0

source select

index c[15:12] c[11:8] c[7:4] c[3:0]

The more specialized form of the permute control uses the two lsb's of operand c
(which is typically an address pointer) to control the byte extraction.

mode selector

c[1:0]

d.b3

source

d.b2

source

d.b1

source

d.b0

source

f4e (forward 4 extract) 0 3 2 1 0

 1 4 3 2 1

 2 5 4 3 2

 3 6 5 4 3

b4e (backward 4 extract) 0 5 6 7 0

 1 6 7 0 1

 2 7 0 1 2

 3 0 1 2 3

rc8 (replicate 8) 0 0 0 0 0

 1 1 1 1 1

 2 2 2 2 2

 3 3 3 3 3

ecl (edge clamp left) 0 3 2 1 0

 1 3 2 1 0

 2 3 2 1 0

 3 3 2 1 0

ecr (edge clamp right) 0 0 0 0 0

 1 1 1 1 0

 2 2 2 1 0

 3 3 2 1 0

rc16 (replicate 16) 0 1 0 1 0

 1 3 2 3 2

 2 1 0 1 0

 3 3 2 3 2

PTX ISA Version 2.1

80 April 21, 2010

Semantics tmp64 = (b<<32) | a; // create 8 byte source

if (! mode) {

 ctl[0] = (c >> 0) & 0xf;

 ctl[1] = (c >> 4) & 0xf;

 ctl[2] = (c >> 8) & 0xf;

 ctl[3] = (c >> 12) & 0xf;

} else {

 ctl[0] = ctl[1] = ctl[2] = ctl[3] = (c >> 0) & 0x3;

}

tmp[07:00] = ReadByte(mode, ctl[0], tmp64);

tmp[15:08] = ReadByte(mode, ctl[1], tmp64);

tmp[23:16] = ReadByte(mode, ctl[2], tmp64);

tmp[31:24] = ReadByte(mode, ctl[3], tmp64);

PTX ISA Notes Introduced in PTX ISA version 2.0.

Target ISA Notes prmt requires sm_20 or later.

Examples prmt.b32 r1, r2, r3, r4;

prmt.b32.f4e r1, r2, r3, r4;

 Chapter 8. Instruction Set

April 21, 2010 81

8.7.2. Floating-Point Instructions
Floating-point instructions operate on .f32 and .f64 register operands and constant
immediate values. The floating-point instructions are:

� testp

� copysign

� add

� sub

� mul

� fma

� mad

� div

� abs

� neg

� min

� max

� rcp

� sqrt

� rsqrt

� sin

� cos

� lg2

� ex2

PTX ISA Version 2.1

82 April 21, 2010

The following table summarizes floating-point instructions in PTX.

Table 48. Summary of Floating-Point Instructions

Instruction .rn .rz .rm .rp .ftz .sat Notes

{add,sub,mul}.rnd.f32 � � � � � � If no rounding modifier is specified,
default is .rn and instructions may be
folded into a multiply-add.

{add,sub,mul}.rnd.f64 � � � � If no rounding modifier is specified,
default is .rn and instructions may be
folded into a multiply-add.

mad.f32 � � .target sm_1x

No rounding modifier.

{mad,fma}.rnd.f32 � � � � � � .target sm_20

mad.32 and fma.f32 are the same.

{mad,fma}.rnd.f64 � � � � mad.f64 and fma.f64 are the same.

div.full.f32 � No rounding modifier.

{div,rcp,sqrt}.approx.f32 �

rcp.approx.ftz.f64 � .target sm_20

{div,rcp,sqrt}.rnd.f32 � � � � � .target sm_20

{div,rcp,sqrt}.rnd.f64 � � � � .target sm_20

{abs,neg,min,max}.f32 n/a n/a n/a n/a �

{abs,neg,min,max}.f64 n/a n/a n/a n/a

rsqrt.approx.f32 �

rsqrt.approx.f64

{sin,cos,lg2,ex2}.approx.f32 �

Instructions that support rounding modifiers are IEEE-754 compliant. Double-precision
instructions support subnormal inputs and results. Single-precision instructions support
subnormal inputs and results by default for sm_20 targets and flush subnormal inputs and
results to sign-preserving zero for sm_1x targets. The optional .ftz modifier on single-
precision instructions provides backward compatibility with sm_1x targets by flushing
subnormal inputs and results to sign-preserving zero regardless of the target architecture.
Single-precision add, sub, mul, and mad support saturation of results to the range [0.0, 1.0],
with NaNs being flushed to positive zero. NaN payloads are supported for double-precision
instructions (except for rcp.approx.ftz.f64, which maps input NaNs to a canonical NaN), but
single-precision instructions return an unspecified NaN. Note that future implementations
may support NaN payloads for single-precision instructions, so PTX programs should not
rely on the specific single-precision NaNs being generated.

 Chapter 8. Instruction Set

April 21, 2010 83

Table 49. Floating-Point Instructions: testp

testp Test floating-point property.

Syntax testp.op.type p, a; // result is .pred

.op = { .finite, .infinite,

 .number, .notanumber,

 .normal, .subnormal };

.type = { .f32, .f64 };

Description testp tests common properties of floating-point numbers and returns a predicate value
of 1 if True and 0 if False.

testp.finite true if the input is not infinite or NaN

testp,infinite true if the input is positive or negative infinity

testp,number true if the input is not NaN

testp.notanumber true if the input is NaN

testp.normal true if the input is a normal number (not NaN, not infinity).

testp.subnormal true if the input is a subnormal number (not NaN, not
infinity)

As a special case, positive and negative zero are considered normal numbers.

PTX ISA Notes Introduced in PTX ISA version 2.0.

Target ISA Notes testp requires sm_20 or later.

Examples testp.notanumber.f32 isnan, f0;

 testp.infinite.f64 p, X;

Table 50. Floating-Point Instructions: copysign

copysign Copy sign of one input to another.

Syntax copysign.type d, a, b;

.type = { .f32, .f64 };

Description Copy sign bit of a into value of b, and return the result as d.

PTX ISA Notes Introduced in PTX ISA version 2.0.

Target ISA Notes copysign requires sm_20 or later.

Examples copysign.f32 x, y, z;

 copysign.f64 A, B, C;

PTX ISA Version 2.1

84 April 21, 2010

Table 51. Floating-Point Instructions: add

add Add two values.

Syntax add{.rnd}{.ftz}{.sat}.f32 d, a, b;

add{.rnd}.f64 d, a, b;

.rnd = { .rn, .rz, .rm, .rp };

Description Performs addition and writes the resulting value into a destination register.

Semantics d = a + b;

Notes Rounding modifiers (default is .rn):

.rn mantissa LSB rounds to nearest even

.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

Subnormal numbers:

sm_20: By default, subnormal numbers are supported.

add.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x: add.f64 supports subnormal numbers.

add.f32 flushes subnormal inputs and results to sign-preserving zero.

Saturation modifier:

. add.sat.f32 clamps the result to [0.0, 1.0]. NaN results are flushed to +0.0f.

An add instruction with an explicit rounding modifier treated conservatively by the code
optimizer. An add instruction with no rounding modifier defaults to round-to-nearest-
even and may be optimized aggressively by the code optimizer. In particular, mul/add
sequences with no rounding modifiers may be optimized to use fused-multiply-add
instructions on the target device.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes add.f32 supported on all target architectures.

add.f64 requires sm_13 or later.

Rounding modifiers have the following target requirements:

.rn, .rz available for all targets

.rm, .rp for add.f64, requires sm_13

for add.f32, requires sm_20

Examples @p add.rz.ftz.f32 f1,f2,f3;

 Chapter 8. Instruction Set

April 21, 2010 85

Table 52. Floating-Point Instructions: sub

sub Subtract one value from another.

Syntax sub{.rnd}{.ftz}{.sat}.f32 d, a, b;

sub{.rnd}.f64 d, a, b;

.rnd = { .rn, .rz, .rm, .rp };

Description Performs subtraction and writes the resulting value into a destination register.

Semantics d = a - b;

Notes Rounding modifiers (default is .rn):

.rn mantissa LSB rounds to nearest even

.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

Subnormal numbers:

sm_20: By default, subnormal numbers are supported.

sub.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x: sub.f64 supports subnormal numbers.

sub.f32 flushes subnormal inputs and results to sign-preserving zero.

Saturation modifier:

sub.sat.f32 clamps the result to [0.0, 1.0]. NaN results are flushed to +0.0f.

A sub instruction with an explicit rounding modifier treated conservatively by the code
optimizer. A sub instruction with no rounding modifier defaults to round-to-nearest-
even and may be optimized aggressively by the code optimizer. In particular, mul/sub
sequences with no rounding modifiers may be optimized to use fused-multiply-add
instructions on the target device.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes sub.f32 supported on all target architectures.

sub.f64 requires sm_13 or later.

Rounding modifiers have the following target requirements:

.rn, .rz available for all targets

.rm, .rp for sub.f64, requires sm_13

for sub.f32, requires sm_20

Examples sub.f32 c,a,b;

 sub.rn.ftz.f32 f1,f2,f3;

PTX ISA Version 2.1

86 April 21, 2010

Table 53. Floating-Point Instructions: mul

mul Multiply two values.

Syntax mul{.rnd}{.ftz}{.sat}.f32 d, a, b;

mul{.rnd}.f64 d, a, b;

.rnd = { .rn, .rz, .rm, .rp };

Description Compute the product of two values.

Semantics d = a * b;

Notes For floating-point multiplication, all operands must be the same size.

Rounding modifiers (default is .rn):

.rn mantissa LSB rounds to nearest even

.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

Subnormal numbers:

sm_20: By default, subnormal numbers are supported.

mul.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x: mul.f64 supports subnormal numbers.

mul.f32 flushes subnormal inputs and results to sign-preserving zero.

Saturation modifier:

mul.sat.f32 clamps the result to [0.0, 1.0]. NaN results are flushed to +0.0f.

A mul instruction with an explicit rounding modifier treated conservatively by the code
optimizer. A mul instruction with no rounding modifier defaults to round-to-nearest-
even and may be optimized aggressively by the code optimizer. In particular, mul/add
and mul/sub sequences with no rounding modifiers may be optimized to use fused-
multiply-add instructions on the target device.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes mul.f32 supported on all target architectures.

mul.f64 requires sm_13 or later.

Rounding modifiers have the following target requirements:

.rn, .rz available for all targets

.rm, .rp for mul.f64, requires sm_13

for mul.f32, requires sm_20

Examples mul.ftz.f32 circumf,radius,pi // a single-precision multiply

 Chapter 8. Instruction Set

April 21, 2010 87

Table 54. Floating-Point Instructions: fma

fma Fused multiply-add.

Syntax fma.rnd{.ftz}{.sat}.f32 d, a, b, c;

fma.rnd.f64 d, a, b, c;

.rnd = { .rn, .rz, .rm, .rp };

Description Performs a fused multiply-add with no loss of precision in the intermediate product and
addition.

Semantics d = a*b + c;

Notes fma.f32 computes the product of a and b to infinite precision and then adds c to this
product, again in infinite precision. The resulting value is then rounded to single
precision using the rounding mode specified by .rnd.

fma.f64 computes the product of a and b to infinite precision and then adds c to this
product, again in infinite precision. The resulting value is then rounded to double
precision using the rounding mode specified by .rnd.

fma.f64 is the same as mad.f64.

Rounding modifiers (no default):

.rn mantissa LSB rounds to nearest even

.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

Subnormal numbers:

sm_20: By default, subnormal numbers are supported.

fma.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x: fma.f64 supports subnormal numbers.

fma.f32 is unimplemented in sm_1x.

Saturation:

fma.sat.f32 clamps the result to [0.0, 1.0]. NaN results are flushed to +0.0f.

PTX ISA Notes fma.f64 introduced in PTX ISA version 1.4.

fma.f32 introduced in PTX ISA version 2.0.

Target ISA Notes fma.f32 requires sm_20 or later.

fma.f64 requires sm_13 or later.

Examples fma.rn.ftz.f32 w,x,y,z;

@p fma.rn.f64 d,a,b,c;

PTX ISA Version 2.1

88 April 21, 2010

Table 55. Floating-Point Instructions: mad

mad Multiply two values and add a

third value.

Syntax mad{.ftz}{.sat}.f32 d, a, b, c; // .target sm_1x

mad.rnd{.ftz}{.sat}.f32 d, a, b, c; // .target sm_20

mad.rnd.f64 d, a, b, c; // .target sm_13 and later

.rnd = { .rn, .rz, .rm, .rp };

Description Multiplies two values and adds a third, and then writes the resulting value into a
destination register.

Semantics d = a*b + c;

Notes For .target sm_20:

mad.f32 computes the product of a and b to infinite precision and then adds c to
this product, again in infinite precision. The resulting value is then rounded to single
precision using the rounding mode specified by .rnd.

mad.f64 computes the product of a and b to infinite precision and then adds c to
this product, again in infinite precision. The resulting value is then rounded to
double precision using the rounding mode specified by .rnd.

mad.{f32,f64} is the same as fma.{f32,f64}.

For .target sm_1x:

mad.f32 computes the product of a and b at double precision, and then the
mantissa is truncated to 23 bits, but the exponent is preserved. Note that this is
different from computing the product with mul, where the mantissa can be rounded
and the exponent will be clamped. The exception for mad.f32 is when c = +/-0.0,
mad.f32 is identical to the result computed using separate mul and add
instructions. When JIT-compiled for SM 2.0 devices, mad.f32 is implemented as a
fused multiply-add (i.e., fma.rn.ftz.f32). In this case, mad.f32 can produce slightly
different numeric results and backward compatibility is not guaranteed in this case.

mad.f64 computes the product of a and b to infinite precision and then adds c to
this product, again in infinite precision. The resulting value is then rounded to
double precision using the rounding mode specified by .rnd. Unlike mad.f32, the
treatment of subnormal inputs and output follows IEEE 754 standard.

mad.f64 is the same as fma.f64.

Rounding modifiers (no default):

.rn mantissa LSB rounds to nearest even

.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

Subnormal numbers:

sm_20: By default, subnormal numbers are supported.

mad.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x: mad.f64 supports subnormal numbers.

mad.f32 flushes subnormal inputs and results to sign-preserving zero.

Saturation modifier:

mad.sat.f32 clamps the result to [0.0, 1.0]. NaN results are flushed to +0.0f.

PTX ISA Notes Introduced in PTX ISA version 1.0.

In PTX ISA versions 1.4 and later, a rounding modifier is required for mad.f64.

In PTX ISA versions 2.0 and later, a rounding modifier is required for mad.f32 for
sm_20 targets.

 Chapter 8. Instruction Set

April 21, 2010 89

Legacy mad.f64 instructions having no rounding modifier will map to mad.rn.f64.

Target ISA Notes mad.f32 supported on all target architectures.

mad.f64 requires sm_13 or later.

Rounding modifiers have the following target requirements:

.rn,.rz,.rm,.rp for mad.f64, requires sm_13

.rn,.rz,.rm,.rp for mad.f32, requires sm_20

Examples @p mad.f32 d,a,b,c;

PTX ISA Version 2.1

90 April 21, 2010

 Table 56. Floating-Point Instructions: div

div Divide one value by another.

Syntax div.approx{.ftz}.f32 d, a, b; // fast, approximate divide

div.full{.ftz}.f32 d, a, b; // full-range approximate divide

div.rnd{.ftz}.f32 d, a, b; // IEEE 754 compliant rounding

div.rnd.f64 d, a, b; // IEEE 754 compliant rounding

.rnd = { .rn, .rz, .rm, .rp };

Description Divides a by b, stores result in d.

Semantics d = a / b;

Notes Fast, approximate single-precision divides:

div.approx.f32 implements a fast approximation to divide, computed as d = a *
(1/b). For b in [2

-126
, 2

126
], the maximum ulp error is 2.

div.full.f32 implements a relatively fast, full-range approximation that scales
operands to achieve better accuracy, but is not fully IEEE 754 compliant and does
not support rounding modifiers. The maximum ulp error is 2 across the full range
of inputs.

Subnormal inputs and results are flushed to sign-preserving zero.

Fast, approximate division by zero creates a value of infinity (with same sign as a).

Divide with IEEE 754 compliant rounding:

Rounding modifiers (no default):

.rn mantissa LSB rounds to nearest even

.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

Subnormal numbers:

sm_20: By default, subnormal numbers are supported.

div.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x: div.f64 supports subnormal numbers.

div.f32 flushes subnormal inputs and results to sign-preserving zero.

PTX ISA Notes div.f32 and div.f64 introduced in PTX ISA version 1.0.

Explicit modifiers .approx, .full, .ftz, and rounding introduced in PTX ISA version 1.4.

For PTX ISA version 1.4 and later, one of .approx, .full, or .rnd is required.

For PTX ISA versions 1.0 through 1.3, div.f32 defaults to div.approx.ftz.f32, and div.f64
defaults to div.rn.f64.

Target ISA Notes div.approx.f32 and div.full.f32 supported on all target architectures.

div.rnd.f32 requires sm_20 or later.

div.rn.f64 requires sm_13 or later. div.{rz,rm,rp}.f64 requires sm_20 or later.

Examples div.approx.ftz.f32 diam,circum,3.14159;

 div.full.ftz.f32 x, y, z;

 div.rn.f64 xd, yd, zd;

 Chapter 8. Instruction Set

April 21, 2010 91

Table 57. Floating-Point Instructions: abs

abs Absolute value.

Syntax abs{.ftz}.f32 d, a;

abs.f64 d, a;

Description Take the absolute value of a and store the result in d.

Semantics d = |a|;

Notes Subnormal numbers:

sm_20: By default, subnormal numbers are supported.

abs.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x: abs.f64 supports subnormal numbers.

abs.f32 flushes subnormal inputs and results to sign-preserving zero.

NaN inputs yield an unspecified NaN. Future implementations may comply with the
IEEE 754 standard by preserving payload and modifying only the sign bit.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes abs.f32 supported on all target architectures.

abs.f64 requires sm_13 or later.

Examples abs.ftz.f32 x,f0;

Table 58. Floating-Point Instructions: neg

neg Arithmetic negate.

Syntax neg{.ftz}.f32 d, a;

neg.f64 d, a;

Description Negate the sign of a and store the result in d.

Semantics d = -a;

Notes Subnormal numbers:

sm_20: By default, subnormal numbers are supported.

neg.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x: neg.f64 supports subnormal numbers.

neg.f32 flushes subnormal inputs and results to sign-preserving zero.

NaN inputs yield an unspecified NaN. Future implementations may comply with the
IEEE 754 standard by preserving payload and modifying only the sign bit.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes neg.f32 supported on all target architectures.

neg.f64 requires sm_13 or later.

Examples neg.ftz.f32 x,f0;

PTX ISA Version 2.1

92 April 21, 2010

Table 59. Floating-Point Instructions: min

min Find the minimum of two values.

Syntax min{.ftz}.f32 d, a, b;

min.f64 d, a, b;

Description Store the minimum of a and b in d.

Semantics if (isNaN(a) && isNaN(b)) d = NaN;

else if (isNaN(a)) d = b;

else if (isNaN(b)) d = a;

else d = (a < b) ? a : b;

Notes Subnormal numbers:

sm_20: By default, subnormal numbers are supported.

min.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x: min.f64 supports subnormal numbers.

min.f32 flushes subnormal inputs and results to sign-preserving zero.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes min.f32 supported on all target architectures.

min.f64 requires sm_13 or later.

Examples @p min.ftz.f32 z,z,x;

 min.f64 a,b,c;

Table 60. Floating-Point Instructions: max

max Find the maximum of two values.

Syntax max{.ftz}.f32 d, a, b;

max.f64 d, a, b;

Description Store the maximum of a and b in d.

Semantics if (isNaN(a) && isNaN(b)) d = NaN;

else if (isNaN(a)) d = b;

else if (isNaN(b)) d = a;

else d = (a > b) ? a : b;

Notes Subnormal numbers:

sm_20: By default, subnormal numbers are supported.

max.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x: max.f64 supports subnormal numbers.

max.f32 flushes subnormal inputs and results to sign-preserving zero.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes max.f32 supported on all target architectures.

max.f64 requires sm_13 or later.

Examples max.ftz.f32 f0,f1,f2;

 max.f64 a,b,c;

 Chapter 8. Instruction Set

April 21, 2010 93

Table 61. Floating-Point Instructions: rcp

rcp Take the reciprocal of a value.

Syntax rcp.approx{.ftz}.f32 d, a; // fast, approximate reciprocal

rcp.rnd{.ftz}.f32 d, a; // IEEE 754 compliant rounding

rcp.rnd.f64 d, a; // IEEE 754 compliant rounding

.rnd = { .rn, .rz, .rm, .rp };

Description Compute 1/a, store result in d.

Semantics d = 1 / a;

Notes rcp.approx.f32 implements a fast approximation to reciprocal. The maximum absolute
error is 2

-23.0
 over the range 1.0-2.0.

Input Result

-Inf -0.0

-subnormal -Inf

-0.0 -Inf

+0.0 +Inf

+subnormal +Inf

+Inf +0.0

NaN NaN

Reciprocal with IEEE 754 compliant rounding:

Rounding modifiers (no default):

.rn mantissa LSB rounds to nearest even

.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

Subnormal numbers:

sm_20: By default, subnormal numbers are supported.

rcp.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x: rcp.f64 supports subnormal numbers.

rcp.f32 flushes subnormal inputs and results to sign-preserving zero.

PTX ISA Notes rcp.f32 and rcp.f64 introduced in PTX ISA version 1.0. rcp.rn.f64 and explicit
modifiers .approx and .ftz were introduced in PTX ISA version 1.4. General rounding
modifiers were added in PTX ISA version 2.0.

For PTX ISA version 1.4 and later, one of .approx or .rnd is required.

For PTX ISA versions 1.0 through 1.3, rcp.f32 defaults to rcp.approx.ftz.f32, and rcp.f64
defaults to rcp.rn.f64.

Target ISA Notes rcp.approx.f32 supported on all target architectures.

rcp.rnd.f32 requires sm_20 or later.

rcp.rn.f64 requires sm_13 or later. rcp.{rz,rm,rp}.f64 requires sm_20 or later.

Examples rcp.approx.ftz.f32 ri,r;

 rcp.rn.ftz.f32 xi,x;

 rcp.rn.f64 xi,x;

PTX ISA Version 2.1

94 April 21, 2010

Table 62. Floating-Point Instructions: rcp.approx.ftz.f64

rcp.approx.ftz.f64 Compute a fast, gross approximation to the reciprocal of a value.

Syntax rcp.approx.ftz.f64 d, a;

Description Compute a fast, gross approximation to the reciprocal as follows:

1. extract the most-significant 32 bits of .f64 operand a in 1.11.20 IEEE floating-
point format (i.e., ignore the least-significant 32 bits of a),

2. compute an approximate .f64 reciprocal of this value using the most-significant
20 bits of the mantissa of operand a,

3. place the resulting 32-bits in 1.11.20 IEEE floating-point format in the most-
significant 32-bits of destination d,and

4. zero the least significant 32 mantissa bits of .f64 destination d.

Semantics tmp = a[63:32]; // upper word of a, 1.11.20 format

d[63:32] = 1.0 / tmp;

d[31:0] = 0x00000000;

Notes
rcp.approx.ftz.f64 implements a fast, gross approximation to reciprocal.

Input

a[63:32]

Result

d[63:32]

-Inf -0.0

-subnormal -Inf

-0.0 -Inf

+0.0 +Inf

+subnormal +Inf

+Inf +0.0

NaN NaN

Input NaNs map to a canonical NaN with encoding 0x7fffffff00000000.

Subnormal inputs and results are flushed to sign-preserving zero.

PTX ISA Notes rcp.approx.ftz.f64 introduced in PTX ISA version 2.1.

Target ISA Notes rcp.approx.ftz.f64 requires sm_20 or later.

Examples rcp.ftz.f64 xi,x;

 Chapter 8. Instruction Set

April 21, 2010 95

Table 63. Floating-Point Instructions: sqrt

sqrt Take the square root of a value.

Syntax sqrt.approx{.ftz}.f32 d, a; // fast, approximate square root

sqrt.rnd{.ftz}.f32 d, a; // IEEE 754 compliant rounding

sqrt.rnd.f64 d, a; // IEEE 754 compliant rounding

.rnd = { .rn, .rz, .rm, .rp };

Description Compute sqrt(a); store in d.

Semantics d = sqrt(a);

Notes sqrt.approx.f32 implements a fast approximation to square root. The maximum
absolute error for sqrt.approx.f32 is TBD.

Input Result

-Inf NaN

-normal NaN

-subnormal -0.0

-0.0 -0.0

+0.0 +0.0

+subnormal +0.0

+Inf +Inf

NaN NaN

Square root with IEEE 754 compliant rounding:

Rounding modifiers (no default):

.rn mantissa LSB rounds to nearest even

.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

Subnormal numbers:

sm_20: By default, subnormal numbers are supported.

sqrt.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x: sqrt.f64 supports subnormal numbers.

sqrt.f32 flushes subnormal inputs and results to sign-preserving zero.

PTX ISA Notes sqrt.f32 and sqrt.f64 introduced in PTX ISA version 1.0. sqrt.rn.f64 and explicit
modifiers .approx and .ftz were introduced in PTX ISA version 1.4. General rounding
modifiers were added in PTX ISA version 2.0.

For PTX ISA version 1.4 and later, one of .approx or .rnd is required.

For PTX ISA versions 1.0 through 1.3, sqrt.f32 defaults to sqrt.approx.ftz.f32, and
sqrt.f64 defaults to sqrt.rn.f64.

Target ISA Notes sqrt.approx.f32 supported on all target architectures.

sqrt.rnd.f32 requires sm_20 or later.

sqrt.rn.f64 requires sm_13 or later. sqrt.{rz,rm,rp}.f64 requires sm_20 or later.

Examples sqrt.approx.ftz.f32 r,x;

 sqrt.rn.ftz.f32 r,x;

 sqrt.rn.f64 r,x;

PTX ISA Version 2.1

96 April 21, 2010

Table 64. Floating-Point Instructions: rsqrt

rsqrt Take the reciprocal of the square root of a value.

Syntax rsqrt.approx{.ftz}.f32 d, a;

rsqrt.approx.f64 d, a;

Description Compute 1/sqrt(a); store the result in d.

Semantics d = 1/sqrt(a);

Notes rsqrt.approx implements an approximation to the reciprocal square root.

Input Result

-Inf NaN

-normal NaN

-subnormal -Inf

-0.0 -Inf

+0.0 +Inf

+subnormal +Inf

+Inf +0.0

NaN NaN

The maximum absolute error for rsqrt.f32 is 2
-22.4

 over the range 1.0-4.0.

The maximum absolute error for rsqrt.f64 is TBD.

Subnormal numbers:

sm_20: By default, subnormal numbers are supported.

rsqrt.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x: rsqrt.f64 supports subnormal numbers.

rsqrt.f32 flushes subnormal inputs and results to sign-preserving zero.

Note that rsqrt.approx.f64 is emulated in software and are relatively slow.

PTX ISA Notes rsqrt.f32 and rsqrt.f64 were introduced in PTX ISA version 1.0. Explicit modifiers
.approx and .ftz were introduced in PTX ISA version 1.4.

For PTX ISA version 1.4 and later, the .approx modifier is required.

For PTX ISA versions 1.0 through 1.3, rsqrt.f32 defaults to rsqrt.approx.ftz.f32, and
rsqrt.f64 defaults to rsqrt.approx.f64.

Target ISA Notes rsqrt.f32 supported on all target architectures.

rsqrt.f64 requires sm_13 or later.

Examples rsqrt.approx.ftz.f32 isr, x;

 rsqrt.approx.f64 ISR, X;

 Chapter 8. Instruction Set

April 21, 2010 97

Table 65. Floating-Point Instructions: sin

sin Find the sine of a value.

Syntax sin.approx{.ftz}.f32 d, a;

Description Find the sine of the angle a (in radians).

Semantics d = sin(a);

Floating-Point
Notes

sin.approx.f32 implements a fast approximation to sine.

Input Result

-Inf NaN

-subnormal -0.0

-0.0 -0.0

+0.0 +0.0

+subnormal +0.0

+Inf NaN

NaN NaN

The maximum absolute error is 2
-20.9

 in quadrant 00.

Subnormal numbers:

sm_20: By default, subnormal numbers are supported.

sin.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x: Subnormal inputs and results to sign-preserving zero.

PTX ISA Notes sin.f32 introduced in PTX ISA version 1.0. Explicit modifiers .approx and .ftz
introduced in PTX ISA version 1.4.

For PTX ISA version 1.4 and later, the .approx modifier is required.

For PTX ISA versions 1.0 through 1.3, sin.f32 defaults to sin.approx.ftz.f32.

Target ISA Notes Supported on all target architectures.

Examples sin.approx.ftz.f32 sa, a;

PTX ISA Version 2.1

98 April 21, 2010

Table 66. Floating-Point Instructions: cos

cos Find the cosine of a value.

Syntax cos.approx{.ftz}.f32 d, a;

Description Find the cosine of the angle a (in radians).

Semantics d = cos(a);

Notes cos.approx.f32 implements a fast approximation to cosine.

Input Result

-Inf NaN

-subnormal +1.0

-0.0 +1.0

+0.0 +1.0

+subnormal +1.0

+Inf NaN

NaN NaN

The maximum absolute error is 2
-20.9

in quadrant 00.

Subnormal numbers:

sm_20: By default, subnormal numbers are supported.

cos.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x: Subnormal inputs and results to sign-preserving zero.

PTX ISA Notes cos.f32 introduced in PTX ISA version 1.0. Explicit modifiers .approx and .ftz
introduced in PTX ISA version 1.4.

For PTX ISA version 1.4 and later, the .approx modifier is required.

For PTX ISA versions 1.0 through 1.3, cos.f32 defaults to cos.approx.ftz.f32.

Target ISA Notes Supported on all target architectures.

Examples cos.approx.ftz.f32 ca, a;

 Chapter 8. Instruction Set

April 21, 2010 99

Table 67. Floating-Point Instructions: lg2

lg2 Find the base-2 logarithm of a value.

Syntax lg2.approx{.ftz}.f32 d, a;

Description Determine the log2 of a.

Semantics d = log(a) / log(2);

Notes lg2.approx.f32 implements a fast approximation to log2(a).

Input Result

-Inf NaN

-subnormal -Inf

-0.0 -Inf

+0.0 -Inf

+subnormal -Inf

+Inf +Inf

NaN NaN

The maximum absolute error is 2
-22.6

 for mantissa.

Subnormal numbers:

sm_20: By default, subnormal numbers are supported.

lg2.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x: Subnormal inputs and results to sign-preserving zero.

PTX ISA Notes lg2.f32 introduced in PTX ISA version 1.0. Explicit modifiers .approx and .ftz
introduced in PTX ISA version 1.4.

For PTX ISA version 1.4 and later, the .approx modifier is required.

For PTX ISA versions 1.0 through 1.3, lg2.f32 defaults to lg2.approx.ftz.f32.

Target ISA Notes Supported on all target architectures.

Examples lg2.approx.ftz.f32 la, a;

PTX ISA Version 2.1

100 April 21, 2010

Table 68. Floating-Point Instructions: ex2

ex2 Find the base-2 exponential of a value.

Syntax ex2.approx{.ftz}.f32 d, a;

Description Raise 2 to the power a.

Semantics d = 2 ^ a;

Notes ex2.approx.f32 implements a fast approximation to 2
a
.

Input Result

-Inf +0.0

-subnormal +1.0

-0.0 +1.0

+0.0 +1.0

+subnormal +1.0

+Inf +Inf

NaN NaN

The maximum absolute error is 2
-22.5

 for fraction in the primary range.

Subnormal numbers:

sm_20: By default, subnormal numbers are supported.

ex2.ftz.f32 flushes subnormal inputs and results to sign-preserving zero.

sm_1x: Subnormal inputs and results to sign-preserving zero.

PTX ISA Notes ex2.f32 introduced in PTX ISA version 1.0. Explicit modifiers .approx and .ftz
introduced in PTX ISA version 1.4.

For PTX ISA version 1.4 and later, the .approx modifier is required.

For PTX ISA versions 1.0 through 1.3, ex2.f32 defaults to ex2.approx.ftz.f32.

Target ISA Notes Supported on all target architectures.

Examples ex2.approx.ftz.f32 xa, a;

 Chapter 8. Instruction Set

April 21, 2010 101

8.7.3. Comparison and Selection Instructions
The comparison select instructions are:

� set

� setp

� selp

� slct

As with single-precision floating-point instructions, the set, setp, and slct instructions
support subnormal numbers for sm_20 targets and flush single-precision subnormal inputs
to sign-preserving zero for sm_1x targets. The optional .ftz modifier provides backward
compatibility with sm_1x targets by flushing subnormal inputs and results to sign-preserving
zero regardless of the target architecture.

PTX ISA Version 2.1

102 April 21, 2010

Table 69. Comparison and Selection Instructions: set

set
Compare two numeric values with a relational operator, and optionally combine this
result with a predicate value by applying a Boolean operator.

Syntax set.CmpOp{.ftz}.dtype.stype d, a, b;

set.CmpOp.BoolOp{.ftz}.dtype.stype d, a, b, {!}c;

.dtype = { .u32, .s32, .f32 };

.stype = { .b16, .b32, .b64,

 .u16, .u32, .u64,

 .s16, .s32, .s64,

 .f32, .f64 };

Description Compares two numeric values and optionally combines the result with another
predicate value by applying a Boolean operator. If this result is True, 1.0f is written for
floating-point destination types, and 0xFFFFFFFF is written for integer destination
types. Otherwise, 0x00000000 is written.

The comparison operator is a suffix on the instruction, and can be one of:
eq, ne, lt, le, gt, ge, lo, ls, hi, hs

equ, neu, ltu, leu, gtu, geu, num, nan

The Boolean operator BoolOp(A,B) is one of: and, or, xor.

Semantics t = (a CmpOp b) ? 1 : 0;

if (isFloat(dtype))

 d = BoolOp(t, c) ? 1.0f : 0x00000000;

else

 d = BoolOp(t, c) ? 0xFFFFFFFF : 0x00000000;

Integer Notes The signed and unsigned comparison operators are eq, ne, lt, le, gt, ge.

For unsigned values, the comparison operators lo, ls, hi, and hs for lower, lower-or-

same, higher, and higher-or-same may be used instead of lt, le, gt, ge,
respectively.

The untyped, bit-size comparisons are eq and ne.

Floating Point
Notes

The ordered comparisons are eq, ne, lt, le, gt, ge. If either operand is NaN,
the result is false.

To aid comparison operations in the presence of NaN values, unordered versions are
included: equ, neu, ltu, leu, gtu, geu. If both operands are numeric values
(not NaN), then these comparisons have the same result as their ordered counterparts.
If either operand is NaN, then the result of these comparisons is true.

num returns true if both operands are numeric values (not NaN), and nan returns true if
either operand is NaN.

Subnormal numbers:

sm_20: By default, subnormal numbers are supported.

set.ftz.dtype.f32 flushes subnormal inputs to sign-preserving zero.

sm_1x: set.dtype.f64 supports subnormal numbers.

set.dtype.f32 flushes subnormal inputs to sign-preserving zero.

Modifier .ftz applies only to .f32 comparisons.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes set with .f64 source type requires sm_13.

Examples @p set.lt.and.f32.s32 d,a,b,r;

 set.eq.u32.u32 d,i,n;

 Chapter 8. Instruction Set

April 21, 2010 103

Table 70. Comparison and Selection Instructions: setp

setp
Compare two numeric values with a relational operator, and (optionally) combine this
result with a predicate value by applying a Boolean operator.

Syntax setp.CmpOp{.ftz}.type p[|q], a, b;

setp.CmpOp.BoolOp{.ftz}.type p[|q], a, b, {!}c;

.type = { .b16, .b32, .b64,

 .u16, .u32, .u64,

 .s16, .s32, .s64,

 .f32, .f64 };

Description Compares two values and combines the result with another predicate value by applying
a Boolean operator. This result is written to the first destination operand. A related
value computed using the complement of the compare result is written to the second
destination operand.

Applies to all numeric types. The destinations p and q must be .pred variables.

The comparison operator is a suffix on the instruction, and can be one of:

eq, ne, lt, le, gt, ge, lo, ls, hi, hs

equ, neu, ltu, leu, gtu, geu, num, nan

The Boolean operator BoolOp(A,B) is one of: and, or, xor.

Semantics t = (a CmpOp b) ? 1 : 0;

p = BoolOp(t, c);

q = BoolOp(!t, c);

Integer Notes The signed and unsigned comparison operators are eq, ne, lt, le, gt, ge.

For unsigned values, the comparison operators lo, ls, hi, and hs for lower, lower-

or-same, higher, and higher-or-same may be used instead of lt, le, gt, ge,
respectively.

The untyped, bit-size comparisons are eq and ne.

Floating Point
Notes

The ordered comparisons are eq, ne, lt, le, gt, ge. If either operand is NaN,
the result is false.

To aid comparison operations in the presence of NaN values, unordered versions are

included: equ, neu, ltu, leu, gtu, geu. If both operands are numeric values
(not NaN), then these comparisons have the same result as their ordered counterparts.
If either operand is NaN, then the result of these comparisons is true.

num returns true if both operands are numeric values (not NaN), and nan returns true if
either operand is NaN.

Subnormal numbers:

sm_20: By default, subnormal numbers are supported.

setp.ftz.dtype.f32 flushes subnormal inputs to sign-preserving zero.

sm_1x: setp.dtype.f64 supports subnormal numbers.

setp.dtype.f32 flushes subnormal inputs to sign-preserving zero.

Modifier .ftz applies only to .f32 comparisons.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes setp with .f64 source type requires sm_13 or later.

Examples setp.lt.and.s32 p|q,a,b,r;

@q setp.eq.u32 p,i,n;

PTX ISA Version 2.1

104 April 21, 2010

Table 71. Comparison and Selection Instructions: selp

selp Select between source operands, based on the value of the predicate source operand.

Syntax selp.type d, a, b, c;

.type = { .b16, .b32, .b64,

 .u16, .u32, .u64,

 .s16, .s32, .s64,

 .f32, .f64 };

Description Conditional selection. If c is True, a is stored in d, b otherwise. Operands d, a, and b
must be of the same type. Operand c is a predicate.

Semantics d = (c == 1) ? a : b;

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes selp.f64 requires sm_13 or later.

Examples selp.s32 r0,r,g,p;

@q selp.f32 f0,t,x,xp;

Table 72. Comparison and Selection Instructions: slct

slct Select one source operand, based on the sign of the third operand.

Syntax slct.dtype.s32 d, a, b, c;

slct{.ftz}.dtype.f32 d, a, b, c;

.dtype = { .b16, .b32, .b64,

 .u16, .u32, .u64,

 .s16, .s32, .s64,

 .f32, .f64 };

Description Conditional selection. If c ≥ 0, a is stored in d, otherwise b is stored in d. Operands d,
a, and b are treated as a bitsize type of the same width as the first instruction type;
operand c must match the second instruction type. The selected input is copied to the
output without modification.

Semantics d = (c >= 0) ? a : b;

Floating Point
Notes

For .f32 comparisons, negative zero equals zero.

Subnormal numbers:

sm_20: By default, subnormal numbers are supported.

slct.ftz.dtype.f32 flushes subnormal values of operand c to sign-preserving
zero, and operand a is selected.

sm_1x: slct.dtype.f32 flushes subnormal values of operand c to sign-preserving zero,
and operand a is selected.

Modifier .ftz applies only to .f32 comparisons.

If operand c is NaN, the comparison is unordered and operand b is selected.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes slct.f64 requires sm_13 or later.

Examples slct.u32.s32 x, y, z, val;

 slct.ftz.u64.f32 A, B, C, fval;

 Chapter 8. Instruction Set

April 21, 2010 105

8.7.4. Logic and Shift Instructions
The logic and shift instructions are fundamentally untyped, performing bit-wise operations
on operands of any type, provided the operands are of the same size. This permits bit-wise
operations on floating point values without having to define a union to access the bits.
Instructions and, or, xor, and not also operate on predicates.

The logical shift instructions are:

� and

� or

� xor

� not

� cnot

� shl

� shr

PTX ISA Version 2.1

106 April 21, 2010

Table 73. Logic and Shift Instructions: and

and Bitwise AND.

Syntax and.type d, a, b;

.type = { .pred, .b16, .b32, .b64 };

Description Compute the bit-wise and operation for the bits in a and b.

Semantics d = a & b;

Notes The size of the operands must match, but not necessarily the type.

Allowed types include predicate registers.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples and.b32 x,q,r;

 and.b32 sign,fpvalue,0x80000000;

Table 74. Logic and Shift Instructions: or

or Bitwise OR.

Syntax or.type d, a, b;

.type = { .pred, .b16, .b32, .b64 };

Description Compute the bit-wise or operation for the bits in a and b.

Semantics d = a | b;

Notes The size of the operands must match, but not necessarily the type.

Allowed types include predicate registers.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples or.b32 mask mask,0x00010001

 or.pred p,q,r;

 Chapter 8. Instruction Set

April 21, 2010 107

Table 75. Logic and Shift Instructions: xor

xor Bitwise exclusive-OR (inequality).

Syntax xor.type d, a, b;

.type = { .pred, .b16, .b32, .b64 };

Description Compute the bit-wise exclusive-or operation for the bits in a and b.

Semantics d = a ^ b;

Notes The size of the operands must match, but not necessarily the type.

Allowed types include predicate registers.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples xor.b32 d,q,r;

 xor.b16 d,x,0x0001;

Table 76. Logic and Shift Instructions: not

not Bitwise negation; one’s complement.

Syntax not.type d, a;

.type = { .pred, .b16, .b32, .b64 };

Description Invert the bits in a.

Semantics d = ~a;

Notes The size of the operands must match, but not necessarily the type.

Allowed types include predicates.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples not.b32 mask,mask;

 not.pred p,q;

Table 77. Logic and Shift Instructions: cnot

cnot C/C++ style logical negation.

Syntax cnot.type d, a;

.type = { .b16, .b32, .b64 };

Description Compute the logical negation using C/C++ semantics.

Semantics d = (a==0) ? 1 : 0;

Notes The size of the operands must match, but not necessarily the type.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples cnot.b32 d,a;

PTX ISA Version 2.1

108 April 21, 2010

Table 78. Logic and Shift Instructions: shl

shl Shift bits left, zero-fill on right.

Syntax shl.type d, a, b;

.type = { .b16, .b32, .b64 };

Description Shift a left by the amount specified by unsigned 32-bit value in b.

Semantics d = a << b;

Notes Shift amounts greater than the register width N are clamped to N.

The sizes of the destination and first source operand must match, but not necessarily
the type. The b operand must be a 32-bit value, regardless of the instruction type.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples shl.b32 q,a,2;

Table 79. Logic and Shift Instructions: shr

shr Shift bits right, sign or zero fill on left.

Syntax shr.type d, a, b;

.type = { .b16, .b32, .b64,

 .u16, .u32, .u64,

 .s16, .s32, .s64 };

Description Shift a right by the amount specified by unsigned 32-bit value in b. Signed shifts fill
with the sign bit, unsigned and untyped shifts fill with 0.

Semantics d = a >> b;

Notes Shift amounts greater than the register width N are clamped to N.

The sizes of the destination and first source operand must match, but not necessarily
the type. The b operand must be a 32-bit value, regardless of the instruction type.

Bit-size types are included for symmetry with SHL.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples shr.u16 c,a,2;

 shr.s32 i,i,1;

 shr.b16 k,i,j;

 Chapter 8. Instruction Set

April 21, 2010 109

8.7.5. Data Movement and Conversion Instructions
These instructions copy data from place to place, and from state space to state space,
possibly converting it from one format to another. mov, ld, ldu, and st operate on both scalar
and vector types. The isspacep instruction is provided to query whether a generic address
falls within a particular state space window. The cvta instruction converts addresses between
generic and global, local, or shared state spaces.

Instructions ld, st, suld, and sust support optional cache operations.

The Data Movement and Conversion Instructions are:

� mov

� ld

� ldu

� st

� prefetch, prefetchu

� isspacep

� cvta

� cvt

PTX ISA Version 2.1

110 April 21, 2010

8.7.5.1. Cache Operators

PTX ISA version 2.0 introduced optional cache operators on load and store instructions.
The cache operators require a target architecture of sm_20 or later. For sm_20 and later, the
cache operators have the following definitions and behavior.

Table 80. Cache Operators for Memory Load Instructions

Operator Meaning

.ca Cache at all levels, likely to be accessed again.

The default load instruction cache operation is ld.ca, which allocates cache lines in all levels
(L1 and L2) with normal eviction policy. Global data is coherent at the L2 level, but multiple L1
caches are not coherent for global data. If one thread stores to global memory via one L1
cache, and a second thread loads that address via a second L1 cache with ld.ca, the second
thread may get stale L1 cache data, rather than the data stored by the first thread. The driver
must invalidate global L1 cache lines between dependent grids of parallel threads. Stores by
the first grid program are then correctly fetched by the second grid program issuing default
ld.ca loads cached in L1.

.cg Cache at global level (cache in L2 and below, not L1).

Use ld.cg to cache loads only globally, bypassing the L1 cache, and cache only in the L2
cache. As a result of this request, any existing cache lines that match the requested address in
L1 will be evicted.

.cs Cache streaming, likely to be accessed once.

The ld.cs load cached streaming operation allocates global lines with evict-first policy in L1
and L2 to limit cache pollution by temporary streaming data that may be accessed once or
twice. When ld.cs is applied to a Local window address, it performs the ld.lu operation.

.lu Last use.

The ld.lu load last use operation, when applied to a local address, invalidates (discards) the
local L1 line following the load, if the line is fully covered. The compiler / programmer may use
ld.lu when restoring spilled registers and popping function stack frames to avoid needless
write-backs of lines that will not be used again. The ld.lu instruction performs a load cached
streaming operation (ld.cs) on global addresses.

.cv Cache as volatile (consider cached system memory lines stale, fetch again).

The ld.cv load cached volatile operation applied to a global System Memory address
invalidates (discards) a matching L2 line and re-fetches the line on each new load, to allow the
thread program to poll a SysMem location written by the CPU. A ld.cv to a frame buffer DRAM
address is the same as ld.cs, evict-first.

 Chapter 8. Instruction Set

April 21, 2010 111

Table 81. Cache Operators for Memory Store Instructions

Operator Meaning

.wb Cache write-back all coherent levels.

The default store instruction cache operation is st.wb, which writes back cache lines of
coherent cache levels with normal eviction policy. Data stored to local per-thread memory is
cached in L1 and L2 with with write-back. However, sm_20 does NOT cache global store data
in L1 because multiple L1 caches are not coherent for global data. Global stores bypass L1,
and discard any L1 lines that match, regardless of the cache operation. Future GPUs may
have globally-coherent L1 caches, in which case st.wb could write-back global store data from
L1.

If one thread stores to global memory, bypassing its L1 cache, and a second thread in a
different SM later loads from that address via a different L1 cache with ld.ca, the second thread
may get a hit on stale L1 cache data, rather than get the data from L2 or memory stored by the
first thread.

The driver must invalidate global L1 cache lines between dependent grids of thread arrays.
Stores by the first grid program are then correctly missed in L1 and fetched by the second grid
program issuing default ld.ca loads.

.cg Cache at global level (cache in L2 and below, not L1).

Use st.cg to cache global store data only globally, bypassing the L1 cache, and cache only in
the L2 cache. In sm_20, st.cg is the same as st.wb for global data, but st.cg to local memory
uses the L1 cache, and marks local L1 lines evict-first.

.cs Cache streaming, likely to be accessed once.

The st.cs store cached-streaming operation allocates cache lines with evict-first policy in L2
(and L1 if Local) to limit cache pollution by streaming output data.

.wt Cache write-through (to system memory).

The st.wt store write-through operation applied to a global System Memory address writes
through the L2 cache, to allow a CPU program to poll a SysMem location written by the GPU
with st.wt. Addresses not in System Memory use normal write-back.

PTX ISA Version 2.1

112 April 21, 2010

Table 82. Data Movement and Conversion Instructions: mov

mov
Set a register variable with the value of a register variable or an immediate value.

Take the non-generic address of a variable in global, local, or shared state space.

Syntax mov.type d, a;

mov.type d, sreg;

mov.type d, avar; // get address of variable

mov.type d, avar+imm; // get address of variable with offset

mov.type d, label; // get address of label or function

.type = { .pred,

 .b16, .b32, .b64,

 .u16, .u32, .u64,

 .s16, .s32, .s64,

 .f32, .f64 };

Description Write register d with the value of a.

Operand a may be a register, special register, variable with optional offset in an
addressable memory space, label, or function name.

For variables declared in .const, .global, .local, and .shared state spaces, mov places
the non-generic address of the variable (i.e., the address of the variable in its state
space) into the destination register. The generic address of a variable in global, local,
or shared state space may be generated by first taking the address within the state
space with mov and then converting it to a generic address using the cvta instruction;
alternately, the generic address of a variable declared in global, local, or shared state
space may be taken directly using the cvta instruction.

Note that if the address of a device function parameter is moved to a register, the

parameter will be copied onto the stack and the address will be in the local state
space.

Semantics d = a;

d = sreg;

d = &avar; // address is non-generic; i.e., within the variable’s declared state space

d = &avar+imm;

d = &label;

Notes Although only predicate and bit-size types are required, we include the arithmetic types
for the programmer’s convenience: their use enhances program readability and allows
additional type checking.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes mov.f64 requires sm_13 or later.

Examples mov.f32 d,a;

 mov.u16 u,v;

 mov.f32 k,0.1;

 mov.u32 ptr, A; // move address of A into ptr

 mov.u32 ptr, A[5]; // move address of A[5] into ptr

 mov.u32 ptr, A+20; // move address with offset into ptr

 mov.u32 addr, myFunc; // get address of myFunc

 Chapter 8. Instruction Set

April 21, 2010 113

Table 83. Data Movement and Conversion Instructions: mov

mov Move vector-to-scalar (pack) or scalar-to-vector (unpack).

Syntax mov.type d, a;

.type = { .b16, .b32, .b64 };

Description Write scalar register d with the packed value of vector register a, or write vector register
d with the unpacked values from scalar register a.

For bit-size types, mov may be used to pack vector elements into a scalar register or
unpack sub-fields of a scalar register into a vector. Both the overall size of the vector
and the size of the scalar must match the size of the instruction type.

Semantics d = a.x | (a.y << 8)

d = a.x | (a.y << 8) | (a.z << 16) | (a.w << 24)

d = a.x | (a.y << 16)

d = a.x | (a.y << 16) | (a.z << 32) | (a.w << 48)

d = a.x | (a.y << 32)

// pack two 8-bit elements into .b16

// pack four 8-bit elements into .b32

// pack two 16-bit elements into .b32

// pack four 16-bit elements into .b64

// pack two 32-bit elements into .b64

{ d.x, d.y } = { a[0..7], a[8..15] }

{ d.x, d.y, d.z, d.w } =

 { a[0..7], a[8..15], a[16..23], a[24..31] }

{ d.x, d.y } = { a[0..15], a[16..31] }

{ d.x, d.y, d.z, d.w } =

 { a[0..15], a[16..31], a[32..47], a[48..63] }

{ d.x, d.y } = { a[0..31], a[32..63] }

// unpack 8-bit elements from .b16

// unpack 8-bit elements from .b32

// unpack 16-bit elements from .b32

// unpack 16-bit elements from .b64

// unpack 32-bit elements from .b64

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples mov.b32 %r1,{a,b}; // a,b have type .u16

 mov.b64 {lo,hi}, %x; // %x is a double; lo,hi are .u32

 mov.b32 %r1,{x,y,z,w}; // x,y,z,w have type .b8

 mov.b32 {r,g,b,a},%r1; // r,g,b,a have type .u8

PTX ISA Version 2.1

114 April 21, 2010

Table 84. Data Movement and Conversion Instructions: ld

ld Load a register variable from an addressable state space variable.

Syntax ld{.ss}{.cop}.type d, [a]; // load from address
ld{.ss}{.cop}.vec.type d, [a]; // vector load from addr

ld.volatile{.ss}.type d, [a]; // load from address

ld.volatile{.ss}.vec.type d, [a]; // vector load from addr

.ss = { .const, .global, .local, // state space

 .param, .shared };

.cop = { .ca, .cg, .cs, .lu, .cv }; // cache operation

.vec = { .v2, .v4 };

.type = { .b8, .b16, .b32, .b64,

 .u8, .u16, .u32, .u64,

 .s8, .s16, .s32, .s64,

 .f32, .f64 };

Description Load register variable d from the location specified by the source address operand a in
specified state space. If no state space is given, perform the load using generic
addressing. In generic addressing, an address maps to global memory unless it falls
within the local memory window or the shared memory window. Within these windows,
an address maps to the corresponding location in local or shared memory, i.e. to the
address formed by subtracting the window base from the generic address to form the
offset in the implied state space.

The addressable operand a is one of:

[avar] the name of an addressable variable var,

[areg] an integer or bit-size type register reg containing a byte address,

[areg+immOff] a sum of register reg containing a byte address plus a constant integer
byte offset (signed, 32-bit), or

[immAddr] an immediate absolute byte address (unsigned, 32-bit).

The address must be naturally aligned to a multiple of the access size. If an address is
not properly aligned, the resulting behavior is undefined; i.e., the access may proceed
by silently masking off low-order address bits to achieve proper rounding, or the
instruction may fault.

The address size may be either 32-bit or 64-bit. Addresses are zero-extended to the
specified width as needed, and truncated if the register width exceeds the state space
address width for the target architecture.

The .const space suffix may have an optional bank number to indicate constant banks
other than bank zero.

ld.volatile may be used with .global and .shared spaces to inhibit optimization of
references to volatile memory. This may be used, for example, to enforce sequential
consistency between threads accessing shared memory. Generic addressing may be
used with ld.volatile. Cache operations are not permitted with ld.volatile.

Semantics d = a; // named variable a

d = *a; // register

d = *(a+immOff); // register-plus-offset

d = *(immAddr); // immediate address

Notes Destination d must be in the .reg state space.

A destination register wider than the specified type may be used. The value loaded is
sign-extended to the destination register width for signed integers, and is zero-
extended to the destination register width for unsigned and bit-size types.

.f16 data may be loaded using ld.b16, and then converted to .f32 or .f64 using cvt.

PTX ISA Notes ld introduced in PTX ISA version 1.0. ld.volatile introduced in PTX ISA version 1.1.

Generic addressing and cache operations introduced in PTX ISA version 2.0.

 Chapter 8. Instruction Set

April 21, 2010 115

Target ISA Notes ld.f64 requires sm_13 or later.

Generic addressing requires sm_20 or later.

Cache operations require sm_20 or later.

Examples ld.global.f32 d,[a];

 ld.shared.v4.b32 Q,[p];

 ld.const.s32 d,[p+4];

 ld.local.b32 x,[p+-8]; // negative offset

 ld.const[4].b32 %r,[buffer+64]; // access incomplete array

 ld.local.b64 x,[240]; // immediate address

 ld.global.b16 %r,[fs]; // load .f16 data into 32-bit reg

 cvt.f32.f16 %r,%r; // up-convert f16 data to f32

PTX ISA Version 2.1

116 April 21, 2010

Table 85. Data Movement and Conversion Instructions: ldu

ldu Load read-only data from an address that is common across threads in the warp.

Syntax ldu{.ss}.type d, [a]; // load from address

ldu{.ss}.vec.type d, [a]; // vec load from address

.ss = { .global }; // state space

.vec = { .v2, .v4 };

.type = { .b8, .b16, .b32, .b64,

 .u8, .u16, .u32, .u64,

 .s8, .s16, .s32, .s64,

 .f32, .f64 };

Description Load read-only data into register variable d from the location specified by the source
address operand a in the global state space, where the address is guaranteed to be the
same across all threads in the warp. If no state space is given, perform the load using
generic addressing. In generic addressing, an address maps to global memory unless
it falls within the local memory window or the shared memory window. Within these
windows, an address maps to the corresponding location in local or shared memory,
i.e. to the address formed by subtracting the window base from the generic address to
form the offset in the implied state space. For ldu, only generic addresses that map to
global memory are legal.

The addressable operand a is one of:

[avar] the name of an addressable variable var,

[areg] a register reg containing a byte address,

[areg+immOff] a sum of register reg containing a byte address plus a constant integer
byte offset (signed, 32-bit), or

[immAddr] an immediate absolute byte address (unsigned, 32-bit).

The address must be naturally aligned to a multiple of the access size. If an address is
not properly aligned, the resulting behavior is undefined; i.e., the access may proceed
by silently masking off low-order address bits to achieve proper rounding, or the
instruction may fault.
The data at the specified address must be read-only.

The address size may be either 32-bit or 64-bit. Addresses are zero-extended to the
specified width as needed, and truncated if the register width exceeds the state space
address width for the target architecture.

A register containing an address may be declared as a bit-size type or integer type.

Semantics d = a; // named variable a

d = *a; // register

d = *(a+immOff); // register-plus-offset

d = *(immAddr); // immediate address

Notes Destination d must be in the .reg state space.

A destination register wider than the specified type may be used. The value loaded is
sign-extended to the destination register width for signed integers, and is zero-
extended to the destination register width for unsigned and bit-size types.

.f16 data may be loaded using ldu.b16, and then converted to .f32 or .f64 using cvt.

PTX ISA Notes Introduced in PTX ISA version 2.0.

Target ISA Notes ldu.f64 requires sm_13 or later.

Examples ldu.global.f32 d,[a];

 ldu.global.b32 d,[p+4];

 ldu.global.v4.f32 Q,[p];

 Chapter 8. Instruction Set

April 21, 2010 117

 Table 86. Data Movement and Conversion Instructions: st

st Store a register variable to an addressable state space variable.

Syntax st{.ss}{.cop}.type [a], b; // store to address

st{.ss}{.cop}.vec.type [a], b; // vector store to addr

st.volatile{.ss}.type [a], b; // store to address

st.volatile{.ss}.vec.type [a], b; // vector store to addr

.ss = {.global, .local, .shared }; // state space

.cop = { .wb, .cg, .cs, .wt }; // cache operation

.vec = { .v2, .v4 };

.type = { .b8, .b16, .b32, .b64,

 .u8, .u16, .u32, .u64,

 .s8, .s16, .s32, .s64,

 .f32, .f64 };

Description
Store the value of register variable b in the location specified by the destination
address operand a in specified state space. If no state space is given, perform the
store using generic addressing. In generic addressing, an address maps to global
memory unless it falls within the local memory window or the shared memory window.
Within these windows, an address maps to the corresponding location in local or
shared memory, i.e. to the address formed by subtracting the window base from the
generic address to form the offset in the implied state space.

The addressable operand a is one of:

[var] the name of an addressable variable var,

[reg] an integer or bit-size type register reg containing a byte address,

[reg+immOff] a sum of register reg containing a byte address plus a constant integer
byte offset (signed, 32-bit), or

[immAddr] an immediate absolute byte address (unsigned, 32-bit).

The address must be naturally aligned to a multiple of the access size. If an address is
not properly aligned, the resulting behavior is undefined; i.e., the access may proceed
by silently masking off low-order address bits to achieve proper rounding, or the
instruction may fault.

The address size may be either 32-bit or 64-bit. Addresses are zero-extended to the
specified width as needed, and truncated if the register width exceeds the state space
address width for the target architecture.

st.volatile may be used with .global and .shared spaces to inhibit optimization of
references to volatile memory. This may be used, for example, to enforce sequential
consistency between threads accessing shared memory. Generic addressing may be
used with st.volatile. Cache operations are not permitted with st.volatile.

Semantics d = a; // named variable d

*d = a; // register

*(d+immOffset) = a; // register-plus-offset

*(immAddr) = a; // immediate address

Notes Operand b must be in the .reg state space.

A source register wider than the specified type may be used. The lower n bits
corresponding to the instruction-type width are stored to memory.

.f16 data resulting from a cvt instruction may be stored using st.b16.

PTX ISA Notes st introduced in PTX ISA version 1.0. st.volatile introduced in PTX ISA version 1.1.

Generic addressing and cache operations introduced in PTX ISA version 2.0.

Target ISA Notes st.f64 requires sm_13 or later.

Generic addressing requires sm_20 or later.

Cache operations require sm_20 or later.

PTX ISA Version 2.1

118 April 21, 2010

Examples st.global.f32 [a],b;

 st.local.b32 [q+4],a;

 st.global.v4.s32 [p],Q;

 st.local.b32 [q+-8],a; // negative offset

 st.local.s32 [100],r7; // immediate address

 cvt.f16.f32 %r,%r; // %r is 32-bit register

 st.b16 [fs],%r; // store lower 16 bits

 Chapter 8. Instruction Set

April 21, 2010 119

Table 87. Data Movement and Conversion Instructions:
prefetch, prefetchu

prefetch
prefetchu

Prefetch line containing generic address at specified level of memory hierarchy, in
specified state space.

Syntax prefetch{.space}.level [a]; // prefetch to data cache

prefetchu.L1 [a]; // prefetch to uniform cache

.space = { .global, .local };

.level = { .L1, .L2 };

Description The prefetch instruction brings the cache line containing the specified address in
global or local memory state space into the specified cache level. If no state space is
given, the prefetch uses generic addressing. In generic addressing, an address maps
to global memory unless it falls within the local memory window or the shared memory
window. Within these windows, an address maps to the corresponding location in local
or shared memory, i.e. to the address formed by subtracting the window base from the
generic address to form the offset in the implied state space.

The prefetchu instruction brings the cache line containing the specified generic
address into the specified uniform cache level.

The addressable operand a is one of:

[var] the name of an addressable variable var,

[reg] a register reg containing a byte address,

[reg+immOff] a sum of register reg containing a byte address plus a constant integer
byte offset (signed, 32-bit), or

[immAddr] an immediate absolute byte address (unsigned, 32-bit).

The address size may be either 32-bit or 64-bit. Addresses are zero-extended to the
specified width as needed, and truncated if the register width exceeds the state space
address width for the target architecture.

A prefetch to a shared memory location performs no operation.

A prefetch into the uniform cache requires a generic address, and no operation occurs
if the address maps to a local or shared memory location.

PTX ISA Notes Introduced in PTX ISA version 2.0.

Target ISA Notes prefetch and prefetchu require sm_20 or later.

Examples prefetch.global.L1 [ptr];

 prefetchu.L1 [addr];

PTX ISA Version 2.1

120 April 21, 2010

Table 88. Data Movement and Conversion Instructions: isspacep

isspacep Query whether a generic address falls within a specified state space window.

Syntax isspacep.space p, a; // result is .pred

.space = { .global, .local, .shared };

Description Write register p with 1 if generic address a falls within the specified state space window
and with 0 otherwise. The destination register must be of type .pred. The source
address operand must be a register of type .u32 or .u64.

PTX ISA Notes Introduced in PTX ISA version 2.0.

Target ISA Notes isspacep requires sm_20 or later.

Examples isspacep.global isglbl, gptr;

 isspacep.local islcl, lptr;

 isspacep.shared isshrd, sptr;

Table 89. Data Movement and Conversion Instructions: cvta

cvta
Convert address from global, local, or shared state space to generic, or vice-versa.

Take the generic address of a variable declared in global, local, or shared state space.

Syntax // convert global, local, or shared address to generic address

cvta.space.size p, a; // source address in register a

cvta.space.size p, var; // generic address of var

cvta.space.size p, var+imm; // generic address of var+offset

// convert generic address to global, local, or shared address

cvta.to.space.size p, a;

.space = { .global, .local, .shared };

.size = { .u32, .u64 };

Description Convert a global, local, or shared address to a generic address, or vice-versa. The
source and destination addresses must be the same size. Use cvt.u32.u64 or
cvt.u64.u32 to truncate or zero-extend addresses.

For variables declared in global, local, or shared state space, the generic address of
the variable may be taken using cvta. The source is either a register or a variable
defined in global, local, or shared memory with an optional offset.

When converting a generic address into a global, local, or shared address, the resulting
address is undefined in cases where the generic address does not fall within the
address window of the specified state space. A program may use isspacep to guard
against such incorrect behavior.

PTX ISA Notes Introduced in PTX ISA version 2.0.

Target ISA Notes cvta requires sm_20 or later.

Examples cvta.local.u32 gptr,lptr;

 cvta.shared.u32 p,As+4;

 cvta.to.global.u32 p,gptr;

 Chapter 8. Instruction Set

April 21, 2010 121

Table 90. Data Movement and Conversion Instructions: cvt

cvt Convert a value from one type to another.

Syntax cvt{.irnd}{.ftz}{.sat}.dtype.atype d, a; // integer rounding

cvt{.frnd}{.ftz}{.sat}.dtype.atype d, a; // fp rounding

.irnd = { .rni, .rzi, .rmi, .rpi };

.frnd = { .rn, .rz, .rm, .rp };

.dtype = .atype = { .u8, .u16, .u32, .u64,

 .s8, .s16, .s32, .s64,

 .f16, .f32, .f64 };

Description Convert between different types and sizes.

Semantics d = convert(a);

Integer Notes Integer rounding is required for float-to-integer conversions, and for same-size float-to-
float conversions where the value is rounded to an integer. Integer rounding is illegal in
all other instances.

Integer rounding modifiers:

.rni round to nearest integer, choosing even integer if source is equidistant between
two integers.

.rzi round to nearest integer in the direction of zero

.rmi round to nearest integer in direction of negative infinity

.rpi round to nearest integer in direction of positive infinity

Subnormal numbers:

sm_20: By default, subnormal numbers are supported.

For cvt.ftz.dtype.f32 float-to-integer conversions and cvt.ftz.f32.f32 float-to-
float conversions with integer rounding, subnormal inputs are flushed to sign-
preserving zero.

sm_1x: For cvt.ftz.dtype.f32 float-to-integer conversions and cvt.ftz.f32.f32 float-to-
float conversions with integer rounding, subnormal inputs are flushed to sign-
preserving zero. The optional .ftz modifier may be specified in these cases
for clarity.

Note: In PTX ISA versions 1.4 and earlier, the cvt instruction did not flush
single-precision subnormal inputs or results to zero if the destination type
size was 64-bits. The compiler will preserve this behavior for legacy PTX
code.

Saturation modifier:

.sat For integer destination types, .sat limits the result to MININT..MAXINT for the
size of the operation. Note that saturation applies to both signed and unsigned
integer types.

The saturation modifier is allowed only in cases where the destination type’s
value range is not a superset of the source type’s value range; i.e., the .sat
modifier is illegal in cases where saturation is not possible based on the source
and destination types.

For float-to-integer conversions, the result is clamped to the destination range
by default; i.e, .sat is redundant.

PTX ISA Version 2.1

122 April 21, 2010

Floating Point
Notes

Floating-point rounding is required for float-to-float conversions that result in loss of
precision, and for integer-to-float conversions. Floating-point rounding is illegal in all
other instances.

Floating-point rounding modifiers:

.rn mantissa LSB rounds to nearest even

.rz mantissa LSB rounds towards zero

.rm mantissa LSB rounds towards negative infinity

.rp mantissa LSB rounds towards positive infinity

A floating-point value may be rounded to an integral value using the integer rounding
modifiers (see Integer Notes). The operands must be of the same size. The result is
an integral value, stored in floating-point format.

Subnormal numbers:

sm_20: By default, subnormal numbers are supported.

Modifier .ftz may be specified to flush single-precision subnormal inputs and
results to sign-preserving zero.

sm_1x: Single-precision subnormal inputs and results are flushed to sign-preserving
zero. The optional .ftz modifier may be specified in these cases for clarity.

Note: In PTX ISA versions 1.4 and earlier, the cvt instruction did not flush
single-precision subnormal inputs or results to zero if either source or
destination type was .f64. The compiler will preserve this behavior for legacy
PTX code. Specifically, if the PTX ISA version is 1.4 or earlier, single-
precision subnormal inputs and results are flushed to sign-preserving zero
only for cvt.f32.f16, cvt.f16.f32, and cvt.f32.f32 instructions.

Saturation modifier:

.sat For floating-point destination types, .sat limits the result to the range [0.0, 1.0].
NaN results are flushed to positive zero. Applies to .f16, .f32, and .f64 types.

Notes Registers wider than the specified source or destination types may be used.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes cvt to or from .f64 requires sm_13 or later.

Examples cvt.f32.s32 f,i;

 cvt.s32.f64 j,r; // float-to-int saturates by default

 cvt.rni.f32.f32 x,y; // round to nearest int, result is fp

 cvt.f32.f32 x,y; // note .ftz behavior for sm_1x targets

 Chapter 8. Instruction Set

April 21, 2010 123

8.7.6. Texture and Surface Instructions
This section describes PTX instructions for accessing textures, samplers, and surfaces. PTX
supports the following operations on texture, sampler, and surface descriptors:

• Static initialization of texture, sampler, and surface descriptors.

• Module-scope and per-entry scope definitions of texture, sampler, and surface
descriptors.

• Ability to query fields within texture, sampler, and surface descriptors.

Texturing modes

For working with textures and samplers, PTX has two modes of operation. In the unified
mode, texture and sampler information is accessed through a single .texref handle. In the
independent mode, texture and sampler information each have their own handle, allowing them
to be defined separately and combined at the site of usage in the program. The advantage of
unified mode is that it allows 128 samplers, with the restriction that they correspond 1-to-1
with the 128 possible textures. The advantage of independent mode is that textures and
samplers can be mixed and matched, but the number of samplers is greatly restricted to 16.

The texturing mode is selected using .target options ‘texmode_unified’ and
‘texmode_independent’. A PTX module may declare only one texturing mode. If no
texturing mode is declared, the file is assumed to use unified mode.

Example: calculate an element’s power contribution as element’s power/total number of
elements.

.target texmode_independent

.global .samplerref tsamp1 = { addr_mode_0 = clamp_to_border,

 filter_mode = nearest

 };

...

.entry compute_power

 (.param .texref tex1)

{

 txq.width.b32 r6, [tex1]; // get tex1’s width

 txq.height.b32 r5, [tex1]; // get tex1’s height

 tex.2d.v4.f32.f32 {r1,r2,r3,r4}, [tex1, tsamp1, {f1,f2}];

 mul.u32 r5, r5, r6;

 add.f32 r1, r1, r2;

 add.f32 r3, r3, r4;

 add.f32 r1, r1, r3;

 cvt.f32.u32 r5, r5;

 div.f32 r1, r1, r5;

}

PTX ISA Version 2.1

124 April 21, 2010

These instructions provide access to texture and surface memory.

� tex

� txq

� suld

� sust

� sured

� suq

Table 91. Texture and Surface Instructions: tex

tex Perform a texture memory lookup.

Syntax tex.geom.v4.dtype.btype d, [a, c];

tex.geom.v4.dtype.btype d, [a, b, c]; // explicit sampler

.geom = { .1d, .2d, .3d };

.dtype = { .u32, .s32, .f32 };

.btype = { .s32, .f32 };

Description Texture lookup using a texture coordinate vector. The instruction loads data from the
texture named by operand a at coordinates given by operand c into destination d.
Operand c is a scalar or singleton tuple for 1d textures; is a two-element vector for 2d
textures; and is a four-element vector for 3d textures, where the fourth element is
ignored. An optional texture sampler b may be specified. If no sampler is specified,
the sampler behavior is a property of the named texture.

The instruction always returns a four-element vector of 32-bit values. Coordinates may
be given in either signed 32-bit integer or 32-bit floating point form.

A texture base address is assumed to be aligned to a 16-byte address, and the
address given by the coordinate vector must be naturally aligned to a multiple of the
access size. If an address is not properly aligned, the resulting behavior is undefined;
i.e., the access may proceed by silently masking off low-order address bits to achieve
proper rounding, or the instruction may fault.

Notes For compatibility with prior versions of PTX, the square brackets are not required and
.v4 coordinate vectors are allowed for any geometry, with the extra elements being
ignored.

PTX ISA Notes Unified mode texturing introduced in PTX ISA version 1.0. Extension using opaque
texref and samplerref types and independent mode texturing introduced in PTX ISA
version 1.5.

Target ISA Notes Supported on all target architectures.

Examples //Example of unified mode texturing

 tex.3d.v4.s32.s32 {r1,r2,r3,r4}, [tex_a, {f1,f2,f3,f4}];

 // Example of independent mode texturing

 tex.1d.v4.s32.f32 {r1,r2,r3,r4}, [tex_a, sampler_x, {f1}];

 Chapter 8. Instruction Set

April 21, 2010 125

Table 92. Texture and Surface Instructions: txq

txq Query texture and sampler attributes.

Syntax txq.tquery.b32 d, [a]; // texture attributes

txq.squery.b32 d, [a]; // sampler attributes

.tquery = { .width, .height, .depth,

 .channel_data_type, .channel_order,

 .normalized_coords };

.squery = { .filter_mode,

 .addr_mode_0, addr_mode_1, addr_mode_2 };

Description Query an attribute of a texture or sampler. Operand a is a .texref or .samplerref
variable.

Query: Returns:

.width

.height

.depth

value in elements

.channel_data_type Unsigned integer corresponding to source language’s
channel data type enumeration. If the source language
combines channel data type and channel order into a
single enumeration type, that value is returned for both
channel_data_type and channel_order queries.

.channel_order Unsigned integer corresponding to source language’s
channel order enumeration. If the source language
combines channel data type and channel order into a
single enumeration type, that value is returned for both
channel_data_type and channel_order queries.

.normalized_coords 1 (true) or 0 (false).

.filter_mode Integer from enum { nearest, linear }

.addr_mode_0

.addr_mode_1

.addr_mode_2

Integer from enum { wrap, mirror, clamp_ogl,
clamp_to_edge, clamp_to_border }

Texture attributes are queried by supplying a texref argument to txq. In unified mode,
sampler attributes are also accessed via a texref argument, and in independent mode
sampler attributes are accessed via a separate samplerref argument.

PTX ISA Notes Introduced in PTX ISA version 1.5.

Channel data type and channel order queries added in PTX ISA version 2.1.

Target ISA Notes Supported on all target architectures.

Examples txq.width.b32 %r1, [tex_A];

 txq.filter_mode.b32 %r1, [tex_A]; // unified mode

 txq.addr_mode_0.b32 %r1, [smpl_B]; // independent mode

PTX ISA Version 2.1

126 April 21, 2010

Table 93. Texture and Surface Instructions: suld

suld Load from surface memory.

Syntax suld.b.geom{.cop}.vec.dtype.clamp d, [a, b]; // unformatted

suld.p.geom{.cop}.v4.dtype.clamp d, [a, b]; // formatted

.geom = { .1d, .2d, .3d };

.cop = { .ca, .cg, .cs, .cv }; // cache operation

.vec = { none, .v2, .v4 };

.dtype = { .b8 , .b16, .b32, .b64 }; // for suld.b

.dtype = { .b32, .u32, .s32, .f32 }; // for suld.p

.clamp = { .trap, .clamp, .zero };

Description Load from surface memory using a surface coordinate vector. The instruction loads
data from the surface named by operand a at coordinates given by operand b into
destination d. Operand a is a .surfref variable. Operand b is a scalar or singleton
tuple for 1d surfaces; is a two-element vector for 2d surfaces; and is a four-element
vector for 3d surfaces, where the fourth element is ignored. Coordinate elements are
of type .s32.

suld.b performs an unformatted load of binary data. The lowest dimension coordinate
represents a byte offset into the surface and is not scaled, and the size of the data
transfer matches the size of destination operand d.

suld.p performs a formatted load of a surface sample and returns a four-element vector
of 32-bit values corresponding to R, G, B, and A components of the surface format.
Destination vector elements corresponding to components that do not appear in the
surface format are not written. The lowest dimension coordinate represents a sample
offset rather than a byte offset.

If the destination type is .b32, the surface sample elements are converted to .u32, .s32,
or .f32 based on the surface format as follows: If the surface format contains UNORM,
SNORM, or FLOAT data, then .f32 is returned; if the surface format contains UINT
data, then .u32 is returned; if the surface format contains SINT data, then .s32 is
returned.

If the destination base type is .u32, .s32, or .f32, size and type conversion is performed
as needed to convert from the surface sample format to the destination type.

A surface base address is assumed to be aligned to a 16-byte address, and the
address given by the coordinate vector must be naturally aligned to a multiple of the
access size. If an address is not properly aligned, the resulting behavior is undefined;
i.e., the access may proceed by silently masking off low-order address bits to achieve
proper rounding, or the instruction may fault.

The .clamp field specifies how to handle out-of-bounds addresses:

.trap causes an execution trap on out-of-bounds addresses

.clamp loads data at the nearest surface location (sized appropriately)

.zero loads zero for out-of-bounds addresses

PTX ISA Notes suld.b.trap introduced in PTX ISA version 1.5. suld.p, additional clamp modifiers, and
cache operations introduced in PTX ISA version 2.0.

suld.p is currently unimplemented.

Target ISA Notes suld.b supported on all target architectures.

sm_1x targets support only the .trap clamping modifier.

suld.3d requires sm_20 or later.

suld.p requires sm_20 or later.

Cache operations require sm_20 or later.

Examples suld.b.3d.v2.b64.trap {r1,r2}, [surf_A, {x,y,z,w}];

 suld.p.1d.v4.f32.trap {f1,f2,f3,f4}, [surf_B, {x}];

 Chapter 8. Instruction Set

April 21, 2010 127

Table 94. Texture and Surface Instructions: sust

sust Store to surface memory.

Syntax sust.b.geom{.cop}.vec.ctype.clamp [a, b], c; // unformatted

sust.p.geom{.cop}.vec.ctype.clamp [a, b], c; // formatted

.geom = { .1d, .2d, .3d };

.cop = { .wb, .cg, .cs, .wt };

.vec = { none, .v2, .v4 };

.ctype = { .b8 , .b16, .b32, .b64 }; // for sust.b

.ctype = { .b32, .u32, .s32, .f32 }; // for sust.p

.clamp = { .trap, .clamp, .zero };

Description Store to surface memory using a surface coordinate vector. The instruction stores data
from operand c to the surface named by operand a at coordinates given by operand b.
Operand a is a .surfref variable. Operand b is a scalar or singleton tuple for 1d
surfaces; is a two-element vector for 2d surfaces; and is a four-element vector for 3d
surfaces, where the fourth element is ignored. Coordinate elements are of type .s32.

sust.b performs an unformatted store of binary data. The lowest dimension coordinate
represents a byte offset into the surface and is not scaled. The size of the data transfer
matches the size of source operand c.

sust.p performs a formatted store of a vector of 32-bit data values to a surface sample.
The source vector elements are interpreted left-to-right as R, G, B, and A surface
components. These elements are written to the corresponding surface sample
components. Source elements that do not occur in the surface sample are ignored.
Surface sample components that do not occur in the source vector will be written with
an unpredictable value. The lowest dimension coordinate represents a sample offset
rather than a byte offset.

If the source type is .b32, the source data interpretation is based on the surface sample
format as follows: If the surface format contains UNORM, SNORM, or FLOAT data,
then .f32 is assumed; if the surface format contains UINT data, then .u32 is assumed; if
the surface format contains SINT data, then .s32 is assumed. The source data is then
converted from this type to the surface sample format.

If the source base type is .u32, .s32, or .f32, size and type conversions are performed
as needed between the surface sample format and the destination type.

A surface base address is assumed to be aligned to a 16-byte address, and the
address given by the coordinate vector must be naturally aligned to a multiple of the
access size. If an address is not properly aligned, the resulting behavior is undefined;
i.e., the access may proceed by silently masking off low-order address bits to achieve
proper rounding, or the instruction may fault.

The .clamp field specifies how to handle out-of-bounds addresses:

.trap causes an execution trap on out-of-bounds addresses

.clamp stores data at the nearest surface location (sized appropriately)

.zero drops stores to out-of-bounds addresses

PTX ISA Notes sust.b.trap introduced in PTX ISA version 1.5. sust.p, additional clamp modifiers, and
cache operations introduced in PTX ISA version 2.0.

sust.p.{u32,s32,f32} are currently unimplemented.

Target ISA Notes sust.b supported on all target architectures.

sm_1x targets support only the .trap clamping modifier.

sust.3d requires sm_20 or later.

sust.p requires sm_20 or later.

Cache operations require sm_20 or later.

Examples sust.b.3d.v2.b64.trap [surf_A, {x,y,z,w}], {r1,r2};

 sust.p.1d.v4.f32.trap [surf_B, {x}], {f1,f2,f3,f4};

PTX ISA Version 2.1

128 April 21, 2010

Table 95. Texture and Surface Instructions: sured

sured Reduction in surface memory.

Syntax sured.b.op.geom.ctype.clamp [a,b],c; // byte addressing

sured.p.op.geom.ctype.clamp [a,b],c; // sample addressing

.op = { .add, .min, .max, .and, .or };

.geom = { .1d, .2d, .3d };

.ctype = { .u32, .u64, .s32, .b32 }; // for sured.b

.ctype = { .b32 }; // for sured.p

.clamp = { .trap, .clamp, .zero };

Description Reduction to surface memory using a surface coordinate vector. The instruction
performs a reduction operation with data from operand c to the surface named by
operand a at coordinates given by operand b. Operand a is a .surfref variable.
Operand b is a scalar or singleton tuple for 1d surfaces; is a two-element vector for 2d
surfaces; and is a four-element vector for 3d surfaces, where the fourth element is
ignored. Coordinate elements are of type .s32.

sured.b performs an unformatted reduction on .u32, .s32, .b32, or .u64 data. The
lowest dimension coordinate represents a byte offset into the surface and is not scaled.
Operations add applies to .u32, .u64, and .s32 types; min and max apply to .u32 and
.s32 types; operations and and or apply to .b32 type.

sured.p performs a reduction on sample-addressed 32-bit data. The lowest dimension
coordinate represents a sample offset rather than a byte offset. The instruction type is
restricted to .b32, and the data is interpreted as .s32 or .u32 based on the surface
sample format as follows: if the surface format contains UINT data, then .u32 is
assumed; if the surface format contains SINT data, then .s32 is assumed.

A surface base address is assumed to be aligned to a 16-byte address, and the
address given by the coordinate vector must be naturally aligned to a multiple of the
access size. If an address is not properly aligned, the resulting behavior is undefined;
i.e., the access may proceed by silently masking off low-order address bits to achieve
proper rounding, or the instruction may fault.

The .clamp field specifies how to handle out-of-bounds addresses:

.trap causes an execution trap on out-of-bounds addresses

.clamp performs reduction at the nearest surface location (sized appropriately)

.zero drops operations to out-of-bounds addresses

PTX ISA Notes Introduced in PTX ISA version 2.0.

Target ISA Notes sured requires sm_20 or later.

Examples sured.b.add.2d.u32.trap [surf_A, {x,y}], r1;

 sured.p.min.1d.b32.trap [surf_B, {x}], r1;

 Chapter 8. Instruction Set

April 21, 2010 129

Table 96. Texture and Surface Instructions: suq

suq Query a surface attribute.

Syntax suq.query.b32 d, [a];

.query = { .width, .height, .depth };

Description Query an attribute of a surface. Operand a is a .surfref variable.

Query: Returns:

.width

.height

.depth

value in elements

.channel_data_type Unsigned integer corresponding to source language’s
channel data type enumeration. If the source language
combines channel data type and channel order into a
single enumeration type, that value is returned for both
channel_data_type and channel_order queries.

.channel_order Unsigned integer corresponding to source language’s
channel order enumeration. If the source language
combines channel data type and channel order into a
single enumeration type, that value is returned for both
channel_data_type and channel_order queries.

PTX ISA Notes Introduced in PTX ISA version 1.5.

Channel data type and channel order queries added in PTX ISA version 2.1.

Target ISA Notes Supported on all target architectures.

Examples suq.width.b32 %r1, [surf_A];

PTX ISA Version 2.1

130 April 21, 2010

8.7.7. Control Flow Instructions
The following PTX instructions and syntax are for controlling execution in a PTX program:

� { }

� @

� bra

� call

� ret

� exit

Table 97. Control Flow Instructions: { }

{ } Instruction grouping.

Syntax { instructionList }

Description The curly braces create a group of instructions, used primarily for defining a function
body. The curly braces also provide a mechanism for determining the scope of a
variable: any variable declared within a scope is not available outside the scope.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples { add.s32 a,b,c; mov.s32 d,a; }

Table 98. Control Flow Instructions: @

@ Predicated execution.

Syntax @{!}p instruction;

Description Execute an instruction or instruction block for threads that have the guard predicate
true. Threads with a false guard predicate do nothing.

Semantics If {!}p then instruction

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples setp.eq.f32 p,y,0; // is y zero?

@!p div.f32 ratio,x,y // avoid division by zero

@q bra L23; // conditional branch

 Chapter 8. Instruction Set

April 21, 2010 131

Table 99. Control Flow Instructions: bra

bra Branch to a target and continue execution there.

Syntax @p bra{.uni} tgt; // direct branch, tgt is a label

 bra{.uni} tgt; // unconditional branch

@p bra{.uni} tgt{, tlist}; // indirect branch, tgt is reg

 bra{.uni} tgt{, tlist};

Description Continue execution at the target. Conditional branches are specified by using a guard
predicate. The branch target must be a label. The branch target can be either a label
or an address of a label held in a register.

bra.uni is guaranteed to be non-divergent, meaning that all threads in a warp have
identical values for the guard predicate and branch target.

Indirect branches support an optional second operand, tlist, to communicate the list of
potential targets. This operand is either the name of an array (jump table) initialized to
a list of labels; or a label associated with a .branchtargets directive, which declares a
list of potential target labels. The tgt register must hold the address of one of the
control flow labels in the jump table or .branchtargets list indicated by tlist. If no tlist is
provided, the branch target may be any label within the current function whose address
is taken (i.e., any label used in a variable initialize or as the source operand of a mov
instruction.

Jump tables and .branchtargets declarations must be within the local function scope
and refer only to control flow labels within the current function. Jump tables may be
defined in either the constant or global state space.

Semantics if (p) {

 pc = tgt;

}

PTX ISA Notes Direct branch introduced in PTX ISA version 1.0. Indirect branch introduced in PTX
ISA version 2.1.

Target ISA Notes Direct branch supported on all target architectures.

Indirect branch requires sm_20.

Examples bra.uni L_exit; // uniform unconditional jump

@q bra L23; // conditional branch

 // indirect branch using jump table

 .global .u32 jmptbl[5] = { Loop, Done, L1, L2, L3 };

 …

@p ld.global.u32 %r0, [jmptbl+4];

@p ld.global.u32 %r0, [jmptbl+8];

 bra %r0, jmptbl;

 // indirect branch using .branchtargets directive

 …

@p mov.u32 %r0, Done;

@q mov.u32 %r0, L1;

Btgt: .branchtargets Done, L1;

 bra %r0, Btgt;

 // indirect branch with no target list provided

 …

@p mov.u32 %r0, Done;

@q mov.u32 %r0, L1;

 bra %r0;

PTX ISA Version 2.1

132 April 21, 2010

Table 100. Control Flow Instructions: call

call Call a function, recording the return location.

Syntax // direct call to named function, func is a symbol

call{.uni} (ret-param), func, (param-list);

call{.uni} func, (param-list);

call{.uni} func;

// indirect call via pointer, with full list of call targets

call{.uni} (ret-param), fptr, (param-list), flist;

call{.uni} fptr, (param-list), flist;

call{.uni} fptr, flist;

// indirect call via pointer, with no knowledge of call targets

call{.uni} (ret-param), fptr, (param-list), fproto;

call{.uni} fptr, (param-list), fproto;

call{.uni} fptr, fproto;

Description The call instruction stores the address of the next instruction, so execution can resume
at that point after executing a ret instruction. A call is assumed to be divergent unless
the .uni suffix is present, indicating that the call is guaranteed to be non-divergent,
meaning that all threads in a warp have identical values for the guard predicate and call
target.

For direct calls, the called location func must be a symbolic function name; for indirect
calls, the called location fptr must be an address of a function held in a register. Input
arguments and return values are optional. Arguments may be registers, immediate
constants, or variables in .param space. Arguments are pass-by-value.

Indirect calls require an additional operand, flist or fproto, to communicate the list of
potential call targets or the common function prototype of all call targets, respectively.
In the first case, flist gives a complete list of potential call targets and the optimizing
backend is free to optimize the calling convention. In the second case, where the
complete list of potential call targets may not be known, the common function prototype
is given and the call must obey the ABI’s calling convention.

The flist operand is either the name of an array (call table) initialized to a list of function
names; or a label associated with a .calltargets directive, which declares a list of
potential call targets. In both cases the fptr register holds the address of a function
listed in the call table or .calltargets list, and the call operands are type-checked against
the type signature of the functions indicated by flist.

The fproto operand is the name of a label associated with a .callprototype directive.
This operand is used when a complete list of potential targets is not known. The call
operands are type-checked against the prototype, and code generation will follow the
ABI calling convention. If a function that doesn’t match the prototype is called, the
behavior is undefined.

Call tables may be declared at module scope or local scope, in either the constant or
global state space. The .calltargets and .callprototype directives must be declared
within a function body. All functions must be declared prior to being referenced in a call
table initializer or .calltargets directive.

PTX ISA Notes Direct call introduced in PTX ISA version 1.0. Indirect call introduced in PTX ISA
version 2.1.

Target ISA Notes Direct call supported on all target architectures. Indirect call requires sm_20.

 Chapter 8. Instruction Set

April 21, 2010 133

Examples // examples of direct call

 call init; // call function ‘init’

 call.uni g, (a); // call function ‘g’ with parameter ‘a’

@p call (d), h, (a, b); // return value into register d

// call-via-pointer using jump table

.func (.reg .u32 rv) foo (.reg .u32 a, .reg .u32 b) …

.func (.reg .u32 rv) bar (.reg .u32 a, .reg .u32 b) …

.func (.reg .u32 rv) baz (.reg .u32 a, .reg .u32 b) …

.global .u32 jmptbl[5] = { foo, bar, baz };

 …

@p ld.global.u32 %r0, [jmptbl+4];

@p ld.global.u32 %r0, [jmptbl+8];

 call (retval), %r0, (x, y), jmptbl;

// call-via-pointer using .calltargets directive

.func (.reg .u32 rv) foo (.reg .u32 a, .reg .u32 b) …

.func (.reg .u32 rv) bar (.reg .u32 a, .reg .u32 b) …

.func (.reg .u32 rv) baz (.reg .u32 a, .reg .u32 b) …

 …

@p mov.u32 %r0, foo;

@q mov.u32 %r0, baz;

Ftgt: .calltargets foo, bar, baz;

 call (retval), %r0, (x, y), Ftgt;

// call-via-pointer using .callprototype directive

.func dispatch (.reg .u32 fptr, .reg .u32 idx)

{

…

Fproto: .callprototype _ (.param .u32 _, .param .u32 _);

 call %fptr, (x, y), Fproto;

…

PTX ISA Version 2.1

134 April 21, 2010

Table 101. Control Flow Instructions: ret

ret Return from function to instruction after call.

Syntax ret{.uni};

Description Return execution to caller’s environment. A divergent return suspends threads until all
threads are ready to return to the caller. This allows multiple divergent ret instructions.

A ret is assumed to be divergent unless the .uni suffix is present, indicating that the
return is guaranteed to be non-divergent.

Any values returned from a function should be moved into the return parameter
variables prior to executing the ret instruction.

A return instruction executed in a top-level entry routine will terminate thread execution.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples ret;

@p ret;

Table 102. Control Flow Instructions: exit

exit Terminate a thread.

Syntax exit;

Description Ends execution of a thread.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples exit;

@p exit;

 Chapter 8. Instruction Set

April 21, 2010 135

8.7.8. Parallel Synchronization and Communication
Instructions

These instructions are:

� bar

� membar

� atom

� red

� vote

PTX ISA Version 2.1

136 April 21, 2010

Table 103. Parallel Synchronization and Communication
Instructions: bar

bar Barrier synchronization

Syntax bar.sync a{, b};

bar.arrive a, b;

bar.red.popc.u32 d, a{, b}, {!}c;

bar.red.op.pred p, a{, b}, {!}c;

.op = { .and, .or };

Description
Performs barrier synchronization and communication within a CTA.

Cooperative thread arrays use the bar instruction for barrier synchronization and
communication between threads. The barrier instructions signal the arrival of the
executing threads at the named barrier. In addition to signaling its arrival at the barrier,
the bar.sync and bar.red instructions cause the executing thread to wait until all or a
specified number of threads in the CTA arrive at the barrier before resuming execution.
bar.red performs a predicate reduction across the threads participating in the barrier.
bar.arrive does not cause any waiting by the executing threads; it simply marks a
thread's arrival at the barrier.

bar.sync and bar.red also guarantee memory ordering among threads identical to
membar.cta. Thus, threads within a CTA that wish to communicate via memory can
store to memory, execute a bar.sync or bar.red instruction, and then safely read
values stored by other threads prior to the barrier.

Operands a, b, and d have type .u32; operands p and c are predicates. Source
operand a specifies a logical barrier resource as an immediate constant or register with
value 0 through 15. Operand b specifies the number of threads participating in the
barrier. If no thread count is specified, all threads in the CTA participate in the barrier.
When a barrier completes, the waiting threads are restarted without delay, and the
barrier is reinitialized so that it can be immediately reused. Note that a non-zero thread
count is required for bar.arrive.

bar.red performs a reduction operation across threads. bar.red delays the executing
threads (similar to bar.sync) until the barrier count is met. The c predicate (or its
complement) from all threads in the CTA are combined using the specified reduction
operator. Once the barrier count is reached, the final value is written to the destination
register in all threads waiting at the barrier.

The reduction operations for bar.red are population-count (.popc), all-threads-true
(.and), and any-thread-true (.or). The result of .popc is the number of threads with a
true predicate, while .and and .or indicate if all the threads had a true predicate or if any
of the threads had a true predicate.

Each CTA instance has sixteen barriers numbered 0..15.

Barriers are executed on a per-warp basis as if all the threads in a warp are active.
Thus, if any thread in a warp executes a bar instruction, it is as if all the threads in the
warp have executed the bar instruction. All threads in the warp are stalled until the
barrier completes, and the arrival count for the barrier is incremented by the warp size
(not the number of active threads in the warp). In conditionally executed code, a bar
instruction should only be used if it is known that all threads evaluate the condition
identically (the warp does not diverge). Since barriers are executed on a per-warp
basis, the optional thread count must be a multiple of the warp size.

bar.red should not be intermixed with bar.sync or bar.arrive using the same active
barrier. Execution in this case is unpredictable.

PTX ISA Notes bar.sync without a thread count introduced in PTX ISA version 1.0.

Register operands, thread count, and bar.{arrive,red} introduced in PTX ISA version
2.0.

Target ISA Notes Register operands, thread count, and bar.{arrive,red} require sm_20 or later.

Only bar.sync with an immediate barrier number is supported for sm_1x targets.

Examples bar.sync 0;

 Chapter 8. Instruction Set

April 21, 2010 137

PTX ISA Version 2.1

138 April 21, 2010

Table 104. Parallel Synchronization and Communication
Instructions: membar

membar Memory barrier.

Syntax membar.level;

.level = { .cta, ,gl, ,sys };

Description
Waits for all prior memory accesses requested by this thread to be performed at the
CTA, global, or system memory level. level describes the scope of other clients for
which membar is an ordering event. Thread execution resumes after a membar when
the thread's prior memory writes are visible to other threads at the specified level, and
memory reads by this thread can no longer be affected by other thread writes.

A memory read (e.g. by ld or atom) has been performed when the value read has been
transmitted from memory and cannot be modified by another thread at the indicated
level. A memory write (e.g. by st, red or atom) has been performed when the value
written has become visible to other clients at the specified level, that is, when the
previous value can no longer be read.

membar.cta Waits until all prior memory writes are visible to other threads in the
same CTA.

Waits until prior memory reads have been performed with respect to
other threads in the CTA.

membar.gl Waits until all prior memory requests have been performed with
respect to all other threads in the GPU.

For communication between threads in different CTAs or even
different SMs, this is the appropriate level of membar.

membar.gl will typically have a longer latency than membar.cta.

membar.sys Waits until all prior memory requests have been performed with
respect to all clients, including thoses communicating via PCI-E such
as system and peer-to-peer memory.

This level of membar is required to insure performance with respect
to a host CPU or other PCI-E peers.

membar.sys will typically have much longer latency than membar.gl.

PTX ISA Notes membar.{cta,gl} introduced in PTX ISA version 1.4.

membar.sys introduced in PTX ISA version 2.0.

Target ISA Notes membar.{cta,gl} supported on all target architectures.

membar.sys requires sm_20 or later.

Examples membar.gl;

 membar.cta;

 membar.sys;

 Chapter 8. Instruction Set

April 21, 2010 139

Table 105. Parallel Synchronization and Communication
Instructions: atom

atom Atomic reduction operations for thread-to-thread communication.

Syntax atom{.space}.op.type d, [a], b;

atom{.space}.op.type d, [a], b, c;

.space = { .global, .shared };

.op = { .and, .or, .xor, // .b32 only

 .cas, .exch, // .b32, .b64

 .add, // .u32, .s32, .f32, .u64

 .inc, .dec, // .u32 only

 .min, .max }; // .u32, .s32, .f32

.type = { .b32, .b64,

 .u32, .u64,

 .s32,

 .f32 };

Description Atomically loads the original value at location a into destination register d, performs a
reduction operation with operand b and the value in location a, and stores the result of
the specified operation at location a, overwriting the original value. Operand a specifies
a location in the specified state space. If no state space is given, perform the memory
accesses using generic addressing. In generic addressing, an address maps to global
memory unless it falls within the local memory window or the shared memory window.
Within these windows, an address maps to the corresponding location in local or
shared memory, i.e. to the address formed by subtracting the window base from the
generic address to form the offset in the implied state space. For atom, accesses to
local memory are illegal.

Atomic operations on shared memory locations do not guarantee atomicity with respect
to normal store instructions to the same address. It is the programmer’s responsibility
to guarantee correctness of programs that use shared memory atomic instructions, e.g.
by inserting barriers between normal stores and atomic operations to a common
address, or by using atom.exch to store to locations accessed by other atomic
operations.

The addressable operand a is one of:

[avar] the name of an addressable variable avar,

[areg] a de-referenced register areg containing a byte address,

[areg+immOff] a de-referenced sum of register areg containing a byte address plus a
constant integer byte offset, or

[immAddr] an immediate absolute byte address.

The address must be naturally aligned to a multiple of the access size. If an address is
not properly aligned, the resulting behavior is undefined; i.e., the access may proceed
by silently masking off low-order address bits to achieve proper rounding, or the
instruction may fault.

The address size may be either 32-bit or 64-bit. Addresses are zero-extended to the
specified width as needed, and truncated if the register width exceeds the state space
address width for the target architecture.

A register containing an address may be declared as a bit-size type or integer type.

The bit-size operations are and, or, xor, cas (compare-and-swap), and exch
(exchange).

The integer operations are add, inc, dec, min, max. The inc and dec operations
return a result in the range [0..b].

The floating-point operations are add, min, and max. The floating-point add, min, and
max operations are single-precision, 32-bit operations. atom.add.f32 rounds to
nearest even and flushes subnormal inputs and results to sign-preserving zero.

PTX ISA Version 2.1

140 April 21, 2010

Semantics atomic {

 d = *a;

 *a = (operation == cas) ? operation(*a, b, c)

 : operation(*a, b);

}

where

 inc(r, s) = (r >= s) ? 0 : r+1;

 dec(r, s) = (r > s) ? s : r-1;

 exch(r, s) = s;

 cas(r,s,t) = (r == s) ? t : r;

Notes Operand a must reside in either the global or shared state space.

Simple reductions may be specified by using the “bit bucket” destination operand ‘_’.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes atom.global requires sm_11 or later.

atom.shared requires sm_12 or later.

64-bit atom.{add,cas,exch} requires sm_12 or later.

64-bit atom.shared operations require sm_20 or later.

atom.add.f32 requires sm_20 or later.

Use of generic addressing requires sm_20 or later.

Release Notes atom.f32.{min,max} are unimplemented.

Examples atom.global.add.s32 d,[a],1;

 atom.shared.max.f32 d,[x+4],0;

@p atom.global.cas.b32 d,[p],my_val,my_new_val;

 Chapter 8. Instruction Set

April 21, 2010 141

Table 106. Parallel Synchronization and Communication
Instructions: red

red Reduction operations on global and shared memory.

Syntax red{.space}.op.type [a], b;

.space = { .global, .shared };

.op = { .and, .or, .xor, // .b32 only

 .add, // .u32, .s32, .f32, .u64

 .inc, .dec, // .u32 only

 .min, .max }; // .u32, .s32, .f32

.type = { .b32, .b64,

 .u32, .u64,

 .s32,

 .f32 };

Description Performs a reduction operation with operand b and the value in location a, and stores
the result of the specified operation at location a, overwriting the original value.
Operand a specifies a location in the specified state space. If no state space is given,
perform the memory accesses using generic addressing. In generic addressing, an
address maps to global memory unless it falls within the local memory window or the
shared memory window. Within these windows, an address maps to the corresponding
location in local or shared memory, i.e. to the address formed by subtracting the
window base from the generic address to form the offset in the implied state space.
For red, accesses to local memory are illegal.

Reduction operations on shared memory locations do not guarantee atomicity with
respect to normal store instructions to the same address. It is the programmer’s
responsibility to guarantee correctness of programs that use shared memory reduction
instructions, e.g. by inserting barriers between normal stores and reduction operations
to a common address, or by using atom.exch to store to locations accessed by other
reduction operations.

The addressable operand a is one of:

[avar] the name of an addressable variable avar,

[areg] a de-referenced register areg containing a byte address,

[areg+immOff] a de-referenced sum of register areg containing a byte address plus a
constant integer byte offset, or

[immAddr] an immediate absolute byte address.

The address must be naturally aligned to a multiple of the access size. If an address is
not properly aligned, the resulting behavior is undefined; i.e., the access may proceed
by silently masking off low-order address bits to achieve proper rounding, or the
instruction may fault.

The address size may be either 32-bit or 64-bit. Addresses are zero-extended to the
specified width as needed, and truncated if the register width exceeds the state space
address width for the target architecture.

A register containing an address may be declared as a bit-size type or integer type.

The bit-size operations are and, or, and xor.

The integer operations are add, inc, dec, min, max. The inc and dec operations
return a result in the range [0..b].

The floating-point operations are add, min, and max. The floating-point add, min, and
max operations are single-precision, 32-bit operations. red.add.f32 rounds to nearest
even and flushes subnormal inputs and results to sign-preserving zero.

Semantics *a = operation(*a, b);

where

 inc(r, s) = (r >= s) ? 0 : r+1;

 dec(r, s) = (r > s) ? s : r-1;

Notes Operand a must reside in either the global or shared state space.

PTX ISA Version 2.1

142 April 21, 2010

PTX ISA Notes Introduced in PTX ISA version 1.2.

Target ISA Notes red.global requires sm_11 or later

red.shared requires sm_12 or later.

64-bit red.add requires sm_12 or later.

64-bit red.shared operations require sm_20 or later.

red.add.f32 requires sm_20 or later.

Use of generic addressing requires sm_20 or later.

Release Notes red.f32.{min,max} are unimplemented.

Examples red.global.add.s32 [a],1;

 red.shared.max.f32 [x+4],0;

@p red.global.and.b32 [p],my_val;

 Chapter 8. Instruction Set

April 21, 2010 143

Table 107. Parallel Synchronization and Communication
Instructions: vote

vote Vote across thread group.

Syntax vote.mode.pred d, {!}a;

vote.ballot.b32 d, {!}a; // ‘ballot’ form, returns bitmask

.mode = { .all, .any, .uni };

Description Performs a reduction of the source predicate across threads in a warp. The destination
predicate value is the same across all threads in the warp.

The reduction modes are:

.all True if source predicate is True for all active threads in warp. Negate the source
predicate to compute .none.

.any True if source predicate is True for some active thread in warp. Negate the
source predicate to compute .not_all.

.uni True if source predicate has the same value in all active threads in warp.
Negating the source predicate also computes .uni.

In the ‘ballot’ form, vote.ballot.b32 simply copies the predicate from each thread in a
warp into the corresponding bit position of destination register d, where the bit position
corresponds to the thread’s lane id.

PTX ISA Notes Introduced in PTX ISA version 1.2.

Target ISA Notes vote requires sm_12 or later.

vote.ballot.b32 requires sm_20 or later.

Release Notes Note that vote applies to threads in a single warp, not across an entire CTA.

Examples vote.all.pred p,q;

 vote.uni.pred p,q;

 vote.ballot.b32 r1,p; // get ‘ballot’ across warp

PTX ISA Version 2.1

144 April 21, 2010

8.7.9. Video Instructions
All video instructions operate on 32-bit register operands. The video instructions are:

� vadd

� vsub

� vabsdiff

� vmin

� vmax

� vshl

� vshr

� vmad

� vset

The video instructions execute the following stages:

1. extract and sign- or zero-extend byte, half-word, or word values from its source
operands, to produce signed 33-bit input values,

2. perform a scalar arithmetic operation to produce a signed 34-bit result,
3. optionally clamp the result to the range of the destination type,
4. optionally perform one of the following:

a) apply a second operation to the intermediate result and a third operand, or
b) truncate the intermediate result to a byte or half-word value and merge into a
specified position in the third operand to produce the final result.

The general format of video instructions is as follows:

// 32-bit scalar operation, with optional secondary operation

vop.dtype.atype.btype{.sat} d, a{.asel}, b{.bsel};

vop.dtype.atype.btype{.sat}.secop d, a{.asel}, b{.bsel}, c;

// 32-bit scalar operation, with optional data merge

vop.dtype.atype.btype{.sat} d.dsel, a{.asel}, b{.bsel}, c;

.dtype = .atype = .btype = { .u32, .s32 };

.dsel = .asel = .bsel = { .b0, .b1, .b2, .b3, .h0, .h1 };

.secop = { .add, .min, .max };

The source and destination operands are all 32-bit registers. The type of each operand (.u32
or .s32) is specified in the instruction type; all combinations of dtype, atype, and btype are
valid. Using the atype/btype and asel/bsel specifiers, the input values are extracted and sign-
or zero- extended internally to .s33 values. The primary operation is then performed to
produce an .s34 intermediate result. The sign of the intermediate result depends on dtype.

The intermediate result is optionally clamped to the range of the destination type (signed or
unsigned), taking into account the subword destination size in the case of optional data
merging.

 Chapter 8. Instruction Set

April 21, 2010 145

.s33 optSaturate(.s34 tmp, Bool sat, Bool sign, Modifier dsel) {

 if (!sat) return tmp;

 switch (dsel) {

 case .b0, .b1, .b2, .b3:

 if (sign) return CLAMP(tmp, S8_MAX, S8_MIN);

 else return CLAMP(tmp, U8_MAX, U8_MIN);

 case .h0, .h1:

 if (sign) return CLAMP(tmp, S16_MAX, S16_MIN);

 else return CLAMP(tmp, U16_MAX, U16_MIN);

 default:

 if (sign) return CLAMP(tmp, S32_MAX, S32_MIN);

 else return CLAMP(tmp, U32_MAX, U32_MIN);

 }

}

This intermediate result is then optionally combined with the third source operand using a
secondary arithmetic operation or subword data merge, as shown in the following
pseudocode. The sign of the c operand is based on dtype.

.s33 optSecOp(Modifier secop, .s33 tmp, .s33 c) {

 switch (secop) {

 .add: return tmp + c;

 .min: return MIN(tmp, c);

 .max return MAX(tmp, c);

 default: return tmp;

 }

}

.s33 optMerge(Modifier dsel, .s33 tmp, .s33 c) {

 switch (dsel) {

 case .h0: return ((tmp & 0xffff) | (0xffff0000 & c);

 case .h1: return ((tmp & 0xffff) << 16) | (0x0000ffff & c);

 case .b0: return ((tmp & 0xff) | (0xffffff00 & c);

 case .b1: return ((tmp & 0xff) << 8) | (0xffff00ff & c);

 case .b2: return ((tmp & 0xff) << 16) | (0xff00ffff & c);

 case .b3: return ((tmp & 0xff) << 24) | (0x00ffffff & c);

 default: return tmp;

 }

}

The lower 32-bits are then written to the destination operand.

PTX ISA Version 2.1

146 April 21, 2010

Table 108. Video Instructions: vadd, vsub, vabsdiff,
vmin, vmax

vadd, vsub

vabsdiff

vmin, vmax

Integer byte/half-word/word addition / subtraction.

Integer byte/half-word/word absolute value of difference.

Integer byte/half-word/word minimum / maximum.

Syntax // 32-bit scalar operation, with optional secondary operation

vop.dtype.atype.btype{.sat} d, a{.asel}, b{.bsel};

vop.dtype.atype.btype{.sat}.op2 d, a{.asel}, b{.bsel}, c;

// 32-bit scalar operation, with optional data merge

vop.dtype.atype.btype{.sat} d.dsel, a{.asel}, b{.bsel}, c;

.vop = { vadd, vsub, vabsdiff, vmin, vmax };

.dtype = .atype = .btype = { .u32, .s32 };

.dsel = .asel = .bsel = { .b0, .b1, .b2, .b3, .h0, .h1 };

.op2 = { .add, .min, .max };

Description Perform scalar arithmetic operation with optional saturate, and optional secondary
arithmetic operation or subword data merge.

Semantics // extract byte/half-word/word and sign- or zero-extend based on source operand type

ta = partSelectSignExtend(a, atype, asel);

tb = partSelectSignExtend(b, btype, bsel);

switch (vop) {

 case vadd: tmp = ta + tb;

 case vsub: tmp = ta – tb;

 case vabsdiff: tmp = | ta – tb |;

 case vmin: tmp = MIN(ta, tb);

 case vmax: tmp = MAX(ta, tb);

}

// saturate, taking into account destination type and merge operations

tmp = optSaturate(tmp, sat, isSigned(dtype), dsel);

d = optSecondaryOp(op2, tmp, c); // optional secondary operation

d = optMerge(dsel, tmp, c); // optional merge with c operand

PTX ISA Notes Introduced in PTX ISA version 2.0.

Target ISA Notes vadd, vsub, vabsdiff, vmin, vmax require sm_20 or later.

Examples vadd.s32.u32.s32.sat r1, r2.b0, r3.h0;

vsub.s32.s32.u32.sat r1, r2.h1, r3.h1;

vabsdiff.s32.s32.s32.sat r1.h0, r2.b0, r3.b2, c;

vmin.s32.s32.s32.sat.add r1, r2, r3, c;

 Chapter 8. Instruction Set

April 21, 2010 147

Table 109. Video Instructions: vshl, vshr

vshl, vshr Integer byte/half-word/word left / right shift.

Syntax // 32-bit scalar operation, with optional secondary operation

vop.dtype.atype.u32{.sat}{.mode} d, a{.asel}, b{.bsel};

vop.dtype.atype.u32{.sat}{.mode}.op2 d, a{.asel}, b{.bsel}, c;

// 32-bit scalar operation, with optional data merge

vop.dtype.atype.u32{.sat}{.mode} d.dsel, a{.asel}, b{.bsel}, c;

.vop = { vshl, vshr };

.dtype = .atype = { .u32, .s32 };

.mode = { .clamp, .wrap }; // default is .clamp

.dsel = .asel = .bsel = { .b0, .b1, .b2, .b3, .h0, .h1 };

.op2 = { .add, .min, .max };

Description vshl: Shift a left by unsigned amount in b with optional saturate, and optional
secondary arithmetic operation or subword data merge. Left shift fills with zero.

vshr: Shift a right by unsigned amount in b with optional saturate, and optional
secondary arithmetic operation or subword data merge. Signed shift fills with the sign
bit, unsigned shift fills with zero.

Semantics // extract byte/half-word/word and sign- or zero-extend based on source operand type

ta = partSelectSignExtend(a, atype, asel);

tb = partSelectSignExtend(b, .u32, bsel);

if (mode == .clamp && tb > 32) tb = 32;

if (mode == .wrap) tb = tb & 0x1f;

switch (vop) {

 case vshl: tmp = ta << tb;

 case vshr: tmp = ta >> tb;

}

// saturate, taking into account destination type and merge operations

tmp = optSaturate(tmp, sat, isSigned(dtype), dsel);

d = optSecondaryOp(op2, tmp, c); // optional secondary operation

d = optMerge(dsel, tmp, c); // optional merge with c operand

PTX ISA Notes Introduced in PTX ISA version 2.0.

Target ISA Notes vshl, vshr require sm_20 or later.

Examples vshl.s32.u32.u32 r1, r2, r3;

vshr.u32.u32.u32.wrap r1, r2, r3.h1;

PTX ISA Version 2.1

148 April 21, 2010

Table 110. Video Instructions: vmad

vmad Integer byte/half-word/word multiply-accumulate.

Syntax // 32-bit scalar operation

vmad.dtype.atype.btype{.sat}{.scale}

 d, {-}a{.asel}, {-}b{.bsel}, {-}c;

vmad.dtype.atype.btype.po{.sat}{.scale}

 d, a{.asel}, b{.bsel}, c;

.dtype = .atype = .btype = { .u32, .s32 };

.asel = .bsel = { .b0, .b1, .b2, .b3, .h0, .h1 };

.scale = { .shr7, .shr15 };

Description Calculate (a*b) + c, with optional operand negates, “plus one” mode, and scaling.

The source operands support optional negation with some restrictions. Although PTX
syntax allows separate negation of the a and b operands, internally this is represented
as negation of the product (a*b). That is, (a*b) is negated if and only if exactly one of a
or b is negated. PTX allows negation of either (a*b) or c..

The “plus one” mode (.po) computes (a*b) + c + 1, which is used in computing
averages. Source operands may not be negated in .po mode.

The intermediate result of (a*b) is unsigned if atype and btype are unsigned and the
product (a*b) is not negated; otherwise, the intermediate result is signed. Input c has
the same sign as the intermediate result.

The final result is unsigned if the intermediate result is unsigned and c is not negated.

Depending on the sign of the a and b operands, and the operand negates,

the following combinations of operands are supported for VMAD:

 (U32 * U32) + U32 // intermediate unsigned; final unsigned

 -(U32 * U32) + S32 // intermediate signed; final signed

 (U32 * U32) - U32 // intermediate unsigned; final signed

 (U32 * S32) + S32 // intermediate signed; final signed

 -(U32 * S32) + S32 // intermediate signed; final signed

 (U32 * S32) - S32 // intermediate signed; final signed

 (S32 * U32) + S32 // intermediate signed; final signed

 -(S32 * U32) + S32 // intermediate signed; final signed

 (S32 * U32) - S32 // intermediate signed; final signed

 (S32 * S32) + S32 // intermediate signed; final signed

 -(S32 * S32) + S32 // intermediate signed; final signed

 (S32 * S32) - S32 // intermediate signed; final signed

The intermediate result is optionally scaled via right-shift; this result is sign-extended if
the final result is signed, and zero-extended otherwise.

The final result is optionally saturated to the appropriate 32-bit range based on the type
(signed or unsigned) of the final result.

 Chapter 8. Instruction Set

April 21, 2010 149

Semantics // extract byte/half-word/word and sign- or zero-extend based on source operand type

ta = partSelectSignExtend(a, atype, asel);

tb = partSelectSignExtend(b, btype, bsel);

signedFinal = isSigned(atype) || isSigned(btype) || (a.negate ^ b.negate) || c.negate;

tmp[127:0] = ta * tb;

lsb = 0;

if (.po) { lsb = 1; } else

if (a.negate ^ b.negate) { tmp = ~tmp; lsb = 1; } else

if (c.negate) { c = ~c; lsb = 1; }

c128[127:0] = (signedFinal) sext32(c) : zext (c);

tmp = tmp + c128 + lsb;

switch(scale) {

 case .shr7: result = (tmp >> 7) & 0xffffffffffffffff;

 case .shr15: result = (tmp >> 15) & 0xffffffffffffffff;

}

if (.sat) {

 if (signedFinal) result = CLAMP(result, S32_MAX, S32_MIN);

 else result = CLAMP(result, U32_MAX, U32_MIN);

}

PTX ISA Notes Introduced in PTX ISA version 2.0.

Target ISA Notes vmad requires sm_20 or later.

Examples vmad.s32.s32.u32.sat r0, r1, r2, -r3;

vmad.u32.u32.u32.shr15 r0, r1.h0, r2.h0, r3;

PTX ISA Version 2.1

150 April 21, 2010

Table 111. Video Instructions: vset

vset Integer byte/half-word/word comparison.

Syntax // 32-bit scalar operation, with optional secondary operation

vset.atype.btype.cmp d, a{.asel}, b{.bsel};

vset.atype.btype.cmp.op2 d, a{.asel}, b{.bsel}, c;

// 32-bit scalar operation, with optional data merge

vset.atype.btype.cmp d.dsel, a{.asel}, b{.bsel}, c;

.atype = .btype = { .u32, .s32 };

.cmp = { .eq, .ne, .lt, .le, .gt, .ge };

.dsel = .asel = .bsel = { .b0, .b1, .b2, .b3, .h0, .h1 };

.op2 = { .add, .min, .max };

Description Compare input values using specified comparison, with optional secondary arithmetic
operation or subword data merge.

The intermediate result of the comparison is always unsigned, and therefore the c
operand and final result are also unsigned.

Semantics // extract byte/half-word/word and sign- or zero-extend based on source operand type

ta = partSelectSignExtend(a, atype, asel);

tb = partSelectSignExtend(b, btype, bsel);

tmp = compare(ta, tb, cmp) ? 1 : 0;

d = optSecondaryOp(op2, tmp, c); // optional secondary operation

d = optMerge(dsel, tmp, c); // optional merge with c operand

PTX ISA Notes Introduced in PTX ISA version 2.0.

Target ISA Notes vset requires sm_20 or later.

Examples vset.s32.u32.lt r1, r2, r3;

vset.u32.u32.ne r1, r2, r3.h1;

 Chapter 8. Instruction Set

April 21, 2010 151

8.7.10. Miscellaneous Instructions
The Miscellaneous instructions are:

� trap

� brkpt

� pmevent

Table 112. Miscellaneous Instructions: trap

trap Perform trap operation.

Syntax trap

Description Abort execution and generate an interrupt to the host CPU.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples trap;

@p trap;

Table 113. Miscellaneous Instructions: brkpt

brkpt Breakpoint.

Syntax brkpt

Description Suspends execution

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes brkpt requires sm_11 or later.

Examples brkpt;

@p brkpt;

Table 114. Miscellaneous Instructions: pmevent

pmevent Performance Monitor event.

Syntax pmevent a;

Description Triggers one of a fixed number of performance monitor events, with index specified by
immediate operand a.

Programmatic performance moniter events may be combined with other hardware
events using Boolean functions to increment one of the four performance counters.
The relationship between events and counters is programmed via API calls from the
host.

Notes Currently, there are sixteen performance monitor events, numbered 0 through 15.

PTX ISA Notes Introduced in PTX ISA version 1.4.

Target ISA Notes Supported on all target architectures.

Examples pmevent 1;

@p pmevent 7;

PTX ISA Version 2.1

152 April 21, 2010

April 21, 2010 153

Chapter 9.

Special Registers

PTX includes a number of predefined, read-only variables, which are visible as special
registers and accessed through mov or cvt instructions.

The special registers are:

� %tid

� %ntid

� %laneid

� %warpid

� %nwarpid

� %ctaid

� %nctaid

� %smid

� %nsmid

� %gridid

� %lanemask_eq, %lanemask_le, %lanemask_lt, %lanemask_ge, %lanemask_gt

� %clock, %clock64

� %pm0, …, %pm3

� %envreg0, …, %envreg31

PTX ISA Version 2.1

154 April 21, 2010

Table 115. Special Registers: %tid

%tid Thread identifier within a CTA.

Syntax

(predefined)

.sreg .v4 .u32 %tid; // thread id vector

.sreg .u32 %tid.x, %tid.y, %tid.z; // thread id components

Description A predefined, read-only, per-thread special register initialized with the thread identifier
within the CTA. The %tid special register contains a 1D, 2D, or 3D vector to match the
CTA shape; the %tid value in unused dimensions is 0. The fourth element is unused
and always returns zero. The number of threads in each dimension are specified by
the predefined special register %ntid.

Every thread in the CTA has a unique %tid.

%tid component values range from 0 through %ntid–1 in each CTA dimension.

%tid.y == %tid.z == 0 in 1D CTAs. %tid.z == 0 in 2D CTAs.

It is guaranteed that:

0 <= %tid.x < %ntid.x

0 <= %tid.y < %ntid.y

0 <= %tid.z < %ntid.z

PTX ISA Notes Introduced in PTX ISA version 1.0.

Redefined as .v4.u32 type in PTX ISA version 2.0. Legacy PTX code that accesses
%tid using 16-bit mov and cvt instructions are supported.

Target ISA Notes Supported on all target architectures.

Examples mov.u32 %r1,%tid.x; // move tid.x to %rh

 // legacy PTX 1.x code accessing 16-bit component of %tid

 mov.u16 %rh,%tid.x;

 cvt.u32.u16 %r2,%tid.z; // zero-extend tid.z to %r2

Table 116. Special Registers: %ntid

%ntid Number of thread IDs per CTA.

Syntax

(predefined)

.sreg .v4 .u32 %ntid; // CTA shape vector

.sreg .u32 %ntid.x, %ntid.y, %ntid.z; // CTA dimensions

Description A predefined, read-only special register initialized with the number of thread ids in each
CTA dimension. The %ntid special register contains a 3D CTA shape vector that holds
the CTA dimensions. CTA dimensions are non-zero; the fourth element is unused and
always returns zero. The total number of threads in a CTA is (%ntid.x * %ntid.y *
%ntid.z).

%ntid.y == %ntid.z == 1 in 1D CTAs. %ntid.z == 1 in 2D CTAs.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Redefined as .v4.u32 type in PTX ISA version 2.0. Legacy PTX code that accesses
%ntid using 16-bit mov and cvt instructions are supported.

Target ISA Notes Supported on all target architectures.

Examples // compute unified thread id for 2D CTA

 mov.u32 %r0,%tid.x;

 mov.u32 %h1,%tid.y;

 mov.u32 %h2,%ntid.x;

 mad.u32 %r0,%h1,%h2,%r0;

 mov.u16 %rh,%ntid.x; // legacy PTX 1.x code

 Chapter 9. Special Registers

April 21, 2010 155

Table 117. Special Registers: %laneid

%laneid Lane Identifier.

Syntax

(predefined)

.sreg .u32 %laneid;

Description A predefined, read-only special register that returns the thread’s lane within the warp.
The lane identifier ranges from zero to WARP_SZ-1.

PTX ISA Notes Introduced in PTX ISA version 1.3.

Target ISA Notes Supported on all target architectures.

Examples mov.u32 %r, %laneid;

Table 118. Special Registers: %warpid

%warpid Warp Identifier.

Syntax

(predefined)

.sreg .u32 %warpid;

Description A predefined, read-only special register that returns the thread’s warp identifier. The
warp identifier provides a unique warp number within a CTA but not across CTAs within
a grid. The warp identifier will be the same for all threads within a single warp.

Note that %warpid is volatile and returns the location of a thread at the moment when
read, but its value may change during execution, e.g. due to rescheduling of threads
following preemption. For this reason, %ctaid and %tid should be used to compute a
virtual warp index if such a value is needed in kernel code; %warpid is intended mainly
to enable profiling and diagnostic code to sample and log information such as work
place mapping and load distribution.

PTX ISA Notes Introduced in PTX ISA version 1.3.

Target ISA Notes Supported on all target architectures.

Examples mov.u32 %r, %warpid;

Table 119. Special Registers: %nwarpid

%nwarpid Number of warp identifiers.

Syntax

(predefined)

.sreg .u32 %nwarpid;

Description A predefined, read-only special register that returns the maximum number of warp
identifiers.

PTX ISA Notes Introduced in PTX ISA version 2.0.

Target ISA Notes %nwarpid requires sm_20 or later.

Examples mov.u32 %r, %nwarpid;

PTX ISA Version 2.1

156 April 21, 2010

Table 120. Special Registers: %ctaid

%ctaid CTA identifier within a grid.

Syntax

(predefined)

.sreg .v4 .u32 %ctaid; // CTA id vector

.sreg .u32 %ctaid.x, %ctaid.y, %ctaid.z; // CTA id components

Description A predefined, read-only special register initialized with the CTA identifier within the CTA
grid. The %ctaid special register contains a 1D, 2D, or 3D vector, depending on the
shape and rank of the CTA grid. Each vector element value is >= 0 and < 65535. The
fourth element is unused and always returns zero.

It is guaranteed that:

0 <= %ctaid.x < %nctaid.x

0 <= %ctaid.y < %nctaid.y

0 <= %ctaid.z < %nctaid.z

PTX ISA Notes Introduced in PTX ISA version 1.0.

Redefined as .v4.u32 type in PTX ISA version 2.0. Legacy PTX code that accesses
%ctaid using 16-bit mov and cvt instructions are supported.

Target ISA Notes Supported on all target architectures.

Examples mov.u32 %r0,%ctaid.x;

 mov.u16 %rh,%ctaid.y; // legacy PTX 1.x code

Table 121. Special Registers: %nctaid

%nctaid Number of CTA ids per grid.

Syntax

(predefined)

.sreg .v4 .u32 %nctaid // Grid shape vector

.sreg .u32 %nctaid.x,%nctaid.y,%nctaid.z; // Grid dimensions

Description A predefined, read-only special register initialized with the number of CTAs in each grid
dimension. The %nctaid special register contains a 3D grid shape vector, with each
element having a value of at least 1. The fourth element is unused and always returns
zero.

It is guaranteed that:

1 <= %nctaid.{x,y,z} < 65,536

PTX ISA Notes Introduced in PTX ISA version 1.0.

Redefined as .v4.u32 type in PTX ISA version 2.0. Legacy PTX code that accesses
%nctaid using 16-bit mov and cvt instructions are supported.

Target ISA Notes Supported on all target architectures.

Examples mov.u32 %r0,%nctaid.x;

 mov.u16 %rh,%nctaid.x; // legacy PTX 1.x code

 Chapter 9. Special Registers

April 21, 2010 157

Table 122. Special Registers: %smid

%smid SM identifier.

Syntax

(predefined)

.sreg .u32 %smid;

Description A predefined, read-only special register that returns the processor (SM) identifier on
which a particular thread is executing. The SM identifier ranges from 0 to %nsmid-1.
The SM identifier numbering is not guaranteed to be contiguous.

Notes Note that %smid is volatile and returns the location of a thread at the moment when
read, but its value may change during execution, e.g. due to rescheduling of threads
following preemption. %smid is intended mainly to enable profiling and diagnostic code
to sample and log information such as work place mapping and load distribution.

PTX ISA Notes Introduced in PTX ISA version 1.3.

Target ISA Notes Supported on all target architectures.

Examples mov.u32 %r, %smid;

Table 123. Special Registers: %nsmid

%nsmid Number of SM identifiers.

Syntax

(predefined)

.sreg .u32 %nsmid;

Description A predefined, read-only special register that returns the maximum number of SM
identifiers. The SM identifier numbering is not guaranteed to be contiguous, so
%nsmid may be larger than the physical number of SMs in the device.

PTX ISA Notes Introduced in PTX ISA version 2.0.

Target ISA Notes %nsmid requires sm_20 or later.

Examples mov.u32 %r, %nsmid;

Table 124. Special Registers: %gridid

%gridid Grid identifier.

Syntax

(predefined)

.sreg .u32 %gridid; // initialized at grid launch

Description A predefined, read-only special register initialized with the per-grid temporal grid
identifier. The %gridid is used by debuggers to distinguish CTAs within concurrent
(small) CTA grids.

During execution, repeated launches of programs may occur, where each launch starts
a grid-of-CTAs. This variable provides the temporal grid launch number for this
context.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples mov.u32 %r, %gridid;

PTX ISA Version 2.1

158 April 21, 2010

Table 125. Special Registers: %lanemask_eq

%lanemask_eq 32-bit mask with bit set in position equal to the thread’s lane number in the warp.

Syntax

(predefined)

.sreg .u32 %lanemask_eq;

Description A predefined, read-only special register initialized with a 32-bit mask with a bit set in the
position equal to the thread’s lane number in the warp.

PTX ISA Notes Introduced in PTX ISA version 2.0.

Target ISA Notes %lanemask_eq requires sm_20 or later.

Examples mov.u32 %r, %lanemask_eq;

Table 126. Special Registers: %lanemask_le

%lanemask_le 32-bit mask with bits set in positions less than or equal to the thread’s lane number in
the warp.

Syntax

(predefined)

.sreg .u32 %lanemask_le;

Description A predefined, read-only special register initialized with a 32-bit mask with bits set in
positions less than or equal to the thread’s lane number in the warp.

PTX ISA Notes Introduced in PTX ISA version 2.0.

Target ISA Notes %lanemask_le requires sm_20 or later.

Examples mov.u32 %r, %lanemask_le;

Table 127. Special Registers: %lanemask_lt

%lanemask_lt 32-bit mask with bits set in positions less than the thread’s lane number in the warp.

Syntax

(predefined)

.sreg .u32 %lanemask_lt;

Description A predefined, read-only special register initialized with a 32-bit mask with bits set in
positions less than the thread’s lane number in the warp.

PTX ISA Notes Introduced in PTX ISA version 2.0.

Target ISA Notes %lanemask_lt requires sm_20 or later.

Examples mov.u32 %r, %lanemask_lt;

 Chapter 9. Special Registers

April 21, 2010 159

Table 128. Special Registers: %lanemask_ge

%lanemask_ge 32-bit mask with bits set in positions greater than or equal to the thread’s lane number
in the warp.

Syntax

(predefined)

.sreg .u32 %lanemask_ge;

Description A predefined, read-only special register initialized with a 32-bit mask with bits set in
positions greater than or equal to the thread’s lane number in the warp.

PTX ISA Notes Introduced in PTX ISA version 2.0.

Target ISA Notes %lanemask_ge requires sm_20 or later.

Examples mov.u32 %r, %lanemask_ge;

Table 129. Special Registers: %lanemask_gt

%lanemask_gt 32-bit mask with bits set in positions greater than the thread’s lane number in the warp.

Syntax

(predefined)

.sreg .u32 %lanemask_gt;

Description A predefined, read-only special register initialized with a 32-bit mask with bits set in
positions greater than the thread’s lane number in the warp.

PTX ISA Notes Introduced in PTX ISA version 2.0.

Target ISA Notes %lanemask_gt requires sm_20 or later.

Examples mov.u32 %r, %lanemask_gt;

PTX ISA Version 2.1

160 April 21, 2010

Table 130. Special Registers: %clock

%clock A predefined, read-only 32-bit unsigned cycle counter.

Syntax

(predefined)

.sreg .u32 %clock;

Description Special register %clock is an unsigned 32-bit read-only cycle counter that wraps
silently.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples mov.u32 r1,%clock;

Table 131. Special Registers: %clock64

%clock A predefined, read-only 64-bit unsigned cycle counter.

Syntax

(predefined)

.sreg .u64 %clock64;

Description Special register %clock64 is an unsigned 64-bit read-only cycle counter that wraps
silently.

Notes The lower 32-bits of %clock64 are identical to %clock.

PTX ISA Notes Introduced in PTX ISA version 2.0.

Target ISA Notes %clock64 requires sm_20 or later.

Examples mov.u64 r1,%clock64;

Table 132. Special Registers: %pm0, %pm1, %pm2, %pm3

%pm0, …, %pm3 Performance monitoring counters.

Syntax

(predefined)

.sreg .u32 %pm0, %pm1, %pm2, %pm3;

Description Special registers %pm0, %pm1, %pm2, and %pm3 are unsigned 32-bit read-only
performance monitor counters. Their behavior is currently undefined.

PTX ISA Notes Introduced in PTX ISA version 1.3.

Target ISA Notes Supported on all target architectures.

Examples mov.u32 r1,%pm0;

 Chapter 9. Special Registers

April 21, 2010 161

Table 133. Special Registers: %envreg<32>

%envreg0..31 Driver-defined read-only registers

Syntax

(predefined)

.sreg .b32 %envreg<32>;

Description A set of 32 pre-defined read-only registers used to capture execution environment of
PTX program outside of PTX virtual machine. These registers are initialized by the
driver prior to kernel launch and can contain cta-wide or grid-wide values.

Precise semantics of these registers is defined in the driver documentation.

PTX ISA Notes Introduced in PTX ISA version 2.1

Target ISA Notes Supported on all target architectures.

Examples mov.b32 %r1,%envreg0; // move envreg0 to %r1

PTX ISA Version 2.1

162 April 21, 2010

April 21, 2010 163

Chapter 10.

Directives

10.1. PTX Version and Target Directives

The following directives declare the PTX ISA version of the code in the file, and the target
architecture for which the code was generated.

� .version

� .target

Table 134. PTX File Directives: .version

.version PTX ISA version number.

Syntax .version major.minor // major, minor are integers

Description Specifies the PTX language version number. Increments to the major number indicate
incompatible changes to PTX.

Semantics Indicates that this file must be compiled with tools having the same major version
number and an equal or greater minor version number.

Each ptx file must begin with a .version directive. Duplicate .version directives are
allowed provided they match the original .version directive.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples .version 2.1

 .version 1.4

PTX ISA Version 2.1

164 April 21, 2010

Table 135. PTX File Directives: .target

.target Architecture and Platform target.

Syntax .target stringlist // comma separated list of target specifiers

string = { sm_20, // sm_2x target architectures

 sm_10, sm_11, sm_12, sm_13, // sm_1x target architectures

 texmode_unified, texmode_independent, // texturing mode

 map_f64_to_f32 }; // platform option

Description Specifies the set of features in the target architecture for which the current ptx code
was generated. In general, generations of SM architectures follow an “onion layer”
model, where each generation adds new features and retains all features of previous
generations. Therefore, PTX code generated for a given target can be run on later
generation devices.

Semantics Each PTX file must begin with a .version directive, immediately followed by a .target
directive containing a target architecture and optional platform options. A .target
directive specifies a single target architecture, but subsequent .target directives can be
used to change the set of target features allowed during parsing. A program with
multiple .target directives will compile and run only on devices that support all features
of the highest-numbered architecture listed in the program.

PTX features are checked against the specified target architecture, and an error is
generated if an unsupported feature is used. The following table summarizes the
features in PTX that vary according to target architecture.

Target Description

sm_20 Baseline feature set for sm_20 architecture.

Target Description

sm_10 Baseline feature set for sm_10 architecture.

Requires map_f64_to_f32 if any .f64 instructions used.

sm_11 Adds {atom,red}.global, brkpt instructions.

Requires map_f64_to_f32 if any .f64 instructions used.

sm_12 Adds {atom,red}.shared, 64-bit {atom,red}.global, vote instructions.

Requires map_f64_to_f32 if any .f64 instructions used.

sm_13 Adds double-precision support, including expanded rounding modifiers.

Disallows use of map_f64_to_f32.

Texturing mode: (default is .texmode_unified)

.texmode_unified texture and sampler information is bound together and
accessed via a single .texref descriptor.

.texmode_independent texture and sampler information is referenced with
independent .texref and .samplerref descriptors.

The texturing mode is specified for an entire module and cannot be changed within the
module.

map_f64_to_f32 indicates that all double-precision instructions map to single-
precision regardless of the target architecture. This enables high-level language
compilers to compile programs containing type double to target device that do not
support double-precision operations. Note that .f64 storage remains as 64-bits, with
only half being used by instructions converted from .f64 to .f32.

Notes Targets of the form ‘compute_xx’ are also accepted as synonyms for ‘sm_xx’ targets.

PTX ISA Notes Introduced in PTX ISA version 1.0. Texturing mode introduced in PTX ISA version 1.5.

Target ISA Notes Supported on all target architectures.

 Chapter 10. Directives

April 21, 2010 165

Examples .target sm_10 // baseline target architecture

 .target sm_13 // supports double-precision

 .target sm_20, texmode_independent

PTX ISA Version 2.1

166 April 21, 2010

10.2. Specifying Kernel Entry Points and Functions

The following directives specify kernel entry points and functions.

� .entry

� .func

Table 136. Kernel and Function Directives: .entry

.entry Kernel entry point and body, with optional parameters.

Syntax .entry kernel-name (param-list) kernel-body

.entry kernel-name kernel-body

Description Defines a kernel entry point name, parameters, and body for the kernel function.

Parameters are passed via .param space memory and are listed within an optional
parenthesized parameter list. Parameters may be referenced by name within the
kernel body and loaded into registers using ld.param instructions.

In addition to normal parameters, opaque .texref, .samplerref, and .surfref variables
may be passed as parameters. These parameters can only be referenced by name
within texture and surface load, store, and query instructions and cannot be accessed
via ld.param instructions.

The shape and size of the CTA executing the kernel are available in special registers.

Semantics Specify the entry point for a kernel program.

At kernel launch, the kernel dimensions and properties are established and made
available via special registers, e.g. %ntid, %nctaid, etc.

PTX ISA Notes For PTX ISA version 1.4 and later, parameter variables are declared in the kernel
parameter list. For PTX ISA versions 1.0 through 1.3, parameter variables are
declared in the kernel body.

The total memory available for normal (non-opaque type) parameters is limited to 256
bytes for PTX ISA versions 1.0 through 1.4, and is extended by 4096 bytes to a limit of
4352 bytes for PTX ISA versions 1.5 and later.

Target ISA Notes Supported on all target architectures.

Examples .entry cta_fft

.entry filter (.param .b32 x, .param .b32 y, .param .b32 z)

{

 .reg .b32 %r<99>;

 ld.param.b32 %r1, [x];

 ld.param.b32 %r2, [y];

 ld.param.b32 %r3, [z];

 …

}

 Chapter 10. Directives

April 21, 2010 167

Table 137. Kernel and Function Directives: .func

.func Function definition.

Syntax .func fname function-body

.func fname (param-list) function-body

.func (ret-param) fname (param-list) function-body

Description Defines a function, including input and return parameters and optional function body.

A .func definition with no body provides a function prototype.

The parameter lists define locally-scoped variables in the function body. Parameters
must be base types in either the register or parameter state space. Parameters in
register state space may be referenced directly within instructions in the function body.
Parameters in .param space are accessed using ld.param and st.param instructions in
the body. Parameter passing is call-by-value.

Variadic functions are represented using ellipsis following the last fixed argument, if
any. The following built-in functions are provided for accessing the list of variable
arguments:

%va_start

%va_arg

%va_arg64

%va_end

See Section 7.2 for a description of variadic functions.

Semantics The PTX syntax hides all details of the underlying calling convention and ABI.

The implementation of parameter passing is left to the optimizing translator, which may
use a combination of registers and stack locations to pass parameters.

Release Notes For PTX ISA version 1.x code, parameters must be in the register state space, there is
no stack, and recursion is illegal.

PTX ISA version 2.0 with target sm_20 allows parameters in the .param state space,
implements an ABI with stack, and supports recursion. PTX ISA version 2.0 with target
sm_20 supports at most one return value.

Variadic functions are currently unimplemented.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples .func (.reg .b32 rval) foo (.reg .b32 N, .reg .f64 dbl)

 {

 .reg .b32 localVar;

 … use N, dbl;

 other code;

 mov.b32 rval,result;

 ret;

 }

 …

 call (fooval), foo, (val0, val1); // return value in fooval

 …

PTX ISA Version 2.1

168 April 21, 2010

10.3. Control Flow Directives

PTX provides directives for specifying potential targets for indirect branch and call
instructions. See the descriptions of bra and call for more information.

� .branchtargets

� .calltargets

� .callprototype

Table 138. Control Flow Directives: .branchtargets

.branchtargets Declare a list of potential branch targets.

Syntax Label: .branchtargets list-of-labels ;

Description Declares a list of potential branch targets for a subsequent indirect branch, and
assocates the list with the label at the start of the line.

All control flow labels in the list must occur within the same function as the declaration.

The list of labels may use the compact, shorthand syntax for enumerating a range of
labels having a common prefix.

PTX ISA Notes Introduced in PTX ISA version 2.1.

Target ISA Notes Requires sm_20 or later.

Examples // includes Lbl0, …, Lbl9

Tgtlist: .branchtargets Loop, Lbl<10>, Done;

…

@p bra %r1, Tgtlist;

…

Table 139. Control Flow Directives: .calltargets

.calltargets Declare a list of potential call targets.

Syntax Label: .calltargets list-of-functions ;

Description Declares a list of potential call targets for a subsequent indirect branch, and assocates
the list with the label at the start of the line.

All functions named in the list must be declared prior to the .calltargets directive, and all
functions must have the same type signature.

PTX ISA Notes Introduced in PTX ISA version 2.1.

Target ISA Notes Requires sm_20 or later.

Examples calltgt: .calltargets fastsin, fastcos;

…

@p call (%f1), %r0, (%x), calltgt;

…

 Chapter 10. Directives

April 21, 2010 169

Table 140. Control Flow Directives: .callprototype

.callprototype Declare a prototype for use in an indirect call.

Syntax label: .callprototype _ ; // no input or return parameters

label: .callprototype _ (param-list) // input params, no return params

label: .callprototype (ret-param) _ ; // no input params, return params

label: .callprototype (ret-param) _ (param-list) // input and return parameters

Description Defines a prototype with no specific function name, and associates the prototype with a
label. The prototype may then be used in indirect call instructions where there is
incomplete knowledge of the possible call targets.

Parameters may have either base types in the register or parameter state spaces, or
array types in parameter state space. The sink symbol ‘_’ may be used to avoid dummy
parameter names.

PTX ISA Notes Introduced in PTX ISA version 2.1.

Target ISA Notes Requires sm_20 or later.

Examples Fproto1: .callprototype _ ;

Fproto2: .callprototype _ (.param .f32 _);

Fproto3: .callprototype (.param .u32 _) _ ;

Fproto4: .callprototype (.param .u32 _) _ (.param .f32 _);

…

@p call (%val), %r0, (%f1), Fproto4;

…

// example of array parameter

Fproto5: .callprototype _ (.param .b8 _[12]);

PTX ISA Version 2.1

170 April 21, 2010

10.4. Performance-Tuning Directives

To provide a mechanism for low-level performance tuning, PTX supports the following
directives, which pass information to the backend optimizing compiler.

� .maxnreg

� .maxntid

� .reqntid

� .minnctapersm

� .maxnctapersm (deprecated)

� .pragma

The .maxnreg directive specifies the maximum number of registers to be allocated to a single
thread; the .maxntid directive specifies the maximum number of threads in a thread block
(CTA); the .reqntid directive specifies the required number of threads in a thread block
(CTA); and the .minnctapersm directive specifies a minimum number of thread blocks to be
scheduled on a single multiprocessor (SM). These can be used, for example, to throttle the
resource requirements (e.g. registers) to increase total thread count and provide a greater
opportunity to hide memory latency. The .minnctapersm directive can be used together with
either the .maxntid or .reqntid directive to trade-off registers–per-thread against
multiprocessor utilization without needed to directly specify a maximum number of
registers. This may achieve better performance when compiling PTX for multiple devices
having different numbers of registers per SM.

Currently, the .maxnreg, .maxntid, .reqntid, and .minnctapersm directives may be applied
per-entry and must appear between an .entry directive and its body. The directives take
precedence over any module-level constraints passed to the optimizing backend. A warning
message is generated if the directives’ constraints are inconsistent or cannot be met for the
specified target device.

A general .pragma directive is supported for passing information to the PTX backend. The
directive passes a list of strings to the backend, and the strings have no semantics within the
PTX virtual machine model. The interpretation of .pragma values is determined by the
backend implementation and is beyond the scope of the PTX ISA. Note that .pragma
directives may appear at module (file) scope, at entry-scope, or as statements within a kernel
or device function body.

 Chapter 10. Directives

April 21, 2010 171

Table 141. Performance-Tuning Directives: .maxnreg

.maxnreg Maximum number of registers that can be allocated per thread.

Syntax .maxnreg n

Description Declare the maximum number of registers per thread in a CTA.

Semantics The compiler guarantees that this limit will not be exceeded. The actual number of
registers used may be less; for example, the backend may be able to compile to fewer
registers, or the maximum number of registers may be further constrained by .maxntid
and .maxctapersm.

PTX ISA Notes Introduced in PTX ISA version 1.3.

Target ISA Notes Supported on all target architectures.

Examples .entry foo .maxnreg 16 { … } // max regs per thread = 16

PTX ISA Version 2.1

172 April 21, 2010

Table 142. Performance-Tuning Directives: .maxntid

.maxntid Maximum number of threads in thread block (CTA).

Syntax .maxntid nx

.maxntid nx, ny

.maxntid nx, ny, nz

Description Declare the maximum number of threads in the thread block (CTA). This maximum is
specified by giving the maximum extent of each dimention of the 1D, 2D, or 3D CTA.
The maximum number of threads is the product of the maximum extent in each
dimension.

Semantics The maximum size of each CTA dimension is guaranteed not to be exceeded in any
invocation of the kernel in which this directive appears. Exceeding any of these limits
results in a runtime error or kernel launch failure.

Notes The .maxntid directive cannot be used in conjunction with the .reqntid directive.

PTX ISA Notes Introduced in PTX ISA version 1.3.

Target ISA Notes Supported on all target architectures.

Examples .entry foo .maxntid 256 { … } // max threads = 256

 .entry bar .maxntid 16,16,4 { … } // max threads = 1024

Table 143. Performance-Tuning Directives: .reqntid

.reqntid Number of threads in thread block (CTA).

Syntax .reqntid nx

.reqntid nx, ny

.reqntid nx, ny, nz

Description Declare the number of threads in the thread block (CTA) by specifying the extent of
each dimension of the 1D, 2D, or 3D CTA. The total number of threads is the product
of the number of threads in each dimension.

Semantics The size of each CTA dimension specified in any invocation of the kernel is required to
be equal to that specified in this directive. Specifying a different CTA dimension at
launch will result in a runtime error or kernel launch failure.

Notes The .reqntid directive cannot be used in conjunction with the .maxntid directive.

PTX ISA Notes Introduced in PTX ISA version 2.1.

Target ISA Notes Supported on all target architectures.

Examples .entry foo .reqntid 256 { … } // num threads = 256

 .entry bar .reqntid 16,16,4 { … } // num threads = 1024

 Chapter 10. Directives

April 21, 2010 173

Table 144. Performance-Tuning Directives: .minnctapersm

.minnctapersm Minimum number of CTAs per SM.

Syntax .minnctapersm ncta

Description Declare the minimum number of CTAs from the kernel’s grid to be mapped to a single
multiprocessor (SM).

Notes Optimizations based on .minnctapersm need either .maxntid or .reqntid to be specified
as well. In PTX ISA version 2.1, a warning is generated if .minnctapersm is specified
without specifying either .maxntid or .reqntid.

PTX ISA Notes Introduced in PTX ISA version 2.0 as a replacement for .maxnctapersm.

Target ISA Notes Supported on all target architectures.

Examples .entry foo .maxntid 256 .minnctapersm 4 { … }

Table 145. Performance-Tuning Directives: .maxnctapersm
(deprecated)

.maxnctapersm Maximum number of CTAs per SM.

Syntax .maxnctapersm ncta

Description Declare the maximum number of CTAs from the kernel’s grid that may be mapped to a
single multiprocessor (SM).

Notes Optimizations based on .maxnctapersm generally need .maxntid to be specified as
well. The optimizing backend compiler uses .maxntid and .maxnctapersm to compute
an upper-bound on per-thread register usage so that the specified number of CTAs can
be mapped to a single multiprocessor. However, if the number of registers used by the
backend is sufficiently lower than this bound, additional CTAs may be mapped to a
single multiprocessor. For this reason, .maxnctapersm has been renamed to
.minnctapersm in PTX ISA version 2.0.

PTX ISA Notes Introduced in PTX ISA version 1.3. Deprecated in PTX ISA version 2.0.

Target ISA Notes Supported on all target architectures.

Examples .entry foo .maxntid 256 .maxnctapersm 4 { … }

PTX ISA Version 2.1

174 April 21, 2010

Table 146. Performance-Tuning Directives: .pragma

.pragma Pass directives to PTX backend compiler.

Syntax .pragma list-of-strings ;

Description Pass module-scoped, entry-scoped, or statement-level directives to the PTX backend
compiler.

The .pragma directive may occur at module-scope, at entry-scope, or at statement-
level.

Semantics The interpretation of .pragma directive strings is implementation-specific and has no
impact on PTX semantics. See Appendix A for descriptions of the pragma strings
defined in ptxas.

PTX ISA Notes Introduced in PTX ISA version 2.0.

Target ISA Notes Supported on all target architectures.

Examples .pragma “nounroll”; // disable unrolling in backend

 // disable unrolling for current kernel

 .entry foo .pragma “nounroll”; { … }

 Chapter 10. Directives

April 21, 2010 175

10.5. Debugging Directives

Dwarf-format debug information is passed through PTX files using the following directives:

� @@DWARF

� .section

� .file

� .loc

The .section directive was introduced in PTX ISA verison 2.0 and replaces the @@DWARF
syntax. The @@DWARF syntax is deprecated as of PTX ISA version 2.0 but is supported
for legacy PTX ISA version 1.x code.

Table 147. Debugging Directives: @@DWARF

@@DWARF Dwarf-format information.

Syntax @@DWARF dwarf-string

dwarf-string may have one of the

 .byte byte-list // comma-separated hexadecimal byte values

 .4byte int32-list // comma-separated hexadecimal integers in range [0..2
32

-1]

 .quad int64-list // comma-separated hexadecimal integers in range [0..2
64

-1]

 .4byte label

 .quad label

Notes The dwarf string is treated as a comment by the PTX parser.

PTX ISA Notes Introduced in PTX ISA version 1.2. Deprecated as of PTX ISA version 2.0, replaced by
.section directive.

Target ISA Notes Supported on all target architectures.

Examples @@DWARF .section .debug_pubnames, “”, @progbits

@@DWARF .byte 0x2b, 0x00, 0x00, 0x00, 0x02, 0x00

@@DWARF .4byte .debug_info

@@DWARF .4byte 0x000006b5, 0x00000364, 0x61395a5f, 0x5f736f63

@@DWARF .4byte 0x6e69616d, 0x63613031, 0x6150736f, 0x736d6172

@@DWARF .byte 0x00, 0x00, 0x00, 0x00, 0x00

PTX ISA Version 2.1

176 April 21, 2010

Table 148. Debugging Directives: .section

.section PTX section definition.

Syntax .section section_name { dwarf-lines }

dwarf-lines have the following formats:

 .b8 byte-list // comma-separated list of integers in range [0..255]

 .b32 int32-list // comma-separated list of integers in range [0..2
32

-1]

 .b64 int64-list // comma-separated list of integers in range [0..2
64

-1]

 .b32 label

 .b64 label

PTX ISA Notes Introduced in PTX ISA version 2.0, replaces @@DWARF syntax.

Target ISA Notes Supported on all target architectures.

Examples .section .debug_pubnames

{

 .b8 0x2b, 0x00, 0x00, 0x00, 0x02, 0x00

 .b32 .debug_info

 .b32 0x000006b5, 0x00000364, 0x61395a5f, 0x5f736f63

 .b32 0x6e69616d, 0x63613031, 0x6150736f, 0x736d6172

 .b8 0x00, 0x00, 0x00, 0x00, 0x00

}

Table 149. Debugging Directives: .file

.file Source file information.

Syntax .file filename

Description

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples

Table 150. Debugging Directives: .loc

.loc Source file location.

Syntax .loc line_number

Description

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples

 Chapter 10. Directives

April 21, 2010 177

10.7. Linking Directives

� .extern

� .visible

Table 151. Linking Directives: .extern

.extern External symbol declaration.

Syntax .extern identifier

Description Declares identifier to be defined externally.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples .extern .global .b32 foo; // foo is defined in another module

Table 152. Linking Directives: .visible

.visible Visible (externally) symbol declaration.

Syntax .visible identifier

Description Declares identifier to be externally visible.

PTX ISA Notes Introduced in PTX ISA version 1.0.

Target ISA Notes Supported on all target architectures.

Examples .visible .global .b32 foo; // foo will be externally visible

PTX ISA Version 2.1

178 April 21, 2010

April 21, 2010 179

Chapter 11.

Release Notes

This section describes the history of change in the PTX ISA and implementation. The first
section describes ISA and implementation changes in the current release of PTX ISA
version 2.1, and the remaining sections provide a record of changes in previous releases of
PTX ISA version 2.x.

The release history is as follows.

CUDA Release PTX ISA Version

CUDA 1.0 PTX ISA 1.0

CUDA 1.1 PTX ISA 1.1

CUDA 2.0 PTX ISA 1.2

CUDA 2.1 PTX ISA 1.3

CUDA 2.2, CUDA 2.3 PTX ISA 1.4

driver r190 PTX ISA 1.5

CUDA 3.0, driver r195 PTX ISA 2.0

CUDA 3.1, driver r256 PTX ISA 2.1

PTX ISA Version 2.1

180 April 21, 2010

11.1. Changes in PTX ISA Version 2.1

11.1.1. New Features
The underlying, stack-based ABI is supported in PTX ISA version 2.1 for sm_2x targets.

Support for indirect branches and calls has been implemented for sm_2x targets.

New directives, .branchtargets and .calltargets, have been added for specifying potential
targets for indirect branches and indirect function calls. A .callprototype directive has been
added for declaring the type signatures for indirect function calls.

The names of .global and .const variables can now be specified in variable initializers to
represent their addresses.

A set of thirty-two driver-specific execution environment special registers has been added.
These are named %envreg0..%envreg31.

Textures and surfaces have new fields for channel data type and channel order , and the txq
and suq instructions support queries for these fields.

Directive .minnctapersm has replaced the .maxnctapersm directive.

Directive .reqntid has been added to allow specification of exact CTA dimensions.

A new instruction, rcp.approx.ftz.f64, has been added to compute a fast, gross approximate
reciprocal.

11.1.2. Semantic Changes and Clarifications

A warning is emitted if .minnctapersm is specified without also specifying .maxntid.

11.1.3. Features Unimplemented in PTX ISA Version 2.1
The following table summarizes unimplemented instruction features. See individual
instruction descriptions for details.

Instruction Unimplemented features

suld.p
Formatted surface load is unimplemented

sust.p.{u32,s32,f32}
Formatted surface store with .u32, .s32, or .f32 type is unimplemented.

atom, red
{atom,red}.f32.{min,max} are not implemented.

 Chapter 11. Release Notes

April 21, 2010 181

11.2. Changes in PTX ISA Version 2.0

11.2.1. New Features

11.2.1.1. Floating-Point Extensions

This section describes the floating-point changes in PTX ISA version 2.0 for sm_20 targets.
The goal is to achieve IEEE 754 compliance wherever possible, while maximizing backward
compatibility with legacy PTX ISA version 1.x code and sm_1x targets.

The changes from PTX ISA version 1.x are as follows:

• Single-precision instructions support subnormal numbers by default for sm_20
targets. The .ftz modifier may be used to enforce backward compatibility with
sm_1x.

• Single-precision add, sub, and mul now support .rm and .rp rounding modifiers for
sm_20 targets.

• A single-precision fused multiply-add (fma) instruction has been added, with
support for IEEE 754 compliant rounding modifiers and support for subnormal
numbers. The fma.f32 instruction also supports .ftz and .sat modifiers. fma.f32
requires sm_20. The mad.f32 instruction has been extended with rounding
modifiers so that it’s synonymous with fma.f32 for sm_20 targets. Both fma.f32
and mad.f32 require a rounding modifier for sm_20 targets.

• The mad.f32 instruction without rounding is retained so that compilers can generate
code for sm_1x targets. When code compiled for sm_1x is executed on sm_20
devices, mad.f32 maps to fma.rn.f32.

• Single- and double-precision div, rcp, and sqrt with IEEE 754 compliant rounding
have been added. These are indicated by the use of a rounding modifier and require
sm_20.

• Instructions testp and copysign have been added.

PTX ISA Version 2.1

182 April 21, 2010

11.2.1.2. New instructions

A “load uniform” instruction, ldu, has been added.

Surface instructions support additional .clamp modifiers, .clamp and .zero.

Instruction sust now supports formatted surface stores.

A “count leading zeros” instruction, clz, has been added.

A “find leading non-sign bit” instruction, bfind, has been added.

A “bit reversal” instruction, brev, has been added.

Bit field extract and insert instructions, bfe and bfi, have been added.

A “population count” instruction, popc, has been added.

A “vote ballot” instruction, vote.ballot.b32, has been added.

Instructions {atom,red}.add.f32 have been implemented.

Instructions {atom,red}.shared have been extended to handle 64-bit data types for sm_20

targets.

A system-level membar instruction, membar.sys, has been added.

The bar instruction has been extended as follows:

• A bar.arrive instruction has been added.

• Instructions bar.red.popc.u32 and bar.red.{and,or}.pred have been added.

• bar now supports optional thread count and register operands.

Video instructions (includes prmt) have been added.

Instruction isspacep for querying whether a generic address falls within a specified state
space window has been added.

Instruction cvta for converting global, local, and shared addresses to generic address and
vice-versa has been added.

11.2.1.3. Other new features

Instructions ld, ldu, st, prefetch, prefetchu, isspacep, cvta, atom, and red now support generic
addressing.

New special registers %nsmid, %clock64, %lanemask_{eq,le,lt,ge,gt} have been added.

Cache operations have been added to instructions ld, st, suld, and sust, e.g. for prefetching to
specified level of memory hierarchy. Instructions prefetch and prefetchu have also been
added.

The .maxnctapersm directive was deprecated and replaced with .minnctapersm to better
match its behavior and usage.

A new directive, .section, has been added to replace the @@DWARF syntax for passing
dwarf-format debugging information through PTX.

 Chapter 11. Release Notes

April 21, 2010 183

11.2.2. Semantic Changes and Clarifications
The errata in cvt.ftz for PTX ISA versions 1.4 and earlier, where single-precision subnormal
inputs and results were not flushed to zero if either source or destination type size was 64-
bits, has been fixed. In PTX ISA version 1.5 and later, cvt.ftz (and cvt for .target sm_1x,
where .ftz is implied) instructions flush single-precision subnormal inputs and results to sign-
preserving zero for all combinations of floating-point instruction types. To maintain
compatibility with legacy PTX code, if .version is 1.4 or earlier, single-precision subnormal
inputs and results are flushed to sign-preserving zero only when neither source nor
destination type size is 64-bits.

The number of samplers available in independent texturing mode was incorrectly listed as
thirty-two in PTX ISA version 1.5; the correct number is sixteen.

April 21, 2010 185

Appendix A.

Descriptions of .pragma Strings

This section describes the .pragma strings defined by ptxas.

Table 153. Pragma Strings: “nounroll”

“nounroll” Disable loop unrolling in optimizing backend compiler.

Syntax .pragma “nounroll”;

Description The “nounroll” pragma is a directive to disable loop unrolling in the optimizing backend
compiler.

The “nounroll” pragma is allowed at module, entry-function, and statement levels, with
the following meanings:

module scope disables unrolling for all loops in module, including
loops preceding the .pragma.

entry-function scope disables unrolling for all loops in the entry function
body.

statement-level pragma disables unrolling of0 the loop for which the current
block is the loop header.

Note that in order to have the desired effect at statement level, the “nounroll” directive
must appear before any instruction statements in the loop header basic block for the
desired loop. The loop header block is defined as the block that dominates all blocks in
the loop body and is the target of the loop backedge. Statement-level “nounroll”
directives appearing outside of loop header blocks are silently ignored.

PTX ISA Notes Introduced in PTX ISA version 2.0.

Target ISA Notes Supported only for sm_20 targets. Ignored for sm_1x targets.

Examples .entry foo (…)

.pragma “nounroll”; // do not unroll any loop in this function

{

…

}

.func bar (…)

{

…

L1_head:

 .pragma “nounroll”; // do not unroll this loop

 …

@p bra L1_end;

L1_body:

 …

L1_continue:

 bra L1_head;

L1_end:

 …

}

PTX ISA Version 2.1

186 April 21, 2010

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under
any patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, CUDA, and Tesla are trademarks or registered trademarks of NVIDIA Corporation
in the United States and other countries. Other company and product names may be trademarks of the
respective companies with which they are associated.

Copyright

© 2010 NVIDIA Corporation. All rights reserved.

