

nX-U8/100 Core

 Instruction Manual
CMOS 8-bit microcontroller

Issue Date: Oct.11th, 2011

FEUZ0317A0-U8-INST-05

NOTICE

1. The information contained herein can change without notice owing to product and/or technical improvements. Before

using the product, please make sure that the information being referred to is up-to-date.

2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the

standard action and performance of the product. When planning to use the product, please ensure that the external

conditions are reflected in the actual circuit, assembly, and program designs.

3. When designing your product, please use our product below the specified maximum ratings and within the specified

operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.

4. LAPIS Semiconductor Co., Ltd. assumes no responsibility or liability whatsoever for any failure or unusual or

unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper

handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the

specified maximum ratings or operation outside the specified operating range.

5. Neither indemnity against nor license of a third party’s industrial and intellectual property right, etc. is granted by us in

connection with the use of the product and/or the information and drawings contained herein. No responsibility is

assumed by us for any infringement of a third party’s right which may result from the use thereof.

6. The products listed in this document are intended for use in general electronics equipment for commercial applications

(e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These

products are not, unless specifically authorized by LAPIS Semiconductor Co., Ltd., authorized for use in any system or

application that requires special or enhanced quality and reliability characteristics nor in any system or application

where the failure of such system or application may result in the loss or damage of property, or death or injury to

humans.

Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace

equipment, nuclear power control, medical equipment, and life-support systems.

7. Certain products in this document may need government approval before they can be exported to particular countries.

The purchaser assumes the responsibility of determining the legality of export of these products and will take

appropriate and necessary steps at their own expense for these.

8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.

Copyright 2008-2011 LAPIS Semiconductor Co., Ltd.

Contents
Instruction Set

Contents
1. Architecture 1-1

1.1 Overview .. 1-1
1.1.1 Features ...1-1

1.2 CPU Resources and Programming Model .. 1-2
1.2.1 Registers ..1-4

1.2.1.1 General Registers ..1-5
1.2.1.2 Base and Frame Pointers ..1-5

1.2.2 Control Registers..1-6
1.2.2.1 Program Status Word (PSW)...1-6
1.2.2.2 Program Counter (PC) ...1-8
1.2.2.3 Code Segment Register (CSR)..1-8
1.2.2.4 Link Registers (LR, ELR1, ELR2, and ELR3)...1-9
1.2.2.5 CSR Backup Registers (LCSR, ECSR1, ECSR2, and ECSR3)...............1-10
1.2.2.6 PSW Backup Registers (EPSW1, EPSW2, and EPSW3)........................1-11
1.2.2.7 Stack Pointer (SP) ...1-11
1.2.2.8 EA Register (EA)..1-12
1.2.2.9 Address Register (AR) ...1-12
1.2.2.10 Data Segment Register (DSR)...1-13

1.3 Memory Spaces ... 1-14
1.3.1 Program/Code Memory Space ...1-14
1.3.2 Vector Table ...1-15

1.3.2.1 Reset Vectors ..1-15
1.3.2.2 Interrupt Vectors ..1-16
1.3.2.3 Writing Vector Table ..1-17

1.3.3 Program/Code Memory Space ...1-18
1.3.4 DSR Prefix Instructions ..1-18
1.3.5 Data Memory Space...1-19

1.3.5.1 Data Types...1-20
1.3.5.2 Address Assignment ..1-21
1.3.5.3 Word Boundaries ...1-21
1.3.5.4 ROM Window...1-22

1.3.6 Hardware Memory Models ...1-22
1.3.7 Interrupt Operation ...1-24

1.3.7.1 Interrupt Acceptance..1-24
1.3.7.2 Non-maskable Interrupts (NMI)..1-25
1.3.7.3 Maskable Interrupts (MI) ..1-26
1.3.7.4 Software Interrupts (SWI) ..1-27

Contents
Instruction Set

1.4 Exception Levels and Backup Registers .. 1-28

1.5 Notes about Non-maskable interrupts .. 1-34

1.6 Interrupt Blocking ... 1-35

1.7 Stack Modifications... 1-36

2. Addressing Types 2-1

2.1 Addressing Types ... 2-1

2.2 Register Addressing ... 2-2

2.3 Memory Addressing.. 2-3
2.3.1 Register Indirect Addressing ..2-4
2.3.2 Direct Addressing ...2-7

2.4 Immediate Addressing.. 2-8

2.5 Program/Code Memory Addressing .. 2-9

3. Instruction Descriptions 3-1

3.1 Overview .. 3-1

3.2 Instructions by Functional Group.. 3-2
Arithmetic Instructions ...3-2
Shift Instructions..3-2
Load/Store Instructions ...3-3
Load/Store Instructions (cont.) ..3-4
Load/Store Instructions (cont.) ..3-5
Control Register Access Instructions ..3-6
PUSH/POP Instructions...3-6
Coprocessor Data Transfer Instructions..3-7
Coprocessor Data Transfer Instructions (continued from previous page)3-8
Bit Access Instructions ..3-9
PSW Access Instructions ..3-9
Conditional Relative Branch Instructions...3-9
Sign Extension Instruction...3-9
Software Interrupt Instructions ..3-10
Branch Instructions..3-10
Multiplication and Division Instructions..3-10
Miscellaneous..3-10

3.3 Instruction Execution Times .. 3-11

Contents
Instruction Set

3.4 Instruction Descriptions ... 3-22
ADD ERn , ERm ...3-23
ADD ERn , #imm7 ..3-24
ADD Rn , obj ..3-25
ADD SP , #signed8 ..3-26
ADDC Rn , obj ..3-27
AND Rn , obj ..3-28
B Cadr ..3-29
B ERn ...3-30
Bcond Radr ..3-31
BL Cadr ..3-33
BL ERn ...3-34
BRK ...3-35
CMP ERn , ERm...3-36
CMP Rn , obj ..3-37
CMPC Rn , obj..3-38
CPLC...3-39
DAA Rn ..3-40
DAS Rn ..3-41
DEC [EA] ..3-42
DI...3-43
DIV ERn , Rm ...3-44
EI ...3-45
EXTBW ERn...3-46
INC [EA] ...3-47
L ERn, obj...3-48
L QRn,obj ...3-50
L Rn, obj ..3-51
L XRn,obj..3-53
LEA obj ...3-54
MOV CERn , obj ...3-55
MOV CQRn , obj...3-56
MOV CRn , obj ...3-57
MOV CRn , Rm...3-58
MOV CXRn , obj ...3-59
MOV ECSR , Rm..3-60
MOV ELR , ERm ..3-61
MOV EPSW , Rm ...3-62
MOV ERn , ELR ...3-63
MOV ERn , ERm ..3-64
MOV ERn , #imm7..3-65
MOV ERn , SP..3-66

Contents
Instruction Set

MOV obj , CERm ..3-67
MOV obj , CQRm..3-68
MOV obj , CRm ..3-69
MOV obj , CXRm ..3-70
MOV PSW , obj ..3-71
MOV Rn , CRm...3-72
MOV Rn , ECSR...3-73
MOV Rn , EPSW ..3-74
MOV Rn , PSW...3-75
MOV Rn , obj ..3-76
MOV SP , ERm...3-77
MUL ERn,Rm ...3-78
NEG Rn ..3-79
NOP...3-80
OR Rn , obj...3-81
POP register list ...3-82
POP obj ..3-84
PUSH register list ...3-85
PUSH obj..3-87
RB Dbitadr..3-88
RB Rn . bit_offset ...3-89
RC ...3-90
RT..3-91
RTI...3-92
SB Dbitadr ..3-93
SB Rn . bit_offset ...3-94
SC ...3-95
SLL Rn , obj..3-96
SLLC Rn , obj ...3-97
SRA Rn , obj...3-98
SRL Rn , obj ...3-99
SRLC Rn , obj ..3-100
ST ERn , obj ...3-101
ST QRn , obj...3-103
ST Rn , obj ...3-104
ST XRn , obj ...3-106
SUB Rn , Rm ..3-107
SUBC Rn , Rm ...3-108
SWI #snum ...3-109
TB Dbitadr ..3-110
TB Rn . bit_offset..3-111
XOR Rn , obj ..3-112

Contents
Instruction Set

4. Appendix 4-1

Arithmetic Instructions ...4-1
Shift Instructions..4-1
Load/Store Instructions ...4-2
Control Register Access Instructions ..4-3
PUSH/POP Instructions...4-3
Coprocessor Data Transfer Instructions..4-4
EA Register Data Transfer Instructions...4-4
ALU Instructions ..4-4
Bit Access Instructions ..4-5
PSW Access Instructions ..4-5
Conditional Relative Branch Instructions...4-5
Sign Extension Instruction...4-6
Software Interrupt Instructions ..4-6
Branch Instructions..4-6
Multiplication and Division Instructions..4-6
Miscellaneous..4-6

Contents
Instruction Set

1. Architecture

Chapter 1. Architecture
Instruction Set

 1-1

1.1 Overview

1.1.1 Features

The U8 architecture has the following features.

• Powerful Instruction Set
Instructions for data transfers, arithmetic, comparison, logic operations, bit manipulation,
bitwise logic operations, branches, conditional branches, call/return stack manipulation, and
arithmetic shifts

• Variety of Addressing Modes
Register addressing
Register indirect addressing
Stack pointer addressing
Control register addressing
EA register indirect addressing
General-purpose register indirect addressing
Direct addressing
Register indirect bit addressing
Direct bit addressing

• Memory Spaces
Program/code memory (ROM)

Up to 16 segments of 32 kilowords (0000H-FFFFH) each

Data memory (RAM)
Up to 256 segments of 64 kilobytes (0000H-FFFFH) each

• Interrupts
Dedicated emulator interrupts
Non-maskable interrupts
Maskable interrupts
Software interrupts

Chapter 1. Architecture
Instruction Set

 1-2

1.2 CPU Resources and Programming Model
The U8 architecture features two address spaces: 1 megabyte for code and 16 megabytes for data. Both
address spaces are divided into physical segments of 64 kilobytes each. The memory configuration for
physical segment #0 (0:0000H to 0:FFFFH) differs, however, from the others.

Physical segment #0 provides two sets of addresses and separate registers for accessing them: a
32-kiloword program/code memory segment accessed with the program counter (PC) and a 64-kilobyte
data memory segment accessed with the address register (AR). If the address in AR is within the ROM
window, however, the register accesses program/code memory, not the data memory.

Physical segments #1 and higher, with addresses above the first 64 kilobytes, form a single address space
mixing program/code and data memory. Accessing a physical segment assigned to program/code memory
requires a 20-bit address (CSR:PC) combining four bits from the code segment register (CSR) and 16 bits
from program counter (PC); a physical segment assigned to data memory, a 24-bit address (DSR:AR)
combining eight bits from the data segment register (DSR) and 16 bits from the address register (AR).

Figure 1.1 summarizes the layout of these U8 memory spaces.

Chapter 1. Architecture
Instruction Set

 1-3

Figure 1.1. U8 Memory Spaces

32K
words

Program/code memory space

Physical segment #0

PC (16 bits)

AR (16 bits)

64K
bytes

Data memory space

Program counter

Address register
ROM window

(max32K bytes)

Physical segments #1
and higher

CSR (4 bits) DSR (8 bits)
Code segment register Data segment register

Data memory addressProgram/code memory address

0000H

FFFFH

0001H
0002H

0000H
0002H

FFFEH

0004H

Program/code memory space Data memory space

1:0000H

F:FFFFH

1:0000H

F:FFFFH

FF:FFFFH

10:0000H

1:FFFFH
2:0000H
2:FFFFH

1:FFFFH
2:0000H
2:FFFFH

Chapter 1. Architecture
Instruction Set

 1-4

1.2.1 Registers

General registers lie at the center of U8 hardware operation. Also shown in Figure 1.2 are the control
registers.

7 0

0

LR

PSW

7 0 7 0

SP

0 15 0

Control registers

PC

0

CSR

3 0 3 0

LCSR

ECSR1
ECSR2
ECSR3

AR

0

EA

EPSW2

ELR2

EPSW3

EPSW1

ELR3

ELR1

R1

R15

R3
R2

R0

15

15

15 15

Program counter

Address register

Stack pointer EA register

PSW backup registers

Program status word

Code segment register

CSR backup registers

Link registers

General registers

:
:

:
:

Figure 1.2. Register Set

Chapter 1. Architecture
Instruction Set

 1-5

1.2.1.1 General Registers

These 16 registers at the center of calculations are one byte wide. Special addressing modes, however,
also group adjacent registers together to permit access as eight word-sized registers (ERn), four double
word-sized registers (XRn), and two quad word-sized registers (QRn).

If an interrupt handler modifies the contents of these registers, it must explicitly save them with PUSH
instructions at its entry point and restore them with POP instructions before returning.

7 0

 R0

ER0
R1

 R2

XR0
ER2

R3
 R4

ER4
R5

 R6

QR0

XR4
ER6

R7
 R8

ER8
R9

 R10

XR8
ER10

R11
 R12 BP (Lower byte) Base pointer

ER12
R13 BP (Upper byte)

 R14 FP (Lower byte) Frame pointer

QR8

XR12
ER14

R15 FP (Upper byte)

Figure 1.3. General Registers

Examples: Using general registers

MOV R0 , #7 ; byte-sized register

L ER0 , [EA+] ; word-sized register

L XR0 , [EA] ; double word-sized register

ST QR0 , [EA] ; quad word-sized register

SB R3.2 ; individual bit in register

1.2.1.2 Base and Frame Pointers

The C compiler uses two global pointers. It uses ER12 as the base pointer (BP) and ER14 as the frame
pointer (FP). These two registers therefore offer special addressing modes in addition to their roles as
general registers. For further details, see Chapter 2.

Chapter 1. Architecture
Instruction Set

 1-6

1.2.2 Control Registers

These registers control program flow and hold operational status information. There are 18 such registers,
each with its own special function. The contents of the entire group is sometimes referred to as the
program context.

1.2.2.1 Program Status Word (PSW)
 7 6 5 4 3 2 1 0

PSW C Z S OV MIE HC ELEVEL

This 8-bit register contains five flags tracking the results of instruction execution, one control bit, and one
field.

The hardware automatically saves these contents to an exception program status word (EPSW) register
when it accepts an interrupt request. The RTI instruction at the end of the interrupt handler restores them.

This register contains five flags tracking the results of arithmetic instruction execution, one bit controlling
interrupt acceptance, and a 2-bit field indicating the exception level (ELEVEL). The program can change
these contents at any time. After a reset, they are all zero.

These flags, bit, and field have the following functions.

• Bit 7: Carry flag (C)

This bit goes to “1” if an arithmetic, shift, or comparison instruction produces a carry out of bit
7 or bit 0 or a borrow into bit 7. Otherwise, it goes to “0.”

The contents can also be directly set, reset, and inverted with the SC, RC, or CPLC instructions
and tested with the conditional branch instructions.

• Bit 6: Zero flag (Z)

This bit goes to “1” if an arithmetic or data transfer instruction produces a zero result. Otherwise,
it goes to “0.”

The contents can be tested with the conditional branch instructions.

• Bit 5: Sign flag (S)

This bit tracks the sign bit in the result from an arithmetic, comparison, or bitwise logical
instruction: “1” for negative, “0” for positive.

• Bit 4: Overflow flag (OV)

This bit goes to “1” if a signed arithmetic instruction produces a carry out of or a borrow into
bit 7—that is, a result that does not fit into the twos complement range available. Otherwise, it

Chapter 1. Architecture
Instruction Set

 1-7

goes to “0.”

• Bit 3: Master interrupt enable bit (MIE)

This bit is a mask controlling the acceptance of maskable interrupt requests. Setting it to “1”
enables such interrupt requests; “0” disables them.

The hardware automatically sets this bit to “0” when it accepts a maskable interrupt request. The
contents can also be directly set or reset with the EI and DI instructions.

• Bit 2: Half carry flag (HC)

This bit, used in BCD arithmetic, goes to “1” if an arithmetic or comparison instruction
produces a carry out of or a borrow into bit 3 or bit 11. Otherwise, it goes to “0.”

• Bits 1 and 0: Exception level (ELEVEL)

This field gives the current exception level, an integer between 0 and 3 indicating the interrupt
priority. The higher this number, the greater the priority. For a list of interrupts and their
exception/priority levels, see Section 1.3.7 “Interrupt Operation.”

The U8 hardware accepts an interrupt request only if its interrupt priority is the same or greater
than the current exception level (ELEVEL) setting.

1.2.2.1.1 Instructions Modifying PSW Flags

For further details on instructions modifying PSW flags and the exact nature of those modifications, see
Section 3.2 “Instructions by Functional Group” and Chapter 4 “Appendix.”

Chapter 1. Architecture
Instruction Set

 1-8

1.2.2.2 Program Counter (PC)
 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PC

This 16-bit register holds the offset portion of the address of the next instruction to be executed. The
hardware automatically increments it immediately after fetching an instruction from program/code
memory, creating the cycle necessary for sequential execution. Branch and other instructions, however,
break this cycle by overwriting this default with a different address.

Instructions always start on word boundaries, so the hardware increments the program counter (PC) by
two each time and forces the lowest bit in any address loaded to “0” to enforce this alignment.

After a reset, the program counter (PC) starts with the contents of the vector corresponding to the reset
factor.

When the hardware accepts an interrupt request, it automatically saves the contents of this register for use
as part of the return address in the exception link register (ELR1 to ELR3) for the current exception level
(ELEVEL) setting. The RTI instruction at the end of the interrupt handler restores them.

1.2.2.3 Code Segment Register (CSR)
 3 2 1 0

CSR

This 4-bit register holds the physical segment number (0 to 15) portion of the address for the current
instruction. The remaining 16 bits (0 to FFFFH), representing an offset within that physical segment,
come from the program counter (PC). Together, these two registers specify a 20-bit address (CSR:PC)
accessing the entire program/code memory space.

Address calculations apply only to the 16-bit offset, ignoring any over- or underflow, so never modify the
CSR contents. The same applies to PC overflow. Program execution thus continuously cycles through the
addresses in the same physical segment until the program explicitly overwrites the CSR contents.

The following actions modify the CSR contents.

• interrupt acceptance: CSR goes to zero.

• reset : CSR goes to zero.

• B Cadr instruction: CSR goes to the value specified in the instruction.

• BL Cadr instruction: CSR goes to the value specified in the instruction.

• RTI instruction: CSR goes to the value from the ECSR register corresponding to the current

Chapter 1. Architecture
Instruction Set

 1-9

exception level (ELEVEL) setting from program status word (PSW).

• RT instruction: CSR goes to the value from the LCSR register.

• POP PC instruction: CSR goes to the value from the stack.

When the hardware accepts an interrupt request, it automatically saves the contents of this register for use
as part of the return address in the ECSR register (ECSR1 to ECSR3) for the current exception level
(ELEVEL) setting. The RTI instruction at the end of the interrupt handler restores them.

After a reset, this register contains zero.

1.2.2.4 Link Registers (LR, ELR1, ELR2, and ELR3)
 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LR

ELR1

ELR2

ELR3

These four 16-bit registers are for saving the contents of the program counter (PC) during subroutines
(LR) and interrupt handlers (ELR1 to ELR3). The lowest bit is always “0.”

The LR register holds the offset portion of the return address for a subroutine called with a BL instruction.
The RT instruction at the end of the subroutine loads the LR contents back into the program counter (PC).

Note that the program has a choice of two instructions for returning from a subroutine to its caller: RT or
POP. For further details, see Section 1.4 “Exception Levels and Backup Registers.”

The registers ELR1 to ELR3 hold the offset portions of the return addresses for interrupt handlers at the
corresponding exception levels. The hardware saves the return address using the index number assigned
to the interrupt being accepted. For a list of interrupts and their exception/priority levels, see Section 1.3.7
“Interrupt Operation.”

Note that modifying the ELEVEL portion of the program status word (PSW) in software requires
particular care because it changes the index pointing to the most recently used ELR-ECSR register pair.

Note also that the ELR3-ECSR3 register pair is only physically present in models including the on-chip
debugger. Accessing these registers on other models leads to unpredictable operation. Always check the
User’s Manual for the target device first.

Chapter 1. Architecture
Instruction Set

 1-10

1.2.2.5 CSR Backup Registers (LCSR, ECSR1, ECSR2, and ECSR3)
 3 2 1 0

LCSR

ECSR1

ECSR2

ECSR3

These four 4-bit registers are for saving the contents of the code segment register (CSR) during
subroutines (LCSR) and interrupt handlers (ECSR1 to ECSR3).

The LCSR register holds the physical segment portion of the return address for a subroutine called with a
BL instruction. The RT instruction at the end of the subroutine loads the LCSR contents back into the
code segment register (CSR).

Note that the program has a choice of two instructions for returning from a subroutine to its caller: RT or
POP. For further details, see Section 1.4 “Exception Levels and Backup Registers.”

The registers ECSR1 to ECSR3 hold the physical segment portions of the return addresses for interrupt
handlers at the corresponding exception levels. The hardware saves the return address using the index
number assigned to the interrupt being accepted. For a list of interrupts and their exception/priority levels,
see Section 1.3.7 “Interrupt Operation.”

Note that modifying the ELEVEL portion of the program status word (PSW) in software requires
particular care because it changes the index pointing to the most recently used ELR-ECSR register pair.

Note also that the ELR3-ECSR3 register pair is only physically present in models including the on-chip
debugger. Accessing these registers on other models leads to unpredictable operation. Always check the
User’s Manual for the target device first.

Chapter 1. Architecture
Instruction Set

 1-11

1.2.2.6 PSW Backup Registers (EPSW1, EPSW2, and EPSW3)
 7 6 5 4 3 2 1 0

EPSW1

EPSW2

EPSW3

These three 8-bit registers are for saving the contents of the program status word (PSW) during interrupt
handlers.

The hardware saves the program status word (PSW) using the index number assigned to the interrupt
being accepted. For a list of interrupts and their exception/priority levels, see Section 1.3.7 “Interrupt
Operation.”

Note that modifying the ELEVEL portion of the program status word (PSW) in software requires
particular care because it changes the index pointing to the most recently used EPSW register.

Note also that the EPSW3 register is only physically present in models including the on-chip debugger.
Accessing this register on other models leads to unpredictable operation. Always check the User’s
Manual for the target device first.

1.2.2.7 Stack Pointer (SP)
 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SP

This 16-bit register holds a pointer to the start of the stack for saving and restoring the contents of
registers—with the PUSH and POP instructions, for example.

Stack operations are always word sized. One saving word-sized data to the stack subtracts 2 from this
register and then copies the data to that new address. Restoring data copies a word from the stack to the
specified destination and then adds 2 to this register.

There is no automatic word alignment. If the contents of this register are odd, that address is used as is.

This register is an independent one, fully accessible from programs with the appropriate
instructions—PUSH and POP, for example.

After a reset, this register contains the contents of addresses 0000H and 0001H in the program/code
memory in its lower and upper bytes, respectively.

Chapter 1. Architecture
Instruction Set

 1-12

1.2.2.8 EA Register (EA)
 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EA

This 16-bit register holds an address for use by instructions that access data memory indirectly via this
register.

These 16 bits are sufficient for accessing data memory addresses in physical segment #0. Accessing
physical segments #1 and higher, however, requires prefixing this offset with the contents of the data
segment register (DSR), described below, to form a 24-bit address (DSR:EA).

This register is accessible from programs with the LEA instruction for loading it and with the stack
manipulation instructions PUSH and POP.

1.2.2.9 Address Register (AR)
 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AR

This 16-bit register temporarily holds an address for use by instructions accessing data memory. It is for
the exclusive use by the U8 core, so is not accessible from programs.

Chapter 1. Architecture
Instruction Set

 1-13

1.2.2.10 Data Segment Register (DSR)
 7 6 5 4 3 2 1 0

DSR

This 8-bit register holds a physical segment number for accessing data memory in physical segments #1
and higher. This number can be anywhere between 0 and 255.

Accessing addresses within the specified physical segment uses the 16-bit offset (0 to FFFFH) in the EA
address—that is, a 24-bit address with the contents of this register in the top eight bits and the contents of
the EA register in the lower 16 bits.

Memory access instructions specifying a numeric value for the physical segment first update DSR to this
new value. Those with the notation DSR in that position use the current contents of this register. In the
absence of either notation, the instruction always ignores the DSR contents and uses physical segment #0.

The following code fragment gives some examples of data memory access.

 L R0 ,5:1234H ; Set DSR to 5 and load R0 from 5:1234H, an address in
physical segments #1 and higher.

;
 LEA 55AAH
 ST R0 ,3:[EA+] ; Set DSR to 3 and store the contents of R0 in 3:55AAH, an

address in physical segments #1 and higher.
 ; Increment EA.
 ST R1 ,3:[EA+] ; Set DSR to 3 and store the contents of R1 in 3:55ABH, an

address in physical segments #1 and higher.
 ; Increment EA.
 ST R2 ,3:[EA+] ; Set DSR to 3 and store the contents of R2 in 3:55ACH, an

address in physical segments #1 and higher.
 ; Increment EA.
;
 L R0 ,5:1234H ; Set DSR to 5 and load R0 from 5:1234H, an address in

physical segments #1 and higher.
 L R1 ,1234H ; Load R1 from offset 1234H in data memory physical segment

#0.
 L R2 ,01235H ; Set DSR to 0 and load R2 from offset 1235H in data memory

physical segment #0.
;
 LEA AA55H ;
 L R5,DSR: [EA+] ; Load R5 from the physical segment currently in DSR using the

offset in EA (AA55H).
 ; Increment EA.
 L R6,DSR:[EA+] ; Load R6 from the physical segment currently in DSR using the

offset in EA (AA56H).
 ; Increment EA.

After a reset, this register contains zero.

Chapter 1. Architecture
Instruction Set

 1-14

1.3 Memory Spaces
The U8 memory space consists of 256 physical segments of 64K bytes each. It is shared by a 1-megabyte
program/code memory space (0:0000H to F:FFFFH) and a 16-megabyte data memory space (0:0000H to
FF:FFFFH). Physical segment #0, however, has a different structure from the others, #1 and higher.

1.3.1 Program/Code Memory Space

The U8’s 1-megabyte program/code memory space features 16 physical segments with 32 kilowords each.
Its primary uses are holding the machine code necessary for program execution and read-only data tables.
Programs access this space with 20-bit addresses (CSR:PC) combining the contents of the code segment
register (CSR) in the top four bits and those of the program counter (PC) in the remaining 16 bits. The
contents of the code segment register (CSR) are called the code segment.

Such address calculations as incrementing the program counter (PC) and adding or subtracting a
displacement to calculate a relative branch target ignore any over- or underflow, so never modify the CSR
contents.

The ROM window, a special region in physical segment #0, is accessible using RAM addressing.

Access with a physical segment uses a 16-bit offset between 0 and 0FFFEH. Address calculations affect
only this 16-bit offset and ignore any over- or underflow.

The following illustrates the layout of this memory space.

Physical segment number

Code segment number

CSR PC

01519

Program counter

#1 #15 (max.)

0000H

0FFFEH

0100H

00FEH

#n#0

Vector
region

Offset within segment

. . . .

Code segment
register

Machine
code for

instruction

Chapter 1. Architecture
Instruction Set

 1-15

1.3.2 Vector Table

Addresses 0:0H to 0:0FEH in the program/code memory space are reserved for a vector table containing
16-bit offsets to the routines processing resets and interrupts. Each vector in the table starts at an even
address. The hardware automatically resets the code segment register (CSR) to zero, so these routines
must always start in physical segment #0.

0000H

0002H Reset vectors

0004H

0006H

 Hardware interrupt vectors

007EH

0080H
 Software interrupt vectors

00FEH

Figure 1.4. Vector Table

1.3.2.1 Reset Vectors

This portion of the vector table holds the entry points for processing resets—that is, the initial value for
the stack pointer at address 0 and the reset routine entry points at addresses 2 and 4.

0000H Initial value for stack pointer (SP)

0002H Reset routine entry point for external reset input or
BRK instruction with exception level (ELEVEL)
setting of 2 or 3

0004H Reset routine entry point for BRK instruction with
exception level (ELEVEL) setting of 0 or 1

Figure 1.5. Reset Vectors

Chapter 1. Architecture
Instruction Set

 1-16

1.3.2.2 Interrupt Vectors

1.3.2.2.1 Hardware Interrupt Vectors

This portion of the vector table holds the entry points for processing hardware interrupts. There are two
non-maskable interrupt requests, NMICE and NMI, plus room for up to 59 maskable ones.

0006H NMICE interrupt

0008H - 007EH

NMI interrupt plus maskable
interrupts

Figure 1.6. Hardware Interrupt Vectors

1.3.2.2.2 Software Interrupt Vectors

This portion of the vector table holds the entry points for interrupt requests from SWI instructions in the
program.

0080H SWI #0

0082H SWI #1

0084H-00FAH SWI #2- #61

00FCH SWI #62

00FEH SWI #63

Figure 1.7. Software Interrupt Vectors

Chapter 1. Architecture
Instruction Set

 1-17

1.3.2.3 Writing Vector Table

In assembly language, use DW directives with labels representing the entry points as their operands as
shown in the following code fragment.

Note that only the reset vectors must always be present. If the program does not use these interrupts, this
region is available for normal program code.

;
;reset vector table
;
 cseg

dw
dw
dw

org
dw
dw
dw

at

spinit
start
brk

0008h
nmi_entry
Int1_entry
Int2_entry
:
:
:

0000h

; Initial value for stack pointer
; Initial value for program counter
; Reset routine entry point for BRK instruction

; Non-maskable interrupt
; Maskable interrupt #0
; Maskable interrupt #1

;
;software interrupts

;
 cseg at 0080h
swi_0:
swi_1:

dw
dw

sw0_entry
sw1_entry

 ; Software interrupt #0
; Software interrupt #1

 :
:

;
;start of main procedure
;
start: ; Program entry point
 :

:
:

Chapter 1. Architecture
Instruction Set

 1-18

1.3.3 Program/Code Memory Space

From the programming standpoint, there is no logical difference between physical segment #0 and the
others. The linker and other tools automatically assign the program code to onboard memory available on
the chip and then to external memory.

1.3.4 DSR Prefix Instructions

The U8 architecture divides memory spaces into physical segments of 64K bytes each, so accessing data
in a physical segment other than physical segment #0 requires manipulating the data segment register
(DSR) with one of the following three DSR prefix instructions.

 DSR Prefix Instruction Function

 1110_0011_iiii_iiii Load DSR with the 8-bit immediate value
iiii_iiii.

 1001_0000_dddd_1111 Load DSR with the contents of the general
register Rd.

 1111_1110_1001_1111 Use the current DSR value.

DSR prefix instructions have this prefixing effect only when they immediately precede a memory access
instruction. Memory access instructions without an immediately preceding DSR prefix instruction access
physical segment #0.

The hardware automatically disables all interrupts between a DSR prefix instruction and the immediately
following instruction. For further details, see Section 1.5 “Interrupt Blocking” below.

Note: To prevent unintended operation and provide the strongest checking possible of memory access,
the U8 assembly language specifications deliberately forbid the use of the DSR prefix
instructions in program source code. Instead, use the corresponding DSR prefix inside the
memory access instruction itself. For further details, see Section 2.3 “Memory Addressing”
below.

Chapter 1. Architecture
Instruction Set

 1-19

1.3.5 Data Memory Space

The U8’s 16-megabyte data memory space features 256 physical segments with 64 kilobytes each. Its
primary use is holding data that is written as well as read.

Programs access this space with 24-bit addresses (DSR:AR) combining the contents of the data segment
register (DSR) in the top eight bits and those of the address register (AR) in the remaining 16 bits. The
contents of the data segment register (DSR) are called the data segment.

Physical segment #0 consists of the ROM window plus one or two data regions. The ROM window is a
special region accessing program/code memory addresses using RAM addressing. The corresponding data
memory addresses are not physically present. The primary use for this window is accessing table data in
ROM.

The following illustrates the layout of this memory space.
0000H

XXXXH

0FFFFH

R O M w indow

#0 #1 #n

M achine code
for ins truction

#255 (m ax.)

.

Phys ica l segm ent #0 Phys ica l segm ents #1
and h igher

Bank/
segm ent

D ATA_BU S/8

AD D R ESS_BU S/16

D SR [7 :0]

AR [15:0]

O ffset w ith in
bank/segm ent

U 8

Chapter 1. Architecture
Instruction Set

 1-20

1.3.5.1 Data Types

This Section describes the data types supported by U8 instructions.

Unsigned Byte

This data type is used by instructions operating on bytes. Values range from 0 to 255.
Arithmetic operations that underflow or overflow this range set the carry flag (C) to “1” and
discard all but the lowest eight bits to produce a result modulo 256.

Bit operations manipulate individual bits. The bits are numbered 0 to 7 from the least significant
bit (LSB) to the most significant bit (MSB).

Signed Byte

This data type is used by instructions operating on bytes. The top bit is considered the sign bit,
producing twos complement values ranging from -128 to +127. Arithmetic operations that
underflow or overflow this range set the overflow flag (OV) to “1.”

Unsigned Word

This data type is used by instructions operating on words. Values range from 0 to 65,535.
Arithmetic operations that underflow or overflow this range set the carry flag (C) to “1” and
discard all but the lowest 16 bits to produce a result modulo 65,536.

Memory storage is little endian, with the lower byte (bits 7 to 0) preceding the upper (bits 15 to
8). Data memory requires word boundary alignment with the lower byte at an even address and
the upper at the next, odd address. Program/code memory does not impose this restriction. The
address of word data is always the address of its lower byte.

Bitwise operations manipulate individual bits. The bits are numbered 0 to 15 from the least
significant bit (LSB) to the most significant bit (MSB).

Signed Word

This data type is used by instructions operating on words. The top bit is considered the sign bit,
producing twos complement values ranging from -32768 to + 32767. Arithmetic operations that
underflow or overflow this range set the overflow flag (OV) to “1.”

Memory storage is little endian, with the lower byte (bits 7 to 0) preceding the upper (bits 15 to
8). Data memory requires word boundary alignment with the lower byte at an even address and
the upper at the next, odd address. Program/code memory does not impose this restriction. The
address of word data is always the address of its lower byte.

Chapter 1. Architecture
Instruction Set

 1-21

Bit

This data type is used by instructions operating on bits. The only values are “0” and “1.” This
type applies to individual bits in most registers and all bits in memory. Bit addressing uses the
name of a byte-sized register or a memory address plus, the dot operator, and the number (0 to
7). The operations available for these bits include transfers, logical operations, and bit test and
jump.

1.3.5.2 Address Assignment

Memory addresses are in bytes. Byte addressing assigns a unique address to every byte in memory. These
addresses run from 0 to FFFFH (65,535) in each 64-kilobyte physical segment.

The U8 architecture separates memory into program/code memory and data memory, each with their own
set of byte addresses.

1.3.5.3 Word Boundaries

The U8 data memory has word boundaries. The hardware automatically enforces word alignment by
ignoring the lowest bit in the address, forcing it to “0.” Instructions accessing word-, double word-, or
quad word-sized data using odd-numbered therefore access the preceding even-numbered address without
triggering an addressing error. The programmer must, therefore, assign these larger data types to word
boundaries. Note that there are no additional boundaries for multiword types. The only requirement is that
they be on word boundaries.

Program/code memory also has word boundaries. So too does program/code memory accessed by the
ROM window.

l
l er0, 1000h

er0, 1001h
; (1) Load R0 from address 1000H; R1 from address 1001H
; (2) Load R0 from address 1000H; R1 from address 1001H

 (1) 34h
1000h

 (2) 12h
1001h

Word-sized access means that either address (1000H or
1001H) produces the same result: 1234H in ER0.

Figure 1.8. Word Boundaries in Memory

Chapter 1. Architecture
Instruction Set

 1-22

1.3.5.4 ROM Window

This window, assigned to an unused portion of physical segment #0 in data memory, is for accessing the
corresponding program/code memory addresses with RAM addressing. The U8 architecture thus does not
need special instructions for accessing data in program/code memory (ROM). Using a RAM access
instruction with an address in the ROM window produces the same result.

Accessing an address in the ROM window takes, however, more instruction cycles than the same
instruction accessing data memory. For further details, see Section 3.3 “Instruction Execution Times.”

The ROM window supports only read access. Writing to a ROM window address does not produce
meaningful results.

1.3.6 Hardware Memory Models

The U8 architecture provides hardware control over the number of physical segments accessible as
program/code memory: 64 kilobytes (32 kilowords) or 1 megabyte (512 kilowords). The procedure for
specifying this hardware memory model is in the User’s Manual for the target device.

The following Table summarizes the models available.

 Model Name Program/Code Addresses
CSR

CSR Backup
Registers

 SMALL Program memory: 0H - FFFFH
Data memory: 0H - FF:FFFFH Not used

 LARGE Program memory: 0H - F:FFFFH
Data memory: 0H - FF:FFFFH Used

The choice of hardware memory model affects the following aspects of operation.

• Amount of program/code memory available

• Operation of subroutine calls and corresponding RT instructions

• Operation of interrupts and corresponding RTI instructions

• Operation of PUSH and POP instructions

Chapter 1. Architecture
Instruction Set

 1-23

The following Table outlines these differences in more detail.

 SMALL LARGE

 Amount of program/code memory available 64K bytes

(0H - 0FFFFH)

1M bytes

(0H - F:FFFFH)

 Registers saved during subroutine call PC PC

CSR

 Registers restored by RT instruction PC PC

CSR

 Registers saved during interrupt acceptance PC

PSW

PC

PSW

CSR

 Registers restored by RTI instruction PC

PSW

PC

PSW

CSR

LR LR

LCSR

Registers saved by PUSH LR/ELR
instruction ELR ELR

ECSR

LR LR

LCSR

Registers restored by POP LR/PC instruction

PC PC

CSR

Chapter 1. Architecture
Instruction Set

 1-24

1.3.7 Interrupt Operation

1.3.7.1 Interrupt Acceptance

The U8 hardware accepts an interrupt request (NMICE, NMI, or MI) only if its interrupt level is the same
or greater than the current exception level (ELEVEL) setting.

The following Table lists the interrupt level, an integer between 0 and 3 indicating the interrupt priority,
for each type of interrupt.

 Interrupt Type Interrupt Level

 Emulator interrupt (NMICE)*1 3

 Non-maskable interrupt (NMI) 2

 Software interrupt (SWI) 1

 Maskable interrupt (MI) 1

*1 This interrupt request requires an in-circuit emulator. It is not available to user application
programs.

An exception level (ELEVEL) setting of zero indicates that there are no interrupt requests pending.

The higher the interrupt level, the greater the priority.

When the hardware accepts an interrupt request, it saves the interrupt level in the ELEVEL field of the
program status word (PSW).

When the U8 hardware receives an interrupt request, it first compares the interrupt level with the current
exception level (ELEVEL) setting. If the interrupt level is the same or greater than ELEVEL, the
hardware loads the program counter (PC) from the appropriate entry in the vector table.

 Address in vector table Description

 0000H Initial value for stack pointer

 0002H Reset routine entry point for external reset input or BRK instruction
with exception level (ELEVEL) setting of 2 or 3

 0004H Reset routine entry point for BRK instruction with exception level
(ELEVEL) setting of 0 or 1

 0006H Interrupt handler entry point for emulator interrupt (NMICE)

 0008H - 007EH Interrupt handler entry points for non-maskable (NMI) and maskable
(MI) interrupts

 0080H - 00FEH Interrupt handler entry points for software interrupts (SWI)

The following gives the detailed acceptance procedure for each interrupt type.

Chapter 1. Architecture
Instruction Set

 1-25

1.3.7.2 Non-maskable Interrupts (NMI)

User application programs have no means of masking non-maskable interrupts. When the hardware
detects one, control immediately transfers to the appropriate NMI interrupt handler. If the CPU is already
executing the NMI interrupt handler, control still returns to the beginning.

The hardware masks them, however, in the following situations.

• Between a reset (either hardware reset input or a BRK instruction with an ELEVEL setting of 3)
and the end of the first instruction in the reset handler

• Between the start of the interrupt acceptance cycle and the end of the first instruction in the interrupt
handler

• Between a DSR prefix instruction and the immediately following instruction

A non-maskable interrupt request automatically causes the hardware to perform the following actions.

 1. Save PC in ELR2.

 2. Save CSR in ECSR2.

 3. Save PSW in EPSW2.

 4. Set ELEVEL field in PSW to 2.

 5. Reset CSR to zero.

 6. Load program counter (PC) from vector table.

 7. Disable interrupt requests for the duration of the first instruction in the interrupt handler.

The processing time required for the above actions is 3 cycles, however, when the interruption occurs
immediately after the instruction using [EA+] addressing, the interruption sequence is started after one
machine cycle of wait cycles is performed. For further details, see Section 3.3 “Instruction Execution
Times.”

The NMI interrupt handler can exit in different ways. For further details, see Section 1.4 “Exception
Levels and Backup Registers.”

Chapter 1. Architecture
Instruction Set

 1-26

1.3.7.3 Maskable Interrupts (MI)

Maskable interrupts have many sources among the onboard peripherals and external input pins. The
hardware only accepts them, however, if the MIE bit in the program status word (PSW) is “1.”

The hardware masks them, however, in the following situations.

• Between a reset (either hardware reset input or a BRK instruction with an ELEVEL setting of 3)
and the end of the first instruction in the reset handler

• Between the start of the interrupt acceptance cycle and the end of the first instruction in the interrupt
handler

• Between a DSR prefix instruction and the immediately following instruction

• While the ELEVEL setting is 2 or 3

Acceptance of a maskable interrupt request automatically causes the hardware to perform the following
actions.

 1. Save PC in ELR1.

 2. Save CSR in ECSR1.

 3. Save PSW in EPSW1.

 4. Set ELEVEL field in PSW to 1.

 5. Set MIE bit in PSW to “0” to disable further interrupt requests.

 6. Reset CSR to zero.

 7. Load program counter (PC) from vector table.

 8. Disable all interrupt requests for the duration of the first instruction in the interrupt handler.

The processing time required for the above actions is 3 cycles, however, when the interruption occurs
immediately after the instruction using [EA+] addressing, the interruption sequence is started after one
machine cycle of wait cycles is performed. For further details, see Section 3.3 “Instruction Execution
Times.”

The MI interrupt handler can exit in different ways. For further details, see Section 1.4 “Exception Levels
and Backup Registers.”

Chapter 1. Architecture
Instruction Set

 1-27

1.3.7.4 Software Interrupts (SWI)

Software interrupts come from inside the user application program, so are immediately accepted. The
operand to the SWI instruction specifies the interrupt number.

A software interrupt request automatically causes the hardware to perform the following actions.

 1. Save PC in ELR1.

 2. Save CSR in ECSR1.

 3. Save PSW in EPSW1.

 4. Set ELEVEL field in PSW to 1.

 5. Set MIE bit in PSW to “0” to disable further interrupt requests.

 6. Reset CSR to zero.

 7. Load program counter (PC) from vector table.

 8. Disable all interrupt requests for the duration of the first instruction in the interrupt handler.

The processing time required for the above actions is 3 cycles, however, when the SWI instruction is
executed immediately after the instruction using [EA+] addressing, the interruption sequence is started
after one machine cycle of wait cycles is performed. For further details, see Section 3.3 “Instruction
Execution Times.”

The software interrupt handler can exit in different ways. For further details, see Section 1.4 “Exception
Levels and Backup Registers.”

Chapter 1. Architecture
Instruction Set

 1-28

1.4 Exception Levels and Backup Registers
The U8 architecture provides three sets of backup registers for saving the contents of the program counter
(PC), code segment register (CSR), and program status word (PSW) during subroutine calls and interrupt
handlers. The PC and CSR backup registers apply to both situations; the PSW ones, only to interrupt
handlers.

The following Table summarizes the use of these backup registers.

PC Backup Registers

Name Description
LR This holds the offset portion of the return address for a subroutine call with the

BL instruction.
ELR1 This holds the offset portion of the return address for a maskable interrupt or a

SWI instruction.
ELR2 This holds the offset portion of the return address for a non-maskable interrupt.
ELR3 This holds the offset portion of the return address for an emulator interrupt.

CSR Backup Registers

Name Description
LCSR This holds the physical segment portion of the return address for a subroutine

call with the BL instruction.
ECSR1 This holds the physical segment portion of the return address for a maskable

interrupt or a SWI instruction.
ECSR2 This holds the physical segment portion of the return address for a

non-maskable interrupt.
ECSR3 This holds the physical segment portion of the return address for an emulator

interrupt.

PSW Backup Registers

Name Description
EPSW1 This holds the PSW from just before a maskable interrupt or a SWI instruction.
EPSW2 This holds the PSW from just before a non-maskable interrupt.
EPSW3 This holds the PSW from just before an emulator interrupt.

LR and LCSR are saved by the BL instruction calling a subroutine and restored by the RT instruction
ending the subroutine.

The ELR, ECSR, and EPSW registers used depend on the index value from the ELEVEL field in the
program status word (PSW). The hardware saves to them during the interrupt acceptance cycle; the RTI
instruction at the end of the interrupt handler restores from them.

Note that the sets provide only one register for each level. If subroutines or interrupt handlers are nested,
therefore, it is not possible to return with the RT and RTI instructions normally used. The subroutine or
interrupt handler must use PUSH instructions to save register contents to the stack before nesting and
return with POP instructions instead.

Chapter 1. Architecture
Instruction Set

 1-29

Choosing the appropriate method for saving these registers depends on the CPU state, so requires
particular attention during the design phase. The following pages show how to tailor the user application
program to the U8 execution state.

Chapter 1. Architecture
Instruction Set

 1-30

The following describes the programming considerations for each possible ELEVEL setting and for
whether the user application program nests subroutine and interrupts.

A: Any interrupts are not being processed

The running state of exception level (ELEVEL) is 0, and the backup registers used are LR and LCSR.
How procedures begin and end depends solely on whether subroutines are nested.

A-1: When a subroutine is not called by the program in a subroutine.

• Processing immediately after the start of subroutine

No specific notes.

• Processing at the end of subroutine

Restore PC from LR with an RT instruction.

Example of description: State A-1

Sub_A-1: ; beginning of subroutine.
:
:
RT ; Restore PC from LR.
 ; Terminate subroutine

A-2: When a subroutine is called by the program in a subroutine.

• Processing immediately after the start of subroutine

Use PUSH LR instruction to save return address to the stack.

• Processing at the end of subroutine

Use POP PC instruction instead of RT to return from subroutine.

Example of description: State A-2

Sub_A-2: ; Beginning of subroutine.

PUSH LR ; Save return address to the stack
: Sub_1: ;Beginning of subroutine
: :
BL Sub_1 ; Call nested subroutine Sub_1 :
: RT ; Restoring PC from LR.
POP PC ; Restoring PC from stack ; Terminate subroutine

 ; Terminate subroutine

Chapter 1. Architecture
Instruction Set

 1-31

B: Maskable interrupt is being processed

The running state of exception level (ELEVEL) is 1, and the backup registers used are ELR1, ECSR1,
and EPSW1. How procedures begin and end depends on whether multiple interrupts are enabled or
disabled.

B-1: When a subroutine is not called by the program in executing an interrupt routine.

B-1-1: When multiple interrupts are disabled.

• Processing immediately after the start of interrupt routine execution

No specific notes.

• Processing at the end of interrupt routine execution

Restore PC from ELR1 and PSW from EPSW1 with an RTI instruction.
Example of description: State B-1-1
Intrpt_B-1-1: ; Beginning of an interrupt routine.

:
:
RTI ; Return PC from ELR

 ; Return PSW form EPSW
 ; End

B-1-2: When multiple interrupts are enabled.

• Processing immediately after the start of interrupt routine execution

Specify “PUSH ELR, EPSW” to save the interrupt return address and the PSW status in the
stack.

• Processing at the end of interrupt routine execution

Specify “POP PSW, PC” instead of the RTI instruction to return the contents of the stack to PC
and PSW.

Example of description: State B-1-2
Intrpt_B-1-2: ; Start

PUSH ELR, EPSW ; Save ELR and EPSW at the beginning

:

EI ; Enable interrupt
:
:
POP PSW,PC ; Return PC from the stack

 ; Return PSW from the stack
 ; End

Chapter 1. Architecture
Instruction Set

 1-32

B-2: When a subroutine is called by the program in executing an interrupt routine.

B-2-1: When multiple interrupts are disabled.

• Processing immediately after the start of interrupt routine execution

Specify the “PUSH LR” instruction to save the subroutine return address in the stack.

• Processing at the end of interrupt routine execution

Specify “POP LR” immediately before the RTI instruction to return from the interrupt processing
after returning the subroutine return address to LR.
Example of description: State B-2-1
Intrpt_B-2-1: ; Start

PUSH LR ; Save return address at beginning
 : Sub_1: ;Beginning of subroutine
 : :
BL Sub_1 ; Call nested subroutine Sub_1 :
: RT ; Return PC from LR
POP LR ; Restoring LR from Stack ; End of subroutine
RTI ; End

B-2-2: When multiple interrupts are enabled.

• Processing immediately after the start of interrupt routine execution

Specify “PUSH ELR, EPSW, LR” to save the interrupt return address, the subroutine return
address, and the EPSW status in the stack.

• Processing at the end of interrupt routine execution

Specify “POP PC, PSW, LR” instead of the RTI instruction to return the saved data of the
interrupt return address to PC, the saved data of EPSW to PSW, and the saved data of LR to LR.

Example of description: State B-2-2
Intrpt_B-2-2: ; Start

PUSH ELR,EPSW,LR ; Save ELR, EPSW, LR at the
beginning

:
EI ; Enable interrupt Sub_1: ;Beginning of subroutine
: :
BL Sub_1 ; Call subroutine Sub_1 :
: RT ; Return PC from LR
POP PC,PSW,LR ; Return PC from the stack ; End of subroutine

 ; Return PSW from the stack
 ; Return LR from the stack
 ; End

Chapter 1. Architecture
Instruction Set

 1-33

C: Non-maskable interrupt is being processed

The running state of exception level (ELEVEL) is 2, and the backup registers used are ELR2, ECSR2,
and EPSW2. How procedures begin and end depends on whether a subroutine is called or not.

C-1: When a subroutine is not called by the program in executing an interrupt routine.

• Processing immediately after the start of interrupt routine execution

Specify “PUSH ELR, EPSW” to save the interrupt return address, the subroutine return address,
and the EPSW status in the stack.

• Processing at the end of interrupt routine execution
Specify “POP PSW, PC” instead of the RTI instruction to return the saved data of the interrupt return
address to PC, the saved data of EPSW to PSW.

Example of description: State C-1
Intrpt_C-1: ; Start

PUSH ELR,EPSW ; Save ELR and EPSW at the beginning
:
:
POP PSW,PC ; Return PC from the stack

 ; Return PSW from the stack
 ; End

C-2: When a subroutine is called by the program in executing an interrupt routine.

• Processing immediately after the start of interrupt routine execution
Specify “PUSH ELR, EPSW,LR” to save the interrupt return address, the subroutine return address, and
the EPSW status in the stack.

• Processing at the end of interrupt routine execution
Specify “POP PSW, PC,LR” instead of the RTI instruction to return the saved data of the interrupt return
address to PC, the saved data of EPSW to PSW, and the saved data of LR to LR.

Example of description: State C-2
Intrpt_C-2: ; Start

PUSH ELR,EPSW,LR
; Save ELR, EPSW, LR at
the beginning

: Sub_1: ; Start
: :
BL Sub_1 ; Call subroutine Sub_1 :
: RT ; Return PC from LR
POP PSW,PC,LR ; Return PC from the stack ; End of subroutine

 ; Return PSW from the stack
 ; Return LR from the stack
 ; End

Choosing the appropriate method for saving these registers depends on the CPU state, so requires
particular attention during the design phase.

Chapter 1. Architecture
Instruction Set

 1-34

1.5 Notes about Non-maskable interrupts

This clause describes the notes about the non-maskable interrupt at the time of the program development
by C.

Since a non-maskable interrupt request cannot be disabled, it needs multiple interrupt processing of a
non-maskable interrupt in an application program. If the measure against a multiple interrupt is not
implemented, it may become impossible for a program to return from an interrupt routine.

Therefore, when target chips use non-maskable interrupts, please set category as two by an INTERRUPT
pragma.

static void int_WDTINT(void);
#pragma interrupt int_WDTINT 0x08 2
static void int_WDTINT(void)

{
:
:

}

The assembly code which a compiler outputs to the above-mentioned C program is the following.

_int_WDTINT :
push elr, epsw
:
:
pop psw, pc

* When an interrupt routine contains function call, in addition to the backup register group, the
PUSH/POP code of the above-mentioned backup register group and the register group (LR, EA, R0-R3)
which may be changed within the function called is generated.

Chapter 1. Architecture
Instruction Set

 1-35

1.6 Interrupt Blocking

As has already been mentioned above, the hardware masks all pending interrupt requests for the duration
of the following situations.

(1) Between the start of the interrupt acceptance cycle and the end of the first instruction in the
interrupt handler

The hardware delays acceptance of the new interrupt request until it has completed execution of
the first instruction in the interrupt handler for the old.

(2) Between a DSR prefix instruction and the immediately following instruction

The hardware delays acceptance of the new interrupt request until it has completed execution of
both instructions in the pair.

For further details on DSR prefix instructions, see Section 1.3.4 “DSR Prefix Instructions.” Although a
sequence of DSR prefix instructions properly re-enables interrupt requests, such sequences must not
appear in program code as they can lead to unintended behavior.

Chapter 1. Architecture
Instruction Set

 1-36

1.7 Stack Modifications

This Section summarizes the effects that PUSH and POP instructions have on the stack. For further
details, see Chapter 3 “Instruction Descriptions.”

The stack pointer (SP) always moves by an even number of bytes. If the PUSH instruction operand
represents an odd number of bytes, the hardware first introduces a dummy cycle that decrements SP
without saving any other registers. This dummy cycle writes an indeterminate byte of data to the stack.
Similarly, if the POP instruction operand represents an odd number of bytes, the hardware restores the
register and then introduces a dummy cycle that increments SP without restoring any registers.

Note that the operation of instructions specifying LR or ELR as the operand depends on the hardware
memory model.

The following Figures illustrate the operation of these two instructions.

PUSH R0 / POP R0

PUSH ER0 / POP ER0

Lower

Higher

SP after save

SP before save

SP before restore

SP after restore

R0

Indeterminate
value

R0

R1

Higher

Lower

PUSH POP

PUSH POP

SP before restore

SP after restore

SP after save

SP before save

Chapter 1. Architecture
Instruction Set

 1-37

PUSH XR0 / POP XR0

PUSH QR0 / POP QR0

SP after save SP before restore

SP after restoreSP before save

R0

R1

R2

R3

Higher

Lower

PUSH POP

SP after save

SP before save SP after restore

SP before restore

POP
PUSH

Lower

Higher

R0

R3

R2

R1

R4

R6

R5

R7

Chapter 1. Architecture
Instruction Set

 1-38

PUSH EPSW / POP PSW

PUSH EA / POP EA

Lower

Lower

Higher

Higher

SP after save

SP after save

SP before save

SP before save

SP before restore

SP before restore

SP after restore

SP after restore

EPSW

Indeterminate
value

Upper half of EA

PUSH

PUSH

POP

POP

Lower half of EA

Chapter 1. Architecture
Instruction Set

 1-39

PUSH ELR / POP PC (SMALL model)

PUSH ELR / POP PC (LARGE model)

SP after save

SP before save

SP before restore

SP after restore

Lower half of ELR

Higher

Lower

Upper half of ELR

Upper half of ELR

ECSR

Lower half of ELR

SP before save

0

SP after save

Indeterminate
value

SP before restore

SP after restore

PUSH

Lower

Higher

POP

PUSH POP

Chapter 1. Architecture
Instruction Set

 1-40

PUSH LR / POP LR (SMALL model)

PUSH LR / POP LR (LARGE model)

SP after save

SP before save

SP before restore

SP after restore

Lower half of LR

Higher

Lower

Upper half of LR PUSH POP

Upper half of LR

LCSR

Lower half of LR

SP before save

0

Indeterminate
value

SP before restore

SP after restore

PUSH

Lower

Higher

POP

SP after save

2. Addressing Types

Chapter 2. Addressing Types
Instruction Set

2.1 Addressing Types
The nX-U8/100 architecture has four addressing types:

• register addressing for accessing internal and coprocessor registers
• memory addressing for accessing data memory and program/code memory inside the ROM

window
• immediate addressing for specifying numeric values
• program/code memory addressing for accessing program/code memory

 2-1

Chapter 2. Addressing Types
Instruction Set

2.2 Register Addressing
The following register addressing types access the contents of the specified register.

Addressing
Notation

Function

Rn This addressing type accesses the contents of the specified byte-sized general
register (Rn).

ERn This addressing type accesses the contents of the specified word-sized
general register (ERn). When the instruction table lists ERn in an operand,
BP may be substituted for ER12 and FP for ER14.

XRn This addressing type accesses the contents of the specified double
word-sized general register (XRn).

QRn This addressing type accesses the contents of the specified quad word-sized
general register (QRn).

CRn This addressing type accesses the contents of the specified byte-sized
coprocessor register (CRn).

CERn This addressing type accesses the contents of the specified word-sized
coprocessor register (CERn).

CXRn This addressing type accesses the contents of the specified double
word-sized coprocessor register (CXRn).

CQRn This addressing type accesses the contents of the specified quad word-sized
coprocessor register (CQRn).

PC This addressing type accesses the contents of the program counter.

LR This addressing type accesses the contents of the link register.

EA This addressing type accesses the contents of the EA register.

SP This addressing type accesses the contents of the stack pointer.

PSW This addressing type accesses the contents of the program status word.

ELR This addressing type accesses the contents of an exception link register.

ECSR This addressing type accesses the contents of a CSR backup register.

EPSW This addressing type accesses the contents of a PSW backup register.

Rn.bit_offset This addressing type accesses the contents of bit specified by bit_offset in
general register Rn.

 2-2

Chapter 2. Addressing Types
Instruction Set

2.3 Memory Addressing

This addressing type accesses the contents of an address in the data memory space.

Accessing data in a physical segment other than physical segment #0 requires manipulating the data
segment register (DSR) with a DSR prefix instruction.

To prevent unintended operation and provide the strongest checking possible of memory access, the
U8 assembly language specifications deliberately forbid the use of the DSR prefix instructions in
program source code. Instead, use the corresponding DSR prefix inside the memory access instruction
itself.

DSR Prefix Instruction Function Corresponding Prefix

1110_0011_iiii_iiii Load DSR with the 8-bit
immediate value iiii_iiii.

pseg_addr : or FAR

1001_0000_dddd_1111 Load DSR with the contents
of the general register Rd.

Rd :

1111_1110_1001_1111 Use the current DSR value. DSR :

The following Table shows examples of these prefixes on the left and their results on the right.

Assembly Language Source Code Actual Instruction Sequence

L R0, 1:2345H

DSR ← 1
R0 ← [2345H]

L R0, R1:[ER2] DSR ← R1
R0 ← [ER2]

ST R1, DSR:[EA] [(DSR<<16)|EA] ← R1
The underlined portions in the above Table indicate the DSR prefixes producing the desired DSR
manipulations.

If there is no DSR prefix, the instruction accesses physical segment #0 in the data memory space.

 2-3

Chapter 2. Addressing Types
Instruction Set

2.3.1 Register Indirect Addressing

The following register indirect addressing types access the contents of the data memory address in the
specified register.

Addressing
Notation

Function

[EA] This addressing type accesses the contents of the data memory space at the
offset in the EA register.

 Effective address calculation Effective address

0 15

EA

0 15

pseg_addr:[EA] This variant uses the physical segment number specified by #pseg_addr.

DSR:[EA] This variant uses the physical segment number in DSR.

Rd:[EA] This variant uses the physical segment number in general register Rd.

[EA+] This addressing type accesses the contents of the data memory space at the
offset in the EA register.

After the access, the contents of the EA register are incremented by the
operand size in bytes and, for all sizes except byte, rounded down to an even
address.

 Operand size EA Contents Increment
 Even 1

Byte

Odd 1
 Even 2

Word

Odd 1
 Even 4

Double word

Odd 3
 Even 8

Quad word

Odd 7

 Effective address calculation Effective address

0 15

EA

0 15

Contents incremented
after access

 2-4

Chapter 2. Addressing Types
Instruction Set

Addressing
Notation

Function

pseg_addr:[EA+] This variant uses the physical segment number specified by #pseg_addr.

DSR:[EA+] This variant uses the physical segment number in DSR.

Rd:[EA+] This variant uses the physical segment number in general register Rd.

[ERn] This addressing type accesses the contents of the data memory space at the
offset in the word-sized general register ERn. [BP] instead of [ER12] and
[FP] instead of [ER14] are also acceptable.

 Effective address calculation Effective address

0 15

ERn

0 15

pseg_addr:[ERn] This variant uses the physical segment number specified by #pseg_addr.

DSR:[ERn] This variant uses the physical segment number in DSR.

Rd:[ERn] This variant uses the physical segment number in general register Rd.

Disp16[ERn] This addressing type accesses the contents of the data memory space at the
byte address formed by adding the displacement Disp16 to the contents of
the word-sized general register ERn.

 Effective address calculation Effective address

0 15

ERn

0 15

Disp16

 15 0

pseg_addr:Disp16[ERn] This variant uses the physical segment number specified by #pseg_addr.

DSR:Disp16[ERn] This variant uses the physical segment number in DSR.

Rd:Disp16[ERn] This variant uses the physical segment number in general register Rd.

 2-5

Chapter 2. Addressing Types
Instruction Set

Addressing
Notation

Function

Disp6[BP] This addressing type accesses the contents of the data memory space at the
byte address formed by adding the sign-extended displacement Disp6 to the
contents of the base pointer (BP).

If there is no DSR prefix, this addressing type accesses physical segment #0
in the data memory space.

 Effective address calculation Effective address

0 15

BP(=ER12)

0 15

Disp6

 15 0

Sign extension

5

pseg_addr:Disp6[BP] This variant uses the physical segment number specified by #pseg_addr.

DSR:Disp6[BP] This variant uses the physical segment number in DSR.

Rd:Disp6[BP] This variant uses the physical segment number in general register Rd.

Disp6[FP] This addressing type accesses the contents of the data memory space at the
byte address formed by adding the sign-extended displacement Disp6 to the
contents of the frame pointer (FP).

If there is no DSR prefix, this addressing type accesses physical segment #0
in the data memory space.

 Effective address calculation Effective address

0 15

FP(=ER14)

0 15

Disp6

 15 0

Sign extension

5

pseg_addr:Disp6[FP] This variant uses the physical segment number specified by #pseg_addr.

DSR:Disp6[FP] This variant uses the physical segment number in DSR.

Rd:Disp6[FP] This variant uses the physical segment number in general register Rd.

 2-6

Chapter 2. Addressing Types
Instruction Set

2.3.2 Direct Addressing

The following direct addressing types access the contents of the specified data memory address.

Addressing
Notation

Function

Dadr This addressing type accesses the contents of the data memory space at the
byte address in the instruction.

 Effective address
0 15

Dadr16

pseg_addr:Dadr This variant uses the physical segment number pseg_addr.

DSR:Dadr This variant uses the physical segment number in DSR.

Rd:Dadr This variant uses the physical segment number in general register Rd.

Dbitadr This addressing type accesses the contents of the data memory space at the
bit address (Dadr.bit_offset) in the instruction.

 Effective address calculation Effective address

0 15

Dadr

bit_offset

02

07

pseg_addr:Dbitadr This variant uses the physical segment number pseg_addr.

DSR:Dbitadr This variant uses the physical segment number in DSR.

Rd:Dbitadr This variant uses the physical segment number in general register Rd.

 2-7

Chapter 2. Addressing Types
Instruction Set

2.4 Immediate Addressing
The following immediate value addressing types use an immediate value contained in the instruction.

Addressing
Notation

Function

#imm8 The specified value is treated as an 8-bit immediate value.

#signed8 The specified value is treated as a signed 8-bit immediate value.

The instruction ADD SP, #imm8 treats imm8 as signed8.

The valid range for signed8 is between -128 and +127.

#unsigned8 The specified value is treated as an unsigned 8-bit immediate value.

The instruction MOV PSW, #imm8 treats imm8 as unsigned8.

The valid range for unsigned8 is between 0 and 0FFH.

#width The specified value is treated as a shift size.

The valid range for width is between 0 and 7.

#snum The specified value is treated as a SWI instruction vector number.

The valid range for snum7 is between 0 and 63.

#imm7 The specified value is treated as a signed 7-bit immediate value.

The valid range for imm7 is between -64 and +63.

 2-8

Chapter 2. Addressing Types
Instruction Set

2.5 Program/Code Memory Addressing
The following addressing types access the contents of program/code memory addresses.

Addressing
Notation

Function

Cadr This addressing type specifies the 20-bit branch target address for the B and
BL instructions. Note that it includes a physical segment number, so the
instruction can produce a branch to a different physical segment.

 Effective address
019

Cadr[19:0]

Radr This addressing type specifies a relative branch target address for the
conditional branch instructions and optimized branch directives. The target
must be in within the same physical segment.

 Effective address calculation Effective address

0 15

PC contents

07
 Lower byte from
instruction codeSign extension

15

0 15

Radr

Sign bit

ERn This addressing type specifies the contents of a word-sized general register
ERn as the branch target offset for the B and BL instructions. The target
must be in within the same physical segment.

 Effective address
0 15

ERn

 2-9

Chapter 2. Addressing Types
Instruction Set

 2-10

3. Instruction Descriptions
This Chapter describes the detailed

operation of each instruction.

Chapter 3. Instruction Descriptions

Instruction Set

 3-1

3.1 Overview

nX-U8/100 core instructions have between zero and two operands. When there are two, the first is the

destination; the second, the source.

These operands use the addressing types described in Chapter 2.

For ease of explication, this document uses the following symbols to describe instruction operation.

 Symbol Meaning

 ← Assignment

 + or Addition

 – Subtraction

 * Multiplication

 / Division

 >> Shift right

 << Shift left

 = Equality

 != Inequality

 & Bitwise AND

 | Bitwise OR

 ^ Bitwise exclusive OR

 ~ Bitwise inversion

Chapter 3. Instruction Descriptions

Instruction Set

 3-2

3.2 Instructions by Functional Group

Please refer to Section 3.4 “Instruction Descriptions” about detailed operation of each instruction.

Arithmetic Instructions

Mnemonic
First
operand

Second
operand

C Z S OV MIE HC Function

ADD Rn Rm * * * * * Addition (8-bit) Rn← Rn+obj

 #imm8 * * * * *

MOV Rn Rm * * Data transfer (8-bit) Rn ← obj

 #imm8 * *

ADDC Rn Rm * * * * * Addition with carry Rn←Rn+obj+c

 #imm8 * * * * *

CMP Rn Rm * * * * * Comparison (8-bit) Rn–obj

 #imm8 * * * * *

CMPC Rn Rm * * * * * Comparison with carry Rn–obj–c

 #imm8 * * * * *

AND Rn Rm * * Bitwise AND Rn←Rn&obj

 #imm8 * *

OR Rn Rm * * Bitwise OR Rn←Rn | obj

 #imm8 * *

XOR Rn Rm * * Bitwise exclusive OR Rn←Rn^obj

 #imm8 * *

SUB Rn Rm * * * * * Subtraction Rn←Rn–Rm

SUBC Rn Rm * * * * * Subtraction with carry Rn←Rn–Rm –c

MOV ERn ERm * * Data transfer (16-bit) ERn ← obj

 #imm7 * *

ADD ERn ERm * * * * * Addition (16-bit) ERn ← ERn+obj

 #imm7 * * * * *

CMP ERn ERm * * * * * Comparison (16-bit) ERn–ERm

Shift Instructions

Mnemonic
First
operand

Second
operand

C Z S OV MIE HC Function

SLL Rn Rm *

 #width *
Byte-sized shift left
logical

0Rn

C MSB

7

LSB

0

SLLC Rn Rm *

 #width *
Shift left logical
continued

0Rn

C

7 Rn-115

shift_data

SRA Rn Rm * Shift right arithmetic

 #width *

0Rn C7

LSBMSB

SRL Rn Rm * Shift right logical

 #width * MSB LSB

0Rn C7

0

SRLC Rn Rm *

 #width *
Shift right logical
continued

0Rn C7Rn+115

shift_data

Chapter 3. Instruction Descriptions

Instruction Set

 3-3

Load/Store Instructions

Mnemonic
First
operand

Second
operand

C Z S OV MIE HC Function

L Rn

[EA]

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

 *

*

*

*

*

*

*

*

 Byte-sized data transfer

Rn← [EA]

 [EA+]

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

 *

*

*

*

*

*

*

*

 Byte-sized data transfer

Rn← [EA]

EA←EA+1

 [ERm]

pseg_addr:[ERm]

DSR:[ERm]

Rd:[ERm]

 *

*

*

*

*

*

*

*

 Byte-sized data transfer Rn← [ERm]

 Disp16[ERm]

pseg_addr: Disp16[ERm]

DSR:Disp16[ERm]

Rd:Disp16[ERm]

 *

*

*

*

*

*

*

*

 Byte-sized data transfer Rn← Disp16[ERm]

 Disp6[BP]

pseg_addr:Disp6[BP]

DSR: Disp6[BP]

Rd: Disp6[BP]

 *

*

*

*

*

*

*

*

 Byte-sized data transfer

Rn← Disp6[BP]

 Disp6[FP]

pseg_addr:Disp6[FP]

DSR: Disp6[FP]

Rd: Disp6[FP]

 *

*

*

*

*

*

*

*

 Byte-sized data transfer

Rn← Disp6[FP]

 Dadr

pseg_addr: Dadr

DSR:Dadr

Rd:Dadr

 *

*

*

*

*

*

*

*

 Byte-sized data transfer

Rn← Dadr

 ERn [EA]

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

 *

*

*

*

*

*

*

*

 Word-sized data

transfer

ERn← [EA]

 [EA+]

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

 *

*

*

*

*

*

*

*

 Word-sized data

transfer

ERn← [EA]

EA←EA+1

 [ERm]

pseg_addr:[ERm]

DSR:[ERm]

Rd:[ERm]

 *

*

*

*

*

*

*

*

 Word-sized data

transfer

ERn← [ERm]

 Disp16[ERm]

pseg_addr: Disp16[ERm]

DSR:Disp16[ERm]

Rd:Disp16[ERm]

 *

*

*

*

*

*

*

*

 Word-sized data

transfer

ERn← Disp16[ERm]

 Disp6[BP]

pseg_addr:Disp6[BP]

DSR: Disp6[BP]

Rd: Disp6[BP]

 *

*

*

*

*

*

*

*

 Word-sized data

transfer

ERn← Disp6[BP]

 Disp6[FP]

pseg_addr:Disp6[FP]

DSR: Disp6[FP]

Rd: Disp6[FP]

 *

*

*

*

*

*

*

*

 Word-sized data

transfer

ERn← Disp6[FP]

 Dadr

pseg_addr: Dadr

DSR:Dadr

Rd:Dadr

 *

*

*

*

*

*

*

*

 Word-sized data

transfer

ERn← Dadr

(continued on next page)

Chapter 3. Instruction Descriptions

Instruction Set

 3-4

Load/Store Instructions (cont.)

Mnemonic
First
operand

Second
operand

C Z S OV MIE HC Function

L XRn

[EA]

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

 *

*

*

*

*

*

*

*

 Double word-sized data

transfer

XRn← [EA]

 [EA+]

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

 *

*

*

*

*

*

*

*

 Double word-sized data

transfer

XRn← [EA]

EA←EA+1

 QRn [EA]

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

 *

*

*

*

*

*

*

*

 Quad word-sized data

transfer

QRn← [EA]

 [EA+]

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

 *

*

*

*

*

*

*

*

 Quad word-sized data

transfer

QRn← [EA]

EA←EA+1

Mnemonic
First
operand

Second
operand

C Z S OV MIE HC Function

ST Rn

[EA]

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

 Byte-sized data transfer [EA] ← Rn

 [EA+]

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

 Byte-sized data transfer

[EA] ←Rn

EA←EA+1

 [ERm]

pseg_addr:[ERm]

DSR:[ERm]

Rd:[ERm]

 Byte-sized data transfer

[ERm] ← Rn

 Disp16[ERm]

pseg_addr: Disp16[ERm]

DSR:Disp16[ERm]

Rd:Disp16[ERm]

 Byte-sized data transfer Disp16[ERm] ← Rn

 Disp6[BP]

pseg_addr:Disp6[BP]

DSR: Disp6[BP]

Rd: Disp6[BP]

 Byte-sized data transfer Disp6[BP] ← Rn

 Disp6[FP]

pseg_addr:Disp6[FP]

DSR: Disp6[FP]

Rd: Disp6[FP]

 Byte-sized data transfer

Disp6[FP] ← Rn

 Dadr

pseg_addr: Dadr

DSR:Dadr

Rd:Dadr

 Byte-sized data transfer

[Dadr] ← Rn

 ERn [EA]

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

 Word-sized data transfer [EA] ← ERn

 [EA+]

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

 Word-sized data transfer [EA] ←ERn

EA←EA+1

Chapter 3. Instruction Descriptions

Instruction Set

 3-5

Load/Store Instructions (cont.)

Mnemonic
First
operand

Second
operand

C Z S OV MIE HC Function

ST ERn [ERm]

pseg_addr:[ERm]

DSR:[ERm]

Rd:[ERm]

 Word-sized data transfer [ERm] ← ERn

 Disp16[ERm]

pseg_addr: Disp16[ERm]

DSR:Disp16[ERm]

Rd:Disp16[ERm]

 Word-sized data transfer Disp16[ERm] ←ERn

 Disp6[BP]

pseg_addr:Disp6[BP]

DSR: Disp6[BP]

Rd: Disp6[BP]

 Word-sized data transfer Disp6[BP] ← ERn

 Disp6[FP]

pseg_addr:Disp6[FP]

DSR: Disp6[FP]

Rd: Disp6[FP]

 Word-sized data transfer Disp6[FP] ← ERn

 Dadr

pseg_addr: Dadr

DSR:Dadr

Rd:Dadr

 Word-sized data transfer [Dadr] ← ERn

 XRn

[EA]

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

 Double word-sized data

transfer

[EA] ← XRn

 [EA+]

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

 Double word-sized data

transfer

[EA] ← XRn

EA←EA+1

 QRn [EA]

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

 Quad word-sized data

transfer

[EA] ← QRn

 [EA+]

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

 Quad word-sized data

transfer

[EA] ← QRn

EA←EA+1

Chapter 3. Instruction Descriptions

Instruction Set

 3-6

Control Register Access Instructions

Mnemonic
First
operand

Second
operand

C Z S OV MIE HC Function

ADD SP #signed8 Addition SP←SP+signed8

MOV ECSR Rm Data transfer

if ELEVEL is zero

 LCSR ←Rm

if ELEVEL is nonzero

 ECSR[ELEVEL] ←Rm

 ELR ERm Data transfer

if ELEVEL is zero

 LR ← ERm

if ELEVEL is nonzero

 ELR[ELEVEL] ← ERm

 EPSW Rm Data transfer
if ELEVEL is nonzero

 EPSW[ELEVEL] ←Rm

 ERn ELR Data transfer

if ELEVEL is zero

 ERn ←LR

if ELEVEL is nonzero

 ERn ←ELR[ELEVEL]

 SP Data transfer ERn←SP

 PSW Rm * * * * * * Data transfer PSW← Rm

 #unsigned8 * * * * * * Data transfer PSW←unsigned8

 Rn ECSR Data transfer

if ELEVEL is zero

 Rn ← LCSR

if ELEVEL is nonzero

 Rn ← ECSR[ELEVEL]

 EPSW Data transfer
if ELEVEL is nonzero

 Rn ← EPSW[ELEVEL]

 PSW Data transfer Rn←PSW

 SP ERm Data transfer SP←ERm

PUSH/POP Instructions

Mnemonic
First
operand

Second
operand

C Z S OV MIE HC Function

PUSH ERn General register save
SP←SP-n

Stack ← General register

 Rn

 QRn

 XRn

 register_list Control register save
SP←SP-n

Stack ← Register set

POP ERn
General register ← Stack

SP←SP+n

 Rn

General register
restore

 QRn

 XRn

 register_list * * * * * *
Control register
restore

Register set ← Stack*
1

SP←SP+n

*1: The program status word (PSW) only changes when it is included in register_list.

Chapter 3. Instruction Descriptions

Instruction Set

 3-7

Coprocessor Data Transfer Instructions

Mnemonic
First
operand

Second
operand

C Z S OV MIE HC Function

MOV CRn Rm Byte-sized data transfer CRn ← Rm

 CRn

[EA]

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

 Byte-sized data transfer

CRn ← [EA]

 [EA+]

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

 Byte-sized data transfer CRn ← [EA+]

EA ← EA+1

 CERn

[EA]

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

 Word-sized data transfer CERn ← [EA]

 [EA+]

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

 Word-sized data transfer

CERn ← [EA+]

EA ← EA+1

 CXRn

[EA]

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

 Double word-sized data

transfer

CXRn ← [EA]

 [EA+]

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

 Double word-sized data

transfer

CXRn ← [EA+]

EA ← EA+1

 CQRn [EA]

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

 Quad word-sized

continuous data transfer

CQRn ← [EA]

 [EA+]

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

 Quad word-sized

continuous data transfer

CQRn ← [EA+]

EA ← EA+1

 (continued on next page)

Chapter 3. Instruction Descriptions

Instruction Set

 3-8

Coprocessor Data Transfer Instructions (continued from previous page)

Mnemonic
First
operand

Second
operand

C Z S OV MIE HC Function

MOV Rn CRm Byte-sized data transfer Rn ←CRm

 [EA]

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

CRm Byte-sized data transfer [EA] ←CRm

 [EA+]

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

CRm Byte-sized data transfer [EA] ←CRm

EA ←EA+1

 [EA]

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

CERm Word-sized data transfer [EA] ←CERm

 [EA+]

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

CERm Word-sized data transfer [EA]←CERm

EA ←EA+1

 [EA]

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

CXRm Double word-sized data
transfer

[EA]←CXRm

 [EA+]

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

CXRm Double word-sized data
transfer

[EA] ←CXRm

EA←EA+1

 [EA]

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

CQRm Quad word-sized
continuous data transfer

[EA] ←CQRm

 [EA+]

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

CQRm Quad word-sized
continuous data transfer

[EA] ←CQRm

EA←EA+1

EA Register Data Transfer Instructions

Mnemonic
First
operand

Second
operand

C Z S OV MIE HC Function

LEA [ERn] Data transfer to EA EA← ERn

 Disp16[ERm] EA← Disp16+ERm

 Dadr EA← Dadr

ALU Instructions

Mnemonic
First
operand

Second
operand

C Z S OV MIE HC Function

DAA Rn * * * * Byte-sized decimal adjustment for addition

DAS Rn * * * * Byte-sized decimal adjustment for subtraction

NEG Rn * * * * * Negate Rn ← 0 – Rn

Chapter 3. Instruction Descriptions

Instruction Set

 3-9

Bit Access Instructions

Mnemonic
First
operand

Second
operand

C Z S OV MIE HC Function

SB Rn.bit_offset * Set bit
z← ~Rn. bit_offset

Rn. bit_offset ←1

Dbitadr

pseg_addr: Dbitadr

DSR: Dbitadr

Rd: Dbitadr

*

*

*

*

 Set bit
z← ~[Dbitadr]

[Dbitadr]← 1

RB Rn. bit_offset * Reset bit
z← ~Rn.bit_offset

Rn.bit_offset ←0

Dbitadr

pseg_addr: Dbitadr

DSR: Dbitadr

Rd: Dbitadr

*

*

*

*

 Reset bit
z← ~[Dbitadr]

[Dbitadr]← 0

TB Rn. bit_offset * Test bit z← ~Rn.bit_offset

Dbitadr

pseg_addr: Dbitadr

DSR: Dbitadr

Rd: Dbitadr

*

*

*

*

 Test bit z← ~[Dbitadr]

PSW Access Instructions

Mnemonic
First
operand

Second
operand

C Z S OV MIE HC Function

EI * Enable interrupts MIE←1

DI * Disable interrupts MIE←0

SC * Set carry flag C←1

RC * Reset carry flag C←0

CPLC * Complement carry flag C←–C

Conditional Relative Branch Instructions

Mnemonic
First
operand

Second
operand

C Z S OV MIE HC Function

Bcond

BC

Radr

cond

 Conditional
branch

if cond ? Radr : PC+2

Sign Extension Instruction

Mnemonic
First
operand

Second
operand

C Z S OV MIE HC Function

EXTBW ERn * * Extend sign ERn←(sign-extends)Rn

Chapter 3. Instruction Descriptions

Instruction Set

 3-10

Software Interrupt Instructions

Mnemonic
First
operand

Second
operand

C Z S OV MIE HC Function

SWI #snum * Software
interrupt
instruction

address← (snum<<1),

PC←Vector–table(address)

BRK Break
instruction

If ELEVEL greater than 1

 System reset

If ELEVEL less than 2

PC← (Vector–table 0004H)

Branch Instructions

Mnemonic
First
operand

Second
operand

C Z S OV MIE HC Function

B Cadr Branch

instruction

CSR ← Cadr[19:16]

PC ← Cadr[15:0]

 ERn PC ← ERn

BL Cadr

 Branch

instruction

LR ← Address of next instruction

LCSR ← CSR

CSR ← Cadr[19:16]

PC ← Cadr[15:0]

 ERn LR ← Address of next instruction

LCSR ← CSR

PC ← ERn

Multiplication and Division Instructions

Mnemonic
First
operand

Second
operand

C Z S OV MIE HC Function

MUL ERn Rm * Multiplication ERn ← Rn * Rm

DIV ERn Rm * * Division ERn ← ERn/ Rm , Rm←ERn mod Rm

Miscellaneous

Mnemonic
First
operand

Second
operand

C Z S OV MIE HC Function

INC [EA]

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

 *

*

*

*

*

*

*

*

*

*

*

*

 *

*

*

*

Memory increment [EA] ← [EA] + 1

DEC [EA]

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

 *

*

*

*

*

*

*

*

*

*

*

*

 *

*

*

*

Memory decrement [EA] ← [EA] – 1

RT Return from subroutine CSR ← LCSR

PC ← LR

RTI * * * * * * Return from interrupt CSR ← ECSR[ELEVEL]

PC ← ELR [ELEVEL]

PSW ← EPSW[ELEVEL]

NOP

Chapter 3. Instruction Descriptions

Instruction Set

 3-11

3.3 Instruction Execution Times

This Section discusses nX-U8/100 core instruction execution times. To eliminate dependencies on clock

frequency, it gives these times in clock cycles.

This Section also assumes that memory read and write cycles are all exactly one clock cycle long. In

actual practice, however, execution times for instruction accessing slower memory will have to include

memory wait cycles.

Each instruction takes at least three machine cycles to execute—one each for instruction fetch, instruction

decode, and instruction execution plus result write. The nX-U8/100 architecture, however, pipelines

instructions so that these three stages run in parallel, producing, under optimal conditions, faster

execution than suggested by the machine cycles counts for the individual instructions. These execution

times under optimal conditions are called minimum execution times.

Competition for CPU resources, however, mean that certain instruction sequences cannot run in parallel.

The nX-U8/100 architecture resolves such conflicts by inserting a wait cycle at least one machine cycle

long into the pipeline, delaying the execution of the later instruction.

There are following three conditions in which a wait cycle is inserted.

(1) Accessing ROM window addresses introduces a wait cycle of n × m machine cycles, where n is the

number of bytes accessed and m the memory wait cycles for accessing a single byte. The handling of

the Rom window region and the numbers of wait cycles inserted when the Rom window region is

accessed differ for every product. Please refer to the manual of each product about the detailed

number of cycles at the time of accessing the Rom window region.

(2) When the data region of the physical segment 0 is accessed using [EA+] addressing, the bus inside

CPU competes and it becomes the factor which a wait cycle generates.

(3) The NMI interrupt and MI interrupt are influenced of [EA+] addressing. These interrupts require 3

cycles for hardware processing time,however, when the interruption occurs immediately after the

physical segment 0 is accessed using [EA+] addressing, the interruption sequence is started after one

machine cycle of wait cycles is performed .

The total execution time for an instruction, therefore, is the minimum execution time plus any wait

cycles for resolving bus conflicts and any memory wait cycles.

The Table beginning on the next page lists these three quantities for all nX-U8/100 instructions. A

blank indicates that the corresponding instruction either does not compete for CPU resources or does

not access memory.

Chapter 3. Instruction Descriptions

Instruction Set

 3-12

Mnemonic
First
operand

Second
operand

Minimum
execution
time (cycles)

ROM window
access

[EA+]
addressing
delay

ADD ERn ERm 2

 #imm7 2

ADD Rn Rm 1

 #imm8 1

 SP #signed8 2

ADDC Rn Rm 1

 #imm8 1

AND Rn Rm 1

 #imm8 1

B Cadr 2 1

 ERn 2 1

Bcond Radr 1 / 3(*1) 1

BL Cadr 2 1

 ERn 2 1

BRK 7 1

CMP ERn ERm 2

 Rn Rm 1

 #imm8 1

CMPC Rn Rm 1

 #imm8 1

CPLC 1

DAA Rn 1

DAS Rn 1

DEC [EA] 2 1

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

 3

DI 3

DIV ERn Rm 17

EI 1

EXTBW ERn 1

INC [EA] 2 1

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

 3

*1: The higher count is for when the branching condition is met; the lower one, for

when the branching condition is not met.

Chapter 3. Instruction Descriptions

Instruction Set

 3-13

Mnemonic
First
operand

Second
operand

Minimum
execution
time (cycles)

ROM window
access

[EA+] addressing
delay

L ERn [EA] 2 2

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

3 2

 [EA+] 2 2

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

3 2

 [ERm] 2 2 1

pseg_addr:[ERm]

DSR:[ERm]

Rd:[ERm]

3 2

 Disp16[ERm] 3 2 1

pseg_addr: Disp16[ERm]

DSR:Disp16[ERm]

Rd: Disp16[ERm]

4 2

 Disp6[BP] 3 2 1

pseg_addr: Disp6[BP]

DSR: Disp6[BP]

Rd: Disp6[BP]

4 2

 Disp6[FP] 3 2 1

pseg_addr: Disp6[FP]

DSR: Disp6[FP]

Rd: Disp6[FP]

4 2

 Dadr 2 2 1

pseg_addr: Dadr

DSR: Dadr

Rd: Dadr

3 2

 QRn [EA] 8 8

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

9 8

 [EA+] 8 8

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

9 8

Chapter 3. Instruction Descriptions

Instruction Set

 3-14

Mnemonic
First
operand

Second
operand

Minimum
execution
time (cycles)

ROM window
access

[EA+] addressing
delay

L Rn [EA] 1 1

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

2 1

 [EA+] 1 1

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

2 1

 [ERm] 1 1 1

pseg_addr:[ERm]

DSR:[ERm]

Rd:[ERm]

2 1

 Disp16[ERm] 2 1 1

pseg_addr: Disp16[ERm]

DSR:Disp16[ERm]

Rd: Disp16[ERm]

3 1

 Disp6[BP] 2 1 1

pseg_addr: Disp6[BP]

DSR: Disp6[BP]

Rd: Disp6[BP]

3 1

 Disp6[FP] 2 1 1

pseg_addr: Disp6[FP]

DSR: Disp6[FP]

Rd: Disp6[FP]

3 1

 Dadr 2 1 1

pseg_addr: Dadr

DSR: Dadr

Rd: Dadr

3 1

 XRn [EA] 4 4

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

5 4

 [EA+] 4 4

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

5 4

Chapter 3. Instruction Descriptions

Instruction Set

 3-15

Mnemonic
First
operand

Second
operand

Minimum
execution
time (cycles)

ROM window
access

[EA+] addressing
delay

LEA [ERm] 1

 Disp16[ERm] 2

 Dadr 2

MOV CERn [EA] 2 2 1

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

3 2

 [EA+] 2 2 1

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

3 2

 CQRn [EA] 8 8 1

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

9 8

 [EA+] 8 8 1

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

9 8

 CRn [EA] 1 1 1

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

2 1

 [EA+] 1 1 1

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

2 1

 CRn Rm 1

 CXRn [EA] 4 4 1

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

5 4

 [EA+] 4 4 1

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

5 4

 ECSR Rm 2

 ELR ERm 3

 EPSW Rm 1

 ERn ELR 3

 ERm 2

 #imm7 2

 SP 2

Chapter 3. Instruction Descriptions

Instruction Set

 3-16

Mnemonic
First
operand

Second
operand

Minimum
execution
time (cycles)

ROM window
access

[EA+] addressing
delay

MOV [EA] CERm 2 2 1

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

CERm 3 2

 [EA+] CERm 2 2 1

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

CERm 3 2

 [EA] CQRm 8 8 1

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

CQRm 9 8

 [EA+] CQRm 8 8 1

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

CQRm 9 8

 [EA] CRm 1 1 1

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

CRm 2 1

 [EA+] CRm 1 1 1

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

CRm 2 1

 [EA] CXRm 4 4 1

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

CXRm 5 4

 [EA+] CXRm 4 4 1

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

CXRm 5 4

 PSW Rm 1

 #unsigned8 1

 Rn CRm 1

 ECSR 2

 EPSW 2

 PSW 1

 Rm 1

 #imm8 1

 SP ERm 1 1

Chapter 3. Instruction Descriptions

Instruction Set

 3-17

Mnemonic
First
operand

Second
operand

Minimum
execution
time (cycles)

ROM window
access

[EA+] addressing
delay

MUL ERn Rm 9

NEG Rn 1

NOP 1

OR Rn Rm 1

 #imm8 1

POP EA 4 1

 EA,LR 6 / 8 (*1) 1

 EA,PC 8 / 9 (*1) 1

 EA,PC,LR 10 / 13 (*1) 1

 EA,PC,PSW 10 / 11 (*1) 1

 EA,PC,PSW,LR 12 / 15 (*1) 1

 EA,PSW 6 1

 EA,PSW,LR 8 / 10 (*1) 1

 LR 2 / 4 (*1) 1

 LR,PSW 4 / 6 (*1) 1

 PC 4 / 5 (*1) 1

 PC,LR 6 / 9 (*1) 1

 PC,PSW 6 / 7 (*1) 1

 PC,PSW,LR 8 / 11 (*1) 1

 PSW 2 1

 ERn 2 1

 QRn 8 1

 Rn 2 1

 XRn 4 1

*1: The lower count is for the SMALL memory model; the higher, for the LARGE model.

Chapter 3. Instruction Descriptions

Instruction Set

 3-18

Mnemonic
First
operand

Second
operand

Minimum
execution
time (cycles)

ROM window
access

[EA+] addressing
delay

PUSH EA 2 1

 ELR 2 / 4 (*1) 1

 EA,ELR 4 / 6 (*1) 1

 EPSW 2 1

 EPSW,EA 4 1

 EPSW,ELR 4 / 6 (*1) 1

 EPSW,ELR,EA 6 / 8 (*1) 1

 LR 2 / 4 (*1) 1

 LR,EA 4 / 6 (*1) 1

 LR,ELR 4 / 8 (*1) 1

 LR,EA,ELR 6 / 10 (*1) 1

 LR,EPSW 4 / 6 (*1) 1

 LR,EPSW,EA 6 / 8 (*1) 1

 LR,EPSW,ELR 6 / 10 (*1) 1

 LR,ELR,EPSW,EA 8 / 12 (*1) 1

 ERn 2 1

 QRn 8 1

 Rn 2 1

 XRn 4 1

RB Dbitadr 2 1

pseg_addr: Dbitadr

DSR: Dbitadr

Rd: Dbitadr

3

 Rn. bit_offset 1

RC 1

RT 2 1

RTI 2 1

SB Dbitadr 2 1

pseg_addr: Dbitadr

DSR: Dbitadr

Rd: Dbitadr

3

 Rn.bit_offset 1

SC 1

*1: The lower count is for the SMALL memory model; the higher, for the LARGE model.

Chapter 3. Instruction Descriptions

Instruction Set

 3-19

Mnemonic
First
operand

Second
operand

Minimum
execution time
(cycles)

ROM window
access

[EA+]
addressing
delay

SLL Rn Rm 1 1

 #width 1 1

SLLC Rn Rm 1 1

 #width 1 1

SRA Rn Rm 1 1

 #width 1 1

SRL Rn Rm 1 1

 #width 1 1

SRLC Rn Rm 1 1

 #width 1 1

ST ERn [EA] 2

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

3

 [EA+] 2

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

3

 [ERm] 2 1

pseg_addr:[ERm]

DSR:[ERm]

Rd:[ERm]

3

 Disp16[ERm] 3 1

pseg_addr: Disp16[ERm]

DSR:Disp16[ERm]

Rd: Disp16[ERm]

4

 Disp6[BP] 3 1

pseg_addr: Disp6[BP]

DSR: Disp6[BP]

Rd: Disp6[BP]

4

 Disp6[FP] 3 1

pseg_addr: Disp6[FP]

DSR: Disp6[FP]

Rd: Disp6[FP]

4

 Dadr 2 1

pseg_addr: Dadr

DSR: Dadr

Rd: Dadr

3

Chapter 3. Instruction Descriptions

Instruction Set

 3-20

Mnemonic
First
operand

Second
operand

Minimum
execution time
(cycles)

ROM
window
access

[EA+] addressing
delay

ST QRn [EA] 8

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

9

 [EA+] 8

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

9

 Rn [EA] 1

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

2

 [EA+] 1

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

2

 [ERm] 1 1

pseg_addr:[ERm]

DSR:[ERm]

Rd:[ERm]

2

 Disp16[ERm] 2 1

pseg_addr: Disp16[ERm]

DSR:Disp16[ERm]

Rd: Disp16[ERm]

3

 Disp6[BP] 2 1

pseg_addr: Disp6[BP]

DSR: Disp6[BP]

Rd: Disp6[BP]

3

 Disp6[FP] 2 1

pseg_addr: Disp6[FP]

DSR: Disp6[FP]

Rd: Disp6[FP]

3

 Dadr 2 1

pseg_addr: Dadr

DSR: Dadr

Rd: Dadr

3

 XRn [EA] 4

pseg_addr:[EA]

DSR:[EA]

Rd:[EA]

5

 [EA+] 4

pseg_addr:[EA+]

DSR:[EA+]

Rd:[EA+]

5

Chapter 3. Instruction Descriptions

Instruction Set

 3-21

Mnemonic
First
operand

Second
operand

Minimum
execution time
(cycles)

ROM
window
access

[EA+] addressing
delay

SUB Rn Rm 1

SUBC Rn Rm 1

SWI #snum 3 1

TB Dbitadr 2 1 1

pseg_addr: Dbitadr

DSR: Dbitadr

Rd: Dbitadr

3 1

 Rn. bit_offset 1

XOR Rn Rm 1

 #imm8 1

Chapter 3. Instruction Descriptions

Instruction Set

 3-22

3.4 Instruction Descriptions

The following Figure describes the layout of the instruction descriptions beginning on the next page.

Using bit patterns other than those listed can produce unreliable execution. The instruction descriptions

are one or two pages long with the instructions in alphabetical order. The following Figure indicates the

major portions of these instruction descriptions.

SB Dbitadr Set bit

Function

Z ← ~[Dbitadr]

[Dbitadr] ←1

Description

• This instruction tests the specified bit by reading it from

memory, inverting it, and storing the result in the Z flag. It

then sets the original bit to “1.”

• The bit address Dbitadr has the format Dadr16.bit, where bit

is an integer between 0 and 7 specifying the bit position

within the memory byte.

Flags

C Z S OV MIE HC

– * – – – –

Z: This bit goes to “1” if the operation produces a zero

result and to “0” otherwise.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

DSR
prefix code

First
word

Second
word

SB Dbitadr A 0 1 bit 0 Dadr

 *: Dbitadr <word> A 0 1 bit 0 Dadr

 * <word>

 pseg_addr E 3 pseg_addr

 DSR F E 9 F

 Rd 9 0 d F

General instruction syntax

This consists of the mnemonic plus general symbols indicating the operand types.

Meta description of instruction operation

These symbols schematically outline instruction operation.

Instruction code
This Table lists the
addressing types
available for each
operand and the resulting
bit patterns in the
machine code for the
instruction.

Detailed instruction
description

This portion details
instruction operation,
operand notation, and
limitations.

DSR prefix instruction codes
This Table lists the bit patterns for use
in the portion of the first operand
indicated with an asterisk in the
immediately preceding Table.

Chapter 3. Instruction Descriptions

Instruction Set

 3-23

ADD ERn , ERm Add

Function

ERn ← ERn + ERm

Description

• This instruction adds the contents of the second word-sized register to those of the first

and stores the result in the first.

Flags

C Z S OV MIE HC

* * * * – *

C: This bit goes to “1” if the operation produces a carry out of bit 15 and to “0”

otherwise.

Z: This bit goes to “1” if the operation produces a zero result and to “0” otherwise.

S: This bit tracks the top bit of the result.

OV: This bit goes to “1” if the operation produces overflow and to “0” otherwise.

HC: This bit goes to “1” if the operation produces a carry out of or borrow into bit 11 and

to “0” otherwise.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 ADD ERn ERm F n m 6

Chapter 3. Instruction Descriptions

Instruction Set

 3-24

ADD ERn , #imm7 Add

Function

ERn ← ERn + (signed)imm7

Description

• This instruction adds the sign-extended immediate value to the contents of the specified

word-sized register and stores the result in the register. The following Figure represents

instruction operation schematically.

 Bit 15

ERn
 Bit 15

imm7

6 0

Sign bit

7 0

Rn

0 15

ERn

Sign extension

Rn+1

Flags

C Z S OV MIE HC

* * * * – *

C: This bit goes to “1” if the operation produces a carry out of bit 15 and to “0”

otherwise.

Z: This bit goes to “1” if the operation produces a zero result and to “0” otherwise.

S: This bit tracks the top bit of the result.

OV: This bit goes to “1” if the operation produces overflow and to “0” otherwise.

HC: This bit goes to “1” if the operation produces a carry out of or borrow into bit 11 and

to “0” otherwise.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 ADD ERn #imm7 E n 1 imm7

Chapter 3. Instruction Descriptions

Instruction Set

 3-25

ADD Rn , obj Add

Function

Rn ← Rn + obj

Description

• This instruction adds the contents of the specified byte-sized object to those of the

specified byte-sized register and stores the result in that register.

Flags

C Z S OV MIE HC

* * * * – *

C: This bit goes to “1” if the operation produces a carry out of bit 7 and to “0”

otherwise.

Z: This bit goes to “1” if the operation produces a zero result and to “0” otherwise.

S: This bit tracks the top bit of the result.

OV: This bit goes to “1” if the operation produces overflow and to “0” otherwise.

HC: This bit goes to “1” if the operation produces a carry out of or borrow into bit 3 and

to “0” otherwise.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 ADD Rn Rm 8 n m 1

 #imm8 1 n imm8

Chapter 3. Instruction Descriptions

Instruction Set

 3-26

ADD SP , #signed8 Add

Function

SP ← SP + signed 8

Description

• This instruction adds the sign-extended signed8 to the contents of the stack pointer and

stores the result in the stack pointer.

• Bit 7 in signed8 is interpreted as the sign bit, so signed8 is an integer quantity between

-128 and +127. The following Figure represents instruction operation schematically.

 Bit 15

SP

 Bit 15

signed8

7 0

Sign bit

0

0 15

SP

Sign extension

Flags

C Z S OV MIE HC

– – – – – –

–: No change.

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 ADD SP #signed8 E 1 signed8

Chapter 3. Instruction Descriptions

Instruction Set

 3-27

ADDC Rn , obj Add with carry

Function

Rn ← Rn + obj + C

Description

• This instruction adds the contents of the specified byte-sized register, the specified

byte-sized object, and the carry flag C and stores the result in the register.

Flags

C Z S OV MIE HC

* * * * – *

C: This bit goes to “1” if the operation produces a carry out of bit 7 and to “0”

otherwise.

Z: This flag remains “1” only if it was “1” before execution and the result is zero.

Otherwise, it remains or goes to “0.”

S: This bit tracks the top bit of the result.

OV: This bit goes to “1” if the operation produces overflow and to “0” otherwise.

HC: This bit goes to “1” if the operation produces a carry out of or borrow into bit 3 and

to “0” otherwise.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 ADDC Rn Rm 8 n m 6

 #imm8 6 n imm8

Chapter 3. Instruction Descriptions

Instruction Set

 3-28

AND Rn , obj Bitwise AND

Function

Rn ← Rn & obj

Description

• This instruction ANDs the contents of the specified byte-sized register and object and

stores the result in the register.

Flags

C Z S OV MIE HC

– * * – – –

Z: This bit goes to “1” if the operation produces a zero result and to “0” otherwise.

S: This bit tracks the top bit of the result.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 AND Rn Rm 8 n m 2

 #imm8 2 n imm8

Chapter 3. Instruction Descriptions

Instruction Set

 3-29

B Cadr Direct branch

Function

CSR ← Cadr[19:16]

PC ← Cadr[15:0]

Description

• This instruction jumps to the specified address anywhere in the program/code memory

space.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

 Instruction Format

Mnemonic First
operand

First
word

Second
word

 B Cadr F Cadr[19:16] 0 0 Cadr[15:0]

Chapter 3. Instruction Descriptions

Instruction Set

 3-30

B ERn Indirect branch

Function

PC ← ERn

Description

• This instruction jumps within the same physical segment to the offset in the specified

word-sized register.

• The program must load the target offset into the register before executing this instruction.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

 Instruction Format

Mnemonic First
operand

First
word

 B ERn F 0 n 2

Chapter 3. Instruction Descriptions

Instruction Set

 3-31

Bcond Radr
BC cond , Radr

Conditional branch

Function

If (cond = true) then PC ← Radr

Note that the distance from the address of the next instruction (NextPC) to Radr must be

between -128 and +127.

Description

• This instruction jumps to the specified address if the program status word (PSW)
contents satisfy the specified condition.

• It assumes a preceding comparison or other instruction setting PSW flags for testing
with this instruction.

• It is possible to specify the condition by two ways, one is to specify it as a part of
mnemonic, and the other is to specify it as an operand.

Example

 CMP R0,#21H

 BEQ LABEL ;The condition specifies as a part of mnemonic.

 CMP R0,#56H

 BC NC,LABEL ; The condition specifies as first operand.

 :

 :

 LBAEL:

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Chapter 3. Instruction Descriptions

Instruction Set

 3-32

Instruction Format

 Instruction Format

Mnemonic First
operand

Second
operand

First
word

 Bcond Radr

 BC cond Radr

C condition (Radr –NextPC)>>1

Condition

Instruction Syntax

Bcond BC cond Condition Meaning Flag condition
BGE

BNC

BC GE

BC NC

0000 Unsigned ≥ C=0

BLT

BCY

BC LT

BC CY

0001 Unsigned < C=1

BGT BC GT 0010 Unsigned > (C=0)&&(Z=0)

BLE BC LE 0011 Unsigned ≤ (Z=1)||(C=1)

BGES BC GES 0100 Signed ≥ (OV^S)=0

BLTS BC LTS 0101 Signed < (OV^S)=1

BGTS BC GTS 0110 Signed > ((OV^S)| Z) = 0

BLES BC LES 0111 Signed ≤ ((OV^S)| Z) = 1

BNE

BNZ

BC NE

BC NZ

1000 != Z=0

BEQ

BZ

BC EQ

BC ZF

1001 = Z=1

BNV BC NV 1010 No overflow OV=0

BOV BC OV 1011 Overflow OV=1

BPS BC PS 1100 Positive S=0

BNS BC NS 1101 Negative S=1

BAL BC AL 1110 Unconditional

Chapter 3. Instruction Descriptions

Instruction Set

 3-33

BL Cadr Branch and link

Function

LR ← Address of next instruction

LCSR← CSR

CSR ← Cadr[19:16]

PC ← Cadr[15:0]

Description

• This instruction saves the address of the next instruction in the link register (LR) and the

current CSR contents in the local code segment register (LCSR) and then jumps to the

specified address anywhere in the program/code memory space.

• This instruction is for calling a subroutine. To return from the subroutine, use the RT

instruction.

• If the subroutine calls another subroutine, it must use PUSH instructions to save the

contents of the link (LR) and local code segment (LCSR) registers to the stack before the

first such call and POP instructions to restore the link (LR) and local code segment

(LCSR) registers after the last one.

• If a program uses this instruction in an interrupt handler, the interrupt handler must first

use PUSH instructions to save the contents of the link (LR) and local code segment

(LCSR) registers to the stack before calling the subroutine, and the subroutine must

return with the corresponding POP instructions.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

 Instruction Format

Mnemonic First
operand

First
word

Second
word

 BL Cadr F Cadr[19:16] 0 1 Cadr[15:0]

Chapter 3. Instruction Descriptions

Instruction Set

 3-34

BL ERn Branch and link

Function

PC ← ERn

LR ← Address of next instruction

LCSR ← CSR

Description

• This instruction saves the address of the next instruction in the link register (LR) and the

current CSR contents in the local code segment register (LCSR) and then jumps within

the same physical segment to the offset in the specified word-sized register.

• This instruction is for calling a subroutine. To return from the subroutine, use the RT

instruction.

• If the subroutine calls another subroutine, it must use PUSH instructions to save the

contents of the link (LR) and local code segment (LCSR) registers to the stack before the

first such call and POP instructions to restore the link (LR) and local code segment

(LCSR) registers after the last one.

• If a program uses this instruction in an interrupt handler, the interrupt handler must first

use PUSH instructions to save the contents of the link (LR) and local code segment

(LCSR) registers to the stack before calling the subroutine, and the subroutine must

return with the corresponding POP instructions.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

 Instruction Format

Mnemonic First
operand

First
word

 BL ERn F 0 n 3

Chapter 3. Instruction Descriptions

Instruction Set

 3-35

BRK Break instruction
(software reset)

Function

• ELEVEL greater than 1: System reset

• ELEVEL less than 2:

ELR2 ← Address of next instruction

ECSR2 ← CSR

EPSW2 ← PSW

ELEVEL ← 2

PC ← (Vector table 0004H)

Description

• This instruction is for resetting the user application system in software.

• An ELEVEL greater than 1 produces a CPU system reset, which

(1) initializes all internal CPU registers

(2) loads the stack pointer (SP) with the word data from address 0 in the

code/program memory space

(3) loads the program counter (PC) with the word data from address 2 in the

code/program memory space

• An ELEVEL less than 2 produces the equivalent of a nonmaskable interrupt. The CPU

then loads the program counter (PC) with the word data from vector table address 4 at the

beginning of the code/program memory space.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

 Instruction Format

Mnemonic First
operand

First
word

 BRK F F F F

Chapter 3. Instruction Descriptions

Instruction Set

 3-36

CMP ERn , ERm Compare

Function

ERn – ERm

Description

• This instruction compares the contents of the two specified word-sized registers by

subtracting the latter from the former and setting the PSW flags for testing with a

conditional branch or similar instruction.

• The register contents do not change.

Flags

C Z S OV MIE HC

* * * * – *

C: This bit goes to “1” if the operation produces a carry out of bit 15 and to “0”

otherwise.

Z: This bit goes to “1” if the operation produces a zero result and to “0” otherwise.

S: This bit tracks the top bit of the result.

OV: This bit goes to “1” if the operation produces overflow and to “0” otherwise.

HC: This bit goes to “1” if the operation produces a carry out of or borrow into bit 11 and

to “0” otherwise.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 CMP ERn ERm F n m 7

Chapter 3. Instruction Descriptions

Instruction Set

 3-37

CMP Rn , obj Compare

Function

Rn – obj

Description

• This instruction compares the contents of the specified byte-sized register and object by

subtracting the latter from the former and setting the PSW flags for testing with a

conditional branch or similar instruction.

• The register contents do not change.

Flags

C Z S OV MIE HC

* * * * – *

C: This bit goes to “1” if the operation produces a carry out of bit 7 and to “0”

otherwise.

Z: This bit goes to “1” if the operation produces a zero result and to “0” otherwise.

S: This bit tracks the top bit of the result.

OV: This bit goes to “1” if the operation produces overflow and to “0” otherwise.

HC: This bit goes to “1” if the operation produces a carry out of or borrow into bit 3 and

to “0” otherwise.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 CMP Rn Rm 8 n m 7

 #imm8 7 n imm8

Chapter 3. Instruction Descriptions

Instruction Set

 3-38

CMPC Rn , obj Compare with carry

Function

Rn – obj– C

Description

• This instruction compares the contents of the Rn and obj by subtracting the latter and the

carry flag from the former and setting the PSW flags for testing with a conditional branch

or similar instruction.

• The register contents do not change.

• This instruction can be used after a CMP instruction to compare multibyte sequences.

Example: CMP R0, R4

 CMPC R1, R5

 Together, these two instructions compare the word-sized registers

ER0 and ER4.

Flags

C Z S OV MIE HC

* * * * – *

C: This bit goes to “1” if the operation produces a carry out of bit 15 and to “0”

otherwise.

Z: This flag remains “1” only if it was “1” before execution and the result is zero.

Otherwise, it remains or goes to “0.”

S: This bit tracks the top bit of the result.

OV: This bit goes to “1” if the operation produces overflow and to “0” otherwise.

HC: This bit goes to “1” if the operation produces a carry out of or borrow into bit 3 and

to “0” otherwise.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 CMPC Rn Rm 8 n m 5

 #imm8 5 n imm8

Chapter 3. Instruction Descriptions

Instruction Set

 3-39

CPLC Complement carry flag

Function

C ← ~C

Description

• This instruction inverts the contents of the carry flag.

Flags

C Z S OV MIE HC

* – – – – –

C: Inversion of the original setting

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 CPLC F E C F

Chapter 3. Instruction Descriptions

Instruction Set

 3-40

DAA Rn Byte-sized decimal
adjustment for addition

Function

Rn ← (decimal adjustment) Rn

Description

• This instruction converts the contents of the specified byte-sized register into a binary

coded decimal (BCD) value by adding the appropriate value, based on the contents of the

register as well as the C and HC flags, from the following Table.

An “X” indicates that the CPU does not care about the contents of that portion.

 C Rn[7:4] HC Rn[3:0] Adjustment C flag after adjustment

 0 0–9 0 0–9 00 0

 0 0–8 0 A–F 06 0

 0 0–9 1 x 06 0

 0 A–F 0 0–9 60 1

 0 9–F 0 A–F 66 1

 0 A–F 1 x 66 1

 1 x 0 0–9 60 1

 1 x 0 A–F 66 1

 1 x 1 x 66 1

• A binary addition instruction (ADD Rn, obj) must precede this instruction, and any

intervening instruction must not alter the contents of the register or the program status

word (PSW).

Flags

C Z S OV MIE HC

* * * – – *

C: This flag goes to “1” if execution produces a carry into the 100s position. Otherwise,

it remains unchanged.

Z: This bit goes to “1” if the operation produces a zero result and to “0” otherwise.

S: This bit tracks the top bit of the result.

HC: This bit goes to “1” if the operation produces a carry out of or borrow into bit 3 and

to “0” otherwise.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 DAA Rn 8 n 1 F

Chapter 3. Instruction Descriptions

Instruction Set

 3-41

DAS Rn Byte-sized decimal adjustment
for subtraction

Function

Rn ← (decimal adjustment) Rn

Description

• This instruction converts the contents of the specified byte-sized register into a binary

coded decimal (BCD) value by subtracting the appropriate value, based on the

contents of the register as well as the C and HC flags, from the following Table.

 An “X” indicates that the CPU does not care about the contents of that portion.

 C Rn[7:4] HC Rn[3:0] Adjustment

 0 0–9 0 0–9 00

 0 0–9 0 A–F 06

 0 0–9 1 x 06

 0 A–F 0 0–9 60

 0 A–F 1 x 66

 0 A–F 0 A–F 66

 1 x 0 0–9 60

 1 x 1 x 66

 1 x 0 A–F 66

• A binary subtraction instruction (SUB Rn, obj) must precede this instruction, and any

intervening instruction must not alter the contents of the register or the program status

word (PSW).

Flags

C Z S OV MIE HC

* * * – – *

C: This flag goes to “1” if execution produces a borrow from the 100s position.

Otherwise, it remains unchanged.

Z: This bit goes to “1” if the operation produces a zero result and to “0” otherwise.

S: This bit tracks the top bit of the result.

HC: This bit goes to “1” if the operation produces a carry out of or borrow into bit 3 and

to “0” otherwise.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 DAS Rn 8 n 3 F

Chapter 3. Instruction Descriptions

Instruction Set

 3-42

DEC [EA] Memory decrement
(using EA indirect addressing)

Function

[EA] ← [EA] –1

Description

• This instruction subtracts one from the byte at the address in the EA register.

Flags

C Z S OV MIE HC

– * * * – *

Z: This bit goes to “1” if the operation produces a zero result and to “0” otherwise.

S: This bit tracks the top bit of the result.

OV: This bit goes to “1” if the operation produces overflow and to “0” otherwise.

HC: This bit goes to “1” if the operation produces a carry out of or borrow into bit 3 and

to “0” otherwise.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand

DSR

prefix code First
word

Second
word

 DEC [EA] F E 3 F

 *:[EA] <word> F E 3 F

 * <word>

 pseg_addr E 3 pseg_addr

 DSR F E 9 F

 Rd 9 0 d F

Chapter 3. Instruction Descriptions

Instruction Set

 3-43

DI Disable interrupts

Function

MIE ← 0

Description

• This instruction sets the master interrupt enable (MIE) bit to “0” to disable maskable

interrupts.

Flags

C Z S OV MIE HC

– – – – * –

MIE: This goes to “0.”

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 DI E B F 7

Chapter 3. Instruction Descriptions

Instruction Set

 3-44

DIV ERn , Rm Division

Function

ERn ← ERn / Rm

Rm ← ERn mod Rm

Description

• This instruction divides the contents of the specified word-sized register by those of the

specified byte-sized register, stores the 16-bit dividend in the former, and stores the 8-bit

remainder in the latter.

• A zero divisor sets the carry flag to “1” and leaves indeterminate values in both registers.

Flags

C Z S OV MIE HC

* * – – – –

C: This flag goes to “1” if the divisor is zero. Otherwise, it goes to “0.”

Z: This flag goes to “1” if the dividend is zero. Otherwise, it goes to “0.”

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 DIV ERn Rm F n m 9

Chapter 3. Instruction Descriptions

Instruction Set

 3-45

EI Enable interrupts

Function

MIE ← 1

Description

• This instruction sets the master interrupt enable (MIE) bit to “1” to enable maskable

interrupts.

• Note that the MIE bit does not go to “1” for three cycles from the start of this instruction,

so the user application program must support maskable interrupts for the two cycles

following this instruction.

Flags

C Z S OV MIE HC

– – – – * –

MIE: This goes to “1.”

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 EI E D 0 8

Chapter 3. Instruction Descriptions

Instruction Set

 3-46

EXTBW ERn Extend sign

Function

Rn

07

Sign bit

015

ERn

7

Sign extension

8

Description

• This instruction extends the contents of the Rn register to signed 16-bit format and stores

it in the ERn register.

• The contents of the Rn+1 are filled with bit 7 of the Rn register, as the result.

Flags

C Z S OV MIE HC

– * * – – –

Z: This bit goes to “1” if the Rn register value is zero and to “0” otherwise.

S: This bit tracks the bit 7 of the Rn register.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 EXTBW ERn 8 n+1 n F

Chapter 3. Instruction Descriptions

Instruction Set

 3-47

INC [EA] Memory increment
(using EA indirect addressing)

Function

[EA] ← [EA] +1

Description

• This instruction adds one to the byte at the address in the EA register.

Flags

C Z S OV MIE HC

– * * * – *

Z: This bit goes to “1” if the operation produces a zero result and to “0” otherwise.

S: This bit tracks the top bit of the result.

OV: This bit goes to “1” if the operation produces overflow and to “0” otherwise.

HC: This bit goes to “1” if the operation produces a carry out of or borrow into bit 3 and

to “0” otherwise.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand

DSR

prefix code First
word

Second
word

 INC [EA] F E 2 F

 *:[EA] <word> F E 2 F

 * <word>

 pseg_addr E 3 pseg_addr

 DSR F E 9 F

 Rd 9 0 d F

Chapter 3. Instruction Descriptions

Instruction Set

 3-48

L ERn, obj Word-sized data transfer

Function

ERn ← obj

Description

• This instruction loads the specified 16-bit register with the data at the specified word

address.

Flags

C Z S OV MIE HC

– * * – – –

Z: This bit goes to “1” if the operation produces a zero result and to “0” otherwise.

S: This bit tracks the top bit of the result.

–: No change

Instruction Format

(See next page)

Rn

Rn+1

Memory

07

2m

2m+1

General

registers

LSB

MSB

7 0

LSB

MSB

Chapter 3. Instruction Descriptions

Instruction Set

 3-49

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand

DSR

prefix code First
word

Second
word

L ERn [EA] 9 n 3 2

 *: [EA] <word> 9 n 3 2

 [EA+] 9 n 5 2

 *:[EA+] <word> 9 n 5 2

 [ERm] 9 n m 2

 *:[ERm] <word> 9 n m 2

 Disp16[ERm] A n m 8

Disp16

 *:Disp16[ERm] <word> A n m 8

Disp16

 Disp6[BP] B n 0 0 Disp6

 *:Disp6[BP] <word> B n 0 0 Disp6

 Disp6[FP] B n 0 1 Disp6

 *:Disp6[FP] <word> B n 0 1 Disp6

 Dadr 9 n 1 2 Dadr

 *: Dadr <word> 9 n 1 2 Dadr

 * <word>

 pseg_addr E 3 pseg_addr

 DSR F E 9 F

 Rd 9 0 d F

Chapter 3. Instruction Descriptions

Instruction Set

 3-50

L QRn,obj Quad word-sized
data transfer

Function

QRn ← obj

Description

• This instruction loads the specified 64-bit register with the data at the specified word

address.

Flags

C Z S OV MIE HC

– * * – – –

Z: This flag goes to “1” if the new register contents are zero. Otherwise, it goes to “0.”

S: This bit tracks the top bit of the result.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand

DSR

prefix code First
word

Second
word

L QRn [EA] 9 n 3 6

 *: [EA] <word> 9 n 3 6

 [EA+] 9 n 5 6

 *:[EA+] <word> 9 n 5 6

 * <word>

 pseg_addr E 3 pseg_addr

 DSR F E 9 F

 Rd 9 0 d F

Rn

Rn+1

Rn+2

Rn+3

Memory

07

2m

2m+1

General

registers

2m+2

2m+3

LSB

7 0

LSB

MSB

2m+4

2m+5

2m+6

2m+7

Rn+4

Rn+5

Rn+6

MSBRn+7

Chapter 3. Instruction Descriptions

Instruction Set

 3-51

L Rn, obj Byte-sized data transfer

Function

Rn ←obj

Description

• This instruction loads the specified 8-bit register with the data at the specified byte

address.

Flags

C Z S OV MIE HC

– * * – – –

Z: This flag goes to “1” if the new register contents are zero. Otherwise, it goes to “0.”

S: This bit tracks the top bit of the result.

–: No change

Instruction Format

(See next page)

Chapter 3. Instruction Descriptions

Instruction Set

 3-52

Instruction Format Mnemonic First
operand

Second
operand

DSR

prefix code First
word

Second
word

L Rn [EA] 9 n 3 0

 *: [EA] <word> 9 n 3 0

 [EA+] 9 n 5 0

 *:[EA+] <word> 9 n 5 0

 [ERm] 9 n m 0

 *:[ERm] <word> 9 n m 0

 Disp16[ERm] 9 n m 8

Disp16

 *:Disp16[ERm] <word> 9 n m 8

Disp16

 Disp6[BP] D n 0 0 Disp6

 *:Disp6[BP] <word> D n 0 0 Disp6

 Disp6[FP] D n 0 1 Disp6

 *:Disp6[FP] <word> D n 0 1 Disp6

 Dadr 9 n 1 0 Dadr

 *: Dadr <word> 9 n 1 0 Dadr

 * <word>

 pseg_addr E 3 pseg_addr

 DSR F E 9 F

 Rd 9 0 d F

Chapter 3. Instruction Descriptions

Instruction Set

 3-53

L XRn,obj Double word-sized
data transfer

Function

XRn ← obj

Description

• This instruction loads the specified 32-bit register with the data at the specified word

address.

Flags

C Z S OV MIE HC

– * * – – –

Z: This flag goes to “1” if the new register contents are zero. Otherwise, it goes to “0.”

S: This bit tracks the top bit of the result.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand

DSR

prefix code First
word

Second
word

L XRn [EA] 9 n 3 4

 *: [EA] <word> 9 n 3 4

 [EA+] 9 n 5 4

 *:[EA+] <word> 9 n 5 4

 * <word>

 pseg_addr E 3 pseg_addr

 DSR F E 9 F

 Rd 9 0 d F

Memory

Rn

Rn+1

Rn+2

Rn+3

07

2m

2m+1

General registers

2m+2

2m+3

LSB

7 0

LSB

MSB

Rn+4 MSB

Chapter 3. Instruction Descriptions

Instruction Set

 3-54

LEA obj Load EA

Function

EA ← obj

Description

• This instruction loads the EA register with the specified word value.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 LEA [ERm] F 0 m A

 Dadr F 0 0 C Dadr

 Disp16[ERm] F 0 m B Disp16

Chapter 3. Instruction Descriptions

Instruction Set

 3-55

MOV CERn , obj Coprocessor data transfer

Function

CERn ←obj

Description

• This instruction loads the specified coprocessor word-sized register from the specified

word address.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand

DSR

prefix code First
word

Second
word

MOV CERn [EA] F n 2 D

 *: [EA] <word> F n 2 D

 [EA+] F n 3 D

 *:[EA+] <word> F n 3 D

 * <word>

 pseg_addr E 3 pseg_addr

 DSR F E 9 F

 Rd 9 0 d F

Chapter 3. Instruction Descriptions

Instruction Set

 3-56

MOV CQRn , obj Coprocessor data transfer

Function

CQRn ← obj

Description

• This instruction loads the specified coprocessor quad word-sized register from the

specified word address.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand

DSR

prefix code First
word

Second
word

MOV CQRn [EA] F n 6 D

 *: [EA] <word> F n 6 D

 [EA+] F n 7 D

 *:[EA+] <word> F n 7 D

 * <word>

 pseg_addr E 3 pseg_addr

 DSR F E 9 F

 Rd 9 0 d F

Chapter 3. Instruction Descriptions

Instruction Set

 3-57

MOV CRn , obj Coprocessor data transfer

Function

CRn ←obj

Description

• This instruction loads the specified coprocessor byte-sized register from the specified

byte address.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand

DSR

prefix code First
word

Second
word

MOV CRn [EA] F n 0 D

 *: [EA] <word> F n 0 D

 [EA+] F n 1 D

 *:[EA+] <word> F n 1 D

 * <word>

 pseg_addr E 3 pseg_addr

 DSR F E 9 F

 Rd 9 0 d F

Chapter 3. Instruction Descriptions

Instruction Set

 3-58

MOV CRn , Rm Coprocessor data transfer

Function

CRn ←Rm

Description

• This instruction loads the specified coprocessor byte-sized register from the specified

byte-sized internal register.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 MOV CRn Rm A n m E

Chapter 3. Instruction Descriptions

Instruction Set

 3-59

MOV CXRn , obj Coprocessor data transfer

Function

CXRn ← obj

Description

• This instruction loads the specified coprocessor double word-sized register from the

specified double word-sized internal register.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand

DSR

prefix code First
word

Second
word

MOV CXRn [EA] F n 4 D

 *: [EA] <word> F n 4 D

 [EA+] F n 5 D

 *:[EA+] <word> F n 5 D

 * <word>

 pseg_addr E 3 pseg_addr

 DSR F E 9 F

 Rd 9 0 d F

Chapter 3. Instruction Descriptions

Instruction Set

 3-60

MOV ECSR , Rm Data transfer

Function

• If ELEVEL is zero

LCSR ←Rm

• If ELEVEL is nonzero

ECSR[ELEVEL] ←Rm

Description

• This instruction loads the contents of the specified register into the local code segment

register (LCSR) if ELEVEL is zero and into the ECSR register (ECSR1 to ECSR3) for

the current exception level (ELEVEL) setting otherwise.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 MOV ECSR Rm A 0 m F

Chapter 3. Instruction Descriptions

Instruction Set

 3-61

MOV ELR , ERm Data transfer

Function

• If ELEVEL is zero

LR ← ERm

• If ELEVEL is nonzero

ELR[ELEVEL] ← ERm

Description

• This instruction loads the contents of the specified word-sized register into the link

register (LR) if ELEVEL is zero and into the exception link register (ELR1 to ELR3) for

the current exception level (ELEVEL) setting otherwise.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 MOV ELR ERm A m 0 D

Chapter 3. Instruction Descriptions

Instruction Set

 3-62

MOV EPSW , Rm Data transfer

Function

• If ELEVEL is nonzero

EPSW[ELEVEL] ←Rm

Description

• This instruction loads the contents of the specified register into the exception program

status word (EPSW1 to EPSW3) register for the current exception level (ELEVEL)

setting if ELEVEL is nonzero.

• If ELEVEL is zero, this instruction does nothing. The program counter (PC) simply

advances to the next instruction.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 MOV EPSW Rm A 0 m C

Chapter 3. Instruction Descriptions

Instruction Set

 3-63

MOV ERn , ELR Data transfer

Function

• If ELEVEL is zero

ERn ←LR

• If ELEVEL is nonzero

ERn ←ELR[ELEVEL]

Description

• This instruction loads the specified word-sized register from the link register (LR) if

ELEVEL is zero and from the exception link register (ELR1 to ELR3) for the current

exception level (ELEVEL) setting otherwise.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 MOV ERn ELR A n 0 5

Chapter 3. Instruction Descriptions

Instruction Set

 3-64

MOV ERn , ERm Data transfer

Function

ERn ←ERm

Description

• This instruction loads the first word-sized register from the second.

Flags

C Z S OV MIE HC

– * * – – –

Z: This flag goes to “1” if the new register contents are zero. Otherwise, it goes to “0.”

S: This bit tracks the top bit of the result.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 MOV ERn ERm F n m 5

Chapter 3. Instruction Descriptions

Instruction Set

 3-65

MOV ERn , #imm7 Data transfer

Function

ERn ← (sign–extends)imm7

imm7

06

Sign bit

015

ERn

6

Sign extension

Description

• This instruction loads the sign-extended imm7 into the specified word-sized register.

More precisely, it loads the immediate value into Rn, the lower half of the register, and

copies bit 6 from the immediate value into Rn bit 7 and all bits of Rn+1.

Example:

MOV R0,#07Fh

MOV R1,#0h

MOV ER0,#-64 ; Execution replicates the top bit (“1”), setting R0 to 0C0H

and R1 to 0FFH

MOV R0,#03Fh

MOV R1,#0FFh

MOV ER0,#3Fh ; Execution replicates the top bit (“0”), setting R0 to 03FH

and R1 to 0H

Flags

C Z S OV MIE HC

– * * – – –

Z: This flag goes to “1” if the new register contents are zero. Otherwise, it goes to “0.”

S: This bit tracks the top bit of the result.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 MOV ERn #imm7 E n 0 imm7

Chapter 3. Instruction Descriptions

Instruction Set

 3-66

MOV ERn , SP Data transfer

Function

ERn ←SP

Description

• This instruction saves the contents of the stack pointer (SP) in the specified word-sized

register.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 MOV ERn SP A n 1 A

Chapter 3. Instruction Descriptions

Instruction Set

 3-67

MOV obj , CERm Coprocessor data transfer

Function

(WORD) obj ←CERm

Description

• This instruction saves the contents of the specified coprocessor word-sized register at the

specified word address in the EA register.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand

DSR

prefix code First
word

Second
word

MOV [EA] CERm F m A D

 * : [EA] CERm <word> F m A D

 [EA+] CERm F m B D

 * : [EA+] CERm <word> F m B D

 * <word>

 pseg_addr E 3 pseg_addr

 DSR F E 9 F

 Rd 9 0 d F

Chapter 3. Instruction Descriptions

Instruction Set

 3-68

MOV obj , CQRm Coprocessor data transfer

Function

(QWORD)obj ←CQRm

Description

• This instruction saves the contents of the specified coprocessor quad word-sized register

at the specified word address in the EA register.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand

DSR

prefix code First
word

Second
word

MOV [EA] CQRm F m E D

 *: [EA] CQRm <word> F m E D

 [EA+] CQRm F m F D

 *: [EA+] CQRm <word> F m F D

 * <word>

 pseg_addr E 3 pseg_addr

 DSR F E 9 F

 Rd 9 0 d F

Chapter 3. Instruction Descriptions

Instruction Set

 3-69

MOV obj , CRm Coprocessor data transfer

Function

(BYTE) obj ←CRm

Description

• This instruction saves the contents of the specified coprocessor byte-sized register at the

specified byte address in the EA register.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand

DSR

prefix code First
word

Second
word

MOV [EA] CRm F m 8 D

 *: [EA] CRm <word> F m 8 D

 [EA+] CRm F m 9 D

 *: [EA+] CRm <word> F m 9 D

 * <word>

 pseg_addr E 3 pseg_addr

 DSR F E 9 F

 Rd 9 0 d F

Chapter 3. Instruction Descriptions

Instruction Set

 3-70

MOV obj , CXRm Coprocessor data transfer

Function

(DOUBLE WORD)obj ← CXRm

Description

• This instruction saves the contents of the specified coprocessor double word-sized

register at the specified word address in the EA register.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand

DSR

Prefix code First
word

Second
word

MOV [EA] CXRm F m C D

 *: [EA] CXRm <word> F m C D

 [EA+] CXRm F m D D

 *: [EA+] CXRm <word> F m D D

 * <word>

 pseg_addr E 3 pseg_addr

 DSR F E 9 F

 Rd 9 0 d F

Chapter 3. Instruction Descriptions

Instruction Set

 3-71

MOV PSW , obj Data transfer

Function

PSW ← obj

Description

• This instruction loads the program status word (PSW) from the specified byte-sized

object.

• When the current exception level (ELEVEL) is changed, it is necessary to arrange an

NOP instruction immediately after. Otherwise, the following command operates

before changing ELEVEL, and as a result, the program might malfunction.

 Example:

 MOV PSW, #05h

 NOP

 RTI

• When the value of the master interrupt enable (MIE) bit is reset in 0, the DI instruction

is used, and this instruction is not used. Otherwise, the MIE bit does not go to “0” for

three cycles from the start of this instruction, as a result, maskable interrupt that the

programmer doesn't intend is permitted, and there is a possibility that the application

program malfunctions.

Flags

C Z S OV MIE HC

* * * * * *

*: Contents reflect the corresponding source bit.

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 MOV PSW #unsigned8 E 9 unsigned8

 Rm A 0 m B

Chapter 3. Instruction Descriptions

Instruction Set

 3-72

MOV Rn , CRm Coprocessor data transfer

Function

Rn ← CRm

Description

• This instruction loads the specified byte-sized register from the specified coprocessor

byte-sized register.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 MOV Rn CRm A n m 6

Chapter 3. Instruction Descriptions

Instruction Set

 3-73

MOV Rn , ECSR Data transfer

Function

• If ELEVEL is zero

Rn ← LCSR

• If ELEVEL is nonzero

Rn ← ECSR[ELEVEL]

Description

• This instruction loads the specified byte-sized register from the local code segment

register (LCSR) if ELEVEL is zero and from the ECSR register (ECSR1 to ECSR3) for

the current exception level (ELEVEL) setting otherwise.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 MOV Rn ECSR A n 0 7

Chapter 3. Instruction Descriptions

Instruction Set

 3-74

MOV Rn , EPSW Data transfer

Function

• If ELEVEL is nonzero

Rn ← EPSW[ELEVEL]

Description

• This instruction loads the specified byte-sized register from the exception program status

word (EPSW1 to EPSW3) register for the current exception level (ELEVEL) setting if

ELEVEL is nonzero.

• If ELEVEL is zero, this instruction does nothing. The program counter (PC) simply

advances to the next instruction.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 MOV Rn EPSW A n 0 4

Chapter 3. Instruction Descriptions

Instruction Set

 3-75

MOV Rn , PSW Data transfer

Function

Rn ← PSW

Description

• This instruction loads the specified byte-sized register from the program status word

(PSW).

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 MOV Rn PSW A n 0 3

Chapter 3. Instruction Descriptions

Instruction Set

 3-76

MOV Rn , obj Data transfer

Function

Rn ←obj

Description

• This instruction loads the specified byte-sized register from the specified byte-sized

object.

Flags

C Z S OV MIE HC

– * * – – –

Z: This flag goes to “1” if the new register contents are zero. Otherwise, it goes to “0.”

S: This bit tracks the top bit of the result.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 MOV Rn Rm 8 n m 0

 #imm8 0 n imm8

Chapter 3. Instruction Descriptions

Instruction Set

 3-77

MOV SP , ERm Data transfer

Function

SP ← ERm

Description

• This instruction loads the stack pointer (SP) from the specified word-sized register.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 MOV SP ERm A 1 m A

Chapter 3. Instruction Descriptions

Instruction Set

 3-78

MUL ERn,Rm Multiplication

Function

ERn ← Rn * Rm (n must be even)

Description

• This instruction multiplies the contents of the two specified byte-size registers and stores

the 16-bit product in the word-sized register corresponding to the first register.

Flags

C Z S OV MIE HC

– * – – – –

Z: This bit goes to “1” if the operation produces a zero result and to “0” otherwise.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 MUL ERn Rm F n m 4

Chapter 3. Instruction Descriptions

Instruction Set

 3-79

NEG Rn Negate

Function

Rn ←0–Rn

Description

• This instruction calculates the twos complement of the contents of the specified byte-size

register and stores the result in that register.

Flags

C Z S OV MIE HC

* * * * – *

C: This bit goes to “1” if the operation produces a carry out of bit 7 and to “0”

otherwise.

Z: This bit goes to “1” if the operation produces a zero result and to “0” otherwise.

S: This bit tracks the top bit of the result.

OV: This bit goes to “1” if the operation produces overflow and to “0” otherwise.

HC: This bit goes to “1” if the operation produces a carry out of or borrow into bit 3 and

to “0” otherwise.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 NEG Rn 8 n 5 F

Chapter 3. Instruction Descriptions

Instruction Set

 3-80

NOP No operation

Function

No operation

Description

• This instruction advances the program counter (PC) to the next instruction.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 NOP F E 8 F

Chapter 3. Instruction Descriptions

Instruction Set

 3-81

OR Rn , obj Bitwise OR

Function

Rn ←Rn | obj

Description

• This instruction ORs the contents of the specified byte-sized register and object and

stores the result in the register.

Flags

C Z S OV MIE HC

– * * – – –

Z: This flag goes to “1” if the new register contents are zero. Otherwise, it goes to “0.”

S: This bit tracks the top bit of the result.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 OR Rn Rm 8 n m 3

 #imm8 3 n imm8

Chapter 3. Instruction Descriptions

Instruction Set

 3-82

POP register list Restore control registers

Function

Control registers ← (SP)

SP ←SP + n

Description

• This instruction loads the specified control registers from the system stack pointed to by

the stack pointer (SP) and then increments SP by the corresponding number of bytes. For

further details, see Section 1.6 “Stack Modifications.”

• The following control registers can appear in this list.

(1) EA register

(2) link register (LR) for saving the program counter (PC) when calling a

subroutine

(3) program status word (PSW)

(4) program counter (PC)

• This list need not contain all, but it must contain at least one.

• This list can appear in any order, but the hardware always uses the order given below:

EA → LR → PSW → PC

• There is no automatic word alignment about the stack operations. Therefore, if the

contents of the stack pointer are odd, that address is used as is.

• The normal procedure for returning from a subroutine or interrupt handler is with an RT

or RTI instruction, respectively, but it is sometimes necessary to save the contents of

backup registers to the stack with PUSH instructions when subroutines or interrupt

handlers are nested and restore them with POP instructions afterward. For further details,

see Section 1.4 “Exception Levels and Backup Registers.”

Flags

C Z S OV MIE HC

* * * * * *

*: Contents change only if PSW is on the list.

Chapter 3. Instruction Descriptions

Instruction Set

 3-83

Instruction Format

 Instruction Format

Mnemonic First
operand

First
word

 POP EA F 1 8 E

 PC F 2 8 E

 EA, PC F 3 8 E

 PSW F 4 8 E

 EA, PSW F 5 8 E

 PC, PSW F 6 8 E

 EA, PC, PSW F 7 8 E

 LR F 8 8 E

 EA, LR F 9 8 E

 PC, LR F A 8 E

 EA, PC, LR F B 8 E

 LR, PSW F C 8 E

 EA, PSW, LR F D 8 E

 PC, PSW, LR F E 8 E

 EA, PC, PSW, LR F F 8 E

Chapter 3. Instruction Descriptions

Instruction Set

 3-84

POP obj Restore general registers

Function

General registers ← (SP)

SP ←SP + n

Description

• This instruction loads the specified general registers from the system stack pointed to by

the stack pointer (SP) as it increments SP by the corresponding number of bytes.

• Because the stack operations are always word sized, this instruction with a byte-sized

operand (Rn) loads the specified register and then automatically introduces a dummy

cycle that increments SP without modifying any other registers.

For further details, see Section 1.6 “Stack Modifications.”

• There is no automatic word alignment about the stack operations. Therefore, if the

contents of the stack pointer are odd, that address is used as is.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

 Instruction Format

Mnemonic First
operand

First
word

 POP Rn F n 0 0 0 0 E

 ERn F n 0 0 0 1 E

 XRn F n 0 0 1 0 E

 QRn F n 0 0 1 1 E

Chapter 3. Instruction Descriptions

Instruction Set

 3-85

PUSH register list Save control registers

Function

SP ←SP – n

(SP) ← Control registers

Description

• This instruction saves the specified control registers to the system stack pointed to by the

stack pointer (SP) as it decrements SP by the corresponding number of bytes. For further

details, see Section 1.6 “Stack Modifications.”

• The following control registers can appear in this list.

(1) exception link register (ELR)

(2) exception program status word (EPSW)

(3) link register (LR) for saving the program counter (PC) when calling a

subroutine

(4) EA register

• This list can appear in any order, but the hardware always uses the order given below:

ELR → EPSW → LR → EA

• This instruction assumes that preceding PUSH instructions have saved the specified

control registers on the stack in the appropriate order.

• There is no automatic word alignment about the stack operations. Therefore, if the

contents of the stack pointer are odd, that address is used as is.

• The normal procedure for returning from a subroutine or interrupt handler is with an RT

or RTI instruction, respectively, but it is sometimes necessary to save the contents of

backup registers to the stack with PUSH instructions when subroutines or interrupt

handlers are nested and restore them with POP instructions afterward. For further details,

see Section 1.4 “Exception Levels and Backup Registers.”

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Chapter 3. Instruction Descriptions

Instruction Set

 3-86

Instruction Format

 Instruction Format

Mnemonic First
operand

First
word

 PUSH EA F 1 C E

 ELR F 2 C E

 EA, ELR F 3 C E

 EPSW F 4 C E

 EPSW, EA F 5 C E

 EPSW, ELR F 6 C E

 EPSW, ELR, EA F 7 C E

 LR F 8 C E

 LR, EA F 9 C E

 LR, ELR F A C E

 LR, EA, ELR F B C E

 LR, EPSW F C C E

 LR, EPSW, EA F D C E

 LR, EPSW, ELR F E C E

 LR, EPSW, ELR, EA F F C E

Chapter 3. Instruction Descriptions

Instruction Set

 3-87

PUSH obj Save general registers

Function

SP ←SP – n

(SP) ← General registers

Description

• This instruction loads the specified general registers from the system stack pointed to by

the stack pointer (SP) as it decrements SP by the corresponding number of bytes.

• Because Stack operations are always word sized, this instruction with a byte-sized

operand (Rn) loads the specified register and then automatically introduces a dummy

cycle that decrements SP without modifying any other registers.

For further details, see Section 1.6 “Stack Modifications.”

• There is no automatic word alignment about the stack operations. Therefore, if the

contents of the stack pointer are odd, that address is used as is.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

 Instruction Format

Mnemonic First
operand

First
word

 PUSH Rn F n 0 1 0 0 E

 ERn F n 0 1 0 1 E

 XRn F n 0 1 1 0 E

 QRn F n 0 1 1 1 E

Chapter 3. Instruction Descriptions

Instruction Set

 3-88

RB Dbitadr Reset bit

Function

Z ← ~[Dbitadr]

[Dbitadr] ← 0

Memory space

07

Dbitadr LSBMSB

0

Invert

Z

Address

Description

• This instruction tests the specified bit by reading it from memory, inverting it, and storing

the result in the Z flag. It then resets the original bit to “0.”

• The bit address Dbitadr has the format Dadr.bit, where bit is an integer between 0 and 7

specifying the bit position within the memory byte.

Flags

C Z S OV MIE HC

– * – – – –

Z: Inverse of the original bit

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

DSR
prefix code

First
word

Second
word

RB Dbitadr A 0 1 bit 2 Dadr

 *: Dbitadr <word> A 0 1 bit 2 Dadr

 * <word>

 pseg_addr E 3 pseg_addr

 DSR F E 9 F

 Rd 9 0 d F

Chapter 3. Instruction Descriptions

Instruction Set

 3-89

RB Rn . bit_offset Reset bit

Function

Z ← ~Rn[bit_offset]

Rn[bit_offset] ← 0

Description

• This instruction reads the specified bit from the specified byte-sized register, inverts it,

and stores it in the Z flag. It then resets the original bit to “0.”

• bit_offset is an integer between 0 and 7 specifying the bit position within the register.

Flags

C Z S OV MIE HC

– * – – – –

Z: Inverse of the original bit

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 RB Rn.bit_offset A n 0 bit 2

Chapter 3. Instruction Descriptions

Instruction Set

 3-90

RC Reset carry flag

Function

C ← 0

Description

• This instruction resets the carry flag to “0.”

Flags

C Z S OV MIE HC

* – – – – –

C: This goes to “0.”

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 RC E B 7 F

Chapter 3. Instruction Descriptions

Instruction Set

 3-91

RT Return from subroutine

Function

CSR ← LCSR

PC ← LR

Description

• This instruction is for returning from a subroutine called with a BL instruction. It restores

the address of the instruction following the BL instruction by loading the code segment

register from the local code segment register (LCSR) and the program counter (PC) from

the link register (LR).

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 RT F E 1 F

Chapter 3. Instruction Descriptions

Instruction Set

 3-92

RTI Return from interrupt

Function

CSR ← ECSR[ELEVEL]

PC ← ELR [ELEVEL]

PSW ← EPSW[ELEVEL]

Description

• This instruction is for returning from an interrupt handler. It restores the program status

word (PSW) and program counter (PC) from the exception program status word

(EPSW1 to EPSW3) register and exception link register (ELR1 to ELR3), respectively,

for the current exception level (ELEVEL) setting—1 for maskable interrupts and 2 for

nonmaskable ones.

Flags

C Z S OV MIE HC

* * * * * *

*: Contents reflect the corresponding EPSW bit.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 RTI F E 0 F

Chapter 3. Instruction Descriptions

Instruction Set

 3-93

SB Dbitadr Set bit

Function

Z ← ~[Dbitadr]

[Dbitadr] ←1

Memory space

07

Dbitadr LSBMSB

1

Invert

Z

Address

Description

• This instruction tests the specified bit by reading it from memory, inverting it, and storing

the result in the Z flag. It then sets the original bit to “1.”

• The bit address Dbitadr has the format Dadr16.bit, where bit is an integer between 0 and

7 specifying the bit position within the memory byte.

Flags

C Z S OV MIE HC

– * – – – –

Z: This bit goes to “1” if the operation produces a zero result and to “0” otherwise.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

DSR
prefix code

First
word

Second
word

SB Dbitadr A 0 1 bit 0 Dadr

 *: Dbitadr <word> A 0 1 bit 0 Dadr

 * <word>

 pseg_addr E 3 pseg_addr

 DSR F E 9 F

 Rd 9 0 d F

Chapter 3. Instruction Descriptions

Instruction Set

 3-94

SB Rn . bit_offset Set bit

Function

Z ← ~Rn[bit_offset]

Rn[bit_offset] ← 1

Description

• This instruction reads the specified bit from the specified byte-sized register, inverts it,

and stores it in the Z flag. It then sets the original bit to “1.”

• bit_offset is an integer between 0 and 7 specifying the bit position within the register.

Flags

C Z S OV MIE HC

– * – – – –

Z: This bit goes to “1” if the operation produces a zero result and to “0” otherwise.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 SB Rn.bit_offset A n 0 bit 0

Chapter 3. Instruction Descriptions

Instruction Set

 3-95

SC Set carry flag

Function

C ← 1

Description

• This instruction sets the carry flag to “1.”

Flags

C Z S OV MIE HC

* – – – – –

C: This goes to “1.”

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 SC E D 8 0

Chapter 3. Instruction Descriptions

Instruction Set

 3-96

SLL Rn , obj Shift left logical

Function

Description

• This instruction shifts the bits in the specified byte-sized register left the number of

places specified by the second operand and shifts in zeros from the right. The carry flag

retains the last bit shifted out.

• The meaningful range for shift sizes is 0 to 7. If the second operand is a byte-sized

register, the hardware ignores bits 7 to 3 in that register and uses only the lowest three

bits, thus restricting the shift size to the range 0 to 7. A shift size of 0 produces the

equivalent of a NOP instruction. Preceding this instruction with a sequence of SLLC

instructions permits a shift operation on longer bit sequences in multiple registers. (See

SLLC example.)

Flags

C Z S OV MIE HC

* – – – – –

C: This bit retains the last bit shifted out.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 SLL Rn Rm 8 n m A

 #width 9 n 0 width A

0Rn

C MSB

7

LSB

0

Chapter 3. Instruction Descriptions

Instruction Set

 3-97

SLLC Rn , obj Shift left logical continued

Function

Description

• This instruction shifts the 16 bits in the specified byte-sized register and the register

below it (or R15 if R0 is specified) left the number of places specified by the second

operand (up to a maximum of 7 places) and stores the upper eight bits in the specified

register. The carry flag retains the last bit shifted out.

• The meaningful range for shift sizes is 0 to 7. If the second operand is a byte-sized

register, the hardware ignores bits 7 to 3 in that register and uses only the lowest three

bits, thus restricting the shift size to the range 0 to 7. A shift size of 0 produces the

equivalent of a NOP instruction.

• A sequence of these instructions followed by an SLL instruction permits a shift operation

on longer bit sequences in multiple registers. (See example.)

 Example: Shift left for double word data

 SLLC R3, R5

 SLLC R2, R5

 SLLC R1, R5

 SLL R0, R5 This completes shift of XR0 contents

Flags

C Z S OV MIE HC

* – – – – –

C: This bit retains the last bit shifted out.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 SLLC Rn Rm 8 n m B

 #width 9 n 0 width B

0Rn

C

7 Rn-115

shift_data

Chapter 3. Instruction Descriptions

Instruction Set

 3-98

SRA Rn , obj Shift right arithmetic

Function

Description

• This instruction shifts the bits in the specified byte-sized register right the number of

places specified by the second operand and shifts in duplicates of the original sign bit (bit

7) from the left. The carry flag retains the last bit shifted out.

• The meaningful range for shift sizes is 0 to 7. If the second operand is a byte-sized

register, the hardware ignores bits 7 to 3 in that register and uses only the lowest three

bits, thus restricting the shift size to the range 0 to 7. A shift size of 0 produces the

equivalent of a NOP instruction.

Flags

C Z S OV MIE HC

* – – – – –

C: This bit retains the last bit shifted out.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 SRA Rn Rm 8 n m E

 #width 9 n 0 width E

0Rn C7

LSBMSB

Chapter 3. Instruction Descriptions

Instruction Set

 3-99

SRL Rn , obj Shift right logical

Function

Description

• This instruction shifts the bits in the specified byte-sized register right the number of

places specified by the second operand and shifts in zeros from the left. The carry flag

retains the last bit shifted out.

• The meaningful range for shift sizes is 0 to 7. If the second operand is a byte-sized

register, the hardware ignores bits 7 to 3 in that register and uses only the lowest three

bits, thus restricting the shift size to the range 0 to 7. A shift size of 0 produces the

equivalent of a NOP instruction. Preceding this instruction with a sequence of SRLC

instructions permits a shift operation on longer bit sequences in multiple registers. (See

SRLC example.)

Flags

C Z S OV MIE HC

* – – – – –

C: This bit retains the last bit shifted out.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 SRL Rn Rm 8 n m C

 #width 9 n 0 width C

MSB LSB

0Rn C7

0

Chapter 3. Instruction Descriptions

Instruction Set

 3-100

SRLC Rn , obj Shift right logical continued

Function

Description

• This instruction shifts the 16 bits in the specified byte-sized register and the register

above it (or R0 if R15 specified) right the number of places specified by the second

operand (up to a maximum of 7 places) and stores the lower eight bits in the specified

register. The carry flag retains the last bit shifted out.

• The meaningful range for shift sizes is 0 to 7. If the second operand is a byte-sized

register, the hardware ignores bits 7 to 3 in that register and uses only the lowest three

bits, thus restricting the shift size to the range 0 to 7. A shift size of 0 produces the

equivalent of a NOP instruction.

 Example: Shift right for double word data

 SRLC R0, R5

 SRLC R1, R5

 SRLC R2, R5

 SRL R3, R5 This completes shift of XR0 contents

Flags

C Z S OV MIE HC

* – – – – –

C: This bit retains the last bit shifted out.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 SRLC Rn Rm 8 n m D

 #width 9 n 0 width D

0Rn C7Rn+115

shift_data

Chapter 3. Instruction Descriptions

Instruction Set

 3-101

ST ERn , obj Word-sized data transfer

Function

obj ← ERn

Rn

Rn+1

Memory space

07

2m

2m+1

General

registers

LSB

MSB

7 0

LSB

MSB

Address

Description

• This instruction stores the contents of the specified 16-bit register at the specified word

address.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

(See next page)

Chapter 3. Instruction Descriptions

Instruction Set

 3-102

Instruction Format Mnemonic First
operand

Second
operand

DSR

prefix code First
word

Second
word

ST ERn [EA] 9 n 3 3

 *: [EA] <word> 9 n 3 3

 [EA+] 9 n 5 3

 *:[EA+] <word> 9 n 5 3

 [ERm] 9 n m 3

 *:[ERm] <word> 9 n m 3

 Disp16[ERm] A n m 9

Disp16

 *:Disp16[ERm] <word> A n m 9

Disp16

 Disp6[BP] B n 1 0 Disp6

 *:Disp6[BP] <word> B n 1 0 Disp6

 Disp6[FP] B n 1 1 Disp6

 *:Disp6[FP] <word> B n 1 1 Disp6

 Dadr 9 n 1 3 Dadr

 *: Dadr <word> 9 n 1 3 Dadr

 * <word>

 pseg_addr E 3 pseg_addr

 DSR F E 9 F

 Rd 9 0 d F

Chapter 3. Instruction Descriptions

Instruction Set

 3-103

ST QRn , obj Quad word-sized
data transfer

Function

obj ← QRn

Rn

Rn+1

Rn+2

Rn+3

Memory space

07

2m

2m+1

General

registers

2m+2

2m+3

LSB

7 0

LSB

MSB

2m+4

2m+5

2m+6

2m+7

Rn+4

Rn+5

Rn+6

MSBRn+7

Address

Description

• This instruction stores the contents of the specified 64-bit register at the specified word

address.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand

DSR

prefix code First
word

Second
word

ST QRn [EA] 9 n 3 7

 *: [EA] <word> 9 n 3 7

 [EA+] 9 n 5 7

 *:[EA+] <word> 9 n 5 7

 * <word>

 pseg_addr E 3 pseg_addr

 DSR F E 9 F

 Rd 9 0 d F

Chapter 3. Instruction Descriptions

Instruction Set

 3-104

ST Rn , obj Byte-sized data transfer

Function

obj ← Rn

Description

• This instruction stores the contents of the specified 8-bit register at the specified address.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

(See next page)

Chapter 3. Instruction Descriptions

Instruction Set

 3-105

Instruction Format Mnemonic First
operand

Second
operand

DSR

prefix code First
word

Second
word

ST Rn [EA] 9 n 3 1

 *: [EA] <word> 9 n 3 1

 [EA+] 9 n 5 1

 *:[EA+] <word> 9 n 5 1

 [ERm] 9 n m 1

 *:[ERm] <word> 9 n m 1

 Disp16[ERm] 9 n m 9

Disp16

 *:Disp16[ERm] <word> 9 n m 9

Disp16

 Disp6[BP] D n 1 0 Disp6

 *:Disp6[BP] <word> D n 1 0 Disp6

 Disp6[FP] D n 1 1 Disp6

 *:Disp6[FP] <word> D n 1 1 Disp6

 Dadr 9 n 1 1 Dadr

 *: Dadr <word> 9 n 1 1 Dadr

 * <word>

 pseg_addr E 3 pseg_addr

 DSR F E 9 F

 Rd 9 0 d F

Chapter 3. Instruction Descriptions

Instruction Set

 3-106

ST XRn , obj Double word-sized
data transfer

Function

obj ← XRn

Memory space

Rn

Rn+1

Rn+2

Rn+3

07

2m

2m+1

General

registers

2m+2

2m+3

LSB

7 0

LSB

MSBMSB

Address

Description

• This instruction stores the contents of the specified 32-bit register at the specified word

address.

Flags

C Z S OV MIE HC

– – – – – –

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand

DSR
prefix code

First
word

Second
word

ST XRn [EA] 9 n 3 5

 *: [EA] <word> 9 n 3 5

 [EA+] 9 n 5 5

 *:[EA+] <word> 9 n 5 5

 * <word>

 pseg_addr E 3 pseg_addr

 DSR F E 9 F

 Rd 9 0 d F

Chapter 3. Instruction Descriptions

Instruction Set

 3-107

SUB Rn , Rm Subtract

Function

Rn ← Rn – Rm

Description

• This instruction subtracts the contents of the second byte-sized register from those of the

first and stores the result in the first.

Flags

C Z S OV MIE HC

* * * * – *

C: This bit goes to “1” if the operation produces a borrow into bit 7 and to “0”

otherwise.

Z: This bit goes to “1” if the operation produces a zero result and to “0” otherwise.

S: This bit tracks the top bit of the result.

OV: This bit goes to “1” if the operation produces overflow and to “0” otherwise.

HC: This bit goes to “1” if the operation produces a carry out of or borrow into bit 3 and

to “0” otherwise.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 SUB Rn Rm 8 n m 8

Chapter 3. Instruction Descriptions

Instruction Set

 3-108

SUBC Rn , Rm Subtract with carry

Function

Rn ← Rn – Rm – C

Description

• This instruction subtracts the contents of the second byte-sized register and the carry flag

from the contents of the first register and stores the result in the first register.

Flags

C Z S OV MIE HC

* * * * – *

C: This bit goes to “1” if the operation produces a borrow into bit 7 and to “0”

otherwise.

Z: This flag remains “1” only if it was “1” before execution and the result is zero.

Otherwise, it remains or goes to “0.”

S: This bit tracks the top bit of the result.

OV: This bit goes to “1” if the operation produces overflow and to “0” otherwise.

HC: This bit goes to “1” if the operation produces a carry out of or borrow into bit 3 and

to “0” otherwise.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 SUBC Rn Rm 8 n m 9

Chapter 3. Instruction Descriptions

Instruction Set

 3-109

SWI #snum Software interrupt

Function

EPSW1 ←PSW

ELEVEL ← 1

ELR1 ← PC+2

ECSR1 ←CSR

MIE ←0

PC ←TABLE[snum<<1]

Description

• This instruction loads the specified vector table entry into the program counter (PC). The

operand is an integer between 0 and 63. During the interrupt cycle, this instruction also

saves the address of the next instruction in the ELR1 register.

Flags

C Z S OV MIE HC

– – – – * –

MIE: This goes to “0.”

–: No change

Instruction Format

Instruction Format Mnemonic First
operand First

word
Second
word

 SWI #snum E 5 0 0 snum

Chapter 3. Instruction Descriptions

Instruction Set

 3-110

TB Dbitadr Test bit

Function

Z ← ~[Dbitadr]

Memory space

07

Dbitadr LSBMSB

Invert

Z

Address

Description

• This instruction tests the specified bit by reading it from memory, inverting it, and storing

the result in the Z flag.

• The bit address Dbitadr has the format Dadr16.bit, where bit is an integer between 0 and

7 specifying the bit position within the memory byte.

Flags

C Z S OV MIE HC

– * – – – –

Z: This bit goes to “1” if the operation produces a zero result and to “0” otherwise.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

DSR
prefix code

First
word

Second
word

TB Dbitadr A 0 1 bit 1 Dadr

 *: Dbitadr <word> A 0 1 bit 1 Dadr

 * <word>

 pseg_addr E 3 pseg_addr

 DSR F E 9 F

 Rd 9 0 d F

Chapter 3. Instruction Descriptions

Instruction Set

 3-111

TB Rn . bit_offset Test bit

Function

Z ← ~Rn[bit_offset]

Description

• This instruction tests the specified bit by reading it from memory, inverting it, and storing

the result in the Z flag.

• bit_offset is an integer between 0 and 7 specifying the bit position within the register.

Flags

C Z S OV MIE HC

– * – – – –

Z: This bit goes to “1” if the operation produces a zero result and to “0” otherwise.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 TB Rn.bit A n 0 bit 1

Chapter 3. Instruction Descriptions

Instruction Set

 3-112

XOR Rn , obj Bitwise exclusive OR

Function

Rn ←Rn^ obj

Description

• This instruction XORs the contents of the specified byte-sized register and object and

stores the result in the register.

Flags

C Z S OV MIE HC

– * * – – –

Z: This bit goes to “1” if the operation produces a zero result and to “0” otherwise.

S: This bit tracks the top bit of the result.

–: No change

Instruction Format

Instruction Format Mnemonic First
operand

Second
operand First

word
Second
word

 XOR Rn Rm 8 n m 4

 #imm8 4 n imm8

4. Appendix

This appendix lists the nX-U8/100 core

instructions in functional groups, giving the

operand syntax and instruction code for each

instruction.

The descriptions of the DSR prefix instructions

are omitted in this chapter. Threfore, please refer

to Chapter 3 about the details of each instruction.

Chapter 4. Appendix

Instruction Set

4-1

Arithmetic Instructions

Flag changes Instruction code
Mnemonic

First
operand

Second
operand C Z S OV MIE HC First word Second word

Minimum
execution
time
(cycles)

ADD Rn Rm * * * * * 1000_nnnn_mmmm_0001 1

 #imm8 * * * * * 0001_nnnn_iiii_iiii 1

ADD ERn ERm * * * * * 1111_nnn0_mmm0_0110 2

 #imm7 * * * * * 1110_nnn0_1iii_iiii 2

ADDC Rn Rm * * * * * 1000_nnnn_mmmm_0110 1

 #imm8 * * * * * 0110_nnnn_iiii_iiii 1

AND Rn Rm * * 1000_nnnn_mmmm_0010 1

 #imm8 * * 0010_nnnn_iiii_iiii 1

CMP Rn Rm * * * * * 1000_nnnn_mmmm_0111 1

 #imm8 * * * * * 0111_nnnn_iiii_iiii 1

CMPC Rn Rm * * * * * 1000_nnnn_mmmm_0101 1

 #imm8 * * * * * 0101_nnnn_iiii_iiii 1

MOV ERn ERm * * 1111_nnn0_mmm0_0101 2

 #imm7 * * 1110_nnn0_0iii_iiii 2

MOV Rn Rm * * 1000_nnnn_mmmm_0000 1

 #imm8 * * 0000_nnnn_iiii_iiii 1

OR Rn Rm * * 1000_nnnn_mmmm_0011 1

 #imm8 * * 0011_nnnn_iiii_iiii 1

XOR Rn Rm * * 1000_nnnn_mmmm_0100 1

 #imm8 * * 0100_nnnn_iiii_iiii 1

CMP ERn ERm * * * * * 1111_nnn0_mmm0_0111 2

SUB Rn Rm * * * * * 1000_nnnn_mmmm_1000 1

SUBC Rn Rm * * * * * 1000_nnnn_mmmm_1001 1

Shift Instructions

Flag changes Instruction code
Mnemonic

First
operand

Second
operand C Z S OV MIE HC First word Second word

Minimum
execution
time
(cycles)

SLL Rn Rm * 1000_nnnn_mmmm_1010 1

 #width * 1001_nnnn_0www_1010 1

SLLC Rn Rm * 1000_nnnn_mmmm_1011 1

 #width * 1001_nnnn_0www_1011 1

SRA Rn Rm * 1000_nnnn_mmmm_1110 1

 #width * 1001_nnnn_0www_1110 1

SRL Rn Rm * 1000_nnnn_mmmm_1100 1

 #width * 1001_nnnn_0www_1100 1

SRLC Rn Rm * 1000_nnnn_mmmm_1101 1

 #width * 1001_nnnn_0www_1101 1

Chapter 4. Appendix

Instruction Set

4-2

Load/Store Instructions

Flag changes Instruction code
Mnemonic

First
operand

Second
operand C Z S OV MIE HC First word Second word

Minimum
execution
time
(cycles)

L ERn [EA] * * 1001_nnn0_0011_0010 2

 [EA+] * * 1001_nnn0_0101_0010 2

 [ERm] * * 1001_nnn0_mmm0_0010 2

 Disp16[ERm] * * 1010_nnn0_mmm0_1000 DDDD_DDDD_DDDD_DDDD 3

 Disp6[BP] * * 1011_nnn0_00DD_DDDD 3

 Disp6[FP] * * 1011_nnn0_01DD_DDDD 3

 Dadr * * 1001_nnn0_0001_0010 DDDD_DDDD_DDDD_DDDD 2

 Rn [EA] * * 1001_nnnn_0011_0000 1

 [EA+] * * 1001_nnnn_0101_0000 1

 [ERm] * * 1001_nnnn_mmm0_0000 1

 Disp16[ERm] * * 1001_nnnn_mmm0_1000 DDDD_DDDD_DDDD_DDDD 2

 Disp6[BP] * * 1101_nnnn_00DD_DDDD 2

 Disp6[FP] * * 1101_nnnn_01DD_DDDD 2

 Dadr * * 1001_nnnn_0001_0000 DDDD_DDDD_DDDD_DDDD 2

 XRn [EA] * * 1001_nn00_0011_0100 4

 [EA+] * * 1001_nn00_0101_0100 4

 QRn [EA] * * 1001_n000_0011_0110 8

 [EA+] * * 1001_n000_0101_0110 8

Flag changes Instruction code
Mnemonic

First
operand

Second
operand C Z S OV MIE HC First word Second word

Minimum
execution
time
(cycles)

ST ERn [EA] 1001_nnn0_0011_0011 2

 [EA+] 1001_nnn0_0101_0011 2

 [ERm] 1001_nnn0_mmm0_0011 2

 Disp16[ERm] 1010_nnn0_mmm0_1001 DDDD_DDDD_DDDD_DDDD 3

 Disp6[BP] 1011_nnn0_10DD_DDDD 3

 Disp6[FP] 1011_nnn0_11DD_DDDD 3

 Dadr 1001_nnn0_0001_0011 DDDD_DDDD_DDDD_DDDD 2

 Rn [EA] 1001_nnnn_0011_0001 1

 [EA+] 1001_nnnn_0101_0001 1

 [ERm] 1001_nnnn_mmm0_0001 1

 Disp16[ERm] 1001_nnnn_mmm0_1001 DDDD_DDDD_DDDD_DDDD 2

 Disp6[BP] 1101_nnnn_10DD_DDDD 2

 Disp6[FP] 1101_nnnn_11DD_DDDD 2

 Dadr 1001_nnnn_0001_0001 DDDD_DDDD_DDDD_DDDD 2

 XRn [EA] 1001_nn00_0011_0101 4

 [EA+] 1001_nn00_0101_0101 4

 QRn [EA] 1001_n000_0011_0111 8

 [EA+] 1001_n000_0101_0111 8

Chapter 4. Appendix

Instruction Set

4-3

Control Register Access Instructions

Flag changes Instruction code
Mnemonic

First
operand

Second
operand C Z S OV MIE HC First word Second word

Minimum
execution
time
(cycles)

ADD SP #signed8 1110_0001_iiii_iiii 2

MOV ECSR Rm 1010_0000_mmmm_1111 2

 ELR ERm 1010_mmm0_0000_1101 3

 EPSW Rm 1010_0000_mmmm_1100 1

 ERn ELR 1010_nnn0_0000_0101 3

 SP 1010_nnn0_0001_1010 2

 PSW Rm * * * * * * 1010_0000_mmmm_1011 1

 #unsigned8 * * * * * * 1110_1001_iiii_iiii 1

 Rn ECSR 1010_nnnn_0000_0111 2

 EPSW 1010_nnnn_0000_0100 2

 PSW 1010_nnnn_0000_0011 1

 SP ERm 1010_0001_mmm0_1010 1

PUSH/POP Instructions

Flag changes Instruction code
Mnemonic

First
operand

Second
operand C Z S OV MIE HC First word Second word

Minimum
execution
time
(cycles)

PUSH ERn 1111_nnn0_0101_1110 2

 QRn 1111_n000_0111_1110 8

 Rn 1111_nnnn_0100_1110 2

 XRn 1111_nn00_0110_1110 4

 register_list 1111_lepa_1100_1110 2-12

POP ERn 1111_nnn0_0001_1110 2

 QRn 1111_n000_0011_1110 8

 Rn 1111_nnnn_0000_1110 2

 XRn 1111_nn00_0010_1110 4

 register_list * * * * * * 1111_lepa_1000_1110 2-15

Chapter 4. Appendix

Instruction Set

4-4

Coprocessor Data Transfer Instructions

Flag changes Instruction code
Mnemonic

First
operand

Second
operand C Z S OV MIE HC First word Second word

Minimum
execution
time
(cycles)

MOV CRn Rm 1010_nnnn_mmmm_1110 1

 CERn [EA] 1111_nnn0_0010_1101 2

 [EA+] 1111_nnn0_0011_1101 2

 CRn [EA] 1111_nnnn_0000_1101 1

 [EA+] 1111_nnnn_0001_1101 1

 CXRn [EA] 1111_nn00_0100_1101 4

 [EA+] 1111_nn00_0101_1101 4

 CQRn [EA] 1111_n000_0110_1101 8

 [EA+] 1111_n000_0111_1101 8

 Rn CRm 1010_nnnn_mmmm_0110 1

 [EA] CERm 1111_mmm0_1010_1101 2

 [EA+] CERm 1111_mmm0_1011_1101 2

 [EA] CRm 1111_mmmm_1000_1101 1

 [EA+] CRm 1111_mmmm_1001_1101 1

 [EA] CXRm 1111_mm00_1100_1101 4

 [EA+] CXRm 1111_mm00_1101_1101 4

 [EA] CQRm 1111_m000_1110_1101 8

 [EA+] CQRm 1111_m000_1111_1101 8

EA Register Data Transfer Instructions

Flag changes Instruction code
Mnemonic

First
operand

Second
operand C Z S OV MIE HC First word Second word

Minimum
execution
time
(cycles)

LEA [ERm] 1111_0000_mmm0_1010 1

 Disp16[ERm] 1111_0000_mmm0_1011 DDDD_DDDD_DDDD_DDDD 2

 Dadr 1111_0000_0000_1100 DDDD_DDDD_DDDD_DDDD 2

ALU Instructions

Flag changes Instruction code
Mnemonic

First
operand

Second
operand C Z S OV MIE HC First word Second word

Minimum
execution
time
(cycles)

DAA Rn * * * * 1000_nnnn_0001_1111 1

DAS Rn * * * * 1000_nnnn_0011_1111 1

NEG Rn * * * * * 1000_nnnn_0101_1111 1

Chapter 4. Appendix

Instruction Set

4-5

Bit Access Instructions

Flag changes Instruction code
Mnemonic

First
operand

Second
operand C Z S OV MIE HC First word Second word

Minimum
execution
time
(cycles)

SB Rn.bit_offset * 1010_nnnn_0bbb_0000 1

 Dbitadr * 1010_0000_1bbb_0000 DDDD_DDDD_DDDD_DDDD 2

RB Rn. bit_offset * 1010_nnnn_0bbb_0010 1

 Dbitadr * 1010_0000_1bbb_0010 DDDD_DDDD_DDDD_DDDD 2

TB Rn. bit_offset * 1010_nnnn_0bbb_0001 1

 Dbitadr * 1010_0000_1bbb_0001 DDDD_DDDD_DDDD_DDDD 2

PSW Access Instructions

Flag changes Instruction code
Mnemonic

First
operand

Second
operand C Z S OV MIE HC First word Second word

Minimum
execution
time
(cycles)

EI * 1110_1101_0000_1000 1

DI * 1110_1011_1111_0111 3

SC * 1110_1101_1000_0000 1

RC * 1110_1011_0111_1111 1

CPLC * 1111_1110_1100_1111 1

Conditional Relative Branch Instructions

Flag changes Instruction code
Mnemonic

First
operand

Second
operand C Z S OV MIE HC First word Second word

Minimum
execution
time
(cycles)

BGE Radr 1100_0000_rrrr_rrrr 1/3

BLT 1100_0001_rrrr_rrrr 1/3

BGT 1100_0010_rrrr_rrrr 1/3

BLE 1100_0011_rrrr_rrrr 1/3

BGES 1100_0100_rrrr_rrrr 1/3

BLTS 1100_0101_rrrr_rrrr 1/3

BGTS 1100_0110_rrrr_rrrr 1/3

BLES 1100_0111_rrrr_rrrr 1/3

BNE 1100_1000_rrrr_rrrr 1/3

BEQ 1100_1001_rrrr_rrrr 1/3

BNV 1100_1010_rrrr_rrrr 1/3

BOV 1100_1011_rrrr_rrrr 1/3

BPS 1100_1100_rrrr_rrrr 1/3

BNS 1100_1101_rrrr_rrrr 1/3

BAL 1100_1110_rrrr_rrrr 3

Chapter 4. Appendix

Instruction Set

4-6

Sign Extension Instruction

Flag changes Instruction code
Mnemonic

First
operand

Second
operand C Z S OV MIE HC First word Second word

Minimum
execution
time
(cycles)

EXTBW ERn * * 1000_nnn1_nnn0_1111 1

Software Interrupt Instructions

Flag changes Instruction code
Mnemonic

First
operand

Second
operand C Z S OV MIE HC First word Second word

Minimum
execution
time
(cycles)

SWI #snum * 1110_0101_00ii_iiii 3

BRK 1111_1111_1111_1111 7

Branch Instructions

Flag changes Instruction code
Mnemonic

First
operand

Second
operand C Z S OV MIE HC First word Second word

Minimum
execution
time
(cycles)

B Cadr 1111_gggg_0000_0000 CCCC_CCCC_CCCC_CCCC 2

 ERn 1111_0000_nnn0_0010 2

BL Cadr 1111_gggg_0000_0001 CCCC_CCCC_CCCC_CCCC 2

 ERn 1111_0000_nnn0_0011 2

Multiplication and Division Instructions

Flag changes Instruction code
Mnemonic

First
operand

Second
operand C Z S OV MIE HC First word Second word

Minimum
execution
time
(cycles)

MUL ERn Rm * 1111_nnn0_mmmm_0100 9

DIV ERn Rm * * 1111_nnn0_mmmm_1001 17

Miscellaneous

Flag changes Instruction code
Mnemonic

First
operand

Second
operand C Z S OV MIE HC First word Second word

Minimum
execution
time
(cycles)

INC [EA] * * * * 1111_1110_0010_1111 2

DEC [EA] * * * * 1111_1110_0011_1111 2

RT 1111_1110_0001_1111 2

RTI * * * * * * 1111_1110_0000_1111 2

NOP 1111_1110_1000_1111 1

Revision History

REVISION HISTORY

Page
Document

No.
Date Previous

Edition
Current
Edition

Description

FEUZ0317A0-U8-INST-01
Jul 25,
2006

  1st edition.

Cover Cover
Updated for OKI SEMICONDUCTOR logo,
version, and date.

Notice Notice Updated for OKI SEMICONDUCTOR.
FEUZ0317A0-U8-INST-02

Oct
17,2008

Revision
History

Revision
History

Update for OKI SEMICONDUCTOR,
version, and date.

Jun
01,2009

1-30
|

1-33

1-30
|

1-33

Added for the correspondence to the
multiple interrupt of a non-maskable
interrupt.

FEUZ0317A0-U8-INST-04

 1-34
Inserted notes at the time of non-maskable
interrupt use.

3-12
|

3-17

3-12
|

3-17

Corrected minimum execution time of
“DIV” ,”MUL” ,and ”MOV EPSW, Rm”.

FEUZ0317A0-U8-INST-05
Oct
11,2011

3-16 3-16
Added [EA+] addressing delay time of
“ MOV SP,ERm”.

4-3
|

4-6

4-3
|

4-6

Corrected minimum execution time of
“DIV” ,”MUL” ,and ”MOV EPSW, Rm”.

R – 2

NOTICE

1. The information contained herein can change without notice owing to product and/or technical improvements. Before

using the product, please make sure that the information being referred to is up-to-date.

2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the

standard action and performance of the product. When planning to use the product, please ensure that the external

conditions are reflected in the actual circuit, assembly, and program designs.

3. When designing your product, please use our product below the specified maximum ratings and within the specified

operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.

4. LAPIS Semiconductor assumes no responsibility or liability whatsoever for any failure or unusual or unexpected

operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or

unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified

maximum ratings or operation outside the specified operating range.

5. Neither indemnity against nor license of a third party’s industrial and intellectual property right, etc. is granted by us in

connection with the use of the product and/or the information and drawings contained herein. No responsibility is

assumed by us for any infringement of a third party’s right which may result from the use thereof.

6. The products listed in this document are intended for use in general electronics equipment for commercial applications

(e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These

products are not, unless specifically authorized by LAPIS Semiconductor, authorized for use in any system or

application that requires special or enhanced quality and reliability characteristics nor in any system or application

where the failure of such system or application may result in the loss or damage of property, or death or injury to

humans.

Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace

equipment, nuclear power control, medical equipment, and life-support systems.

7. Certain products in this document may need government approval before they can be exported to particular countries.

The purchaser assumes the responsibility of determining the legality of export of these products and will take

appropriate and necessary steps at their own expense for these.

8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.

Copyright 2008-2011 LAPIS Semiconductor Co., Ltd.

	TOP
	NOTICE
	Contents
	1. Architecture
	1.1 Overview
	1.1.1 Features

	1.2 CPU Resources and Programming Model
	1.2.1 Registers
	1.2.1.1 General Registers
	1.2.1.2 Base and Frame Pointers

	1.2.2 Control Registers
	1.2.2.1 Program Status Word (PSW)
	1.2.2.1.1 Instructions Modifying PSW Flags

	1.2.2.2 Program Counter (PC)
	1.2.2.3 Code Segment Register (CSR)
	1.2.2.4 Link Registers (LR, ELR1, ELR2, and ELR3)
	1.2.2.5 CSR Backup Registers (LCSR, ECSR1, ECSR2, and ECSR3)
	1.2.2.6 PSW Backup Registers (EPSW1, EPSW2, and EPSW3)
	1.2.2.7 Stack Pointer (SP)
	1.2.2.8 EA Register (EA)
	1.2.2.9 Address Register (AR)
	1.2.2.10 Data Segment Register (DSR)

	1.3 Memory Spaces
	1.3.1 Program/Code Memory Space
	1.3.2 Vector Table
	1.3.2.1 Reset Vectors
	1.3.2.2 Interrupt Vectors
	1.3.2.2.1 Hardware Interrupt Vectors
	1.3.2.2.2 Software Interrupt Vectors

	1.3.2.3 Writing Vector Table

	1.3.3 Program/Code Memory Space
	1.3.4 DSR Prefix Instructions
	1.3.5 Data Memory Space
	1.3.5.1 Data Types
	1.3.5.2 Address Assignment
	1.3.5.3 Word Boundaries
	1.3.5.4 ROM Window

	1.3.6 Hardware Memory Models
	1.3.7 Interrupt Operation
	1.3.7.1 Interrupt Acceptance
	1.3.7.2 Non-maskable Interrupts (NMI)
	1.3.7.3 Maskable Interrupts (MI)
	1.3.7.4 Software Interrupts (SWI)

	1.4 Exception Levels and Backup Registers
	1.5 Notes about Non-maskable interrupts
	1.6 Interrupt Blocking
	1.7 Stack Modifications

	2. Addressing Types
	2.1 Addressing Types
	2.2 Register Addressing
	2.3 Memory Addressing
	2.3.1 Register Indirect Addressing
	2.3.2 Direct Addressing

	2.4 Immediate Addressing
	2.5 Program/Code Memory Addressing

	3. Instruction Descriptions
	3.1 Overview
	3.2 Instructions by Functional Group
	3.3 Instruction Execution Times
	3.4 Instruction Descriptions
	ADD ERn , ERm
	ADD ERn , #imm7
	ADD Rn , obj
	ADD SP , #signed8
	ADDC Rn , obj
	AND Rn , obj
	B Cadr
	B ERn
	Bcond Radr
	BL Cadr
	BL ERn
	BRK
	CMP ERn , ERm
	CMP Rn , obj
	CMPC Rn , obj
	CPLC
	DAA Rn
	DAS Rn
	DEC [EA]
	DI
	DIV ERn , Rm
	EI
	EXTBW ERn
	INC [EA]
	L ERn, obj
	L QRn,obj
	L Rn, obj
	L XRn,obj
	LEA obj
	MOV CERn , obj
	MOV CQRn , obj
	MOV CRn , obj
	MOV CRn , Rm
	MOV CXRn , obj
	MOV ECSR , Rm
	MOV ELR , ERm
	MOV EPSW , Rm
	MOV ERn , ELR
	MOV ERn , ERm
	MOV ERn , #imm7
	MOV ERn , SP
	MOV obj , CERm
	MOV obj , CQRm
	MOV obj , CRm
	MOV obj , CXRm
	MOV PSW , obj
	MOV Rn , CRm
	MOV Rn , ECSR
	MOV Rn , EPSW
	MOV Rn , PSW
	MOV Rn , obj
	MOV SP , ERm
	MUL ERn,Rm
	NEG Rn
	NOP
	OR Rn , obj
	POP register list
	POP obj
	PUSH register list
	PUSH obj
	RB Dbitadr
	RB Rn . bit_offset
	RC
	RT
	RTI
	SB Dbitadr
	SB Rn . bit_offset
	SC
	SLL Rn , obj
	SLLC Rn , obj
	SRA Rn , obj
	SRL Rn , obj
	SRLC Rn , obj
	ST ERn , obj
	ST QRn , obj
	ST Rn , obj
	ST XRn , obj
	SUB Rn , Rm
	SUBC Rn , Rm
	SWI #snum
	TB Dbitadr
	TB Rn . bit_offset
	XOR Rn , obj

	4. Appendix

