
Palo Alto, CA 94303 USA

650 960-1300

901 San Antonio Road

Sun Microsystems, Inc.

picoJava-II™ Programmer’s

Reference Manual

Part No.: 805-2800-06
March 1999

Please

Recycle

Copyright 1999 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

The contents of this document are subject to the current version of the Sun Community Source License, picoJava Core (“the License”). You may

not use this document except in compliance with the License. You may obtain a copy of the License by searching for “Sun Community Source

License” on the World Wide Web at http://www.sun.com. See the License for the rights, obligations, and limitations governing use of the

contents of this document.

Sun, Sun Microsystems, the Sun logo and all Sun-based trademarks and logos, Java, picoJava, and all Java-based trademarks and logos are

trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used

under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing

SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE

PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THE

PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE

PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

Contents

Preface xvii

Part I. Understanding the picoJava-II Architecture

1. Overview 3

1.1 Purpose 3

1.2 Relationship to the Java Virtual Machine 4

1.3 Key Elements of the Core 4

2. Registers 5

2.1 Program Counter Register (PC) 5

2.2 Stack Management Registers 6

2.2.1 Local Variable Pointer Register (VARS) 6

2.2.2 FRAME Pointer Register (FRAME) 7

2.2.3 Top-of-Stack Pointer Register (OPTOP) 7

2.2.4 Minimum Value of Top-of-Stack Register (OPLIM) 8

2.2.5 Address of Deepest Stack Cache Entry Register (SC_BOTTOM) 8

2.3 Constant Pool Base Pointer Register (CONST_POOL) 9

2.4 Memory Protection Registers (USERRANGE1 and USERRANGE2) 10

2.5 Processor Status Register (PSR) 10

2.6 Trap Handler Address Register (TRAPBASE) 12

2.7 Monitor-Caching Registers 12
Contents iii

2.7.1 Lock Count Registers (LOCKCOUNT[0..1]) 13

2.7.2 Lock Address Registers (LOCKADDR[0..1]) 13

2.8 Garbage Collection Register (GC_CONFIG) 14

2.9 Breakpoint Registers 15

2.10 Implementation Registers 17

2.10.1 Version ID Register (VERSIONID) 17

2.10.2 Hardware Configuration Register (HCR) 18

2.11 Global Registers (GLOBAL[0..3]) 20

3. Memory System and Caches 21

3.1 Architecture of the Memory System 21

3.1.1 Address Space 22

3.1.2 Alignment 22

3.1.3 Cacheable and Noncacheable Memory Regions 23

3.1.4 Endianness 23

3.1.5 Erroneous Memory Transactions 26

3.2 Memory Protection 27

3.2.1 The Address-Checking Process 27

3.2.2 Memory Regions 28

3.2.3 Limits for Stack Growth 29

3.3 Cache Coherency 30

3.3.1 Coherency for Stack and Data Accesses 30

3.3.2 Coherency for Instruction Accesses 32

3.4 Instruction Cache 33

3.4.1 Configuration 33

3.4.2 Initialization 34

3.4.3 Operations 34

3.4.4 Modification of Instruction Space 35

3.5 Data Cache 36

3.5.1 Configuration 36
iv picoJava-II Programmer’s Reference Manual - March 1999

3.5.2 Initialization 37

3.5.3 Operations 37

3.6 Stack Cache 39

3.6.1 Configuration 39

3.6.2 Initialization 40

3.6.3 Dribbling 41

3.6.4 Flushing 44

4. Traps and Interrupts 45

4.1 Traps 45

4.1.1 Trap Table 46

4.1.2 The Process of Taking a Trap 46

4.1.3 Trap Types and Priorities 50

4.2 Instruction Emulation 54

4.3 Exceptions 54

4.4 Interrupts 56

4.4.1 Interrupt Control 57

4.4.2 Interrupt Latency 57

4.5 Context Switch 58

5. Data Types and
Runtime Data Structures 61

5.1 Primitive Data Types 61

5.1.1 Integral Data Types 62

5.1.2 Floating-Point Data Types 62

5.2 Reference Types and Values 62

5.2.1 References and Headers 63

5.2.2 Object Storage 64

5.2.3 Array Storage 65

5.2.4 Layout of Array Data Structures 67

5.3 Essential Runtime Data Structures 71
Contents v

5.3.1 Method Vector and Runtime Class Info Structure 71

5.3.2 Method Structure 72

5.3.3 Class Structure 73

5.3.4 Constant Pool 73

6. Instruction Set 75

Part II. Programming the picoJava-II Core

7. Java Method Invocation and Return 385

7.1 Allocating a New Frame 385

7.1.1 Incoming Arguments 386

7.1.2 Local Variables 387

7.1.3 Invoker’s Method Context 387

7.1.4 Operand Stack 387

7.2 Invoking a Method 388

7.2.1 Resolving a Method Reference 388

7.2.2 Accessing a Method Structure 388

7.2.3 Allocating a New Method Frame 389

7.2.4 Saving the Invoker’s Method Context 391

7.2.5 Passing Control to the Invoked Method 391

7.3 Invoking a Synchronized Method 391

7.4 Returning from a Method 393

8. Monitors 395

8.1 Structures 396

8.2 Hardware Synchronization 396

8.3 Software Support 397

8.3.1 LockCountOverflow Handler 397

8.3.2 LockEnterMiss Handler 397

8.3.3 LockRelease Handler 398

8.3.4 LockExitMiss Handler 399
vi picoJava-II Programmer’s Reference Manual - March 1999

8.3.5 Context Switch Support 400

9. Support of the C Programming Language 401

9.1 Register Conventions 402

9.2 Runtime Stack Architecture 402

9.2.1 Calling Convention for C-to-C Calls 404

9.2.2 Rules for Passing Arguments 404

9.2.3 Function Return Values 405

9.2.4 Function Prologue and Epilogue 405

9.2.5 Functions with Simple Parameters and Locals 406

9.2.6 Functions with Complex Parameters and Locals 408

9.2.7 Functions That Return Aggregate Values 412

9.2.8 Functions with Variable Number of Arguments 415

9.3 Calling Conventions for Java-to-C Calls 420

9.4 Optimizations 421

9.5 Function Tables 422

9.5.1 Structure 422

9.5.2 Properties 423

9.5.3 Provisions in the Operating System 423

9.5.4 _init and _fini 424

9.5.5 OSGetNArgs Algorithm 424

9.5.6 Extensions to Support .so (.dll) Files 425

9.6 Handling of Argument Mismatches 425

9.7 Object File Formats 426

10. Stack Chunking 429

10.1 Overview 429

10.2 oplim_trap Handler 430

10.3 Manual Updates of the VARS Register 431

10.4 Returns to Previously Saved Program States 432

10.5 Possible Write-After-Write Hazards 432
Contents vii

11. Support for Garbage Collection 433

11.1 Hardware Support 433

11.1.1 Support for Handles 434

11.1.2 Reserved Bits in References and Headers 434

11.2 Write Barriers 434

11.2.1 Instructions Subject to Write-Barrier Checks 436

11.2.2 Page-Based Write Barrier 436

11.2.3 Reference-Based Write Barrier 439

11.3 Examples 439

11.3.1 Train Algorithm-Based Collectors 440

11.3.2 Remembered Set-Based Generational Collector 440

11.4 References 441

12. System Management and Debugging 443

12.1 Power Management 443

12.2 Reset Management 444

12.2.1 Machine State After Reset 444

12.2.2 Enabling the Stack Cache 446

12.2.3 Enabling the Instruction and Data Caches 447

12.3 Breakpoints 450

12.3.1 Data Breakpoints 451

12.3.2 Instruction Breakpoints 451

12.3.3 Breakpoint Registers 451

12.3.4 Breakpoint Address Matching 454

12.3.5 Breakpoints and Halt Mode 454

12.4 Other Debug and Trace Features 454

Part III. Appendixes

A. Opcodes 457

Index 477
viii picoJava-II Programmer’s Reference Manual - March 1999

Figures

FIGURE 2-1 Program Counter Register (PC) 6

FIGURE 2-2 Local Variable Pointer Register (VARS) 6

FIGURE 2-3 FRAME Pointer Register (FRAME) 7

FIGURE 2-4 Top-of-Stack Pointer Register (OPTOP) 7

FIGURE 2-5 Minimum Value of Top of Stack Register (OPLIM) 8

FIGURE 2-6 Address of Deepest Stack Cache Entry Register (SC_BOTTOM) 9

FIGURE 2-7 Constant Pool Base Pointer Register (CONST_POOL) 9

FIGURE 2-8 USERRANGE Registers 10

FIGURE 2-9 Processor Status Register (PSR) 12

FIGURE 2-10 Trap Handler Address Register (TRAPBASE) 12

FIGURE 2-11 Lock Count Registers (LOCKCOUNT0 and LOCKCOUNT1) 13

FIGURE 2-12 Lock Address Registers (LOCKADDR0 and LOCKADDR1) 14

FIGURE 2-13 Garbage Collection Register (GC_CONFIG) 15

FIGURE 2-14 Breakpoint Register (BRK1A) 15

FIGURE 2-15 Breakpoint Register (BRK2A) 15

FIGURE 2-16 Breakpoint Control Register (BRK12C) 17

FIGURE 2-17 Version ID Register (VERSIONID) 18

FIGURE 2-18 Hardware Configuration Register (HCR) 19

FIGURE 2-19 Global (GLOBAL[0..3]) Registers 20
Figures ix

FIGURE 3-1 The Cacheable and Noncacheable Memory Regions 23

FIGURE 3-2 How a Range of Accessible Memory Is Formed from USERRANGE Register Values 29

FIGURE 3-3 Caching Operations During Instruction Execution 30

FIGURE 3-4 How the Stack Cache Caches Part of the Stack 40

FIGURE 4-1 Data Structure of the Trap Table 46

FIGURE 4-2 Invocation of a Trap 48

FIGURE 4-3 Return from a Trap 49

FIGURE 4-4 Interrupt Control Mechanism 57

FIGURE 5-1 Object or Array Reference Format 63

FIGURE 5-2 Object or Array Header Field with Reserved Bits 64

FIGURE 5-3 Object Format with Handle Bit Clear 64

FIGURE 5-4 Object Format with Handle Bit Set 65

FIGURE 5-5 Array Format with Handle Bit Clear 66

FIGURE 5-6 Array Format with Handle Bit Set 66

FIGURE 5-7 Array of Longs Structure 67

FIGURE 5-8 Array of Doubles Structure 67

FIGURE 5-9 Array of Objects Structure 68

FIGURE 5-10 Array of Arrays Structure 68

FIGURE 5-11 Array of Integers Structure 69

FIGURE 5-12 Array of Floats Structure 69

FIGURE 5-13 Array of Chars Structure 69

FIGURE 5-14 Array of Shorts Structure 70

FIGURE 5-15 Array of Bytes Structure 70

FIGURE 5-16 Array of Booleans Structure 70

FIGURE 5-17 Runtime Class Info Structure with Method Vector 71

FIGURE 5-18 Method Structure 72

FIGURE 5-19 Class Structure 73

FIGURE 5-20 Constant Pool 74
x picoJava-II Programmer’s Reference Manual - March 1999

FIGURE 6-1 Format for Data Cache Data Address for 16-Kbyte Data Cache 325

FIGURE 6-2 Format for Data Cache Tag Address for 16-Kbyte Data Cache 327

FIGURE 6-3 Format for Data Cache Tag Data for 16-Kbyte Data Cache 328

FIGURE 6-4 Format for Instruction Cache Data Address for 16-Kbyte Instruction Cache 329

FIGURE 6-5 Format for 16-Kbyte Instruction Cache Tag Address 331

FIGURE 6-6 Format for Instruction Cache Tag Data for 16-Kbyte Instruction Cache 332

FIGURE 6-7 Format for Data Cache Data Address for 16-Kbyte Data Cache 338

FIGURE 6-8 Format for Data Cache Tag Address for 16-Kbyte Data Cache 340

FIGURE 6-9 Format for Data Cache Tag Data for 16-Kbyte Data Cache 341

FIGURE 6-10 Format for Instruction Cache Data Address for 16-Kbyte Instruction Cache 342

FIGURE 6-11 Format for 16-Kbyte Instruction Cache Tag Address 344

FIGURE 6-12 Format for Instruction Cache Tag Data for 16-Kbyte Instruction Cache 345

FIGURE 7-1 A Method Frame 386

FIGURE 7-2 Allocation of a New Frame 390

FIGURE 7-3 Return from a Method 394

FIGURE 9-1 Runtime Stack Allocation for a New Thread 403

FIGURE 9-2 Operand Stack Frame Layout for zoo and zoo1 406

FIGURE 9-3 Operand Stack Frame Layout Before zoo1 Returns to zoo 407

FIGURE 9-4 Stack Frame Layout for zoo Calling zoo1 409

FIGURE 9-5 Stack Frame Layout for zoo1 Before Returning 410

FIGURE 9-6 Stack Frame for Function zoo1 Returning Aggregate Values 413

FIGURE 9-7 Stack Frame for Function zoo Calling zoo1 with Variable Number of Arguments 417

FIGURE 9-8 Stack Frame of zoo1 After Execution of PROLOGUE Code 418

FIGURE 9-9 Table Structures 422

FIGURE 10-1 Possible Stack States Before Entering oplim_trap Handler 430

FIGURE 11-1 Storing a Reference into a Field of an Object 435

FIGURE 11-2 Operation of Page-Based Write Barrier 438

FIGURE 11-3 Operation of Reference-Based Write Barrier 439
Figures xi

FIGURE 11-4 Generational Garbage Collection Using Remembered Sets 441

FIGURE 12-1 Breakpoint Register (BRK1A) 452

FIGURE 12-2 Breakpoint Register (BRK2A) 452

FIGURE 12-3 Breakpoint Control Register (BRK12C) 453
xii picoJava-II Programmer’s Reference Manual - March 1999

Tables

TABLE P-1 Typographic Conventions xix

TABLE 3-1 Instructions That Access Big-Endian Data by Default 24

TABLE 3-2 Instructions That Access Little-Endian Data by Default 24

TABLE 3-3 Byte Ordering and Sign Extension for Single-Byte Memory Operations 25

TABLE 3-4 Byte Ordering and Sign Extension for Multiple-Byte Memory Operations 26

TABLE 3-5 Instructions Subject to Memory Protection Checks When PSR.CAC = 0 28

TABLE 3-6 Instructions for Caching Operations 31

TABLE 3-7 Encoded Values of Watermarks 41

TABLE 3-8 OPTOP-Modifying Instructions That Can Cause a Stack Underflow 43

TABLE 4-1 Types and Priorities of Traps 50

TABLE 4-2 Instructions Subject to Memory Alignment Trap Checks 55

TABLE 4-3 Calculation of Worst-Case Interrupt Latency 58

TABLE 5-1 Primitive Data Types 61

TABLE 5-2 Method Structure Fields 72

TABLE 6-1 Basic Operations 75

TABLE 6-2 Type Casts and Conversions 76

TABLE 6-3 Cache Tag Accesses 76

TABLE 6-4 Memory Access-Related Operations 77

TABLE 6-5 Stack and Memory Access Operations 78
Tables xiii

TABLE 7-1 Code Prepended to Synchronized Nonstatic Methods 392

TABLE 7-2 Code Prepended to Synchronized Static Methods 392

TABLE 9-1 Register Uses by C Calling Convention 402

TABLE 11-1 Instructions That Store References 436

TABLE 11-2 GC_CONFIG.REGION_MASK Values 437

TABLE 11-3 GC_CONFIG.CAR_MASK Values 437

TABLE 12-1 Machine State Changes on POR/SIR and Powerdown 444

TABLE A-1 picoJava-II 1-Byte Opcodes 458

TABLE A-2 picoJava-II 2-byte Opcodes 469
xiv picoJava-II Programmer’s Reference Manual - March 1999

Code Samples

CODE EXAMPLE 4-1 Sample Context Switch Code 59

CODE EXAMPLE 9-1 Sample Code for a Function Call 404

CODE EXAMPLE 9-2 Function with Simple Parameters and Locals 406

CODE EXAMPLE 9-3 Compiled Code for a Function with Simple Parameters and Locals 407

CODE EXAMPLE 9-4 Functions with Aggregate Parameters and Locals 408

CODE EXAMPLE 9-5 Compiled Code for Function with Aggregate Parameters 410

CODE EXAMPLE 9-6 Function Returning Aggregate Values 412

CODE EXAMPLE 9-7 Compiled Code for a Function That Returns An Aggregate Value 413

CODE EXAMPLE 9-8 Optimized Code for Function Returning Aggregate Values 415

CODE EXAMPLE 9-9 Function with Variable Number of Arguments 415

CODE EXAMPLE 9-10 Sample Code In stdarg.h 416

CODE EXAMPLE 9-11 Compiled Code for Function with Variable Number of Arguments 418

CODE EXAMPLE 9-12 Rearranging the Function Frame for an Argument Mismatch 425

CODE EXAMPLE 11-1 Pseudocode for a Page-Based Write Barrier 438

CODE EXAMPLE 11-2 Pseudocode for a Reference-Based Write Barrier 439

CODE EXAMPLE 12-1 Enabling the Stack Cache 446

CODE EXAMPLE 12-2 Enabling the Instruction Cache 447

CODE EXAMPLE 12-3 Enabling the Data Cache 448
Code Samples xv

xvi picoJava-II Programmer’s Reference Manual - March 1999

Preface

Java™ is an object-oriented programming language developed by Sun

Microsystems, Inc., in the early 1990s. Modeled after C and C++, it is designed to be

simple and platform-independent at both the source and binary levels. Java was

initially developed to address the problems of building software for networked

consumer devices.

The Java virtual machine is the cornerstone of Sun’s Java programming language. It

is the component of the Java technology responsible for Java’s cross-platform

delivery as well as for the small size of its compiled code. The Java virtual machine

is an abstract computing machine. Like a real computing machine, it has an

instruction set and uses various memory areas. The Java virtual machine

understands only a particular file format—the class file format. A class file contains

Java virtual machine instructions (or bytecodes), a symbol table, and other

information. The Java virtual machine knows nothing of the Java programming

language and does not require a specific underlying implementation.

Organization of This Book

The picoJava-II Programmer’s Reference Manual is divided into two main parts:

architecture and programming. A third part, Appendixes, provides supplemental

information.

● Part I: Understanding the picoJava-II Architecture contains these chapters.

■ Chapter 1, Overview, offers background information that provides a context for

the remaining chapters in Part I.

■ Chapter 2, Registers, begins our architectural exploration with a discussion of

programmer-visible registers that are readable and writable.
xvii

■ Chapter 3, Memory System and Caches, describes the structures for managing

memory.

■ Chapter 4, Traps and Interrupts, discusses the mechanism for transferring control

to the supervisor state.

■ Chapter 5, Data Types and Runtime Data Structures, provides details about the

object data type, the array data type, primitive data types, and the floating-point

data type.

■ Chapter 6, Instruction Set, concludes our examination of the Java virtual machine

architecture with complete descriptions of extensions and instructions.

● Part II: Programming the picoJava-II Core contains these chapters.

■ Chapter 7, Java Method Invocation and Return, discusses how to invoke methods—

both synchronized and nonsynchronized—and return from a method. It also

describes monitors and programming support for managing them.

■ Chapter 8, Monitors, describes the instructions that speed up common situations

in which monitors are used.

■ Chapter 9, Support of the C Programming Language, describes the generation of C

code for the picoJava-II core.

■ Chapter 10, Stack Chunking, tells how stack chunking works for the picoJava-II

core.

■ Chapter 11, Support for Garbage Collection, defines picoJava-II support for various

garbage collection (GC) schemes.

■ Chapter 12, System Management and Debugging, addresses external issues such as

power management and reset, as well as debugging and tracing

● Part III: Appendixes contains one appendix.

■ Appendix A: Opcodes, lists all of the picoJava-II opcodes.

At the end of this book are an index and a quick reference guide.

Related Books and References

Three books form the documentation set for the picoJava-II release:

■ picoJava-II Programmers’s Reference Manual (this book)

■ picoJava-II Microarchitecture Guide
■ picoJava-II Verification Guide
xviii picoJava-II Programmer’s Reference Manual • March 1999

The following publications are reference material for the subject matter:

■ Lindholm, Tim, and Frank Yellin: The Java Virtual Machine Specification, Addison-

Wesley, ISBN 0-201-63452-X

■ IEEE Standard Test Access Port and Boundary-Scan Architecture, ANSI/IEEE Std.

1149.1-1990.

■ IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std. 754-1985.

■ Ungar, David: ACM SIGPLAN Notices, 19(5):157-167: Generation Scavenging: A
Non-disruptive High Performance Storage Reclamation Algorithm, April 1984.

■ Wilson P., and T. Moher: ACM SIGPLAN Notices, 24(10):23-35: A Card-marking
Scheme For Controlling Intergenerational References In Generation-based Garbage
Collection On Stock Hardware, 1989.

■ Steele, Guy L.: Communications of the ACM, 18(9): Multiprocessing Compactifying
Garbage Collection, September 1975.

■ Hudson, R., and J. E. B. Moss: Proceedings of International Workshop on Memory
Management: Incremental Garbage Collection For Mature Objects, St. Malo, France,

September 16–18, 1992.

Typographic Conventions

TABLE P-1 describes the typographic conventions used in this book.

TABLE P-1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, instructions,

files, and directories; on-screen

computer output; email addresses;

URLs

Edit your .login file.

Use ls -a to list all files.

machine_name% You have mail.

AaBbCc123 What you type, contrasted with on-

screen computer output

machine_name% su
Password:

AaBbCc123 Command-line placeholder:

replace with a real name or value

To delete a file, type rm filename.

AaBbCc123 Book titles, section titles in cross-

references, new words or terms, or

emphasized words

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

<> A bit number or colon-separated range

of bit numbers within a field; bit 0 is

the least significant bit.

WB_VECTOR<15:0>
Chapter xix

Sun Documents

The SunDocsSM program provides more than 250 manuals from Sun Microsystems,

Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase

documentation sets or individual manuals by using this program.

For a list of documents and how to order them, see the catalog section of the

SunExpress™ Internet site at http://www.sun.com/sunexpress .

Sun Documentation Online

The docs.sun.com Web site enables you to access Sun technical documentation

online. You can browse the docs.sun.com archive or search for a specific book title

or subject. The URL is http://docs.sun.com/ .

Disclaimer

The information in this manual is subject to change and will be revised from time to

time. For up-to-date information, contact your Sun representative.

Feedback

Email your comments on this book to: picojava-prm@eng.sun.com .

Acknowledgment

Many people—picoJava-II licensees, engineers, programmers, marketers—

contributed to this book. We thank them for their input, feedback, and support.
xx picoJava-II Programmer’s Reference Manual • March 1999

PART I Understanding the picoJava-II

Architecture

CHAPTER 1

Overview

The picoJava-II core provides an optimized hardware environment for hosting a Java

virtual machine. The core implements most of the Java virtual machine instructions

directly in hardware while supporting a general-purpose instruction set capable of

handling operating systems and code compiled from languages other than the Java

language (such as C and C++).

This reference manual focuses on picoJava-II architecture and programming. To

implement a complete Java runtime environment, a system based on the picoJava-II

architecture needs supporting software, such as a class loader, a bytecode verifier, a

thread manager, and a garbage collector, the details for which are beyond the scope

of this manual. However, this manual does address some relevant implementation

issues that are specific to the core.

This chapter provides an overview of the core in the following sections:

■ Purpose on page 3

■ Relationship to the Java Virtual Machine on page 4

■ Key Elements of the Core on page 4

1.1 Purpose
The core is designed to enable high-performance Java implementations in a variety

of embedded and system-on-a-chip applications. Optimized for situations in which

the memory requirements for dynamic compilation are prohibitive, yet the

performance of an interpreter is too low, the core can bring the benefits of Java

technology to applications that cannot be addressed with other solutions.
3

1.2 Relationship to the Java Virtual Machine
The picoJava-II core is not the entire Java virtual machine in silicon. Rather, it is a

microprocessor design optimized to run a small Java virtual machine

implementation. As one step to achieve this goal, the core decodes all of the

bytecodes defined by the Java virtual machine. Furthermore, it implements most of

them directly in hardware.

The core can accelerate other aspects (for example, garbage collection) of a Java

virtual machine with hardware. Bear in mind, however, that you must develop a

significant amount of software to produce a compliant Java virtual machine that

runs on the core.

1.3 Key Elements of the Core
The picoJava-II instruction set is stack-based: The core performs most operations on

data from the stack by pushing data from memory and local variables onto the stack,

from which instructions implicitly get their operands.

In addition, the core implements a number of registers, most of which control

specific functions within the core, while others contain the addresses of various

areas on the stack. Four general-purpose registers are also present.

The instruction set contains over 300 instructions. Most of them are similar to those

in other microprocessors; some are unique to this core.

The remaining chapters of this manual discuss each of the above elements, as well as

how they are commonly used.
4 picoJava-II Programmer’s Reference Manual • March 1999

CHAPTER 2

Registers

The core maintains several programmer-visible registers. These registers are 32 bits

wide and perform various functions, as described in the following sections:

■ Program Counter Register (PC) on page 5

■ Stack Management Registers on page 6

■ Constant Pool Base Pointer Register (CONST_POOL) on page 9

■ Memory Protection Registers (USERRANGE1 and USERRANGE2) on page 10

■ Processor Status Register (PSR) on page 10

■ Trap Handler Address Register (TRAPBASE) on page 12

■ Monitor-Caching Registers on page 12

■ Garbage Collection Register (GC_CONFIG) on page 14

■ Breakpoint Registers on page 15

■ Implementation Registers on page 17

■ Global Registers (GLOBAL[0..3]) on page 20

2.1 Program Counter Register (PC)
The Program Counter Register, PC, contains the address of the first byte of the

instruction that is executing.

The configuration of the PC register is listed below and illustrated in FIGURE 2-1.

Field Type Description

31:0 RW Byte-aligned pointer to the instruction stream
5

FIGURE 2-1 Program Counter Register (PC)

2.2 Stack Management Registers
This section describes the five registers that contain addresses that refer to locations

in the stack.

2.2.1 Local Variable Pointer Register (VARS)

The Local Variable Pointer Register, VARS, contains the base address of the current

local variables region in the stack. Typically, the local variables of a method or

function are its parameters and any declared local variables. This register contains

the address of the local variable zero of the method or function that is executing.

Additional local variables are located at word-aligned offsets toward lower

addresses. For example, local variable 1 is located at the current value of the VARS
register minus 4 (the size of one word, in bytes).

The configuration of the VARSregister is listed below and illustrated in FIGURE 2-2.

FIGURE 2-2 Local Variable Pointer Register (VARS)

Field Type Description

31:2 RW Word-aligned VARSpointer

1:0 RO Always reads as 0x0.

31 0

PC

31 02 1

VARS 00
6 picoJava-II Programmer’s Reference Manual • March 1999

2.2.2 FRAMEPointer Register (FRAME)

The FRAMEPointer Register, FRAME, contains the base address of the current call

frame information on the stack for a Java method, that is, the address of the return

PC for the method that is executing. Additional call frame information is located at

word-aligned offsets toward lower addresses. Code compiled from other languages

may not use the FRAMEPointer Register in this manner, however.

The configuration of the FRAMEregister is listed below and illustrated in FIGURE 2-3.

FIGURE 2-3 FRAMEPointer Register (FRAME)

2.2.3 Top-of-Stack Pointer Register (OPTOP)

The Top-of-Stack Pointer Register, OPTOP, contains the address of the current top-of-

stack. The next entry to be pushed on to the stack is located at the address in the

OPTOP, which is then decremented by 4 bytes. Consequently, the address of the “top”

stack element that contains valid data is OPTOP+ 4.

The configuration of the OPTOPregister is listed below and illustrated in FIGURE 2-4.

FIGURE 2-4 Top-of-Stack Pointer Register (OPTOP)

Field Type Description

31:2 RW Word-aligned FRAMEpointer

1:0 RO Always reads as 0x0.

Field Type Description

31:2 RW Word-aligned OPTOPpointer

1:0 RO Always reads as 0x0.

31 02 1

00FRAME

31 02 1

00OPTOP
Chapter 2 Registers 7

2.2.4 Minimum Value of Top-of-Stack Register (OPLIM)

The Minimum Value of Top-of-Stack Register, OPLIM, contains the minimum value

that the OPTOPregister can hold. This register limits stack growth to a certain

memory region. For details on how the core uses OPLIM, see Chapter 10, Stack
Chunking.

The configuration of the OPLIM register is listed below and illustrated in FIGURE 2-5.

FIGURE 2-5 Minimum Value of Top of Stack Register (OPLIM)

2.2.5 Address of Deepest Stack Cache Entry Register

(SC_BOTTOM)

The Address of Deepest Stack Cache Entry Register, SC_BOTTOM, indicates the

current “deepest” entry of the operand stack that is valid in the stack cache. Do not

write into this register if the stack cache dribbler is enabled (PSR.DRE= 1);

otherwise, unpredictable behavior may result.

If the dribbler was on previously but is off now, writing to SC_BOTTOMand then

enabling the dribbler can also cause unpredictable behavior. See Enabling the Stack
Cache on page 446 regarding power-on writes of SC_BOTTOM.

Field Type Description

31 RW OPLIM enable bit. Power On Reset (POR) clears this bit. When

the core takes the oplim_trap , it clears the bit. If this bit is

set, the core checks for OPLIM violations. Generally, software

sets this bit; hardware resets it.

30:2 RW Word-aligned OPLIM pointer. If OPLIM.ENABLE is set, the core

checks bits 30:2 of OPTOPversus bits 30:2 of OPLIM. If OPTOP
is less than OPLIM, the core generates an oplim_trap .

1:0 RO Always reads as 0x0.

31 02 1

OPLIM

30

ENABLE 00
8 picoJava-II Programmer’s Reference Manual • March 1999

The configuration of the SC_BOTTOMregister is listed below and illustrated in

FIGURE 2-6.

FIGURE 2-6 Address of Deepest Stack Cache Entry Register (SC_BOTTOM)

2.3 Constant Pool Base Pointer Register
(CONST_POOL)
The Constant Pool Base Pointer Register, CONST_POOL, contains the base address—

the address of element zero—of the current constant pool for a Java class. Additional

elements of the constant pool are located at word-aligned offsets toward higher

addresses. Code compiled from other languages may not use the CONST_POOL
register in this manner, however. See Constant Pool on page 73 for more information.

The configuration of the CONST_POOLregister is listed below and illustrated in

FIGURE 2-7.

FIGURE 2-7 Constant Pool Base Pointer Register (CONST_POOL)

Field Type Description

31:2 RW Word-aligned stack cache bottom pointer

1:0 RO Always reads as 0x0.

Field Type Description

31:2 RW Word-aligned constant pool pointer

1:0 RO Always reads as 0x0.

31 02

STACK_CACHE_BOTTOM 00

1

31 0

CONST_POOL 00

2 1
Chapter 2 Registers 9

2.4 Memory Protection Registers
(USERRANGE1and USERRANGE2)
The USERRANGE1and USERRANGE2registers handle protection of memory. See

Memory Protection on page 27 for details.

The configurations of the USERRANGEregisters are listed below and illustrated in

FIGURE 2-8.

FIGURE 2-8 USERRANGERegisters

2.5 Processor Status Register (PSR)
The Processor Status Register, PSR, is a master register that controls which features

are used at any given time and at what level.

Field Type Description

31:16 RW USERHIGH: Bits 29:14 of the maximum address for the first

restricted address range (16-Kbyte aligned)

15:0 RW USERLOW: Bits 29:14 of the minimum address for the first

restricted address range (16-Kbyte aligned)

31 016 15

USERHIGH USERLOW

USERHIGH USERLOW

USERRANGE1

USERRANGE2

31 016 15
10 picoJava-II Programmer’s Reference Manual • March 1999

The configuration of the PSRregister is listed below and illustrated in FIGURE 2-9.

Field Type Description

31:23 Reserved

21:19 RO Dribble High-Watermark (DBH): This field specifies the most

significant 3 bits of the high watermark for the dribbler.

18:16 RW Dribble Low-Watermark (DBL): This field specifies the most

significant 3 bits of the low watermark for the dribbler.

22 RW Complete Address Check (CAC): When the core enables this bit

along with the ACEbit, it checks all the addresses to the data

cache with USERRANGEs in the protection registers. If the CAC
bit is off, the core checks only the specific instructions against

the USERRANGEs in the protection registers.

15 RW drem Trap (DRT): The drem instruction causes an emulation

trap even if the Floating Point Unit (FPU) is present. If this bit

is 1 or if there is no FPU, then the core generates the emulation

trap. This bit is 0 if the FPU handles the drem .

14 RW Boot Mode 8 (BM8): If this bit is set, the instruction fetch size is

8 bits instead of the default 32 bits. The core initializes this bit

from the pj_boot8 input signal at reset. Software can clear

this bit but cannot set it to 1.

13 RW Address Checking Enabled (ACE).

12 RW Garbage Collection Page Check Enabled (GCE).

11 RW Floating Point Unit Enabled (FPE).

10 RW Data Cache Enabled (DCE).

9 RW Instruction Cache Enabled (ICE).

8 RW Asynchronous Store Error Mask bit (AEM).

7 RW Dribbling Enabled (DRE): If this bit is set to 0, the stack cache

contents and memory may mismatch. Always set this bit to 1,

except during bootup and diagnostics.

6 RW Folding Enabled (FLE).

5 RW Supervisor (privileged) mode bit (SU): 1 sets this mode.

4 RW Interrupt Enable (IE).

3:0 RW Processor Interrupt Level (PIL).
Chapter 2 Registers 11

FIGURE 2-9 Processor Status Register (PSR)

2.6 Trap Handler Address Register
(TRAPBASE)
When a trap occurs (except for external reset), the core writes a value that identifies

the trap into the 8-bit TT field of the TRAPBASEregister. Using the TRAPBASE
address, the processor fetches the trap routine address and jumps to it. For more

information on traps, see Chapter 4, Traps and Interrupts.

The configuration of the TRAPBASEregister is listed below and illustrated in

FIGURE 2-10.

FIGURE 2-10 Trap Handler Address Register (TRAPBASE)

2.7 Monitor-Caching Registers
The picoJava-II core uses two lock count registers (LOCKCOUNT0and LOCKCOUNT1)
and two lock address registers (LOCKADDR0and LOCKADDR1) to accelerate the

monitorenter and monitorexit instructions. For details, see Chapter 8, Monitors.

Field Type Description

31:11 RW TBA: Trap base address of the trap table.

10:3 RO TT: Trap type; read-only to software but written by hardware

when a trap occurs.

2:0 RO Always reads as 0x0.

FPE DCE

0311

DREAEM

45

IESU

68

PILReserved FLE

9

ICE

10

DBH GCE

12 7131431 151621

DRT BM8 ACEDBLCAC

181922

PSR

23

31 03 211

000TBA TTTRAPBASE

10
12 picoJava-II Programmer’s Reference Manual • March 1999

2.7.1 Lock Count Registers (LOCKCOUNT[0..1])

The configurations of the two LOCKCOUNTregisters are listed below and illustrated

in FIGURE 2-11.

FIGURE 2-11 Lock Count Registers (LOCKCOUNT0and LOCKCOUNT1)

2.7.2 Lock Address Registers (LOCKADDR[0..1])

The configurations of the two LOCKADDRregisters are listed below and illustrated in

FIGURE 2-12.

Field Type Description

31:16 Reserved

15 RW CO(Cached-Only): Set to 1 if only record of a lock is in these registers.

14 RW LOCKWANT: Set to 1 if another thread is blocked on this monitor.

13:8 Reserved

7:0 RW COUNT: Number of times the current thread has entered the associated

monitor.

Field Type Description

31:2 RW Word-aligned locked address pointer.

1:0 RO Always reads as 0x0.

31 0

Reserved

31 0

COUNT

COUNTReserved

15 14

15 14 13

Reserved

Reserved

13

LOCKWANT

LOCKWANT

LOCKCOUNT0

LOCKCOUNT1

8 7

8 7

CO

CO

16

16
Chapter 2 Registers 13

FIGURE 2-12 Lock Address Registers (LOCKADDR0and LOCKADDR1)

Note – When an object reference is compared to the contents of either of these

registers, only bits <29:2> are compared.

2.8 Garbage Collection Register (GC_CONFIG)
The GC_CONFIGregister, writable in privileged mode, supports garbage collection

by filtering stores to the heap. See Chapter 11, Support for Garbage Collection for more

information.

The configuration of the GC_CONFIGregister is listed below and illustrated in

FIGURE 2-13.

Field Type Description

31:21 RW REGION_MASK: This mask AND’ed with bits 28:18 in the reference

and the stored data is used to decide if they belong to the same

page.

20:16 RW CAR_MASK: This mask AND’ed with bits 17:13 in the reference and

the stored data is used to decide if they belong to the same car.

15:0 RW WB_VECTOR(Write Barrier Vector): For a store of an object

reference, the GC_TAGbits of the object reference being stored are

concatenated with those of the destination object reference to form

a 4-bit index into the WB_VECTOR. If the corresponding bit in the

WB_VECTORfield is set, then the aputstatic_quick and

aputfield_quick instructions signal a GC trap. For example, if

GC_TAG{objref} = 00 and GC_TAG{store_data} = 01, then

these instructions check bit 1 of WB_VECTOR.

31 02 1

00

31 02 1

00

LOCKADDR0

LOCKADDR1
14 picoJava-II Programmer’s Reference Manual • March 1999

FIGURE 2-13 Garbage Collection Register (GC_CONFIG)

2.9 Breakpoint Registers
Two breakpoint registers (BRK1Aand BRK2A) and a breakpoint control register

(BRK12C) manipulate breakpoints.

Debugging and use of the breakpoint registers are discussed in Chapter 12, System
Management and Debugging. For completeness and convenience, the register

information is reprinted here.

The configuration of the BRK1Aregister is listed below and illustrated in FIGURE 2-14.

FIGURE 2-14 Breakpoint Register (BRK1A)

The configuration of the BRK2Aregister is listed below and illustrated in FIGURE 2-15.

FIGURE 2-15 Breakpoint Register (BRK2A)

Field Type Description

31:00 RW This is the breakpoint1 address against which to compare.

This register is used along with BRK12Cto set a breakpoint.

Field Type Description

31:00 RW This is the breakpoint2 address against which to compare.

This register is used along with BRK12Cto set a breakpoint.

You can set a maximum of two breakpoints at one time.

31 016 1521 20

REGION_MASK WB_VECTORCAR_MASKGC_CONFIG

31 0

BRK1A

31 0

BRK2A
Chapter 2 Registers 15

The configuration of the BRK12Cregister is listed below and illustrated in

FIGURE 2-16.

Field Type Description

31 RW HALT – Determines if a breakpoint halts or traps. At setting 0,

the breakpoint traps (default); at setting 1, the core halts all

transactions.

30:24 RW BRKM2– Mask bits for breakpoint2

<30> – Enable compare of BRK2A<31:13>

<29> – Enable compare of BRK2A<12>

<28> – Enable compare of BRK2A<11:4>

<27> – Enable compare of BRK2A<3>

<26> – Enable compare of BRK2A<2>

<25> – Enable compare of BRK2A<1>

<24> – Enable compare of BRK2A<0>

23 Reserved

22:16 RW BRKM1– Mask bits for breakpoint1

<22> – Enable compare of BRK1A<31:13>

<21> – Enable compare of BRK1A<12>

<20> – Enable compare of BRK1A<11:4>

<19> – Enable compare of BRK1A<3>

<18> – Enable compare of BRK1A<2>

<17> – Enable compare of BRK1A<1>

<16> – Enable compare of BRK1A<0>

15:12 Reserved

11 RW SUBRK2– Supervisor (privileged) or user access for

breakpoint2

10:9 RW SRCBRK2– Source for breakpoint2

0x0 – Data cache read

0x1 – Data cache write

0x2 – Reserved

0x3 – Instruction cache fetch (folding disabled)

8 RW BRKEN2– Breakpoint2 trap enable bit

1 – The breakpoint is enabled

0 – The breakpoint is disabled

7:4 Reserved
16 picoJava-II Programmer’s Reference Manual • March 1999

FIGURE 2-16 Breakpoint Control Register (BRK12C)

2.10 Implementation Registers
The Version ID Register (VERSIONID) and the Hardware Configuration Register

(HCR) are two implementation registers that contain unique information about the

core.

2.10.1 Version ID Register (VERSIONID)

The Version ID Register (VERSIONID) contains the licensee number that tracks

closely to the JEDEC number that is assigned to a manufacturer. You can assign

licensee revision and mask numbers to distinguish the features that have been added

or deleted from the original core.

3 RW SUBRK1– Supervisor (privileged) or user access for

breakpoint1. If set to 1, then the core ignores the breakpoint in

privileged mode.

2:1 RW SRCBRK1– Source for breakpoint1

0x0 – Data cache read

0x1 – Data cache write

0x2 – Reserved

0x3 – Instruction cache fetch (folding disabled)

0 RW BRKEN1– Breakpoint1 trap enable bit

1 – The breakpoint is enabled

0 – The breakpoint is disabled

Field Type Description

BRKM2 Reserved

0112 24

 SRCBK1 SUBK1

79

 BRKEN1HALT Reserved

10

BRKM1Reserved

15 8162430 3

 BRKEN2 SRCBK2 SUBK2

 2231 23

BRK12C

11
Chapter 2 Registers 17

The configuration of the VERSIONID register is listed below and illustrated in

FIGURE 2-17.

FIGURE 2-17 Version ID Register (VERSIONID)

2.10.2 Hardware Configuration Register (HCR)

The Hardware Configuration Register (HCR) contains hardwired, read-only fields

that the operating system reads to determine the parameters of the core version.

The configuration of the HCRregister is listed below and illustrated in FIGURE 2-18.

Field Type Description

31:16 RO LN: Licencee number

15:8 RO LMN: Licensee mask number

7:0 RO LRN: Licensee revision number

Field Type Description

31:30 RO DCA– Data cache associativity

0x0 – Two-way set-associative (default)

0x1 – Four-way set-associative

0x2 – Direct-mapped

0x3 – Reserved

29:27 RO DCL– Data cache line size

0x0 – 4 bytes

0x1 – 8 bytes

0x2 – 16 bytes (default)

0x3 – 32 bytes

0x4 – 64 bytes

0x5 – 128 bytes

0x6 – Reserved

0x7 – Reserved

31 08 716 15

LRNLN LMNVERSIONID
18 picoJava-II Programmer’s Reference Manual • March 1999

1Reads as zeros.
2May vary among different versions of the picoJava core.

FIGURE 2-18 Hardware Configuration Register (HCR)

26:24 RO ICL – Instruction cache line size

0x0 – 4 bytes

0x1 – 8 bytes

0x2 – 16 bytes (default)

0x3 – 32 bytes

0x4 – 64 bytes

0x5 – 128 bytes

0x6 – Reserved

0x7 – Reserved

23:21 RO DCS– Data cache size

0x0 – 0 Kilobytes (no data cache present)

0x1 – 1 Kbytes

0x2 – 2 Kbytes

0x3 – 4 Kbytes

0x4 – 8 Kbytes

0x5 – 16 Kbytes

0x6 – 32 Kbytes

0x7 – Reserved

20:18 RO ICS – Instruction cache size

0x0 – 0 Kbytes (no instruction cache present)

0x1 – 1 Kbytes

0x2 – 2 Kbytes

0x3 – 4 Kbytes

0x4 – 8 Kbytes

0x5 – 16 Kbytes

0x6 – 32 Kbytes

0x7 – Reserved

17 RO FPP – Floating Point Unit (FPU) present

This bit is set to 1 if the FPU is present in the hardware.

16 RO ICA – Instruction cache associativity

0x0 – Direct-mapped (default)

0x1 – Two-way set-associative

15:8 Reserved1

7:0 RO SRN– Sun revision number2

Field Type Description

08

SRNDCLDCA ICSICL DCS FPP

31 161724 2327 2630 29 21 20 18

ReservedHCR

715

ICA
Chapter 2 Registers 19

2.11 Global Registers (GLOBAL[0..3])
Four global registers (GLOBAL[0..3]) store global information in applications. Some

operating systems or C language environments may reserve some or all of these

registers for specific uses.

The configuration of a GLOBALregister is listed below and illustrated in FIGURE 2-19.

FIGURE 2-19 Global (GLOBAL[0..3]) Registers

Field Type Description

31:00 RW Any data

31 0

GLOBAL[0..3]
20 picoJava-II Programmer’s Reference Manual • March 1999

CHAPTER 3

Memory System and Caches

This chapter describes the memory system architecture of the picoJava-II core as well

as the properties and behavior of the caches. It contains the following sections:

■ Architecture of the Memory System on page 21

■ Memory Protection on page 27

■ Cache Coherency on page 30

■ Instruction Cache on page 33

■ Data Cache on page 36

■ Stack Cache on page 39

3.1 Architecture of the Memory System
Memory access by the core falls into one of the following categories:

■ Instruction access —The core fetches instructions from memory to execute; any

code thus fetched is an instruction access.

■ Stack access — Most instructions derive their operands from or store their results

to a special region of memory, known as the operand stack, which also contains the

call frame, parameters, and local variables of a given method or function.

■ Data access — Any memory access that is not one of the above two categories is

a data access, which is usually the result of executing instructions that access the

fields of objects, traverse data structures, or perform I/O. You can perform data

accesses to examine or manipulate the stack or instructions. Be sure to take

precautions for such data accesses, however.

System software often divides the address space into regions that correspond to the

different access types. When the code in a program or Java class is loaded, the loader

places the instructions into memory. Generally, the core uses instruction accesses to

these locations during execution. System software also uses a region of memory to
21

hold the operand stack and another region—known as the heap—to allocate data for

the programs that are running. Other data access regions may include the operating

system data and I/O devices.

The core provides the following caches for memory access:

■ An instruction cache, which holds instructions that were executed recently in

local and fast memory (see Instruction Cache on page 33)

■ A data cache, which holds data that was recently accessed in local and fast

memory, including elements of the stack (see Data Cache on page 36)

■ A stack cache, which holds data that is frequently accessed near the top of the

stack (see Stack Cache on page 39)

The stack cache allows multiple simultaneous accesses and dribbling of data into

and out of the cache.

3.1.1 Address Space

The core can address up to 1 gigabyte (30 bits) of memory directly. This address

space is organized as a flat and linear range. The core does not provide any virtual

memory or address translation mechanisms. Any such mechanisms can only exist in

logic outside the core.

The core supports 32-bit data elements. For an address that is larger than the 30-bit

address space that it supports, the core ignores the two most significant bits <31:30>

to determine the memory location that is referenced. The value of those two bits

may, however, encode additional information about a memory access and thus

change its behavior. Therefore, do not assume that two accesses to addresses that differ only
in bits <31:30> produce the same results.

3.1.2 Alignment

The core does not support unaligned data accesses. Accesses to 2-byte and 4-byte

data items must be to addresses that are aligned on 2-byte or 4-byte boundaries,

respectively. The core performs accesses to 8-byte data items internally as two

separate 4-byte accesses, which only need to be aligned on a 4-byte boundary.

The core interprets instructions as a stream of bytes and does not impose any

restrictions for alignment, except for the lookupswitch and tableswitch
instructions, which are followed by 4-byte-aligned jump tables. Methods or

functions that use lookupswitch and tableswitch must start on a 4-byte

boundary.

Failure to meet the above requirements causes the core to generate a

mem_address_not_aligned trap.
22 picoJava-II Programmer’s Reference Manual • March 1999

3.1.3 Cacheable and Noncacheable Memory Regions

By default, the core caches data and instruction accesses to the memory region from

address 0x00000000 to address 0x2fffffff. It does not cache accesses to the memory

region from address 0x30000000 to address 0x3fffffff. See FIGURE 3-1.

Note – Explicitly noncacheable instructions, such as ncload_word , can access

memory within the cacheable address region without bringing that data into the

cache.

FIGURE 3-1 The Cacheable and Noncacheable Memory Regions

Caution – Do not allow the stack to reside in the noncacheable address region. The

operand stack must be cacheable for proper operation of the core; otherwise,

unpredictable behavior may result.

3.1.4 Endianness

In general, the core stores values in memory in big-endian byte order; by default,

most instructions use a big-endian address space. However, some load and store

instructions can access both big-endian and little-endian data.

0x30000000

0x3fffffff

0x00000000

Noncacheable

0x2fffffff

Cacheable
Chapter 3 Memory System and Caches 23

TABLE 3-1 lists the instructions that access big-endian data by default.

These instructions use a big-endian byte order. However, if bit 30 of address <31:0>

is set to 1, they convert the incoming loads or outgoing stores to access with a little-

endian byte order.

TABLE 3-2 lists the instructions that access little-endian data by default.

The _oe suffix in these instructions stands for opposite endianness—that is, they

assume the opposite endianness of data when compared to the equivalent

instructions that do not have that suffix in their names. They assume that the data is

in little-endian order unless bit 30 of address <31:0> is set to 1; then, the core

performs the access with a big-endian byte order.

The data cache stores the data in the same byte order as memory. The big-to-little-

endian ordering swap occurs as the core reads data from memory (or the data cache)

and pushes it onto the stack.

Data on the stack is in big-endian byte order. Thus, the core swaps little-endian data

that is in memory into big-endian byte order while it is on the stack and then swaps

it back to little-endian byte order as it returns the data to memory.

TABLE 3-1 Instructions That Access Big-Endian Data by Default

load_char load_word ncload_word store_short

load_char_index load_word_index ncstore_short store_short_index

load_short ncload_char ncstore_word store_word

load_short_index ncload_short nastore_word_index store_word_index

TABLE 3-2 Instructions That Access Little-Endian Data by Default

load_char_oe ncload_short_oe ncstore_word_oe

load_short_oe ncload_word_oe store_short_oe

load_word_oe ncstore_short_oe store_word_oe

ncload_char_oe
24 picoJava-II Programmer’s Reference Manual • March 1999

Note – Since data on the stack is stored in big-endian byte order, the core arranges

items of the type long or double (64-bit values) that occupy two 32-bit stack entries

such that the most significant 32 bits of each 64-bit value are the stack entry that is the

closest to the top of the stack. When loading 64-bit data items onto the stack, you

must ensure that the order in which the two 32-bit loads place the two halves of the

64-bit item on the stack preserves the correct data ordering. Take similar precautions

when you store data back to memory.

TABLE 3-3 shows the behavior of single-byte load and store accesses as a result of byte

ordering and sign extension. Big-endian and little-endian accesses of a single byte

are identical.

TABLE 3-3 Byte Ordering and Sign Extension for Single-Byte Memory Operations

Operation Endianness Address <1:0> Memory Contents at Address <1:0> Top of Stack

00 01 10 11

Load(byte) Big and little endian 00 0xdd xxxx xxxx xxxx 0xffffffdd

Load(byte) Big and little endian 01 xxxx 0xcc xxxx xxxx 0xffffffcc

Load(byte) Big and little endian 10 xxxx xxxx 0xbb xxxx 0xffffffbb

Load(byte) Big and little endian 11 xxxx xxxx xxxx 0xaa 0xffffffaa

Load(ubyte) Big and little endian 00 0xdd xxxx xxxx xxxx 0x000000dd

Load(ubyte) Big and little endian 01 xxxx 0xcc xxxx xxxx 0x000000cc

Load(ubyte) Big and little endian 10 xxxx xxxx 0xbb xxxx 0x000000bb

Load(ubyte) Big and little endian 11 xxxx xxxx xxxx 0xaa 0x000000aa

Store(byte) Big and little endian 00 0xdd xxxx xxxx xxxx 0xaabbccdd

Store (byte) Big and little endian 01 xxxx 0xdd xxxx xxxx 0xaabbccdd

Store(byte) Big and little endian 10 xxxx xxxx 0xdd xxxx 0xaabbccdd

Store(byte) Big and little endian 11 xxxx xxxx xxxx 0xdd 0xaabbccdd
Chapter 3 Memory System and Caches 25

TABLE 3-4 shows the behavior of multibyte load and store accesses as a result of byte

ordering and sign extension.

Recall that the core interprets instructions as a stream of bytes; it stores constants in

the instruction stream in big-endian byte order. Like the data cache, the instruction

cache has the same byte order as memory.

3.1.5 Erroneous Memory Transactions

In response to bus requests, error acknowledgment codes signal to the core bus

transactions that fail because of memory or system errors. The scenarios are as

follows:

■ If an error occurs during an instruction fetch, the core generates a fault bit and

associates it with the instruction word. Subsequently, it does not write the line

into the instruction cache even if the cache is enabled. Instead, it propagates the

TABLE 3-4 Byte Ordering and Sign Extension for Multiple-Byte Memory Operations

Operation Endianness Address <1:0> Memory Contents at Address <1:0> Top of Stack

00 01 10 11

Load(short) Big endian 00 0xdd 0xcc xxxx xxxx 0xffffddcc

Load(short) Big endian 10 xxxx xxxx 0xbb 0xaa 0xffffbbaa

Load(short) Little endian 00 0xdd 0xcc xxxx xxxx 0xffffccdd

Load(short) Little endian 10 xxxx xxxx 0xbb 0xaa 0xffffaabb

Load(char) Big endian 00 0xdd 0xcc xxxx xxxx 0x0000ddcc

Load(char) Big endian 10 xxxx xxxx 0xbb 0xaa 0x0000bbaa

Load(char) Little endian 00 0xdd 0xcc xxxx xxxx 0x0000ccdd

Load(char) Little endian 10 xxxx xxxx 0xbb 0xaa 0x0000aabb

Load(word) Big endian 00 0xdd 0xcc 0xbb 0xaa 0xddccbbaa

Load (word) Little endian 00 0xdd 0xcc 0xbb 0xaa 0xaabbccdd

Store(short) Big endian 00 0xcc 0xdd xxxx xxxx 0xaabbccdd

Store(short) Big endian 10 xxxx xxxx 0xcc 0xdd 0xaabbccdd

Store(short) Little endian 00 0xdd 0xcc xxxx xxxx 0xaabbccdd

Store(short) Little endian 10 xxxx xxxx 0xdd 0xcc 0xaabbccdd

Store(word) Big endian 00 0xaa 0xbb 0xcc 0xdd 0xaabbccdd

Store(word) Little endian 00 0xdd 0xcc 0xbb 0xaa 0xaabbccdd
26 picoJava-II Programmer’s Reference Manual • March 1999

faulty instruction through the core along with the fault bit; when execution

reaches the faulty instruction, the core takes an instruction_access_error
trap.

■ If an error occurs during a data read, then, depending on the error

acknowledgment code the core receives, the core takes a

data_access_mem_error or data_access_io_error trap. It does not write

the data into the data cache even if the cache is enabled—it leaves the state of the

machine exactly as it was before execution started. All instructions perform all

data reads before they modify the state of the processor or memory.

■ If an error occurs on a data store, the core takes an asynchronous_error trap.

Since stored data can reside in the data cache for some time before it is written to

memory, the error acknowledgment may signal after the instruction that caused

the error has completed its execution. In that case, the state of the machine may

be inconsistent since the instruction or store that failed is unknown.

For more information on traps and trap types, see Chapter 4, Traps and Interrupts.

3.2 Memory Protection
The core contains an address-checking mechanism that can prevent accesses to

locations outside specified memory regions. Hence, you can create a “safe”

execution area for C-based programs that can then run in their own areas of memory

but cannot read or write to memory outside of them, thereby having no effect on

other programs. Similarly, this mechanism can support multiple and independent

Java virtual machines by ensuring that an instantiation of the Java virtual machine

affects itself only.

The protection mechanism checks data and stack accesses only. Since instruction

accesses are read-only and, therefore, cannot change memory, they are not subject to

those checks.

3.2.1 The Address-Checking Process

The ACEand CACbits in the PSRregister determine the circumstances under which

a memory check takes place, as follows.

Note – Memory checks occur regardless of the value of the PSR.SU bit.
Chapter 3 Memory System and Caches 27

■ If PSR.ACE= 1 and PSR.CAC= 1, the core checks all data and stack memory

references by any instruction to verify that the address is in the range designated

by the USERLOWand USERHIGHfields of either of the USERRANGEregisters.

The core checks only the first access of a stack location, but not the stack accesses

that hit in the stack cache.

Caution – The stack cache can access within 256 bytes of the top of stack even

without an explicit reference to that memory location. Do not allocate the stack within
256 bytes of the boundary of a memory region.

■ If PSR.ACE= 1 and PSR.CAC= 0, the core checks the data accesses of instructions

that are not also a part of the instruction set of the Java virtual machine, as listed

in TABLE 3-5. It does not check any stack accesses.

■ If PSR.ACE= 0, then the core does not perform any memory checks.

3.2.2 Memory Regions

The USERRANGE1and USERRANGE2registers specify two memory regions that can be

accessed by the program that is running, as follows:

■ The 16-bit USERLOWand 16-bit USERHIGHfields of each register form 16-Kbyte-

aligned addresses.

■ The 16 bits of each field correspond to bits <29:14> of the addresses.

TABLE 3-5 Instructions Subject to Memory Protection Checks When PSR.CAC= 0

cache_flush load_short_oe ncload_short store_byte

cache_index_flush load_ubyte ncload_short_oe store_short

cache_invalidate load_ubyte_index ncload_ubyte store_short_index

load_byte load_word ncload_word store_short_oe

load_byte_index load_word_index ncload_word_oe store_word

load_char load_word_oe ncstore_byte store_word_index

load_char_index nastore_word_index ncstore_short store_word_oe

load_char_oe ncload_byte ncstore_short_oe zero_line

load_short ncload_char ncstore_word

load_short_index ncload_char_oe ncstore_word_oe
28 picoJava-II Programmer’s Reference Manual • March 1999

The resulting addresses then form the low and high limits of each region of

allowable memory accesses. See FIGURE 3-2.

FIGURE 3-2 How a Range of Accessible Memory Is Formed from USERRANGERegister
Values

A memory address that is checked must be greater than or equal to the address that

corresponds to USERLOWand less than the address that corresponds to USERHIGH
for either (or both) of the USERRANGEregisters.

If USERLOWis greater than USERHIGH, then the resulting memory range is of zero

size, which allows no access.

If the checked memory access is outside both address ranges, then a

mem_protection_error trap (trap type 0x02) occurs.

3.2.3 Limits for Stack Growth

You can use another mechanism to limit the extent to which the operand stack can

grow. The OPLIM register specifies the minimum value that OPTOP(the top of stack

pointer) can hold. If bit 31 of OPLIM is set to 1 and OPTOP< OPLIM, then the core

signals oplim_trap (trap type 0x0c). This way, the stack region cannot grow

beyond its allocated area.

You can also use this check for a technique called stack chunking, which is described

in Chapter 10, Stack Chunking.

31 016 15

USERHIGH USERLOWUSERRANGEn

01314293031

0000000000000000 USERHIGH

01314293031

0000000000000000 USERLOW

high_region_limit

low_region_limit
Chapter 3 Memory System and Caches 29

3.3 Cache Coherency
On occasion, the caches in the core may contain different data that corresponds to

the same logical memory location. When two caches or a cache and memory contain

the same contents that are stored at specific memory locations, they are said to be

coherent.

3.3.1 Coherency for Stack and Data Accesses

FIGURE 3-3 illustrates the three types of caching operations that take place as a result

of data or stack accesses during execution of instructions. Different types of accesses

bypass levels of the cache hierarchy. For example, memory operations bypass the

stack cache and access the data cache first if it is present.

FIGURE 3-3 Caching Operations During Instruction Execution

Execution of instructions

Stack cache

Data cache

Memory

Stack cache
operations

Memory
operations

Noncacheable
operations
30 picoJava-II Programmer’s Reference Manual • March 1999

TABLE 3-6 lists some of the instructions that trigger each of these operations.

When using these instructions, take into account the distinctions between each class

of instructions and which caches they bypass; otherwise, you may cause inconsistent

or incorrect program behavior.

Coherency of the Stack Cache and the Data Cache

The stack cache and the data cache are not coherent. If the stack cache contains data

that corresponds to a given memory location, the data cache does not reflect updates

to that location immediately. Because the stack cache is effectively a writeback cache,

a memory access that bypasses the stack cache (via load_word , for example) does

not access the stack cache and may access the “stale” data in the data cache instead.

Similarly, stores that bypass the stack cache do not automatically update the stack

cache. A memory store (via store_word , for example) does not access the stack

cache and updates data directly in the data cache instead. Because the stack cache is

effectively a writeback cache, the core may sometimes write back stack cache data

(which is no longer consistent with the more recently updated contents in the data

cache) to the data cache and overwrite the more current contents in error.

TABLE 3-6 Instructions for Caching Operations

Stack cache operations

iload
and others

istore
and others

bipush
and others

Data cache operations

cache_flush load_short_index store_short_index

cache_index_flush load_short_oe store_short_oe

cache_invalidate load_word store_word

load_char load_word_index store_word_index

load_char_index nastore_word_index store_word_oe

load_char_oe store_short zero_line

load_short

Noncacheable operations

ncload_char_oe ncload_word ncstore_short_oe

ncload_short ncstore_char ncstore_word

ncload_short_oe ncstore_short ncstore_word_oe
Chapter 3 Memory System and Caches 31

Therefore, do not perform direct memory accesses that bypass the stack cache to locations that
can also be present in the stack cache, that is, addresses from OPTOPthrough OPTOP– 256,
inclusive.

To access a location that may be present in the stack cache with a memory operation

that bypasses the stack cache, flush the contents explicitly out of the stack cache back

to the data cache and relocate the stack so that the region to be accessed does not
exist in the stack cache. For details, see Flushing on page 44.

Note – The preceding rules pertain to coherency between the stack cache and

memory when no data cache is present.

Coherency of the Data Cache and Memory

The data cache and memory are not coherent. If the data cache contains data that

corresponds to a given memory location, memory does not reflect updates to that

location. Because the data cache is a writeback cache, a noncacheable memory access

(via ncload_word , for example) does not access the data cache and may access the

stale data in memory instead.

Similarly, direct stores to a given memory location do not automatically update the

data cache. A noncacheable memory store (via ncstore_word , for example) does

not access the data cache and updates data directly in memory instead. Because the

data cache is a writeback cache, the core may sometimes write back data cache data

(which is no longer consistent with the more recently updated contents in memory)

and overwrite the more current contents in error.

Therefore, use caution when you perform direct noncacheable accesses to memory

locations that can also be present in the data cache. We recommend strongly that you

access all addresses that correspond to a given data cache line in a similar manner;

that is, once you access a given address as cacheable, always access it as cacheable.

To access a previously cacheable location as noncacheable (to disable the previously

enabled data cache, for example), flush the contents out of the data cache back to

memory. For details, see Flushing on page 37.

3.3.2 Coherency for Instruction Accesses

Only when you modify the instruction space of a program that is running must you

take care to ensure the coherency of the instruction cache as it relates to the data

cache and memory.
32 picoJava-II Programmer’s Reference Manual • March 1999

Coherency of the Instruction Cache and the Data Cache

The instruction cache and the data cache are not coherent, that is, the instruction

cache does not automatically reflect updates to the data cache. As a result, software

that modifies instructions must ensure that the instructions being modified are not

present in the instruction cache.

For specific steps, see Modification of Instruction Space on page 35.

Coherency of the Instruction Cache and Memory

The instruction cache and memory are not coherent, that is, the instruction cache

does not automatically reflect updates to memory. As a result, software that modifies

instructions must ensure that the instructions being modified are not present in the

instruction cache.

For specific steps, see Modification of Instruction Space on page 35.

3.4 Instruction Cache
The instruction cache holds instructions that were accessed recently in local and fast

memory because it is probable that they will be accessed again soon.

3.4.1 Configuration

The instruction cache is a direct-mapped cache with a line size of 16 bytes. The core

supports different size configurations of the instruction cache—it can have a size of

0 Kbytes, 1 Kbyte, 2 Kbytes, 4 Kbytes, 8 Kbytes, or 16 Kbytes.

All implementations of the core have a fixed 16-byte line size for the instruction

cache. However, in the Hardware Configuration Register (HCR):

■ The ICS field specifies the size of the instruction cache.

■ The ICL field specifies the line size of the instruction cache. This field facilitates

software portability between different generations of the picoJava core family.

■ The ICA field specifies the associativity of the instruction cache. This field

facilitates software portability between different generations of the picoJava core

family.
Chapter 3 Memory System and Caches 33

You can enable or disable the instruction cache by setting the ICE field of the

Processor Status Register (PSR). An implementation with no instruction cache

(a 0-Kbyte cache size) must have a setting of PSR.ICE = 0.

For details on the PSR, see Constant Pool Base Pointer Register (CONST_POOL) on

page 9. For details on the HCR, see Hardware Configuration Register (HCR) on page 18.

3.4.2 Initialization

The instruction cache is disabled at reset, after which the contents of the tag, data,

and status RAMs in the cache are undefined. Reset code must use diagnostic cache

writes to initialize the cache prior to enabling it. See Reset Management on page 444

for details.

3.4.3 Operations

Several instructions affect the operation of the instruction cache.

Flushing

The cache_flush , cache_index_flush , and cache_invalidate instructions

selectively invalidate the contents of the instruction cache, as follows:

■ Both cache_flush and cache_index_flush perform the same function for the

instruction cache—they invalidate the line in the instruction cache that

corresponds to the specified address regardless of whether that line is actually in

the instruction cache.

■ cache_invalidate invalidates the line that contains the specified address only

if it is present in the instruction cache.

These instructions also affect the data cache.

Diagnostic Accesses

Four instructions (priv_read_icache_tag , priv_write_icache_tag ,

priv_read_icache_data , and priv_write_icache_data) allow diagnostic

accesses to the contents of the instruction cache.

By accessing the instruction cache tags with priv_read_icache_tag and

priv_write_icache_tag , you determine:

■ Whether the contents of a given instruction cache line are valid
34 picoJava-II Programmer’s Reference Manual • March 1999

■ Which memory addresses are cached by that line

By accessing the instruction cache data with priv_read_icache_data and

priv_write_icache_data , you examine or update the contents of instructions

cached in a given instruction cache line.

Chapter 6, Instruction Set contains a more detailed description of these instructions

for diagnostic accesses.

Caution – Execute diagnostic accesses to the instruction cache with care; diagnostic

writes during normal operations with the caches enabled can result in unpredictable

behavior. Also, because the instruction cache handles read-only data only and

diagnostic writes to that cache are not written back to memory, inconsistencies

between the cache and memory may occur.

3.4.4 Modification of Instruction Space

Software that modifies instruction space, such as self-modifying code and some trap

code, must perform the following steps to ensure correct functionality when the

modified code resides in cacheable space and the data cache is on:

1. Execute a store instruction to store to the modified code address.

2. Execute the cache_flush instruction to the modified code address.

3. Perform other operations, if any.

4. Execute a branch to the modified code address.

If the modified code resides at a noncacheable memory address or if the data cache

is off, add an additional step after step 2. The steps then become:

1. Execute an extended store instruction to store to the modified code address.

2. Execute a cache_flush instruction to the modified code address.

3. Execute a load instruction to perform a load from the same address.

This additional step is necessary because cache_flush does not flush pending

writes to memory if the address is noncacheable or if the data cache is disabled.

Adopting this protocol may allow an instruction load to overtake a store to

instruction space and cause the program to use a code address that has been

modified by old data. The load instruction serializes these operations by forcing the

store to be written out to memory.

4. Perform any other operations, if any.

5. Execute a branch to the modified code address.
Chapter 3 Memory System and Caches 35

Note – cache_flush and cache_index_flush do not flush the contents of the

instruction buffer or the instruction pipeline. Therefore, software must ensure that

the code being changed does not already exist in the instruction buffer or the

pipeline by ensuring that the location for the modified code lies outside the 32 bytes

that follow the flush instruction.

3.5 Data Cache
The data cache holds data that was accessed recently in local and fast memory

because it is probable that such data will be accessed soon.

3.5.1 Configuration

The data cache is a two-way set-associative, writeback, write-allocate cache and uses

a pseudo-Least Recently Used (LRU) replacement policy. The data cache can have a

size of 0 Kbytes, 1 Kbyte, 2 Kbytes, 4 Kbytes, 8 Kbytes, or 16 Kbytes.

All implementations of the core have a fixed 16-byte line size for the data cache.

However, in the Hardware Configuration Register (HCR):

■ The DCSfield specifies the size of the cache.

■ The DCL field specifies the line size of the data cache. This field facilitates

software portability between different generations of the picoJava core family.

■ The DCAfield specifies the associativity of the data cache. This field facilitates

software portability between different generations of the picoJava core family.

You can enable or disable the data cache by setting the DCEfield of the Processor

Status Register (PSR). An implementation with no data cache (a 0-Kbyte cache size)

must have a setting of PSR.DCE= 0.

For details on the PSR, see Constant Pool Base Pointer Register (CONST_POOL) on

page 9. For details on the HCR, see Hardware Configuration Register (HCR) on page 18.

Caution – Because the data cache is a writeback cache, data in memory may not be

consistent with the data that corresponds to its address in the data cache. See

Coherency of the Data Cache and Memory on page 32 for details.
36 picoJava-II Programmer’s Reference Manual • March 1999

3.5.2 Initialization

The data cache is disabled at reset, after which the contents of the tag, data, and

status RAMs in the cache are undefined. Reset code must use diagnostic cache writes

to initialize the cache prior to enabling it. See Reset Management on page 444 for

details.

3.5.3 Operations

Several instructions affect the operation of the data cache.

Flushing

The cache_flush , cache_index_flush , and cache_invalidate instructions

selectively flush or invalidate the contents of the data cache, as follows:

■ cache_flush evicts the line that contains the specified address if it is present in

the data cache, causing the data to be written back to memory if the line has been

modified.

■ cache_index_flush flushes the line that corresponds to the specified address

regardless of whether that line is actually in the data cache. For the two-way set-

associative data cache, bit 31 of the address indicates the set to be flushed.

If the cache line is modified, cache_index_flush writes it back to memory.

Use cache_index_flush to flush the entire contents of the data cache to

memory.

■ cache_invalidate invalidates the line that contains the specified address if it is

present in the data cache. The core performs no writebacks even if the line is

modified.

Diagnostic Accesses

Four instructions (priv_read_dcache_tag , priv_write_dcache_tag ,

priv_read_dcache_data , and priv_write_dcache_data) allow diagnostic

accesses to the contents of the data cache.

By accessing the data cache tags with priv_read_dcache_tag and

priv_write_dcache_tag , you determine the following information about a given

data line:

■ Whether the contents of a given data line are valid or have been modified
Chapter 3 Memory System and Caches 37

■ Whether the contents are the least recently used when compared to the

corresponding data cache line in the other set (since the data cache is two-way set

associative)

■ Which memory addresses are cached by that line

By accessing the data cache data with priv_read_dcache_data and

priv_write_dcache_data , you examine or update the contents of data cached in

a given data cache line.

Chapter 6, Instruction Set contains a more detailed description of these instructions

for diagnostic accesses.

Caution – Execute diagnostic accesses to the data cache with care; diagnostic writes

during normal operations with the caches enabled can result in unpredictable

behavior. Writebacks of diagnostic writes to the data cache to memory may not occur

since they do not necessarily set the modified bit associated with the line. Without

an explicit setting of the modified bit, inconsistencies between the cache and

memory may occur.

Special Operations

Two instructions perform special operations that affect the data cache:

■ The zero_line instruction performs a quick zeroing of a line in the data cache. If

the line is not in the cache, zero_line allocates it there (possibly evicting

another line) and, instead of fetching the data in the newly allocated line from

memory, the core fills that line with zeroes.

If the data cache is disabled (PSR.DCE= 0) when zero_line executes, then the

core takes a zero_line emulation trap.

For more information on zero_line , see page 380.

■ The nastore_word_index instruction performs a nonallocating word write to a

memory address. If the line that contains the memory address is not in the cache,

however, this operation does not fetch it into the cache but stores the data directly

to memory.

No instructions perform a nonallocating store to any data size other than one

word.
38 picoJava-II Programmer’s Reference Manual • March 1999

3.6 Stack Cache
The stack cache holds the top several values on the operand stack in fast, local

memory. Those items are the most frequently accessed memory locations because of

the stack-oriented nature of the picoJava-II instruction set. Thus, the core contains a

special structure that is optimized for caching and providing access to the stack.

All memory accesses generated as offsets from OPTOP, VARS, or FRAMEare stack

accesses. The core checks first to see if the location required exists in the stack cache.

All other memory accesses go directly to the data cache.

Through dribbling, the core enforces the requirements for minimum and maximum

numbers of valid entries in the stack cache. It also maintains the number of valid

entries in the stack cache near an optimum that you can specify.

3.6.1 Configuration

The stack cache is a 64-entry cache of a single contiguous range of addresses, which

is the interval of OPTOP+ 4 through SC_BOTTOM, inclusive. Its dribbler manipulates

the value of SC_BOTTOMto keep the cached address range within the required

number of entries.

You cannot disable the stack cache, but you can enable or disable its dribbler by

setting the DREfield of the Processor Status Register (PSR). For details on the PSR,

see Constant Pool Base Pointer Register (CONST_POOL) on page 9.

The dribbler must be enabled to ensure correct program behavior for arbitrary code.

For details, see Dribbling on page 41.

Whenever you disable the dribbler (including during a reset), your program must

handle the operation of the stack cache and you must tailor your code to manage

that cache explicitly. Moreover, if the dribbler is disabled, you must and can only run

code that tracks the contents of the 64 elements in the stack cache and that transfers

data explicitly between the stack cache and memory as necessary.

Caution – Because the stack cache is a writeback cache, data in the data cache or

memory may not be consistent with the data that corresponds to its address in the

stack cache. A data access (via load_word , for example) does not access the stack

cache and may access the stale data in memory instead. Therefore, as mentioned

previously, use caution when you direct data accesses to memory locations that can

be present in the stack cache, that is, with an address that is in the range of OPTOPto

OPTOP– 256, inclusive.
Chapter 3 Memory System and Caches 39

FIGURE 3-4 shows how the stack cache caches part of the stack.

FIGURE 3-4 How the Stack Cache Caches Part of the Stack

3.6.2 Initialization

At reset (see Reset Management on page 444), the dribbler is disabled and the values

are undefined. After reset, reset code must initialize the stack registers for proper

operation of the stack cache. To initialize the stack registers:

1. Set SC_BOTTOMand OPTOPto the same value.

2. Set PSR.DBHand PSR.DBL to the appropriate watermarks.

High and Low Watermarks on page 41 lists the values. PSR.DBHmust be greater than

PSR.DBL; both must be nonzero.

3. Set PSR.DREto 1 to enable the dribbler.

Caution – Once the dribbler is enabled, the hardware maintains the SC_BOTTOM
register. Writes to SC_BOTTOMmay cause unpredictable behavior.

Operand stack

OPTOP

SC_BOTTOM

Stack
cache

downward

Top of Stack

Deepest valid entry in the stack cache

Stack grows

Elements always
in stack cache

The core assumes all valid entries in this region to have changed.
40 picoJava-II Programmer’s Reference Manual • March 1999

3.6.3 Dribbling

The dribbler may trigger either a spill or a fill transaction that takes place in the

background to transfer data into and out of the stack cache; meantime, the core can

continue to execute instructions.

Minimum Requirement of Entries

Memory accesses generated as offsets from OPTOP, VARS, or FRAMEare stack

accesses. The core checks if the location required exists in the stack cache. Generally,

an access that misses the stack cache accesses the data cache and possibly memory.

An address is a “hit” in the stack cache if the address is in the interval of

OPTOP+ 4 through SC_BOTTOM, inclusive.

Memory accesses generated to addresses from OPTOP+ 16 through OPTOP– 4 must

always hit the stack cache. As a result, the locations that correspond to the four top

words in the stack and the two empty words beyond the top of the stack are present

in the stack cache.

Since there are only 64 positions in the stack cache, the dribbler ensures that at least

4 valid entries are at the top of the stack and that the required 2 free entries are

available, making a maximum of 62 valid entries. If these conditions are not present,

the core suspends execution of instructions and takes corrective action to ensure

enough free space on the stack cache, as described in Spill and Fill Transactions on

page 42 and Stack Overflows on page 43.

If the dribbler is disabled, you must write your code to maintain the above

requirements in the stack cache explicitly; otherwise, the required conditions are not

guaranteed to be met.

High and Low Watermarks

In each cycle, the core compares the total available entries to a high watermark and

a low watermark, which are determined by the 3-bit PSR.DBHand PSR.DBL fields,

respectively. TABLE 3-7 lists the watermark values encoded by these fields.

TABLE 3-7 Encoded Values of Watermarks

PSR.DBHor PSR.DBL Watermark Value

000 Reserved

001 8

010 16

011 24
Chapter 3 Memory System and Caches 41

The following rules for watermark values apply:

■ The high watermark and the low watermark must not match.

■ The low watermark must be less than the high watermark.

■ The watermarks must remain unchanged while the dribbler is enabled; otherwise,

unpredictable behavior may result.

Spill and Fill Transactions

In each cycle, the core determines the total available entries by calculating the

difference between SC_BOTTOMand OPTOP. The result determines whether a spill or

a fill transaction follows, as described below:

■ If the number of valid entries is greater than the high watermark, then the core

starts a spill transaction to memory by writing the value in the location at

SC_BOTTOMto the data cache and updating SC_BOTTOMto point to the next valid

entry in the stack cache. This process may repeat several times until the number

of valid entries drops to equal the high watermark.

When the stack cache is writing data from the stack cache into the data cache, the

core allocates the line in the data cache if it is not already present, but does not

fetch data for the allocated line from memory because it will be overwritten by

data from the stack cache.

■ If the number of valid entries is less than the low watermark, the core starts a fill

transaction from memory by requesting the value in the location at SC_BOTTOM+
4 from the data cache and, once the data is available, updating SC_BOTTOMto
point to the new entry in the stack cache. This process may repeat several times

until the number of valid entries increases to reach the low watermark.

Remember that execution of instructions can continue during spill and fill

transactions.

Note – The core assumes that all valid entries in the stack cache have changed and

must be saved back to memory by a spill or stack overflow.

100 32

101 40

110 48

111 56

TABLE 3-7 Encoded Values of Watermarks (Continued)

PSR.DBHor PSR.DBL Watermark Value
42 picoJava-II Programmer’s Reference Manual • March 1999

Stack Overflows

The stack overflows when OPTOP≤ SC_BOTTOM− 60, causing OPTOPto “overflow”

the region currently cached in the stack cache and requiring more than 64 elements

in the stack cache to accommodate the growth. These actions ensue:

1. The core stops execution of instructions and spills the valid contents of the stack

cache to the data cache or memory.

2. The dribbler verifies that the required topmost entries of the stack (based on the

new OPTOPlocation) are present in the stack cache by reading them from the data

cache or memory.

As soon as the stack cache contains the required entries, execution continues.

Note – The stack also overflows if, after write_optop or priv_update_optop
writes to OPTOP, the new OPTOPvalue (OPTOP') is greater than the SC_BOTTOM
value. Whenever OPTOP' meets the condition OPTOP < OPTOP'≤ OPTOP+ 64,

depending on the SC_BOTTOMvalue, the stack may not overflow, in which case the

core may not write the contents of the stack cache between OPTOPand OPTOP' back

to memory.

Stack Underflows

The stack underflows when OPTOP> SC_BOTTOM, causing OPTOPto fall off the top

of the stack cache. An underflow can occur when a method returns, as caused by the

instructions listed in TABLE 3-8.

These actions ensue:

1. The core stops execution of instructions.

The core has popped the data that was in the stack cache and does not need to

write this data back to the data cache or memory.

2. The dribbler ensures that the required topmost entries of the stack (based on the

new OPTOPlocation) are present in the stack cache by reading them from the data

cache or memory.

As soon as the stack cache contains the required entries, execution continues.

TABLE 3-8 OPTOP-Modifying Instructions That Can Cause a Stack Underflow

return ireturn areturn freturn dreturn

lreturn return0 return1 return2 priv_ret_from_trap
Chapter 3 Memory System and Caches 43

Note – If you use the prev_ret_from_trap instruction to facilitate context

switching, other software must guarantee a writeback of the original context’s stack

cache contents to the data cache.

3.6.4 Flushing
At times, you may need to flush the contents of the stack cache to memory. To do so,

use either of the following techniques:

● Change to a new stack location.

If you use the write_optop or priv_update_optop instructions and the new

OPTOPvalue causes a stack overflow condition, then the core saves the contents in

the old stack and execution continues with the stack in the new location.

● Push 64 entries worth of padding on to the stack to force the contents of the stack
cache to be dribbled out.

A sequence of 32 lconst_0 instructions forces all the previous stack contents to

be dribbled out of the stack cache.
44 picoJava-II Programmer’s Reference Manual • March 1999

CHAPTER 4

Traps and Interrupts

At times, events in the picoJava-II core cause normal program execution to be

suspended and control transferred to a service routine. These control transfers are

called traps; the corresponding service routines, the trap handlers. Three types of

traps can occur in the core:

■ Instruction Emulation — A subset of the Java virtual machine instructions that

must be emulated in software (see Chapter 6, Instruction Set)

■ Exceptions — Conditions, such as runtime errors, exceptions, and hardware

errors, generated during execution of instructions

■ Interrupts — Signals generated by devices external to the core

This chapter describes the trap mechanism in the core in the following sections:

■ Traps on page 45

■ Instruction Emulation on page 54

■ Exceptions on page 54

■ Interrupts on page 56

■ Context Switch on page 58

4.1 Traps
Traps are vectored transfers of control to the privileged state through a trap table.

When the core takes a trap, it creates a trap frame in which to save its current state.

It then branches to the location of the trap handler and continues execution there.

Trap execution continues on the stack and, when complete, returns to the

interrupted method.
45

4.1.1 Trap Table

The trap table base address resides in the trap base address (TBA) field of the

TRAPBASEregister (see Trap Handler Address Register (TRAPBASE) on page 12.)

Software should initialize the TBA field of the TRAPBASEregister to the upper 21 bits

of the trap table address and must align the trap vector table on a 2-Kbyte boundary.

Note – Each entry in the trap table is 8 bytes, the first 4 of which contain the address

of the trap handler. The core does not use the second 4 bytes, which software can

use.

FIGURE 4-1 depicts the data structure of the trap table.

FIGURE 4-1 Data Structure of the Trap Table

For more information on trap types, see TABLE 4-1 on page 50.

4.1.2 The Process of Taking a Trap

As each instruction executes, the core checks for conditions that cause a trap. If

multiple trap conditions occur simultaneously, the core takes only the highest

priority trap. (See TABLE 4-1 on page 50 for the priorities of each trap condition.) The

highest priority is 1; trap types with equal priority never occur simultaneously.

Since the stack mechanism provides a clean interface for trap invocations, the core

allows nested trap levels. There is no hardware limit for the number of nested levels.

Trap handler 0

Trap handler 1

Trap handler 2

Trap handler 3

Trap handler 254

Trap handler 255

..
.

TRAPBASE.TBA

Code for trap type 0x02
trap handler routine

TRAPBASE

Trap type = 0x02
46 picoJava-II Programmer’s Reference Manual • March 1999

When it takes a trap or an interrupt, the core takes the following actions:

1. Push registers onto the stack in the following order:

a. PSR

b. PC

c. VARS

d. FRAME

This step is uninterruptible. The PCpushed onto the stack is the address of the

instruction that caused the trap or, in the case of interrupts or asynchronous

errors, the next instruction to be executed.

2. Disable interrupts (PSR.IE ⇐ 0).

The trap handler can enable interrupts during its execution by setting PSR.IE
back to 1.

3. Enter privileged mode (PSR.SU ⇐ 1).

4. Update FRAMEto point to the location of the saved PCvalue on the stack.

5. Write a value that identifies the trap into the 8-bit TT field of the TRAPBASE
register.

Note – The TT field of the TRAPBASEregister is set by hardware to the value of the

trap type; it retains that value until the next trap or interrupt. The TT field does not

revert to its previous value when it returns from a trap or interrupt handler.

Therefore, use the TT value only under controlled circumstances, for example, when

no traps or interrupts that may unexpectedly change that value can occur.

6. Determine the trap handler address by reading the memory location at the trap

vector address, which is the value of the TRAPBASEregister.

For information on how the address is formed, see Trap Handler Address Register
(TRAPBASE) on page 12.

7. Initialize the PC to the address of the trap handler and continue execution from

that address.
Chapter 4 Traps and Interrupts 47

FIGURE 4-2 illustrates how a trap is invoked.

FIGURE 4-2 Invocation of a Trap

While taking a trap, VARSdoes not change. Instead, OPTOPmoves by four words to

accommodate the trap frame. The trap handler can set VARSand OPTOPto any

value: For example, it can change OPTOPto allocate space for temporaries to be used

during trap execution.

A trap frame is different from a normal method-call frame: It does not contain the

constant pool or method vector words but includes one word for the PSR. As a

result, a trap handler must return from a trap handler using the

priv_ret_from_trap instruction.

When the trap handler completes execution, it may need to return to the trapped

instruction or to the instruction that follows it. If the latter, the trap handler must

calculate the return address and store it in the stack at the address in FRAMEso that

priv_ret_from_trap causes a branch to the intended instruction.

VARS

Trap handlerCurrent method

OPTOP

VARS'

return VARS

return FRAME

FRAME

.....

PSR

PC

OPTOP'

FRAME'

.....
48 picoJava-II Programmer’s Reference Manual • March 1999

FIGURE 4-3 illustrates a return from a trap because of priv_ret_from_trap .

FIGURE 4-3 Return from a Trap

priv_ret_from_trap performs these steps:

1. Update OPTOPwith the current value of VARS.

2. Restore PC from the trap frame (FRAME+ 0).

3. Restore VARSfrom the trap frame (FRAME− 4).

4. Restore PSRfrom the trap frame (FRAME+ 4).

5. Restore FRAMEfrom the trap frame (FRAME− 8).

Since OPTOPis set to be equal to the value of VARSupon a priv_ret_from_trap ,

the trap handler must set up VARSprior to returning from the trap. Any updates to

VARSmust take into account the limitations introduced by stack chunking (see

Manual Updates of the VARS Register on page 431).

VARS'

Trap handler

Caller

OPTOP'
VARS

return VARS

return FRAME

FRAME'

PSR

PC

OPTOP

FRAME
Chapter 4 Traps and Interrupts 49

4.1.3 Trap Types and Priorities

TABLE 4-1 lists the types of picoJava traps in order of priority. Recall that 1 is the

highest priority.

TABLE 4-1 Types and Priorities of Traps

Trap Priority Trap Type

asynchronous_error 1 0x01

mem_protection_error 2 0x02

breakpoint1 3 0x07

breakpoint2 4 0x08

instruction_access_error 5 0x04

illegal_instruction 6 0x06

privileged_instruction 7 0x05

oplim_trap 8 0x0c

mem_address_not_aligned 9 0x09

data_access_mem_error 10 0x03

data_access_io_error 11 0x0a

fadd 1 12 0x62

dadd 1 12 0x63

fsub 1 12 0x66

dsub 1 12 0x67

fmul 1 12 0x6a

dmul 1 12 0x6b

fdiv 1 12 0x6e

ddiv 1 12 0x6f

frem 1 12 0x72

drem 2 12 0x73

i2f 1 12 0x86

i2d 1 12 0x87

l2f 1 12 0x89

l2d 1 12 0x8a

f2i 1 12 0x8b
50 picoJava-II Programmer’s Reference Manual • March 1999

f2l 1 12 0x8c

d2i 1 12 0x8e

d2l 1 12 0x8f

f2d 1 12 0x8d

d2f 1 12 0x90

fcmpg 1 12 0x96

fcmpl 1 12 0x95

dcmpg1 12 0x98

dcmpl 1 12 0x97

soft_trap 12 0x0d

ldiv 12 0x6d

lmul 12 0x69

lrem 12 0x71

ldc 12 0x12

ldc_w 12 0x13

ldc2_w 12 0x14

getstatic 12 0xb2

putstatic 12 0xb3

getfield 12 0xb4

putfield 12 0xb5

new 12 0xbb

newarray 12 0xbc

anewarray 12 0xbd

checkcast 12 0xc0

instanceof 12 0xc1

multianewarray 12 0xc5

new_quick 12 0xdd

anewarray_quick 12 0xde

checkcast_quick 12 0xe0

instanceof_quick 12 0xe1

TABLE 4-1 Types and Priorities of Traps (Continued)

Trap Priority Trap Type
Chapter 4 Traps and Interrupts 51

multianewarray_quick 12 0xdf

invokevirtual 12 0xb6

invokespecial 12 0xb7

invokestatic 12 0xb8

invokeinterface 12 0xb9

invokeinterface_quick 12 0xda

putfield_quick_w 12 0xe4

getfield_quick_w 12 0xe3

aastore 15 0x53

athrow 12 0xbf

breakpoint 12 0xca

lookupswitch 12 0xab

wide 12 0xc4

zero_line 3 12 0x29

unimplemented_instr_0xba 12 0xba

unimplemented_instr_0xdb 12 0xdb

unimplemented_instr_0xf7 12 0xf7

unimplemented_instr_0xf8 12 0xf8

unimplemented_instr_0xf9 12 0xf9

unimplemented_instr_0xfa 12 0xfa

unimplemented_instr_0xfb 12 0xfb

unimplemented_instr_0xfc 12 0xfc

unimplemented_instr_0xfd 12 0xfd

unimplemented_instr_0xfe 12 0xfe

ArithmeticException 13 0x16

ArrayIndexOutOfBounds 13 0x19

NullPointer 13 0x1B

LockCountOverflow 13 0x23

LockEnterMiss 13 0x24

LockRelease 13 0x25

TABLE 4-1 Types and Priorities of Traps (Continued)

Trap Priority Trap Type
52 picoJava-II Programmer’s Reference Manual • March 1999

1. Applies only if PSR.FPE is clear.

2. Applies only if PSR.FPE is clear or PSR.DRT is set.

3. Applies only if PSR.DCE is clear or address is noncacheable.

Note – Undefined trap type values are reserved for future use.

Note – Some unimplemented_instr_0x XX traps may not be part of future

picoJava cores. However, a picoJava-II system can remain compatible by emulating

new instructions that are defined to use those opcodes in the appropriate trap

handler.

LockExitMiss 13 0x26

gc_notify 14 0x27

nmi 15 0x30

Interrupt_level_15 16 0x3f

Interrupt_level_14 17 0x3e

Interrupt_level_13 18 0x3d

Interrupt_level_12 19 0x3c

Interrupt_level_11 20 0x3b

Interrupt_level_10 21 0x3a

Interrupt_level_9 22 0x39

Interrupt_level_8 23 0x38

Interrupt_level_7 24 0x37

Interrupt_level_6 25 0x36

Interrupt_level_5 26 0x35

Interrupt_level_4 27 0x34

Interrupt_level_3 28 0x33

Interrupt_level_2 29 0x32

Interrupt_level_1 30 0x31

Implementation-dependent (reserved) Depends on

implementation

All trap types not listed above

TABLE 4-1 Types and Priorities of Traps (Continued)

Trap Priority Trap Type
Chapter 4 Traps and Interrupts 53

4.2 Instruction Emulation
Some Java virtual machine instructions in Chapter 6, Instruction Set are emulated in

software through trap handlers.

When the core encounters an instruction that must be emulated, it generates a trap

with a trap type corresponding to that instruction, then jumps to an emulation trap

handler that emulates the instruction in software. For these instructions, the trap

table is defined so that the trap types are the same as the instruction opcodes.

Certain optimizations in the core can reduce the overhead of subsequent executions

of an emulated instruction. For example, when an invokestatic instruction is

emulated, the trap handler can replace the instruction with an equivalent

invokestatic_quick version after resolution of the constant pool. The _quick
version is much faster because it is executed in hardware in subsequent executions

of that instruction.

Floating-point instructions trigger traps in the processor if either HCR.FPP= 0 (the

FPU is not included in the core) or PSR.FPE = 0 (the FPU is disabled). In addition, a

drem instruction traps if PSR.DRT = 1 even if PSR.FPE = 1 and HCR.FPP = 1. The

fneg and dneg instructions are considered integer operations, not floating-point

operations, even though they operate on floating-point data.

The zero_line instruction triggers an emulation trap in the event that PSR.DCE=

0 (the data cache is disabled or not present) or the address specified is noncacheable.

The trap handler can zero the specified memory locations and continue execution.

4.3 Exceptions
Another cause for traps are exceptional events that result from the execution of

certain instructions. The core detects the following exceptions, causing the

corresponding trap:

■ asynchronous_error — The core takes this trap after an error acknowledgment

is returned to the core as a result of a store. The point at which this exception is

taken has no relationship to the instruction that caused the memory transaction

that triggered the exception.

The core also takes an asynchronous error trap if the PSR.CACbit is set to 1 and a

stack access occurs outside the user memory address ranges.
54 picoJava-II Programmer’s Reference Manual • March 1999

■ mem_protection _error — The core takes this trap if a memory access contains

an address that is out of the range of both USERRANGEregisters. See Memory
Protection on page 27 for details about memory protection.

■ breakpoint1 and breakpoint2 — The core takes these traps if it detects a

breakpoint as specified by the BRK12C, BRK1A, and BRK2Aregisters. See

Breakpoint Registers on page 15 for details about breakpoint functionality.

■ instruction_access_error — The core takes this trap when an error

acknowledgment is returned to the core on an instruction access to memory or

I/O. Such an instruction byte is marked as invalid, and once execution reaches

the invalid instruction, an instruction access error occurs.

Some instructions (for example, the tableswitch instructions and instructions

emulated in software via traps) access their own operands as data. If an error

occurs during such an access, then the core flags it as a data access error even if

the access is to instruction space.

■ privileged_instruction — The core takes this trap if it attempts to execute a

privileged instruction when PSR.SU = 0.

■ oplim_trap — The core takes this trap if an instruction causes OPTOPto be less

than OPLIM. The trap handler must either grow the current stack area or allocate

a new “chunk.” See Chapter 10, Stack Chunking for more information.

Note – The core clears the OPLIM.ENABLE bit as soon as the trap is taken to ensure

that repeated traps do not occur.

■ mem_address_not_aligned — The core takes this trap if a load or store

instruction in TABLE 4-2 generates an address that is not properly aligned; that is, a

word address is not 32-bit aligned or a short address is not 16-bit aligned.

If a misaligned access occurs for other reasons, the instruction completes without

an exception but returns an undefined value.

TABLE 4-2 Instructions Subject to Memory Alignment Trap Checks

load_char load_word_index ncload_word store_short_index

load_char_index load_word_oe ncload_word_oe store_short_oe

load_char_oe nastore_word_index ncstore_short store_word

load_short ncload_char ncstore_short_oe store_word_index

load_short_index ncload_char_oe ncstore_word store_word_oe

load_short_oe ncload_short ncstore_word_oe

load_word ncload_short_oe store_short
Chapter 4 Traps and Interrupts 55

■ data_access_mem_error and data_access_io_error — The core takes

these traps when a data request to memory or I/O space results in an error

acknowledgment. The external system determines whether a given access is to

memory or I/O space and, subsequently, which error acknowledgment code to

return to the core.

■ illegal_instruction — The core takes this trap if it executes an opcode that

is not a valid instruction. Only 2-byte opcodes (first instruction byte = 0xff) can

trigger this exception because all other bytecodes are either valid instructions or

cause a unique type of trap (unimplemented_instruction_0x opcode) .

■ ArithmeticException — The core takes this trap if the hardware attempts to

execute an integer division or remainder operation with a denominator of zero.

■ ArrayIndexOutOfBounds — The core takes this trap if an array load or store

instruction accesses an element that is outside the legal bounds for the array.

■ NullPointer — The core takes this trap if such instructions as

getfield_quick and invokevirtual_quick (which expect a non-null object

reference) encounter a null object reference (0x00000000).

■ LockCountOverflow — The core takes this trap if the LOCKCOUNTregister

overflows or underflows when the core increments or decrements it while

entering or exiting a monitor. See Chapter 8, Monitors.

■ LockEnterMiss — The core takes this trap if the object reference for the

monitorenter instruction is not present in any of the LOCKADDRregisters. See

Chapter 8, Monitors.

■ LockExitMiss — The core takes this trap if the monitor being exited is absent in

a LOCKADDRregister. See Chapter 8, Monitors.

■ LockRelease — The core takes this trap if LOCKCOUNTequals zero and the

corresponding LOCKWANTbit is set. See Chapter 8, Monitors.

■ gc_notify — The core takes this trap when garbage collection events occur. See

Chapter 11, Garbage Collection, for details.

4.4 Interrupts
Traps are also caused by interrupts that are signalled by external devices. The core

can receive two types of interrupt signals, as follows:

■ The nonmaskable interrupt (NMI) — A single bit that is asserted when a high-

priority interrupt is required

■ The maskable interrupt — A signal that can be asserted with 15 different

priorities
56 picoJava-II Programmer’s Reference Manual • March 1999

4.4.1 Interrupt Control

The values of the Interrupt Enable (IE) and the Processor Interrupt Level (PIL) bits

in the PSRdetermine if an interrupt causes a trap.

A trap occurs when an interrupt is signalled by an external device only if both of the

following conditions are met:

■ The PSR.IE bit is set to 1.

When this bit is set to 0, the core ignores all interrupts, including the NMI.

■ Either the interrupt request level (IRL) of the external interrupt is greater than the

value in the PSR.PIL field or the NMI signal is asserted.

FIGURE 4-4 illustrates the mechanism for interrupt control.

FIGURE 4-4 Interrupt Control Mechanism

When the core takes a trap, it sets the PSR.IE bit to 0, disabling further interrupts.

You can reenable interrupts by setting PSR.IE to 1 in the trap handler after it has

completed any critical and uninterruptible tasks. You can also set the PSR.PIL field

to the current interrupt level to enable only higher-priority interrupts.

Details of interrupt servicing are a function of the software-defined interrupt service

routines.

4.4.2 Interrupt Latency

In the best case, assuming that an interrupt occurs at an instruction boundary, the

latency from the arrival of an interrupt to when the interrupt handler starts

execution is approximately six cycles.

AND

AND

OR

Compare

IE PIL

NMI

Encoded IRL

PSR

>

. . .

Maskable
Interrupt Cause

trap
Chapter 4 Traps and Interrupts 57

The worst-case interrupt latency, assuming that PSR.DRT is set and that a cache line

fill or writeback takes 30 core clocks, can be calculated as shown in TABLE 4-3.

Note – If PSR.IE = 0, then the interrupt latency is extended by the time PSR.IE
remains 0.

4.5 Context Switch
Once control has transferred to a trap or interrupt handler routine, you may wish to

switch execution contexts. For example, a LockRelease trap will want to start

executing the thread that was awaiting the release of the lock.

It is often convenient to use the stack of the outgoing thread to store relevant context

state, restoring the data from the stack of the incoming execution context.

CODE EXAMPLE 4-1 is an example of context switch code, assuming:

■ GLOBALand USERRANGEregisters are part of each context.

■ GC_CONFIG, TRAPBASE, and breakpoints are global.

■ GLOBAL3holds a pointer to the address for the current thread data structure.

■ The trap into the context switch routine saves the PCand PSR.

TABLE 4-3 Calculation of Worst-Case Interrupt Latency

ILworst case =

<200 Longest uninterruptible instruction (frem)

+(6 × 30) Cache misses during its execution, causing 6 writebacks

+(6 × 30) Time to flush out the stack cache—worst case, 16 writebacks

+ ~6 Time to set up a trap frame

+(1 × 30) Data cache miss, causing writeback, during trap frame setup

+30 Time to get to the reset handler, with instruction cache miss

926 clocks
58 picoJava-II Programmer’s Reference Manual • March 1999

CODE EXAMPLE 4-1 Sample Context Switch Code

read_vars // Push state registers onto the stack.
read_frame

read_const_pool
read_global0

read_global1
read_global2

read_userrange1
read_userrange2

// Monitor handling code occurs here if the LOCKADDR and LOCKCOUNT
// registers are used. See Chapter 8, Monitors .

read_optop// Save OPTOP and OPLIM into the thread.
read_global3 // Data structure pointed to by global3.

bipush optop_offset
iadd

store_word
read_oplim

read_global3
bipush oplim_offset

iadd
store_word

// Determine the next thread to run and put a pointer to its
// data structure in GLOBAL3. How this selection is made depends
// on the kernel and is not shown here.

read_global3 // Now we have new thread; load new OPLIM.
bipush oplim_offset

iadd
load_word

read_global3// Also, load new OPTOP.
bipush optop_offset

iadd
load_word

update_optop// Update both registers.

// Once OPTOP and OPLIM have changed, the rest of the state
// is on the new stack and must be restored.

iconst_0
write_lockaddr1 // Zero lockaddr1 contents.

iconst_0
write_lockaddr0 // Zero lockaddr0 contents.
Chapter 4 Traps and Interrupts 59

write_userrange2 // Restore the remaining state registers.
write_userrange1

write_global2
write_global1

write_global0
write_const_pool

write_frame
write_vars
ret_from_trap // Restore the program counter

// and processor state registers.

CODE EXAMPLE 4-1 Sample Context Switch Code (Continued)
60 picoJava-II Programmer’s Reference Manual • March 1999

CHAPTER 5

Data Types and
Runtime Data Structures

The picoJava-II data types fall into two categories: primitive types and reference

types. This chapter describes the different types and runtime data structures that are

used by the core:

■ Primitive Data Types on page 61

■ Reference Types and Values on page 62

■ Essential Runtime Data Structures on page 71

See Chapter 6, Instruction Set, for details on specific instructions.

5.1 Primitive Data Types
The picoJava-II architecture supports all primitive data types of the Java virtual

machine with the addition of an unsigned byte type.

TABLE 5-1 lists and describes the primitive data types.

TABLE 5-1 Primitive Data Types

Data Type Description

Unsigned byte 8-bit unsigned integers

Byte 8-bit signed two’s-complement integers

Char 16-bit unsigned integers

Short 16-bit signed two’s-complement integers

Integer 32-bit signed two’s-complement integers
61

Note – Items of type long or double (64-bit values) occupy two 32-bit stack entries

and are arranged such that the most significant 32 bits of each 64-bit value are the

stack entry closest to the top of the stack.

5.1.1 Integral Data Types

The range of values for the unsigned byte type is from 0 to 255 inclusive. All

remaining integral types of the core have the same values as those of the integral

types of the Java virtual machine. For details, see section 3.3, “Primitive Types and

Values” of The Java Virtual Machine Specification.

5.1.2 Floating-Point Data Types

The Java virtual machine floating-point specification requires implementations to

support denormalized floating-point numbers and gradual underflow, as defined by

IEEE 754.

For details on the float and double data types, see section 3.2.2 of The Java Virtual
Machine Specification.

5.2 Reference Types and Values
The core has the same reference types as the Java virtual machine, as follows:

■ Object references are references to instances of a class or references to class

instances or arrays that implement an interface.

■ Array references are references to arrays or primitive types or arrays of

references.

A null reference has the value 0x00000000.

Long 64-bit signed two’s-complement integers

Float 32-bit single-precision IEEE 754 floating-point numbers

Double 64-bit double-precision IEEE 754 floating-point numbers

TABLE 5-1 Primitive Data Types (Continued)

Data Type Description
62 picoJava-II Programmer’s Reference Manual • March 1999

5.2.1 References and Headers

A reference is a pointer to storage that represents the object or array being targeted

for the current instruction. A Java compiler generates an instruction to push this

pointer onto the operand stack before generating the instruction to operate on it. For

details of the various instructions that operate on references, see Chapter 6.

The following table describes the 4 reserved bits in the reference, all of which are

masked out before the reference is used as an address and in comparison

instructions, such as if_acmpeq and if_acmpne .

Figure 5-1 shows the format of a reference.

FIGURE 5-1 Object or Array Reference Format

Note – When using a reference directly as an address, you must mask off at least at

bit 30 of the object reference in software because this bit also indicates little endian

accesses for these instructions. We strongly recommend that you also mask off bits

31 and 1:0.

The word-aligned address that is obtained from masking out the GC_TAG, H, and X
bits from a reference points to the header for the object or array.

The header is one 32-bit word that contains the method vector base of the correct

class. Four bits are reserved for such information as garbage collection and

synchronization. Bit 0 is reserved as the LOCKbit (see Monitors on page 395 for more

details).

The reserved bits in the header are masked off to obtain the method vector base

address. A reference always points to the location of the header, as in FIGURE 5-2.

GC_TAG These 2 bits form an index into the GC_CONFIG.WB_VECTORfield to

determine whether to signal a write barrier GC trap. See Chapter 11.

H This handle bit indicates if the object is referenced directly or indirectly

through a handle. If set to 0, this bit indicates a direct reference; a value of

1 indicates an indirect reference.

X This bit can be used by software for various purposes, for example, to

indicate whether the object is an array type.

GC_TAG

31 030

X

1

H

Chapter 5 Data Types and Runtime Data Structures 63

FIGURE 5-2 Object or Array Header Field with Reserved Bits

Note – The class loader must ensure that the method vector to which the object

header points is double-word aligned.

You can design your implementation of the Java virtual machine to maintain

additional header words at contiguous lower addresses to hold other data.

5.2.2 Object Storage

If the handle (H) bit in the object reference is not set, the instance variable storage

starts one word after the object header and contains the primitive data or reference

types allocated for the object. See FIGURE 5-3.

FIGURE 5-3 Object Format with Handle Bit Clear

If the H bit in an object reference is set, references must then go through the handle

to access the object, as illustrated in FIGURE 5-4.

Optional header words

31 30 29 3 2 1 0

32-bit header with reserved bits shaded

0000

LMethod Vector Base

Reference

Increasing
addresses

Optional

Object header

Instance variable 1

Instance variable K

Object reference

header words

. .

 .
.

Increasing
addresses
64 picoJava-II Programmer’s Reference Manual • March 1999

FIGURE 5-4 Object Format with Handle Bit Set

Instance variables of type double or long require two words of storage, with the

most significant word at the lower address in memory. All other instance variable

types require only one word of storage.

5.2.3 Array Storage

The array format is similar to the object format, except that array size information is

stored into the first word of the data storage. You can use some of the reserved bits

in the array header to encode the size of each element. FIGURE 5-5 illustrates the array

format.

Optional

Object reference

Instance variable 1

Instance variable K

.
.

 .
 .

header words

Increasing
addresses

Object header

Object storage pointer
Chapter 5 Data Types and Runtime Data Structures 65

FIGURE 5-5 Array Format with Handle Bit Clear

If the H bit in the array reference is set, references must then go through the handle

to access the array, as illustrated in FIGURE 5-6.

FIGURE 5-6 Array Format with Handle Bit Set

Optional

Array header

Array size

Array element 1

. .

. .

Array element K

Array reference

header words

Increasing
addresses

Array reference

Optional

Array header

Array storage pointer

Array element 1

. .
 .

Array element K

Array size

header words

Increasing
addresses
66 picoJava-II Programmer’s Reference Manual • March 1999

5.2.4 Layout of Array Data Structures

This section describes the layout of array data structures for each array type. The

examples show the scenario where the array reference is not a handle. The array

header is always allocated word-aligned; however, short/char (16 bits) and byte/

boolean (8 bits) types are packed.

Array of Longs Structure

FIGURE 5-7 defines the structure of an array of longs accessed by the laload and

lastore instructions.

FIGURE 5-7 Array of Longs Structure

Array of Doubles Structure

FIGURE 5-8 defines the structure of an array of longs accessed by the daload and

dastore instructions.

FIGURE 5-8 Array of Doubles Structure

Offset
Address Byte 0 Byte 1 Byte 2 Byte 3

0x0 Array header

0x4 Length

0x8 element0 <63:32>

0xc element0 <31:0>

0x10 element1 <63:32>

0x14 element1 <31:0>

Array_ref

+index

Offset
Address Byte 0 Byte 1 Byte 2 Byte 3

0x0 Array header

0x4 Length

0x8 element0 <63:32>

0xc element0 <31:0>

0x10 element1 <63:32>

0x14 element1 <31:0>

Array_ref

+index
Chapter 5 Data Types and Runtime Data Structures 67

Array of Objects Structure

FIGURE 5-9 defines the structure of an array of objects accessed by the aaload and

aastore instructions.

FIGURE 5-9 Array of Objects Structure

Array of Arrays Structure

FIGURE 5-10 defines the structure of an array of arrays accessed by the aaload and

aastore instructions.

FIGURE 5-10 Array of Arrays Structure

Array of Integers Structure

FIGURE 5-11 defines the structure of an array of integers accessed by the iaload and

iastore instructions.

Offset
Address Byte 0 Byte 1 Byte 2 Byte 3

0x0 Array header

0x4 Length

0x8 element0

0xc element1

0xXX element n

0xXX + 4 Reference to class of array objects

Array_ref

...

+index

Offset
Address Byte 0 Byte 1 Byte 2 Byte 3

0x0 Array header

0x4 Length

0x8 element0

0xc element1

0xXX element n

0xXX + 4 Reference to class of array objects

+index

...

Array_ref
68 picoJava-II Programmer’s Reference Manual • March 1999

FIGURE 5-11 Array of Integers Structure

Array of Floats Structure

FIGURE 5-12 defines the structure of an array of floats accessed by the faload and

fastore instructions.

FIGURE 5-12 Array of Floats Structure

Array of Chars Structure

FIGURE 5-13 defines the structure of an array of chars accessed by the caload and

castore instructions.

FIGURE 5-13 Array of Chars Structure

Offset
Address Byte 0 Byte 1 Byte 2 Byte 3

0x0 Array header

0x4 Length

0x8 element0

0xc element1

Array_ref

+index

Offset
Address Byte 0 Byte 1 Byte 2 Byte 3

0x0 Array header

0x4 Length

0x8 element0

0xc element1

Array_ref

+index

Offset
Address Byte 0 Byte 1 Byte 2 Byte 3

0x0 Array header

0x4 Length

0x8 element0 element1

0xc element2 element3

Array_ref

+index
Chapter 5 Data Types and Runtime Data Structures 69

Array of Shorts Structure

FIGURE 5-14 defines the structure of an array of shorts accessed by the saload and

sastore instructions.

FIGURE 5-14 Array of Shorts Structure

Array of Bytes Structure

FIGURE 5-15 defines the structure of an array of bytes accessed by the baload and

bastore instructions.

FIGURE 5-15 Array of Bytes Structure

Array of Booleans Structure

FIGURE 5-16 defines the structure of an array of booleans accessed by the baload and

bastore instructions.

FIGURE 5-16 Array of Booleans Structure

Offset
Address Byte 0 Byte 1 Byte 2 Byte 3

0x0 Array header

0x4 Length

0x8 element0 element1

0xc element2 element3

Array_ref

+index

Offset
Address Byte 0 Byte 1 Byte 2 Byte 3

0x0 Array header

0x4 Length

0x8 element0 element1 element2 element3

Array_ref

+index

Offset
Address Byte 0 Byte 1 Byte 2 Byte 3

0x0 Array header

0x4 Length

0x8 element0 element1 element2 element3+index

Array_ref
70 picoJava-II Programmer’s Reference Manual • March 1999

5.3 Essential Runtime Data Structures
This section discusses the essential runtime data structures that are required by some

instructions. Many of these structures contain fields unused by instructions

implemented in hardware. You can use these fields in software.

5.3.1 Method Vector and Runtime Class Info Structure

The method vector base in an object or array header points to the base of a table of

method structure pointers, which can be invoked on a reference, and provides a

mechanism for overriding methods in superclasses.

FIGURE 5-17 Runtime Class Info Structure with Method Vector

The method vector is a part of the larger runtime class information structure. No

references to this structure can have the H bit set. The hardware ignores the unused

fields, which are required to maintain the relative offsets of the other fields. The

checkcast_quick and instanceof_quick instructions use the Class ID field, a

unique 32-bit identifier for the class associated with this structure.

00000 Method Vector Base

Increasing
addresses

Method structure n pointer

Method structure 3 pointer

Method structure 2 pointer

Method structure 1 pointer

Method structure 0 pointer

...
Class ID

Object or array header

Unused

Unused

Unused

Unused

Unused

Unused

Runtime class info reference

...
...
Chapter 5 Data Types and Runtime Data Structures 71

5.3.2 Method Structure

The hardware expects each method pointer to point to a method structure, as shown

in FIGURE 5-18, and ignores the unused fields, which maintain the relative offsets of

the other fields. The fields are 32 bits long, unless otherwise specified.

FIGURE 5-18 Method Structure

TABLE 5-2 describes the fields the core uses.

TABLE 5-2 Method Structure Fields

Field Description

Method start PC The address of the first instruction in the method

Local variable bytes Number of local variables in bytes, excluding arguments

Argument bytes 16-bit value for the number of argument bytes

Index 16-bit index into the array header table

Constant pool pointer Pointer to the constant pool table (see Constant Pool on page 73)

Class reference Reference to the class structure of the method’s class; the handle bit

must be 0.

Increasing
addresses

Method structure n pointer

Class reference

...

Constant pool pointer

Method start PC

Unused

Unused

Unused

Unused

...
Local variable bytes

Index Argument bytes
72 picoJava-II Programmer’s Reference Manual • March 1999

5.3.3 Class Structure

The class structure holds the data that describes a class that has been loaded into

memory. No references to this structure can have the handle bit set. Hence, following

the header for the object is the instance variable storage for the object, as shown in

FIGURE 5-19.

FIGURE 5-19 Class Structure

The hardware ignores the unused instance variable fields, which maintain the

relative offsets of the other fields.

The core uses two fields in the class structure:

■ A reference to the runtime class information structure that corresponds to this

class (see Method Vector and Runtime Class Info Structure on page 71)

■ A reference to the class structure of the superclass of the current class

Neither of these references can have the H bit set.

5.3.4 Constant Pool

The constant pool provides an indexed mapping mechanism for the compiled Java

methods in a class file. Every class has an associated constant pool table, which

stores the mapping information for the indexed references embedded in the class’s

methods.

Increasing
addresses

Class reference

Super class reference

...

Runtime class information reference

Object or array header

Unused

Unused

Unused

Unused

Unused

Unused

Unused
Chapter 5 Data Types and Runtime Data Structures 73

The size of each element in the constant pool table is 32 bits. The first element of the

constant pool is not used and can point to an array that contains the type of each

subsequent element. (See section 4.4 in The Java Virtual Machine Specification for

details on constant pool tags). All other elements contain information specific to the

type of element as defined by the class file format.

During program execution, the Java virtual machine resolves certain element types

and replaces the original information with new data to be used directly by hardware

instructions. See agetstatic_quick , aldc_quick , aldc_w_quick ,

aputstatic_quick , checkcast_quick , getstatic_quick ,

getstatic2_quick , instanceof_quick , invokenonvirtual_quick ,

invokestatic_quick , invokevirtual_quick_w , ldc_quick , ldc_w_quick ,

ldc2_w_quick , putstatic_quick , and putstatic2_quick in Chapter 6 for

more details.

FIGURE 5-20 illustrates the relationship between the constant pool pointer and the

elements.

FIGURE 5-20 Constant Pool

Increasing
addresses

Constant pool pointer

...

Element 0

...

Element 1

...

Element 2

Element 3

Element n
74 picoJava-II Programmer’s Reference Manual • March 1999

CHAPTER 6

Instruction Set

This chapter describes the picoJava-II instruction set. The descriptions in the chapter

pertain to hardware functionalities only. For additional semantics that are required

for a Java virtual machine implementation, see The Java Virtual Machine Specification.

Every instruction description provides pseudocode detailing its operation. The

operations used within the pseudocode are described in the tables below.

TABLE 6-1 Basic Operations

Operation Description

value1 + value2 Add value1 and value2.

value1 - value2 Subtract value2 from value1.

value1 × value2 Multiply value1 by value2.

value1 ÷ value2 Divide value1 by value2.

value1 & value2 Bitwise AND of value1 and value2.

value1 | value2 Bitwise OR of value1 and value2.

value1 ^ value2 Bitwise XOR of value1 and value2.

value1 << value2 Left-shift of value1 by value2 bits.

value1 >> value2 Right-shift of value1 by value2 bits.

value1 >>> value2 Unsigned right-shift of value1 by value2 bits.
75

TABLE 6-2 Type Casts and Conversions

Operation Description

double(msw, lsw) Treat the two 32-bit words, msw and lsw, as the most significant and least

significant words of a 64-bit double-precision floating-point value.

Operations from TABLE 6-1 are treated as double-precision floating-point

operations if their operands are treated as doubles.

float(value) Treat the 32-bit word, value, as a 32-bit single precision floating-point value.

Operations from TABLE 6-1 are treated as single-precision floating-point

operations if their operands are treated as floats.

long(msw, lsw) Treat the two 32-bit words, msw and lsw, as the most significant and least

significant words of a 64-bit long integer. Operations from TABLE 6-1 are

treated as 64-bit integer operations if their operands are treated as longs.

convert d2f(value) Convert the double-precision floating-point value to a single-precision

floating-point result.

convert d2i(value) Convert the double-precision floating-point value to a 32-bit integer result.

convert d2l(value) Convert the double precision floating-point value to a 64-bit integer result.

convert f2d(value) Convert the single-precision floating-point value to a double-precision

floating-point result.

convert f2i(value) Convert the single-precision floating-point value to a 32-bit integer result.

convert f2l(value) Convert the single-precision floating-point value to a 64-bit integer result.

convert i2d(value) Convert the 32-bit integer value to a double-precision floating-point result.

convert i2f(value) Convert the 32-bit integer value to a single-precision floating-point result.

convert l2d(value) Convert the 64-bit integer value to a double-precision floating-point result.

convert l2f(value) Convert the 64-bit integer value to a single-precision floating-point result.

TABLE 6-3 Cache Tag Accesses

Operation Description

⇐ icache_data [addr] Read the instruction cache data array, using address as described by

priv_read_icache_data .

icache_data [addr] ⇐ data Write the instruction cache data array, using address as described by

priv_write_icache_data .

⇐ icache_tag [addr] Read the instruction cache tag array, using address as described by

priv_read_icache_tag .
76 picoJava-II Programmer’s Reference Manual • March 1999

icache_tag [addr] ⇐ data Write the instruction cache tag array, using address as described by

priv_write_icache_tag .

⇐ dcache_data [addr] Read the data cache data array, using address as described by

priv_read_dcache_data .

dcache_data [addr] ⇐ data Write the data cache data array, using address as described by

priv_write_dcache_data .

⇐ dcache_tag [addr] Read the data cache tag array, using address as described by

priv_read_dcache_tag .

dcache_tag [addr] ⇐ data Write the data cache tag array, using address as described by

priv_write_dcache_tag .

TABLE 6-4 Memory Access-Related Operations

Operation Description

addr_out_of_range(addr) Check whether an address is outside of both USERRANGEregions.

masked_addr ⇐ addr & 0x7fffffff
low1 ⇐ USERRANGE1.USERLOW << 14
high1 ⇐ USERRANGE1.USERHIGH << 14
low2 ⇐ USERRANGE2.USERLOW << 14
high2 ⇐ USERRANGE2.USERHIGH << 14
if ((masked_addr ≥ low1) AND (masked_addr < high1)) then

return FALSE
if ((masked_addr ≥ low2) AND (masked_addr < high2)) then

return FALSE
return TRUE

endian_swap(word) Convert a 32-bit word from big-endian byte order to little-endian byte order,

or vice versa.

byte1 ⇐ word & 0x000000ff
byte2 ⇐ (word >> 8) & 0x000000ff
byte3 ⇐ (word >> 16) & 0x000000ff
byte4 ⇐ (word >> 24) & 0x000000ff
result ⇐ (byte1 << 24) | (byte2 << 16) |

(byte3 << 8) | byte4
return result

TABLE 6-3 Cache Tag Accesses (Continued)

Operation Description
Chapter 6 Instruction Set 77

endian_swap 16(word) Convert the low 16-bits of a 32-bit word from big-endian byte order to little-

endian byte order, or vice versa.

byte1 ⇐ word & 0x000000ff
byte2 ⇐ (word >> 8) & 0x000000ff
result ⇐ (byte1 << 8) | byte2
return result

sign_ext 16(word) Sign-extend a 16-bit value to a 32-bit word.

sign ⇐ word & 0x00008000
if (sign = 0) then

result ⇐ word & 0x0000ffff
else

result ⇐ word | 0xffff0000
return result

sign_ext 8(word) Sign-extend an 8-bit value to a 32-bit word.

sign ⇐ word & 0x00000080
if (sign = 0) then

result ⇐ word & 0x000000ff
else

result ⇐ word | 0xffffff00
return result

TABLE 6-5 Stack and Memory Access Operations

Operation Description

⇐ stack [addr] Read a 32-bit stack location.

if (addr > OPTOP) AND (addr ≤ SC_BOTTOM) then
return read_stack_cache(addr & 0x0000003f)

else
return read_memory(addr, cacheable, 32 bits)

stack [addr] ⇐ data Write a 32-bit stack location.

if (addr > OPTOP) AND (addr ≤ SC_BOTTOM) then
write_stack_cache((addr & 0x0000003f), data)

else
write_memory(addr, data, cacheable, 32 bits)

TABLE 6-4 Memory Access-Related Operations (Continued)

Operation Description
78 picoJava-II Programmer’s Reference Manual • March 1999

⇐ mem[addr] Read a 32-bit memory location.

if ((PSR.ACE = 1) AND (PSR.CAC = 1)) then
if (addr_out_of_range(addr)) then

trap mem_protection_error (type 0x02)
if ((addr & 0x00000003) ≠ 0) then

trap mem_address_not_aligned (type 0x09)
if ((addr & 0x30000000) = 0x30000000) then

return read_memory(addr, noncacheable, 32 bits)
else

return read_memory(addr, cacheable, 32 bits)

mem[addr] ⇐ data Write a 32-bit memory location.

if ((PSR.ACE = 1) AND (PSR.CAC = 1)) then
if (addr_out_of_range(addr)) then

trap mem_protection_error (type 0x02)
if ((addr & 0x00000003) ≠ 0) then

trap mem_address_not_aligned (type 0x09)
if ((addr & 0x30000000) = 0x30000000) then

write_memory(addr, data, noncacheable, 32 bits)
else

write_memory(addr, data, cacheable, 32 bits)

⇐ memNC[addr] Read a 32-bit noncacheable memory location.

if ((PSR.ACE = 1) AND (PSR.CAC = 1)) then
if (addr_out_of_range(addr)) then

trap mem_protection_error (type 0x02)
if ((addr & 0x00000003) ≠ 0) then

trap mem_address_not_aligned (type 0x09)
return read_memory(addr, noncacheable, 32 bits)

memNC[addr] ⇐ data Write a 32-bit noncacheable memory location.

if ((PSR.ACE = 1) AND (PSR.CAC = 1)) then
if (addr_out_of_range(addr)) then

trap mem_protection_error (type 0x02)
if ((addr & 0x00000003) ≠ 0) then

trap mem_address_not_aligned (type 0x09)
write_memory(addr, data, noncacheable, 32 bits

TABLE 6-5 Stack and Memory Access Operations (Continued)

Operation Description
Chapter 6 Instruction Set 79

memNA[addr] ⇐ data Write a 32-bit memory location, nonallocating

if ((PSR.ACE = 1) AND (PSR.CAC = 1)) then
if (addr_out_of_range(addr)) then

trap mem_protection_error (type 0x02)
if ((addr & 0x00000003) ≠ 0) then

trap mem_address_not_aligned (type 0x09)
if ((addr & 0x30000000) = 0x30000000) then

write_memory(addr, data, noncacheable, 32 bits)
else if ((is_present_in_data_cache(addr))

write_memory(addr, data, cacheable, 32 bits)
else

write_memory(addr, data, noncacheable, 32 bits)

⇐ mem16[addr] Read a 16-bit memory location.

if ((PSR.ACE = 1) AND (PSR.CAC = 1)) then
if (addr_out_of_range(addr)) then

trap mem_protection_error (type 0x02)
if ((addr & 0x00000001) ≠ 0) then

trap mem_address_not_aligned (type 0x09)
if ((addr & 0x30000000) = 0x30000000) then

return read_memory(addr, noncacheable, 16 bits)
else

return read_memory(addr, cacheable, 16 bits)

mem16[addr] ⇐ data Write a 16-bit memory location.

if ((PSR.ACE = 1) AND (PSR.CAC = 1)) then
if (addr_out_of_range(addr)) then

trap mem_protection_error (type 0x02)
if ((addr & 0x00000001) ≠ 0) then

trap mem_address_not_aligned (type 0x09)
if ((addr & 0x30000000) = 0x30000000) then

write_memory(addr, data, noncacheable, 16 bits)
else

write_memory(addr, data, cacheable, 16 bits)

⇐ mem16,NC [addr] Read a 16-bit noncacheable memory location.

if ((PSR.ACE = 1) AND (PSR.CAC = 1)) then
if (addr_out_of_range(addr)) then

trap mem_protection_error (type 0x02)
if ((addr & 0x00000001) ≠ 0) then

trap mem_address_not_aligned (type 0x09)
return read_memory(addr, noncacheable, 16 bits)

TABLE 6-5 Stack and Memory Access Operations (Continued)

Operation Description
80 picoJava-II Programmer’s Reference Manual • March 1999

mem16,NC [addr] ⇐ data Write a 16-bit noncacheable memory location.

if ((PSR.ACE = 1) AND (PSR.CAC = 1)) then
if (addr_out_of_range(addr)) then

trap mem_protection_error (type 0x02)
if ((addr & 0x00000001) ≠ 0) then

trap mem_address_not_aligned (type 0x09)
write_memory(addr, data, noncacheable, 16 bits)

⇐ mem8[addr] Read an 8-bit memory location.

if ((PSR.ACE = 1) AND (PSR.CAC = 1)) then
if (addr_out_of_range(addr)) then

trap mem_protection_error (type 0x02)
if ((addr & 0x30000000) = 0x30000000) then

return read_memory(addr, noncacheable, 8 bits)
else

return read_memory(addr, cacheable, 8 bits)

mem8[addr] ⇐ data Write an 8-bit memory location.

if ((PSR.ACE = 1) AND (PSR.CAC = 1)) then
if (addr_out_of_range(addr)) then

trap mem_protection_error (type 0x02)
if ((addr & 0x30000000) = 0x30000000) then

write_memory(addr, data, noncacheable, 8 bits)
else

write_memory(addr, data, cacheable, 8 bits)

⇐ mem8,NC[addr] Read an 8-bit noncacheable memory location.

if ((PSR.ACE = 1) AND (PSR.CAC = 1)) then
if (addr_out_of_range(addr)) then

trap mem_protection_error (type 0x02)
return read_memory(addr, noncacheable, 8 bits)

mem8,NC[addr] ⇐ data Write an 8-bit noncacheable memory location.

if ((PSR.ACE = 1) AND (PSR.CAC = 1)) then
if (addr_out_of_range(addr)) then

trap mem_protection_error (type 0x02)
write_memory(addr, data, noncacheable, 8 bits)

TABLE 6-5 Stack and Memory Access Operations (Continued)

Operation Description
Chapter 6 Instruction Set 81

aaload aaload
Load a reference from an array.

Forms

aaload = 50 (0x32)

Stack

…, arrayref, index ⇒
…, value

Description

aaload treats the stack entry arrayref as a reference to an array of word-sized elements; the stack

entry, index, is a signed 32-bit integer. It returns the element at index of the array.

If arrayref is null , then aaload takes a NullPointer trap. If index is not within the bounds of the

array referenced by arrayref, then aaload takes an ArrayIndexOutOfBounds trap.

Operation

arrayref ⇐ stack[OPTOP + 8]
if (arrayref = 0) then

trap NullPointer (type = 0x1b)
index ⇐ stack[OPTOP + 4]
if (index < 0) then

trap ArrayIndexOutOfBounds (type = 0x19)
handle_bit ⇐ arrayref & 0x00000001
if (handle_bit = 1) then

addr_of_length ⇐ mem[(arrayref & 0x7ffffffc) + 4]
else

addr_of_length ⇐ (arrayref & 0x7ffffffc) + 4
length ⇐ mem[addr_of_length]
if (index ≥ length) then

trap ArrayIndexOutOfBounds (type = 0x19)
stack[OPTOP + 8] ⇐ mem[addr_of_length + 4 + (index × 4)]
OPTOP⇐ OPTOP + 4

Notes

In the picoJava-II core, aaload is identical to iaload and faload .

Format aaload
82 picoJava-II Programmer’s Reference Manual • March 1999

aastore aastore
Trap to emulation routine that stores a reference into an array of references.

Forms

aastore = 83 (0x53)

Stack

…, arrayref, index, value ⇒
…

Description

aastore traps to the emulation routine referenced by entry 0x53 in the trap table.

Operation

trap aastore (type = 0x53)

Recommendations

The trap handler should perform the following tasks:

• Emulate aastore , as defined in The Java Virtual Machine Specification.

• Perform the garbage collection checks that are described in Write Barriers on page 434.

Format aastore
Chapter 6 Instruction Set 83

aastore_quick aastore_quick
Trap to emulation routine that stores a reference into an array of references without type checks.

Forms

aastore_quick = 220 (0xdc)

Stack

…, arrayref, index, value ⇒
…

Description

aastore_quick treats arrayref as a reference to an array of one-word elements. It stores the

reference value on the stack to the one-word element at index of the array.

If arrayref is null , then aastore_quick takes a NullPointer trap. If index is not within the

bounds of the array referenced by arrayref, then aastore_quick takes an

ArrayIndexOutOfBounds trap. Otherwise, it performs the garbage collection checks described in

Write Barriers on page 434, possibly generating a gc_notify trap.

Operation

arrayref ⇐ stack[OPTOP + 12]
if (arrayref = 0) then

trap NullPointer (type = 0x1b)
index ⇐ stack[OPTOP + 8]
if (index < 0) then

trap ArrayIndexOutOfBounds (type = 0x19)
gc_index ⇐ ((arrayref & 0xc0000000) >> 28) | (value >> 30)
write_barrier_bit = (GC_CONFIG >> gc_index) & 0x00000001
if (write_barrier_bit = 1) then

trap gc_notify (type = 0x27)
object_region = (arrayref >> 18) & (GC_CONFIG >> 21)
object_car = ((arrayref >> 13) & (GC_CONFIG >> 16)) & 0x0000001f
value_region = (value >> 18) & (GC_CONFIG >> 21)
value_car = ((value >> 13) & (GC_CONFIG >> 16)) & 0x0000001f
if ((PSR.GCE = 1) AND

(object_region = value_region) AND
(object_car ≠ value_car)) then

trap gc_notify (type = 0x27)
handle_bit ⇐ arrayref & 0x00000001
if (handle_bit = 1) then

Format aastore_quick
84 picoJava-II Programmer’s Reference Manual • March 1999

addr_of_length ⇐ mem[(arrayref & 0x7ffffffc) + 4]
else

addr_of_length ⇐ (arrayref & 0x7ffffffc) + 4
length ⇐ mem[addr_of_length]
if (index ≥ length) then

trap ArrayIndexOutOfBounds (type = 0x19)
mem[addr_of_length + 4 + (index × 4)] ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 12

Notes

Use this instruction when you can ensure that the type check that is required for aastore
succeeds, for example, when the array has elements of type, java.lang.Object .
Chapter 6 Instruction Set 85

aconst_null aconst_null
Push a null reference onto the stack.

Forms

aconst_null = 1 (0x01)

Stack

… ⇒
…, 0

Description

aconst_null pushes the reference value null onto the stack.

Operation

stack[OPTOP] ⇐ 0
OPTOP⇐ OPTOP - 4

Notes

The null value is a 32-bit word with a numerical value of 0. As a result, aconst_null is identical

to iconst_0 and fconst_0 in the picoJava-II core.

Format aconst_null
86 picoJava-II Programmer’s Reference Manual • March 1999

agetfield_quick agetfield_quick
Read a reference field in an object.

Forms

agetfield_quick = 230 (0xe6)

Stack

…, objectref ⇒
…, value

Description

agetfield_quick treats objectref on the stack as an object reference. It then reads a one-word

value from the offset ((indexbyte1 << 8) | indexbyte2) into the class instance referenced by objectref
and pushes it onto the stack.

If objectref is null , then agetfield_quick takes a NullPointer trap.

Operation

objectref ⇐ stack[OPTOP + 4]
if (objectref = 0) then

trap NullPointer (type = 0x1b)
index ⇐ ((indexbyte1 << 8) | indexbyte2)
handle_bit ⇐ objectref & 0x00000001
if (handle_bit = 1) then

addr_of_fields ⇐ mem[(objectref & 0x7ffffffc) + 4]
else

addr_of_fields ⇐ (objectref & 0x7ffffffc) + 4
stack[OPTOP + 4] ⇐ mem[addr_of_fields + (index × 4)]

Format agetfield_quick

indexbyte1
indexbyte2
Chapter 6 Instruction Set 87

agetstatic_quick agetstatic_quick
Read a static reference field in a class.

Forms

agetstatic_quick = 232 (0xe8)

Stack

… ⇒
…, value

Description

The unsigned indexbyte1 and indexbyte2 construct an index into the constant pool of the current

class, where the value of each index is (indexbyte1 << 8) | indexbyte2. The constant pool item should

have been resolved to contain the address of the static field. agetstatic_quick reads the value

of that class field and pushes it onto the stack as value.

Operation

index ⇐ ((indexbyte1 << 8) | indexbyte2)
addr_of_static ⇐ mem[CONST_POOL + (index × 4)] & 0x7fffffff
stack[OPTOP] ⇐ mem[addr_of_static]
OPTOP⇐ OPTOP – 4

Notes

In the picoJava-II core, agetstatic_quick is identical to getstatic_quick . The distinction

allows future implementations of agetstatic_quick to differ in garbage collection events.

Format agetstatic_quick

indexbyte1
indexbyte2

00

reference data

Constant Pool Element index

...
...
88 picoJava-II Programmer’s Reference Manual • March 1999

aldc_quick aldc_quick
Push a reference item from constant pool.

Forms

aldc_quick = 234 (0xea)

Stack

… ⇒
…, value

Description

The unsigned index byte is an index into the constant pool of the current class. The constant pool

item should have been resolved to contain the reference to the constant object. aldc_quick reads

the value from the constant pool and pushes it onto the stack.

Operation

stack[OPTOP] ⇐ mem[CONST_POOL + (index × 4)]
OPTOP⇐ OPTOP – 4

Notes

In the picoJava-II core, aldc_quick is identical to ldc_quick . The distinction allows future

implementations of aldc_quick to differ in garbage collection events.

Format aldc_quick

index
Chapter 6 Instruction Set 89

aldc_w_quick aldc_w_quick
Push a reference item from constant pool.

Forms

aldc_w_quick = 235 (0xeb)

Stack

… ⇒
…, value

Description

The unsigned indexbyte1 and indexbyte2 construct an index into the constant pool of the current

class, where the value of each index is (indexbyte1 << 8) | indexbyte2. The constant pool item should

have been resolved to contain the reference to the constant object. aldc_w_quick reads the value

from the constant pool and pushes it onto the stack.

Operation

index ⇐ ((indexbyte1 << 8) | indexbyte2)
stack[OPTOP] ⇐ mem[CONST_POOL + (index × 4)]
OPTOP⇐ OPTOP – 4

Notes

In the picoJava-II core, aldc_w_quick is identical to ldc_w_quick . The distinction allows future

implementations of aldc_w_quick to differ in garbage collection events.

Format aldc_w_quick

indexbyte1
indexbyte2
90 picoJava-II Programmer’s Reference Manual • March 1999

aload aload
Load a reference from a local variable.

Forms

aload = 25 (0x19)

Stack

… ⇒
…, value

Description

aload pushes a one-word local variable, which is at index stack entries offset from the start of the

current local variables, onto the operand stack.

Operation

stack[OPTOP] ⇐ stack[VARS -(index × 4)]
OPTOP⇐ OPTOP – 4

Notes

In the picoJava-II core, aload is identical to iload and fload .

Format aload

index
Chapter 6 Instruction Set 91

aload_ n aload_ n
Load a reference from a local variable.

Forms

aload_0 = 42 (0x2a)

aload_1 = 43 (0x2b)

aload_2 = 44 (0x2c)

aload_3 = 45 (0x2d)

Stack

… ⇒
…, value

Description

aload_ n pushes a one-word local variable, which is at n stack entries offset from the start of the

current local variables, onto the operand stack.

Operation

stack[OPTOP] ⇐ stack[VARS – (n × 4)]
OPTOP⇐ OPTOP – 4

Notes

In the picoJava-II core, aload_ n is identical to iload_ n and fload_ n.

Format aload_ n
92 picoJava-II Programmer’s Reference Manual • March 1999

anewarray anewarray
Trap to emulation routine that resolves constant pool entry and creates a new array of references.

Forms

anewarray = 189 (0xbd)

Stack

…, count ⇒
…, objectref

Description

anewarray traps to the emulation routine referenced by entry 0xbd in the trap table.

Operation

trap anewarray (type = 0xbd)

Recommendations

The trap handler should emulate anewarray , as defined in The Java Virtual Machine Specification.

After the trap handler resolves the constant pool entry, it should replace the anewarray instruction

with the anewarray_quick instruction.

Format anewarray

indexbyte1
indexbyte2
Chapter 6 Instruction Set 93

anewarray_quick anewarray_quick
Trap to emulation routine that creates a new array of references.

Forms

anewarray_quick = 222 (0xde)

Stack

…, integer ⇒
…, objectref

Description

anewarray_quick traps to the emulation routine referenced by entry 0xde in the trap table.

Operation

trap anewarray_quick (type = 0xde)

Recommendations

The trap handler should emulate anewarray_quick , as described in The Java Virtual Machine
Specification. The constant pool entry referenced by anewarray_quick should have been resolved,

allowing the emulation trap handler to bypass this operation.

Format anewarray_quick

indexbyte1
indexbyte2
94 picoJava-II Programmer’s Reference Manual • March 1999

aputfield_quick aputfield_quick
Set a reference field in an object with garbage collection checks.

Forms

aputfield_quick = 231 (0xe7)

Stack

…, objectref, value ⇒
…

Description

aputfield_quick pops objectref and value, which it treats as object references, from the operand

stack. It then stores value at the offset ((indexbyte1 << 8) | indexbyte2) into the class instance

referenced by objectref.

If objectref is null , then aputfield_quick takes a NullPointer trap. Otherwise, it performs the

garbage collection checks described in Write Barriers on page 434, possibly generating a gc_notify
trap.

Operation

objectref ⇐ stack[OPTOP + 8]
if (objectref = 0) then

trap NullPointer (type = 0x1b)
gc_index ⇐ ((objectref & 0xc0000000) >> 28) | (value >> 30)
write_barrier_bit = (GC_CONFIG >> gc_index) & 0x00000001
if (write_barrier_bit = 1) then

trap gc_notify (type = 0x27)
object_region = (objectref >> 18) & (GC_CONFIG >> 21)
object_car = ((objectref >> 13) & (GC_CONFIG >> 16)) & 0x0000001f
value_region = (value >> 18) & (GC_CONFIG >> 21)
value_car = ((value >> 13) & (GC_CONFIG >> 16)) & 0x0000001f
if ((PSR.GCE = 1) AND

(object_region = value_region) AND
(object_car ≠ value_car)) then

trap gc_notify (type = 0x27)
index ⇐ ((indexbyte1 << 8) | indexbyte2)
handle_bit ⇐ objectref & 0x00000001

Format aputfield_quick

indexbyte1
indexbyte2
Chapter 6 Instruction Set 95

if (handle_bit = 1) then
addr_of_fields ⇐ mem[(objectref & 0x7ffffffc) + 4]

else
addr_of_fields ⇐ (objectref & 0x7ffffffc) + 4

mem[addr_of_fields + (index × 4)] ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 8
96 picoJava-II Programmer’s Reference Manual • March 1999

aputstatic_quick aputstatic_quick
Set a static reference field in a class with garbage collection checks.

Forms

aputstatic_quick = 233 (0xe9)

Stack

…, value ⇒
…

Description

The unsigned indexbyte1 and indexbyte2 construct an index into the constant pool of the current

class, where the value of each index is (indexbyte1<<8) | indexbyte2. The constant pool item must

already have been resolved and must contain the address of the static reference type.

aputstatic_quick pops value from the operand stack and sets that static field to value.

aputstatic_quick treats the address of the static variable storage that is held in the constant

pool as an object reference for the purpose of performing the garbage collection checks, as described

in Write Barriers on page 434. As a result of these garbage collection checks, aputstatic_quick
may generate a gc_notify trap.

Operation

index ⇐ ((indexbyte1 << 8) | indexbyte2)
addr_of_static ⇐ mem[CONST_POOL + (index × 4)]
gc_index ⇐ ((addr_of_static & 0xc0000000) >> 28) | (value >> 30)
write_barrier_bit = (GC_CONFIG >> gc_index) & 0x00000001
if (write_barrier_bit = 1) then

trap gc_notify (type = 0x27)

Format aputstatic_quick

indexbyte1
indexbyte2

00

reference data

Constant Pool Element index

...
...
Chapter 6 Instruction Set 97

object_region = (addr_of_static >> 18) & (GC_CONFIG >> 21)
object_car = ((addr_of_static >> 13) & (GC_CONFIG >> 16)) & 0x0000001f
value_region = (value >> 18) & (GC_CONFIG >> 21)
value_car = ((value >> 13) & (GC_CONFIG >> 16)) & 0x0000001f
if ((PSR.GCE = 1) AND

(object_region = value_region) AND
(object_car ≠ value_car)) then

trap gc_notify (type = 0x27)
mem[addr_of_static & 0x7ffffffc] ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 4
98 picoJava-II Programmer’s Reference Manual • March 1999

areturn areturn
Return a reference from a method.

Forms

areturn = 176 (0xb0)

Stack

…, value ⇒
[empty]

Description

areturn returns to the caller of this Java method, popping all the arguments to the current method

and pushing the reference that is at the top of the operand stack onto the top of the caller’s operand

stack.

Operation

PC ⇐ stack[FRAME]
CONST_POOL⇐ stack[FRAME – 12]
stack[VARS] ⇐ stack[OPTOP + 4]
VARS ⇐ stack[FRAME – 4]
FRAME⇐ stack[FRAME – 8]
OPTOP⇐ VARS + 4

Notes

In the picoJava-II core, areturn is identical to ireturn and freturn .

Format areturn
Chapter 6 Instruction Set 99

arraylength arraylength
Return the number of elements in an array.

Forms

arraylength = 190 (0xbe)

Stack

…, arrayref ⇒
…, length

Description

arraylength pushes the length of the array referenced by the array reference, arrayref, onto the

stack.

Operation

arrayref ⇐ stack[OPTOP + 4]
if (arrayref = 0) then

trap NullPointer (type = 0x1b)
handle_bit ⇐ arrayref & 0x00000001
if (handle_bit = 1) then

addr_of_length ⇐ mem[(arrayref & 0x7ffffffc) + 4]
else

addr_of_length ⇐ (arrayref & 0x7ffffffc) + 4
stack[OPTOP + 4] ⇐ mem[addr_of_length]

Format arraylength
100 picoJava-II Programmer’s Reference Manual • March 1999

astore astore
Store a reference to a local variable.

Forms

astore = 58 (0x3a)

Stack

…, value ⇒
…

Description

astore stores the top entry of the operand stack into a one-word local variable, which is at index
stack entries offset from the start of the current local variables.

Operation

stack[VARS-(index × 4)] ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 4

Notes

In the picoJava-II core, astore is identical to istore and fstore .

Format astore

index
Chapter 6 Instruction Set 101

astore_ n astore_ n
Store a reference to a local variable.

Forms

astore_0 = 75 (0x4b)

astore_1 = 76 (0x4c)

astore_2 = 77 (0x4d)

astore_3 = 78 (0x4e)

Stack

…, value ⇒
…

Description

astore_ n stores the top entry of the operand stack into a one-word local variable, which is at n
stack entries offset from the start of the current local variables.

Operation

stack[VARS -(n × 4)] ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 4

Notes

In the picoJava-II core, astore_ n is identical to istore_ n and fstore_ n.

Format astore_ n
102 picoJava-II Programmer’s Reference Manual • March 1999

athrow athrow
Trap to emulation routine that throws an exception or error.

Forms

athrow = 191 (0xbf)

Stack

…, objectref ⇒
objectref

Description

athrow traps to the emulation routine referenced by entry 0xbf in the trap table.

Operation

trap athrow (type=0xbf)

Recommendations

The trap handler should emulate athrow , as described in The Java Virtual Machine Specification.

Format athrow
Chapter 6 Instruction Set 103

baload baload
Load a byte from an array.

Forms

baload = 51 (0x33)

Stack

…, arrayref, index ⇒
…, value

Description

baload treats arrayref as a reference to an array of bytes. It loads and sign-extends the one-byte

element at index and pushes it onto the stack as value.

If arrayref is null , then baload takes a NullPointer trap. If index is not within the bounds of the

array referenced by arrayref, then baload takes an ArrayIndexOutOfBounds trap.

Operation

arrayref ⇐ stack[OPTOP + 8]
if (arrayref = 0) then

trap NullPointer (type = 0x1b)
index ⇐ stack[OPTOP + 4]
if (index < 0) then

trap ArrayIndexOutOfBounds (type = 0x19)
handle_bit ⇐ arrayref & 0x00000001
if (handle_bit = 1) then

addr_of_length ⇐ mem[(arrayref & 0x7ffffffc) + 4]
else

addr_of_length ⇐ (arrayref & 0x7ffffffc) + 4
length ⇐ mem[addr_of_length]
if (index ≥ length) then

trap ArrayIndexOutOfBounds (type = 0x19)
stack[OPTOP + 8] ⇐ sign_ext 8(mem8[addr_of_length + 4 + index])
OPTOP⇐ OPTOP + 4

Format baload
104 picoJava-II Programmer’s Reference Manual • March 1999

bastore bastore
Store a byte to an array.

Forms

bastore = 84 (0x54)

Stack

…, arrayref, index, value ⇒
…

Description

bastore treats arrayref as a reference to an array of bytes. It truncates the integer value on the stack

to the low 8 bits and stores it to the one-byte element at index of the array.

If arrayref is null , then bastore takes a NullPointer trap. If index is not within the bounds of

the array referenced by arrayref, then bastore takes an ArrayIndexOutOfBounds trap.

Operation

arrayref ⇐ stack[OPTOP + 12]
if (arrayref = 0) then

trap NullPointer (type=0x1b)
index ⇐ stack[OPTOP + 8]
if (index < 0) then

trap ArrayIndexOutOfBounds (type = 0x19)
handle_bit ⇐ arrayref & 0x00000001
if (handle_bit = 1) then

addr_of_length ⇐ mem[(arrayref & 0x7ffffffc) + 4]
else

addr_of_length ⇐ (arrayref & 0x7ffffffc) + 4
length ⇐ mem[addr_of_length]
if (index ≥ length) then

trap ArrayIndexOutOfBounds (type = 0x19)
mem8[addr_of_length + 4 + index] ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 12

Format bastore
Chapter 6 Instruction Set 105

bipush bipush
Push a byte onto the operand stack.

Forms

bipush = 16 (0x10)

Stack

… ⇒
…, value

Description

bipush sign-extends the byte constant and pushes it onto the operand stack.

Operation

stack[OPTOP] ⇐ sign_ext 8(byte)
OPTOP⇐ OPTOP – 4

Format bipush

byte
106 picoJava-II Programmer’s Reference Manual • March 1999

cache_flush cache_flush
Flush a cache line and possibly invalidate it if it is present in the cache.

Forms

extend = 255 (0xff)

cache_flush = 30 (0x1e)

Stack

…, increment, address ⇒
…, increment, result_address

Description

cache_flush checks both the instruction and data caches for address, which specifies a line in the

data and instruction caches that is to be flushed or invalidated.

If the line is present in either or both caches, then cache_flush invalidates it. If the cache line is

dirty—that is, has been modified—then cache_flush writes it back to memory. If a cache is off

(PSR.DCE = 0 or PSR.ICE = 0), then that cache ignores the flush request.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

result_address is address plus increment as if they had been summed with iadd .

Operation

address ⇐ stack[OPTOP + 4] & 0x7ffffff0
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

if (PSR.ICE = 1) then
iindex_mask ⇐ ((1 << (HCR.ICS + 9)) - 1)
itag_address ⇐ address & iindex_mask
itag ⇐ icache_tag[itag_address] & 0xfffffffe
icache_tag[itag_address] ⇐ itag

if (PSR.DCE = 1) then
dindex_mask ⇐ ((1 << (HCR.DCS + 8)) - 1)
dtag_mask ⇐ dindex_mask ^ 0x7fffffff
dtag_address0 ⇐ address & dindex_mask
dtag_address1 ⇐ dtag_address0 | 0x80000000

Format extend

cache_flush
Chapter 6 Instruction Set 107

dtag0 ⇐ dcache_tag[dtag_address0] & dtag_mask
dtag1 ⇐ dcache_tag[dtag_address1] & dtag_mask
dtag_to_match ⇐ address & dtag_mask
if (dtag0 = dtag_to_match) then

dtag_address ⇐ dtag_address0
dtag ⇐ dcache_tag[dtag_address]
dirty_valid_bits ⇐ dtag & 0x0000003
dcache_tag[dtag_address] ⇐ dtag & 0xfffffff8

else if (dtag1 = dtag_to_match) then
dtag_address ⇐ dtag_address1
dtag ⇐ dcache_tag[dtag_address]
dirty_valid_bits ⇐ dtag & 0x0000003
dcache_tag[dtag_address] ⇐ dtag & 0xfffffff8

else
dirty_valid_bits ⇐ 0

if (dirty_valid_bits = 0x3) then
mem_addr ⇐ (dtag | dtag_address) & 0x7ffffff0
memNC[mem_addr] ⇐ dcache_data[dtag_address]
memNC[mem_addr + 4] ⇐ dcache_data[dtag_address + 4]
memNC[mem_addr + 8] ⇐ dcache_data[dtag_address + 8]
memNC[mem_addr + 12] ⇐ dcache_data[dtag_address + 12]

stack[OPTOP + 4] ⇐ address + stack[OPTOP + 8]

Notes

Although the picoJava-II core has 16-byte cache lines for both the instruction and data caches, you

should rely on the values in the DCL and ICL fields of the Hardware Configuration Register (HCR)
to facilitate porting software between implementations—the HCR.DCLfield indicates the number of

bytes in a data cache line; the HCR.ICL field indicates the number of bytes in an instruction cache

line.
108 picoJava-II Programmer’s Reference Manual • March 1999

cache_index_flush cache_index_flush
Flush a cache line and possibly invalidate it (with no tag checks).

Forms

extend = 255 (0xff)

cache_index_flush = 31 (0x1f)

Stack

…, increment, address ⇒
…, increment, result_address

Description

cache_index_flush invalidates the line that corresponds to the index indicated by address in

both the instruction and data caches. For the two-way set-associative data cache, bit 31 indicates the

set to be flushed.

If the cache line is dirty—that is, has been modified—then cache_index_flush writes it back to

memory. If a cache is off (PSR.DCE = 0 or PSR.ICE = 0), then that cache ignores the invalidation

request.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

result_address is address plus increment as if they had been summed with iadd .

Operation

address ⇐ stack[OPTOP + 4] & 0xfffffff0
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

if (PSR.ICE = 1) then
iindex_mask ⇐ ((1 << (HCR.ICS + 9)) - 1)
itag_address ⇐ address & iindex_mask
itag ⇐ icache_tag[itag_address] & 0xfffffffe
icache_tag[itag_address] ⇐ itag

if (PSR.DCE = 1) then
dindex_mask ⇐ ((1 << (HCR.DCS + 8)) - 1) | 0x80000000
dtag_address ⇐ address & dindex_mask
dtag ⇐ dcache_tag[dtag_address]

Format extend

cache_index_flush
Chapter 6 Instruction Set 109

dirty_valid_bits ⇐ dtag & 0x0000003
if (dirty_valid_bits = 0x3) then

mem_addr ⇐ (dtag | dtag_address) & 0x7ffffff0
memNC[mem_addr] ⇐ dcache_data[dtag_address]
memNC[mem_addr + 4] ⇐ dcache_data[dtag_address + 4]
memNC[mem_addr + 8] ⇐ dcache_data[dtag_address + 8]
memNC[mem_addr + 12] ⇐ dcache_data[dtag_address + 12]

dcache_tag[dtag_address] ⇐ dtag & 0xfffffff8
stack[OPTOP + 4] ⇐ address + stack[OPTOP + 8]

Notes

Although the picoJava-II core has 16-byte cache lines for both the instruction and data caches, you

should rely on the values in the DCL and ICL fields of the Hardware Configuration Register (HCR)
to facilitate porting software between implementations—the HCR.DCLfield indicates the number of

bytes in a data cache line; the HCR.ICL field indicates the number of bytes in an instruction cache

line.
110 picoJava-II Programmer’s Reference Manual • March 1999

cache_invalidate cache_invalidate
Invalidate a cache line if it is present in the cache.

Forms

extend = 255 (0xff)

cache_invalidate = 23 (0x17)

Stack

…, increment, address ⇒
…, increment, result_address

Description

cache_invalidate checks both the instruction and data caches for address, which specifies a line

in the data and instruction caches that is to be invalidated.

If the line is present in either or both of the caches, then cache_invalidate invalidates it. If a

cache is off (PSR.DCE = 0 or PSR.ICE = 0), then that cache ignores the invalidation request.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

result_address is address plus increment as if they had been summed with iadd .

Operation

address ⇐ stack[OPTOP + 4] & 0x7ffffff0
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

if (PSR.ICE = 1) then
iindex_mask ⇐ ((1 << (HCR.ICS + 9)) - 1)
itag_mask ⇐ iindex_mask ^ 0x7fffffff
itag_address ⇐ address & iindex_mask
itag ⇐ icache_tag[itag_address] & itag_mask
itag_to_match ⇐ address & itag_mask
if (itag = itag_to_match) then

icache_tag[itag_address] ⇐ itag
if (PSR.DCE = 1) then

dindex_mask ⇐ ((1 << (HCR.DCS + 8)) - 1)
dtag_mask ⇐ dindex_mask ^ 0x7fffffff

Format extend

cache_invalidate
Chapter 6 Instruction Set 111

dtag_address0 ⇐ address & dindex_mask
dtag_address1 ⇐ dtag_address0 | 0x80000000
dtag0 ⇐ dcache_tag[dtag_address0] & dtag_mask
dtag1 ⇐ dcache_tag[dtag_address1] & dtag_mask
dtag_to_match ⇐ address & dtag_mask
if (dtag0 = dtag_to_match) then

dcache_tag[dtag_address0] ⇐ dtag0
else if (dtag1 = dtag_to_match) then

dcache_tag[dtag_address1] ⇐ dtag1
stack[OPTOP + 4] ⇐ address + stack[OPTOP + 8]

Notes

Although the picoJava-II core has 16-byte cache lines for both the instruction and data caches, you

should rely on the values in the DCL and ICL fields of the Hardware Configuration Register (HCR)
to facilitate porting software between implementations—the HCR.DCLfield indicates the number of

bytes in a data cache line; the HCR.ICL field indicates the number of bytes in an instruction cache

line.
112 picoJava-II Programmer’s Reference Manual • March 1999

call call
Call a subroutine with the specified number of arguments.

Forms

extend = 255 (0xff)

call = 61 (0x3d)

Stack

…, arg0, arg1, ..., argn, targetPC, nargs ⇒
…, arg0, arg1, ..., argn, returnVARS, returnPC

Description

call takes the target PC of a subroutine and the number of argument words (including the

targetPC and nargs values) from the stack. It then transfers control to the code at targetPC, updates

the VARS registers to point to arg0, and saves the original contents of the VARS register and the

return PC in the stack positions that held the targetPC and nargs values before the call.

Operation

return_PC ⇐ PC + 2
PC ⇐ stack[OPTOP + 8]
stack[OPTOP + 8] ⇐ VARS
VARS ⇐ OPTOP + (stack[OPTOP + 4] × 4)
stack[OPTOP + 4] ⇐ return_PC

Format extend

call
Chapter 6 Instruction Set 113

caload caload
Load a character from an array.

Forms

caload = 52 (0x34)

Stack

…, arrayref, index ⇒
…, value

Description

caload treats arrayref as a reference to an array of characters. It loads the two-byte unsigned

element at index and pushes it onto the stack as value.

If arrayref is null , then caload takes a NullPointer trap. If index is not within the bounds of the

array referenced by arrayref, then caload takes an ArrayIndexOutOfBounds trap.

Operation

arrayref ⇐ stack[OPTOP + 8]
if (arrayref = 0) then

trap NullPointer (type = 0x1b)
index ⇐ stack[OPTOP + 4]
if (index < 0) then

trap ArrayIndexOutOfBounds (type = 0x19)
handle_bit ⇐ arrayref & 0x00000001
if (handle_bit = 1) then

addr_of_length ⇐ mem[(arrayref & 0x7ffffffc) + 4]
else

addr_of_length ⇐ (arrayref & 0x7ffffffc) + 4
length ⇐ mem[addr_of_length]
if (index ≥ length) then

trap ArrayIndexOutOfBounds (type = 0x19)
stack[OPTOP + 8] ⇐ mem16[addr_of_length + 4 + (index × 2)]
OPTOP⇐ OPTOP + 4

Format caload
114 picoJava-II Programmer’s Reference Manual • March 1999

castore castore
Store a character to an array.

Forms

castore = 85 (0x55)

Stack

…, arrayref, index, value ⇒
…

Description

castore treats arrayref as a reference to an array of characters. It truncates the integer value on the

stack to the low 16 bits and stores it to the two-byte element at index of the array.

If arrayref is null , then castore takes a NullPointer trap. If index is not within the bounds of

the array referenced by arrayref, then castore takes an ArrayIndexOutOfBounds trap.

Operation

arrayref ⇐ stack[OPTOP + 12]
if (arrayref = 0) then

trap NullPointer (type = 0x1b)
index ⇐ stack[OPTOP + 8]
if (index < 0) then

trap ArrayIndexOutOfBounds (type = 0x19)
handle_bit ⇐ arrayref & 0x00000001
if (handle_bit = 1) then

addr_of_length ⇐ mem[(arrayref & 0x7ffffffc) + 4]
else

addr_of_length ⇐ (arrayref & 0x7ffffffc) + 4
length ⇐ mem[addr_of_length]
if (index ≥ length) then

trap ArrayIndexOutOfBounds (type = 0x19)
mem16[addr_of_length + 4 + (index × 2)] ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 12

Notes

In the picoJava-II core, castore is identical to sastore .

Format castore
Chapter 6 Instruction Set 115

checkcast checkcast
Trap to emulation routine that resolves the constant pool entry and checks whether an object is of

the given type.

Forms

checkcast = 192 (0xc0)

Stack

…, objectref ⇒
…, objectref

Description

checkcast traps to the emulation routine referenced by entry 0xc0 in the trap table.

Operation

trap checkcast (type=0xc0)

Recommendations

The trap handler should emulate checkcast , as defined in The Java Virtual Machine Specification.

After the trap handler resolves the constant pool entry, it should replace the checkcast instruction

with the checkcast_quick instruction.

Format checkcast

indexbyte1
indexbyte2
116 picoJava-II Programmer’s Reference Manual • March 1999

checkcast_quick checkcast_quick
Check whether an object is of the given type.

Forms

checkcast_quick = 224 (0xe0)

Stack

…, objectref ⇒
…, objectref

Description

The unsigned indexbyte1 and indexbyte2 construct an index into the constant pool of the current

class, where the value of each index is (indexbyte1<<8) | indexbyte2. The constant pool item must

have already been resolved and must contain a class ID. The word on the top of the stack, objectref,
is treated as a reference.

If objectref is not null, then the class ID of objectref is compared with the class ID from the constant

pool. If the two class IDs are not equal, then the core generates a checkcast_quick emulation

trap. Otherwise, checkast_quick completes without further action.

Operation

objectref ⇐ stack[OPTOP + 4]
if (objectref ≠ 0) then

object_header ⇐ mem[objectref & 0x7ffffffc]
object_class_addr ⇐ (object_header & 0x7ffffff8) - 8
object_class ⇐ mem[object_class_addr]
index ⇐ (indexbyte1 << 8) | indexbyte2
constant_class ⇐ mem[CONST_POOL + (index × 4)]
if (object_class ≠ constant_class)

trap checkcast_quick (type=0xe0)

Recommendations

The trap handler should emulate checkcast_quick , as defined in The Java Virtual Machine
Specification. The trap handler, however, should skip the initial checks performed by the core.

Format checkcast_quick

indexbyte1
indexbyte2
Chapter 6 Instruction Set 117

d2f d2f
Convert a double to a float.

Forms

d2f = 144 (0x90)

Stack

…, value<31:0>, value<63:32> ⇒
…, result

Description

d2f treats the value on the top of the operand stack as the type double, then pops it from the

operand stack and converts it to a float with the IEEE 754 round-to-nearest mode, which it pushes

onto the operand stack.

The conversion rules are:

• d2f converts a finite value that is too small to be represented as a float to a zero of the same sign;

d2f converts a finite value that is too large to be represented as a float to an infinity of the same

sign.

• d2f converts a double NaN to a float NaN.

If the floating point unit is not enabled (PSR.FPE = 0), d2f traps to an emulation routine.

Operation

if ((PSR.FPE = 1) AND (HCR.FPP = 1)) then
stack[OPTOP + 8] ⇐

convert d2f (double(stack[OPTOP + 4], stack[OPTOP + 8]))
OPTOP⇐ OPTOP + 4

else
trap d2f (type = 0x90)

Notes

result may lose precision and information about the overall magnitude of value.

Format d2f
118 picoJava-II Programmer’s Reference Manual • March 1999

d2i d2i
Convert a double to an integer.

Forms

d2i = 142 (0x8e)

Stack

…, value<31:0>, value<63:32> ⇒
…, result

Description

d2i treats the value on the top of the operand stack (value) as the type double, pops it from the

operand stack, and converts it to an integer. It then pushes the result (result) onto the operand stack.

If value is NaN, then result is the integer 0. If value is not an infinity, then d2i rounds it to an integer

toward zero with the IEEE 754 round-toward-zero mode. If that integer is a 32-bit integer, then it

becomes result . Otherwise, either of the following conditions applies:

• value must be too small (a negative value of large magnitude or negative infinity) and result is
–2147483648 (0x8000000)

• value must be too large (a positive value of large magnitude or positive infinity) and result is
2147483647 (0x7fffffff).

If the floating point unit is not enabled (PSR.FPE = 0), then d2i traps to an emulation routine.

Operation

if ((PSR.FPE = 1) AND (HCR.FPP = 1)) then
stack[OPTOP + 8] ⇐

convert d2i (double(stack[OPTOP + 4], stack[OPTOP + 8]))
OPTOP⇐ OPTOP + 4

else
trap d2i (type = 0x8e)

Notes

result may lose precision and information about the overall magnitude of value.

Format d2i
Chapter 6 Instruction Set 119

d2l d2l
Convert a double to a long.

Forms

d2l = 143 (0x8f)

Stack

…, value<31:0>, value<63:32> ⇒
…, result<31:0>, result<63:32>

Description

d2l treats the value on the top of the operand stack (value) as the type double, pops it from the

operand stack, and converts it to a long integer. It then pushes the result (result) onto the operand

stack.

If value is NaN, then result is the long integer 0. If value is not an infinity, then d2l rounds it to a long

integer toward zero with the IEEE 754 round-toward-zero mode. If that long integer is a 64-bit long

integer, then it becomes result. Otherwise, either of the following conditions applies:

• value must be too small (a negative value of large magnitude or negative infinity) and result is
–9223372036854775808 (0x800000000000000)

• value must be too large (a positive value of large magnitude or positive infinity) and result is
9223372036854775807 (0x7fffffffffffffff).

If the floating point unit is not enabled (PSR.FPE = 0), then d2l traps to an emulation routine.

Operation

if ((PSR.FPE = 1) AND (HCR.FPP = 1)) then
long(stack[OPTOP + 4],stack[OPTOP + 8]) ⇐

convert d2l (double(stack[OPTOP + 4], stack[OPTOP + 8]))
else

trap d2l (type = 0x8f)

Notes

result may lose precision and information about the overall magnitude of value.

Format d2l
120 picoJava-II Programmer’s Reference Manual • March 1999

dadd dadd
Add two doubles.

Forms

dadd = 99 (0x63)

Stack

…, value1<31:0>, value1<63:32>, value2<31:0>, value2<63:32> ⇒
…, result<31:0>, result<63:32>

Description

dadd treats both value1 and value2 as the type double and pops them from the operand stack. It then

pushes result, which is a double and the sum of value1 + value2, onto the operand stack.

result is subject to the rules of IEEE arithmetic, as follows:

• If value1 is NaN, then result is value1 (NaN) with a positive sign.

• If value2 is NaN but value1 is not, then result is value2 (NaN) with a positive sign.

• The sum of two infinities of opposite signs is NaN (0x7fffe00000000000).

• The sum of two infinities of the same sign is the infinity of that sign.

• The sum of an infinity and any finite value is equal to the infinity.

• The sum of two zeroes of opposite signs is positive zero.

• The sum of two zeroes of the same sign is the zero of that sign.

• The sum of a zero and a nonzero finite value is equal to the nonzero value.

• The sum of two nonzero finite values of the same magnitude and opposite signs is positive zero.

• In the remaining cases, where an infinity, a zero, or NaN is not involved and where the values

have the same sign or different magnitudes, the sum is rounded to the nearest representable

value with the IEEE 754 round-to-nearest mode. If the magnitude is too large to be represented

as a double, the operation overflows; result is then an infinity of the appropriate sign. If the

magnitude is too small to be represented as a double, the operation underflows; result is then a

zero of the appropriate sign.

If the Floating Point Unit (FPU) is not enabled (PSR.FPE = 0), dadd traps to an emulation routine.

Format dadd
Chapter 6 Instruction Set 121

Operation

if ((PSR.FPE = 1) AND (HCR.FPP = 1)) then
double(stack[OPTOP + 12], stack[OPTOP + 16]) ⇐

double(stack[OPTOP + 12], stack[OPTOP + 16]) +
double(stack[OPTOP + 4], stack[OPTOP + 8])

OPTOP⇐ OPTOP + 8
else

trap dadd (type = 0x63)
122 picoJava-II Programmer’s Reference Manual • March 1999

daload daload
Load a double from an array.

Forms

daload = 49 (0x31)

Stack

…, arrayref, index ⇒
…, value<31:0>, value<63:32>

Description

daload treats arrayref as a reference to an array of doubles. It loads the two-word element at index
and pushes it onto the stack as value.

If arrayref is null , then daload takes a NullPointer trap. If index is not within the bounds of the

array that arrayref references, then daload takes an ArrayIndexOutOfBounds trap.

Operation

arrayref ⇐ stack[OPTOP + 8]
if (arrayref = 0) then

trap NullPointer (type = 0x1b)
index ⇐ stack[OPTOP + 4]
if (index < 0) then

trap ArrayIndexOutOfBounds (type = 0x19)
handle_bit ⇐ arrayref & 0x00000001
if (handle_bit = 1) then

addr_of_length ⇐ mem[(arrayref & 0x7ffffffc) + 4]
else

addr_of_length ⇐ (arrayref & 0x7ffffffc) + 4
length ⇐ mem[addr_of_length]
if (index ≥ length) then

trap ArrayIndexOutOfBounds (type = 0x19)
stack[OPTOP + 8] ⇐ mem[addr_of_length + 8 + (index × 8)]
stack[OPTOP + 4] ⇐ mem[addr_of_length + 4 + (index × 8)]

Notes

In the picoJava-II core, daload is identical to laload .

Format daload
Chapter 6 Instruction Set 123

dastore dastore
Store a double to an array.

Forms

dastore = 82 (0x52)

Stack

…, arrayref, index, value<31:0>, value<63:32>⇒
…

Description

dastore treats arrayref as a reference to an array of doubles. It stores the double value on the stack

to the two-word element at index of the array.

If arrayref is null , then dastore takes a NullPointer trap. If index is not within the bounds of

the array that arrayref references, then dastore takes an ArrayIndexOutOfBounds trap.

Operation

arrayref ⇐ stack[OPTOP + 16]
if (arrayref = 0) then

trap NullPointer (type = 0x1b)
index ⇐ stack[OPTOP + 12]
if (index < 0) then

trap ArrayIndexOutOfBounds (type = 0x19)
handle_bit ⇐ arrayref & 0x00000001
if (handle_bit = 1) then

addr_of_length ⇐ mem[(arrayref & 0x7ffffffc) + 4]
else

addr_of_length ⇐ (arrayref & 0x7ffffffc) + 4
length ⇐ mem[addr_of_length]
if (index ≥ length) then

trap ArrayIndexOutOfBounds (type = 0x19)

mem[addr_of_length + 4 + (index × 8)] ⇐ stack[OPTOP + 4]
mem[addr_of_length + 8 + (index × 8)] ⇐ stack[OPTOP + 8]
OPTOP⇐ OPTOP + 16

Notes

In the picoJava-II core, dastore is identical to lastore .

Format dastore
124 picoJava-II Programmer’s Reference Manual • March 1999

dcmpg dcmpg
Compare two doubles with greater than on NaN.

Forms

dcmpg = 152 (0x98)

Stack

…, value1<31:0>, value1<63:32>, value2<31:0>, value2<63:32> ⇒
…, result

Description

dcmpg treats both value1 and value2 as the type double, pops them from the operand stack, then

performs a floating-point comparison and executes as follows:

• If value1 is greater than value2, then dcmpg pushes the integer value 1 onto the operand stack.

• If value1 is equal to value2, then dcmpg pushes the integer value 0 onto the operand stack.

• If value1 is less than value2, then dcmpg pushes the integer value –1 onto the operand stack.

• If either value1 or value2 is a NaN, then dcmpg pushes the integer value 1 onto the operand stack.

dcmpg performs floating-point comparisons according to IEEE 754 rules: It orders all values other

than NaN with negative infinity less than all finite values and positive infinity greater than all finite

values. Positive zero and negative zero are considered equal.

If the floating point unit is not enabled (PSR.FPE = 0), then dcmpg traps to an emulation routine.

Operation

if ((PSR.FPE = 1) AND (HCR.FPP = 1)) then
diff = double(stack[OPTOP + 16], stack[OPTOP + 12]) -

double(stack[OPTOP + 8], stack[OPTOP + 4])
if (diff < 0.0) then

stack[OPTOP + 16] ⇐ -1
else if ((diff > 0.0) OR (diff = NaN)) then

stack[OPTOP + 16] ⇐ 1
else

stack[OPTOP + 16] ⇐ 0
OPTOP⇐ OPTOP + 12

else
trap dcmpg (type = 0x98)

Notes

dcmpg anddcmpl differ only in how they compare values that involve NaN.

Format dcmpg
Chapter 6 Instruction Set 125

dcmpl dcmpl
Compare two doubles with less than on NaN.

Forms

dcmpl = 151 (0x97)

Stack

…, value1<31:0>, value1<63:32>, value2<31:0>, value2<63:32> ⇒
…, result

Description

dcmpl treats both value1 and value2 as the type double, pops them from the operand stack, then

performs a floating-point comparison and executes as follows:

• If value1 is greater than value2, then dcmpl pushes the integer value 1 onto the operand stack.

• If value1 is equal to value2, then dcmpl pushes the integer value 0 onto the operand stack.

• If value1 is less than value2, then dcmpl pushes the integer value –1 onto the operand stack.

• If either value1 or value2 is a NaN, then dcmpl pushes the integer value –1 onto the operand

stack.

dcmpl performs floating-point comparisons according to IEEE 754 rules: It orders all values other

than NaN with negative infinity less than all finite values and positive infinity greater than all finite

values. Positive zero and negative zero are considered equal.

If the floating point unit is not enabled (PSR.FPE = 0), then dcmpl traps to an emulation routine.

Operation

if ((PSR.FPE = 1) AND (HCR.FPP = 1)) then
diff = double(stack[OPTOP + 16], stack[OPTOP + 12]) -

double(stack[OPTOP + 8], stack[OPTOP + 4])
if ((diff < 0.0) OR (diff = NaN)) then

stack[OPTOP + 16] ⇐ -1
else if (diff > 0.0) then

stack[OPTOP + 16] ⇐ 1
else

stack[OPTOP + 16] ⇐ 0
OPTOP⇐ OPTOP + 12

else
trap dcmpl (type = 0x97)

Notes

dcmpg anddcmpl differ only in how they compare values that involve NaN.

Format dcmpl
126 picoJava-II Programmer’s Reference Manual • March 1999

dconst_0 dconst_0
Push the double constant 0.0.

Forms

dconst_0 = 14 (0x0e)

Stack

… ⇒
…, 0, 0

Description

dconst_0 pushes the double constant 0.0 onto the operand stack.

Operation

stack[OPTOP] ⇐ 0
stack[OPTOP - 4] ⇐ 0
OPTOP⇐ OPTOP - 8

Notes

dconst_0 is identical tolconst_0 .

Format dconst_0
Chapter 6 Instruction Set 127

dconst_1 dconst_1
Push the double constant 1.0.

Forms

dconst_1 = 15 (0x0f)

Stack

… ⇒
…, 0, 0x3ff00000

Description

dconst_1 pushes the double constant 1.0 onto the operand stack.

Operation

stack[OPTOP] ⇐ 0
stack[OPTOP - 4] ⇐ 0x3ff00000
OPTOP⇐ OPTOP - 8

Format dconst_1
128 picoJava-II Programmer’s Reference Manual • March 1999

ddiv ddiv
Divide two doubles.

Forms

ddiv = 111 (0x6f)

Stack

…, value1<31:0>, value1<63:32>, value2<31:0>, value2<63:32> ⇒
…, result<31:0>, result<63:32>

Description

ddiv treats both value1 and value2 as the type double, pops them from the operand stack, and

pushes the double result, which is value1 ÷ value2, onto the operand stack.

result is governed by the rules of IEEE arithmetic, as follows:

• If value1 is NaN, result is value1 (NaN) with a positive sign.

• If value2 is NaN but value1 is not, result is value2 (NaN) with a positive sign.

• The sum of two infinities of opposite signs is NaN (0x7fffe00000000000).

• The sum of two infinities of the same sign is the infinity of that sign.

• The sum of an infinity and any finite value is equal to the infinity.

• The sum of two zeroes of opposite signs is positive zero.

• The sum of two zeroes of the same sign is the zero of that sign.

• The sum of a zero and a nonzero finite value is equal to the nonzero value.

• The sum of two nonzero finite values of the same magnitude and opposite signs is positive zero.

• In the remaining cases, where an infinity, a zero, or NaN is not involved and where the values

have the same sign or different magnitudes, the sum is rounded to the nearest representable

value with the IEEE 754 round-to-nearest mode. If the magnitude is too large to be represented

as a double, the operation overflows; result is then an infinity of the appropriate sign. If the

magnitude is too small to be represented as a double, the operation underflows; result is then a

zero of the appropriate sign.

If the floating point unit is not enabled (PSR.FPE = 0), then ddiv traps to an emulation routine.

Format ddiv
Chapter 6 Instruction Set 129

Operation

if ((PSR.FPE = 1) AND (HCR.FPP = 1)) then
double(stack[OPTOP + 12], stack[OPTOP + 16]) ⇐

double(stack[OPTOP + 12], stack[OPTOP + 16]) ÷
double(stack[OPTOP + 4], stack[OPTOP + 8])

OPTOP⇐ OPTOP + 8
else

trap ddiv (type = 0x6f)
130 picoJava-II Programmer’s Reference Manual • March 1999

dload dload
Load a double from a local variable.

Forms

dload = 24 (0x18)

Stack

… ⇒
…, value<31:0>, value<63:32>

Description

dload pushes a two-word local variable, which is at index stack entries offset from the start of the

current local variables, onto the operand stack.

Operation

stack[OPTOP] ⇐ stack[VARS - (index × 4)]
stack[OPTOP - 4] ⇐ stack[VARS - 4 - (index × 4)]
OPTOP⇐ OPTOP - 8

Notes

In the picoJava-II core, dload is identical to lload .

Format dload

index
Chapter 6 Instruction Set 131

dload_ n dload_ n
Load a double from a local variable.

Forms

dload_0 = 38 (0x26)

dload_1 = 39 (0x27)

dload_2 = 40 (0x28)

dload_3 = 41 (0x29)

Stack

… ⇒
…, value<31:0>, value<63:32>

Description

dload_ n pushes a two-word local variable, which is at n stack entries offset from the start of the

current local variables, onto the operand stack.

Operation

stack[OPTOP] ⇐ stack[VARS -(n × 4)]
stack[OPTOP - 4] ⇐ stack[VARS - 4 - (n × 4)]
OPTOP⇐ OPTOP - 8

Notes

In the picoJava-II core, dload_ n is identical to lload _n.

Format dload_ n
132 picoJava-II Programmer’s Reference Manual • March 1999

dmul dmul
Multiply two doubles.

Forms

dmul = 107 (0x6b)

Stack

…, value1<31:0>, value1<63:32>, value2<31:0>, value2<63:32> ⇒
…, result<31:0>, result<63:32>

Description

dmul treats both value1 and value2 as the type double and pops them from the operand stack. It

then pushes the double result, which is value1 × value2, onto the operand stack.

result is subject to the rules of IEEE arithmetic, as follows:

• If value1 is NaN, then result is value1 (NaN) with a positive sign.

• If value2 is NaN but value1 is not NaN, then result is value2 (NaN) with a positive sign.

• If neither value is NaN, then the sign of result is positive if both values have the same sign,

negative if the values have different signs.

• Multiplication of an infinity by a finite value results in a signed infinity according to the sign-

producing rule above.

• Multiplication of an infinity by a zero results in NaN (0x7fffe00000000000).

• In the remaining cases, where neither an infinity nor NaN is involved, the product is rounded to

the nearest representable value with the IEEE 754 round-to-nearest mode. If the magnitude is too

large to be represented as a double, the operation overflows; result is then an infinity of

appropriate sign. If the magnitude is too small to be represented as a double, the operation

underflows; result is then a zero of appropriate sign.

If the floating point unit is not enabled (PSR.FPE = 0), then dmul traps to an emulation routine.

Operation

if ((PSR.FPE = 1) AND (HCR.FPP = 1)) then
double(stack[OPTOP + 12], stack[OPTOP + 16]) ⇐

double(stack[OPTOP + 12], stack[OPTOP + 16]) ×
double(stack[OPTOP + 4], stack[OPTOP + 8])

OPTOP⇐ OPTOP + 8
else

trap dmul (type = 0x6b)

Format dmul
Chapter 6 Instruction Set 133

dneg dneg
Negate a double.

Forms

dneg = 119 (0x77)

Stack

…, value<31:0>, value<63:32> ⇒
…, result<31:0>, result<63:32>

Description

dneg treats value as the type double and pops it from the operand stack. The double result is –value,
which is the arithmetic negation of value. dneg then pushes result onto the operand stack.

For double values, negation is different from subtraction from zero. If x is +0.0, then 0.0 – x equals

+0.0, but –x equals –0.0. Unary minus merely inverts the sign of a double.

Also note the following rules:

• If the operand is NaN, then result is NaN; NaN has no sign.

• If the operand is an infinity, then result is the infinity of the opposite sign.

• If the operand is a zero, then result is the zero of the opposite sign.

In practice, negating a double-precision value is simply inverting the sign bit – bit 31 of the most

significant word.

Operation

stack[OPTOP + 4] ⇐ stack[OPTOP + 4] ^ 0x80000000

Notes

In the picoJava-II core, dneg is identical to fneg .

Format dneg
134 picoJava-II Programmer’s Reference Manual • March 1999

drem drem
Compute the remainder of two doubles.

Forms

drem = 115 (0x73)

Stack

…, value1<31:0>, value1<63:32>, value2<31:0>, value2<63:32> ⇒
…, result<31:0>, result<63:32>

Description

drem treats both value1 and value2 as the type double and pops them from the operand stack. It then

computes result and pushes it onto the operand stack as a double.

result is not the same as that of the remainder operation defined by IEEE 754, which computes the

remainder from a rounding division, not a truncating division, causing a different behavior from

that of the usual integer remainder operator. drem operates in the manner specified by the Java

virtual machine.

result is subject to the rules of IEEE arithmetic, as follows:

• If value1 is NaN, then result is value1 (NaN) with a positive sign.

• If value2 is NaN but value1 is not NaN, then result is value2 (NaN) with a positive sign.

• If neither value is NaN, then the sign of result equals the sign of the dividend.

• If the dividend is an infinity, or the divisor is a zero, or both, then result is NaN

(0x7fffe00000000000).

• If the dividend is finite and the divisor is an infinity, then the result equals the dividend.

• If the dividend is a zero and the divisor is finite, then the result equals the dividend.

• In the remaining cases, where an infinity, a zero, or NaN is not involved, the floating-point

remainder result from a dividend value1 and a divisor value2 is defined by the mathematical

relation result = value1 - (value2 × q), where q is an integer that is negative only if

value1 ÷ value2 is negative and positive only if value1 ÷ value2 is positive, and whose magnitude

is as large as possible without exceeding the magnitude of the true mathematical quotient of

value1 and value2.

If the floating point unit is not enabled (PSR.FPE = 0) or the drem trap bit is set (PSR.DRT = 1),

then dadd traps to an emulation routine.

Format drem
Chapter 6 Instruction Set 135

Operation

if ((PSR.DRT = 0) AND (PSR.FPE = 1) AND (HCR.FPP = 1)) then
double(stack[OPTOP + 12], stack[OPTOP + 16]) ⇐

double(stack[OPTOP + 12], stack[OPTOP + 16]) %
double(stack[OPTOP + 4], stack[OPTOP + 8])

OPTOP⇐ OPTOP + 8
else

trap drem (type = 0x73)

Notes

drem , when executed by the floating point unit, may take in excess of 2,000 uninterruptible cycles

to complete. You can prevent these long-running, uninterruptible instructions by setting the

PSR.DRT bit and emulating them in software.
136 picoJava-II Programmer’s Reference Manual • March 1999

dreturn dreturn
Return a double from a method.

Forms

dreturn = 175 (0xaf)

Stack

…, value<31:0>, value<63:32>⇒
[empty]

Description

dreturn returns to the caller of this method, popping all the arguments to the current method and

pushing the double that is at the top of the operand stack onto the top of the caller’s operand stack.

Operation

PC ⇐ stack[FRAME]
CONST_POOL⇐ stack[FRAME - 12]
ret_value_word1 ⇐ stack[OPTOP + 4]
ret_value_word2 ⇐ stack[OPTOP + 8]
VARS ⇐ stack[FRAME - 4]
FRAME⇐ stack[FRAME - 8]
OPTOP⇐ VARS + 8
stack[OPTOP + 4] ⇐ ret_value_word1
stack[OPTOP + 8] ⇐ ret_value_word2

Notes

In the picoJava-II core, dreturn is identical to lreturn .

Format dreturn
Chapter 6 Instruction Set 137

dstore dstore
Store a double to a local variable.

Forms

dstore = 57 (0x39)

Stack

…, value<31:0>, value<63:32> ⇒
…

Description

dstore stores the double on the top of the operand stack into a two-word local variable, which is at

index stack entries offset from the start of the current local variables.

Operation

stack[VARS - (index × 4)] ⇐ stack[OPTOP + 8]
stack[VARS - 4 - (index × 4)] ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 8

Notes

In the picoJava-II core, dstore is identical to lstore .

Format dstore

index
138 picoJava-II Programmer’s Reference Manual • March 1999

dstore_ n dstore_ n
Store a double to a local variable.

Forms

dstore_0 = 71 (0x47)

dstore_1 = 72 (0x48)

dstore_2 = 73 (0x49)

dstore_3 = 74 (0x4a)

Stack

…, value<31:0>, value<63:32> ⇒
…

Description

dstore_ n stores the double on the top of the operand stack into a two-word local variable, which

is at n stack entries offset from the start of the current local variables.

Operation

stack[VARS - (n × 4)] ⇐ stack[OPTOP + 8]
stack[VARS - 4 - (n × 4)] ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 8

Notes

In the picoJava-II core, dstore_ n is identical to lstore_ n.

Format dstore_ n
Chapter 6 Instruction Set 139

dsub dsub
Subtract two doubles.

Forms

dsub = 103 (0x67)

Stack

…, value1<31:0>, value1<63:32>, value2<31:0>, value2<63:32> ⇒
…, result<31:0>, result<63:32>

Description

dsub treats both value1 and value2 as the type double and pops them from the operand stack. It

then pushes the double result, which is value1 – value2, onto the operand stack.

result is subject to the rules of IEEE arithmetic, as follows:

• If value1 is NaN, then result is value1 (NaN) with a positive sign.

• If value2 is NaN but value1 is not NaN, then result is value2 (NaN) with a positive sign.

• The difference of two infinities of the same sign is NaN (0x7fffe00000000000).

• The difference of two infinities of opposite signs is value1.

• The difference of an infinity and any finite value is equal to the infinity.

• The difference of two zeroes of opposite signs is value1.

• The difference of two zeroes of the same sign is positive zero.

• If value1 is a zero and value2 is a nonzero finite value, then result is value2 with the opposite sign.

• If value1 is a nonzero finite value and value2 is a zero, then result is value1.

• The difference of two nonzero finite values of the same magnitude and same sign is positive zero.

• In the remaining cases, where an infinity, a zero, or NaN is not involved and where the values

have the same sign or different magnitudes, the sum is rounded to the nearest representable

value with the IEEE 754 round-to-nearest mode. If the magnitude is too large to be represented

as a double, the operation overflows; result is then an infinity of the appropriate sign. If the

magnitude is too small to be represented as a double, the operation underflows; result is then a

zero of the appropriate sign.

If the Floating Point Unit (FPU) is not enabled (PSR.FPE = 0), then dsub traps to an emulation

routine.

Format dsub
140 picoJava-II Programmer’s Reference Manual • March 1999

Operation

if ((PSR.FPE = 1) AND (HCR.FPP = 1)) then
double(stack[OPTOP + 12], stack[OPTOP + 16]) ⇐

double(stack[OPTOP + 12],stack[OPTOP + 16]) −
double(stack[OPTOP + 4], stack[OPTOP + 8])

OPTOP⇐ OPTOP + 8
else

trap dsub (type = 0x67)
Chapter 6 Instruction Set 141

dup dup
Duplicate the top operand stack word.

Forms

dup = 89 (0x59)

Stack

…, value ⇒
…, value, value

Description

dup duplicates the word on the top of the stack and pushes it onto the operand stack.

Operation

stack[OPTOP] ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP - 4

Format dup
142 picoJava-II Programmer’s Reference Manual • March 1999

dup_x1 dup_x1
Duplicate top operand stack word and put two words down in the stack.

Forms

dup_x1 = 90 (0x5a)

Stack

…, value2, value1⇒
…, value1, value2, value1

Description

dup_x1 duplicates the word on the top of the stack and inserts it two words down from the top of

the operand stack.

Operation

stack[OPTOP] ⇐ stack[OPTOP + 4]
stack[OPTOP + 4] ⇐ stack[OPTOP + 8]
stack[OPTOP + 8] ⇐ stack[OPTOP]
OPTOP⇐ OPTOP - 4

Format dup_x1
Chapter 6 Instruction Set 143

dup_x2 dup_x2
Duplicate the top operand stack word and put three words down in the stack.

Forms

dup_x2 = 91 (0x5b)

Stack

…, value3, value2, value1⇒
…, value1, value3, value2, value1

Description

dup_x2 duplicates the word on the top of the stack and inserts it three words down from the top of

the operand stack.

Operation

stack[OPTOP] ⇐ stack[OPTOP + 4]
stack[OPTOP + 4] ⇐ stack[OPTOP + 8]
stack[OPTOP + 8] ⇐ stack[OPTOP + 12]
stack[OPTOP + 12] ⇐ stack[OPTOP]
OPTOP⇐ OPTOP - 4

Format dup_x1
144 picoJava-II Programmer’s Reference Manual • March 1999

dup2 dup2
Duplicate the top two operand stack words.

Forms

dup2 = 92 (0x5c)

Stack

…, value2, value1⇒
…, value2, value1, value2, value1

Description

dup2 duplicates the two words on the top of the stack and pushes them onto the operand stack.

Operation

stack[OPTOP-4] ⇐ stack[OPTOP + 4]
stack[OPTOP] ⇐ stack[OPTOP + 8]
OPTOP⇐ OPTOP - 8

Format dup2
Chapter 6 Instruction Set 145

dup2_x1 dup2_x1
Duplicate the top two operand stack words and put three words down in the stack.

Forms

dup2 _x1 = 93 (0x5d)

Stack

…, value3, value2, value1 ⇒
…, value2, value1, value3, value2, value1

Description

dup2 _x1 duplicates the two words on the top of the stack and inserts them three words down from

the top of the operand stack.

Operation

stack[OPTOP - 4] ⇐ stack[OPTOP + 4]
stack[OPTOP] ⇐ stack[OPTOP + 8]
stack[OPTOP + 4] ⇐ stack[OPTOP + 12]
stack[OPTOP + 8] ⇐ stack[OPTOP - 4]
stack[OPTOP + 12] ⇐ stack[OPTOP]
OPTOP⇐ OPTOP - 8

Format dup2_x1
146 picoJava-II Programmer’s Reference Manual • March 1999

dup2_x2 dup2_x2
Duplicate the top two operand stack words and put four words down in the stack.

Forms

dup2 _x2 = 94 (0x5e)

Stack

…, value4, value3, value2, value1 ⇒
…, value2, value1, value4, value3, value2, value1

Description

dup2 _x2 duplicates the two words on the top of the stack and inserts them four words down from

the top of the operand stack.

Operation

stack[OPTOP - 4] ⇐ stack[OPTOP + 4]
stack[OPTOP] ⇐ stack[OPTOP + 8]
stack[OPTOP + 4] ⇐ stack[OPTOP + 12]
stack[OPTOP + 8] ⇐ stack[OPTOP + 16]
stack[OPTOP + 12] ⇐ stack[OPTOP - 4]
stack[OPTOP + 16] ⇐ stack[OPTOP]
OPTOP⇐ OPTOP - 8

Format dup2_x2
Chapter 6 Instruction Set 147

exit_sync_method exit_sync_method
Jump to the return code for a synchronized method.

Forms

exit_sync_method = 236 (0xec)

Stack

… ⇒
…

Description

exit_sync_method branches to the address stored in the stack location at FRAME– 20. It does not

modify the stack.

Operation

PC ⇐ stack[FRAME - 20]

Notes

exit_sync_method supports synchronized methods on the picoJava-II core. For details, see

Invoking a Synchronized Method on page 391.

Format exit_sync_method
148 picoJava-II Programmer’s Reference Manual • March 1999

f2d f2d
Convert a float to a double.

Forms

f2d = 141 (0x8d)

Stack

…, value ⇒
…, result<31:0>, result<63:32>

Description

f2d treats the value on the top of the operand stack as the type float, then pops it from the operand

stack and converts it to a double, which it pushes onto the operand stack.

If the floating point unit is not enabled (PSR.FPE = 0), f2d traps to an emulation routine.

Operation

if ((PSR.FPE = 1) AND (HCR.FPP = 1)) then
double(stack[OPTOP], stack[OPTOP + 4]) ⇐

convert f2d (float(stack[OPTOP + 4]))
OPTOP⇐ OPTOP - 4

else
trap f2d (type = 0x8d)

Format f2d
Chapter 6 Instruction Set 149

f2i f2i
Convert a float to an integer.

Forms

f2i = 139 (0x8b)

Stack

…, value ⇒
…, result

Description

f2i treats the value on the top of the operand stack (value) as the type float, pops it from the

operand stack, and converts it to an integer. It then pushes the result (result) onto the operand stack.

If value is NaN, then result is the integer 0. If value is not an infinity, then f2i rounds it to an integer

toward zero with the IEEE 754 round-toward-zero mode. If that integer is a 32-bit integer, then it

becomes result . Otherwise, either of the following conditions applies:

• value must be too small (a negative value of large magnitude or negative infinity) and result is
–2147483648 (0x8000000)

• value must be too large (a positive value of large magnitude or positive infinity) and result is
2147483647 (0x7fffffff).

If the floating point unit is not enabled (PSR.FPE = 0), then f2i traps to an emulation routine.

Operation

if ((PSR.FPE = 1) AND (HCR.FPP = 1)) then
stack[OPTOP + 4] ⇐ convert f2i (float(stack[OPTOP + 4]))

else
trap f2i (type = 0x8b)

Notes

result may lose precision and information about the overall magnitude of value.

Format f2i
150 picoJava-II Programmer’s Reference Manual • March 1999

f2l f2l
Convert a float to a long.

Forms

f2l = 140 (0x8c)

Stack

…, value ⇒
…, result<31:0>, result<63:32>

Description

f2l treats the value on the top of the operand stack (value) as the type float, pops it from the

operand stack, and converts it to a long integer. It then pushes the result (result) onto the operand

stack.

If value is NaN, then result is the long integer 0. If value is not an infinity, then f2l rounds it to a long

integer toward zero with the IEEE 754 round-toward-zero mode. If that long integer is a 64-bit long

integer, then it becomes result. Otherwise, either of the following conditions applies:

• value must be too small (a negative value of large magnitude or negative infinity) and result is
–9223372036854775808 (0x800000000000000)

• value must be too large (a positive value of large magnitude or positive infinity) and result is
9223372036854775807 (0x7fffffffffffffff).

If the floating point unit is not enabled (PSR.FPE = 0), f2l traps to an emulation routine.

Operation

if ((PSR.FPE = 1) AND (HCR.FPP = 1)) then
long(stack[OPTOP],stack[OPTOP + 4]) ⇐

convert f2l (float(stack[OPTOP + 4])
else

trap f2l (type = 0x8c)

Notes

result may lose precision and information about the overall magnitude of value.

Format f2l
Chapter 6 Instruction Set 151

fadd fadd
Add two floats.

Forms

fadd = 98 (0x62)

Stack

…, value1, value2 ⇒
…, result

Description

fadd treats both value1 and value2 as the type float and pops them from the operand stack. It then

pushes result, which is a float and the sum of value1 + value2, onto the operand stack.

result is subject to the rules of IEEE arithmetic, as follows:

• If value1 is NaN, then result is value1 (NaN) with a positive sign.

• If value2 is NaN but value1 is not, then result is value2 (NaN) with a positive sign.

• The sum of two infinities of opposite signs is NaN (0x7fff0000).

• The sum of two infinities of the same sign is the infinity of that sign.

• The sum of an infinity and any finite value is equal to the infinity.

• The sum of two zeroes of opposite signs is positive zero.

• The sum of two zeroes of the same sign is the zero of that sign.

• The sum of a zero and a nonzero finite value is equal to the nonzero value.

• The sum of two nonzero finite values of the same magnitude and opposite signs is positive zero.

• In the remaining cases, where an infinity, a zero, or NaN is not involved and where the values

have the same sign or different magnitudes, the sum is rounded to the nearest representable

value with the IEEE 754 round-to-nearest mode. If the magnitude is too large to be represented

as a float, the operation overflows; result is then an infinity of the appropriate sign. If the

magnitude is too small to be represented as a float, the operation underflows; result is then a zero

of the appropriate sign.

If the floating point unit is not enabled (PSR.FPE = 0), then fadd traps to an emulation routine.

Format fadd
152 picoJava-II Programmer’s Reference Manual • March 1999

Operation

if ((PSR.FPE = 1) AND (HCR.FPP = 1)) then
float(stack[OPTOP + 8]) ⇐

float(stack[OPTOP + 8]) + float(stack[OPTOP + 4])
OPTOP⇐ OPTOP + 4

else
trap fadd (type = 0x62)
Chapter 6 Instruction Set 153

faload faload
Load a float from an array.

Forms

faload = 48 (0x30)

Stack

…, arrayref, index ⇒
…, value

Description

faload treats arrayref as a reference to an array of floats. It loads the one-word element at index and

pushes it onto the stack as value.

If arrayref is null , then faload takes a NullPointer trap. If index is not within the bounds of the

array that arrayref references, then faload takes an ArrayIndexOutOfBounds trap.

Operation

arrayref ⇐ stack[OPTOP + 8]
if (arrayref = 0) then

trap NullPointer (type = 0x1b)
index ⇐ stack[OPTOP + 4]
if (index < 0) then

trap ArrayIndexOutOfBounds (type = 0x19)
handle_bit ⇐ arrayref & 0x00000001
if (handle_bit = 1) then

addr_of_length ⇐ mem[(arrayref & 0x7ffffffc) + 4]
else

addr_of_length ⇐ (arrayref & 0x7ffffffc) + 4
length ⇐ mem[addr_of_length]
if (index ≥ length) then

trap ArrayIndexOutOfBounds (type = 0x19)
stack[OPTOP + 8] ⇐ mem[addr_of_length + 4 + (index × 4)]
OPTOP⇐ OPTOP + 4

Notes

faload is identical to iaload and aaload .

Format faload
154 picoJava-II Programmer’s Reference Manual • March 1999

fastore fastore
Store a float to an array.

Forms

fastore = 81 (0x51)

Stack

…, arrayref, index, value⇒
…

Description

fastore treats arrayref as a reference to an array of floats. It stores the float value on the stack to the

one-word element at index of the array.

If arrayref is null , then fastore takes a NullPointer trap. If index is not within the bounds of

the array that arrayref references, then fastore takes an ArrayIndexOutOfBounds trap.

Operation

arrayref ⇐ stack[OPTOP + 12]
if (arrayref = 0) then

trap NullPointer (type = 0x1b)
index ⇐ stack[OPTOP + 8]
if (index < 0) then

trap ArrayIndexOutOfBounds (type = 0x19)
handle_bit ⇐ arrayref & 0x00000001
if (handle_bit = 1) then

addr_of_length ⇐ mem[(arrayref & 0x7ffffffc) + 4]
else

addr_of_length ⇐ (arrayref & 0x7ffffffc) + 4
length ⇐ mem[addr_of_length]
if (index ≥ length) then

trap ArrayIndexOutOfBounds (type = 0x19)
mem[addr_of_length + 4 + (index × 4)] ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 12

Notes

fastore is identical to iastore .

Format fastore
Chapter 6 Instruction Set 155

fcmpg fcmpg
Compare two floats with greater than on NaN.

Forms

fcmpg = 150 (0x96)

Stack

…, value1, value2 ⇒
…, result

Description

fcmpg treats both value1 and value2 as the type float, pops them from the operand stack, then

performs a floating-point comparison and executes as follows:

• If value1 is greater than value2, then fcmpg pushes the integer value 1 onto the operand stack.

• If value1 is equal to value2, then fcmpg pushes the integer value 0 onto the operand stack.

• If value1 is less than value2, then fcmpg pushes the integer value –1 onto the operand stack.

• If either value1 or value2 is a NaN, then fcmpg pushes the integer value 1 onto the operand stack.

fcmpg performs floating-point comparisons according to IEEE 754 rules: It orders all values other

than NaN with negative infinity less than all finite values and positive infinity greater than all finite

values. Positive zero and negative zero are considered equal.

If the floating point unit is not enabled (PSR.FPE = 0), fcmpg traps to an emulation routine.

Operation

if ((PSR.FPE = 1) AND (HCR.FPP = 1)) then
diff = float(stack[OPTOP + 8]) - float(stack[OPTOP + 4])
if (diff < 0.0) then

stack[OPTOP + 8] ⇐ -1
else if ((diff > 0.0) OR (diff = NaN)) then

stack[OPTOP + 8] ⇐ 1
else

stack[OPTOP + 8] ⇐ 0
OPTOP⇐ OPTOP + 4

else
trap fcmpg (type = 0x96)

Notes

fcmpg andfcmpl differ only in how they compare values that involve NaN.

Format fcmpg
156 picoJava-II Programmer’s Reference Manual • March 1999

fcmpl fcmpl
Compare two floats with less than on NaN.

Forms

fcmpl = 149 (0x95)

Stack

…, value1, value2 ⇒
…, result

Description

fcmpl treats both value1 and value2 as the type float, pops them from the operand stack, then

performs a floating-point comparison and executes as follows:

• If value1 is greater than value2, then fcmpl pushes the integer value 1 onto the operand stack.

• If value1 is equal to value2, then fcmpl pushes the integer value 0 onto the operand stack.

• If value1 is less than value2, then fcmpl pushes the integer value –1 onto the operand stack.

• If either value1 or value2 is a NaN, then fcmpl pushes the integer value –1 onto the operand

stack.

fcmpl performs floating-point comparisons according to IEEE 754 rules: It orders all values other

than NaN with negative infinity less than all finite values and positive infinity greater than all finite

values. Positive zero and negative zero are considered equal.

If the floating point unit is not enabled (PSR.FPE = 0), fcmpl traps to an emulation routine.

Operation

if ((PSR.FPE = 1) AND (HCR.FPP = 1)) then
diff = float(stack[OPTOP + 8]) - float(stack[OPTOP + 4])
if ((diff < 0.0) OR (diff = NaN)) then

stack[OPTOP + 8] ⇐ -1
else if (diff > 0.0) then

stack[OPTOP + 8] ⇐ 1
else

stack[OPTOP + 8] ⇐ 0
OPTOP⇐ OPTOP + 4

else
trap fcmpl (type = 0x95)

Notes

fcmpg andfcmpl differ only in how they compare values that involve NaN.

Format fcmpl
Chapter 6 Instruction Set 157

fconst_0 fconst_0
Push the floating-point constant 0.0.

Forms

fconst_0 = 11 (0x0b)

Stack

…⇒
…, 0

Description

fconst_0 pushes the float constant 0.0 onto the operand stack.

Operation

stack[OPTOP] ⇐ 0
OPTOP⇐ OPTOP - 4

Notes

In the picoJava-II core, fconst_0 is equivalent to iconst_0 and aconst_null .

Format fconst_0
158 picoJava-II Programmer’s Reference Manual • March 1999

fconst_1 fconst_1
Push the float constant 1.0.

Forms

fconst_1 = 12 (0x0c)

Stack

… ⇒
…, 0x3f800000

Description

fconst_1 pushes the float constant 1.0 onto the operand stack.

Operation

stack[OPTOP] ⇐ 0x3f800000
OPTOP⇐ OPTOP - 4

Format fconst_1
Chapter 6 Instruction Set 159

fconst_2 fconst_2
Push the float constant 2.0.

Forms

fconst_2 = 13 (0x0d)

Stack

… ⇒
…, 0x40000000

Description

fconst_2 pushes the float constant 2.0 onto the operand stack.

Operation

stack[OPTOP] ⇐ 0x40000000
OPTOP⇐ OPTOP - 4

Format fconst_2
160 picoJava-II Programmer’s Reference Manual • March 1999

fdiv fdiv
Divide two floats.

Forms

fdiv = 110 (0x6e)

Stack

…, value1, value2 ⇒
…, result

Description

fdiv treats both value1 and value2 as the type float, pops them from the operand stack, and pushes

the float result, which is value1 ÷ value2, onto the operand stack.

result is governed by the rules of IEEE arithmetic, as follows:

• If value1 is NaN, then result is value1 (NaN) with a positive sign.

• If value2 is NaN but value1 is not, then result is value2 (NaN) with a positive sign.

• The sum of two infinities of opposite signs is NaN (0x7fff0000).

• The sum of two infinities of the same sign is the infinity of that sign.

• The sum of an infinity and any finite value is equal to the infinity.

• The sum of two zeroes of opposite signs is positive zero.

• The sum of two zeroes of the same sign is the zero of that sign.

• The sum of a zero and a nonzero finite value is equal to the nonzero value.

• The sum of two nonzero finite values of the same magnitude and opposite signs is positive zero.

• In the remaining cases, where an infinity, a zero, or NaN is not involved and where the values

have the same sign or different magnitudes, the sum is rounded to the nearest representable

value with the IEEE 754 round-to-nearest mode. If the magnitude is too large to be represented

as a float, the operation overflows; result is then an infinity of the appropriate sign. If the

magnitude is too small to be represented as a float, the operation underflows; result is then a zero

of the appropriate sign.

If the Floating Point Unit (FPU) is not enabled (PSR.FPE = 0), fdiv traps to an emulation routine.

Format fdiv
Chapter 6 Instruction Set 161

Operation

if ((PSR.FPE = 1) AND (HCR.FPP = 1)) then
float(stack[OPTOP + 8]) ⇐

float(stack[OPTOP + 8]) ÷ float(stack[OPTOP + 4])
OPTOP⇐ OPTOP + 4

else
trap fdiv (type = 0x6e)
162 picoJava-II Programmer’s Reference Manual • March 1999

fload fload
Load a float from a local variable.

Forms

fload = 23 (0x17)

Stack

… ⇒
…, value

Description

fload pushes a one-word local variable, which is at index stack entries offset from the start of the

current local variables, onto the operand stack.

Operation

stack[OPTOP] ⇐ stack[VARS - (index × 4)]
OPTOP⇐ OPTOP - 4

Notes

In the picoJava-II core, fload is identical to aload and iload .

Format fload

index
Chapter 6 Instruction Set 163

fload_ n fload_ n
Load a float from a local variable.

Forms

fload_0 = 34 (0x22)

fload_1 = 35 (0x23)

fload_2 = 36 (0x24)

fload_3 = 37 (0x25)

Stack

… ⇒
…, value

Description

fload_ n pushes a one-word local variable, which is at n stack entries offset from the start of the

current local variables, onto the operand stack.

Operation

stack[OPTOP] ⇐ stack[VARS -(n × 4)]
OPTOP⇐ OPTOP - 4

Notes

In the picoJava-II core, fload_ n is identical to aload_ n and iload_ n.

Format fload_ n
164 picoJava-II Programmer’s Reference Manual • March 1999

fmul fmul
Multiply two floats.

Forms

fmul = 106 (0x6a)

Stack

…, value1, value2 ⇒
…, result

Description

fmul treats both value1 and value2 as the type float and pops them from the operand stack. It then

pushes the float result, which is value1 × value2, onto the operand stack.

result is subject to the rules of IEEE arithmetic, as follows:

• If value1 is NaN, then result is value1 (NaN) with a positive sign.

• If value2 is NaN but value1 is not NaN, then result is value2 (NaN) with a positive sign.

• If neither value is NaN, then the sign of result is positive if both values have the same sign,

negative if the values have different signs.

• Multiplication of an infinity by a finite value results in a signed infinity according to the sign-

producing rule (see two bullets above).

• Multiplication of an infinity by a zero results in NaN (0x7fff0000).

• In the remaining cases, where neither an infinity nor NaN is involved, the product is rounded to

the nearest representable value with the IEEE 754 round-to-nearest mode. If the magnitude is too

large to be represented as a float, the operation overflows; result is then an infinity of appropriate

sign. If the magnitude is too small to be represented as a float, the operation underflows; result
is then a zero of appropriate sign.

If the Floating Point Unit (FPU) is not enabled (PSR.FPE = 0), fmul traps to an emulation routine.

Operation

if ((PSR.FPE = 1) AND (HCR.FPP = 1)) then
float(stack[OPTOP + 8]) ⇐

float(stack[OPTOP + 8]) × float(stack[OPTOP + 4])
OPTOP⇐ OPTOP + 4

else
trap fmul (type = 0x6a)

Format fmul
Chapter 6 Instruction Set 165

fneg fneg
Negate a float.

Forms

fneg = 118 (0x76)

Stack

…, value ⇒
…, result

Description

dneg treats value as the type float and pops it from the operand stack. The float result is –value,
which is the arithmetic negation of value. fneg then pushes result onto the operand stack.

For float values, negation is different from subtraction from zero. If x is +0.0, then 0.0 – x equals

+0.0, but –x equals –0.0. Unary minus merely inverts the sign of a float.

Also note the following rules:

• If the operand is NaN, then result is NaN; NaN has no sign.

• If the operand is an infinity, then result is the infinity of the opposite sign.

• If the operand is a zero, then result is the zero of the opposite sign.

In practice, negating a float precision value is simply inverting the sign bit – bit 31.

Operation

stack[OPTOP + 4] ⇐ stack[OPTOP + 4] XOR 0x80000000

Notes

In the picoJava-II core, fneg is identical to dneg .

Format fneg
166 picoJava-II Programmer’s Reference Manual • March 1999

frem frem
Compute the remainder of two floats.

Forms

frem = 114 (0x72)

Stack

…, value1, value2 ⇒
…, result

Description

frem treats both value1 and value2 as the type float and pops them from the operand stack. It then

computes result and pushes it onto the operand stack as a float.

result is not the same as that of the remainder operation defined by IEEE 754, which computes the

remainder from a rounding division, not a truncating division, causing a different behavior from

that of the usual integer remainder operator. frem operates in the manner specified by the Java

virtual machine.

result is subject to the rules of IEEE arithmetic, as follows:

• If value1 is NaN, then result is value1 (NaN) with a positive sign.

• If value2 is NaN but value1 is not NaN, then result is value2 (NaN) with a positive sign.

• If neither value is NaN, then the sign of result equals the sign of the dividend.

• If the dividend is an infinity, or the divisor is a zero, or both, then result is NaN (0x7fff0000).

• If the dividend is finite and the divisor is an infinity, then the result equals the dividend.

• If the dividend is a zero and the divisor is finite, then the result equals the dividend.

• In the remaining cases, where an infinity, a zero, or NaN is not involved, the floating-point

remainder result from a dividend value1 and a divisor value2 is defined by the mathematical

relation result = value1 − (value2 × q), where q is an integer that is negative only if

value1 ÷ value2 is negative and positive only if value1 ÷ value2 is positive, and whose magnitude

is as large as possible without exceeding the magnitude of the true mathematical quotient of

value1 and value2.

If the floAting Point Unit (FPU) is not enabled (PSR.FPE = 0), frem traps to an emulation routine.

Format frem
Chapter 6 Instruction Set 167

Operation

if ((PSR.FPE = 1) AND (HCR.FPP = 1)) then
float(stack[OPTOP + 8]) ⇐

float(stack[OPTOP + 8]) % float(stack[OPTOP + 4])
OPTOP⇐ OPTOP + 4

else
trap frem (type = 0x72)
168 picoJava-II Programmer’s Reference Manual • March 1999

freturn freturn
Return a float from a method.

Forms

freturn = 174 (0xae)

Stack

…, value ⇒
[empty]

Description

freturn returns to the caller of this method, popping all the arguments to the current method and

pushing the float that is at the top of the operand stack onto the top of the caller’s operand stack.

Operation

PC ⇐ stack[FRAME]
CONST_POOL⇐ stack[FRAME - 12]
ret_value_word1 ⇐ stack[OPTOP + 4]
VARS ⇐ stack[FRAME - 4]
FRAME⇐ stack[FRAME - 8]
OPTOP⇐ VARS + 4
stack[OPTOP + 4] ⇐ ret_value_word1

Notes

In the picoJava-II core, freturn is identical to ireturn and areturn .

Format freturn
Chapter 6 Instruction Set 169

fstore fstore
Store a float to a local variable.

Forms

fstore = 56 (0x38)

Stack

…, value ⇒
…

Description

fstore stores the float on the top of the operand stack into a one-word local variable, which is at

index stack entries offset from the start of the current local variables.

Operation

stack[VARS - (index × 4)] ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 4

Notes

In the picoJava-II core, fstore is identical to istore and astore .

Format fstore

index
170 picoJava-II Programmer’s Reference Manual • March 1999

fstore_ n fstore_ n
Store a float to a local variable.

Forms

fstore_0 = 67 (0x43)

fstore_1 = 68 (0x44)

fstore_2 = 69 (0x45)

fstore_3 = 70 (0x46)

Stack

…, value ⇒
…

Description

fstore_ n stores the float on the top of the operand stack into a one-word local variable, which is at

n stack entries offset from the start of the current local variables.

Operation

stack[VARS - (n × 4)] ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 4

Notes

In the picoJava-II core, fstore_ n is identical to istore_ n and astore_ n.

Format fstore_ n
Chapter 6 Instruction Set 171

fsub fsub
Subtract two floats.

Forms

fsub = 102 (0x66)

Stack

…, value1, value2 ⇒
…, result

Description

fsub treats both value1 and value2 as the type float and pops them from the operand stack. It then

pushes the float result, which is value1 – value2, onto the operand stack.

result is subject to the rules of IEEE arithmetic, as follows:

• If value1 is NaN, then result is value1 (NaN) with a positive sign.

• If value2 is NaN but value1 is not NaN, then result is value2 (NaN) with a positive sign.

• The difference of two infinities of the same sign is NaN (0x7fff0000).

• The difference of two infinities of opposite signs is value1.

• The difference of an infinity and any finite value is equal to the infinity.

• The difference of two zeroes of opposite signs is value1.

• The difference of two zeroes of the same sign is positive zero.

• If value1 is a zero and value2 is a nonzero finite value, then result is value2 with the opposite sign.

• If value1 is a nonzero finite value and value2 is a zero, then result is value1.

• The difference of two nonzero finite values of the same magnitude and same sign is positive zero.

• In the remaining cases, where an infinity, a zero, or NaN is not involved and where the values

have the same sign or different magnitudes, the sum is rounded to the nearest representable

value with the IEEE 754 round-to-nearest mode. If the magnitude is too large to be represented

as a float, the operation overflows; result is then an infinity of the appropriate sign. If the

magnitude is too small to be represented as a float, the operation underflows; result is then a zero

of the appropriate sign.

If the Floating Point Unit (FPU) is not enabled (PSR.FPE = 0), fsub traps to an emulation routine.

Format fsub
172 picoJava-II Programmer’s Reference Manual • March 1999

Operation

if ((PSR.FPE = 1) AND (HCR.FPP = 1)) then
float(stack[OPTOP + 8]) ⇐

float(stack[OPTOP + 8]) − float(stack[OPTOP + 4])
OPTOP⇐ OPTOP + 4

else
trap fsub (type = 0x66)
Chapter 6 Instruction Set 173

get_current_class get_current_class
Push the class pointer for the current method.

Forms

extend = 255 (0xff)

get_current_class = 55 (0x37)

Stack

… ⇒
…, classref

Description

get_current_class returns the class reference for the current method. For example, it

determines which object to lock while entering a static synchronized method.

Operation

curr_method ⇐ stack[FRAME - 16]
stack[OPTOP] ⇐ mem[curr_method + 32]
OPTOP⇐ OPTOP - 4

Notes

get_current_class supports synchronized methods on the picoJava-II core. For details, see

Invoking a Synchronized Method on page 391.

Format extend

get_current_class
174 picoJava-II Programmer’s Reference Manual • March 1999

getfield getfield
Trap to emulation routine that resolves the constant pool and reads a field in an object.

Forms

getfield = 180 (0xb4)

Stack

…, objectref ⇒
…, value or …, value<31:0>, value<63:32>

Description

getfield traps to the emulation routine referenced by entry 0xb4 in the trap table.

Operation

trap getfield (type = 0xb4)

Recommendations

The trap handler should emulate getfield , as defined in The Java Virtual Machine Specification.

When the constant pool entry referenced by getfield is resolved, the getfield trap handler

computes the offset for the field it references and determines the field type which, along with the

size of the offset, in turn determines whether a getfield_quick , getfield_quick_w ,

getfield2_quick , or agetfield_quick opcode byte should replace the original getfield
opcode byte.

If the getfield operates on a field determined dynamically to have an offset into the class

instance data that corresponds to a one-word field that is of the type reference, the getfield trap

handler should replace the getfield instruction with agetfield_quick . Otherwise, if the offset

into the object is less than or equal to 255 words, the getfield instruction should be replaced with

getfield_quick or getfield2_quick if the field is one or two words in size, respectively.

Finally, if the offset is larger than 255 words, then the getfield trap handler should replace the

getfield with getfield_quick_w .

Format getfield

indexbyte1
indexbyte2
Chapter 6 Instruction Set 175

getfield_quick getfield_quick
Read a one-word field from an object.

Forms

getfield_quick = 206 (0xce)

Stack

…, objectref ⇒
…, value

Description

getfield_quick pops objectref, which must be a reference type, from the operand stack. It then

reads value, which must be one word in size, from the offset index into the class instance referenced

by objectref and pushes it onto the stack.

If objectref is null , then getfield_quick throws NullPointerException .

Operation

objectref ⇐ stack[OPTOP + 4]
if (objectref = 0) then

trap NullPointer (type = 0x1b)
handle_bit ⇐ objectref & 0x00000001
if (handle_bit = 1) then

addr_of_fields ⇐ mem[(objectref & 0x7ffffffc) + 4]
else

addr_of_fields ⇐ (objectref & 0x7ffffffc) + 4
stack[OPTOP + 4] ⇐ mem[addr_of_fields + (index × 4)]

Format getfield_quick

index
<unused>
176 picoJava-II Programmer’s Reference Manual • March 1999

getfield_quick_w getfield_quick_w
Trap to emulation routine that reads a field in an object, with a wide index.

Forms

getfield_quick_w = 227 (0xe3)

Stack

…, objectref ⇒
…, value or …, value<31:0>, value<63:32>

Description

getfield_quick_w traps to the emulation routine referenced by entry 0xe3 in the trap table.

Operation

trap getfield_quick_w (type = 0xe3)

Recommendations

The trap handler should emulate getfield_quick_w , as defined in The Java Virtual Machine
Specification. The getfield_quick_w trap handler can perform the required load quickly because

the constant pool entry should already have been resolved by the getfield trap handler.

Format getfield_quick_w

indexbyte1
indexbyte2
Chapter 6 Instruction Set 177

getfield2_quick getfield2_quick
Read a two-word field from an object.

Forms

getfield2_quick = 208 (0xd0)

Stack

…, objectref ⇒
…, value<31:0>, value<63:32>

Description

getfield2_quick pops objectref, which must be of the type reference , from the operand stack.

It then reads value, which must be two words in size, from the offset index into the class instance

referenced by objectref and pushes it onto the stack.

If objectref is null , then getfield2_quick throws NullPointerException .

Operation

objectref ⇐ stack[OPTOP + 4]
if (objectref = 0) then

trap NullPointer (type = 0x1b)
handle_bit ⇐ objectref & 0x00000001
if (handle_bit = 1) then

addr_of_fields ⇐ mem[(objectref & 0x7ffffffc) + 4]
else

addr_of_fields ⇐ (objectref & 0x7ffffffc) + 4
stack[OPTOP] ⇐ mem[addr_of_fields + (index × 4)]
stack[OPTOP + 4] ⇐ mem[addr_of_fields + (index × 4) + 4]

Format getfield2_quick

index
<unused>
178 picoJava-II Programmer’s Reference Manual • March 1999

getstatic getstatic
Trap to emulation routine that resolves constant pool entry and reads a static field in a class.

Forms

getstatic = 178 (0xb2)

Stack

… ⇒
…, value or …, value<31:0>, value<63:32>

Description

getstatic traps to the emulation routine referenced by entry 0xb2 in the trap table.

Operation

trap getstatic (type = 0xb2)

Recommendations

The trap handler should emulate getstatic , as defined in The Java Virtual Machine Specification.

When the constant pool entry referenced by getstatic is resolved, the getstatic trap handler

stores the address for the field it references into the constant pool. Depending on the type of the

static field, a getstatic_quick , getstatic2_quick , or agetstatic_quick opcode byte

should replace the original getstatic opcode byte.

If getstatic operates on a field determined dynamically to correspond to a one-word field that is

of the type reference, the getstatic trap handler should replace the getstatic instruction with

agetstatic_quick . Otherwise, the getstatic instruction should be replaced with

getstatic_quick or getstatic2_quick if the field is one or two words in size, respectively.

Format getstatic

indexbyte1
indexbyte2
Chapter 6 Instruction Set 179

getstatic_quick getstatic_quick
Read a one-word static field in a class.

Forms

getstatic_quick = 210 (0xd2)

Stack

… ⇒
…, value

Description

The unsigned indexbyte1 and indexbyte2 construct an index into the constant pool of the current

class, where the value of each index is (indexbyte1 << 8) | indexbyte2. The constant pool item should

have been resolved to be a pointer to a class (static) field. getstatic_quick reads the value of

that class field and pushes it onto the stack as value.

Operation

index ⇐ ((indexbyte1 << 8) | indexbyte2)
addr_of_static ⇐ mem[CONST_POOL + (index × 4)] & 0x7fffffff
stack[OPTOP] ⇐ mem[addr_of_static]
OPTOP⇐ OPTOP - 4

Notes

In the picoJava-II core, getstatic_quick is identical to agetstatic_quick . The distinction

allows future implementations of agetstatic_quick to differ in garbage collection events.

Format getstatic_quick

indexbyte1
indexbyte2

00

data

Constant Pool Element index

...
...
180 picoJava-II Programmer’s Reference Manual • March 1999

getstatic2_quick getstatic2_quick
Read a two-word static field in a class.

Forms

getstatic2_quick = 212 (0xd4)

Stack

… ⇒
…, value.word1, value.word2

Description

The unsigned indexbyte1 and indexbyte2 construct an index into the constant pool of the current

class, where the value of each index is (indexbyte1 << 8) | indexbyte2. The constant pool item should

have been resolved to be a pointer to a two-word class (static) field. getstatic2_quick reads

the value of that class field and pushes it onto the stack as value.

Operation

index ⇐ ((indexbyte1 << 8) | indexbyte2)
addr_of_static ⇐ mem[CONST_POOL + (index × 4)] & 0x7fffffff
stack[OPTOP] ⇐ mem[addr_of_static + 4]
stack[OPTOP - 4] ⇐ mem[addr_of_static]
OPTOP⇐ OPTOP - 8

Format getstatic2_quick

indexbyte1
indexbyte2

00

 data<63:32>

Constant Pool Element index

...
...

 data<31:0>
Chapter 6 Instruction Set 181

goto goto
Perform an unconditional branch to a 16-bit signed offset.

Forms

goto = 167 (0xa7)

Stack

… ⇒
…

Description

goto branches to the signed 16-bit offset, which is formed by offsetbyte1 and offsetbyte2. It does not

modify the stack.

Operation

offset ⇐ sign_ext 16((offsetbyte1 << 8) | offsetbyte2)
PC ⇐ PC + offset

Format goto

offsetbyte1
offsetbyte2
182 picoJava-II Programmer’s Reference Manual • March 1999

goto_w goto_w
Perform an unconditional branch to a 32-bit signed offset.

Forms

goto_w = 200 (0xc8)

Stack

… ⇒
…

Description

goto_w branches to the signed 32-bit offset formed by offsetbyte1, offsetbyte2, offsetbyte3, and

offsetbyte4. It does not modify the stack.

Operation

offset ⇐ (offsetbyte1 << 24) | (offsetbyte2 << 16) | (offsetbyte3 << 8) | offsetbyte4
PC ⇐ PC + offset

Format goto_w

offsetbyte1
offsetbyte2
offsetbyte3
offsetbyte4
Chapter 6 Instruction Set 183

i2b i2b
Convert an integer to a byte.

Forms

i2b = 145 (0x91)

Stack

…, value ⇒
…, result

Description

i2b truncates the word on the top of the stack to its least significant 8 bits, then sign-extends it back

to a 32-bit value.

Operation

stack[OPTOP + 4] ⇐ sign_ext 8(stack[OPTOP + 4] & 0x000000ff)

Notes

result may lose information that pertains to the overall magnitude of value. Also, it may not have

the same sign as value.

Format i2b
184 picoJava-II Programmer’s Reference Manual • March 1999

i2c i2c
Convert an integer to an unsigned short (char).

Forms

i2c = 146 (0x92)

Stack

…, value ⇒
…, result

Description

i2c truncates the word on the top of the stack to its least significant 16 bits.

Operation

stack[OPTOP + 4] ⇐ stack[OPTOP + 4] & 0x0000ffff

Notes

result may lose information that pertains to the overall magnitude of value. Also, it may not have

the same sign as value.

Format i2c
Chapter 6 Instruction Set 185

i2d i2d
Convert an integer to a double.

Forms

i2d = 135 (0x87)

Stack

…, value ⇒
…, result<31:0>, result<63:32>

Description

The integer, value, on the top of the stack is converted to a double-precision, floating-point result,
using IEEE 754 round-to-nearest mode.

If the Floating Point Unit (FPU) is not enabled (PSR.FPE = 0), then i2d traps to an emulation

routine.

Operation

if ((PSR.FPE = 1) AND (HCR.FPP = 1)) then
double(stack[OPTOP], stack[OPTOP + 4]) ⇐

convert i2d (stack[OPTOP + 4])
OPTOP⇐ OPTOP - 4

else
trap i2d (type = 0x87)

Format i2d
186 picoJava-II Programmer’s Reference Manual • March 1999

i2f i2f
Convert an integer to a float.

Forms

i2f = 134 (0x86)

Stack

…, value ⇒
…, result

Description

The integer, value, on the top of the stack is converted to a single-precision, floating-point result,
using IEEE 754 round-to-nearest mode.

If the Floating Point Unit (FPU) is not enabled (PSR.FPE = 0), then i2f traps to an emulation

routine.

Operation

if ((PSR.FPE = 1) AND (HCR.FPP = 1)) then
float(stack[OPTOP + 4]) ⇐

convert i2f (stack[OPTOP + 4])
OPTOP⇐ OPTOP - 4

else
trap i2f (type = 0x86)

Notes

result may lose precision.

Format i2f
Chapter 6 Instruction Set 187

i2l i2l
Convert an integer to a long integer.

Forms

i2l = 133 (0x85)

Stack

…, value ⇒
…, result<31:0>, result<63:32>

Description

i2l sign-extends the word on the top of the stack to a long integer.

Operation

if (stack[OPTOP + 4] < 0) then
stack[OPTOP] ⇐ 0xffffffff

else
stack[OPTOP] ⇐ 0x00000000

OPTOP⇐ OPTOP - 4

Format i2l
188 picoJava-II Programmer’s Reference Manual • March 1999

i2s i2s
Convert an integer to a signed short.

Forms

i2s = 147 (0x93)

Stack

…, value ⇒
…, result

Description

i2s truncates the word on the top of the stack to its least significant 16 bits and sign-extends it back

to a 32-bit value.

Operation

stack[OPTOP + 4] ⇐ sign_ext 16(stack[OPTOP + 4] & 0x0000ffff)

Notes

result may lose information that pertains to the overall magnitude of value. Also, it may not have

the same sign as value.

Format i2s
Chapter 6 Instruction Set 189

iadd iadd
Add two integers.

Forms

iadd = 96 (0x60)

Stack

…, value1, value2 ⇒
…, result

Description

iadd treats both value1 and value2 as integers and pops them from the operand stack. It then pushes

result, which is an integer and the result of value1 + value2, onto the operand stack.

Operation

stack[OPTOP + 8] ⇐ stack[OPTOP + 8] + stack[OPTOP + 4]
OPTOP⇐ OPTOP + 4

Format iadd
190 picoJava-II Programmer’s Reference Manual • March 1999

iaload iaload
Load an integer from an array.

Forms

iaload = 46 (0x2e)

Stack

…, arrayref, index ⇒
…, value

Description

iaload treats the stack entry arrayref as a reference to an array of one-word elements, and it treats

the stack entry index as a signed 32-bit integer. It returns the element at index of the array.

If arrayref is null , then iaload takes a NullPointer trap. If index is not within the bounds of the

array referenced by arrayref, then iaload takes an ArrayIndexOutOfBounds trap.

Operation

arrayref ⇐ stack[OPTOP + 8]
if (arrayref = 0) then

trap NullPointer (type = 0x1b)
index ⇐ stack[OPTOP + 4]
if (index < 0) then

trap ArrayIndexOutOfBounds (type = 0x19)
handle_bit ⇐ arrayref & 0x00000001
if (handle_bit = 1) then

addr_of_length ⇐ mem[(arrayref & 0x7ffffffc) + 4]
else

addr_of_length ⇐ (arrayref & 0x7ffffffc) + 4
length ⇐ mem[addr_of_length]
if (index ≥ length) then

trap ArrayIndexOutOfBounds (type = 0x19)
stack[OPTOP + 8] ⇐ mem[addr_of_length + 4 + (index × 4)]
OPTOP⇐ OPTOP + 4

Notes

In the picoJava-II core, iaload is identical to aaload and faload .

Format iaload
Chapter 6 Instruction Set 191

iand iand
Compute the bitwise AND of two integers.

Forms

iand = 126 (0x7e)

Stack

…, value1, value2 ⇒
…, result

Description

iand treats both value1 and value2 as integers and pops them from the operand stack. It then pushes

result, which is the bitwise AND of value1 and value2, onto the operand stack.

Operation

stack[OPTOP + 8] ⇐ stack[OPTOP + 8] & stack[OPTOP + 4]
OPTOP⇐ OPTOP + 4

Format iand
192 picoJava-II Programmer’s Reference Manual • March 1999

iastore iastore
Store an integer to an array.

Forms

iastore = 79 (0x4f)

Stack

…, arrayref, index, value ⇒
…

Description

iastore treats arrayref as a reference to an array of one-word elements. It stores the integer value
on the stack to the one-word element at index of the array.

If arrayref is null , then iastore takes a NullPointer trap. If index is not within the bounds of

the array referenced by arrayref, then iastore takes an ArrayIndexOutOfBounds trap.

Operation

arrayref ⇐ stack[OPTOP + 12]
if (arrayref = 0) then

trap NullPointer (type = 0x1b)
index ⇐ stack[OPTOP + 8]
if (index < 0) then

trap ArrayIndexOutOfBounds (type = 0x19)
handle_bit ⇐ arrayref & 0x00000001
if (handle_bit = 1) then

addr_of_length ⇐ mem[(arrayref & 0x7ffffffc) + 4]
else

addr_of_length ⇐ (arrayref & 0x7ffffffc) + 4
length ⇐ mem[addr_of_length]
if (index ≥ length) then

trap ArrayIndexOutOfBounds (type = 0x19)
mem[addr_of_length + 4 + (index × 4)] ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 12

Notes

In the picoJava-II core, iastore is identical to fastore .

Format iastore
Chapter 6 Instruction Set 193

iconst_m1 iconst_m1
Push the integer constant −1.

Forms

iconst_m1 = 2 (0x02)

Stack

…⇒
…, -1

Description

iconst_m1 pushes the integer constant −1 onto the stack.

Operation

stack[OPTOP] ⇐ -1
OPTOP⇐ OPTOP - 4

Format iconst_m1
194 picoJava-II Programmer’s Reference Manual • March 1999

iconst_0 iconst_0
Push the integer constant 0.

Forms

iconst_0 = 3 (0x03)

Stack

…⇒
…, 0

Description

iconst_0 pushes the integer constant 0 onto the stack.

Operation

stack[OPTOP] ⇐ 0
OPTOP⇐ OPTOP - 4

Notes

In the picoJava-II core, iconst_0 is equivalent to fconst_0 and aconst_null .

Format iconst_0
Chapter 6 Instruction Set 195

iconst_1 iconst_1
Push the integer constant 1.

Forms

iconst_1 = 4 (0x04)

Stack

…⇒
…, 1

Description

iconst_1 pushes the integer constant 1 onto the stack.

Operation

stack[OPTOP] ⇐ 1
OPTOP⇐ OPTOP - 4

Format iconst_1
196 picoJava-II Programmer’s Reference Manual • March 1999

iconst_2 iconst_2
Push the integer constant 2.

Forms

iconst_2 = 5 (0x05)

Stack

…⇒
…, 2

Description

iconst_2 pushes the integer constant 2 onto the stack.

Operation

stack[OPTOP] ⇐ 2
OPTOP⇐ OPTOP - 4

Format iconst_2
Chapter 6 Instruction Set 197

iconst_3 iconst_3
Push the integer constant 3.

Forms

iconst_3 = 6 (0x06)

Stack

…⇒
…, 3

Description

iconst_3 pushes the integer constant 3 onto the stack.

Operation

stack[OPTOP] ⇐ 3
OPTOP⇐ OPTOP - 4

Format iconst_3
198 picoJava-II Programmer’s Reference Manual • March 1999

iconst_4 iconst_4
Push the integer constant 4.

Forms

iconst_4 = 7 (0x07)

Stack

…⇒
…, 4

Description

iconst_4 pushes the integer constant 4 onto the stack.

Operation

stack[OPTOP] ⇐ 4
OPTOP⇐ OPTOP - 4

Format iconst_4
Chapter 6 Instruction Set 199

iconst_5 iconst_5
Push the integer constant 5.

Forms

iconst_5 = 8 (0x08)

Stack

…⇒
…, 5

Description

iconst_5 pushes the integer constant 5 onto the stack.

Operation

stack[OPTOP] ⇐ 5
OPTOP⇐ OPTOP - 4

Format iconst_5
200 picoJava-II Programmer’s Reference Manual • March 1999

idiv idiv
Divide two integers.

Forms

idiv = 108 (0x6c)

Stack

…, value1, value2 ⇒
…, result

Description

idiv treats both value1 and value2 as integers and pops them from the operand stack. It then pushes

result, which is an integer and the result of the expression of value1 ÷ value2, onto the operand stack.

If value2 is 0, then idiv generates an ArithmeticException trap.

Operation

if (stack[OPTOP + 4] = 0)
trap ArithmeticException (type 0x16)

stack[OPTOP + 8] ⇐ stack[OPTOP + 8] ÷ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 4

Format idiv
Chapter 6 Instruction Set 201

if_acmpeq if_acmpeq
Compare two references and branch to the 16-bit signed offset if they are equal.

Forms

if_acmpeq = 165 (0xa5)

Stack

…, value1, value2 ⇒
…

Description

if_acmpeq compares the object reference value1 and value2 for equality, considering only bits

<29:2>. If they are equal, then if_acmpeq branches to the signed 16-bit offset, which is formed by

offsetbyte1 and offsetbyte2.

Operation

value1 ⇐ stack[OPTOP + 8] & 0x7ffffffc
value2 ⇐ stack[OPTOP + 4] & 0x7ffffffc
OPTOP⇐ OPTOP + 8
if (value1 = value2) then

offset ⇐ sign_ext 16((offsetbyte1 << 8) | offsetbyte2)
PC ⇐ PC + offset

Format if_acmpeq

offsetbyte1
offsetbyte2
202 picoJava-II Programmer’s Reference Manual • March 1999

if_acmpne if_acmpne
Compare two references and branch to the 16-bit signed offset if they are not equal.

Forms

if_acmpne = 166 (0xa6)

Stack

…, value1, value2 ⇒
…

Description

if_acmpne compares the object reference value1 and value2 for equality, considering only bits

<29:2>. If they are not equal, then if_acmpne branches to the signed 16-bit offset, which is formed

by offsetbyte1 and offsetbyte2.

Operation

value1 ⇐ stack[OPTOP + 8] & 0x7ffffffc
value2 ⇐ stack[OPTOP + 4] & 0x7ffffffc
OPTOP⇐ OPTOP + 8
if (value1 ≠ value2) then

offset ⇐ sign_ext 16((offsetbyte1 << 8) | offsetbyte2)
PC ⇐ PC + offset

Format if_acmpne

offsetbyte1
offsetbyte2
Chapter 6 Instruction Set 203

if_icmpeq if_icmpeq
Compare two integers and branch to the 16-bit signed offset if they are equal.

Forms

if_icmpeq = 159 (0x9f)

Stack

…, value1, value2 ⇒
…

Description

if_icmpeq compares the integers value1 and value2 for equality. If they are equal, then

if_icmpeq branches to the signed 16-bit offset, which is formed by offsetbyte1 and offsetbyte2.

Operation

value1 ⇐ stack[OPTOP + 8]
value2 ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 8
if (value1 = value2) then

offset ⇐ sign_ext 16((offsetbyte1 << 8) | offsetbyte2)
PC ⇐ PC + offset

Format if_icmpeq

offsetbyte1
offsetbyte2
204 picoJava-II Programmer’s Reference Manual • March 1999

if_icmpge if_icmpge
Compare two integers and branch to the 16-bit signed offset if greater than or equal.

Forms

if_icmpge = 162 (0xa2)

Stack

…, value1, value2 ⇒
…

Description

if_icmpge compares the integers value1 and value2. If value1 is greater than or equal to value2,

then if_icmpge branches to the signed 16-bit offset, which is formed by offsetbyte1 and offsetbyte2.

Operation

value1 ⇐ stack[OPTOP + 8]
value2 ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 8
if (value1 ≥ value2) then

offset ⇐ sign_ext 16((offsetbyte1 << 8) | offsetbyte2)
PC ⇐ PC + offset

Format if_icmpge

offsetbyte1
offsetbyte2
Chapter 6 Instruction Set 205

if_icmpgt if_icmpgt
Compare two integers and branch to the 16-bit signed offset if greater than.

Forms

if_icmpgt = 163 (0xa3)

Stack

…, value1, value2 ⇒
…

Description

if_icmpgt compares the integers value1 and value2. If value1 is greater than value2, then

if_icmpgt branches to the signed 16-bit offset, which is formed by offsetbyte1 and offsetbyte2.

Operation

value1 ⇐ stack[OPTOP + 8]
value2 ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 8
if (value1 > value2) then

offset ⇐ sign_ext 16((offsetbyte1 << 8) | offsetbyte2)
PC ⇐ PC + offset

Format if_icmpgt

offsetbyte1
offsetbyte2
206 picoJava-II Programmer’s Reference Manual • March 1999

if_icmple if_icmple
Compare two integers and branch to the 16-bit signed offset if less than or equal.

Forms

if_icmple = 164 (0xa4)

Stack

…, value1, value2 ⇒
…

Description

if_icmple compares the integers value1 and value2. If value1 is less than or equal to value2, then

if_icmple branches to the signed 16-bit offset, which is formed by offsetbyte1 and offsetbyte2.

Operation

value1 ⇐ stack[OPTOP + 8]
value2 ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 8
if (value1 ≤ value2) then

offset ⇐ sign_ext 16((offsetbyte1 << 8) | offsetbyte2)
PC ⇐ PC + offset

Format if_icmple

offsetbyte1
offsetbyte2
Chapter 6 Instruction Set 207

if_icmplt if_icmplt
Compare two integers and branch to the 16-bit signed offset if less than.

Forms

if_icmplt = 161 (0xa1)

Stack

…, value1, value2 ⇒
…

Description

if_icmpgt compares the integers value1 and value2. If value1 is less than value2, then if_icmpgt
branches to the signed 16-bit offset, which is formed by offsetbyte1 and offsetbyte2.

Operation

value1 ⇐ stack[OPTOP + 8]
value2 ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 8
if (value1 < value2) then

offset ⇐ sign_ext 16((offsetbyte1 << 8) | offsetbyte2)
PC ⇐ PC + offset

Format if_icmplt

offsetbyte1
offsetbyte2
208 picoJava-II Programmer’s Reference Manual • March 1999

if_icmpne if_icmpne
Compare two integers and branch to the 16-bit signed offset if they are not equal.

Forms

if_icmpne = 160 (0xa0)

Stack

…, value1, value2 ⇒
…

Description

if_icmpne compares the integers value1 and value2 for equality. If they are not equal, then

if_icmpne branches to the signed 16-bit offset, which is formed by offsetbyte1 and offsetbyte2.

Operation

value1 ⇐ stack[OPTOP + 8]
value2 ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 8
if (value1 ≠ value2) then

offset ⇐ sign_ext 16((offsetbyte1 << 8) | offsetbyte2)
PC ⇐ PC + offset

Format if_icmpne

offsetbyte1
offsetbyte2
Chapter 6 Instruction Set 209

ifeq ifeq
Compare an integer to zero and branch to the 16-bit signed offset if they are equal.

Forms

ifeq = 153 (0x99)

Stack

…, value ⇒
…

Description

ifeq compares the integer value to zero. If they are equal, then ifeq branches to the signed 16-bit

offset, which is formed by offsetbyte1 and offsetbyte2.

Operation

value ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 4
if (value = 0) then

offset ⇐ sign_ext 16((offsetbyte1 << 8) | offsetbyte2)
PC ⇐ PC + offset

Notes

In the picoJava-II core, ifeq is identical to ifnull .

Format ifeq

offsetbyte1
offsetbyte2
210 picoJava-II Programmer’s Reference Manual • March 1999

ifge ifge
Compare an integer to zero and branch to the 16-bit signed offset if greater than or equal.

Forms

ifge = 156 (0x9c)

Stack

…, value ⇒
…

Description

ifge compares the integer value to zero. If value is greater than or equal to zero, then ifge
branches to the signed 16-bit offset, which is formed by offsetbyte1 and offsetbyte2.

Operation

value ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 4
if (value ≥ 0) then

offset ⇐ sign_ext 16((offsetbyte1 << 8) | offsetbyte2)
PC ⇐ PC + offset

Format ifge

offsetbyte1
offsetbyte2
Chapter 6 Instruction Set 211

ifgt ifgt
Compare an integer to zero and branch to the 16-bit signed offset if greater than.

Forms

ifgt = 157 (0x9d)

Stack

…, value ⇒
…

Description

ifgt compares the integer value to zero. If value is greater than zero, then ifgt branches to the

signed 16-bit offset, which is formed by offsetbyte1 and offsetbyte2.

Operation

value ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 4
if (value > 0) then

offset ⇐ sign_ext 16((offsetbyte1 << 8) | offsetbyte2)
PC ⇐ PC + offset

Format ifgt

offsetbyte1
offsetbyte2
212 picoJava-II Programmer’s Reference Manual • March 1999

ifle ifle
Compare an integer to zero and branch to the 16-bit signed offset if less than or equal.

Forms

ifle = 158 (0x9e)

Stack

…, value ⇒
…

Description

ifle compares the integer value to zero. If value is less than or equal to zero, then ifle branches to

the signed 16-bit offset, which is formed by offsetbyte1 and offsetbyte2.

Operation

value ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 4
if (value ≤ 0) then

offset ⇐ sign_ext 16((offsetbyte1 << 8) | offsetbyte2)
PC ⇐ PC + offset

Format ifle

offsetbyte1
offsetbyte2
Chapter 6 Instruction Set 213

iflt iflt
Compare an integer to zero and branch to the 16-bit signed offset if less than.

Forms

iflt = 155 (0x9b)

Stack

…, value ⇒
…

Description

iflt compares the integer value to zero. If value is less than zero, then iflt branches to the signed

16-bit offset, which is formed by offsetbyte1 and offsetbyte2.

Operation

value ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 4
if (value < 0) then

offset ⇐ sign_ext 16((offsetbyte1 << 8) | offsetbyte2)
PC ⇐ PC + offset

Format iflt

offsetbyte1
offsetbyte2
214 picoJava-II Programmer’s Reference Manual • March 1999

ifne ifne
Compare an integer to zero and branch to the 16-bit signed offset if they are not equal.

Forms

ifne = 154 (0x9a)

Stack

…, value ⇒
…

Description

ifne compares the integer value to zero. If they are not equal, then ifne branches to the signed 16-

bit offset, which is formed by offsetbyte1 and offsetbyte2.

Operation

value ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 4
if (value ≠ 0) then

offset ⇐ sign_ext 16((offsetbyte1 << 8) | offsetbyte2)
PC ⇐ PC + offset

Notes

In the picoJava-II core, ifne is identical to ifnonnull .

Format ifne

offsetbyte1
offsetbyte2
Chapter 6 Instruction Set 215

ifnonnull ifnonnull
Compare an object reference to null and branch to the 16-bit signed offset if they are not equal.

Forms

ifnonnull = 199 (0xc7)

Stack

…, value ⇒
…

Description

ifnonnull compares the object reference value to null . If they are not equal, then ifnonnull
branches to the signed 16-bit offset, which is formed by offsetbyte1 and offsetbyte2.

Operation

objectref ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 4
if (objectref ≠ 0) then

offset ⇐ sign_ext 16((offsetbyte1 << 8) | offsetbyte2)
PC ⇐ PC + offset

Notes

In the picoJava-II core, ifnonnull is identical to ifne .

Format ifnonnull

offsetbyte1
offsetbyte2
216 picoJava-II Programmer’s Reference Manual • March 1999

ifnull ifnull
Compare an object reference to null and branch to the 16-bit signed offset if they are equal.

Forms

ifnull = 198 (0xc6)

Stack

…, value ⇒
…

Description

ifnull compares the reference value to null . If value is null , then ifnull branches to the signed

16-bit offset, which is formed by offsetbyte1 and offsetbyte2.

Operation

objectref ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 4
if (objectref ≠ 0) then

offset ⇐ sign_ext 16((offsetbyte1 << 8) | offsetbyte2)
PC ⇐ PC + offset

Notes

In the picoJava-II core, ifnull is identical to ifeq .

Format ifnull

offsetbyte1
offsetbyte2
Chapter 6 Instruction Set 217

iinc iinc
Increment an integer in a local variable.

Forms

iinc = 132 (0x84)

Stack

… ⇒
…

Description

iinc adds an 8-bit signed const to a one-word local variable, which is at index stack entries offset

from the start of the current local variables.

Operation

stack[VARS - (index × 4)] ⇐ stack[VARS - (index × 4)] + sign_ext 8(const)

Format iinc

index
const
218 picoJava-II Programmer’s Reference Manual • March 1999

iload iload
Load an integer from a local variable.

Forms

iload = 21 (0x15)

Stack

… ⇒
…, value

Description

iload pushes a one-word local variable, which is at index stack entries offset from the start of the

current local variables, onto the operand stack.

Operation

stack[OPTOP] ⇐ stack[VARS - (index × 4)]
OPTOP⇐ OPTOP - 4

Notes

In the picoJava-II core, iload is identical to aload and fload .

Format iload

index
Chapter 6 Instruction Set 219

iload_ n iload_ n
Load an integer from a local variable.

Forms

iload_0 = 26 (0x1a)

iload_1 = 27 (0x1b)

iload_2 = 28 (0x1c)

iload_3 = 29 (0x1d)

Stack

… ⇒
…, value

Description

iload_ n pushes a one-word local variable, which is at n stack entries offset from the start of the

current local variables, onto the operand stack.

Operation

stack[OPTOP] ⇐ stack[VARS -(n × 4)]
OPTOP⇐ OPTOP - 4

Notes

In the picoJava-II core, iload_ n is identical to aload_ n and fload_ n.

Format iload_ n
220 picoJava-II Programmer’s Reference Manual • March 1999

imul imul
Multiply two integers.

Forms

imul = 104 (0x68)

Stack

…, value1, value2 ⇒
…, result

Description

imul treats both value1 and value2 as the type integer and pops them from the operand stack. It

then pushes the integer result, which is the low 32-bits of value1 × value2, onto the operand stack.

Operation

stack[OPTOP + 8] ⇐ stack[OPTOP + 8] × stack[OPTOP + 4]
OPTOP⇐ OPTOP + 4

Format imul
Chapter 6 Instruction Set 221

ineg ineg
Negate an integer.

Forms

ineg = 116 (0x74)

Stack

…, value ⇒
…, result

Description

ineg treats value as the type integer and pops it from the operand stack. It then pushes result, which

is also an integer and is the result of 0 − value, onto the operand stack.

Operation

stack[OPTOP + 4] ⇐ 0 - stack[OPTOP + 4]

Format ineg
222 picoJava-II Programmer’s Reference Manual • March 1999

instanceof instanceof
Trap to emulation routine that resolves the constant pool entry and checks whether an object is of

the given type.

Forms

instanceof = 193 (0xc1)

Stack

…, objectref ⇒
…, result

Description

instanceof traps to the emulation routine referenced by entry 0xc1 in the trap table.

Operation

trap instanceof (type=0xc1)

Recommendations

The trap handler should emulate instanceof , as defined in The Java Virtual Machine Specification.

After the trap handler resolves the constant pool entry, it should replace the instanceof
instruction with the instanceof_quick instruction.

Format instanceof

indexbyte1
indexbyte2
Chapter 6 Instruction Set 223

instanceof_quick instanceof_quick
Check whether an object is of the given type.

Forms

instanceof_quick = 225 (0xe1)

Stack

…, objectref ⇒
…, result

Description

The unsigned indexbyte1 and indexbyte2 construct an index into the constant pool of the current

class, where the value of each index is (indexbyte1<<8) | indexbyte2. The constant pool item must

have already been resolved and must contain a class ID. The word on the top of the stack, objectref,
is popped from the stack and treated as a reference.

If objectref is null , then instanceof_quick completes by pushing a value of 0 on the stack. If

objectref is not null , then the class ID of objectref is compared with the class ID from the constant

pool. If the two class IDs are not equal, then the core generates an instanceof_quick emulation

trap. Otherwise, instanceof_quick completes by pushing a value of 1 on the stack.

Operation

objectref ⇐ stack[OPTOP + 4]
if (objectref ≠ 0) then

object_header ⇐ mem[objectref & 0x7ffffffc]
object_class_addr ⇐ (object_header & 0x7ffffff8) - 8
object_class ⇐ mem[object_class_addr]
index ⇐ (indexbyte1 << 8) | indexbyte2
constant_class ⇐ mem[CONST_POOL + (index × 4)]
if (object_class = constant_class) then

stack[OPTOP + 4] ⇐ 1
else

trap instanceof_quick (type=0xe1)
else

stack[OPTOP + 4] ⇐ 0

Format instanceof_quick

indexbyte1
indexbyte2
224 picoJava-II Programmer’s Reference Manual • March 1999

Recommendations

The trap handler should emulate instanceof_quick , as defined in The Java Virtual Machine
Specification. The trap handler, however, should skip the initial checks performed by the core.
Chapter 6 Instruction Set 225

invokeinterface invokeinterface
Trap to emulation routine that resolves the constant pool entry and invokes an interface method.

Forms

invokeinterface = 185 (0xb9)

Stack

…, objectref ⇒
…, result

Description

invokeinterface traps to the emulation routine referenced by entry 0xb9 in the trap table.

Operation

trap invokeinterface (type=0xb9)

Recommendations

The trap handler should emulate invokeinterface , as defined in The Java Virtual Machine
Specification. After the trap handler resolves the constant pool entry, it should replace the

invokeinterface instruction with invokeinterface_quick .

Format invokeinterface

indexbyte1
indexbyte2

nargs
0

226 picoJava-II Programmer’s Reference Manual • March 1999

invokeinterface_quick invokeinterface_quick
Trap to emulation routine that invokes an interface method.

Forms

invokeinterface_quick = 218 (0xda)

Stack

…, objectref, [arg1, ...] ⇒
…

Description

invokeinterface_quick traps to the emulation routine referenced by entry 0xda in the trap

table.

Operation

trap invokeinterface_quick (type=0xda)

Recommendations

The trap handler should emulate invokeinterface_quick , as defined in The Java Virtual
Machine Specification.

Format invokeinterface_quick

idbyte1
idbyte2
nargs
guess
Chapter 6 Instruction Set 227

invokenonvirtual_quick invokenonvirtual_quick
Invoke a method based on a compile time type.

Forms

invokenonvirtual_quick = 215 (0xd7)

Stack

…, objectref, [arg1, ...] ⇒
…

Description

The unsigned indexbyte1 and indexbyte2 construct an index into the constant pool of the current

class, where the value of each index is (indexbyte1 << 8) | indexbyte2. The constant pool item should

have been resolved to be a pointer to a method structure (see Method Structure on page 72).

invokenonvirtual_quick invokes the method referenced by the method structure pointer, as

described in Invoking a Method on page 388.

If, based on the number of argument words to be passed to the method,

invokenonvirtual_quick determines that the object reference forming the first argument is

null , then invokenonvirtual_quick generates a NullPointer trap.

Operation

index ⇐ (indexbyte1 << 8) | indexbyte2
method_structure ⇐ mem[CONST_POOL + (index × 4)]
newVARS ⇐ OPTOP + mem16[method_structure + 10]
objectref ⇐ stack[newVARS]
if (objectref = 0) then

trap NullPointer (type=0x1b)
newFRAME⇐ OPTOP - mem[method_structure + 4]
OPTOP⇐ newFRAME - 20
stack[newFRAME] ⇐ PC + 3
stack[newFRAME - 4] ⇐ VARS
stack[newFRAME - 8] ⇐ FRAME
stack[newFRAME - 12] ⇐ CONST_POOL
stack[newFRAME - 16] ⇐ method_structure
PC ⇐ mem[method_structure]
VARS ⇐ newVARS
FRAME⇐ newFRAME
CONST_POOL⇐ mem[method_structure + 28]

Format invokenonvirtual_quick

indexbyte1
indexbyte2
228 picoJava-II Programmer’s Reference Manual • March 1999

Notes

This opcode used to be invokespecial , which was dynamically determined to refer to a method

dispatched on the basis of compile time type, such as to an initialization method or a private

method.
Chapter 6 Instruction Set 229

invokespecial invokespecial
Trap to emulation routine that resolves a constant pool entry and invokes a method based on a

compile time type.

Forms

invokespecial = 183 (0xb7)

Stack

…, objectref, [arg1, ...] ⇒
…

Description

invokespecial traps to the emulation routine referenced by entry 0xb7 in the trap table.

Operation

trap invokespecial (type=0xb7)

Recommendations

The trap handler should emulate invokespecial , as defined in The Java Virtual Machine
Specification. After the trap handler resolves the constant pool entry, it should replace the

invokespecial instruction with either invokenonvirtual_quick or invokesuper_quick ,

as appropriate.

Format invokespecial

indexbyte1
indexbyte2
230 picoJava-II Programmer’s Reference Manual • March 1999

invokestatic invokestatic
Trap to emulation routine that resolves the constant pool entry and invokes a static method.

Forms

invokestatic = 184 (0xb8)

Stack

…, [arg1, ...] ⇒
…

Description

invokestatic traps to the emulation routine referenced by entry 0xb8 in the trap table.

Operation

trap invokestatic (type=0xb8)

Recommendations

The trap handler should emulate invokestatic , as defined in The Java Virtual Machine
Specification. After the trap handler resolves the constant pool entry, it should replace the

invokestatic instruction with invokestatic_quick .

Format invokestatic

indexbyte1
indexbyte2
Chapter 6 Instruction Set 231

invokestatic_quick invokestatic_quick
Invoke a static method.

Forms

invokestatic_quick = 217 (0xd9)

Stack

…, [arg1, ...] ⇒
…

Description

The unsigned indexbyte1 and indexbyte2 construct an index into the constant pool of the current

class, where the value of each index is (indexbyte1 << 8) | indexbyte2. The constant pool item should

have been resolved to be a pointer to a method structure (see Method Structure on page 72).

invokestatic_quick invokes the method referenced by the method structure pointer, as

described in Invoking a Method on page 388.

Operation

index ⇐ (indexbyte1 << 8) | indexbyte2
method_descriptor ⇐ mem[CONST_POOL + (index × 4)]
newVARS ⇐ OPTOP + mem16[method_descriptor + 10]
newFRAME⇐ OPTOP - mem[method_descriptor + 4]
OPTOP⇐ newFRAME - 20
stack[newFRAME] ⇐ PC + 3
stack[newFRAME - 4] ⇐ VARS
stack[newFRAME - 8] ⇐ FRAME
stack[newFRAME - 12] ⇐ CONST_POOL
stack[newFRAME - 16] ⇐ method_descriptor
PC ⇐ mem[method_descriptor]
VARS ⇐ newVARS
FRAME⇐ newFRAME
CONST_POOL⇐ mem[method_descriptor + 28]

Format invokestatic_quick

indexbyte1
indexbyte2
232 picoJava-II Programmer’s Reference Manual • March 1999

invokesuper_quick invokesuper_quick
Invoke a superclass method based on a compile time type.

Forms

invokesuper_quick = 216 (0xd8)

Stack

…, objectref, [arg1, ...] ⇒
…

Description

The unsigned indexbyte1 and indexbyte2 construct a 16-bit virtual method index, where the value of

the index is (indexbyte1 << 8) | indexbyte2. The core uses this virtual method index as an index into

the method vector of the superclass of the currently active method to load a pointer to a method

structure (see Method Structure on page 72). From the method structure obtained from the

superclass, the number of argument bytes are loaded.

Based on the number of argument bytes to be passed to the method, invokesuper_quick
determines the stack entry that forms the first argument. This stack entry, objectref, is treated as a

reference type. If objectref is null , then invokesuper_quick generates a NullPointer trap.

Otherwise, invokesuper_quick then invokes the method referenced by the method structure

pointer, as described in Invoking a Method on page 388.

Operation

method_block ⇐ stack[FRAME - 16]
current_class ⇐ mem[method_block + 32]
super_class ⇐ mem[current_class + 36]
super_obj_hint_blk ⇐ mem[super_class + 28]
index ⇐ (indexbyte1 << 8) | indexbyte2
method_descriptor ⇐ mem[(super_obj_hint_blk & 0x3ffffffc) + 32 + (index × 4)]
newVARS ⇐ OPTOP + mem16[method_descriptor + 10]
objectref ⇐ stack[newVARS]
if (objectref = 0) then

trap NullPointer (type=0x1b)
newFRAME⇐ OPTOP - mem[method_descriptor + 4]
OPTOP⇐ newFRAME - 20
stack[newFRAME] ⇐ PC + 3

Format invokesuper_quick

indexbyte1
indexbyte2
Chapter 6 Instruction Set 233

stack[newFRAME - 4] ⇐ VARS
stack[newFRAME - 8] ⇐ FRAME
stack[newFRAME - 12] ⇐ CONST_POOL
stack[newFRAME - 16] ⇐ method_descriptor
PC ⇐ mem[method_descriptor]
VARS ⇐ newVARS
FRAME⇐ newFRAME
CONST_POOL⇐ mem[method_descriptor + 28]

Notes

This opcode used to be invokespecial , which was dynamically determined to refer to a

superclass method.
234 picoJava-II Programmer’s Reference Manual • March 1999

invokevirtual invokevirtual
Trap to emulation routine that resolves the constant pool entry and invokes a method based on a

runtime type.

Forms

invokevirtual = 182 (0xb6)

Stack

…, objectref, [arg1, ...] ⇒
…

Description

invokevirtual traps to the emulation routine referenced by entry 0xb6 in the trap table.

Operation

trap invokevirtual (type=0xb6)

Recommendations

The trap handler should emulate invokevirtual , as defined in The Java Virtual Machine
Specification. After the trap handler resolves the constant pool entry, it should replace the

invokevirtual instruction with invokevirtual_quick or, if the virtual method index is

greater than 255, with invokevirtual_quick_w .

Format invokevirtual

indexbyte1
indexbyte2
Chapter 6 Instruction Set 235

invokevirtual_quick invokevirtual_quick
Invoke a method based on a runtime type.

Forms

invokevirtual_quick = 214 (0xd6)

Stack

…, objectref, [arg1, ...] ⇒
…

Description

The index byte in the instruction is treated as a virtual method index, and nargs is treated as the

number of argument words to be passed to the method. Based on nargs, invokevirtual_quick
determines the stack entry that forms the first argument. This stack entry, objectref, is treated as a

reference type. If objectref is null , then invokevirtual_quick generates a NullPointer trap.

Otherwise, the method vector pointed to by the header of objectref is accessed (see Method Vector and
Runtime Class Info Structure on page 71). The core loads the method structure pointer at the virtual

method index in the method vector. invokevirtual_quick then invokes the method referenced

by this method structure pointer, as described in Invoking a Method on page 388.

Operation

index ⇐ (indexbyte1 << 8) | indexbyte2
newVARS ⇐ OPTOP + (nargs × 4)
objectref ⇐ stack[newVARS]
if (objectref = 0) then

trap NullPointer (type=0x1b)
method_descriptor ⇐ mem[(objectref & 0x7ffffffc) + (index × 4)]
newFRAME⇐ OPTOP - mem[method_descriptor + 4]
OPTOP⇐ newFRAME - 20
stack[newFRAME] ⇐ PC + 3
stack[newFRAME - 4] ⇐ VARS
stack[newFRAME - 8] ⇐ FRAME
stack[newFRAME - 12] ⇐ CONST_POOL
stack[newFRAME - 16] ⇐ method_descriptor
PC ⇐ mem[method_descriptor]
VARS ⇐ newVARS
FRAME⇐ newFRAME
CONST_POOL⇐ mem[method_descriptor + 28]

Format invokevirtual_quick

index
nargs
236 picoJava-II Programmer’s Reference Manual • March 1999

invokevirtual_quick_w invokevirtual_quick_w
Invoke a method based on a runtime type with wide index.

Forms

invokevirtual_quick_w = 226 (0xe2)

Stack

…, objectref, [arg1, ...] ⇒
…

Description

The unsigned indexbyte1 and indexbyte2 construct an index into the constant pool of the current

class, where the value of each index is (indexbyte1 << 8) | indexbyte2. The constant pool item should

have been resolved to be a pointer to a method structure (see Method Structure on page 72). From the

method structure obtained from the constant pool, the 16-bit virtual method index and the number

of argument bytes are loaded.

Based on the number of argument bytes to be passed to the method, invokevirtual_quick_w
determines the stack entry that forms the first argument. This stack entry, objectref, is treated as a

reference type. If objectref is null, then invokevirtual_quick_w generates a NullPointer trap.

Otherwise, the method vector pointed to by the header of objectref is accessed (see Method Vector and
Runtime Class Info Structure on page 71). The core loads the method structure pointer at the virtual

method index in the method vector. invokevirtual_quick_w then invokes the method

referenced by this method structure pointer, as described in Invoking a Method on page 388.

Operation

descr_index ⇐ (indexbyte1 << 8) | indexbyte2
descr ⇐ mem[CONST_POOL + (descr_index × 4)]
index ⇐ OPTOP + mem16[descr + 8]
newVARS ⇐ OPTOP + mem16[descr + 10]
objectref ⇐ stack[newVARS]
if (objectref = 0) then

trap NullPointer (type=0x1b)
method_descriptor ⇐ mem[(objectref & 0x7ffffffc) + (index × 4)]
newFRAME⇐ OPTOP - mem[method_descriptor + 4]
OPTOP⇐ newFRAME - 20

Format invokevirtual_quick_w

indexbyte1
indexbyte2
Chapter 6 Instruction Set 237

stack[newFRAME] ⇐ PC + 3
stack[newFRAME - 4] ⇐ VARS
stack[newFRAME - 8] ⇐ FRAME
stack[newFRAME - 12] ⇐ CONST_POOL
stack[newFRAME - 16] ⇐ method_descriptor
PC ⇐ mem[method_descriptor]
VARS ⇐ newVARS
FRAME⇐ newFRAME
CONST_POOL⇐ mem[method_descriptor + 28]
238 picoJava-II Programmer’s Reference Manual • March 1999

ior ior
Bitwise OR of two integers.

Forms

ior = 128 (0x80)

Stack

…, value1, value2 ⇒
…, result

Description

ior treats both value1 and value2 as the type integer and pops them from the operand stack. It then

pushes result, which is the bitwise OR of value1 and value2, onto the operand stack.

Operation

stack[OPTOP + 8] ⇐ stack[OPTOP + 8] | stack[OPTOP + 4]
OPTOP⇐ OPTOP + 4

Format ior
Chapter 6 Instruction Set 239

irem irem
Remainder of two integers.

Forms

irem = 112 (0x70)

Stack

…, value1, value2 ⇒
…, result

Description

irem treats both value1 and value2 as the type integer and pops them from the operand stack. It

then pushes result, which is an integer and remainder of the expression of value1 ÷ value2, onto the

operand stack.

If value2 is 0, then irem generates an ArithmeticException trap.

Operation

if (stack[OPTOP + 4] = 0)
trap ArithmeticException (type 0x16)

stack[OPTOP + 8] ⇐ stack[OPTOP + 8] % stack[OPTOP + 4]
OPTOP⇐ OPTOP + 4

Format irem
240 picoJava-II Programmer’s Reference Manual • March 1999

ireturn ireturn
Return an integer from a method.

Forms

ireturn = 172 (0xac)

Stack

…, value ⇒
[empty]

Description

ireturn returns to the caller of this method, popping all the arguments to the current method and

pushing the integer that is at the top of the operand stack onto the top of the caller’s operand stack.

Operation

PC ⇐ stack[FRAME]
CONST_POOL⇐ stack[FRAME - 12]
ret_value_word1 ⇐ stack[OPTOP + 4]
VARS ⇐ stack[FRAME - 4]
FRAME⇐ stack[FRAME - 8]
OPTOP⇐ VARS + 4
stack[OPTOP + 4] ⇐ ret_value_word1

Notes

In the picoJava-II core, ireturn is identical to freturn and areturn .

Format ireturn
Chapter 6 Instruction Set 241

ishl ishl
Shift-left of an integer.

Forms

ishl = 120 (0x78)

Stack

…, value1, value2 ⇒
…, result

Description

ishl treats both value1 and value2 as integers and pops them from the operand stack. It then pushes

result, which is also an integer and is the result of shifting value1 left by the number of positions

equal to the low 5 bits of value2, onto the operand stack.

Operation

stack[OPTOP + 8] ⇐ stack[OPTOP + 8] << (stack[OPTOP + 4] & 0x1f)
OPTOP⇐ OPTOP + 4

Format ishl
242 picoJava-II Programmer’s Reference Manual • March 1999

ishr ishr
Shift-right of an integer.

Forms

ishr = 122 (0x7a)

Stack

…, value1, value2 ⇒
…, result

Description

ishr treats both value1 and value2 as integers and pops them from the operand stack. It then pushes

result, which is also an integer and is the result of shifting value1 right (with sign extension) by the

number of positions equal to the low 5 bits of value2, onto the operand stack.

Operation

stack[OPTOP + 8] ⇐ stack[OPTOP + 8] >> (stack[OPTOP + 4] & 0x1f)
OPTOP⇐ OPTOP + 4

Format ishr
Chapter 6 Instruction Set 243

istore istore
Store an integer to a local variable.

Forms

istore = 54 (0x36)

Stack

…, value ⇒
…

Description

istore stores the integer on the top of the operand stack into a one-word local variable, which is at

index stack entries offset from the start of the current local variables.

Operation

stack[VARS - (index × 4)] ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 4

Notes

In the picoJava-II core, istore is identical to fstore and astore .

Format istore

index
244 picoJava-II Programmer’s Reference Manual • March 1999

istore_ n istore_ n
Store an integer to a local variable.

Forms

istore_0 = 59 (0x3b)

istore_1 = 60 (0x3c)

istore_2 = 61 (0x3d)

istore_3 = 72 (0x3e)

Stack

…, value ⇒
…

Description

istore_ n stores the integer on the top of the operand stack into a one-word local variable, which is

at n stack entries offset from the start of the current local variables.

Operation

stack[VARS - (n × 4)] ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 4

Notes

In the picoJava-II core, istore_ n is identical to fstore_ n and astore_ n.

Format istore_ n
Chapter 6 Instruction Set 245

isub isub
Subtract two integers.

Forms

isub = 100 (0x64)

Stack

…, value1, value2 ⇒
…, result

Description

isub treats both value1 and value2 as the type integer and pops them from the operand stack. It

then pushes result, which is an integer and the result of value1 − value2, onto the operand stack.

Operation

stack[OPTOP + 8] ⇐ stack[OPTOP + 8] - stack[OPTOP + 4]
OPTOP⇐ OPTOP + 4

Format isub
246 picoJava-II Programmer’s Reference Manual • March 1999

iucmp iucmp
Compare unsigned integers.

Forms

extend = 255 (0xff)

iucmp = 21 (0x15)

Stack

…, value1, value2 ⇒
…, result

Description

iucmp compares value1 and value2, the top two stack elements, treating them as unsigned 32-bit

integers. It then pops their values from the stack and pushes result onto the stack.

If value1 is greater than value2, then the result is 1. If value1 equals value2, then the result is 0. If

value1 is less than value2, then the result is –1.

Operation

if ((stack[OPTOP+4] > 0) AND (stack[OPTOP+8] < 0)) then
stack[OPTOP+8] ⇐ 1

else if ((stack[OPTOP+4] < 0) AND (stack[OPTOP+8] > 0)) then
stack[OPTOP+8] ⇐ -1

else
diff ⇐ stack[OPTOP + 8] - stack[OPTOP + 4]
if (diff > 0) then

stack[OPTOP+8] ⇐ 1
else if (diff < 0) then

stack[OPTOP+8] ⇐ -1
else

stack[OPTOP+8] ⇐ 0
OPTOP⇐ OPTOP + 4

Format extend

iucmp
Chapter 6 Instruction Set 247

iushr iushr
Unsigned shift-right of an integer.

Forms

iushr = 124 (0x7c)

Stack

…, value1, value2 ⇒
…, result

Description

ishr treats both value1 and value2 as integers and pops them from the operand stack. It then pushes

result, which is also an integer and is the result of shifting value1 right (with zero extension) by the

number of positions equal to the low 5 bits of value2, onto the operand stack.

Operation

stack[OPTOP + 8] ⇐ stack[OPTOP + 8] >>> (stack[OPTOP + 4] & 0x1f)
OPTOP⇐ OPTOP + 4

Format iushr
248 picoJava-II Programmer’s Reference Manual • March 1999

ixor ixor
Bitwise XOR of two integers.

Forms

ixor = 130 (0x82)

Stack

…, value1, value2 ⇒
…, result

Description

ixor treats both value1 and value2 as the type integer and pops them from the operand stack. It

then pushes result, which is the bitwise XOR of value1 and value2, onto the operand stack.

Operation

stack[OPTOP + 8] ⇐ stack[OPTOP + 8] ^ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 4

Format ixor
Chapter 6 Instruction Set 249

jsr jsr
Jump to subroutine.

Forms

jsr = 168 (0xa8)

Stack

… ⇒
…, return_address

Description

jsr branches to the signed 16-bit offset formed by offsetbyte1 and offsetbyte2. It pushes the PCof the

instruction following the jsr onto the stack.

Operation

stack[OPTOP] ⇐ PC + 3
offset ⇐ sign_ext 16((offsetbyte1 << 8) | offsetbyte2)
PC ⇐ PC + offset
OPTOP⇐ OPTOP - 4

Format jsr

offsetbyte1
offsetbyte2
250 picoJava-II Programmer’s Reference Manual • March 1999

jsr_w jsr_w
Jump to subroutine, with wide offset.

Forms

jsr_w = 201 (0xc9)

Stack

… ⇒
…, return_address

Description

jsr_w branches to the signed 32-bit offset formed by offsetbyte1, offsetbyte2, offsetbyte3, and

offsetbyte4. It pushes the PC of the instruction following the jsr_w onto the stack.

Operation

stack[OPTOP] ⇐ PC + 5
offset ⇐ (offsetbyte1 << 24) | (offsetbyte2 << 16) | (offsetbyte3 << 8) | offsetbyte4
PC ⇐ PC + offset
OPTOP⇐ OPTOP - 4

Format jsr_w

offsetbyte1
offsetbyte2
offsetbyte3
offsetbyte4
Chapter 6 Instruction Set 251

l2d l2d
Convert a long to a double.

Forms

l2d = 138 (0x8a)

Stack

…, value<31:0>, value<63:32> ⇒
…, result<31:0>, result<63:32>

Description

l2d treats the value on the top of the operand stack (value) as the type long, pops it from the

operand stack, and converts it to a double, using the IEEE 754 round-to-nearest mode. l2d then

pushes the result (result) onto the operand stack.

If the Floating Point Unit (FPU) is not enabled (PSR.FPE = 0), then l2d traps to an emulation

routine.

Operation

if ((PSR.FPE = 1) AND (HCR.FPP = 1)) then
double(stack[OPTOP + 4],stack[OPTOP + 8]) ⇐

convert l2d (long(stack[OPTOP + 4], stack[OPTOP + 8]))
else

trap l2d (type = 0x8a)

Notes

result may lose precision.

Format l2d
252 picoJava-II Programmer’s Reference Manual • March 1999

l2f l2f
Convert a long to a float.

Forms

l2f = 137 (0x89)

Stack

…, value<31:0>, value<63:32> ⇒
…, result

Description

l2f treats the value on the top of the operand stack as the type long, pops it from the operand

stack, converts it to a float with the IEEE 754 round-to-nearest mode, then pushes it onto the

operand stack.

If the Floating Point Unit (FPU) is not enabled (PSR.FPE = 0), then l2f traps to an emulation

routine.

Operation

if ((PSR.FPE = 1) AND (HCR.FPP = 1)) then
stack[OPTOP + 8] ⇐

convert l2f (long(stack[OPTOP + 4], stack[OPTOP + 8]))
OPTOP⇐ OPTOP + 4

else
trap l2f (type = 0x89)

Notes

result may lose precision.

Format l2f
Chapter 6 Instruction Set 253

l2i l2i
Convert a long to an integer.

Forms

l2i = 136 (0x88)

Stack

…, value<31:0>, value<63:32> ⇒
…, result

Description

l2i treats the value on the top of the operand stack (value) as the type long, pops it from the

operand stack, and converts it to an integer by discarding the upper 32 bits. l2i then pushes the

result (result) onto the operand stack.

Operation

OPTOP⇐ OPTOP + 4

Notes

result may lose information about the overall magnitude of value. Also, the result may not have the

same sign as value.

In the picoJava-II core, l2i is identical to pop .

Format l2i
254 picoJava-II Programmer’s Reference Manual • March 1999

ladd ladd
Add two longs.

Forms

ladd = 97 (0x61)

Stack

…, value1<31:0>, value1<63:32>, value2<31:0>, value2<63:32> ⇒
…, result<31:0>, result<63:32>

Description

ladd treats both value1 and value2 as the type long and pops them from the operand stack. It then

pushes result, which is a long and the sum of value1 + value2, onto the operand stack.

Operation

long(stack[OPTOP + 12], stack[OPTOP + 16]) ⇐
long(stack[OPTOP + 12], stack[OPTOP + 16]) +
long(stack[OPTOP + 4], stack[OPTOP + 8])

OPTOP⇐ OPTOP + 8

Format ladd
Chapter 6 Instruction Set 255

laload laload
Load a long from an array.

Forms

laload = 47 (0x2f)

Stack

…, arrayref, index ⇒
…, value<31:0>, value<63:32>

Description

laload treats arrayref as a reference to an array of longs. It loads the two-word element at index and

pushes it onto the stack as value.

If arrayref is null , then daload takes a NullPointer trap. If index is not within the bounds of the

array that arrayref references, then daload takes an ArrayIndexOutOfBounds trap.

Operation

arrayref ⇐ stack[OPTOP + 8]
if (arrayref = 0) then

trap NullPointer (type = 0x1b)
index ⇐ stack[OPTOP + 4]
if (index < 0) then

trap ArrayIndexOutOfBounds (type = 0x19)
handle_bit ⇐ arrayref & 0x00000001
if (handle_bit = 1) then

addr_of_length ⇐ mem[(arrayref & 0x7ffffffc) + 4]
else

addr_of_length ⇐ (arrayref & 0x7ffffffc) + 4
length ⇐ mem[addr_of_length]
if (index ≥ length) then

trap ArrayIndexOutOfBounds (type = 0x19)
stack[OPTOP + 8] ⇐ mem[addr_of_length + 8 + (index × 8)]
stack[OPTOP + 4] ⇐ mem[addr_of_length + 4 + (index × 8)]

Notes

In the picoJava-II core, laload is identical to daload .

Format laload
256 picoJava-II Programmer’s Reference Manual • March 1999

land land
Bitwise AND of two longs.

Forms

land = 127 (0x7f)

Stack

…, value1<31:0>, value1<63:32>, value2<31:0>, value2<63:32> ⇒
…, result<31:0>, result<63:32>

Description

land treats both value1 and value2 as the type long and pops them from the operand stack. It then

pushes result, which is a long and the bitwise AND of value1 and value2, onto the operand stack.

Operation

stack[OPTOP + 12] ⇐ stack[OPTOP + 12] & stack[OPTOP + 4]
stack[OPTOP + 16] ⇐ stack[OPTOP + 16] & stack[OPTOP + 8]
OPTOP⇐ OPTOP + 8

Format land
Chapter 6 Instruction Set 257

lastore lastore
Store a long to an array.

Forms

lastore = 80 (0x50)

Stack

…, arrayref, index, value<31:0>, value<63:32> ⇒
…

Description

lastore treats arrayref as a reference to an array of longs. It stores the double value on the stack to

the two-word element at index of the array.

If arrayref is null , then dastore takes a NullPointer trap. If index is not within the bounds of

the array that arrayref references, then dastore takes an ArrayIndexOutOfBounds trap.

Operation

arrayref ⇐ stack[OPTOP + 16]
if (arrayref = 0) then

trap NullPointer (type = 0x1b)
index ⇐ stack[OPTOP + 12]
if (index < 0) then

trap ArrayIndexOutOfBounds (type = 0x19)
handle_bit ⇐ arrayref & 0x00000001
if (handle_bit = 1) then

addr_of_length ⇐ mem[(arrayref & 0x7ffffffc) + 4]
else

addr_of_length ⇐ (arrayref & 0x7ffffffc) + 4
length ⇐ mem[addr_of_length]
if (index ≥ length) then

trap ArrayIndexOutOfBounds (type = 0x19)
mem[addr_of_length + 4 + (index × 8)] ⇐ stack[OPTOP + 4]
mem[addr_of_length + 8 + (index × 8)] ⇐ stack[OPTOP + 8]
OPTOP⇐ OPTOP + 16

Notes

In the picoJava-II core, lastore is identical to dastore .

Format lastore
258 picoJava-II Programmer’s Reference Manual • March 1999

lcmp lcmp
Compare two longs.

Forms

lcmp = 127 (0x7f)

Stack

…, value1<31:0>, value1<63:32>, value2<31:0>, value2<63:32> ⇒
…, result

Description

lcmp treats both value1 and value2 as the type long, pops them from the operand stack, then

performs a comparison and executes as follows:

• If value1 is greater than value2, then lcmp pushes the integer value 1 onto the operand stack.

• If value1 is equal to value2, then lcmp pushes the integer value 0 onto the operand stack.

• If value1 is less than value2, then lcmp pushes the integer value –1 onto the operand stack.

Operation

diff = long (stack[OPTOP + 16], stack[OPTOP + 12]) -
long(stack[OPTOP + 8], stack[OPTOP + 4])

if (diff < 0) then
stack[OPTOP + 16] ⇐ -1

else if (diff > 0) then
stack[OPTOP + 16] ⇐ 1

else
stack[OPTOP + 16] ⇐ 0

OPTOP⇐ OPTOP + 12

Format lcmp
Chapter 6 Instruction Set 259

lconst_0 lconst_0
Push the long constant 0.

Forms

lconst_0 = 9 (0x09)

Stack

… ⇒
…, 0, 0

Description

Push the long constant 0 onto the operand stack.

Operation

stack[OPTOP] ⇐ 0
stack[OPTOP - 4] ⇐ 0
OPTOP⇐ OPTOP - 8

Notes

lconst_0 is identical todconst_0 .

Format lconst_0
260 picoJava-II Programmer’s Reference Manual • March 1999

lconst_1 lconst_1
Push the long constant 1.

Forms

lconst_1 = 10 (0x0a)

Stack

… ⇒
…, 1, 0

Description

Push the long constant 1 onto the operand stack.

Operation

stack[OPTOP] ⇐ 1
stack[OPTOP - 4] ⇐ 0
OPTOP⇐ OPTOP - 8

Format lconst_1
Chapter 6 Instruction Set 261

ldc ldc
Trap to emulation routine that resolves a constant pool item and pushes it onto the stack.

Forms

ldc = 18 (0x12)

Stack

… ⇒
…, value

Description

ldc traps to the emulation routine referenced by entry 0x12 in the trap table.

Operation

trap ldc (type 0x12)

Recommendations

The trap handler should emulate ldc , as defined in The Java Virtual Machine Specification.

Once the constant pool entry is resolved, the type of the constant indexed determines whether a

ldc_quick or aldc_quick byte should replace the original ldc byte. If the constant is a reference

type, the aldc_quick instruction should replace the ldc opcode. Otherwise, the ldc_quick
instruction should replace the ldc opcode.

Format ldc

index
262 picoJava-II Programmer’s Reference Manual • March 1999

ldc_quick ldc_quick
Push a one-word item from the constant pool.

Forms

ldc_quick = 203 (0xcb)

Stack

… ⇒
…, value

Description

The unsigned index byte is an index into the constant pool of the current class. The constant pool

item should be a constant that has already been resolved. ldc_quick reads the value from the

constant pool and pushes it onto the stack.

Operation

stack[OPTOP] ⇐ mem[CONST_POOL + (index × 4)]
OPTOP⇐ OPTOP – 4

Notes

In the picoJava-II core, ldc_quick is identical to aldc_quick . The distinction allows future

implementations of ldc_quick to differ in garbage collection events.

Format ldc_quick

index
Chapter 6 Instruction Set 263

ldc_w ldc_w
Trap to emulation routine that resolves a constant pool item, with a wide index, and pushes it onto

the stack.

Forms

ldc_w = 19 (0x13)

Stack

… ⇒
…, value

Description

ldc_w traps to the emulation routine referenced by entry 0x13 in the trap table.

Operation

trap ldc_w (type 0x13)

Recommendations

The trap handler should emulate ldc_w , as defined in The Java Virtual Machine Specification.

Once the constant pool entry is resolved, the type of the constant indexed determines whether a

ldc_w_quick or aldc_w_quick byte replaces the original ldc_w byte. If the constant is a

reference type, the aldc_w_quick instruction should replace the ldc_w opcode. Otherwise, the

ldc_w_quick instruction should replace the ldc_w opcode.

Format ldc_w

indexbyte1
indexbyte2
264 picoJava-II Programmer’s Reference Manual • March 1999

ldc_w_quick ldc_w_quick
Push an item from constant pool, with wide index.

Forms

ldc_w_quick = 204 (0xcc)

Stack

… ⇒
…, value

Description

The unsigned indexbyte1 and indexbyte2 construct an index into the constant pool of the current

class where the value of each index is (indexbyte1<<8) | indexbyte2. The constant pool item should

be a constant that has already been resolved. ldc_w_quick reads the value from the constant pool

and pushes it onto the stack.

Operation

index ⇐ ((indexbyte1 << 8) | indexbyte2)
stack[OPTOP] ⇐ mem[CONST_POOL + (index × 4)]
OPTOP⇐ OPTOP – 4

Notes

In the picoJava-II core, ldc_w_quick is identical to aldc_w_quick . The distinction allows future

implementations of ldc_w_quick to differ in garbage collection events.

Format ldc_w_quick

indexbyte1
indexbyte2
Chapter 6 Instruction Set 265

ldc2_w ldc2_w
Trap to emulation routine that resolves a two-word constant pool item, with a wide index, and

pushes it onto the stack.

Forms

ldc2_w = 20 (0x14)

Stack

… ⇒
…, value<31:0>, value<63:32>

Description

ldc2_w traps to the emulation routine referenced by entry 0x14 in the trap table.

Operation

trap ldc2_w (type 0x14)

Recommendations

The trap handler should emulate ldc2_w , as defined in The Java Virtual Machine Specification.

Once the constant pool entry is resolved, the ldc2_w_quick byte should replace the original

ldc2_w byte.

Format ldc2_w

indexbyte1
indexbyte2
266 picoJava-II Programmer’s Reference Manual • March 1999

ldc2_w_quick ldc2_w_quick
Push a two-word item from constant pool, with wide index.

Forms

ldc2_w_quick = 205 (0xcd)

Stack

… ⇒
…, value<31:0>, value<63:32>

Description

The unsigned indexbyte1 and indexbyte2 construct an index into the constant pool of the current

class where the value of each index is (indexbyte1<<8) | indexbyte2. The constant pool item should

be a constant that has already been resolved. ldc2_w_quick reads the two-word value from the

constant pool and pushes it onto the stack.

Operation

index ⇐ ((indexbyte1 << 8) | indexbyte2)
stack[OPTOP] ⇐ mem[CONST_POOL + (index × 4) + 4]
stack[OPTOP - 4] ⇐ mem[CONST_POOL + (index × 4)]
OPTOP⇐ OPTOP – 8

Format ldc2_w_quick

indexbyte1
indexbyte2
Chapter 6 Instruction Set 267

ldiv ldiv
Trap to emulation routine that divides two longs.

Forms

ldiv = 109 (0x6d)

Stack

…, value1<31:0>, value1<63:32>, value2<31:0>, value2<63:32> ⇒
…, result<31:0>, result<63:32>

Description

ldiv traps to the emulation routine referenced by entry 0x6d in the trap table.

Operation

trap ldiv (type 0x6d)

Recommendations

The trap handler should emulate ldiv , as defined in The Java Virtual Machine Specification.

Format ldiv
268 picoJava-II Programmer’s Reference Manual • March 1999

lload lload
Load a long integer from a local variable.

Forms

lload = 22 (0x16)

Stack

… ⇒
…, value<31:0>, value<63:32>

Description

lload pushes a two-word local variable, which is at index stack entries offset from the start of the

current local variables, onto the operand stack.

Operation

stack[OPTOP] ⇐ stack[VARS – (index × 4)]
stack[OPTOP – 4] ⇐ stack[VARS – 4 – (index × 4)]
OPTOP⇐ OPTOP – 8

Notes

In the picoJava-II core, lload is identical to dload .

Format lload

index
Chapter 6 Instruction Set 269

lload_ n lload_ n
Load a long integer from a local variable.

Forms

lload_0 = 30 (0x1e)

lload_1 = 31 (0x1f)

lload_2 = 32 (0x20)

lload_3 = 33 (0x21)

Stack

… ⇒
…, value<31:0>, value<63:32>

Description

lload_ n pushes a two-word local variable, which is at n stack entries offset from the start of the

current local variables, onto the operand stack.

Operation

stack[OPTOP] ⇐ stack[VARS -(n × 4)]
stack[OPTOP – 4] ⇐ stack[VARS – 4 – (n × 4)]
OPTOP⇐ OPTOP – 8

Notes

In the picoJava-II core, lload_ n is identical to dload _n.

Format lload_ n
270 picoJava-II Programmer’s Reference Manual • March 1999

lmul lmul
Trap to emulation routine that multiplies two longs.

Forms

lmul = 105 (0x69)

Stack

…, value1<31:0>, value1<63:32>, value2<31:0>, value2<63:32> ⇒
…, result<31:0>, result<63:32>

Description

lmul traps to the emulation routine referenced by entry 0x69 in the trap table.

Operation

trap lmul (type 0x69)

Recommendations

The trap handler should emulate lmul , as defined in The Java Virtual Machine Specification.

Format lmul
Chapter 6 Instruction Set 271

lneg lneg
Negate a long.

Forms

lneg = 117 (0x75)

Stack

…, value<31:0>, value<63:32> ⇒
…, result<31:0>, result<63:32>

Description

lneg treats value as the type long and pops it from the operand stack. lneg then pushes result,
which is a long and the result of 0 - value, onto the operand stack.

Operation

long(stack[OPTOP + 4], stack[OPTOP + 8]) ⇐
long(0, 0) - long(stack[OPTOP + 4], stack[OPTOP + 8])

Format lneg
272 picoJava-II Programmer’s Reference Manual • March 1999

load_byte load_byte
Load a signed byte from memory.

Forms

extend = 255 (0xff)

load_byte = 1 (0x01)

Stack

…, address ⇒
…, value

Description

load_byte loads and sign-extends the signed 8-bit value at the memory location at address, then

pushes it onto the top of the stack.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

Operation

address = stack[OPTOP + 4]
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

stack[OPTOP + 4] ⇐ sign_ext 8(mem8[address])

Format extend

load_byte
Chapter 6 Instruction Set 273

load_byte_index load_byte_index
Load a signed 8-bit value at a fixed offset from the address in a local variable from memory.

Forms

load_byte_index = 241 (0xf1)

Stack

…⇒
…, value

Description

load_byte_index loads and sign-extends the 8-bit value at the memory location at the effective

address, then pushes it onto the top of the stack. load_byte_index computes the effective

address by loading the contents of the local variable, local_var, and adding the signed value of offset.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

Operation

eff_addr ⇐ stack[VARS - (local_var × 4)] + sign_ext 8(offset)
if (PSR.ACE = 1) then

if (addr_out_of_range(eff_addr)) then
trap mem_protection_error (type 0x02)

stack[OPTOP] ⇐ sign_ext 8(mem8[eff_addr])
OPTOP⇐ OPTOP – 4

Notes

load_byte_index is equivalent to the following sequence of instructions:

iload local_var; bipush offset; iadd; load_byte

Format load_byte_index

local_var
offset
274 picoJava-II Programmer’s Reference Manual • March 1999

load_char load_char
Load unsigned short (char) from memory.

Forms

extend = 255 (0xff)

load_char = 2 (0x02)

Stack

…, address ⇒
…, value

Description

load_char loads the unsigned 16-bit value at the memory location at address and pushes it onto

the top of the stack. If bit 30 of address is set to 1, then the data loaded is treated as if it were stored in

little endian order.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

The address must be aligned on a 16-bit boundary.

Operation

address = stack[OPTOP + 4]
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

stack[OPTOP + 4] ⇐ mem16[address]
if ((address & 0x40000000) ≠ 0) then

stack[OPTOP + 4] ⇐ endian_swap 16(stack[OPTOP + 4])

Format extend

load_char
Chapter 6 Instruction Set 275

load_char_index load_char_index
Load an unsigned 16-bit value at a fixed offset from an address in a local variable from memory.

Forms

load_char_index = 240 (0xf0)

Stack

…⇒
…, value

Description

load_char_index loads the 16-bit value at the memory location at the effective address and

pushes it onto the top of the stack. load_char_index computes the effective address by loading

the contents of the local variable, local_var, and adding the signed value of offset << 1. If bit 30 of the

effective address is set to 1, then the data loaded is treated as if it were stored in little endian order.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

The effective address must be aligned on a 16-bit boundary.

Operation

eff_addr ⇐ stack[VARS - (local_var × 4)] + (sign_ext 8(offset) × 2)
if (PSR.ACE = 1) then

if (addr_out_of_range(eff_addr)) then
trap mem_protection_error (type 0x02)

stack[OPTOP] ⇐ mem16[eff_addr]
if ((address & 0x40000000) ≠ 0) then

stack[OPTOP] ⇐ endian_swap 16(stack[OPTOP])
OPTOP⇐ OPTOP – 4

Notes

load_char_index is equivalent to the following sequence of instructions:

iload local_var; bipush offset; iconst_1; ishl; iadd; load_char

Format load_char_index

local_var
offset
276 picoJava-II Programmer’s Reference Manual • March 1999

load_char_oe load_char_oe
Use opposite endianness to load unsigned short (char) from memory.

Forms

extend = 255 (0xff)

load_char_oe = 10 (0x0a)

Stack

…, address ⇒
…, value

Description

load_char_oe loads the unsigned 16-bit value at the memory location at address, then pushes it

onto the top of the stack. If bit 30 of address is not set to 1, then the data loaded is treated as if it were

stored in little endian order.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

The address must be aligned on a 16-bit boundary.

Operation

address = stack[OPTOP + 4]
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

stack[OPTOP + 4] ⇐ mem16[address]
if ((address & 0x40000000) = 0) then

stack[OPTOP + 4] ⇐ endian_swap 16(stack[OPTOP + 4])

Format extend

load_char_oe
Chapter 6 Instruction Set 277

load_short load_short
Load signed short from memory.

Forms

extend = 255 (0xff)

load_short = 3 (0x03)

Stack

…, address ⇒
…, value

Description

load_short loads and sign-extends the signed 16-bit value at the memory location at address, then

pushes it onto the top of the stack. If bit 30 of address is set to 1, then the data loaded is treated as if

it were stored in little endian order.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

The address must be aligned on a 16-bit boundary.

Operation

address = stack[OPTOP + 4]
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

stack[OPTOP + 4] ⇐ mem16[address]
if ((address & 0x40000000) ≠ 0) then

stack[OPTOP + 4] ⇐ endian_swap 16(stack[OPTOP + 4])
stack[OPTOP + 4] ⇐ sign_ext 16(stack[OPTOP + 4])

Format extend

load_short
278 picoJava-II Programmer’s Reference Manual • March 1999

load_short_index load_short_index
Load a signed 16-bit value at a fixed offset from an address in a local variable from memory.

Forms

load_short_index = 239 (0xef)

Stack

…⇒
…, value

Description

load_short_index loads and sign-extends the 16-bit value at the memory location at the

effective address, then pushes it onto the top of the stack. load_short_index computes the

effective address by loading the contents of the local variable, local_var. and adding the signed

value of offset × 2. If bit 30 of the effective address is set to 1, then the data loaded is treated as if it

were stored in little endian order.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

The effective address must be aligned on a 16-bit boundary.

Operation

eff_addr ⇐ stack[VARS - (local_var × 4)] + (sign_ext 8(offset) × 2)
if (PSR.ACE = 1) then

if (addr_out_of_range(eff_addr)) then
trap mem_protection_error (type 0x02)

stack[OPTOP] ⇐ mem16[eff_addr]
if ((address & 0x40000000) ≠ 0) then

stack[OPTOP] ⇐ endian_swap 16(stack[OPTOP])
stack[OPTOP] ⇐ sign_ext 16(stack[OPTOP])
OPTOP⇐ OPTOP – 4

Notes

load_short_index is equivalent to the following sequence of instructions:

iload local_var; bipush offset; iconst_1; ishl; iadd; load_short

Format load_short_index

local_var
offset
Chapter 6 Instruction Set 279

load_short_oe load_short_oe
Use opposite endianness to load signed short from memory.

Forms

extend = 255 (0xff)

load_short_oe = 11 (0x0b)

Stack

…, address ⇒
…, value

Description

load_short_oe loads and sign-extends the signed 16-bit value at the memory location at address
onto the top of the stack. If bit 30 of address is not set to 1, then the data loaded is treated as if it were

stored in little endian order.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

The address must be aligned on a 16-bit boundary.

Operation

address = stack[OPTOP + 4]
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

stack[OPTOP + 4] ⇐ mem16[address]
if ((address & 0x40000000) ≠ 0) then

stack[OPTOP + 4] ⇐ endian_swap 16(stack[OPTOP + 4])
stack[OPTOP + 4] ⇐ sign_ext 16(stack[OPTOP + 4])

Format extend

load_short_oe
280 picoJava-II Programmer’s Reference Manual • March 1999

load_ubyte load_ubyte
Load unsigned byte from memory.

Forms

extend = 255 (0xff)

load_ubyte = 0 (0x00)

Stack

…, address ⇒
…, value

Description

load_ubyte loads the unsigned 8-bit value at the memory location at address and pushes it onto

the top of the stack.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

Operation

address = stack[OPTOP + 4]
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

stack[OPTOP + 4] ⇐ mem8[address]

Notes

load_ubyte supports the compilation of C or C++ code that contains an unsigned byte data type.

Format extend

load_ubyte
Chapter 6 Instruction Set 281

load_ubyte_index load_ubyte_index
Load an unsigned 8-bit value at a fixed offset from an address in a local variable from memory.

Forms

load_ubyte_index = 242 (0xf2)

Stack

…⇒
…, value

Description

load_ubyte_index loads the 8-bit value at the memory location at the effective address and

pushes it onto the top of the stack. load_ubyte_index computes the effective address by loading

the contents of the local variable, local_var, and adding the signed value of offset.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

Operation

eff_addr ⇐ stack[VARS - (local_var × 4)] + sign_ext 8(offset)
if (PSR.ACE = 1) then

if (addr_out_of_range(eff_addr)) then
trap mem_protection_error (type 0x02)

stack[OPTOP] ⇐ mem8[eff_addr]
OPTOP⇐ OPTOP – 4

Notes

load_ubyte_index is equivalent to the following sequence of instructions:

iload local_var; bipush offset; iadd; load_ubyte

Format load_byte_index

local_var
offset
282 picoJava-II Programmer’s Reference Manual • March 1999

load_word load_word
Load integer from memory.

Forms

extend = 255 (0xff)

load_word = 4 (0x04)

Stack

…, address ⇒
…, value

Description

load_word loads the 32-bit value at the memory location at address and pushes it onto the top of

the stack. If bit 30 of address is set to 1, then the data loaded is treated as if it were stored in little

endian order.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

The address must be aligned on a 32-bit boundary.

Operation

address = stack[OPTOP + 4]
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

stack[OPTOP + 4] ⇐ mem[address]
if ((address & 0x40000000) ≠ 0) then

stack[OPTOP + 4] ⇐ endian_swap(stack[OPTOP + 4])

Format extend

load_word
Chapter 6 Instruction Set 283

load_word_index load_word_index
Load a word at a fixed offset from an address in a local variable from memory.

Forms

load_word_index = 238 (0xee)

Stack

…⇒
…, value

Description

load_word_index loads the 32-bit value at the memory location at the effective address and

pushes it onto the top of the stack. load_word_index computes the effective address by loading

the contents of the local variable, local_var, and adding the signed value of offset × 4. If bit 30 of the

effective address is set to 1, then the data loaded is treated as if it were stored in little endian order.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

The effective address must be aligned on a 32-bit boundary.

Operation

eff_addr ⇐ stack[VARS - (local_var × 4)] + (sign_ext 8(offset) × 4)
if (PSR.ACE = 1) then

if (addr_out_of_range(eff_addr)) then
trap mem_protection_error (type 0x02)

stack[OPTOP] ⇐ mem[eff_addr]
if ((address & 0x40000000) ≠ 0) then

stack[OPTOP] ⇐ endian_swap(stack[OPTOP])
OPTOP⇐ OPTOP - 4

Notes

load_word_index is equivalent to the following sequence of instructions:

iload local_var; bipush offset; iconst_2; ishl; iadd; load_word

Format load_word_index

local_var
offset
284 picoJava-II Programmer’s Reference Manual • March 1999

load_word_oe load_word_oe
Use opposite endianness to load an integer from memory.

Forms

extend = 255 (0xff)

load_word_oe = 12 (0x0c)

Stack

…, address ⇒
…, value

Description

load_word_oe loads the 32-bit value at the memory location at address, then pushes it onto the top

of the stack. If bit 30 of address is not set to 1, then the data loaded is treated as if it were stored in

little endian order.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

The address must be aligned on a 32-bit boundary.

Operation

address = stack[OPTOP + 4]
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

stack[OPTOP + 4] ⇐ mem[address]
if ((address & 0x40000000) = 0) then

stack[OPTOP + 4] ⇐ endian_swap(stack[OPTOP + 4])

Format extend

load_word_oe
Chapter 6 Instruction Set 285

lookupswitch lookupswitch
Trap to emulation routine that accesses jump table by key and jumps.

Forms

lookupswitch = 171 (0xab)

Stack

…, key ⇒
…

Description

lookupswitch traps to the emulation routine referenced by entry 0xab in the trap table.

Operation

trap lookupswitch (type 0xab)

Recommendations

The trap handler should emulate lookupswitch , as defined in The Java Virtual Machine
Specification.

Format lookupswitch

<0-3 byte pad>
defaultbyte1
defaultbyte2
defaultbyte3
defaultbyte4

npairs1
npairs2
npairs3
npairs4

match-offset pairs
286 picoJava-II Programmer’s Reference Manual • March 1999

lor lor
Bitwise OR of two longs.

Forms

lor = 129 (0x81)

Stack

…, value1<31:0>, value1<63:32>, value2<31:0>, value2<63:32> ⇒
…, result<31:0>, result<63:32>

Description

lor treats both value1 and value2 as the type long and pops them from the operand stack. It then

pushes result, which is a long and the bitwise OR of value1 and value2, onto the operand stack.

Operation

stack[OPTOP + 12] ⇐ stack[OPTOP + 12] | stack[OPTOP + 4]
stack[OPTOP + 16] ⇐ stack[OPTOP + 16] | stack[OPTOP + 8]
OPTOP⇐ OPTOP + 8

Format lor
Chapter 6 Instruction Set 287

lrem lrem
Trap to emulation routine that computes the remainder of two longs.

Forms

lrem = 113 (0x71)

Stack

…, value1<31:0>, value1<63:32>, value2<31:0>, value2<63:32>2 ⇒
…, result<31:0>, result<63:32>

Description

lrem traps to the emulation routine referenced by entry 0x71 in the trap table.

Operation

trap lrem (type 0x71)

Recommendations

The trap handler should emulate lrem , as defined in The Java Virtual Machine Specification.

Format lrem
288 picoJava-II Programmer’s Reference Manual • March 1999

lreturn lreturn
Return a long integer from a method.

Forms

lreturn = 173 (0xad)

Stack

…, value<31:0>, value<63:32> ⇒
[empty]

Description

lreturn returns to the caller of this method, popping all the arguments to the current method and

pushing the long integer that is on the top of the operand stack onto the top of the caller’s operand

stack.

Operation

PC ⇐ stack[FRAME]
CONST_POOL⇐ stack[FRAME – 12]
ret_value_word1 ⇐ stack[OPTOP + 4]
ret_value_word2 ⇐ stack[OPTOP + 8]
VARS ⇐ stack[FRAME - 4]
FRAME⇐ stack[FRAME - 8]
OPTOP⇐ VARS + 8
stack[OPTOP + 4] ⇐ ret_value_word1
stack[OPTOP + 8] ⇐ ret_value_word2

Notes

In the picoJava-II core, lreturn is identical to dreturn .

Format lreturn
Chapter 6 Instruction Set 289

lshl lshl
Shift-left of a long.

Forms

lshl = 121 (0x79)

Stack

…, value1<31:0>, value1<63:32>, value2 ⇒
…, result<31:0>, result<63:32>

Description

lshl treats value1 as the type long and value2 as an integer and pops them from the operand stack.

It then pushes result, which is a long and the result of shifting value1 left by the number of positions

equal to the low 6 bits of value2, onto the operand stack.

Operation

long(stack[OPTOP + 8], stack[OPTOP + 12]) ⇐
long(stack[OPTOP + 8], stack[OPTOP + 12]) << (stack[OPTOP + 4] & 0x3f)

OPTOP⇐ OPTOP + 4

Format lshl
290 picoJava-II Programmer’s Reference Manual • March 1999

lshr lshr
Shift-right of a long.

Forms

lshr = 123 (0x7b)

Stack

…, value1<31:0>, value1<63:32>, value2 ⇒
…, result<31:0>, result<63:32>

Description

lshr treats value1 as the type long and value2 as an integer and pops them from the operand stack.

It then pushes result, which is a long and the result of shifting value1 right (with sign extension) by

the number of positions equal to the low 6 bits of value2, onto the operand stack.

Operation

long(stack[OPTOP + 8], stack[OPTOP + 12]) ⇐
long(stack[OPTOP + 8], stack[OPTOP + 12]) >> (stack[OPTOP + 4] & 0x3f)

OPTOP⇐ OPTOP + 4

Format lshr
Chapter 6 Instruction Set 291

lstore lstore
Store a long integer to a local variable.

Forms

lstore = 55 (0x37)

Stack

…, value<31:0>, value<63:32> ⇒
…

Description

lstore stores the long integer on the top of the operand stack into a two-word local variable,

which is at index stack entries offset from the start of the current local variables.

Operation

stack[VARS – (index × 4)] ⇐ stack[OPTOP]
stack[VARS – 4 -(index × 4)] ⇐ stack[OPTOP – 4]
OPTOP⇐ OPTOP + 8

Notes

In the picoJava-II core, lstore is identical to dstore .

Format lstore

index
292 picoJava-II Programmer’s Reference Manual • March 1999

lstore_ n lstore_ n
Store a long integer to a local variable.

Forms

lstore_0 = 63 (0x3f)

lstore_1 = 64 (0x40)

lstore_2 = 65 (0x41)

lstore_3 = 66 (0x42)

Stack

…, value<31:0>, value<63:32> ⇒
…

Description

lstore_ n stores the long integer on the top of the operand stack into a two-word local variable,

which is at n stack entries offset from the start of the current local variables.

Operation

stack[VARS – (n × 4)] ⇐ stack[OPTOP]
stack[VARS – 4 - (n × 4)] ⇐ stack[OPTOP – 4]
OPTOP⇐ OPTOP + 8

Notes

In the picoJava-II core, lstore_ n is identical to dstore_ n.

Format lstore_ n
Chapter 6 Instruction Set 293

lsub lsub
Subtract two longs.

Forms

lsub = 101 (0x65)

Stack

…, value1<31:0>, value1<63:32>, value2<31:0>, value2<63:32> ⇒
…, result<31:0>, result<63:32>

Description

lsub treats both value1 and value2 as the type long and pops them from the operand stack. It then

pushes result, which is a long and the result of value1 - value2, onto the operand stack.

Operation

long(stack[OPTOP + 12], stack[OPTOP + 16]) ⇐
long(stack[OPTOP + 12], stack[OPTOP + 16]) -
long(stack[OPTOP + 4], stack[OPTOP + 8])

OPTOP⇐ OPTOP + 8

Format lsub
294 picoJava-II Programmer’s Reference Manual • March 1999

lushr lushr
Unsigned shift-right of a long.

Forms

lushr = 125 (0x7d)

Stack

…, value1<31:0>, value1<63:32>, value2 ⇒
…, result<31:0>, result<63:32>

Description

lushr treats value1 as the type long and value2 as an integer and pops them from the operand stack.

It then pushes result, which is a long and the result of shifting value1 right (with zero extension) by

the number of positions equal to the low 6 bits of value2, onto the operand stack.

Operation

long(stack[OPTOP + 8], stack[OPTOP + 12]) ⇐
long(stack[OPTOP + 8], stack[OPTOP + 12]) >>>
(stack[OPTOP + 4] & 0x3f)

OPTOP⇐ OPTOP + 4

Format lushr
Chapter 6 Instruction Set 295

lxor lxor
Bitwise XOR of two longs.

Forms

lxor = 131 (0x83)

Stack

…, value1<31:0>, value1<63:32>, value2<31:0>, value2<63:32> ⇒
…, result<31:0>, result<63:32>

Description

lxor treats both value1 and value2 as the type long and pops them from the operand stack. It then

pushes result, which is a long and the bitwise XOR of value1 and value2, onto the operand stack.

Operation

stack[OPTOP + 12] ⇐ stack[OPTOP + 12] ^ stack[OPTOP + 4]
stack[OPTOP + 16] ⇐ stack[OPTOP + 16] ^ stack[OPTOP + 8]
OPTOP⇐ OPTOP + 8

Format lxor
296 picoJava-II Programmer’s Reference Manual • March 1999

monitorenter monitorenter
Enter monitor for an object.

Forms

monitorenter = 194 (0xc2)

Stack

…, objectref ⇒
…

Description

The top entry on the stack, objectref, is treated as a reference. If objectref is null , then

monitorenter takes a NullPointer trap. Otherwise, if objectref matches either of the LOCKADDR
registers, then monitorenter increments the count of the number of times a monitor associated

with objectref has been entered. If incrementing the count would cause an overflow, then

monitorenter generates a LockCountOverflow trap. If objectref matches neither of the

LOCKADDR registers at least one of the LOCKADDR registers is 0, then the LOCKADDR register is

assigned the value of objectref and the LOCKCOUNTregister is initialized with the COUNTfield set to

1 and the CO bit set to 1. If objectref matches neither of the LOCKADDR registers and neither of the

LOCKADDR registers is 0, then monitorenter generates a LockEnterMiss trap.

See Monitors on page 395 for more information.

Operation

objectref ⇐ stack[OPTOP + 4]
if (objectref = 0) then

trap NullPointer (type = 0x1b)
masked_objref ⇐ objectref & 0x7ffffffc
masked_lockaddr0 ⇐ LOCKADDR0 & 0x7ffffffc
masked_lockaddr1 ⇐ LOCKADDR1 & 0x7ffffffc
if (masked_lockaddr0 = masked_objref) then

if (LOCKCOUNT0.COUNT = 255) then
trap LockCountOverflow (type = 0x23)

LOCKCOUNT0.COUNT⇐ LOCKCOUNT0.COUNT + 1
else if (masked_lockaddr1 = masked_objref) then

if (LOCKCOUNT1.COUNT = 255) then
trap LockCountOverflow (type = 0x23)

LOCKCOUNT1.COUNT⇐ LOCKCOUNT1.COUNT + 1
else if ((LOCKADDR0 = 0) OR (LOCKADDR1 = 0)) then

Format monitorenter
Chapter 6 Instruction Set 297

lockbit ⇐ mem[masked_objref] & 0x00000001
if ((lockbit = 0) AND (LOCKADDR0 = 0)) then

LOCKADDR0⇐ objectref
LOCKCOUNT0⇐ 0x00008001

else if ((lockbit = 0) AND (LOCKADDR1 = 0)) then
LOCKADDR1⇐ objectref
LOCKCOUNT1⇐ 0x00008001

else
trap LockEnterMiss (type = 0x24)

else
trap LockEnterMiss (type = 0x24)

OPTOP⇐ OPTOP + 4
298 picoJava-II Programmer’s Reference Manual • March 1999

monitorexit monitorexit
Exit monitor for an object.

Forms

monitorexit = 195 (0xc3)

Stack

…, objectref ⇒
…

Description

The top entry on the stack, objectref, is treated as a reference. If objectref is null , then monitorexit
takes a NullPointer trap. Otherwise, if objectref matches either of the LOCKADDR registers, then

monitorexit decrements the count of the number of times a monitor associated with objectref has

been entered. If decrementing the count causes an underflow, then monitorexit generates a

LockCountOverflow trap. If decrementing the count causes the monitor to be released and

another thread is waiting to enter, then monitorexit causes a LockRelease trap. If

decrementing the count causes the monitor to be released and the CO bit is set, then the associated

LOCKADDR register is set to 0. If objectref matches neither of the LOCKADDR registers, then

monitorexit generates a LockExitMiss trap.

See Monitors on page 395 for more information.

Operation

objectref ⇐ stack[OPTOP + 4]
if (objectref = 0) then

trap NullPointer (type = 0x1b)
masked_objref ⇐ objectref & 0x7ffffffc
masked_lockaddr0 ⇐ LOCKADDR0 & 0x7ffffffc
masked_lockaddr1 ⇐ LOCKADDR1 & 0x7ffffffc
if (masked_lockaddr0 = masked_objref) then

LOCKCOUNT0.COUNT⇐ LOCKCOUNT0.COUNT - 1
if ((LOCKCOUNT0.COUNT = 0) AND (LOCKCOUNT0.LOCKWANT = 1)) then

trap LockRelease (type = 0x25)
else if ((LOCKCOUNT0.COUNT = 0) AND (LOCKCOUNT0.CO = 1)) then

LOCKADDR0⇐ 0
LOCKCOUNT0⇐ 0

else if (LOCKCOUNT0.COUNT = 0xff) then
trap LockCountOverflow (type = 0x23)

else if (masked_lockaddr1 = masked_objref) then
LOCKCOUNT1.COUNT⇐ LOCKCOUNT1.COUNT - 1
else if ((LOCKCOUNT1.COUNT = 0) AND (LOCKCOUNT1.LOCKWANT = 1)) then

Format monitorexit
Chapter 6 Instruction Set 299

trap LockRelease (type = 0x25)
else if ((LOCKCOUNT1.COUNT = 0) AND (LOCKCOUNT1.CO = 1)) then

LOCKADDR1⇐ 0
LOCKCOUNT1⇐ 0

else if (LOCKCOUNT1.COUNT = 0xff) then
trap LockCountOverflow (type = 0x23)

else
trap LockExitMiss (type = 0x26)

OPTOP⇐ OPTOP + 4
300 picoJava-II Programmer’s Reference Manual • March 1999

multianewarray multianewarray
Trap to emulation routine that resolves a constant pool item and creates a new multidimensional

array.

Forms

multianewarray = 197 (0xc5)

Stack

…, count1, [count2, ...] ⇒
…, arrayref

Description

multianewarray traps to the emulation routine referenced by entry 0xc5 in the trap table.

Operation

trap multianewarray (type = 0xc5)

Recommendations

The trap handler should emulate multianewarray , as defined in The Java Virtual Machine
Specification. After the trap handler resolves the constant pool entry, it should replace the

multianewarray instruction with the multianewarray_quick instruction.

Format multianewarray

indexbyte1
indexbyte2
dimensions
Chapter 6 Instruction Set 301

multianewarray_quick multianewarray_quick
Trap to emulation routine that creates a new multidimensional array.

Forms

multianewarray_quick = 223 (0xdf)

Stack

…, count1, [count2, ...] ⇒
…, arrayref

Description

multianewarray traps to the emulation routine referenced by entry 0xdf in the trap table.

Operation

trap multianewarray_quick (type = 0xdf)

Recommendations

The trap handler should emulate multianewarray_quick , as defined in The Java Virtual Machine
Specification.

Format multianewarray_quick

indexbyte1
indexbyte2
dimensions
302 picoJava-II Programmer’s Reference Manual • March 1999

nastore_word_index nastore_word_index
Nonallocating store of a word at a fixed offset from an address in a local variable to memory.

Forms

nastore_word_index = 244 (0xf4)

Stack

…, value ⇒
…

Description

nastore_word_index stores the 32-bit value on the stack to the memory location at the effective

address. It computes the effective address by loading the contents of the local variable, local_var,
and adding the signed value of offset × 4. If bit 30 of the effective address is set to 1, then the data is

stored in little endian order.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

The effective address must be aligned on a 32-bit boundary.

The store is nonallocating: If the data is not present in the data cache, then nastore_word_index
stores it into memory without allocating a line in the cache.

Operation

eff_addr ⇐ stack[VARS - (local_var × 4)] + (sign_ext 8(offset) × 4)
data ⇐ stack[OPTOP + 4]
if (PSR.ACE = 1) then

if (addr_out_of_range(eff_addr)) then
trap mem_protection_error (type 0x02)

if ((eff_addr & 0x40000000) ≠ 0) then
data ⇐ endian_swap(data)

memNA[eff_addr] ⇐ data
OPTOP⇐ OPTOP + 4

Format nastore_word_index

local_var
offset
Chapter 6 Instruction Set 303

ncload_byte ncload_byte
Use opposite endianness to load an integer from memory.

Forms

extend = 255 (0xff)

ncload_byte = 17 (0x11)

Stack

…, address ⇒
…, value

Description

ncload_byte loads and sign-extends the signed 8-bit value at the memory location at address, then

pushes it onto the top of the stack. ncload_byte bypasses the data cache and sends the request

directly to memory.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

Operation

address = stack[OPTOP + 4]
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

stack[OPTOP + 4] ⇐ sign_ext 8(mem8,NC[address])

Format extend

ncload_byte
304 picoJava-II Programmer’s Reference Manual • March 1999

ncload_char ncload_char
Noncacheable load unsigned short (char) from memory.

Forms

extend = 255 (0xff)

ncload_char = 18 (0x12)

Stack

…, address ⇒
…, value

Description

ncload_char loads the unsigned 16-bit value at the memory location at address and pushes it onto

the top of the stack. ncload_char bypasses the data cache and sends the request directly to

memory. If bit 30 of address is set to 1, then the data loaded is treated as if it were stored in little

endian order.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

The address must be aligned on a 16-bit boundary.

Operation

address = stack[OPTOP + 4]
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

stack[OPTOP + 4] ⇐ mem16,NC [address]
if ((address & 0x40000000) ≠ 0) then

stack[OPTOP + 4] ⇐ endian_swap 16(stack[OPTOP + 4])

Format extend

ncload_char
Chapter 6 Instruction Set 305

ncload_char_oe ncload_char_oe
Use opposite endianness to perform a noncacheable load of unsigned short (char) from

memory.

Forms

extend = 255 (0xff)

ncload_char_oe = 26 (0x1a)

Stack

…, address ⇒
…, value

Description

ncload_char_oe loads the unsigned 16-bit value at the memory location at address, then pushes it

onto the top of the stack. ncload_char_oe bypasses the data cache and sends the request directly

to memory. If bit 30 of address is not set to 1, then the data loaded is treated as if it were stored in

little endian order.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

The address must be aligned on a 16-bit boundary.

Operation

address = stack[OPTOP + 4]
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

stack[OPTOP + 4] ⇐ mem16,NC [address]
if ((address & 0x40000000) = 0) then

stack[OPTOP + 4] ⇐ endian_swap 16(stack[OPTOP + 4])

Format extend

ncload_char_oe
306 picoJava-II Programmer’s Reference Manual • March 1999

ncload_short ncload_short
Noncacheable load signed short from memory.

Forms

extend = 255 (0xff)

ncload_short = 19 (0x13)

Stack

…, address ⇒
…, value

Description

ncload_short loads and sign-extends the signed 16-bit value at the memory location at address,

then pushes it onto the top of the stack. ncload_short bypasses the data cache and sends the

request directly to memory. If bit 30 of address is set to 1, then the data loaded is treated as if it were

stored in little endian order.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

The address must be aligned on a 16-bit boundary.

Operation

address = stack[OPTOP + 4]
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

stack[OPTOP + 4] ⇐ mem16,NC [address]
if ((address & 0x40000000) ≠ 0) then

stack[OPTOP + 4] ⇐ endian_swap 16(stack[OPTOP + 4])
stack[OPTOP + 4] ⇐ sign_ext 16(stack[OPTOP + 4])

Format extend

ncload_short
Chapter 6 Instruction Set 307

ncload_short_oe ncload_short_oe
Use opposite endianness to perform a noncacheable load of signed short from memory.

Forms

extend = 255 (0xff)

ncload_short_oe = 27 (0x1b)

Stack

…, address ⇒
…, value

Description

ncload_short_oe loads and sign-extends the signed 16-bit value at the memory location at

address, then pushes it onto the top of the stack. ncload_short_oe bypasses the data cache and

sends the request directly to memory. If bit 30 of address is not set to 1, then the data loaded is

treated as if it were stored in little endian order.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

The address must be aligned on a 16-bit boundary.

Operation

address = stack[OPTOP + 4]
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

stack[OPTOP + 4] ⇐ mem16,NC [address]
if ((address & 0x40000000) = 0) then

stack[OPTOP + 4] ⇐ endian_swap 16(stack[OPTOP + 4])
stack[OPTOP + 4] ⇐ sign_ext 16(stack[OPTOP + 4])

Format extend

ncload_short_oe
308 picoJava-II Programmer’s Reference Manual • March 1999

ncload_ubyte ncload_ubyte
Noncacheable load unsigned byte from memory.

Forms

extend = 255 (0xff)

ncload_ubyte = 16 (0x10)

Stack

…, address ⇒
…, value

Description

ncload_ubyte loads the unsigned 8-bit value at the memory location at address, then pushes it

onto the top of the stack. ncload_ubyte bypasses the data cache and sends the request directly to

memory.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

Operation

address = stack[OPTOP + 4]
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

stack[OPTOP + 4] ⇐ mem8,NC[address]

Format extend

ncload_ubyte
Chapter 6 Instruction Set 309

ncload_word ncload_word
Noncacheable load an integer from memory.

Forms

extend = 255 (0xff)

ncload_word = 20 (0x14)

Stack

…, address ⇒
…, value

Description

ncload_word loads the 32-bit value at the memory location at address, then pushes it onto the top

of the stack. ncload_word bypasses the data cache and sends the request directly to memory. If bit

30 of address is set to 1, then the data loaded is treated as if it were stored in little endian order.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

The address must be aligned on a 32-bit boundary.

Operation

address = stack[OPTOP + 4]
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

stack[OPTOP + 4] ⇐ memNC[address]
if ((address & 0x40000000) ≠ 0) then

stack[OPTOP + 4] ⇐ endian_swap(stack[OPTOP + 4])

Format extend

ncload_word
310 picoJava-II Programmer’s Reference Manual • March 1999

ncload_word_oe ncload_word_oe
Use opposite endianness to perform a noncacheable load of an integer from memory.

Forms

extend = 255 (0xff)

ncload_word_oe = 28 (0x1c)

Stack

…, address ⇒
…, value

Description

ncload_word_oe loads the 32-bit value at the memory location at address, then pushes it onto the

top of the stack. ncload_word_oe bypasses the data cache and sends the request directly to

memory. If bit 30 of address is not set to 1, then the data loaded is treated as if it were stored in little

endian order.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

The address must be aligned on a 32-bit boundary.

Operation

address = stack[OPTOP + 4]
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

stack[OPTOP + 4] ⇐ memNC[address]
if ((address & 0x40000000) = 0) then

stack[OPTOP + 4] ⇐ endian_swap(stack[OPTOP + 4])

Format extend

ncload_word_oe
Chapter 6 Instruction Set 311

ncstore_byte ncstore_byte
Noncacheable store byte to memory.

Forms

extend = 255 (0xff)

ncstore_byte = 48 (0x30)

Stack

…, value, address ⇒
…

Description

ncstore_byte stores the low 8 bits of value at the memory location at address, then pops both

value and address from the stack. It bypasses the data cache and sends the request directly to

memory.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

Operation

address ⇐ stack[OPTOP + 4]
data ⇐ stack[OPTOP + 8]
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

mem8,NC[address] ⇐ data
OPTOP⇐ OPTOP + 8

Format extend

ncstore_byte
312 picoJava-II Programmer’s Reference Manual • March 1999

ncstore_short ncstore_short
Noncacheable store short or char to memory.

Forms

extend = 255 (0xff)

ncstore_short = 50 (0x32)

Stack

…, value, address ⇒
…

Description

ncstore_short stores the low 16 bits of value at the memory location at address, then pops both

value and address from the stack. It bypasses the data cache and sends the request directly to

memory. If bit 30 of address is set to 1, then the data is stored in little endian order.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

The address must be aligned on a 16-bit boundary.

Operation

address ⇐ stack[OPTOP + 4]
data ⇐ stack[OPTOP + 8]
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

if ((address & 0x40000000) ≠ 0) then
data ⇐ endian_swap 16(data)

mem16,NC [address] ⇐ data
OPTOP⇐ OPTOP + 8

Format extend

ncstore_short
Chapter 6 Instruction Set 313

ncstore_short_oe ncstore_short_oe
Use opposite endianness to perform a noncacheable store of short to memory.

Forms

extend = 255 (0xff)

ncstore_short_oe = 58 (0x3a)

Stack

…, value, address ⇒
…

Description

ncstore_short_oe stores the low 16 bits of value at the memory location at address, then pops

both value and address from the stack. It bypasses the data cache and sends the request directly to

memory. If bit 30 of address is not set to 1, then the data is stored in little endian order.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

The address must be aligned on a 16-bit boundary.

Operation

address ⇐ stack[OPTOP + 4]
data ⇐ stack[OPTOP + 8]
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

if ((address & 0x40000000) = 0) then
data ⇐ endian_swap 16(data)

mem16,NC [address] ⇐ data
OPTOP⇐ OPTOP + 8

Format extend

ncstore_short_oe
314 picoJava-II Programmer’s Reference Manual • March 1999

ncstore_word ncstore_word
Perform a noncacheable store of integer to memory.

Forms

extend = 255 (0xff)

ncstore_word = 52 (0x34)

Stack

…, value, address ⇒
…

Description

ncstore_word stores the 32 bits of value at the memory location at address, then pops both value
and address from the stack. It bypasses the data cache and sends the request directly to memory. If

bit 30 of address is set to 1, then the data is stored in little endian order.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

The address must be aligned on a 32-bit boundary.

Operation

address ⇐ stack[OPTOP + 4]
data ⇐ stack[OPTOP + 8]
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

if ((address & 0x40000000) ≠ 0) then
data ⇐ endian_swap(data)

memNC[address] ⇐ data
OPTOP⇐ OPTOP + 8

Format extend

ncstore_word
Chapter 6 Instruction Set 315

ncstore_word_oe ncstore_word_oe
Use opposite endianness to perform a noncacheable store of integer to memory.

Forms

extend = 255 (0xff)

ncstore_word_oe = 60 (0x3c)

Stack

…, value, address ⇒
…

Description

ncstore_word_oe stores the 32 bits of value at the memory location at address, then pops both

value and address from the stack. It bypasses the data cache and sends the request directly to

memory. If bit 30 of address is not set to 1, then the data is stored in little endian order.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

ncstore_word_oe aligns the address on a 32-bit boundary.

Operation

address ⇐ stack[OPTOP + 4]
data ⇐ stack[OPTOP + 8]
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

if ((address & 0x40000000) = 0) then
data ⇐ endian_swap(data)

memNC[address] ⇐ eata
OPTOP⇐ OPTOP + 8

Format extend

ncstore_word_oe
316 picoJava-II Programmer’s Reference Manual • March 1999

new new
Trap to emulation routine that resolves a constant pool item and creates a new object.

Forms

new = 187 (0xbb)

Stack

…, ⇒
…, objectref

Description

new traps to the emulation routine referenced by entry 0xbb in the trap table.

Operation

trap new (type = 0xbb)

Recommendations

The trap handler should emulate new, as defined in The Java Virtual Machine Specification. After the

trap handler resolves the constant pool entry, it should replace the new instruction with the

new_quick instruction.

Format new

indexbyte1
indexbyte2
Chapter 6 Instruction Set 317

new_quick new_quick
Trap to emulation routine that creates a new object.

Forms

new = 221 (0xdd)

Stack

…, ⇒
…, objectref

Description

new_quick traps to the emulation routine referenced by entry 0xdd in the trap table.

Operation

trap new_quick (type = 0xdd)

Recommendations

The trap handler should emulate new_quick , as defined in The Java Virtual Machine Specification.

Format new_quick

indexbyte1
indexbyte2
318 picoJava-II Programmer’s Reference Manual • March 1999

newarray newarray
Trap to emulation routine that creates a new array.

Forms

newarray = 188 (0xbc)

Stack

…, count ⇒
…, objectref

Description

newarray traps to the emulation routine referenced by entry 0xbc in the trap table.

Operation

trap newarray (type = 0xbc)

Recommendations

The trap handler should emulate newarray , as defined in The Java Virtual Machine Specification.

Format newarray

atype
Chapter 6 Instruction Set 319

nonnull_quick nonnull_quick
Read a reference on the stack and generate an exception if it is null .

Forms

nonnull_quick = 229 (0xe5)

Stack

…, objectref ⇒
…

Description

nonnull_quick pops objectref, which is treated as a reference, from the operand stack.

If objectref is null , then nonnull_quick signals a NullPointer trap.

Operation

if (stack[OPTOP + 4] = 0) then
trap NullPointer (type = 0x1b)

OPTOP⇐ OPTOP + 4

Format nonnull_quick
320 picoJava-II Programmer’s Reference Manual • March 1999

nop nop
Do nothing.

Forms

nop = 0 (0x00)

Stack

… ⇒
…

Description

nop does nothing.

Operation

None.

Format nop
Chapter 6 Instruction Set 321

pop pop
Pop the top word off the stack.

Forms

pop = 87 (0x57)

Stack

…, word ⇒
…

Description

pop removes the one-word element at the top of the stack.

Operation

OPTOP⇐ OPTOP + 4

Notes

In the picoJava-II core, pop is identical to l2i .

Format pop
322 picoJava-II Programmer’s Reference Manual • March 1999

pop2 pop2
Pop the top two words off the stack.

Forms

pop2 = 88 (0x58)

Stack

…, word1, word2⇒
…

Description

pop2 removes the two one-word elements or one two-word element at the top of the stack.

Operation

OPTOP⇐ OPTOP + 8

Format pop2
Chapter 6 Instruction Set 323

priv_powerdown priv_powerdown
Introduce a privileged and software-initiated entry into low-power standby mode.

Forms

extend = 255 (0xff)
priv_powerdown = 22 (0x16)

Stack

… ⇒
…

Description

When priv_powerdown executes, the picoJava-II core enters a low-power standby mode. The core

remains in the low-power standby mode, not executing any instructions, until an external interrupt

is signalled. Upon receiving the interrupt signal, the core resumes normal execution, transferring

control to the appropriate interrupt handler routine. The interrupt handler routine, after

completing, returns to the instruction immediately following priv_powerdown .

If PSR.SU = 0, then priv_powerdown generates a privileged_instruction trap.

Operation

if (PSR.SU = 0) then
trap privileged_instruction (type = 0x05)

Enter powerdown mode

Format extend

powerdown
324 picoJava-II Programmer’s Reference Manual • March 1999

priv_read_dcache_data priv_read_dcache_data
Perform a privileged diagnostic read of the data cache data array.

Forms

extend = 255 (0xff)

priv_read_dcache_data = 7 (0x07)

Stack

…, data_address ⇒
…, data

Description

priv_read_dcache_data reads a word directly from the data cache data array. The word to be

read from the data cache data array is specified by the value on the top of the stack, data_address.

data_address is decoded as shown in FIGURE 6-1.

FIGURE 6-1 Format for Data Cache Data Address for 16-Kbyte Data Cache

Bit 31 of data_address specifies which “way” of the data cache is to be accessed. Depending on the

size of the data cache, the Word Index bits, below, of data_address specify which word in the way is

read.

Format extend

read_dcache_data

Data Cache Size Word Index Bits

1 Kbytes <8:2>

2 Kbytes <9:2>

4 Kbytes <10:2>

8 Kbytes <11:2>

16 Kbytes <12:2>

31 013 12

Reserved

2

Word Index bits X

1

W

W = Way

30
Chapter 6 Instruction Set 325

If PSR.SU = 0, then priv_read_dcache_data generates a privileged_instruction trap.

If no data cache is present, then priv_read_dcache_data pops the word on the top of the stack

and pushes 0.

Operation

if (PSR.SU = 0) then
trap privileged_instruction (type = 0x05)

if (HCR.DCS = 0) then
stack[OPTOP + 4] ⇐ 0

else
stack[OPTOP + 4] ⇐ dcache_data[stack[OPTOP + 4]]
326 picoJava-II Programmer’s Reference Manual • March 1999

priv_read_dcache_tag priv_read_dcache_tag
Perform a privileged diagnostic read of data cache tags.

Forms

extend = 255 (0xff)

priv_read_dcache_tag = 6 (0x06)

Stack

…, tag_address ⇒
…, tag_data

Description

priv_read_dcache_tag reads a word directly from the data cache tag array. The word to be read

from the data cache tag array is specified by the value on the top of the stack, tag_address.

tag_address is decoded as shown in FIGURE 6-2.

FIGURE 6-2 Format for Data Cache Tag Address for 16-Kbyte Data Cache

Bit 31 of tag_address specifies which “way” of the data cache is to be accessed. Depending on the

size of the data cache, the Line Index bits, below, of tag_address specify which data cache line tag is

read.

Format extend

read_dcache_tag

Data Cache Size Line Index Bits Data Cache Tag Bits

1 Kbytes <8:4> <29:9>

2 Kbytes <9:4> <29:10>

4 Kbytes <10:4> <29:11>

8 Kbytes <11:4> <29:12>

16 Kbytes <12:4> <29:13>

31 013 12

Reserved

4

Line Index bits X

3

W

W = Way

30
Chapter 6 Instruction Set 327

The tag_data read is of the format shown in FIGURE 6-3. The Data Cache Tag bits vary, based on the

size of the data cache as above. The Valid bit of tag_data specifies whether this data cache line

contains valid data. The Dirty bit specifies whether the corresponding cache line needs to be written

back to memory when it is replaced or flushed. Finally, the LRU bit of the tag_data specifies whether

way 0 or way 1 is the least recently used.

FIGURE 6-3 Format for Data Cache Tag Data for 16-Kbyte Data Cache

If PSR.SU = 0, then priv_read_dcache_tag generates a privileged_instruction trap.

If no data cache is present, then priv_read_dcache_tag pops the word on the top of the stack

and pushes 0.

Operation

if (PSR.SU = 0) then
trap privileged_instruction (type = 0x05)

if (HCR.DCS = 0) then
stack[OPTOP + 4] ⇐ 0

else
stack[OPTOP + 4] ⇐ dcache_tag[stack[OPTOP + 4]]

D
VL

13 12 0

Reserved

30 2931 123

L D VData Cache Tag

=
==

Dirty
ValidLeast Recently Used (LRU)

R

R = Reserved
328 picoJava-II Programmer’s Reference Manual • March 1999

priv_read_icache_data priv_read_icache_data
Perform a privileged diagnostic read of the instruction cache data array.

Forms

extend = 255 (0xff)

priv_read_icache_data = 15 (0x0f)

Stack

…, data_address ⇒
…, data

Description

priv_read_icache_data reads a word directly from the instruction cache data array. The word

to be read from the instruction cache data array is specified by the value on the top of the stack,

data_address. data_address is decoded as shown in FIGURE 6-4.

FIGURE 6-4 Format for Instruction Cache Data Address for 16-Kbyte Instruction Cache

Depending on the size of the instruction cache, the Word Index bits, below, of data_address specify

which word in the instruction cache is read.

Format extend

read_icache_data

Instruction Cache Size Word Index Bits

1 Kbytes <9:2>

2 Kbytes <10:2>

4 Kbytes <11:2>

8 Kbytes <12:2>

16 Kbytes <13:2>

31 014 13

Reserved

2

Word Index bits X

1

Chapter 6 Instruction Set 329

If PSR.SU = 0, then priv_read_icache_data generates a privileged_instruction trap.

If no instruction cache is present, then priv_read_icache_data pops the word on the top of the

stack and pushes 0.

Operation

if (PSR.SU = 0) then
trap privileged_instruction (type = 0x05)

if (HCR.ICS = 0) then
stack[OPTOP + 4] ⇐ 0

else
stack[OPTOP + 4] ⇐ icache_data[stack[OPTOP + 4]]
330 picoJava-II Programmer’s Reference Manual • March 1999

priv_read_icache_tag priv_read_icache_tag
Perform a privileged diagnostic read of the instruction cache tags.

Forms

extend = 255 (0xff)

priv_read_icache_tag = 14 (0x0e)

Stack

…, tag_address ⇒
…, tag_data

Description

priv_read_icache_tag reads a word directly from the instruction cache tag array. The word to

be read from the instruction cache tag array is specified by the value on the top of the stack,

tag_address. tag_address is decoded as shown in FIGURE 6-5.

FIGURE 6-5 Format for 16-Kbyte Instruction Cache Tag Address

Depending on the size of the instruction cache, the Line Index bits, below, of tag_address specify

which instruction cache line tag is read.

Format extend

read_icache_tag

Instruction Cache Size Line Index Bits Instruction Cache Tag Bits

1 Kbytes <9:4> <29:10>

2 Kbytes <10:4> <29:11>

4 Kbytes <11:4> <29:12>

8 Kbytes <12:4> <29:13>

16 Kbytes <13:4> <29:14>

31 0

Line Index bits

14 13

Reserved

4 3

X

Chapter 6 Instruction Set 331

The tag_data to be read is of the format shown in FIGURE 6-6. The Instruction Cache Tag bits vary,

based on the size of the instruction cache as above. The Valid bit of tag_data specifies whether this

instruction cache line contains valid data.

FIGURE 6-6 Format for Instruction Cache Tag Data for 16-Kbyte Instruction Cache

If PSR.SU = 0, then priv_read_icache_tag generates a privileged_instruction trap.

If no instruction cache is present, then priv_read_icache_tag pops the word on the top of the

stack and pushes 0.

Operation

if (PSR.SU = 0) then
trap privileged_instruction (type = 0x05)

if (HCR.ICS = 0) then
stack[OPTOP + 4] ⇐ 0

else
stack[OPTOP + 4] ⇐ icache_tag[stack[OPTOP + 4]]

 13

Instruction Cache Tag Reserved

3031

R = Reserved

0

V

 1429

R

V = Valid
332 picoJava-II Programmer’s Reference Manual • March 1999

priv_read_ reg priv_read_ reg
Read a machine register.

Forms

extend = 255 (0xff)

priv_read_ reg = 64 (0x40) through 89 (0x59) (See table below.)

Stack

… ⇒
…, value

Description

priv_read_ reg pushes the contents of a machine register onto the stack. The following table

tabulates which priv_read_ reg pushes which register, along with the opcodes.

Format extend

read_ reg

Instruction Machine Register Opcode

priv_read_oplim OPLIM 0x44

priv_read_psr PSR 0x46

priv_read_trapbase TRAPBASE 0x47

priv_read_lockcount0 LOCKCOUNT0 0x48

priv_read_lockcount1 LOCKCOUNT1 0x49

priv_read_lockaddr0 LOCKADDR0 0x4c

priv_read_lockaddr1 LOCKADDR1 0x4d

priv_read_userrange1 USERRANGE1 0x50

priv_read_userrange2 USERRANGE2 0x55

priv_read_gc_config GC_CONFIG 0x51

priv_read_brk1a BRK1A 0x52

priv_read_brk2a BRK2A 0x53

priv_read_brk12c BRK12C 0x54
Chapter 6 Instruction Set 333

If PSR.SU = 0, then priv_read_ reg generates a privileged_instruction trap.

Operation

if (PSR.SU = 0) then
trap privileged_instruction (type = 0x05)

stack[OPTOP] ⇐ reg
OPTOP⇐ OPTOP - 4

priv_read_versionid VERSIONID 0x57

priv_read_hcr HCR 0x58

priv_read_sc_bottom SC_BOTTOM 0x59

Instruction Machine Register Opcode
334 picoJava-II Programmer’s Reference Manual • March 1999

priv_reset priv_reset
Perform a privileged and software-initiated reset.

Forms

extend = 255 (0xff)

priv_reset = 54 (0x36)

Stack

… ⇒
…

Description

When priv_reset executes, the picoJava-II core enters the same state as if a power-on reset had

occurred. Execution starts from address 0x00000000.

If PSR.SU = 0, then priv_reset generates a privileged_instruction trap.

Operation

if (PSR.SU = 0) then
trap privileged_instruction (type = 0x05)

reset

Format extend

reset
Chapter 6 Instruction Set 335

priv_ret_from_trap priv_ret_from_trap
Perform a privileged return from a trap instruction.

Forms

extend = 255 (0xff)

priv_ret_from_trap = 5 (0x05)

Stack

… ⇒
…

Description

priv_ret_from_trap pops off a trap call frame and restores the PSRregister. The value of OPTOP
after ret_from_trap is equal to VARS when the ret_from_trap starts execution. Care must be

taken prior to ret_from_trap to ensure that VARS has an appropriate value.

If PSR.SU = 0, then priv_ret_from_trap generates a privileged_instruction trap.

Operation

if (PSR.SU = 0) then
trap privileged_instruction (type = 0x05)

returnOPTOP ⇐ VARS
PC ⇐ stack[FRAME]
VARS ⇐ stack[FRAME - 4]
PSR ⇐ stack[FRAME + 4]
FRAME⇐ stack[FRAME - 8]
OPTOP⇐ returnOPTOP

Format extend

ret_from_trap
336 picoJava-II Programmer’s Reference Manual • March 1999

priv_update_optop priv_update_optop
Perform a privileged and atomic update of the OPTOP and OPLIM registers.

Forms

extend = 255 (0xff)

priv_update_optop = 63 (0x3f)

Stack

…, new_oplim , new_optop ⇒
…

Description

priv_update_optop updates the OPTOP and OPLIM registers atomically. priv_update_optop
never allows the inconsistent state when either OPTOP or OPLIM obtains the new value, while the

other register retains the original value. This property is particularly useful during context switches

or while changing stack chunks.

If PSR.SU = 0, then priv_update_optop generates a privileged_instruction trap.

Operation

if (PSR.SU = 0) then
trap privileged_instruction (type = 0x05)

OPLIM ⇐ stack[OPTOP + 8]
OPTOP⇐ stack[OPTOP + 4]

Format extend

update_optop
Chapter 6 Instruction Set 337

priv_write_dcache_data priv_write_dcache_data
Perform a privileged diagnostic write of the data cache data array.

Forms

extend = 255 (0xff)

priv_write_dcache_data = 39 (0x27)

Stack

…, data, data_address ⇒
…

Description

priv_write_dcache_data writes a word directly into the data cache data array. The word to be

written in the data cache data array is specified by the value on the top of the stack, data_address.

data_address is decoded as shown in FIGURE 6-7.

FIGURE 6-7 Format for Data Cache Data Address for 16-Kbyte Data Cache

Bit 31 of data_address specifies which “way” of the data cache is to be accessed. Depending on the

size of the data cache, the Word Index bits, below, of data_address specify which word in the way is

written.

Format extend

write_dcache_data

Data Cache Size Word Index Bits

1 Kbytes <8:2>

2 Kbytes <9:2>

4 Kbytes <10:2>

8 Kbytes <11:2>

16 Kbytes <12:2>

31 013 12

Reserved

2

Word Index bits X

1

W

W = Way

30
338 picoJava-II Programmer’s Reference Manual • March 1999

If PSR.SU = 0, then priv_write_dcache_data generates a privileged_instruction trap.

If no data cache is present, then priv_write_dcache_data pops the two words on the top of the

stack and does nothing.

Operation

if (PSR.SU = 0) then
trap privileged_instruction (type = 0x05)

if (HCR.DCS ≠ 0) then
dcache_data[stack[OPTOP + 4]] ⇐ stack[OPTOP + 8]]

OPTOP⇐ OPTOP + 8
Chapter 6 Instruction Set 339

priv_write_dcache_tag priv_write_dcache_tag
Perform a privileged diagnostic write of data cache tags.

Forms

extend = 255 (0xff)

priv_write_dcache_tag = 38 (0x26)

Stack

…, tag_data, tag_address ⇒
…

Description

priv_write_dcache_tag writes a word directly into the data cache tag array. The word to be

written in the data cache tag array is specified by the value on the top of the stack, tag_address.

tag_address is decoded as shown in FIGURE 6-8.

FIGURE 6-8 Format for Data Cache Tag Address for 16-Kbyte Data Cache

Bit 31 of tag_address specifies which “way” of the data cache is to be accessed. Depending on the

size of the data cache, the Line Index bits, below, of tag_address specify which data cache line tag is

written.

Format extend

write_dcache_tag

Data Cache Size Line Index Bits Data Cache Tag Bits

1 Kbytes <8:4> <29:9>

2 Kbytes <9:4> <29:10>

4 Kbytes <10:4> <29:11>

8 Kbytes <11:4> <29:12>

16 Kbytes <12:4> <29:13>

31 013 12

Reserved

4

Line Index bits X

3

W

W = Way

30
340 picoJava-II Programmer’s Reference Manual • March 1999

The tag_data to be written is of the format shown in FIGURE 6-9. The Data Cache Tag bits vary, based

on the size of the data cache as above. The Valid bit of tag_data specifies whether this data cache line

contains valid data. The Dirty bit specifies whether the corresponding cache line needs to be written

back to memory when it is replaced or flushed. Finally, the LRU bit of the tag_data specifies whether

way 0 or way 1 is the least recently used.

FIGURE 6-9 Format for Data Cache Tag Data for 16-Kbyte Data Cache

If PSR.SU = 0, then priv_write_dcache_tag generates a privileged_instruction trap.

If no data cache is present, then priv_write_dcache_tag pops the two words on the top of the

stack and does nothing.

Operation

if (PSR.SU = 0) then
trap privileged_instruction (type = 0x05)

if (HCR.DCS ≠ 0) then
dcache_tag[stack[OPTOP + 4]] ⇐ stack[OPTOP + 8]]

OPTOP⇐ OPTOP + 8

D
VL

13 12 0

Reserved

30 2931 123

L D VData Cache Tag

=
==

Dirty
ValidLeast Recently Used (LRU)

R

R = Reserved
Chapter 6 Instruction Set 341

priv_write_icache_data priv_write_icache_data
Perform a privileged diagnostic write of the instruction cache data array.

Forms

extend = 255 (0xff)

priv_write_icache_data = 47 (0x2f)

Stack

…, data, data_address ⇒
…

Description

priv_write_icache_data writes a word directly into the instruction cache data array. The word

to be written in the instruction cache data array is specified by the value on the top of the stack,

data_address. data_address is decoded as shown in FIGURE 6-10.

FIGURE 6-10 Format for Instruction Cache Data Address for 16-Kbyte Instruction Cache

Depending on the size of the instruction cache, the Word Index bits, below, of data_address specify

which word in the instruction cache is written.

If PSR.SU = 0, then priv_write_icache_data generates a privileged_instruction trap.

Format extend

write_icache_data

Instruction Cache Size Word Index Bits

1 Kbytes <9:2>

2 Kbytes <10:2>

4 Kbytes <11:2>

8 Kbytes <12:2>

16 Kbytes <13:2>

31 014 13

Reserved

2

Word Index bits X

1

342 picoJava-II Programmer’s Reference Manual • March 1999

If no instruction cache is present, then priv_write_icache_data pops the two words on the top

of the stack and does nothing.

Operation

if (PSR.SU = 0) then
trap privileged_instruction (type = 0x05)

if (HCR.ICS ≠ 0) then
icache_data[stack[OPTOP + 4]] ⇐ stack[OPTOP + 8]]

OPTOP⇐ OPTOP + 8
Chapter 6 Instruction Set 343

priv_write_icache_tag priv_write_icache_tag
Perform a privileged diagnostic write of instruction cache tags.

Forms

extend = 255 (0xff)

priv_write_icache_tag = 46 (0x2e)

Stack

…, tag_data, tag_address ⇒
…

Description

priv_write_icache_tag writes a word directly into the instruction cache tag array. The word to

be written in the instruction cache tag array is specified by the value on the top of the stack,

tag_address. tag_address is decoded as shown in FIGURE 6-11.

FIGURE 6-11 Format for 16-Kbyte Instruction Cache Tag Address

Depending on the size of the instruction cache, the Line Index bits, below, of tag_address specify

which instruction cache line tag is written.

Format extend

write_icache_tag

Instruction Cache Size Line Index Bits Instruction Cache Tag Bits

1 Kbytes <9:4> <29:10>

2 Kbytes <10:4> <29:11>

4 Kbytes <11:4> <29:12>

8 Kbytes <12:4> <29:13>

16 Kbytes <13:4> <29:14>

31 0

Line Index bits

14 13

Reserved

4 3

X

344 picoJava-II Programmer’s Reference Manual • March 1999

The tag_data to be written is of the format shown in FIGURE 6-12. The Instruction Cache Tag bits vary,

based on the size of the instruction cache as above. The Valid bit of tag_data specifies whether this

instruction cache line contains valid data.

FIGURE 6-12 Format for Instruction Cache Tag Data for 16-Kbyte Instruction Cache

If PSR.SU = 0, then priv_write_icache_tag generates a privileged_instruction trap.

If no instruction cache is present, then priv_write_icache_tag pops the two words on the top

of the stack and does nothing.

Operation

if (PSR.SU = 0) then
trap privileged_instruction (type = 0x05)

if (HCR.ICS ≠ 0) then
icache_tag[stack[OPTOP + 4]] ⇐ stack[OPTOP + 8]]

OPTOP⇐ OPTOP + 8

 13

Instruction Cache Tag Reserved

3031

R = Reserved

0

V

 1429

R

V = Valid
Chapter 6 Instruction Set 345

priv_write_ reg priv_write_ reg
Perform a privileged write of a machine register.

Forms

extend = 255 (0xff)

priv_write_ reg = 96 (0x60) through 121 (0x79) (see table below)

Stack

…, value ⇒
…

Description

priv_write_ reg writes the contents of one of the machine registers with the value from the stack.

The following table tabulates which priv_write_ reg pushes which register, along with the

opcodes.

Format extend

write_ reg

Instruction Machine Register Opcode

priv_write_oplim OPLIM 0x64

priv_write_psr PSR 0x66

priv_write_trapbase TRAPBASE 0x67

priv_write_lockcount0 LOCKCOUNT0 0x68

priv_write_lockcount1 LOCKCOUNT1 0x69

priv_write_lockaddr0 LOCKADDR0 0x6c

priv_write_lockaddr1 LOCKADDR1 0x6d

priv_write_userrange1 USERRANGE1 0x70

priv_write_userrange2 USERRANGE2 0x75

priv_write_gc_config GC_CONFIG 0x71

priv_write_brk1a BRK1A 0x72

priv_write_brk2a BRK2A 0x73

priv_write_brk12c BRK12C 0x74

priv_write_sc_bottom SC_BOTTOM 0x79
346 picoJava-II Programmer’s Reference Manual • March 1999

If PSR.SU = 0, then priv_write_ reg generates a privileged_instruction trap.

Operation

if (PSR.SU = 0) then
trap privileged_instruction (type = 0x05)

reg ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 4
Chapter 6 Instruction Set 347

putfield putfield
Trap to emulation routine that resolves a constant pool item and writes a field in an object.

Forms

putfield = 181 (0xb5)

Stack

…, objectref, value or …, objectref, value<31:0>, value<63:32> ⇒
…

Description

putfield traps to the emulation routine referenced by entry 0xb5 in the trap table.

Operation

trap putfield (type = 0xb5)

Recommendations

The trap handler should emulate putfield , as defined in The Java Virtual Machine Specification.

When the constant pool entry referenced by putfield is resolved, the putfield trap handler

computes the offset for the field it references and determines the field type which, along with the

size of the offset, in turn determines whether a putfield_quick , putfield_quick_w ,

putfield2_quick , or aputfield_quick opcode byte should replace the original putfield
opcode byte.

If the putfield operates on a field determined dynamically to have an offset into the class

instance data that corresponds to a one-word field that is of the type reference, then the putfield
trap handler should replace the putfield instruction with aputfield_quick . Otherwise, if the

offset into the object is less than or equal to 255 words, then the putfield instruction should be

replaced with putfield_quick or putfield2_quick if the field is one or two words in size,

respectively. Finally, if the offset is larger than 255 words, then the putfield trap handler should

replace the putfield with putfield_quick_w .

Format putfield

indexbyte1
indexbyte2
348 picoJava-II Programmer’s Reference Manual • March 1999

putfield_quick putfield_quick
Write a one-word field from an object.

Forms

putfield_quick = 207 (0xcf)

Stack

…, objectref, value ⇒
…

Description

putfield_quick pops objectref, which must be of the type reference , and value, which must be

one word in size, from the operand stack. It then writes value to the field at the offset index into the

class instance referenced by objectref.

If objectref is null , then putfield_quick signals a NullPointer trap.

Operation

objectref ⇐ stack[OPTOP + 8]
if (objectref = 0) then

trap NullPointer (type = 0x1b)
handle_bit ⇐ objectref & 0x00000001
if (handle_bit = 1) then

addr_of_fields ⇐ mem[(objectref & 0x7ffffffc) + 4]
else

addr_of_fields ⇐ (objectref & 0x7ffffffc) + 4
mem[addr_of_fields + (index × 4)] ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 8

Format putfield_quick

index
<unused>
Chapter 6 Instruction Set 349

putfield_quick_w putfield_quick_w
Trap to emulation routine that writes a field in an object, with a wide index.

Forms

putfield_quick_w = 228 (0xe4)

Stack

…, objectref, value or …, objectref, value<31:0>, value<63:32> ⇒
…

Description

putfield_quick_w traps to the emulation routine referenced by entry 0xe4 in the trap table.

Operation

trap putfield_quick_w (type = 0xe4)

Recommendations

The trap handler should emulate putfield_quick_w , as defined in The Java Virtual Machine
Specification. The putfield_quick_w trap handler can perform the required store quickly because

the constant pool entry has already been resolved.

Format putfield_quick_w

indexbyte1
indexbyte2
350 picoJava-II Programmer’s Reference Manual • March 1999

putfield2_quick putfield2_quick
Write a two-word field from an object.

Forms

putfield2_quick = 209 (0xd1)

Stack

…, objectref, value<31:0>, value<63:32> ⇒
…

Description

putfield2_quick pops objectref, which must be of the type reference , and value, which must

be two words in size, from the operand stack. It then writes value to the field at offset index into the

class instance referenced by objectref and pushes it onto the stack.

If objectref is null , then putfield2_quick generates a NullPointer trap.

Operation

objectref ⇐ stack[OPTOP + 12]
if (objectref = 0) then

trap NullPointer (type = 0x1b)
handle_bit ⇐ objectref & 0x00000001
if (handle_bit = 1) then

addr_of_fields ⇐ mem[(objectref & 0x7ffffffc) + 4]
else

addr_of_fields ⇐ (objectref & 0x7ffffffc) + 4
mem[addr_of_fields + (index × 4)] ⇐ stack[OPTOP + 4]
mem[addr_of_fields + (index × 4) + 4] ⇐ stack[OPTOP + 8]
OPTOP⇐ OPTOP + 12

Format putfield2_quick

index
<unused>
Chapter 6 Instruction Set 351

putstatic putstatic
Trap to emulation routine that resolves constant pool item and writes a static field in a class.

Forms

putstatic = 179 (0xb3)

Stack

…, value or …, value<31:0>, value<63:32> ⇒
…

Description

putstatic traps to the emulation routine referenced by entry 0xb3 in the trap table.

Operation

trap putstatic (type = 0xb3)

Recommendations

The trap handler should emulate putstatic , as defined in The Java Virtual Machine Specification.

When the constant pool entry referenced by putstatic is resolved, the putstatic trap handler

stores the address for the field it references into the constant pool. Depending on the type of the

static field, a putstatic_quick , putstatic2_quick , or aputstatic_quick opcode byte

should replace the original putstatic opcode byte.

If the putstatic operates on a field determined dynamically to correspond to a one-word field

that is of the type reference, then the putstatic trap handler should replace the putstatic
instruction with aputstatic_quick . Otherwise, if the field is one or two words in size, the

putstatic instruction should be replaced with putstatic_quick or putstatic2_quick ,

respectively.

Format putstatic

indexbyte1
indexbyte2
352 picoJava-II Programmer’s Reference Manual • March 1999

putstatic_quick putstatic_quick
Write a static field in a class.

Forms

putstatic_quick = 211 (0xd3)

Stack

…, value ⇒
…

Description

The unsigned indexbyte1 and indexbyte2 construct an index into the constant pool of the current

class, where the value of each index is (indexbyte1 << 8) | indexbyte2. The constant pool item should

have been resolved to be a pointer to a class (static) field. putstatic_quick pops value from

the stack and writes it into this class field.

Operation

index ⇐ ((indexbyte1 << 8) | indexbyte2)
addr_of_static ⇐ mem[CONST_POOL + (index × 4)]
mem[addr_of_static] ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 4

Format putstatic_quick

indexbyte1
indexbyte2

00

 data

Constant Pool Element index

...
...
Chapter 6 Instruction Set 353

putstatic2_quick putstatic2_quick
Write a two-word static field in a class.

Forms

putstatic2_quick = 213 (0xd5)

Stack

…, value<31:0>, value<63:32> ⇒
…

Description

The unsigned indexbyte1 and indexbyte2 construct an index into the constant pool of the current

class, where the value of each index is (indexbyte1 << 8) | indexbyte2. The constant pool item should

have been resolved to be a pointer to a two-word class (static) field. putstatic2_quick pops

the two words of value from the stack and writes it into this class field.

Operation

index ⇐ ((indexbyte1 << 8) | indexbyte2)
addr_of_static ⇐ mem[CONST_POOL + (index × 4)]
mem[addr_of_static + 4] ⇐ stack[OPTOP + 8]
mem[addr_of_static] ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 8

Format putstatic2_quick

indexbyte1
indexbyte2

00

 data<63:32>

Constant Pool Element index

...
...

 data<31:0>
354 picoJava-II Programmer’s Reference Manual • March 1999

read_ reg read_ reg
Read a machine register.

Forms

extend = 255 (0xff)

read_ reg = 64 (0x40) through 89 (0x59) (See table below.)

Stack

… ⇒
…, value

Description

read_ reg pushes the contents of one of the machine registers onto the stack. The following table

tabulates which read_ reg pushes which register, along with the opcodes.

Operation

stack[OPTOP] ⇐ reg
OPTOP⇐ OPTOP - 4

Format extend

read_ reg

Instruction Machine Register Opcode

read_pc PC 0x40

read_vars VARS 0x41

read_frame FRAME 0x42

read_optop OPTOP 0x43

read_const_pool CONST_POOL 0x45

read_global0 GLOBAL0 0x5a

read_global1 GLOBAL1 0x5b

read_global2 GLOBAL2 0x5c

read_global3 GLOBAL3 0x5d
Chapter 6 Instruction Set 355

ret ret
Return from a subroutine.

Forms

ret = 169 (0xa9)

Stack

… ⇒
…

Description

Return control to the PC stored in local variable index.

Operation

PC ⇐ stack[VARS – (index × 4)]

Format ret

index
356 picoJava-II Programmer’s Reference Manual • March 1999

ret_from_sub ret_from_sub
Return from a subroutine with a return address from the stack.

Forms

extend = 255 (0xff)

write_PC = 96 (0x60)

Stack

…, return_address ⇒
…

Description

ret_from_sub , an assembler synonym of write_PC , transfers control to the address from the top

of the stack.

Operation

PC ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 4

Format extend

write_PC
Chapter 6 Instruction Set 357

return return
Return from a method.

Forms

return = 177 (0xb1)

Stack

… ⇒
[empty]

Description

return returns to the caller of this method, popping all the arguments to the current method.

Operation

PC ⇐ stack[FRAME]
CONST_POOL⇐ stack[FRAME - 12]
VARS ⇐ stack[FRAME - 4]
FRAME⇐ stack[FRAME - 8]
OPTOP⇐ VARS

Format return
358 picoJava-II Programmer’s Reference Manual • March 1999

return0 return0
Return with no value from a routine entered via call .

Forms

extend = 255 (0xff)

return0 = 13 (0x0d)

Stack

…, returnVARS, return_address ⇒
…

Description

Assuming that the return PC and the return VARS addresses are on the top of the stack, return0
transfers control to the specified return address and updates the VARS register with the specified

return value. It then adjusts the top of the stack to point to the original VARS value.

Thus, return0 effects a return from a routine that is entered via call and pops all the arguments

that are passed into the call from the caller’s stack.

Operation

returnOPTOP ⇐ VARS
PC ⇐ stack[OPTOP + 4]
VARS ⇐ stack[OPTOP + 8]
OPTOP⇐ returnOPTOP

Format extend

return0
Chapter 6 Instruction Set 359

return1 return1
Return with one-word value from a routine entered via call .

Forms

extend = 255 (0xff)

return1 = 29 (0x1d)

Stack

…, returnVARS, return_address, return_value ⇒
…, return_value

Description

Assuming that a one-word return value, the return PC, and the return VARS address are on the top

of the stack, return1 transfers control to the specified PC address and updates the VARS register

with the specified value. It then adjusts the top of the stack to point to the original VARS value and

pushes the return value.

Thus, return1 effects a return from a routine that is entered via call , pops all the arguments that

are passed into the call from the caller’s stack, and pushes a one-word result.

Operation

returnOPTOP ⇐ VARS - 4
returnVal ⇐ stack[OPTOP + 4]
PC ⇐ stack[OPTOP + 8]
VARS ⇐ stack[OPTOP + 12]
OPTOP⇐ returnOPTOP
stack[OPTOP + 4] ⇐ returnVal

Format extend

return1
360 picoJava-II Programmer’s Reference Manual • March 1999

return2 return2
Return with a two-word value from a routine entered via call .

Forms

extend = 255 (0xff)

return2 = 45 (0x2d)

Stack

…, returnVARS, return_address, return_value1, return_value2 ⇒
…, return_value1, return_value2

Description

Assuming that a two-word return value, the return PC, and the return VARS address are on the top

of the stack, return2 transfers control to the specified PC address and updates the VARS register

with the specified value. It then adjusts the top of the stack to point to the original VARS value and

pushes the return value.

Thus, return2 effects a return from a routine that is entered via call , pops all the arguments that

are passed into the call from the caller’s stack, and pushes a two-word result.

Operation

returnOPTOP ⇐ VARS - 8
returnVal1 ⇐ stack[OPTOP + 8]
returnVal2 ⇐ stack[OPTOP + 4]
PC ⇐ stack[OPTOP + 12]
VARS ⇐ stack[OPTOP + 16]
OPTOP⇐ returnOPTOP
stack[OPTOP + 8] ⇐ returnVal1
stack[OPTOP + 4] ⇐ returnVal2

Format extend

return2
Chapter 6 Instruction Set 361

saload saload
Load a short from an array.

Forms

saload = 53 (0x35)

Stack

…, arrayref, index ⇒
…, value

Description

saload treats arrayref as a reference to an array of shorts. It loads the two-byte element at index,

sign-extends the result, and pushes it onto the stack as value.

If arrayref is null , then saload takes a NullPointer trap. If index is not within the bounds of the

array referenced by arrayref, then saload takes an ArrayIndexOutOfBounds trap.

Operation

arrayref ⇐ stack[OPTOP + 8]
if (arrayref = 0) then

trap NullPointer (type = 0x1b)
index ⇐ stack[OPTOP + 4]
if (index < 0) then

trap ArrayIndexOutOfBounds (type = 0x19)
handle_bit ⇐ arrayref & 0x00000001
if (handle_bit = 1) then

addr_of_length ⇐ mem[(arrayref & 0x7ffffffc) + 4]
else

addr_of_length ⇐ (arrayref & 0x7ffffffc) + 4
length ⇐ mem[addr_of_length]
if (index ≥ length) then

trap ArrayIndexOutOfBounds (type = 0x19)
stack[OPTOP + 8] ⇐ sign_ext 16(mem16[addr_of_length + 4 + (index × 2)])
OPTOP⇐ OPTOP + 4

Format saload
362 picoJava-II Programmer’s Reference Manual • March 1999

sastore sastore
Store a short to an array.

Forms

sastore = 86 (0x56)

Stack

…, arrayref, index, value ⇒
…

Description

sastore treats arrayref as a reference to an array of shorts. It truncates the integer value on the stack

to the low 16 bits and stores it to the two-byte element at index of the array.

If arrayref is null , then sastore takes a NullPointer trap. If index is not within the bounds of

the array referenced by arrayref, then sastore takes an ArrayIndexOutOfBounds trap.

Operation

arrayref ⇐ stack[OPTOP + 12]
if (arrayref = 0) then

trap NullPointer (type = 0x1b)
index ⇐ stack[OPTOP + 8]
if (index < 0) then

trap ArrayIndexOutOfBounds (type = 0x19)
handle_bit ⇐ arrayref & 0x00000001
if (handle_bit = 1) then

addr_of_length ⇐ mem[(arrayref & 0x7ffffffc) + 4]
else

addr_of_length ⇐ (arrayref & 0x7ffffffc) + 4
length ⇐ mem[addr_of_length]
if (index ≥ length) then

trap ArrayIndexOutOfBounds (type = 0x19)
mem16[addr_of_length + 4 + (index × 2)] ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 12

Notes

In the picoJava-II core, sastore is identical to castore .

Format sastore
Chapter 6 Instruction Set 363

sethi sethi
Set the upper 16 bits of the top element of the stack.

Forms

sethi = 237 (0xed)

Stack

…, value ⇒
…, result

Description

sethi sets the upper 16 bits of value to the value of the 16-bit operand of sethi .

Operation

highbits ⇐ ((byte1 << 8) | byte2) << 16
stack[OPTOP + 4] ⇐ highbits | (stack[OPTOP + 4] & 0x0000ffff)

Notes

Use sethi with sipush to create 32-bit constants.

Format sethi

byte1
byte2
364 picoJava-II Programmer’s Reference Manual • March 1999

sipush sipush
Push signed 16-bit constant.

Forms

sipush = 17 (0x11)

Stack

… ⇒
…, value

Description

sipush sign-extends the constant with value (byte1 << 8) | byte2 and pushes it onto the operand

stack.

Operation

stack[OPTOP] ⇐ sign_ext 16((byte1 << 8) | byte2)
OPTOP⇐ OPTOP – 4

Format sipush

byte1
byte2
Chapter 6 Instruction Set 365

soft_trap soft_trap
Initiate a software trap.

Forms

extend = 255 (0xff)

soft_trap = 37 (0x25)

Stack

… ⇒
…

Description

soft_trap causes a trap of the type soft_trap (0x0d).

Operation

trap soft_trap (type = 0x0d)

Notes

soft_trap is generally used to initiate calls into the underlying operating system.

Format extend

soft_trap
366 picoJava-II Programmer’s Reference Manual • March 1999

store_byte store_byte
Store byte to memory.

Forms

extend = 255 (0xff)

store_byte = 32 (0x20)

Stack

…, value, address⇒
…

Description

store_byte stores the low 8 bits of value at the memory location at address, then pops both value
and address from the stack.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

Operation

address ⇐ stack[OPTOP + 4]
data ⇐ stack[OPTOP + 8]
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

mem8[address] ⇐ data
OPTOP⇐ OPTOP + 8

Format extend

store_byte
Chapter 6 Instruction Set 367

store_byte_index store_byte_index
Store an 8-bit value at a fixed offset from the address in a local variable to memory.

Forms

store_byte_index = 246 (0xf6)

Stack

…, value ⇒
…

Description

store_byte_index pops and stores the 8-bit value on the stack at the memory location at the

effective address. It computes the effective address by loading the contents of the local variable,

local_var, and adding the signed value of offset.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

Operation

eff_addr ⇐ stack[VARS - (local_var × 4)] + sign_ext 8(offset)
data ⇐ stack[OPTOP + 4]
if (PSR.ACE = 1) then

if (addr_out_of_range(eff_addr)) then
trap mem_protection_error (type 0x02)

mem8[eff_addr] ⇐ data
OPTOP⇐ OPTOP + 4

Notes

store_byte_index is equivalent to the following sequence of instructions:

iload local_var; bipush offset; iadd; store_byte

Format store_byte_index

local_var
offset
368 picoJava-II Programmer’s Reference Manual • March 1999

store_short store_short
Store short or char to memory.

Forms

extend = 255 (0xff)

store_short = 34 (0x22)

Stack

…, value, address ⇒
…

Description

store_short stores the low 16 bits of value at the memory location at address, then pops both value
and address from the stack. If bit 30 of address is set to 1, then the data is stored in little endian order.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

The address must be aligned on a 16-bit boundary.

Operation

address ⇐ stack[OPTOP + 4]
data ⇐ stack[OPTOP + 8]
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

if ((address & 0x40000000) ≠ 0) then
data ⇐ endian_swap 16(data)

mem16[address] ⇐ data
OPTOP⇐ OPTOP + 8

Format extend

store_short
Chapter 6 Instruction Set 369

store_short_index store_short_index
Store a 16-bit value at a fixed offset from the address in a local variable to memory.

Forms

store_short_index = 245 (0xf5)

Stack

…, value ⇒
…

Description

store_short_index pops the 16-bit value on the stack and stores it at the memory location at the

effective address, which it computes by loading the contents of the local variable, local_var, and

adding the signed value of offset × 2. If bit 30 of the effective address is set to 1, then the data is

stored in little endian order.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

The resulting address must be aligned on a 16-bit boundary.

Operation

eff_addr ⇐ stack[VARS - (local_var × 4)] + (sign_ext 8(offset) × 2)
data ⇐ stack[OPTOP + 4]
if (PSR.ACE = 1) then

if (addr_out_of_range(eff_addr)) then
trap mem_protection_error (type 0x02)

if ((eff_addr & 0x40000000) ≠ 0) then
data ⇐ endian_swap 16(data)

mem16[eff_addr] ⇐ data
OPTOP⇐ OPTOP + 4

Notes

store_short_index is equivalent to the following sequence of instructions:

iload local_var; bipush offset; iconst_1; ishl; iadd; store_short

Format store_short_index

local_var
offset
370 picoJava-II Programmer’s Reference Manual • March 1999

store_short_oe store_short_oe
Use opposite endianness to store short to memory.

Forms

extend = 255 (0xff)

store_short_oe = 42 (0x2a)

Stack

…, value, address ⇒
…

Description

store_short_oe stores the low 16 bits of value at the memory location at address. It then pops

both value and address from the stack. If bit 30 of address is not set to 1, then the data is stored in little

endian order.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

The address must be aligned on a 16-bit boundary.

Operation

address ⇐ stack[OPTOP + 4]
data ⇐ stack[OPTOP + 8]
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

if ((address & 0x40000000) = 0) then
data ⇐ endian_swap 16(data)

mem16[address] ⇐ data
OPTOP⇐ OPTOP + 8

Format extend

store_short_oe
Chapter 6 Instruction Set 371

store_word store_word
Store integer to memory.

Forms

extend = 255 (0xff)

store_word = 36 (0x24)

Stack

…, value, address ⇒
…

Description

store_word stores the 32 bits of value at the memory location at address. It then pops both value
and address from the stack. If bit 30 of address is set to 1, then the data is stored in little endian order.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

The address must be aligned on a 32-bit boundary.

Operation

address ⇐ stack[OPTOP + 4]
data ⇐ stack[OPTOP + 8]
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

if ((address & 0x40000000) ≠ 0) then
data ⇐ endian_swap 16(data)

mem[address] ⇐ data
OPTOP⇐ OPTOP + 8

Format extend

store_word
372 picoJava-II Programmer’s Reference Manual • March 1999

store_word_index store_word_index
Store a word at a fixed offset from the address in a local variable to memory.

Forms

store_word_index = 243 (0xf3)

Stack

…, value ⇒
…

Description

store_word_index pops and stores the 32-bit value on the stack at the memory location at the

effective address, which it computes by loading the contents of the local variable, local_var, and

adding the signed value of offset × 4. If bit 30 of the effective address is set to 1, then the data is

stored in little endian order.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

The resulting address must be aligned on a 32-bit boundary.

Operation

eff_addr ⇐ stack[VARS - (local_var × 4)] + (sign_ext 8(offset) × 4)
data ⇐ stack[OPTOP + 4]
if (PSR.ACE = 1) then

if (addr_out_of_range(eff_addr)) then
trap mem_protection_error (type 0x02)

if ((eff_addr & 0x40000000) ≠ 0) then
data ⇐ endian_swap 16(data)

mem[eff_addr] ⇐ data
OPTOP⇐ OPTOP + 4

Notes

store_word_index is equivalent to the following sequence of instructions:

iload local_var; bipush offset; iconst_2; ishl; iadd; store_word

Format store_word_index

local_var
offset
Chapter 6 Instruction Set 373

store_word_oe store_word_oe
Use opposite endianness to store an integer to memory.

Forms

extend = 255 (0xff)

store_word_oe = 44 (0x2c)

Stack

…, value, address ⇒
…

Description

store_word_oe stores the 32 bits of value at the memory location at address. It then pops both

value and address from the stack. If bit 30 of address is not set to 1, then the data is stored in little

endian order.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

The address must be aligned on a 32-bit boundary.

Operation

address ⇐ stack[OPTOP + 4]
data ⇐ stack[OPTOP + 8]
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

if ((address & 0x40000000) = 0) then
data ⇐ endian_swap 16(data)

mem[address] ⇐ data
OPTOP⇐ OPTOP + 8

Format extend

store_word_oe
374 picoJava-II Programmer’s Reference Manual • March 1999

swap swap
Swap two words on the top of the stack.

Forms

swap = 95 (0x5f)

Stack

…, word1, word2 ⇒
…, word2, word1

Description

swap interchanges the top two words on the stack.

Operation

temp ⇐ stack[OPTOP + 8]
stack[OPTOP + 8] ⇐ stack[OPTOP + 4]
stack[OPTOP + 4] ⇐ temp

Format swap
Chapter 6 Instruction Set 375

tableswitch tableswitch
Access jump table by index and jump.

Forms

tableswitch = 170 (0xaa)

Stack

…, index ⇒
…

Description

The top of the stack is treated as an integer index into the word-aligned jump table that follows the

tableswitch opcode. The first three words of the jump table are a default jump offset, a low index,

and a high index. After the three initial words, high − low + 1, further signed 4-byte jump offsets

complete the table. If the index from the top of the stack is less than the low index or greater than the

high index, then control is transferred to the address at the default jump offset from the PC of the

tableswitch opcode. Otherwise, the core uses the jump offset word 3 + index − low entries into

the jump table to add to the PC of the tableswitch opcode to compute the next execution

address.

Format tableswitch

<0-3 byte pad>
defaultbyte1
defaultbyte2
defaultbyte3
defaultbyte4

lowbyte1
lowbyte2
lowbyte3
lowbyte4
highbyte1
highbyte2
highbyte3
highbyte4

jump offsets...
376 picoJava-II Programmer’s Reference Manual • March 1999

Operation

tablestart ⇐ (PC + 4) & 0xfffffffc
low ⇐ mem[tablestart + 4]
high ⇐ mem[tablestart + 8]
index ⇐ stack[OPTOP + 4]
if ((index < low) OR (index > high) then

PC ⇐ mem[tablestart]
else

PC ⇐ mem[(tablestart + 12 + ((index - low) × 4))]
Chapter 6 Instruction Set 377

wide wide
Trap to emulation routine that performs local variable accesses or updates with extended index.

Forms

wide = 196 (0xc4)

Stack

…, <varies> ⇒
…, <varies>

Description

wide traps to the emulation routine referenced by entry 0xc4 in the trap table.

Operation

trap wide (type = 0xc4)

Recommendations

The trap handler should emulate wide , as defined in The Java Virtual Machine Specification.

The operation depends on the opcode byte that follows the wide opcode byte.

Format wide

opcode
...
378 picoJava-II Programmer’s Reference Manual • March 1999

write_ reg write_ reg
Write a machine register.

Forms

extend = 255 (0xff)

write_ reg = 96 (0x60) through 121 (0x79) (see table below)

Stack

…, value ⇒
…

Description

write_ reg writes the contents of one of the machine registers with the value from the stack. The

following table tabulates which write_ reg writes which register, along with the opcodes.

Operation

reg ⇐ stack[OPTOP + 4]
OPTOP⇐ OPTOP + 4

Format extend

write_ reg

Instruction Machine Register Opcode

write_pc PC 0x60

write_vars VARS 0x61

write_frame FRAME 0x62

write_optop OPTOP 0x63

write_const_pool CONST_POOL 0x65

write_global0 GLOBAL0 0x7a

write_global1 GLOBAL1 0x7b

write_global2 GLOBAL2 0x7c

write_global3 GLOBAL3 0x7d
Chapter 6 Instruction Set 379

zero_line zero_line
Set a cache line to valid, dirty, and zero all the data.

Forms

extend = 255 (0xff)

zero_line = 62 (0x3e)

Stack

…, address ⇒
…

Description

address specifies a line in the data cache that is to be zeroed. zero_line allocates the cache line that

contains this address in the data cache, without fetching the corresponding data from memory, and

initializes it to 0. Because all the bytes in the data cache line are to be written as zeroes, zero_line
does not need to read the corresponding line from main memory in the event of a cache miss.

If the data cache is off (PSR.DCE = 0), then zero_line traps to an emulation routine.

If PSR.ACEis set to 1, then the address checking process described in Memory Protection on page 27

is performed, regardless of the state of the PSR.CAC bit.

Operation

address ⇐ stack[OPTOP + 4] & 0x7ffffff0
if (PSR.ACE = 1) then

if (addr_out_of_range(address)) then
trap mem_protection_error (type 0x02)

if (PSR.DCE = 0) then
trap zero_line (type 0x29)

else
dindex_mask ⇐ ((1 << (HCR.DCS + 8)) - 1)
dtag_mask ⇐ dindex_mask ^ 0x7fffffff
dtag_address0 ⇐ address & dindex_mask
dtag_address1 ⇐ dtag_address0 | 0x80000000
dtag0 ⇐ dcache_tag[dtag_address0] & dtag_mask
dtag1 ⇐ dcache_tag[dtag_address1] & dtag_mask
lru_way ⇐ (dcache_tag[dtag_address0] & 0x00000004) >> 2
dtag_to_match ⇐ address & dtag_mask
dirty_valid_bits ⇐ 0

Format extend

zero_line
380 picoJava-II Programmer’s Reference Manual • March 1999

if (dtag0 = dtag_to_match) then
dtag_address ⇐ dtag_address0

else if (dtag1 = dtag_to_match) then
dtag_address ⇐ dtag_address1

else if (lru_way = 1) then
dtag_address ⇐ dtag_address0
dtag ⇐ dcache_tag[dtag_address]
dirty_valid_bits ⇐ dtag & 0x0000003

else
dtag_address ⇐ dtag_address1
dtag ⇐ dcache_tag[dtag_address]
dirty_valid_bits ⇐ dtag & 0x0000003

if (dirty_valid_bits = 0x3) then
mem_addr ⇐ (dtag | dtag_address) & 0x7ffffff0
memNC[mem_addr] ⇐ dcache_data[dtag_address]
memNC[mem_addr + 4] ⇐ dcache_data[dtag_address + 4]
memNC[mem_addr + 8] ⇐ dcache_data[dtag_address + 8]
memNC[mem_addr + 12] ⇐ dcache_data[dtag_address + 12]

dtag ⇐ dtag_to_match | (dtag_address >> 29) | 0x00000003
dcache_tag[dtag_address] ⇐ dtag
dcache_data[dtag_address] ⇐ 0
dcache_data[dtag_address + 4] ⇐ 0
dcache_data[dtag_address + 8] ⇐ 0
dcache_data[dtag_address + 12] ⇐ 0

OPTOP⇐ OPTOP + 4

Notes

Although the picoJava-II core has 16-byte cache lines for the data cache, you should rely on the

value in the DCL field of the Hardware Configuration Register (HCR) to facilitate porting software

between implementations—the HCR.DCL field indicates the number of bytes in a data cache line,

which will be the number of bytes written to zero by zero_line .

Recommendations

The trap handler should write the appropriate number of zeroes to main memory as if the cache is

on.
Chapter 6 Instruction Set 381

382 picoJava-II Programmer’s Reference Manual • March 1999

PART II Programming the picoJava-II Core

CHAPTER 7

Java Method Invocation and Return

The picoJava-II core allocates and deallocates a new method frame upon each Java

method invocation and return, respectively.

A frame provides storage both for local variables and for an operand stack to

support the execution of the invoked method. The frame may also contain incoming

arguments passed to the invoked method. Similarly, the operand stack may include

outgoing arguments passed to another method to be invoked.

The core also saves method context information in each new frame for use in later

restoration of the invoker’s frame. This information includes the return PC, VARS,
FRAME, and CONST_POOLregisters. When a method returns, the frame can forward a

return value to the invoker.

This chapter describes these actions in the following sections:

■ Allocating a New Frame on page 385

■ Invoking a Method on page 388

■ Invoking a Synchronized Method on page 391

■ Returning from a Method on page 393

7.1 Allocating a New Frame
All method invocations use the same process of creating a method frame. When the

core invokes a method, it allocates a new method frame, which then becomes the

current frame. Depending on the situation, the frame may contain some or all of the

following entities:

■ Object reference

■ Incoming arguments

■ Local variables

■ Invoker’s method context (always present)
385

■ Operand stack (always present)

■ Return value from a method invocation

FIGURE 7-1 illustrates the method frame.

FIGURE 7-1 A Method Frame

7.1.1 Incoming Arguments

Incoming arguments transfer information from an invoker to an invoked method.

Similar to an object reference, arguments are pushed onto the operand stack by

compiler-generated instructions by the caller and can be accessed as local variables

by the invoked method.

A Java compiler statically produces a method structure containing the number of

arguments:

■ For a nonstatic method invocation, the object reference and the first argument are

accessible as local variable 0 and local variable 1, respectively.

■ For a static method invocation, the first argument becomes local variable 0.

VARS object_ref

in_arg 1

:
in_arg i

l_var 1

:
l_var j

For nonstatic invocation

Total incoming arguments passed
to the current method

Total local storage allocated
for the current method

Four words of the invoker’s context and

Arbitrary number of operand stack words

The stack grows downward

OPTOP

Operand stack

Current method

Previous
Previous FRAME

Previous VARS

Return PC

pointer

CONST_POOL

Invoker’s context
information are saved
one word of the current method’s

FRAME
386 picoJava-II Programmer’s Reference Manual • March 1999

Note – A 64-bit value is pushed onto the stack such that it appears that the least

significant 32 bits of the value are pushed onto the stack, followed by the most

significant 32 bits. This convention is consistent with the picoJava-II model of a

downward-growing stack in big-endian addressing mode.

7.1.2 Local Variables

When the core invokes a method, it allocates an area on the stack for storage of local

variables.

A Java compiler statically determines the number of local variable words that are

required; the core allocates them accordingly.

7.1.3 Invoker’s Method Context

When a new frame is built for the current method, the core pushes this information

onto the newly allocated frame and later uses it to restore the invoker’s method

context before returning.

The method context consists of return PC, VARS, FRAME, and CONST_POOLregisters.

The method pointer word in the method context area represents the current method

context, not the invoker’s context. The method pointer refers to the method structure

of the current method. See Method Structure on page 72, for additional information.

7.1.4 Operand Stack

The core uses the operand stack area:

■ To provide the source and target operands for various instructions

■ To hold the arguments and return values of other Java methods invoked by this

method
Chapter 7 Java Method Invocation and Return 387

7.2 Invoking a Method
The following is the picoJava-II procedure for invoking a method:

1. Resolve a method reference.

2. Access the method structure.

3. Allocate a new method frame.

4. Save the invoker’s method context.

5. Pass control to the invoked method by branching to the method’s entry point.

7.2.1 Resolving a Method Reference

Typically, the first time the core encounters a method call site, the invoke instruction

refers to a constant pool entry that provides symbolic information on the method to

be invoked, such as its name and argument types, as described in The Java Virtual
Machine Specification. Depending on the invoke type, software in the emulation trap

routines should use this symbolic information to determine one of the following:

■ An index to the method vector (see Method Vector and Runtime Class Info Structure
on page 71), which the core then uses to look up a method structure pointer

■ A direct pointer to a method structure, described on Method Structure on page 72

Resolving a method reference may involve class loading and resolution with

subsequent method searches based on the referenced method name and signature.

7.2.2 Accessing a Method Structure

The core obtains the method information—the number of arguments, the size of

local variable storage, and the method entry point—from the method structure that

was built for the invoked method during class loading.

The core saves this method structure pointer in the current method frame.
388 picoJava-II Programmer’s Reference Manual • March 1999

7.2.3 Allocating a New Method Frame

When the core invokes a method, it allocates a new frame and initializes the

following registers:

■ VARS— Location of the callee’s first argument, either the implicit object reference

or the caller’s first actual argument.

■ FRAME— Location of the first word of the invoker’s method context, which is

where the return PC is saved. This location is offset from VARSby the total

number of bytes of both the incoming arguments and local variables.

■ OPTOP— Location of the first empty stack word after allocating a number of

locals and saving the invoker’s context: FRAME− 20.

See FIGURE 7-2 for details.
Chapter 7 Java Method Invocation and Return 389

FIGURE 7-2 Allocation of a New Frame

VARS

FRAME

OPTOP

Object reference

Invoker’s method frame

in_arg 1
:

in_arg i

l_var 1
:

l_var j

Operand stack

Object reference'

out_arg 1
:

out_arg k

when an invoke is executed

VARS'

FRAME'

OPTOP'

Object reference'

in_arg 1
:

in_arg k

l_var 1
:

l_var n

New method frame allocated
below the invoker’s frame

Invoker’s old

Object reference

in_arg 1

:
in_arg i

l_var 1

:
l_var j

Operand stack

Current method

Previous
Previous FRAME

Previous VARS

Return PC

pointer

CONST_POOL
Current method

Previous

Previous FRAME

Previous. VARS

Return PC

pointer

CONST_POOL

Current method

Previous

Previous FRAME

Previous VARS

Return PC

pointer

CONST_POOL

Method start PC

Method structure

Local variable

.

.

.

bytes

frame, to be
restored upon
return
390 picoJava-II Programmer’s Reference Manual • March 1999

7.2.4 Saving the Invoker’s Method Context

The core saves the invoker’s context in the newly allocated frame so that it can

restore the invoker’s frame when the current method returns. Following is the

definition for five words of method context:

7.2.5 Passing Control to the Invoked Method

When the above steps are complete, execution branches to the program counter (PC)

value, which is specified as the method entry point in the method structure.

7.3 Invoking a Synchronized Method
A synchronized, nonstatic method must enter the monitor associated with the object

reference on the stack before execution of that method. Similarly, a synchronized

static method must enter the monitor associated with the class of the current

method. Upon a return resulting from a return instruction or exception handling

from this method, the monitor must be exited.

The core requires explicit monitorenter and monitorexit instructions to perform

the necessary lock acquisitions and releases, thus keeping the invokes and returns

simple. The class loader modifies synchronized methods to meet this requirement.

The class loader must take the following steps:

1. Replace all return , areturn , ireturn , freturn , lreturn , and dreturn
instructions with the exit_sync_method instruction.

exit_sync_method is a 1-byte instruction (which avoids the need to update branch

offsets in the original code). It simply branches to the PC that is stored at

FRAME− 20.

2. Insert code to the beginning of the method to execute monitorenter and
monitorexit explicitly.

Return PC Location of the Java instruction next to the invoke instruction

Return VARS Location of the calling method’s local variable starts

Return FRAME Location of the calling method’s frame

Return CONST_POOL Pointer to the calling method’s constant pool table

Current method pointer Pointer to the method structure of the current method
Chapter 7 Java Method Invocation and Return 391

TABLE 7-1 and TABLE 7-2 list the code that the class loader must prepend to the code

for nonstatic and static methods, respectively.

You must ensure that the second aload_0 in the prologue for nonstatic methods

returns the same object reference as the first one—that is, the local variable 0 cannot

be modified within an instance method. If you develop synchronized methods in a

low-level language, you must follow this rule. Similarly, no automatic optimizer

should overload the contents of local variable zero in nonstatic methods.

TABLE 7-1 Code Prepended to Synchronized Nonstatic Methods

Address Instruction Action

0: aload_0 Get the object reference.

1: monitorenter Synchronize on the object reference.

2: jsr + 6 Push PCon top of the stack, which is also

FRAME− 20, and jump to the next instruction.

5: aload_0 Get the object reference.

6: monitorexit Exit the monitor.

7: xreturn Return to the caller of the correct type.

8: Original code for the method with exit_sync_method ; replace all xreturn s in

the original.

TABLE 7-2 Code Prepended to Synchronized Static Methods

Address Instruction Action

0: get_current_class Get the current class pointer.

2: monitorenter Synchronize on the class pointer.

3: jsr + 9 Push PCon top of the stack, which is also FRAME− 20, and

jump to the original code.

6: get_current_class Get the current class pointer.

8: monitorexit Exit the monitor.

9: xreturn Return to the caller of the correct type.

10: nop

11: nop Ensure that the code is a multiple of 4 bytes to prevent

changes in padding for lookupswitch and tableswitch .

12: Original code for the method with exit_sync_method ; replace all xreturn s in

the original.
392 picoJava-II Programmer’s Reference Manual • March 1999

3. Change the exception table for the method so that start_pc , end_pc , and
handler_pc of the entries are each incremented by 8 or 12 to map onto the now-
relocated code.

When an exception is thrown to a synchronized method with no corresponding

exception table entry, the exception handling agent (for example, the athrow trap)

releases the acquired monitor before discarding the method frame.

The above steps simplify the invoke and return hardware and cause an implicit

operation for monitor release upon normal or abnormal completion of a

synchronized method.

7.4 Returning from a Method
The following is the procedure for returning from a method:

1. Pop off the input arguments.

2. Restore the invoker’s method frame.

3. Forward a return value into the invoker’s frame, if any.

4. Branch to the return PC to resume execution of the invoking method.

The core pops off the input arguments by restoring OPTOPto the value of the current

(invoked) method’s VARS. If a return value exists, the core pushes it onto the

invoker’s operand stack, adjusting OPTOPto provide stack space (either one or two

words) on which to push the return value. The core restores the remainder of the old

frame from the invoker’s frame saving area.

See FIGURE 7-3 for details.
Chapter 7 Java Method Invocation and Return 393

FIGURE 7-3 Return from a Method

Invoker’s method frame is
restored after return.

A new method frame is allocated
below the invoker’s frame.

VARS'

FRAME'

OPTOP'

Object reference'

in_arg 1
:

in_arg k

l_var 1
:

l_var n

Invoker’s old
frame, to be
restored upon
return

Object reference

in_arg 1

:
in_arg i

l_var 1
:

l_var j

Operand stack

Current method

Previous

Previous FRAME

Previous VARS

Return PC

pointer

CONST_POOL

Current method

Previous

Previous VARS

Return PC

pointer

CONST_POOL

VARS

FRAME

OPTOP

Object reference

in_arg 1
:

in_arg i

l_var 1
:

l_var j

Operand stack

Current method

Previous
Previous FRAME

Previous VARS

Return PC

pointer

CONST_POOL

Previous FRAME

Return value

Return value
394 picoJava-II Programmer’s Reference Manual • March 1999

CHAPTER 8

Monitors

To synchronize operations between concurrent threads of execution, the Java

language uses monitors. A monitor is a high-level mechanism for allowing only one

thread at a time to execute a region of code associated with an object that the

monitor protects. To enter and exit a monitor for an object, the Java virtual machine

uses the monitorenter and monitorexit instructions.

One frequent situation with monitors is that a thread of execution acquires a monitor

(lock) on an unlocked object (perhaps reacquiring the lock many times), holds the

lock for some time, and releases the lock as many times as it was acquired. Often,

during the time a thread holds the lock, no other threads of execution attempt to

acquire the lock on the same object. A thread can perform this lock-unlock sequence

a number of times during its time slice before a context switch.

To speed up common situations in which monitors are used, execution of

monitorenter and monitorexit is by means of hardware in the picoJava-II core.

Because the core supports only uniprocessor Java execution, caching of the “locked”

state of an object can occur in the core. Updates to the object in memory can then be

deferred until context-switch time.

picoJava-II hardware is optimized for the typical case in which a thread has entered,

at most, two monitors at one time and no other threads contend for these monitors.

This chapter discusses the following subjects that pertain to monitors:

■ Structures on page 396

■ Hardware Synchronization on page 396

■ Software Support on page 397
395

8.1 Structures
Two LOCKADDRregisters contain references to the objects or arrays for which a lock

is acquired or released. A LOCKADDRregister that contains a value of 0 is considered

to be empty.

Note – If both LOCKADDRregisters contain the same reference, the behavior of

monitorenter and monitorexit is undefined.

Two LOCKCOUNTregisters each contain an 8-bit counter to indicate the number of

times a lock has been acquired for the object referenced by the corresponding

LOCKADDRregister. Bit 14 in the LOCKCOUNTregisters, the LOCKWANTbit, indicates

whether another thread is waiting for this lock. Bit 15, the CObit, indicates whether

the only record of the lock is the state of this LOCKADDRand LOCKCOUNTregister

pair.

Furthermore, each object header in memory has one bit reserved as a LOCKbit,

which specifies whether the object is locked. Optionally, each object can maintain a

pointer to a monitor data structure that tracks threads that may be waiting to acquire

this monitor. If a per-object pointer field is not maintained, then software must

provide a hashing scheme or other mechanism to find the monitor data structure for

an object.

Rather than the “locked” status of a current object being strictly kept in memory, an

object is locked if its address is contained in a LOCKADDRregister and its

corresponding LOCKCOUNTis nonzero, or if the object address is not in any

LOCKADDRregister and the LOCKbit is set in the object header.

Note – When monitorenter and monitorexit compare an object reference with

the contents of a LOCKADDRregister, they consider only bits <29:2>.

8.2 Hardware Synchronization
The Java virtual machine defines two instructions that support synchronization:

monitorenter (see page 297) and monitorexit (see page 299).

See also Invoking a Synchronized Method on page 391.
396 picoJava-II Programmer’s Reference Manual • March 1999

The core does not support general-purpose, atomic, mutual-exclusion primitives,

such as test-and-set or compare-and-swap.

8.3 Software Support
Software support for monitor handling comprises four handlers and context switch

code, described in the following sections.

8.3.1 LockCountOverflow Handler

The only requirement in The Java Virtual Machine Specification is that software throw

the IllegalMonitorStateException if monitorexit causes a decrement of a

LOCKCOUNTfield that is already 0.

The core also generates LockCountOverflow when the LOCKCOUNT.COUNTfield is

incremented too far by monitorenter . The trap handler software can either

maintain a higher-precision version of that field or raise various exceptions. If the

trap handler maintains a higher precision value of LOCKCOUNT, then it must clear the

LOCKCOUNT.CObit.

8.3.2 LockEnterMiss Handler

We recommend that the trap handler for LockEnterMiss perform the following

steps:

1. Ensure that an empty LOCKADDR-LOCKCOUNTregister pair is available.

The LockEnterMiss trap handler first checks each of the two LOCKADDRregisters

to determine whether they contain 0. If not, then the trap handler must determine

which pair of LOCKADDR-LOCKCOUNTregisters, such as the pair that was least

recently replace, will cache the lock to be entered.

If the LOCKCOUNT.COUNTfield in the pair to be replaced is 0 and any higher

precision version of the LOCKCOUNT.COUNTfield is also 0, then the trap handler

clears the LOCKbit in the corresponding object header in memory. Otherwise, the

trap handler sets the LOCKbit in the corresponding object header and saves the

current thread identifier and the value of the COUNTfield in the corresponding

monitor data structure.

2. Examine the LOCKbit in the object header of the object to be locked.
Chapter 8 Monitors 397

a. If the LOCKbit is 0, then install the object in the empty LOCKADDRregister.

The trap handler sets the LOCKbit to 1 in the object header and initializes the

monitor data structure for the object. It then writes the object reference to the

empty LOCKADDRdata structure and initializes the corresponding LOCKCOUNTto
0.

If you need not maintain compatibility with previous versions of the picoJava

architecture, the trap handler can simply return and re-execute monitorenter .

b. If the LOCKbit is 1, then examine the monitor data structure for the object.

i. If another thread owns the lock, wait for it to be released.

If another thread currently owns the lock, then the trap handler places the

current thread in the queue associated with the monitor and blocks the current

thread until the other thread exits the monitor.

ii. If this thread owns the lock, install the object in the empty LOCKADDR
register.

The trap handler sets the empty LOCKADDRregister to the object reference and

sets the LOCKCOUNT.COUNTfield to the lock count from the monitor data

structure. It must also set the LOCKWANTbit if any other threads are waiting for

the release of this lock. The CObit must be 0.

3. Return from the trap handler such that monitorenter is re-executed.

8.3.3 LockRelease Handler

The core generates LockRelease when monitorexit is executed, the

LOCKCOUNT.COUNTfield has been decremented to 0, and the LOCKWANTbit is set. If

any higher-precision version of the LOCKCOUNT.COUNTfield is not also 0, the trap

handler should immediately return to the instruction following monitorexit .

Otherwise, a monitor that has another thread waiting to acquire it has been exited

and the trap handler should notify the waiting threads that the current thread has

released the monitor.

Depending on whether other threads are waiting for the lock and the thread

scheduling policy, it may be necessary to clear the LOCKbit in the corresponding

object header. Also, the trap handler should set the corresponding LOCKADDRand

LOCKCOUNTregisters to 0 because the current thread can no longer reacquire the lock

by incrementing the LOCKCOUNTfield.
398 picoJava-II Programmer’s Reference Manual • March 1999

8.3.4 LockExitMiss Handler

The core generates LockExitMiss when a monitorexit attempts to unlock an

object that is not present in either LOCKADDRregister. We recommend that the trap

handler perform the following steps:

1. Examine the LOCKbit in the object header of the object to be unlocked.

a. If the LOCKbit is 0, then throw an IllegalMonitorStateException object.

b. If the LOCKbit is 1, then examine the monitor data structure for the object.

i. If another thread currently owns the lock, then throw an
IllegalMonitorStateException object.

ii. If this thread owns the lock, then install the lock in a LOCKADDR-LOCKCOUNT
register pair.

The LockExitMiss trap handler checks each LOCKADDRregister to determine

whether it contains 0. If at least one of the LOCKADDRregisters is 0, then the

object will be installed in that pair.

Otherwise, if both LOCKADDRregisters are not 0, then the trap handler must

determine which pair of LOCKADDR-LOCKCOUNTregisters, such as the pair that

was least recently replaced, will cache the lock to be exited. If the

LOCKCOUNT.COUNTfield in the pair to be replaced is 0 and any higher-

precision version of that field is also 0, then the trap handler clears the LOCKbit

in the corresponding object header in memory. Otherwise, the trap handler sets

the LOCKbit in the corresponding object header and saves the current thread

identifier and the value of the COUNTfield in the corresponding monitor data

structure.

The trap handler sets the LOCKADDRregister in which the lock to be exited will

be installed to the object reference to be unlocked and sets the COUNTfield in

the LOCKCOUNTregister to the lock count from the monitor data structure. It

must also set the LOCKWANTbit if any other threads are waiting for the release

of this lock. The CObit must be 0.

2. If no exceptions are thrown, return from the trap handler such that monitorexit
is re-executed.
Chapter 8 Monitors 399

8.3.5 Context Switch Support

At the time a thread is switched out, the context switch routine must update the

status of the monitors it holds in memory for each nonzero LOCKADDRregister, as

follows:

■ If the LOCKCOUNT.COUNTfield is 0 and any higher-precision version of that field

is also 0, then the context switch routine clears the LOCKbit in the corresponding

object header in memory.

■ If the COUNTfield is not 0, then the context switch routine sets the LOCKbit in the

corresponding object header and saves the current thread identifier and the value

of the LOCKCOUNTregister in the corresponding monitor data structure.

For more details, see Context Switch on page 58.
400 picoJava-II Programmer’s Reference Manual • March 1999

CHAPTER 9

Support of the C Programming
Language

In the C programming language, the function is the fundamental element of

execution. The Application Binary Interface (ABI) specifies the conventions for

interfunction interfaces in terms of the caller and the callee.

In this chapter, we first describe the generation of C code for the picoJava-II core,

specifically:

■ Register Conventions on page 402

■ Runtime Stack Architecture on page 402

■ Calling Conventions for Java-to-C Calls on page 420

■ Optimizations on page 421

■ Function Tables on page 422

■ Handling of Argument Mismatches on page 425

Finally, we discuss the object file formats defined by the System V ABI specification,

which apply for various C language object and executable files. See:

■ Object File Formats on page 426

Note – Aside from C, the contents of this chapter also apply to other programming

languages that cannot be compiled to the Java virtual machine, such as C++ and

FORTRAN.
401

9.1 Register Conventions
The picoJava-II core is a stack-based machine and does not provide any general-

purpose registers for use in expression evaluation. Because most operations are

stack- based, there are no caller-save or callee-save registers for arguments and

locals. However, the architecture does provide some registers with assigned uses, as

listed in TABLE 9-1.

9.2 Runtime Stack Architecture
The runtime stack provides space for local variable storage, temporaries, and

arguments. The picoJava-II architecture has a stack cache of 64 entries; elements in

this cache can be accessed using iload and istore . The stack cache and data cache

are not coherent; therefore, access to data on the stack by means of load_word or

store_word may produce unexpected results; for an explanation, see Cache
Coherency on page 30.

To make efficient and correct use of the stack cache, a separate stack (aggregate

stack) is maintained for aggregate locals or locals and parameters that can be

referenced through a pointer:

■ The operand stack is for parameter passing, allocation of scalar locals that can

reside in registers, and regular machine operations.

TABLE 9-1 Register Uses by C Calling Convention

Name Function

VARS Points to the first entry of a frame.

FRAME Points to the caller’s context in a Java frame. This register is not
used in a C frame.

OPTOP Points to the top of the operand stack.

OPLIM Points to the maximum limit of the operand stack. If OPTOPis

less than or equal to OPLIM, the core generates a trap.

GLOBAL0 Points to the space allocated for a frame on the aggregate stack.

This register is not used in a Java frame. This register obeys the

caller save convention in C code.

GLOBAL1, GLOBAL2 Returns values from functions. These are volatile caller-save

registers and are not used in Java functions.
402 picoJava-II Programmer’s Reference Manual • March 1999

■ The aggregate stack is for space allocation for aggregate locals and scalar locals

that can be accessed through pointers and the unnamed parameters of a function

with a variable number of arguments.

Sixty-four-bit values in the aggregate stack are stored in big-endian order: The

most significant word is stored in the lower-numbered address.

An implementation can allocate an aggregate local on the operand stack if it can

ensure that there is no pointer to the aggregate local and that it is accessed only

via local variable load and store instructions.

For each thread that can execute C code, you must allocate space for the aggregate

stack. This stack grows from low addresses to high addresses. You should also set

aside an area of memory from which C programs can dynamically allocate memory.

If a contiguous area is reserved for both of these regions, you can set the USERRANGE
register to point to the low and high addresses of this space so that a trap occurs if

the C code refers to memory outside this region.

FIGURE 9-1 illustrates the runtime stack allocation when a new thread is created for C

code.

FIGURE 9-1 Runtime Stack Allocation for a New Thread

VARS

FRAME

OPTOP

 Operand stack Aggregate stack

GLOBAL0

High address

Low address

OPLIM

 Low address

High address

Note - The two stacks grow in opposite directions.
Chapter 9 Support of the C Programming Language 403

9.2.1 Calling Convention for C-to-C Calls

C function calls and returns use call and return0 . The frame layout and prologue

code for a function call depend on the type of parameters and locals in the function.

The following sections outline the general rules for the frame layout and provide

some examples.

9.2.2 Rules for Passing Arguments

In passing arguments, the following conventions apply:

■ Scalar parameters are pushed on the operand stack in the same order as declared.

■ Aggregate parameters are passed by reference. The caller allocates temporary

space for the aggregate parameter and passes the address of this space as the

reference.

■ Before executing a call instruction, the caller pushes the following items onto

the stack, in this sequence:

a. The parameters being passed to the callee, in the order in which they were

declared in the caller

b. The target address of the call

c. The number of words pushed for the call (including the target address and this

word)

CODE EXAMPLE 9-1 lists a typical function call.

CODE EXAMPLE 9-1 Sample Code for a Function Call

func(1,2,3);

iconst_1
iconst_2

iconst_3
sipush lo(_func)
sethi hi(_func)

bipush 5
call
404 picoJava-II Programmer’s Reference Manual • March 1999

9.2.3 Function Return Values

Functions that do not return a value (type void) use the return0 instruction.

Functions that return a size of one to four bytes use the GLOBAL1register for the

return value and also use the return0 instruction.

Functions that return a size of five to eight bytes use the GLOBAL1and GLOBAL2
registers for the return value and use a return0 instruction to transfer control back

to the caller. A return value that requires more than four bytes must be represented

by the concatenation of GLOBAL1and GLOBAL2. The most significant word is

returned in GLOBAL1.

A function that returns an aggregate value copies the return value into the space

provided by the caller. The caller passes a reference to the space where the return

value will be stored as the first implicit (hidden) parameter. The called function uses

this address to copy the return value and then executes return0 .

9.2.4 Function Prologue and Epilogue

A function prologue sets up the execution environment for a function. A function

epilogue unwinds the execution environment and reestablishes the old environment

so that execution can continue after a return from a call.

■ The function prologue code allocates space for scalar locals on the operand stack

by decreasing the address in the OPTOPregister. If necessary, it also allocates

space for any aggregate locals by increasing the address in the GLOBAL0register,

which points to the aggregate stack. If there exists any simple parameters whose

addresses are taken in the code, space is allocated on the aggregate stack for the

locals and their initial values are copied into their respective locations on the

aggregate stack.

In addition, for functions with variable number of arguments, the prologue code

moves all the unnamed arguments onto the aggregate stack and moves the return

VARSand return PCentries up so that they are in the locations assigned for them

during compilation.

■ The function epilogue code does the following prior to executing the appropriate

return instruction, which restores the environment to that of the caller:

■ Unwinds the OPTOPregister and frees up the local space allocated on the

operand stack

■ Unwinds the GLOBAL0register and frees up the space allocated on the

aggregate stack for the function

See Optimizations on page 421 for more details on optimization.
Chapter 9 Support of the C Programming Language 405

9.2.5 Functions with Simple Parameters and Locals

Consider CODE EXAMPLE 9-2, which shows the frame structure and call sequence for

a function with simple parameters and locals.

FIGURE 9-2 is the operand stack frame layout for functions zoo and zoo1 .

FIGURE 9-2 Operand Stack Frame Layout for zoo and zoo1

CODE EXAMPLE 9-2 Function with Simple Parameters and Locals

int zoo1(int param1, int param2, int param3)
{

int local1;
return 0;

}
zoo()
{

int zlocal1, zlocal2, zlocal3;
int i;
.......
i = zoo1(zlocal1, zlocal2, zocal3);

}

return PC

zlocal2

zlocal3

address of zoo1

5

VARS(in zoo) return VARS

zlocal1 VARS (in zoo1)

OPTOP (in zoo1)

zlocal1

zlocal2

zlocal3

i

OPTOP (in zoo)
(after return from zoo1)

(param1)

(param2)

(param3)

(return VARS)

(return PC)
406 picoJava-II Programmer’s Reference Manual • March 1999

The zoo function first pushes the parameters zlocal1 , zlocal2 , and zlocal3 on

the stack, then the address of the function zoo1 to call and the number of entries

pushed (number of parameters + 2). zoo then issues the call instruction.

On entry into the zoo1 function, the prologue code allocates space for the local

variable of zoo1 . On return, the function zoo1 stores the return value in the

GLOBAL1register, unwinds the allocation for local variables from the stack, and

issues the return0 instruction. FIGURE 9-3 shows the stack at this point.

FIGURE 9-3 Operand Stack Frame Layout Before zoo1 Returns to zoo

Because this function does not include any aggregate variables or variables for

which an address is taken, the function does not allocate any space on its aggregate

stack.

CODE EXAMPLE 9-3 contains the compiled code for a function with simple parameters

and locals.

CODE EXAMPLE 9-3 Compiled Code for a Function with Simple Parameters and Locals

_zoo1:
// PROLOGUE

iconst_0 // Allocate space for locals
// END PROLOGUE

iconst_0
write_global1

L_1:
// EPILOGUE
pop // Deallocate space for locals
return0
// END EPILOGUE

_zoo:

param1

param2

param3

return VARS

return PC

. .
 .

OPTOP (zoo1)

VARS (zoo1)
Chapter 9 Support of the C Programming Language 407

9.2.6 Functions with Complex Parameters and Locals

Consider CODE EXAMPLE 9-4, which contains the frame structure and call sequence

for functions with complex parameters and locals.

// PROLOGUE
 lconst_0 // Allocate space for locals
 lconst_0
// END PROLOGUE
 iload_2
 iload_3
 iload 4
 sipush lo(_zoo1)
 sethi hi(_zoo1)
 bipush 5
 call
 read_global1
 istore 5

L_2:
// EPILOGUE
 pop2
pop2
return0
// END EPILOGUE

CODE EXAMPLE 9-4 Functions with Aggregate Parameters and Locals

struct s {
int i,j,l;
char c;

};
int zoo1(struct s s1, int i, int j)
{

int li,*lip = &li;
int *ip = &i;
struct s s2;

return 0;
}
void zoo()
{

struct s s2,i;
zoo1(s2, 1, 2);

}

CODE EXAMPLE 9-3 Compiled Code for a Function with Simple Parameters and Locals
408 picoJava-II Programmer’s Reference Manual • March 1999

Functions in this code have aggregate variables and variables for which an address

is taken. The prologue code for functions zoo and zoo1 allocates space on the

aggregate stack for these functions.

FIGURE 9-4 shows the stack frame layout for functions zoo1 and zoo .

FIGURE 9-4 Stack Frame Layout for zoo Calling zoo1

Because aggregate parameters are pushed by reference, zoo does the following prior

to issuing the call instruction:

■ Allocates temporary space for parameter s2 on its aggregate stack and passes a

reference to this space as a parameter on the operand stack

■ Pushes parameters 1 and 2 onto the operand stack, then the zoo1 address and the

number of entries pushed on the operand stack (number of simple parameters +

2)

On entry into zoo1 , the function prologue does the following:

■ Increments GLOBAL0to allocate space for the local aggregate objects and variables

for which the C code obtains the address

■ Allocates space for the simple locals of zoo1 on the operand stack by

decrementing OPTOP

return VARS

return PC

address of zoo1

5

2

argument s2

local i

...........

OPTOP
(zoo1)

Operand stack Aggregate stack

local s2

GLOBAL0
(zoo)

OPTOP
(zoo) address of s2 GLOBAL0

(zoo1)

local li

VARS
(zoo)

VARS
(zoo1)

1 i

j

return VARS

return PC

lip

ip

s1

local s2

local i
Chapter 9 Support of the C Programming Language 409

On return, zoo1 does the following prior to issuing the return0 instruction:

■ Stores the return value in the GLOBAL1register

■ Unwinds the local space allocated on the operand stack.

■ Unwinds the local and param space allocated on the aggregate stack by

subtracting the local space allocated from the GLOBAL0register.

FIGURE 9-5 shows the stacks at this point.

FIGURE 9-5 Stack Frame Layout for zoo1 Before Returning

CODE EXAMPLE 9-5 lists the compiled code for CODE EXAMPLE 9-4.

CODE EXAMPLE 9-5 Compiled Code for Function with Aggregate Parameters

_zoo1:
// PROLOGUE
 read_global0 // Allocate space on aggr stack
 bipush 24
 iadd
write_global0
 lconst_0 // Allocate space for lip, ip
 iload_1 // Copy i to aggr stack
 read_global0
 bipush 36
 isub
 store_word
// END PROLOGUE
 read_global0

parameter i

parameter j

return VARS

return PC

............. local i

.........

argument s2

GLOBAL0
(zoo)

OPTOP
(zoo1)

return value

address of argument s2
VARS
(zoo1)

Operand stack Aggregate stack

local s2
410 picoJava-II Programmer’s Reference Manual • March 1999

 bipush 32
 isub
 istore 5 // Store address of li in local lip
 read_global0
 bipush 36
 iadd
 istore 6 // Store address of i in local ip
 iconst_0
 write_global1

L_1:
// EPILOGUE
pop2 // Free space of locals
 read_global0 // Free aggr stack space
 bipush 36
 isub
write_global0
return0
// END EPILOGUE

_zoo:
// PROLOGUE
 read_global0
 bipush 32
 iadd
write_global0
// END PROLOGUE
......
......
 read_global0 // Pass reference to arg s2
 dup
 bipush 16
 iadd // Allocate space for arg s2
 write_global0
 iconst_1
 iconst_2
 sipush lo(_zoo1)
 sethi hi(_zoo1)
 bipush 5
call

L_2:
// EPILOGUE
 read_global0
 bipush 48
 isub
write_global0
return0
// END EPILOGUE

CODE EXAMPLE 9-5 Compiled Code for Function with Aggregate Parameters (Continued)
Chapter 9 Support of the C Programming Language 411

9.2.7 Functions That Return Aggregate Values

Consider CODE EXAMPLE 9-6, which lists the frame structure and call sequence of

functions that return aggregate values.

The function zoo does the following:

■ Allocates space on its frame for the return value of function zoo1 on the

aggregate stack

■ Passes the address of this space as the first implicit parameter to zoo1

On return, zoo1 does the following:

■ Copies the return aggregate value to this area, using the address in the first

hidden parameter

■ Issues return0

FIGURE 9-6 illustrates the stack frame layout at this point.

CODE EXAMPLE 9-6 Function Returning Aggregate Values

struct s {
int i,j,l;
char c;

};
struct s zoo1(int j)
{

struct s ls;
return ls;

}
void zoo()
{

int i;
zoo1(2);

}

412 picoJava-II Programmer’s Reference Manual • March 1999

FIGURE 9-6 Stack Frame for Function zoo1 Returning Aggregate Values

CODE EXAMPLE 9-7 contains the compiled code for a function that returns an

aggregate value.

CODE EXAMPLE 9-7 Compiled Code for a Function That Returns An Aggregate Value

_zoo1:
// PROLOGUE
 read_global0
 bipush 16
 iadd
write_global0
// END PROLOGUE
 read_global0 // Copy return value
 bipush 16
 isub
 load_word
 iload_0
store_word
 read_global0
 bipush 12
 isub
 load_word
 iload_0
 iconst_4

return VARS

return PC

i

parameter j

return VARS

return PC

Hidden parameter

...........

GLOBAL0
(zoo)

OPTOP

GLOBAL0
(zoo1)

ls

.................

VARS
(zoo)

Operand stack

Temporary
return structure

Aggregate stack

 (zoo1)

VARS
(zoo1)
Chapter 9 Support of the C Programming Language 413

 iadd
store_word
 read_global0
 bipush 8
 isub
 load_word
 iload_0
 bipush 8
 iadd
store_word
 read_global0
 iconst_4
 isub
 load_word
 iload_0
 bipush 12
 iadd
store_word

L_1:
// EPILOGUE
 read_global0
 bipush 16
 isub
write_global0
return0
// END EPILOGUE

_zoo
// PROLOGUE
 iconst_0 // Allocate space for local variable i
// END PROLOGUE
 read_global0
 bipush 16
 iadd // Allocate space for return structure
 write_global0
 read_global0 // Pass addr of return area
 bipush 16
 isub
 iconst_2
 sipush lo(_zoo1)
 sethi hi(_zoo1)
 iconst_4
 call

L_2:
// EPILOGUE
 read_global0
 bipush 16
 isub

CODE EXAMPLE 9-7 Compiled Code for a Function That Returns An Aggregate Value
414 picoJava-II Programmer’s Reference Manual • March 1999

CODE EXAMPLE 9-8 shows code from CODE EXAMPLE 9-7 that was optimized for the

core. Highlighted are the uses of load_word_index and store_word_index .

9.2.8 Functions with Variable Number of Arguments

Consider CODE EXAMPLE 9-9, which exemplifies a function with a variable number of

arguments.

 write_global0
pop ; Deallocate space for i
return0
// END EPILOGUE

CODE EXAMPLE 9-8 Optimized Code for Function Returning Aggregate Values

_zoo1: read_global0 // PROLOGUE
 bipush 16
 iadd
write_global0 // END PROLOGUE
 read_global0 // Puts global0 in local var 4

load_word_index 4 -16// Copy return value
store_word_index 0 0

load_word_index 4 -12
store_word_index 0 4

load_word_index 4 -8
store_word_index 0 8

load_word_index 4 -4
store_word_index 0 12

pop
L_1: read_global0 // EPILOGUE

 bipush 16
 isub
write_global0
return0 // END EPILOGUE
. . .

CODE EXAMPLE 9-9 Function with Variable Number of Arguments

#include “stdarg.h”
zoo1(int i, int j, ...)
{
 int li = 0;
 int lj = 1;
 va_list arglist;

CODE EXAMPLE 9-7 Compiled Code for a Function That Returns An Aggregate Value
Chapter 9 Support of the C Programming Language 415

An example stdarg.h is listed in CODE EXAMPLE 9-10.

 va_start (arglist,j);
 li = va_arg(arglist, int);
}

zoo()
{
 foo(1,2,3,4,5);
}

CODE EXAMPLE 9-10 Sample Code In stdarg.h

enum __va_type_classes {
 __no_type_class = -1,
 __void_type_class,
 __integer_type_class,
 __char_type_class,
 __enumeral_type_class,
 __boolean_type_class,
 __pointer_type_class,
 __reference_type_class,
 __offset_type_class,
 __real_type_class,
 __complex_type_class,
 __function_type_class,
 __method_type_class,
 __record_type_class,
 __union_type_class,
 __array_type_class,
 __string_type_class,
 __set_type_class,
 __file_type_class,
 __lang_type_class
};

typedef int *va_list;
#define va_start(pvar, ARG) (pvar = _builtin_saveregs())
#define va_end(pvar)
#define va_arg(pvar, TYPE) \

((__builtin_classify_type (*((TYPE
*)0))<__record_type_class)? \

(((char *)pvar)-=((sizeof(TYPE)+3) & ~3), \
((sizeof(TYPE) < 4) ? \

CODE EXAMPLE 9-9 Function with Variable Number of Arguments (Continued)
416 picoJava-II Programmer’s Reference Manual • March 1999

zoo1 has two named parameters, i and j . All other parameters are unnamed; access

to them is through the va_arg macros. The PROLOGUEcode of zoo1 moves these

unnamed parameters to the aggregate stack and adjusts up return VARSand return

PCso that the frame corresponds to the compile time image of two named

parameters. The va_arg macro then accesses the unnamed parameters from the

aggregate stack. The PROLOGUEcode also saves the return GLOBAL0value so that the

EPILOGUEcode can restore it to the caller’s value.

FIGURE 9-7 and FIGURE 9-8 illustrate the stack frames for functions that use variable

arguments.

FIGURE 9-7 Stack Frame for Function zoo Calling zoo1 with Variable Number of
Arguments

*((TYPE *)pvar + ((4-sizeof(TYPE))/sizeof(TYPE))): \
*(TYPE *)pvar)): \

(((char *)pvar) -= 4, *(TYPE *)(*((void **)pvar))))

CODE EXAMPLE 9-10 Sample Code In stdarg.h (Continued)

return VARS

return PC

1

VARS
(zoo)

...........

2

3

4

5

address of zoo1

8

GLOBAL0
(zoo)

Operand stack Aggregate stack
Chapter 9 Support of the C Programming Language 417

FIGURE 9-8 Stack Frame of zoo1 After Execution of PROLOGUECode

CODE EXAMPLE 9-11 contains the compiled code for CODE EXAMPLE 9-9.

CODE EXAMPLE 9-11 Compiled Code for Function with Variable Number of Arguments

_zoo1:
 // PROLOGUE

 // Code to move unnamed arguments onto aggregate stack
 // and ensure exactly the named parameters are left

 write_global1 // GLOBAL1 = return PC
write_global2 // GLOBAL2 = return VARS
 read_vars
 read_optop
 isub
 dup
 bipush 12
 if icmpgt L_1
pop
 read_global0
 read_global0 // Could use dup, but this helps
store_word // Folding as dup is BG1
 read_global0
 iconst_4
 iadd
write_global0;
 read_vars // Ensure named parameters are on stack
 bipush 16
 iadd

return VARS

return PC

1

VARS
(zoo)

2

return VARS

VARS
(zoo1)

return PC

OPTOP

4

3

5

return GLOBAL0

GLOBAL0
(zoo1)

Operand stack

GLOBAL0
(zoo)

Aggregate stack

(zoo1)
418 picoJava-II Programmer’s Reference Manual • March 1999

write_optop // OPTOP should be 4 entries lower
 read_global2
istore_2 // return VARS should be local 2
 read_global1
istore_3 // return PC should be local 3
goto _zoo1_Known

L_1: iconst_4
 isub // TOS = #passed - #named + 4
 dup
 read_global0
 iadd // TOS = GLOBAL0+passed-named+4
 read_global1 // Make room for loop variable in GLOBAL1
 swap
 store_word // TOS = #passed - #named + 4
 iconst_4
 isub
 read_global0
 iadd
write_global1 // End address for copy onto aggregate stack
 read_global0
 read_global1
store_word // Save aggregate stack pointer

L_2: read_global0
store_word // store a stack element to agg. stack
 read_global0
 iconst_4
 iadd
write_global0
 read_global1
 read_global0
if_icmplt L_2
 read_global0
 iconst_4
 iadd
write_global0 // Update GLOBAL0
 read_global2 // Restore return VARS
 read_global0
 load_word // Restore return PC

// END PROLOGUE

_zoo1_Known:
// Note - Once GLOBAL1 is written into the aggregate stack, the
// stack is shorter than at _zoo1 by two entries and does
// not become greater than it was at that point
// so no OPLIM trap occurs after the writing of global1
// and before the label _zoo1_Known.

CODE EXAMPLE 9-11 Compiled Code for Function with Variable Number of Arguments
Chapter 9 Support of the C Programming Language 419

9.3 Calling Conventions for Java-to-C Calls
There are three ways for Java code to call a C function:

■ The trap handlers for invoke_virtual , invoke_interface , and

invoke_static set up the parameters for calling the native C method and issue

the call instruction. On completion, the native C method returns to the trap

handler code, which arranges for the Java thread to continue execution.

■ The Java compiler produces code to invoke a Java method. A tool similar to

javah provides “trampoline” code, which understands a native function frame

structure and produces a call to the function ClassName_FunctionName . You

then provide the code for this function, create the stub, and include it in the code.

A javah -like tool is dependent on the Java virtual machine structure and is

provided with each Java virtual machine. All C call optimizations for C calls are

applicable to the call to ClassName_FunctionName .

...

...
 // EPILOGUE

 read_global0
 iconst_4
 isub
 load_word
write_global0
 iload_2 // Instead of using pop2’s a multicycle
 iload_3 // instruction, use iloads that are folded
return0

 // END EPILOGUE
_zoo:
 // PROLOGUE
 // END PROLOGUE

 iconst_1
 iconst_2
 iconst_3
 iconst_4
 iconst_5
 sipush lo(_zoo1)
 sethi hi(_zoo1)
 bipush 6
call
return0

 // EPILOGUE
 // END EPILOGUE

CODE EXAMPLE 9-11 Compiled Code for Function with Variable Number of Arguments
420 picoJava-II Programmer’s Reference Manual • March 1999

A C function calls a Java method by calling special functions provided with the

virtual machine that, based on the parameters passed to them, set up the appropriate

Java frame, then invoke the Java method.

Alternatively, if the C compiler understands the structure of Java frames and the

constant pool, it can generate invokes (such as invokevirtual) directly.

9.4 Optimizations
A function that takes no arguments, has no local variables, and that does not return

an aggregate type can be executed in the caller’s environment. A jsr instruction can

call the leaf function, thereby bypassing building a frame. Depending on the return

type, the leaf uses ret_from_sub to return to the caller and leaves no temporaries

on the stack. Such functions are usually for data abstraction.

There can be any number of frameless calls between two framed calls.

The return instructions take two entries off the stack (return PCand return VARS)
and thus are defined as a BG2 type of instruction with respect to folding. Therefore,

if there are temporaries between retPC and OPTOPat the time of returning, iload s

(which are folded with the return0 and thus are faster than pop s in this case) can

replace the pop s in the epilogue code.

Optimize prologue code by initializing local variables in the prologue instead of just

pushing zeroes on the stack to create space for them. If initialization occurs in the

prologue, it need not occur in the body, thus saving one push and one store per local

variable.

An implementation can optimize by passing aggregate structures on the operand

stack if it can ensure the following:

■ The aggregate structure is only accessed directly. This situation occurs only if

there are no indirect references to the structure and a pointer to the structure is

not passed to another function.

■ All objects are consistently compiled with the same options.
Chapter 9 Support of the C Programming Language 421

9.5 Function Tables
The operating system keeps a set of tables (two-dimensional arrays).

The Code Segment Table, the address of which is in the operating system global

variable, contains one entry per code segment. Each entry in this table points to a

Function Table, which contains one entry for each C function in the code segment.

These tables support stack chunking and are used by the oplim_trap routine.

These tables are used by debuggers, the oplim_trap handler, and other functions

to unwind a C call stack.

9.5.1 Structure

FIGURE 9-9 illustrates the structure of the tables.

FIGURE 9-9 Table Structures

Each entry in the Code Segment Table contains two integers and a pointer to a Text

Table. The first integer or entry contains the start address of the text segment. The

second entry contains the end address of the text segment.

Offset to

Number of

Entry 0:

Entry 1:

Entry 2:

OS global

Segment start

argument words on

 address

Segment start
 address

Segment start
 address

Segment end
address

Segment end
address

Segment end
address

Code Segment Table

Function Table

function 0

Offset to
function 1

Offset to
function 2

.
.

operand stack

Number of
argument words on
operand stack

Number of
argument words on
operand stack

Number of
argument words on
aggregate stack
Number of
argument words on
aggregate stack
Number of
argument words on
aggregate stack
422 picoJava-II Programmer’s Reference Manual • March 1999

Each entry in the Function Table contains three integers:

■ The first entry stores the offset (from the text segment start address) of the start

PC for the function.

■ The second entry contains the number of nonaggregate argument words that the

function takes—the number of argument words that are pushed on the operand

stack.

■ The last entry contains the number of aggregate argument words that the function

takes.

If the function takes a variable number of arguments, then the last entry contains a

value of −1. A value of −2 indicates a special case in the argument number mismatch

handler.

9.5.2 Properties

The Code Segment Table entries are sorted in ascending order by segment start

address. The Function Table entries are sorted in ascending order by offset from

segment start. In creating an executable, the C compiler and linker must ensure that

Code Segment and Function Tables, as described above, exist in the file and that

their entries are sorted properly.

This information is passed to the operating system in the executable and linking

format (ELF) file as follows.

■ A symbol _text_table residing in the static data segment points to the

Function Table structure.

■ The symbols _text_start and _text_end point to the start and end of the

code segment area.

9.5.3 Provisions in the Operating System

The operating system must maintain the Code Segment and Function Tables in

memory. These tables reside in a memory space accessible to the kernel and can

therefore be shared by all threads.
Chapter 9 Support of the C Programming Language 423

Three functions are available:

Here is the structure of TextTable :

Where:

■ table_entry is a two-dimensional array such that table_entry[i][0] is the

offset of the start of function i within the text segment.

■ table_entry[i][1] and table_entry[i][2] are the number of operand stack

arguments and aggregate stack arguments, respectively.

9.5.4 _init and _fini

In the _init startup function, the Text Table is registered by a call to the

OSAddTextTable function with the symbols _text_start , _text_end , and

_text_table as parameters.

Similarly, in the _fini wrapup functions, if the text segment is to be unloaded on

completion, the table is unregistered by a call to the OSDeleteTextTable function

with the _text_start symbol as a parameter.

9.5.5 OSGetNArgs Algorithm

The OSGetNArgs routine performs a binary search on the segment table (the address

of which is in a global variable) to get a pointer to a Text Table. The search is based

on the PCpassed in as a parameter; the desired text segment is the one into which

the PCpoints (that is, where text_start ≤ PC≤ text_end). The PC’s offset from

the beginning of the text segment (PC− text_start) is then the basis for a binary

void OSAddTextTable(unsigned int TextStart,
unsigned int TextEnd,

 struct TextTable *tt);

void OSDeleteTextTable(unsigned int TextStart);

void OSGetNargs(unsigned int PC, int *operand_nargs,
int *aggregate_nargs);

struct TextTable {
 int num_entries;

 int table_entry[][3];
};
424 picoJava-II Programmer’s Reference Manual • March 1999

search of the appropriate Text Table to find the entry corresponding to the function

that contains the PC. The number of expected arguments for that function is found in

that Text Table entry.

The return values are set to the values from the Text Table. The operand_nargs
value may indicate further action, as follows:

■ A return of -1 indicates that the function takes a variable number of arguments.

Local variable 0 of the function contains the present number of arguments.

■ A return of -2 indicates that the function is handling a possible argument

mismatch. See Handling of Argument Mismatches, below.

■ A return of -3 indicates an unsuccessful search; therefore, Java code must have

been executing at the time of the OPLIM trap.

■ A return value that is greater than or equal to 0 indicates the number of

arguments that the function expects after a successful search.

9.5.6 Extensions to Support .so (.dll) Files

You can use the function tables to support .so (.dll) files, which can be C code

with a Java wrapper or code with C (native) methods. When you create a .class
file that requires a companion .so (.dll) file, the latter must contain a table similar

to the one described in the previous section.

9.6 Handling of Argument Mismatches
The compiler creates two entry points per function. CODE EXAMPLE 9-12 is an

example of a function, foo , that takes five arguments.

CODE EXAMPLE 9-12 Rearranging the Function Frame for an Argument Mismatch

_foo: write_global1 // global1 = return PC
write_global2 // global2 = return VARS

read_vars // OPTOP and VARS should be
bipush 28 // 28 bytes apart for a

isub // five-argument function frame
write_optop

read_global2
istore 5 // return VARS should be local var 5

read_global1
istore 6 // return PC should be local var 6

_foo_Known: // Normal prologue of the function
Chapter 9 Support of the C Programming Language 425

All functions within the same module (.o file) call foo by pushing the address

_foo_Known only if the number of arguments the callee expects matches the

number of arguments the caller provides.

In a different module where the function foo is called, the linker must resolve

external functions to produce an executable. The linker must already generate some

of the code associated with a call, such as pushing the target PC. Now it must also

infer the number of arguments that are being passed. If this number matches the

number of arguments foo expects, then the entry point used for the call to foo is at

_foo_Known ; otherwise, it is _foo .

The linker can infer the number of arguments passed by disassembling an iconst ,

bipush , or sipush instruction immediately before the call instruction or

immediately after the instructions that push the call address. If the linker does not

detect the instruction pattern:

<push target> (generally sipush, sethi)

<push nargs> (a single instruction)

call

then the linker generates a call to the function at the first entry point—the point

where all calls are checked for argument count agreement (_name).

If the compiler supports this flag or mode, the text table has two entries per C

function, one for _name and the other for _name_Known. A special return value (-2)

from the table notifies the trap routine that the argument check and adjustment is in

progress. The return PCand return VARSvalues to unwind the stack can then be

reconstructed as needed.

Also, indirect calls (those made through a pointer) to a function foo are made to

_foo , that is, to the point where all calls are “safe” (checked for an argument

mismatch).

9.7 Object File Formats
In general, the ELF object file format defined by the System V ABI specification

applies for various C language object and executable files. In that case, the 16-bit

e_machine field of the ELF file header contains the value EM_PICOJAVA.
EM_PICOJAVA = 0x63

The 32-bit e_flags field contains values that are associated with the following

fields:
EF_PICOJAVA_ARCH = 0x0000000F
EF_PICOJAVA_NEWCALLS= 0x00000010
426 picoJava-II Programmer’s Reference Manual • March 1999

The 4-bit field that corresponds to EF_PICOJAVA_ARCHhas a value of 0 if the object

file uses only the instructions implemented in hardware by the picoJava-I core. This

value is 1 if any of the additional instructions implemented by picoJava-II are used.

In the case of a combination of multiple object files, the resulting value in the

EF_PICOJAVA_ARCHfield is the highest value in these fields.

Emulation trap routines on a picoJava-I system can allow code from object files with

nonzero EF_PICOJAVA_ARCHfields to execute.

The 1-bit flag that corresponds to EF_PICOJAVA_NEWCALLShas the value of 1 if the

calling convention in this chapter applies. If this flag has a value of 0, then

unsupported, older calling conventions apply. A loader can reject object files that use

the old calling convention.
Chapter 9 Support of the C Programming Language 427

428 picoJava-II Programmer’s Reference Manual • March 1999

CHAPTER 10

Stack Chunking

This chapter explains how stack chunking can be implemented for the picoJava-II

core. It contains the following sections:

■ Overview on page 429

■ oplim_trap Handler on page 430

■ Manual Updates of the VARS Register on page 431

■ Returns to Previously Saved Program States on page 432

■ Possible Write-After-Write Hazards on page 432

10.1 Overview
Normally, at thread creation time, the core allocates a stack chunk to provide space

for the new thread’s stack. At times, however, a thread may use up all of the

allocated space. To support the thread’s continued execution, the core provides a

mechanism for it to allocate additional space, as follows.

Stacks are allocated by software in chunks of some reasonable size. If there is not

enough room on a stack (OPTOP< OPLIM) to execute an instruction, an oplim_trap
occurs, the oplim_trap handler can allocate additional space, and execution can

continue. Allocation and deallocation occur in software.

There are three caveats:

■ The stack cache assumes that the underlying stack, which is used by the spill and

fill mechanisms, is contiguous. If the new stack space allocated by the trap

handler is not contiguous, you must take certain actions, as described in

oplim_trap Handler on page 430.

■ There is no analogous underflow trap when OPTOPbecomes less than the top of

the chunk.
429

■ The stack cache may cause reads and writes to any of the 64 words of memory at

addresses greater than OPTOP. Therefore, the stack cache should be positioned at

least 64 words below a memory area that is used for anything except read-only

data or another stack chunk. See Stack Cache on page 39 for more details.

The next sections describe the oplim_trap handler and underflow conditions and

highlight some aspects of the trap architectures.

10.2 oplim_trap Handler
FIGURE 10-1 shows possible states of the stack before the oplim_trap handler is

entered.

FIGURE 10-1 Possible Stack States Before Entering oplim_trap Handler

In each of these scenarios, the trap handler can enable execution to continue by

providing additional stack area. To grow the stack, you can use the following

strategies:

■ If contiguous free memory is available, adjust OPLIM to allow the stack to

continue to grow from its current location. If necessary, use the garbage collector

to move objects out of the way.

VARS'

FRAME'

OPTOP'

parameters

temporaries
OPLIM'

(A) Overflow inside

and locals

a Java method
(B) Overflow inside

a trap handler
(C) Overflow inside

a C function

Java frame

VARS'

old FRAME'

OPTOP'

parameters

temporariesOPLIM'

and locals

Java frame

trap frame

temporaries

FRAME'

VARS'

OPTOP'

parameters

temporariesOPLIM'

and locals

return PC
return VARS
430 picoJava-II Programmer’s Reference Manual • March 1999

■ Allocate a larger stack region for the thread and copy the entire current stack to

the new larger region. Be sure to update all references to VARS, FRAME, and

OPTOPin the stack you are copying to refer to the new locations in memory.

■ Allocate a noncontiguous region of memory and copy the currently reachable

portion of the stack to the new chunk. Be sure to update all references to VARS,
FRAME, and OPTOPin the stack you are copying to refer to the new locations in

memory. You must also insert an underflow handler into the call stack to return

execution to the original stack chunk.

All of these techniques require that you can relocate a stack, which entails

redirecting all VARS, FRAME, and OPTOPvalues on the stack to refer to the new

location. If you use the first technique, you may need to move stacks to free up

contiguous memory into which another stack can grow.

Within Java code, all VARS, FRAME, and OPTOPvalues reside within method frames

only. To update stacks that contain only Java method calls, trace the call stack and

update the values within the frames.

Tracing C and trap frames is more complex but generally straightforward. Be aware

that VARS, FRAME, and OPTOPvalues can lie outside of the call frames and be

directly pushed on the stack by trap or C code. You must ensure that you can

identify all the values on the stack before you can move them.

10.3 Manual Updates of the VARSRegister
Although VARScan be written with any value, such practice can result in erroneous

execution of the thread because the technique used by the oplim_trap handler may

only ensure that the area from VARSto OPTOPis contiguous. Moving VARSupward

may effectively result in an underflow of the allocated stack area.

One way around the problem is to duplicate all the information needed from the

locals and parameters area to the temps area by integer loads and to move VARSin

one direction only (for example, downward).
Chapter 10 Stack Chunking 431

10.4 Returns to Previously Saved Program
States
If you move the stack of a thread that is not currently running, be sure to update the

VARS, FRAME, and OPTOPvalues in any saved context that is to be restored when

the thread resumes execution.

Similarly, when implementing the C language functions setjmp and longjmp , you

must consider the problem of returning to the previously saved program state. For

example, if you save the state of a program using setjmp , then you have moved the

stack. A subsequent longjmp restores VARS, FRAME, and OPTOPvalues that are no

longer valid. Therefore, you must update the setjmp state when you move the

stack.

10.5 Possible Write-After-Write Hazards
The oplim_trap handler may change the value of return PC(and return VARS) in a

call frame to return to an underflow handler. This technique introduces a restriction

on the implementation of trap handlers.

For example, a trap being used to implement an instruction must change the return

PC to continue execution at the next instruction. It does so by modifying the return

PCof the trap frame, which may actually be the return address to enter into the

underflow trap handler if an oplim_trap occurred during the original trap (that is,

the emulation trap handler). Hence, you must revise the code that updates the return

PCof the emulation handler such that the trap ensures that its return PC is not the

same as the entry point of the underflow handler. The address of the overflow

handler can be provided by the kernel.
432 picoJava-II Programmer’s Reference Manual • March 1999

CHAPTER 11

Support for Garbage Collection

Rather than having the programmer indicate when an object is no longer used in a

program (and thus reclaim the memory the object occupies), the Java language

specifies that once an object is no longer referenced in any thread of execution, a

garbage collection (GC) scheme collects that object’s memory and returns it to the

pool of available memory.

A Java virtual machine implementation must provide automatic garbage collection.

An abundance of literature is available on various GC techniques, most of which are

surveyed in [Wilson 1992].

This chapter defines support by the picoJava-II core for various GC schemes in three

sections and provides several references, as follows:

■ Hardware Support on page 433

■ Write Barriers on page 434

■ Examples on page 439

■ References on page 441

Note – Throughout this chapter, abbreviated reference titles are enclosed in square

brackets, for example, [Wilson 1992].

11.1 Hardware Support
The core provides the following low-level mechanisms to assist you in implementing

a garbage collector:

■ Support for handles

■ Reserved bits in object references and headers
433

11.1.1 Support for Handles

As described in Reference Types and Values on page 62, object and array references can

be direct or indirect, through a handle. Handles provide a simple and convenient

mechanism for a garbage collector to relocate objects in memory. Typically, the

garbage collector relocates the objects that are still referenced to a contiguous range

of memory, thus leaving the remaining free memory in a contiguous chunk. Using

the level of indirection provided by handles significantly simplifies moving an object

in memory because you need update only the object storage pointer in a handle to

relocate an object. If you use direct object references, you must update every

reference to an object if you move the object.

Using handles requires additional memory and execution time. Each object access

instruction must traverse the extra level of indirection at a cost of at least two

additional clock cycles. Also, each handled reference requires one additional word of

memory to hold the object storage pointer. Be aware of these tradeoffs when

designing a garbage collector.

11.1.2 Reserved Bits in References and Headers

Three bits in each reference, <31:30> and <1>, and four bits in each object header,

<31:30> and <2:1>, are reserved for use by software. (For more details regarding

reference and header formats, see References and Headers on page 63.) The garbage

collector can use these reserved bits for a variety of purposes, depending on the

algorithm chosen. For example, a mark-sweep garbage collector can use one of the bits

in the object header to mark objects that have been traversed.

Two of the reserved bits in each reference, <31:30>, influence the behavior of the

write-barrier hardware in the core. Use these bits only if you are aware of the

configuration of the write-barrier hardware.

11.2 Write Barriers
To enable a variety of garbage collection algorithms, the core provides a flexible

write-barrier mechanism to notify the garbage collector when certain reference fields

are stored into memory. The garbage collector uses this information to maintain data

structures that allow it to reclaim unused memory. The core notifies the garbage

collector via a gc_notify (type = 0x27) trap. The trap handler should take action

depending on the garbage collection algorithm used.
434 picoJava-II Programmer’s Reference Manual • March 1999

The core triggers the write-barrier trap under certain conditions when a reference

field of some object (or an element of an array) is written with some new reference,

as illustrated by FIGURE 11-1. For simplicity, this figure assumes that no handle is

used and, therefore, the reference denotes the object directly.

FIGURE 11-1 Storing a Reference into a Field of an Object

Note – In the remainder of this chapter, ObjectReference refers to the reference that

denotes the object or array in which the field being written; StoreData refers to the

new value that is to be written into that field.

The conditions under which a write-barrier trap is generated are governed by the

values in the PSR.GCEfield and the GC_CONFIGregister. These configuration

registers govern two types of write-barrier mechanisms:

■ A page-based write barrier that uses the relative memory locations of

ObjectReference and StoreData to determine when to signal a gc_notify trap

■ A reference-based write barrier that uses the two-bit GC_TAGreserved fields of

both ObjectReference and StoreData to determine when to signal a gc_notify trap

You can use both mechanisms simultaneously as required by your garbage collection

scheme. Also, you can disable either or both of the mechanisms if you do not want

to use them.

ObjectReference

StoreData

Reference field

Object header
Chapter 11 Support for Garbage Collection 435

11.2.1 Instructions Subject to Write-Barrier Checks

The instructions that store references into other objects or arrays, thus being subject

to write-barrier checks, are listed in TABLE 11-1.

The core performs the write-barrier checks in hardware for aputfield_quick ,

aputstatic_quick and aastore_quick . The emulation trap routines must

perform the appropriate checks for the other instructions. In the case of putfield
and putstatic , after the corresponding field has been resolved and when the field

being written is a reference, the emulation trap handler typically changes the

putfield or putstatic into aputfield_quick or aputstatic_quick , which

performs the check in hardware. However, aastore must emulate the write-barrier

checks in software, or perform the store within the emulation trap handler using

aastore_quick .

Caution – You must also emulate garbage collection checks in any routine that

stores an object reference (whether within an object or an array) using an instruction

not listed in TABLE 11-1. Optimized implementations of a library routine, such as

java.lang.System.arraycopy , may be one such case.

In the case of aputfield_quick , aputstatic_quick and aastore_quick , the

core takes the write-barrier trap before the store that triggered it takes place.

Therefore, the gc_notify trap handler must ensure one of the following:

■ Returning from the trap handler and reexecuting the store does not generate

another gc_notify trap.

■ The store is explicitly emulated, which entails setting the return PC in the trap

frame to point to the instruction that follows the store, then popping the

arguments from the operand stack appropriately.

11.2.2 Page-Based Write Barrier

The page-based write barrier detects situations where, within a larger region of

memory divided into a number of fixed-sized pages, the StoreData reference is

located in a different page than the ObjectReference. The PSR.GCEbit enables this

check when it is set to 1. When the check is enabled, the GC_CONFIG.REGION_MASK

TABLE 11-1 Instructions That Store References

aastore aastore_quick

putfield aputfield_quick

putstatic aputstatic_quick
436 picoJava-II Programmer’s Reference Manual • March 1999

and GC_CONFIG.CAR_MASKfields govern the operation of the check. (The term car is

synonymous with page and is the terminology introduced by train algorithm

garbage collectors.)

Typically, you should do the following:

■ Initialize the REGION_MASKfield of GC_CONFIGwith a value that, when

represented in binary form, consists of some number of zeros, followed by some

number of ones.

■ Initialize the CAR_MASKfield with a value that consists of some number of ones

followed by some number of zeros. TABLE 11-2 and TABLE 11-3 list those values.

TABLE 11-2 GC_CONFIG.REGION_MASKValues

TABLE 11-3 GC_CONFIG.CAR_MASKValues

Region Size REGION_MASK

256 Kbytes 0x000

512 Kbytes 0x001

1 Mbytes 0x003

2 Mbytes 0x007

4 Mbytes 0x00f

8 Mbytes 0x01f

16 Mbytes 0x03f

32 Mbytes 0x07f

64 Mbytes 0x0ff

128 Mbytes 0x1ff

256 Mbytes 0x3ff

512 Mbytes 0x7ff

Page Size CAR_MASK

Reserved 0x00

128 Kbytes 0x10

64 Kbytes 0x18

32 Kbytes 0x1c

16 Kbytes 0x1e

8 Kbytes 0x1f
Chapter 11 Support for Garbage Collection 437

FIGURE 11-2 illustrates the operation of the page-based write-barrier check.

FIGURE 11-2 Operation of Page-Based Write Barrier

CODE EXAMPLE 11-1 details the same check.

CODE EXAMPLE 11-1 Pseudocode for a Page-Based Write Barrier

if (
(PSR.GCE = 1)
AND ((ObjectReference<28:18> & GC_CONFIG<31:21>) =

(StoreData<28:18> & GC_CONFIG<31:21>))
AND ((ObjectReference<17:13> & GC_CONFIG<20:16>) ≠

(StoreData<17:13> & GC_CONFIG<20:16>))
) then

gc_notify trap

28

ObjectReference

StoreData

gc_notify trap

18 17 13

28 18 17 13

GC_CONFIG

31 21 20 16

XOR

AND

XOR

AND
REGION_MASK CAR_

MASK

00000000000
00000

AND

= ≠

ANDPSR.GCE
438 picoJava-II Programmer’s Reference Manual • March 1999

11.2.3 Reference-Based Write Barrier

The reference-based write barrier detects situations when GC_TAGfields of the

StoreData reference and the ObjectReference are combined and indicate a gc_notify
trap should be taken. The two GC_TAGfields form an index into the

GC_CONFIG.WB_VECTORfield. If the corresponding bit is set to 1, then the core

generates a trap. You can disable this check by setting GC_CONFIG.WB_VECTORto 0.

FIGURE 11-3 illustrates the operation of the reference-based write-barrier check.

FIGURE 11-3 Operation of Reference-Based Write Barrier

CODE EXAMPLE 11-2 details the same check.

11.3 Examples
The examples in this section are illustrations only to demonstrate how you can apply

the write-barrier mechanisms to a range of GC algorithms. They do not describe the

GC scheme and assume that you are familiar with the concepts.

CODE EXAMPLE 11-2 Pseudocode for a Reference-Based Write Barrier

gc_index ⇐ (ObjectReference<31:30> << 2) | (StoreData<31:30>)
write_barrier_bit ⇐ (GC_CONFIG >> gc_index) | 0x00000001
if (write_barrier_bit = 1) then

gc_notify trap

0 1

31 30

GC_TAG

ObjectReference 0

31 30

GC_TAG

StoreData0

0 0 01

0 0 10

15 0

0 1 0 1 0 0 00GC_CONFIG.WB_VECTOR

gc_notify trap

0 1 0 0
Chapter 11 Support for Garbage Collection 439

You can combine these ideas in your garbage collector implementation. For instance,

you can combine both page-based and reference-based write barriers in an

incremental generational garbage collector, where the former mechanism tracks

references that cross generation boundaries; the latter is used to synchronize

application (mutator) threads with a three-color incremental graph-tracing algorithm

used within each generation.

11.3.1 Train Algorithm-Based Collectors

The train algorithm allows nondisruptive collection of the oldest generation of a

generational system. It uses a write barrier to track references between different

memory regions (known as “cars” in [Hudson 1992] and [Grarup 1993]) within the

oldest generation. Generally, these cars are defined as fixed, power-of-two-sized

regions that are aligned on power-of-two boundaries (similar to pages in a virtual

memory system).

The page-based write-barrier check was designed specifically to assist this class of

GC algorithm. The page (car) size is configurable, based on the CAR_MASKfield of

the GC_CONFIGregister. See TABLE 11-3 on page 437.

For more details on the train algorithm and its implementation, see [Hudson ‘92] or

[Grarup ‘93].

11.3.2 Remembered Set-Based Generational Collector

FIGURE 11-4 illustrates a heap partitioned into two generations—an old and a young

generation. A remembered set keeps track of those “old” objects that hold references

that denote “young” objects.
440 picoJava-II Programmer’s Reference Manual • March 1999

FIGURE 11-4 Generational Garbage Collection Using Remembered Sets

You can use the reference-based write-barrier mechanism to update the remembered

set, as follows:

■ The WB_VECTORfield of the GC_CONFIGregister contains the value 0x5050.

■ The GC_TAGbits of object references that denote an old object are set to 00; the

GC_TAGbits of object references that denote a young object are set to 01.

This configuration ensures that the write-barrier trap is triggered whenever a

reference denoting a young object is written into an old object, as illustrated by the

example values in FIGURE 11-3 on page 439. Whenever that situation occurs, the

gc_notify trap handler adds ObjectReference to the remembered set for the young

generation accordingly.

Note – You can also implement remembered-set generation algorithms with the

page-based write-barrier. If you do so, however, you lose some flexibility in the

relative sizing of the generations.

11.4 References
[Grarup 1993] Grarup, S., and J. Seligmann: Incremental Mature Garbage Collection, M.

Sc. Thesis, Aarhus University, Computer Science Department, August 1993.

Remembered set

Old Young
Chapter 11 Support for Garbage Collection 441

[Hudson 1992] Hudson, R., and J. E. B. Moss: Proceedings of International Workshop on
Memory Management: Incremental Garbage Collection For Mature Objects, St. Malo,

France, September 16–18, 1992.

[Wilson 1992] Wilson, P., Uniprocessor Garbage Collection Techniques. In International

Workshop on Memory Management, St. Malo, France, September 1992. (Also

Springer-Verlag Lecture Notes in Computer Science No. 637).
442 picoJava-II Programmer’s Reference Manual • March 1999

CHAPTER 12

System Management and
Debugging

This chapter provides information regarding power management, reset

management, and debugging support.

This chapter describes following features of the picoJava-II core:

■ Power Management on page 443

■ Reset Management on page 444

■ Breakpoints on page 450

■ Other Debug and Trace Features on page 454

12.1 Power Management
The picoJava-II core can operate in two modes, normal mode and a power-saving

standby mode. The standby mode can occur for as little as one cycle.

In the standby mode, the core powers down all functional units and stops the

internal clock. The core enters standby mode by executing the powerdown

instruction, priv_powerdown . The number of cycles it takes the core to enter

standby mode is unspecified.

During standby, the core asserts a signal to external devices, allowing them to enter

a power-conserving mode if available. Refer to your chip or system manual to find

out if this signal is used.

All state within the processor is retained in standby mode as long as the main clock

into the core is active.

The core wakes up from standby mode if there is an external interrupt. Resumption

of normal operation within the core may take up to four clock cycles.
443

After re-entering normal mode, the core begins execution at the first instruction of

the trap handler of the interrupt that caused the core to exit powerdown mode.

Returning from this interrupt handler will continue execution with the instruction

following priv_powerdown .

A reset also returns the core from standby mode to normal mode.

12.2 Reset Management
Upon power-on or reset, only a portion of the core enters a known state. The code

that executes at this point must carefully initialize the rest of the core state before

normal execution can begin.

The core can be reset in one of two ways:

■ By assertion of the external reset signal to the core

■ By executing the priv_reset instruction

12.2.1 Machine State After Reset

When the core is powered on or reset, the registers inside the core are set to the

values listed in TABLE 12-1. The values marked Hardwired are initialized to values

dependent on specific chip and system implementation. Consult your chip or system

manual to find out the values of these fields at power-on or after a reset. The values

marked Unknown must be initialized to known values before enabling features of

the chip that make use of them. For example, the TRAPBASEregister must be

initialized before enabling interrupts or executing any instructions that trap to

emulation routines.

The RAM blocks in the stack cache, the instruction cache, and the data cache are

uninitialized at power-on and remain unchanged when the core is reset. After a

power-on or reset, the core starts executing instructions from address 0x00000000.

TABLE 12-1 Machine State Changes on POR/SIR and Powerdown

Register Field POR/SIR

PC 0

VERSION_ID Hardwired
444 picoJava-II Programmer’s Reference Manual • March 1999

PSR DBH Unknown

DBL Unknown

DRT 0

BM8 Hardwired

ACE 0

GCE 0

FPE 0

DCE 0

ICE 0

AEM 0

DRE 0

FLE 0

SU 1

IE 0

PIL Unknown

HCR DCL Hardwired

ICL Hardwired

DCS Hardwired

ICS Hardwired

FPP Hardwired

SRN Hardwired

TRAPBASE TBA Unknown

tt Unknown

SC_BOTTOM 0x003ffffc

OPTOP 0x003ffffc

OPLIM 0x00000000

VARS 0x003ffffc

BRK12C 0x00000000

GC_CONFIG 0x00000000

Other registers (see Chapter 2, Registers) Unknown

TABLE 12-1 Machine State Changes on POR/SIR and Powerdown (Continued)

Register Field POR/SIR
Chapter 12 System Management and Debugging 445

12.2.2 Enabling the Stack Cache

As part of the reset sequence, you must be careful when enabling the stack cache.

Since the picoJava-II core is a stack-based machine, all instructions depend on the

correct operation of the stack cache and the dribbler. When the dribbler is off, the

core does not behave like a true stack-based machine; therefore, even simple

operations that cause stack movement may produce unexpected results. Specifically,

if more than 64 words are pushed onto the top of the program stack before the

dribbler is enabled, there can be corruption of data elements on the stack.

To avoid unpredictable behavior, it is strongly recommended that the first few

instructions in the reset handler first set up OPTOPand SC_BOTTOMto their valid

locations and enable the dribbler. The dribbler high and low watermarks must be

initialized at the time the dribbler is enabled. All other reset functionality should be

performed after the stack has been set up in a valid area and the dribbler has been

enabled.

Systems for which the power-on/reset values of OPTOPand SC_BOTTOM(which

place the stack at address 0x003ffffc) are unsuitable must set OPTOPand SC_BOTTOM
to their new values before enabling the dribbler. This requirement is because

switching to a different stack location after enabling the dribbler causes a flush of the

old stack, causing unwanted writes to the memory area around 0x00400000. When

the dribbler is disabled, stack switching does not cause flushing of the old stack to

memory.

CODE EXAMPLE 12-1 illustrates a sample reset code for a system that does not have

memory at 0x003ffffc (and must avoid writes to this region) but has its startup stack

located at address 0x01fffffc and below.

CODE EXAMPLE 12-1 Enabling the Stack Cache

Address_0x0:
bipush 0xfc
sethi 0x01ff

dup
write_sc_bottom

write_optop
priv_read_psr

sipush 0x0080
sethi 0x0032

ior
priv_write_psr
446 picoJava-II Programmer’s Reference Manual • March 1999

12.2.3 Enabling the Instruction and Data Caches

As part of the reset sequence, code must use diagnostic cache writes to explicitly

initialize the instruction and data cache tags to the invalid state, before enabling

them. The contents of the tag RAMs are uninitialized at power-on.

The contents of the stack cache do not need to be explicitly initialized at power-on

because there are no valid entries in the stack cache.

CODE EXAMPLE 12-2 and CODE EXAMPLE 12-3 illustrate how reset code can compute

the size of the caches from the HCRregister and set all lines in both caches to the

invalid state.

CODE EXAMPLE 12-2 Enabling the Instruction Cache

EnableICache:
priv_read_hcr

iconst_0
sethi 0x001c

iand // Mask off HCR.ICS
bipush 18

ishr
dup

ifne ICachePresent
pop
goto EnableDCache // No I-Cache, do D-Cache next

ICachePresent:
priv_read_hcr

iconst_0
sethi 0x0700

iand // Mask off HCR.ICL
bipush 24

ishr
iconst_4
swap

ishl
write_global1 // Put line size in bytes in global1

sipush 0x0200
swap // Turn HCR.ICS field from stack into

ishl // instruction cache size in bytes
priv_read_hcr

iconst_0
sethi 0x0001

iand // Mask off HCR.ICA
iushr // Set cache size to size of a “way”

read_global1
isub
Chapter 12 System Management and Debugging 447

The code to enable the data cache is very similar to that required to enable the

instruction cache. The only significant difference is based on the fact that data cache

can be up to four-way set-associative, according to the HCR.DCAbits.

write_global2 // global2 is maximum tag address

ICacaheInvalidateLoop:
iconst_0

read_global2
priv_write_icache_tag // Invalidate line by writing 0 tag

iconst_0
read_global2

priv_read_hcr
bipush 16

iushr
bipush 31

ishl // Set bit 31 to value of HCR.ICA
ior // Tag address is for way 1, if present

priv_write_icache_tag // invalidate line by writing 0 tag
read_global2

read_global1
isub

write_global2 // Get next tag address by subtracting
read_global2 // line size. Loop through zero.

ifge ICacheInvalidateLoop

priv_read_psr
sipush 0x0200

ior
priv_write_psr // Enable I-Cache - set PSR.ICE to 1

ICacheDone:

CODE EXAMPLE 12-3 Enabling the Data Cache

EnableDCache:
priv_read_hcr

iconst_0
sethi 0x00e0

iand // Mask off HCR.DCS
bipush 21

ishr
dup

ifne DCachePresent
pop
goto DCacheDone // No D-Cache, we are done

CODE EXAMPLE 12-2 Enabling the Instruction Cache (Continued)
448 picoJava-II Programmer’s Reference Manual • March 1999

DcachePresent:
priv_read_hcr

iconst_0
sethi 0x3800

iand // Mask off HCR.DCL
bipush 27

ishr
iconst_4
swap

ishl
write_global1 // Put line size in bytes in global1

sipush 0x0200 // Turn HCR.DCS field from stack into
swap // size of data cache in bytes

ishl
priv_read_hcr

bipush 30
iushr // Mask off HCR.DCA

dup
iconst_2

if_icmpne DCSetAssoc // Set associative, need to adjust size
pop
goto DCSizeDone

DCSetAssoc:
iconst_1

iadd
iushr // Size of data cache “way” in bytes

DCSizeDone:
read_global1

isub
write_global2 // global2 is maximum way 0 tag address

DCacaheInvalidateLoop:
iconst_0

read_global2 // Tag address is for way 0
priv_write_dcache_tag // Invalidate line by writing 0 tag

priv_read_hcr
bipush 31

iushr // Bit 31 of HCR set if direct mapped
ifne DCacheNextSet

iconst_0
read_global2
sethi 0x8000 // Tag address is way 1 (or 2 if 4-way)

priv_write_dcache_tag // Invalidate line by writing 0 tag
priv_read_hcr

bipush 30
iushr // HCR is zero if 2-way set associative

ifne DCacheNextSet

CODE EXAMPLE 12-3 Enabling the Data Cache (Continued)
Chapter 12 System Management and Debugging 449

12.3 Breakpoints
The core supports data and instruction breakpoints. Data and instruction breakpoint

traps are triggered when there is a match between an instruction or data address

with the address stored in one of the two breakpoint address registers, BRK1Aand

BRK2A. The BRK12Cregister controls exactly how the address comparison is

performed.

To enable a breakpoint:

1. Set up the address breakpoint registers.

2. Write to the breakpoint control register.

Note – Do not set a breakpoint to trigger the instruction that sets it. Unexpected

results may occur.

iconst_0
read_global2
sethi 0x4000 // Tag address is way 1 if 4-way

priv_write_dcache_tag // Invalidate line by writing 0 tag
iconst_0

read_global2
sethi 0xc000 // Tag address is way 3 if 4-way

priv_write_dcache_tag // Invalidate line by writing 0 tag
DCacheNextSet:

read_global2
read_global1

isub
write_global2 // Get next tag address by subtracting

read_global2 // line size. Loop through zero.
ifge DCacheInvalidateLoop

priv_read_psr
sipush 0x0400

ior
priv_write_psr // Enable D-Cache - set PSR.DCE to 1

DCacheDone:

CODE EXAMPLE 12-3 Enabling the Data Cache (Continued)
450 picoJava-II Programmer’s Reference Manual • March 1999

12.3.1 Data Breakpoints

There are two types of data breakpoints:

■ A data store breakpoint traps on a store to the specified address instruction.

■ A data load breakpoint, also known as a watchpoint, traps on a load from the

specified address.

Both data load and store breakpoints appear to happen before the load or store

causing the breakpoint has completed. The PCstored in the trap frame is that of the

instruction which caused the breakpoint. In the special case of a store breakpoint set

on an address that matches the second half of a double-word store (such as

lastore), the first half of the double-word is written but the second word is not

written when the breakpoint trap handler is entered.

The core performs data breakpoint checks on all accesses that go to the data cache.

Hence, data breakpoints are checked on all direct loads and stores, object accesses,

and local variable accesses that miss the stack cache. Since there is no way in general

to generate breakpoint traps on accesses to stack data (because local variables may

or may not reside in the stack cache), debuggers may prefer to disallow the setting of

data breakpoints on data residing on the stack.

Instruction bytes accessed through the instruction cache are not subject to data

breakpoint checks. However, since all accesses to the data cache are checked for data

breakpoints, unexpected actions can trigger data breakpoints. Some examples are:

the action of reading the address of a trap vector from the trap table, or the

tableswitch instruction reading its operands from the instruction stream as if they

were data.

Data breakpoints can be used whether instruction folding is enabled or disabled.

12.3.2 Instruction Breakpoints

Instruction breakpoint traps take place before an instruction is executed. The PC
stored in the trap frame is the PCof the instruction causing the trap. Hardware

instruction breakpoints are triggered only when instruction folding is disabled

(PSR.FLE is 0).

12.3.3 Breakpoint Registers
The core contains three registers: two breakpoint registers (BRK1Aand BRK2A) and a

breakpoint control register (BRK12C). You can set a maximum of two breakpoints at

one time.
Chapter 12 System Management and Debugging 451

The configuration of the BRK1Aregister is listed below and illustrated in FIGURE 12-1.

FIGURE 12-1 Breakpoint Register (BRK1A)

The configuration of the BRK2Aregister is listed below and illustrated in FIGURE 12-2.

FIGURE 12-2 Breakpoint Register (BRK2A)

The configuration of the BRK12Cregister is listed below and illustrated in

FIGURE 12-3.

Field Type Description

31:00 RW This is the breakpoint1 address against which to compare.

This register is used along with BRK12Cto set a breakpoint.

Field Type Description

31:00 RW This is the breakpoint2 address against which to compare.

This register is used along with BRK12Cto set a breakpoint.

Field Type Description

31 RW HALT – Determines if a breakpoint halts or traps. At setting 0,

the breakpoint traps (default); at setting 1, the core halts all

transactions.

30:24 RW BRKM2– Mask bits for breakpoint2

<30> – Enable compare of BRK2A<31:13>

<29> – Enable compare of BRK2A<12>

<28> – Enable compare of BRK2A<11:4>

<27> – Enable compare of BRK2A<3>

<26> – Enable compare of BRK2A<2>

<25> – Enable compare of BRK2A<1>

<24> – Enable compare of BRK2A<0>

23 Reserved

31 0

BRK1A

31 0

BRK2A
452 picoJava-II Programmer’s Reference Manual • March 1999

FIGURE 12-3 Breakpoint Control Register (BRK12C)

22:16 RW BRKM1– Mask bits for breakpoint1

<22> – Enable compare of BRK1A<31:13>

<21> – Enable compare of BRK1A<12>

<20> – Enable compare of BRK1A<11:4>

<19> – Enable compare of BRK1A<3>

<18> – Enable compare of BRK1A<2>

<17> – Enable compare of BRK1A<1>

<16> – Enable compare of BRK1A<0>

15:12 Reserved

11 RW SUBRK2– Supervisor (privileged) or user access for

breakpoint2

10:9 RW SRCBRK2– Source for breakpoint2

0x0 – Data cache read

0x1 – Data cache write

0x2 – Reserved

0x3 – Instruction cache fetch (folding disabled)

8 RW BRKEN2– Breakpoint2 trap enable bit

1 – The breakpoint is enabled

0 – The breakpoint is disabled

7:4 Reserved

3 RW SUBRK1– Supervisor (privileged) or user access for

breakpoint1. If set to 1, then the core ignores the breakpoint in

privileged mode.

2:1 RW SRCBRK1– Source for breakpoint1

0x0 – Data cache read

0x1 – Data cache write

0x2 – Reserved

0x3 – Instruction cache fetch (folding disabled)

0 RW BRKEN1– Breakpoint1 trap enable bit

1 – The breakpoint is enabled

0 – The breakpoint is disabled

Field Type Description

BRKM2 Reserved

0112 24

 SRCBK1 SUBK1

79

 BRKEN1HALT Reserved

10

BRKM1Reserved

15 8162430 3

 BRKEN2 SRCBK2 SUBK2

 2231 23

BRK12C

11
Chapter 12 System Management and Debugging 453

12.3.4 Breakpoint Address Matching

The BRK12C.BRKM1and BRK12C.BRKM2bits control which address bits in the

corresponding breakpoint address register should be compared with the instruction

or data address generated by the chip. If a mask bit is 1, then the corresponding

range of bits in the BRK1Aor BRK2Aregister must match the generated address. This

flexibility allows setting of breakpoints to cover more than just one word of

memory—a single breakpoint address register can cover a region of up to 8 Kbytes.

Breakpoints are triggered only on exact matches to the breakpoint addresses and are

not triggered on accesses “covering” the breakpoint address. For example, if the

breakpoint address is set to address 0x103 with all bits enabled for address

comparison, a word write to address 0x100, which covers addresses 0x100–0x103,

will not cause a breakpoint trap.

In addition, each breakpoint can be either enabled or disabled using the

BRK12C.BRK1ENand BRK12C.BRK2ENbits. Additionally, each breakpoint can

optionally be enabled only in user mode. When the BRK12C.SUBK1and

BRK12C.SUBK2bits for each breakpoint are set to 1, breakpoint addresses are

compared only when in user mode (PSR.SU is 0). When the bit is set to 0, breakpoint

addresses are compared both in user and superuser modes.

12.3.5 Breakpoints and Halt Mode

The same hardware breakpoints mechanism can also be used to halt the entire

processor instead of causing a trap. Hardware signals can then be used to probe the

internal state of the chip. However, this requires special hardware support in the

system for continuing from a breakpoint and probing the state of the chip. To find if

this feature is supported in your system, see your system documentation.

To use breakpoints to force the core into halt mode instead of causing a trap, set the

HALT bit in the BRK12Cregister.

12.4 Other Debug and Trace Features
The core provides additional hardware support for debugging through signals for

halting and single-stepping the processor and a scan chain accessible through an

IEEE 1149.1 JTAG interface. These methods need specialized hardware support. See

your chip and system documentation for details about these and other debugging

options.
454 picoJava-II Programmer’s Reference Manual • March 1999

PART III Appendixes

APPENDIX A

Opcodes

This appendix lists and describes the Java virtual machine opcodes and the picoJava-

II-specific additions to the instruction set. It contains these tables:

■ TABLE A-1 picoJava-II 1-Byte Opcodes on page 458

■ TABLE A-2 picoJava-II 2-byte Opcodes on page 469

In the tables, the Group column lists the folding category for the instructions.

The Cycles column shows a typical number of cycles the instructions take, assuming

cache hits and no pipeline stalls or exceptions. If an instruction is marked Trap, it is

not executed by the hardware but traps to a software emulation trap handler.

Here is a key to the acronyms in the tables:

LV Local variable load or load from global register or push constant

OP An operation that uses the top two entries of stack

BG2 An operation that uses the top two entries of the stack and breaks the group

BG1 An operation that uses only the topmost entry of stack and breaks the group

MEM Local variable stores, global register stores, and memory loads

NF Nonfoldable instruction

LDUSE Addition of an extra cycle if subsequent instructions use the load results
457

Preliminary information, subject to change

Here is a key to the footnotes in the tables:

TABLE A-1 lists and describes the Java virtual machine opcodes.

1 Assumes a nonhandle reference.

2 Assumes a handle reference.

3 Optionally traps, depending on the PSR.DRTbit. See Instruction Emulation on page 54.

4 Assumes conditional branch is not taken.

5 Assumes conditional branch is taken.

6 Depends on the index and tableswitch bounds: If the index is less than the lower

bound, then tableswitch take 10 cycles; if the index is greater than the upper

bound, then tableswitch takes 11 cycles.

7 May trap if the object reference is not held in LOCKADDRregisters. See Chapter 8, Monitors.

8 May trap if the hardware would have required an examination of the superclass type of the

checked object.

TABLE A-1 picoJava-II 1-Byte Opcodes

Opcode Mnemonic Size Description Group Cycles LDUSE

0 (0x0) nop 1 Do not operate. NF 1

1 (0x1) aconst_null 1 Push null object. LV 1

2 (0x2) iconst_m1 1 Push integer constant −1. LV 1

3 (0x3) iconst_0 1 Push integer constant 0. LV 1

4 (0x4) iconst_1 1 Push integer constant 1. LV 1

5 (0x5) iconst_2 1 Push integer constant 2. LV 1

6 (0x6) iconst_3 1 Push integer constant 3. LV 1

7 (0x7) iconst_4 1 Push integer constant 4. LV 1

8 (0x8) iconst_5 1 Push integer constant 5. LV 1

9 (0x9) lconst_0 1 Push long integer constant 0. NF 2

10 (0x0a) lconst_1 1 Push long integer constant 1. NF 2

11 (0x0b) fconst_0 1 Push float constant 0.0. LV 1

12 (0x0c) fconst_1 1 Push float constant 1.0. LV 1

13 (0x0d) fconst_2 1 Push float constant 2.0. LV 1

14 (0x0e) dconst_0 1 Push double float 0.0. NF 2
Preliminary information, subject to change
458 picoJava-II Programmer’s Reference Manual • March 1999

15 (0x0f) dconst_1 1 Push double float 1.0. NF 2

16 (0x10) bipush 2 Push 1-byte integer. LV 1

17 (0x11) sipush 3 Push 2-byte integer. LV 1

18 (0x12) ldc 2 Load constant from the

constant pool.

NF Trap

19 (0x13) ldc_w 3 Load constant from constant

pool using a wider offset (16-

bit index).

NF Trap

20 (0x14) ldc2_w 3 Load long or double from

constant pool.

NF Trap

21 (0x15) iload 2 Load local integer variable. LV 1

22 (0x16) lload 2 Load local long variable. NF 2

23 (0x17) fload 2 Load local float variable. LV 1

24 (0x18) dload 2 Load local double float

variable.

NF 2

25 (0x19) aload 2 Load local object variable. LV 1

26 (0x1a) iload_0 1 Load local variable 0. LV 1

27 (0x1b) iload_1 1 Load local variable 1. LV 1

28 (0x1c) iload_2 1 Load local variable 2. LV 1

29 (0x1d) iload_3 1 Load local variable 3. LV 1

30 (0x1e) lload_0 1 Load local long variable 0. NF 2

31 (0x1f) lload_1 1 Load local long variable 1. NF 2

32 (0x20) lload_2 1 Load local long variable 2. NF 2

33 (0x21) lload_3 1 Long local long variable 3. NF 2

34 (0x22) fload_0 1 Load local float variable 0. LV 1

35 (0x23) fload_1 1 Load local float variable 1. LV 1

36 (0x24) fload_2 1 Load local float variable 2. LV 1

37 (0x25) fload_3 1 Load local float variable 3. LV 1

38 (0x26) dload_0 1 Load local double variable 0. NF 2

TABLE A-1 picoJava-II 1-Byte Opcodes (Continued)

Opcode Mnemonic Size Description Group Cycles LDUSE
Chapter A Opcodes 459

Preliminary information, subject to change

39 (0x27) dload_1 1 Load local double variable 1. NF 2

40 (0x28) dload_2 1 Load local double variable 2. NF 2

41 (0x29) dload_3 1 Load local double variable 3. NF 2

42 (0x2a) aload_0 1 Load local object variable 0. LV 1

43 (0x2b) aload_1 1 Load local object variable 1. LV 1

44 (0x2c) aload_2 1 Load local object variable 2. LV 1

45 (0x2d) aload_3 1 Load local object variable 3. LV 1

46 (0x2e) iaload 1 Load integer from array. BG2 31/52 Yes

47 (0x2f) laload 1 Load long from array. BG2 41/62 Yes

48 (0x30) faload 1 Load float from array. BG2 31/52 Yes

49 (0x31) daload 1 Load double from array. BG2 41/62 Yes

50 (0x32) aaload 1 Load object ref from array. BG2 31/52 Yes

51 (0x33) baload 1 Load signed byte from array. BG2 31/52 Yes

52 (0x34) caload 1 Load character from array. BG2 31/52 Yes

53 (0x35) saload 1 Load short from arrray. BG2 31/52 Yes

54 (0x36) istore 2 Store integer into local

variable.

MEM 1

55 (0x37) lstore 2 Store long into local variable. NF 2

56 (0x38) fstore 2 Store float into local variable. MEM 1

57 (0x39) dstore 2 Store double into local

variable.

NF 2

58 (0x3a) astore 2 Store object reference into local

variable.

MEM 1

59 (0x3b) istore_0 1 Store into local variable 0. MEM 1

60 (0x3c) istore_1 1 Store into local variable 1. MEM 1

61 (0x3d) istore_2 1 Store into local variable 2. MEM 1

62 (0x3e) istore_3 1 Store into local variable 3. MEM 1

63 (0x3f) lstore_0 1 Store into local variable 0. NF 2

TABLE A-1 picoJava-II 1-Byte Opcodes (Continued)

Opcode Mnemonic Size Description Group Cycles LDUSE
Preliminary information, subject to change
460 picoJava-II Programmer’s Reference Manual • March 1999

64 (0x40) lstore_1 1 Store into local variable 1. NF 2

65 (0x41) lstore_2 1 Store into local variable 2. NF 2

66 (0x42) lstore_3 1 Store into local variable 3. NF 2

67 (0x43) fstore_0 1 Store into local variable 0. MEM 1

68 (0x44) fstore_1 1 Store into local variable 1. MEM 1

69 (0x45) fstore_2 1 Store into local variable 2. MEM 1

70 (0x46) fstore_3 1 Store into local variable 3. MEM 1

71 (0x47) dstore_0 1 Store into local variable 0. NF 2

72 (0x48) dstore_1 1 Store into local variable 1. NF 2

73 (0x49) dstore_2 1 Store into local variable 2. NF 2

74 (0x4a) dstore_3 1 Store into local variable 3. NF 2

75 (0x4b) astore_0 1 Store into local variable 0. MEM 1

76 (0x4c) astore_1 1 Store into local variable 1. MEM 1

77 (0x4d) astore_2 1 Store into local variable 2. MEM 1

78 (0x4e) astore_3 1 Store into local variable 3. MEM 1

79 (0x4f) iastore 1 Store into integer array. BG2 51/72 Yes

80 (0x50) lastore 1 Store into long array. BG2 61/82 Yes

81 (0x51) fastore 1 Store into float array. BG2 51/72 Yes

82 (0x52) dastore 1 Store into double float array. BG2 61/82 Yes

83 (0x53) aastore 1 Store into object reference

array.

NF Trap

84 (0x54) bastore 1 Store into signed byte array. BG2 51/72 Yes

85 (0x55) castore 1 Store into character array. BG2 51/72 Yes

86 (0x56) sastore 1 Store into short array. BG2 51/72 Yes

87 (0x57) pop 1 Pop top entry in stack. NF 1

88 (0x58) pop2 1 Pop top two entries in stack. NF 1

89 (x059) dup 1 Duplicate top stack word. NF 1

TABLE A-1 picoJava-II 1-Byte Opcodes (Continued)

Opcode Mnemonic Size Description Group Cycles LDUSE
Chapter A Opcodes 461

Preliminary information, subject to change

90 (0x5a) dup_x1 1 Duplicate top word and put

two down.

BG2 3

91 (0x5b) dup_x2 1 Duplicate top word and put

three down.

BG2 4

92 (0x5c) dup2 1 Duplicate top two words. NF 2

93 (0x5d) dup2_x1 1 Duplicate top two words and

put three down.

BG2 5

94 (0x5e) dup2_x2 1 Duplicate top two words and

put four down.

BG2 6

95 (0x5f) swap 1 Swap top two stack words. BG2 2

96 (0x60) iadd 1 Add integer. OP 1

97 (0x61) ladd 1 Add long. NF 2

98 (0x62) fadd 1 Add float. OP 3

99 (0x63) dadd 1 Add double. NF 11

100 (0x64) isub 1 Subtract integer. OP 1

101 (0x65) lsub 1 Subtract long. NF 2

102 (0x66) fsub 1 Subtract float. OP 3

103 (0x67) dsub 1 Subtract double. NF 14

104 (0x68) imul 1 Multiply integer. OP 2 - 18

105 (0x69) lmul 1 Multiply long. NF Trap

106 (0x6a) fmul 1 Multiply float. OP 3

107 (0x6b) dmul 1 Multiply double. NF 14

108 (0x6c) idiv 1 Divide integer. OP 32

109 (0x6d) ldiv 1 Divide long. NF Trap

110 (0x6e) fdiv 1 Divide float. OP 30

111 (0x6f) ddiv 1 Divide double. NF 60

112 (0x70) irem 1 Compute integer remainder. OP 32

113 (0x71) lrem 1 Compute long remainder. NF Trap

114 (0x72) frem 1 Compute float remainder. OP <200

TABLE A-1 picoJava-II 1-Byte Opcodes (Continued)

Opcode Mnemonic Size Description Group Cycles LDUSE
Preliminary information, subject to change
462 picoJava-II Programmer’s Reference Manual • March 1999

115 (0x73) drem 1 Compute double remainder. NF <20003

116 (0x74) ineg 1 Negate integer. BG1 1

117 (0x75) lneg 1 Negate long. NF 2

118 (0x76) fneg 1 Negate float. BG1 1

119 (0x77) dneg 1 Negate double. NF 1

120 (0x78) ishl 1 Shift left integer. OP 1

121 (0x79) lshl 1 Shift left long. NF 2

122 (0x7a) ishr 1 Arithmetic shift right integer. OP 1

123 (0x7b) lshr 1 Arithmetic shift right long. NF 2

124 (0x7c) iushr 1 Logical shift right integer. OP 1

125 (0x7d) lushr 1 Logical shift right long. NF 2

126 (0x7e) iand 1 Compute bitwise AND. OP 1

127 (0x7f) land 1 Compute long bitwise AND. NF 2

128 (0x80) ior 1 Compute integer bitwise OR. OP 1

129 (0x81) lor 1 Compute long bitwise OR. NF 2

130 (0x82) ixor 1 Compute integer bitwise XOR. OP 1

131 (0x83) lxor 1 Compute long bitwise XOR. NF 2

132 (0x84) iinc 3 Increment local variable by

constant.

NF 1

133 (0x85) i2l 1 Convert integer to long. NF 1

134 (0x86) i2f 1 Convert integer to float. NF 6

135 (0x87) i2d 1 Convert integer to double. NF 3

136 (0x88) l2i 1 Convert long to integer. NF 1

137 (0x89) l2f 1 Convert long to float. NF 8

138 (0x8a) l2d 1 Convert long to double. NF 6

139 (0x8b) f2i 1 Convert float to integer. NF 4

140 (0x8c) f2l 1 Convert float to long. NF 5

TABLE A-1 picoJava-II 1-Byte Opcodes (Continued)

Opcode Mnemonic Size Description Group Cycles LDUSE
Chapter A Opcodes 463

Preliminary information, subject to change

141 (0x8d) f2d 1 Convert float to double. NF 3

142 (0x8e) d2i 1 Convert double to integer. NF 5

143 (0x8f) d2l 1 Convert double to long. NF 5

144 (0x90) d2f 1 Convert double to float. NF 7

145 (0x91) i2b 1 Convert integer to byte. BG1 1

146 (0x92) i2c 1 Convert integer to character. BG1 1

147 (0x93) i2s 1 Convert integer to short. BG1 1

148 (0x94) lcmp 1 Compare long. NF 2

149 (0x95) fcmpl 1 Float compare −1 on

incomparable.

OP 7

150 (0x96) fcmpg 1 Float compare 1 on

incomparable.

OP 7

151 (0x97) dcmpl 1 Double compare −1 on

incomparable.

NF 7

152 (0x98) dcmpg 1 Double compare 1 on

incomparable.

NF 7

153 (0x99) ifeq 3 Branch if equal to 0. BG1 14/45

154 (0x9a) ifne 3 Branch if not equal to 0. BG1 14/45

155 (0x9b) iflt 3 Branch if less than 0. BG1 14/45

156 (0x9c) ifge 3 Branch if greater than or equal

0.

BG1 14/45

157 (0x9d) ifgt 3 Branch if greater than 0. BG1 14/45

158 (0x9e) ifle 3 Branch if less than or equal 0. BG1 14/45

159 (0x9f) if_icmpeq 3 Compare top two stack

elements, branch on equal.

BG2 14/45

160 (0xa0) if_icmpne 3 Compare top two stack

elements, branch on not equal.

BG2 14/45

161 (0xa1) if_icmplt 3 Compare top two stack

elements, branch on less than.

BG2 14/45

TABLE A-1 picoJava-II 1-Byte Opcodes (Continued)

Opcode Mnemonic Size Description Group Cycles LDUSE
Preliminary information, subject to change
464 picoJava-II Programmer’s Reference Manual • March 1999

162 (0xa2) if_icmpge 3 Compare top two stack

elements, branch on greater

than or equal.

BG2 14/45

163 (0xa3) if_icmpgt 3 Compare top two stack

elements, branch on greater

than.

BG2 14/45

164 (0xa4) if_icmple 3 Compare top two stack

elements, branch on less than

or equal.

BG2 14/45

165 (0xa5) if_acmpeq 3 Compare top two stack

objects, branch on equal.

BG2 14/45

166 (0xa6) if_acmpne 3 Compare top two stack

objects, branch on not equal.

BG2 14/45

167 (0xa7) goto 3 Branch always. NF 4

168 (0xa8) jsr 3 Jump to subroutine. NF 4

169 (0xa9) ret 2 Return from subroutine. NF 4

170 (0xaa) tableswitch -- Access jump table by index

and jump.

NF 156

171 (0xab) lookupswitch -- Access jump table by match

and jump.

NF Trap

172 (0xac) ireturn 1 Return integer from

procedure.

BG1 8

173 (0xad) lreturn 1 Return long from procedure. NF 8

174 (0xae) freturn 1 Return float from procedure. BG1 8

175 (0xaf) dreturn 1 Return double from

procedure.

NF 8

176 (0xb0) areturn 1 Return object from procedure. BG1 8

177 (0xb1) return 1 Return void from procedure. NF 8

178 (0xb2) getstatic 3 Get static field value. NF Trap

179 (0xb3) putstatic 3 Set static field in class. NF Trap

180 (0xb4) getfield 3 Get field value. NF Trap

181 (0xb5) putfield 3 Set field in class. NF Trap

TABLE A-1 picoJava-II 1-Byte Opcodes (Continued)

Opcode Mnemonic Size Description Group Cycles LDUSE
Chapter A Opcodes 465

Preliminary information, subject to change

182 (0xb6) invokevirtual 3 Call method based on object. NF Trap

183 (0xb7) invokespecial 3 Call method not based on

object.

NF Trap

184 (0xb8) invokestatic 3 Call a static method. NF Trap

185 (0xb9) invokeinterface 5 Call an interface method. NF Trap

186 (0xba) Undefined

187 (0xbb) new 3 Create new object. NF Trap

188 (0xbc) newarray 2 Allocate new array. NF Trap

189 (0xbd) anewarray 3 Allocate new array of objects. NF Trap

190 (0xbe) arraylength 1 Get length of array. BG1 11/32 Yes

191 (0xbf) athrow 1 Throw an exception. NF Trap

192 (0xc0) checkcast 3 Check if object is of given

type.

NF Trap

193 (0xc1) instanceof 3 Determine if object is of given

type.

NF Trap

194 (0xc2) monitorenter 1 Enter a monitored region of

code.

NF 37

195 (0xc3) monitorexit 1 Exit a monitored region of

code.

NF 27

196 (0xc4) wide 4/6 Extend local variable index by

additional bytes.

NF Trap

197 (0xc5) multianewarray 4 Allocate new

multidimensional array.

NF Trap

198 (0xc6) ifnull 3 Test if null. BG1 14/45

199 (0xc7) ifnonnull 3 Test if not null. BG1 14/45

200 (0xc8) goto_w 5 Branch always (wide index). NF 4

201 (0xc9) jsr_w 5 Jump subroutine, 4-byte offset. NF 4

202 (0xca) breakpoint 1 Call breakpoint handler. NF Trap

203 (0xcb) ldc_quick 2 Push item from constant pool. NF 1 Yes

204 (0xcc) ldc_w_quick 3 Push item from constant pool. NF 1 Yes

TABLE A-1 picoJava-II 1-Byte Opcodes (Continued)

Opcode Mnemonic Size Description Group Cycles LDUSE
Preliminary information, subject to change
466 picoJava-II Programmer’s Reference Manual • March 1999

205 (0xcd) ldc2_w_quick 3 Push long or double from

constant pool.

NF 2 Yes

206 (0xce) getfield_quick 3 Get field value from constant

pool.

BG1 11/42 Yes

207 (0xcf) putfield_quick 3 Set field in object. BG2 11/42

208 (0xd0) getfield2_quick 3 Get long or double from field

of object.

BG1 21/52 Yes

209 (0xd1) putfield2_quick 3 Set field of object (long or

double).

NF 21/52

210 (0xd2) getstatic_quick 3 Get static field from class. NF 3 Yes

211 (0xd3) putstatic_quick 3 Set static field in class. BG1 3

212 (0xd4) getstatic2_quick 3 Get static field from class—

long or double.

NF 4 Yes

213 (0xd5) putstatic2_quick 3 Set long or double static field

in class.

NF 4

214 (0xd6) invokevirtual_quick 3 Invoke instance method. NF 15

215 (0xd7) invokenonvirtual_quick 3 Invoke instance method. NF 13

216 (0xd8) invokesuper_quick 3 Invoke instance method. NF 21

217 (0xd9) invokestatic_quick 3 Invoke static method. NF 11

218 (0xda) invokeinterface_quick 3 Invoke interface method. NF Trap

219 (0xdb) Undefined

220 (0xdc) aastore_quick 1 Store into object reference

array with no type checks.

BG2 61/82

221 (0xdd) new_quick 3 Create new object. NF Trap

222 (0xde) anewarray_quick 3 Create a new array of objects. NF Trap

223 (0xdf) multianewarray_quick 3 Create a new

multidimensional array of

objects.

NF Trap

224 (0xe0) checkcast_quick 3 Check whether object is of

given type.

NF 68

225 (0xe1) instanceof_quick 3 Determine if object is of given

type.

NF 78

TABLE A-1 picoJava-II 1-Byte Opcodes (Continued)

Opcode Mnemonic Size Description Group Cycles LDUSE
Chapter A Opcodes 467

Preliminary information, subject to change

226 (0xe2) invokevirtual_quick_w 3 Invoke instance method,

dispatching on class.

NF 19

227 (0xe3) getfield_quick_w 3 Fetch field from object (wide

index).

NF Trap

228 (0xe4) putfield_quick_w 3 Set field in object (wide index). NF Trap

229 (0xe5) nonnull_quick 1 Pop object reference and trap

if null.

BG1 1

230 (0xe6) agetfield_quick 3 Read reference field in object. BG1 11/42 Yes

231 (0xe7) aputfield_quick 3 Set reference field in object

with GC checks.

BG2 11/42

232 (0xe8) agetstatic_quick 3 Read static reference field in

class.

NF 3 Yes

233 (0xe9) aputstatic_quick 3 Set static reference field in

class with GC checks.

BG1 3

234 (0xea) aldc_quick 2 Push reference from constant

pool.

NF 1 Yes

235 (0xeb) aldc_w_quick 3 Push reference from constant

pool.

NF 1 Yes

236 (0xec) exit_sync_method 1 Jump to return code for

synchronized method.

NF 6

237 (0xed) sethi 3 Set upper 16 bits of topmost

entry of stack.

BG1 1

238 (oxee) load_word_index 3 Load word, using indexed

addressing.

NF 1 Yes

239 (0xef) load_short_index 3 Load short, using indexed

addressing.

NF 1 Yes

240 (0xf0) load_char_index 3 Load character, using indexed

addressing.

NF 1 Yes

241 (0xf1) load_byte_index 3 Load byte, using indexed

addressing.

NF 1 Yes

242 (0xf2) load_ubyte_index 3 Load unsigned byte, using

indexed addressing.

NF 1 Yes

243 (0xf3) store_word_index 3 Store word, using indexed

addressing.

NF 1

TABLE A-1 picoJava-II 1-Byte Opcodes (Continued)

Opcode Mnemonic Size Description Group Cycles LDUSE
Preliminary information, subject to change
468 picoJava-II Programmer’s Reference Manual • March 1999

For a key to the footnotes, see page 458.

TABLE A-2 lists and describes 2-byte opcodes in the picoJava-II core.

244 (0xf4) nastore_word_index 3 Nonallocating store, using

indexed addressing.

NF 1

245 (0xf5) store_short_index 3 Store short, using indexed

addressing.

NF 1

246 (0xf6) store_byte_index 3 Store byte, using indexed

addressing.

NF 1

247 (0xf7)

to

254 (0xfe)

Undefined

TABLE A-2 picoJava-II 2-byte Opcodes

Opcode Mnemonic Size Description Group Cycles LDUSE

255 (0xff) The first opcode byte denotes the extended opcode; the second opcode denotes the instruction.

0 (0x00) load_ubyte 2 Load unsigned byte from

memory.

BG1 1 Yes

1 (0x01) load_byte 2 Load signed byte from

memory.

BG1 1 Yes

2 (0x02) load_char 2 Load unsigned short or

character from memory.

BG1 1 Yes

3 (0x03) load_short 2 Load signed short from

memory.

BG1 1 Yes

4 (0x04) load_word 2 Load integer from memory. BG1 1 Yes

5 (0x05) priv_ret_from_trap 2 Return from trap in

privileged mode.

NF 8

6 (0x06) priv_read_dcache_tag 2 Diagnostic read data cache

tags in privileged mode.

NF 1 Yes

7 (0x07) priv_read_dcache_data 2 Diagnostic read data cache

data array in privileged

mode.

NF 1 Yes

8 (0x08) Undefined

TABLE A-1 picoJava-II 1-Byte Opcodes (Continued)

Opcode Mnemonic Size Description Group Cycles LDUSE
Chapter A Opcodes 469

Preliminary information, subject to change

9 (0x09) Undefined

10 (0x0a) load_char_oe 2 Load unsigned short or

character from memory;

endian swap.

BG1 1 Yes

11 (0x0b) load_short_oe 2 Load signed short from

memory; endian swap.

BG1 1 Yes

12 (0x0c) load_word_oe 2 Load integer from memory;

endian-swap.

BG1 1 Yes

13 (0x0d) return0 2 Return with no value from

routine entered via call.

BG2 6

14 (0x0e) priv_read_icache_tag 2 Diagnostic read instruction

cache tags in privileged

mode.

NF 2 Yes

15 (0x0f) priv_read_icache_data 2 Diagnostic read instruction

cache data array in

privileged mode.

NF 2 Yes

16 (0x10) ncload_ubyte 2 Load unsigned byte from

memory; noncacheable.

BG1 1 Yes

17 (0x11) ncload_byte 2 Load signed byte from

memory; noncacheable.

BG1 1 Yes

18 (0x12) ncload_char 2 Load unsigned short or

character from memory;

noncacheable.

BG1 1 Yes

19 (0x13) ncload_short 2 Load signed short from

memory; noncacheable.

BG1 1 Yes

20 (0x14) ncload_word 2 Load integer from memory;

noncacheable.

BG1 1 Yes

21(0x15) iucmp 2 Compare unsigned integers. OP 1

22 (0x16) priv_powerdown 2 Enter low-power standby

state in privileged mode.

NF 1

23 (0x17) cache_invalidate 2 Invalidate cache line if

present in cache.

BG1 1

24 (0x18) Undefined

25 (0x19) Undefined

TABLE A-2 picoJava-II 2-byte Opcodes (Continued)

Opcode Mnemonic Size Description Group Cycles LDUSE
Preliminary information, subject to change
470 picoJava-II Programmer’s Reference Manual • March 1999

26 (0x1a) ncload_char_oe 2 Load unsigned short or

character from memory;

noncacheable endian swap.

BG1 1 Yes

27 (0x1b) ncload_short_oe 2 Load signed short from

memory; noncacheable

endian swap.

BG1 1 Yes

28 (0x1c) ncload_word_oe 2 Load integer from memory;

noncacheable endian swap.

BG1 1 Yes

29 (0x1d) return1 2 Return with one-word value

from subroutine entered via

call.

BG2 7

30 (0x1e) cache_flush 2 Flush cache line and

invalidate if present in cache.

BG1 1

31 (0x1f) cache_index_flush 2 Flush cache line and

invalidate (no tag check).

BG1 1

32 (0x20) store_byte 2 Store byte to memory. BG2 1

33 (0x21) Undefined

34 (0x22) store_short 2 Store short or character to

memory.

BG2 1

35 (x023) Undefined

36 (0x24) store_word 2 Store integer to memory. BG2 1

37 (0x25) soft_trap 2 Initiate a software trap. NF Trap

38 (0x26) priv_write_dcache_tag 2 Diagnostic write data cache

tags in privileged mode.

NF 1

39 (0x27) priv_write_dcache_data 2 Diagnostic write data cache

data array in privileged

mode.

NF 1

40 (0x28) Undefined

41 (0x29) Undefined

42 (0x2a) store_short_oe 2 Store short to memory;

endian swap.

BG2 1

43 (0x2b) Undefined

TABLE A-2 picoJava-II 2-byte Opcodes (Continued)

Opcode Mnemonic Size Description Group Cycles LDUSE
Chapter A Opcodes 471

Preliminary information, subject to change

44 (0x2c) store_word_oe 2 Store integer to memory;

endian swap.

BG2 1

45 (0x2d) return2 2 Return with two-word value

from subroutine entered via

call.

BG2 7

46 (0x2e) priv_write_icache_tag 2 Diagnostic write instruction

cache tags in privileged

mode.

NF 1

47 (0x2f) priv_write_icache_data 2 Diagnostic write instruction

cache data array in

privileged mode.

NF 1

48 (0x30) ncstore_byte 2 Store byte to memory;

noncacheable.

BG2 1

49 (0x31) Undefined

50 (0x32) ncstore_short 2 Store short or character to

memory; noncacheable.

BG2 1

51 (0x33) Undefined

52 (0x34) ncstore_word 2 Store integer to memory;

noncacheable.

BG2 1

53 (0x35) Undefined

54 (0x36) priv_reset 2 Generate software-initiated

reset in privileged mode.

NF 1

55 (0x37) get_current_class 2 Push class pointer for current

method.

NF 3

56 (0x38) Undefined

57 (0x39) Undefined

58 (0x3a) ncstore_short_oe 2 Store short to memory;

noncacheable endian swap.

BG2 1

59 (0x3b) Undefined

60 (0x3c) ncstore_word_oe 2 Store integer to memory;

noncacheable endian swap.

BG2 1

61 (0x3d) call 2 Call subroutine with

specified number of

arguments.

BG2 6

TABLE A-2 picoJava-II 2-byte Opcodes (Continued)

Opcode Mnemonic Size Description Group Cycles LDUSE
Preliminary information, subject to change
472 picoJava-II Programmer’s Reference Manual • March 1999

62 (0x3e) zero_line 2 Set cache line to valid, dirty

and zero the data.

BG1 5

63 (0x3f) priv_update_optop 2 Atomic update of OPTOPand

OPLIM registers in privileged

mode.

NF 2

64 (0x40) read_pc 2 Read current PC register. NF 1

65 (0x41) read_vars 2 Read current VARSregister. NF 1

66 (0x42) read_frame 2 Read current FRAMEregister. NF 1

67 (0x43) read_optop 2 Read current OPTOPregister. NF 1

68 (0x44) priv_read_oplim 2 Read current OPLIM register

in privileged mode.

NF 1

69 (0x45) read_const_pool 2 Read current CONST_POOL
register.

NF 1

70 (0x46) priv_read_psr 2 Read current PSRregister in

privileged mode.

NF 1

71 (0x47) priv_read_trapbase 2 Read current TRAPBASE
register in privileged mode.

NF 1

72 (0x48) priv_read_lockcount0 2 Read current LOCKCOUNT0
register in privileged mode.

NF 1

73 (0x49) priv_read_lockcount1 2 Read current LOCKCOUNT1
register in privileged mode.

NF 1

74 (0x4a) Undefined

75 (0x4b) Undefined

76 (0x4c) priv_read_lockaddr0 2 Read current LOCKADDR0
register in privileged mode.

NF 1

77 (0x4d) priv_read_lockaddr1 2 Read current LOCKADDR1
register in privileged mode.

NF 1

78 (0x4e) Undefined

79 (0x4f) Undefined

80 (0x50) priv_read_userrange1 2 Read current USERRANGE1
register in privileged mode.

NF 1

81 (0x51) priv_read_gc_config 2 Read current GC_CONFIG
register in privileged mode.

NF 1

TABLE A-2 picoJava-II 2-byte Opcodes (Continued)

Opcode Mnemonic Size Description Group Cycles LDUSE
Chapter A Opcodes 473

Preliminary information, subject to change

82 (0x52) priv_read_brk1a 2 Read current BRK1Aregister

in privileged mode.

NF 1

83 (0x53) priv_read_brk2a 2 Read current BRK2Aregister

in privileged mode.

NF 1

84 (0x54) priv_read_brk12c 2 Read current BRK12Cregister

in privileged mode.

NF 1

85 (0x55) priv_read_userrange2 2 Read current USERRANGE2
register in privileged mode.

NF 1

86 (0x56) Undefined

87 (0x57) priv_read_versionid 2 Read current VERSIONID
register in privileged mode.

NF 1

88 (0x58) priv_read_hcr 2 Read current HCRregister in

privileged mode.

NF 1

89 (0x59) priv_read_sc_bottom 2 Read current SC_BOTTOM
register in privileged mode.

NF 1

90 (0x5a) read_global0 2 Read current GLOBAL0
register.

LV 1

91 (0x5b) read_global1 2 Read current GLOBAL1
register.

LV 1

92 (0x5c) read_global2 2 Read current GLOBAL2
register.

LV 1

93 (0x5d) read_global3 2 Read current GLOBAL3
register.

LV 1

94 (0x5e) Undefined

95 (0x5f) Undefined

96 (0x60) write_PC , ret_from_sub 2 Write to PC register. NF 4

97 (0x61) write_vars 2 Write to VARSregister. NF 2

98 (0x62) write_frame 2 Write to FRAMEregister. NF 2

99 (0x63) write_optop 2 Write to OPTOPregister. NF 2

100 (0x64) priv_write_oplim 2 Write to OPLIM register in

privileged mode.

NF 2

101 (0x65) write_const_pool 2 Write to CONST_POOL
register.

NF 2

TABLE A-2 picoJava-II 2-byte Opcodes (Continued)

Opcode Mnemonic Size Description Group Cycles LDUSE
Preliminary information, subject to change
474 picoJava-II Programmer’s Reference Manual • March 1999

102 (0x66) priv_write_psr 2 Write to PSRregister in

privileged mode.

NF 2

103 (0x67) priv_write_trapbase 2 Write to TRAPBASEregister

in privileged mode.

NF 2

104 (0x68) priv_write_lockcount0 2 Write to LOCKCOUNT0
register in privileged mode.

NF 2

105 (0x69) priv_write_lockcount1 2 Write to LOCKCOUNT1
register in privileged mode.

NF 2

106 (0x6a) Undefined

107 (0x6b) Undefined

108 (0x6c) priv_write_lockaddr0 2 Write to LOCKADDR0register

in privileged mode.

NF 2

109 (0x6d) priv_write_lockaddr1 2 Write to LOCKADDR1 register

in privileged mode.

NF 2

110 (0x6e) Undefined

111 (0x6f) Undefined

112 (0x70) priv_write_userrange1 2 Write to USERRANGE1
register in privileged mode.

NF 2

113 (0x71) priv_write_gc_config 2 Write to GC_CONFIGregister

in privileged mode.

NF 2

114 (0x72) priv_write_brk1a 2 Write to BRK1Aregister in

privileged mode.

NF 2

115 (0x73) priv_write_brk2a 2 Write to BRK2Aregister in

privileged mode.

NF 2

116 (0x74) priv_write_brk12c 2 Write to BRK12Cregister in

privileged mode.

NF 2

117 (0x75) priv_write_userrange2 2 Write to USERRANGE2
register in privileged mode.

NF 2

118 (0x76) Undefined

119 (0x77) Undefined

120 (0x78) Undefined

121 (0x79) priv_write_sc_bottom 2 Write to SC_BOTTOMregister

in privileged mode.

NF 2

TABLE A-2 picoJava-II 2-byte Opcodes (Continued)

Opcode Mnemonic Size Description Group Cycles LDUSE
Chapter A Opcodes 475

Preliminary information, subject to change

122 (0x7a) write_global0 2 Write to current GLOBAL0
register.

MEM 1

123 (0x7b) write_global1 2 Write to current GLOBAL1
register.

MEM 1

124 (0x7c) write_global2 2 Write to current GLOBAL2
register.

MEM 1

125 (0x7d) write_global3 2 Write to current GLOBAL3
register.

MEM 1

126-255 Undefined

TABLE A-2 picoJava-II 2-byte Opcodes (Continued)

Opcode Mnemonic Size Description Group Cycles LDUSE
Preliminary information, subject to change
476 picoJava-II Programmer’s Reference Manual • March 1999

Index
NUMERICS
64-bit values

endianness, order of loads, 25

placement, 62

A
aaload , 82, 460

aastore
instruction, 83, 436

opcode, 461

trap, 52

aastore_quick , 84, 436, 467

ACE field in the PSR register, 11, 27

aconst_null , 86, 458

actions, subsequent to the core taking a trap or an

interrupt, 47

address

alignment, requirements for, 22

larger than 30-bit, handling of, 22

noncacheable, 23

opposite endianness, bit 30 set, 24

space, 21, 22

Address of Deepest Stack Cache Entry Register

(SC_BOTTOM), 8

AEM field in the PSR register, 11

agetfield_quick , 87, 468

agetstatic_quick , 74, 88, 468

aldc_quick , 74, 89, 468

aldc_w_quick , 74, 90, 468

alignment address, requirements for, 22

allocation of

frames, 385, 389

stack chunks, 429

aload , 91, 459

aload_0 , 460

aload_1 , 460

aload_2 , 460

aload_3 , 460

aload_ n, 92

anewarray
instruction, 93

opcode, 466

trap, 51

anewarray_quick
instruction, 94

opcode, 467

trap, 51

aputfield_quick , 95, 436, 468

aputstatic_quick , 74, 97, 436, 468

areturn , 43, 99, 465

ArithmeticException trap, 52, 56

array

arrays structure, 68

booleans structure, 70

bytes structure, 70

chars structure, 69

data structures, 67

doubles structure, 67

floats structure, 69

integers structure, 68

longs structure, 67

objects structure, 68

reference, handle (H) bit, 66
477

shorts structure, 70

storage, 65

ArrayIndexOutOfBounds trap, 52, 56

arraylength , 100, 466

astore , 101, 460

astore_0 , 461

astore_1 , 461

astore_2 , 461

astore_3 , 461

astore_ n, 102

asynchronous_error trap, 27, 50, 54

athrow
instruction, 103

opcode, 466

trap, 52, 393

B
baload , 104, 460

bastore , 105, 461

bipush , 31, 106, 459

BM8 field in the PSR register, 11

breakpoint

address matching, 454

halting the core, 454

opcode, 466

registers, 15, 451

setup, 450

trap, 52

breakpoint1 trap, 50, 55

breakpoint2 trap, 50, 55

BRK12C, 445

BRK12C register, 15

BRK12C.BRKM1 bit, 454

BRK12C.BRKM2 bit, 454

BRK1A register, 15

BRK2A register, 15

BRKEN1 field in the BRK12C register, 17

BRKEN2 field in the BRK12C register, 16

BRKM1 field in the BRK12C register, 16

BRKM2 field in the BRK12C register, 16

byte ordering, See endianness

C
C code generation

argument mismatches, 425

function

calls, 404, 420

prologue and epilog, 405

return values, 405

functions

with aggregate params and locals, 408

with simple params and locals, 406

object file formats, 426

optimizations, 421

passing of arguments, 404

registers, 402

runtime stacks, 402

CAC field in the PSR register, 11, 27

cache coherency, 30, 33

cache_flush , 31, 34, 35, 37, 107, 471

cache_index_flush , 31, 34, 36, 37, 109, 471

cache_invalidate , 31, 34, 37, 111, 470

call , 113, 472

caload , 114, 460

CAR_MASK field in the GC_CONFIG register, 14, 440

castore , 115, 461

checkcast
instruction, 116

opcode, 466

trap, 51

checkcast_quick
instruction, 71, 74, 117

opcode, 467

trap, 51

checks, memory protection, 27

class loader, 391

CO field in the LOCKCOUNT registers, 13, 396, 398,

399

code for nonstatic and static methods, 392

coherency

between caches and memory, 30 to 33

in accesses

instruction, 32

stack and data, 30

Constant Pool Base Pointer Register

(CONST_POOL), 9, 385, 387

constant pool table, 72

context switch, 44, 58, 400

COUNT field in the LOCKCOUNT registers, 13

cp , See constant pool table

creation of method frames, 385
478 picoJava-II Programmer’s Reference Manual - March 1999

D
d2f

instruction, 118

opcode, 464

trap, 51

d2i
instruction, 119

opcode, 464

trap, 51

d2l
instruction, 120

opcode, 464

trap, 51

dadd
instruction, 121

opcode, 462

trap, 50

daload , 123, 460

dastore , 124, 461

data

breakpoint traps, 450

cache

configuration, 36

function, 22

initialization, 37

operations, 37

structures, array, 67

types

floating point, 62

integral, 62

primitive, 61 to 62

data_access_error trap, 50

data_access_io_error trap, 27

data_access_mem_error trap, 27, 56

data_store_error trap, 50

DBH and DBL fields in the PSR register, 11, 40, 41

DCA field in the HCR register, 18, 36

DCE field in the PSR register, 11, 53, 54

DCL field in the HCR register, 18, 36

dcmpg
instruction, 125

opcode, 464

trap, 51

dcmpl
instruction, 126

opcode, 464

trap, 51

dconst_0 , 127, 458

dconst_1 , 128, 459

DCS field in the HCR register, 19, 36

ddiv
instruction, 129

opcode, 462

trap, 50

debugging by halting and single-stepping, 454

diagnostic accesses

in the data cache, 37

in the instruction cache, 34

dload , 131, 459

dload_0 , 459

dload_1 , 460

dload_2 , 460

dload_3 , 460

dload_ n, 132

dmul
instruction, 133

opcode, 462

trap, 50

dneg , 134, 463

DRE field in the PSR register, 11, 39

drem
instruction, 135

opcode, 463

trap, 50

dreturn , 43, 137, 465

DRT field in the PSR register, 11, 53, 54

dstore , 138, 460

dstore_0 , 461

dstore_1 , 461

dstore_2 , 461

dstore_3 , 461

dstore_ n, 139

dsub
instruction, 140

opcode, 462

trap, 50

dup , 142, 461

dup_x1 , 143, 462

dup_x2 , 144, 462

dup2 , 145, 462

dup2_x1 , 146, 462

dup2_x2 , 147, 462

E
emulation of instructions, 54

ENABLE field in the OPLIM register, 55
Index 479

endianness

64-bit values, order of loads, 25

big-endian, 23, 24

little-endian, 23, 24

of stack, 24

exceptions, 54

exit_sync_method , 148, 391, 392, 468

F
f2d

instruction, 149

opcode, 464

trap, 51

f2i
instruction, 150

opcode, 463

trap, 50

f2l
instruction, 151

opcode, 463

trap, 51

fadd
instruction, 152

opcode, 462

trap, 50

faload , 154, 460

fastore , 155, 461

fcmpg
instruction, 156

opcode, 464

trap, 51

fcmpl
instruction, 157

opcode, 464

trap, 51

fconst_0 , 158, 458

fconst_1 , 159, 458

fconst_2 , 160, 458

fdiv
instruction, 161

opcode, 462

trap, 50

FLE field in the PSR register, 11

fload , 163, 459

fload_0 , 459

fload_1 , 459

fload_2 , 459

fload_3 , 459

fload_ n, 164

flushing

in the data cache, 37

in the instruction cache, 34

in the stack cache, 44

fmul
instruction, 165

opcode, 462

trap, 50

fneg , 166, 463

FPE field in the PSR register, 11, 53, 54

FPP field in the HCR register, 19, 54

frame allocation on Java method invocations and

returns, 385

Frame Pointer Register (FRAME), 7, 47, 385, 387, 389

frem
instruction, 167

opcode, 462

trap, 50

freturn , 43, 169, 465

fstore , 170, 460

fstore_0 , 461

fstore_1 , 461

fstore_2 , 461

fstore_3 , 461

fstore_ n, 171

fsub
instruction, 172

opcode, 462

trap, 50

G
garbage collection

configuration register, 14

definition, 433

hardware support from the core

handles, 434

reserved bits in references and headers, 434

write barriers, 434

examples, 439

instructions, 436

page-based, 436

reference-based, 439

references, 441

train algorithm, 440

GC_CONFIG register, 14, 435, 440, 445
480 picoJava-II Programmer’s Reference Manual - March 1999

GC_CONFIG.CAR_MASK, 437

GC_CONFIG.REGION_MASK, 436

gc_notify trap, 53, 56, 434, 435, 441

GC_TAG, 63, 435, 441

GCE field in the PSR register, 11

get_current_class , 174, 392, 472

getfield
instruction, 175

opcode, 465

trap, 51

getfield_quick , 176, 467

getfield_quick_w
instruction, 177

opcode, 468

trap, 52

getfield2_quick , 178, 467

getstatic
instruction, 179

opcode, 465

trap, 51

getstatic_quick , 74, 180, 467

getstatic2_quick , 74, 181, 467

global registers (GLOBAL), 20

goto , 182, 465

goto_w , 183, 466

H
HALT field in the BRK12C register, 16

Hardware Configuration Register (HCR), 18, 33, 36,

445

DCA field, 36

DCL field, 36

DCS field, 36

ICA field, 33

ICL field, 33

ICS field, 33

hardware synchronization, 396

high and low watermarks, 41

I
i2b , 184, 464

i2c , 185, 464

i2d
instruction, 186

opcode, 463

trap, 50

i2f
instruction, 187

opcode, 463

trap, 50

i2l , 188, 463

i2s , 189, 464

iadd , 190, 462

iaload , 191, 460

iand , 192, 463

iastore , 193, 461

ICA field in the HCR register, 19, 33

ICE field in the PSR register, 11, 34

ICL field in the HCR register, 19, 33

iconst_0 , 195, 458

iconst_1 , 196, 458

iconst_2 , 197, 458

iconst_3 , 198, 458

iconst_4 , 199, 458

iconst_5 , 200, 458

iconst_m1 , 194, 458

ICS field in the HCR register, 19, 33

idiv , 201, 462

IE field in the PSR register, 11, 47, 57

if_acmpeq , 63, 202, 465

if_acmpne , 63, 203, 465

if_icmpeq , 204, 464

if_icmpge , 205, 465

if_icmpgt , 206, 465

if_icmple , 207, 465

if_icmplt , 208, 464

if_icmpne , 209, 464

ifeq , 210, 464

ifge , 211, 464

ifgt , 212, 464

ifle , 213, 464

iflt , 214, 464

ifne , 215, 464

ifnonnull , 216, 466

ifnull , 217, 466

iinc , 218, 463

illegal_instruction trap, 50, 56

IllegalMonitorStateException , 397, 399

iload , 31, 219, 459

iload_0 , 459

iload_1 , 459
Index 481

iload_2 , 459

iload_3 , 459

iload_ n, 220

imul , 221, 462

incoming arguments to invoked methods, 386

ineg , 222, 463

instanceof
instruction, 223

opcode, 466

trap, 51

instanceof_quick
instruction, 71, 74, 224

opcode, 467

trap, 51

instanceof_quick , 467

instruction

breakpoint traps, 450

cache

configuration, 33

function, 22

initialization, 34

operations, 34

emulation, 54

set, 82 to 381

space, modification of, 35

instruction_access_error trap, 27, 50, 55

instructions for caching, 31

interrupt

control, 57

definitions, 56

latency of, 57

maskable, 56

nonmaskable (NMI), 56

interrupt request level (IRL), 57

Interrupt_level_1 , 53

Interrupt_level_10 , 53

Interrupt_level_11 , 53

Interrupt_level_12 , 53

Interrupt_level_13 , 53

Interrupt_level_14 , 53

Interrupt_level_15 , 53

Interrupt_level_2 , 53

Interrupt_level_3 , 53

Interrupt_level_4 , 53

Interrupt_level_5 , 53

Interrupt_level_6 , 53

Interrupt_level_7 , 53

Interrupt_level_8 , 53

Interrupt_level_9 , 53

invokeinterface
instruction, 226

opcode, 466

trap, 52

invokeinterface_quick
instruction, 227

opcode, 467

trap, 52

invokenonvirtual_quick , 74, 228, 467

invokespecial
instruction, 230

opcode, 466

trap, 52

invokestatic
instruction, 231

opcode, 466

trap, 52

invokestatic_quick , 74, 232, 467

invokesuper_quick , 233, 467

invokevirtual
instruction, 235

opcode, 466

trap, 52

invokevirtual_quick , 236, 467

invokevirtual_quick_w , 74, 237, 468

invoking

methods, 388

synchronized methods, 391

ior , 239, 463

irem , 240, 462

ireturn , 43, 241, 465

IRL, See interrupt request level

ishl , 242, 463

ishr , 243, 463

istore , 31, 244, 460

istore_0 , 460

istore_1 , 460

istore_2 , 460

istore_3 , 460

istore_ n, 245

isub , 246, 462

iucmp , 247, 470

iushr , 248, 463

ixor , 249, 463
482 picoJava-II Programmer’s Reference Manual - March 1999

J
Java virtual machine instructions, See instruction set

jsr , 250, 465

jsr_w , 251, 466

L
l2d

instruction, 252

opcode, 463

trap, 50

l2f
instruction, 253

opcode, 463

trap, 50

l2i , 254, 463

ladd , 255, 462

laload , 256, 460

land , 257, 463

lastore , 258, 461

latency of interrupts, 57

lcmp , 259, 464

lconst_0 , 44, 260, 458

lconst_1 , 261, 458

ldc
instruction, 262

opcode, 459

trap, 51

ldc_quick , 74, 263, 466

ldc_w
instruction, 264

opcode, 459

trap, 51

ldc_w_quick , 74, 265, 466

ldc2_w
instruction, 266

opcode, 459

trap, 51

ldc2_w_quick , 74, 267, 467

ldiv
instruction, 268

opcode, 462

trap, 51

lload , 269, 459

lload_0 , 459

lload_1 , 459

lload_2 , 459

lload_3 , 459

lload_ n, 270

lmul
instruction, 271

opcode, 462

trap, 51

lneg , 272, 463

load_byte , 273, 469

load_byte_index , 274, 468

load_char , 31, 275, 469

load_char_index , 31, 276, 468

load_char_oe , 31, 277, 470

load_short , 31, 278, 469

load_short_index , 31, 279, 468

load_short_oe , 31, 280, 470

load_ubyte , 281, 469

load_ubyte_index , 282, 468

load_word , 31, 39, 283, 469

load_word_index , 31, 284, 468

load_word_oe , 285, 470

Local Variable Pointer Register (VARS), 6

local variables, storage of, 387

lock caching registers, 13

LOCKADDR registers, 13, 396, 397, 399

LOCKCOUNT registers, 13, 396, 397, 399

LOCKCOUNT.COUNT, 397, 399, 400

LockCounterOverflow trap, 56

LockCountOverflow
handler, 397

trap, 52

LockEnterMiss
handler, 397

trap, 52, 56

LockExitMiss
handler, 399

trap, 53, 56

LockRelease
handler, 398

trap, 52, 56

LOCKWANT field in the LOCKCOUNT registers, 13,

396, 399

lookupswitch
instruction, 22, 286

opcode, 465

trap, 52

lor , 287, 463

lrem
instruction, 288

opcode, 462

trap, 51
Index 483

lreturn , 43, 289, 465

lshl , 290, 463

lshr , 291, 463

lstore , 292, 460

lstore_0 , 460

lstore_1 , 461

lstore_2 , 461

lstore_3 , 461

lstore_ n, 293

lsub , 294, 462

lushr , 295, 463

lxor , 296, 463

M
machine states, 444

management of power, 443

maskable interrupt, 56

mem_address_not_aligned trap, 22, 50, 55

mem_protection_error trap, 29, 50, 55

memory

access types, 21

errors, 26

noncacheable region, 23

protection

checks, 27

regions, 28

registers, 10

Memory Protection Registers (USERRANGE1 and

USERRANGE2), 10

method

context

information in frames, 385, 387

saving, 391

context, five words of, 391

entry point in the method structure, 391

frames, creating, 385

invoking, 388

passing control to, 391

reference, resolving, 388

return, 393

structure accessing, 388

synchronized, invoking, 391

methods

in class files, indexed mapping, 73

in superclasses, overriding, 71

Minimum Value of Top-of-Stack Register

(OPLIM), 8

modifying instruction space, 35

monitor

caching registers, 13

definition, 395

handling, software support for, 397

software support, 397

structures, 396

updates by context switch, 400

monitorenter , 297, 391, 395, 396, 466

monitorexit , 299, 391, 395, 396, 466

multianewarray
instruction, 301

opcode, 466

trap, 51

multianewarray_quick
instruction, 302

opcode, 467

trap, 52

N
nastore_word_index , 31, 38, 303, 469

ncload_byte , 304, 470

ncload_char , 305, 470

ncload_char_oe , 31, 306, 471

ncload_short , 31, 307, 470

ncload_short_oe , 31, 308, 471

ncload_ubyte , 309, 470

ncload_word , 31, 310, 470

ncload_word_oe , 311, 471

ncstore_byte , 312, 472

ncstore_char , 31

ncstore_short , 31, 313, 472

ncstore_short_oe , 31, 314, 472

ncstore_word , 31, 315, 472

ncstore_word_oe , 31, 316, 472

new
instruction, 317

opcode, 466

trap, 51

new_quick
instruction, 318

opcode, 467

trap, 51

newarray
instruction, 319

opcode, 466

trap, 51
484 picoJava-II Programmer’s Reference Manual - March 1999

nmi , 53

NMI, See nonmaskable interrupt

noncacheable

instructions, 23

memory region, 23

nonmaskable interrupt (NMI), 56

nonnull_quick , 320, 468

nop , 321, 458

NullPointer trap, 52, 56

O
object

reference

definition, 63

handle (H) bit, 64

storage, 64

obtaining method information, 388

opcodes

Java virtual machine, 458 to 466

picoJava-II core

1-byte, 458 to 469

2-byte, 469 to 476

operand stack, 387

OPLIM register, 8, 29, 429, 445

oplim_trap trap, 29, 50, 55, 429, 430

opposite endianness, 24

OPTOP register, 7, 29, 389, 393, 429, 445

P
picoJava-II core

overview, 3

relationship to the Java virtual machine, 4

PIL field in the PSR register, 11, 57

placement of 64-bit values, 62

pop , 322, 461

pop2 , 323, 461

power modes, 443

power-on reset (POR), 444

prev_ret_from_trap , 44

priv_powerdown , 324, 443, 470

priv_read_brk12C , 474

priv_read_brk1A , 474

priv_read_brk2A , 474

priv_read_dcache_data , 325, 469

priv_read_dcache_tag , 327, 469

priv_read_gc_config , 473

priv_read_hcr , 474

priv_read_icache_data , 34, 329, 470

priv_read_icache_tag , 34, 331, 470

priv_read_lockaddr0 , 473

priv_read_lockaddr1 , 473

priv_read_lockcount0 , 473

priv_read_lockcount1 , 473

priv_read_oplim , 473

priv_read_psr , 473

priv_read_ reg, 333

priv_read_sc_bottom , 474

priv_read_trapbase , 473

priv_read_userrange1 , 473

priv_read_userrange2 , 474

priv_read_versionid , 474

priv_reset , 335, 444, 472

priv_ret_from_trap , 43, 48, 49, 336, 469

priv_update_optop , 43, 44, 337, 473

priv_write_brk12C , 475

priv_write_brk1A , 475

priv_write_brk2A , 475

priv_write_dcache_data , 338, 471

priv_write_dcache_tag , 340, 471

priv_write_gc_config , 475

priv_write_icache_data , 34, 342, 472

priv_write_icache_tag , 34, 344, 472

priv_write_lockaddr0 , 475

priv_write_lockaddr1 , 475

priv_write_lockcount0 , 475

priv_write_lockcount1 , 475

priv_write_oplim , 474

priv_write_psr , 475

priv_write_ reg, 346

priv_write_sc_bottom , 475

priv_write_trapbase , 475

priv_write_userrange1 , 475

priv_write_userrange2 , 475

privileged_instruction trap, 50, 55

Processor Status Register (PSR), 10, 47, 445

Program Counter Register (PC), 5, 47, 385, 387, 391,

444

PSR.GCE, 435, 436

putfield
instruction, 348, 436

opcode, 465

trap, 51

putfield_quick , 349, 467
Index 485

putfield_quick_w
instruction, 350

opcode, 468

trap, 52

putfield2_quick , 351, 467

putstatic
instruction, 352, 436

opcode, 465

trap, 51

putstatic_quick , 74, 353, 467

putstatic2_quick , 74, 354, 467

R
read_const_pool , 473

read_frame , 473

read_global0 , 474

read_global1 , 474

read_global2 , 474

read_global3 , 474

read_optop , 473

read_pc , 473

read_ reg, 355

read_vars , 473

reference

bits, 63

format, 63

types, 62 to 70

REGION_MASK field in the GC_CONFIG register, 14

registers

breakpoint (BRK1A, BRK2A, and BRK12C), 15

constant pool base pointer (CONST_POOL), 9

deepest stack cache entry pointer

(SC_BOTTOM), 8

frame pointer (FRAME), 7

garbage collection configuration

(GC_CONFIG), 14

hardware configuration (HCR), 18

local variable pointer (VARS), 6

memory protection (USERRANGE1 and

USERRANGE2), 10

monitor-caching, 12

processor status (PSR), 10

program counter (PC), 5

stack limit pointer (OPLIM), 8

stack management, 6

top-of-stack pointer (OPTOP), 7

trap handler address (TRAPBASE), 12

version ID (VERSIONID), 17

reset management, 40, 444

restrictions in trap handlers, 432

ret , 356, 465

ret_from_sub , 357, 474

return , 43, 358, 465

return0 , 43, 359, 470

return1 , 43, 360, 471

return2 , 43, 361, 472

returning from a method, 393

runtime structures, 71 to 74

array header/runtime class structure, 71

class structure, 73

constant pool, 73

method structure, 72

S
saload , 362, 460

sastore , 363, 461

saving the invoker’s method context, 391

SC_BOTTOM register, 8, 39, 40, 445

sethi , 364, 468

setjmp and longjmp functions in C,

implementation, 432

sign extension, 25, 26

sipush , 365, 459

SIR values, 444

soft_trap
instruction, 366

opcode, 471

trap, 51

software support for monitors, 397

SRCBRK1 field in the BRK12C register, 17

SRCBRK2 field in the BRK12C register, 16

SRN field in the HCR register, 19

stack, 21

at oplim_trap , illustration, 430

cache

configuration, 39

dribbling, 22, 39, 41

entry requirements, 41

flushing contents to memory, 44

function, 22

hits, 41

spill and fill transactions, 42

cacheability, caveat, 23
486 picoJava-II Programmer’s Reference Manual - March 1999

chunks

allocation and deallocation, 429

returns to previously saved states, 432

how to grow, 430

how to limit, 29

overflows, 43

registers, initialization of, 40

states before entering oplim_trap , 430

thread states, caveat, 431

underflows, 43

values, 387

standby mode, 443

storage of

arrays, 65

local variables during method invocation, 387

objects, 64

store_byte , 367, 471

store_byte_index , 368, 469

store_short , 31, 369, 471

store_short_index , 31, 370, 469

store_short_oe , 31, 371, 471

store_word , 31, 372, 471

store_word_index , 31, 373, 468

store_word_oe , 31, 374, 472

SU field in the PSR register, 11, 27, 47

SUBRK1 field in the BRK12C register, 17

SUBRK2 field in the BRK12C register, 16

swap , 375, 462

switch of context, 58

synchronization of hardware, 396

synchronized methods, invoking, 391

T
tableswitch , 22, 376, 465

TBA field in the TRAPBASE register, 12, 46

Top-of-Stack Pointer Register (OPTOP), 7

trap

definitions, 45

levels, 46

priorities, 50

table, 46

types, 45, 50

Trap Handler Address Register (TRAPBASE), 12, 46,

445

TT field in the TRAPBASE register, 12, 47

U
unimplemented_instr_0xba trap, 52

unimplemented_instr_0xdb trap, 52

unimplemented_instr_0xf7 trap, 52

unimplemented_instr_0xf8 trap, 52

unimplemented_instr_0xf9 trap, 52

unimplemented_instr_0xfa trap, 52

unimplemented_instr_0xfb trap, 52

unimplemented_instr_0xfc trap, 52

unimplemented_instr_0xfd trap, 52

unimplemented_instr_0xfe trap, 52

USERHIGH and USERLOW fields in the USERRANGE
registers, 10, 28

USERRANGE1 register, 10

USERRANGE2 register, 10

V
value convention on the stack, 387

VARS register, 6, 47, 385, 387, 389, 393, 431, 445

Version ID register (VERSION ID), 17, 444

W
watermarks, See high and low watermarks

WB_VECTOR field in the GC_CONFIG register, 14,

441

wide
instruction, 378

opcode, 466

trap, 52

write_const_pool , 474

write_frame , 474

write_global0 , 476

write_global1 , 476

write_global2 , 476

write_global3 , 476

write_optop , 43, 44, 474

write_pc , 474

write_ reg, 379

write_vars , 474
Index 487

Z
zero_line

instruction, 31, 38, 54, 380

opcode, 473

trap, 38, 52
488 picoJava-II Programmer’s Reference Manual - March 1999

22 (0x16) lload 2 Load local long var

23 (0x17) fload 2 Load local float var
80 (0x50) lastore 1 Store into long array

81 (0x51) fastore 1 Store into float array

div 1 Long divide

div 1 Float divide

div 1 Dbl float divide

rem 1 Int remainder

rem 1 Long remainder

rem 1 Float remainder

rem 1 Dbl float remainder

neg 1 Int negate

neg 1 Long negate

neg 1 Float negate

neg 1 Dbl float negate

shl 1 Int shift left

shl 1 Long shift left

shr 1 Int arithmetic shift right

shr 1 Long arithmetic shift right

ushr 1 Int logical shift right

ushr 1 Long logical shift right

and 1 Int boolean AND

and 1 Long boolean AND

or 1 Int boolean OR

or 1 Long boolean OR

xor 1 Int boolean XOR

xor 1 Long boolean XOR

inc 3 Increment local var by const

2l 1 Int to long

134 (0x86) i2f 1 Int to float

135 (0x87) i2d 1 Int to dbl

2i 1 Long to int

2f 1 Long to float

2d 1 Long to dbl

2i 1 Float to int

2l 1 Float to long

2d 1 Float to dbl

2i 1 Dbl to int

2l 1 Dbl to long

2f 1 Dbl to float

2b 1 Int to byte

2c 1 Int to character

2s 1 Int to short

cmp 1 Long int compare

cmpl 1 Float compare -1 on incomp

cmpg 1 Float compare 1 on incomp

cmpl 1 Dbl comp -1 on incomp

cmpg 1 Dbl compare 1 on incomp

feq 3 Branch if =0

fne 3 Branch if ≠ 0

flt 3 Branch if <0

fge 3 Branch if 0

fgt 3 Branch if > 0

fle 3 Branch if ≤ 0

f_icmpeq 3 Comp top 2 stack elmt br on =

f_icmpne 3 Comp top 2 stack elms br on ≠
f_icmplt 3 Comp top 2 stack elm br on <

f_icmpge 3 Comp top 2 stack elm br on

f_icmpgt 3 Comp top 2 stack elm br on >

f_icmple 3 Comp top 2 stack elm, br on ≤
f_acmpeq 3 Comp top 2 stack objs br on =

nemonic SizeDescription
50 (0x32) aaload 1 Load obj ref from array

51 (0x33) baload 1 Load signed byte from array

52 (0x34) caload 1 Load character from array

53 (0x35) saload 1 Load short from arrray

54 (0x36) istore 2 Store int into local var

105 (0x69) lmul 1 Long multiply

106 (0x6a) fmul 1 Float multiply

107 (0x6b) dmul 1 Dbl float multiply

108 (0x6c) idiv 1 Int divide

162 (0xa2) i

163 (0xa3) i

164 (0xa4) i

165 (0xa5) i
24 (0x18) dload 2 Load local dbl float var

25 (0x19) aload 2 Load local obj variable

26 (0x1a) iload_0 1 Load local var 0

27 (0x1b) iload_1 1 Load local var 1

28 (0x1c) iload_2 1 Load local var 2

29 (0x1d) iload_3 1 Load local var 3

30 (0x1e) lload_0 1 Load local long var 0

31 (0x1f) lload_1 1 Load local long var 1

32 (0x20) lload_2 1 Load local long var 2

33 (0x21) lload_3 1 Long local long var 3

34 (0x22) fload_0 1 Load local float var 0

35 (0x23) fload_1 1 Load local float var 1

36 (0x24) fload_2 1 Load local float var 2

37 (0x25) fload_3 1 Load local float var 3

38 (0x26) dload_0 1 Load local dbl var 0

39 (0x27) dload_1 1 Load local dbl var 1

40 (0x28) dload_2 1 Load local dbl var 2

41 (0x29) dload_3 1 Load local dbl var 3

42 (0x2a) aload_0 1 Load local obj var 0

43 (0x2b) aload_1 1 Load local obj var 1

44 (0x2c) aload_2 1 Load local obj var 2

45 (0x2d) aload_3 1 Load local obj var 3

46 (0x2e) iaload 1 Load int from array

47 (0x2f) laload 1 Load long from array

48 (0x30) faload 1 Load float from array

49 (0x31) daload 1 Load dbl from array

82 (0x52) dastore 1 Store into dbl float array

83 (0x53) aastore 1 Store into obj ref array

84 (0x54) bastore 1 Store into signed byte array

85 (0x55) castore 1 Store into character array

86 (0x56) sastore 1 Store into short array

87 (0x57) pop 1 Pop top entry in stack

88 (0x58) pop2 1 Pop top two entries in stack

89 (0x59) dup 1 Dup top stack word

90 (0x5a) dup_x1 1 Dup top word and put two
words down

91 (0x5b) dup_x2 1 Dup top word and put three
words down

92 (0x5c) dup2 1 Dup top two words

93 (0x5d) dup2_x1 1 Dup top two words and put
three words down

94 (0x5e) dup2_x2 1 Dup top two words and put
four words down

95 (0x5f) swap 1 Swap top two stack words

96 (0x60) iadd 1 Int add

97 (0x61) ladd 1 Long add

98 (0x62) fadd 1 Float add

99 (0x63) dadd 1 Dbl float add

100 (0x64) isub 1 Int subtract

101 (0x65) lsub 1 Long subtract

102 (0x66) fsub 1 Float subtract

103 (0x67) dsub 1 Dbl float subtract

104 (0x68) imul 1 Int multiply

136 (0x88) l

137 (0x89) l

138 (0x8a) l

139 (0x8b) f

140 (0x8c) f

141 (0x8d) f

142 (0x8e) d

143 (0x8f) d

144 (0x90) d

145 (0x91) i

146 (0x92) i

147 (0x93) i

148 (0x94) l

149 (0x95) f

150 (0x96) f

151 (0x97) d

152 (0x98) d

153 (0x99) i

154 (0x9a) i

155 (0x9b) i

156 (0x9c) i

157 (0x9d) i

158 (0x9e) i

159 (0x9f) i

160 (0xa0) i

161 (0xa1) i
picoJava-II Opcodes
Opcode Mnemonic SizeDescription
0 (0x0) nop 1 -

1 (0x1) aconst_null 1 Push null obj

2 (0x2) iconst_m1 1 Push int const -1

3 (0x3) iconst_0 1 Push int const 0

4 (0x4) iconst_1 1 Push int const 1

5 (0x5) iconst_2 1 Push int const 2

6 (0x7) iconst_3 1 Push int const 3

7 (0x7) iconst_4 1 Push int const 4

8 (0x8) iconst_5 1 Push int const 5

9 (0x9) lconst_0 1 Push long int const 00

10 (0x0a) lconst_1 1 Push long int const 01

11 (0x0b) fconst_0 1 Push float const 0.0

12 (0x0c) fconst_1 1 Push float const 1.0

13 (0x0d) fconst_2 1 Push float const 2.0

14 (0x0e) dconst_0 1 Push dbl float 0.0

15 (0x0f) dconst_1 1 Push dbl float 1.0

16 (0x10) bipush 2 Push one byte int

17 (0x11) sipush 3 Push two byte int

18 (0x12) ldc 2 Load const from const pool

19 (0x13) ldc_w 3 Load const from const pool
(16-bit index)

20 (0x14) ldc2_w 3 Load long/dbl from pool

21 (0x15) iload 2 Load local int var

55 (0x37) lstore 2 Store long into local var

56 (0x38) fstore 2 Store float into local var

57 (0x39) dstore 2 Store dbl into local var

58 (0x3a) astore 2 Store obj ref into local var

59 (0x3b) istore_0 1 Store into local var 0

60 (0x3c) istore_1 1 Store into local var 1

61 (0x3d) istore_2 1 Store into local var 2

62 (0x3e) istore_3 1 Store into local var 3

63 (0x3f) lstore_0 1 Store into local var 0

64 (0x40) lstore_1 1 Store into local var 1

65 (0x41) lstore_2 1 Store into local var 2

66 (0x42) lstore_3 1 Store into local var 3

67 (0x43) fstore_0 1 Store into local var 0

68 (0x44) fstore_1 1 Store into local var 1

69 (0x45) fstore_2 1 Store into local var 2

70 (0x46) fstore_3 1 Store into local var 3

71 (0x47) dstore_0 1 Store into local var 0

72 (0x48) dstore_1 1 Store into local var 1

73 (0x49) dstore_2 1 Store into local var 2

74 (0x4a) dstore_3 1 Store into local var 3

75 (0x4b) astore_0 1 Store into local var 0

76 (0x4c) astore_1 1 Store into local var 1

77 (0x4d) astore_2 1 Store into local var 2

78 (0x4e) astore_3 1 Store into local var 3

79 (0x4f) iastore 1 Store into int array

Opcode Mnemonic SizeDescription
109 (0x6d) l

110 (0x6e) f

111 (0x6f) d

112 (0x70) i

113 (0x71) l

114 (0x72) f

115 (0x73) d

116 (0x74) i

117 (0x75) l

118 (0x76) f

119 (0x77) d

120 (0x78) i

121 (0x79) l

122 (0x7a) i

123 (0x7b) l

124 (0x7c) i

125 (0x7d) l

126 (0x7e) i

127 (0x7f) l

128 (0x80) i

129 (0x81) l

130 (0x82) i

131 (0x83) l

132 (0x84) i

133 (0x85) i

Opcode M

191 (0xbf) athrow 1 Throw an exception

192 (0xc0) checkcast 3 Check if obj is of given type

246 (0xf6) store_byte_index 3 Indexed store byte from mem

247 (0xf7) – Undefined

cload_char_oe 2 NC end-swp ld unsigd short or
char from mem

cload_short_oe 2 NC end-swp ld sig short from
mem

cload_word_oe 2 NC end-swp ld int from mem

eturn1 2 Return with one-word val

ache_flush 2 Flush cache line and inval

ache_index_flush 2 Flush cache line and inval

tore_byte 2 Store byte to mem

ndefined

tore_short 2 Store short or char to mem

ndefined

tore_word 2 Store int to mem

oft_trap 2 Initiate a software trap

riv_write_dcache_tag 2 Diag write of D$ tags

riv_write_dcache_data 2 Diag write of D$ data array

ndefined

ndefined

tore_short_oe 2 End-swp store short to mem

ndefined

tore_word_oe 2 End-swap store int to mem

eturn2 2 Ret with 2-word val from sub

riv_write_icache_tag 2 Diag write of I$ tags

riv_write_icache_data 2 Diag write of I$ data array

cstore_byte 2 NC store byte to mem

49 (0x31) Undefined

50 (0x32) ncstore_short 2 NC store short or char to mem

ndefined

cstore_word 2 NC store int to mem

ndefined

riv_reset 2 Software-initiated reset

et_current_class 2 Push class pntr for curt meth

ndefined

ndefined

cstore_short_oe 2 NC end-swp store shrt to mem

ndefined

cstore_word_oe 2 NC end-swp store int to mem

all 2 Call sub with spec # of args

ero_line 2 Zero cache line data

riv_update_optop 2 Atomic write OPTOP & OPLIM

ead_pc 2 Read PC reg

ead_vars 2 Read VARS reg

ead_frame 2 Read FRAME reg

ead_optop 2 Read OPTOP reg

riv_read_oplim 2 Priv read OPLIM reg

ead_const_pool 2 Read CONST_POOL reg

riv_read_psr 2 Priv read PSR reg

riv_read_trapbase 2 Priv read TRAPBASE reg

riv_read_lockcount0 2 Priv read LOCKCOUNT0 reg

riv_read_lockcount1 2 Priv read LOCKCOUNT1 reg

ndefined

ndefined

riv_read_lockaddr0 2 Priv read LOCKADDR0 reg

riv_read_lockaddr1 2 Priv read LOCKADDR1 reg

ndefined

ndefined

riv_read_userrange1 2 Priv read USERRANGE1 reg

riv_read_gc_config 2 Priv read GC_CONFIG reg

nemonic SizeDescription
219 (0xdb) Undefined

220 (0xdc) aastore_quick 1 St ref to array: no type checks

221 (0xdd) new_quick 3 Create new obj

222 (0xde) anewarray_quick 3 Create a new array of objs

22 (0x16) priv_powerdown 2 Low-power standby state

23 (0x17) cache_invalidate 2 Inval cache line

24 (0x18) Undefined

25 (0x19) Undefined

78 (0x4e) U

79 (0x4f) U

80 (0x50) p

81 (0x51) p
193 (0xc1) instanceof 3 See if obj is of given type

194 (0xc2) monitorenter 1 Enter a monitored region

195 (0xc3) monitorexit 1 Exit a monitored region

196 (0xc4) wide 1 Prefix operation

197 (0xc5) multianewarray 4 Allocate new multiarray

198 (0xc6) ifnull 3 Test if null

199 (0xc7) ifnonnull 3 Test if not null

200 (0xc8) goto_w 5 Unconditional goto. 4B offset

201 (0xc9) jsr_w 5 Jump sub 4-byte offset

202 (0xca) breakpoint 1 Call breakpoint handler

203 (0xcb) ldc_quick 2 Push item from const pool

204 (0xcc) ldc_w_quick 3 Push item from const pool

205 (0xcd) ldc2_w_quick 3 Push long or dbl frm const pool

206 (0xce) getfield_quick 3 Get field from object

207 (0xcf) putfield_quick 3 Set field in object

208 (0xd0) getfield2_quick 3 Get long or dbl frm fld of obj

209 (0xd1) putfield2_quick 3 Set field of obj (long or dbl)

210 (0xd2) getstatic_quick 3 Get static field from class

211 (0xd3) putstatic_quick 3 Set static field in class

212 (0xd4) getstatic2_quick 3 Get long or dbl static field

213 (0xd5) putstatic2_quick 3 Set long or dbl static field

214 (0xd6) invokevirtual_quck 3 Invoke instance method

215 (0xd7) invokenonvirtual_quick 3 Invoke instance method

216 (0xd8) invokesuper_quick 3 Invoke instance method

217 (0xd9) invokestatic_quick 3 Invoke static method

218 (0xda) invokeinterface_quick 3 Invoke interface method

254 (0xfe)

255 (0xff) 2-Byte Opcodes (all opcodes start with 0xff)

0 (0x00) load_ubyte 2 Load unsigned byte from mem

1(0x01) load_byte 2 Load signed byte from mem

2 (0x02) load_char 2 Load unsigned short or char
from mem

3 (0x03) load_short 2 Load signed shrt from mem

4 (0x04) load_word 2 Load int from mem

5 (0x05) priv_ret_from_trap 2 Return from trap

6 (0x06) priv_read_dcache_tag 2 Diag read of D$ tags

7 (0x07) priv_read_dcache_data 2 Diag read of D$ data array

8 (0x08) Undefined

9 (0x09) Undefined

10 (0x0a) load_char_oe 2 End-swap load unsigned short
or char from mem

11 (0x0b) load_short_oe 2 End-swap ld signed shrt from
mem

12 (0x0c) load_word_oe 2 End-swap ld int from mem

13 (0x0d) return0 2 Ret with no value from sub

14 (0x0e) priv_read_icache_tag 2 Diag read of I$ tags

15 (0x0f) priv_read_icache_data 2 Diag read of I$ data array

16 (0x10) ncload_ubyte 2 NC ld unsigned byte from mem

17 (0x11) ncload_byte 2 NC ld signed byte from mem

18 (0x12) ncload_char 2 NC ld unsigned short or char
from mem

19 (0x13) ncload_short 2 NC ld signed short from mem

20 (0x14) ncload_word 2 NC load int from mem

21 (0x15) iucmp 2 Unsigned integer compare

51 (0x33) U

52 (0x34) n

53 (0x35) U

54 (0x36) p

55 (0x37) g

56 (0x38) U

57 (0x39) U

58 (0x3a) n

59 (0x3b) U

60 (0x3c) n

61 (0x3d) c

62 (0x3e) z

63 (0x3f) p

64 (0x40) r

65 (0x41) r

66 (0x42) r

67 (0x43) r

68 (0x44) p

69 (0x45) r

70 (0x46) p

71 (0x47) p

72 (0x48) p

73 (0x49) p

74 (0x4a) U

75 (0x4b) U

76 (0x4c) p

77 (0x4d) p
166 (0xa6) if_acmpne 3 Comp top two stk objs, br on ≠
167 (0xa7) goto 3 Unconditional jump

168 (0xa8) jsr 3 Jump to subroutine

169 (0xa9) ret 2 Return from subroutine

170 (0xaa) tableswitch -- Goto case statement

171 (0xab) lookupswitch -- Goto case statement

172 (0xac) ireturn 1 Return int from procedure

173 (0xad) lreturn 1 Return long from procedure

174 (0xae) freturn 1 Return float from procedure

175 (0xaf) dreturn 1 Return dbl from procedure

176 (0xb0) areturn 1 Return obj from procedure

177 (0xb1) return 1 Return void from procedure

178 (0xb2) getstatic 3 Get static field value

179 (0xb3) putstatic 3 Set static field in class

180 (0xb4) getfield 3 Get field value

181 (0xb5) putfield 3 Set field in class

182 (0xb6) invokevirtual 3 Call method, based on obj

183 (0xb7) invokespecial 3 Call method, not based on obj

184 (0xb8) invokestatic 3 Call a static method

185 (0xb9) invokeinterface 5 Call an interface method

186 (0xba) Undefined

187 (0xbb) new 3 Create new obj

188 (0xbc) newarray 2 Allocate new array

189 (0xbd) anewarray 3 Allocate new array of objs

190 (0xbe) arraylength 1 Get length of array

Opcode Mnemonic SizeDescription
223 (0xdf) multianewarray_quick 3 Create new obj multiarray

224 (0xe0) checkcast_quick 3 See ifobj is of given type

225 (0xe1) instanceof_quick 3 See if obj is of given type

226 (0xe2) invokevirtual_quick_w 3 Invoke instance method

227 (0xe3) getfield_quick_w 3 Get field from obj (wide index)

228 (0xe4) putfield_quick_w 3 Set field in obj (wide index)

229 (0xe5) nonnull_quick 1 Pop obj ref and trap if null

230 (0xe6) agetfield_quick 3 Read ref field in obj

231 (0xe7) aputfield_quick 3 Set ref field in obj with GC
checks

232 (0xe8) agetstatic_quick 3 Read static ref field in class

233 (0xe9) aputstatic_quick 3 Set static ref field in class with
GC checks

234 (0xea) aldc_quick 2 Push from const pool

235 (0xeb) aldc_w_quick 3 Push ref from const pool

236 (0xec) exit_sync_method 1 Jump to ret code for sync meth

237 (0xed) sethi 3 Set top 16-bits of top stk entry

238 (0xee) load_word_index 3 Indexed load word from mem

239 (0xef) load_short_index 3 Indexed load short from mem

240 (0xf0) load_char_index 3 Indexed load char from mem

241 (0xf1) load_byte_index 3 Indexed load sgn byte frm mem

242 (0xf2) load_ubyte_index 3 Indexed load unsgn byte - mem

243 (0xf3) store_word_index 3 Indexed store word from mem

244 (0xf4) nastore_word_index 3 Indexed naload wrd from mem

245 (0xf5) store_short_index 3 Indexed store short from mem

Opcode Mnemonic SizeDescription
26 (0x1a) n

27 (0x1b) n

28 (0x1c) n

29 (0x1d) r

30 (0x1e) c

31 (0x1f) c

32 (0x20) s

33 (0x21) U

34 (0x22) s

35 (0x23) U

36 (0x24) s

37 (0x25) s

38 (0x26) p

39 (0x27) p

40 (0x28) U

41 (0x29 U

42 (0x2a) s

43 (0x2b) U

44 (0x2c) s

45 (0x2d) r

46 (0x2e) p

47 (0x2f) p

48 (0x30) n

Opcode M

8
2

(0
x

5
2

)
p

ri
v

_
re

a
d

_
b

rk
1

a
2

P
ri

v
re

a
d

B
R

K
1

A
re

g

8
3

(0
x

5
3

)
p

ri
v

_
re

a
d

_
b

rk
2

a
2

P
ri

v
re

a
d

B
R

K
2

A
re

g

8
4

(0
x

5
4

)
p

ri
v

_
re

a
d

_
b

rk
1

2
c

2
P

ri
v

re
a

d
B

R
K

1
2

C
re

g

8
5

(0
x

5
5

)
p

ri
v

_
re

d
_

u
se

rr
a

n
g

e
2

2
P

ri
v

re
a

d
U

S
E

R
R

A
N

G
E

2
re

g

8
6

(0
x

5
6

)
U

n
d

e
fi

n
e
d

8
7

(0
x

5
7

)
p

ri
v

_
re

a
d

_
v

e
rs

io
n

id
2

P
ri

v
re

a
d

V
E

R
S

IO
N

ID
re

g

8
8

(0
x

5
8

)
p

ri
v

_
re

a
d

_
h

cr
2

P
ri

v
re

a
d

H
C

R
re

g

8
9

(0
x

5
9

)
p

ri
v

_
re

a
d

_
sc

_
b

o
tt

o
m

2
P

ri
v

re
a

d
S

C
_

B
O

T
T

O
M

re
g

9
0

(0
x

5
a

)
re

a
d

_
g

lo
b

a
l0

2
R

e
a

d
G

L
O

B
A

L
0

re
g

9
1

(0
x

5
b

)
re

a
d

_
g

lo
b

a
l1

2
R

e
a

d
G

L
O

B
A

L
1

re
g

9
2

(0
x

5
c)

re
a

d
_

g
lo

b
a

l2
2

R
e
a

d
G

L
O

B
A

L
2

re
g

9
3

(0
x

5
d

)
re

a
d

_
g

lo
b

a
l3

2
R

e
a

d
G

L
O

B
A

L
3

re
g

9
4

(0
x

5
e
)

U
n

d
e
fi

n
e
d

9
5

(0
x

5
f)

U
n

d
e
fi

n
e
d

9
6

(0
x

6
0

)
w

ri
te

_
p

c
2

W
ri

te
P

C
re

g

9
7

(0
x

6
1

)
w

ri
te

_
v

a
rs

2
W

ri
te

V
A

R
S

re
g

9
8

(0
x

6
2

)
w

ri
te

_
fr

a
m

e
2

W
ri

te
F

R
A

M
E

re
g

9
9

(0
x

6
3

)
w

ri
te

_
o

p
to

p
2

W
ri

te
O

P
T

O
P

re
g

1
0

0
(0

x
6

4
)

p
ri

v
_

w
ri

te
_

o
p

li
m

2
P

ri
v

w
ri

te
O

P
L

IM
re

g

1
0

1
(0

x
6

5
)

w
ri

te
_

co
n

st
_

p
o

o
l

2
W

ri
te

C
O

N
S

T
_

P
O

O
L

re
g

1
0

2
(0

x
6

6
)

p
ri

v
_

w
ri

te
_

p
sr

2
P

ri
v

w
ri

te
P

S
R

re
g

1
0

3
(0

x
6

7
)

p
ri

v
_

w
ri

te
_

tr
a

p
b

a
se

2
P

ri
v

w
ri

te
T

R
A

P
B

A
S

E
re

g

1
0

4
(0

x
6

8
)

p
ri

v
_

w
ri

te
_

lo
ck

co
u

n
t0

2
P

ri
v

w
ri

te
L

O
C

K
C

O
U

N
T

0
re

g

1
0

5
(0

x
6

9
)

p
ri

v
_

w
ri

te
_

lo
ck

co
u

n
t1

2
P

ri
v

w
ri

te
L

O
C

K
C

O
U

N
T

1
re

g

1
0

6
(0

x
6

a
)

U
n

d
e
fi

n
e
d

1
0

7
(0

x
6

b
)

U
n

d
e
fi

n
e
d

1
0

8
(0

x
6

c)
p

ri
v

_
w

ri
te

_
lo

ck
a

d
d

r0
2

P
ri

v
w

ri
te

L
O

C
K

A
D

D
R

0
re

g

1
0

9
(0

x
6

d
)

p
ri

v
_

w
ri

te
_

lo
ck

a
d

d
r1

2
P

ri
v

w
ri

te
L

O
C

K
A

D
D

R
1

re
g

11
0

(0
x

6
e
)

U
n

d
e
fi

n
e
d

11
1

(0
x

6
f)

U
n

d
e
fi

n
e
d

11
2

(0
x

7
0

)
p

ri
v

_
w

ri
te

_
u

se
rr

a
n

g
e
1

2
P

ri
v

w
ri

te
U

S
E

R
R

A
N

G
E

1
re

g

11
3

(0
x

7
1

)
p

ri
v

_
w

ri
te

_
g

c_
co

n
fi

g
2

P
ri

v
w

ri
te

G
C

_
C

O
N

F
IG

re
g

11
4

(0
x

7
2

)
p

ri
v

_
w

ri
te

_
b

rk
1

a
2

P
ri

v
w

ri
te

B
R

K
1

A
re

g

11
5

(0
x

7
3

)
p

ri
v

_
w

ri
te

_
b

rk
2

a
2

P
ri

v
w

ri
te

B
R

K
2

A
re

g

11
6

(0
x

7
4

)
p

ri
v

_
w

ri
te

_
b

rk
1

2
c

2
P

ri
v

w
ri

te
B

R
K

1
2

C
re

g

11
7

(0
x

7
5

)
p

ri
v

_
re

d
_

u
se

rr
a

n
g

e
2

2
P

ri
v

w
ri

te
U

S
E

R
R

A
N

G
E

2
re

g

11
8

(0
x

7
6

)
U

n
d

e
fi

n
e
d

11
9

(0
x

7
7

)
U

n
d

e
fi

n
e
d

1
2

0
(0

x
7

8
)

U
n

d
e
fi

n
e
d

1
2

1
(0

x
7

9
)

p
ri

v
_

w
ri

te
_

sc
_

b
o

tt
o

m
2

P
ri

v
w

ri
te

S
C

_
B

O
T

T
O

M
re

g

1
2

2
(0

x
7

a
)

w
ri

te
_

g
lo

b
a

l0
2

W
ri

te
G

L
O

B
A

L
0

re
g

1
2

3
(0

x
7

b
)

w
ri

te
_

g
lo

b
a

l1
2

W
ri

te
G

L
O

B
A

L
1

re
g

1
2

4
(0

x
7

c)
w

ri
te

_
g

lo
b

a
l2

2
W

ri
te

G
L

O
B

A
L

2
re

g

1
2

5
(0

x
7

d
)

w
ri

te
_

g
lo

b
a

l3
2

W
ri

te
G

L
O

B
A

L
3

re
g

O
p

co
d

e
M

n
em

on
ic

S
iz

e
D

es
cr

ip
ti

on

	Preface
	1
	Overview
	1.1 Purpose
	1.2 Relationship to the Java Virtual Machine
	1.3 Key Elements of the Core

	2
	Registers
	2.1 Program Counter Register (PC)
	2.2 Stack Management Registers
	2.2.1 Local Variable Pointer Register (VARS)
	2.2.2 FRAME Pointer Register (FRAME)
	2.2.3 Top-of-Stack Pointer Register (OPTOP)
	2.2.4 Minimum Value of Top-of-Stack Register (OPLIM)
	2.2.5 Address of Deepest Stack Cache Entry Register (SC_BOTTOM)

	2.3 Constant Pool Base Pointer Register (CONST_POOL)
	2.4 Memory Protection Registers (USERRANGE1 and USERRANGE2)
	2.5 Processor Status Register (PSR)
	2.6 Trap Handler Address Register (TRAPBASE)
	2.7 Monitor-Caching Registers
	2.7.1 Lock Count Registers (LOCKCOUNT[0..1])
	2.7.2 Lock Address Registers (LOCKADDR[0..1])

	2.8 Garbage Collection Register (GC_CONFIG)
	2.9 Breakpoint Registers
	2.10 Implementation Registers
	2.10.1 Version ID Register (VERSIONID)
	2.10.2 Hardware Configuration Register (HCR)

	2.11 Global Registers (GLOBAL[0..3])

	3
	Memory System and Caches
	3.1 Architecture of the Memory System
	3.1.1 Address Space
	3.1.2 Alignment
	3.1.3 Cacheable and Noncacheable Memory Regions
	3.1.4 Endianness
	3.1.5 Erroneous Memory Transactions

	3.2 Memory Protection
	3.2.1 The Address-Checking Process
	3.2.2 Memory Regions
	3.2.3 Limits for Stack Growth

	3.3 Cache Coherency
	3.3.1 Coherency for Stack and Data Accesses
	3.3.2 Coherency for Instruction Accesses

	3.4 Instruction Cache
	3.4.1 Configuration
	3.4.2 Initialization
	3.4.3 Operations
	3.4.4 Modification of Instruction Space

	3.5 Data Cache
	3.5.1 Configuration
	3.5.2 Initialization
	3.5.3 Operations

	3.6 Stack Cache
	3.6.1 Configuration
	3.6.2 Initialization
	3.6.3 Dribbling
	3.6.4 Flushing

	4
	Traps and Interrupts
	4.1 Traps
	4.1.1 Trap Table
	4.1.2 The Process of Taking a Trap
	4.1.3 Trap Types and Priorities

	4.2 Instruction Emulation
	4.3 Exceptions
	4.4 Interrupts
	4.4.1 Interrupt Control
	4.4.2 Interrupt Latency

	4.5 Context Switch

	5
	Data Types and Runtime Data Structures
	5.1 Primitive Data Types
	5.1.1 Integral Data Types
	5.1.2 Floating-Point Data Types

	5.2 Reference Types and Values
	5.2.1 References and Headers
	5.2.2 Object Storage
	5.2.3 Array Storage
	5.2.4 Layout of Array Data Structures

	5.3 Essential Runtime Data Structures
	5.3.1 Method Vector and Runtime Class Info Structure
	5.3.2 Method Structure
	5.3.3 Class Structure
	5.3.4 Constant Pool

	6
	Instruction Set
	7
	Java Method Invocation and Return
	7.1 Allocating a New Frame
	7.1.1 Incoming Arguments
	7.1.2 Local Variables
	7.1.3 Invoker’s Method Context
	7.1.4 Operand Stack

	7.2 Invoking a Method
	7.2.1 Resolving a Method Reference
	7.2.2 Accessing a Method Structure
	7.2.3 Allocating a New Method Frame
	7.2.4 Saving the Invoker’s Method Context
	7.2.5 Passing Control to the Invoked Method

	7.3 Invoking a Synchronized Method
	7.4 Returning from a Method

	8
	Monitors
	8.1 Structures
	8.2 Hardware Synchronization
	8.3 Software Support
	8.3.1 LockCountOverflow Handler
	8.3.2 LockEnterMiss Handler
	8.3.3 LockRelease Handler
	8.3.4 LockExitMiss Handler
	8.3.5 Context Switch Support

	9
	Support of the C Programming Language
	9.1 Register Conventions
	9.2 Runtime Stack Architecture
	9.2.1 Calling Convention for C-to-C Calls
	9.2.2 Rules for Passing Arguments
	9.2.3 Function Return Values
	9.2.4 Function Prologue and Epilogue
	9.2.5 Functions with Simple Parameters and Locals
	9.2.6 Functions with Complex Parameters and Locals
	9.2.7 Functions That Return Aggregate Values
	9.2.8 Functions with Variable Number of Arguments

	9.3 Calling Conventions for Java-to-C Calls
	9.4 Optimizations
	9.5 Function Tables
	9.5.1 Structure
	9.5.2 Properties
	9.5.3 Provisions in the Operating System
	9.5.4 _init and _fini
	9.5.5 OSGetNArgs Algorithm
	9.5.6 Extensions to Support .so (.dll) Files

	9.6 Handling of Argument Mismatches
	9.7 Object File Formats

	10
	Stack Chunking
	10.1 Overview
	10.2 oplim_trap Handler
	10.3 Manual Updates of the VARS Register
	10.4 Returns to Previously Saved Program States
	10.5 Possible Write-After-Write Hazards

	11
	Support for Garbage Collection
	11.1 Hardware Support
	11.1.1 Support for Handles
	11.1.2 Reserved Bits in References and Headers

	11.2 Write Barriers
	11.2.1 Instructions Subject to Write-Barrier Checks
	11.2.2 Page-Based Write Barrier
	11.2.3 Reference-Based Write Barrier

	11.3 Examples
	11.3.1 Train Algorithm-Based Collectors
	11.3.2 Remembered Set-Based Generational Collector

	11.4 References

	12
	System Management and Debugging
	12.1 Power Management
	12.2 Reset Management
	12.2.1 Machine State After Reset
	12.2.2 Enabling the Stack Cache
	12.2.3 Enabling the Instruction and Data Caches

	12.3 Breakpoints
	12.3.1 Data Breakpoints
	12.3.2 Instruction Breakpoints
	12.3.3 Breakpoint Registers
	12.3.4 Breakpoint Address Matching
	12.3.5 Breakpoints and Halt Mode

	12.4 Other Debug and Trace Features

	Opcodes
	Index

